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Preface

Half a century ago, at the now famous 1956 Dartmouth Conference, the
“fathers” of Artificial Intelligence (AI) – among them John McCarthy, Marvin
Minsky, Allen Newell, Claude Shannon, Herbert Simon, Oliver Selfridge, and Ray
Solomonoff – convened under the premise “that every aspect of learning or any
other feature of intelligence can in principle be so precisely described that a ma-
chine can be made to simulate it.” Fifty years have passed, and AI has turned
into an important field whose influence on our daily lives can hardly be overes-
timated. Many specialized AI systems exist that are at work in our cars, in our
laptop computers, and in our personal and commercial technologies. There is no
doubt that the impact of AI on our lives in the future will become even more
general and ubiquitous.

In this book we provide a representative collection of papers written by the
leading researchers in the field of Artificial Intelligence. All of the authors of pa-
pers in this volume attended the 50th Anniversary Summit of AI (http://www.
ai50.org), held at the Centro Stefano Franscini, Monte Verità, Ascona, Switzer-
land, July 9–14, 2006. The objective of the summit was fourfold: (1) to celebrate
the 50th anniversary of AI as a discipline; (2) to look back and assess the field
of AI (what has been done, and where we are); (3) to bring together people with
different backgrounds (to enhance interaction between groups and foster future
collaborations); and (4) to attract young and talented researchers to generate
additional momentum in this exciting field. The AI summit combined discus-
sions from a historical standpoint; scientific exchange on the state of the art;
speculations about the future; business, political and educational perspectives;
contributions by researchers from different but related areas; presentations of the
latest research by top scientists in the field; as well as many informal discussions
among the participants and visitors. In this volume, we have tried to maintain
the breadth of topics presented and discussed at the summit by including chap-
ters focusing on subjects ranging from the history and prospects of AI, to speech
recognition and processing, linguistics, bionics, and consciousness.

We would like to thank all the participants of the summit for helping to make
it a successful event, the authors for their contributions to this volume, and the
reviewers. We would also like to express our gratitude to the Centro Stefano Fran-
scini, Neuronics AG, Swisscom Innovations, Matek, and Migros Kulturprozent
for their support.

September 2007 Max Lungarella
Fumiya Iida

Josh C. Bongard
Rolf Pfeifer
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Abstract. The discipline of Artificial Intelligence (AI) was born in the summer 
of 1956 at Dartmouth College in Hanover, New Hampshire. Half of a century 
has passed, and AI has turned into an important field whose influence on our 
daily lives can hardly be overestimated. The original view of intelligence as a 
computer program – a set of algorithms to process symbols – has led to many 
useful applications now found in internet search engines, voice recognition 
software, cars, home appliances, and consumer electronics, but it has not yet 
contributed significantly to our understanding of natural forms of intelligence. 
Since the 1980s, AI has expanded into a broader study of the interaction 
between the body, brain, and environment, and how intelligence emerges from 
such interaction. This advent of embodiment has provided an entirely new way 
of thinking that goes well beyond artificial intelligence proper, to include the 
study of intelligent action in agents other than organisms or robots. For 
example, it supplies powerful metaphors for viewing corporations, groups of 
agents, and networked embedded devices as intelligent and adaptive systems 
acting in highly uncertain and unpredictable environments. In addition to giving 
us a novel outlook on information technology in general, this broader view of 
AI also offers unexpected perspectives into how to think about ourselves and 
the world around us. In this chapter, we briefly review the turbulent history of 
AI research, point to some of its current trends, and to challenges that the AI of 
the 21st century will have to face. 

1   Introduction 

For a long time, humans have been romanced by the idea of understanding how 
thinking works, or how to construct intelligent machines and replicate the intelligent 
behavior displayed by many natural systems. Traditional Jewish mysticism, for 
instance, includes tales of the Golem, a thinking automaton made from the sticky clay 
of the bank of the river Moldau. In the 17th century, philosopher Gottfried Wilhelm 
von Leibniz outlined plans for a thinking machine by conceiving an artificial 
universal language composed of symbols, which could stand for objects or concepts, 
and logical rules for their manipulation. A little more than half a century ago (when 
Norbert Wiener was devising Cybernetics [1] and Gray Walter was building robotic 
tortoises [2], the English mathematician Alan Turing proposed a much-discussed 
imitation game used as a yardstick for assessing if a machine is intelligent or not, 
which since then has been known as the Turing Test for artificial intelligence [3, 4]. 
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The advent of the general-purpose computer in the fifties of last century did 
substantially alter the dreams and ambitions of people and made AI an even more 
tangible possibility. So, in 1956, the fathers of “modern” AI, Marvin Minsky, John 
McCarthy, Allen Newell, Nathaniel Rochester, Claude Shannon, and Herbert Simon 
came together for a summer school at Dartmouth College (Hanover, New Hampshire) 
under the premise “that every aspect of learning or any other feature of intelligence 
can in principle be so precisely described that a machine can be made to simulate it” 
[5]. That date can be considered the birth of AI because it is only thereafter that 
numerous research groups around the world began to engage in the construction of 
artificial systems with the professed goal of emulating, equaling, or even surpassing 
human mental and physical abilities (a different view on the history of AI can be 
found in [6]). The many attempts to synthesize intelligence or higher cognition (by 
formalizing knowledge and crystallizing cognitive principles obtained from the study 
of human beings) have resulted in many specialized AI systems that nowadays are at 
work in specific problem domains, such as knowledge discovery and data mining (for 
example, for the identification of customer profiles), fuzzy logic, probabilistic 
reasoning, and artificial neural networks (as used in intelligent control for robots, 
home appliances and consumer electronics), evolutionary optimization (for the design 
of antennae, circuits, and turbines), as well as statistical and machine learning (often 
employed in genomics and proteomics). 

Although, as these examples show, AI has proven successful in many cases, it is 
clear that the original goals set out by the first generation of AI visionaries have not 
yet been reached. The holy grail of AI, the creation of general (human-like) machine 
intelligence (think of HAL from Stanley Kubrick’s 2001 or Bladerunner’s Roy 
Batty), has remained elusive. Natural intelligence is far from being understood and 
artificial forms of intelligence are still so much more primitive than natural ones. 
Seemingly simple tasks like object manipulation and recognition – tasks easily solved 
by a 3-year-old – have not yet been realized artificially. A look at the current research 
landscape reveals how little we know about how biological brains achieve their 
remarkable functionalities, how these functionalities develop in the child, or how they 
have arisen in the course of evolution. Also, we do not understand the cultural and 
social processes that have helped shape human intelligence. Because basic theories of 
natural intelligence are lacking and – despite impressive advances – the required 
technologies for building sophisticated artificial systems are yet not available, it is not 
surprising that the capabilities of current robots fall far short of even very simple 
animals. The inevitable conclusion then is that something important must have been 
missed or still needs to be discovered [7]. There is still no overall theory, no 
framework, explaining what thinking is and how to build intelligent machines.  

Although we do not have any clear cut answer as to what aspects of natural 
intelligence are key for creating artificial intelligence, we will point at some avenues 
that might be worth pursuing in realizing the dreams of our ancestors.  

2   Trends 

The field of artificial intelligence has changed dramatically over the last 50 years. 
Back in the 1950s, the brain was conceptualized as some kind of powerful computer, 
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and intelligence was thought to be the result of a symbol-crunching computer program 
located somewhere in our brain (this perspective is also known as the “brain as a 
computer metaphor” or the “information processing view”; [8, 9]). Since then, the by 
now “classical”, computational, or cognitivistic approach has grown into a large 
discipline with many facets, and has achieved many successes in applied computer 
science and engineering. Think, for instance, of the victory of IBM’s chess-playing 
supercomputer (Deep Blue) on reigning world chess champion, Garry Kasparov, on 
May 1997. While this early view of intelligence is probably adequate in formal or 
computational domains like chess playing or logical reasoning, in the past 20 years it 
has become increasingly evident that conceptualizing intelligence as a mere 
computational process cannot explain natural, adaptive forms of intelligence. The 
latter kind of intelligence requires a complete physical organism interacting with the 
real world: in other words, intelligence requires a body [10-15]. 

The new approach to understanding intelligence has led to a paradigm shift which 
emphasizes the physical and information-theoretical implications of embodied adaptive 
behavior, as opposed to the disembodied view of the computational framework [16-19]. 
The focus in this new paradigm is on systems acting in the real, physical and social 
world [20]. The implications of this change in perspective are far-reaching and can 
hardly be overestimated. With the fundamental paradigm shift from a computational to 
an embodied perspective, the kinds of research areas, theoretical and engineering issues, 
and the disciplines involved in AI have also changed substantially. The research effort 
in the field, for instance, has shifted towards understanding the lower level mechanisms 
and processes underlying intelligent behavior, as well as realizing higher forms of 
intelligence by first starting with simpler ones [21]. Cognition and action are viewed as 
the result of emergence and development rather than something that can be directly built 
(i.e. programmed) into a robot (such research draws heavily on insights from child 
development; e.g. [17, 22-24]. Automated design methods using ideas borrowed from 
biological evolution and ontogeny have also provided novel insights into the general 
nature of intelligence [25]. 

Physical agents in the real world, whether biological or artificial, are highly 
complex, and their investigation requires the cooperation of researchers from many 
different fields. In terms of research disciplines contributing to AI, we observe that in 
the classical approach computer science, psychology, philosophy, and linguistics 
played major roles, whereas in the embodied approach, computer science and 
philosophy [26] are now complemented by robotics, biomechanics [17, 27], material 
science and biology [28] and neuroscience [29]. The shift from high-level 
considerations (as raised in psychology and linguistics) to lower level sensory-motor 
processes – with the neurosciences now offering explanations at both the sensory-
motor and cognitive levels of intelligence – is evident [30, 31]. There have also been 
changes concerning the notions used for describing the research area: a significant 
number of researchers dealing with embodiment no longer refer to themselves as 
working in artificial intelligence but rather in robotics, engineering of adaptive 
systems, artificial life, adaptive locomotion, bio-inspired systems, or neuroin- 
formatics. But more than that, not only have researchers in artificial intelligence 
migrated into neighboring fields, but researchers in these neighboring fields have also 
started to contribute to artificial intelligence [29, 32]. This brings us to the issues of 
cross-disciplinarity and cross-fertilization.  
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3   Cross-Disciplinarity  

Although most researchers in AI today are still working within the boundaries of the 
field as it was defined 50 years ago, the trend seems to be an expansion of AI into a 
broader study of the interaction between body, brain, and environment, and how 
intelligence emerges from such interaction [18, 33]. It has become evident that many 
fields (linguistics, cognitive sciences, robotics, material science, neuroscience, and 
morphogenesis) are highly relevant in order to advance the state of the art. The 
community is interested in locomotion, manipulation, and, in general, how an agent 
can act successfully in a dynamic and complex world. Concepts such as embodiment, 
autonomy, situatedness, interactive emergence, development, semiotic dynamics, and 
social interaction have come to the forefront and have spawned a spectrum of new and 
interdisciplinary approaches to the study of natural and artificial intelligence. There 
are important implications of the embodied view of intelligence for science, 
engineering, economics, and society at large. Here, we only mention but a few. 

One of the important insights is that intelligence is not a “box” sitting inside the brain, 
but is distributed throughout the organism and requires the organism to interact with and 
explore its local environment. With respect to engineering, it has been demonstrated that 
systems which are not centrally controlled or do not feature a strict hierarchical structure 
tend to be more robust and adaptive against external perturbations [34]. It is important to 
realize that the underlying concepts might be directly mapped onto robot design (e.g. for 
de-mining operations, waste cleanup in hazardous environments, environmental explora-
tion, service in hospitals and homes, and so on) and onto the design of embedded systems 
(i.e. systems equipped with sensors and motors which interact autonomously and 
continuously with their surrounding environment). The application of concepts from 
embodied AI in embedded systems could have profound economical and technological 
implications, because such systems are extremely widespread: they are used, for instance, 
in fuel injection devices, water purification plants, air conditioning systems, remote 
monitoring and control systems, as well as in many systems designed for human 
computer interaction. Finally, companies, societies and political bodies with an organiza-
tional structure based on local interactions and self-organization have been shown to 
react more robustly to unpredictable market forces than hierarchically organized ones (a 
good example of this is the financial difficulties currently experienced by many major 
airlines, compared to the proliferation and success of smaller, regional airlines). 

4   Challenges and Outlook 

Niels Bohr once famously quipped: “It’s hard to predict, especially the future”. 
Similarly, it is difficult to make predictions, especially about the future of artificial 
intelligence. However, after 50 years of explorations into artificially intelligent 
systems (and many false predictions), we have learned enough about the nature of 
intelligence to venture plausible guesses as to where AI could go as a field and which 
challenges it might face in the coming decades. In this section, we list some of these 
challenges and point to chapters in this volume that discuss them. 

It seems to be generally accepted nowadays that the behavior of any system 
physically embedded within a particular environment is not the mere outcome of an 
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internal control structure (e.g. the central nervous system) but is also affected by the 
system’s morphology and the its material properties . Increasing evidence suggests 
that a direct link exists between embodiment and information: coupled sensory-motor 
activity and body morphology induce statistical regularities in sensory input and 
within the control architecture and therefore enhance internal information processing 
[35]. Mechanisms need to be created for the embodied and embedded systems to 
collect relevant learning material on their own [36] and for learning to take place in an 
“ecological context” (i.e. with respect to the environment). These and related issues 
are addressed in the chapters by Pfeifer et al. [18] and Polani et al. [19]. Potential 
avenues of how to exploit the interaction between control structure and physical 
properties (morphology and material characteristics) are described in the chapters by 
Iida et al. [16] and Behkam and Sitti [18]. 

Another challenge will be to devise a systematic theory of intelligence [14]. As 
argued by Nehaniv et al. [17] and Polani et al. [19], a promising approach may have 
to place special emphasis on information theory as a descriptive and predictive 
framework linking morphology, perception, action, and neural control. It will also be 
important to understand how raw (uninterpreted) information from unknown sensors 
can be used by a developing embodied agent with no prior knowledge of its motor 
capabilities to bootstrap cognition through a process of autonomous self-structuring in 
response to a history of self-motivated interaction with a rich environment [18, 19, 
37]. This is closely connected to the issue of self-motivation and curiosity which are 
discussed in the chapters by Kaplan and Oudeyer [22] and Lipson [25]. Research on 
general capacities such as creativity, curiosity, motivations, action selection, and 
prediction (i.e. the ability to foresee consequence of actions) will be necessary 
because, ideally, no tasks should be pre-specified to a robot, but only an internal 
“abstract” reward function, some core knowledge, or a set of basic motivational (or 
emotional) “drives.” Robots need to be endowed with the capacity to explore which 
are the activities that are maximally fitted to their current capabilities. Robots 
controlled by some core motives will hopefully be able to autonomously function in 
their environments not only to fulfill predefined tasks but also to search for situations 
where learning happens efficiently.  

In the same vein, it will be necessary to address the issue of how robots (and 
embodied agents in general) can give meaning to symbols and construct meaningful 
language systems (semiotic systems). A fascinating new insight – explored under the 
label of “semiotic dynamics” – is that such semiotic systems and the associated 
information structure may not be static entities, but are continuously invented and 
negotiated by groups of people or agents which use them for communication and 
information organization [9]. This quite naturally leads to investigation of the 
collective dynamics of groups of socially intelligent robots and systems [20].  

A further challenge will be how to integrate artificial intelligence and other fields. 
For instance, Potter [29] argues that neuroscience and artificial intelligence could 
profit from each other and invites researchers in both fields to venture across the 
divide (e.g. tools developed in the context of neuroinformatics could be used to design 
and manage neural databases). Similarly, Steels [9] predicts that many of the insights 
gained in fields such as nonlinear dynamical systems theory or evolutionary biology 
may have a direct bearing on the foundations of artificial intelligence as well as on 
how communication systems and other forms of interaction self-organize. A closer 
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(symbiotic) interaction between artificial and natural systems will also benefit 
rehabilitation engineering as shown by recent work on human-machine interaction 
[38, 39]. As envisioned by Fattori et al. [31], robotics and neurophysiology could 
meet in a research field where bioelectrical signals obtained by single or multi-
electrode recordings can be used to drive a robotic device [40]. As a last challenge, 
one could envision situations where AI could be used in the context of computer-
assisted human-human interaction technologies [41]. 

5   Epilogue 

The reconsideration of brain and body as a fundamental unit, physically and 
informationally, as well as the emergence of a new quantitative framework that links 
the natural and artificial domains, has begun to produce new insights into the nature 
of intelligent systems. While much additional work is surely needed to arrive at or 
even approach a general theory of intelligence, the beginnings of a new synthesis are 
on the horizon. Perhaps, finally, we will come closer to understanding and building 
human-like intelligence. The superior adaptability of embodied, distributed systems 
has been acknowledged for a long time, but there is now theoretical evidence from 
artificial intelligence research and corroboration from computer simulations 
supporting this point. In summary, the ideas emerging from the modern, embodied 
view of artificial intelligence provide novel ways of approaching technological, 
social, and economic problems in the rapidly changing world of the 21st century. 
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Abstract. I analyze some of the attacks against the Physical Symbol
System Hypothesis—attacks based on the presumed need for symbol-
grounding and non-symbolic processing for intelligent behavior and on
the supposed non-computational and “mindless” aspects of brains.

The physical symbol system hypothesis (PSSH), first formulated by Newell and
Simon in their Turing Award paper,1 states that “a physical symbol system [such
as a digital computer, for example] has the necessary and sufficient means for in-
telligent action.” The hypothesis implies that computers, when we provide them
with the appropriate symbol-processing programs, will be capable of intelligent
action. It also implies, as Newell and Simon wrote, that “the symbolic behavior
of man arises because he has the characteristics of a physical symbol system.”

Newell and Simon admitted that

The hypothesis could indeed be false. Intelligent behavior is not so easy
to produce that any system will exhibit it willy-nilly. Indeed, there are
people whose analyses lead them to conclude either on philosophical or
on scientific grounds that the hypothesis is false. Scientifically, one can
attack or defend it only by bringing forth empirical evidence about the
natural world.

Indeed, many people have attacked the PSSH. Their arguments cluster around
four main themes. One theme focuses on the presumption that computers can
only manipulate meaningless symbols. Intelligence, some people claim, requires
more than formal symbol manipulation; it requires some kind of connection to
the environment through perception and action in order to “ground” the symbols
and thereby give them meaning. Such connectedness is to be achieved through
what some of its proponents call “embodiment.” Intelligence requires a physical
body that senses and acts and has experiences.

1 Allen Newell and Herbert A. Simon, “Computer Science as Empirical Inquiry: Sym-
bols and Search,” Communications of the ACM. vol. 19, No. 3, pp. 113-126, March,
1976. Available online at:
http://www.rci.rutgers.edu/∼cfs/472 html/AI SEARCH/PSS/PSSH1.html

M. Lungarella et al. (Eds.): 50 Years of AI, Festschrift, LNAI 4850, pp. 9–17, 2007.

http://www.rci.rutgers.edu/~cfs/472_html/AI_SEARCH/PSS/PSSH1.html
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Some even claim that to have “human-level” intelligence, a machine must have
a human-like body. For example, Hubert Dreyfus argues that:2

. . . to get a device (or devices) with human-like intelligence would require
them to have a human-like being in the world, which would require them
to have bodies more or less like ours, and social acculturation (i.e. a
society) more or less like ours.

In order to avoid arguments about what kind of body (if any) might be re-
quired, I think discussions about this theme would be less confusing if, instead of
being about bodies, they were about the need for “grounding” symbols in what-
ever environment the intelligence is to function. Such an environment might be
either the actual physical world or simulated, artificial worlds containing other
agents.

Another theme focuses on the presumption that much that underlies intelli-
gent action, especially perception, involves non-symbolic (that is, analog signal)
processing. Of course, any physical process can be simulated to any desired de-
gree of accuracy on a symbol-manipulating computer, but an account of such a
simulation in terms of symbols, instead of signals, can be unmanageably cum-
bersome.

The third theme, related to the second, comes from those who claim that
“computation,” as it is ordinarily understood, does not provide an appropriate
model for intelligence. Some have even said that it is time “to do away with the
computational metaphor that has been haunting AI for 50 years: the brain is not
a computer!”3 Intelligent behavior requires “brain-style” (not computational)
mechanisms.

A fourth theme is based on the observation that much that appears to be
intelligent behavior is really “mindless.” Insects (especially colonies of insects)
and even plants get along quite well in complex environments. Their adaptability
and efficacious responses to challenging situations display a kind of intelligence
even though they manipulate no symbols. Jordan Pollack extends this claim
even to human intelligence. He has written “Most of what our minds are doing
involves mindless chemical activity . . .”4

In light of these attacks, where does the PSSH stand today? Manifestly, we
have not yet mechanized human-level intelligence. Is this shortcoming the fault
of relying on the PSSH and the approaches to AI that it encourages? Might
we need to include, along with symbol manipulation, non-symbolic processing
modules in order to produce intelligent behavior? Of course, it could just be that

2 Quote taken from http://en.wikipedia.org/wiki/Hubert Dreyfus. Dreyfus’s point of
view about all this is explained in: Hubert L. Dreyfus, “Why Heideggerian AI Failed
And How Fixing It Would Require Making It More Heideggerian,” a paper written
in connection with being awarded the APA’s Barwise Prize, 2006.

3 From a description of the “50th Anniversary Summit of Artificial Intelligence” at
http://www.ai50.org/

4 Jordan B. Pollack, “Mindless Intelligence,” IEEE Intelligent Systems, p. 55, May/
June 2006.

http://en.wikipedia.org/wiki/Hubert_Dreyfus
http://www.ai50.org/
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mechanizing intelligence is so much more difficult than we ever imagined it to be
that it’s not surprising that we haven’t done it yet regardless of the approaches
we have tried.

Let’s look first at the claim that the PSSH is based on manipulating formal
(and thus meaningless) symbols and is false for that reason. John Searle, for
example, has written:5

What [a computer] does is manipulate formal symbols. The fact that
the programmer and the interpreter of the computer output use the
symbols to stand for objects in the world is totally beyond the scope of
the computer. The computer, to repeat, has a syntax but not semantics.

Searle makes this claim as part of his argument that computers (viewed as
symbol-processing systems) cannot be said “to understand” because the objects
(in the world) that the symbols stand for are beyond their scope.

Rodney Brooks has also criticized the PSSH, and proposes (in supposed con-
trast) what he calls “nouvelle AI . . . based on the physical grounding hypothesis.
This hypothesis states that to build a system that is intelligent it is necessary
to have its representations grounded in the physical world.”6

Searle and Brooks both seem to have ignored an important part of the PSSH.
According to Newell and Simon:7

A physical symbol system is a machine that produces through time an
evolving collection of symbol structures. Such a system exists in a world
of objects wider than just these symbolic expressions themselves.

Regarding this “world of objects,” a physical symbol system includes (in addition
to its means for formal symbol manipulation) the ability to “designate.”

Here is Newell and Simon’s definition (my italics):

“An expression [composed of symbols] designates an object if, given the ex-
pression, the system can either affect the object itself or behave in ways dependent
on the object.”

Wesee that thedesignationaspectof thePSSHexplicitlyassumes that,whenever
necessary, symbols will be grounded in objects in the environment through the per-
ceptual and effector capabilities of a physical symbol system. Attacks on the PSSH
based on its alleged disregard for symbol grounding miss this important point.

In any case, in many applications, it isn’t clear that symbol grounding is
needed. For example, the “knowledge” possessed by expert systems—expressed
5 John R. Searle, “Minds, Brains, and Programs,” Behavioral and Brain Sciences,

3(3), pp. 417-457, 1980. Available online at:
http://www.bbsonline.org/documents/a/00/00/04/84/bbs00000484-00/
bbs.searle2.html

6 Rodney A. Brooks, “Elephants Don’t Play Chess,” Robotics and Autonomous Sys-
tems, 6, pp. 3-15, 1990. Available online at:
people.csail.mit.edu/brooks/papers/elephants.pdf

7 Allen Newell and Herbert A. Simon, op. cit.

http://www.bbsonline.org/documents/a/00/00/04/84/bbs00000484-00/bbs.searle2.html
http://www.bbsonline.org/documents/a/00/00/04/84/bbs00000484-00/bbs.searle2.html
http://people.csail.mit.edu/brooks/papers/elephants.pdf
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in symbolic form either as belief networks or as rules—has no direct connection to
objects in the world, yet “formal symbol manipulation” of this knowledge delivers
intelligent and useful conclusions. Admittedly, robots that perceive and act in
real environments (as well as other systems that function in artificial, simulated
environments) do need direct connections between some of their symbols and
objects in their environments. Shakey most certainly had a body with sensors
and effectors, but most of its processing was done by a physical symbol system.

Let’s turn now to the second theme, namely that intelligent action requires
non-symbolic processing. It is often claimed that much (if not most) of human
intelligence is based on our ability to make rapid perceptual judgments using pat-
tern recognition. We are not able to introspect about what underlies our abilities
to recognize speech sounds, familiar faces and “body language,” situations on
a chess board, and other aspects of our environment that we “size-up” and act
upon seemingly automatically. Because we cannot introspect about them, it is
difficult to devise symbol-based rules for programming these tasks. Instead, we
often use a variety of dynamical, statistical, and neural-network methods that
are best explained as processing analog rather than discrete symbolic data.

Statistical and neural-network methods are quite familiar to AI researchers.
The subject of dynamical systems, however, might not be. In an article in The
MIT Encyclopedia of Cognitive Science, Tim van Gelder writes:8

A dynamical system for current purposes is a set of quantitative variables
changing continually, concurrently, and interdependently over quantita-
tive time in accordance with dynamical laws described by some set of
equations. Hand in hand with this first commitment goes the belief that
dynamics provides the right tools for understanding cognitive processes.
. . .
A central insight of dynamical systems theory is that behavior can be
understood geometrically, that is, as a matter of position and change of
position in a space of possible overall states of the system. The behavior
can then be described in terms of attractors, transients, stability, cou-
pling, bifurcations, chaos, and so forth—features largely invisible from a
classical perspective.

I grant the need for non-symbolic processes in some intelligent systems, but I
think they supplement rather than replace symbol systems. I know of no exam-
ples of reasoning, understanding language, or generating complex plans that are
best understood as being performed by systems using exclusively non-symbolic
processes.9 Mostly this supplementation occurs for those perceptual and motor

8 T. J. van Gelder, “Dynamic Approaches to Cognition” in R. Wilson, and F. Keil
(eds.), The MIT Encyclopedia of Cognitive Sciences, pp. 244-246, Cambridge MA:
MIT Press, 1999. Available online at:
http://www.arts.unimelb.edu.au/∼tgelder/papers/MITDyn.pdf

9 In his article on dynamical systems, van Gelder writes “Currently, many aspects
of cognition—e.g., story comprehension—are well beyond the reach of dynamical
treatment.”

http://www.arts.unimelb.edu.au/~tgelder/papers/MITDyn.pdf
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activities that are in closest contact with the environment. This point has long
been acknowledged by AI researchers as evidenced by the inclusion of “signal-
to-symbol transformation” processes in several AI systems.10

Pandemonium, an early AI architecture proposed by Oliver Selfridge,11 was
non-commital about the symbolic versus non-symbolic distinction. Its hierarchi-
cally organized components, which Selfridge called “demons,” could be instanti-
ated either as performing non-symbolic or symbolic processes. In combination,
his model would be a provocative proposal for a synthesis of those two processing
methods.

Now, let’s analyze the phrase “the brain is not a computer,” which is the
main point of the third theme of attacks against the PSSH. People who make
this claim often stress distinctions like:

Computers have perhaps hundreds of processing units whereas brains
have trillions.
Computers perform billions of operations per second whereas brains per-
form only thousands.
Computers are subject to crashes whereas brains are fault tolerant.
Computers use binary signals whereas brains work with analog ones.
Computers perform serial operations whereas brains are massively par-
allel.
Computers are programmed whereas brains learn.
Etc.

Aside from the fact that many of these distinctions are no longer valid,12

comparisons depend on what is meant by “the brain” and what is meant by
“a computer.” If our understanding of the brain is in terms of its component
neurons, with their gazillions of axons, dendrites, and synaptic connections, and
if our understanding of a computer is in terms of serial, “von Neumann-style”
operation—reading, processing, and writing of bits—all accomplished by tran-
sistor circuitry, well then of course, the brain is not that kind of a computer. So
what?

We don’t understand “computation” (the metaphor we are being persuaded
to abandon) by reference only to a low-level, von Neumann-style description.
We can understand it at any one of a number of description levels. For example,

10 P. Nii, E. Feigenbaum, J. Anton, and A. Rockmore, “Signal-to-Symbol Transforma-
tion: HASP/SIAP Case Study,” AI Magazine, vol 3, Spring 1982.

11 Oliver. G. Selfridge, “Pandemonium: A Paradigm for Learning,” in D. V. Blake and
A. M. Uttley, editors, Proceedings of the Symposium on Mechanisation of Thought
Processes, pages 511-529, London: Her Majesty’s Stationary Office, 1959.

12 For example, a paper written in 2003 claimed that “Google’s architecture fea-
tures clusters of more than 15,000 commodity-class PCs with fault-tolerant soft-
ware.” Undoubtedly, Google uses many more networked computers today. See:
Luiz André Barroso, Jeffrey Dean, and Urs Hölzle, “Web Search for a Planet: The
Google Cluster Architecture,” IEEE Micro, March-April, 2003. Available online at:
http://labs.google.com/papers/googlecluster-ieee.pdf

http://labs.google.com/papers/googlecluster-ieee.pdf
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computation might be understood as a collection of active recursive functions
operating on symbolic list structures. Alternatively, it might be understood as
parallel-operating “knowledge sources” reading from, transforming, and writing
complex symbolic expressions on a “blackboard.” Other possible computational
models are a collection of symbol-processing Pandemonium demons, a “dynamic
Bayes network” of symbolically-represented propositions,13 or a loosely-coupled
society of simple computational “agents.”14

Perhaps our gradually increasing understanding of how the brain operates
will lead to other useful computational models, such as the graphical models of
the neo-cortex proposed by Hawkins; by Hinton, Osindero, and Teh; by Lee and
Mumford; and by Dean.15 Our ideas about what “computation” can be are ever
expanding, so those who want to claim that the brain is not a computer will
need to be more precise about just what kind of computer the brain is not.

Engineers have no difficulty using several levels of description and neither will
brain scientists. Transistors and synapses are best understood and explained
using the vocabularies of physics and chemistry. But database systems, for ex-
ample, are best understood and programmed using higher-level computational
concepts—which, by the way, had to be invented for those purposes. Similarly I
predict, understanding how brains represent declarative knowledge, understand
and generate language, and make and carry out plans will require levels of de-
scription higher than that of neural circuitry. And just as engineers already have
a continuum of bridges connecting an explanation of how transistors work with
an explanation of how computers perform database searches, brain scientists will
eventually have bridges connecting their explanations of how neurons work with
their yet-to-be perfected explanations of how brains carry out those processes
we call intelligent.

There is already some exciting progress on developing symbol-based theories
of brain operation and on connecting these theories with neural circuitry. For
example, Randall C. O’Reilly, writes that the pre-frontal cortex “is critical for
maintaining current context, goals, and other information in an active state that
guides ongoing behavior in a coherent, task-relevant manner.”16 He even suggests
that neural circuits protect against noise in the same way that computers do,
namely by employing binary encoding, and that neural circuits are capable of
“limited variable binding.”

13 Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Second
Edition, Chapter 15, Upper Saddle River, New Jersey: Pearson Education, Inc., 2003.

14 Marvin Minsky, The Society of Mind, New York: Simon and Schuster, 1985.
15 Jeff Hawkins with Sandra Blakeslee, On Intelligence, New York: Times Books, 2004;

G. Hinton, S. Osindero, and Y. Teh, “A Fast Learning Algorithm for Deep Belief
Networks,” Neural Computation, 2006, to appear; T. S. Lee and David Mumford,
“Hierarchical Bayesian Inference in the Visual Cortex, J. Opt. Soc. Am. A, Vol. 20,
No. 7, July 2003; Thomas Dean, “Computational Models of the Neocortex,” online
article at http://www.cs.brown.edu/people/tld/projects/cortex/.

16 Randall C. O’Reilly, “Biologically Based Computational Models of High-Level Cog-
nition,” Science, vol. 314, pp. 91-94, October 6, 2006.

http://www.cs.brown.edu/people/tld/projects/cortex/
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In a paper about certain brain sub-systems, Richard Granger writes: “Together
the system produces incrementally constructed and selectively reinforced hier-
archical representations consisting of nested sequences of clusters.”17 Granger
has also told me that “even in brains, many of us find it appropriate to include
symbol-processing levels of description (though I should note that the science is
evolving, and there are still those who would disagree).”18

In his “neural theory” of how the brain understands language, Jerome Feld-
man employs such computational level, symbolic constructs as “schema,” “fea-
ture,” and “value.” He writes, “There is convincing evidence that people organize
their perceptions and actions in terms of features and values.”19 Feldman stresses
the importance of connecting computational level descriptions in his theory to
“key neural properties, including massive parallelism, robustness, spreading ac-
tivation, context sensitivity, and adaptation and learning.”20

No doubt AI research will benefit greatly from what computational neuro-
scientists and cognitive scientists learn about how the brain works. But I don’t
think it will involve abandoning the computational metaphor.

Now, what about the idea that intelligence is “mindless”? Several examples
of mindless processes are cited by adherents of this view. Here are some cited
by Jordan Pollack,21 who coined the word “ectomental” to describe them: The
process of evolution, proceeding by random changes in the genome and selec-
tive survival of organisms that result from the genome, produced intelligent
humans. (But producing an intelligent system is different from being an intel-
ligent system.) Reinforcement learning produced a neural network that plays
better backgammon than human experts. (Pollack failed to note that the in-
puts to the neural network were symbolic features of the backgammon board
and that the best performance was obtained in combination with limited-look-
ahead symbolic search.) The animal immune system can discriminate between
self and non-self without “a central database listing which compounds are in
or out.” He concludes by writing that “dynamical processes, driven by accumu-
lated data gathered through iterated and often random-seeming processes, can
become more intelligent than a smart adult human, yet continue to operate on
principles that don’t rely on symbols and logical reasoning.” So far, no such “dy-
namical processes” have produced systems that can prove theorems, make and
execute plans, and summarize newspaper stories. And, when and if they ever do
produce such systems, they will be best explained, I predict, as using “symbols
and logical reasoning.” Pollack’s statement that “Most of what our minds are
doing involves mindless chemical activity . . .” is no more helpful than would be

17 Richard Granger, “Essential Circuits of Cognition: The Brain’s Basic Operations,
Architecture, and Representations,” in J. Moor and G. Cybenko (eds.), AI at 50:
The Future of Artificial Intelligence, to be published. Available online at:
http://www.dartmouth.edu/∼rhg/pubs/RHGai50.pdf

18 E-mail communication, October 4, 2006.
19 Jerome A. Feldman, From Molecules to Metaphor: A Neural Theory of Language, p.

140, Cambridge, MA: The MIT Press, 2006.
20 Ibid, p. 142.
21 Jordan B. Pollack, op. cit.

http://www.dartmouth.edu/~rhg/pubs/RHGai50.pdf
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a statement like “Most of what airline reservations systems are doing involves
mindless electronic currents.”

Rodney Brooks has achieved a great deal of success in using his “nouvelle AI”
ideas to program rather simple (one is tempted to say mindless) “creatures.”
Most of his systems lack complex representations, even though his “physical
grounding hypothesis” doesn’t explicitly disallow them. Nevertheless, the behav-
iors of these creatures are quite impressive and are described in his “Elephants
Don’t Play Chess” paper. But the title of that paper belies the difficulty. They
don’t, do they? Brooks attempts to deflect such criticism by writing “it is un-
fair to claim that an elephant has no intelligence worth studying just because it
does not play chess.” But I don’t claim that elephant “intelligence” is not worth
studying. I only claim that, whatever it is, it isn’t human-level intelligence, and
I think more complex representations, symbolically manipulated, will be needed
for that.

In summary, I don’t think any of the four different kinds of attacks on the
PSSH diminishes the importance of symbolic processing for achieving human-
level intelligence. The first attack is based on the erroneous claim that the PSSH
lacks symbol grounding. By all means, let’s have symbol grounding when needed.
The second attack is based on the need for non-symbolic processing; let’s have
that too when needed. The third attack, based on the claim that the brain is
not a computer, will vanish when people who study brains increasingly use com-
putational concepts to understand brain function. And the fourth attack, based
on the idea that brains are mindless, will vanish when it becomes evident that
constructs best understood as being mindless achieve only mindless behavior.

So what does all this have to say about the status of the PSSH? Some might
say that the PSSH’s claim that a physical symbol system is “sufficient” for
intelligent action is weakened by acknowledging that non-symbolic processing
might also be necessary. Newell, however, seemed not to be willing to concede
that point. In a 1988 book chapter, he wrote:22

. . . the concept of symbols that has developed in computer science and
AI over the years is not inadequate in some special way to deal with the
external world.”
. . .
For example, such symbols are used as a matter of course by the Navlab
autonomous vehicle (a van that drives itself around Schenley Park next
to Carnegie-Mellon), which views the road in front of it through TV
eyes and sonar ears, and controls the wheels and speed of the vehicle
to navigate along the road between the trees . . . The symbols that float
everywhere through the computational innards of this system refer to
the road, grass, and trees in an epistemologically adequate, though some-
times empirically inadequate, fashion. These symbols are the symbols of
the physical symbol system hypothesis, pure and simple.

22 Allen Newell “Putting It All Together,” Chapter 15, of D. Klahr and K. Kotovsky
(eds.), The Impact of Herbert A. Simon, Hillsdale, NJ: Erlbaum and Associates,
1988.
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I’ll leave it at that. For those who would rather think about the perception
and action routines of Navlab (and of Shakey and Stanley) in terms of signals
rather than symbols, the “sufficiency” part of the PSSH is clearly wrong. But
the “necessity” part remains uncontested, I think.

What about the future prospects for physical symbol systems in AI? Brooks’s
“Elephant” paper makes a proposal:

Traditional [that is, symbolic] AI has tried to demonstrate sophisticated
reasoning in rather impoverished domains. The hope is that the ideas
used will generalize to robust behavior in more complex domains.
Nouvelle AI tries to demonstrate less sophisticated tasks operating ro-
bustly in noisy complex domains. The hope is that the ideas used will
generalize to more sophisticated tasks.
Thus the two approaches appear somewhat complementary. It is worth
addressing the question of whether more power may be gotten by com-
bining the two approaches.

Here is my prediction about the future of physical symbol systems in AI:
They will take on a partner (as Brooks proposes). AI systems that achieve
human-level intelligence will involve a combination of symbolic and non-symbolic
processing—all implemented on computers, probably networks of computers.
Which parts are regarded as symbolic and which parts non-symbolic will de-
pend on choices of the most parsimonious vocabulary and the most useful pro-
gramming constructs—which, after all, are intimately linked. We will find it
most convenient to describe some parts with equations involving continuous and
discrete numbers. And, those parts will correspondingly be programmed using
operations on continuous and discrete numbers. We will find it most convenient
to describe the higher level operations in terms of non-numeric symbols. And,
those parts will correspondingly be programmed using symbol-processing oper-
ations.

In the not-too-distant future, I hope, the controversies discussed in this paper
will be regarded as tempests in a teapot.
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Abstract. There are many stories to tell about the first fifty years of AI. One 
story is about AI as one of the big forces of innovation in information 
technology. It is now forgotten that initially computers were just viewed as 
calculating machines. AI has moved that boundary, by projecting visions on 
what might be possible, and by building technologies to realise them. Another 
story is about the applications of AI. Knowledge systems were still a rarity in 
the late seventies but are now everywhere, delivered through the web. 
Knowledge systems routinely deal with financial and legal problem solving, 
diagnosis and maintenance of power plants and transportation networks, 
symbolic mathematics, scheduling, etc. The innovative aspects of search 
engines like Google are almost entirely based on the information extraction, 
data mining, semantic networks and machine learning techniques pioneered in 
AI. Popular games like SimCity are straightforward applications of multi-agent 
systems. Sophisticated language processing capacities are now routinely 
embedded in text processing systems like Microsoft's Word. Tens of millions of 
people use AI technology every day, often without knowing it or without 
wondering how these information systems can do all these things. In this essay I 
will focus however on another story: AI as a contributor to the scientific study 
of mind.  

Keywords: history of AI, heuristic search, knowledge systems, behavior-based 
robotics, semiotic dynamics.  

1   Introduction 

There has been a tendency to compare the performance of today’s machines with 
human intelligence, and this can only lead to disappointment. But biology is not 
regarded as a failure because it has not been able to genetically engineer human-like 
creatures from scratch.  That is not the goal of biology, and neither should the 
construction of human-like robots or programs that pass the Turing test be seen as the 
goal of AI. I argue that the scientific goal of AI is not to build a machine that 
somehow behaves like an intelligent system (as Turing proposed originally) but to 
come up with an explanation how intelligence by physically embodied autonomous 
systems is possible and could have originated in living systems, like us. AI takes a 
design stance, investigating in principle by what mechanisms intelligence is achieved, 
just like aircraft engineers try to figure out by what mechanisms physical systems are 
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able to fly. Whether the solutions we find are comparable or equal to those used by 
natural living systems like us is another issue about which AI itself has nothing to say. 
But one thing is sure, without an adequate operational theory of the mechanisms 
needed for intelligence, any discussion of human intelligence will always remain at 
the level of story telling and hand waiving, and such a theory cannot be conceived nor 
adequately tested only by empirical observation.  

There has been a tendency to dismiss the AI achievements of the past, usually by 
those who are incapable to understand how they work and why they are important. For 
example, I think it is rather incredible that computer programs today play at grandmaster 
level. Not that long ago philosophers like Dreyfus were arguing that “computers would 
never be able to play chess” (Dreyfus, 1972). Now that everyone can see for themselves 
that they can (and Dreyfus lost the first game he ever played to a computer), critics argue 
that we can learn nothing about problem-solving or cognition from these systems. I 
believe these comments come from people who have never bothered to look at what is 
really behind game-playing programs and who have no notion of what the real issues are 
that problem solvers, whether natural or artificial, have to face. 

I personally stumbled into AI in the early seventies through the door of 
(computational) linguistics, mainly inspired by the work of Terry Winograd (1972). I 
was interested in understanding the processes that could explain how language 
sentences are produced and interpreted but when building my first computer programs 
to test my hypotheses (using a computer which had less power than today’s mobile 
telephones!), it quickly became clear that my initial intuitions were totally wrong and 
naive, and so were the intuitions of the psychologists and linguists I encountered, 
simply because none of us were capable to think in computational terms except as a 
vague metaphor. I subsequently changed my research methodology completely and 
never had any regrets about it. It is indeed in the methodology that lies the uniqueness 
of AI. There is no unique AI theory, nor AI view on intelligence. A multitude of 
views have been explored, each time making contact and in turn influencing other 
scientific fields in a big way. I do not think that this multitude will shrink to a single 
view any time soon and maybe this is not necessary. The richness of AI lies in its 
openness towards other disciplines and the power of the experimental approach for 
operationalising and testing mechanistic theories of intelligence.  

In this essay, I try to reconstruct, very schematically and from a very personal 
view of course, some of the key ideas and milestones in the non-linear AI history of 
the past decades. New movements seem to have come in waves, lasting about seven 
years before being absorbed in mainstream thinking. Then I give my opinion on what 
I find the most promising trends in current AI activities and which direction we might 
want to take in the future.  

2   Prologue (1956): The Information Processing View 

AI started from a single powerful idea, clearly understood and expressed at the 
Dartmouth founding conference (McCarthy, et.al., 1955): The brain can be viewed as an 
information processor. A computer is an example of an information processor but the 
notion of information processing is much broader. We are looking at a physical system 
that has a large number of states which systematically correspond to information states, 
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processes that transform these states systematically into others while preserving or 
implementing some (mathematical) function, and additional information states 
(programs) which regulate what processes should become active at what moments in 
time. From a biological point of view, neurons are cells that grow and live within larger 
networks, and biologists research the question how they can function and sustain 
themselves, similar to the way they study liver cells or the immune system. The 
information-processing view introduces a new perspective on the brain, neurons or 
networks of neurons are viewed as devices that can hold and transform information and 
so the question becomes: What kind of information is stored and what kind of 
transformations are carried out over this information. It is interesting that the switch 
from the biochemical, electrical point of view to the information processing point of 
view took place at the same time as other areas of biology, and particularly genetics and 
molecular and developmental biology, also started to emphasise information, viewing 
the genome as a program that is interpreted by the machinery of the cell. This view has 
become dominant today (Maynard Smith, 2000).  

AI does not address the question of neural information processing directly but 
takes a design stance. It asks the question: What kind of information processing do 
living brains need in order to show the astonishing intelligent behavior that we 
actually observe in living organisms? For example, what information structures and 
processes are required to fetch from a stream of visual images the face of a person in a 
fraction of a second, what kind of information processing is necessary to parse a 
natural language sentence with all its ambiguities and complex syntactic structures 
and to interpret it in terms of a perceived scene, how is a plan formulated to achieve a 
complex collaborative action and how is this plan executed, monitored and adjusted? 
To investigate what kind of processes are in principle needed for intelligence makes 
sense for two reasons. First of all it is hard to imagine that we will be able to 
understand the functioning of enormously complex nervous systems with billions of 
elements and connections if we do not have tools to understand what they might be 
doing and if we can only do gross-scale measurements like fMRI or PET scanning. It 
is like trying to understand the structure and operation of computers that are 
performing millions of instructions per second and are linked with millions of other 
computers in giant networks like the Internet, without knowing what they might be 
doing and having only gross statistical measures at our disposal. Second, neural and 
psychological observations - brain imagining, brain disorders, effects from aging, etc. 
- can tell us that certain parts of the brain are involved in particular cognitive tasks, 
but they cannot tell us why certain types of processing are needed. To find that out, 
we must examine alternative mechanisms (even if they do not occur in nature) and 
study their impact on performance.  

Information processing is a point of view and not an intrinsic property of a system. 
A computer can be built from anything, including TinkerToys, as Danny Hillis and Brian 
Silverman showed with their Tic-Tac-Toe playing computer at the MIT AI lab in the 
nineteen eighties, or with chemistry. So it is perfectly justified to use computers to study 
the behavior of natural information processing systems. It is also very straightforward to 
test whether a theory is valid or not. If someone has an idea what kind of information 
processing is needed for a task, an artificial system can be built that carries it out and 
anyone can observe whether it has the required performance.  

The information processing view was a true revolution in the study of mind and it 
started to propagate rapidly after the first 1956 AI conference in Dartmouth, with 
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initially a major impact on psychology (particularly through Jerome Bruner, George 
Miller, Alan Newell, and Herbert Simon) and linguistics. Once the information 
processing view is adopted, the next step is to do the hard work and investigate in 
great detail concrete examples. Initially it was thought that there might be some very 
general, simple principles, like Newton’s equations, that could explain all of 
intelligence. Newell and Simon proposed a General Problem Solver, Rosenblatt 
proposed Perceptrons, etc., but gradually, as more and more tasks were being tackled, 
it became clear that intelligence requires massive amounts of highly complex 
sophisticated information and very adapted information processing. Quite early, 
Minsky concluded that the brain must be a “huge, branchy, quick-and-dirty kludge”, 
as opposed to a cleanly designed general purpose machine. This is of course not 
unusual in living systems. After all the human body is also a huge quick-and-dirty 
kludge with its myriad of interlocking biochemical processes and ad hoc solutions 
that have a high probability of breaking down. Indeed, if you come to think of it it is 
amazing that our bodies work so well as they do.   

Most AI outsiders (including many philosophers, neuroscientists and 
psychologists) still cannot believe that so much complexity is required to achieve 
intelligence. They keep hoping  that there is some golden short-cut that makes the 
hard work of today's vision systems, which use large numbers of algorithms and 
massive computation to filter, segment, and aggregate the incoming visual streams 
and match them against sophisticated top-down expectations stimuli, superfluous. Or 
they believe that language processing cannot be complicated because our brains do it 
effortlessly at great speeds. This echoes the trouble that biologists had in the 19th 
century to accept that all of life was ultimately implemented in chemistry. They 
initially could not believe that you needed vastly complex macromolecules (or even 
that such molecules could exist in nature), that you had highly complex metabolic 
cycles, and that a lot of these cycles were self-organised and steered by other 
molecules. It took hundred years for molecular biology to be accepted as the physical 
foundation for life and perhaps we just need a bit more time before the complexity of 
information processing is fully accepted and everybody is focused on what it could be 
rather than arguing whether the information processing view is appropriate in the 
study of intelligence.  

3   Act I (1960s): Heuristic Search and Knowledge Representation 

One reason why a mechanism for “general intelligence”, similar to gravity or 
magnetism, may for ever remain elusive, is that almost any non-trivial problem 
contains a hidden combinatorial explosion. This was in fact the main lesson from the 
early game-playing programs. Often it is not possible to decide straight away how to 
explore a problem and so many avenues need to be searched. For example, almost 
every word in a sentence has multiple meanings and can be syntactically categorised 
in a multitude of ways. Hence a parse that fits with the complete sentence can only be 
found by elaborating different search paths, some possibly being a dead end. The 
growth of alternative search paths in language processing can be so high that the 
number of possible paths explodes. It is no longer possible to consider all of them. 
Such a combinatorial explosion shows up in visual perception, motor planning, 
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reasoning, expert problem solving, memory access, etc., in fact in every domain 
where intelligence comes into play. It is possible to combat combinatorial explosions 
with more computing power, but one of the key insights of AI in its first decade (the 
60s) is that sooner or later the big numbers catch up on you and you run into a wall. 
So search can only be dealt with by the application of knowledge, specifically domain 
and task specific rules of thumb (heuristics) that quickly cut down search spaces and 
guide the problem solver towards reasonable solutions as fast as possible. The main 
goal of AI in the sixties hence became the development of techniques for organising 
the search process, expressing heuristics in evaluation functions or rules, and trying to 
learn heuristics as part of problem solving. For a while, the field of AI was even 
called Heuristic Search.  

Towards the end of the 60s it became clear that not only the heuristics but also 
the way that information about the problem domain is represented plays a critical role, 
both to avoid search and to deal with the infinite variation and noise of the real world. 
So this lead to the next breakthrough idea: A change in representation can mean the 
difference between finding a solution or getting swamped in irrelevant details. A host 
of new research questions was born and explored through an amazing variety of 
frameworks for knowledge representation and knowledge processing. Many ideas 
from logic could be pulled into AI and AI gave new challenges to logic, such as the 
problem of non-monotonic reasoning. Also the kinds of concepts that might be 
needed in expert problem solving or language understanding were researched and 
tested by building systems that used them. Initially there was some hope to find the 
ultimate conceptual primitives (Roger Schank’s set of fourteen primitive universal 
concepts is one example (Schank, 1975)), but, failing that, large projects were started, 
such as Doug Lenat’s CYC project, to do a massive analysis of human concepts and 
put them in a machine-usable form (Lenat, 1995).  

Already in the 70s, the ideas and technologies for handling heuristic search and 
knowledge representation proved powerful enough to build real applications, as seen 
in the first wave of expert systems like MYCIN, DENDRAL, or PROSPECTOR. 
They were designed to mimic expert problem solving in domains like medicine or 
engineering, and lead to a deeper analysis of problem solving in terms of knowledge 
level models (Steels and McDermott, 1993).  Huge conferences, venture capital, spin-
off companies, industrial exhibitions entered the scene and transformed AI forever. 
From the early 80s, applications became an integral part of AI. The emphasis on 
applications justified the research effort and proved that AI theory was on the right 
track, but it also meant that fundamental research slowed down. The initial emphasis 
on understanding intelligence gave way to a more pragmatic research agenda and a 
quest for useful applications. This trend is still going on today.  

4   Act II (1980s): Neural Networks  

The earliest efforts in AI (including the discussion at the Dartmouth conference) 
already had a kind of dual character. On the one hand, it was clearly necessary to 
come to grips with “symbolic” processing, and AI laboratories made major 
contributions to make computers and programming language sufficiently powerful 
to build and investigate hugely complex symbol systems. On the other hand, 
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sensori-motor control and pattern recognition, needed to relate symbolic structures 
to the real world, seem to require “subsymbolic” processing. The gap between the 
symbolic world and the physical world had to be bridged somewhere. Early neural 
networks (like Rosenblatt’s Perceptron) had already shown that some of the 
processing needed for this aspects of intelligence is better based on the 
propagation of continuous signals in networks with varying weights and thresholds 
instead of the transformation of symbolic expressions. However that does not 
mean that the information processing view is abandoned. Neural networks are just 
as much 'computational' mechanisms as heuristic search or unification (a core step 
in logical inference systems).   

So there have always been two sides of AI, both developing in parallel. Research 
and early successes in symbolic processing dominated perhaps the first two decades 
of AI research and application, but the balance shifted in the 80s, with a renewed 
interest in neural networks and other forms of biologically inspired computation such 
as genetic algorithms. Significant advances  were made throughout the 80s by 
studying more complex networks with “hidden” layers, or networks in which signals 
flow back in the network becoming recurrent, thus making it possible to deal with 
temporal structures (Elman, 1991). These advances lead to a steady stream of new 
applications in signal processing and pattern recognition, new technologies to make 
neural processing fast enough, and a huge impact on neuroscience, which finally 
began to adopt the information processing view in a serious way.  

The field of computational neuroscience is now well established and it is 
studying what information processing is actually carried out by natural brains as well 
as offering new ideas to AI about what mechanisms might be needed for intelligence. 
The renaissance of neural network research does not make earlier work on “symbolic” 
AI irrelevant. Symbolic techniques remain the most adapted for studying the 
conceptually oriented aspects of intelligence, as in language processing or expert 
problem solving, and so far no adequate neural models have been proposed for 
language understanding, planning, or other areas in which symbolic AI excels. On the 
other hand, neural network techniques have proven their worth in the grounding of 
categories in the world or in the smooth interfacing of behavior with sensory stimuli. 
Intelligence is a big elephant and there is often a tendency by researchers to take the 
part they happen to focus on as the total. Obviously we need to avoid this trap.   

5   Act III (1990s): Embodiment and Multi-agent Systems  

But whatever the application successes of symbolic AI and neural networks, there was a 
growing feeling towards the end of the 80s that some fundamental things were missing, 
and two important new movements began to emerge. The first one rediscovered the body 
and the environment as major causal forces in the shaping of intelligent behavior (Steels 
and Brooks, 1994). Instead of doing very complex calculations for motor control, it was 
argued that it might just as well be possible to exploit the physical properties of materials 
and the agent-environment interaction to get smooth real-time behavior. Instead of trying 
to build complex ‘symbolic’ world models, which are difficult to extract reliably from 
real-world signals anyway, it might be possible to set up simple reactive behaviors and 
exploit the resulting “emergent” behavior. Ideas like this became the main dogmas of the 
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“behavior-based approach to AI”, which swept through leading AI laboratories in the 
early 90s (Pfeifer and Scheier, 2004).  

Suddenly researchers started to build animal-like robots again, reminiscent of the 
cybernetics research that pre-dated the birth of AI in the 50s. Intense interactions 
started with biology, particularly ethology and evolutionary and developmental 
biology, and AI researchers were instrumental in helping to found the new field of 
Artificial Life (Langton, 1989). This wave of activity lead again to the development 
of new software and hardware tools, new fundamental insights, and the first 
generation of rather astonishing animal-like robots. The amazing performance in the 
Robocup challenge testifies that the time was ripe to build real world robots from a 
behavior-based point of view. The late 90s even saw the first humanoids such as the 
Honda Asimo and the Sony QRIO. But all these robots are lacking any kind of 
“symbolic” intelligence (required for planning or natural language dialogue for 
example), which suggests that embodiment and neural-like dynamics in themselves 
are not enough to achieve cognition.  

A second movement re-discovered that intelligence seldom arises in isolation. 
Animals and humans live in groups in which common knowledge and communication 
systems emerge through collective activities. Problems are solved by cooperation with 
others. The 90s saw the birth of the multi-agent approach to AI, which focused on 
how intelligence could be distributed over groups of co-operating entities and how the 
intelligence of individuals could be the outcome of situated interactions with others. 
Once again, a multitude of theoretical frameworks, programming paradigms, and 
formal tools sprung up to deal with the many difficult issues related to multi-agent 
systems and applications found a niche in software agents for the rapidly expanding 
Internet and for computer games. AI now established intense interactions with 
sociologists and anthropologists. It contributed to these fields by providing 
sophisticated agent-based modeling tools and got in turn inspired by integrating a 
social view on intelligence (Wooldridge, 2002).  

6   Act IV (2000s): Semiotic Dynamics  

So what is going on in AI right now? A lot of things of course and it will only become 
clear in retrospect what development has given the deepest long-term impact. It is 
obvious for example that there is at the moment a very strong trend towards statistical 
processing, which has shown enormous application potential in such areas as natural 
language processing (which is now almost entirely statistically based), web-related 
information retrieval, and robotics (Thrun, Burgard, and Fox, 2005). This trend is 
successful thanks to the availability of huge data sources and new techniques in 
machine learning and statistical inference. However my personal subjective choice 
goes to another line of current research which I believe holds great promise.   

We have seen the pendulum swinging in the sixties and seventies towards 
knowledge representation and cognitive intelligence, counteracted by the pendulum 
swinging back in the other direction towards dynamics and embodiment in the 
eighties and nineties. Although symbolic applications of AI (as now heavily used in 
search engines) continue, basic AI research clearly moved away almost entirely from 
conceptual thinking and language. So I think this needs to be corrected again. I 
personally believe that the most exciting question at the moment is to see how 
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grounded symbolic systems can emerge in communicative interactions between 
embodied agents. Whereas early symbolic AI no doubt overemphasised the 
importance of symbols, more recent embodied AI simply ignores it, throwing away 
the baby with the bathwater. A more balanced view is feasable and necessary. 
Symbolic intelligence is the hallmark of human intelligence (some biologists have 
called us the “Symbolic Species” (Deacon, 1998)) and we must try to understand how 
intelligence that creates and builds further on symbols is possible.  

In the earliest AI research (and indeed in cognitive science in general), there has 
always been the tacit assumption that categories and concepts for structuring the 
world, as required in problem solving or language communication, are static, 
universally shared, and hence definable a priori. This lead to the search for conceptual 
primitives, large-scale ontologies, attempts to capture common-sense knowledge once 
and for all as illustrated by Lenat's CYC project or the semantic web. More recent, 
statistically based machine learning techniques similarly assume that there is a (static) 
conceptual or linguistic system out there which can be acquired, and then used 
without further adaptation. However observations of natural dialogue and human 
development show that human language and conceptualisation is constantly on the 
move and gets invented and aligned on the fly. Conceptualisation is often strongly 
shaped and reshaped by language. Conceptualisations are invented and imposed on 
the world based on individual histories of situated interactions, and they become 
shared by a dynamic negotiation process in joint collaborative tasks, including 
communication (Pickering and Garrod, 2004). From this point of view, ontologies and 
language are seen as complex adaptive systems in constant flux. Language nor the 
meanings expressed by language are based on a static set of conventions that can be 
induced statistically from language data.  

Today this viewpoint is being explored under the label of semiotic dynamics 
(Steels, 2006). Semiotic dynamics studies how ontologies and symbol systems may 
emerge in a group of agents and by what mechanisms they may continue to evolve 
and complexify. The study of semiotic dynamics uses similar tools and techniques as 
other research in the social sciences concerned with opinion dynamics, collective 
economical decision making, etc. (Axelrod, 2006). There have already been some 
initial, very firm results. Groups of robots have been shown capable of self-organising 
a communication system with natural language like properties, including grammatical 
structure (Steels, 2003). These multi-agent experiments integrate insights from neural 
networks and embodied AI to achieve the grounding of language in sensori-motor 
interaction, but they also rely on sophisticated symbolic processing techniques that 
were developed in AI in the 60s and 70s. The current evolution of the web towards 
social tagging and collective knowledge development makes this research even more 
relevant and tangible, because when we collect data from collective human semiotic 
behavior that arises in these collective systems we see the same sort of semiotic 
dynamics as in artificial systems. Semiotic dynamics has made a deep contact with 
statistical physics and complex systems science. These fields have the tools to 
investigate the self-organising behaviors of large systems, for example by proving 
that a certain set of rules will lead to a globally shared lexicon or by showing how 
systems scale with the size of the population.  

By researching how symbol systems can be self-constructed by embodied agents, 
AI is tackling objections raised by philosophers like Searle (in his Chinese Room 
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parable) or biologists like Edelman. It is true that in most AI systems of the past 
symbols and the conceptualisation of reality they imply were constructed and coded 
by designers or inferred from human use. But these scholars concluded (wrongly) that 
it would never be possible for physically embodied information processing systems to 
establish and handle symbols autonomously, whereas it is now clear that they can.  

7   Epilogue: Peeking into the Future  

AI is not that different from other sciences in that it is pushed forward by new 
technologies that enable more powerful experiments, by new challenges coming from 
novel applications, or by new advances in other sciences, including mathematics, 
which can lead to new mechanisms or new predictive tools for understanding and 
hence exploiting existing mechanisms. Let us see how these three aspects could 
influence AI in the coming decades.  

+ The push from technology: In the 80s there was a high hope that new computer 
architectures (such as the Connection Machine (Hillis, 1986)) could lead to large 
advances in AI. This has not happened because standard architectures and mass-
produced machines became so cheap and progressively so powerful that they 
overtook more exotic computational ideas. However there are strong indications that 
new generations of parallel computers are going to become available soon. They will 
make experiments possible that are too slow today or can only be done by a very 
limited number of people. If we want to exploit the promise of massively parallel 
computing, we will need to come up with novel computing paradigms, exploiting 
metaphors from biology or chemistry rather than from logic and mathematics. 
Research in membrane computing, molecular computing, amorphous computing, etc. 
is showing the way. Not only computer technology but also mechanical engineering 
and materials science are evolving rapidly and this will make it possible to build 
completely new kinds of artificial systems, possibly on a very small scale. These 
technologies are already being explored in embodied AI research and they will surely 
push the boundaries of autonomous systems, as well as clarify the role of information 
processing in achieving intelligence.  

+ The push from applications:  We can observe today a global trend towards 
collective phenomena in the information processing world. The exponential growth of 
websites, blogs, wikis, peer-to-peer sharing systems, folksonomies, wikipedias, etc., 
makes it clear that our densely interconnected world is leading to a whole new way of 
knowledge production and knowledge communication. Centralised knowledge 
production and control is swept away by powerful waves of collective tagging, 
collective encyclopedias, collective news media. Dense interconnectivity and the 
knowledge dynamics it supports can only increase, when more and more physical 
devices get substantial computing power and become networked so that everyone can 
access and change information from anywhere. Many information technologies are 
participating in the invention of new tools for supporting these remarkable 
developments, and AI can do so as well, even though some of the older ideas will no 
longer work, such as the reliance on the individual knowledge of an “expert” which 
used to be the basis for expert systems, or the idea that it is possible to define logically a 
universal ontology which can be imposed in a top-down fashion on the web.  
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A second application area which I believe is of extreme importance and to which 
future AI should contribute with all its force concerns the retooling of our economies so 
that they become sustainable. Unless we act today, ecological catastrophes are 
unavoidable in the not so distant future. AI is highly relevant to achieve this goal but the 
work has hardly started. AI can contribute with methods and techniques for measuring, 
interpreting, and assessing pollution and stress to our environments, for tracing and 
tracking the use of natural resources to organise complete healthy production and 
consumption cycles, for tracking energy use and managing it in a dynamical adaptive 
way, and for predicting and visualising the outcomes of current ecological trends so that 
people become more aware of the urgency of action.  Biologically-inspired research 
results from embodied agents research are in my opinion highly relevant to orchestrate 
the adaptive management and optimisation of energy resources in micro-grids with local 
distributed production and peer-to-peer energy exchange.  

+ Push from other fields: Future steps forward in theory formation are difficult to 
predict. Evolutionary network theory (Strogatz, 2001), which only developed in the last 
decade, has proven to be highly relevant for developing the theory of semiotic 
dynamics, and much remains to be discovered in non-linear dynamical systems theory, 
that may have a direct bearing on the foundations of embodied intelligence, neural 
networks, and agent-environment interaction, as well as on the understanding of the 
collective dynamics of large groups of agents which self-organise communication 
systems or other forms of interaction. The conceptual frameworks that have been used 
so far in neuroscience (basically networks of a few simplistic neurons) are much too 
simple to start tackling the enormous complexity of real brains so there is a growing 
demand from neuroscience for the kind of more sophisticated conceptual frameworks 
that have been common in AI. But I predict that most of the potentially useful 
interaction in the future will come from interactions with evolutionary biology. Biology 
has a great tradition of conceptual thinking and its most brilliant thinkers have now a 
firm grasp of the information processing paradigm (Maynard Smith, 2000). What we 
need to do is shift our attention away from looking at the end product of intelligence and 
trying to engineer that towards an understanding how intelligence dynamically arises 
both within a single individual and within our species. Research on the question of the 
origins of language is one example in this direction. 

AI research, due its strong ties to engineering, has always been very pragmatic, 
directed by societal and industrial needs. This is in principle a good thing and keeps 
the field relevant. But I personally feel that we must put a much greater effort into 
basic research again and into distilling the lessons and principles learned from this 
pragmatic bottom-up AI research to translate them both in a systematic theory and 
into a format accessible to other sciences and the informed layman, similar to the way 
biologist have been able to philosophise and communicate their fundamental research 
results to a very broad public. A good recent example in this direction is Pfeifer and 
Bongard (2007). At the same time, AI is an experimental science, because that is the 
only way that claims and arguments from a design stance can be tested and validated. 
AI is at its best when doing carefully set up experiments to test the mechanisms that 
may play a role in intelligence. I believe that these experiments must be set up and 
communicated like scientific experiments (instead of “applications”), because it is 
only through that route that we will ever get a systematic theory.  
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In my view, the coming fifty years of AI look extremely bright. We will continue 
to make major discoveries and tackle challenges important to society. It is my 
personal experience that other fields are highly interested in our research results, but 
only if we stick to the design stance and not pretend to be modeling the human brain 
or human intelligence. We should get into a dialogue with the fields who have this as 
their major aim (cognitive science, neuroscience, etc.) but as equal partners bringing 
our own insights to the table.   
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Abstract. When Kurt Gödel layed the foundations of theoretical computer
science in 1931, he also introduced essential concepts of the theory of Artifi-
cial Intelligence (AI). Although much of subsequent AI research has focused
on heuristics, which still play a major role in many practical AI applications,
in the new millennium AI theory has finally become a full-fledged formal sci-
ence, with important optimality results for embodied agents living in unknown
environments, obtained through a combination of theory à la Gödel and proba-
bility theory. Here we look back at important milestones of AI history, mention
essential recent results, and speculate about what we may expect from the next 25
years, emphasizing the significance of the ongoing dramatic hardware speedups,
and discussing Gödel-inspired, self-referential, self-improving universal problem
solvers.

1 Highlights of AI History—From Gödel to 2006

Gödel and Lilienfeld. In 1931, 75 years ago and just a few years after Julius Lilienfeld
patented the transistor, Kurt Gödel layed the foundations of theoretical computer science
(CS) with his work on universal formal languages and the limits of proof and computa-
tion [5]. He constructed formal systems allowing for self-referential statements that talk
about themselves, in particular, about whether they can be derived from a set of given
axioms through a computational theorem proving procedure. Gödel went on to construct
statements that claim their own unprovability, to demonstrate that traditional math is ei-
ther flawed in a certain algorithmic sense or contains unprovable but true statements.

Gödel’s incompleteness result is widely regarded as the most remarkable achieve-
ment of 20th century mathematics, although some mathematicians say it is logic, not
math, and others call it the fundamental result of theoretical computer science, a dis-
cipline that did not yet officially exist back then but was effectively created through
Gödel’s work. It had enormous impact not only on computer science but also on phi-
losophy and other fields. In particular, since humans can “see” the truth of Gödel’s
unprovable statements, some researchers mistakenly thought that his results show that
machines and Artificial Intelligences (AIs) will always be inferior to humans. Given
the tremendous impact of Gödel’s results on AI theory, it does make sense to date AI’s
beginnings back to his 1931 publication 75 years ago.

Zuse and Turing. In 1936 Alan Turing [37] introduced the Turing machine to refor-
mulate Gödel’s results and Alonzo Church’s extensions thereof. TMs are often more
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convenient than Gödel’s integer-based formal systems, and later became a central tool
of CS theory. Simultaneously Konrad Zuse built the first working program-controlled
computers (1935-1941), using the binary arithmetic and the bits of Gottfried Wilhelm
von Leibniz (1701) instead of the more cumbersome decimal system used by Charles
Babbage, who pioneered the concept of program-controlled computers in the 1840s,
and tried to build one, although without success. By 1941, all the main ingredients of
‘modern’ computer science were in place, a decade after Gödel’s paper, a century after
Babbage, and roughly three centuries after Wilhelm Schickard, who started the his-
tory of automatic computing hardware by constructing the first non-program-controlled
computer in 1623.

In the 1940s Zuse went on to devise the first high-level programming language
(Plankalkül), which he used to write the first chess program. Back then chess-playing
was considered an intelligent activity, hence one might call this chess program the first
design of an AI program, although Zuse did not really implement it back then. Soon af-
terwards, in 1948, Claude Shannon [33] published information theory, recycling several
older ideas such as Ludwig Boltzmann’s entropy from 19th century statistical mechan-
ics, and the bit of information (Leibniz, 1701).

Relays, Tubes, Transistors. Alternative instances of transistors, the concept pioneered
and patented by Julius Edgar Lilienfeld (1920s) and Oskar Heil (1935), were built by
William Shockley, Walter H. Brattain & John Bardeen (1948: point contact transistor) as
well as Herbert F. Mataré & Heinrich Walker (1948, exploiting transconductance effects
of germanium diodes observed in the Luftwaffe during WW-II). Today most transistors
are of the field-effect type à la Lilienfeld & Heil. In principle a switch remains a switch
no matter whether it is implemented as a relay or a tube or a transistor, but transistors
switch faster than relays (Zuse, 1941) and tubes (Colossus, 1943; ENIAC, 1946). This
eventually led to significant speedups of computer hardware, which was essential for
many subsequent AI applications.

The I in AI. In 1950, some 56 years ago, Turing invented a famous subjective test to
decide whether a machine or something else is intelligent. 6 years later, and 25 years
after Gödel’s paper, John McCarthy finally coined the term “AI”. 50 years later, in 2006,
this prompted some to celebrate the 50th birthday of AI, but this chapter’s title should
make clear that its author cannot agree with this view—it is the thing that counts, not
its name.

Roots of Probability-Based AI. In the 1960s and 1970s Ray Solomonoff combined
theoretical CS and probability theory to establish a general theory of universal induc-
tive inference and predictive AI [35] closely related to the concept of Kolmogorov com-
plexity [14]. His theoretically optimal predictors and their Bayesian learning algorithms
only assume that the observable reactions of the environment in response to certain ac-
tion sequences are sampled from an unknown probability distribution contained in a
set M of all enumerable distributions. That is, given an observation sequence we only
assume there exists a computer program that can compute the probabilities of the next
possible observations. This includes all scientific theories of physics, of course. Since
we typically do not know this program, we predict using a weighted sum ξ of all dis-
tributions in M, where the sum of the weights does not exceed 1. It turns out that this
is indeed the best one can possibly do, in a very general sense [11, 35]. Although the
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universal approach is practically infeasible since M contains infinitely many distribu-
tions, it does represent the first sound and general theory of optimal prediction based on
experience, identifying the limits of both human and artificial predictors, and providing
a yardstick for all prediction machines to come.

AI vs Astrology? Unfortunately, failed prophecies of human-level AI with just a tiny
fraction of the brain’s computing power discredited some of the AI research in the 1960s
and 70s. Many theoretical computer scientists actually regarded much of the field with
contempt for its perceived lack of hard theoretical results. ETH Zurich’s Turing award
winner and creator of the PASCAL programming language, Niklaus Wirth, did not hes-
itate to link AI to astrology. Practical AI of that era was dominated by rule-based expert
systems and Logic Programming. That is, despite Solomonoff’s fundamental results, a
main focus of that time was on logical, deterministic deduction of facts from previously
known facts, as opposed to (probabilistic) induction of hypotheses from experience.

Evolution, Neurons, Ants. Largely unnoticed by mainstream AI gurus of that era, a
biology-inspired type of AI emerged in the 1960s when Ingo Rechenberg pioneered
the method of artificial evolution to solve complex optimization tasks [22], such as
the design of optimal airplane wings or combustion chambers of rocket nozzles. Such
methods (and later variants thereof, e.g., Holland [10], 1970s), often gave better re-
sults than classical approaches. In the following decades, other types of “subsymbolic”
AI also became popular, especially neural networks. Early neural net papers include
those of McCulloch & Pitts, 1940s (linking certain simple neural nets to old and well-
known, simple mathematical concepts such as linear regression); Minsky & Papert
[17] (temporarily discouraging neural network research), Kohonen [12], Amari, 1960s;
Werbos [40], 1970s; and many others in the 1980s. Orthogonal approaches included
fuzzy logic (Zadeh, 1960s), Rissanen’s practical variants [23] of Solomonoff’s universal
method, “representation-free” AI (Brooks [2]), Artificial Ants (Dorigo & Gambardella
[4], 1990s), statistical learning theory (in less general settings than those studied by
Solomonoff) & support vector machines (Vapnik [38] and others). As of 2006, this al-
ternative type of AI research is receiving more attention than “Good Old-Fashioned AI”
(GOFAI).

Mainstream AI Marries Statistics. A dominant theme of the 1980s and 90s was the
marriage of mainstream AI and old concepts from probability theory. Bayes networks,
Hidden Markov Models, and numerous other probabilistic models found wide applica-
tions ranging from pattern recognition, medical diagnosis, data mining, machine trans-
lation, robotics, etc.

Hardware Outshining Software: Humanoids, Robot Cars, Etc. In the 1990s and
2000s, much of the progress in practical AI was due to better hardware, getting roughly
1000 times faster per Euro per decade. In 1995, a fast vision-based robot car by Ernst
Dickmanns (whose team built the world’s first reliable robot cars in the early 1980s with
the help of Mercedes-Benz, e. g., [3]) autonomously drove 1000 miles from Munich to
Denmark and back, in traffic at up to 120 mph, automatically passing other cars (a
safety driver took over only rarely in critical situations). Japanese labs (Honda, Sony)
and Pfeiffer’s lab at TU Munich built famous humanoid walking robots. Engineering
problems often seemed more challenging than AI-related problems.
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Another source of progress was the dramatically improved access to all kinds of
data through the WWW, created by Tim Berners-Lee at the European particle collider
CERN (Switzerland) in 1990. This greatly facilitated and encouraged all kinds of “intel-
ligent” data mining applications. However, there were few if any obvious fundamental
algorithmic breakthroughs; improvements / extensions of already existing algorithms
seemed less impressive and less crucial than hardware advances. For example, chess
world champion Kasparov was beaten by a fast IBM computer running a fairly stan-
dard algorithm. Rather simple but computationally expensive probabilistic methods for
speech recognition, statistical machine translation, computer vision, optimization, vir-
tual realities etc. started to become feasible on PCs, mainly because PCs had become
1000 times more powerful within a decade or so.

2006. As noted by Stefan Artmann (personal communication, 2006), today’s AI text-
books seem substantially more complex and less unified than those of several decades
ago, e. g., [18], since they have to cover so many apparently quite different subjects.
There seems to be a need for a new unifying view of intelligence. In the author’s opin-
ion this view already exists, as will be discussed below.

2 Subjective Selected Highlights of Present AI

The more recent some event, the harder it is to judge its long-term significance. But this
biased author thinks that the most important thing that happened recently in AI is the
begin of a transition from a heuristics-dominated science (e.g., [24]) to a real formal
science. Let us elaborate on this topic.

2.1 The Two Ways of Making a Dent in AI Research

There are at least two convincing ways of doing AI research: (1) construct a (possibly
heuristic) machine or algorithm that somehow (it does not really matter how) solves a
previously unsolved interesting problem, such as beating the best human player of Go
(success will outshine any lack of theory). Or (2) prove that a particular novel algorithm
is optimal for an important class of AI problems.

It is the nature of heuristics (case (1)) that they lack staying power, as they may soon
get replaced by next year’s even better heuristics. Theorems (case (2)), however, are for
eternity. That’s why formal sciences prefer theorems.

For example, probability theory became a formal science centuries ago, and totally
formal in 1933 with Kolmogorov’s axioms [13], shortly after Gödel’s paper [5]. Old but
provably optimal techniques of probability theory are still in every day’s use, and in fact
highly significant for modern AI, while many initially successful heuristic approaches
eventually became unfashionable, of interest mainly to the historians of the field.

2.2 No Brain Without a Body / AI Becoming a Formal Science

Heuristic approaches will continue to play an important role in many AI applications,
to the extent they empirically outperform competing methods. But like with all young
sciences at the transition point between an early intuition-dominated and a later formal
era, the importance of mathematical optimality theorems is growing quickly. Progress
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in the formal era, however, is and will be driven by a different breed of researchers, a
fact that is not necessarily universally enjoyed and welcomed by all the earlier pioneers.

Today the importance of embodied, embedded AI is almost universally acknowl-
edged (e. g., [20]), as obvious from frequently overheard remarks such as “let the physics
compute” and “no brain without a body.” Many present AI researchers focus on real ro-
bots living in real physical environments. To some of them the title of this subsection
may seem oxymoronic: the extension of AI into the realm of the physical body seems
to be a step away from formalism. But the new millennium’s formal point of view is
actually taking this step into account in a very general way, through the first mathemat-
ical theory of universal embedded AI, combining “old” theoretical computer science
and “ancient” probability theory to derive optimal behavior for embedded, embodied
rational agents living in unknown but learnable environments. More on this below.

2.3 What’s the I in AI? What Is Life? Etc.

Before we proceed, let us clarify what we are talking about. Shouldn’t researchers on
Artificial Intelligence (AI) and Artificial Life (AL) agree on basic questions such as:
What is Intelligence? What is Life? Interestingly they don’t.

Are Cars Alive? For example, AL researchers often offer definitions of life such as: it
must reproduce, evolve, etc. Cars are alive, too, according to most of these definitions.
For example, cars evolve and multiply. They need complex environments with car fac-
tories to do so, but living animals also need complex environments full of chemicals and
other animals to reproduce — the DNA information by itself does not suffice. There is
no obvious fundamental difference between an organism whose self-replication infor-
mation is stored in its DNA, and a car whose self-replication information is stored in a
car builder’s manual in the glove compartment. To copy itself, the organism needs its
mothers womb plus numerous other objects and living beings in its environment (such
as trillions of bacteria inside and outside of the mother’s body). The car needs iron
mines and car part factories and human workers.

What is Intelligence? If we cannot agree on what’s life, or, for that matter, love, or
consciousness (another fashionable topic), how can there be any hope to define intelli-
gence? Turing’s definition (1950, 19 years after Gödel’s paper) was totally subjective:
intelligent is what convinces me that it is intelligent while I am interacting with it. For-
tunately, however, there are more formal and less subjective definitions.

2.4 Formal AI Definitions

Popper said: all life is problem solving [21]. Instead of defining intelligence in Turing’s
rather vague and subjective way we define intelligence with respect to the abilities of
universal optimal problem solvers.

Consider a learning robotic agent with a single life which consists of discrete cycles
or time steps t = 1, 2, . . . , T . Its total lifetime T may or may not be known in advance.
In what follows,the value of any time-varying variable Q at time t (1 ≤ t ≤ T ) will be
denoted by Q(t), the ordered sequence of values Q(1), . . . , Q(t) by Q(≤ t), and the
(possibly empty) sequence Q(1), . . . , Q(t − 1) by Q(< t).
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At any given t the robot receives a real-valued input vector x(t) from the environment
and executes a real-valued action y(t) which may affect future inputs; at times t < T
its goal is to maximize future success or utility

u(t) = Eμ

[
T∑

τ=t+1

r(τ)

∣∣∣∣∣ h(≤ t)

]
, (1)

where r(t) is an additional real-valued reward input at time t, h(t) the ordered triple
[x(t), y(t), r(t)] (hence h(≤ t) is the known history up to t), and Eμ(· | ·) denotes the
conditional expectation operator with respect to some possibly unknown distribution
μ from a set M of possible distributions. Here M reflects whatever is known about
the possibly probabilistic reactions of the environment. For example, M may contain
all computable distributions [11, 35]. Note that unlike in most previous work by oth-
ers [36], there is just one life, no need for predefined repeatable trials, no restriction to
Markovian interfaces between sensors and environment, and the utility function implic-
itly takes into account the expected remaining lifespan Eμ(T | h(≤ t)) and thus the
possibility to extend it through appropriate actions [29].

Any formal problem or sequence of problems can be encoded in the reward function.
For example, the reward functions of many living or robotic beings cause occasional
hunger or pain or pleasure signals etc. At time t an optimal AI will make the best
possible use of experience h(≤ t) to maximize u(t). But how?

2.5 Universal, Mathematically Optimal, But Incomputable AI

Unbeknownst to many traditional AI researchers, there is indeed an extremely general
“best” way of exploiting previous experience. At any time t, the recent theoretically op-
timal yet practically infeasible reinforcement learning (RL) algorithm AIXI [11] uses
Solomonoff’s above-mentioned universal prediction scheme to select those action se-
quences that promise maximal future reward up to some horizon, given the current
data h(≤ t). Using a variant of Solomonoff’s universal probability mixture ξ, in cycle
t + 1, AIXI selects as its next action the first action of an action sequence maximizing
ξ-predicted reward up to the horizon. Hutter’s recent work [11] demonstrated AIXI’s op-
timal use of observations as follows. The Bayes-optimal policy pξ based on the mixture
ξ is self-optimizing in the sense that its average utility value converges asymptotically
for all μ ∈ M to the optimal value achieved by the (infeasible) Bayes-optimal policy
pμ which knows μ in advance. The necessary condition that M admits self-optimizing
policies is also sufficient.

Of course one cannot claim the old AI is devoid of formal research! The recent
approach above, however, goes far beyond previous formally justified but very limited
AI-related approaches ranging from linear perceptrons [17] to the A∗-algorithm [18].
It provides, for the first time, a mathematically sound theory of general AI and optimal
decision making based on experience, identifying the limits of both human and artificial
intelligence, and a yardstick for any future, scaled-down, practically feasible approach
to general AI.
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2.6 Optimal Curiosity and Creativity

No theory of AI will be convincing if it does not explain curiosity and creativity, which
many consider as important ingredients of intelligence. We can provide an explana-
tion in the framework of optimal reward maximizers such as those from the previous
subsection.

It is possible to come up with theoretically optimal ways of improving the predictive
world model of a curious robotic agent [28], extending earlier ideas on how to imple-
ment artificial curiosity [25]: The rewards of an optimal reinforcement learner are the
predictor’s improvements on the observation history so far. They encourage the rein-
forcement learner to produce action sequences that cause the creation and the learning
of new, previously unknown regularities in the sensory input stream. It turns out that
art and creativity can be explained as by-products of such intrinsic curiosity rewards:
good observer-dependent art deepens the observer’s insights about this world or possi-
ble worlds, connecting previously disconnected patterns in an initially surprising way
that eventually becomes known and boring. While previous attempts at describing what
is satisfactory art or music were informal, this work permits the first technical, formal
approach to understanding the nature of art and creativity [28].

2.7 Computable, Asymptotically Optimal General Problem Solver

Using the Speed Prior [26] one can scale down the universal approach above such that
it becomes computable. In what follows we will mention general methods whose op-
timality criteria explicitly take into account the computational costs of prediction and
decision making—compare [15].

The recent asymptotically optimal search algorithm for all well-defined problems
[11] allocates part of the total search time to searching the space of proofs for provably
correct candidate programs with provable upper runtime bounds; at any given time it
focuses resources on those programs with the currently best proven time bounds. The
method is as fast as the initially unknown fastest problem solver for the given problem
class, save for a constant slowdown factor of at most 1 + ε, ε > 0, and an additive
constant that does not depend on the problem instance!

Is this algorithm then the holy grail of computer science? Unfortunately not quite,
since the additive constant (which disappears in the O()-notation of theoretical CS) may
be huge, and practical applications may not ignore it. This motivates the next section,
which addresses all kinds of formal optimality (not just asymptotic optimality).

2.8 Fully Self-referential, Self-improving Gödel Machine

We may use Gödel’s self-reference trick to build a universal general, fully self-
referential, self-improving, optimally efficient problem solver [29]. A Gödel Machine
is a computer whose original software includes axioms describing the hardware and the
original software (this is possible without circularity) plus whatever is known about the
(probabilistic) environment plus some formal goal in form of an arbitrary user-defined
utility function, e.g., cumulative future expected reward in a sequence of optimization



36 J. Schmidhuber

tasks - see equation (1). The original software also includes a proof searcher which
uses the axioms (and possibly an online variant of Levin’s universal search [15]) to
systematically make pairs (“proof”, “program”) until it finds a proof that a rewrite of the
original software through “program” will increase utility. The machine can be designed
such that each self-rewrite is necessarily globally optimal in the sense of the utility
function, even those rewrites that destroy the proof searcher [29].

2.9 Practical Algorithms for Program Learning

The theoretically optimal universal methods above are optimal in ways that do not (yet)
immediately yield practically feasible general problem solvers, due to possibly large
initial overhead costs. Which are today’s practically most promising extensions of tra-
ditional machine learning?

Since virtually all realistic sensory inputs of robots and other cognitive systems are
sequential by nature, the future of machine learning and AI in general depends on
progress in in sequence processing as opposed to the traditional processing of stationary
input patterns. To narrow the gap between learning abilities of humans and machines,
we will have to study how to learn general algorithms instead of such reactive map-
pings. Most traditional methods for learning time series and mappings from sequences
to sequences, however, are based on simple time windows: one of the numerous feed-
forward ML techniques such as feedforward neural nets (NN) [1] or support vector
machines [38] is used to map a restricted, fixed time window of sequential input values
to desired target values. Of course such approaches are bound to fail if there are tem-
poral dependencies exceeding the time window size. Large time windows, on the other
hand, yield unacceptable numbers of free parameters.

Presently studied, rather general sequence learners include certain probabilistic ap-
proaches and especially recurrent neural networks (RNNs), e.g., [19]. RNNs have adap-
tive feedback connections that allow them to learn mappings from input sequences to
output sequences. They can implement any sequential, algorithmic behavior imple-
mentable on a personal computer. In gradient-based RNNs, however, we can differ-
entiate our wishes with respect to programs, to obtain a search direction in algorithm
space. RNNs are biologically more plausible and computationally more powerful than
other adaptive models such as Hidden Markov Models (HMMs - no continuous internal
states), feedforward networks & Support Vector Machines (no internal states at all). For
several reasons, however, the first RNNs could not learn to look far back into the past.
This problem was overcome by RNNs of the Long Short-Term Memory type (LSTM),
currently the most powerful and practical supervised RNN architecture for many appli-
cations, trainable either by gradient descent [9] or evolutionary methods [32], occasion-
ally profiting from a marriage with probabilistic approaches [8].

Unsupervised RNNs that learn without a teacher to control physical processes or
robots frequently use evolutionary algorithms [10, 22] to learn appropriate programs
(RNN weight matrices) through trial and error [41]. Recent work brought progress
through a focus on reducing search spaces by co-evolving the comparatively small
weight vectors of individual recurrent neurons [7]. Such RNNs can learn to create
memories of important events, solving numerous RL / optimization tasks unsolvable
by traditional RL methods [6, 7]. They are among the most promising methods for
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practical program learning, and currently being applied to the control of sophisticated
robots such as the walking biped of TU Munich [16].

3 The Next 25 Years

Where will AI research stand in 2031, 25 years from now, 100 years after Gödel’s
ground-breaking paper [5], some 200 years after Babbage’s first designs, some 400
years after the first automatic calculator by Schickard (and some 2000 years after the
crucifixion of the man whose birth year anchors the Western calendar)?

Trivial predictions are those that just naively extrapolate the current trends, such as:
computers will continue to get faster by a factor of roughly 1000 per decade; hence they
will be at least a million times faster by 2031. According to frequent estimates, current
supercomputers achieve roughly 1 percent of the raw computational power of a human
brain, hence those of 2031 will have 10,000 “brain powers”; and even cheap devices will
achieve many brain powers. Many tasks that are hard for today’s software on present
machines will become easy without even fundamentally changing the algorithms. This
includes numerous pattern recognition and control tasks arising in factories of many
industries, currently still employing humans instead of robots.

Will theoretical advances and practical software keep up with the hardware develop-
ment? We are convinced they will. As discussed above, the new millennium has already
brought fundamental new insights into the problem of constructing theoretically optimal
rational agents or universal AIs, even if those do not yet immediately translate into prac-
tically feasible methods. On the other hand, on a more practical level, there has been
rapid progress in learning algorithms for agents interacting with a dynamic environ-
ment, autonomously discovering true sequence-processing, problem-solving programs,
as opposed to the reactive mappings from stationary inputs to outputs studied in most
of traditional machine learning research. In the author’s opinion the above-mentioned
theoretical and practical strands are going to converge. In conjunction with the ongoing
hardware advances this will yield non-universal but nevertheless rather general artificial
problem-solvers whose capabilities will exceed those of most if not all humans in many
domains of commercial interest. This may seem like a bold prediction to some, but it is
actually a trivial one as there are so many experts who would agree with it.

Nontrivial predictions are those that anticipate truly unexpected, revolutionary break-
throughs. By definition, these are hard to predict. For example, in 1985 only very few
scientists and science fiction authors predicted the WWW revolution of the 1990s. The
few who did were not influential enough to make a significant part of humanity believe
in their predictions and prepare for their coming true. Similarly, after the latest stock
market crash one can always find with high probability some “prophet in the desert”
who predicted it in advance, but had few if any followers until the crash really occurred.

Truly nontrivial predictions are those that most will not believe until they come true.
We will mostly restrict ourselves to trivial predictions like those above and refrain from
too much speculation in form of nontrivial ones. However, we may have a look at previ-
ous unexpected scientific breakthroughs and try to discern a pattern, a pattern that may
not allow us to precisely predict the details of the next revolution but at least its timing.
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3.1 A Pattern in the History of Revolutions?

Let us put the AI-oriented developments [27] discussed above in a broader context, and
look at the history of major scientific revolutions and essential historic developments
(that is, the subjects of the major chapters in history books) since the beginnings of
modern man over 40,000 years ago [30, 31]. Amazingly, they seem to match a binary
logarithmic scale marking exponentially declining temporal intervals [31], each half the
size of the previous one, and measurable in terms of powers of 2 multiplied by a human
lifetime (roughly 80 years—throughout recorded history many individuals have reached
this age, although the average lifetime often was shorter, mostly due to high children
mortality). It looks as if history itself will converge in a historic singularity or Omega
point Ω around 2040 (the term historic singularity is apparently due to Stanislaw Ulam
(1950s) and was popularized by Vernor Vinge [39] in the 1990s). To convince yourself
of history’s convergence, associate an error bar of not much more than 10 percent with
each date below:

1. Ω − 29 lifetimes: modern humans start colonizing the world from Africa
2. Ω − 28 lifetimes: bow and arrow invented; hunting revolution
3. Ω − 27 lifetimes: invention of agriculture; first permanent settlements; beginnings

of civilization
4. Ω − 26 lifetimes: first high civilizations (Sumeria, Egypt), and the most important

invention of recorded history, namely, the one that made recorded history possible:
writing

5. Ω − 25 lifetimes: the ancient Greeks invent democracy and lay the foundations of
Western science and art and philosophy, from algorithmic procedures and formal
proofs to anatomically perfect sculptures, harmonic music, and organized sports.
Old Testament written (basis of Judaism, Christianity, Islam); major Asian religions
founded. High civilizations in China, origin of the first calculation tools, and India,
origin of alphabets and the zero

6. Ω − 24 lifetimes: bookprint (often called the most important invention of the past
2000 years) invented in China. Islamic science and culture start spreading across
large parts of the known world (this has sometimes been called the most important
event between Antiquity and the age of discoveries)

7. Ω−23 lifetimes: the Mongolian Empire, the largest and most dominant empire ever
(possibly including most of humanity and the world economy), stretches across
Asia from Korea all the way to Germany. Chinese fleets and later also European
vessels start exploring the world. Gun powder and guns invented in China. Ren-
naissance and Western bookprint (often called the most influential invention of the
past 1000 years) and subsequent Reformation in Europe. Begin of the Scientific
Revolution

8. Ω − 22 lifetimes: Age of enlightenment and rational thought in Europe. Massive
progress in the sciences; first flying machines; first steam engines prepare the in-
dustrial revolution

9. Ω − 2 lifetimes: Second industrial revolution based on combustion engines, cheap
electricity, and modern chemistry. Birth of modern medicine through the germ the-
ory of disease; genetic and evolution theory. European colonialism at its short-lived
peak
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10. Ω − 1 lifetime: modern post-World War II society and pop culture emerges; super-
power stalemate based on nuclear deterrence. The 20th century super-exponential
population explosion (from 1.6 billion to 6 billion people, mainly due to the Haber-
Bosch process [34]) is at its peak. First spacecraft and commercial computers; DNA
structure unveiled

11. Ω − 1/2 lifetime (now): for the first time in history most of the most destructive
weapons are dismantled, after the Cold War’s peaceful end. 3rd industrial revolu-
tion based on personal computers and the World Wide Web. A mathematical theory
of universal AI emerges (see sections above) - will this be considered a milestone
in the future?

12. Ω−1/4 lifetime: This point will be reached around 2020. By then many computers
will have substantially more raw computing power than human brains.

13. Ω − 1/8 lifetime (100 years after Gödel’s paper): will practical variants of Gödel
machines start a runaway evolution of continually self-improving superminds way
beyond human imagination, causing far more unpredictable revolutions in the final
decade before Ω than during all the millennia before?

14. ...

The following disclosure should help the reader to take this list with a grain of salt
though. The author, who admits being very interested in witnessing Ω, was born in
1963, and therefore perhaps should not expect to live long past 2040. This may motivate
him to uncover certain historic patterns that fit his desires, while ignoring other patterns
that do not. Perhaps there even is a general rule for both the individual memory of single
humans and the collective memory of entire societies and their history books: constant
amounts of memory space get allocated to exponentially larger, adjacent time intervals
further and further into the past. Maybe that’s why there has never been a shortage of
prophets predicting that the end is near - the important events according to one’s own
view of the past always seem to accelerate exponentially. See [31] for a more thorough
discussion of this possibility.
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Abstract. Evolutionary robotics is a methodology for the creation of auto- 
nomous robots using evolutionary principles.  Humanoid robotics is concerned 
specifically with autonomous robots that are human-like in that they mimic the 
body or aspects of the sensory, processing and/or motor functions of humans to 
a greater or lesser degree. We investigate how these twin strands of advanced 
research in the field of autonomous mobile robotics have progressed over the 
last decade or so, and their current recent convergence in the new field of 
evolutionary humanoid robotics.  We describe our current work in the evolution 
of controllers for bipedal locomotion in a simulated humanoid robot using an 
accurate physics simulator, and briefly discuss the effects of changes in robot 
mobility and of environmental changes.  We then describe our current work in 
the implementation of these simulated robots using the Bioloid robot platform.  
We conclude with a look at possible visions for the future.  

Keywords: Artificial evolution, humanoid robotics. 

1   Introduction and Motivation 

Evolutionary humanoid robotics is a branch of evolutionary robotics dealing with the 
application of the laws of genetics and the principle of natural selection to the design 
of humanoid robots.  For a good introduction to the general field see the book by 
Nolfi and Floreano[1].  Evolutionary techniques have been applied to the design of 
both robot body and ‘brain’ for a variety of different wheeled and legged robots[2-6].  
In this article we are primarily concerned with the application of evolutionary 
techniques to autonomous robots whose morphology and/or control/sensory apparatus 
is broadly human-like. 

In Brooks’ paper on the subject [7] he lists two main motivations for the 
construction (or evolution) of humanoid robots.  He presents the argument that the 
form of human bodies may well be critical to the representations we use for both 
language and thought.  Thus, if we wish (for whatever reason) to build a human-like 
intelligence the robot body must also be human-like.  This is a view supported by 
Pfeifer and Bongard in their recent book, aptly titled “How the body shapes the way 
we think”. [8] 

The second motivation he suggests relates to the area of human-robot interaction.  
If the robot has a human-like form then people should find it easier and more natural 
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to interact with it just as if it were human.  However it is important not to ignore the 
so-called “uncanny valley” effect as presented by Mashahiro Mori [9] and further 
discussed by Mac Dorman [10].  This suggests that there is a positive correlation 
between the likeness of a robot to a human; with how familiar and hence how easy 
they are to interact with, from a human perspective.  This is as we would expect.  
However after a certain point small further increases produce a sharp decrease in 
familiarity (the “uncanny valley”) which only then increases again as the robot 
becomes almost indistinguishable from a human.  This effect is seen to increase for a 
moving robot as opposed to a stationary one.  It is thought that this unnerving effect is 
correlated to an innate fear of mortality and culturally evolved mechanisms for coping 
with this.  This may suggest the desirability of, for the present, striving to produce 
humanoid robots with useful skills (discussed further below), but without at this stage 
attempting to imbue them with over human-like features or expressions. 

A third possible motivation, not discussed in Brooks’ paper is that the humanoid 
robot may be able to operate with ease in environments and situations where humans 
operate, such as opening and closing door, climbing up and down stairs, bending 
down to put washing in a washing machine etc.  This will allow the robot to be useful 
in a whole host of situations in which a non-humanoid robot would be quite 
powerless.  A major application in the future could be in the area of home helps for 
the elderly.  In modern developed countries like Italy and Japan fertility rates are 
dropping dramatically and they are left with a disproportionate elderly population and 
a relatively small population of potential carers.   

The hope is that by using artificial evolution robots may be evolved which are 
stable and robust, and which would be difficult to design by conventional techniques 
alone.  However we should bear in mind the caveat put forward by Mataric and Cliff 
[11]; that the effort expended in designing and configuring the evolutionary algorithm 
should ideally be considerably less than that required to do a manual design. 

For a brief introduction to the current state of the art with regard to Humanoid 
robotics including the HRP-3, KHR-1 and KHR-2, Sony QRIO and Honda ASIMO 
and P2 see Akachi et al [12].  See references [13-20] for other articles of specific 
interest in the design of autonomous robots, and humanoid robots in particular. The 
increasingly important issue of the benchmarking and evaluation of future 
autonomous robots, which is an area that will be of increasing relevance and 
significance as intelligent robots, especially of the humanoid variety, play a greater 
role in our everyday lives is discussed in references [21] and [22].  

For other work in the specific area of the evolution of bipedal locomotion see 
references [23-30].  Space precludes a detailed discussion of this other work, some of 
it very interesting, however in these papers walking generally operates either solely 
on a simulated robot[24-26,28-30], and/or on robots with a restricted number of 
degrees of freedom (typically 6-10 DOF). Some of these systems also require the 
incorporation of quite a high degree of domain specific knowledge in the genetic 
algorithm. In addition there is some very interesting work on bipedal locomotion 
without the use of complex control algorithms in Cornell University and Delft 
University among others (passive-dynamic walkers)[31], which have five DOF each, 
and in the MIT learning biped which has six DOF and uses reinforcement learning to 
acquire a control policy [31], but as these are not evolutionary based techniques they 
fall outside the scope of this discussion.  
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2   Evolution of Bipedal Locomotion 

We now concisely describe a specific set of experiments for the evolution of bipedal 
locomotion in a high-DOF simulated humanoid robot.  Bipedal locomotion is a 
difficult task, which, in the past, was thought to separate us from the higher primates. 
In the experiments outlined here we use a genetic algorithm to choose the joint values 
for a simulated humanoid robot with a total of 20 degrees of freedom (elbows, ankles, 
knees, etc.) for specific time intervals (keyframes) together with maximum joint 
ranges in order to evolve bipedal locomotion.  An existing interpolation function fills 
in the values between keyframes; once a cycle of 4 keyframes is completed it repeats 
until the end of the run, or until the robot falls over. The humanoid robot is simulated 
using the Webots mobile robot simulation package and is broadly modeled on the 
Sony QRIO humanoid robot [32,33].  In order to get the robot to walk a simple 
function based on the product of the length of time the robot remains standing by the 
total distance traveled by the robot was devised.  This was later modified to reward 
walking in a forward (rather than backward) direction and to promote walking in a 
more upright position, by taking the robots final height into account. 

In previous experiments [34] it was found that the range of movement allowed to 
the joints by the evolutionary algorithm: that is the proportion of the maximum range 
of movement allowed to the robot for each joint, was an important factor in evolving 
successful walks.  Initial experiments placed no restriction on the range of movement 
allowed and walks did not evolve unless the robot was restricted to a stooped posture 
and a symmetrical gait, even then results were not impressive.  By restricting possible 
movement to different fractions of the maximum range walks did evolve, however as 
this was seen as a critical factor in the evolutionary process it was decided in the 
current work to include a value specifying the fraction of the total range allowed in 
the humanoid robots genome. 

The genome length is 328 bits comprising 4 bits determining the position of the 20 
motors for each of 4 keyframes; 80 strings are used per generation.  8 bits define the 
fraction of the maximum movement range allowed.  The maximum range allowed for 
a particular genome is the value specified in the corresponding to each motor divided 
by the number of bits set in this 8 bit field plus 1. 8 bits was chosen as reasonable 
walking patterns were seen to evolve when the range was restricted by a factor of 4 or 
thereabouts in previous experiments.  The genetic algorithm uses roulette wheel 
selection with elitism; the top string being guaranteed safe passage to the next 
generation, together with standard crossover and mutation.  Maximum fitness values 
may rise as well as fall because of the realistic nature of the Webots simulation.  Two-
point crossover is applied with a probability of 0.5 and the probability of a bit being 
mutated is 0.04.  These values were arrived at after some experimentation. 

3   Experimental Results 

We ran three trials of the evolutionary algorithm on a population size of 80 controllers 
for 700 generations of simulated robots, taking approximately 2.5 weeks simulation 
time on a reasonably fast computer, corresponding to approximately 7 weeks of “real 
time” experimentation.  A fitness value over about 100 corresponds to the robot at 
least staying standing for some period of time, over 500 corresponds to a walk of 
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some description.  The results obtained were interesting; walks developed in all three 
runs, on average after about 30 generations with fine walking gaits after about 300 
generations. This is about half the time on average that walking developed with a 
fixed joint range.  We can see from Fig. 1 that the joint range associated with the 
individual with maximum fitness fluctuates wildly in early generations; typically low 
values (high movement ranges) initially predominate as the robot moves in a 
“thrashing” fashion.  Then the movement range becomes restricted for the highest 
performing individuals as a smaller range of movement increases the likelihood that 
the robot will at least remain standing for a period, while hopefully moving a little.  
Then in later generations typically the movement range gradually becomes relaxed 
again, as a greater range of movement facilitates more rapid walking once the robot 
has “learnt” how to remain upright.  

Evolution of bipedal locomotion
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Fig. 1. Fitness and joint range graphs 

4   Effect of Restraining Joints and of Environment Modification 

We now investigate the effect of restraining motion in part of the robot.  We do this 
by immobilising the robots right knee joint, and both ankle joints.  This might 
correspond to a situation of a person walking with a prosthetic leg.  Figure 2 shows 
the results of this experiment again averaged over 3 runs. The robot learns to walk 
albeit with a reduced maximum fitness compared to the robot with no constraints.  
Figure 3 illustrates a typical walk which develops.  The right (constrained) leg moves 
sideways and forwards, coming well off the ground, as the right arm moves 
backwards in a steadying motion.  The left leg follows in a shuffling motion, and the 
cycle repeats.  In order to gain some insight into the evolutionary process we use a 
slightly modified version of the “degree of population diversity” described in by 
Leung et al. [35]. This measure provides an easy to calculate and useful measure of 
population diversity: i.e. how alike the different strings in a population. We subtract 
this value from the genome bit length to produce our inverse degree of population 
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diversity measure (IDOPD).  This value will vary from 0 (no similarity in the strings) 
to a value corresponding to the genome length (all genomes have the same value at 
every bit location).  Diversity is measured on the right hand vertical axis.  In addition 
for these experiments the number of bits encoding the joint range was increased from 
8 to 16 giving a total genome length of 336 bits.  We have also conducted successful 
experiments on the robot walking (skating) in low-friction environments, and in 
conditions of reduced gravity. 

Walking w ith one leg restrained
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Fig. 2. Walking with right leg immobilised 

   

   

Fig. 3. The evolved sideways walk 

5   The Bioloid Robotic Platform  

We have been working for some time to implement our simulated robots in the real 
world using the Bioloid robot platform which is produced by Robotis Inc. Korea. This 



 Evolutionary Humanoid Robotics: Past, Present and Future 47 

platform consists of a CPU (the CM-5), a number of senso-motoric actuators 
(Dynamixel AX12+) and a large number of universal frame construction pieces. 

Using this platform it is possible to construct a wide variety of robots, from simple 
wheeled robots to complex humanoid robots with many degrees of freedom.  In 
addition, because of the ability to construct a range of robots with slightly different 
morphologies, it lends itself well to evolutionary robotics experiments in which both 
robot “body and brain” are evolved.  To gain initial experience with this kit we 
initially constructed a “puppy-bot” (Fig. 4) which can walk on four legs, avoid 
obstacles and perform several cute tricks.  With this experience we then constructed 
the Bioloid humanoid robot which has 18 degrees of freedom in total. A modified 
version of this humanoid robot was used for Humanoid Team Humboldt in the 
RoboCup competitions in Bremen 2006. [36] 

Two pieces of software are provided with the Bioloid system; the behaviour 
control programmer, and the motion editor.  The behaviour control programmer 
programs the humanoids’ response to different environmental stimuli, while the 
motion editor describes individual motions based on the keyframe concept described 
in our work.   

         

Fig. 4. The puppy robot (left) and Bioloid humanoid robot (right) 

6   Implementation of Simulated Robots 

We have now built an accurate model of the Bioloid humanoid in Webots, and can 
translate the information in our sequence control file into a format understandable by 
the Bioloid motion editor.  This translation is currently done partly by hand but we are 
working on fully automating this process.  It is now possible to evolve walking, and 
other behaviours, in Webots using our model, and then transfer the evolved behaviour 
directly to the Bioloid humanoid robot.  The graph below shows the maximum 
evolved fitness (right hand axis) and joint range and diversity measure (left hand axis) 
for the simulated Bioloid humanoid, averaged over five runs for 200 generations.  
Good walking patterns generally developed by generation 100 or so.  Note the fitness 
function is similar to the one used for the PINO-like robot, but as the robot is a lot 
shorter (approx 35cm), obviously the distance traveled in a successful walk is less, 
hence the fitness values returned will be lower. Also the joint range values vary as in 
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16-DOF Bioloid Humanoid locomotion
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Fig. 5. Maximum fitness, Joint range and diversity graphs for 200 generations of the Webots 
simulation of the 16-DOF Bioloid Humanoid robot averaged over 5 runs 

    

    

Fig. 6. Simulated snap shots of the Webots simulation of the Bioloid humanoid robot walking 
 

the previous experiment, rising in the early runs before stabilizing out; The difference 
however is not as marked, as the robot is more inherently stable to begin with, so does 
not have to restrict its joint ranges as much in the early runs so as to remain standing.  
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The robot simulated was 16-DOF rather than the 18-DOF of the actual robot; both 
elbow joints were immobilized. This was done as they operate in an in-out fashion 
rather than the forward-backward configuration in the original PINO-like robot and 
this also might interfere with the arm movement.  Also four additional 16-bit fields 
were added to specify the speed of movement for each of the four cycles, however 
this is not of particular relevance to the current discussion and will be discussed in 
more detail in a a later article. 

When a walk has evolved this can then be transferred to the Bioloid humanoid via 
the motion editor. An example of an evolved simulated walk is given in Fig. 6 
together with the walk as transferred to the Bioloid humanoid in Fig. 7.  The fidelity 
of the transfer is reasonably good, indicating the accuracy of the model, however 
work remains to be done to fully “cross the reality gap”[37], but these initial results 
are very promising. 

   

   

Fig. 7. The actual walking control sequence transferred to the physical robot 

7   Discussion and Looking Ahead 

In this work we have demonstrated one of the first applications of evolutionary 
algorithms to the development of complex movement patterns in a many-degree-of-
freedom humanoid robot. Perhaps the time has now arrived for a more serious and 
detailed discussion on the possible ethical ramifications of the evolution of human-
like robots.  Such robots may be able to take our place in the workforce or in other 
fields and there may well also be other significant social consequences.  Other, more 
technical, issues arise – while Asimov’s three laws of robotics may appear a little 
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dated, it could be important to avoid the appearance in the home or workplace of 
unexpected evolved “side effects” which may escape a rigorous testing regime.  For 
example one of the walking behaviours evolved in our work involved the robot 
walking (staggering) in a manner amusingly reminiscent of an intoxicated person.  
While this gait proved surprisingly effective, not many people would relish the 
prospect of being shown around a new house for sale by a seemingly drunken robot! 
In conclusion, if indeed we are now beginning to see the first tentative “steps” 
towards autonomous humanoid robots, perhaps now is the time to look forward to the 
harnessing of this technology for the benefit of mankind. 
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Abstract. Artificial Intelligence was born in 1956 as the off-spring of
the newly-created cognitivist paradigm of cognition. As such, it inherited
a strong philosophical legacy of functionalism, dualism, and positivism.
This legacy found its strongest statement some 20 years later in the phys-
ical symbol systems hypothesis, a conjecture that deeply influenced the
evolution of AI in subsequent years. Recent history has seen a swing away
from the functionalism of classical AI toward an alternative position that
re-asserts the primacy of embodiment, development, interaction, and,
more recently, emotion in cognitive systems, focussing now more than
ever on enactive models of cognition. Arguably, this swing represents a
true paradigm shift in our thinking. However, the philosophical founda-
tions of these approaches — phenomenology — entail some far-reaching
ontological and epistemological commitments regarding the nature of a
cognitive system, its reality, and the role of its interaction with its en-
vironment. The goal of this paper is to draw out the full philosophical
implications of the phenomenological position that underpins the current
paradigm shift towards enactive cognition.

1 Philosophical Preliminaries

Realism is a doctrine which holds that the objects of our perceptions are what
is real and that reality is what is directly perceived; it is through our percep-
tions that we apprehend the actual real external world. The tradition of modern
realism has an long pedigree, beginning with Ockham and continuing through
Gallileo, Hobbes, Locke, Hume, Moore, and Russell. Gallileo, along with, e.g.,
Copernicus, Descartes, and Kepler, heralded the beginning of the scientific age
which placed all empirical measurement and quantification along with rigourous
mathematical (or logical) reasoning as the cornerstones for the construction of
knowledge. This empiricist ethos was strengthed by John Locke, a quintessen-
tial realist, who viewed perception as a causal process whereby physical stimuli
act on the sensory apparatus to produce ideas (concepts or representations, in
the modern terminology). Much of today’s common understanding of reality is
a legacy of this Lockean frame of mind. In realistic positions, there is the un-
derpinning assumption that reality exists absolutely and, whether rationally by
reason or empirically by sense, we apprehend it and thus come to understand its
form and structure.

Idealism, on the other hand, is a doctrine which posits that reality is ulti-
mately dependent on the mind and has no existence outside of it. If Locke was
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the quintessential realist, then Berkeley was the quintessential idealist. Berkeley
developed the philosophy that nothing exists save that which is perceived by a
mind. This is neatly summarized by his famous aphorism ‘esse est percipi’ —
to be is to be perceived. Berkeley’s position is that our idea about the world
are based on our perceptions of it. In this sense, Berekeley is also taking an
empirical position — that our knowledge of the world is gained exclusively from
our senses. On the other hand, Berkeley denied the existence of matter: what
exists is that which is perceived, and it exists because it is perceived. Reality
pervades all perception but corporeal matter has no place in this scheme. This
denial of the reality of matter distinguishes Berkeley’s empirical idealist notions
of perception from the realist, empirical, notion that perception is an abstraction
or apprehension of the (material) world via a causal process of sensing.

Kant (1724-1804) was also an idealist, but his views differed significantly
from those of Berkeley. Kant differentiated between noumena, the domain of
‘things in themselves’ and phenomena, or the ‘appearances’ of things as they
are presented to us by our senses. Kant argued that noumena are not accessible
to us, and cannot be known directly, whereas the phenomena — the contact
we have with these things via our senses and perceptions — are the basis for
knowledge. Kant refers to noumena as ‘trancendental objects’ and his philosophy
is sometimes referred to as ‘trancendental idealism’. Thus, Kant admits the
‘reality’ of a domain of objects, the unknowable noumenological domain. On
the other hand, he maintains that the objects of our experience are the only
knowable objects and it is the mind that shapes and forms these sense data
and, hence, for us, these objects are the only objects that really exist and they
exist because of us and our minds. Reality, then, exists as an unknowable, non-
sensible, noumenal domain which gives rise to the phenomenal domain of our
senses.1 The idealist tradition did not stop with Kant and has been added to by,
e.g., Schopenhauer, Nietzsche, and Hegel.

There are many variations on these two themes of idealism and realism, per-
haps the most well-known of which is dualism which holds that reality comprises
two distinct ‘substances’: one physical and one mental. Dualism was first pro-
pounded as a philosophical system by Descartes who argued for the existence
of two domains of reality: one corporeal and one non-corporeal. Both mutually-
exclusive domains exist concurrently. It is this mutual exclusivity which has
caused dualism most of its problems for, if they are truly mutually exclusive,
it is not clear how they can interact. This difficulty has been transposed into
modern philosophical debate as the ‘mind-body’ problem: the paradox that if
the body and mind are mutually exclusive entities, then how do they ‘commu-
nicate’?

In the above, we have attempted the impossible: to summarize five hundred
years of philosophical thought in a few paragraphs. Nonetheless, from this cur-
sory look at the history of western philosophy, we can see that the philosophical

1 Although Kant is best known as an idealist, his particular brand of philosophical
idealism is sometimes referred to as constructive realism due to the central role
played by the observer in shaping phenomenal reality.
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positions on reality have been dominated by realism (including dualism). Addi-
tionally, the philosophies that have been most closely aligned with the scientific
method have also been those of realism. In a sense, this isn’t surprising since
realism is the more immediately common-sense view: things exist — we perceive
them. This world-view has been copper-fastened in the last century by the logical
positivists, e.g. Schlick and Carnap, who held that reality is exactly that which
yields to empirical investigation and anything that is not verifiable by empirical
investigation is meaningless.

There were, of course, other developments in philosophical thinking, which
begin with Kant’s distinction between noumena and phenomena, and which
evolved into a type of reconciliation of the idealist and the realist positions. The
one that interests us here was developed by Husserl, who held that reality is
personally and fundamentally phenomenological but is set against an objective
spatio-temporal world. However, it was best espoused by Heidegger who denied
the dichotomy between the world and ‘us’ and saw existence or ‘being in the
world’ as our activity in a constitutive domain. Reality does not exist ‘outside
us’; we are beings in a world, not disjoint from it. From a phenomenological
perspective, what we perceive depends on what it is we are. The position taken
by phenomenology is subtly, but significantly, different to that taken by either
realism or idealism. The position is as follows. We play a role in defining reality,
but only insofar as it affects us as individuals (the idealist aspect), that is, insofar
as it affects our experience of reality; the reality that we perceive does exist (the
realist aspect) but our perception and conception of it is conditioned by our
experience. Thus, reality is for us a personal experience, though it derives from
a common source and this reality is our experience and is contingent upon the
current ontological status of us as entities in that universe. As perceivers, our
perceptions of the world are a function of what we are: reality is conditioned
by experience and experience is conditioned by the nature of the system and its
history of interaction with reality.

The dependence of reality on the ontogenetic state of an individual is the
essential characteristic of phenomenology and is often referred to as radical con-
structivism: we construct our reality as a consequence of our perceptions and
experiences. Unfortunately, the term constructivism is also sometimes used to
denote an entirely different realist position taken by advocates of the cognitivist
approach to artificial intelligence whereby representations of the external world
are constructed through perception. Consequently, one must be careful when
interpreting the term constructivism to be clear exactly what is meant: the rad-
ical constructivism of phenomenology or the representational constructivism of
realism.

2 The Birth of AI

The development of cybernetics in 1943 heralded the birth of cognitive science
and an attempt to create a formal logical model of cognition and a science
of mind [1]. The year 1956 saw the emergence of an approach referred to as



56 D. Vernon and D. Furlong

cognitivism which asserts that cognition involves computations defined over in-
ternal representations, in a process whereby information about the world is ab-
stracted by perception, and represented using some appropriate symbolic data-
structure, reasoned about, and then used to plan and act in the world.

For cognitivist systems, perception is concerned with the abstraction of faith-
ful spatio-temporal representations of the external world from sensory data. Rea-
soning itself is symbolic: a procedural process whereby explicit representations
of an external world are manipulated to infer likely changes in the configuration
of the world that arise from causal actions.

In most cognitivist approaches concerned with the creation of artificial cogni-
tive systems, the symbolic representations are typically the descriptive product of
a human designer. This means that they can be directly accessed and understood
or interpreted by humans and that semantic knowledge can be embedded directly
into and extracted directly from the system. These programmer-dependent rep-
resentations ‘blind’ the system [2] and constrain it to an idealized description
that is dependent on and a consequence of the programmer’s own cognition.
Arguably, it is this a priori designer- or programmer-dependent knowledge that
is embedded in the system that limits the adapability of the cognitive system
since this knowledge intrinsically encapsulates the designer’s assumptions about
the system’s environment, it operation, and its space of interaction.

Cognitivism makes the realist assumption that ‘the world we perceive is iso-
morphic with our perceptions of it as a geometric environment’ [3]. Today, cog-
nitivist systems will deploy an arsenal of techniques including machine learning,
probabilistic modelling, and other techniques in an attempt to deal with the in-
herently uncertain, time-varying, and incomplete nature of the sensory data that
is being used to drive this representational framework. However, ultimately the
representational structure is still predicated on the descriptions of the designer.

AI is the direct descendent of cognitivism [4] and represents the empirical side
of cognitivist cognitive science. A major milestone in its development occured in
1976 with Newell’s and Simon’s ‘Physical Symbol System’ approach [5]. In their
paper, two hypotheses are presented:

1. The Physical Symbol System Hypothesis: A physical symbol system has the
necessary and sufficient means for general intelligent action.

2. Heuristic Search Hypothesis: The solutions to problems are represented as
symbol structures. A physical-symbol system exercises its intelligence in
problem-solving by search, that is, by generating and progressively modi-
fying symbol structures until it produces a solution structure.

The first hypothesis implies that any system that exhibits general intelligence is
a physical symbol system and any physical symbol system of sufficient size can
be configured somehow (‘organized further’) to exhibit general intelligence.

The second hypothesis amounts to a assertion that symbol systems solve prob-
lems by heuristic search, i.e. ‘successive generation of potential solution struc-
tures’ in an effective and efficient manner. ‘The task of intelligence, then, is to
avert the ever-present threat of the exponential explosion of search’.



Philosophical Foundations of AI 57

A physical symbol system is equivalent to an automatic formal system[6]. It
is ‘a machine that produces through time an evolving collection of symbol struc-
tures.’ A symbol is a physical pattern that can occur as a component of another
type of entity called an expression (or symbol structure): expressions/symbol
structures are arrangements of symbols/tokens. As well as the symbol structures,
the system also comprises processes that operate on expressions to produce other
expressions: ‘processes of creation, modification, reproduction, and destruction’.
An expression can designate an object and thereby the system can either ‘affect
the object itself or behave in ways depending on the object’, or, if the expression
designates a process, then the system interprets the expression by carrying out
the process. In the words of Newell and Simon,

‘Symbol systems are collections of patterns and processes, the latter
being capable of producing, destroying, and modifying the former. The
most important properties of patterns is that they can designate objects,
processes, or other patterns, and that when they designate processes,
they can be interpreted. Interpretation means carrying out the desig-
nated process. The two most significant classes of symbol systems with
which we are acquainted are human beings and computers.’

What is important about this explanation of a symbol system is that it is more
general than the usual portrayal of symbol-manipulation systems where symbols
designate only objects, in which case we have a system of processes that pro-
duces, destroys, and modifies symbols, and no more. Newell’s and Simon’s orig-
inal view is more sophisticated. There are two recursive aspects to it: processes
can produce processes, and patterns can designate patterns (which, of course,
can be processes). These two recursive loops are closely linked. Not only can
the system build ever more abstract representations and reason about those rep-
resentation, but it can modify itself as a function both of its processing, qua
current state/structure, and of its representations.

Symbol systems can be instantiated and the behaviour of these instantiated
systems depend on the the details of the symbol system, its symbols, operations,
and interpretations, and not on the particular form of the instantiation.

The physical symbol system hypothesis asserts that a physical symbol system
has the necessary and sufficient means for general intelligence. From what we
have just said about symbol systems, it follows that intelligent systems, either
natural or artificial ones, are effectively equivalent because the instantiation is
actually inconsequential, at least in principle.

To a very great extent, cognitivist systems are identical to physical symbol
systems.

The strong interpretation of the physical symbol system hypothesis is that
not only is a physical symbol system sufficient for general intelligence, it is also
necessary for intelligence.

It should be clear that cognitivism, and the classical AI of physical symbol
systems, are dualist, functionalist, and positivist. They are dualist in the sense
that there is a fundamental distinction between the mind (the computational
processes) and the body (the computational infrastructure and, where required,
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the plant that instantiates any physical interaction). The are functionalist in
the sense that the actual instantiation and computational infrastructure is in-
consequential: any instantiation that supports the symbolic processing is suffi-
cient. They are positivist in the sense that they assert a unique and absolute
empirically-accessible external reality that is apprended by the senses and rea-
soned about by the cognitive processes.

3 Enaction

Cognitivism is not however the only position one can take on cognition. There is
a second class of approaches, all based to a lesser or greater extent on principles
of emergent self-organization [1,7] and best epitomized by enactive approaches.

The enactive systems research agenda stretches back to the early 1970s in the
work of computational biologists Maturana and Varela [8,9,10,11,1,2,12]. In con-
tradistinction to cognitivism, which involves a view of cognition that requires the
representation of a given objective pre-determined world [13,1], enaction asserts
that cognition is a process whereby the issues that are important for the continued
existence of a cognitive entity are brought out or enacted: co-determined by the
entity as it interacts with the environment in which it is embedded. Thus, nothing
is ‘pre-given’. Instead there is an enactive interpretation: a real-time context-based
choosing of relevance. Cognition is the process whereby an autonomous
systembecomes viable and effective in its environment. It does so through a process
of self-organization through which the system is continually re-constituting itself
in real-time to maintain its operational identity through moderation of mutual
system-environment interaction and co-determination [12]. Co-determination im-
plies that the cognitive agent is specified by its environment and at the same time
that the cognitive process determines what is real or meaningful for the agent. In
a sense, co-determination means that the agent constructs its reality (its world) as
a result of its operation in that world. Thus, for emergent approaches, perception
is concerned with the acquisition of sensory data in order to enable effective action
[12] and is crucially dependent on the richness of the action interface [14]. It is not
a process whereby the structure of an absolute external environment is abstracted
and represented in a more or less isomorphic manner.

In contrast to the cognitivist approach, many enactive approaches assert that
the primary model for cognitive learning is anticipative skill construction rather
than knowledge acquisition and that processes that both guide action and im-
prove the capacity to guide action while doing so are taken to be the root ca-
pacity for all intelligent systems [15]. While cognitivism entails a self-contained
abstract model that is disembodied in principle, the physical instantiation of
the systems plays no part in the model of cognition [16,17]. In contrast, enac-
tive approaches are intrinsically embodied and the physical instantiation plays
a pivotal constitutive role in cognition.

With enactive systems, one of the key issues is that cognitive processes are
temporal processes that ‘unfold’ in real-time and synchronously with events in
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their environment. This strong requirement for synchronous development in the
context of its environment is significant for two reasons. First, it places a strong
limitation on the rate at which the ontogenetic learning of the cognitive system
can proceed: it is constrained by the speed of coupling (i.e. the interaction) and
not by the speed at which internal changes can occur [2]. Second, taken together
with the requirement for embodiment, we see that the consequent historical and
situated nature of the systems means that one cannot short-circuit the onto-
genetic development. Specifically, you can’t bootstrap an emergent dynamical
system into an advanced state of learned behaviour.

For cognitivism, the role of cognition is to abstract objective structure and
meaning through perception and reasoning. For enactive systems, the purpose
of cognition is to uncover unspecified regularity and order that can then be con-
strued as meaningful because they facilitate the continuing operation and devel-
opment of the cognitive system. In adopting this stance, the enactive position
challenges the conventional assumption that the world as the system experiences
it is independent of the cognitive system (‘the knower’). The only condition that
is required of an enactive system is effective action: that it permit the contin-
ued integrity of the system involved. It is essentially a very neutral position,
assuming only that there is the basis of order in the environment in which the
cognitive system is embedded. From this point of view, cognition is exactly the
process by which that order or some aspect of it is uncovered (or constructed)
by the system. This immediately allows that there are different forms of reality
(or relevance) that are dependent directly on the nature of the dynamics making
up the cognitive system. This is not a solipsist position of ungrounded subjec-
tivism, but neither is it the commonly-held position of unique — representable
— realism. It is fundamentally a phenomenological position.

The goal of enactive systems research is the complete treatment of the nature
and emergence of autonomous, cognitive, social systems. It is founded on the
concept of autopoiesis – literally self-production – whereby a system emerges as
a coherent systemic entity, distinct from its environment, as a consequence of
processes of self-organization.

In the enactive paradigm, linguistic behaviours are at the intersection of onto-
genetic and communication behaviours and they facilitate the creation of a com-
mon understanding of the shared world that is the environment of the coupled
systems. That is, language is the emergent consequence of the structural coupling
of a socially-cohesive group of cognitive entities. Equally, knowledge is particular
to the system’s history of interaction. If that knowledge is shared among a soci-
ety of cognitive agents, it is not because of any intrinsic abstract universality, but
because of the consensual history of experiences shared between cognitive agents
with similar phylogeny and compatible ontogeny. A key postulate of enactive sys-
tems is that reasoning, as we commonly conceive it, is the consequence of reflexive2

use of the linguistic descriptive abilities to the cognitive agent itself [12]. Linguistic
capability is in turn developed as a consequence of the consensual co-development
of an epistemology in a society of phylogenetically-identical cognitive agents. This

2 Reflexive in the sense of self-referential, not in the sense of a reflex action.
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is significant: reasoning in this sense is a descriptive phenomenon and is quite dis-
tinct from the self-organizing mechanism (i.e. structural coupling and operational
closure [12]) by which the system/agent develops its cognitive and linguistic be-
haviours. Since language (and all inter-agent communication) is a manifestation
of high-order cognition, specifically co-determination of consensual understanding
amongst phylogenetically-identical and ontogenetically-compatible agents, sym-
bolic or linguistic reasoning is actually the product of higher-order social cognitive
systems rather than a generative process of the cognition of an individual agent.

4 Conclusion

The chief point we wish to make in this paper is that the differences between
the cognitivist and emergent positions are deep and fundamental, and go far
beyond a simple distinction based on symbol manipulation. It isn’t principally
the symbolic nature of the processing that is at issue in the divide between
the cognitivist and the emergent approaches — it is arguable that linguistically-
capable enactive systems explicitly use symbols when reasoning. Neither is it the
presence or use of a physical body or situated perceptual agents. Cognitivists
now readily admit the need for embodiment; in Anderson’s words: ‘There is
reason to suppose that the nature of cognition is strongly determined by the
perceptual-motor systems, as the proponents of embodied and situated cognition
have argued’ [18]. Elsewhere they are compared on the basis of several related
characteristics [19] but in this paper, we have contrasted the two paradigms
on the basis of their philosophical commitments: the functionalist, dualist, and
positivist ground of cognitivist cognition versus the phenomenological agent-
specific mutual-specification of enactive cognition.

In the enactive paradigm, the perceptual capacities are a consequence of an
historic embodied development and, consequently, are dependent on the richness
of the motoric interface of the cognitive agent with its world. That is, the action
space defines the perceptual space and thus is fundamentally based in the frame-
of-reference of the agent. Consequently, the enactive position is that cognition can
only be created in a developmental agent-centred manner, through interaction,
learning, and co-development with the environment. It follows that through this
ontogenic development, the cognitive system develops its own epistemology, i.e.
its own system-specific knowledge of its world, knowledge that has meaning ex-
actly because it captures the consistency and invariance that emerges from the
dynamic self-organization in the face of environmental coupling. Thus, we can
see that, from this perspective, cognition is inseparable from ‘bodily action’ [20]:
without physical embodied exploration, a cognitive system has no basis for devel-
opment. Despite the current emphasis on embodiment, Ziemke notes that many
current approaches in cognitive/adaptive/epigenetic robotics still adhere to the
functionalist dualist hardware/software distinction in the sense that the computa-
tional model does not in principle require an instantiation [21,22]. Ziemke suggests
that this is a real problem because the idea of embodiment in the enactive sense
is that the morphology of the system is actually a key component of the systems
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dynamics. In other words, morphology not only matters, it is a constitutive part of
the system’s self-organization and structural coupling with the environment and
defines its cognition and developmental capacity.

There are many challenges to be overcome in pushing back the boundaries of
AI research, particularly in the practice of enactive AI. Foremost among these
is the difficult task of identifying the phylogeny and ontogeny of an artificial
cognitive system: the requisite cognitive architecture that facilitates both the
system’s autonomy (i.e. its self-organization and structural coupling with the
environment) and its capacity for development and self-modification. To allow
true ontogenetic development, this cognitive architecture must be embodied in
a way that allows the system the freedom to explore and interact and to do
so in an adaptive physical form that enables the system to expand its space of
possible autonomy-preserving interactions. This in turn creates a need for new
physical platforms that offer a rich repertoire of perception-action couplings and
a morphology that can be altered as a consequence of the system’s own dynamics.
In meeting these challenges, we move well beyond attempts to build cognitivist
systems that exploit embedded knowledge and which try to see the world the way
we designers see it. We even move beyond learning and self-organizing systems
that uncover for themselves statistical regularity in their perceptions. Instead, we
set our sights on building enactive phenomenologically-grounded systems that
construct their own understanding of their world through adaptive embodied
exploration and social interaction.
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On the Role of AI in the Ongoing Paradigm Shift within 
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Abstract. This paper supports the view that the ongoing shift from orthodox to 
embodied-embedded cognitive science has been significantly influenced by the 
experimental results generated by AI research. Recently, there has also been a 
noticeable shift toward enactivism, a paradigm which radicalizes the embodied-
embedded approach by placing autonomous agency and lived subjectivity at  
the heart of cognitive science. Some first steps toward a clarification of the 
relationship of AI to this further shift are outlined. It is concluded that the 
success of enactivism in establishing itself as a mainstream cognitive science 
research program will depend less on progress made in AI research and more on 
the development of a phenomenological pragmatics. 

Keywords: AI, cognitive science, paradigm shift, enactivism, phenomenology. 

1   Introduction 

Over the last two decades the field of artificial intelligence (AI) has undergone some 
significant developments (Anderson 2003). Good old-fashioned AI (GOFAI) has 
faced considerable problems whenever it attempts to extend its domain beyond 
simplified “toy worlds” in order to address context-sensitive real-world problems in a 
robust and flexible manner1. These difficulties motivated the Brooksian revolution 
toward an embodied and situated robotics in the early 1990s (Brooks 1991). Since 
then this approach has been further developed (e.g. Pfeifer & Scheier 1999; Pfeifer 
1996; Brooks 1997), and has also significantly influenced the emergence of a variety 
of other successful methodologies, such as the dynamical approach (e.g. Beer 1995), 
evolutionary robotics (e.g. Harvey et al. 2005; Nolfi & Floreano 2000), and 
organismically-inspired robotics (e.g. Di Paolo 2003). These approaches are united by 
the claim that cognition is best understood as embodied and embedded in the sense 
that it emerges out of the dynamics of an extended brain-body-world systemic whole.  

These developments make it evident that the traditional GOFAI mainstream, 
with its emphasis on perception as representation and cognition as computation, is 
being challenged by the establishment of an alternative paradigm in the form of 
                                                           
1 For example: the commonsense knowledge problem (Dreyfus 1991, p. 119), the frame 

problem (McCarthy & Hayes 1969), and the symbol grounding problem (Harnard 1990). 
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embodied-embedded AI. How is this major shift in AI related to the ongoing 
paradigm shift within the cognitive sciences? 2 Section 2 analyzes the role of AI in 
the emergence of what has been called “embodied-embedded” cognitive science 
(e.g. Clark 1997; Wheeler 2005). Recently, there has also been a noticeable shift in 
interest toward “enactivism” (e.g. Thompson 2007; 2005; Di Paolo, Rohde & De 
Jaegher 2007; Torrance 2005), a paradigm which radicalizes the embodied-
embedded approach by placing autonomous agency and lived subjectivity at the 
heart of cognitive science. How AI relates to this further shift is still in need of 
clarification, and section 3 provides some initial steps in this direction. Finally, 
section 4 argues that since many of the claims of enactivism are grounded in the 
phenomenological domain, its success as a major cognitive science research 
program depends less on progress in AI research and more on the development of a 
phenomenological pragmatics.  

2   Toward Embodied-Embedded Cognitive Science 

Much of contemporary cognitive science owes its existence to the founding of the 
field of AI in the late 1950s by the likes of Herbert Simon, Marvin Minsky, Allen 
Newell, and John McCarthy. These researchers, along with Noam Chomsky, put forth 
ideas that were to become the major guidelines for the computational approach which 
has dominated the cognitive sciences since its inception3. In order to determine the 
impact of AI on the ongoing shift from such orthodox computationalism toward 
embodied-embedded cognitive science, it is necessary to briefly consider some of the 
central claims associated with these competing theoretical frameworks.  

2.1   Theories of Cognition 

The paradigm that came into existence with the birth of AI, and which was essentially 
identified with cognitive science itself for the ensuing three decades and which still 
represents the mainstream today, is known as cognitivism (e.g. Fodor 1975). The 
cognitivist claim, that cognition is a form of computation (i.e. information processing 
through the manipulation of symbolic representations), is famously articulated in the 
Physical-Symbol System Hypothesis which holds that such a system “has the 
necessary and sufficient means for general intelligent action” (Newell & Simon 
1976). From the cognitivist perspective cognition is essentially centrally controlled, 
disembodied, and decontextualized reasoning and planning as epitomized by abstract 
problem solving. Accordingly, the mind is conceptualized as a digital computer and 
cognition is viewed as fundamentally distinct from the embodied action of an 
autonomous agent that is situated within the continuous dynamics of its environment.  

The cognitivist orthodoxy remained unchallenged until connectionism arose in the 
early 1980s (e.g. McClelland, Rumelhart et al. 1986). The connectionist alternative 
views cognition as the emergence of global states in a network of simple components, 

                                                           
2 Whether any of the major changes in AI or cognitive science are paradigm shifts in the strict 

Kuhnian sense is an interesting question but beyond the scope of this paper. Here the notion is 
used in the more general sense of a major shift in experimental practice and focus. 

3 See Boden (2006) for an extensive overview of the history of cognitive science. 
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and promises to address two shortcomings of cognitivism, namely by 1) increasing 
efficiency through parallel processing, and 2) achieving greater robustness through 
distributed operations. Moreover, because it makes use of artificial neural networks as 
a metaphor for the mind, its theories of cognition are often more biologically 
plausible. Nevertheless, connectionism still retains many cognitivist commitments. In 
particular, it maintains the idea that cognition is essentially a form of information 
processing in the head which converts a set of inputs into an appropriate set of outputs 
in order to solve a given problem. In other words, “connectionism’s disagreement 
with cognitivism was over the nature of computation and representation (symbolic for 
cognitivists, subsymbolic for connectionsists)” (Thompson 2007, p. 10), rather than 
over computationalism as such (see also Wheeler 2005, p. 75). Accordingly, most of 
connectionism can be regarded as constituting a part of orthodox cognitive science. 

Since the early 1990s this computionalist orthodoxy has begun to be challenged by 
the emergence of embodied-embedded cognitive science (e.g. Varela, Thompson & 
Rosch 1991; Clark 1997; Wheeler 2005), a paradigm which claims that an agent’s 
embodiment is constitutive of its perceiving, knowing and doing (e.g. Gallagher 2005; 
Noë 2004; Thompson & Varela 2001). Furthermore, the computational hypothesis has 
given way to the dynamical hypothesis that cognitive agents are best understood as 
dynamical systems (van Gelder 1998). Thus, while the embodied-embedded paradigm 
has retained the connectionist focus on self-organizing dynamic systems, it further 
holds that cognition is a situated activity which spans a systemic totality consisting of 
an agent’s brain, body, and world (e.g. Beer 2000). In order to assess the importance 
of AI for this ongoing shift toward embodied-embedded cognitive science, it is 
helpful to first consider the potential impact of theoretical argument alone. 

2.2   A Philosophical Stalemate 

The theoretical premises of orthodox and embodied-embedded cognitive science can 
generally be seen as Cartesian and Heideggerian in character, respectively (e.g. 
Wheeler 2005; Dreyfus 2007; Anderson 2003). The traditional Cartesian philosophy 
accepts the assumption that any kind of being can be reduced to a combination of 
more basic atomic elements which are themselves irreducible. On this view cognition 
is seen as a general-purpose reasoning process by which a relevant representation of 
the world is assembled through the appropriate manipulation and transformation of 
basic mental states (Wheeler 2005, p. 38). Orthodox cognitive science adopts a 
similar kind of reductionism in that it assumes that symbolic/subsymbolic structures 
are the basic representational elements which ground all mental states4, and that 
cognition is essentially treated as the appropriate computation of such representations. 
What are the arguments against such a position? 

The Heideggerian critique starts from the phenomenological claim that the world is 
first and foremost experienced as a significant whole and that cognition is grounded in 
the skilful disposition to respond flexibly and appropriately as demanded by 
contextual circumstances. Dreyfus (1991, p. 117) has argued that such a position 
                                                           
4 In contrast to the Cartesian claim that mental stuff is ontologically basic, orthodox cognitive 

science could hold that these constitutive elements are not basic in this absolute sense because 
they are further reducible to physical states. However, this change in position does not make 
any difference with regard to Heidegger’s critique of this kind of reductionism. 
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questions the validity of the Cartesian approach in two fundamental ways. First, the 
claim of holism entails that the isolation of a specific part or element of our 
experience as an atomic entity appears as secondary because it already presupposes a 
background of significance as the context from which to make the isolation. From this 
point of view a reductionist attempt at reconstructing a meaningful whole by 
combining isolated parts appears nonsensical since the required atomic elements were 
created by stripping away exactly that contextual significance in the first place. As 
Dreyfus (1991, p. 118) puts it: “Facts and rules are, by themselves, meaningless. To 
capture what Heidegger calls significance or involvement, they must be assigned 
relevance. But the predicates that must be added to define relevance are just more 
meaningless facts”. From the Heideggerian perspective it therefore appears that the 
Cartesian position is faced with a problem of infinite regress. Second, if we accept the 
claim of skills, namely that cognition is essentially grounded in a kind of skilful 
know-how or context-sensitive coping, then the orthodox aim of reducing such 
behaviour into a formal set of input/output mappings which specify the manipulation 
and transformation of basic mental states appears to be hopelessly misguided.  

Judging from these philosophical considerations it seems that the Heideggerian 
critique of the Cartesian tradition could have a significant impact on the paradigm 
shift from orthodox toward embodied-embedded cognitive science. However, since 
the two approaches have distinct underlying constitutive assumptions (e.g. 
reductionism vs. holism), there exists no a priori theoretical argument which would 
force someone holding a Cartesian position to accept the Heideggerian critique from 
holism and skills. Similarly, it is not possible for the Cartesian theorist to prove that 
worldly significance can indeed be created through the appropriate manipulation and 
transformation of abstract and de-contextualized representational elements. The 
problem is that, like all rational arguments, both accounts of cognition are founded on 
a particular set of premises which one is at liberty to accept or reject. Thus, even if the 
development of a strong philosophical position is most likely a necessary factor in the 
success of the embodied-embedded paradigm, it is by itself not sufficient. In other 
words, there is a fundamental stalemate in the purely philosophical domain; a shift in 
constitutive assumptions cannot be engendered by argumentation alone. 

2.3   An Empirical Resolution 

It has often been proposed that this theoretical stalemate has to be resolved in the 
empirical domain of the cognitive sciences (e.g. Dreyfus & Dreyfus 1988; Clark 
1997, p. 169; Wheeler 2005, p. 187). The authors of the Physical-Symbol System 
Hypothesis (Newell & Simon 1976) and the Dynamical Hypothesis (van Gelder 1998) 
are also in agreement that only sustained empirical research can determine whether 
their respective hypotheses are viable. Research in AI5 is thereby awarded the rather 
privileged position of being able to help resolve theoretical disputes which have 
plagued the Western philosophical tradition for decades if not centuries. This 

                                                           
5 It is worth noting that there are compelling arguments for claiming that the results generated 

by AI research are not “empirical” in the same way as those of the natural sciences, and that 
this is likely to weaken their impact outside the field. Nevertheless, it is still the case that AI 
can provide “valuable tools for re-organising and probing the internal consistency of a 
theoretical position” (Di Paolo, Noble & Bullock 2000).  
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reciprocal relationship between AI and theory has been captured with the slogan 
“understanding by building” (e.g. Pfeifer 1996; Pfeifer & Scheier 1999, p. 299). 

In what way has AI research managed to fulfil this role? Dreyfus (1991, p. 119), 
for example, has argued that the Heideggerian philosophy of cognition has been 
vindicated because GOFAI faces significant difficulties whenever it attempts to apply 
its Cartesian principles to real-world situations which require robust, flexible, and 
context-sensitive behavior. In addition, he demonstrates that the Heideggerian 
arguments from holism and skills can provide powerful explanations of why this kind 
of AI has to wrestle with the frame and commonsense knowledge problems. In a 
similar vein, Wheeler (2005, p. 188) argues compellingly that the growing success of 
embodied-embedded AI provides important experimental support for the shift toward 
a Heideggerian position in cognitive science. He argues that Heidegger’s claim that a 
cognitive agent is best understood from the perspective of “being-in-the-world” is put 
to the test by embodied-embedded AI experiments which investigate cognition as a 
dynamical process which emerges out of a brain-body-world systemic whole.  

2.4   The Failure of Embodied-Embedded AI? 

In light of these developments it seems fair to say that AI can have a significant 
impact on the ongoing shift from orthodox toward embodied-embedded cognitive 
science. However, while embodied-embedded AI has managed to overcome some of 
the significant challenges faced by traditional GOFAI, it has also started to encounter 
some of its own limitations. Considering the seemingly insurmountable challenge to 
make the artificial agents of current embodied-embedded AI behave in a more robust, 
flexible, and generally more life-like manner, particularly in the way that more 
complex living organisms do, Brooks (1997) was led to entertain the following 
sceptical reflections: “Perhaps we have all missed some organizing principle of 
biological systems, or some general truth about them. Perhaps there is a way of 
looking at biological systems which will illuminate an inherent necessity in some 
aspect of the interactions of their parts that is completely missing from our artificial 
systems. […] I am suggesting that perhaps at this point we simply do not get it, and 
that there is some fundamental change necessary in our thinking” (Brooks 1997). Has 
the field of AI managed to find the missing “juice” of life in the past decade? 

The existential philosopher Dreyfus, while mostly known in the field for his 
scathing criticisms of GOFAI, has recently referred to the current work in embodied-
embedded AI as a “failure” (Dreyfus 2007). He points to the lack of “a model of our 
particular way of being embedded and embodied such that what we experience is 
significant for us in the particular way that it is. That is, we would have to include in 
our program a model of a body very much like ours”. Similarly, Di Paolo (2003) 
argues that embodied-embedded robots, while in many respects an improvement over 
traditional GOFAI, “can never be truly autonomous. In other words the presence of a 
closed sensorimotor loop does not fully solve the problem of meaning in AI”. These 
problems are even further amplified because, while embodied-embedded AI has 
focused on establishing itself as a vialbe alternative to the traditional computational 
paradigm, relatively little effort has been made to connect its experimental work with 
theories outside the field of AI, such as with theoretical biology, in order to address 
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issues of autonomy and embodiment (Ziemke 2007). It thus seems that slowly there is 
an awareness growing in the field of embodied-embedded AI that something crucial is 
still missing in the current implementations of autonomous systems, and that this 
shortcoming is likely related to their particular manner of embodiment. But what 
could this elusive factor be? In order to answer this question we need to shift our 
focus back to recent developments in the cognitive sciences. 

3   Further: The Shift Toward Enactivism 

The enactive paradigm originally emerged as a part of embodied-embedded cognitive 
science in the early 1990s with the publication of the influential book The Embodied 
Mind (Varela, Thompson & Rosch 1991). It has recently distinguished itself by more 
explicitly placing autonomous agency in addition to lived subjectivity at the heart of 
cognitive science (e.g. Thompson 2007; Thompson 2005; Di Paolo, Rohde & De 
Jaegher 2007). How AI relates to this further shift in the cognitive sciences is still in 
need of clarification. This section provides some initial steps in this direction by 
considering how AI can contribute to the enactive account of how our bodily activity 
relates to the subjective mind at three interrelated “dimensions of embodiment”: 1) 
bodily self-regulation, 2) sensorimotor coupling, and 3) intersubjective interaction 
(Thompson & Varela 2001). While the development of such fully enactive AI is a 
significant challenge to existing methodologies, it has the potential of providing a 
fresh perspective on some of the issues currently faced by embodied-embedded AI. 

3.1   Bodily Self-regulation 

This dimension of embodiment is central to the enactive account of autonomy. Since 
embodied-embedded AI has always been involved in extensive studies of autonomous 
systems (e.g. Pfeifer & Scheier 1999), it might seem that such research is particularly 
destined to relate to enactivism in a mutually informative manner. Unfortunately, 
things are not as straightforward; the enactive paradigm has a very different view of 
what constitutes autonomy when compared to most embodied-embedded AI (Froese, 
Virgo & Izquierdo 2007). Its approach can be traced to the notion of autopoiesis, a 
systems concept which originated in the theoretical biology of the 1970s (e.g. 
Maturana & Varela 1980). Enactivism defines an autonomous agent as a precarious 
self-producing network of processes which constitutes its own identity; the 
paradigmatic example being a living organism. Drawing from the bio-philosophy of 
Hans Jonas (1966), it is claimed that such an autonomous system, one whose being is 
its own doing, should be conceived of as an individual in its own right, and that this 
process of self-constitution brings forth, in the same stroke, what is other, namely its 
world (e.g. Thompson 2007, p. 153). In other words, it is proposed that the continuous 
reciprocal process, which constitutes the autonomous system as a distinguishable 
individual, also furnishes it with an intrinsically meaningful perspective on its 
environment, i.e. autonomy lies at the basis of sense-making (Weber & Varela 2002).  

It follows from these considerations that today’s AI systems are not autonomous in 
the enactive sense. They do not constitute their own identity, and the only “identity” 
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which they can be said to possess is projected onto them by the observing researcher 
(Ziemke 2007). The popular methodology of evolutionary robotics, for example, 
presupposes that an “individual” is already defined by the experimenter as the basis 
for selection by the evolutionary algorithm, and in the dynamical approach to AI it is 
up to the investigator to distinguish which subpart of the systemic whole actually 
constitutes the “agent” (Beer 1995). The enactive notion of autonomous agency 
therefore poses a significant difficulty for current AI methodologies. Nevertheless, it 
is worth noting that AI researchers do not have to synthesize actual living beings in 
order for their work to provide some relevant insights into the dimension of bodily 
self-regulation. Following Di Paolo (2003), a first step would be to investigate 
artificial systems with some self-sustaining dynamic structures. In this manner 
embodied-embedded AI can move beyond its current focus on closed sensorimotor 
feedback loops by implementing systems which have a reciprocal link between 
internal organization and external behaviour. Indeed, there are signs that a shift 
toward more concern with bodily self-regulation is starting to develop. This is 
demonstrated by an increasing interest in homeostasis as a regulatory mechanism for 
investigating, for example, sensory inversion (e.g. Di Paolo 2003), the emergence of 
sensorimotor coupling (e.g. Ikegami & Suzuki forthcoming), behavioural preference 
(e.g. Iizuka & Di Paolo forthcoming), and active perception (e.g. Harvey 2004).  

3.2   Sensorimotor Coupling and Intersubjective Interaction 

Since sensorimotor embodiment is the research target of most current embodied-
embedded AI, its results can have an impact on this aspect of enactivism. However, 
since the vast majority of such work is not concerned with how the constraints of 
constitutive autonomy are related to the emergence of sensorimotor behavior, it is not 
contributing to the enactive account of how an autonomous agent is able to bring forth 
its own cognitive domain. To become more relevant in this respect, the field needs to 
adapt its methodologies so as to deal with the enactive proposal that an agent’s sense-
making is grounded in the active regulation of ongoing sensorimotor coupling in 
relation to the viability of a precarious, dynamically self-sustaining identity (Weber & 
Varela 2002). This is an area which has been practically unexplored, although some 
promising work has begun (e.g. Ikegami & Suzuki forthcoming; Di Paolo 2003).  

These considerations can be extended to the domain of intersubjective interaction, 
since this dimension of embodiment also involves distinctive forms of sensorimotor 
coupling (Thompson & Varela 2001). An enactive account of social understanding 
based on this continuity has recently been outlined by Di Paolo, Rohde and De 
Jaegher (2007). They make the important suggestion that the traditional focus on the 
embodiment of individual interactors needs to be complemented by an investigation 
of the interaction process that takes place between them. This shift in focus enables 
them to extend the enactive notion of sense-making into the realm of social cognition 
in the form of participatory sense-making. The development of such an account is 
important for embodied-embedded AI, because most of its current research remains 
limited to “lower-level” cognition. Exploring the domain of social interaction might 
provide it with the necessary means to tackle the problem of scalability (Clark 1997, 
p. 101), in particular because such inter-action can constitute new ways of sense-
making that are not available to the individual alone. The challenge is to implement 
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AI systems that constitute the social domain by means of an interaction process that is 
essentially embodied and situated, as opposed to the traditional means of formalized 
transmissions of abstract information over pre-specified communication channels. Di 
Paolo, Rohde and De Jaegher (2007) review some initial work in this direction which 
demonstrates that “these models have the possibility to capture the rich dynamics of 
reciprocity that are left outside of traditional individualistic approaches”. 

3.3   A Fully Enactive AI? 

It is debatable if AI research should be considered as enactive rather than embodied-
embedded if it does not address some form of bodily self-regulation6. In this sense the 
authors of The Embodied Mind perhaps got slightly carried away when they referred 
to the emergence of Brooks’s behaviour-based robotics as a “fully enactive approach 
to AI” (Varela, Thompson & Rosch 1991, p. 212). However, this is not to say that 
embodied-embedded AI does not have an impact on the shift toward enactivism, it 
does, but only to the extent that there is an overlap between the two paradigms. Its 
current influence is therefore by no means as significant as it has been on the shift 
toward embodied-embedded cognitive science. For example, Thompson’s recent book 
Mind in Life, which can be considered as a successor to The Embodied Mind, does not 
even include AI as one of the cognitive science disciplines from which it draws its 
insights (Thompson 2007, p. 24). Indeed, at the moment it seems more likely that the 
influence will run more strongly from enactive cognitive science to AI instead. Its 
account of autonomous agency, for example, has the potential to provide embodied-
embedded AI with exactly the kind of bodily organizational principle that has been 
identified as missing by Brooks (1997). In addition, the enactive notion of sense-
making, as a biologically grounded account of how a system must be embodied in 
order for its encounters to be experienced as significant, can be used as a response to 
Dreyfus’s (2007) vague requirement of “a detailed description of our body”, which 
apparently has not even “a chance of being realized in the real world”. Furthermore, 
there is a good possibility that the field’s current restriction to “lower-level” cognition 
could be overcome in a principled manner by extending its existing research focus on 
sensorimotor embodiment to also include participatory sense-making.  

Of course, it goes without saying that all of these aspects of enactivism are also 
open to further refinement through artificial modelling, and that some initial work in 
this direction has already begun. Nevertheless, for AI to have a more significant 
impact on the ongoing shift toward enactive cognitive science, it must address some 
considerable challenges that face its current methodologies. The field needs to extend 
its current preoccupation with sensorimotor interaction in the behavioural domain to 
include a concern of the constitutive processes that give rise to that domain in living 
systems. Maybe Brooks (1997) was right when he suggested that in order for AI to be 
more life-like perhaps “there is some fundamental change necessary in our thinking”. 
At least such a change is indeed necessary for the development of a fully enactive AI.  

                                                           
6 In a similar manner it could be argued that since recent work in enactive perception (e.g. Noë 

2004) is more concerned with sensorimotor contingencies than with autonomous agency or 
lived subjectivity, such work might be more usefully classified as part of embodied-embedded 
cognitive science rather than enactivism proper. See also Thompson (2005). 
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4   From AI to Phenomenology 

How can such fully enactive AI impact on the cognitive sciences? This section argues 
that, while clearly an important aspect, it is not sufficient to displace the orthodox 
mainstream. More than just having to make Heideggerian AI more Heideggerian, as 
Dreyfus (2007) proposes, Heideggerian cognitive science itself must become more 
Heideggerian by shifting its focus from AI to phenomenology, a shift which coincides 
with a movement from embodied-embedded cognitive science to enactivism. 

4.1   An Empirical Stalemate 

Two decades ago Dreyfus and Dreyfus (1988) characterized GOFAI as a project in 
which “the rationalist tradition had finally been put to an empirical test, and it had 
failed”. Nevertheless, despite this supposed ‘failure’ no alternative has yet succeeded 
in fully displacing the orthodox mainstream in AI or cognitive science. While it could 
be argued that more progress in embodied-embedded or enactive AI will eventually 
remedy this situation, a more serious problem becomes apparent when we consider 
why this perceived ‘failure’ did not remove the orthodox framework from the 
mainstream. As Wheeler (2005, p. 185) points out, this did not happen for the simple 
reason that researchers are always at liberty to interpret practical problems as mere 
temporary difficulties which will eventually be eliminated through more scientific 
research and additional technological development. Accordingly, Wheeler goes on to 
conclude that a resolution of the standoff must await further empirical evidence.  

However, while Wheeler’s appeal to more experimental data is evidently useful 
when resolving theoretical issues within a particular approach, it is not clear whether 
it is also valid when deciding between different paradigms: you always already have 
to choose (whether explicitly or not) one paradigm over the others from which to 
interpret the data. Furthermore, this choice is significant because “the conceptual 
framework that we bring to the study of cognition can have profound empirical 
consequences on the practice of cognitive science. It influences the phenomena we 
choose to study, the questions we ask about these phenomena, the experiments we 
perform, and the ways in which we interpret the results of these experiments” (Beer 
2000). Thus, since data is only meaningful in a manner which crucially depends on 
the underlying premises of the investigator, the current empirical stalemate in AI 
appears to be less due to a lack of empirical evidence and more due to the fact that the 
impact of an experiment fundamentally depends on an interpretive aspect7. In other 
words, in order for experimental data to be turned into scientific knowledge it first has 
to be interpreted according to (often implicitly) chosen constitutive assumptions. 
Moreover, our premises even ground the manner in which we distinguish between 
noise and data8. It follows from this that the major cause of the standoff in the 
philosophical domain also plays a significant role in the current empirical stalemate: 
                                                           
7 Again, this is not to say that such experimental evidence has no effect. The point is simply 

that, while a necessary component, it is not sufficient for a successful paradigm shift. 
8 Consider, for example, the empirical fact that the fossil record shows long periods of stasis 

interspersed with layers of rapid phyletic change. Someone who believes that evolution 
proceeds gradually will treat this fact as irrelevant noise, while someone who claims that 
evolution proceeds as punctuated equilibria will view such a finding as supporting evidence. 
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both domains of enquiry require an interpretative action on the part of the observer. 
And, more importantly, while it is possible to influence this act of interpretation 
through research progress, its outcome cannot be fully determined by such external 
events since any kind of understanding always already presupposes interpretative 
activity9. In addition, the impact of this potential influence is also limited because the 
significance of such advances might not become apparent if one does not already hold 
the kind of constitutive assumptions required to understand them appropriately. 

These considerations give a rather bleak outlook for the possibility of actively 
generating a successful paradigm shift in the cognitive sciences, and at this point it 
might seem relatively futile to worry about such abstract problems and just get on 
with the work. Indeed, considering the overall state of affairs this is in many respects 
a sensible and pragmatic course of action. Nevertheless, it is evidently the case that 
we choose a paradigm for our research. However, if rational argument combined with 
empirical data is still not sufficient to necessarily establish this choice, then what is it 
that determines which premises are assumed? And how can this elusive factor be 
influenced? The rest of this section provides a tentative answer to these questions by 
focusing on a crucial aspect of enactivism that has not been addressed so far. 

4.2   A Phenomenological Resolution 

The enactive account of autonomous agency as expressed in terms of systems biology 
is complemented by a concern with the first-person point of view, by which is meant 
the subjectively lived experience associated with cognitive and mental events (Varela 
& Shear 1999). Since the enactive framework incorporates both biological agency and 
phenomenological subjectivity, it allows the traditional mind-body problem to be 
recast in terms of what has recently been called the “body-body problem” (Hanna & 
Thompson 2003). On this view the traditional “explanatory gap” (Levine 1983) is no 
longer absolute since the concepts of subjectively lived body and objective living 
body both require the notion of living being. Though more work needs to be done to 
fully articulate the details, this reformulation of the hard problem of consciousness 
can be seen as one of the major contributions of enactivism (Torrance 2005).  

Nevertheless, it is not yet clear how a concern with subjective experience could 
provide us with a way to move beyond the stalemate that we have identified in the 
previous sections. Surely enactivism is just more philosophical theory? However, to 
say this is to miss the point that it derives many of its crucial insights from a source 
that is quite distinct from standard theoretical or empirical enquiry, namely from 
careful phenomenological observations that have been gained through the principled 
investigation of the structure of our lived experience (see Ch. 2 in Thompson 2007 for 
an overview). But what about the insights from which Heidegger originally deduced 
his claims? If his analysis of the holistic structure of our “being-in-the-world” is one 
of the most influential accounts of the Husserlian phenomenological tradition, then 
why did it not succeed in convincing mainstream cognitive scientists? The regrettable 
answer is that, while his claims have sometimes been probed in the philosophical or 
                                                           
9 From the enactive view this is hardly surprising (Varela, Thompson & Rosch 1991, p. 10-12), 

and it can ground this epistemological reflection in its biology of autonomy by claiming that a 
living system always constitutes its own perspective on the world. Indeed, at one point 
enactivism was actually called “the hermeneutic approach” (Thompson 2007, p. 24).  
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empirical domain, there have not been many sustained and principled efforts in 
orthodox cognitive science to verify their validity in the phenomenological domain.  

If enactivism is to avoid this fate then it needs to focus less on the development of 
enactive AI, and more on the promotion of principled phenomenological studies. 
Indeed, according to Di Paolo, Rohde and De Jaegher (2007) the central importance 
of experience is perhaps the most revolutionary implication of enactivism since 
“phenomenologically informed science goes beyond black marks on paper or 
experimental procedures for measuring data, and dives straight into the realm of 
personal experience” such that, for example, “no amount of rational argument will 
convince a reader of Jonas’s claim that, as an embodied organism, he is concerned 
with his own existence if the reader cannot see this for himself”. Thus, enactivism 
implicates an element of personal practice. Similarly, Varela and Shear (1999) outline 
the beginnings of a project “where neither experience nor external mechanism have 
the final word”, but rather stand to each other in a relationship of mutual constraints. 
They point out that the collection of phenomenological data requires a disciplined 
training in the skilful exploration of lived experience. Such an endeavour might 
already be worthwhile in itself, but in the context of the stalemate in the cognitive 
sciences it comes with an added benefit. In a nutshell this is because, while it is still 
the case that phenomenological data first has to be interpreted from a particular point 
of view before it can be integrated into a conceptual framework, generating such data 
also requires a change in our mode of experiencing. Moreover, this change in our 
experiential attitude is constituted by a change in our mode of being, and this in turn 
entails a change in our understanding (Varela 1976). Thus, it is this being, our 
everyday “Dasein”, which determines how we interpret our world. Of course, since 
we are autonomous agents this does not mean that actively practicing phenomenology 
necessarily commits us to enactivism. But perhaps by changing our awareness in this 
manner we will be able to understand more fully the reasons, other than theory and 
empirical data, which are at the root of why we prefer one paradigm over another. 

5   Conclusion 

The field of AI has had a significant impact on the ongoing shift from orthodox 
toward embodied-embedded cognitive science mainly because it has made it possible 
for philosophical disputes to be addressed in an experimental manner. Conversely, 
enactivism can have a strong influence on AI because of its biologically grounded 
account of autonomous agency and sense-making. The development of such enactive 
AI, while challenging to current methodologies, has the potential to address some of 
the problems currently in the way of significant progress in embodied-embedded AI. 
However, if an alternative paradigm is to be successful in actually displacing the 
orthodox mainstream, then it is unlikely that theoretical arguments and empirical 
evidence alone are sufficient. For this to happen it will be necessary that a 
phenomenological pragmatics is established as part of the general methodological 
toolbox of contemporary cognitive science. This shift of focus from AI to 
phenomenology coincides with a shift from embodied-embedded cognitive science to 
enactivism. Unfortunately, however, most of our current academic institutions are not 
concerned with supporting phenomenology in any principled manner, and it will be 
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one of the major challenges facing the realization of enactivism as the mainstream of 
cognitive science to devise appropriate ways of changing this. In this context, Terry 
Winograd’s turn toward teaching Heidegger in computer science courses at Stanford 
when he became disillusioned with traditional GOFAI appears in a new light10.  
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Abstract. Embodied intelligent systems are naturally subject to physical 
constraints, such as forces and torques (due to gravity and friction), energy 
requirements for propulsion, and eventual damage and degeneration. But 
embodiment implies far more than just a set of limiting physical constraints; it 
directly supports the selection and processing of information. Here, we focus on 
an emerging link between information and embodiment, that is, on how 
embodiment actively supports and promotes intelligent information processing 
by exploiting the dynamics of the interaction between an embodied system and 
its environment. In this light the claim that “intelligence requires a body” means 
that embodied systems actively induce information structure in sensory inputs, 
hence greatly simplifying the major challenge posed by the need to process 
huge amounts of information in real time. The structure thus induced crucially 
depends on the embodied system’s morphology and materials. From this 
perspective, behavior informs and shapes cognition as it is the outcome of the 
dynamic interplay of physical and information theoretic processes, and not the 
end result of a control process that can be understood at any single level of 
analysis. This chapter reviews the recent literature on embodiment, elaborates 
some of the underlying principles, and shows how robotic systems can be 
employed to characterize and quantify the notion of information structure. 

Keywords: Embodiment, Information Processing, Morphology, Materials. 

1   Introduction 

The stance taken here strongly differs from the still widely held traditional one of 
“cognition as computation” where intelligence is considered to be algorithmic and the 
result of abstract symbol manipulation. While this computational perspective has led 
to many important theoretical insights and applications, most of the emphasis has 
been on exclusively internal mechanisms of information processing. Contrasting the 
computational perspective, there has been a considerable amount of research 
demonstrating that cognition is embodied and best understood as a situated activity. 
                                                           
* Current affiliation: JST ERATO, The University of Tokyo, Tokyo, Japan. 
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The extensive conceptual and empirical groundwork for embodied cognition laid 
within psychology, cognitive science, philosophy artificial intelligence, and robotics 
has been reviewed elsewhere [1–16]. Building on this body of empirical and 
theoretical work, here we address a specific set of issues surrounding the potential 
link between embodiment and information processing.  

Our main thesis is that the interaction between physical and information processes 
is central for the emergence and development of intelligence. When talking about 
agents in the real world, it is important to realize that information is not just “out 
there”, an infinite tape ready to be loaded and processed by the cognitive machinery 
of the brain. Instead, through physical (embodied) interactions with the environment, 
information structure (e.g., spatio-temporal correlations in a visual input stream, 
redundancies between different perceptual modalities, or regularities in sensory 
patterns that are invariant with respect to changes in illumination, size, or orientation) 
is actively induced in sensory inputs. In the context of this review, we will use the 
term information structure to refer to the structure in the sensory data typically 
induced by and meaningful with respect to some purposive or intended action such as 
grasping or walking. As suggested here, the presence of such structure might be 
essential for the acquisition of a broad range of cognitive and motor abilities such as 
multimodal sensory integration, cross-modal learning, perceptual categorization, 
reaching, object manipulation, language, and locomotion.  

We first discuss a case study, categorization, illustrating the main concepts, and we 
formulate two pertinent principles. Subsequently, we expand on the notion of 
information structure and information self-structuring, and show how quantitative 
measures can be used to provide corroboration and theoretical groundwork. We will 
then briefly discuss the role of these ideas in learning and development and look at 
how dynamics can be exploited to structure sensory stimulation. Finally, we discuss 
the implications of the ideas developed in this chapter for theories of cognition and 
cognitive development.  

2   Categorization in the Real World 

For autonomous embodied agents acting in the real world (animals, humans, robots), 
perceptual categorization – the ability to make distinctions – is a hard problem. First, 
based on the stimulation impinging on its sensor arrays (sensation) the agent has to 
rapidly determine and attend to what needs to be categorized. Second, the appearance 
and properties of objects or events in the environment being classified vary 
continuously, e.g., owing to occlusions, and changes of distances and orientations 
with respect to the agent. And third, the environmental conditions (e.g., illumination, 
viewpoint, and background noise) fluctuate considerably. There is much relevant 
work in computer vision that has been devoted to extracting scale- and translation-
invariant low-level visual features and high-level multidimensional representations for 
the purpose of robust perceptual categorization [17–19]. Following this approach, 
however, categorization often turns out to be a very difficult if not an impossible 
computational feat, especially when adequate information is lacking. A solution that 
can only be pursued by embodied agents, but is not available when using a purely 
computational (i.e., disembodied) approach, is that through their interaction with the 
environment, agents generate the sensory stimulation required to perform the proper 
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categorization and thus drastically simplify the problem of mapping sensory 
stimulation onto perceptual categories. The most typical and effective way is through 
a process of sensory-motor coordination.  

Because of its almost universal presence in behaving organisms, sensory-motor 
coordination has been widely studied in psychology, neuroscience, and robotics  
[20–31]. Studies indicate how sensory-motor coordination, for instance, simplifies 
category formation (for a review, see [30]), influences visual experience [25], and 
determines concept acquisition [32]. One demonstration of the idea of exploiting 
coordinated interaction with the environment is a study by Pfeifer and Scheier [23] in 
which it is shown that mobile robots can reliably categorize big and small wooden 
cylinders only if their behavior is sensory-motor coordinated. The artificial evolution 
experiments by Nolfi [26] and Beer [27] illustrate a similar point: the fittest agents, i.e., 
those that could most reliably find the category to which different kind of objects 
belonged, were those engaging in sensory-motor coordinated behavior. Intuitively, in 
these examples, the interaction with the environment (a physical process) creates 
additional (that is, previously absent) sensory stimulation which is also highly structured 
thus facilitating subsequent information processing. Computational economy and 
temporal efficiency are purchased at the cost of behavioral interaction, so to speak.  

3   Information Self-structuring 

The idea that the synergy between the world and the observer’s actions plays a 
primary role for the emergence and development of cognition is much in tune with 
previous work on direct and active perception [33–35], animate, interactive, and 
enactive vision [36–38]. From an information theoretical point of view, embodied 
agents generate information structure in their sensory stimulation as they – actively – 
interact with the environment. It is important to note that in this process, the specific 
morphology (type and placement of the sensors and actuators) and the materials used 
unavoidably determine the resulting information structure. Because of the high 
density of touch sensors on the fingertips and because of the shape of the hand, for 
instance, grasping automatically leads to rich, structured tactile stimulation. The 
coordinated sensory-motor action of grasping induces stable patterns of stimulation 
characterized by correlations between the activities of receptor neurons within a 
sensor modality, as well as correlations between receptor neurons in different 
modalities (vision, touch, audition, and proprioception). Such correlations or 
statistical dependencies (which are instances of information structure) create 
redundancy across sensory channels, which may help reducing the effective 
dimensionality of the input, and which in turn – given the typically staggering number 
of possible configurations that the input system can assume – significantly simplify 
perception. We call this idea the “principle of information self-structuring” 
[28,29,39]. 

Theoretical studies and robot models provide quantitative evidence for the notion 
that self-generated motor activity can create information structure in sensory-motor 
data [23,24,26,28,29,39,40]. For instance, in [28] it is shown how a simple robot 
capable of saliency-based attentional behavior – an instance of an active vision system 
– self-structures the information present in its sensory and motor channels (Fig. 1). 
The results exposed in the article also demonstrate that sensory-motor coordination 
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leads to a better embedding of the visual input into a low-dimensional space, as 
compared to un-coordinated behavior. Traditionally, such dimensionality reduction is 
seen as the result of internal processing of a neural architecture, for example through 
mechanisms in early visual processing that lead to efficient low-dimensional (sparse) 
encoding by exploiting input redundancies and regularities [41–43]. We suggest that 
the generation of structured information through embodied interaction provides an 
additional mechanism contributing to efficient neural coding. In this context we also 
point out a distinct advantage of using robotic devices rather than working with 
humans or animals. Robots allow for comprehensive recording and analysis of 
complete histories of sensory stimulation and motor activity, and enable us to conduct 
precisely controlled experiments while introducing systematic changes in body 
morphology, materials, and control architectures [44,45].  

The theoretical concepts outlined in this section receive support from experiments 
with human subjects showing that most of our sensory experiences involve active 
(i.e., sensory-motor) exploration of the world (e.g., through manipulation or visual 
inspection) [25,37]. Such exploration promotes not only object recognition [46–48], 
but also, for instance, the learning of the three-dimensional structure of objects [49], 
and depth perception [50]. 

 

Fig. 1. Information structure in the visual field as a function of embodiment. Images show 
sample video frames obtained from a disrupted (a; “rnd”, “low embodiment” – no sensory-
motor coupling) and normally tracking (b; “fov”, “high embodiment” – high sensory-motor 
coupling) and active vision system. Plots at the bottom show spatial maps of entropy and 
mutual information, expressed as differences relative to the background. There is a significant 
decrease in entropy (c) and an increase in mutual information (d) in the center of the visual 
field for the “fov” condition, compared to little change in the “rnd” condition. (Data replotted 
from [28]). 
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4   Learning and Development 

There is an interesting implication of information self-structuring for learning. 
Information structure does not exist before the interaction occurs, but emerges only 
while the interaction is taking place. However, once it has been induced, learning can 
pick up on it such that next time around, the responsible sensory-motor information 
structure is more easily reactivated. It follows that embodied interaction lies at the 
root of a powerful learning mechanism as it enables the creation of time-locked 
correlations and the discovery of higher-order regularities that transcend the 
individual sensory modalities.  

These ideas also extend to development. It is generally recognized that structured 
information and statistical regularities are crucial for perception, action, and cognition 
– and their development [4,32,41,51,52]. At a very young age, babies frequently use 
several sensory modalities for the purpose of categorization: they look at objects, 
grasp them, stick them into their mouths, throw them on the floor, and so on. The 
resulting intra- and intermodal sensory stimulation appears to be essential for concept 
formation [4,32,53,54]. As they grow older, infants can perform categorization based 
on the visual modality alone which implies that they must have learned something 
about how to predict sensory stimulation in one modality using the information 
available through another modality, for instance, the haptic from the visual one. By 
virtue of its continuous influence on the development of specialized neurons and their 
connections that incorporate consistent statistical patterns in their inputs, information 
structure plays a critical role in development. It is easier for neural circuits to exploit 
and learn sensory-motor patterns containing regularities and recurrent statistical 
features.  

5   On Morphology, Dynamics, and Control 

We have argued that coordinated sensory-motor interaction can impose consistent and 
invariant (that is, learnable) structure on sensory stimulation. It is important to realize 
that such information structure can also result from the dynamics of the interaction of 
a given morphology with the surrounding environment. Several studies with robots, 
for instance, indicate that computational processes involved in control can be partially 
subsumed (or taken over) by the morphological properties of the agent [55–59]. A 
paradigmatic example is provided by passive dynamic walkers which are robots – or 
rather mechanical structures without microprocessors or motors – that walk down a 
slope without control and actuation [56]. The walker’s morphology (center of mass, 
length of the limbs, and the shape of the feet) and its materials are carefully designed 
so as to exploit the physical constraints present in its ecological niche (friction, 
gravity, inclination of the slope) for locomotion. To get the robot to learn to walk on 
level surfaces, one can use the mechanical design obtained during passive dynamic 
walking and endow it with actuators (e.g., located in the ankles or hips) [60]. The 
natural dynamics of the (body-environment) system provides the target for learning 
the control policy for the actuators by stabilizing the limit cycle trajectory that the 
robot follows – the dynamics structures the output of the angle sensors located in the 
joints, so to speak – and the robot learns to walk adaptively on flat ground within a 
relatively short period of time.  
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It is interesting to observe that as a consequence of the different data distributions 
resulting from different sensory morphologies a dependency exists between 
morphology, dynamics, and learning speed [60–62]. For example, by exploiting the 
non-homogenous arrangement of facets in the insect eye (denser in the front than on 
the side), the phenomenon of motion parallax can be “compensated away” and the 
adaptability of neural controller can be greatly improved [62]. We infer that the 
design of controller and morphology are, in a sense, inseparable, since the structure of 
both impacts information processing. However, while some progress has been made 
to optimize the design of robot controllers, robot morphology still largely remains a 
matter of heuristics. Future progress in the design of intelligent robots will require 
analytical tools and methodologies to exploit the interaction between morphology and 
computation [59]. 

The specific morphology of the body and the interaction of body and environment 
dynamics also shape the repertoire of preferred movements: a loosely hanging 
bouncing arm moves in a complex trajectory, but its control is extremely simple (the 
knowledge of how to move the limb seems to reside in the limb itself), whereas 
moving the hand in a straight path – a seemingly simple trajectory – requires a lot of 
control. It follows that part of the “processing” is done by the dynamics of the agent-
environment interaction, and only sparse neural control needs to be exerted when the 
self-regulating and stabilizing properties of the natural dynamics can be exploited (see 
Fig. 2). The idea that brain, morphology, materials, and environment share 
responsibility in generating information structure has been called the “principle of 
ecological balance” [57] because there is a “balance” or task distribution between the 
different aspects of an embodied agent. 

 

Fig. 2. Humanoid exploiting natural dynamics of body-environment interaction. Note that the 
robot is underactuated with respect to the ground which makes the equations of motion 
intractable analytically. By applying sparse but well-timed control actions the system transits 
from a lying (t=0) to a squatting position (t=4.30). 
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6   On the Interaction of Physical and Information Processes 

The importance of the interaction between physical and information processes can 
hardly be over-estimated. The complexity of perceptual categorization in the real 
world, for instance, cannot be managed by computational means only. We have 
therefore stressed the significance of sensory-motor coordination. The principle of 
information self-structuring illustrates that physical interaction with the real world, in 
particular sensory-motor coordinated interaction, induces structured sensory 
stimulation, which, given the proper morphology, substantially facilitates neural 
processing, and hence sets the foundations for learning and development of perception 
and cognition in general.  

We can take the idea of interaction of physical and information processes a step 
further by looking at the dynamics of embodied systems. We mentioned that because 
of the constraints provided by their embodiment, the movements of embodied systems 
follow certain preferred trajectories. It turns out that in biological agents such 
dynamics typically leads to rich and structured sensory stimulation. For example, as 
grasping is much easier than bending the fingers of the hand backwards, grasping is 
more likely to occur, and owing to the morphology (e.g., the high density of touch 
sensors on the fingertips), the intended sensory stimulation is induced. The natural 
movements of the arm and hand are – as a result of their intrinsic dynamics – directed 
towards the front center of the body. This in turn implies that normally a grasped 
object is moved towards the center of the visual field thereby inducing correlations in 
the visual and haptic channels which, as we pointed out earlier, simplify learning. So 
we see that an interesting relationship exists between morphology, intrinsic body 
dynamics, generation of information structure, and learning.  

The idea of action and cognition constrained by embodiment can be applied within 
a developmental framework. For instance, it is possible to explain the infant’s 
immaturity and initial limitations in morphology (e.g., wide spacing of photoreceptors 
in the retina), as unique adaptations to the environmental constraints of the ecological 
niche [63]. The specific effect of this arrangement is to filter out high spatial 
frequency information, and to make close objects most salient to the infant and hence 
reduce the complexity of the required information processing. Such complexity 
reduction may, for instance, facilitate learning about size constancy [64]. That is, the 
developmental immaturity of sensory, motor, and neural systems which at first sight 
appears to be an inadequacy, is in fact of advantage, because it effectively decreases 
the “information overload” that otherwise would most certainly overwhelm the infant 
[53,65]. A similar phenomenon occurs at the level of the motor system where 
musculo-skeletal constraints limit the range of executable movements and hence 
implicitly reduce the number of control variables. The neural system exploits such 
constraints and control is simplified by combining a rather small set of primitives  
(e.g., synergies [66] or force fields [67]), in different proportions rather than 
individually controlling each muscle. 

Here, we have outlined a view of sensory-motor coordination and natural dynamics 
as crucial causal elements for neural information processing because they generate 
information structure. Our argument has revolved mainly around brain areas directly 
connected to sensory and motor systems. It is likely, however, that embodied systems 
operating in a highly coordinated manner generate information structure and statistical 
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regularities at all hierarchical levels within their neural architectures, including effects 
on neural activity patterns far removed from the sensory periphery. This hypothesis 
leads to several predictions, testable in animal or robot experiments.  For example, 
activations or statistical relationships between neurons in cortical areas engaged in 
sensorimotor processing should exhibit specific changes across different states of 
sensorimotor coordination or coupling. Increased structuring of information through 
embodiment would be associated with increased multimodal synchronization and 
binding, or more efficient neural coding. 

7   Conclusion 

The conceptual view of perception as an active process has gained much support in 
recent years (e.g., [25–29,38,57]). The work reviewed in this chapter provides 
additional evidence for this view and proposes a new link between embodiment and 
information. Perception cannot be treated as a purely computational problem that 
unfolds entirely within a given information processing architecture. Instead, 
perception is naturally embedded within a physically embodied system, interacting 
with the real world. Thus, the interplay between physical and information processes 
gives rise to perception. We identified specific contributions of embodiment to 
perceptual processing through the active generation of structure in sensory 
stimulation, which may pave the way towards a formal and quantitative analysis. The 
idea of inducing information structure through physical interaction with the real world 
has important consequences for understanding and building intelligent systems, by 
highlighting the fundamental importance of morphology, materials, and dynamics. 
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Abstract. We describe how current work in Artificial Intelligence is us-
ing rigorous tools from information theory, namely information distance
and experience distance to organize the self-structuring of sensorimotor
perception, motor control, and experiential episodes with extended tem-
poral horizon. Experience is operationalized from an embodied agent’s
own perspective as the flow of values taken by its sensors and effectors
(and possibly other internal variables) over a temporal window. Such
methods allow an embodied agent to acquire the sensorimotor fields
and control structure of its own body, and are being applied to pursue
autonomous scaffolded proximal development in the zone between the
familiar experience and the unknown.

1 Introduction: Information Self-structuring in Ontogeny

Modern Artificial Intelligence (AI) research has increasingly focused on adaptive,
embodied agents with rich sensing capabilities situated in complex environments,
that develop in their capabilities over the course of their “lifetimes” (ontogeny)
[1, 2]. In our and related research particular attention is paid to the process of
autonomous self-structuring in response to a history of self-motivated interaction
with a rich environment. The aim is to investigate in artificial agents mechanisms
of motivation, learning, development, and temporal awareness with inspiration
drawn from biology, psychology, philosophy, engineering, and mathematics.

In this article we review a class of methods for discovering relationships be-
tween any and all sensors and actuators that an agent has access to. The methods
use the measure of information distance based on Shannon information theory [3]
and capture the degree to which the time-varying nature of a variable may be pre-
dictable from another. These measures have been used in robots to autonomously
discover sensorimotor maps from unknown sensors grounded in interaction with
the environment and to discover fundamental control laws for unknown actu-
ators [4, 5] thus gaining mastery over one’s own embodiment (which may well
be changing). Related classical geometric and statistical methods have also been
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used in simulation to discover sensorimotor relationships [6] and the related
structure of space via sensing and acting [7]. Further, the information-theoretic
and related methods have been used to characterize behaviour of robots from
the robot’s perspective [8, 9] and also to measure, geometrically, how one senso-
rimotor experience differs from another [10]. The self-structuring of the sensory
and motor competencies is enabled by the tight coupling of the agent with the
environment [11, 2, 5] and the agent can directly base action on its own history
of interaction with the environment (including the social environment) to make
this possible [12].

2 Information Distance Measures

2.1 Sensors as Information Sources

An agent situated and acting in an environment will have access to many ex-
ternal and internal variables any of which can be modeled as random variables
changing over time. These can be thought of as generalized “sensory” inputs,
from sources having any character at all (whether sensory, motor, or internal),
such as, e.g., registration on sensory surfaces (activations of retinal neurons in
vision or cochlear hairs in hearing, readings coming from spatially distributed
tactile sensors such as skin and whiskers, etc.), proprioception, motor values sent
to effectors, physiological variables, other internal states, etc. Consider one such
random variable X changing with time, taking value x(t) ∈ X , where X is the
set of its possible values. Time is taken to be discrete (i.e. t will denote a natural
number) and X takes values in a finite set or “alphabet” X = {x1, . . . , xm} of
possible values1.

2.2 Information Distance

For any pair of jointly distributed random variables (“sensors”) X and Y the
conditional entropy H(X|Y) of X given Y is the amount of uncertainty (in bits)
that remains about the value X given that the value of Y is known, and is given
by

H(X|Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log2

p(x, y)
p(y)

,

where p(x, y) is the joint distribution of X and Y.2

The information distance between X and Y is then defined as

d(X , Y) = H(X|Y) + H(Y|X ).

1 The approach generalizes to continuous time and value sets with appropriate
changes.

2 The methods require the assumption of approximate local stationarity of the joint
distribution of random variables representing the sensorimotor variables over a tem-
poral window and that this distribution can be estimated closely enough by sampling
the sensorimotor variables.
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Crutchfield [13] shows that this satisfies the mathematical axioms of equivalence,
symmetry and the triangle inequality and so is a metric. (See the Appendix for
a visual proof of this fact.) Thus d defines a geometric structure on any space of
jointly distributed information sources, such as the sensorimotor variables of an
embodied agent.

The metric space geometric structure is advantageous as it potentially al-
lows one to exploit the highly developed advanced techniques of mathematical
analysis and geometry in the control of behaviour.

2.3 Experience Distance

Given the above definitions we can operationalize an agent’s experience from
time t over a temporal horizon of h time units as E(t, h) = (X 1

t,h, . . . , X N
t,h)

where X 1, . . . , X N is the set of all sensorimotor (or other) variables available to
the agent and each X i

t,h is the random variable estimated from the values of X i

over a window of length h beginning at time t (1 ≤ i ≤ N).
We can then define a metric, the experience metric D, on experiences of tem-

poral horizon h as

D(E, E′) =
N∑

k=1

d(X k
t,h, X k

t′,h),

or, alternatively, the cross-modal experience metric D′, as

D′(E, E′) =
N∑

i=1

N∑
j=1

d(X i
t,h, X j

t′,h),

where E = E(t, h) and E′ = E(t′, h) are experiences of an agent at time t and
t′ over horizon h and d is the information distance. That D (and similarly D′)
is a metric follows from the fact that the metric axioms hold component-wise,
since d is a metric.

As experiences are collected, they can be placed in a metric space of experience
using either of these experience metrics. Experiences generated from similar
behaviour as judged from the human observer’s perspective generally turn out
to be nearby from the robot’s perspective in terms of the experience metric in
such a space [14].

This operational notion of experience facilitates the application of information-
theoretic methods to sensorimotor variables in a way that is directly related to
embodiment. Such an agent-centric approach already brings these rigorous meth-
ods closer to a type of Shannon information that is meaningful for perception and
action, however it is possible to go much further and develop a rigorous notion
of relevant information specific to particular organisms and agents, by relating
action, information and utility – see [15].
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3 Development of Artificial Cortex: Using Information
Theory as a Means for Self-organizing Sensorimotor
Structures Grounded in Experience

How can raw, uninterpreted information from unknown sensors come to
be used by a developing embodied agent with no prior knowledge of its
motor capabilities?

In nature, cognitive structures appear to be organized in the course of evolu-
tion and also in the course of development so as to reflect information-theoretic
relations arising in the interaction of sensors, actuators, and the environment
(including the social environment). That wiring economy for intracortical con-
nectivity of functionally related neural processing structures yields evolutionary
fitness has been proposed as a general principle giving rise to topographic struc-
ture of cortical maps (see review in [16]) and permitting “extraordinary speed
in representing ecologically significant information” [17].

We have applied the information distance metric to develop and reconstruct
“retinotopic” and cortex-like sensorimotor maps for robots as they engage in
interaction with real-world environments (see Figure 1, and [4, 5] for details).
Information distance (rather than mutual information or other measures such as
Hamming distance) appears to lead to the best structured cortex-like maps of
sensorimotor variables, especially for cross-modal integration [18]. This power
might be due to information distance’s metric nature, which allows natural
geometrization of information sources (which could possibly also give raise to
wiring economy), coupled with the capacity of information distance to detect re-
lations between information sources that are informationally, but not necessarily
linearly (nor even continuously), correlated.

Even in brain areas much older than the cortex, such as the superior collicu-
lus in mammals (the area homologous to the optic tectum in other vertebrates),
cross-modal alignment of visual, auditory, and tactile and somatosensory maps
is evident [19]. For instance, in the ferret or barn owl such visual and auditory
maps are aligned in this region in proximity to neural pre-motor control cir-
cuitry allowing the animal to combine sensory modalities in guiding action, e.g.
combining or using either of visual and auditory information in neural maps
to guide head movements and eye saccades in orienting toward prey, or, e.g. in
reaching in primates; moreover maps are maintained and aligned over the course
of development, which may be activity and sensory stimulation dependent – see
[20, 21].

In artificial embodied agents, such sensory fields that are constructed on the
basis of information distance (see preceding section) methods [4] can then be used
to autonomously discover sensorimotor laws (Figure 2), e.g. optical or tactile flow
and visually guided movement [5]. The particular embodiment and environment
experienced and the changes in it can shape the sensorimotor maps generated
in this way, as well as drive their dynamic unfolding and adaptation in ontogeny
[4, 5].
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Fig. 1. Sony Aibo in striped environment develops impoverished distinctions between
sensors, but further development may allow distinctions to unfold. Top: Robot moving
in the striped environment. In the remaining subfigures, points represent individual
information sources (sensors or actuators of the robot) plotted using the information
distance (and collapsed into two dimensions). Middle left: Sensory organization of the
vision sensors (pixels in the visual field) developed in impoverished environment reflects
only similar sensory experience of visual receptors from the same columns. Middle right:
Sensory organization of vision sensors after moving to richer visual environment reflects
their topographical layout. Bottom: Cortex-like “Aibunculus” sensorimotor organiza-
tion – analogous to the somatosensory “homuncular” cortical maps – recovered based
on self-structuring during agent-environment interaction using information distance,
discovering visual field (numbered sensors, clustered “retinotopically” and arrayed to
the right) and left-right bilateral body symmetry along an anterior-posterior axis.
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Fig. 2. Sensory fields (in this case a two-dimensional visual field), sensory flows on the
fields (the regularities in value shifts due to actions - in this case head movements),
and sensorimotor laws (describing the flows resulting from actions) are autonomously
derived from experience based on bottom-up information self-structuring and used to
control visually guided movement [5]. Figure shows discovered sensorimotor regularities
in sensory flows induced by motions of the Aibo’s head in various directions, where 0
degrees is up, 180 degrees is down, 270 degrees is right, and 90 degrees is left from the
robot perspective.

Alignment of multimodal information sources is demonstrated using the Aibo
robot for red, green, blue color channels in vision via entropy maximization
and information distance self-structuring, and this combination of information
distance and entropy maximization is shown by far to out-perform other met-
rics and measures for sensory map construction (see [18] for details). Com-
bining multimodal sensory integration with pre-motor control based on
alignment of sensory and body maps is a next natural target for such
methods.
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4 Temporally Extended Experience and Interaction
Histories

How can embodied agents develop in response to extended experiences at
various scales in time?

Generally, in AI so far the temporal horizon [22] has either been limited to the
immediate time-scale (traditional behaviour-based reactivity), short-term mod-
ulation (affective computing and robotics), or, if longer term, then has gener-
ally remained ungrounded (case-based reasoning or symbolic planning) and not
susceptible to developmental change in ontogeny. Autobiographic agents dynam-
ically construct and reconstruct their experiences in a process of remembering
while actively engaged in interaction with the rest of the world [23].

Using extensions of the information metric to experiential episodes of vari-
ous temporal horizons (see section 2.3), it is possible to impose geometric order
on a robot’s temporally extended sensorimotor experiences, at various temporal
scales [24]. The structure of these dynamic spaces of experiences provides an
agent-centric enactive representation of interaction histories with the environ-
ment (including the social environment), grounded in the temporally extended
sensorimotor experience and used in generating action [8, 10, 25].

Potentially an agent can act using this dynamically growing, developing space
of experiences to return to familiar experiences, predict the effect of continuing
on a current behavioural trajectory, and explore at the boundary of what is
already mastered (cf. Vygotsky’s notion of “zone of proximal development”). By
using temporally extended experiences to guide action and interaction, we will
have the beginnings of post-reactive robotics and grounded episodic intelligence
in artificially constructed enactive agents that grow, develop, and adapt their
cognitive structures with a broader temporal horizon.

This possibility is explored in our experiments where a robot uses actions de-
termined by a history of interaction to develop the capability to play the early
learning game “peekaboo” of iteratively seeing/revealing and not-seeing/hiding
the face with an interaction partner [10, 12]. The architecture uses experience
distance (based on information distance) to compare experiences and to place
them in a metric space. Actions are chosen based on proximity in this space and
motivational value of experience. (See Figure 3, and [12] for details.) Peekaboo
not only has inherent simple narrative temporal and rule structure [26], but is
also believed to be important in providing scaffolding to young infants in devel-
oping social expectations and primary intersubjectivity [27]. By forming expec-
tations and selecting action based on previous temporally extended experiences,
the agent is able to develop the capacity to engage in practice of temporally com-
plex skills such as social play, and to re-engage in them when similar experience
arises again. It should also be possible to explore at the geometric boundary of
already mastered skills and familiar behaviour in the experience metric space,
which grows and changes dynamically with the lifelong history of interaction.
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Fig. 3. Top left: Aibo hides face in the autonomous development of the ability to engage
in a ‘peekaboo’ turn-taking game. Top right: Aibo engaging in interaction games with
human partner based on interaction history and informationally structured space of
experiences. Center: Dynamics of internal variables and actions selected as face is
seen or not, with iterations by black/white pattern at bottom of panel indicative of
‘peekaboo’-style interaction. Bottom: Interaction games with another platform, the
KASPAR child-sized humanoid robot built at University of Hertfordshire.
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It may be that using the information and experience distance metrics to orga-
nize sensorimotor and episodic experience might capture relations that, in nat-
ural organisms, are reflected in the topologies arising from such self-organizing
principles as spike time dependent plasticity (cf. [28, 29]) that structure neural
connections in development and spatiotemporal sensorimotor pattern learning.

5 Summary and Outlook

Information methods can guide the autonomous organization and structuring
of sensorimotor data, lead to the autonomous detection of sensorimotor laws,
and underpin the acquisition of sensorimotor control starting with raw uninter-
preted sensory data and unknown actuators. Similarly, by extending the methods
to encompass sensorimotor flow during particular temporally extended intervals,
episodic experience can be operationalized for an embodied system. The geom-
etry of experiences is organized by their information-theoretic structure, and
is proposed as a basis for achieving development in robots that grow up, re-
engaging in familiar activity, exploring at the boundary of what is already devel-
oped, controllable, and mastered. This includes not only sensorimotor experience
of static environments, but also interaction histories in dynamic environments
involving social interaction or changing embodiment.
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Appendix. Short Proof that Information Distance Satisfies
the Axioms for a Metric on Information Sources

We can give a short proof that d is really a metric: Specifically, d is a metric since
it satisfies the following axioms for every three (jointly distributed) information
sources X , Y and Z:

1. d(X , Y) = 0 if and only if X and Y are equivalent (equivalence).
2. d(X , Y) = d(Y, X ) (symmetry).
3. d(X , Y) + d(Y, Z) ≥ d(X , Z) (triangle inequality).

Proof: In the first condition, “equivalent” means “informationally equivalent”,
i.e. that knowing the value of X completely determines the value of Y, and vice
versa. This can only be the case exactly when both of the conditional entropies
are zero. The second condition is trivial from the symmetry of the expression
H(X|Y) + H(Y|X ). To see that the triangle inequality holds, draw a “Venn
diagram” visualization for the entropies of the three random variables X , Y,
Z (see Fig. 4). Now the quantity d(X , Y) corresponds to the “double crescent”
region (i.e. excluding the overlap) for X and Y representing the sum of their
(non-negative) conditional entropies in bits. Now it is obvious that the double
crescent for X and Y together with the double crescent for Y and Z cover the
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one for the pair X and Z, and, since for all the variously shaded regions the
corresponding entropies are non-negative, it follows from the covering that the
inequality holds. ��

Fig. 4. Visual Proof of the Triangle Inequality for Information Distance.
Visualization of the entropies H of three information sources modeled as random vari-
ables X , Y and Z, with the variously shaded double-crescent regions showing, for each
pair of variables, the sum of these conditional entropies, which gives their information
distance. Right: Three information distances are visualized as double-crescent regions
in the key. Here the left crescent for the information distance d(X , Y) from X to Y
represents the conditional entropy H(X|Y) and the right crescent represents the con-
ditional entropy H(Y|X ); similarly, the other double-crescent regions corresponding to
d(Y, Z) and d(X , Z) are shown. Left: Venn diagram visualization for the entropies of
the three information sources. The triangle inequality holds since the double-crescent
region for d(X ,Z) is completely covered by those for d(X , Y) and d(Y, Z).
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Abstract. Embodied artificial intelligence is based on the notion that cognition 
and action emerge from interactions between brain, body and environment. This 
chapter sketches a set of foundational principles that might be useful for 
understanding the emergence (“discovery”) of intelligence in biological and 
artificial embodied systems. Special emphasis is placed on information as a 
crucial resource for organisms and on information theory as a promising 
descriptive and predictive framework linking morphology, perception, action 
and neural control.  

1   Introduction 

Artificial Intelligence (AI) strives to understand what “thinking” is by building 
intelligent entities capable of perceiving, understanding, and manipulating the world 
surrounding them. The choice of the physical and computational substrates necessary 
to realize such entities remains a matter of debate. In the early years of electronic 
computation, one had several different competing approaches to implement processes 
of thought electronically: cybernetics, systems theory, neural networks, analog 
machines, and the von Neumann architecture. The classical framework of AI 
eventually was built on top of the model proposed by von Neumann which emerged 
as winner. With the success of the von Neumann concept, the algorithmic view of AI 
prevailed. Intelligence became synonymous with rule-based processing of symbolic 
information, within a computational architecture that existed independently of its 
physical implementation. Such a functionalist stance explicitly divorced intelligence 
from its material or biological substrate. Intelligent systems were targeted at 
implementing mechanisms derived from the reconstruction of models of human self-
inspection or engineered based on technological principles oriented at achieving well-
defined and specific goals. In other words, AI became an essentially “platonic” 
endeavour directed at the top-down design of symbol processing intelligent systems. 

While some of the major challenges of AI became reachable (e.g., human-
competitive chess-playing software), success was too fragmented. Moreover, there 
was quite some uncertainty as to what degree one could actually project a 
phenomenon (e.g., intelligent control) that nature had managed to “engineer” (in fact, 
evolve) on its own onto a human-designed architecture. Natural solutions have to be 
always viable, i.e., provide stable even if non-optimal solutions in the face of 
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uncertainty, noise or incomplete input, or unpredictable changes of context. While 
viability might seem an incidental property that distinguishes artificial from natural 
systems, it also fundamentally counteracts the top-down construction philosophy of 
artificial systems. If this property is taken seriously, emergence of viable solutions for 
intelligent agents cannot be separated from a permanent entrenchment of the agent in 
the real world. In particular, the agent’s controller is not developed in a platonic world 
and planted into the agent, but needs to provide the agent with adequate behaviours 
during its entire lifetime.  

Interestingly, a direct danger to the enterprise of platonic “universal” intelligence 
is posed by the concerns expressed by theorems of the “no free lunch” type [1]. 
Essentially, such theorems state that finding optima efficiently (and thus efficient 
learning) is impossible in arbitrary worlds. We do have, however, an existence proof 
for consistent emergence of intelligence – namely in the biological realm. Biological 
intelligence appears in as distant species as, say, humans and octopuses; eye evolution 
reappears in 40-60 different independent lines of descent and often repeats central 
morphological motifs in remotely related species [2]. In other words, while “no free 
lunch” type considerations are important for an understanding of abstract “platonic” 
models, they probably are of lesser relevance for the emergence of intelligence in 
real-world scenarios. In fact, the world is not arbitrary, but intricately structured and 
constrained by a subtly intertwined set of properties, e.g., symmetries, continuities, 
and smoothness. Intelligence is thus fundamentally a result of embodied interaction 
which exploits structure in the world [3]. Two questions remain: how embodiment 
actually manages to drive the emergence of intelligence under the constraints of 
uninterrupted viability, as there is no intelligent designer? Is it possible to formulate 
an architecture-invariant concept that captures the essence of (neural or 
morphological) computation? If such a concept could be found, one could then apply 
it to the informational dynamics of an agent acting in its environment. This would 
yield a computational analogue of what the Carnot-machine is for thermodynamics: 
by realizing a cycle of information exchange between system and environment, it 
would provide a consistent framework from which the laws of information processing 
could be derived given the constraints governing the flow into and out of the system. 

Such a perspective would change the way we look at intelligent information 
processing. Instead of primarily constructing algorithms that solve a particular given 
task (as in the conventional approach), the phenomenon of intelligent information 
processing would emerge from an informationally balanced dynamics, without 
intervention or guidance from an external intelligent designer. Intelligence would be 
“discovered” rather than engineered (i.e., evoked rather than constructed). For this 
purpose, it is necessary to identify and formulate suitable quantitative principles. 
Here, we suggest that Shannon’s measure of information [4] (and any quantities 
derived from it) is a main candidate to help us define such a framework. In the 
following, we discuss the state-of-the-art of this view on intelligence and how it 
points towards future perspectives for AI. 

2   Information as a Guiding Principle 

First attempts to relate information theory to the control of cybernetic systems were 
done by Ashby [5] who proposed the principle of “requisite variety” (that is, the idea 
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that for control to be possible, the available variety of control actions must be equal or 
greater than the variety of disturbances). Around the same time, it was suggested that 
the organization of sensory and perceptual processing might be explained by 
principles of informational economy (e.g., redundancy reduction [6] and sparse 
coding [7]). Order and structure (i.e., redundancy) in sensor stimulation were 
hypothesized to greatly simplify the task of the brain to build up “cognitive” maps or 
working models of the surrounding environment. In AI, with the increasing 
dominance of the algorithmic as opposed to the cybernetic approach, the use of 
information theory was neglected for a long time (applications were typically limited 
to quantifications of classification strengths, such as in algorithms to generate 
decision trees). One problem lay in the fact that it was not clear how to make 
systematic use of information theory to design or understand intelligent systems. In 
view of the lack of progress, Gibson [8] suspected that the failure of information 
theory was intrinsic, because in its original form it considers a sender whose intention 
is to communicate with a receiver, while – so Gibson’s argument – the environment 
of an agent has no intent of informing the agent. 

Within the resurgence of neural networks, a major step ahead was taken by Linsker 
who proposed the principle of maximum information preservation (Infomax; [9]). His 
objective was to identify principles that would help narrow down architectures 
plausible for biological settings, e.g., the early processing stages of the visual system. 
The underlying tenet was the following: due to the intricate processes of the higher-
level stages, earlier stages cannot predict what information is going to be used later. 
The most unbiased hypothesis is thus to assume that earlier stages maximize the total 
information throughput. In other words, everything that is processed in the later stages 
of the vision system has to pass through these early stages. This hypothesis was 
applied to a feed-forward network making some general architectural assumptions, 
namely a layered structure and localized receptive fields of the neurons arranged in 
two-dimensional sheets. Maximization of the amount of information preserved at each 
processing stage caused the neurons’ receptive fields to exhibit response profiles 
similar to the filters found in the vision systems of many organisms. The Infomax 
principle provides a powerful and general mathematical framework for self-
organization of an information processing system that is independent of the rule used 
for its implementation.  

Another dramatic illustration of the central importance of information for living 
systems comes from work on bioenergetics. Surprisingly, information transmission 
and processing are metabolically expensive. For example, the blowfly retina 
consumes 10% of the energy used by the resting fly and, similarly, the human brain 
accounts for up to 20% of the oxygen consumption at rest [10]. If metabolic cost of a 
particular informational resource (i.e., neural information processing capacity) is 
limiting, there is not only a good chance that neural circuits have evolved to reduce its 
metabolic demands, but also that it will be exploited to a significant degree (and 
sometimes close to its limit) by a biological system [11]. These results indicate that 
“information” is almost as important as energy [12]. Motivated by this dominant role 
of information in living systems, we will therefore suggest to entirely focus on 
information “metabolism” as the single principle driving the emergence and 
formation of intelligence.  
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The obvious caveat is that the complexity of living systems may make it hard to 
pinpoint one single universal principle guiding the emergence of a class of 
phenomena such as intelligence. Many types of selection pressures, driven by a 
variety of resource requirements or by other factors (such as sexual selection) act on 
an organism. Why can we expect that it is sufficient to concentrate on the information 
“metabolism” to understand the emergence of intelligence? Although present space 
does not permit a discussion of this question at full length, we wish to reemphasize a 
few important arguments supporting this view. Not only do sensors and neural 
structures, as mentioned above, consume a considerable amount of energy in living 
agents, but also it is known that in living beings sensors and the neural substrate 
operate close to the theoretically optimal level of information processing. Information 
is thus a resource of primary importance for a living being and one can expect 
available capacities to be fully exploited (if not fully exploited, these capacities will 
degenerate away during evolution). In addition, any further constraints arising from 
other selection pressures can be factored into the trade-off between available 
information capacity and the particular interaction dynamics and embodiment.  

 But perhaps the strongest indicator that universal principles may play a role in the 
emergence of intelligence is the fact that natural intelligence arises in so many 
different forms and guises. Species as remotely related and with drastically different 
sensorimotor and neural substrates as mammals, birds, and octopuses all exhibit a 
high degree of intelligence. It is hard to believe that evolution would “reinvent the 
wheel” of intelligent information processing for each of these branches – much more 
plausible is the assumption of a small number of universal principles giving rise to 
appropriate evolutionary pressures. Intelligence is, after all, about the right strategy of 
processing and utilizing information. Therefore, in the following, we will concentrate 
on the role of information in the emergence of intelligence in embodied systems, to 
the exclusion of any other possible candidate concepts. As we will see, even this 
restricted set of assumptions provides a rich set of possible paths towards both an 
understanding of natural as well as the construction of artificially intelligent embodied 
agents. 

3   Information and Embodiment 

Once we accept the idea that information is a resource of major importance for living 
organisms, how does it help direct our attempts to understand the emergence of 
intelligence in biology and to create intelligence in artificial (embodied) systems?   

3.1   Structure of Information 

First of all, it turns out that for a living being information is not – as its use as a 
measure for communication effort might insinuate – a “bulk” quantity. In fact, 
information is, in general, intricately structured. The information bottleneck 
formalism [13] illustrates this point most lucidly. Of all the information impinging on 
a living agent, only a fraction is of true significance to the choice of the agent’s 
actions. This is demonstrated in a striking way by experiments identifying what 
environmental cues humans are actually conscious of. In controlled settings, for 
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instance, one can show that such cues are surprisingly impoverished (cf. phenomenon 
of change blindness; e.g., [14]). In other words, for a living agent information can be 
separated into a part that is used (and perhaps recorded), and a part which remains 
unused.  

Such a “split” makes particular sense in the light of the above hypothesis of 
information being a central resource for living agents. In this case, one would expect 
evolution to drive up brain power, thus the capacity for information processing until  
the brain’s metabolic costs would outweigh the gains. Thus, a natural limit exists on 
the amount of information that an agent can process. In other words, information 
processing must be governed by a parsimony principle: only selected components of 
information should be extracted and processed from the environment, namely those 
which make the best use of resources with respect to the acquisition and processing 
cost they entail. Such selected components constitute the relevant information 
available to the agent. It turns out that in typical scenarios, relevant information can 
be massively reduced while incurring only in moderate losses in overall performance 
[15]. The performance costs of an agent acting in its environment thus induce 
structure on information itself by separating relevant from irrelevant information. 
Information is hence imbued with a “semantic” flavor. 1  But a performance cost 
profile is not the only factor that provides information with structure. On an even 
more primordial level, already the embodiment of the agent, before the inclusion of 
any external (evolutionary or task-dependent) performance measures, imposes 
structure on the information flows [3,12,16–19].  

To formalize these intuitions, we can express the interaction of the agent with its 
environment as a causal Bayesian network model of the perception-action loop and 
consider the information flows arising in the given system [12,20]. The causal 
Bayesian model allows quantifying the dynamics of the agent as a family of 
probability distributions, capturing different types of mutual information and 
information flow quantities in the system. It is found that a given embodiment of an 
agent favours particular information flows. As a thought experiment, consider, for 
example, a legged robot where each leg contains a movement sensor. Evidently, one 
can expect to find the movement sensor mainly reflecting information about the 
movement of the particular leg it is mounted on, and only to a minor degree that of 
the other legs. This qualitative intuition can be made precise in a quantitative way and 
implies the existence of individual, largely separate information flows for the 
different legs of the robot.  

The power of the method extends far beyond this simplistic model and 
furthermore allows for natural decompositions of information flows. It hence provides 
a quantitative, theoretically well-founded formalism for characterizing how exactly 
embodiment induces a bias on what information an embodied agent will process and 
in which way. We note that this bias is prior to any concrete goals and tasks the agent 
may have.  

In addition, the “information view” also abstracts away the information processing 
architecture – which may explain why different species can solve similar tasks using 

                                                           
1 Semantics was intentionally omitted in the original formulation of information by Shannon, 

but its absence in the purist interpretation of information theory was long felt to be limiting 
the potential of information theory to understanding intelligence. 
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entirely differing brain “hardware.” It further relates to the principle of “degeneracy” 
[21], i.e., the capacity of a system to achieve the same function through many 
different structural arrangements – a principle found also across individual brains of 
the same species that are known to differ significantly in terms of their structural 
components and interconnections, while generating similar perceptual and cognitive 
performance. Degeneracy fits naturally within an evolutionary framework: as long as 
brains manage to evolve means to accomplish concrete information processing tasks, 
it is of minor relevance which part of the brain achieves the task and what its detailed 
architecture is. The abstractive power of information theory promotes the isolation of 
necessary from fortuitous aspects of the information processing architecture. It 
indicates, ab initio, what forms of information processing are favoured, prior to any 
other “implementational” constraints determined by mechanical, biological, and other 
factors.  

Note that on a long time scale, embodiment itself is subject to evolution. Once a 
concrete embodiment is established, some information flows are reinforced while 
others are suppressed. It follows that evolution can be seen to operate indirectly on the 
structure of information flows and even envisage models under which information-
theoretic criteria may direct evolution in a Baldwin-like fashion in an environment 
providing otherwise little short-term fitness structure [22–24]. To simplify the 
discussion, in what follows, we will restrict ourselves to the case in which the 
embodiment is given a priori. 

If the main hypothesis is right that embodiment generates – beyond any concrete 
implementational substrate – a preferred mode of information processing, then for any 
given embodied system there should be natural controllers. Such controllers would 
include particular pattern detectors, elementary behaviours and filters, as well as 
utility (performance) profiles appropriate for the given embodiment [25,26]. The 
properties of such natural controllers emerge from the complete perception-action 
loop. Note that, at the same time, the time scales characterizing changes of 
environment, morphology (“hardware”), or controller (“software”) are vastly 
different. Thus, in this picture, the apparent Cartesian duality between body and mind 
put forward by the classical view evaporates into a mere matter of time scales. In 
particular, this view suggests that the canonical development of a controller for an 
embodied system (both in biology and engineering) would first involve starting from 
the natural information flows emerging from the agent’s embodiment, before any 
concrete tasks and goals are addressed. This is a major deviation from the 
conventional philosophy which states that the overall control of an embodied agent is 
attained by a “skillful” combination of partial strategies that achieve individual 
subgoals. Rather, it makes clear in a mathematically transparent and computationally 
accessible way how embodiment imposes a priori constraints on suitable controllers. 

This view provides a plausible argument why nature is able to discover viable 
solutions for the control of such a variety of “hardware” realizations. It also leads to a 
novel perspective of how the robot designers could go about designing a controller 
that is particularly suitable to a given hardware and that could be adapted on-the-fly to 
any changes of the underlying hardware. Thus, the skeptic’s distrust of viewing an 
agent’s life as merely a sequence of goal-driven behaviours maximizing some utility 
function is vindicated. While a weak notion of “goal” may still exist, the natural way 
of looking at one’s world is prior to all this: it is a basic fact that an agent has a body. 
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Only then, goals may pop into place. In particular, goals can be shifted adaptively, 
while the agent is still equipped with a more or less established sensorimotor 
repertoire. 

3.2   Virtue Out of Necessity: Parsimony as Organizational Principle 

We start this section by noting that the capacity of perception-action loops to structure 
information only emerges if the information processing capability is limited. Indeed, a 
system with unlimited information processing capability would have no need to 
structure information and could process each event as an individual, indivisible, 
incomparable symbol out of its infinite alphabet of symbols. Thus, it has been 
proposed that intelligence arises from the need to compress (e.g., sensor data streams 
can be compressed by identifying regularities and patterns in them; see http:// 
prize.hutter1.net/).  

How little information is sometimes necessary to achieve a good chance of 
survival is exemplified by species of bacteria that can switch randomly from a “safe” 
hibernating state to a “risky” wake state in which they have the opportunity to 
reproduce, but are also exposed to possible attacks, e.g., by antibiotics. Recent 
research indicates that such bacteria do not employ any sensory information to 
evaluate whether it is safe to switch state, but switch randomly between wake and 
hibernating states [27]. In information-theoretical treatments of a related scenario  
(a bacterial colony), it is possible to show that the information processing capacity 
necessary for survival of an agent can, under certain circumstances, be reduced to 
zero if fitness requirements are only moderately reduced from the maximum [16]. 
This observation suggests an information parsimony principle: for a given level of 
required performance, an intelligent agent could aim to minimize its use of 
information processing resources and the associated expenditures.  

A closer look reveals that information parsimony is essentially a “dual” 
formulation of the Infomax principle: instead of Infomax’s view that the agent will 
maximize the information throughput through a given system, information parsimony 
emphasizes that, for a given level of performance, the agent will strive to minimize the 
necessary information processing capacity. While both views are mathematically 
equivalent in the limit of a stationary system, the difference in the formulations 
essentially emphasizes the time scales of development and evolution. Infomax 
assumes a given “hardware” for which the throughput is then maximized  
(i.e., development), while information parsimony assumes a certain performance level 
(fitness) which needs to be achieved with the least possible informational effort  
(i.e., evolution). 

In both cases, an agent should strive to make use of its informational capacity to 
its fullest, and use as much as possible of the available information to its advantage; 
when such information cannot be made use of, evolution will reduce the unused 
information processing capacity in the long run. One of the most striking examples 
from biology is the loss of eye function in blind cave animals [28]. In our hypothesis, 
the parsimony principle will not be limited to this prominent case, but extends to all 
levels of information processing by the agent. The rigorous formulation of the 
information parsimony principle lends additional plausibility to approaches to 
generate intelligent agent controls based on minimal dynamical systems  
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(e.g., [22,29]), and promises additional insights into what lies behind the emergence 
of apparent intelligence (i.e., organisms doing the right thing) with seemingly very 
limited abilities.   

Additional quantitative principles can be formulated using information-theoretical 
notions. For instance, the decomposition of information flows (such as the 
multivariate bottleneck principle [30]) can lead to the emergence of concept detectors 
(e.g., in a world imbued with a chemical gradient, such decomposition would produce 
through self-organization detectors for concepts such as direction, parity, long-term or 
short-term timers [12]). While such low-level concepts seem to emerge in a bottom-
up fashion, the question arises in how far the information decomposition view can 
tackle concept formation in the context of AI. A long-standing challenge, concept 
formation is being looked at by a large body of work from different viewpoints. 
Among these, the informational view promises to provide a coherent, far-reaching 
framework (on a practical level, methods such as independent component analysis or 
multivariate bottleneck methods are known methods to decompose data into “natural” 
components [30,31]). In particular, it offers a coherent currency by which the cost of 
abstraction (relevant to concept formation) can be dealt with universally throughout 
the system. So, in this view, we propose that concept formation becomes quasi a by-
product of the necessity of managing the complexity of processing information. 
According to this picture, limited informational resources require a decomposition of 
incoming information flows into largely independent subcomponents of lower 
complexity which are then handled individually.  

The above principles are not arbitrary but arise naturally from the toolbox of 
information theory. We thus do not just have pockets of isolated quantities, but a 
whole network of interrelated principles: in fact, information can be seen as forming a 
language and as such, it allows formulating, quantifying and relating different aspects 
of information processing in a quantitative, non-metaphorical manner. In summary, 
the introduction of independent component analysis as a systematic machine learning 
tool, as well as models such as the regular and multivariate information bottleneck 
moved us away from the “bulk” picture of information towards a picture of 
“structured” information in a precise information-theoretical sense. Another important 
insight is that embodiment is increasingly recognized as a driving factor after decades 
of an almost Cartesian split in AI research, separating computational processes from a 
body which was merely regarded as a translation device between the environment and 
an internal model of the world [22]. One of the most visible expressions of this 
“paradigm shift” is the increasing interest in morphological computation [3,32,33]. 
Today, such novel perspectives are joined by a variety of powerful new theoretical 
and experimental tools which have led to the development of a candidate framework 
recruiting Shannon information for the study of intelligence (and routes for its 
emergence) in embodied systems. 

4   Outstanding Research Issues 

The view that information theory can provide a comprehensive approach for 
understanding the emergence of intelligence in biological systems and for producing 
intelligent behavior in artificial systems – while anticipated for decades (e.g., Ashby [5]) 
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– has only recently begun to crystallize. The core issue is to which extent information 
processing found in biological organisms can be understood in terms of information-
theoretical principles. We wish to emphasize once again that information theory does 
not just apply to high-level overall performance measures of an agent but reaches 
down to lowest levels of biological information exchange (e.g., the genetic and the 
neural code [34,35]). We hypothesize that whatever frame is adopted to understand 
and model biological and artificial information processing, a suitable formalism needs 
to provide descriptive and predictive power. While a comprehensive (quantitative) 
framework may remain out of reach for still some time, the adoption of an 
information-theoretical perspective holds significant promise, as it allows the 
investigation of a considerable number of relevant issues under a unifying theme. In 
this section, we would like to discuss several future issues of interest from a higher-
level perspective.   

One major issue relates to what drives the evolution of perception-action loops. 
We suggest that a major force in their evolution is the selection pressure due to 
information processing requirements. Going beyond perception-action loops, 
information theory may even allow the formulation of more general statements about 
the informational characteristics of evolving systems. For instance, the “principle of 
ecological balance” [3] (called “complexity monotonicity thesis” in a different 
context [36]) states that there is a correlation between sensory, motor and information 
processing capacity. Although a good chance exists that fundamental information-
theoretic principles can be identified supporting this thesis, its universality is not 
entirely obvious. From the observation of living organisms one expects the (potential) 
sensorial capacity to exceed the motor capacity by far, and memory and the total 
information processing capacity to be much higher than the sensorial capacity. The 
question is whether these relations are incidental or universal, and, if the latter is 
indeed the case, whether this universality can be expressed quantitatively.  

Intimately related to this issue is the question of whether concepts such as relevant 
information [15] (i.e., information requirements deriving from external tasks or fitness 
criteria) could yield a powerful enough drive to instigate an “arms race” between the 
information necessary to achieve a goal, the information captured by the sensors for 
this purpose, the required processing capacity of the brain, and the actuator processing 
capacity necessary to carry out the tasks. This poses central questions concerning the 
relationship between the co-evolution of brain, morphology, and control and the 
emergence of complex systems responsive to relevant (structured) information. 
Complex systems typically contain a high amount of non-repetitive and non-random 
structure. In particular, the amount of structure of nervous systems can be 
characterized by a measure of neural complexity which assesses in an information-
theoretical context the interplay of highly segregated and highly integrated neural 
processes [37]. The presumed increase of neural complexity over evolution may 
simply reflect intense selection pressure on neural structures to efficiently deal with 
informational challenges posed by co-evolving body morphology, sensorimotor 
information flows, and eco-niches. As more and more information structure is 
generated, there is an increased need for neural structures to extract and integrate 
information, which in turn drives complexity to higher levels.   
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Two closely related issues are the ones of open-ended evolution and development, 
that is, how to create systems that do not stop evolving or do not stop learning 
“interesting” things. There have been various attempts at designing intrinsic 
motivation systems that capture the drive towards novel and curious situations. They 
are either based on the notion of empowerment, a measure of the power of the agent to 
modify its environment in a way that is detectable by the agent itself [25], 
homeokinesis, i.e., selection of action sequences which maintain sensorial 
predictability [24], predictability of action sequences [38], or the maintenance of an 
abstract cognitive variable, the learning progress, which has to be kept maximal [39]. 
It is interesting to note that on the physical side, all these approaches seem in one way 
or another to relate to the notion of maximum entropy production – a principle 
believed to be relevant in guiding the dynamics in many complex systems (e.g., [40]). 
In fact, some of the above principles are aptly formulated in the language of 
information. It thus is natural to explore possible avenues to unify these different but 
“similar-minded” approaches. 

5   Final Remarks 

If we, at the end of this chapter, take a step back and, as a final reflection, consider the 
issues from a bird’s eye view, where does this place us? Compared to other sciences, 
AI is a strangely hybrid creature. For instance, engineering sciences (or more 
engineering-oriented branches of computer science, such as software engineering) are 
typically constructive: starting from a more or less uncontested basis, a “code of 
practice” for the creation of state-of-the-art artifacts is developed. The basis may 
occasionally be revised to encompass novel developments (e.g., in software 
engineering: object-orientation or extreme programming), but the task is mostly about 
improving the paths from a firm basis to an envisaged artifact. 

At the other end of the spectrum, we have sciences such as physics which attempt 
to model observed phenomena. In such sciences, the foundations, and not the 
constructive aspects of a system are at the core of the issues. The physicists aim to 
simplify and minimize the assumptions behind their models while attempting to 
capture as many essential features as possible of the examined phenomena. The 
universal descriptive and predictive power of models such as Maxwell’s theory, 
relativity and quantum theory or thermodynamics are striking and, in fact, one of the 
mysteries of science.2 

Biology, on the one hand, resembles physics, as it studies real natural phenomena. 
On the other hand, it incorporates elements of reverse engineering, as it attempts to 
disentangle the intricate mechanisms underlying living beings, all of which have 
historical origins as products of evolution. Unlike physics, however, in biology the 
reduction of phenomena to few simple principles has until recently only been 

                                                           
2 Construction was historically not part of the physicist’s agenda. This “pure” agenda has begun 

to change in recent years with the advent of massive computational power, introducing a new 
branch, computational physics, into the picture. 
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achieved in a few areas (such as the universality of the genetic code); the complexity 
of biological phenomena, and their place outside of the range of validity of powerful 
theoretical models such as equilibrium thermodynamics makes it difficult to impose 
more or less universal organizing principles on the vast collection of empirical data. 
While evolution provides a universal theory for all living organisms, the nature of this 
theory is quite different from the sort of theories that serve as the foundations of 
physics. 

AI lies in between physics and biology (in modern AI, biomechanics, material 
science, neuroscience come also into play and are increasingly superseding the role of 
psychology and linguistics which dominated classical AI; see [3]). AI belongs to the 
realm of engineering, and rightly so, because it strives to construct intelligent 
systems. In many aspects, engineering approaches to AI have proven efficient and 
powerful. However, there is also a universalistic aspiration in AI. Not unlike physics, 
AI aims to find fundamental principles underlying the emergence of intelligence. This 
goal is fueled by the observed power of biological systems which achieve intelligence 
at many different levels, quite unlike the engineered intelligent systems which are 
usually optimized for one particular task. Biology under the Darwinian stance is 
“engineered without an engineer”, successfully reinventing wheels (eyes, and other 
“goodies”, actually) again and again in an extremely large and complex space – a 
strong indication that some universal set of principles are at work. A satisfying picture 
of AI should aim (and hopefully will be able) to isolate and exploit such principles. 
Consider thus, the grand goal of AI, the one of understanding how intelligence can be 
“engineered without engineer”: it lies between the constructive view of the 
engineering sciences, the “first principles” view of physics, and the biological view. 
The latter one is particularly opaque, since any fundamental principles may be buried 
in volumes of fortuitous historic accidents or restrictions of the biological substrate.  

As discussed in this chapter, a primary candidate for building a suitable 
framework is provided by a suitable adaptation of information theory to the 
information processing task posed to embodied agents: they thus may turn out to serve 
as the “Carnot-machine” for intelligent information processing. It is striking that 
information theory which was developed by Shannon essentially as a response to an 
engineering challenge, not only provides a different way of looking at probability 
theory (which later was used extensively in AI), but also found to be intimately 
related to the physical field of thermodynamics. The well-understood formalism of 
the latter, however, reached its limits in the “exotic” non-equilibrium states of 
biology. We conjecture that information theory will play an important role in linking 
the convoluted world of biological information processing, a physics-like set of 
fundamental principles for intelligent information processing, and the goal of 
engineering an intelligent system, all in the service of getting closer to the grand 
vision of artificial intelligence.  
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Abstract. This paper exposes and discusses the concept of 'networked 
embodied cognition', based on natural embodied neural networks, with some 
considerations on the nature of natural collective intelligence and cognition,  
and with reference to natural biological examples, evolution theory, neural 
network science and technology results, network robotics. It shows  that this 
could be the method of cognitive adaptation to the environment most widely 
used by living systems and most fit to the deployment of artificial robotic 
networks. Some preliminary ideas about the development of a quantitative 
framework are shortly discussed. On the basis of the work of many people a 
few  approximate simple quantitative relations are derived between information 
metrics of the phase space behavior of the agent dynamical system and those of 
the cognition system  perceived by an external observer. 

Keywords: embodiment, intelligent agents, intelligence,  information, entropy, 
complexity, dynamical systems, network,  emergence. 

1   Introduction 

In nature there are many kinds of loosely coupled networks of intelligent embodied 
situated agents, largely varying in terms of quantity of agents and cognitive and 
adaptive capacity (i.e. of computational needs) of each agent. These networks of 
embodied situated intelligent agents have evolved - are emerged - on top of the very 
complex network of networks of the ecological relations between all the living beings 
of our planet after billion of years of natural evolution. 

At an extreme we can observe that these networks of relations rely on the deeper 
network of quantomechanical interactions originating all the matter, suggesting that 
the same simple network paradigm could explain a wide range of phenomena from 
quantum to macroscopic level. The world could be seen as composed of many 
networks at many scales. 

It seems  that this could be the method of cognitive adaptation to the environment 
most widely used by living systems and most fit to the deployment of artificial robotic 
networks. These ideas have some analogy with the visions of Piaget [33,34] 
('knowing is know how', his view of the learning process in the children sees it as an 
embodied learning process where 'ability' precedes 'knowledge'), Merleau-Ponty [35] 
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(empathy is based on mimicking, I know what you think because I can do the same 
things you can do), Bateson [36] (the importance of systemic 'relations' between 
living beings from which meaning emerges) and Marx [37] (collective learning of the 
masses through the collective 'praxis'), as well with recent neurobiology research 
results ('mirror neurons'). 

In particular Piaget’s developmental vision of the learning process in the children, 
is very inspiring and shows many analogies with much work in cognition and 
robotics. 

Piaget models the children’s learning in four stages: 

       1. sensorimotor stage: children experience the world through interaction and 
            senses and learn object permanence 

   2. preoperational stage: acquisition of motor skills 
   3. concrete operational stage: children begin to think logically about concrete 

            events) 
   4. formal operational stage: development of abstract reasoning. 

This vision is somehow completed by the vision of an ‘ecology of mind’ where 
information is seen as embodied in the structure of the relations between the entities 
in the environment proposed by Bateson. 

In the last twenty years, starting from the pioneering work of  R. Brooks [4] many 
prototypes exhibiting 'emerging' intelligence have been demonstrated showing how 
the road to the realization of the intelligent artifacts which constitutes the long term 
goal of AI research could be different from previously popular symbolic paradigm 
usually referred to as Good Old Fashioned Artificial Intelligence. 

In the natural domain the most widely used method of 'intelligence', computation 
and 'cognition' seems to be  'embodied' biological neural networks. 

A very simplified model of a biological neural network – not considering, usually,  
the plasticity of natural examples - is constituted by artificial neural networks, a 
schematic model of natural neural systems. In the original model of an artificial 
neural network (given by Rosenblatt's 'perceptron' [20], proposed in 1958) the 
computation is based on the triggering of an output signal when a threshold of a sum 
of weighted connection values is reached. Although today most current  neural  
network algorithms are more sophisticated as they do not use thresholds, but  rather   
continuous valued  squashing  functions, they are still an approximation of their 
natural counterparts. 

There are several important results concerning artificial neural networks which 
suggest some general remarks. While a single layered perceptron have some 
environment mapping limits, the 'multilayered perceptron' mapping capabilities are 
remarkable. Hornik et alias[21],  and Funahashi [22](1989) have demonstrated that an 
artificial neural network with an input layer, an output layer and  a number of  'hidden' 
layers (a 'multilayered perceptron') can approximate within a given error boundary 
any real valued vector  function, by means of an appropriate learning procedure 
applied to the weights on the connections. 
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This has led to many successful applications in automatic learning in AI and 
robotics. 

If we consider the process of cognitive adaptation to the environment as a learning 
process in the sense of AI learning theory, whose final result is the 'fit' behaviour of 
the (living) agent, we can draw some interesting conclusions. 

We can suppose that it is always possible to build a neural network approximating 
(in the sense of probabilistic approximate learning) any environment of given 
complexity, for instance measured by the Vapnik-Chervonenkis dimension of the 
simpler learning machine which can learn it,  or more generally Kolgomorov 
(or Chaitin) complexity [2,3]. 

This can be interpreted by saying that a learning system for a physical (embodied) 
agent based on a neural network can be taught to interact effectively in (almost) any 
environment, or 'to know' (almost) any environment. 

Several learning procedures for artificial neural networks have been demonstrated. 
Particle swarm optimization (Kennedy and Eberhart,[23]) allow to tune the weights 

of connections by means of  a swarm of agents in the environment: if we assume that 
any agent has an (almost) identical neural network  and (almost) perfect 
communication between the agents this allow a collective learning (tuning of the 
weights) of the multi agent system. 

Other approaches are genetic algorithms (imitating genetic natural evolution), 
evolutionary programming, reinforcement learning. 

Ant algorithms mimic the ant colonies learning process based on external storage of 
information through pheromones paths (mathematically modeled  by  Millonas, [24]). 

The importance of 'embodiment' is well shown by the MIT biped passive walker 
and by theoretical investigation by many people, for example by  Pfeifer and  Iida 
[5,6], which make clear that part of the 'computation' needed by control, intelligence 
and cognition are in fact performed by the physical morphology of the agent and by 
its physical relations within the environment. 

A general schema seems to emerge. 
The unit of (intelligent/cognitive/computational) adaptation to the environment is 

constituted by loosely coupled groups of neural networks embedded, or more properly 
'embodied', into physical agents sensing and acting cooperatively in the physical 
environment. 

The weights of the connection are determined in part by biological inheritance 
(modeled by genetic algorithms optimization), in part through social cooperative 
exploration (modeled by particle swarm optimization) and individual tuning (modeled 
by reinforcement learning). 

The information can be maintained in part inside the neural networks  of the 
individual of the group (communicated from agent to agent for instance by means of  
bees' waggle-dance  or human language) in part externally (ant pheromone paths and 
human libraries). In part in the morphology of the agent body itself. 

It could be interesting to notice that neural network themselves can be regarded as 
a massively parallel networked morphological computing system. 
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2   Some Theoretical Questions 

The observation of natural intelligent systems and the practice of robotics research 
and engineering lead us to think that 'intelligence' (and 'meaning' if not 
'consciousness') are 'emerging' characteristics springing from the evolution of loosely 
coupled networks of intelligent 'embodied' and 'situated' agents. 

As we noticed above natural neural network themselves could be regarded as 
embodied and situated computing systems. 

On the other end we miss a quantitative comprehensive theory which allows us to 
model the interplay between the agents' 'morphology', in other words their  
mechanical structure and the emerging of 'intelligence' and 'meaning'. 

The main concept are that information processing – 'computing' – is a general 
characteristics of any material system, while 'intelligence' and 'meaning' should be   
syncronisation processes within networks of autonomous agents.  

In particular we should be able to explain: 

1. How the dynamics of an (embodied) agent is related to its informa- 
        tion/computing capabilities (morphological computation) 
2. How information/computing capabilities behave in a multi body agent 
       system  
3. How 'intelligence' and 'meaning' emerge from networks of embodied agent 

The next section aims to give an answer to the first two questions that, following a 
modeling tradition coming from Boltzmann, are actually seen as two aspects of the 
general problem of information processing in multibody systems. 

These considerations, as shown in [7,13,16], have some intriguing connection to 
the old questions raised by the 'Maxwell's demon', [19]. 

The relations shown below require, possibly,  a more rigorous demonstration, on 
the other end they spread some light on the relations involved by the computing 
capabilities of dynamical systems. 

The following section 4 shows a possible way to explain the emerging of  
intelligence and meaning as a collective process in highly networked systems [9], as it 
could be suggested for instance by the  work on semiotic dynamics and the talking 
heads experiment by Steels [26,28]. 

3   On the Information Metrics of Intelligent Moving Bodies 

Although it may seem strange only in recent times the classical results from Shannon 
theory, [1], have been applied to the modeling of control systems.  

An interesting approach to the measure of the complexity of a dynamical system is 
given by Brudno in [8], here we prefer to start from Shannon entropy as it seems 
easier to link it to the system dynamics. 

In this discussion we see, for simplicity, an embodied agent as a controlled 
dynamical system and we will show how the algorithmic complexity of the control 
program is related to the phase space 'footprint' of the dynamical system. 

In [7] Shannon theory is applied to the modeling of controlled systems and  
statistical information metrics based definitions of controllability and observability 
are derived. 
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Fig. 1. Directed acyclic graphs representing a control process. (Upper left) Full control system 
with a sensor and an actuator. (Lower left) Shrinked Closed Loop diagram merging sensor and 
actuator, (Upper right) Reduced open loop diagram. (Lower right) Single actuation channel 
enacted by the controller's state C=c. The random variable X represents the initial state, X' the 
final state. Sensor is represented by state variable S and actuator is represented by state variable 
A.  

With reference to figure 1, from [7], the dependencies of the random variable of a 
vertex are given by equation  (1) 
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In the control graph of figure 1, the random variable X represents the initial state of 
the system to be controlled, and whose values x Є X follow a probability distribution 
pX(x). 

The initial state X is controlled to a final state X' by means of a sensor represented 
by state variable S and an actuator represented by state variable A. 

Relation (1), like (2) and (3), follows from the assumption that the controller's 
variables can be connected by a bayesian network (a directed acyclic graph). 

For simplicity sensor and actuator, represented by state variable S and A, are 
merged in the controller represented by state variable C. 
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In equation (3) p(x'|x,c) is an actuation matrix giving the probability that the 
controlled system in state X=x is moved by means of the actuation to the state X'=x', 
given the controller state C=c. 

We define the mutual information I(X,C) giving the amount of information that the 
controller is able to extract from the system state X. 
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All logarithms are in base two (the logarithm base is not essential for our purposes) 
The (Shannon) entropy of the initial state is then defined as in (6): 
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It can be demonstrated that the action of a controller can be decomposed into a 
series of individual conditional actuations depending on the internal state values of 
the controller, represented by  C, that we call 'subdynamics', see [7]. 

It is shown that for a specific subdynamics, identified by 'c', holds 

'( | ) ( | )c
closedH H X c H X cΔ = −

 
(7) 

The reason of decomposing a closed loop control action into a set of conditional 
actuations can be  justified as it follows somehow from intuition that a closed loop 
controller, after the state estimation, the arrow from X to C in figure 1,  can be seen as 
a set of open loop controllers acting on the set of estimated states, the arrow from C to 
X' in figure 1, see [7].  

The left side of equation (7) gives the variation of entropy for a closed loop 
controller applying the control law for a given state 'c'. 

From our perspective the most important result in [7] is given by (8) 
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This relation says that the variation of entropy of the (closed) controlled loop is 
bounded by the mutual information between the controller C and the state X, defined 
in equation (4). 
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The left side of equation (8) is the variation of entropy for all the given 
'subdynamics', values of 'c', of  the controller, it can be roughly seen as  an integral of 
the variation of entropy of equation  (7). 

We assume in equation (10) that the 'information contribution' of the controller is 
roughly given by I(X,C), this seems in accordance with the results shown in [10] and 
[12]. 

max ( ; )controller closed openH H H I X CΔ ≅ Δ −Δ ≤
 

(10) 

In [14] it is demonstrated that, where K(X) is the Kolmogorov complexity [2], of X: 
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In this context Kolgomorov complexity can be interpreted as the length of the control 
program.K(f) is the Kolgomogorov complexity of f, a function introduced 
instrumentally in order to show that K(X) ≈ H(X). 

For not too Kolgomorov complex f functions, with the assumptions of equation 
(10)  and considering that the variation of entropy can be roughly equated to K(X) 
from equation (11), we can derive: 
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Relation (11) can be rewritten; 
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And finally: 
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The equation (15) bounds the algorithmic complexity of the control program (the 
intelligence of the agent, in a simplified view) to the phase space volume of the 
controlled agent versus the phase space volume of the non controlled system. 

From a qualitative standpoint (at least) this relations explains why a simpler walker  
like the MIT biped or the one described in [15] can be controlled with a 'short' 
program, while other walkers (like the Honda Asimo or the Sony Qrio) which don't 
have a limit cycle and show a larger phase space 'footprint' require more complex 
control systems.  
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4   A Self Organizing Network Model for Embodied Agent 
     Communication Pragmatics Coevolution 

Assuming that, whatever method we choose to quantify the relations between the 
dynamical characteristics of a system and the information about itself and the 
surrounding environment it can carry, every piece of matter does process information, 
we need to devise a mechanism to explain the emerging of  intelligence and meaning.  

The communication between intelligent networked agents could be seen as a 
pragmatic activity made possible by the self-organization of coevolving ‘situated’ and 
‘embodied’ cognitive processes, physically distributed among the inter-
communicating agents, motivated and initiated by physical finalized interactions with 
the environment. 

The self organizing  coevolutive model of communication and cognition, proposed 
here, considers the building of the model of the environment by a number of 
networked physical agents, a 'swarm', situated in an environment and interacting with 
it,  as a collective learning process represented by the growth of a network of nodes 
mapping, for simplicity and at least, the already identified sensory motor correlations. 
The idea that a learning system based on some evolutionary process could show 
intelligence is not new and it was actually already raised by Turing in a famous 
1950’s paper, [31], here the evolution of the model is seen as a collective process 
performed by the whole network of networks of agents, this concept is strongly 
affected by Bateson’s  concept of an ‘ecology of mind’. 

The random activity of the network of moving and interacting physical situated 
agents allows the system to identify the regular patterns in the variables (sensors and 
actuator propioceptors data flow) and to connect them in a model of the environment. 

After that the first node has been created, new nodes (highly correlated groups of 
sensors and actuators) are attached preferentially to the previous one, according to 
their 'fitness'. 

We assume (for simplicity) that the ‘cognitive network ‘ can be accessed by all the 
agents which were coevolving it and in fact share (constitute) it.  

As a consequence the resulting representation is inherently shared (again as a 
simplification) between all the agents. 

In this conceptual framework ‘models of the environment’ are shared very 
naturally, while it is needed a concept of ‘self’. 

By means of random action generation the nodes which have no consequences on 
the individual agent are labeled by that agent as ‘non self’. 

This mimic the basic behavior of the human and mammals immune system (which 
can be regarded by itself as a ‘cognitive system’), see [30]. 

In order to develop a formal model of such a system, we should possibly try to 
leverage on  the recent fast progress in statistical physics of evolving networks, some 
possibly relevant results are recalled below. Interest has focused mainly on the 
structural properties of random complex networks in communications, biology, social 
sciences and economics. A number of giant artificial networks of such a kind came 
into existence recently. This opens a wide field for the study of their topology, 
evolution, and complex processes occurring in them. 
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Such networks possess a rich set of scaling properties. A number of them are scale-
free and show striking resilience against random breakdowns. In spite of large sizes of 
these networks, the distances between most their vertices are short , a  feature known 
as the 'small world' effect.  

It is known that growing networks self-organize into scale-free structures through 
the mechanism of preferential linking. Numerous networks, e.g., collaboration 
networks, public relations nets, citations of scientific papers, some industrial 
networks, transportation networks, nets of relations between enterprises and agents in 
financial markets, telephone call graphs, many biological networks, food and 
ecological webs, metabolic networks in cell etc.,  can be modeled in this way. 

Here we suggest that evolving self organizing networks can (could)  model the 
collective knowledge of a network of intelligent (artificial) autonomous agents. An 
‘object/process’ in the environment is modeled by a node of  the network with many 
links generated by a fitness process within a coevoluted learning process. 

The shared model of the environment (including the agents) is seen as a growing 
network of nodes, where each node represents a set of statistically connected sensor 
and actuators. 

This model is initially very coarse and  is progressively refined and adapted as new 
nodes are added. 

The approach to cognition shortly described here is somehow a generalization of 
the semiotic dynamics approach [26], although there are some differences. 

In the, standard, semiotic dynamics model every agent maintains its own look up 
table associating the ‘names’ to the ‘objects’ it knows, updating it by means of the 
‘naming game’. Like in the model we propose here the multi agent systems 
collectively evolve towards an equilibrium condition where all the agents share the 
same dictionary (in a simplify view), but we assume here that all the sensory motor 
coordinations and higher level structures are shared and evolved collectively and that 
the ‘self’ perception springs from the continuing physical interaction of the single 
agent with the environment and the other agents. 

We basicly assume that the model of the environment is distributed among all the 
agents and depends on the (co) evolution of their interaction between them and the 
environment in time. 

In this perspective it is interesting to notice that in [27] the mathematical model of 
the collective behaviors of systems like that described in [28] are based on the theory 
of random acyclic graphs which is the basis of many network system physics 
formalizations.  

In [27] the network of agents, where each word is initially represented by a subset 
of three or more nodes with all (possible) links present, evolves towards an 
equilibrium state represented by a fully connected graph, with only single links. 

The statistical distribution of node connection, necessary to determine the 
information managing capability of the network  through equation (6) and to link to 
equation (15) can be obtained from equations derived in the statistical physics of 
networks domain. 

The probability  Πi that a new node will connect to a node i already present in the 
network is a function of  the connectivity ki and on the fitness ηi of that node, such 

that: 
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A node i will increase its connectivity ki at a rate that is proportional to the 

probability  that a new node will attach to it, giving: 
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The factor m accounts for the fact that each new node adds m links to the system. 
In [29] it is shown that the connectivity distribution, i.e. the probability that a node 

has k links, is given by the integral: 
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where ρ(η) is the fitness distribution and C is given by: 
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We define a proper ηi function which can be essentially a performance index of the 

effectiveness of sensory motor coordination and which control the growth of the 
network. 

From equation (18) we can derive the expression for the  Shannon entropy of the 
network: 
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It must be noticed that the concept model described here actually identify a large 
class of possible models, the short formal discussion above only aims to show that a 
networked system like that envisioned here, whose idea is strongly influenced by 
Bateson’s concept of an ‘ecology of mind’,  can actually manage information into the 
structure of its internal relations, as it can be shown starting from equation (20). 

Moreover, this discussion should, possibly, be linked to the one in section 3, as the 
networks of agents we are considering here are actually embodied and situated 
dynamical systems, which do have a phase space representation. 

It is thought that it could be interesting to elaborate this concepts with some further 
quantitative considerations on the related information metrics. 

In particular it could be of some interest looking at the information flow, possibly 
with reference to coarse and fine grained entropy, see [13,14]. 

This could help some initial steps towards a comprehensive quantitative theory 
which should be eventually able to predict the results of experiments like those in [32] 
and to give guidance to the development of new improved intelligent artifacts. 
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5   A Research Program for Networked Embodied Intelligence? 

If we share the vision, supported from empirical and theoretical work,[10,11,12, 26, 27], 
that 'intelligence' and 'meaning' are 'emerging' processes springing from loosely 
coupled networks of 'embodied' and 'situated' agents, we have in front of us the hard 
task of creating a theory able to  explain these phenomena from a quantitative 
standpoint. 

This paper support the idea that to chase such a theory (probably the work of a 
generation) we should look to the classical work of Shannon and Kolmogorov in 
order to better understand the relations between morphology and computation – 
embodiment - and to the statistical physics of network systems in order to explain the 
situatedness and the emerging of  intelligence and meaning. 

References 

1. Shannon, C.E.: The Mathematical Theory of Communication. Bell Sys. Tech. J. 27, 379, 
623 (1948) 

2. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. 
Problems Inform. Transmission 1(1), 1–7 (1965) 

3. Chaitin, G.J.: On the length of programs for computing finite binary sequences: statistical 
considerations. J. Assoc. Comput. Mach. 16, 145–159 (1969) 

4. Brooks, R.: A Robust Layered Control System for A Mobile Robot. IEEE Journal of 
Robotics and Automation (1986) 

5. Pfeifer, R.: Cheap designs: exploiting the dynamics of the system-environment interaction. 
Three case studies on navigation. In: Conference on Prerational Intelligence — 
Phenomonology of Complexity Emerging in Systems of Agents Interacting Using Simple 
Rules. Center for Interdisciplinary Research, University of Bielefeld, pp. 81–91 (1993) 

6. Pfeifer, R., Iida, F.: Embodied artificial intelligence: Trends and challenges. In: Iida, F., 
Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.) Embodied Artificial Intelligence. LNCS 
(LNAI), vol. 3139, pp. 1–26. Springer, Heidelberg (2004) 

7. Touchette, H., Lloyd, S.: Information-theoretic approach to the study of control systems. 
Physica A 331, 140–172 (2004) 

8. Brudno, A.A.: Entropy and the Complexity of the Trajectories of a Dynamical System. 
Transactions of the Moscow Mathematical Society, Moscow (1983) 

9. Bak, P., Tang, C., Wiesenfeld, K.: Self-Organized Criticality: An Explanation of 1/f Noise. 
Phys. Rev. Letter 59(4), 381–384 (1987) 

10. Gomez, G., Lungarella, M., Tarapore, D.: Information-theoretic approach to embodied 
category learning. In: Proc. of 10th Int. Conf. on Artificial Life and Robotics, pp. 332–337 
(2005) 

11. Philipona, D., O’ Regan, J.K., Nadal, J.-P, Coenen, O.J.-M.D.: Perception of the structure 
of the physical world using unknown multimodal sensors and effectors. In: Advances in 
Neural Information Processing Systems (2004) 

12. Olsson, L., Nehaiv, C.L., Polani, D.: Information Trade-Offs and the Evolution of Sensory 
Layouts. In: Proc. Artificial Life IX (2004) 

13. Gacs, P.: The Boltzmann Entropy and Randomness Tests. In: Proc. 2nd IEEE Workshop 
on Physics and Computation (PhysComp 1994), pp. 209–216 (1994) 



 Preliminary Considerations for a Quantitative Theory 123 

14. Gruenwald, P., Vitanyi, P.: Shannon Information and Kolmogorov Complexity. IEEE 
Transactions on Information Theory (2004) 

15. Garcia, M., Chatterjee, A., Ruina, A., Coleman, M.: The Simplest Walking Model: 
Stability, Complexity, and Scaling, Transactions of the ASME. Journal of Biomechanical 
Engineering 120, 281–288 (1998) 

16. Lloyd, S.: Use of mutual information to decrease entropy: Implication for the second law 
of thermodynamics. Phys. Rev. A 39(10), 5378–5386 (1989) 

17. Lloyd, S.: Measures of Complexity: A Non exhaustive List. IEEE Control Systems 
Magazine (2001) 

18. Wiener, N.: Cybernetics: or Control and Communication in the Animal and the Machine. 
MIT Press, Cambridge, MA (1948) 

19. Maxwell, J.C.: Theory of Heat. Appleton, London (1871) 
20. Rosenblatt, F.: The Perceptron: A Probabilistic Model for Information Storage and 

Organization in the Brain, Cornell Aeronautical Laboratory. Psychological Review 65(6), 
386–408 (1958) 

21. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal 
approximators. Neural Networks 2, 359–366 (1989) 

22. Funahashi, K.: On the approximate realization of continuous mappings by neural 
networks. Neural Networks 2, 183–192 (1989) 

23. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc.of the IEEE Intl. Conf. On 
Neural Network, vol. 4, pp. 1942–1948. IEEE, Washington DC, USA (1995) 

24. Millonas, M.M.: Swarms, Phase transitions, and Collective Intelligence. In: Langton, C.G. 
(ed.) Artificial Life III. Santa Fe Institute Studies in the Sciences of the Complexity, 
vol. XVII, pp. 417–445. Addison-Wesley, Reading (1994) 

25. Albert, R., Barabasi, A.L.: Statistical physics of complex networks. Rev. Mod. Phys. 74, 
47–97 (2002) 

26. Steels, L.: Semiotic dynamics for embodied agents. IEEE Intelligent Systems 32–38 
(2006) 

27. Baronchelli, A., Felici, M., Caglioti, E., Loreto, V., Steels, L.: Sharp Transitions towards 
Shared Vocabularies in Multi-Agent Systems, arxiv.org/pdf/physics/0509075 (2005) 

28. Steels, L.: The Talking Heads Experiment. In: Words and Meanings, vol. 1. Laboratorium, 
Antwerpen (1999) 

29. Bianconi, G., Barabasi, A.L.: Competition and multiscaling in evolving networks, 
arXiv:cond-mat/0011029 (2000) 

30. Morpurgo, D., Serenità, R., Seiden, P., Celada, F.: Modelling thymic functions in a 
cellular automaton. International Immunology 7/4, 505–516 (1995) 

31. Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950) 
32. Lungarella, M., Sporns, O.: Mapping Information Flow in Sensorimotor Networks. PLOS 

Computational Biology 2(10), 1301–1312 (2006) 
33. Piaget, J.: Introduction à l’Épistémologie Génétique (in French), Paris (1950) 
34. Piaget, J., Inhelder, B.: The Growth of Logical Thinking from Childhood to Adolescence. 

Basic Books, New York (1958) 
35. Merleau-Ponty, M.: Phenomenology of Perception (in French). Gallimard, Paris (1945) 
36. Bateson, G.: Steps to an Ecology of Mind. University Of Chicago Press, Chicago (1972) 
37. Marx, K.: Capital, vol. I (in German), Hamburg (1867) 



A Quantitative Investigation into Distribution of

Memory and Learning in Multi Agent Systems
with Implicit Communications�

Roozbeh Daneshvar, Abdolhossein Sadeghi Marascht, Hossein Aminaiee,
and Caro Lucas

Center of Excellence for Control and Intelligent Processing, School of Electrical and
Computer Engineering, University of Tehran, Tehran, Iran

Faculty of Psychology, Tabriz University, Tabriz, Iran
roozbeh@daneshvar.ir, abdolhossein.sadeghi.marascht@gmail.com,

aminaiee@gmail.com, lucas@ipm.ir
http://cipce.ut.ac.ir

Abstract. In this paper we have investigated a group of multi agent
systems (MAS) in which the agents change their environment and this
change has the potential to trigger behaviors in other agents of the group
in another time or another position in the environment. The structure
makes it possible to conceptualize the group as a super organism incor-
porating the agents and the environment such that new behaviors are
observed from the whole group as a result of the specific distribution of
agents in that environment. This distribution exists in many aspects like
a super memory (or even a super brain) that exists in the environment
and is not limited to memories of the individuals. There is a distributed
decision making that is done by the group of agents which, in a higher
level consists of both individual and group decision makings, and can
be viewed as emergent rather than consciously planned. As the agents
change the environment, they decrease the error for the group and hence
a distributed learning is also forming between the agents of the group.
This implicit learning is related to the implicit memory existing in the
environment. These two interpretations of memory and learning are as-
sessed with experimental results where two robots perform a task while
they are not aware of their global behavior.

Keywords: Multi Agent Systems, Implicit Communication, Distributed
Memory, Distributed Learning, Complex Systems.

1 Introduction

When the agents in a MAS communicate with each other, the communication
media is not limited to facilities for direct communication as there are also
approaches for indirect communication between agents. One of these media for
� Any kind of military uses from the content and approaches of this article is against
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indirect communication is the environment the agents are located in. The agents
change their common environment and this change has the potential to trigger
behaviors in other agents. When an agent fires behaviors of another agent (even
if this is a tacit process), a kind of communication between two agents has taken
place while this communication might happen in another position and different
times. This method known as stigmergy was first introduced in [1] by Pierre-Paul
Grass by observing the termites nest building behavior. The surrounding space
which the agents are located in is a group of common (physical or non physical)
elements that perform the role of a media for agent communications. When the
state of an agent triggers behaviors of another agent, a kind of communication
has formed between the two agents.

We have investigated the elements that make a MAS intelligent and we have
considered how we can enhance a system without necessarily enhancing the
individuals. We have considered the use of agents with bounded rationality that
make simple decisions according to their perceived state of the environment and
these simple decision makings lead to higher level decision makings in the system
level. The agents are unconscious about their non-intentional behaviors while it
is the essence of stigmergy that the consequences of behaviour affect subsequent
behaviour [2]. These systems are inspired by the natural organic systems where
there is a greater brain (or a super brain, in other words) making decisions that
do not exist in individuals. The meta structure existing in groups of natural
creatures or cells has the ability of containing a super memory that does not
exist in individuals (like ants and their pheromone trails in an ant colony) and
it has the abilities of data transformations like reactions of ants to pheromone
trails in the environment and meta decision makings like the performance of
an ant colony comparing the abilities of ants. Environmental changes can affect
behaviors in two ways: qualitative effect in which the agents choice of action
may be affected and quantitative effect in which the selected action may be
unchanged, but the exact position, strength, frequency, latency, duration, or
any other parameter of the action may be affected [3]. As an instance of this
idea we can name scaffolding which means exploitation of external structure that
is introduced in [4].

Many applications of this technique have been developed before. In [2] a group
of mobile robots gather 81 randomly distributed objects and cluster them into
one pile in which coordination of the agents movements is achieved through
stigmergy (in an insect society individuals work as if they were alone while
their collective activities appear to be coordinated [5]) and as another example,
in [6] we have a group of RoboCup soccer players with emergent behaviors
and some virtual springs that connect them together, each spring representing
decision concern. The environment (potential field) acts as a super brain guiding
the action of each player without the awareness of how the different concerns
have been fused into that action. A self-organizing model of group formation in
three-dimensional space is presented in [7]. It has also investigated the collective
memory in such animal groups in which the previous history of group structure
influences the collective behaviour exhibited as individual interactions change
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during the transition of a group from one type of collective behaviour to another.
An external memory is used in [8] for reinforcement learning agents. The agents
have the observation from the environment augmented by the memory bits and
its output consists of the original actions in the environment augmented by
actions that change the state of the memory.

2 Memory and Learning

Memory is the process by which the knowledge is encoded, stored and later
retrieved. This is based on an ability to recall or recognize previous experience
and depends on the persistence of learning in a state that can be revealed at a
later time. It is related to any persistent effect of experience over time and can
be used in the present. There are various definitions for memory as memory can
be very broadly defined as any persistent effect of experience [9] memory is the
process of maintaining information over time [10]. Also [11] adds two elements
of usage and the time to the definition of memory which memory refers to the
process by which past experience and learning can be used in a present time.
[12] also refers to these elements and in his view, memory is the way in which
we record the past and later utilize it so that it can affect the present situation.
Other scientists use more features in description of memory: [13] used the concept
of permanent change in behavior. In this approach, memory is a process that
results in a relatively permanent change in behavior.

In a definition learning is described as a relatively permanent change in be-
havior that results from practice [14]. In [11], memory and learning have features
in common. In his view, learning is defined as any relatively permanent change
in the behavior, thoughts and feelings of an organism (human or other animal)
that results from prior experiences. In other words, it is concerned with register-
ing and storing information. Although there are some common features between
memory and learning, some scientists try to distinguish them. According to [15]
learning is the process of acquiring new information, while memory refers to
the persistence of learning in a state that can be revealed at a later time. In
[16] learning is described as a process by which we acquire knowledge about the
world, while memory is the process by which that knowledge is encoded, stored
and later retrieved ([16], [15] and [17]). The distinction between memory and
learning is also accepted in [17]. In that approach, Learning is a relatively per-
manent change in an organism’s behavior as a result of experiences. The study
of learning and memory therefore requires the creation of behavioral measures
to evaluate such behavioral changes.

2.1 Distributed Nature of Learning and Memory in Brain

As an ultra complex system, human brain uses a highly distributed strategy
for storing information. There is no unique structure or region for learning and
memory in the brain system and functionality of learning and memory in hu-
man brain depends on a complex co-operation of different regions. Learning and
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memory are complex phenomena that are formed by different subsets while these
subsets are distributed in various structures and sub structures in the brain. As
an instance, we know that the structural sites of explicit and implicit learning
and memory are not the same as there are strong evidences about brain system;
that learning and memory are not stored in a unitary structure or area (studies
in the field of memory and learning have indicated that these phenomena are
supported by a complex network of structures). Various kinds of memories are
stored in various brain networks. In addition studies on patients with damaged
brains have shown that lesions in different regions of the brain cause specific
memory defects. It has been found that different representations of a unitary
concept or phenomenon are stored in separate locations in the brain. When we
think about that phenomenon, the mental concept of that phenomenon is an in-
tegrative product of the set of representation in multiple and distinct sites of the
brain. In addition, we know that implicit memory is stored in a separate circuitry
system including cerebellum and amigdala. All these facts indicate that learn-
ing and memory related information is stored in a highly distributed manner in
brain ([16], [15], [13], [18], [19], [20] and [21]).

Evolutionarily, one advantage of this highly distributed strategy is clear in
case of brain damage. Since different parts and bits of the information about
concepts are stored in many different regions of the brain, in case of any lesion
or damage, only one or some parts of information would be lost and the person
can yet have other information intact and accessible [18].

3 Distributed Memory

We can specify a state for the environment which is specified with different
configurations of parameters. These parameters are factors that are changed in
the environment (like position of objects and agents in the space) and hence the
state is defined of positions in the environment. The objects in the environment
are distributed elements which specify the state of the whole environment. This
state is configured with elements that are dispersed in the space and the whole
forms a state which plays the role of an implicit and tacit memory1. We define
the state of the environment as:

State = f(S1, S2, ..., Si, ..., Sn) (1)

in which Si is the state of Elementi in an environment containing n distinct
elements. The states of elements are specified by a group of their attributes
which are atomic and are not compound of other factors. When each of the Si

1 When the elements/objects of the environment show the state and have the potential
ability to trigger the future behaviors of agents, they perform as memory elements
that can be read by agents (when the agents perceive the position and state of
elements and show respective behaviors) and they can also be changed (when the
actions of the agents change the positions and states of elements) which seems that
a new value is stored for that element.
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determiners of state is changed, the whole state of the environment is changed
and hence a new value is assigned to the distributed environment. The main
point is that the changes in the environment are preserved such that the value
is the same as the last value in future accesses made by the agents (even if
the access is done in another time). If one of the elements is changed, then
we have S

′

i instead of Si and the state of environment in Eq. 1 changes to
State

′
= f(S1, S2, ..., S

′

i , ..., Sn). In this case the value of the distributed memory
is changed to a new one and this new state of the environment remains the same
while the set of atomic states exists. The main point for a super memory is that
it is a mixture of elements which their values are capable of affecting behaviors
of agents in the group. This means that changing the elements which their values
do not influence the behaviors of agents are not considered as a part of the state
of the environment.

4 Distributed Learning

When an action is applied to the environment, the state changes to a new one:

StateB = f(StateA, Actioni) (2)

We consider a total error value for each state of the environment which is defined
as

TotalError(StateA) = Error(StateA) +
n∑

i=1

δi × Err(Agenti, StateA) (3)

in which Error(StateA) is the error value associated to that state of the en-
vironment regardless of the agents, n is the number of agents, δi is a weight
for the effect of error for Agenti on the total error and Err(Agenti, StateA) is
the individual error of Agenti in StateA. The error value for each of the agents
depends on the task that is under progress by the agents.

If we define Δ as an array of actions, StateB = f(StateA, Δ) means that if
the chain of actions in Δ are applied to environment (with the same order as in
Δ), the final state of environment is StateB. If we have a decrease for individual
error as shown in Eq. 4

Err(Agenti, StateB) ≤ Err(Agenti, StateA) (4)

or a decrease in error value of the state as in Eq. 5

Error(StateB ) ≤ Error(StateA) (5)

then we have a decrease in the value of total error as in Eq. 6.

TotalError(StateB) ≤ TotalError(StateA) (6)

A change is made in the environment which can be either temporary or per-
manent and this change causes less error values both for the agents and for
the task. This decrease in the total error value can be considered as a form of
learning that happens implicitly in the environment in a distributed manner.
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5 Experimental Results

An experiment is also set to assess the proposed interpretation of the environ-
ment. The robots used for testing are e-puck robots2 as shown in Fig. 1. In this
task, the robots are positioned behind an object (the initial positions and ori-
entations are acceptable in a range and need not to be absolutely accurate) and
they push an object toward a constrained path and the goal is that they move
the object to a position at the end of the path without hitting the walls3.

Fig. 1. A view of the e-puck robots which are used for experimental results (left) and
plan of sensors on the robot (right)

5.1 Test Conditions and Algorithms

For this test we have two robots that are in charge of moving an object on
a trajectory. The trajectory is surrounded by two walls and the robots and
the object are between these two walls. The robots have only a sense of the
surrounding objects and walls and they have no direct communication together.
They perform actions according to their perceptions and the built-in rules while
a higher level of behavior arises from the group of two robots (they are making
decisions locally and are not aware of the global emerging behavior).

The robots use eight Infra Red sensors that are distributed around the body
(the distribution is not uniform) and each robot is able to acquire a limited
perception of surrounding objects by these sensors. The locations of these sensors
are demonstrated in a map in Fig. 1.

The robots have two IR sensors in the front part of the body. These two sensors
are used to ensure that the robots keep contact with the object at all times. When
2 http://www.e-puck.org
3 For this test we only concentrated on the simple behaviors of the robots and we did

not add a constraint for detecting the end of the experiment while it can be added
with additional external tools or algorithms.
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the received signal from the left/IR7 sensor (ξ7) is below a threshold, it means
that the direction of the robot is not perpendicular to the surface of the object
and hence the robot should turn left. The amount of this turning is such that
both front sensors will sense the object at the desired orientation. The same
procedure also goes for the right/IR0 sensor. The threshold (Δ) used for sensing
the object in front of the robot is equal to %85 of the maximum value of signal
that can be perceived by IR sensors. The algorithm used for pushing the object
is as follows:

While (ξ7 < Δ) rotate right;
While (ξ0 < Δ) rotate left;
Go forward;

We have used two robots to push the object on the trajectory. The speed of the
robots in this experiment is a factor that defines the behaviors of the robots.
Whenever each of the robots senses the wall, it pushes the object with a speed
faster than normal. This causes the object to rotate to the other side and hence
the distance from the wall is increased. We have defined a threshold on the
IR5/IR2 signals for robots. When the IR5/IR2 signals ξ5/ξ2 become more than
a threshold (T), the velocity set point of left/right wheels of the robot (positive
values of V) are set to maximum speed. This is while the velocity set point is
equal to %50 of motors maximum speed on a normal movement. By sensing the
wall, the robots change their behaviors to a temporary state. This ensures that
they increase their distance with the wall. Concepts of sensing the wall and the
respective behaviors are as follows:

If (ξ5 > T ) // left wall is sensed
VLeft=%100;

else
VLeft=%50;

If (ξ2 > T ) // right wall is sensed
VRight=%100;

else
VRight=%50;

5.2 Environment as a Common Memory

We define the state of the system for this problem as Eq. 7

State = SObject × SRobot1 × SRobot2 (7)

When the object moves, the state of the object and hence the state of the envi-
ronment are changed. This is the memory element that lasts in the environment
and agents can perceive it (when a robot finds the position of the object by
sensors, this is a memory access process and the perceived data is gained from
a stored piece of information in the environment). By a quantitative demonstra-
tion, the value of stored information in this distributed memory is specified by a
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function (for this case we have excluded the state of the robots from the overall
state):

V alue = g(XObject, YObject, θObject) (8)

This value remains the same while none of the values related to mentioned
elements are changed (the only factors that are capable of changing the value
of memory for this problem are the actions made by robots). The agents make
decisions according to the perceived data and their behaviors change according
to the piece of information they have sensed from the common environment.

5.3 An Implicit Learning Process

For this task we can consider various factors for defining the total error value.
As the agents have only one option (pushing the object), we omit the individual
errors of agents and only consider the total error existing in the environment
(the robots are not aware of these errors).

TotalError(StateA) = Error(StateA) (9)

We can consider the distance from the target as one of the error factors

Error(StateA) = h(ΔXStateA , ΔYStateA , ΔθStateA) (10)

and as an instance we can specify the error function as

h(ΔX, ΔY, Δθ) = α1 ·
√

(ΔX)2 + (ΔY )2 +
α2 · Δθ√

(ΔX)2 + (ΔY )2
(11)

which means that the total error is commensurate to the distance of the object
from the goal and its difference in angle to the final orientation4 (a sample of
the experiment is shown in Fig. 2).

When the object moves toward the trajectory (from (X1,Y1) to (X2,Y2)), it
is getting closer to the final position and assuming a small value for√

(ΔX2)2 + (ΔY2)2 <
√

(ΔX1)2 + (ΔY1)2 (12)

and hence accodrding to the error function, if the object is far enough from the
target, we can ignore the orientation and the value of error in the new state is
less than the value in previous state as shown in Eq. 13 (if the object gets closer
to the target, the orientation plays an important role for the error value).

Error(State2) < Error(State1) (13)

As a permanent error in the environment is decreased by previous changes, we
can interpret this change in the state as an implicit learning process during this
object pushing procedure.
4 We can also define other error values like the distance of the object from the walls

that is decreased by proper actions of agents. For this case we have only considered
the simple error value by the distance from the final target.
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Fig. 2. Two robots are pushing the box in a curved path. When gets too close to one
of the wall, the robot beside that wall compensates this deviaton by pushing the box
with a faster speed (pictures are sorted from right to left, top to bottom).

6 Conclusions and Future Works

In this article we considered multi agent systems in which the environment played
a significant role. The effects of making changes in the environment by the agents
were under investigation and an interpretation of a distributed memory and a
distributed learning in these systems was proposed. The proposed interpretations
were assessed through experimental results of an object pushing task performed
by two mobile robots. It was shown that how the memory and learning exist in
the proposed example.

For future works, the concepts of distributed memory and distributed learning
can be investigated with other experiments such as for the same experiment the
number of robots may increase to more than two robots (while minor changes
in the algorithms are necessary). On the other hand, the concept can be scaled
up and be considered for other tasks in which a group of agents cooperate and
their communication is implicit and is done via the common environment. The
agents can use the potential facilities of the environment as implicit distributed
memory elements which will be useful for tasks in which the communication
between agents is not possible/reliable or when the environment is too complex.
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Abstract. This article discusses the issues of adaptive autonomous nav-
igation as a challenge of artificial intelligence. We argue that, in order
to enhance the dexterity and adaptivity in robot navigation, we need to
take into account the decentralized mechanisms which exploit physical
system-environment interactions. In this paper, by introducing a few un-
deractuated locomotion systems, we explain (1) how mechanical body
structures are related to motor control in locomotion behavior, (2) how
a simple computational control process can generate complex locomo-
tion behavior, and (3) how a motor control architecture can exploit the
body dynamics through a learning process. Based on the case studies,
we discuss the challenges and perspectives toward a new framework of
adaptive robot control.

1 Introduction

Navigation is one of the most fundamental functions of adaptive autonomous
systems and it has been a central issue of artificial intelligence. As in most of the
other topics of AI research, navigation has been traditionally treated as a “sense-
think-act” process, where the problem is generally decomposed into three sub-
processes of (1) identifying the situation, i.e. mapping the sensory stimulation on
to an internal representation, the world model, (2) planning an action based on
this world model, and (3) executing the physical action. In this framework, the
navigation problem was nicely formulated by engineering terms as exemplified by
the Simultaneous Localization and Map Building [1]. Although for many tasks
these systems perform well, a considerable number of issues remain to be solved
if compared to biological systems that routinely exhibit adaptive locomotion and
navigation tasks in complex environments with great ease and robustness.

The studies of physiology and biomechanics revealed that animals’ navigation
capabilities generally rely on highly distributed mechanisms: object recognition
and large-scale planning in the brain, reflexes and basic motor signals in periph-
eral nervous circuitry, and adaptive musculoskeletal dynamics in the mechanical
level, for example. Although the decentralized nature of navigation mechanisms
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was previously formulated by the so-called Behavior Based Approach [2,3] with-
out explicit internal representation of the world, this approach generally does not
explicitly discuss the physics of system-environment interactions, which makes
the navigation capabilities still highly limited to relatively simple tasks such as
obstacle avoidance and basic target following [4,5].

The computational framework of adaptive control architectures often ignores
the fact that every behavior is the result of system-environment interaction,
and it is implicitly assumed that computational processes and physical ones are
independent problems. There are, however, a number of aspects where the com-
putational processes have to take system-environment interactions into account
as discussed in the field of embodied artificial intelligence [6,7,8]. For the navi-
gation problem in particular, there are the following three main reasons. Firstly
and most importantly, capabilities and limits of navigation are largely influ-
enced by how robotic systems interact physically with environment. The well-
designed mechanical structures are prerequisite for maximum forward speed,
maneuverability, and energy efficiency for the locomotion in complex dynamic
environment. Secondly, motor control architectures are highly related to the
way how the system interacts physically with the environment. With a good
mechanical design, computational process of motor control can be significantly
simplified as demonstrated by Passive Dynamic Walkers [9,10,11], for example.
And thirdly, because the dynamics of physical system-environment interaction
are often highly nonlinear, the computational processes such as route planning
cannot make decisions arbitrarily, but they need to take the physical constraints
into account. For example, as demonstrated later in this article, the physical
constraint of underactuated locomotion systems need to exploit the dynamics of
hopping behavior in order to traverse rough terrains.

This article introduces three projects of locomotion machines with a special
focus on underactuated systems, i.e. the systems that exploit passive dynamics
for their behavioral functions. These case studies demonstrate how behavioral
performances such as rapid movement, behavioral diversity, and complex be-
havior patterns can be improved in underactuated robotic systems by taking
advantage of the interplay between material properties, body structures and
dynamics, and adaptive control processes. Based on these case studies we will
speculate further challenges and perspectives of robot navigation.

2 “Cheap Design” for Locomotion

Complex mechanical structures are a fertile basis of animals’ adaptive behavior.
Likewise, well-designed structures and mechanical properties of robot body are
an important prerequisite, which make the robotic systems capable of achiev-
ing many behavioral variations for the purpose of adaptive behavior in com-
plex dynamic environment. Exploiting physical constraints of the systems’ own
body and ecological niche is essential not only for energy efficient, rapid behav-
ior with high maneuverability, but also simplified control, as nicely formulated
by the principle of “cheap design” [6][8]. This section explains how physical
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(a)

(b)
(c)

Fig. 1. Behavioral dynamics of the fish robot. (a) Photograph of the fish robot. (b)
Forward velocity of three types of tail fins made of different materials (Square plot:
flexible fin, triangle plot: soft fin, and circle plot: hard fin). (c) Time-series photographs
of a typical forward swimming of the fish robot.

system-environment interactions can be exploited to achieve locomotion func-
tions through a case study of an underwater locomotion robot. This “cheap”
underwarter locomotion nicely demonstrates how locomotion capabilities are de-
pendent on the physical system-environment interaction induced by mechanical
design.

The fish robot has one single degree-of-freedom of actuation: it can basically
wiggle its tail fin back and forth. The motor connects a rigid frontal plate and the
elastic tail fin (Figure 1(a)). With this body structure, simple motor oscillation
drives this fish robot not only in the forward direction, but also right, left, up,
and down by exploiting fluidic friction and buoyancy [12]. Turning left and right
is achieved by setting the zero-point of the wiggle movement either left or right
at a certain angle. The buoyancy is such that if it moves forward slowly, it
will sink (move down). The forward swimming speed is controlled by wiggling
frequency and amplitude. If it moves fast and turns, its body will tilt slightly
to one side which produces upthrust so that it will move upwards. For these
behavioral variations, therefore, control of forward speed plays an important
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role. It is generated by the fluid dynamics as the elastic fin interacts with the
environment. If the robot has inappropriate material properties in the tail fin,
the locomotion performance is significantly degraded. Figure 1(b) shows how
the forward velocity is related to the oscillation frequency of the motor and the
material properties of tail fin.

This case study provides a nice illustration of how a computational process
of motor control is related to the mechanical structure of the robot. The loco-
motion function is a consequence of physical system-environment interaction,
i.e. the interaction between the frontal plate, the tail fin and the fluid, and
the actuation simply induces the particular dynamic interaction. As a result,
the control architecture can be very simple (oscillation of one motor). Another
notable implication is the fact that the material properties of the robot body
become important control parameters when motor control exploits the system-
environment interaction. By changing the material property of the tail fin only,
the same kinematic movement of the motor can result in fast or slow forward
velocity.

3 Body Dynamics for Behavioral Diversity

Physical interaction is important not only in underwater locomotion but also
for locomotion on the hard terrain. In this section we introduce a biped robot,
which demonstrates two gait patterns - walking and running - by exploiting the
dynamics induced by elastic legs interacting with the ground. This case study
shows how behavioral diversity can be generated through a particular body
structure and its dynamics.

Inspired from biomechanical models of human legs [13,14,15], each leg of this
biped robot has one servomotor at the hip and two passive joints at the knee
and the ankle (Figure 2(a)). Four springs, which are used to mimic the biological
muscle-tendon systems, constrain the passive joints. Three of the springs are
connected over two joints: they correspond to the biarticular muscles in the
biological systems (i.e. two springs attached between the hip and the shank,
another one between the thigh and the heel). Essentially, biarticular muscles
induce more complex dynamics because the force exerted on each spring is not
only dependent on the angle of a single joint but also the angle of the other
joint. Interestingly, however, this unique design of the elastic legs enables the
system to induce two different gait patterns, walking and running, by using a
basic oscillation of the hip motors.

Despite the simplicity of the motor control, the leg behavior of walking is
surprisingly similar to that of human [16]: As shown in Figure 2(c,e), during
a stance phase, the body trajectory exhibits multiple peaks in vertical move-
ment, the knee joint exhibits multiple flexion and extension movements, and the
ankle joint rotates rapidly at the end. We found that these characteristics of
joint trajectories are common also in human walking behavior. With the same
configuration of the body design, this robot is also capable of running by vary-
ing the spring constants and a few motor oscillation parameters. As shown in
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Fig. 2. Dynamic biped walking and running. (a) Schematic illustration and (b) pho-
tograph of the biped robot. This robot consists of a joint controlled by a servomotor
(represented by a black circle) and three leg segments which are connected through
two passive joints (gray circles). Four tension springs are attached to the segments and
rubber materials are implemented at the two ground contact points of the foot body
segment. The robot is attached to a pole to restrict rotational movement of the body.
(c)Walking and (d) running dynamics are illustrated in terms of the vertical movement
of body, knee joint angle, ankle joint angle, and vertical ground reaction force GRF
(from top to bottom) which are aligned by the stance phase of 10 steps (the stance
phase is indicated by two vertical lines in the figures). Time-series trajectories of the
robot (c) walking and (d) running.



AI in Locomotion: Challenges and Perspectives of Underactuated Robots 139

Figure 2(d,f), the robot shows a clear flight phase of about 0.1 second, result-
ing from the complex dynamics of the body and joint trajectories significantly
different from those of walking [17].

This case study demonstrated how different kinds of behavioral patterns can
be essentially generated by the body dynamics which are necessary in the adap-
tive locomotion scheme. By carefully designing elastic body structures, behav-
ioral diversity can be not only achieved by the computational processes of motor
control, but also significantly influenced by the dynamics induced by the inter-
actions with simple motor action and the ground reaction force.

4 Control and Learning Through Body Dynamics

As shown in the previous sections, the use of body dynamics has a great potential
to significantly improve the physical locomotion performances by using very
simple control. However, a fundamental problem in control of underactuated
systems lies in the fact that the desired behavior is always dependent on the
environmental conditions. When the conditions are changed, the same motor
commands result in a different behavior, and it is difficult to find the new set of
motor commands in the new environment. In other words, the behavior is coupled
with environmental properties, which the system could actually take advantage
of. For example, the velocity curves of the fish robot are dramatically changed in
rapid water flow or turbulence, and the biped walking and running is no longer
possible in insufficient ground friction or a soft surface. In this sense, a dynamic
adaptive controller is an essential prerequisite for underactuated systems.

This section introduces a case study of a hopping one-legged robot that learns
motor control in order to traverse rough terrains [18]. This robot consists of one
servomotor at the hip joint and two limb segments that are connected through
a passive joint and a linear tension spring (Figure 3(a,b)). Although, on a level
ground, this underactuated system exhibits periodic stable running locomotion
with a simple oscillation of the actuator [19], it requires dynamic control of
parameters in order to negotiate with large changes in the environment such as
a series of large steps.

In this experiment, we applied a simple machine learning method, the so-called
Q-learning algorithm, for optimizing the oscillation frequency of the actuated
joint. The system optimizes the motor frequency of every leg step to induce
adequate hopping to jump over relatively large steps on the terrain. The sequence
of motor frequency is learned through the positive reward proportional to the
travelling distance and negative reward in case of fall. Because the learning
process requires a number of iterations, we conducted the control optimization
in simulation and the learned parameters were transferred to the real-world
robotic platform. After a few hundred iterations of the simulation, the system is
able to find a sequence of frequency parameters that generates a hopping gait of
several leg steps for the locomotion of the given rough terrain (Figure 3(c,d)).

In general, the control architectures of underactuated systems are highly non-
linear in a sense that hopping height and forward velocity of this one-legged
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(a) (b)

(c)

(d)

Fig. 3. One-legged hopping robot traversing rough terrains. (a) Photograph and (b)
schematic of the one-legged hopping robot, that consists of one servomotor at the
hip joint and two limb segments connected through compliant passive joint. (c) Op-
timization results of motor control in simulation. The optimized sequence of motor
frequency exhibits 12 leg steps successfully travelling through a rough terrain. (d)
Time-series photographs of the robot hopping over the steps. The motor control para-
meter was first optimized in simulation and transferred to the robot for the real-world
experiment.

robot, for example, are not fully proportional to the motor oscillation frequency.
Therefore, in order to achieve locomotion in complex environment, it is neces-
sary to have adaptive control architectures such as a learning process shown
in this case study. However, if the mechanics is properly designed, these adap-
tive control architectures can be kept quite simple. In fact the optimization
process of the one-legged robot searches a sequence of one control parameter only,
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i.e. the frequency of motor oscillation. Simplicity of control results in a reduced
parameter space and less exploration, which leads to considerable speed-up of
the learning process.

5 Discussion: Challenges and Perspectives

In the navigation studies in general, means of locomotion and body structures
are not explicitly considered, and the research is typically centered around the
issues of sensing, modelling of the environment, and planning. However, this
article showed that it is essential to investigate physical system-environment
interactions in locomotion in order to scale up the performance and complexity
of navigation tasks significantly. In this section, we elaborate how the dynamics
of underactuated systems is related to a new framework of navigation based on
the case studies presented.

One of the most fundamental open problems is still in the level of mechanics.
Generally the exploitation of mechanical properties in underactuated systems
provides energy efficiency [11,20], recovery of periodic behavioral patterns from
disturbances [9,21,22,25], and the increase of behavioral variations derived from
body dynamics [26,23,24]. While we still do not fully understand how to design
“adaptive mechanics”, it is important to note that mechanics is significantly
related to motor control and perception, hence navigation and locomotion cannot
be independent problems.

Another challenge lies in the adaptive dynamic control architecture, which
is a prerequisite for underactuated systems as explained in the case study of
the one-legged hopping robot. It is still an active research topic, and a num-
ber of different approaches are currently investigated (e.g. [27,28,29,30]). Along
this line of research, we expect to understand how underactuated systems will
actively explore their body dynamics. By obtaining the capabilities and limits
of their own body, they will be able to deal rapidly and precisely with complex
environment.

Although we have not explicitly discussed so far how perception processes
are related to mechanical properties and motor control, it is a highly important
issue in the context of navigation. In fact, the use of body dynamics can be
used for better sensing [31]. Because the sensing and the recognition processes
are fundamental open problems in navigation, underactuated systems should
be investigated further in order to gain a comprehensive understanding of the
sensory-motor processes.
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Abstract. This paper introduces our robotic case study which is in-
tended to intensively investigate the neural-body coupling, i.e., how
the task distribution between control and mechanical systems should be
achieved, so as to emerge useful functionalities. One of the significant fea-
tures of this case study is that we have employed a collective behavioral
approach. More specifically, we have focused on an “embodied” coupled
nonlinear oscillator system by which we have generated one of the most
primitive yet flexible locomotion, i.e., amoeboid locomotion, in the hope
that this primitiveness allows us to investigate the neural-body coupling
effectively. Experiments we have conducted strongly support that there
exists an “ecologically-balanced” task distribution, under which signifi-
cant abilities such as real-time adaptivity emerge.

1 Introduction

The behavior of a robotic agent emerges through the dynamics stemming from
the tight interplay between the control system, mechanical system, and envi-
ronment. Despite the existence of tight interdependency between control and
mechanical systems, traditional robotics have often ignored this and have fo-
cused on either mechanical designs or control architectures in isolation. Gener-
ally speaking, system enhancement has been achieved normally by increasing
the complexity of its control system. This, however, causes serious problems,
particularly in terms of adaptivity and energy efficiency.

Under these circumstances, recently the importance of the following sugges-
tions has been widely recognized: (1) there should be an “ecologically-balanced”
task distribution between control and mechanical systems; and (2) under which
one can expect that quite interesting phenomena, e.g., real-time adaptivity and
high energy efficiency, will emerge[1]-[3]. However, there are still a number of is-
sues that remained to be understood about how such task distribution between
control and mechanical systems can be achieved[4][7].

Now a question arises. How can we investigate the validity of the suggestions
above effectively? One may say that one of the promising ways is to focus on a
primitive living system, and to mimic its behavior in a synthetic manner, i.e.,
building a robotic agent. To do so, we have employed slime mold as a model
living system[5][6], and have modeled this as an “embodied” coupled nonlinear
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oscillator systems. In this paper, we introduce our robotic case study dealing
with a two-dimensional modular robot called “Slimebot” that exhibits amoe-
boid locomotion by taking full advantages of the interplay between its control
and mechanical systems. Owing to this approach, we show that there exists an
“ecologically-balanced” coupling, under which significant abilities such as real-
time adaptivity effectively emerges.

The rest of this paper is structured as follows. The following section briefly
explains how we have designed our modular robot Slimebot and illustrates some
of the highlight data taken from the experiments conducted. Section 3 then
illustrates discussion based on the results obtained from this case study, followed
by the conclusion.

2 A Robotic Case Study: Slimebot

In this section, we describe the mechanical structure and the distributed control
algorithm of Slimebot.

2.1 The Method

The mechanical structure. We consider a two-dimensional Slimebot whose
task is to move toward a goal light. Slimebot consists of many identical modules,
each of which has a mechanical structure like the one shown in Fig. 1 (a). A
schematic of the entire system is also illustrated in Fig. 1 (b). Each module is
equipped with six independently-driven telescopic arms and a ground friction
control mechanism (explained later). Each module is also equipped with the
following two types of sensors: (1) an omnidirectional light-sensitive sensor for
detecting the goal light; and (2) a sensor which informs the module whether it
is positioned as an inner module or a surface module in the entire system. For
attachment to other modules, the circumference of the module is covered by a
“functional material”. More specifically, we use a genderless Velcro strap: when
two halves of Velcro come into contact, they easily stick together; however when a
force greater than the Velcro’s yield strength is applied, the halves automatically
separate. We expect that by exploiting the properties of Velcro, a spontaneous
inter-module connection control mechanism is realized which not only reduces
the computational cost required for the connection control, but also allows to
harness emergence to achieve more adaptivity. The characteristics of the inter-
module connections are mainly determined by the yield stress of the Velcro straps
employed: connection between the modules is established spontaneously when
the arms of each module make contact; disconnection occurs if the disconnection
stress exceeds the Velcro’s yield stress. We also assume that local communication
between the connected modules is possible. Such communication will be used to
create a phase gradient inside the modular robot (discussed below). In this study,
each module is moved by the telescopic actions of the arms and by the ground
friction. Note that the individual modules do not have any mobility but can
move only by “cooperating” with other modules.
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(a)Mechanical structure of each module. (Left) top view. (Right) cross-section of side
view.

(b) Entire system (top view)

Fig. 1. Schematic of Slimebot

2.2 The Control Algorithm

In this section, we discuss how the mechanical structure described above can
generate stable and continuous locomotive patterns without losing the coher-
ence of the entire system. To this end, each module is endowed with a nonlinear
oscillator. Through mutual entrainment (frequency locking) between the oscilla-
tors, rhythmic and coherent locomotion is produced. In what follows, we give a
detailed explanation of this algorithm.

Basic operation. At any time, each module in the Slimebot can take one of two
mutually exclusive modes : active mode and passive mode. As shown in Fig. 2, a
module in the active mode actively contracts/extends the connected arms, and
simultaneously reduces the ground friction. In contrast, a module in the passive
mode increases the ground friction, and returns its arms to their original length.
Note that a module in the passive mode does not move itself but serves as a
“supporting point” for efficient movement of the modules in the active mode.

Phase gradient through the mutual entrainment. In order to generate
rhythmic and coherent locomotion, the mode alternation in each module should
be controlled appropriately. Of course, this control should be done in a “decen-
tralized” manner, and its algorithm should not depend on the number of the
modules and the morphology of the Slimebot. To do so, we have focused on
the “phase gradient” created through the mutual entrainment among locally-
interacting nonlinear oscillators in the Slimebot, exploiting this as a key infor-
mation for the mode alternation. Therefore, the configuration of the resulting
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Fig. 2. Schemtic of the active mode and the passive mode. Side view of the connected
modules is shown for clarity.

phase gradient is extremely important. In the following, we will explain this
in more detail. As a model of a nonlinear oscillator, the van der Pol oscilla-
tor (hereinafter VDP oscillator) was employed, since this oscillator model has
been well-analyzed and widely used for its significant entrainment property. The
equation of VDP oscillator implemented on module i is given by

αiẍi − βi(1 − x2
i )ẋi + xi = 0, (1)

where the parameter αi specifies the frequency of the oscillation. βi corresponds
to the convergence rate to the limit cycle.

The local communication among the physically connected modules is done
by the local interaction among the VDP oscillators of these modules, which is
expressed as:

xi = xtmp
i + ε

⎧⎨
⎩ 1

Ni(t)

Ni(t)∑
j=1

xtmp
j − xtmp

i

⎫⎬
⎭ , (2)

where xtmp
i and Ni(t) represent the state just before the local interaction, and

the number of modules neighboring module i at time t, respectively. xtmp
j is

the state of the VDP oscillator implemented into neighboring module j, which is
physically connected with module i. This is the information obtained through the
local communication. The parameter ε specifies the strength of the interaction.
Note that this local interaction acts like a diffusion.

When VDP oscillators interact according to equation (2), significant phase
distribution can be created effectively by varying the value of αi in equation
(1) for some of the oscillators. In order to create an equiphase surface effec-
tive for generating locomotion, we have introduced a simple sensory feedback
mechanism. More specifically, we set the value of αi as:

αi =

⎧⎨
⎩

0.7 if the module detects the goal light.
1.3 if the module is positioned as a surface module.
1.0 if the module is positioned as an inner module.

(3)

Note that the value of αi is increased when the module is positioned as a surface
module in the entire system. As a result, the frequency of the VDP oscillators in
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Fig. 3. Phase distribution created through the mutual entrainment among the VDP
oscillators in a circular arrangement. The gray scale denotes the value of the phase at
the corresponding point. Each arrow represents the direction of the gradient vector at
the corresponding point. The goal light is given from the top of the figure.

the outer modules will be relatively decreased compared to the ones in the inner
modules. This allows us to create the phase gradient inside the modular robot,
which can be effectively exploited to endow the entire system with a cohesive
force, similar to the effect of surface tension. Figure 3 shows the phase distrib-
ution created when the modules are placed to form a disk-like shape. The top
and bottom of the figure corresponds to the front and rear of the modular robot,
respectively. In the figure, the arrows, each of which represents the direction of
the gradient vector at the corresponding point, are also depicted for clarity.

Generating locomotion. Based on the above arrangements, here we will ex-
plain how we have designed the control algorithm. More specifically, we will show
how the mode alternation and the arm extension/contraction in each module is
controlled by exploiting the phase gradient created from the aforementioned
mutual entrainment among the locally-interacting VDP oscillators.

The mode alternation in each module is simply done with respect to the phase
of its VDP oscillator, which is expressed as:

{
0 ≤ θi(t) < π : active mode
π ≤ θi(t) < 2π : passive mode (4)

where, θi(t) denotes the phase of oscillation of the VDP oscillator in module i
at time t, which is written by

θi(t) = arctan
ẋi(t)
xi(t)

(0 ≤ θi(t) < 2π). (5)

On the other hand, the degree of the extension/contraction of each arm
mounted on module i in the active mode is individually determined with re-
spect to the phase difference with its corresponding neighboring module. This is
given by

Fm
i (t) = −k{θj(t) − θi(t)}, (6)
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Fig. 4. Representative data of the transition of the morphology (see from left to right)

where, Fm
i (t) is the force applied for the extension/contraction of the m-th arm

of module i at time t. k is the coefficient. θj(t) represents the phase of neighboring
module j physically connected to the m-th arm of module i.

Due to the algorithmmentioned above, the degree of arm extension/contraction
of each module will become most significant along the phase gradient (see Fig. 3),
and the timings of the mode alternation are propagated from the modules detect-
ing the goal light to the surface ones as traveling waves. As a result, all the modules
are encouraged to move toward the goal light while maintaining the coherence of
the entire system.

2.3 Experiments

Simulation results. In order to confirm the validity of the proposed method,
simulations were performed under the condition where βi = 1.0; εi = 0.01; all
the modules were placed initially so as to form a disk-like shape. Figure 4 shows
a representative result obtained in the case where the number of modules was
set to 100. The thick circles in the figures denote obstacles. The goal light is
given from the top of each figure, and thus the Slimebot is encouraged to move
upward. These snapshots are in the order of the time evolution (see from left to
right). As illustrated in the figure, the Slimebot can successfully negotiate the
environmental constraints without losing the coherence. Note that around the
time step of 30000 in Fig. 4., we temporarily turned off the goal light. As we see
from the figure, the Slimebot starts to form a disk-like shape. This is due to the
cohesive force which serves to maintain the coherence of the entire system.

Preliminary experiments with a real physical Slimebot. Fig. 5 shows
the latest version of the real physical module. Each module is controlled by a
control circuit with a 16MHz H8/300H CPU, which was designed specially for
this purpose. All the electric power required in the module is supplied from a
Lithium-Polymer battery (11.1V). Fig. 5 (b) illustrates the mechanical struc-
ture of the module developed. As shown in the figure, both the telescopic arms
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(a) Real physical module (b) 3D CAD image

Fig. 5. A developed module of the Slimebot

Fig. 6. Adaptive reconfiguration with 17 modules. From left to right: Sequence of
snapshots of a typical example of a spontaneous inter-module connection control.

and the ground friction control mechanism are realized by implementing pneu-
matic air cylinders. The power necessary for these air cylinder is supplied from
a gas cartridge (CO2 gas, 0.3MPa) implemented onto the top of the module.
Owing to this design, each module can operate in a fully self-contained manner
approximately for 30 minutes without suffering from problems such as a cable
entanglement.

Due to the lack of space, we briefly introduce a preliminary experiment with
the use of real physical Slimebot. Fig. 6 depicts a representative experimental
result with 17 modules. Fig. 7 illustrates a simulation result in which almost
the same condition was applied as the one in Fig. 6. As can be seen from these
figures, interestingly, good qualitative agreement is observed.

3 Discussion: Lessons from This Case Study

In this section we briefly investigate “the relationship between control and me-
chanical systems as it should be”, or we may say “the well-balanced coupling
between control and mechanical systems”. For the ease of intuitive understand-
ing, we consider this by using Fig. 8. The figure metaphorically illustrates the
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Fig. 7. Simulation result conducted for comparison with the experiment indicated in
Fig. 6. See from (a) to (d)

possible task distribution between control and mechanical systems in the gener-
ation of behavior.

In Fig. 8, we will immediately notice that the current robots are driven by
such extremely different approaches: the meeting point between control and me-
chanical systems lies either around the left or right extremity; almost nothing
exists in between (i.e. around the region C).

Now questions arise, which can be summarized as followings: the first is closely
related to the “well-balanced coupling” or the “relationship as it should be”
between control and mechanical systems. Should robots be designed in such a
way that their control and mechanical systems are coupled around the region
C?; the second and the last concerns “emergent phenomena”. Should we see the
region C simply from the viewpoint of trade-off? If not, what sort of interesting
properties are expected to be observed in this region?

In what follows, we show simple experiments in order to investigate these
questions. Fig. 9 illustrates the time evolution of the morphology of Slimebot
under different Velcro strength. Note that the Velcro strength acts as a pri-
mary coupling parameter between its control and mechanical systems. This is
one of the significant features of Slimebot. As illustrated in the figure, Slime-
bot having an appropriate Velcro strength exhibits adaptive locomotion (see

Fig. 8. A graphical representation of possible task distribution between control and
mechanical systems in generating behavior. Most of the current robots are driven under
the task distribution either around the left or right extremity.
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(a) In the case of “weak” Velcro strength

(b) In the case of “appropriate” Velcro strength

(c) In the case of “strong” Velcro strength

Fig. 9. The time evolution of the morphology of Slimebot under different Velcro
strength (see from left to right). The thick circles in the figures denote obstacles.

Fig. 9(b)), whilst the ones with a weak and a strong Velcro strength can-
not negotiate the environment. This suggests that there exists a well-balanced
neural-body coupling, under which significant abilities —in this case real-time
adaptivity— emerge.

4 Conclusion

This paper has investigated how the task distribution between control and me-
chanical systems should be achieved so as to emerge useful functionalities such
as adaptivity, taking a real-time morphology control of a two-dimensional mod-
ular robot called Slimebot as a practical example. In our case study, aiming at
the well-balanced task distribution between control and mechanical systems, we
focused on a functional material (i.e. genderless Velcro strap) and the phase
gradient created through the mutual entrainment between locally interacting
nonlinear oscillators (i.e. VDP oscillators), the former of which was utilized as a
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spontaneous inter-module connection control mechanism and the latter of which
as a core mechanism for generating locomotion.

Owing to focusing on amoeboid locomotion —one of the most primitive types
of locomotion—, the results obtained strongly support the validity of our work-
ing hypothesis, stating that well-balanced task distribution between control and
mechanical systems plays an essential role to elicit interesting emergent phenom-
ena, which can be exploited to increase adaptivity, scalability, fault tolerance and
so on. This research is a first step to shed light on this point.
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Abstract. A new approach of integrating biological microorganisms such as 
bacteria to an inorganic robot body for propulsion in low velocity or stagnant 
flow field is proposed in this paper with the ultimate goal of fabricating a few 
hundreds of micrometer size swimming robots.  To show the feasibility of this 
approach, Serratia marcescens bacteria are attached to microscale objects such 
as 10 micron polystyrene beads by blotting them in a bacteria swarm plate.  
Randomly attached bacteria are shown to propel the beads at an average speed 
of approximately 15 μm/sec stochastically.  Using chemical stimuli, bacteria 
flagellar propulsion is halted by introducing copper ions into the motility 
medium of the beads, while ethylenediaminetetraacetic acid is used to resume 
their motion.  Thus, repeatable on/off motion control of the bacteria integrated 
mobile beads was shown.  On-board chemical motion control, steering, wireless 
communication, sensing, and position detection are few of the future challenges 
for this work. Small or large numbers of these microrobots can potentially 
enable hardware platforms for self-organization, swarm intelligence, distributed 
control, and reconfigurable systems in the future.  

Keywords: Microrobotics, bacteria flagellar propulsion, swimming microrobots, 
miniature mobile robots, distributed systems. 

1   Introduction 

Miniature mobile robots have unique abilities such as accessing small spaces and the 
capability of massively parallel operation with large numbers of agents with 
distributed control. Due to these characteristics, they are indispensable for health-care 
applications such as minimally invasive diagnosis and treatment inside or outside of 
the human body, mobile sensor network applications for environmental monitoring 
and search and rescue, inspecting and repairing few millimeter diameter pipes in 
nuclear plants and space shuttle surfaces in space, and entertainment and educational 
applications. Many miniature robots with various locomotion capabilities such as 
walking, flying, climbing, crawling, walking on water, and swimming have been 
proposed in the literature for some of these applications [1]. However, currently the 
overall size of the miniature robots is limited to centimeter or millimeter scale mainly 
due to the miniaturization limits of the on-board actuators and power sources. Scaling 
these robots down to micrometer scale with novel actuation and powering methods is 
one of the grand challenges of micro/nano-robotics, which is a newly emerging field 
of robotics.  
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This work specifically focuses on actuation (propulsion) of microscale swimming 
robots in stagnant or low velocity unstructured liquid environments. For these robots, 
viscous forces dominate over inertia (i.e., the Reynolds number << 1). Since inertia 
plays no role, it is well-known that the propulsion methods based on reciprocatory 
motion, such as fin flapping of the fish, become ineffective [2].  Thus, an asymmetric 
motion pattern, such as dissimilar power/recovery stroke of an elastic flap or rotation 
of a helical structure, is required for effective propulsion within the very small 
Reynolds number domain. Potential target applications of such swimming 
microrobots include: (1) In situ and minimally invasive screening of diseases and 
targeted local drug delivery inside the stagnant liquid environments of the human 
body such as the urinary tract, eyeball cavity, ear, and cerebrospinal fluid [3-5]; (2) 
Environmental monitoring of liquid environments for toxic or pathogenic biochemical 
agents; (3) Inspection and maintenance of liquid filled pipes in spacecrafts and 
nuclear plants with small diameters for potential cracks and leaks. These robots will 
have the unique advantage of being able to travel to currently inaccessible or hard to 
access small spaces, and will be massively parallel by fabricating and controlling 
large numbers of them in the future. 

To solve the actuation grand challenge for microscale mobile robots, various 
approaches have been recently proposed in literature. In the first approach, off-board 
actuation and powering has enabled the microrobot. Donald et al. [6] developed a 
non-tethered 60x250x10 μm silicon microrobot, which can walk on a flat substrate 
using the scratch drive electrostatic actuation principle. Here, the power lines on the 
substrate supply the electrical energy. This actuation and powering method is limited 
to motion on a structured surface and cannot be applied to microrobots in liquid and 
unstructured environments. Similar approach has been also implemented using 
external magnetic actuation. Yesin et al. [7] used Helmotz-coil based three-
dimensional (3-D) magnetic field gradients to propel and steer a ferroelectric 
microfabricated swimmer of the order of 100s of micrometers inside a stagnant liquid 
environment for potential applications inside the human eye for diagnosis and 
treatment of diseases. Furthermore, magnetic field gradients were also used to 
undulate a tail consisting of colloidal magnetic particles linked by DNA and attached 
to a red blood cell as another microscale swimming propulsion demonstration [8].  
These methods require high magnetic field gradients for propulsion of a microscale 
robot, which could potentially heat and damage biological tissues. Moreover, 
expensive and bulky external magnetic instrumentation, such magnetic resonance 
imaging (MRI), is required to encompass the microrobot’s operation environment. 
Therefore, this method of propulsion can be used only for microrobots that operate in 
confined spaces such as inside the human body, and it is challenging to control the 
robot locomotion and position due to nonlinearities in the magnetic forces depending 
on the distance.    

In a rather different approach, biological motors that are isolated from 
microorganisms are utilized as novel micro/-nanoscale actuators.  Mantemagno et al. 
[9] used F-ATPase rotary biomotors to rotate a chemically attached 100s of 
nanometer size nickel rods at around 8 Hz using adenosine triphosphate (ATP) as the 
source of energy in liquid environment.  This method requires the integration and 
attachment of the synthetic propeller with the biomotor rotor using chemical  
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Fig. 1. Transmission electron microscope (TEM) image of an E. coli bacterium (x3515). Three 
flagella are shown. Diameter of bacteria and each flagellum are about 500 nm and 20 nm, 
respectively (Image courtesy of Dennis Kunkel Microscopy). 

assembly, which is a very challenging and low-yield process.  Moreover, a continuous 
supply of ATP is required to move the biomotor, which could be a limitation for some 
liquid environments and applications. 

2   Approach 

This work investigates bacteria assisted propulsion for swimming microrobots as a 
novel microrobotic actuation approach. The authors propose to use peritrichous 
bacteria for controlled propulsion of a swimming microrobot robustly and efficiently. 
An inorganic microrobot body is propelled by the helical flagella – only about 20 
nanometers in diameter (Fig. 1) – of the bacteria attached to it.  Fig. 2 shows the 
conceptual drawing of a hybrid (biotic/abiotic) swimming microrobot propelled by 
the bacteria attached to one of the flat ends of a polymeric micro-disk attached to the 
base of the microfabricated body of the robot. Here, a large number of couple of 
micrometer long bacteria are attached to a functionalized polymer surface by their 
bodies rather than their flagella, so that the flagella can rotate freely and propel the 
robot body.  Using chemical stimuli, bacterial flagellar motors are turned on or off 
when desired for on/off motion control.  The actuation and power source are 
harvested from the bacteria while providing them with the required chemical energy 
source and environmental conditions. 

Key advantages of using whole bacteria as propulsive elements are: (1) No 
purification and reconstitution is necessary; (2) Simple nutrients such as glucose can 
be provided for the microorganisms and ion gradients are generated by the cell; (3) 
Bacteria are robust machines that can be easily integrated with the robot; (4) Sensors 
are already present in the cell.  Thus, bacteria can be precisely controlled by 
stimulating the receptors embedded in their cell membrane. Therefore, the bacteria 
integrated microrobot is robust and adaptive to the changes in the environment, as 
bacteria are. Microorganisms of various sizes with different motility organelles have 
been used for other applications [10].  This new method could be a technologically 
viable actuation method for miniaturizing swimming and other robots down to 
micrometer sizes.  This method is inspired by a recent scientific work which studies 
the flow field generated in the vicinity of bacterial carpets and demonstrates random 
motion of mobile micro-beads propelled by bacteria  [11]. 
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Fig. 2. Conceptual drawing of the bacteria integrated swimming microrobot: the microrobot is 
propelled by the attached array of bacteria, and its motion is controlled by turning the bacterial 
flagellar motors on/off using chemical stimuli. The robot body diameter would be of the order 
of 10s or few 100s of microns. 

In this work, we use the peritrichous bacteria Serratia marcescens (S. marcescens) 
for propelling the inorganic body of the swimming microrobot.  The flagella of these 
cells are randomly distributed over the cell surface, and each flagellar motor rotates 
independently of the others.  Hydrodynamic interactions among flagella cause them to 
coordinate, coalesce and bundle behind the cell during swimming.  The flagellum is a 
propulsive organelle that includes a reversible rotary motor embedded in the cell wall, 
and a filament that extends into the external medium [12]. The filament is a long 
(around 10 µm) and thin (around 20 nm) cylindrical helix (2.5 µm pitch and 0.5 µm 
diameter) that rotates at a speed of approximately 100 Hz [13].  Wild type bacteria 
exhibit random ‘run’ and ‘tumble’ behavior, which results random walk of the bacteria. 
This translates into efficiency reduction and random change of direction of the 
propulsion for robotic applications. Therefore, genetically engineered bacteria that are 
commercially available with no tumbling could be preferable. Moreover, for possible 
biomedical applications in the future, non-pathogenic bacteria would be selected. 

3   Integration of Bacteria with the Microrobot Body 

The first challenge is the controlled attachment of an array of bacteria to the 
polymeric microrobot body part.  Here, the critical issue is selecting a strain of 
bacteria which is highly motile and capable of strong and stable adhesion to the robot 
body. Adhesion density can be controlled by micropatterning the region that bacteria 
are expected to attach to. 

Selection of Bacteria: We choose S. marcescens for this work since they are fast (30-
47 μm/sec), easy to culture, and can be genetically engineered to have desired 
motility, and sensing characteristics.  These bacteria are grown in Luria broth  
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Fig. 3. Lying-flat and end-on attachment of bacteria to a polymer surface by ‘blotting’: bacteria 
from behind the leading edge of the swarm on the bacteria culture plate (leftmost photo) adhere 
in end-on configuration while the ones at the leading edge of the swarm attach in lying-flat 
configuration. The two optical microscope images on the right show attached bacteria on a flat 
PDMS substrate which is blotted at the leading edge of the culture (top image) or behind it 
(bottom image) resulting in lying-flat and end-on configurations, respectively (scale bar is 10 
microns). 

(L-broth) to saturation. A 1.8 μl aliquot of a 10−6 dilution of the saturated L-broth 
culture is used to inoculate a 9 cm swarm plate (L-broth containing 0.6% Difco 
Bacto-agar and 5 g/l glucose) off-center.  The Petri plate is incubated for 20 hours at 
30oC.  This results in a swarming colony approximately 7 cm in diameter.  The 
swarmer bacteria are larger and have more flagella than the bacteria grown in other 
environments.   

Bacteria Attachment in End-On Configuration:  Blotting is used to attach bacteria 
to the polymer micro-part using self-organization in massively parallel fashion.  By 
choosing the blotting location of the polymer micro-disks on the swarm plate, it is 
observed that bacteria attach in end-on or lying-flat configurations [14].  This 
observation is also confirmed by Darnton et al. [11].  Figure 3 shows the bacteria 
from the leading edge of the swarm attached to a flat PDMS substrate.   These 
bacteria are in lying-flat configuration.  In the same figure, the bacteria from farther 
behind the leading edge of the swarm attach to the PDMS sheet in end-on 
configuration.   

Bacterial Adhesion:  Mechanism of adhesion of bacteria to surfaces is not completely 
understood and is an active area of research. It is speculated that bacterial adhesion 
occurs in two steps: (1) Reversible adhesion which occurs within few seconds and is 
mainly due to electrostatic and van der waals forces, and hydrophobic and acid/base 
interactions; (2) Irreversible attachment happens after the reversible attachment step and 
is mainly due to surface conformational changes and formation of protein-ligand bonds 
and production of extracellular polymer substance [15]. 
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Hydrophobicity of the bacteria surface and the substrate, geometry and material 
properties of the substrate, and chemical composition of the extracellular polymer 
substance of the bacteria are among the important factors that affect the stability and 
strength of bacterial adhesion. It should be noted that bacteria properties pertaining to 
adhesion can vary significantly not only across but also within a genus of bacteria.  

After rigorous testing, we have shown that S. marcescens ATCC 274 strongly 
attach to hydrophobic substrates such as PDMS or polystyrene during the blotting 
process shown in Fig. 3 using mainly hydrophobic and polymeric interaction at short 
time scales. S. marcescens adhere to hydrophilic surfaces such as air-plasma treated 
PDMS and gold due to polymeric interactions dominantly at a longer time scale [16].   

4   Bacteria Attached Micro-bead Propulsion Experiments 

To demonstrate the feasibility of using bacterial flagella as actuators for a microscale 
robot, 10 μm diameter polystyrene (PS) beads are propelled by several S. marcescens 
bacteria attached to them.  Random numbers of bacteria are attached to the micro-
bead by the blotting method described in Fig. 3.  PS beads are then pipetted into the 
motility medium and their random displacements are measured and compared with 
the diffusion length for 10 μm particles to prove that the beads are propelled by 
bacteria and their displacement is not due to Brownian motion.   

Micro-beads suspended in DI water were added into 1 ml of motility medium (0.01 
M potassium phosphate, 0.067 M sodium chloride, 10−4 M ethylenediaminetetraacetic 
acid (EDTA), 0.01 M glucose, and 0.002% Tween-20, pH 7.0) [17].  The solution was 
vortexed and subsequently centrifuged at 800g.  The beads were then concentrated 
five-fold.  A 10 μl aliquot of the final suspension was pipetted into the leading edge of 
the swarm plate.  After 5 minutes, the region was pipetted into 1 ml of motility 
medium.  During these 5 minutes, beads randomly interact with the bacteria 
swimming on the surface of the swarm plate.  Some of these bacteria adhered to the 
beads.  A 100 μl sample of the final suspension was placed in an imaging enclosure.  
To construct the enclosure, an approximately 500 μm thick PDMS ring was placed on 
a microscope glass slide.  Once the sample is deposited in the chamber, it was covered 
with a cover slip to prevent evaporation. 

The motion of the PS beads was observed with a 60x oil immersion phase 
objective using an inverted optical microscope (Zeiss Axiovert 200).  Figure 4 depicts 
a PS bead at t=0 and the same bead at t=6 s.  The total displacement of the bead was 
measured to be approximately 90 µm.  On the other hand, the diffusion length Ld for a 
10 µm particle is computed to be around 0.9 μm from Ld=(4Dt)0.5, where 
D=kBT/(6πµR) is the diffusion coefficient, t=6 sec is the diffusion time, kB is the 
Boltzman's constant, T is the absolute temperature of the solution, μ is the dynamic 
viscosity of water, and R is the radius of the particle.  This value is about 100 times 
smaller than the observed displacement of the bead and this confirms that the bead is 
actually propelled by the attached bacteria. 
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Fig. 4. Phase-contrast inverted optical microscope images of a mobile 10 µm diameter polystyr- 
ene micro-bead with several S. marcescens bacteria attached to it at (a) t=0 sec and (b) t=6 sec. 
Micro-bead's path is shown with rings. Every ring represents a 0.5 second interval [18]. 

5   Chemical Stimulus Based On/Off Motion Control 

For numerous applications, it is imperative for a hybrid swimming microrobot to 
possess the ability to stop moving and subsequently resume its motion repeatedly on 
demand.  External chemical or optical stimuli can be used to modulate the speed of 
some bacteria such as S. marcescens.  Bacteria’s response to selected chemicals and 
light of certain wavelengths are respectively known as chemotaxis and phototaxis. 
Chemo- and phototaxis response of bacteria can be used to control their direction of 
motion.  

In 1973, Adler [17] reported that the absence of a chelating agent in bacterial 
suspensions will lead to paralysis of the bacteria. A chelating agent is a substance 
whose molecules can form several bonds to a single metal ion.  The reason for the 
observed phenomenon is that heavy metal ions naturally present in water bond to the 
flagellar motors of the bacteria and prevent their motion. 

In this study, the phenomenon mentioned above, is taken advantage of and the 
bacteria are purposefully paralyzed only temporarily and in a reversible fashion.  To 
do so, CuSO4 as a source of Cu+2 heavy metal ions is added to the bacterial 
suspension, halting the flagellar motors.  Subsequently, EDTA is added to chelate the 
copper ions and resume the motion of the bacterial flagellar motors. 

On/off motion control of the mobile PS beads, shown in Fig. 4, is achieved by 
stopping and resuming the motion of the flagellar motor of the attached bacteria by 
using Cu+2 and EDTA, respectively [18].  A mobile PS bead is stopped when a small 
volume of 5x10-3 M CuSO4 solution is introduced into the motility environment. The 
copper ions diffuse in the solution and bond to the rotor of the flagellar motors.  Next, 
by adding a small volume of 7.5x10-3 M EDTA to the solution, the copper ions are 
chelated and the rotors become free and resume their motion and the bead starts to 
move again.  This on/off motion control can be potentially repeated indefinitely. 
However, using the current off-board method of adding the chemicals used for 
controlling the motion to the test sample, the total volume increases after every on/off 
control cycle which can pose a limitation. This can be resolved by implementation of 
the on-board control module which allows for more localized release of the chemicals 
in significantly smaller volumes.   
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6   Future Challenges 

There still exist many challenges to be resolved towards further developing of the 
hybrid swimming microrobots. Firstly, an on-board control module for on/off 
propulsion control needs to be developed. The current chemical stimulation method is 
off-board and the CuSO4 or EDTA solutions are manually introduced into the motility 
medium.  This is perhaps sufficient for preliminary motion control experiments of the 
hybrid microrobots.  However, with the current off-board method, the diffusion time 
of the CuSO4 and EDTA solutions to reach to the bacteria flagella could be very long 
for larger volumes of liquid, and independent on/off control of large number of 
microrobots is not possible. Therefore, to reduce the diffusion time of the chemicals 
and enable independent on/off actuation of large number of microrobots in the future, 
an on-board propulsion control module will be developed. Such a module could 
consist of two liquid reservoirs for CuSO4 and EDTA solutions, microvalves for 
releasing these solutions in a volume-controlled manner, and an off-board switch for 
actuating the microvalves.  

Steering of the microrobot in 3-D will be possible by fabricating the bacterial array 
at the back of the robot in four separate segments with independent on/off control [3].  
By turning each segment selectively on or off, the microrobot could stochastically go 
forward or turn left, right, up, or down.  This concept is very similar to steering a 
submarine. 

In addition to on-board actuation, there are many other future challenges for 
developing a microscale swimming mobile robot: position detection of the robot and 
on-board (biochemical, pH, temperature, pressure, flow, etc.) sensors, wireless 
communication, computing, and control. 

7   Conclusions 

This paper proposes a new approach for microscale swimming robot actuation by 
integrating biological microorganisms such as bacteria to an inorganic robot body to 
propel it in stagnant/low velocity flow fields.  To show the feasibility of this 
approach, S. marcescens bacteria are attached to microscale objects such as 10 µm 
polystyrene micro-beads by blotting them in a bacteria swarm plate.  Randomly 
attached bacteria are shown to propel the beads at approximately 15 μm/sec average 
speed, stochastically.  Using chemical stimuli, on/off motion control of mobile micro-
beads is achieved.     

Hundreds of thousands of these hybrid swimming microrobots could be used as 
inexpensive agents in distributed systems and swarm robotic system platforms when 
applicable. They could revolutionize health-care and environmental monitoring 
applications in the near future.  These microrobots could also be utilized for artificial 
intelligence applications.  First, since these microrobots have very limited computing 
power, sensing, and actuation and they behave stochastically, their computation  
based intelligence would be minor. Instead these microrobots would have swarm 
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intelligence, self-organization, and emerging behavior by the coordination of large 
numbers of these microrobots using distributed and stochastic control methods in the 
future.   
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Abstract. Compressing real-time input through bandwidth constrained
connections has been studied within robotics, wireless sensor networks,
and image processing. When there are bandwidth constraints on real-
time input the amount of information to be transferred will always be
greater than the amount that can be transferred per unit of time. We
propose a system that utilizes a local diffusion process and a reinforce-
ment learning-based memory system to establish a real-time prediction
of an entire input space based upon partial observation. The proposed
system is optimized for dealing with multi-dimension input spaces, and
maintains the ability to react to rare events. Results show the relation
of loss to quality and suggest that at higher resolutions gains in quality
are possible.

1 Introduction

Sensor systems are often required to transfer spatially related data across band-
width constrained connections. This data can come from many forms: visual, au-
ditory, electrical, etc. [1,2,3,6,8,9,19,21]. We propose a system that compensates
for these constraints by accessing a subset of the available input and performs
a real-time spatio-temporal extrapolation for the values of the unknown input.
The result of this extrapolation is an expectation of the input space. Once an
expectation of the input space is established behaviors can be performed, such
as reacting, planning, and learning [12,20]. The result of the system is a smaller
input size causing a faster update rate, this increases the potential for reactivity,
the relevancy of plans, and pertinence of knowledge. The system described in
section 2 performs this recreation.

Embodied intelligent systems have sensorimotor loops. These loops allow such
systems to observe the environments with which they may interact. Intelligent
systems can then learn to exploit sensorimotor relationships within the envi-
ronment, for example causal relationships. The work of Lungarella and Sporns
provides a foundation for understanding how to learn and exploit such rela-
tionships [7]. The authors suggest an inherent link between a system’s physical
representation and information flow within the system. However, in order to ex-
ploit such relationships the system must have an internal representation of its
physical state.
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An internal representation of physical state and innate knowledge of the sen-
sor and motor systems is not always given; however, they can be learned. Olsson
et al. describe a system which learns a model of its sensorimotor system with
no a priori knowledge [10]. The system initially performs exploratory actions
to develop a map of the relationships between the sensor and motor systems.
An entropy based metric is used for measuring the informational distance be-
tween sensors. The system which is described in this paper follows an alternative
approach of strictly utilizing spatial and temporal relationships between sensors.

Related work in robotics, wireless sensor networks, and image processing ap-
proach the bandwidth constraint problem at different levels. Rixner et al. use
a bandwidth hierarchy specific to media applications [13]. Webb developed a
new set of communications primitives for parallel robotics image processing [19].
Hull, Jamieson, and Balakrishnan used a rule-based approach for real-time band-
width allocation [4]. The proposed system uses temporal and spatial information
to allocate bandwidth in real-time.

A similar approach was investigated by Schneider et al. in a power grid control
application in which distributed value functions were used. Their system allows
nodes to learn a value function which estimates future rewards at every node
in the system [14]. In the context of the proposed system this means that each
sensor stores an estimate of all activity in the system. The most prominent
difference is that diffusion is used as the method for distributing this estimate
along the sensor grid.

2 System

The system consists of a lattice of locations where sensors can reside. Each
and every sensor is capable of accessing multiple types of input at its location.
Examples of these types of input are red, green, and blue sensing modes Sensor
activation ranges from [0, 1] for each mode. 0 means that there is no activity in
the given mode, and 1 means the mode is maximally active. Each type of input
is referred to as a sensing mode. By adaptively selecting each sensor’s active
sensing modes based upon a set of sensor memory chemicals it is possible to
reduce the number of sensors necessary to adequately sense the environment, as
well as the reduce the amount of bandwidth used by sensors. These reductions
are the result of an iterative chemical diffusion process. These components are
further described in the following subsections.

2.1 Sensors

The sensors are homogeneous, in that each sensor is capable of sensing the same
number of modes as the others. In order to replicate the observed environment
every sensor must observe every mode in the environment, this is equivalent to
performing a complete copy of the environment. However, in many cases the
environment changes in a temporally related manner. This temporal relation
is exploited by sensing fewer than the total available number of modes, and



166 K.I. Harrington and H.T. Siegelmann

Fig. 1. First, a sensor accessing all n modes at once which requires n observations.
Second, a sensor accessing ζ dynamically selected modes which requires ζ observations,
where ζ < n.

extrapolating the values of modes based upon learned sensor histories, which we
refer to as chemical because they are distributed via diffusion.

2.2 Sensor Chemicals

Sensor activity is stored in chemicals just as value functions are learned by
temporal-difference reinforcement learning[15]. For each sensing mode, there are
two chemicals that act as sensory memory, CS , short-term memory and CL,
long-term memory. The parameters γS and γL are the discount-rate, the rate at
which a value fades from memory, and γS < γL. These chemicals are produced
by the rate equations

CS = CS + α((SA + γSCS) − CS)
CL = CL + α((SA + γLCL) − CL)

where, SA is the activation value of the sensor for mode A, and α is the learning
rate. In this case state refers to the chemical configuration. An example of sensor
chemicals within a sensor changing over time can be seen in figure 2. The sensor
chemicals also represent short- and long-term activation values. This allows the
short-term chemical to be used directly for reconstruction.

In order for the system it must be able to reconstruct an expectation of the
environment based upon the current chemical configuration. Reconstruction is
a simple local process performed at each sensor for every sensing mode. If the
sensor has already observed activity in the given mode, then the activity is
already known and that value is used. Otherwise, the value of the short-term
chemical is used. This allows the system to automatically maintain expectations
of activity in every observable mode.

The diffusion coefficients of the sensor chemicals are numbers in the range
of [0, 1]. This allows the system to exhibit a continuum of behaviors. When the
diffusion coefficient is set to 0 all local history is retained, to 1 all local history is
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Fig. 2. Sensor chemicals over time for an example sensor. 2 of 3 possible modes were
active in this case. The sensor switches its 2 active modes based upon the current
concentration of short- and long-term chemicals.

distributed to neighboring sensors causing a global history. The diffusion coeffi-
cients allow control to be exercised on the amount of information that is shared
amongst neighboring nodes.

2.3 Diffusion

The premise for using diffusion is inspired by Turing’s explanation of pattern
formation by reaction-diffusion [17]. Two properties appear by diffusion. First,
older information can be retained. By diffusing off the edges of the lattice some
information is lost. Second, localized diffusion propagates information globally
over time, allowing sensors to anticipate unobserved activity. Diffusion occurs
according to Ci

r = Ci
r + Di

∑
r∼r′(Ci

r′ − Ci
r), where Ci is the amount of sensor

chemical i, and Di is the diffusion coefficient for sensor chemical i. The relation
r ∼ r′ is held for the Von Neumann neighborhood [18] of the target node for
diffusion along the lattice, and the relation r ∼ r′ is from a sensor to the node
it occupies for diffusion into the sensor.

2.4 Sensor Mode Selection

A variable ζ ∈ [0, m], where m is the total number of modes, controls the number
of active modes in each sensor. ζ modes are selected incrementally using ε-greedy
based on the greatest difference between CS and CL for each mode. The ε-greedy
selection process has two results, the greedy result where the selected mode
max(CS − CL), or the random result where a random mode is selected. Greedy
is always selected, unless p < ε, where p is the probability of selecting a random
mode [16]. As is mentioned with respect to sensing rare events, the value of ε
controls the minimum frequency at which events can be detected.



168 K.I. Harrington and H.T. Siegelmann

2.5 Sensing Rare Events

The sensing of rare events is heavily reliant on the use of ε-greedy selection for
modes. By increasing the value of ε towards 1 it is possible to detect more rare
events by the random selection; however, it decreases the performance on sensing
the overall environment. In most cases it is more beneficial to, instead of or in
conjunction to increasing the value of ε, to increase the number of active modes.
This is because ε-greedy selection is applied for each mode to be sensed during
a given update.

2.6 Observed Environment

The specifications for an environment are minimal. The environment must have
a function that returns the value for a region defined by a point and a radius,
shown in figure 3. In our case the radius is a Von Neumann neighborhood radius
and the value for the region is the sum of activity at each point within that region,
Fig. 3 illustrates this. The environment can consist of multiple modalities to be
sensed, in this case a function is necessary for each mode. It is also possible for
the observed environment to be dynamic with respect to time. The dynamics of
the environment should be spatially and temporally related.

Fig. 3. Sensor with center, c, and radius, r=2. This sensor would return the sum of
the values of each highlighted cell.

3 Experiments

3.1 Experiment I: Rare Events Are Detected

The system’s ability to detect rare events was evaluated in an environment with
a blue background and one small red circle, which moved across the environment
infrequently from some same edge 4 times over 1000 iterations. The area of the
red circle was 7% of the entire environment. A prevalent tactic for compres-
sion is spatial generalization; however, when generalizing based on the spatial
relationships of sensory information it is frequent that small rare events may
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Fig. 4. Snapshot of experiment I, a blue environment with red circle that moves into
the environment periodically. First is the original image. Second are the observations
colored for respective their modes, black sensors are observing modes for which there
is no activity. Third is the chemical prediction of original image. The environment and
the sensor lattice are 100x100, the red circle is of radius 15. ζ = 1, meaning only one
color can be sensed by any given sensor.

be filtered out. The use of the ε-greedy method allows for small rare events to
be fairly easily detected if the value of epsilon is adjusted according to the size
of potential rare events. The system strictly favors more recent sensor memory,
regardless of its value. This experiment was designed to test whether the system
was still capable of responding to new events even after saturating its memory
with a single mode.

For the case of rare events the set of parameters that were of the most interest
were a mode compression of ζ = 1 given a blue background and a relatively small
mobile red event. This is because this parameter setting allows the system to
be saturated with activity from one mode, then a rare event from another mode
is presented. The detection of the rare event can then be observed. Results for
ζ = 1 for 100x100 environments had an average error less than 2.5%. The quality
of this detection is exemplified in Fig. 5, which illustrates a 100x100 observed
environment with no resolution compression, and a mode compression of 1.0.

3.2 Experiment II: Simultaneous Activity Is Observed for All ζ

This experiment was designed to demonstrate the system’s ability to handle
simultaneous activity. For this experiments there were 3 modes which were rep-
resented by the colors, red, green, and blue. All instances were evaluated for
1000 iterations. The experiment utilizes three trajectories, each represented by a
different colored circle. The trajectories are as follows: red, a half-circle from top-
left to bottom-left, green, a circle rotating around the environment, and blue,
a horizontal hourglass across the environment. The trajectories were selected
such that each combination of overlapping circles occurred multiple times. This
is to ensure that even with small values of ζ all modes are still sensed. This
environment was evaluated in three cases, A, a 10x10 observable environment
and 10x10 sensor lattice, B, a 100x100 observable environment and 10x10 sensor
lattice, and C, a 100x100 observable environment and 100x100 sensor lattice.

Our results show the utility of this system with variety of dimensions of the
sensor grid and environment with respect to simultaneous activity. We evolved a
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Fig. 5. Image of the system demonstrating the ability to represent 3 modes with 2
active modes. Three circles, one for each mode, follow unique trajectories with multi-
ple intersections. Images of 3 of these intersections are shown, each of which has the
following 4 displays Top left, sensors’ prediction of the environment. Top right, activity
recorded by sensors. Bottom left, original image. Bottom right, the absolute value of
difference between the original and predicted image.

Fig. 6. Results for the three cases in experiment II, A, a 10x10 observable environment
and 10x10 sensor lattice, B, a 100x100 observable environment and 10x10 sensor lattice,
and C, a 100x100 observable environment and 100x100 sensor lattice. The relationship
between the number of active modes and prediction accuracy is shown. For cases A and
B the percent error is approximately equal to the amount of the environment that is
not observed. For case C the percent error is less than the amount of the environment
that is not observed.

population of 50 parameter settings for 1, 000 different parameter settings. Fig.6
illustrates the effect of mode compression, ζ

m where m is the number of modes,
on the quality of the final product. We define this quality in terms of prediction
error, which is simply defined as the difference between the original image and
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the prediction summed over all modes for all sensors. Cases A and B show the
system producing results of approximately equal quality to percentage of the
environment that is known. Both of these cases consisted of low resolution grids,
yet the system still maintained an output that was at least consistent with the
amount of compression, if not actually providing enough inference to reduce the
error beyond minimal expectation. In both cases the amount of error and the
amount of compression sum up to approximately 100%. This means the amount
of error is equivalent to the amount of the environment that the system did
not observe. The similarity between the cases A and B suggest that the size
of the sensor grid limits the quality of the compression. Case C illustrates the
difference between compression and error with an image of higher resolution.
The compression and error sum to significantly less than 100%.

4 Conclusions

It is important that the results with low resolutions show the compression to
maintain a total quality that does not decrease beyond that of unprocessed in-
put with an equivalent bandwidth constraint. This observed quality threshold
is suggestive when considered with the results in Fig. 8. By increasing the res-
olution of the image it possible for the quality to increase above the quality
of uncompressed data through an equivalently small bottleneck. This suggests
that it is possible for high resolution images to maintain smaller storage and/or
network transfer footprints. These benefits are similar to those Kansal et al.
obtained by using motion control [5].

We have presented a system which allows real-time input to be scaled through
a bandwidth constraint while maintaining a level of quality appropriate to the
amount of compression used. The system does not require any overhead band-
width, instead selects which values from the environment are transferred. Values
are recorded as sensor chemicals which are diffused across the sensor grid. When
used at higher resolutions, some values of ζ allowed for quality surpassing 100%.
Our results suggest that this system is useful for compressing some types of
real-time input through bandwidth constraints.

5 Future Work

Future work will investigate an implementation of the previously described sys-
tem in a 3-dimensional environment. Additionally, discretization of sensor input
will be used to further reduce bandwidth usage [11]. Embodied implementa-
tions of this system should investigate sensorimotor regularities induced by the
addition of a motor system for further optimization [7].

Acknowledgements

We acknowledge funding from NSF grant ECS-0501432.



172 K.I. Harrington and H.T. Siegelmann

References

1. Babilonia, F., Mattiab, D., Babilonia, C., Astolfib, L., Salinarie, S., Basiliscoa, A.,
Rossinic, P.M., Marcianib, M.G., Cincotti, F.: Multimodal integration of EEG,
MEG, and fMRI data for the solution of the neuroimage puzzle. Magnetic Reso-
nance Imaging 22, 1471–1476 (2004)

2. Gottesfeld Brown, L.M.: Registration of Multimodal Medical Images - Exploiting
Sensor Relationships. PhD thesis, Columbia University (1996)

3. DuFaux, F., Moscheni, F.: Motion estimation techniques for digital TV: A review
and a new contribution. Proceedings of IEEE 83(6), 858–876 (1995)

4. Hull, B., Jamieson, K., Balakrishnan, H.: Bandwidth management in wireless sen-
sor networks. Technical report, Massachusetts Institute of Technology (2003)

5. Kansal, A., Kaiser, W., Pottie, G., Srivastava, M., Sukhatme, G.S.: Virtual high-
resolution for sensor networks. In: ACM SenSys, ACM Press, New York (2006)

6. Kulkarni, P., Ganesan, D., Shenoy, P., Lu, Q.: Senseye: a multi-tier camera sensor
network. In: MULTIMEDIA 2005. Proceedings of the 13th annual ACM interna-
tional conference on Multimedia, New York, NY, USA, pp. 229–238 (2005)

7. Lungarella, M., Sporns, O.: Mapping information flow in sensorimotor networks.
PLoS Computational Biology 10, 1301–1312 (2006)

8. Mario, X.H.: Load balanced, energy-aware communications for mars sensor net-
works. In: IEEE Aerospace Conference Proceedings (2002)

9. Olsson, L., Nehaniv, C.L., Polani, D.: Sensory channel grouping and structure from
uninterpreted sensor data. In: Proceedings of NASA/DoD Conference on Evolvable
Hardware (2004)

10. Olsson, L., Nehaniv, C.L., Polani, D.: From unknown sensors and actuators to
visually guided movement. In: Proceedings of the 4th International Conference on
Development and Learning (2005)

11. Olsson, L., Nehaniv, C.L., Polani, D.: Sensor adaptation and development in ro-
bots by entropy maximization of sensory data. In: CIRA 2005. Proceedings of
IEEE International Symposium on Computational Intelligence in Robotics and
Automation (2005)

12. Prati, A., Vezzani, R., Benini, L., Farella, E., Zappi, P.: An integrated multi-modal
sensor network for video surveillance. In: VSSN 2005. Proceedings of the third ACM
international workshop on Video surveillance & sensor networks, New York, NY,
USA, pp. 95–102 (2005)

13. Rixner, S., Dally, W.J., Kapasi, U.J., Khailany, B., Lopez-Lagunas, A., Mattson,
P.R., Owens, J.D.: A bandwidth-efficient architecture for media processing. In:
International Symposium on Microarchitecture, pp. 3–13 (1998)

14. Schneider, J., Wong, W.-K., Moore, A., Riedmiller, M.: Distributed value functions.
In: Proceedings of the 16th International Conference on Machine Learning, pp.
371–378. Morgan Kaufmann, San Francisco, CA (1999)

15. Sutton, R.S.: Learning to predict by the methods of temporal differences. Machine
Learning 3, 9 (1988)

16. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

17. Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transactions of
the Royal Society of London. Series B, Biological Sciences 237(641), 37–72 (1952)

18. von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois
Press, Urbana, Illinois (1966)



Adaptive Multi-modal Sensors 173

19. Webb, J.A.: Latency and bandwidth considerations in parallel robotics image
processing. In: Proceedings of Supercomputing, pp. 230–239 (1993)

20. Weise, T., Geihs, K.: Genetic programming techniques for sensor networks. In:
Proceedings of 5. GI/ITG KuVS Fachgespräch “Drahtlose Sensornetze”, pp. 21–25
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Abstract. The human brain is the best example of intelligence known, with 
unsurpassed ability for complex, real-time interaction with a dynamic world. AI 
researchers trying to imitate its remarkable functionality will benefit by learning 
more about neuroscience, and the differences between Natural and Artificial 
Intelligence. Steps that will allow AI researchers to pursue a more brain-
inspired approach to AI are presented. A new approach that bridges AI and 
neuroscience is described, Embodied Cultured Networks. Hybrids of living 
neural tissue and robots, called hybrots, allow detailed investigation of neural 
network mechanisms that may inform future AI. The field of neuroscience will 
also benefit tremendously from advances in AI, to deal with their massive 
knowledge bases and help understand Natural Intelligence. 

Keywords: Neurobiology, circular causality, embodied cultured networks, 
animats, multi-electrode arrays, neuromorphic, closed-loop processing, Ramon 
y Cajal, hybrot. 

1   Introduction 

An alien power plant was unearthed in a remote South American jungle. After 
excavating and dusting it off, the archeologists flip the switch, and it still works! It 
generates electricity continuously without needing fuel. Wouldn’t we want to make 
more of these power plants? Wouldn’t we want to know how this one works? What if 
the scientists and engineers who design power plants saw photos of the locals using 
electricity from the alien power plant, and knew it reliably powers their village. Yet 
they ignore this amazing artifact, and feel it has little relevance to their job. Although 
this scenario seems implausible, it is analogous to the field of AI today. We have, 
between our ears, a supremely versatile, efficient, capable, robust and intelligent 
machine that consumes less than 100 Watts of power. If AI were to become less 
artificial, more brain-like, it might come closer to accomplishing the feats routinely 
carried out by Natural Intelligence (NI). Imagine an AI that was as adept as humans 
at speech and text understanding, or reading someone's mood in an instant. Imagine 
an AI with human-level creativity and problem solving. Imagine a dexterous AI, 
which could precisely and adaptively manipulate or control physical artifacts such as 
violins, cars, and balls. Humans, thanks to our complex nervous system, are especially 
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good at interacting with the world in real time in non-ideal situations. Yet, little 
attention in the AI field has been directed toward actual brains. Although many of the 
brain’s operating principles are still mysterious, thousands of neuroscientists are 
working hard to figure them out.1   

Unfortunately, the way neuroscientists conduct their research is often very 
reductionistic [1], building understanding from the bottom up by small increments. A 
consequence of this fact is that trying to learn, or even keep up with, neuroscience is 
like trying to drink from a fire hose. General principles that could be applied to AI are 
hard to find within the overwhelming neuroscience literature.   

AI researchers, young and old, might do well to become at least somewhat 
bilingual. Taking a neuroscience course or reading a neuroscience textbook would be 
a good start. Excellent textbooks include (among others) Neuroscience [2], 
Neuroscience: Exploring the Brain [3], and Principles of Neural Science [4]. There 
are several magazines and journals that allow the hesitant to gradually immerse 
themselves into neuroscience, one toe at a time. These specialize in conveying general 
principles or integrating different topics in neuroscience. In approximate order of 
increasing difficulty, some good ones are: Discover, Science News, Scientific 
American Mind, Cerebrum, Behavioral and Brain Sciences (BBS), Trends in 
Neuroscience, Nature Reviews-Neuroscience, and Annual Review of Neuroscience. 
BBS deserves special mention, because of its unusual format: a 'target article' is 
written by some luminary, usually about a fairly psychological or philosophical aspect 
of brains. This is followed by in-depth commentaries and criticisms solicited from a 
dozen or more other respected thinkers about thinking. These responses provide every 
side of a complex issue, and often include many of the biological foundations of the 
cognitive functions being discussed. The responses are followed by a counter-
response from the author of the target article. BBS is probably the best scholarly 
journal that regularly includes and combines contributions from both neuroscientists 
and AI researchers.2   

In this networked era, the internet can be a cornucopia, or sometimes, a Pandora's 
Box for AI researchers who want to learn about real brains. Be wary of web pages 
expounding brain factoids, unless there is some form of peer review that helps 
maintain the quality and integrity of the information. Wikipedia is rapidly becoming 
an extremely helpful tool for getting an introduction to any arcane topic, and has an 
especially elaborate portal to Neuroscience.3 Caution: it is not always easy to find the 
source or reliability of information given there. A more authoritative source on the 
fields of computational neuroscience and intelligence is Scholarpedia.4 The Society 

                                                           
1 I will define neuroscience as all scientific subfields that aim to study the nervous system 

(brain, spinal cord, and nerves), including neurophysiology, neuropathology, neuropharma-
cology, neuroendocrinology, neurology, systems neuroscience, neural computation, neuro-
anatomy, neural development, and the study of nervous system functions, such as learning, 
memory, perception, motor control, attention, and many others. Neurobiology is thought of 
today as the basis of all neuroscience (ignoring some lingering dualism) and the terms are 
often used interchangably. 

2 BBS Online: http://journals.cambridge.org/action/displayJournal?jid=BBS 
3 http://en.wikipedia.org/wiki/WP:NEURO 
4 http://www.scholarpedia.org 
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for Neuroscience (SFN) website5 is an excellent and reliable source of introductory 
articles about many neuroscience topics. The SFN consists of over 30,000 (mostly 
American) neuroscientists who meet annually and present their latest research to each 
other. All of the thousands of abstracts for meetings back to the year 2000 are 
searchable on the Annual Meeting pull-down. Although not itself a repository of 
introductory neuroscience material, the Federation of European Neuroscience 
Societies website6 is a good jumping-off point for all things Euro-Neuro.  

2   What Do We Already Know About NI (Natural Intelligence) 
That Can Inform AI?  

2.1   Brains Are Not Digital Computers 

John von Neumann, the father of the architecture of modern digital computers, made a 
number of thought-provoking and influential analogies in his book, "The Computer 
and the Brain." [5] The brain-as-digital-computer metaphor has proven quite popular, 
and often gets carried too far. For example, a neuron's action potential7 is often 
referred to by the AI field as a biological implementation of a binary coding scheme. 
This and other misinterpretations of brain biology need to be purged from our 
thoughts about how intelligence may be implemented. Even with our rudimentary 
conception of how it is implemented in brains, there are clear differences between 
computers and brains, such as: 

2.2   Brains Don't Have a CPU  

The brain's processor is neither "central" nor a "unit". Its processing capabilities seem 
to be distributed across the entire volume of the brain. Some localized regions 
specialize in certain types of processing, but not without substantial interaction with 
other brain areas [6].  

2.3   Memory Mechanisms in the Brain Are Not Physically Separable from 
Processing Mechanisms  

Recent research has shown that similar brain regions are activated in recalling a 
memory as would be during perceiving [7]. This may be because an important part of 
perceiving is comparing sensory inputs to remembered concepts. Memories are 
dynamic, and continually re-shaped by the recall process [8]. A computer architecture 
that unites the processor, RAM, and hard disk into one and the same substrate might 
be far more efficient. An architecture that implements memory as a dynamic process 
rather than a static thing may be more capable of interacting in real time with a 
dynamic world.  

                                                           
5 http://www.sfn.org 
6 http://fens.mdc-berlin.de 
7 Action potentials are regenerative electrical impulses that neurons evolved to send informa-

tion across long axons. They involve a fluctuation of the neuron membrane potential of ~0.1 
V across a few milliseconds. 
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2.4   The Brain Is Asynchronous and Continuous 

The computer is a rare type of artifact that has well-defined (discontinuous) states [9], 
thanks to the fact that its computational units are always driven to their binary 
extremes each tick of the system clock. There are many brain circuits that exhibit 
oscillations [10], but none keeps the whole brain in lock-step the way a system clock 
does for a digital computer. The phase of some neural events in relation to a circuit's 
ongoing oscillation is used to code for specific information [11], and phase is a 
continuous quantity.   

2.5   With NI, the Details of the Substrate Matter 

Digital computers have been very carefully designed so that the details of their 
implementation don't influence their computations. Vacuum tubes, discrete 
transistors, and VLSI transistors, since they all speak Boolean, can all run the same 
program and produce the same result. There is a clear, intentional separation between 
the hardware and the software. All neuroscience research so far suggests this 
separation does not exist in the brain.   

How do the details of its substrate influence the brain's computations? Every 
molecule that makes up the brain is in continuous motion, as with all liquids. The 
lipid bilayer that comprises the neuron's membrane is often referred to as a 2-
dimensional liquid and is part of the neural wetware. The detailed structure of the 
proteins that make up brain cells can only be determined when they are crystallized in 
a test tube, that is, purified and stacked into unnatural, static, repeating structures that 
form good x-ray diffraction patterns. In their functional form, proteins (and all brain 
molecules) are jostling around, continuously bombarded by the cytoplasm or 
cerebrospinal fluid that surrounds them, like children frolicking in a pen full of plastic 
balls. Small details about neurons' structure, such as the morphing of tiny (micron-
sized) synaptic components called dendritic spines [12], or the opening and closing of 
voltage-sensitive or neurotransmitter-sensitive ion channels, affect their function at 
every moment. All that movement of molecules and parts of cells is the substrate of 
NI, facilitating or impeding communication between pairs of brain cells and across 
functional brain circuits. Why should AI researchers concern themselves with the 
detailed, molecular aspects of brain function? Because, fully duplicating brain 
functionality may only be possible using a substrate as complex and continuous as 
living brain cells and their components are. 

That disappointing possibility should not keep us from trying at least to duplicate 
some brain functionality by taking cues from NI. Carver Mead, Rodney Douglas, and 
other neuromorphic engineers have designed useful analog circuits out of CMOS 
components that take advantage of more of the physics of doped silicon than just its 
ability to switch from conducting to non-conducting states [13]. The continuous 
"inter-spike interval" between action potentials in neurons is believed to encode 
neural information [14] and also seems to be responsible for some of the brain's 
learning abilities [15]. Neuromorphic circuits that use this continuous-time pulse-
coding scheme [13, 47] may be able to process sensory information faster and more 
efficiently than could digital circuits.  
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2.6   NI Thrives on Feedback and Circular Causality  

The nervous system is full of feedback at all levels, including the body and the 
environment in which it lives; it benefits in a quantifiable way from being embodied 
and situated [16, 17]. Unlike many AI systems, NI is highly interactive with the 
world. Human-engineered systems are more tractable when they employ assembly-
line processing of information, i.e., to take in sense data, then process it, then execute 
commands or produce a solution.  Most sensory input to living systems is a dynamic 
function of recent or ongoing movement commands, such as directing gaze, walking, 
or reaching to grasp something. With NI, this active perception and feedback is the 
norm [17, 18]. Animal behaviors abound with circular causality, new sensory input 
continuously modulating the behavior, and behavior determining what is sensed [19]. 
One beautiful example of active perception that humans are especially good at is 
asking questions. If we don't have enough information to complete a task, and a more 
knowledgeable person is available, we ask them questions. New AI that incorporates 
question-asking and active perception can solve problems quickly that would take too 
long to solve by brute force serial computation [16, 20].  

There are few brain circuits that involve unidirectional flow of information from the 
sensors to the muscles. The vast majority of brain circuits make use of what Gerald 
Edelman calls reentry [21]. This term refers to complex feedback on many levels, which 
neuroscientists have only begun to map, let alone understand. Neuroscience research 
suggests that a better understanding of feedback systems with circular causality would 
help us design much more flexible, capable, and faster AI systems [9]. 

2.7   NI Uses LOTS of Sensors 

One of the most stunning differences between animals and artificial intelligences is 
the huge number of sensors animals have. NI mixes different sensory modalities to 
enable rapid and robust real-time control. Our brains are very good at making the best 
use of whatever sense data are available. Without much training, blind people can 
deftly navigate unfamiliar places by paying attention to the echoes of sounds they 
make, even while mountain-biking off road!8[22] Bach y Rita's vibrotactile display 
placed a video camera's image onto a blind person's skin, in the form of a few 
hundred vibrating pixels. By actively aiming the camera, the user could "see" tactile 
images via their somatosensory system, allowing them to recognize faces and to avoid 
obstacles [23, 24]. The continuous flow of information into the brain from the sense 
organs is enormous. To make AI less artificial, we could strive to incorporate as much 
sensing power as we dare imagine. When AI adopts a design philosophy that 
embraces, rather than tries to minimize high-bandwidth input, it will be capable of 
increasingly more rapid and robust real-time control.  

2.8   NI Uses LOTS of Cellular Diversity 

There are more different types and morphologies of cells in the brain than in any other 
organ, perhaps than all organs and tissues combined. Many of these were catalogued 
by neuroscientist, Santiago Ramon y Cajal a century ago (Fig. 1) [25, 26], but more 
 

                                                           
8 http://www.worldaccessfortheblind.org/ 
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Fig. 1. Neurons and circuits traced a century ago by Spanish neuroanatomist, Santiago Ramon 
y Cajal (pictured in center). This montage depicts only a few of the many types of neuron 
morphologies found throughout the nervous system. (Adapted with permission from Swanson 
& Swanson ©1990 MIT Press). 

are still being discovered [27]. Another sign of the brain's complexity is the large 
amount of genetic information that allows it to develop and function. Both mice and 
men have ~30,000 genes in their genome, and over 80% of these are active in the 
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brain.9 All this cellular complexity and diversity may be crucial in creating an 
intelligent processor that is general-purpose and highly adaptable. 

2.9   NI Uses LOTS of Parallelism 

The brain's degree of parallelism is not rivaled by any human-made artifact. There are 
about 100 billion neurons in our brains, each connected to 1,000-10,000 others with 
over 200,000 km of axons, which we have barely begun to map [28]. The brain's 
circuits seem to have small-world connectivity [29], i.e., many local connections and 
relatively few, but crucial, long range connections. The latter integrate the activities of 
cooperating circuits running simultaneously and asynchronously. Although our 
knowledge of this elaborate connectivity is rudimentary, some general principles, 
such as small-world connectivity, could make future AI more capable. 

2.10   Delays Are Part of the Computation 

It is sometimes mistakenly stated that neurons are slow computational elements, since 
they fire action potentials at a few hundred Hz at most. The parallelism mentioned 
above is one way to enable rapid computation with "slow" elements. Modern 
computers, which are not very parallel if at all, reduce computation and transmission 
delays in every way possible, from shorter leads, to faster clocks, to backside caches. 
Any time spent getting information from here to there in a digital computer is viewed 
as a wasteful impediment to getting on with the computation of the moment. In the 
brain, delays are not a problem, but an important part of the computation. The subtle 
timing of action potentials carries information about the dynamics and statistics of the 
outside world [30]. The relative timing of arrival of two action potentials to the 
postsynaptic neuron determines whether the strength of their synapse is incrementally 
increased or decreased [31]. These pulse timings are analog quantities. The brain 
computes with timing, not Boolean logic [32]. Brain-inspired AI of the future will be 
massively parallel, have many sensors, and will make good use of delays and the 
dynamics of interactions between analog signals [33]. 

3   What Do We Not Know About How Brains Work, But Could 
     Learn? 

To realize this dream of AI that is closer to NI, there are a number of important 
questions about how brains work that must be pursued, such as: What is a memory? 
How do biological networks work? The neurons and glial cells both store and process 
information in a spatially distributed manner. But we have only a very vague and 
fuzzy idea of just how they do that. The Blue Brain Project is setting a giant 
supercomputer (the son of Deep Blue) to the task of simulating just one cortical 
minicolumn of a few thousand neurons [34]. There is a lot going on at the level of 
networks that we don’t even have the vocabulary to think about yet. Neurobiologists 
all believe that memories are stored by changes in the physical structure of brain cells 
such as increases in the number of branches or spines on a neuron's dendritic tree. We 
                                                           
9 See the Allen Institute Brain Atlas, http://www.brainatlas.org/aba/index.shtml 



 What Can AI Get from Neuroscience? 181 

don’t all agree about what those changes might be, let alone how the changes are 
executed when salient sensory input is received. As hinted by Ramon y Cajal's 
drawings (Fig. 1), neurons have a stunning diversity of morphologies [35]. There is 
evidence that some aspects of their shape are altered by experience [36-38]. But how 
that relates to a memory being stored is not known.  

4   New Neuroscience Tools 

A new type of experimental animal, called the Hybrot, is taking shape in the 
Laboratory for Neuroengineering at the Georgia Institute of Technology. This is a 
hybrid robot, an artificial embodiment controlled by a network of living neurons and 
 

  

Fig. 2. Hybrots: hybrid neural-robotics for neuroscience research. A living neuronal network is 
cultured on a multi-electrode array (MEA) where its activity is recorded, processed in real time, 
and used to control a robotic or simulated embodiment, such as the K-Team Khepera or Koala 
(pictured at lower right). The robot’s input from proximity sensors is converted to electrical 
stimuli that are fed back to the neuronal network within milliseconds via a custom multi-
electrode stimulation system. The hybrot’s brain (MEA culture) can be imaged continuously on 
the microscope while its body behaves and learns. The microscope is enclosed in an incubator 
(lower left) to maintain the health of the living network. This closed-loop Embodied Cultured 
Networks approach may shed light on the morphological correlates of memory formation, and 
provide AI researchers with ideas about how to build brain-style AI. 
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glia cultured on a multi-electrode array (MEA) [39-41]. It will be helpful in studying 
some of these difficult neuroscience questions. We now have the hardware and 
software necessary to create a real-time loop whereby neural activity is used to 
control a robot, and its sensory inputs are fed back to the cultured network as patterns 
of electrical or chemical stimuli (Fig. 2; [42]).   

These embodied cultured networks bring in vitro neuroscience models out of 
sensory deprivation and into the real world. They form a much needed bridge between 
neuroscience and AI. An MEA culture is amenable to high-resolution optical imaging 
[43], while the hybrot is behaving and learning, from milliseconds to months [44]. 
This allows correlations to be made between neural function and structure, in a living, 
awake and behaving subject. One of our hybrots, called MEART, was used to create 
portraits of viewers in a gallery. Its sensory feedback, images of its drawings in 
progress, affected the next action of the robotic drawing arm, in a closed-loop fashion 
[45]. This has been used to explore the neural mechanisms of creativity. Whether a 
network of a few thousand neurons can be creative is still up for debate, but it is 
vastly more complex than any existing artificial neural network. By studying 
embodied cultured networks with these new tools, we may learn some new aspects of 
network dynamics, memory storage, and sensory processing that could be used to 
make AI less artificial [41].  

5   Neuroscience to AI and Back Again 

Biologically-inspired artificial neural networks [46], mixed analog/digital circuits [47] 
and computational neuroscience approaches that attempt to elucidate brain networks 
[48] (as opposed to cellular properties) are gradually becoming more tightly coupled 
to experimental neuroscience. The fields of Psychology and Cognitive Science have 
traditionally made progress using theoretical foundations having little or no basis in 
neuroscience, due to a lingering Cartesian dualism in the thinking of their 
practitioners [49]. However, with neuroscience advances in psychopharmacology 
(e.g., more targeted neuroactive drugs) and functional brain imaging (e.g., functional 
MRI), Psychology and Cognitive Science advances are becoming increasingly based 
on and inspired by biological mechanisms. It's time for AI to move in the brainwards 
direction. This could involve PhD programs that merge AI and neuroscience, journals 
that seek to unite the two fields, and more conferences (such as the one that spawned 
this book) at which AI researchers and neuroscientists engage in productive dialogs. 

Neuroscientists have not exactly embraced AI either. Both sides need to venture 
across the divide and learn what the other has to offer. How can neuroscience benefit 
from AI? As we have seen, brains are far too complicated for us to understand at 
present. AI can produce new tools for compiling the mass of neuroscience results 
published, and coming up with connections or general theoretical principles. On a 
more mundane but important level, we need AI just to help us deal with the massive 
data sets that modern neuroscience tools produce, such as multi-electrode arrays and 
real-time imaging. The new field of neuroinformatics has to date been mostly 
concerned with neural database design and management. Soon, with help from AI, it 
will incorporate more data mining, knowledge discovery, graphic visualization, 
segmentation and pattern recognition, and other advances yet to be invented. One can 
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imagine that by increasing the synergy between AI and neuroscience, a bootstrapping 
process will occur: more neuroscience research will inform better AI, and better AI 
will give neuroscientists the tools to make more discoveries and interpret them. 
Where it will lead, who knows, but it will be an exciting ride!   
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Abstract. This case study demonstrates how the synthesis and the
analysis of minimal recurrent neural robot control provide insights into
the exploration of embodiment. By using structural evolution, minimal
recurrent neural networks of general type were evolved for behavior con-
trol. The small size of the neural structures facilitates thorough inves-
tigations of behavior relevant neural dynamics and how they relate to
interactions of robots within the sensorimotor loop. We argue that a clar-
ification of dynamical neural control mechanisms in a reasonable depth
allows quantitative statements about the effects of the sensorimotor loop
and suggests general qualitative implications about the embodiment of
autonomous robots and biological systems as well.

1 Introduction

The framework of embodied artificial intelligence has impressively demonstrated
that problems in behavior control of autonomous robots, which seem to be
rather complicated if approached from a mere computational perspective, but
turn out to be surprisingly simple when characteristics of the sensorimotor loop
are taken into account appropriately[1]. The challenge is that we usually do
not know a priori what “appropriate” means, because the sensorimotor loop in-
volves all the physical properties of the robot (inertia, friction, resonances, shape,
etc.) as well as its interaction with the world. Therefore, Evolutionary Robotics
(ER) is proposed as a promising testbed for studying the power of embodiment
[2,3]. Artificial evolution provides the exploration of hitherto unknown and ef-
ficient solutions by reducing prejudices and predispositions made by a human
designer [4].

As an example, Nolfi [5] describes the emergence of modularity in evolved
neural control, which does not correspond to task decomposition as a human
observer would assume. Based on such networks, Ziemke [6] emphasizes the rel-
evance of recurrent neural networks (RNNs) in the context of multi-functional
and context-sensitive behavior control. In contrast, Suzuki et al. [7] demonstrate
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how a simple feed-forward structure in conjunction with robot-environment in-
teractions realizes robust and adaptive behavior control through complex visual
sensorimotor mappings.

Within the realm of feed-forward and recurrent neural control quantitative
statements about the properties of the sensorimotor loop are needed [8]. It should
be clarified where recurrent neural control structures are necessary and where
simple feed-forward mappings are sufficient if the body, the dynamics of the
environment, and the action-perception processes of a robot are taken into ac-
count. The difficulty in deriving qualitative statements from the effects of the
sensorimotor loop is twofold. On the one hand, it is impossible to find a formal
description of the sensorimotor loop including all relevant aspects. On the other
hand, if RNNs are used for complex behavior control, usually only the para-
meters, but not the structure, of a predefined neural network are optimized by
evolution. In the majority of the cases, the resulting control structures are high
dimensional systems. But high dimensionality makes it practically infeasible to
clarify whether complex behavior is basically generated by the control structure
or results from robot-environment interactions.

While the first point let us conclude that qualitative statements about the
impact of the sensorimotor loop on robot control can be made only indirectly,
that is, based on a reasonable understanding of the evolved neurodynamics. The
second aspect, namely high dimensionality, seems to counter it. The objective
of this paper is to introduce a strategy in ER supporting this approach termed
as synthesis and analysis of minimal recurrent neural robot control. Further on,
we will give representative examples where an application of this strategy has
provided us with enlightening examples demonstrating the importance of the
sensorimotor loop on behavior control for autonomous mobile robots. The exper-
iments will show how robot-environment interactions give rise to integrated and
induced oscillations, the use of transient effects, and the emergence of rhythms
and behavior coordination. All these examples show how complex behavior rel-
evant dynamics provided by RNNs are modulated by the sensorimotor loop.

2 Synthesis and Analysis of Minimal Recurrent Neural
Controllers

We are using a standard additive neuron model with sigmoidal transfer function
f(x) and discrete time dynamics: ai(t + 1) = Θi +

∑n
j=0 wij · f(aj(t)) , i =

1, . . . , n , where ai is the activation of neuron i, wij the weight of the synapse
projecting from neuron j, and Θi the bias term. Already small recurrent net-
works of this type can generate complex dynamics [9]. That’s why we apply an
evolutionary algorithm called ENS3 (evolution of neural systems by stochastic
synthesis) to evolve neural connectivity structures (hidden neurons and synapses)
and optimize their corresponding parameters (weight and bias terms) at the same
time. By modifying certain stochastic variation operators, such as the insertion
and deletion probability for structural elements, during evolution we are able to
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Fig. 1. A reactive light seeking controller (f(x) = σ(x) = 1/(1+e−x)) utilizing switch-
able period-2 oscillations for speed control (see text for details)

enforce the development of minimal neural structures (with respect to the num-
ber of hidden neurons and synapses) [10].

To understand the origins of behaviorally relevant dynamics, it is important to
clarify the contribution of minimal recurrent neural networks. In some occasions,
it is possible to directly derive behavior relevant dynamical properties from the
structure and parameters of the RNN. But mostly, it is almost impossible to
also include the dynamics of robot-environment interactions in order to explain
the observed behavior in detail.

In the following we do not provide further details with respect to the para-
meter settings of the evolutionary processes. Our focus lies exclusively on the
dynamical properties of specific control structures, chosen by us as the best
examples, demonstrating the essential mechanisms of frequently observed phe-
nomena.

Behavior control by frequency modulation. It is well known from analytical inves-
tigations that over-critical negative self-connections of single neurons can gen-
erate switchable period-2 oscillations [11]. Analyses of the RNN in Fig. 1 have
shown that the behavior control is actually provided by such switchable oscilla-
tors. This controller solves a light seeking task.

The diagrams in Fig. 1 (right) show two examples where a period-2 oscillation
is modulating the behavior of a Khepera robot. The upper diagram shows the
on-off switch of period-2 oscillations of output neuron O2. The switching is
determined by the left proximity sensor (given by I1), that is, a switch-on causes
a turn to the right. A period-2 oscillation is also used in front of a light source
to generate a stop (Fig. 1, right bottom). In this situation the oscillation is
determined by the increased activation of the frontal light sensor (I4). In contrast
to the turning, both output neurons are synchronously oscillating with period-2
(not shown).

This controller demonstrates, that oscillating output signals can be used for
behavior control since the body of the robot operates as an integrator. According
to the inertia of the robot’s body, effective motor actions result from the mean
network output signals. If the robot is standing in front of a light source, both
outputs are permanently oscillating between 1 and 0. Hence, the mean over time
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Fig. 2. A: The robot micro.eve. B: RNN of one arm (f(x) = tanh(x)). C: Neuron
output (see text for details).

is 0.5. Due to the applied post-processing an effective motor signal of 0.5 repre-
sents a motor speed of zero. Such effects are not superficial results of artificial
evolution. Morris and Hooper [12] demonstrated that in biological systems slow
muscle contractions are coded by the average amplitudes of rhythmic neural
activities.

Induced oscillations. Fig. 2 shows an example where motor oscillations are in-
duced through the environmental loop. The ring-shaped robotmicro.eve (Fig. 2A)
is placed on two passive rollers on which it can rotate around its body center by
moving the five independent arms in order to translate the overall center of mass
in a coordinated way. For further details about the robot and different control
strategies see [13].

Here, the presented RNN (Fig. 2B) is one out of five completely autonomous
networks which independently control one of the five arms. Because of infor-
mation provided by the hall sensor I1 and the gyroscope I2 (both part of the
ring), every RNN gets information about the movement of the common body.
Therefore, single controllers can “sense” the resulting effects of the other con-
trollers’ behavior. I3 gives information about the current motor position of the
controlled arm. The output neuron signal O1 represents the motor command
for the servo motor. As one can see in Fig. 2C the signal is oscillating since the
hall sensory input remains zero at the beginning where the robot has to initiate
its own rotational movement. These oscillations can not be deduced from the
dynamical properties of the network because there are no recurrent connections
which can provoke oscillations. Instead, they are caused by the loop through
the environment (dashed line in Fig. 2B), which can be described as a reflex
oscillator.

The output of O1 is sent to the servo motor, and due to the motor’s inertia
and friction the desired position is reached with a certain delay. The current
position of the motor is fed back to the network through I3 which has a strong
negative connection to O1. Therefore, O1 produces signals inverse to the current
motor position, and this causes the observed oscillations. These oscillations are
of utmost importance for initiating a rotation of the ring at all [13]. As soon as
the ring starts to rotate, the hall sensor becomes active and due to the much
stronger connection from this sensory input (I1) the aforementioned oscillations
are suppressed depending on the signal strength of I1 (see Fig. 2C).
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(see text for details).

Summarizing these two examples, we can say that in both cases fast oscil-
lations provide important behavior relevant dynamics. However, they differ in
their origin. In the first case the oscillations result from the neurodynamics of
the RNN. In the second experiment these oscillations emerge from the ongoing
robot-environment interactions.

Neural hysteresis in reflex-walking-control. In this section the role of a hystere-
sis element in a simple neural reflex-oscillator for single-leg (3DOF) control of
walking machines is demonstrated. The controller shown in Fig. 3A is one of
the simplest and yet one of the most effective controllers found during evolution
experiments for the task of forward walking [14]. How does this structure, us-
ing only one sensory neuron (neuron I1, encoding angular position of joint 1),
three motor neurons (neurons O1, 2, 3, specifying the desired angles to the servo
motors), and four synapses, produce a coordinated walking pattern of a 3DOF
leg?

All neurons used for control are connected in a loop (I1−O2−O3−O1− I1)
which passes through the environment from neuron O1 to neuron I1 (dashed
line). This sensorimotor loop results in a nonlinear transformation which can
be approximated as a negative feedback with a time delay, resulting in a slow
oscillatory movement (compare to the aforementioned description of a reflex-
oscillator for the micro.eve robot).

During the oscillatory movement it was found that the motor-neurons ap-
proximately act as bistable elements. The bistability can be explained by the
property of neuron O2. Neuron O2 plays a major role in the controller network.
It is the first neuron in a chain which directly couples all motor neurons. The
following motor neurons therefore have either the same phase or a phase shifted
by 180 degrees (neuron O3 in phase, neuron O1 in antiphase) when compared
to neuron O2. Neuron O2 has a self-connection larger than 1.0 which makes it a
hysteresis element [11]. In Fig. 3B the output of neuron O2 is plotted against its
input under actual walking conditions (outer curve). The plot shows two effects
of the hysteresis element: First, the bistability may be explained by two stable
fixed points of the hysteresis domain (≈ {−1, 1}). Second, the hysteresis element
may be approximated as a time delay which adds to that of the environmental
loop, therefore contributing to the slow and smooth oscillating walking move-
ment. Finally, it may be noted that the transient is modulated by the frequency
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of the input signal. Under extremely slow (theoretical) walking conditions (inner
curve of neuron O2 input/output plot) the transient approaches the hysteresis
of the system, and therefore becomes much narrower than during actual walking
conditions.

Neural processing of auditory signals. Inspired by evolved robot control we de-
duced a neural structure that realizes a simple hysteresis element (called dynam-
ical neural Schmitt trigger, Fig. 4A). The structure has three parameters that
define the width and the shift of the hysteresis domain [15]. For applications it is
usually assumed that input signals vary only slowly with respect to the network
update frequency. But how do the dynamical properties of the neural Schmitt
trigger change when the input values change on arbitrary time scales?

Fig. 4 shows an example where a time series of a continuously increasing
frequency is fed into a RNN. At a certain frequency the output remains in
the lower saturation domain of the output neuron. Hence, one may argue that
hysteresis elements behave as a low-pass filter [16]. We have successfully adapted
such a structure to filter background noise of a walking machine and even to
recognize low-frequency sounds (i.e., 200 Hz) to perform a sound tropism [16].
These applications demonstrate how a sensory driven dynamical system becomes
sensitive to the frequency of the input signal.

The effect of filtering high-frequency signals itself can be explained by the shift
of the hysteresis domain and the transients of the system. The self-connection
determines how fast (i.e., needed number of time steps) the neuron activation
ends near the fixed point. For the isolated system we have stable fixed points in
the lower and upper saturation domain (i.e ≈ {−1, 1}). When the input signal is
continuously changing, the fixed points vary only slightly and if the amplitude is
large enough, one observes the characteristic jumps at the end of the hysteresis
domain. However, when a high frequency input signal is applied, because of the
slowness of transient dynamics these fixed points are never approached and at
a certain frequency orbits may stay near one or the other fixed point. Due to
the slowness of the transient dynamics these fixed points are never reached and
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Fig. 5. The recurrent neural network producing a motivational driven robot behavior
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σ(x) = 1/(1 + e−x)).

at a certain frequency the orbits may stay near one or the other fixed point if a
high frequency input signal is applied. Our presented system has a cut-frequency
of ≈ 300Hz (compare Fig. 4C). Here, the upper saturation domain will never
be reached as a consequence of these slow transients and the bias term. Thus,
high-frequency oscillations are suppressed, and therefore, the system acts as a
low-pass filter.

Reflex-walking-control and the low-pass filter are both based on bistable el-
ements. The specific control signals, however, are determined by the frequency
of the input signals modulating the transients of these hysteresis elements. Both
examples, therefore, indicate how one and the same element can act in different
ways due to its modulation by the sensorimotor loop.

Rhythmic behavior switching. For the study of behavior switches provided by
complex neural dynamics we evolved an RNN to develop a motivational driven
robot behavior. We call a robot behavior motivational driven if the neural control
is not only determined by current sensor states of external stimuli, but also by
an internal level of energy.

As a first simple example for such a motivational driven behavior we used
again the Khepera robot and extended a reactive light seeking module (by struc-
ture evolution) to a control structure which maintains a certain level of energy
while the robot accomplishes an exploration behavior. A resulting network is
shown in Fig. 5. As one can see, the already introduced input-output-structure
of the reactive light seeking module (see Fig. 1) is extended by one input neuron
I6. This neuron indicates the current level of the simulated energy reservoir,
which is defined as follows: I6(t + 1) := I6(t) + c1 · I4(t) − c2, c1, c2 > 0. The
constant loss of energy can only be compensated by standing in front of a light
source (i.e., by high activations of the frontal light sensor I4).

The resulting robot behavior in simulation is also shown in Fig. 5. One can see
that the robot switches between exploring the environment and standing close
to a light source. The diagram in Fig. 5 indicates that the behavior switches are
determined by the level of energy. At a certain intensity of I6 (≈ 0.8) the robot
is leaving the light source. Further on, the output I6 is characterized by slow
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Fig. 6. An internal rhythm generator (f(x) = σ(x) = 1/(1 + e−x)), and how it can be
influenced by sensory stimuli

oscillations. But, these slow oscillations are determined by the properties of the
energy reservoir (i.e., c1,2 in the equation above) and by the robot-environment
interaction. Note, that this issue leads us to a cyclic causality: on the one hand, I6
is determining the behavior switches, and, on the other hand, I6 is determined
by the robot-environment interaction. The slow oscillations emerge from the
sensorimotor loop.

Synchronized rhythms. Fig. 6 (left) shows an implementation of a neural rhythm
generator. It is based on a two neuron loop, called SO(2)-network [17]. These
networks with a special weight matrix generate quasi-periodic oscillations with
a sine-shaped wave form. The period of these oscillations depends only on one
parameter in the weight matrix. The coupling of two identical SO(2)-networks
can realize stable oscillations with very large periods as demonstrated in [18].
There, a concrete implementation of such a rhythm generator is used to coordi-
nate competing behaviors in groups of up to 150 robots. Each robot is equipped
with its own internal rhythm, that is, each robot has a slightly different fre-
quency, which is reminiscent of circadian rhythms found in animals [19]. This
rhythm determines whether the robot searches and collects food in the environ-
ment or returns to a home area where the collected energy is transfered to the
common nest of the group. To maximize the energy level of the nest, it turned
out that a coordination of the single behaviors is of great advantage, because
the interferences resulting from the interactions of up to 150 robots in a shared
environment lead to tremendous mutual obstructions [18].

To achieve a coordinated foraging and homing behavior within the whole group,
individual rhythms have to become synchronized. In doing so, a robot needs the
ability to communicate its internal state to other robots. One output neuron (O1
in Fig. 6, left) triggers a sound signal when it reaches a certain threshold. This
neuron is coupled to the pattern generator in a way that sound signaling occurs
during the switch from zero to one of the output of neuron H5 which amplifies the
sine-shaped oscillations of the rhythm generator (Fig. 6, right). This signal can
be perceived by nearby robots through the sensory input neuron I1. In turn, this
perception provokes a phase reset as it can be seen for H5 in Fig. 6 (right). This
mechanism allows behavior synchronization within a large robot group through
minimal local communication. The resulting synchronized collective behavior is a
result of local robot-robot and robot-environment interactions.
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The impact of slow varying inner rhythms for behavior control has in fact
already been demonstrated for robotic applications (see [18]). However, the last
two experiments provide minimal examples for the emergence as well as the
synchronization of slowly oscillating rhythms within the sensorimotor loop, and
for both cases the essential elements of the interplay between internal neural
dynamics and external world can be clearly identified.

3 Conclusions

In this paper we have presented six examples where the evolution of minimal
recurrent neural networks for embodied agents explores the dynamics of robot-
environment interactions. We have seen how oscillations can be integrated by
the body of a robot or even induced by the sensorimotor loop through the envi-
ronment. Furthermore, in neural structures with equivalent dynamical proper-
ties transient effects resulting from robot-environment interactions are used for
completely different tasks, such as the locomotion in walking machines and the
filtering of auditory signals. Finally, through interactions with the environment,
internal rhythms determining differing behavior patterns can emerge in individ-
uals or even become synchronized within large robot groups. Only by thoroughly
analyzing evolved RNNs in the context of robot-environment interactions it was
possible to reveal the interrelation between internal and external mechanisms
underlying the evolved robot behavior.

The dynamical systems approach to adaptive behavior is still at its beginning
in the context of ER experiments (e.g., [20,2]). And only very few studies involve
thorough analyses of the evolved neural mechanisms (e.g., [20]) which can help
to better understand the dynamical mechanisms underlying complex behavior
and to clarify which behavioral aspects can be accounted to internal dynamics
or to properties emerging from the sensorimotor loop.

However, our approach does not only advance our understanding of these is-
sues. It also enables us to construct highly efficient neural control systems by
considering the sensorimotor loop to minimize the complexity required at the
neurodynamics level. Our examples demonstrate that the evolution of minimal
recurrent neural robot control enforces the development of simple networks (con-
cerning their size, not their dynamics). This makes it possible to extract and set
up basic neural structures together with their functions in a respective senso-
rimotor loop. Provided with such building blocks one then should be able to
develop gradually more and more elaborated behavior control for autonomous
robots with a richer sensomotoric equipment.
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Abstract. It is claimed that synaptic plasticity of neural controllers for
autonomous robots can enhance the behavioral properties of these sys-
tems. Based on homeostatic properties of so called self-regulating neu-
rons, the presented mechanism will vary the synaptic strength during
the robot interaction with the environment, due to driving sensor inputs
and motor outputs. This is exemplarily shown for an obstacle avoidance
behavior in simulation.

1 Introduction

Despite the many impressing results AI has achieved over the last 50 years there
are several shortcomings right from its foundation. This is mainly due to the fact
that cognition was understood as a symbol processing mechanism; and that the
digital computer and its operations became the leading metaphor for cognitive
processes. Taking human capabilities of language and mathematical calculation
as a model for intelligence, and building to a large extent on Shannon’s theory of
information and on formal logic, artificial intelligent systems were thought of as
detached from the physical world, and were developed largely without reference
to the abilities of intelligent biological organisms.

One of the often mentioned shortcomings of classical AI is lack of robustness
of the developed systems, meaning here that this approach had difficulties to
design systems which can react in a self-sustaining way to changing properties
of an unstructured environment or to failures of its subsystems or sub-processes.
Thus, desired systems should be adaptive and able to learn. We will take up this
question for adaptivity and learning, following a dynamical systems approach [3]
to embodied cognition [13], using recurrent neural networks [12] for the behavior
control of autonomous robots.

Considering robots as acting in a sensori-motor loop, a learning process will
have to generate solutions to problems which are posed by the environments in
which these robots have to operate. In general the property of “being a solution”
to these problems can not be predicted or explained at the level where the
search is carried out. If one is using the dynamics of a recurrent neural network
for behavior control of these mobile systems, its functionality is bounded by
the richness of its attractor landscape, determined by a fixed set of network
parameters. To attain new behaviors or functionalities a learning process must
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change parameters like synaptic weights and bias terms of the networks, or even
vary their underlying connectivity structure. And, in the given context, such a
rearrangement of neural control has to be the result of the systems interaction
with the physical environment.

Learning in this sense means the selectivity of reactions, and a process of
selectivity may be generated, for instance, by strengthening excitatory neural
pathways as well as by weakening inhibition in certain pathways. Using this
plasticity of the neural control will allow to scan through the reservoir of poten-
tial attractor landscapes corresponding to a given connectivity structure, such
that specific attractors vanish or reappear, or new types of attractors become a
functionality which was not used before; i.e. emergent behavior is observed. It is
this intricate balance of stability and instability which is an essential property
of neural networks seen as complex adaptive systems.

As a first step towards such a learning mechanism we will concentrate on
the synaptic plasticity of a neural controller without changing its connectivity
structure. Defining a reasonable weight dynamics in the given context, where
changing environments and unexpected situations have to be accounted for, is
a difficult problem because there is still a lack of mathematical and theoretical
insight into the dynamical properties of high-dimensional nonlinear systems; and
because it is quite hard to define appropriate error functions, teacher signals or
rewarding instances for a more or less unspecified behavior which enables survival
in an unstructured environment.

Avoiding teachers and rewarding instances as well as fitness functions, we
focus on the self-organizing properties of neural networks. Then, one of the pos-
sibilities is, that learning, i.e weight dynamics, is the result of local interactions
of neurons; which means that their activity is driven by sensor inputs and mo-
tor outputs of the neural controller. We therefore assume that every neuron can
control its inputs and outputs in such a way that it keeps itself in a desired ac-
tivity state under external perturbations. This is of course the central property
of a homeostat as it was conceptualized for instance by Cannon [4] and Ashby
[1]. A neuron in this setup is able to regulate its so-called transmitter strength
and receptor strength appropriately. Such a neuron, defined by its 3-dimensional
homeostatic dynamics, will be called self-regulating. The choice of a desirable
state is for the moment in some sense arbitrary, but as long as one is interested
in the abundance of nonlinear effects there is a canonical choice to make.

The activity of a single neuron is communicated to other neurons of the net-
work through the connections, with synaptic weights given by the product of
pre-synaptic transmitter strength and post-synaptic receptor strength. Because
recurrences may be composed of excitatory and inhibitory connections, one can
assume that the asymptotic behavior of such a network is not only given by
stationary states, but oscillations and chaotic dynamics can be available as well.

These networks, acting as controllers in a sensori-motor loop, will then be
driven by sensor signals. But any activity injected into the neural system will be
communicated to all its neurons and will therefore modulate the weights of the
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network. Thus, the whole system will stay plastic during the interaction of the
robot with its environment.

The next section will introduce the 3-dimensional homeostatic dynamics of
single neurons with standard strictly positive sigmoidal transfer function.
Section 3 will demonstrate the resulting synaptic plasticity of controllers for
an obstacle avoidance behavior using a simulated Khepera robot. A concluding
section will discuss the results and give an outlook.

2 Synaptic Plasticity

In what follows a single neuron i is described by a parametrized 3-dimensional
bounded dynamical system f : R3 → R3 with state variables (ai, ξi, ηi) ∈ R3,
where ai denotes its activity, and ξi and ηi its receptor strength and transmitter
strength, respectively. The parameter θi is considered as a stationary (slow)
external input. Given a network composed from these type of neurons let c
denote the structure matrix of the network defined by cij = ±1 if there is an
excitatory/inhibitory connection from neuron j to neuron i, otherwise cij = 0.
The output of the neuron is given by a sigmoidal transfer function, and in the
following the standard sigmoid σ = (1 + e−x)−1 is chosen.

For this neuron a homeostatic property should be achieved; i.e. the control of
receptor and transmitter strengths should result in convergence to a desirable
activity state for the neuron. There are several “good” choices for such a desirable
state. The most interesting dynamical effects arise for an activity a∗ for which
the non-linearity of the sigmoid σ is “maximal”, i.e. σ′′′(a∗) = 0. Because σ′′′

is a symmetric function there are two such values, a∗ = ±1.317, and for these
specific values we have

σ(a∗) =
1
2

±
√

1
12

, σ′(a∗) =
1
6
. (1)

The homeostatic dynamics to be defined should be able to stabilize the de-
sired states a∗ at least for a certain range of input signals. The basic dynamical
equations are then set up as follows:

ai(t + 1) = θi + ξi(t)
n∑

j=1

cij ηj(t)σ(aj(t)) i = 1, . . . , n . (2)

This defines the standard activity dynamics of a neuron. The receptor strength
ξi is always positive and should increase if the neurons activity ai(t) satisfies
|ai(t)| < |a∗|, otherwise it should decrease; this is realized by the following
equation

ξi(t + 1) = ξi(t) (1 + β · g(ai(t)) , 0 < β < 1 , (3)

with the function g given by

g(x) := σ′(x) − σ′(a∗) . (4)
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Finally, the positive transmitter strength ηi > 0 is designed to impart the
internal activation of the neuron to the neural network. The higher the activation
of the neuron, the more transmitter are released. It has a constant decay rate
(1 − γ), and it increases with the activity of the neuron. Thus we have

ηi(t + 1) = (1 − γ) ηi(t) + δ · σ(ai(t)) , 0 < γ < δ < 1 (5)

The connection strength or weight wij from neuron j to neuron i is defined by

wij(t) := cij ξi(t) ηj(t) .

The weight change per time step is then given by Δwij(t) := wij(t + 1) − wij(t)
or in terms of transmitter and receptor strengths

cij Δwij(t) = cij(ξi(t + 1) ηj(t + 1) − ξi(t) ηj(t)) (6)
= ξi(t) ηj(t)[ β g(ai(t))(1 − γ) − γ]

+ξi(t) δ [1 + β g(ai(t))] σ(aj(t))

with g denoting the function given by equation (4). The weight dynamics defined
by equation (6) will be referred to as SRN-plasticity for short.

If all neurons have their preferred activity a∗ then there should be no changes
in their transmitter and receptor strengths, i.e. in the weights. This means there
exists at least one stationary state (a∗, ξ∗, η∗) ∈ R3n for the 3n-dimensional
network dynamics (which must not be stable!). For simplicity we will study this
situation for a single neuron.

2.1 Behavior of a Single Neuron

The fixed points (a∗, η∗, ξ∗) of the SRN-dynamics for a single self-regulating
neuron with self-weight w are then given by the non-trivial fixed point equations

a∗ = θ + c ξ∗ η∗ σ(a∗) , c = ±1 , (7)

η∗ =
δ

γ
σ(a∗) . (8)

From equations (7) and (8) it follows for the asymptotic receptor strength

ξ∗ =
γ c (a∗ − θ)

δ σ2(a∗)
. (9)

Hence, ξ∗ depends explicitly on the bias term θ. Because it is assumed that ξ is
always positive, from the last equation one derives the consistency condition

c (a∗ − θ) > 0 , (10)

and immediately realizes, that this condition can not be satisfied for all θ ∈ R;
in general the consistency condition is satisfied for θ ∈ (−a∗, a∗) if c = 1, and
θ �∈ [−a∗, a∗] if c = −1. What can be deduced from these conditions is that
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the dynamics will have parameter domains where non-convergent behavior, e.g.
oscillatory behavior, has to be expected. Furthermore, from equation (9) one
immediately gets for the asymptotic self-weight

w∗ = c ξ∗ η∗ =
a∗ − θ

σ(a∗)
, (11)

which exists if the consistency condition (10) is satisfied.

2.2 Simulations

To get a first impression of the effects of the SRN-plasticity the behavior of a
single neuron with self-connection is studied. To relate the results to experiments
done for neurocontrollers, this neuron is connected via an inhibitory connection
to an input neuron, i.e. a buffer neuron with ξ = 1. Then the bias term θ1 of the
input neuron is varied and the output neuron 2 can regulate its input (eq. (3)).

a) b)

Fig. 1. Positive self-connection w, bias θ2 = 0, β = 0.1, γ = 0.02, δ = 0.01. a) The
output of the neuron shows an hysteresis effect, b) plasticity of the weight.

a) b)

Fig. 2. Negative self-connection w: bias θ2 = 0, β = 0.1, γ = 0.02, δ = 0.01. a) The
neuron oscillates with period 2 over a certain interval; The ratio determines the width
of the oscillator.

In figure 1a the bifurcation diagrams show the asymptotic states for varying
input θ1. A hysteresis effect is clearly observable over an interval contained in
[−1, 1]. Hysteresis effects appear also for neurons with static excitatory self-
connections w > 4 [11]. The asymptotic receptor strength ξ∗2 changes with
the input θ1 corresponding to equation (9), whereas the asymptotic transmitter
strength η∗

2 is constant over a large interval corresponding to equation (8). Over
the hysteresis interval it jumps between two values, depending on which of the



Adaptive Behavior Control with Self-regulating Neurons 201

possible two asymptotic activity values is stabilized. The resulting asymptotic
weight w∗

22 of this process is shown in figure 1b.
Correspondingly, for a self-inhibitory (c = −1) the resulting behavior is shown

in figure 2a. Here, we observe an oscillatory behavior (period 2) over a certain
interval. Outside of this interval we again observe the stabilization of the desired
activity values. The development of the corresponding asymptotic self-weight
w22 can be seen in figure 2b.

The dynamic effects, not only for the single neurons, depend to a certain
degree on the choice of the plasticity parameters β, γ, and δ. For instance, the
width of the hysteresis and the oscillatory intervals depend on the quotient γ/δ,
and fixed bias terms will shift these intervals. For the above experiments θ2 was
set to zero.

From these first simulations one can easily deduce that a network of self-
regulating neurons, having a mixture of excitatory and inhibitory connections,
will display non-trivial dynamics. But, with respect to neural control, up to now
it is absolutely unclear on what structures behavior relevant dynamics can be
implemented. A simple behavior for a simulated Khepera robot may give a first
impression of the working SRN-plasticity.

3 Obstacle Avoidance Control

SRN-plasticity (6) will now be applied to the simple problem of obstacle avoid-
ance for a Khepera robot using the standard 2D-simulator [9]. The activity and
weight dynamics of the controlling network will be updated synchronously. SRN-
plasticity is first applied to a simple recurrent two neuron network shown in figure
3a, where neurons 0 and 1 refer to the left and right sensor inputs, 2 and 3 to the left
and right motor outputs, respectively. Input neurons are linear buffers with trans-
mitter strength set to 1; they represent the mean values, denoted by I0,1, of the
three left and three right front distance sensors of the Khepera. This corresponds
to the structure of a simple Braitenberg obstacle avoidance controller [2] with the
additional feature, that motor neurons have an excitatory self-connection. The
bias terms for the output neurons are both set to zero. The SRN-parameters for
all neurons in this example are β = 0.1, γ = 0.02, δ = 0.01.

a)
++

−−

1

2 3

0

b)

Fig. 3. SRN-plasticity generates obstacle avoidance behavior and exploration. a) the
network structure, b) the path of the robot for 20.000 time steps.
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Figure 3b demonstrates that the controller in fact leads very effectively to an
obstacle avoidance behavior and it allows the robot to turn in sharp corners and
dead ends. This behavior is comparable to the so called MRC (minimal recurrent
controller) described in [8], which has static synapses, and tanh as transfer func-
tion. But the MRC needs an additional loop of inhibitory connections between
the output neurons for comparable performance.
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Fig. 4. SRN-plasticity during the interaction of the robot with the environment

The effects of the SRN-plasticity can be followed in figures 4a and 4b where
the modulation of the synaptic strength during a run of the simulated robot is
shown; the robot enters the left upper corner (from the top) of the environment
(figure 3b). First an obstacle on the right side appears around time step 1380
in figure 4a, then on the left side of the robot around time step 1620 in figure
4b. During the time interval 1700 – 2000 the robot oscillates in the corner and
the absolute strength of all synapses are increased. This leads to a turn of the
robot which is large enough to leave the corner again. In free space the synaptic
strength will approach the asymptotically stable values, as can be read from
the figures after time step 2200. In the case of static synapses neither a pure
Braitenberg controller nor additional undercritical self-connections of the motor
neurons will enable the robot to leave sharp corners, unless high noise is added
to the sensors or motors, or the self-connections are overcritical (see figure 6),
resulting in a decrease of the performance of the exploration behavior. A fixed
Braitenberg structure was parameter optimized by evolution and manually sym-
metrized. The resulting controller does not perform exploration as well, due to
the large turning angle caused by the overcritical self-connections (see fig. 6b).
Undercritical variations were also tested with noise on sensors and/or motors
(see fig. 6c,e,f). These controllers are able to escape sharp corners (performance
depending on the noise settings) but because of the high noise, are very likely to
collide with walls (not shown). It can be followed that, compared to the discussed
Braitenberg controllers, the SRN controller only produces noise, when required
(sharp corners). This demonstrates that SRN-plasticity makes controllers more
adaptive to different environmental situations.

The figures 5b and 6d shows the trajectory for the same controller but different
parameter setting: β = 0.1, γ = 0.1, δ = 0.1. The plots show, that the controller
does not explore as well anymore, but the transients are comparable to those
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Fig. 5. SRN-plasticity during the interaction of the robot with the environment, c,d)
SRN-plasticity with different parameter set β = 0.1, γ = 0.1, δ = 0.1, trajectory and
transient of one neuro-module.

a) b) c)

d) e) f)

Fig. 6. Comparison of obstacle avoidance behavior for different configurations. a) SRN-
Controller with β = 0.1, γ = 0.02, δ = 0.01, d) with β = 0.1, γ = 0.1, δ = 0.1, b)
Static Braitenberg vehicle with wij = −9, wii = 6, c,e,f) Braitenberg vehicle with
wij = −9, wii = 2 and c) 20% noise on sensors, e) 70% noise on motors, f) 15% noise
on sensors, and 50% noise on motors (minimal required settings for obstacle avoidance).

of the original SRN-controller (fig. 4 and 5a). This implies, that the controller
is robust to variations of the parameters over a certain interval, so that the
behavior in this parameter interval depends on the structure only. A neural
network generation method, such as artificial evolution could then be used to
only generate the structure by filling the trinary values of the connection matrix,
which is a reduction of the search space.

4 Discussion and Outlook

The term “homeostasis”, first introduced in physiology [4], was recently brought
to the realm of synaptic physiology again [14] and also to robot control [5], [15],
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[6]. Here the SRN-plasticity rule is based on self-regulating neurons, which, as
isolated units, can act as homeostatic elements on finite parameter domains. It
was demonstrated that this type of neuron configures itself as a bi-stable element,
allowing for hysteresis effects, if self-excitation is used. A self-inhibitory neuron
acts as a period-2 oscillator on a certain input domain.

The described Self-regulating Neuron plasticity is able to generate an effective
obstacle avoidance behavior for a simulated Khepera robot. Graphical monitor-
ing of neuron activities and synaptic weights during a run of the robot revealed
that synapses in fact vary during robot-environment interactions. The behavior
will depend also on the learning parameters β, γ, and δ.

Although demonstrated here only for the trivial obstacle avoidance task, SRN-
plasticity, when running on specific structures, leads to effective adaptive behav-
ior. It gives already a first hint to what type of mechanisms may be at work
in autonomous robots with adaptive behavior; or, perhaps, may underlie also
brain-like processes like learning and memorizing.

At this stage of development there are at least two problems to be tackled.
First, how can the desired activity value a∗ for a neuron be determined? In an
advanced formalism they might be generated by segmental signals produced in
analogy to what hormones or other bio-chemical substances do with parts of the
brain. It might as well be possible to derive these values from higher level neural
control structures, using some specific input channels to the neurons.

Second, because the SRN-plasticity rule does not distinguish between the
strength of inhibitory and excitatory transmitters and corresponding receptors,
it is obvious that this type of dynamics can not be successfully implemented on
arbitrary neural structures, but its functionality highly depends on the network
topology. Different construction rules for the connection matrix might come up
in a more advanced state of theoretical development. These could be that the
entries of a row or a column of the connection matrix c must be of the same sign
(Dale’s rule) or sum up to zero. This is part of ongoing research. But as long as
this is an open question, one may apply evolutionary techniques to get a large
variety of such architectures, from which a convenient rule can be extracted. In
fact, using an ALife approach to Evolutionary Robotics it is quite natural to
apply evolutionary algorithms for structure generation; for instance the ESN3-
algorithm implemented in an evolution-simulation environment, called ISEE [8].
Current experiments focus on a light seeker, which adapts to dynamically chang-
ing environments for which it has no direct sensor (ambient light) and the control
of sensor driven walking machines, which require coordinated control of a more
complex morphology.

The final goal of a neurodynamical approach to embodied cognition, including
also the weight dynamics of the underlying networks, like the presented SRN-
plasticity, is to have machines with behavioral capacities resembling those of
animals. Instantiated as autonomous robots they will be controlled by analogue
computers which implement something like the (continuous-time version of the)
neural dynamics presented here. On such machines there will run plastic neural
networks with synaptic weights changing during the process of interaction with
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the environment. Because synaptic plasticity can be effective on different time
scales, due to different SRN parameters, it may serve for short-time memory
effects, for learning, for adaptation, or only for a smooth behavior which is more
elegant.
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Abstract. We found that single neurons in the parietal area V6A of the 
macaque brain deal with all the components of reaching and grasping actions: 
locating in space the object target of action, directing the eyes toward it, sensing 
where the arm is in space, directing the arm toward the spatial location where 
the object is in order to reach and grasp it, adapting the grip to the object shape 
and size. The knowledge of how the brain codes simple visuomotor acts can be 
useful to build artificially-intelligent systems that have to interact with objects, 
localize them, direct their arm toward them, and grasp them with their gripper. 
Single cell recordings can also be useful in understanding how to perform more 
complex visuomotor tasks, like interacting with human beings, exchanging 
objects with them, and acting in an ever changing environment. 

Keywords: neurophysiology, action, spatial perception, reaching and grasping. 

An humanoid robot gazes at a dish that it should insert into a dishwasher. The robot 
reaches the dish with its arm and grasps it with its gripper, lifts the dish, and puts it 
into the appropriate place on the dishwasher plate. 

The robot has produced a sequence of actions that every human being performs 
naturally and dexterously hundreds of times each day: locating a visual object in 
space, directing the eyes toward it, directing our arm toward the spatial location where 
the object is in order to reach and grasp it, adapting the grip to the object shape and 
size. In order to perform this task successfully, our brain, and also the cognitive 
architecture of a robot, should know where the eyes are directed, where is the hand in 
space, and where the goal of action is located in peripersonal space.  

The prehension task is achieved by primates through a series of neural elaborations 
that are performed in the parietal and frontal lobes. Recording of spike trains from 
single neural cells and analysis of their modulations according to the different phases 
of the prehension task are the most used techniques through which we acquire 
knowledge of how the prehension task is achieved. This is the job of neurophysiolo-
gists (like us) who select a brain area (supposed to be involved in certain functions), 
and record the bioelectrical signals from single cells of that area with fine wire 
microelectrodes. The frequency of discharge of action potentials (spikes) changes 
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according to the signal that is processed by the neuron itself. The knowledge on how 
the brain codes the different phases of prehension task can be useful to build up 
artificially-intelligent systems, in particular to build embodied aspects of cognition. 
So we propose here a summary of our studies in order to solve some problems that 
scientists who are involved in artificial intelligence (AI) could encounter. 

1   Neurophysiology of Prehension 

We cannot record from the human brain (or can only occasionally, and for a very 
short time, during a neurosurgery), because of ethical reasons. If we want to know 
how the human brain works, we have to study the brain of an animal that is able to 
perform the same task we want to investigate in human. For studying the brain control 
of prehension, the most used animal is the macaque because its visuomotor functions 
are almost identical to the human being. 

We have been studying for several years a region of the macaque brain known to 
be involved in visuomotor functions. In particular, we are currently studying the 
functional properties of neurons of a parietal area called V6A (V stands for visual, as 
it was originally identified for its visual properties [1]) which contains visual [2] as 
well as reaching [3,4] neurons. The visuomotor properties of this area have been 
intensively studied by our laboratory in the last decade [see 5 for a comprehensive 
review on this topic]. The following represents a summary of these studies. 

2   The Parietal Area V6A 

Area V6A is a brain cortical area located at the boundary between the occipital lobe, 
classically known to be devoted to the analysis of visual information, and the parietal 
lobe (Fig. 1). The anterior part of parietal lobe hosts the primary somatosensory 
cortex, which is the first cortical sector analysing sensory information from the body. 
The posterior parietal cortex contains several bimodal visual-somatosensory areas 
involved in the guidance of arm movements. 

The role of V6A as a visuo-motor area was confirmed after neuro-anatomical 
studies performed in the macaque brain. This technique is based on the use of 
neuronal tracers, which are substances that, once injected in a brain region, are 
captured by the neurons and/or by the terminals of nerve cells, and are transported 
along the neuronal axon up to other brain areas. With this technique we can trace the 
information flow towards and from the injected region. In other words, we can 
discover the hard-wired connections between different modules performing a certain 
job.  

As shown in Figure 2, we found a pathway connecting area V6A with both visual 
and motor cortices. The visual input to V6A derives from area V6, a higher order 
visual area of the dorsomedial visual stream directly connected with the primary 
visual area V1 [6]. Area V6A is also linked, directly, with the dorsal premotor cortex 
[7,8,see 9 for a review]. Therefore, there is a short route from vision to action (V1-
V6-V6A-PM cortex) which is part of the so called dorsomedial visual stream, and 
which is thought to be useful for the on-line control of hand action [5]. 
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Fig. 1. Cortical areas of the macaque brain 
Left: postero-lateral view of a partially dissected left hemisphere with a part of the inferior 
parietal lobule and of the occipital lobe cut away in order to show area V6A hidden in the 
parieto-occipital sulcus. Right: medial view of the right hemisphere. 

Labels on different brain regions indicate cortical areas according to anatomical and 
functional criteria. Colors indicate sensory or motor properties of different regions of the brain. 
Note that area V6A is at the posterior end of the bimodal (visual/somatosensory) region, and 
borders the visual areas of the occipital pole. 

 

Fig. 2. The dorsomedial visuomotor pathway 
Arrows indicate anatomical connections between different cortical areas. There is a 
dorsomedial visuomotor pathway connecting the primary visual area (V1) with the premotor 
areas of the frontal cortex. 

Other details as in Figure 1. 
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All these cortical connections are strictly bidirectional, that is area V6A receives 
visual information from area V6, but also sends information to this same area; 
similarly, area V6A sends information to the premotor cortex, but also receives 
information from it. It is a cortical loop that includes visual, visuomotor, and motor 
areas. Area V6A is one of the areas nestled in this loop. 

As can be inferred by its connections, area V6A has both visual and motor 
properties, features which can be useful for the visual guidance of prehension. These 
functional properties of V6A neurons have been investigated in a series of 
electrophysiological studies, summarized hereafter. 

3   Visual Neurons Able to Localize Objects in Space 

Physiologists use the term “receptive field” (RF) to indicate the region of visual field 
from which a visual neuron receives visual information: the RF of a visual neuron is 
its window on the world. Contrary to what is generally thought, this window is not 
able to localize an object in space, because the RF moves with the eyes (being a part 
of the retina) and therefore explores different spatial locations according to the 
direction of gaze. 

In area V6A there are visual cells in which the visual response (the response to the 
visual stimulation of the RF) is modulated by the direction of gaze [10]. These 
neurons are able to code the location of objects in space because they discharge 
differently to the same object according to its spatial location. 

Figure 3A shows an example of this gaze-dependency of visual responses. When 
the animal gazed at the center of the screen, we found a good visual response when 
the right part of the animal's visual field was stimulated. This meant that the 
“window” (the RF) of this neuron was located there. When the fixation point was 
displaced in another location, for instance in the top left corner of the screen, the same 
RF stimulation as before evoked a neural response much stronger than before. How 
could this happen? Evidently this cell was informed about the type of visual stimulus 
that activated its receptive field, but it was also informed about where the eyes were 
directed. Combining the information coming from the retina with that on the direction 
of gaze, different visual responses can be obtained according to the direction of gaze 
(gaze-dependent visual cell). 

Figure 3B shows the analysis of gaze modulation in a V6A cell where a high 
number of gaze locations were tested. Curved lines link together spatial locations 
where the visual response were the same (iso-excitability lines). To obtain these data, 
we required the animal to fixate many different locations, thus displacing the neuron’s 
receptive field on the screen many times. Each time we displaced the fixation point, 
we stimulated the RF with the same visual stimulus, obtaining a full field analysis of 
the neuronal visual responsiveness according to different angles of gaze. Different 
visual responses were obtained according to the direction of gaze. In other words, this 
type of cells transforms different spatial positions (those of the RF when the animal 
gazed at different locations) in different frequencies of discharge according to the 
direction of gaze. So they can inform us about the spatial location where the object is. 
This information can be used by the brain for many different purposes. Among them, 
that of directing the hand towards an object to be grasped. 
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Fig. 3. Encoding of visual space by a gaze dependent visual neuron 
A. Experimental set-up and visual responses of a gaze-dependent visual cell. The square 
represents the screen in front of the animal. FP is the fixation point of the monkey, RF the 
receptive field of the neuron, and S visual stimulus used to activate the cell (the stimulus was 
moved leftwards across the RF). The histogram to the right of the screen is the response of the 
cell when its RF was activated while the animal gazed at the centre of the screen. When the 
monkey directed its gaze to the top left part of the screen (dashed lines), the RF of the cell 
moved to the top part of the screen too. The same stimulus as before across the RF in this new 
screen position evoked a good response (displayed to the left of the screen). Thick lines under 
neural responses indicate the stimulation time.  
B. Gaze modulation in a V6A gaze-dependent visual cell. The square represents the screen. Six 
different visual responses are shown, evoked by stimulating the RF of the cell with the same 
stimulus, while the gaze was directed towards 6 different directions (6 eye symbols). Curved 
lines are iso-excitability lines linking together spatial locations where the visual responses were 
the same.  The cell encoded the visual space in frequency of discharge: when the stimulus 
activated the RF on the top left corner of the screen it evoked the maximum discharge 
frequency (100%) from the cell; when it activated the RF on the right top or bottom corners it 
evoked a very poor response (10%) from the cell. 

 
We also found that in a minority of V6A neurons the RF remained stable in space 

despite changes in eye position. This finding contrasts dramatically with the 
behaviour of typical visual neurons, in which the RF is firmly anchored to the retina 
(being physically a part of it) and therefore move through space in tandem with the 
eyes (like for the neuron shown in Figure 3). The new type of visual cells receives 
(and encodes) visual information from different parts of the retina depending on the 
direction of gaze, but from a constant part of the visual space. We called them "real-
position" cells [11]. Evidently, in the real-position cells, the gaze signal is used to gate 
the retinal locations from where visual information are picked up. This visual 
transformation, that has been then described also in other cortical areas of the parietal 
and frontal cortices [12,13], appears early in the dorsomedial visual stream in area 
V6A. 
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Fig. 4. Encoding of visual space by a real-position cell 
Neural responses of a 'real-position' cell to the visual stimulation of the same retinotopic 

location (A) or the same spatial location (B), while the animal looked at different screen 
positions. Each large square represents the screen in front of the animal. Left: experimental 
paradigm. Fixation-point locations on the screen are indicated by eye symbols. Visual stimuli 
(full line rectangles) were moved across the receptive field (dashed line rectangles) in the 
direction indicated by the arrow. Right: Neural responses to visual stimulations reported at 
fixation point locations.  Thick lines under neural responses indicate the stimulation time. 
Scales are 4 spikes per vertical division, and 300 ms per horizontal division. Note that there is a 
visual response only when the visual stimulus is in the right bottom corner of the screen, 
irrespective from the direction of gaze.  

Other details as in Figure 3. Modified from Galletti and Fattori [14]. 

 
Figure 4 shows an example of such a type of cell. This cell had a visual RF just 

below the fovea. The visual stimulation of the RF evoked a good response from the 
cell when the animal looked towards the bottom, right part of the animal's field of 
view, whereas the stimulation of the same retinotopic position was not effective when 
the animal looked towards all the other spatial locations (Fig. 4A). As shown in the 
Fig. 4B, if the stimulus was on the bottom, right part of the animal's field of view, the 
cell was always strongly activated, no matter where the animal was looking at. In 
other words, the RF of this cell did not move in tandem with the eyes as in any other 
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visual neuron. The cell encoded a specific part of the field of view regardless of the 
direction of gaze. 

Neurons of this type encode directly the visual space. Each real-position cell 
encodes a different spatial location according to the spatial coordinates of its visually-
responsive region. The cell in Figure 4 encodes the bottom right part of visual space. 
When this cell discharges, it means that the object activating the cell is in that 
particular region of the visual space, no matter where the animal was looking at. 

A robot having to manipulate different objects placed in different positions around 
it or having to select the target of its actions according to its position in space could of 
course benefit from a mechanism like that of real-position cells. In addition to be used 
to direct movements towards visual targets, the output of real-position cells could be 
used to direct selective attention to relevant points in space for acquisition of stimuli 
in the immediate environment, either by gaze or manual reaching. To this regard, it is 
worthy noticing that when we reach toward a target that suddenly appears in the 
peripheral visual field, not only does the arm extend toward the object, but the eyes, 
head, and body also move in such a way that the image of the object falls on the 
fovea. Because the eyes start to foveate the object while the hand is still moving, the 
reaching target changes its retinal location from its appearance in the visual field 
(peripheral location) till the end of reaching execution (foveal location). Nevertheless, 
the hand goes straight towards the target, as whether the motor center controlling the 
arm movement 'knew' in advance the final position to be reached out in spatial 
coordinates. We suggested that area V6A, and in particular the real position cells of 
this area, could play an important role in all these visuomotor transformations [14]. 

4   Somatosensory Neurons Monitoring Arm Position in Space 

The humanoid robot dealing with the dishwasher (and ourselves in similar countless 
actions that we perform throughout the day) must take into account the position of 
arm in space and with respect to the torso to correctly guide an arm movement. If for 
instance the robot has the arm near the torso, it has to extend it in order to grasp the 
dish on the table; but if it starts the movement from a position reached in a previous 
action, the movement could be different. For example, if it starts the reaching 
movement with the gripper inside the dishwasher, it could need to adduct and flex the 
arm in order to grasp the dish on the table. 

Which are the brain’s sources of information about the position of the arm? The 
most important is the so called “proprioception”, that is information coming from 
proprioceptors located inside the arm, giving the internal feeling of the limb position. 
The same that we could feel when, with the eyes closed, we try to locate our arms or 
fingers in space. Proprioceptive information arises from receptors that signal the 
stretch of muscles or the angle of joints. This information is carried by sensory fibers 
that reach the primary somatosensory cortex (depicted in blue in figure 1), and from 
there several other cortical areas of the superior parietal lobule, including area V6A 
[15]. Fig. 5 shows the distribution of receptive fields of V6A proprioceptive neurons: 
note that they are located only in the upper limbs. V6A contains also tactile neurons, 
that is neurons informed about touches of the hair or the skin: note that they are 
located only in the upper limbs and in parts of the trunk adjacent to the limbs (see  
Fig. 5). In summary, area V6A is informed about position in space of the arms as well 
as their interaction (contact) with objects in extrapersonal space. 
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Fig. 5. Somatosensory representation by V6A neurons 
Dots: proprioceptive V6A neurons modulated by the rotation of a joint. The modulating joints 
are indicated by the dot location. The size of the dot is proportional to the number of modulated 
units. Continuous lines: extent and location of tactile receptive fields of V6A neurons. In V6A, 
body representation is largely incomplete and the representation of the arm is emphasised. 
Modified from Breveglieri et al [15]. 

 
Note that the somatic representation in V6A is different with respect to that of the 

typical cortical somatosensory areas, as in V6A the somatic representation is restricted 
to the upper contralateral limb. The fact that only the arm is represented in area V6A 
suggests that this region is involved in the control of arm movements. Proprioceptive 
cells could provide useful information about the spatial position of arm and hand while 
performing different hand-object interactions. Tactile receptive fields located on the arm 
and hand could be useful in recognizing the physical interaction between the moving 
arm and the environment, or between the hand and the object that it is grasping. All 
these information confirm us the actual location and status of the arm, and in particular 
the ongoing interaction between the hand and the grasped object. 

5   Neurons Encoding Planning and Execution of Reaching 
Movements 

A direct involvement of area V6A in arm movement execution has been demonstrated 
by the use of a specifically designed reaching task. It is sketched in figure 6A. 

In the task, the hand performs a reaching movement from a position near the body 
to a position in the peripersonal space in front of the body, trying to reproduce under 
controlled conditions the reaching movements performed in every day life when we 
reach out for objects. 
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Fig. 6. Reaching activity in a V6A neuron 
A. The reaching task. Top: Scheme of the experimental set-up. Reaching movements were 
performed in darkness, from a home-button (black rectangle) towards a target (open circle) 
located on a panel in front of the animal. Bottom: Time course of the task: the sequences of 
status of the home-button (HB), target button (TB), and of the colour the target button (LED) 
are shown.  Lower and upper limits of time intervals are indicated above the scheme. Under the 
scheme, typical examples of eye-traces (X and Y components) and neural activity during a 
single trial are shown. Short vertical ticks are spikes. Long vertical ticks among spikes indicate 
the occurrence of behavioural events (markers). From left to right, the markers indicate: trial 
start (HB press), target appearance (LED light-on green), go-signal for outward movement 
(green to red change of LED light), start and end of outward movement (HB release and TB 
press, respectively), go-signal for inward movement (LED switching off), start and end of the 
inward movement (TB release and HB press, respectively), and end of data acquisition. 

Rectangles under neural activity indicate the time epochs referred to behavioural events. 
FREE: reference activity at rest; FIX: delay preceding reaching movement where gaze direction 
and arm movement are constant; M1: outward reaching, indicated by the arrow pointing to the 
right; HOLD: time of hand holding on the reached target; M2: inward reaching, indicated by 
the arrow pointing to the left. 
B. Example of a V6A neuron coding planning and execution of reaching movements. Neural 
activity is shown as cumulative time histogram and as raster activities. Diamonds in raster 
activities indicates the onset of fixation of the reaching target. Cell's activity is aligned with the 
onset of forward arm movement (M1). 

Scales: vertical bar on histogram: 140 spikes/s; other details as in Figure 3. Modified from 
Fattori et al [4]. 

 
The first controlled condition in the task is that the eyes are fixed in a position (the 

fixation LED), which represents also the goal of the reaching movement. The second 
controlled condition is that the arm always starts the movement from a button near the 
chest and reaches a target placed on a panel in front of the monkey with a direct, 
ballistic movement that follows a precise time sequence (summarized in figure 6A) 
decided by the experimenter. The last controlled condition is that the task is executed 
in complete darkness, with the only exception of the fixation light, which was a LED 
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the brightness of which was reduced so that it was barely visible during the task. This 
was chosen to avoid to evoke visual activation during the execution of the task other 
than the fixation point. It is evident that in these experimental conditions any neural 
modulation during the task must be ascribed to arm-related activity. 

Using this task, we found that many neurons in V6A were modulated during the 
preparation and execution of reaching movements [4]. An example of these reach-
related cells is shown in Figure 6 B. This neuron strongly discharged during the 
execution of the reaching movement toward the target (M1). The neuron shows also 
an increase in its firing rate in the delay preceding the movement (FIX period). In this 
epoch, the monkey is already fixating the target of reaching and no arm movement is 
occurring. Therefore, the neural discharge cannot be explained by arm-movements 
nor by oculomotor behaviour. We suggested that the neural discharge is a preparatory 
signal for the impending reaching movement [4]. 

The figure 7 shows two V6A reach-related cells studied with the same task. The 
first (Fig. 7A) is activated by movements of the arm directed toward the visual target 
(M1, outward reaching); the second, for arm movements directed away fron the 
target, towards the body (M2, inward reaching). 

 

 

Fig. 7. Two V6A neurons modulated by reaching movements 
A: Neuron modulated by outward reaches. From top to bottom: cumulative time histogram of 
neural activity, time epochs, raster displays of impulse activity, recordings of X and Y 
components of eye positions. Neural activity and eye traces are aligned three times for each 
neuron: with the LED appearance (1st), with the onset of outward (2nd) reaching movements, 
and with the onset of inward (3rd) reaching movements. 

Peri-event time histograms: binwidth = 15 ms; scalebar = 100 sp/s. Eyetraces: scalebar = 60 
degrees. 
B: Neuron modulated by inward reaches. 

Scalebar in peri-event time histograms: = 65 sp/s (B). 
Other details as in Fig. 6. Modified from Fattori et al [16]. 
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To reach the dish on the table, the humanoid robot has to know in which direction 
to move the hand. A variance of the task allowed us to test whether the direction of 
reaching movements influenced the discharge of V6A reaching neurons. Monkeys 
were required to reach visual targets placed in different spatial locations while gazing 
at them. In other words, the animal performed reaching movements toward different 
spatial locations while maintaining the target of reaching under foveal control. We 
found that the direction of reaching strongly modulates the activity of V6A cells [16]. 
An example of this behaviour is shown in Figure 8. 

 

 
 

Fig. 8. V6A neuron coding directions of reaching 
Neuron preferring rightward M1 movements and rightward gaze directions. 

Sketches on the left and top illustrate the different directions of reaching tested in this 
neuron. Neural activity and eye-traces are aligned twice in each inset, with the onsets of 
outward (1st) and inward (2nd) reach movements, respectively. The mean duration of epochs 
FIX, M1, HOLD, M2 is indicated in the bottom left inset.  

Scalebar in peri-event time histograms: = 70 sp/s. All other details as in Fig. 7. 
Modified from Fattori et al [16]. 
 
The unit in Figure 8 discharged for reaches directed to the visual target only when 

it was straight ahead or in the right part of space. The cell was not activated at all by 
reaching movements directed to the same target placed in the left part of space. The 
neuron was also strongly affected by the direction of gaze, being the cell strongly 
activated when the animal looked straight ahead or to the right without performing 
any arm movement (see activity during FIX epoch). This cell signalled the occurrence 
of both rightward ocular and reaching movements. Other V6A cells signalled only the 
direction of gaze or the direction of reaching movement. In the whole, V6A cells were 
able to encode the entire set of directions we tested in the workspace [16]. 

6   Neurons Encoding the Grasping Phase of Prehension 

The act of prehension includes the reaching movement, that is the transport of the 
hand towards the object to be grasped, and grasping movements, which involve more 
distal parts of the arm, as the wrist, hand and fingers. Recently, we have began to 
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study whether V6A is involved in the control of grasping, by training monkeys to 
perform reach-to-grasp movements under controlled conditions [17]. In Fig. 9, the 
behaviours of a cell to reaching and to grasping movements are compared. The 
direction of reaching was the same (straight ahead) in reach-to-point (Fig. 9A) and 
reach-to-grasp (Fig. 9 B) tasks, but in the latter the monkey had to preshape the hand 
to grasp an handle and to flex its fingers to secure the grasp of the object. Therefore, 
any difference in neural activity in the reach-to-grasp with respect to reach-to-point 
task must be attributed to the grasping action, as the transport phase of reaching 
movement was the same in the two experimental situations. This cell was not 
activated during the execution of the reach-to-point movement, but was excited 
during reach-to-grasp action. In this action, the finger extended to embrace the handle 
and then flexed to acquire it. Many V6A cells behaved like that shown in Figure 9, 
and V6A seems to have a role in coding also distal, besides proximal, components of 
the act of prehension. 

 

 
 

Fig. 9. Reach-to-point and reach-to-grasp activities in a V6A neuron 
Top: sketch of the final hand position in the reach-to-point (A) and reach-to-grasp (B) tasks. 
Bottom: Activity has been aligned twice, with the onset of forward and backward arm 
movements, respectively. Peri-event time histograms: binwidth = 20 ms; vertical bar on 
histograms: 55 spikes/s; eye traces: 60 degrees/division. All other details as in Figure 6. 

Note that the cell was clearly more activated in the reach-to-grasp than in the reach-to-point 
task, and the handle in (B) was in the same spatial location as the LED in (A). Therefore, the 
arm movements performed in (B) and (A) were similar in trajectory amplitude and direction, 
but only in (B) they did include the grasp. 

Modified from Fattori et al [17]. 
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In summary, the picture emerging from data reviewed here is that area V6A is a 
cortical region involved in the control of many components of the act of prehension 
under visual guidance: in localizing objects in space, in sensing where our arm is and 
what our hand touches, in transporting the hand towards the target object, in coding 
the direction of reaching and in adapting the hand to the object features. Area V6A 
could be useful in the online control of arm movement by elaborating sensory inputs 
and motor outputs to represent the internal body state for the purpose of sensorimotor 
integration. 

7   Links to Robotics Research 

The design of artificial systems having efficient reaching and grasping capabilities is 
currently a very hot topic in the field of robotics. New impetus can be given to this 
area by examining the working principles of cortical area V6A being directly 
involved in the solution of the underlying tasks. In the following we highlight some 
working principles of V6A [5] that worth consideration in robotics research, aiming at 
improving the efficacy of contemporary robotic systems. 

At first, we note the specialization of V6A in processing sensory information 
coming mainly from the peripersonal space of the animal. This type of limited spatial 
perception, filters environmental sensory input, providing to the relevant motor 
system only the information that can be useful during action. 

Furthermore, the simultaneous utilization of many different coordinate systems for 
encoding information, seems to be necessary for efficient reaching and grasping 
movements. In particular, V6A is directly involved in the transformation of 
retinotopic stimuli to the executional motion direction, encoding how the same 
information is referenced in all the intermediate coordinate systems. In other words, it 
is important to combine information referred to both an action-irrelevant coordinate 
system like the retinotopic, and also an action specific coordinate system, as it is the 
case with arm motion-direction cells and with cells like the real-position cells that 
code directly the visual space. This is necessary for making direct and effective 
modifications to the executed action when sensory changes are identified. 

Additionally, the reciprocal connectivity of V6A, with both the sensory and the 
motor areas, seems to be very important. Specifically, the brain pathway responsible 
for reaching and grasping movements does not operate in a feed-forward way, but it 
rather follows recurrent connectivity in all stages of information processing. During 
every phase of the action, multi-modal information is integrated in order to confirm 
that the execution proceeds in the appropriate way. 

Finally, the encoding of both hand and visual information in the same associative 
brain area implies that in producing artificial intelligent systems that perform 
prehension actions, these two information must operate in a coordinated manner 
rather than in isolation from one another. 

In addition to the above general principles that could be proved beneficial for the 
design of novel robotic systems, neurophysiological studies can provide further input 
to robotics research. This can be done in a first approach by abstracting higher level 
cognitive information addressing the connectivity of brain areas and the type of 
information they convey to each other. Furthermore, in a more detailed and practical 
level, biological data can be utilized by well known computational methods designing 
artificial systems that approximate the structural and functional characteristics of 
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biological ones. Initial attempts towards this brain approximation direction have been 
done in [18]. Robotics and neurophysiology could also be met in a new research field 
where bioelectrical signals obtained by single cell recordings are utilized for driving 
robotic devices, formulating a new alternative approach on Brain-Computer Interface 
studies [19]. 

8   Conclusions 

Neural behaviours like those here described for V6A have been described in many 
areas of the brain, but what is unique for V6A so far is that this region contains all 
these neural behaviours. Cells encoding the visual space cohexist in V6A with cells 
controlling grasping movements and with somatosensory cells signalling what our 
arm is doing. We are currently working on how these different neurons interplay 
together. 

Area V6A can be a good model and could be “copied” in building the cognitive 
architecture of artificially-intelligent systems that have to interact with objects, 
localize them, direct toward them their arm and grasp them with their gripper.  

Combing the neurophysiological expertise with the engineering and computer 
science ones can be a way to implement the evolution of humanoid robots performing 
more efficiently the dishwasher task and even harder tasks like those of interacting 
with human beings, exchanging objects with them, and acting in an ever changing 
environment. 
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Abstract. We are leaving in a world where the interaction with in-
telligent machines is an every day life event. The advances in artificial
intelligence had allowed the development of adaptive machines that can
modify its internal parameters to adjust their behavior according to the
changing environment. One field that has profit from this is rehabili-
tation and prosthetics. In this respect, is our interest to evaluate the
effects that this interaction has on the user. In this study, we use an
f-MRI (functional Magnetic Resonance Imaging) device to measure the
changes on the motor and sensory cortex of a right hand amputee’s us-
ing an EMG controlled Adaptable prosthetic hand with tactile feedback.
Our results show the improvement in the adaptation to the prosthetic
device, also, our experiments point to a possible modification of the body
schema, generating an illusion of belonging of the robot hand to the hu-
man body.

Keywords: AI,fMRI, EMG, Electrical Stimulation.

1 Introduction

Nowadays, we are living in a world where the interaction between human and
machines is more common. This interaction has been changing our society, what
once was considered or revered with awe, nowadays our children use as an every-
day tool. Now is difficult to imagine our every day lives without the direct
interaction with new technologies. In this study, we focus on the applications
for rehabilitation engineering, where the interaction with ”intelligent” machines
had the most impact. In the field of prosthetics, this influence affects the way
the person perceives its own body. With the new recognition technologies, a
person can control a robot hand close to the way he used to control his original
hand. This is important especially for amputees, whose brains suffered cortical
reorganization[1] after the amputation, leading to the effect known as phantom
pain [2]. However when an amputee uses an EMG (electromyography) controlled
hand, the neural paths used to control the robot hand are the same to those used
before to control his original hand. This allows the brain to revert the cortical re-
organization that occurred due to the lack of sensorial information [3]. However,
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the cortical reorganization is not complete since, the patients does not receive
any sensation from the prosthetic device. The systems interacting with the hu-
man body, all face the same big challenge to overcome the individual changes
between users, the signals from one person are not the same to those of the next
one.In the case of the Electromyography (EMG) controlled prosthetic hands, the
problem does not only involve the differences from one person to the other, but
also, the complexity increases when we consider that the EMG signals do change
with time. Therefore, the system does not only need to adapt to different users,
but also, compensate the changes in the same user [4]. In this aspect, the field of
artificial intelligence has provided with several tools to overcome this problem,
where, the Artificial Neural Networks (ANN) show the more versatility. One of
the main advantages of the ANN is their robustness in discrimination tasks. So
now we question, it is possible to include a prosthetic hand as part of the pa-
tient’s body schema?. In this respect we conducted a series of experiments using
an fMRI device to measure the changes in the brain of a right hand amputee
using a individually adaptable EMG controlled prosthetic system. We used elec-
trical stimulation to transferee the tactile sensation from the robot hand to the
amputee’s body.

2 The Body and Its Surroundings

All this new changes in our actual society are due to the new trend of adaptive
machines, which make use of artificial intelligence to exploit the physical char-
acteristics, as well as, computation possibilities of the new technologies. Our
bodies affect the way we think[5], our perception of the world is dominated by
our physical characteristics. The sensorimotor relationship generated by the con-
tinuous interaction between the muscular and somatosensory systems develops
what is called the body schema/image, which allow us to control our bodies.
However, when the control loop is disrupted, we lose control over our bodies,
then what we used to do without effort, becomes an imposing task. Is it possible
to include external objects as part of our bodies?. We can mention the work from
Holmes [6] where he describes an integrated neural representation of the body
(body schema) and of the space around the body (peripersonal space). Also the
work from Iriki et al. [7][8], who introduce interesting insights on the neural
mechanisms behind tool use. On his experiments with monkeys he explore the
dynamics in the brain when using a ”T” shaped tool to handle objects (in this
case, food). The experiment consisted on moving the visual stimuli (food) either
toward or away from the monkey’s hand in a centripetal or centrifugal fashion.
After that, the monkey was trained to use a ’T’ shaped bar to retrieve the food.
The experiments results shows a displacement on putative visual receptive field.
The neurons in the monkey’s brain are activated when the visual receptive field
includes the point of the tool after 5 minutes of use. We could conclude that
the monkey’s brain identify the branch (as longs as the task is performed) as
part of the monkey’s body. Graziano [9][10]later demonstrated the effects of cer-
tain objects entering the peripersonal space. These results point out the brain
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capability to include external objects inside its body schema. With these studies
in mind, we face new possibilities for rehabilitation technologies. Galfano et al.
[11] shows an interesting study concerning modifications to the body schema. In
his study, the hands of the participant are hidden from view, two rubber hands
are placed in the same position as the hands of the test subject. A light emit-
ting diode (LED) is placed next to each hand for visual feedback. An electrical
vibrator is placed on the fingertips of the test subject. The experiment consists
of a set of test with synchronous and asynchronous vibrations along with the
lighting of the LED’s synchronously and asynchronously with the vibrations.
The position of the rubber hands varies in possible and impossible propriocep-
tive positions. Galfano results shows that the visual, tactile and proprioceptive
information are necessary for the correlation in the brain to generate the illusion
of the rubber hands as part of the participant’s body. As O’Regan et al [12]
has shown, the human sensations are not fixed mechanisms, but actually, are
continually updated to the changes in the body. In Pavani’s experiments[11], we
can see the importance of the role of visual feedback to develop an illusion of
”ownership” of external objects. But, visual feedback is not enough to ”fool” the
body into believe that what is seeing is part of it. Here the importance of tactile
and proprioceptive information. For example, if the ”extra” hand is put in an
impossible proprioceptive position, the body will ”reject” such object as part
of it. In prosthetic applications, even though the advances in their control have
improve since their introduction in 1960 [13], we still face the disembodiment
problem, that is, the prosthetic device can be controlled, but it is not recognized
as part of the body, requiring extra effort from the patient to use the ”extra”
limb. If we provide with feedback to the prosthetic hand’s user[14], we can close
the sensorimotor loop, promoting the adaptation to the robot hand, developing
a modification on the person’s body schema, which makes us think that the
person accepts the robot hand as part of his/her body[15].

3 Body Schema Modification

In order to get a more profound understanding of these mechanisms behind the
modification of the body schema, we performed some experiments using a func-
tional magnetic resonance imaging device to measure the neural activity in the
brain from using an EMG controlled prosthetic hand, with electrical stimulation
applied by a pair of electrodes to the upper left arm to provide tactile feedback
translated from the information acquired by the pressure sensors positioned at
the finger tips and on the palm of the robot hand.

3.1 FMRI Settings

Cerebral activity was measured with a functional Magnetic Resonance Imag-
ing device using blood oxygen level-dependent contrast [16]. After automatic
shimming, a time course series of 59 volumes was obtained using single-shot
gradient-refocused echo-planar imaging (TR = 4000 msec, TE = 60 msec, flip
angle = 90 degree, inter-scan interval 8 sec, in-plane resolution 3.44 x 3.44 mm,
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FOV = 22 cm, contiguous 4-mm slices to cover the entire brain) with a 1.5T
MAGNETOM Vision plus MR scanner (Siemens, Erlangen, Germany) using the
standard head coil. Head motion was minimized by placing tight but comfortable
foam padding around the subject’s head. The first five volumes of each f-MRI
scan were discarded because of non-steady magnetization, with the remaining
54 volumes used for the analysis.

The f-MRI protocol was a block design with one epoch of the task conditions
and the rest condition. Each epoch lasted 24 seconds equivalent to 3 whole-brain
fMRI volume acquisitions. Data were analyzed with Statistical Parametric Map-
ping software 2 [17]. The functional magnetic resonance test was set to 8 seconds,
with a scan time of 3 seconds, and a rest time of 5 seconds between scan. 54
scans were acquired for each test. The scans were realigned and transformed to
the standard stereotactic space of Talairach using an EPI template [18]. Data
were then smoothed in a spatial domain (full width at half-maxim = 8 x 8 x
8 mm) to improve the signal to noise ratio. After specifying the appropriate
design matrix, delayed box-car function as a reference waveform, the condition,
slow hemodynamic fluctuation unrelated to the task and subject effects were
estimated according to a general linear model taking temporal smoothness into
account. Global normalization was performed with proportional scaling. To test
hypotheses about regionally specific condition effects, the estimates were com-
pared by means of linear contrasts of each rest and task period. The resulting
set of voxel values for each contrast constituted a statistical parametric map
of the t statistic SPMt. For analysis of the each session, voxels and clusters of
significant voxels were given a threshold of P < 0.005, not corrected for multiple
comparisons.

3.2 Facing Individual Changes

We discussed the importance of transferring the intention from the patient
to the actual movement of a prosthetic device in order to revert the cortical
reorganization[3]. Still we face a big challenge with the changes of individual
characteristics, and since we are using EMG signals, this too face changes in
time. In order to overcome this challenges, we use the system developed by Kato
et al.[4], for the adaptation to individual characteristics and changes over time
of the EMG signals. The system use a competitive learning method to adjust to
gradual and drastic changes in the patient’s individual characteristics. Using a
three layers neural network for the discrimination of movement intended by the
patient(figure 2), this method implement three functions for learning data: au-
tomatic elimination (AE), automatic addition (AA), and selective addition (SA)
to solve the problems of large data sets, which makes the discrimination process
slow, and the decrease in the discrimination rate due to signal changes over time
that challenge conventional approaches. AE and AA judge the discrimination
state by monitoring the discrimination results all the time, and adjust to the
gradual change in the characteristics by eliminationg/adding learning data ac-
cording with the continuity of the motion. SA helps to adjust to drastic changes
by adding new learning data sets instructed from the user(Figure 3).
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Fig. 1. f-MRI room distribution. Due to strong magnetic fields inside the room, no
equipment can be placed inside the scanning room, therefore we have to take the signals
through shielded cables, and present the robot hand to the experiment participants
using a projector and some mirrors.

3.3 Evaluation Procedure

Three persons participated in our experiments, 2 healthy persons, and 1 right
forearm amputee, with 5 years from the amputation. We used a projector and
a set of mirrors as shown in figure 1 to show the robot hand as visual feed-
back inside the f-MRI room. The experiments were divided in two phases; first
we applied electrical stimulation with 2 different intensities on the left upper
arm suppressing any other stimulation as much as possible (no visual or audi-
tive feedback was applied). To reduce the effects of the noise generated during
the fMRI scan, the participants used a set of headphones to reduce the noise,
and enable them to receive instructions from the control room. The participants
were required to remain as still as possible for the duration of the experiment.
The passive stimulation was done by sending direct commands to the electrical
stimulator. The stimulation was done using a frequency of 4kHz for a biphasic
balanced square signal. The voltage amplitude was of 9V. We adjusted the duty
rate of the square signal to control the intensity of the stimulation. For each par-
ticipant we set two levels (weak and strong) of stimulation. The second phase, we
ask the participants to close the robot hand when they see a ball coming near the
robot hand on the screen. The participants train the control of the robot hand
before entering the room. During the experiments the participants are required
to remain still, and only move the hand with the EMG sensors. The participants
received an explanation of the experiment before starting. To produce the tactile
feedback, one pair of electrodes were placed on the left upper arm. We placed 6
FSR pressure sensors on the fingertips and the palm. When any of the sensors is
activated higher than the preset threshold, the stimulator send the stimulation
signal to the arm using the parameters described above with strong stimula-
tion. In order to evaluate the symbiosis between both systems (intelligent robot
hand and human brain), we measured again the brain activation using the same
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Fig. 2. EMG signal discrimination process. The EMG raw signal is extracted using dry-
type sensors, the signal is processed by FFT producing later the feature vector, which
is inserted as input of the classification unit (feed-forward neural network), obtaining
the appropriate command for the prosthetic hand.

Fig. 3. Overview of the classification system. The EMG signal is processed and included
in the learning data set. Once the Neural network has been trained, the system monitors
the output, correcting the learning data set to adjust to the individual changes over
time.

conditions than the previous experiment. In the time between experiments we
asked the amputee to use the robot hand at home.

3.4 Results

We found that when applying surface electrical stimulation only, the results from
the test subject presented activation on the frontal lobe, denoting the processing
of a new sensation, but the activation on the somatosensory and parietal area
was localized outside of the somatosensory area S1. However, when the person



The Man-Machine Interaction 227

was asked to close the robot hand over the ball, we see that the brain activation
is located on the primary motor are (M1) and primary somatosensory area S1 of
the brain. Is important to consider that this effect occurs on both, healthy and
amputee participants, regardless of the fact that the amputee does not have the
right hand (Figure 4). Using the Talairach daemon client developed by Lancaster
et al. [19] we confirmed the activation of brodmann areas 4 (M1) and 3 (S1) for
Talairach coordinates x=-36 y=-17 z=56 with a cube range of 7mm. In the case
of the amputee Brodmann areas 4(M1) and 3(S1) were activated for Talairach
coordinates x=-38 y=-32 z=62 with a cube range of 7mm.

The f-MRI scan showed some interesting results after 3 months of continuos
use of the prosthetic system. We found that the brain activation was reduced,
leaving only certain ”nodes” of activity. Figure 5 shows the reorganization that
the brain suffered after 3 months of continuous use of the robot hand with tactile
feedback.

4 Discussion

Can the artificial intelligence help us in our lives? Yes, we can say, not only with
better ”machines” like the dishwashers or the cleaning machines, but in a more
direct interaction into our bodies. We are coming into a new age where intelligent
machines work in a new type of ”symbiosis”, leading into a more intuitive and
easy to use devices to help us in the interaction with our environment. This
symbiosis can help us enhance our perception of the world, or can restore some
lost functionality. Now in our specific case, when the electrical stimulation is
applied in concordance with the action of grabbing an object, we have three
channels working altogether, the intention from the subject, the visual feedback,
and the stimulus provided by the electrical stimulation. This action is done
several times during the scanning process (8 min), which allows the brain to
correlate this information as a simultaneous and repetitive event. The fMRI
resulting shows how the brain changes the perception of the electrical stimulation
applied on the left arm. Now, the primary somatosensory area (S1) related to
the hand presents an activation high enough to be detected in the fMRI image
(p¡0.005, T=2.69). After an amputation, the body suffers some modifications on
its body schema, what is called ”cortical reorganization”, because the neurons
does not longer receive any signal from the corresponding sensor neuron, it start
making new connections with neighboring neurons. This effect causes the spread
cerebral activation observed at the beginning of our experiments (Figure 4). But
the continual use of EMG based robot hands has shown that this process can
be reversed. This is an example of two intelligences working together in a new
”symbiosis” between man and machine. For this symbiosis to work is necessary
that the machine can interpret the ”intention” from its user, thus evolving into
collaboration between them. The uses of artificial intelligence have shown great
applications in the development of more intuitive machines that can react to
the environment and predict accordingly behaviors to deal with the changing
conditions. The brain still recognizes that the stimulation is done on the left
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Fig. 4. Sensation Illusion. Upper f-MRI scans are from the amputee participant. Left
image: Cerebral activity due to the application of electrical stimulation alone. We can
see some mirroring effect between both hemispheres. Right image: Cerebral activity
when the person grabs a ball using the robot hand. The mirroring effect between hemi-
spheres disappears. The illusion of ”ownership” occurs, that is, the person ”feels” as
if the robot hand is part of his/hers body. Lower f-MRI scans are from a healthy par-
ticipant. Left Image: Cerebral activity due to the application of electrical stimulation
alone, there is no activation on the arm or hand somatosensory area. Right image:
Cerebral activity when the person grabs a ball using the robot hand. The mirroring
effect between hemispheres disappears. The illusion of ”ownership” occurs even on a
healthy person.

arm. Although, when we compared the results to those of the stimulation alone,
we found the activation related to the motion of the hand on the motor cortex,
but also, we found the activation of the sensory area related to the right hand.
This makes us think that the brain is correlating the multi-sensorial input as
a single event, localizing it in to the right hand (in this case, the prosthetic
hand). It is important to notice that the subjects do not interact directly with
the object in question, but through the robot hand. They receive only visual
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Fig. 5. Training effects. This image shows the change on the brain cortical activa-
tion levels of the amputee after using the robot hand for 3 months. The brain shows
reduction on the cortical activation due to the adaptation to the prosthetic hand.

feedback through the video display and the stimulation on the left arm. These
results show the possibility to use the brain plasticity into the generation of new
communication channels with the robotic system. The f-MRI proved a useful
tool to measure objectively the changes in the cortical activation due to the use
of the prosthetic system, and allowing a more detailed feedback on the workings
of the amputee brain. This allow for a more detailed medical evaluation for
the rehabilitation process of an amputee. The use of the myoelectric prosthetic
hands helps to stop the cortical reorganization that takes place when a limb is
amputated from the body. The simultaneous application of electrical stimulation
along with a system that follows the user’s intention allow for the development
of an ”illusion” into the brain, that allows to the amputee to reconstruct its
missing limb body image. All these results present a promising possibility for
the development of new man-machine interfaces that allow the subconscious
control of an external device, in this case a prosthetic device.

5 Conclusions

Artificial intelligence has shown during its 50 years several faces, from the deeper
understanding of how we think we think (not yet there), to more mundane
applications as in the dish washers. But also, artificial intelligence opened a door
to more important applications, such as the medical applications, where it helps
restore some function to those who for some reason lost it. When dealing with
the human body, we face a highly complex system that present several challenges
in the form individual differences in biological signals that change with time. The
Artificial Intelligence permitted the development of adaptive tools to deal with
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these and other complex problems. Now, here we can also get into the subject
of two intelligences working together, as we mention in the chapter above, the
symbiosis between man and machine. This ”symbiosis” open the door for several
new applications into the life sciences, and bring hope for all those who have lost
partial function of their bodies. The possibilities in this evolving field are still to
be seen.
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Abstract. Although the definition and measurement of intelligence is
clearly of fundamental importance to the field of artificial intelligence,
no general survey of definitions and tests of machine intelligence exists.
Indeed few researchers are even aware of alternatives to the Turing test
and its many derivatives. In this paper we fill this gap by providing a
short survey of the many tests of machine intelligence that have been
proposed.

1 Introduction

Despite solid progress on many fronts over the last 50 years, artificial intelligence
is still a very young field with many of its greatest achievements, and some of
its most fundamental problems, yet to be tackled. From a theoretical perspec-
tive, one of the most fundamental problems in the field is that the very concept
of intelligence remains rather murky. This is somewhat true in the context of
humans, but it is especially true when we consider machines which may have
completely different sensors, bodies, cognitive capacities and live in different en-
vironments to ourselves. What does “intelligence” mean for a machine? Perhaps
the first attempt to answer this question, and certainly the only attempt that
most researchers are aware of, is Alan Turing’s famous imitation game [33]. Tur-
ing recognised how difficult it would be to explicitly define intelligence and thus
attempted to sidestep the issue completely. Although this was a clever move, it
leaves us with a test of machine intelligence that tells us almost nothing about
what intelligence actually is, and thus is of little use as a foundation, either
theoretical or practical, for our research.

Since then, a few bold researchers have tried to tackle this difficult problem
in a more satisfactory way by proposing various definitions and tests of machine
intelligence. By and large, these proposals have been ignored by the community.
Indeed to the best of our knowledge, no general survey of tests and definitions
of intelligence for machines has ever been published.

We feel that to ignore a question as fundamental as the definition of machine
intelligence is a serious mistake. In any science, issues surrounding fundamental
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definitions and methods of measurement play a central role and form the foun-
dation on which theoretical advances are constructed and practical advances are
measured. If we are to truly advance as a field over the next 50 years, we will
need to return to this most central of problems in order to secure what artificial
intelligence is and what it aims for. As a first step in this direction, it is necessary
that researchers are at least aware of the many alternatives to Turing’s tests that
have been proposed. In this paper we hope to partly meet this need by providing
the first general survey of tests and definitions of machine intelligence.

2 Turing Test and Derivatives

The classic approach to determining whether a machine is intelligent is the so
called Turing test [33] which has been extensively debated over the last 50 years
[26]. Turing realised how difficult it would be to directly definite intelligence
and thus attempted to side step the issue by setting up his now famous imita-
tion game: If human judges cannot effectively discriminate between a computer
and a human through teletyped conversation, then we must conclude that the
computer is intelligent.

Though simple and clever, the test has attracted much criticism. Block and
Searle argue that passing the test is not sufficient to establish intelligence
[3,28,7]. Essentially they both argue that a machine could appear to be intelli-
gent without having any “real intelligence”, perhaps by using a very large table
of answers to questions. While such a machine might be impossible in practice
due to the vast size of the table required, it is not logically impossible. In which
case an unintelligent machine could, at least in theory, consistently pass the Tur-
ing test. Some consider this to bring the validity of the test into question. In
response to these challenges, even more demanding versions of the Turing test
have been proposed such as the Total Turing test [11], the Truly Total Turing
test [27] and the inverted Turing test [35]. Dowe argues that the Turing test
should be extended by ensuring that the agent has a compressed representa-
tion of the domain area, thus ruling out look-up table counter arguments [6]. Of
course these attacks on the Turing test can be applied to any test of intelligence
that considers only a system’s external behaviour, that is, most intelligence tests.

A more common criticism is that passing the Turing test is not necessary
to establish intelligence. Usually this argument is based on the fact that the
test requires a machine to have a highly detailed model of human knowledge
and patterns of thought, making it a test of humanness rather than intelligence
[9,8]. Indeed even small things like pretending to be unable to perform complex
arithmetic quickly and faking human typing errors become important, something
which clearly goes against the purpose of the test.

The Turing test has other problems as well. Current AI systems are a long way
from being able to pass an unrestricted Turing test. From a practical point of
view this means that the full Turing test is unable to offer much guidance to our
work. Indeed, even though the Turing test is the most famous test of machine
intelligence, almost no current research in artificial intelligence is specifically
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directed toward being able to pass it. Unfortunately, simply restricting the do-
main of conversation in the Turing test to make the test easier, as is done in
the Loebner competition [22], is not sufficient. With restricted conversation pos-
sibilities the most successful Loebner entrants are even more focused on faking
human fallibility, rather than anything resembling intelligence [15]. Perhaps a
better alternative then is to test whether a machine can imitate a child (see for
example the tests described in Sections 4 and 5). Finally, the Turing test returns
different results depending on who the human judges are. Its unreliability has in
some cases lead to clearly unintelligent machines being classified as human, and
at least one instance of a human actually failing a Turing test. When queried
about the latter, one of the judges explained that “no human being would have
that amount of knowledge about Shakespeare”[29].

3 Compression Tests

Mahoney has proposed a particularly simple solution to the binary pass or fail
problem with the Turing test: Replace the Turing test with a text compression
test [23]. In essence this is somewhat similar to a “Cloze test” where an individ-
ual’s comprehension and knowledge in a domain is estimated by having them
guess missing words from a passage of text.

While simple text compression can be performed with symbol frequencies,
the resulting compression is relatively poor. By using more complex models that
capture higher level features such as aspects of grammar, the best compressors
are able to compress text to about 1.5 bits per character for English. However hu-
mans, which can also make use of general world knowledge, the logical structure
of the argument etc., are able to reduce this down to about 1 bit per charac-
ter. Thus the compression statistic provides an easily computed measure of how
complete a machine’s model of language, reasoning and domain knowledge are,
relative to a human.

To see the connection to the Turing test, consider a compression test based on
a very large corpus of dialogue. If a compressor could perform extremely well on
such a test, this is mathematically equivalent to being able to determine which
sentences are probable at a given point in a dialogue, and which are not (for
the equivalence of compression and prediction see [2]). Thus, as failing a Turing
test occurs when a machine (or person!) generates a sentence which would be
improbable for a human, extremely good performance on dialogue compression
implies the ability to pass a Turing test.

A recent development in this area is the Hutter Prize [17]. In this test the
corpus is a 100 MB extract from Wikipedia. The idea is that this should repre-
sent a reasonable sample of world knowledge and thus any compressor that can
perform very well on this test must have a good model of not just English, but
also world knowledge in general.

One criticism of compression tests is that it is not clear whether a powerful
compressor would easily translate into a general purpose artificial intelligence.



Tests of Machine Intelligence 235

4 Linguistic Complexity

A more linguistic approach is taken by the HAL project at the company Artificial
Intelligence NV [32]. They propose to measure a system’s level of conversational
ability by using techniques developed to measure the linguistic ability of children.
These methods examine things such as vocabulary size, length of utterances,
response types, syntactic complexity and so on. This would allow systems to be
“. . . assigned an age or a maturity level beside their binary Turing test assessment
of ‘intelligent’ or ‘not intelligent’ ”[31]. As they consider communication to be the
basis of intelligence, and the Turing test to be a valid test of machine intelligence,
in their view the best way to develop intelligence is to retrace the way in which
human linguistic development occurs. Although they do not explicitly refer to
their linguistic measure as a test of intelligence, because it measures progress
towards what they consider to be a valid intelligence test, it acts as one.

5 Multiple Cognitive Abilities

A broader developmental approach is being taken by IBM’s Joshua Blue project
[1]. In this project they measure the performance of their system by considering
a broad range of linguistic, social, association and learning tests. Their goal is
to first pass what they call a “toddler Turing test”, that is, to develop an AI
system that can pass as a young child in a similar setup to the Turing test. As
yet, this test is not fully specified.

Another company pursuing a similar developmental approach based on mea-
suring system performance through a broad range of cognitive tests is the a2i2
project at Adaptive AI [34]. Rather than toddler level intelligence, their cur-
rent goal to is work toward a level of cognitive performance similar to that of a
small mammal. The idea being that even a small mammal has many of the key
cognitive abilities required for human level intelligence working together in an
integrated way. While this might be useful to guide the development of moderate
intelligence, it is unknown whether it will scale to higher levels of intelligence.
The specific tests being used have not been published.

6 Competitive Games

The Turing Ratio method of Masum et al. has more emphasis on tasks and
games rather than cognitive tests. They propose that “. . . doing well at a broad
range of tasks is an empirical definition of ‘intelligence’.”[24] To quantify this
they seek to identify tasks that measure important abilities, admit a series of
strategies that are qualitatively different, and are reproducible and relevant over
an extended period of time. They suggest a system of measuring performance
through pairwise comparisons between AI systems that is similar to that used to
rate players in the international chess rating system. The key difficulty however,
which the authors acknowledge is an open challenge, is to work out what these
tasks should be, and to quantify just how broad, important and relevant each
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is. In our view these are some of the most central problems that must be solved
when attempting to construct an intelligence test and thus this approach is
incomplete in its current state.

7 Collection of Psychometric Tests

An approach called Psychometric AI tries to address the problem of what to
test for in a pragmatic way. In the view of Bringsjord and Schimanski, “Some
agent is intelligent if and only if it excels at all established, validated tests of
[human] intelligence.”[4] They later broaden this to also include “tests of artistic
and literary creativity, mechanical ability, and so on.” With this as their goal,
their research is focused on building robots that can perform well on standard
psychometric tests designed for humans, such as the Wechsler Adult Intelligent
Scale and Raven Progressive Matrices.

As effective as these tests are for humans, they seem inadequate for measur-
ing machine intelligence as they are highly anthropocentric and embody basic
assumptions about the test subject that are likely to be violated by computers.
For example, consider the fundamental assumption that the test subject is not
simply a collection of specialised algorithms designed only for answering com-
mon IQ test questions. While this is obviously true of a human, or even an ape,
it may not be true of a computer. The computer could be nothing more than a
collection of specific algorithms designed to identify patterns in shapes, predict
number sequences, write poems on a given subject or solve verbal analogy prob-
lems — all things that AI researchers have worked on. Such a machine might be
able to obtain a respectable IQ score [25], even though outside of these specific
test problems it would be next to useless. If we try to correct for these limita-
tions by expanding beyond standard tests, as Bringsjord and Schimanski seem
to suggest, this once again opens up the difficulty of exactly what, and what not,
to test for. Psychometric AI, at least as it is currently formulated, only partially
addresses this central question.

8 Smith’s Test

The basic structure of Smith’s test is that an agent faces a series of problems
that are generated by an algorithm [30]. In each iteration the agent must try
to produce the correct response to the problem that it has been given. The
problem generator then responds with a score of how good the agent’s answer
was. If the agent so desires it can submit another answer to the same problem.
At some point the agent requests to the problem generator to move onto the next
problem and the score that the agent received for its last answer to the current
problem is then added to its cumulative score. Each interaction cycle counts
as one time step and the agent’s intelligence is then its total cumulative score
considered as a function of time. In order to keep things feasible, the problems
must all be in P, i.e. the solution must be verifiable in polynomial time.
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We have two main criticisms of Smith’s definition. Firstly, while for practical
reasons it might make sense to restrict problems to be in P, we do not see why
this practical restriction should be a part of the very definition of intelligence
as Smith suggests. If some breakthrough meant that agents could solve difficult
problems in not just P but sometimes in NP as well, then surely these new agents
would be more intelligent?

Secondly, while the definition is somewhat formally defined, it still leaves open
the important question of what exactly the tests should be. Smith suggests that
researchers should dream up tests and then contribute them to some common
pool of tests. As such, this is not a fully specified test.

9 C-Test

One perspective among psychologists who support the g-factor view of intelli-
gence, is that intelligence is “the ability to deal with complexity”[10]. Thus in
a test of intelligence the most difficult questions are the ones that are the most
complex because these will, by definition, require the most intelligence to solve.
It follows then that if we could formally define and measure the complexity of
test problems we could construct a formal test of intelligence. The possibility
of doing this was perhaps first suggested by the complexity theorist Chaitin [5].
While this path requires numerous difficulties to be dealt with, we believe that
it is the most natural and offers many advantages: It is formally motivated, pre-
cisely defined and potentially could be used to measure the performance of both
computers and biological systems on the same scale without the problem of bias
towards any particular species or culture.

One intelligence test that is based on formal complexity theory is the C-Test
from Hernández [13,14]. This test consists of a number of sequence prediction
and abduction problems similar to those that appear in many standard IQ tests.
Similar to standard IQ tests, the C-Test always ensures that each question has
an unambiguous answer in the sense that there is always one hypothesis that
is consistent with the observed pattern that has significantly lower complexity
than the alternatives. The key difference to sequence problems that appear in
standard intelligence tests is that the questions are based on a formally expressed
measure of complexity, namely Levin’s computable Kt complexity [20] (rather
than Kolmogorov’s incomputable complexity [21]) to get a practical test. In order
to retain the invariance property of Kolmogorov complexity, Levin complexity
requires the additional assumption that the universal Turing machines are able
to simulate each other in linear time.

The test has been successfully applied to humans with intuitively reasonable
results [14,12]. As far as we know, this is the only formal definition of intelligence
that has so far produced a usable test of intelligence.

One criticism of the C-Test and Smith’s tests is that the way intelligence is
measured is essentially static, that is, the environments are passive. We believe
that dynamic testing in active environments is a better measure of a system’s
intelligence. To put this argument another way: Succeeding in the real world
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requires you to be more than an insightful spectator! One must carefully choose
actions knowing that these may affect the future.

10 Universal Intelligence

Another complexity based test is the universal intelligence test [19]. Unlike the
C-Test and Smith’s test, universal intelligence tests the performance of an agent
in a fully interactive environment. This is done by using the reinforcement learn-
ing framework in which the agent sends its actions to the environment and re-
ceives observations and rewards back. The agent tries to maximise the amount
of reward it receives by learning about the structure of the environment and the
goals it needs to accomplish in order to receive rewards.

Formally, the process of interaction produces an increasing history
o1r1a1o2r2a2o3r3a3o4 . . . of observations o, rewards r ≥ 0, and actions a. The
agent is simply a function, denoted by π, which is a probability measure over ac-
tions conditioned on the current history, for example, π(a3|o1r1a1o2r2). The envi-
ronment, denoted μ, is similarly defined: μ(okrk|o1r1a1o2r2a2 . . . ok−1rk−1ak−1).
The performance of agent π in environment μ can be measured by its total ex-
pected reward V π

μ := E[
∑∞

i=1 ri|μ, π], called value. The largest interesting class
of environments is the class E of all computable probability distributions μ. For
technical reasons, the values are assumed to be bounded by some constant c.

To get a single performance measure V π
μ is averaged over all μ ∈ E. As there

are an infinite number of environments, with no bound on their complexity, it
is impossible to take the expected value with respect to a uniform distribution
— some environments must be weighted more heavily than others. Considering
the agent’s perspective on the problem, it is the same as asking: Given several
different hypotheses which are consistent with the observations, which hypothesis
should be considered the most likely? This is a fundamental problem in inductive
inference for which the standard solution is to invoke Occam’s razor: Given
multiple hypotheses which are consistent with the data, simpler ones should be
preferred. As this is generally considered the most intelligent thing to do, one
should test agents in such a way that they are, at least on average, rewarded for
correctly applying Occam’s razor. This means that the a priori distribution over
environments should be weighted towards simpler environments.

As each environment μ is described by a computable measure, their complexity
can be measured with Kolmogorov complexity K(μ), which is simply the length
of the shortest program that computes μ [21]. The right a priori weight for μ is
2−K(μ). We can now define the universal intelligence of an agent π to simply be
its expected performance,

Υ (π) :=
∑
μ∈E

2−K(μ)V π
μ .

By construction, universal intelligence measures the general ability of an agent to
perform well in a very wide range of environments, similar to the essence of many
informal definitions of intelligence [18]. The definition places no restrictions on
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the internal workings of the agent; it only requires that the agent is capable of
generating output and receiving input which includes a reward signal. If we wish
to bias the test to reflect world knowledge then we can condition the complexity
measure. For example, use K(μ|D) where D is some set of background knowledge
such as Wikipedia.

By considering V π
μ for a number of basic environments, such as small MDPs,

and agents with simple but very general optimisation strategies, it is clear that
Υ correctly orders the relative intelligence of these agents in a natural way.
A very high value of Υ would imply that an agent is able to perform well in
many environments. The maximal agent with respect to Υ is the theoretical
AIXI agent which has been shown to have many strong optimality properties
[16]. These results confirm that agents with high universal intelligence are indeed
very powerful and adaptable. Universal intelligence spans simple adaptive agents
right up to super intelligent agents like AIXI. The test is completely formally
specified in terms of fundamental concepts such as universal Turing computation
and complexity and thus is not anthropocentric.

A test based on Υ would evaluate the performance of an agent on a large
sample of simulated environments, and then combine the agent’s performance
in each environment into an overall intelligence value. The key challenge that
needs to be dealt with is to find a suitable replacement for the incomputable
Kolmogorov complexity function, possibly Levin’s Kt complexity [20], as is done
by the C-Test.

11 Summary

We end this survey with a comparison of the various tests considered. Table 1
rates each test according to the properties described below. Although we have
attempted to be as fair as possible, some of the scores we give on this table will
naturally be debatable. Nevertheless, we hope that it provides a rough overview
of the relative strengths and weaknesses of the proposals.

Valid : A test of intelligence should capture intelligence and not some related
quantity. Informative: The result should be a scalar value, or perhaps a vector.
Wide range: A test should cover low levels of intelligence up to super intelli-
gence. General : Ideally we would like to have a very general test that could be
applied to everything from a fly to a machine learning algorithm. Dynamic: A
test should directly take into account the ability to learn and adapt over time.
Unbiased : A test should not be biased towards any particular culture, species,
etc. Fundamental : We do not want a test that needs to be changed from time to
time due to changing technology and knowledge. Formal : The test should be pre-
cisely defined, ideally using mathematics. Objective: The test should not appeal
to subjective assessments such as the opinions of human judges. Fully Defined :
Has the test been fully defined, or are parts still unspecified? Universal : Is the
test universal, or is it anthropocentric? Practical : A test should be able to be
performed quickly and automatically. Test vs. Def : Finally we note whether the
proposal is more of a test, more of a definition, or something in between.
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Table 1. In the table � means “yes”, • means “debatable”, · means “no”, and ?
means unknown. When something is rated as unknown that is usually because the test
in question is not sufficiently specified.
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Inverted Turing Test • • · · • · · · · • · • T
Toddler Turing Test • · · · • · · · · · · • T
Linguistic Complexity • � • · · · · • • · • • T
Text Compression Test • � � • · • • � � � • � T
Turing Ratio • � � � ? ? ? ? ? · ? ? T/D
Psychometric AI � � • � ? • · • • • · • T/D
Smith’s Test • � � • · ? � � � · ? • T/D
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5. Chaitin, G.J.: Gödel’s theorem and information. International Journal of Theoret-
ical Physics 22, 941–954 (1982)

6. Dowe, D.L., Hajek, A.R.: A non-behavioural, computational extension to the Tur-
ing test. In: ICCIMA 1998. International Conference on Computational Intelligence
& Multimedia Applications, pp. 101–106. Gippsland, Australia (1998)

7. Eisner, J.: Cognitive science and the search for intelligence. Invited paper presented
to the Socratic Society, University of Cape Town (1991)

8. Ford, K.M., Hayes, P.J.: On computational wings: Rethinking the goals of artificial
intelligence. Scientific American, Special edn. (4) (1998)

9. French, R.M.: Subcognition and the limits of the Turing test. Mind 99, 53–65
(1990)

10. Gottfredson, L.S.: Why g matters: The complexity of everyday life. Intelli-
gence 24(1), 79–132 (1997)

11. Harnad, S.: Minds, machines and Searle. Journal of Theoretical and Experimental
Artificial Intelligence 1, 5–25 (1989)



Tests of Machine Intelligence 241

12. Hernández-Orallo, J.: Beyond the Turing test. Journal of Logic, Language and
Information 9(4), 447–466 (2000)

13. Hernández-Orallo, J.: On the computational measurement of intelligence factors.
In: Performance Metrics for Intelligent Systems Workshop, Gaithersburg, MD,
USA, pp. 1–8 (2000)

14. Hernández-Orallo, J., Minaya-Collado, N.: A formal definition of intelligence based
on an intensional variant of Kolmogorov complexity. In: EIS 1998. Proceedings of
the International Symposium of Engineering of Intelligent Systems, pp. 146–163.
ICSC Press (1998)

15. Hutchens, J.L.: How to pass the Turing test by cheating (1996),
www.cs.umbc.edu/471/current/papers/hutchens.pdf

16. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability, p. 300 Springer, Berlin (2005),
http://www.hutter1.net/ai/uaibook.htm

17. Hutter, M.: The Human knowledge compression prize (2006),
http://prize.hutter1.net

18. Legg, S., Hutter, M.: A collection of definitions of intelligence. In: Goertzel, B.
(ed.) Proc. 1st Annual artificial general intelligence workshop (to appear), Online
version www.idsia.ch/ shane/intelligence.html

19. Legg, S., Hutter, M.: A formal measure of machine intelligence. In: Benelearn 2006.
Annual Machine Learning Conference of Belgium and The Netherlands, Ghent
(2006)

20. Levin, L.A.: Universal sequential search problems. Problems of Information Trans-
mission 9, 265–266 (1973)
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8092 Zürich, Switzerland
{vasudevs,stefanga,haratia,rsiegwart}@ethz.ch

Abstract. Robots are rapidly evolving from factory work-horses to
robot-companions. The future of robots, as our companions, is highly
dependent on their abilities to understand, interpret and represent the
environment in an efficient and consistent fashion, in a way that is com-
patible to humans. The work presented here is oriented in this direction.
It suggests a hierarchical, concept oriented, probabilistic representation
of space for mobile robots. A salient aspect of the proposed approach is
that it is holistic - it attempts to create a consistent link from the sensory
information the robot acquires to the human-compatible spatial concepts
that the robot subsequently forms, while taking into account both un-
certainty and incompleteness of perceived information. The approach is
aimed at increasing spatial awareness in robots.

1 Introduction

Robotics today, is visibly and very rapidly moving beyond the realm of factory
floors. Robots are working their way into our homes in an attempt to fulfill our
needs for household servants, pets and other cognitive robot companions. If this
“robotic-revolution” is to succeed, it is going to warrant a very powerful reper-
toire of skills on the part of the robot. Apart from navigation and manipulation,
the robot will have to understand, interpret and represent the environment in an
efficient and consistent fashion. It will also have to interact and communicate in
human-compatible ways. Each of these is a very hard problem. These problems
are made difficult by a multitude of reasons including the extensive amount of
information, the huge number of types of data (multi-modality), the presence of
entities in the environment which change with time, to name a few. Adding to
all of these problems are two simple facts - everything is uncertain and at any
time, only partial knowledge of the environment is available.

The underlying representation of the robot is probably the single most critical
component in that it constitutes the very foundation for all things we might
expect the robot to do, these include the many complex tasks mentioned above.
Thus, the extent to which robots will evolve from factory work-horses to robot-
companions will in some ways, albeit indirectly, be decided by the way they
represent their surroundings. This chapter is thus dedicated towards finding an
appropriate representation that will make today’s dream, tomorrow’s reality.

M. Lungarella et al. (Eds.): 50 Years of AI, Festschrift, LNAI 4850, pp. 243–256, 2007.
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2 A Brief History in AI

Knowledge representation has been a very pivotal component of AI research.
This has yielded a significant number of representation methodologies, ontolo-
gies and programming languages oriented towards representing knowledge. In
the context of robotics, there have been broadly two schools of thought. The
first school of thought believed in the more conventional AI based approach of
using a representation as the basis of all forms of artificial intelligence. Works
centered on this philosophy relied on a formal perception-representation-action
loop with a reliable interface between the modules within the system. This ap-
proach exhibited two weaknesses - slow progress with the state-of-the-art being
dominated by symbolic (not grounded) results and slow speed due to the use
of a centralized controller mechanism. These issues consequently heralded the
formation of a new paradigm for intelligence - one that would do away with the
use of a formal representation as previously understood by the AI community. A
very representative work of this new basis for intelligence was [1]. Brooks argued
against the use of a formal representation as he believed that the appropriate
formulation of one was an almost intractable problem. His work prescribed the
real world as being its own model and suggested that various action producing
modules directly interface with the real world rather than between themselves.
This behavior based /subsumption / reactive methodology produced situated re-
sults in robotic platforms within a very short span of time. While this approach
has had tangible success in the context of lower level robot sensory-motor skills,
we believe that higher level cognitive capabilities such as natural language inter-
action, manipulation, spatial cognition etc. would require a more powerful basis
(an appropriate representation) to realize. Similar reflections can be obtained
from more recent works [2]. The need for a suitable representational basis forms
the central motivation for the work presented here and relates it to past AI
research. However, taking inspiration from prior research, an attempt has been
made to address the concerns of representation based approaches. Our methodol-
ogy prescribes a ground-up formation of the representation. The requirement of
a consistent link from sensory data to the more abstract concepts is very strictly
enforced in our approach. Thus, the approaches proposed here yield situated em-
bodied intelligent agents. We also take into account two fundamental ubiquities
that such agents have to deal with - incompleteness and uncertainty. Further,
rather than addressing the ‘knowledge representation for intelligence’ problem
in general, our approach focuses on a representation that is suited for mobile
robots in the context of spatial cognition and navigation. The proposed repre-
sentation is aimed at making robots more spatially aware of their surroundings.
Thus, issues such as speed, scalability and performance would be more easily
dealt with.

3 State of the Art

Robot mapping is a well researched problem, however, with many very interest-
ing challenges yet to be solved. An excellent and fairly comprehensive survey of
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robot mapping has been presented in [3]. Robot mapping has traditionally been
classified into two broad categories - metric and topological. Metric mapping
([4] & [5]) tries to map the environment using geometric features present in it.
A related concept in this context is that of the relative map [6] - a map state
with quantities invariant to rotation and translation of the robot. Topological
mapping ([7] & [8]) usually involves encoding place related data and informa-
tion on how to get from one place to another. The more recent scheme of hybrid
mapping ([9] & [10]) typically uses both a metric map for precision navigation
in a local space and a global topological map for moving between places.

The one similarity between all these representations is that all of them are
navigation-oriented, i.e. all of them are built around the single application of
robot-navigation. These maps fail to encode the semantics of the environment.
This leaves them with little scope for use in more complex and interactive tasks.
This is also the reason that the level of spatial awareness in current robot systems
is quite modest. The focus of this work is to address this deficiency. A single
unified representation that is multi-resolution, multi-modal, probabilistic and
consistent is still a vision of the future and is the aspiration of this work.

Typically, humans seem to perceive space in terms of objects, states and de-
scriptions, relationships etc. This seems both intuitive and is also subsequently
validated through user studies that were conducted as a part of this work [11].
Thus, a cognitive or human compatible spatial representation could be expected
to encode similar information. The major issues that need to be addressed
towards having a mobile robot do this include high level feature1 extraction
(HLFE), representation (assimilation and modeling of the information) and cog-
nition (reasoning and understanding through the acquired representation). Each
of these issues are addressed in the approach suggested here.

The representation presented here takes inspiration from the way we believe
humans represent space and the notion of a hierarchical representation of space.
Ref. [12] suggests one such hierarchy for environment modeling. In [13], Kuipers
put forward a Spatial Semantic Hierarchy which models space in layers com-
prising respectively of sensorimotor, view-based, place-related and metric infor-
mation. Since the introduction of the term Cognitive Map in Tolman’s seminal
work [14], many research efforts have attempted to understand and conceptual-
ize a cognitive map. The most relevant works include those of Kuipers [15] and
Yeap [16]. The former viewed the cognitive map as having five different kinds
of information (topological, metric, routes, fixed features and observations) each
with its own representation. Yeap et al. in [16], review prior research on early
cognitive mapping and classify representations as being space based or object
based. The proposed approach attempts to take the best of both worlds.

Object classification, an instance of HLFE, is a hard problem because of
the challenges that accrue from the objects in question (appearance change
across views of object and objects within class), the environment (occlusion
and clutter), and the sensor in use (various forms of noise). Representations for

1 Objects, doors, walls etc. are considered high-level features contrasting with lines,
corners etc. which are considered low-level ones.
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classification span prototypical models (class based or generic models) to
exemplar-based models (template or appearance-based models). Historically, ap-
proaches to object classification / recognition moved from generic to exemplar
based approaches [17]. However, current efforts are being redirected towards
generic ones. In particular, one important representation, that is also the basis
for the approach presented here, is the functionality of the object. One of the
more influential concepts in psychology about an object’s function was intro-
duced by Gibson [18]. It put forward the notion of affordance, which can be
defined as the functionality an object offers to an agent. Thus, the function an
object can afford, not only depends on the physical structure of the object but
also on the action of the agent on the object. For example, a chair’s function
depends on whether an agent intends to use it to sit at a table or to to climb on
it and use it as a ladder. However, in computer vision literature, functionality
as used in the contexts of representation, classification and recognition has typ-
ically referred to semantic annotations of the object’s structure. A good survey
of techniques developed in this context has been presented in [19].

Several previous works ([20], [21] and [22]) inspire our approach towards
functional object classification. The general approach undertaken in these most
representative works comprised of the following elements. A functionality was
generally defined as a combination of functional parts, which in turn were un-
derstood as a set of object-parts with associated attributes. This is in accor-
dance with a school of thought that proposed to associate a correspondence
between functionality and object structure. Different forms of segmentation in-
cluding planes and surface patches were used. Learning and representation in-
cluded the use of histograms, multi-variate Gaussians and also more simplistic
models. The classification process itself used diverse methods including verifica-
tion trees, Bayes-nets, probabilistic grammars, voting methods and graph based
search algorithms. Despite these noteworthy contributions, two aspects warrant
further research - the first being a consistent probabilistic framework for func-
tional object classification that works in real world environments. The other is
the adaptation of these techniques to suit the complexities that plague mobile
robotics - uncertainty and incompleteness. The approach presented in this work
shows some of the steps being taken towards this objective.

Another aspect of the sought representation is the extraction of structural el-
ements including doors, walls, ceilings and so on. Several works have attempted
to model and detect doors. The explored techniques range from modeling the
door opening [23] to those that model / estimate door parameters [24] and to
those like [25], based on algorithms such as boosting. While there are numerous
works in mobile robotics that detect the presence of structural elements through
simplified methods, towards their larger objectives, few works exist that appro-
priately model structural aspects of the environment in order to enable a robot
to make semantically meaningful inferences on the structure of its surroundings
- this is the motivation for the proposed approach. Recent inspiring contribu-
tions to our approach include [26], which generated a structural model of indoor
environments by segmenting and matching planar patches generated using a
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3D laser scanner against a coarse semantic description which captures aspects
such as parallelism, orthogonality etc. between structural elements; [27] which
proposed a similar model (for outdoor environments) but with a more detailed
semantic description and [28], which generated a structural model by classifying
each data point as being part of a floor, object or ceiling - the salient aspect
being that segmentation and labeling were performed simultaneously.

Increasingly intelligent robots are tending to be more-and-more socially in-
teractive [29]. In the future, intelligence and the ability to meaningfully com-
municate will be critically important factors determining the compatibility and
acceptability of robots in our homes. Most works in mobile robotics have un-
til now restricted themselves to navigation related problems. Thus, few works
evaluate their concepts in human centered experiments. A recent work which
attempted to understand the acceptability of robots among people through a
user study is done in [30]. This work was done on the sidelines of [31], which
was a recent large scale demonstration of the remarkable growth of personal and
service robotics. The representation proposed in this work promises to enable
robots to not only perform navigation related tasks but also to be more spatially
aware and human-compatible machines that could inhabit our homes alongside
us. With the rapid increase in the importance of human robot interaction, the
need for evaluating the work through human centered experiments was felt nec-
essary. Further, it was felt that such experiments could contribute positively to
the enhancement of the work itself. With this view, an elaborate user study was
conducted to understand human perception and representation of spaces. This
has been detailed later in section 4.4.

4 Approach

The proposed approach is shown in fig. 1. The principle idea is that by adding
concepts (for instance, based on functionality) in the representation, semantics
can be embedded in a purely navigation oriented spatial representation. The
resulting representation can be understood as a hierarchical, functional repre-
sentation of space. The following sub-sections elicit three mutually independent
but complimentary directions of work which are integrable under the framework
of the general approach and are aimed at addressing the issues raised earlier.

4.1 Towards an Object Based Representation of Space

The representation put forward here is a hierarchical one that is composed of
places which are connected to each other through doors (structural elements)
and are themselves represented by local probabilistic object graphs (probabilis-
tic graph encoding the objects and relationships between them). This work at-
tempts to research the kinds of information that could be incorporated in the
representation and the manner in which this information may be used towards
adding more semantic information, in the form of increasingly abstract concepts,
in the representation. The extraction of the high level features would be sup-
ported through parallel ongoing efforts detailed in sections 4.2 and 4.3.



248 S. Vasudevan et al.

(a) (b)

Fig. 1. (a) General approach - A robot uses the sensory information it perceives
to identify high level features such as objects, doors etc. These objects are grouped
into abstractions along two dimensions - spatial and semantic. Along the semantic
dimension, objects are clustered into groups so as to capture the spatial semantics.
Along the spatial dimension, places are formed as a collection of groups of objects.
Spatial abstractions are primarily perceptual formations (occurrence of walls, doors
etc.) whereas semantic or functional abstractions are primarily conceptual formations
(similarity of purpose / functionality ; spatial arrangement). The representation is a
single hierarchy composed of sensory information being mapped to increasingly abstract
concepts. (b) An example scenario - The figure depicts a typical office setting. The
approach proposed in this work would would enable a robot to recognize various objects,
cluster the respective objects into meaningful semantic entities such as a meeting space
and a work space, infer the presence of a being in a room which has a cuboidal shape
and even understand that the place is an office because of the presence of a place to
work and one to conduct meetings.

The detailed approach is elicited in [32]. The perception system included meth-
ods for object recognition and door detection. For this work, a SIFT based object
recognition system was developed along the lines of [33]. A stereo camera was
used to recognize the object and to obtain its coordinates in 3D space. Doors
were used in this work in the context of place formation. A method of door detec-
tion based on line extraction and the application of certain heuristics, was used.
The sensor of choice was the laser range finder. Knowing the robots pose (using
odometry) relative to a local reference, these objects and doors are identified
in the local frame of reference. Using this information, a probabilistic graphical
representation encoding the objects and the relative spatial information between
them is formed as a local representation for the place. The local representations
of different places were connected through the doors that link them. In this way,
the formed representation could be understood either as an extended relative
metric representation (from the design perspective) or as a hierarchical metric-
topological-semantic representation of space where the topological information
is given by the places and the semantic content is encoded by using objects and
their properties. Figure 2(a) depicts a 2D representation of the resultant object
based representation - a section of which is shown in fig. 2(b).
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(a) (b)

Fig. 2. (a) Object map produced as a result of exploring the test environment. Red
circles are the place references, blue triangles are the objects and the green stars are the
doors. (b) Probabilistic object graph representation of a single room and its connection
to an adjacent one through the door. Places such as SV office correspond respectively
to the SV(office) shown in figure (a). Each place has a set of “children” objects, these
correspond directly to the objects mapped in the respective place. Black lines link the
place to the objects within it. Red lines (lighter; between objects and door(s) within
a place) represent inter-object relationships. Blue lines (darker; between place nodes
and doors) show the topological connection between the places through the doors.

In this work, spatial cognition was demonstrated using place classification
and place recognition. While the latter has been addressed in the mobile robot-
ics community ([34] and [8]), the former requires the robot to actually build a
conceptual model of a place and is more general and harder, a problem. With
the aim of improving on an initial solution proposed in [32] and towards the
incorporation of more semantics in the representation, a Bayesian approach to-
wards conceptualization of space has been proposed. Some preliminary results
are shown in fig. 3. The process involves a conceptual clustering approach that
uses a distance metric and a maximum-a-posteriori (MAP) estimate of the con-
cept indicated by the incoming object, together with a naive Bayesian classifier
based conceptualizer that actually infers the presence or absence of different
concepts. Until now, models based on object occurrences (multiple occurrences)
have been studied for the conceptualization process. Inter object relationships
are currently being incorporated in the framework to further enhance it.

4.2 Towards Object Classification

In a recent effort towards functional object classification, a range camera (Swis-
sRanger) has been used for probabilistic incremental object part detection. The
detailed report of methods used may be found in [35]. Very briefly though, the
objective of the work was to sequentially register range-data as obtained from
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Fig. 3. Bayesian Conceptualization of an office - the objects are clustered and each
cluster is shown with a different color. Each cluster is subsequently conceptualized
into a functional grouping such as work space, storage space and meeting space. These
concepts are in turn used to infer that the place is an office. This is aimed towards
robust place classification and also representing space along the lines of fig. 1(a).

.

the range camera and to segment the resultant 3D model into object parts which
would subsequently be used towards classifying objects. The system was prob-
abilistic in that it took into consideration sensor and segmentation errors. The
segmentation of the parts was done using morphological operators. The object
parts were detected using a particle filter to track the state of each segmented
part as being a known part or noise. The key idea was to accumulate evidence
incrementally over several frames, for a particular object part, while taking into
account the errors generated due to sensor and segmentation faults. Figure 4
shows some of the results obtained. The key significance of this work is in the
development of a system that uses novel sensory information and that also takes
into account the fact that these algorithms would have to function on a mobile
robot platform - the existence of uncertain and incomplete information radically
changes the application of most previously performed static approaches.

4.3 Towards a Structure Based Representation of Space

Given the framework shown in fig. 1(a), a key question that remains to be
answered is - how can structural information be extracted and meaningfully
understood in a consistent and probabilistic fashion towards a structural rep-
resentation of space ? The approach adopted here uses a nodding SICK laser
scanner to obtain a 3D point cloud of the indoor environment. The range im-
age is first segmented into smooth areas by a fast edge based approach using
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(a) (b)

Fig. 4. (a) A voxel set of a chair generated from ten aligned and quantized point clouds
acquired with a range camera. Voxels with lower and higher point density are depicted
in blue and red, respectively. (b) Detected object parts of a chair. The color indicates
the part category: red for leg, green for back, and blue for seat. The shading of the
color indicates the probability of being a noisy part.

directional bearing angles [36]. This approach to segmentation also delivers
boundary information and a map of depth discontinuities (laser beam jumps)
which is later used to infer some information about the presence of holes, con-
nection of the rooms and corridors, etc. Principal Component Analysis (PCA)
is applied on the segmentation output to select planar patches, with bound-
aries being coded as 2D polygons . These polygons are later simplified using the
information gathered, such as the adjacency of the planes (fig. 5(a)).

In addition to planar patches, the map also contains 3D corners which are
formed by considering major orthogonal planes. These are relatively big planes
with a large number of supporting points and are perpendicular to one axis of
the building coordinate system. In each step, such planes are used to re-adjust
the robot orientation. Then, 3D corners in the current observation are formed
and matched with the corners in the map to find the translation of the robot
between successive steps. Simple heuristics are used to recognize some parts of
indoor structure within the mapped data, like ceiling, floor, walls, doors and
windows (fig. 5(b)). This helps in creating sub-maps compatible with building
parts like corridors and rooms, which eventually leads to a more compact rep-
resentation of gathered data in terms of structural hierarchies and semantically
annotated maps. Figure 6 shows the preliminary results obtained when this
structural information is applied towards solving the simultaneous localization
and mapping (SLAM) problem.
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(a)

(b)

Fig. 5. (a) The major planar patches extracted from one scene with simplified bound-
aries. (b) The structure recognized includes the walls, the ceiling and the floor. The
structural elements are currently extracted from the planar patches shown in (a) by
applying various heuristics.

4.4 Perspectives from a User Study

The broad aim of the study was to validate the proposed representation in a
cognitive sense. The aim was to verify our approach and to find out what other
details (kinds of features / data) the proposed representation could encode. The
survey comprised of a questionnaire posed to fifty-two people who were taken
through a course within our premises, wherein they were exposed day-to-day
things and places. While the detailed survey including the methods adopted and
the results / analysis are presented in [11], some of the salient aspects that could
be concluded from the work are mentioned here. They support various aspects
of all three approaches presented above and the overall framework within which
these works are integrable.

The study concluded that an object based representation was indeed useful
for robots to develop a human compatible representation of space. Objects were
clustered into groups or concepts - these are the semantic / functional abstrac-
tions in space. They were mostly formed by similarities in purpose, functionality
and also by the relative spatial arrangements of objects. Places could be under-
stood as spatial abstractions which were typically formed by bounding elements
such as walls and doors whereas semantic abstractions were most often formed
as a result of relative spatial arrangements between objects and/or similarities
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Fig. 6. The outcome of the point cloud registration process performed using the struc-
tural elements extracted as shown in fig. 5. The experiment was carried out with six
observations obtained using a nodding SICK laser scanner in an office.

in purpose or functionality. The survey also brought out to a significant extent,
the various properties, functionalities that may be relevant towards enhancing
the representation being sought. Although a more comprehensive proof is requi-
site, there was a clear indication that spatial abstractions contain the semantic
ones. In the realm of objects, structural information (of objects) was found to
be critical towards their representation or description.

5 Future Work

Building on the promising results obtained, a lot more work is ongoing or planned
for the near future. Current work is focused on conceptualizing space. While
preliminary results seem assuring, both clustering and conceptualization need
further research. The concepts so formed, would then be used towards mak-
ing the representation richer in semantic information and yet, more scalable.
This would have to be supported by suitable advances on the object classifica-
tion front and from the structural dimension as well. While preliminary results
towards functional object classification look encouraging, a consistent proba-
bilistic framework towards functional object classification is still the subject of
ongoing research. The envisioned representation would also provide a firm basis
to research and represent objects by classifying them through functionality as
interpreted in terms of action-recognition [37] and by augmenting the context
information in the classification process [38]. Along the structural dimension,
ongoing work is oriented towards improving the structure based representation
of space. This includes developing robust probabilistic algorithms towards iden-
tifying structural elements and analyzing their use towards solving the SLAM
problem.
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6 Conclusion

This chapter described an endeavor to create a hierarchical probabilistic multi-
modal representation of space. A lot of relevant work has been carried out in
the past years by the AI and Robotics communities. This chapter revisited some
of these contributions; it described the current steps being undertaken and the
recent advances made. This work may be understood as a conscientious and
situated attempt to bridge the gap between AI and robotics. It elicited a three
pronged effort being adopted towards aggressively dealing with the open chal-
lenges in this domain. The approach prescribed the use of sensory data to extract
high level features such as objects, doors etc. These features were grouped along
two dimensions - spatial to include the structural definition of space and se-
mantic to include a conceptual / semantic description of it. The representation
thus formed and the current results on conceptualization were found to be hu-
man compatible; they were adequately supported with results from an elaborate
user study. As a result of these efforts, a clear increase in the degree of spa-
tial awareness of robots was observed. The methods adopted exhibited a clear
link from the sensory information acquired by a robot to the human compatible
spatial concepts that the robot infers thereof - in this sense, the approach is
holistic. Notwithstanding all of this, several issues still remain to be addressed.
It is hoped that these efforts will inspire and bear tangible contributions that
would eventually help realize the next generation of spatially cognizant robots.

Acknowledgments

This work has been supported by the EU Integrated Project COGNIRON (The
Cognitive Robot Companion), funded by contract FP6-IST-002020 and the Swiss
National Science Foundation (Grant No. 200021-101886).

References

1. Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47, 139–
159 (1991)

2. Steels, L.: Intelligence with representation. Philosophical Transactions of the Royal
Society A 361(1811), 2381–2395 (2003)

3. Thrun, S.: Robotic Mapping: A Survey. In: Exploring Artificial Intelligence in the
New Millenium, Morgan Kaufmann, San Francisco (2002)

4. Chatila, R., Laumond, J.P.: Position referencing and consistent world modeling for
mobile robots. In: IEEE Int. Conf. on Robotics and Automation (ICRA), IEEE
Computer Society Press, Los Alamitos (1985)

5. Arras, K.O.: Feature-Based Robot Navigation in Known and Unknown Environ-
ments. PhD thesis, Swiss Federal Institute of Technology Lausanne (EPFL), Thesis
number 2765 (2003)

6. Martinelli, A., Svensson, A., Tomatis, N., Siegwart, R.: SLAM based on quan-
tities invariant of the robot’s configuration. In: IFAC Symposium on Intelligent
Autonomous Vehicles (IAV) (2004)



A Hierarchical Concept Oriented Representation for Spatial Cognition 255

7. Choset, H., Nagatani, K.: Topological Simultaneous Localization and Mapping
(SLAM): Toward Exact Localization Without Explicit Localization. IEEE Trans-
actions on Robotics and Automation 17, 125–137 (2001)

8. Tapus, A.: Topological SLAM - Simultaneous Localization And Mapping with fin-
gerprints of places. PhD thesis, Swiss Federal Institute of Technology Lausanne
(EPFL), Thesis Number 3357 (2005)

9. Thrun, S.: Learning Metric-Topological Maps for Indoor Mobile Robot Navigation.
Artificial Intelligence 99 (1), 21–71 (1998)

10. Tomatis, N., Nourbakhsh, I., Siegwart, R.: Hybrid Simultaneous Localization And
Map building: A natural integration of Topological and Metric. Robotics and Au-
tonomous Systems 44, 3–14 (2003)
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Abstract. Empirical evidence indicates that anticipatory representa-
tions grounded in the sensorimotor neural apparatus are crucially in-
volved in several low and high level cognitive functions, including at-
tention, motor control, planning, and goal-oriented behavior. A unitary
theoretical framework is emerging that emphasizes how simulative ca-
pabilities enable social abilities, too, including joint attention, imitation,
perspective taking and communication. We argue that anticipation will
be a key element for bootstrapping high level cognitive functions in cog-
nitive robotics, too. We thus propose the challenge of understanding how
anticipatory representations, that serve for coordinating with the future
and not only with the present, develop in situated agents1.

1 Introduction

Anticipation has the potential to become a key issue in designing and developing
the artificial cognitive systems of the future. In this paper we review evidence of
the roles of anticipation in enabling several cognitive functions, bootstrapping
high level cognitive functions, and developing a truly autonomous mental life.
We will then argue that understanding anticipation and the development of in-
creasingly sophisticated anticipatory capabilities in natural cognition permits to
design artificial anticipatory cognitive embodied systems capable of coordinat-
ing their current actions with future outcomes, planning in view of their future
needs, and finally formulating and achieving abstract goals.

The situated approach now dominant in the ‘new AI’ [8,12,56] focuses on
reactive mechanisms and agent-environment engagement. It has produced many
results, most notably a clarification of the roots of cognition in sensorimotor
interactions, and the relevance of embodied, situated and emerging aspects of
behavior. At the same time, the emphasis on reactive behavior has drastically
reduced the efforts in understanding future-directed behaviors which are wide-
spread in natural cognition. Now that the situated, embodied approach is widely
accepted in robotics, it is time to study how to deal in this theoretical framework

1 Work funded by the EU project MindRACES (FP6-511931).

M. Lungarella et al. (Eds.): 50 Years of AI, Festschrift, LNAI 4850, pp. 257–270, 2007.
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with the variety of anticipatory behaviors in natural systems, and how they can
emerge from more primitive forms of coordination and interaction. We think that
a theoretical, empirical and computational investigation of anticipation, and in
particular of simulative theories [3,33,35], will permit an ‘evolutionary leap’ in
cognitive robotics: from reactive to anticipatory cognitive embodied systems.

A popular definition of anticipatory system is provided by Rosen [64]: A sys-
tem containing a predictive model of itself and/or its environment, which allows
it to change state at an instant in accord with the model’s predictions pertaining
to a latter instant. Behavior which is not simply reactive, or driven by stim-
uli which are here-and-now, but includes an (implicit or explicit) evaluation of
future states of affairs is surprisingly widespread in natural cognition, ranging
from sensorimotor interaction to higher-level cognitive abilities only available to
humans and possibly to other mammals, such as reasoning, imitation, and social
learning. Even behaviors which seem to be simple acts of coordination, in fact,
often require an estimation of future states of affairs, as reported for example
in the motor preparation of the prey-catching behavior of the jumping spider
[68], for compensating the dinamicity of the environment. The influence of ex-
pected stimuli for orienting attention has been reported not only in humans (see
[2]), but also in pigeons [63] and monkeys [15]. On these basis, models of the
visual apparatus including (hierarchical) predictions have been proposed such as
predictive coding [58]. Increasingly sophisticated capabilities are enabled by the
capability to process in advance expected stimuli; for example, Hesslow [35] de-
scribes how rats are able to ‘plan in simulation’ and compare alternative paths in
a T-maze before acting in practice. Cognitive agents are in fact not only able to
exploit affordances [31] which are immediately perceptible in the environment.
They also act in the world to force it to show its hidden affordances, or even
to produce affordances for future use. For example, monkeys can fulfill complex
tasks requiring to discard the most immediate affordances of the environment
(e.g., going directly toward food), and invent creative ways to use objects such as
sticks, breaking functional fixity (i.e., the incapacity to exploit an object other
than for its default function). Overall, a significant part of natural agents be-
havior is not present-oriented and stimuli-driven, but future-oriented in nature,
and it is motivated by goals (i.e., anticipatory representations of future, desired
state of affairs that have the potential to prescribe and regulate our actions).
This surprising ‘inversion’ of the direction of causality, from future to present,
from goals to actions, is acknowledged in psychology by James’s ideomotor prin-
ciple [39], in cybernetics [65], and in control theory by Adams [1], who argues
that goals serve as reference signals “from the future”.

Anticipation is an important component of human cognition, too. Damasio
[17] describes how during decision making humans engage in ‘what-if’ simu-
lated loops of interaction with the environment in order to evaluate in advance,
via somatic markers, possible future negative consequences of their actions. In-
creasingly complex uses of anticipation exist which lead us to disengage more
and more from current sensorimotor cycle. Many species can build up and
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manipulate representations of future courses of events, for example in simulated
planning; but typically they do that in order to satisfy their present drives or
goals. As far as we know, only humans can endogenously formulate novel goals
and planning in view of future needs; this includes abstract and distal ones such
as having fun or becoming famous. Many of our individual and social practices
ultimately serve to deal with future needs, and we accept immediately negative
outcomes in view of distal positive ones (e.g., studying today for having a job
tomorrow) –and the possibility to anticipate oneself could have lead to the ca-
pability to coordinate one’s own actions in the present and in the future, and
to have a sense of ‘persisting self’. We can formulate expectations at an increas-
ingly high level of abstraction, and to use them for regulating our actions. For
example, we can decide whether or not to apply for a job depending on our
expectations about the satisfaction it will provide us, the salary, the free time,
etc. Not only we formulate such abstract expectations, but we also can ‘match’
them with imaginary futures and select among them. Another capability that
is typical of human beings is substitution [57]. Probably several animal species
are able to work on their internal models of the phenomena before (or instead
of) acting in the real world, but we humans use that ability systematically. A
mechanic can assemble and dismantle a motor in his mind before doing it in prac-
tice, and an architect can propose us different plans for restructuring our house.
Thanks to anticipation it is possible to deal with entities also when they are not
indeed present as stimuli: an ability that is crucial for defining an agent’s au-
tonomy [10]. One striking novelty of human cognition is our tendency to heavily
modify and adapt the environment to us, and not only vice-versa. While other
species adjust their representations for fitting the actual world, we often act
in the world in order to make it fit our representations of what we want, our
goals. Several animal species have the capability to adapt their environments,
such as to build up nests, but typically they do that in a stereotyped way. We
humans do not have not this limitation, and have heavily modified our environ-
ment to fit our present and future goals. Another feature of human cognition,
that is its extremely sophisticated social life, depends on abilities that could be
based on anticipation, too, such as perspective taking, imitation, and language
[30,38,61].

In [55] we have argued that these capabilities are related. We have an unprece-
dented capability to endogenously produce internal representations of the (pos-
sible) future, and to flexibly manipulate them: selecting which ones to achieve
(forming goal states), and deciding how to achieve them by only working on in-
ternal representations of our possible actions and their outcomes. Anticipation is
the key mechanism for bootstrapping increasingly complex cognitive functions,
and for this reason it has to be investigated in a unitary, developmental perspec-
tive. In this paper we put forward this perspective. We introduce anticipation
from the theoretical point of view, we review how it is addressed both in the
empirical literature, and we conclude by proposing the study of anticipation as
a crucial challenge for cognitive robotics.
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2 Anticipation: Coordinating with the Future

We propose to conceive the mind as an essentially anticipatory device [11,55]
which serves for future-oriented behavior. It is nowadays widely assumed in the
situated cognition literature that adaptive behavior both in natural and artificial
systems depends crucially on the dynamics of interactions between brain, body
and environment [12,51,77]. However, as above discussed, cognitive agents can
break the boundaries of sensorimotor engagement. While adaptivity serves to
coordinate with the present, anticipation serves to coordinate with the future.

Anticipatory behavior is not all-or-nothing ability, but comes in grades: the
range of anticipatory capabilities is ample and new capabilities can be evolved
on the basis of old ones. As a demarcation criterion we propose that the true men-
tal life of a cognitive agent begins when it is able to endogenously generate repre-
sentations which are not totally determined by actual sensed stimuli but derive
from internal models, and to use them in order to regulate its present behavior
(and in some species even future behavior). As pointed out by many researchers
[14,55,73] even if connected causally to the environment, internal processes for
dealing with representations do not share its dynamics. This permits representa-
tions to detach from the current sensorimotor cycle and to be used instead of the
environment itself, for example when the environment is too noisy, or too rich of
stimuli, or if not all the relevant information is (already) there, as in the case of
future-oriented actions, which we stress here. In its more complex forms, detached
representations are conceptual and not only perceptual, permitting more complex
capabilities such as representing the non existent and reasoning.

This idea of cognition entails a notion of representation that is intimately
anticipatory. As discussed by Roy [66], representations are related to the envi-
ronment with a double-sided relationship: causation (from environment to agent)
and anticipation (from agent to environment). For example, concepts for ‘reach-
able’ or ‘graspable’ objects are grounded by schemas which regulate agent behav-
ior and include predictions of the consequences of expected interactions. Once in
place for regulating present-directed actions, those anticipation-based represen-
tations offer an unique evolutionary advantage to cognitive agents: to work on
them before, or instead of, working on external reality, leading to future-oriented
capabilities such as formulating, pursuing and reasoning about distal goals. The
ability that defines a true mind, as opposed to a merely adaptive systems, is
in fact that of building up representations of the non-existent, of what is not
currently (yet) true or perceivable, for the sake of acting on them.

Implicit, or behavioral, anticipation. This is not to say that all anticipation
depends on explicit representations of future states of affairs. Some anticipatory
capabilities, which we refer as behavioral or implicit anticipation, are selected by
evolution and encoded into the sensorimotor apparatus. Consider as an exam-
ple a grasshopper apparently reacting to a noise and escaping. In this case the
grasshopper’s behavior has been selected by evolution not to react to the noise
itself, but to predators. It reacts now to a danger in the future: this behavior,
even if realized by a reactive mechanism, is functionally anticipatory.
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Gibson [31] firstly proposed that vision is an active process in which anticipa-
tion is implicitly produced by learned patterns of sensorimotor transformations;
there is no need of representing anything, neither present not future states, since
the environment is used as the best representation of itself. Brooks [8] points out
that, strictly speaking, continuously coupled reactive agents are not memory-
less, since their memory is in the environment; and we would say that also their
expectations are in the environment and in the dynamics of agent-environment
interaction. Recently O’Regan and Noe [52] also propose to conceive all per-
ception as coordination of an agent’s perceptual apparatus with the dynamical
structure of sensory stimuli. In their sensorimotor view the organism shows an
anticipatory behavior, that is to attend to the next relevant stimuli, by learn-
ing the patterns of transformation of sensory stimuli depending on its motor
operations, without an explicit representation of the next incoming stimulus.

Explicit, or representational, anticipation. In nature there is thus a range
of behaviors which maintains a reactive appearance but is functionally anticipa-
tory; but how many anticipatory capabilities can be explained without resorting
to anticipatory representations? In the next Section we will review empirical find-
ings indicating that explicit anticipatory representations are actually involved in
many anticipatory behaviors. Also many theories, such as Clark’s minimal rep-
resentationalism, point in the same direction without denying the embodied and
dynamical nature of cognition: minds may be essentially embodied and embedded
and still depend crucially on brains which compute and represent [13].

Some capabilities seem to be out of the scope of behavioral anticipation: for
example, acting both for the present and for distal goals (to coordinate both
with the present and the future), or considering both own and other’s perspec-
tive, or taking into account multiple possibilities for action. If a unique, non
representation-mediated mechanism is in play, these activities should interfere,
but we know that conceiving now the future does not hinder the possibility to
act in the present, and conceiving the other’s perspective does not imply losing
one’s own. All these phenomena seem then to be based on representations: for ex-
ample, internal, emulating models can be in play in several cognitive operations,
running on-line and off-line and providing a credible substratum for represen-
tational activity [14] (but see [43] for an account of how non-representational
systems can deal with distal behavior). Moreover, the possibility to internalize
external structures to work on them, including maps but also language and cul-
tural practices, seem to be a distinctive trait of high level cognition (see [55]). In
a sense, this is an old story coming back to attention. Even in the past, in fact,
many studies in traditional AI were focused on resolving problems by working on
‘internal’ or ‘small-scale’ models before acting in the world. For example, Craik
[16] discusses how internal representations permit to generate imaginary experi-
ences and ‘mental simulations’ of external reality, and Tolman [78] discusses the
role of imagination for learning ‘as if’ experience had really happened. However,
the problem is that often representations as used in AI are disembodied and not
grounded [34,56]. How to develop a concept of representation that it is integrated
in a naturalistic framework and in continuity with situated action?
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Recently representations begin to be seen in a different way in cognitive sci-
ence, which we could call a motor-based perspective. As suggested in partic-
ular by the discovery of mirror neurons [62], they are mainly action-oriented,
originate in the sensorimotor apparatus and remain intimately related with it
[13,14,55]. As an example of the coupling of representation and action, Gallese
[29] argues that the goal is represented as a goal-state, namely, as a successfully
terminated action pattern. The ideomotor principle [39], which recently received
a number of empirical confirmations, [37,44], suggests in a similar way that ac-
tion planning takes place in terms of anticipated features of the intended goal. It
is thus not surprising that in this action-based view of cognition anticipation has
assumed a crucial role, since it is a bridge between representation as traditionally
conceived, and situated action. Anticipation permits in fact to look at represen-
tations not as abstract and disembodied symbols, as it was the case in traditional
AI, but as structures enabling agent-environment coordination that arise for the
sake of guiding behavior and remain intimately coupled with the sensorimomtor
apparatus. Interactivism [4], for example, describes representations as ways for
setting up indications of further interactive potentialities : representations serve
thus for future interactions. This approach is reminiscent of the Kantian pro-
ductive perspective of cognition, according to which we do not passively process
environmental stimuli but actively produce representations by means our cate-
gorical apparatus; the novelty is the emphasis on the situated and action-based
origin and nature of representations.

3 Anticipation in Natural and Artificial Cognition

How does the brain formulate expectations? Which brain structures and which
mechanisms are involved? There are currently multiple directions of research,
which emphasize different aspects. The ideomotor principle and related mod-
els [39,37,44] stress the formation of associative, action-effect rules, mediated
by a common neural coding. Similarly, stimulus-stimulus associative links (e.g.,
lightning - thunder) might be involved the prediction of regularities of the en-
vironment. The reenactment of sensorimotor structures used for the control of
action is instead stressed in the literature on the mirror system [29,62], that
codes for both observed and executed actions. Reenactment and generative ca-
pabilities are central in the literature on internal forward models [42,81], that
actively produce expectations and do not only explain statistical regularities in
the stimuli, but include hidden states. Different anticipatory mechanisms and
brain structures could then co-exist and have complementary powers and limi-
tations [22]. For example, important distinctions are among prediction of events
that we can or can not produce ourselves [69] and among prediction of action
effects or behavioral goals [48]. See also [25] for a recent, comprehensive review
of the neural correlates of anticipation in the mammalian brain.

In artificial systems research, one very influential model is that of Wolpert,
Kawato and colleagues [42,81], that has the advantage to be well grounded in
standard control theory. They propose that the brain uses internal models, which
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mimic the behavior of external processes, for motor control of action. In partic-
ular, forward models permit to generate expectations about the next sensed
stimuli, given the actual state and motor command. Inverse models instead take
as input actual stimuli and the goal state and provide as output the motor
commands necessary to reach the desired state. Taken together, inverse and for-
ward models permit not only to perform motor plans but also to control it and
in general to regulate behavior in noisy and dynamic environments. In neuro-
sciences forward models have been claimed to be involved in compensating for
delays in sensory feedback, cancel the self-produced part of the input from sen-
sory stimuli, etc. [81,82] and empirical evidence exists for their involvement in
visuomotor tasks [46]. Similar structures have also been claimed to be involved
in visual attention [2] and imagery [40].

Thanks to these findings motor and simulative theories of cognition are now
widespread: for example, according to the emulation theory of Grush [33], rep-
resentation is the ability to emulate internally part of external reality by means
of internal models such as Kalman filters, that can also be nested to obtain
abstraction. Similarly, the simulation hypothesis of Hesslow [35] argues that rep-
resenting is engaging in simulated interaction with the environment by means of
internal predictive models which can be chained and form ‘loops’. Barsalou pro-
poses the perceptual symbol system theory; arguing against amodal and disem-
bodied notions of representations, proposes a situated view in which they retain
part of their original sensorimotor structure. On the basis of perceptual systems,
Barsalou proposes that concepts emerge as productive, simulative structures that
can be used by the agent in order to simulate actual or expected sensorimotor
engagements on the basis of past situated action, producing understanding of
perceptual and abstract concepts. Similarly Gallese [27] claims that looking at
objects means to unconsciously ’simulate’ a potential action.

Internal models for simulating actual sensorimotor engagement can also be
exploited for increasingly complex future-oriented activities. For example, this
approach explains quite naturally one of the distinctive points of human cog-
nition, the possibility to test potential actions ‘in simulation’ and for example
avoid dangers [17]. Recent evidence suggests in fact that imagined and per-
formed actions share a common timing and neural substratum [18]. Moreover,
a comprehensive model of how impairments in anticipating the consequences of
one’s own actions produces diseases such as the ‘anarchic hand’ and schizophre-
nia has been proposed [26] that unifies a number of empirical findings under a
common, anticipatory framework. Another capability that is often associated to
internal, generative models is formulating and comparing in simulation multi-
ple alternative courses of actions. It has been proposed in [50] that the possible
neural substratum is a ‘loop’ between the cerebellum, which is supposed to be
able to produce sensory predictions (see e.g., [6]), and the basal ganglia, that are
involved in action selection and movement initiation (see e.g., [60]). Recently
the chemical basis of such neural predictions have been investigated, too. For
example a role of dopamine has been advocated in reward prediction [70] and
signaling unpredictability of actions [59].
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The use of anticipatory and simulative capabilities also extends to the social
sphere. The neural substrates involved in performing, observing, simulating and
imitating actions in fact largely overlaps, and evidence exists for a role of mirror
neurons and simulative processes for imitation [38], distinguishing self from oth-
ers [19], mind reading [28], language production and understanding [61]. Several
researchers have proposed that the same generative mechanisms for controlling
action can be reenacted endogenously for perceiving, understanding and imi-
tating actions performed by other agents, for understanding behavior, and for
inferring intentions from actions [5,38,40,80]. According to Rizzolatti and Arbib,
Individuals recognize actions made by others because the neural pattern elicited
in their premotor areas during action observation is similar to that internally
generated to produce that action [61, p. 190]. Altogether, the beauty of the motor-
based approach is in its power to unify spheres of cognition that are traditionally
kept separated: action and perception, individual and social.

Anticipation in Artificial Systems. Recently anticipation has received at-
tention in situated approaches to artificial systems, and principled design ap-
proaches have been proposed. For example, on the basis of the psychological
literature, and in particular Hoffmann’s theory of anticipatory behavioral control
[37], a taxonomy of four kinds of anticipations for artificial systems is proposed
in [9]: implicit, payoff, sensorial and state anticipation. At the same time, many
mechanisms for predicting have been proposed in cognitive robotics, such as
recurrent neural networks (RNN). For example, Jordan’s type RNN [41] use ex-
pectations produced by forward models for ‘vicarious’ trial-and-error learning.
Kalman filters have also been widely used; they incorporate many functionalities
such as estimation and filtering, and for this reason Grush [33] considers them
prototypical emulators. Bayesian predictors have also been used in the literature
of motor control [82], and rule based systems such as the schema mechanism
[24] and anticipatory classifier systems [9] have been shown to autonomously
learn action-effect rules and chain them for planning and action control. The
roles of reward prediction and surprise in action learning and in metalearning
strategies such as curiosity are being studied [72], with convergent ideas be-
tween reinforcement learning and neuroscience [22,23]. Moreover, predictive state
representation [45] has been proposed for substituting the classical concept of
state.

Many cognitive functions related to anticipation, having different levels of
complexity and sometimes nested in one another, are being studied in cogni-
tive robotics. Anticipation plays in fact a crucial role in attention, conceived
as ‘selection of information relevant for action’ [2,54]. The role of anticipation
for the control of attentive strategies has also been demonstrated with hierar-
chical architectures combining the top-down contribute of expectation and the
bottom-up one of incoming stimuli [53,58]. Several functions related to the con-
trol of action have been claimed to include anticipatory components, too, such
as stabilizing perception [79], canceling the predictable part of the feedback [49],
erasing stimuli produced e.g. by the body of the agent [21], producing a reference
signal for the control of voluntary acts [1]. Many of them have been modeled in
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artificial systems, too. For example, the robot Murphy can [47] exploit efference
copies of motor commands for generating simulated perceptual inputs and thus
maneuver its arm robustly even in partial absence of sensory stimuli. Similar
anticipatory strategies are widely used in the Robocup competition (e.g. [32]) for
coordinating with the ball in dynamic environments: prediction is required for
compensating the delays of the sensors. Combinations of forward and inverse in-
ternal models have also been widely used for action execution and control both in
distributed, dynamic systems approaches [75] and in localist ones [20,54,76,82].
They permit to generate multiple competing motor plans, and select the one
most appropriate to the context depending on its predictive accuracy. One ex-
ample is choosing the most appropriate behavior to deal with ‘full’ or ‘empty’
glasses, the weight being the context [82]. Action understanding and imitation
has also been demonstrated in artificial systems by running ‘in simulation’ the
same generative mechanisms used for motor control [20].

Internal predictive models serving for the control of action have been used for
other functionalities, increasingly disengaging from current sensorimotor cycle.
In fact, if expectations produced by forward models are chained, and expected
input is supplied in spite of actual input, it is possible to use the same machinery
involved in online visual and motor planning for generating off-line, ‘simulative’
planning. In cognitive robotics this capability has been exploited for generating
the sensory consequences of multiple possible plans and selecting the ‘best’ one
[74,83], like in the simulation hypothesis [35]. It has also been used for generating
long-term predictions related to the current course of actions in order to receive
an evaluation from the future [71], like in the somatic markers hypothesis [17].
Another use of internal predictive models is understanding the boundaries of the
personal sphere. Piaget [57] discusses how distinguishing self-produced motion
from sensory stimuli which are caused by interaction with objects in the envi-
ronment leads to develop a body schema; some of these ideas have been also used
in robotics [7]. It has also been shown by schema-based architectures [24,54,66]
that anticipation, as argued in constructivist theories [4,57], can bootstrap the
acquisition of new concepts by interacting with the environment, as in the case
of Drescher’s schema mechanism [24] which learns synthetic items. Another re-
lated use is grounding concepts such as ‘far’, ‘heavy’, ‘obstacle’ or ‘predator’ as
simulated interaction potentialities [36,66].

Computational studies have demonstrated that anticipatory mechanisms for
the control of action can also be used for enabling social capabilities such as ac-
tion understanding, imitation, joint attention, perspective taking (e.g., [20,67]).
This fact parallels the huge empirical evidence that a common neural substrate,
enabling anticipatory and simulative capabilities, is in place both for individual
and social cognition [38,62]. The similarities between many of the above men-
tioned studies indicate that anticipatory capabilities are highly related both at
the functional and at the mechanism level. This is an important reason for con-
ceiving anticipation as a unitary phenomenon, which is fundamental in natural
cognition and should inspire artificial systems design, too.
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4 Conclusions

While the ‘new AI’ is nowadays mainly focused on reactive behavior, we argue
that a crucial theoretical and computational challenge is putting in a naturalistic
framework our ability to deal not only with the present but with anticipated,
or desired futures, and make them happen for our sake. In artificial cognitive
systems, as in natural ones, implicit and explicit anticipation permits an evolu-
tionary leap from present-oriented to future-oriented capabilities, bootstrapping
high level cognitive and social capabilities [55]. To imagine, to reason about the
possible and the non existent, to evaluate in advance the results of one’s own
actions, to change the world according to one’s own goals and, at the same time,
to build up deceptive and illusory worlds, to dream and hallucinate: those are
all features of a truly cognitive mind. We argue that a presupposition for au-
tonomous mental life are anticipatory capabilities permitting to disengage from
sensorimotor loops and to break the boundaries of adaptivity: (1) to pursue au-
tonomously generated goals ; (2) to regulate behavior according to future and not
only present potentialities for action; (3) to learn regularities in the environment
depending on the agent’s (actual or possible) actions, and independent from
them; (4) to deal with entities even ‘in their absentia’, when they are not among
the currently attended stimuli; (5) to form conceptual representations that are
however grounded in (potential) interaction; (6) to adapt the world to fit the
agent’s own goals ; (7) and to boostrap high level cognition.

Much theoretical, empirical and simulative work remains to be done in or-
der to fully understand the phenomenon of anticipation in natural cognition,
and how to endow artificial systems with future-oriented capabilities. We would
conclude by anticipating some of the challenges that we envisage if we want
to build anticipatory artificial systems. Perhaps the most basilar one is to un-
derstand the passage from reactive, to simple, and then increasingly complex
anticipatory mechanisms, with a caveat: arguably, these mechanisms do not re-
place each other in full-fledged cognitive agents, but coexist and coordinate.
Another crucial challenge is understanding which cognitive functions depend on
anticipatory capabilities, and in particularly which ones are exaptations of the
capability to predict. For example, the capability to conceive discrete objects
and events could depend on the fact that we necessarily have to predict them at
a high granularity, since fine-grained prediction fails when the time span is too
long. Another relevant challenge is understanding if motor-based and simulative
view of cognition (exemplified by the motto the mind is an anticipatory device
[11,55]) will be really able to provide us with a unified perspective on cogni-
tion. Assuming that the motor apparatus of a robot can be used for predicting
and understanding objects, events, and actions, the robot could internalize these
predictions and use them independently of the current state of the world, for ex-
ample reenacting them for planning, conceiving novel goals, comparing possible
outcomes of its actions, or imagining the reaction of another robot to its actions.
Several cognitive abilities could depend on the same anticipatory mechanisms.

Overall, we think that anticipation is a necessary condition in natural cogni-
tion for developing several individual and social abilities, and the motor-based,
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simulative view of cognition should inspire the way robots are designed, too
[14,55]. Robots of the future should not simply adapt to their environment, but
predict it, and their generative mechanisms will be the key for bootstrapping
increasingly complex cognitive capabilities.
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Abstract. Computers have become an essential part of modern life, providing 
services in a multiplicity of ways.  Access to these services, however, comes at 
a price: human attention is bound and directed toward a technical artifact in a 
human-machine interaction setting at the expense of time and attention for other 
humans.  This paper explores a new class of computer services that support 
human-human interaction and communication implicitly and transparently.  
Computers in the Human Interaction Loop (CHIL), require consideration of all 
communication modalities, multimodal integration and more robust 
performance.  We review the technologies and several CHIL services providing 
human-human support.  Among them, we specifically highlight advanced 
computer services for cross-lingual communication. 

1   Introduction 

It is a common experience in our modern world, for humans to be overwhelmed by 
the complexities of technological artifacts around us, and by the attention they 
demand.  While technology provides wonderful support and helpful assistance, it also 
gives rise to an increased preoccupation with technology itself and with a related 
fragmentation of attention.  But as humans, we would rather attend to a meaningful 
dialog and interaction with other humans, than to control the operations of machines 
that serve us.  The cause for such complexity and distraction, however, is a natural 
consequence of the flexibility and choices of functions and features that the 
technology has to offer. Thus flexibility of choice and the availability of desirable 
functions are in conflict with ease of use and our very ability to enjoy their benefits. 
The artifact cannot yet perform autonomously and requires precise specification of the 
machine’s behavior. Standardization, better graphical user interfaces, multimodal 
human-machine dialog systems, speech, pointing, “mousing” have all contributed to 
improve the interface, but still force the user to interact with a machine at the 
detriment of other human-human interaction. 

To change the limitations of present day technology, machines must engage 
implicitly and indirectly in a world of humans, that is we must put Computers in the 
Human Interaction Loop (CHIL), rather than the other way round.  Computers should 
assist humans engaged in human-human interaction, by providing implicit and 
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proactive support. If technology could be “CHIL enabled” in this way, a host of new 
services could potentially be possible. Could two people be connected with each other 
at the best moment over the most convenient and best media, without phone tag, 
embarrassing ring tones and interruptions? Could an attendee in a meeting be 
reminded of participants’ names and affiliations at the right moment without messing 
with a contact directory? Can meetings be supported, moderated and coached without 
technology getting in the way? And: Could computers enable speakers of different 
languages communicate and listen to each other gracefully across the language 
divide? 

Human assistants often provide such services; they work out logistical support, 
reminders, helpful assistance, and language mediation; they can do it reliably, 
transparently, tactfully, sensitively and diplomatically. Why not machines? Clearly, a 
lack of recognition and understanding of human activities, needs and desires are to 
blame, and an absence of socially adept computing services that mediate rather than 
intrude. In the following we focus on these two elements: 1.) technologies to track 
and understand the human context, and 2.) computing services that mediate and 
support human-human interaction. 

2    Understanding the Human Context 

In contrast to classical human-machine interfaces, implicit computer support for 
human-human interaction requires a perceptual user interface with much greater 
performance, flexibility and robustness, than is available today.  This challenge has 
lead to research aimed at tracking all the communication modalities in realistic 
recording conditions, rather than individual modalities in idealized recording 
conditions.  CHIL and AMI, both Integrated projects under the 6th Framework 
Program of the European Commission, as well as CALO, a DARPA program are 
among the more recent efforts aiming to take on this challenge. 

In the following we will discuss computer services that support human-human 
interaction.  To realize this goal, work concentrates on four key areas: The creation of 
robust perceptual technologies able to acquire rich and detailed knowledge about the 
human interaction context; the collection and annotation of realistic, audio-visual 
meeting and seminar data necessary for the development and systematic evaluation of 
such; the definition of a common software architecture to support reusability and 
exchangeability of services and technology modules; the implementation of a number 
of prototypical services offering proactive, implicit assistance based on the gained 
awareness about human interactions. 

2.1   Audio-Visual Perceptual Technologies  

2.1.1   Introduction 
Multimodal interface technologies “observe” humans and their environments by 
recruiting signals from multiple AV sensors to detect, track, and recognize human 
activity. The analysis of all AV signals in the environment (speech, signs, faces, 
bodies, gestures, attitudes, objects, events, and situations) provides the proper answers 
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Fig. 1. The “who”, “what”, “where”, “when”, “how” and “why” of human interaction 

to the basic questions of “who”, “what”, “where”, and “when”, that can drive higher-
level cognition concerning the “how” and “why”, thus allowing computers to engage 
and interact with humans in a human-like manner using the appropriate 
communication medium (see Figure 1).  

Research work performed and progress made on a number of such technologies is 
described next. Whereas technological advances for multimodal systems were hard to 
measure in the past for lack of common benchmarks, recent efforts in the community 
have led to the creation of international evaluations such as the CLEAR (Classification 
of Events, Activities and Relationships) [1] and RT (Rich Transcription) [2] evaluations, 
which offer a platform for large-scale, systematic and objective performance 
measurements on large audio-visual databases. 

2.1.2   Person Tracking 
Location and tracking of multiple persons behaving without constraints, unaware of 
audio/video sensors, in natural, evolving and unconstrained scenarios, still poses 
significant challenges. 

Video-based approaches based on background subtraction are error prone due to 
varying illumination, shadows and occlusion, whereas those relying on the feature 
space (e.g. color histograms) are difficult to initialize reliably for every new acquired 
target. Many approaches that offer higher reliability are simply too computationally 
expensive to be used in online applications. 

Audio-based localization and tracking requires the tracked person to be actively 
speaking, and have to deal with the variety of acoustic conditions (e.g., room 
acoustics and reverberation) and, in particular, the undefined number of simultaneous 
active noise sources and competing speakers found in natural scenarios. 

Several strategies are being applied to face the challenges mentioned above. 
Distributed camera and microphone networks, including microphone arrays placed in 
different positions in space, provide a better “coverage” of each area of interest. 
Fusion of sensor data in multi-view approaches overcomes occlusion problems, as in 
the case of 3D background subtraction techniques combined with shape from 
silhouette [3]. Probabilistic approaches computing the product of single view  
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Fig. 2. Audio-visual tracking of multiple persons. Targets are described by an appearance model 
comprising shape and color information, and tracked in 3D using probabilistic representations [4]. 
The system tracks 5 people in real-time through multiple persistent occlusions in cluttered 
environments. 
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Fig. 3. Acoustic, visual and multimodal 3D person tracking accuracies and resulting word error 
rate (after beamforming) on the CHIL 2005 dataset 

likelihoods using generative models which explicitly model occlusion have proved 
efficient in managing the trade-off between reliable modeling and computational 
efficiency [4] (see also Figure 2). Fusion of multimodal data for speaker localization 
in e.g. particle filtering approaches increases robustness for speaker tracking [5]. 
Efficient tracking is a useful building block for all subsequent technologies. It has 
been shown, e.g. that multimodal fusion helps increase localization accuracy, and that 
this in turn has direct impact on the performance of far-field speech recognition [6,7] 
(see also Figure 3). 

2.1.3   Person Identification  
The challenges for audio-visual person identification (ID) in unconstrained natural 
scenarios are due to far-field, wide-angle, low-resolution sensors, acoustic noise, 
speech overlap and visual occlusion, unpredictable subject motion, and the lack of 
position/orientation assumptions to facilitate well-posed signals. Clearly, employing 
tracking technologies and fusion techniques, either temporal, multi-sensor or multi-
modal (speaker ID combined with face ID for example) is a viable approach in order 
to improve robustness.  
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Identification performance depends on the enabling technologies used for audio, 
video and their fusion, but also on the accuracy of the extraction of the useful portions 
from the audio and video streams. The detection process for audio involves finding 
and extracting the speech segments in the audio stream. The corresponding process 
for video involves face detection. Developed mono- and multi-modal ID systems 
within CHIL have been successfully evaluated in the CLEAR’06 and ’07 evaluations 
[1], reaching in many cases near 100% accuracies on databases of more than 25 
subjects. Not only was steady progress made on the key technologies over the past 
years,  showing the feasibility of person ID in unconstrained environments, it was also 
demonstrated that sensor and multimodality fusion help to improve recognition 
robustness (see Figure 4). 
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Fig. 4. Acoustic, visual and multimodal identification results for the CLEAR 2006 and 2007 
evaluations (only best results shown). Systems were trained on 15 second sequences and tested 
on 1, 5, 10 and 20 second test sequences. Shown are accuracies for 25 users from 5 sites. 

2.1.4   Head Pose, Focus of Attention 
Understanding human interaction requires not only to perceive the state of 
individuals, but also to determine their person or object of interest, the addressees of 
speech, and so forth. Since people’s head orientations are known to be reliable 
indicators for their direction of attention [8], systems were developed to estimate the 
head orientations of people in a smart room using multiple fixed cameras (see also 
Figure 5). In the CLEAR 2006 head pose dry run evaluation, the first formal 
evaluation for a task of this kind, classification of pan angles into 45° classes was 
attempted and accuracies of 44.8% were reached [1]. The challenging CHIL database 
drove the development of more accurate systems and already in 2007, estimation of 
exact angles was performed and error rates as low as 7° pan, 9° tilt and 4° roll could 
be achieved. 

Once head orientations are estimated, they can be used to automatically determine 
the foci of attention of people [9]. 
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2.1.5   Activity Analysis, Situation Modeling 
Another useful type of information for unobtrusive, context-aware services is the 
classification of a user’s or a group’s current activities. In experiments performed in 
one of the CHIL sites, typical office activities such as “paperwork”, “meeting” or 
“phone call” were distinguished in a multiple-office setup using only one camera and 
one microphone per room [10]. A hierarchical classification ranging from low level 
 

 

Fig. 5. Estimating Head Pose and Focus of Attention [9]. Head orientations are estimated from 
four camera views. These are then mapped to likely focus of attention targets, such as room 
occupants. 

 

Fig. 6. Data-driven training of activity regions in an office room[10]. The regions labeled as a), 
b) and c) represent the learned areas of activities by office workers and their visitors, whereas 
d) depicts all resulting clusters. Evaluation of an unconstrained one week recording session 
revealed accuracies of 98% for ”nobody in office”, 86% for “paperwork”, 70% for “phone call” 
and 60% for “meeting.” 
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isolated events such as desk activity, to complex activities, such as leaving a room 
and entering another, could be achieved. The event classes were learned by clustering 
audio-visual data recorded during normal office hours over extended periods of time. 
Figure 6 depicts an example of data-driven clustering of activity regions within an 
office.  

2.1.6   Speech Activity Detection, Speaker Diarization 
These two related technologies are relevant not only for Automatic Speech 
Recognition (ASR), but also for speech detection and localization and for speaker 
identification. Speech activity detection (SAD), addresses the “when’’ of the speech 
interaction, and speaker diarization, addresses both “who’’ and “when”. Both have 
been evaluated on the CHIL interactive seminar database in the latest CLEAR and RT 
evaluations, using primarily far-field microphones.  

2.1.7   Recognition of Speech and Acoustic Events 
Speech is the most critical human communication modality in seminar and meeting 
scenarios, and its automatic transcription is of paramount importance to real-time 
support and off-line indexing of the observed interaction.  Although automatic speech 
recognition (ASR) technology has matured over time, natural unconstrained scenarios 
present significant challenges to state-of-the-art systems. For example, spontaneous 
and realistic interaction, with often accented speech and specialized topics of 
discussion (e.g., technical seminars), as well as overlapping speech, interfering 
acoustic events, and room reverberation degrade significantly the ASR performance. 
These factors are further exacerbated by the use of far-field acoustic sensors, which is 
unavoidable in order to free humans from tethered and obtrusive close-talking 
microphones. 

Various research sites have been developing ASR systems to address these 
challenges, and have benchmarked their performance, e.g. in the recent RT’06 and 
‘07 evaluations. There, the best far-field ASR system achieved a word error rate 
(WER) of 44% (52% in 2006), by combining signals from multiple (up to four) table-
top microphones. It is interesting to note that this is considerably higher than the 31% 
(also 31% in 2006) WER achieved on close-talking microphone input – with manual 
segmentation employed to remove unwanted cross-talk. These results demonstrate the 
extremely challenging nature of the task at hand. 

Various research approaches are being currently investigated to improve far-field 
ASR. Some employ multi-sensory acoustic input, for example beamforming that aims 
to efficiently combine acoustic signals from microphone arrays [6], and speech source 
separation techniques that attempt to improve performance during speech overlap 
segments. A different multimodal approach considered is to recruit visual speech 
information from the speaker lips, captured from properly managed pan-tilt-zoom 
cameras, in order to improve recognition through AV-ASR. 

Finally, one should note that speech is only one of the acoustic events occurring 
during human interaction scenarios. Technology is being developed to detect and 
classify acoustic events that are informative of human activity, i.e., clapping, 
keyboard typing, door closing, etc. [1]. 
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2.2   Technology Evaluations, Data Collection and Software Architecture 

To drive rapid progress of the presented audio-visual perceptual technologies, their 
systematic evaluation using large realistic databases and common task definitions and 
metrics is essential. 

Technology evaluations, undertaken on a regular basis, are necessary so that 
improvements can be measured objectively and different approaches compared. An 
important aspect is to use real-life data covering the envisioned application scenarios. 
In CHIL, large numbers of seminars and meetings were collected in five different 
smart rooms, equipped with a range of cameras and microphones. The recordings 
were manually enriched with acoustic event and speech transcriptions as well as 
several visual annotations that allowed to train and evaluate various technology 
components (see for example [1] for further details). In contrast to many of the 
evaluation benchmarks that exist for individual technologies such as face recognition, 
for example, the data from such realistic scenarios is extremely challenging, 
containing a combination of many difficulties for perceptual technologies, such as 
varying illumination, viewing angles, head orientations, low resolution images, 
occlusion, moving people, varying speaking accents, behaviours, room layouts and 
technical sensor setups. 

Starting in 2006, a large effort was undertaken to create an international forum for 
evaluation of multimodal technologies for the analysis of human activities and 
interactions. The CLEAR workshop was created in a joint effort between CHIL [11], 
the US National Institute of Standards and Technology (NIST) and the US Video 
Analysis Content Extraction (VACE) [12] program. The goal was to provide the 
needed discussion forums, databases, standards, and benchmarks necessary to drive 
the development of multimodal perceptual technologies, much like the NIST Rich 
Transcription Meeting Recognition (RT) workshop for diarization, speech detection 
and recognition, or the TRECVID [13], PETS [14] and ETISEO [15] programs for 
visual analysis and surveillance. More than a dozen evaluation tasks were conducted, 
including face and head tracking, multimodal 3D person tracking, multimodal 
identification, head pose estimation, acoustic scene analysis, acoustic event detection, 
etc. 

To offer support for the integration of developed technological components, to 
realize higher level fusion of information and modeling of interaction situations, and 
to provide well-defined interfaces for the design of useful user services, a proper 
architectural framework is of great importance. An example of such an infrastructure 
is the CHIL Architecture [16]. 

2.3   Human-Human Computer  Support Services 

Building on the perceptual technologies and compliant to the software architecture, 
several prototypical services are being developed that instantiate the vision of context-
awareness and proactiveness for supporting human-human interaction. 

The target domains are lectures and small office meetings. In the following, some 
example services, relying on the robust perception of human activities and interaction 
contexts are presented: 
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2.3.1   The Meeting Browser 
The Meeting Browser provides functionality for offline reviewing of recorded 
meetings, automatic analysis, intelligent summarization or data reduction, generation 
of minutes, topic segmentation, information querying and retrieval, etc. Although it 
has been a topic of research for quite some time [17,18], advances in perceptual 
technologies (such as face detection, speaker separation and far-field speech 
recognition) have increased its user-friendliness by reducing the constraints on the 
interaction participants or the need for controlled or scripted scenarios. 

2.3.2   The Collaborative Workspace 
The Collaborative Workspace (CW) [19] is an infrastructure for fostering cooperation 
among participants. The system provides a multimodal interface for entering and 
manipulating contributions from different participants, e.g., by supporting joint 
discussion of minutes or joint accomplishment of a common task, with people 
proposing their ideas, and making them available on the shared workspace, where 
they are discussed by the whole group. 

2.3.3   The Connector 
The Connector is an adaptive and context-aware service designed for both efficient 
and socially appropriate communication [20]. It maintains an awareness of users' 
activities, preoccupations, and social relationships to mediate a proper moment and 
medium of connection between them. 

2.3.4   The Memory Jog 
The Memory Jog (MJ) provides background information and memory assistance to its 
users. It offers "now and here" information by exploiting either external databases: 
(Who is this person? Where is he/she from?) or own ones (Who was there that day? 
What did he say?), the latter including information gained from the observation of the 
interaction context [21]. The MJ can exploit its context-awareness to proactively 
provide information at the proper time and in the most convenient way given the 
current situation. 

2.3.5   Cross-Lingual Communication Services 
Another exciting class of services concern cross-lingual human-human 
communication.  Is it possible to communicate with a fellow human speaking a 
different language as naturally as if he/she spoke your own?  Clearly this would be a 
worthwhile vision in a globalizing world, when international integration demand 
limitless communication, while national identity and pride demand recognition and 
respect for the cultural and linguistic diversity on this planet.  How could technology 
be devised to make this possible?  We devote the following section to a discussion of 
this potentially revolutionary class of human communication support and an area of 
growing speech, language and interface research. 

3   Cross-Lingual Human-Human Communication Services 

In the past decade, Speech Translation has grown from an oddity at the fringe of 
speech and language processing conferences, to one of the main pillars of current 
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research activity. The explosion in interest is driven in part, by considerable market 
pull from an increasingly globalizing world, where distance is no longer measured in 
miles but in communication ease and cost.  Indeed, effective solutions that overcome 
the linguistic divide may potentially offer considerable practical and economic 
benefits. For the research community, the linguistic divide may ultimately prove to be 
a more formidable challenge than the digital divide as it presents researchers with a 
number of fascinating new problems. The goal is, of course, good human-to-human 
communication without interference from technical artifacts, and effective solutions 
must combine efficient and reliable speech & language processing with effective 
human factors and interface design. 

Early developments provided first prototypes demonstrating the concept and 
feasibility [22,23]. In the mid ‘90’s a number of projects aiming at spontaneous 
speech two-way speech translators for limited domains (e.g. JANUS-III, Verbmobil, 
Nespole) followed suit. The Consortium for Speech Translation Advanced Research 
(C-STAR) was founded in ‘91 to promote international cooperation in speech 
translation research.  With the turn of the millennium, activity has proceeded in two 
directions:  The first continues to improve domain-limited two-way translation toward 
fieldable, robust deployment where domain limitation is acceptable (humanitarian, 
health-care, tourism, government, etc.). The second has begun to tackle the open 
challenge of domain limitation for applications such as broadcast news, speeches and 
lectures.  Large new initiatives (NSF-STR-DUST, EC-IP TC-STAR and DARPA 
GALE were launched in the US and Europe in ’03, ’04, and ’06, respectively, in 
response.  In the following we review these advances. 

3.1   Domain-Limited Portable Speech Translators 

Fieldable speech-to-speech translation systems are currently developed around 
portable platforms (laptops, PDA’s) which impose constraints on the ASR, SMT, and 
TTS components. For PDA’s memory limitations and the lack of a floating point unit 
 

    

Fig. 7. A PDA pocket translator [English-Thai] 1 

                                                           
1 Courtesy of Mobile Technologies, LLC, Pittsburgh. 
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require substantial redesign of algorithms and data structures. Thus, a PDA 
implementation may impose WER increases from 8.8% to 14.6% [24] over laptops. In 
addition to continued attention to speed, recognition, translation and synthesis 
performance, however, usability issues such as the user interface, microphone type, 
place and number, as well as user training and field maintenance must be considered.  
One of the resulting speech-to-speech graphical user interfaces (GUI) of a PDA 
pocket translators is shown in Figure 7.  

The GUI window is divided into two regions, showing the language pairs. These 
regions can be populated by recognized speech output (ASR), translation output 
(SMT), or by a virtual PDA keyboard for backup. A back-translation is provided for 
verification; a push-to-talk button activates the device and aborts processing for false 
starts and errors.   Projects (e.g DARPA Transtac) and workshops (e.g. IWSLT, 
sponsored by C-STAR) provide for collaboration, data exchange and benchmarking 
that improve performance and coverage in this space. 

3.2   Translation of Parliamentary Speeches and Broadcast News  

For speech-translation without domain limitation, component technologies first had to 
be developed that deliver acceptable ASR, SLT (and TTS) performance in face of 
spontaneous speech, unlimited vocabularies, broad topics, and speaking style 
characteristic of spoken records. In TC-STAR, speeches from the European 
Parliament (and their manual transcriptions and translations) were used as data to 
train and evaluate. Figure 8 shows the improvements over the years in speech 
recognition and automatic translation within the project. In these experiments it has 
been seen that there is almost a linear correlation between WER and machine 
translation quality. We also found that a WER of around 30% is influencing the 
machine translation quality significantly while a WER of 10% provides for reasonable 
translation compared to reference transcriptions. The goal of a different ambitious 
speech translation project, GALE (Global Autonomous Language Exploitation) [25], 
is to provide relevant information in English, where the input comes from huge 
amounts of speech in multiple languages (a particular focus is on broadcast news in 
Arabic and Chinese). However, progress is not measured by WER and BLEU, but 
how fast a particular goal can be reached. 

Figure 9 compares human and computer speech-to-speech translations on five 
different aspects by human judgment: was the message understandable 
(understanding), was the output text fluent (fluent speech), how much effort does it 
take to listen to the translation (effort) and what is the overall quality, where the scale 
ranges from 1 (very bad) to 5 (very good). The fifth result shows the percent accuracy 
by which questions of content could be answered by human subjects based on the 
output from human and machine translators. It can be seen that automatic translation 
quality still lags behind human translation, but reaches usable and understandable 
levels already close to human translations. It is interesting to note, that the human 
translations also fall short of perfection due to the fact that humans translators 
occasionally omit information. 
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Fig. 8. Improvements in Speech Translation and Automatic speech recognition over the years 
on English EPPS and translation into Spanish. (source [26,27]) 
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Fig. 9. Human vs. automatic translation performance. (source [28]) 
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Fig. 10. BLEU scores show good correlation with human judgements (fluency & accuracy) for 
English to Spanish translations. (source [27])  
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An important aspect in all automatic evaluations are good metrics that can be 
evaluated automatically and repetitively. While WER is an established method to 
measure accuracy of automatic speech transcriptions, automatic MT metrics have 
only recently been proposed.  Figure 10 shows the BLEU score  (one of several 
popular MT scoring metrics) and its good correlation with human judgements 
(adequacy, fluency) on the European Parliament data. 

3.3   Unlimited Domain Simultaneous Translation 

The ultimate cross-lingual communication tool would be a simultaneous translator 
that produces simultaneous real-time translation of spontaneous lectures and 
presentations. Compared to parliamentary speeches and broadcast news, lectures, 
seminars, presentations of any kind, present further problems for domain-unlimited 
speech translation by 

• Spontaneity of free speech, the disfluencies, the ill-formed nature of spontaneous 
natural discourse 

• Specialized vocabularies, topics, acronyms, named entities and expressions in 
typical lectures and presentations (by definition specialized content) 

• Real-time and low-latency requirements and on line adaptation to achieve 
simultaneous translation and 

• Selection of translatable chunks or segments 

3.3.1   The Lecture Translator 
To address these problems in ASR and MT engines, changes to an off-line system are 
introduced as follows: 

• To speed up recognition, acoustic models can be adapted to a particular speaker.  
The size of the acoustic model is restricted (for additional speed up when 
evaluating the Gaussian mixture model one can use techniques such as Gaussian 
selection) and the search space is more rigorously pruned. 

• To adapt to particular speaker style and domain, the language model is tuned 
offline on slides and publications provided by the speaker, either by reweighting 
available text corpora or by retrieving relevant training material through the 
internet or on previous lectures given by the same speaker. 

• As almost all MT systems are trained on data split at sentence boundaries and 
therefore ideally expect sentence like segments as input, particular care has to be 
taken for suitable online segmentation. We have observed that extreme deviations 
from sentence based segmentation can lead to significant decreases in 
performance. In view of minimizing overall system latency, however, shorter 
speech segments are preferred.  In addition to providing efficient phrase 
translation on-the-fly, word-to-word alignment is optimally constrained for entire 
sentence pairs [29]. 

Figure 11 compares WERs on different domains for English. With a tweaked speaker 
dependent lecture recognition system we reach a sufficient good performance of 10% 
WER. On an end-to-end evaluation of the system from English into Spanish we got a 
BLEU score of 19 while on reference transcripts we got a score of 24 (source [30]). 
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Fig. 11. Current performance of speech recognition systems on different domains (source 
[28,30,31], black = speaker independent off line system, gray = speaker dependent online 
system). 

3.3.2   Delivering Translation Services (Output Modalities) 
Aside from speech and language challenges, lecture translation also presents human 
factor challenges, as the service should be provided unobtrusively, i.e., with minimal 
interference or disruption to the human-human communication.  Several options are 
being explored: 

• Subtitles: Simultaneous translations can be projected to the wall as subtitles. This 
is suitable if the number of output languages is small. 

• Translation goggles:  Heads-up display goggles that display translation text as 
captions in a pair of personalized goggles.  Such goggles provide unobtrusive 
translation and exploit the parallelism between the acoustic and visual channel.  
This is particularly useful, if listeners have partial knowledge of a speaker’s 
language and wish to obtain complementary language assistance. 

• Targeted Audio Speakers:  Under the project CHIL, a set of ultra-sound speakers 
with high directional characteristics has been explored, that can provide a narrow 
audio beam to an individual listener or a small area in the audience, where 
simultaneous translation is required.  Since such speakers are only audible in a 
narrow area, it does not disturb other listeners, or could be complemented by 
similar translation services into other languages to several other listener areas. 
[32]. 

• PDA’s, Display Screens or Head-Phones:  Naturally, output translation can also 
be delivered through traditional display technology, i.e., displayed on a common 
screen, a personalized PDA screen or acoustically via head-phones. 

3.4    The Long Tail of Language 

With promising solutions to the language divide under way, language portability 
remains the unsolved issue.  At current estimates, there are more than 6,000 languages 
in the world, but language technology is only being developed for the most populous 
or wealthy languages of the world. Most languages along the long tail of language 
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(Figure 12) remain unaddressed.  Overcoming the language divide thus requires 
workable solutions to providing solutions to the long tail of language, at reasonable 
cost.  Most current research is focused on improving cross-lingual technology by 
employing ever larger data, personnel or computational resources.  To address the 
long tail of language, an orthogonal direction should be concerned with making do 
with less at lower cost.  

 

 
Fig. 12. The long tail of languages 

At our center, we are therefore exploring several intriguing possibilities that lower 
cost that could some day bring this problem within reach as well:  

• Language independent or adaptive components (this was demonstrated already 
for acoustic modeling[33] 

• More selective parsimonious use of data and data collection [34] 
• Interactive and implicit training by the user [35] 
• Training on simultaneously spoken translation thereby eliminating the need for 

parallel text corpora [36] 
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Abstract. The chapter discusses a recent paradigm shift in the field of Artificial 
Intelligence regarding the nature of human intelligence and its implications for 
the design and development of intelligent robots. It will be argued that social 
intelligence is not a mere ‘add-on’ to intelligent robot behaviour for the 
practical purpose of enabling the robot to interact smoothly with other robots or 
people, but that social intelligence might be a stepping stone towards more 
human-like, embodied artificial intelligence.  The argument is supported by 
discussions in primatology highlighting the social origins of primate 
intelligence. The chapter also discusses challenges and opportunities provided 
by socially intelligent robots, with implications for our future. 

Keywords: Social Intelligence Hypothesis, Social Robots, Human-Robot 
Interaction, Paradigm Shift. 

1   Introduction 

This introductory section provides a brief summary of different approaches towards 
artificially intelligent systems and paradigm shifts that have occurred during the 50 
year history of Artificial Intelligence (AI) in relationship to the nature of human-like 
intelligence, see Table 1. Section 2 then discusses the social origins of primate 
intelligence, implications of this for artificially intelligent systems are outlined in 
section 3. Section 4 highlights some challenges and opportunities of socially 
intelligent robots in the 21st  Century. Section 5 concludes this chapter with remarks 
on who we are and were we are going in a world shared with artificially intelligent 
machines. 

1.1   When AI Was Born: The Symbolic Era 

Since its ‘official’ origin in 1956 Artificial Intelligence has been a growing area of 
research which is now been established worldwide in research and education. Several 
large international conferences are being held regularly, e.g. IJCAI and ECAI, and AI 
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courses are part of the curriculum in many undergraduate as well as post-graduate 
university degree programs.    

Artificial Intelligence as a research field has however not lost its controversial 
nature. At present, we do not find one agreed upon path towards artificially intelligent 
artifacts, whether they take the form of software agents, robots, or other incarnations 
of computer technology.  

Early approaches to AI emphasized the symbolic nature of human-like intelligence 
realizing e.g. problem-solving and planning via symbol manipulation. Typically, as 
seen in expert systems, knowledge has been elicited from human ‘experts’ and 
encapsulated in knowledge bases for a particular domain [1]. Rules operating on the 
knowledge base then try to find answers to problems. Achieving systems that can be 
applied beyond a limited domain is often seen as requiring increasingly larger 
knowledge bases. Creating computer programs that could solve problems such as 
chess, towers of Hanoi, or even model human reasoning in limited domains (e.g. case 
based reasoning [2]) were exemplary challenges, and a lot of progress has been made 
in this domain, e.g. over the past 10 years chess playing software has been able to beat 
human world champions.  

However, is chess playing an appropriate benchmark test for human-like artificial 
intelligence? Who in the first place plays chess? Certainly young children don’t, non-
human animals don’t either, and a large proportion of Earth’s population has never 
been exposed to chess. But even those people growing up in a culture that exposes 
them to chess and other games don’t necessarily like to play chess, and they don’t 
necessarily become good at it, even if they try. Interestingly, algorithms that have 
been used to model chess-playing, widely based on extensive search algorithms and 
huge memory capacities, model skills that most humans are not particularly good at: 
human memory capacities are very limited, the human brain is not a giant database 
that stores faithfully every detail throughout our lives, but, as we have learnt over the 
past decades from neurobiology and psychology, the human brain is highly selective, 
it creates and re-creates meaningful information, and forgetting forms an important 
part of this continuous, dynamic re-organization of experiences and memories 
structured around narratives [3,4]. To summarize, chess and other games or puzzles 
often used in AI are not good examples for a bench-mark test of AI. They rather 
reflect an intellectual interest of a certain proportion of adult members of the Western 
culture, and they don’t tell us much about what it means to be human, and what it 
could mean to be a human-like robot. Symbolic-based approaches to AI can be 
applied to many applications e.g. in current software agent applications, or more 
generally in new communication technologies. Thus, from the point of view of 
engineering oriented AI research purely symbolic approaches may continue and grow 
in the research landscape, while at the same time more and more losing touch with the 
biological realities of naturally intelligent systems. 

1.2   When AI Began to Crawl: The Era of Behaviour Based Systems 

‘Nouvelle AI’ emerged in the late 1980s, pioneered by R. A. Brooks in the USA as 
well as by L. Steels and R. Pfeifer in Europe, soon to be joined by many researchers 
worldwide [5-7]. Brooks’s phrase that ‘elephants don’t play chess’, as explained in 
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Table 1. A brief history of paradigm shifts that have occurred over 50 years of AI 
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social context: 

communication 

and cooperation 
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grasping, object 

manipulation, 
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development/ 

coordination 

and cooperation 
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Any Human-robot 

communication, 

dialogue, 
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robots as 

assistants and 

companions 

Humanoid 

‘expressive’ 

robots, service 

robots 

Psychology, 

social sciences 

 

his publications, lead to his research into insect-like, ‘behaviour-based’ robots,  which 
caused a stir in the AI research landscape. ‘Behaviour-based’ reflects a certain notion 
of how to build controllers for autonomous robots, emphasizing the tight connection 
between sensing and acting and de-empathizing planning, avoiding explicitly 
represented ‘models of the environment’ (‘the world is its own best model’, according 
to Brooks). Autonomous locomotion, and later learning thereof (via applications of 
neural networks, evolutionary techniques, or other –preferably distributed- machine 
learning techniques), emerged as new challenges for this new paradigm. Impressive 
‘fast, cheap and simple’ machines roamed around AI labs, e.g. walking insect-like 
machines in the MIT AI Lab [8], ‘self-sufficient’ Lego Robots behaving according to 
biologically inspired principles in the VUB-AI Lab [9], miniature Khepera robots in 
the Univ. Zürich AI Lab which were learning how to classify different objects based 
on biologically-inspired principles of sensori-motor coordination, e.g. used to help a 
robot distinguish between differently sized objects [10], or robots roaming a ‘hilly 
landscape’ [11, 12] (cf. Fig. 1). The possibility to build and study (relatively) ‘cheap 
and simple’ robots also enabled their use in education: increasingly university courses 
or summer schools include practical robot building and / or programming 
laboratories. ‘Nouvelle AI’ robots typically show a variety of basic behaviours 
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enabling them to explore and interact with and within a certain environment; this 
usually includes avoiding obstacles, approaching or avoiding lights or using other 
gradients (odour, heat etc.) to guide behaviour, it may include the ability to pick up 
and manipulate objects. Simulating or modeling human-behaviour has not been a 
primary interest of Nouvelle AI, inspirations originally derived from insect behaviour 
(walking, phonotaxis etc.) or rats (navigation), emphasizing the ‘bottom-up’ approach 
towards intelligence where simpler systems need to be built and understood before 
‘moving on’ the phylogenetic ladder and targeting ‘higher organisms’1. 
 
 

                 

                      

Fig. 1. Early behaviour-based ‘social robots’, inhabiting a hilly landscape environment, keeping 
contact with each other via touch sensors, following and learning from each other via imitation 
(using infra-red sensors and radio communication) [11,12]. In addition the robots had light 
sensors in order to detect certain areas in the environment, and inclination sensors for 
perceiving hills. This work was carried out in the mid 1990s at GMD in St. Augustin, Germany 
and the VUB AI Lab in Brussels, Belgium. 

Influenced by principles of behaviour-based robotics, since the early 1990s swarm 
robotics/swarm intelligence [13] has emerged as a research field inspired by 
interactions among social insects. The goal is to have a large group of relatively 
simple and, typically, identical robots that can perform tasks on the group level that 
are impossible to carry out by the individual robot. Typically the robots do not 
communicate directly, only indirectly via the environment (based on the principles of 
stigmergy and self-organization). Related developments were collective robotics [14]  
that could also include direct communication among robots, but still emphasized the 
bottom-up, distributed nature of intelligent behaviour. Other work in behaviour-based 
robotics on robots interacting with each other included direct interaction and 
communication, cf. Fig. 1. The inspiration for this work did not come from social 

                                                           
1 I do not imply any hierarchical ‘ordering’ of animals species; the term ‘higher animals’ refers 

to phylogenetically more recent vertebrate, mammalian, primate and human species. 
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insects, but rather from social behaviour that we can find in individualized societies 
such as primates [11,15]. 

1.3   Growing Up Socially: The Era of Developmental and Social Robotics 

‘Nouvelle AI’ has been embracing fundamentally the dynamic nature of agent-
environment coupling, influenced by and influencing dynamical systems approaches 
to programming robots, understanding cognition, or modeling systems that can 
develop, which has recently lead to fields such as ‘developmental robotics’ or 
‘epigenetic’ (ontogenetic) robotics. Developmental robotics faces the challenges of 
building robots that, based on certain basic or ‘phylogenetic abilities’, can develop 
more complex behaviour. Different from Nouvelle AI, the main sources of inspiration 
are taken from child development, e.g. how children learn grasping, hand-eye 
coordination, manipulating and recognizing objects etc., see [16]. In parallel to, and 
interconnected with developmental robotics, social robotics emerged, emphasizing 
direct interactions and communication of robots with other robots (and later giving 
rise to the field of human-robot interaction (HRI)).  

Since the early 1990ies myself and others have argued for a direction of research 
where robots directly interact with each other or humans, addressing issues inspired 
by human-human social interaction [11,15]. In the field of HRI, during the past 10 
years my team has been investigating robots as therapeutic toys for children [17], and, 
more recently, robot companions in ‘home scenarios’ [18,19]. At present, in the year 
2007, social interactions between robots and other robots, or between people and 
robots has become an increasingly active and growing research area. For example, 
2006 saw The 15th IEEE International Symposium on Robot and Human Interactive 
Communication (RO-MAN06) with the theme of Getting to Know Socially Intelligent 
Robots, as well as the first ACM/IEEE Human-Robot Interaction (HRI’06) 
conference, just to name two conferences dedicated to Human-Robot Interaction. 
Human-Robot Interaction is a highly challenging and exciting area of research with 
potentially many application areas where robots co-exist with people in daily-life 
environments, such as offices, hospitals, or people’s homes. Artificial Intelligence 
research for such robots poses very different challenges compared to e.g. robotics in 
manufacturing environments.  

Service robotics emphasizes that robots can provide assistance and be useful, 
which might fulfill the dream of most people, namely to get help with tedious 
household tasks. Recently the notion of a Robot Companions has been investigated, 
e.g. as part of the IST-FET funded project COGNIRON (Cognitive Robot Companion 
[20]). There are two important aspects to a robot companion: a) it needs to be able to 
carry out useful tasks on behalf of or in collaboration with people, and b) it needs to 
carry out these tasks such that the robot’s behaviour is comfortable to and acceptable 
to its users. 

Human-robot interaction is a very inter- and multidisciplinary area that involves 
not only fields such as robotics, engineering, AI, but also psychology, social sciences, 
human-computer interaction, and others. Creating robots that people like to ‘live with’ 
is demanding; the robot’s behaviour, its appearance, its tasks and its (attributed or 
otherwise designed) ‘personality’ need to be balanced carefully. Believability and 
consistency have emerged as a main theme: e.g. people don’t want a mechanical 
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looking robot that speaks with a realistic human voice, they don’t want a chatty and 
funny robot in ‘serious’ (e.g. financial) application domains. The level of a robot’s 
social skills may also much depend on requirements in different application domains, 
as analysed in [21]. A robot that has repeated, long-term and physically ‘close 
contacts’ with people, e.g. in rehabilitation and therapy, will need different social 
skills compared to a robot that has little and only short-term interactions with people, 
e.g. a robot cleaning an office building at night. A robot’s functionality, environment  
and context of use will determine its required level of social intelligence and ability to 
exhibit social skills. 

Also, long-term studies with repeated exposure are necessary for robot companions 
that should be around people on a long-term basis: first impressions often change, 
novelty effects wear out, a robot that might be considered entertaining at first 
encounter might ‘get on one’s nerves’ quickly. A few long-term studies with people 
and robots illuminate these issues, e.g. [22-25].  

A lot of insights can be gained from studies on human-human interaction and 
communication, however, results cannot be transferred directly to human-robot 
interaction. State of the art robots, that are clearly distinguishable from people, are a 
specific instantiation of interactive technologies that allow new interaction modalities to 
emerge. Robots are not people, and while robots are given human-like interaction and 
communication abilities, humans adapt to interacting and communicating with them. 
Perceptions of and attitudes towards robots are shaped by expectations, based on 
experience with other machines, computers, as well as inspirations from science fiction 
movies and novels, but expectations will change with increasing familiarity with robots. 
Thus, robotic designs that might be suitable now might appear unsuitable in 100 years 
time. It has become clear that new designs, methods and methodologies are required for 
the newly emerging research field of Human-Robot Interaction [26-31]. 

2   The Social Roots of Human Intelligence 

Since the early 1990s I have argued for a view of Artificial Intelligence that should 
acknowledge what is known about the origins of human intelligence [11,15]. A fuller 
discussion of this argument and its implications for AI and robotics is provided 
elsewhere [27,32,33]. I can only provide a brief summary here. 

While the exact details regarding the evolution of primate and human intelligence 
are still under investigation, with every new archeological discovery adding a missing 
piece to the puzzle of ‘what we are and where we came from’, it has become widely 
acknowledged that the evolution of primate intelligence cannot be separated from the 
social context, i.e. from the group-living context of cooperation, collaboration, 
competition and survival.  

The Social Intelligence Hypothesis, also called Machiavellian Intelligence 
Hypothesis or Social Brain Hypothesis, suggests that primate social intelligence has 
evolved primarily due to the need to deal with complex social dynamics. In different 
primate species we find different degrees of ‘technical intelligence’, while social 
intelligence seems to be more ‘fundamental’ (cf. Fig. 2). According to this argument, 
primates’ brains and primate intelligence have evolved in adaptation to the need to 
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Fig. 2. Ring-tailed lemurs (Lemur catta) the subjects of Alison Jolly’s studies on primate 
behaviour. Her seminal article in 1966 made the observation that lemurs are very social, while 
having less technical skills. Alison Jolly suggested that social intelligence might have been the 
foundation of later developments of ‘technical intelligence’ in other primates: “Primate society, 
thus, could develop without the object-learning capacity or manipulative ingenuity of monkeys. 
This manipulative, object cleverness, however, evolved only in the context of primate social 
life. Therefore, I would argue that some social life preceded, and determined the nature of, 
primate intelligence.” ([34], p. 506). (Photo by Kabir Bakie at the Cincinnati Zoo, May 2005 
[35], used by permission under the Creative Commons Attribution ShareAlike Licence 2.5). 

live in groups, where in order to maintain structure and cohesion an understanding of 
other group members, their social relationships, and the ability to predict their 
behaviour became beneficial and accelerated primate brain evolution [36-38], given 
that maintaining large and ‘smart’ brains is costly. Increasing social complexity 
required increasingly sophisticated social skills. Identifying friends and allies, 
predicting others' behavior, knowing how to form alliances, manipulating group 
members, making war, love and peace, are important ingredients of primate politics 
[39]. Thus, there are two interesting aspects to human sociality: it served as an 
evolutionary constraint which led to an increase of brain size in primates, which in 
return led to an increased capacity to further develop social complexity. It has been 
argued that during human evolution intelligent skills gained in the social domain were 
applied to other domains, e.g. technical domains. Note, for the purpose of the 
discussion in this chapter it is not important whether sociality has been the primary 
factor, or was one among other key factors in the evolution of human brain size. It 
suffices to accept that social intelligence was a driving force behind the evolution of 
human intelligence, complementing insights into the importance of the social context 
for development [40]. 

3   The Social Roots of Artificial Intelligence 

The implications of the above argument presented in section 2 for artificially 
intelligent systems are twofold:  
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Issues relevant to application oriented AI research:  
If human behaviour is fundamentally social, then any artificially intelligent system 
designed to interact with people needs to be able to deal with social behaviour, e.g. to 
recognize and respond appropriately to gestures, language or any other movements 
and expressions people might use in interaction, and be able to generate social 
behaviour in a timely and situated manner. Note, social intelligence is embodied in a 
system able to perceive, process and express social intelligence whereby the 
complexity of each of these three aspects needs to be balanced.  
    Even for robots that have not been primarily designed to interact with people 
directly, e.g. a service robot in a restaurant delivering meals from the kitchen to the 
table where a waiter is serving the customers, even such a robot needs to be socially 
aware of humans in order to work efficiently [41], e.g. it needs to be able to predict 
where people will go and sit in a crowded place. 
    If robots operate in an application domain where direct repeated contact with 
people is necessary, e.g. in care applications, then the success of such robots will 
depend on its acceptability, not only with regard to its functionality and ability to 
carry out tasks satisfactorily, but also with regard to how it is carrying out the tasks. 
The robot’s presence needs to be acceptable to and comfortable for people. 
 
Issues relevant to foundational AI research oriented towards developing autonomous 
intelligent machines and understanding intelligence: 
If social intelligence, in evolutionary terms, ‘came first’ in the development of 
primate intelligence, and then later was applied to other domains, then one may 
extrapolate and apply this ‘evolutionary history’ to machines, too. Accordingly, from 
an evolutionary perspective, then intelligent robots need to be socially intelligent 
robots. Note, a developmental perspective complements this view: children are born 
into a social network and grow up to become a social being, a ‘natural psychologist’ 
alongside developing technical skills required for becoming mathematicians, 
architects, programmers or accountants.  Revealing how technical and social 
intelligence in robots may develop hand-in-hand, mutually benefiting each other, is an 
interesting area of AI robotics research. 

Social intelligence in humans has some universal features, but many that depend 
on cultural norms and individual differences. Humans develop social intelligence in 
interaction other humans in a social group. However, who wants to be a full-time 
caretaker for a robot providing the loving, caring and supporting environment that a 
‘developing’ robot may need? The role of a human as a caretaker for a robot has been 
explored [42], but not in the sense of interactions over 24 hours / 7 days a week, and 
for many years.  Bringing up a child requires a lot of effort, involving emotional, 
psychological and physiological investments [27]. Applying this to robots may have 
unforeseen consequences for people and robots (and ethical implications, for both). 
The choice of paradigms, caretaker or assistant/companion will certainly influence the 
way how people interact with and perceive socially intelligent robots of the future.  

The paradigm shift towards socially intelligent robots opens up exciting 
possibilities for future research in AI and its applications. The next section raises a 
few of these issues. 
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4   Socially Intelligent Robots in the 21st Century: Challenges and 
Opportunities 

Scientifically, for researchers in Artificial Intelligence and other areas, there are a 
number of exciting future research challenges for socially intelligent robots, for 
example: 

1) Robots that ‘have a life’ – machines that can remember and re-create meaningful 
experiences in their ‘life-time’ and interpret new experiences by relating them to their 
previous experiences (robots as autobiographic agents, [43,44], robots that possess 
interaction histories [45]), and using such memories to guide decision-making. 

2) Robots that don’t pretend to be what they aren’t – machines with appearances and 
behaviour that are consistent with their interaction and other abilities, suitable for a 
particular task and application domain, able to meet the expectations of people 
interacting with them. While e.g. Sony’s Aibo robot did show some dog-like 
behaviour, initial encounters with people often could go wrong, for example: a person 
throwing a ball across the room expecting Aibo to rush and fetch it will be 
disappointed. A machine closely resembling a living entity will elicit expectations of 
intelligence and behaviour similar to the biological model. While relying on 
anthropomorphic and zoomorphic tendencies in people is a possible avenue for 
engaging people in interactions with robots, often machine-like appearance and 
behaviour of robots may be more appropriate and reflect more accurately the robots’ 
abilities and level of intelligence and social skills [46]. AI research would benefit 
from systematically tackling the continuum between (from an AI perspective) truly 
socially intelligent robots on the one hand, and robots that may be engaging but rely 
solely on the (psychological) ‘attribution’ of life-like qualities (socially evocative 
robots according to [47]) on the other hand. Studies of this kind would help in 
developing a synthesis of the human-centred and robot cognition (AI) centred 
viewpoints and may significantly advance the development of socially intelligent 
robots that people will accept into their lives [27].  

3) Robots that are useful companions and increase the quality of life of people – 
machines that are able to assist, support and entertain humans in a great variety of 
situations, in the home, at work, in the hospital etc., while mediating human contact 
with other people in order to support the social network of their ‘users’.  

Robots with human like features that behave socially and may entertain or assist 
people are expected to continue to enter our daily lives.  In the remainder of this 
section I will make a few remarks based on my experience as a researcher in the field 
of socially intelligent robots. 

Often discussions on the future of (socially) intelligent robots take a turn towards 
assuming these machines will eventually ‘be like us’ in any way we might want to 
evaluate them. In a recent British government-commissioned report scientists suggest 
that robots might be granted rights by 2056, similar to human rights [48]. Similarly, 
discussions on robot ethics abound. Popular questions that are being discussed in the 
public, with almost identical headlines emerging every few years, are <if a robot ever 
became X, would we be allowed to do Y?>. X can stand for e.g. intelligent, 
conscious, or sentient, Y may stand for switching it off, selling it, hurt its feelings etc.  
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While these discussions are certainly entertaining and philosophically interesting, 
they are in my view beside the point of issues that should be discussed as well, but are 
less ‘sensational’, more ‘complicated’ to explain and thus less likely to reach a large 
scale public. It is easy to create appealing news stories, let me give you an example: 
Fig. 3 shows KASPAR, a child-sized minimally expressive humanoid robot that we 
have developed in our laboratory and has been used to investigate human-robot 
imitation and social learning. It would be easy to fill in a form and apply for 
KASPAR to attend the University’s nursery. If KASPAR gets accepted to the nursery 
– great news story. If it doesn’t – an even greater news story. Of course it would be 
completely bizarre and beyond any scientific justification to do so, since after all, like 
other robots of its kind in the world, KASPAR is a research platform that is more 
often switched off than switched on, and the time it actually interacts with people in 
experiments can be counted in minutes or at best hours. But most importantly, 
KASPAR is a machine, it can ‘smile’ (and we are, from a design perspective, actually 
quite proud of its beautiful smile), but it only smiles when we tell it to ‘smile’ 
according to some algorithmic specification (and it doesn’t matter at this point 
whether the smile is produced by a ‘rule’ or the firing pattern of an artificial neural 
network). KASPAR does not ‘have a life’, it is not a sentient being, if it breaks we’ll 
through it away and build a new one. We designed it to have some human-like 
expressions in order to provide a ‘natural interface’ that people like interact with, we 
did not intend to built a ‘robot child’. That’s robotics reality in the year 2007.  

Of course somebody might get ‘attached’ to KASPAR, in the way people might get 
attached to a valuable watch, a precious porcelain figure, or an everyday item with 
sentimental value. However, this does not make this robot more or less sentient, 
intelligent, or alive, for this matter. Humans, and probably other sentient species that 
inhabit this planet, have an enormously rich inner world, a world of imagination and 
fantasy, memories, stories and real emotions, and we link to the world by projecting 
some of this to the ‘in-animate world’2, seeing patterns in clouds, becoming attached 
to a cartoon character or a particular car, anthropomorphizing the world around us and 
detecting intentionality and goal directed behaviour in other living as well as non-
living things. These human capabilities tell us a lot about the nature of being a 
sentient being, and being human, but they do not necessarily tell us much about the 
nature of the objects themselves that we are anthropomorphizing.  

Discussions about robots that ultimately may be indistinguishable from humans3 
are scientifically interesting, but should not dominate discussions on the future of AI 
robots in the 21st century. There are many more pressing issues that should dominate 
the discussions, for example: 

Robot companions and assistants for the elderly and other vulnerable people are a 
big topic in Human-Robot Interaction and Service Robotics. Caring for people is 
labour and thus cost-intensive, and the argument goes that robots can assist people 
and thus allow e.g. elderly people to stay in their own homes and live independently 
longer. I personally support this argument but there are some issues that need 
consideration:  

                                                           
2 For the purpose of this paper I distinguish living things, i.e. biological organisms, from other 

things, i.e. inanimate objects. 
3 See recent work on androids [49]. 
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The danger of isolation: if a robot can help a person to remain in her own home for 
longer, keeping her own furniture, within the familiar neighbourhood etc, then this is 
certainly a worthwhile goal. If interaction with the robot is occasional and focuses on 
providing assistance e.g. for cooking, going to the bathroom etc, then probably people 
will primarily view it as a tool, and it will have its place among other machines in the 
home. 

   

Fig. 3. The child-sized humanoid robot KASPAR [51] used in the European IST-FP6 Robot- 
Cub project [52] investigating human-robot interaction, specifically issues regarding interaction 
kinesics, imitation, and computational architectures for a robot to extend its temporal horizon 
via interaction histories [45]. The aim of designing KASPAR was to study what types of 
human-robot interactions a minimal set of expressive robot features can afford4. The goal is not 
perfect realism, but sufficient realism for rich interaction. KASPAR has 8 degrees of freedom 
in the head and neck and 6 in the arms and hands. The face is a silicon-rubber mask, which is 
supported on an aluminum frame. It has eyelids and 2 DOF eyes fitted with video cameras, and 
a mouth capable of opening and smiling. 

But when the ‘mechanical’ interaction with the machine is frequent and / or long-
lasting, if the person increasingly depends on the machine’s abilities, and if at the 
same time a ‘social interface’ and artificial social intelligence make the robot more 
and more human-like, then people are likely to ‘bond’ with such machines. Bonding 
                                                           
4 This is different from more cartoon-like humanoid face robots, cf. KISMET [42], where 

exaggerated features are used to trigger a nurturing instinct in people in order to engage them 
in interactions with the robot. See further discussions on such human-robot relationships in 
[27]. 
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with people is important, but can we bond with robots? Bonding is a bi-directional 
relationship, we ‘get something back’ when bonding with a person, a pet etc. [27]. 
What are our rewards regarding our emotional needs when bonding with a robot? 
Questions like these are not purely theoretical, worldwide various humanoid robot 
interfaces and appearances are currently under development. An investigation is 
necessary on what the implications of these are, and whether various possible side 
effects are desirable or undesirable. Pharmaceutical companies need to run extensive 
clinical testing before releasing a new product: this cannot guarantee safety, but at 
least provides a foundation of knowledge that judgments can be based on. Releasing 
robots out of the laboratories into the wild of our daily lives, in particular in the 
context of long-term interaction and when involving vulnerable people (cf. [49]), 
should require a similarly rigorous procedure. With respect to robots, physical safety 
for people is not the only concern, this issue can be dealt with using regulations 
similar to those that e.g. exist for children’s toys or other interactive new technologies 
(e.g. mobile phones etc.). The effects that are usually not considered are 
psychological: how does interaction with machines effect people’s sense of self, sense 
of autonomy and control, sense of belonging, sense of friendship and love etc.  These 
are scientific questions that can be studied experimentally and should be investigated 
extensively long before actual products are being put on the market.  

5   The Future of AI: Who We Are, and What We Can Become?! 

Working in the field of social robotics, and more recently human-robot interaction, 
has alerted me to aspects of AI research that are usually not being considered: 

a) being social is what makes us human, phylogenetically, when considering the 
evolution of primate intelligence, and ontogenetically, when considering the 
development of intelligence and intelligent behaviour in children  

b) robotics technology can be scientifically and intellectually exciting, while at the 
same time leading to the development of robots that can be useful for people, as 
exemplified in many applications in assistive technology and rehabilitation robotics  

c) the difficulty of creating artificially autonomous machines shows us how precious 
life is, how amazingly and wonderfully complex and interesting biological organisms 
are, how much we depend on nature for our inspirations and ideas from the natural 
world and living organisms (whether on the level of their ‘behaviour’, their ‘brains’, 
or their ‘body/morphology’). 

If AI creates smart computers and robots, it is my wish that they will also be used to 
protect our natural environment and the diversity of species, so they will remain our 
greatest source of scientific inspiration and creativity for still a long time to come. As 
(socially) intelligent beings we should be able to succeed in this quest. 
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Abstract. Children seem intrinsically motivated to manipulate, to ex-
plore, to test, to learn and they look for activities and situations that
provide such learning opportunities. Inspired by research in developmen-
tal psychology and neuroscience, some researchers have started to address
the problem of designing intrinsic motivation systems. A robot controlled
by such systems is able to autonomously explore its environment not to
fulfil predefined tasks but driven by an incentive to search for situations
where learning happens efficiently. In this paper, we present the ori-
gins of these intrinsically motivated machines, our own research in this
novel field and we argue that intrinsic motivation might be a crucial step
towards machines capable of life-long learning and open-ended develop-
ment.

Keywords: Intrinsic motivation, curiosity, exploration, meta-learning,
development.

1 Introduction

Have you ever noticed how much fun babies can have by simply touching objects,
sticking them into their mouths, or rattling them and discovering new noises?
Children seem to engage is such type of activities just for the sake of it. They seem
intrinsically motivated to manipulate, to explore, to test - in one word - to learn
and therefore they look for activities and situations that provide such learning
opportunities. More than 50 years ago, Alan Turing prophetically announced
that the child’s mind would show us the way to artificial intelligence.“Instead
of trying to produce a programme to simulate the adult mind, why not rather
try to produce one which simulates the child’s?” [Turing, 1950]. We believe it
is now time to take this advice seriously. Through hundreds of experiments
and models - supervised, unsupervised, reinforced, active, passive, associative,
symbolic, connectionist, hybrid, embodied, situated, distributed - we benefit now
from a large collection of examples that show how a machine can learn. However,
the issue of “why” would a machine learn (or how would it choose what to learn)
has not been tackled with the same attention. This is what interests us here.

M. Lungarella et al. (Eds.): 50 Years of AI, Festschrift, LNAI 4850, pp. 303–314, 2007.
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During the past five years, we have been working on algorithms that make
robots eager to investigate their surroundings. These robots explore their envi-
ronment in search of new things to learn: they get bored with situations that
are already familiar to them, and also avoid situations which are too difficult. In
our experiments, we place the robots in a world that is rich in learning opportu-
nities and then just watch how the robots develop by themselves. This research
is based on a series of studies showing the importance of intrinsic motivation
in human development and its neural correlates in the brain. The next sections
give a general overview of these findings and discuss the origins of intrinsically
motivated machines in artificial intelligence research. We then present our own
research in this field through the discussion of a specific architecture and related
robotic experiments.

2 What Is Intrinsic Motivation?

In psychology, an activity is characterized as intrinsically motivated when there
is no apparent reward except the activity itself. People seek and engage in such
activities for their own sake and not because they lead to extrinsic reward. In
such cases, the person seems to derive enjoyment directly from the practice of
the activity. Following this definition, most children playful or explorative ac-
tivities can be characterized as being intrinsically motivated. Also, much adult
behaviour seem to belong to this category: free problem-solving (solving puzzles,
crosswords), creative activities (painting, singing, writing during leisure time),
gardening, hiking, etc. At the physiological level, it has been argued that intrin-
sically motivated activities are directly related to changes in the central nervous
system and are quite independant from non-nervous tissues. On the contrary,
extrinsic needs (e.g. hunger) are directly related to the state and management of
non-nervous-systems tissues [Deci and Ryan, 1985]. Moreover, intrinsically mo-
tivated activities are generic in the sense that they can be produced by different
kinds of sensory contexts. Finally, at a phenomenological level, a person en-
gages in intrinsically motivating activities to experience particular feelings of
competence and self-determination [Deci and Ryan, 1985]. Such situations are
characterized by a feeling of effortless control, concentration, enjoyment and a
contraction of the sense of time [Csikszenthmihalyi, 1991].

3 Intrinsic Motivation in Psychology and Neuroscience

A first bloom of investigations concerning intrinsic motivation happened in the
1950s. Researchers started by trying to give an account of exploratory activities
on the basis of the theory of drives [Hull, 1943], which are non-nervous-system
tissue deficits like hunger or pain and that the organisms try to reduce. For exam-
ple, [Montgomery, 1954] proposed a drive for exploration and [Harlow, 1950] a
drive to manipulate. This drive naming approach had many short-comings which
were criticized in detail by White in 1959 [White, 1959]: intrinsically motivated
exploratory activities have a fundamentally different dynamics. Indeed, they are
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not homeostatic: the general tendency to explore in is never satiated and is not
a consummatory response to a stressful perturbation of the organism’s body.
Moreover, exploration does not seem to be related to any non-nervous-system
tissue deficit.

Some researchers then proposed another conceptualization. Festinger’s theory
of cognitive dissonance [Festinger, 1957] asserted that organisms are motivated
to reduce dissonance, that is the incompatibility between internal cognitive struc-
tures and the situations currently perceived. Fifteen years later a related view
was articulated by Kagan stating that a primary motivation for human is the
reduction of uncertainty in the sense of the ”incompatibility between (two or
more) cognitive structures, between cognitive structure and experience, or be-
tween structures and behaviour” [Kagan, 1972]. However, these theories were
criticized on the basis that much human behaviour is also intended to increase
uncertainty, and not only to reduce it.

Human seem to look for some forms of optimality between completely uncer-
tain and completely certain situations. In 1965, Hunt developed the idea that
children and adult look for optimal incongruity [Hunt, 1965]. He regarded chil-
dren as information-processing systems and stated that interesting stimuli were
those where there was a discrepancy between the perceived and standard levels of
the stimuli. For, Dember and Earl, the incongruity or discrepancy in intrinsically-
motivated behaviours was between a person’s expectations and the properties
of the stimulus [Dember and Earl, 1957]. Berlyne developed similar notions as
he observed that the most rewarding situations were those with an interme-
diate level of novelty, between already familiar and completely new situations
[Berlyne, 1960].

Whereas most of these researchers focused on the notion of optimal incongruity
at the level of psychological processes, a parallel trend investigated the notion of
optimal arousal at the physiological level [Hebb, 1955]. As over-stimulation and
under-stimulation situations induce fear (e.g. dark rooms, noisy rooms), people
seem to be motivated to maintain an optimal level of arousal. A complete under-
standing of intrinsic motivation should certainly include both psychological and
physiological levels.

Eventually, a last group of researchers preferred the concept of challenge to the
notion of optimal incongruity. These researchers stated that what was driving hu-
man behaviour was a motivation for effectance [White, 1959], personal causation
[De Charms, 1968], competence and self-determination [Deci and Ryan, 1985].
The difference with optimality theories is mainly a matter of point of view: in
one case, human search for some form of optimality as defined by an abstract
function, in the other case they look for a particular kind of feelings occurring
during challenging situations.

Novel investigations in neuroscience concerning neuromodulation systems
have complemented these findings. Although most experiments in this domain
focus on the involvement of particular neuromodulators like dopamine for
predicting extrinsic reward (e.g. food), some work lends credence to the idea
that such neuromodulators might also be involved in the processing of types of
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intrinsic motivation associated with novelty and exploration (e.g.
[Dayan and Belleine, 2002] and [Kakade and Dayan, 2002]). In particular, some
studies suggest that dopamine responses could be interpreted as reporting “pre-
diction error” and not only “reward prediction error” [Horvitz, 2000]. At a
more global level, Panksepp has compiled a set of evidence suggesting the ex-
istence of a SEEKING system responsible for exploratory behaviours. “This
harmoniously operating neuroemotional system drives and energizes many men-
tal complexities that humans experience as persistent feelings of interest, cu-
riosity, sensation seeking and, in the presence of a sufficiently complex cortex,
the search for higher meaning.” [Panksepp, 1998]. However, the gap is still im-
portant between neuroscience accounts and research in psychology on intrinsic
motivation.

4 The Route to Intrinsically Motivated Machines

During the last ten years, the machine learning and robotics community has
begun to investigate architectures that permit incremental and active learning
(see for instance [Thrun and Pratt, 1998] or [Cohn et al., 1996]). Interestingly,
the mechanisms developed in these papers have strong similarities with mecha-
nisms developed in the field of statistics, where it is called “optimal experiment
design” [Fedorov, 1972]. Active learners (or machines that perform optimal ex-
periments) are machines that ask, search and select specific training examples
in order to learn efficiently.

A few researchers have started to address the problem of designing intrinsic
motivation systems to drive active learning, inspired by research in develop-
mental psychology and neuroscience. The idea is that a robot controlled by
such systems would be able to autonomously explore its environment not to
fulfil predefined tasks but driven by some form of intrinsic motivation that
pushes it to search for situations where learning happens efficiently. One of the
first computational system implementing a form of artificial curiosity was de-
scribed by Schmidhuber in 1991 [Schmidhuber, 1991]. Schmidhuber articulated
the idea that in order to learn efficiently a machine should try to reduce pre-
diction error instead of maximizing or minimizing it. More recently, different
types of intrinsic motivation systems were explored, mostly in software simula-
tions [Huang and Weng, 2002, Marshall et al., 2004, Steels, 2004]. Most of this
research has largely ignored the history of the intrinsic motivation construct as it
was elaborated in psychology during the last 50 years and sometimes reinvented
concepts that existed several decades before (basically, different forms of optimal
incongruity). Technically, such control systems can be viewed as particular types
of reinforcement learning architectures [Sutton and Barto, 1998], where rewards
are not provided externally by the experimenter but self-generated by the ma-
chine itself. The term “intrinsically motivated reinforcement learning” has been
used in this context [Barto et al., 2004].
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5 Intrinsic Motivation and Development

Our own research in this field aims at showing how such forms of active learn-
ing architectures permit to structure the development of a robot. For this issue,
Piaget remains a reference. Although he has not written extensively about moti-
vation, his view of motivation is implicit throughout his writings [Piaget, 1952].
According to Piaget, children are intrinsically motivated to encounter activities
which involve some assimilation and accommodation. Assimilation is a process
whereby children incorporate aspects of the environment into their pre-existing
cognitive structure, which are called schemata. This means that the child’s cogni-
tive structure influences his perception of the environment. During accommoda-
tion, the child adapts his cognitive structures to fit the environment. In Piaget’s
view, learning is simply an aspect of assimilation and accommodation. When the
child encounters an informational input from the environment highly discrepant
from existing schemata, the input will most likely be ignored. When inputs
are completely predictable, children generally lose interest in them. Therefore,
Piaget’s theory articulates a concept of intrinsic simulation that bears many re-
semblance to the notion of optimal incongruity developed by Berlyne and others.

Piaget’s work has inspired researchers in artificial intelligence for some
time. Many artificial intelligence models make use of internal explicit
schema structures under names like frames [Minsky, 1975] or scripts
[Schank and Abelson, 1977]. In such systems, there is a one-to-one mapping be-
tween these internal structures and the functional operation that the agent can
perform. For instance, Drescher describes a system inspired by Piaget’s theories
in which a developing agent explicitly creates, modifies and merges schema struc-
tures in order to interact with a simple simulated environment [Drescher, 1991].
Using explicit schema structures has several advantages: such structures can be
manipulated via symbolic operations, creation of new skills can be easily mon-
itored by following the creation of new schemata, etc. Our work differs notably
from this approach first because it does not rely on such explicit representations.
We use subsymbolic systems, based on continuous representations of their envi-
ronment. Nevertheless, as we will see, such systems may display some organized
forms of behaviour where clear functional units can be identified. Second and
most importantly, it is centrally based the idea of an intrinsic motivation to
learn.

6 An Example of Architecture

We have designed a control architecture and performed a series of experiments to
investigate how far its intrinsic motivation system, implementing a form of artifi-
cial curiosity, can shape the developmental trajectories of a robot
[Oudeyer et al., 2007]. The cognitive architecture of our robot can be described
as having two modules: 1) one module implements a predictor M which learns
to predict the sensorimotor consequences when a given action is executed in a
given sensorimotor context; 2) another module is a metapredictor metaM which
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Fig. 1. An intrinsic motivation system including a predictor M that learns to anticipate
the consequence y of a given sensorimotor context and a metapredictor metaM learning
to predict the expected learning progress of M in the same context. Once the actual
consequence is known, M and metaM get updated. MetaM re-evaluates the error curve
linked with this context and computes an updated measure of the learning progress
(local derivative of curve). In order to classify similar contexts, metaM includes a
hierarchical self-organizing classifier.

learns to predict the errors that machine M makes in its predictions: these meta-
predictions are then used as the basis of a measure of the potential interest of a
given situation. The system is designed to be progress-driven. It avoids both pre-
dictable and unpredictable situations in order to focus on the ones which are ex-
pected to maximize the decrease in prediction error. To obtain such a behaviour,
the metaprediction system computes the local derivative of the error rate curve of
M and generates an estimation of the expected learning progress linked with a par-
ticular action in a particular context. In order to really evaluate learning progress,
error obtained in one context must be compared with errors obtained in similar
contexts (if not the robot may oscillate between hard and easy situations and eval-
uate these changes as progress). Therefore, the metaprediction system must also
be equipped with a self-organized classification system capable of structuring an
infinite continuous space of particular situations into higher-level categories (or
kinds) of situations. Figure 1 summarizes the key components of such progress-
driven systems (see [Oudeyer et al., 2007] for more details).
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Fig. 2. Confronted with four contexts characterized by different learning profiles, the
motivation for maximizing learning progress results in avoiding situations already pre-
dictable (context 4) or too difficult to predict (context 1), in order to focus first on
the context with the fastest learning curve (context 3) and eventually, when the latter
starts to reach a “plateau” to switch to the second most promising learning situa-
tion (context 2). This intrinsic motivation system allows the creation of an organized
exploratory strategy.

Figure 2 illustrates how progress-driven learning operates on an idealized
problem. Confronted with four contexts characterized by different learning pro-
files, the motivation for maximizing learning progress results in avoiding situa-
tions that are already predictable (context 4) or too difficult to predict (context
1), in order to focus first on the context with the fastest learning curve (context 3)
and eventually, when the latter starts to reach a “plateau”, to switch the second
most promising learning situation (context 2). Situations of maximal progress
are called “progress niches”. Progress niches are not intrinsic properties of the
environment. They result from a relationship between a particular environment,
a particular embodiment (sensors, actuators, feature detectors and techniques
used by the prediction algorithms) and a particular time in the developmental
history of the agent. Once discovered, progress niches progressively disappear as
they become more predictable.

7 Experiments

We have performed a series of robotic experiments using this architecture. In
these experiments, the robot actively seeks out sensorimotor contexts it can learn
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given its morphological and cognitive constraints. Whereas a passive strategy
would lead to very inefficient learning, an active strategy allows the learner
to discover and exploit learning situations fitted to its biases. In one of those
experiment a four-legged robot is placed on a play mat (for more details, see
[Oudeyer and Kaplan, 2006]). The robot can move its arms, its neck and mouth
and can produce sounds. Various toys are placed near the robot, as well as a
pre-programmed “adult” robot which can respond vocally to the other robot in
certain conditions. At the beginning of an experiment, the robot does not know
anything about the structure of its sensorimotor space (which actions cause
which effects). Given the size of the space, exhaustive exploration would take a
very long time and random exploration would be inefficient.

During each robotic experiment, which lasts approximately half a day, the
flow of values of the sensorimotor channels are stored, as well as a number of
features which help us to characterize the dynamics of the robot’s development.
The evolution of the relative frequency of the use of the different actuators is
measured: the head pan/tilt, the arm, the mouth and the sound speakers (used
for vocalizing), as well as the direction in which the robot is turning its head.

Figure 3 shows data obtained during a typical run of the experiment. At the
beginning of the experiment, the robot has a short initial phase of random explo-
ration and body babbling. During this stage, the robot’s behaviour is equivalent
to the one we would obtain using random action selection: we clearly observe
that in the vast majority of cases, the robot does not even look at or act on
objects; it essentially does not interact with the environment. Then there is a
phase during which the robot begins to focus successively on playing with indi-
vidual actuators, but without knowing the appropriate affordances: first there is
a period where it focuses on trying to bite in all directions (and stops bashing
or producing sounds), then it focuses on just looking around, then it focuses on
trying to bark/vocalize towards all directions (and stops biting and bashing),
then on biting, and finally on bashing in all directions (and stops biting and
vocalizing). Then, the robot comes to a phase in which it discovers the precise
affordances between certain action types and certain particular objects. It is at
this point focusing either on trying to bite the biteable object (the elephant ear),
or on trying to bash the bashable object (the suspended toy). Eventually, it fo-
cuses on vocalizing towards the “adult” robot and listens to the vocal imitations
that it triggers. This interest for vocal interactions was not pre-programmed, and
results from exactly the same mechanism which allowed the robot to discover
the affordances between certain physical actions and certain objects.

The developmental trajectories produced by these experiments can be inter-
preted as assimilation and accommodation phases if we retain the Piagetian’s
terminology. For instance, the robot “discovers” the biting and bashing schema
by producing repeated sequences of these kinds of behaviour, but initially these
actions are not systematically oriented towards the biteable or the bashable
object. This stage corresponds to “assimilation”. It is only later that “accommo-
dation” occurs as biting and bashing starts to be associated with their respective
appropriate context of use. Our experiments show that functional organization
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Fig. 3. The robot, placed on a play mat, can move its arms, its neck and mouth and
produce sounds. Various toys are placed near the robot, as well as a pre-programmed
“adult” robot which can respond vocally to the other robot in certain conditions.
Results obtained after a typical run of the experiment are shown. Top curves: relative
frequency of the use of different actuators (head pan/tilt, arm, mouth, sound speaker).
Bottom curves: frequency of looking towards each object and in particular towards
the “adult” pre-programmed robot.

can emerge even in the absence of explicit internal schema structures and that
developmental patterns can spontaneously self-organize, driven by the intrinsic
motivation system. Many diverse lines of experimental data can potentially be
explained in common terms if we consider that children learn how to focus on
what is learnable in the situation they encounter and on what can be efficiently
grasped at a given stage of their cognitive and physiological development. For
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instance, we have discussed elsewhere how progress-driven learning provides an
interpretation of developmental sequences in early imitation and sensorimotor
development [Kaplan and Oudeyer, 2007a, Kaplan and Oudeyer, 2007b]. What
is fundamentally new in these experiments, as compared to what is possible in
psychology, is that learning dynamics, embodiment and environmental factors
(both social and physical) are controllable variables. One experiment can be con-
ducted with the same learning system, but using a different body placed in a
different environment. Likewise, the effects of small changes in the intrinsic moti-
vation systems can be studied while keeping the embodiment and environmental
aspects similar.

8 The Future of Intrinsically Motivated Machines

To conclude, this novel line of research might also provide radically new tech-
niques for building intelligent robots. Indeed, as opposed to the work in classi-
cal artificial intelligence in which engineers impose pre-defined anthropocentric
tasks to robots, the techniques we describe endow the robots with the capacity
of deciding by themselves which are the activities that are maximally fitted to
their current capabilities. Intrinsically motivated machines autonomously and
actively choose their learning situations, thus beginning by simple ones and pro-
gressively increasing their complexity. Of course, many challenges remain to be
solved before we could build intrinsically motivated machines capable to learn
like children do. One of them is that children’s complex behaviour patterns seem
hierarchically organized. This aspect is absent from our current architecture but
have started to be tackled by other groups, in particular around the option
framework [Sutton et al., 1999, Barto et al., 2004]. This research is very com-
plementary to ours as they experimented the use of a complex reinforcement
technique given a simple novelty-based intrinsic motivation system. We believe
the future of intrinsically motivated machines lies somewhere between of these
two approaches.
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1   Introduction 

I recently gave a robot demonstration to a class of 1st-grade elementary school 
children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered 
enthusiastically around a few shiny machines with plenty of sensors and actuators, 
demonstrating patterns of locomotion. “These robots learned how to move by 
themselves” – I explained. “Some even developed their own shape”, I said, pointing 
at a set of 3D-printed plastic robots whose morphology and control evolved in 
simulation.  

The kids were not impressed. 
One courageous child finally asked the question that was probably on everyone’s 

mind: “But what can they do?” I delved into an elaborate discussion of locomotion 
and manipulation, morphology and control, and machine learning.  “But what can 
they do?” the child persisted. The Emperor’s new clothes, I thought, were not that 
shiny after all. But before long, another child came to my rescue: “Aha! The robot is 
jogging!” he realized. Yes, that’s what the robot was doing. It learned how to 
exercise, an activity that took western civilization centuries to discover. Perhaps in the 
not-so-distant future, robots will one day be able to jog an exercise for us. The 
gymnastics teacher was pleased. 

When it comes to intelligence, people are difficult to impress. Children have seen 
robots that talk, walk, fight and perform a myriad of complex tasks in movies such as 
Star Wars™ and Terminator™, but they know very well that robots in movies are not 
real. Artificial Intelligence is almost an oxymoron: Whenever breakthroughs are 
achieved – from Deep Blue’s mastery of chess to Stanley’s autonomous traversal of 
the Mojave desert – something is still missing. If it is just doing what it was designed 
to do, is it truly intelligent? 

It is fascinating to watch how teachers and parents, when asked about signs of 
intelligence, quickly point out: Curiosity and creativity are hallmarks of a gifted child. 
Can we make such curious and creative machines? Will we relinquish some control 
over what they discover and create?1 Are we ready to give up on our human-centric 
claim to curiosity and creativity? 

2   The Second Half of AI 

One of the hallmarks of human intelligence is the ability to design: To synthesize a set 
of elementary building blocks in order to achieve some novel, high-level and  
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open-ended functionality. Imagine a Lego set at your disposal: Bricks, rods, wheels, 
motors, sensors and logic components are your “atomic” building blocks, and you 
must find a way to put them together to achieve a given high-level functionality: A 
machine that can move2, say. You know the physics of the individual components' 
behaviors; you know the repertoire of pieces available, and you know how they are 
allowed to connect. But how do you determine the combination that gives you the 
desired functionality? This is the problem of Synthesis. 

In the last two centuries, engineering sciences have made remarkable progress in 
their ability to analyze and predict physical phenomena. We understand the governing 
equations of thermodynamics, electromagnetics, and fluid flow, to name but a few. 
Numerical methods such as finite elements allow us to solve these constitutive 
equations with good approximation for many practical situation. We can use these 
methods to investigate and explain observations, as well as to predict the behavior of 
products and systems long before they are ever physically realized. 

But progress in systematic synthesis has been frustratingly slow. Robert Willis, a 
professor of natural and experimental philosophy at Cambridge, wrote back in 1841: 

[A rational approach is needed] to obtain, by direct and certain 
methods, all the forms and arrangements that are applicable to the 
desired purpose. At present, questions of this kind can only be solved 
by that species of intuition that which long familiarity with the subject 
usually confers upon experienced persons, but which they are totally 
unable to communicate to others. When the mind of a mechanician is 
occupied with the contrivance of a machine, he must wait until, in the 
midst of his meditations, some happy combination presents itself to 
his mind which may answer his purpose.” 3 

Almost two centuries later, a rational method for general open-ended synthesis is 
still not at hand. Design is still taught today largely through apprenticeship: 
Engineering students learn about existing solutions and techniques for well-defined, 
relatively simple problems, and then – through practice – are expected to improve and 
combine these to create larger, more complex systems.  

How is this synthesis process done? We do not know, but we cloak it with the term 
“creativity”. Fields such as humanities and arts, share the same conundrum: You can 
learn to appreciate good poetry, music, and sculpture, but how do you systematically 
create it?  

The field of Artificial Intelligence has not escaped this inevitable course either. 
Over the last fifty years, AI – and its modern incarnation as machine learning in 
particular – has been primarily occupied with deduction, modeling and prediction, but 
not synthesis of new things. Learning from examples, combining logical facts, and 
propagating constraints, leave us interpolating inside the convex hull of our existing 
knowledge. I am not claiming that this is either easy or that it is not useful, nor that it 
has been fully mastered. But it is a fundamentally different direction than the quest for 
open-ended creativity, where the results are unbounded in their complexity and 
performance. 
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3   On Creativity 

While computers can compute – and now analyze – almost anything, open ended 
creativity is still the unconquered Holy Grail still seen as distinctively human. Human 
intelligence is ultimately a natural biological phenomenon, and like any other 
biological phenomenon, it is a product of evolution. Many theses have been written 
about the evolutionary origin of intelligence4, and one argument is that intelligence 
was driven by the need to create and use new tools. Not blindly execute an innate 
recipe for building a nest, a dam, or a hive – but a true adaptive ability to construct 
new things that rapidly exploit current resources, strengths and weaknesses of others. 

Indeed the two standing examples of systematic synthesis we have to inspire us are 
both evolutionary: One is natural evolution, governed by Darwinian natural selection 
and variation. The other example is engineering design – not by the mythical 
maverick designer, but by a slow evolutionary progress, accumulating successive 
small variations and recombination of exiting technologies made by millions of 
ordinary designers, subject to the natural selection of the market5. These evolutionary 
processes are admittedly slow, inefficient, and provide no guarantees of optimality or 
even success, but perhaps there are fundamental limits on the conversion of energy 
into new information – a kind of thermodynamic law6. 

Over the last few decades, a number of results have appeared showing how 
evolutionary search is able to generate new solutions to open-ended synthesis 
problems. Whether or not these solutions are deemed “creative” is a matter of 
opinion, but they certainly satisfy some objective criteria of innovation such as 
patentability and publishability in their own right. The number of such inventions is 
growing, and Fig 1 shows two examples. 

 

Fig. 1. Machine Creativity. Two examples of open-ended synthesis. Left: A kinematic 
machine automatically designed to trace a straight line without requiring any straight line in the 
mechanisms7. Right: An automatically designed light-confining nanophotonic structure with a 
novel hourglass-shaped element8. 
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4   On Curiosity 

Perhaps the most fascinating form of intelligence is the one that combines open-ended 
synthesis with open-ended analysis. Curiosity is the pursuit of new knowledge: Not 
only passively searching for patterns in data, but actively probing and perturbing the 
world to extract new information – like a child asking questions. Asking the right 
question is again an open-ended synthesis problem, involving creation of new 
predictive hypotheses and generation of actions to best test their consequence9. 
Though the field of artificial curiosity is in its infancy, it is rooted in the principles of 
active learning. Fig 2 shows one recent examples. 

 

Fig. 2. Machine Curiosity: Through a series of self-directed actions, a robot explores itself and 
creates an explicit internal model of its topology. The self-model is then adapted after damage. 
Left: Physical machine; Right: Emerged internal abstraction of that morphology, that the robot 
has developed to explain its actuation-sensation relationships. Top: Intact; Bottom: Damaged 
(from Bongard et al10). 

5   Conclusion 

I am not alone in this quest for a new AI that can creatively generate new things11 and 
ask new questions12, nor am I unique in my view that natures’ evolutionary processes 
provide the key; but open-ended evolutionary computation and active learning13 have 
existed on the periphery of mainstream AI for decades. In this fiftieth anniversary of 
AI, I seek a new thrust – from analysis to synthesis, and from learning machines, to 
curious and creative machines. 
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Abstract. This paper focuses on designing a goal based rational component of a 
believable agent which has to interact with facial expressions with humans in 
communicative scenarios like teaching. One of the main concerns of the 
proposed model is to define interactions among rationality, personality and 
emotion in order to fulfill the idea of making rational decisions with emotional 
regulation. Our research aims are directed towards improving decision making 
process by means of applying Data Fusion techniques, especially Ordered 
Weighted Averaging (OWA) operator as a goal selection mechanism. Also the 
issue of obtaining weights for OWA aggregation is discussed. Finally the 
suggested algorithm is tested and results are provided with a real benchmark. 

Keywords: Data Fusion, OWA, Rationality, Artificial Emotions, Decision 
Making. 

1   Introduction 

The research on believable agents focuses on creating interactive agents that give 
users the illusion of being human. Application domains include, among others, 
human-computer interaction, interactive entertainment, and education. Believability is 
accomplished by convincing the humans interacting with the agents express their 
emotions in their behavior and equip the agents with clearly distinguishable 
personalities. This has consequences for the agent’s internal model of deliberation. It 
has to have knowledge of both emotions and know how these can be expressed. 

As we look inside the general architecture [5], it’s obvious that agents which are 
equipped with emotions will deliberate processes that assumed to be their best 
choices. The rationality means acting appropriately in various situations. However, it 
enables applications to have more believable interactions between man and machine 
which is the most important consideration of these agents. Combination of emotions, 
rationality and personality will yield believable agents. A well-formed agent is an 
agent which makes decisions according to its perceptions, rational and emotional 
states. Because they simulate men’s rationality, it would be necessary to learn from 
their own experiences, manifest personality and eventually modifying their features. 
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In agents of this type rationality, emotions, personality and behavior are inherent 
characteristics of agency. This job, then, investigates the simplest relations that have 
place between these various aspects and also on the base of the reading of previous 
studies and approaches [14]. 

The fundamental objective of this research is the improvement of interaction 
between man and machine mainly in the domains applied to humans in which does 
not centralized on the oral communication. For instance, instructor robot which 
presents courses remotely and has to change its behaviors according to student’s 
reactions. In this kind of projects the visual mediums are the main channels of 
interaction between the man and robot.   

In other words, this research project is headed for developing a fundamental 
understanding of the role and usefulness of the notions of emotions and personality in 
designing rational artificial agents that are to operate within complex uncertain 
environments populated by humans. This paper draws on emerging technology of 
rational agent design from artificial intelligence on the one hand, with briefly research 
on human emotions in cognitive science and psychology on the other hand to consider 
personality for the agent in order to express consecutive emotions according to its 
environment. We have to consider the decision-theoretic paradigm of rationality for 
the agent to enhance the goal and action selection process [3]. Enhancement is 
occurred due to improving decision making algorithm by obtaining Data Fusion 
techniques, especially Ordered Weighted Averaging (OWA) [15]. 

2   Rational-Emotional Architecture 

The Figure 1 shows the architecture of the rational component and its subcomponents. 
The heart of the architecture constitute from a production system with forward 
chaining approach. Usually, system contains a series of rules to make conditions-
actions and use the sensory input of the agent to detect conditions and verifies them in 
relation of the rules and decides which actions to choose towards the outside world or 
other agents [6]. 

In case we use production system exclusively data driven, therefore it does not 
expect explicitly the presence of goal. These should be managed with mechanisms 
timely prepared to the outside of the production component of the same system. To 
accomplish such a task, we form goal management so that it has the function to 
choose the objectives of the whole system and verifies its state periodically. The 
presence of goals also needs to be controlled inside the production system, so the 
rules are structured for obtaining the requested operation. 

The purpose of creating Action Selection component is make selection of actions 
to be performed which is affected on the base of the current emotional state of the 
agent. In this case, emotional state will determine which action to complete among 
those that production system has judged applicable and equivalent from the rational 
point of view. In the following paragraphs different parts of architecture are 
explained. 

The rational input component picks up the information coming from the other 
components of the agent's architecture and transforms them so that is usable for the 
 



322 B. Fonooni, B. Moshiri, and C. Lucas 

Goals

Production 
System

Rational Component

Action 
Selection

Output

Information 
Processing

Decision 
Table

Last Goal

Decision 
Making 

Algorithm

Goal Management

Input

Personality

Emotional State

Emotional Component

Sensors

Feature 
Extraction

Input

 

Fig. 1. Overall Architecture 

production system, goal manager and action selector. The rational output component 
produces the information to send to the other components of the same or another 
agent. 

Goal Management has a fundamental role in the rational architecture by handling 
goal selection and managing goals list. The selection will be carried out on the bases 
of the goal’s origin information percept from the environment and of the subjective 
appearance relevant to the personality and to the current emotional state of the agent.  
In this manner, the goal management component realizes the possible interactions 
between rationality and emotions. It has access to the database of goals with 
technological information from the author of the application. Even though it does not 
be explicitly expected, it is included inside of the rational component with the 
mechanism that conforms to the agent learning rules which come from the actual 
experience of further goals that going to add themselves to the list. It also allows 
database of goals to be integrated with new goals which built from other components 
of the agent’s architecture in result of interactions that agent has with the world or 
other agents. In this research, goals are emotions that has to be expressed according to 
the situation that agent encounters. Also actions are emotions which have to be 
expressed by facial expressions. 

Goal Management component is divided into two principal parts:  

1) Module of information processing which starts from environment and emotional 
information, deals with input data and update decisional parameters. 

2) Module of decision making comprises the function of choosing the goal that 
best satisfies agent’s needs. 
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The information processing module receives the emotional information as well as 
the environmental information from the rational input and calculates the new 
parameters which shall be used to make the decisions. One can therefore, assume that 
this module develops a good enough part of managing the goals as well as the current 
goal. In particular, with the new values calculated, it will be able to verify whether the 
current goal is still prioritized. It shall also determine whether the current goal was a 
success or a failure. This can be done by utilizing the production system whose rules 
can be more adaptable to the rules of the goal's success or failure. The internal 
functions of the information processing module that calculate the new values of the 
decision parameters can be implemented in more disparate manner. In particular, 
learning mechanisms can be taken into consideration [6]. 

The decision making module could use one of the algorithms for the multi-attribute 
decision making in the scope of which different goals are the alternatives to choose. 
What we used in this research, was OWA operator which will be explained in the next 
section. In this prospective, each goal characterized by a number of attributes which 
its value must be evaluated according to environment and emotional information, 
which enter the goal management component. So a table of decisions will be made of 
output of the mentioned algorithm. It is also important to track the last chosen goal in 
such a way to change the priority periodically and not to choose same goal again in 
the next request of selection.  

The production system is responsible for maintaining and updating rational state of 
the system and determining on the base of states what actions are eligible to be 
undertaken in order to pursue the current active goal’s objectives. The production 
system also will be able to supply the goal management component with the 
necessary support to check success or failure of the current goal. To obtain such 
results, the application designer should define four set of rules: 

• A set of rules for the evolution of the rational state. 
• A set o rules to verify the state of the current goal, if the goal management 

component utilizes them. Generally there will be a success and failure test 
for each goal. 

• A set of rules to determine what actions are applicable in the current 
situation. The production system sends the applicable actions to the action 
selector component that chooses one of them. Generally there will be a 
subset of such rules for each goal. 

• A set of rules to verify if the action chosen by the action selector is 
immediately executable. In fact, if the selected action is too complex, it can 
be decomposed in sub goals with a top down method. After that, the rational 
component repeats the action selection process until action selector chooses 
an executable action and sends it to the rational component in order to 
generate the instructions to execute it. 

The functionality of the action selection component, under certain appearance, is 
like goal management component described in previous lately. In fact, the task of the 
action selection component is to choose which action to undertake between those 
received from the production system according to the current environmental 
conditions. Our approach uses an emotional space to find nearest action to the current 
emotional state of an agent. In other words, the role of emotions in this architecture 
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would be choosing the most desirable action among those which have chosen 
rationally. One sample of emotional space is depicted in Figure 2 which is used in 
kismet [4]. Nevertheless, the decision of the goal management component is a higher 
level with respect to the action selection component. In fact, we have to consider that 
decisions made by the goal manager are at higher level than the decisions made by 
action selector. The goal manager selects between several long term goals, while the 
action selector chooses an action that should be applied in particular and limited 
situations. Another point is the fundamental interactions between rationality and 
emotions which will be discussed: The undertaken actions, in some manner, have to 
reflect the emotional state and the personality that the agent understands and 
demonstrates. Then possibility of connoting some actions with their emotional 
implications would be considered as subordinate to the emotional state that their 
execution communicates with those who interacts with the agent. Compared to the 
production system, action selection component does not receive the environmental 
information on the bases of the input information twisted with applicable actions 
which are rationally equivalent among other choices. 

One of the important components of the architecture is decision making module 
which comprises multi-attribute decision making algorithm. In order to completely 
understand the mechanism, in the next section Data Fusion and OWA operator will be 
briefly discussed. 

 

Fig. 2. Sample of Emotional Space 

3   Overview on Data Fusion and Ordered Weighted Averaging 
(OWA) 

Data Fusion is the process of combining data and knowledge from different sources 
with the aim of maximizing the useful information content [1]. It improves reliability 
or discriminate capability while offering the opportunity to minimize the data 
retained. Data Fusion algorithms has been categorized into several categories [11]. 
Among all these approaches, we chose OWA which discussed in the following 
paragraph. 
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Ordered weighted aggregation (OWA) operators were introduced by Yager [15]. 

An OWA operator of dimension n is a mapping ]1,0[]1,0[: →nf , which has an 

associated weighting vector  

W = (w1, . . . , wn)
t, s.t. 

∑ =
i

iw 1, ]1,0[∈iw  (1) 

    

and where 

∑=
i

kin i
xwxxf ),...,( 1  (2) 

The vector K = (k1, . . . , kn)
t is such permutation of (1, 2, . . . , n)t that 

ikx is the ith 

largest element in (x1, . . . , xn)
t. The fundamental aspect of the OWA operator is that a 

particular weight wi is associated with a particular ordered position i of the arguments. 
OWA operators include min, max, and arithmetic mean for the appropriate choice of 
vector W. 

Yager introduced a measure to characterize the type of aggregation performed by 
OWA operators. He calls it the orness measure. It is defined as 

Orness(w) ∑
=

−
−

=
n

i
iwin

n 1

)(
1

1
 (3) 

It can be shown that orness of max operator is 1, orness of min operator is 0, and 
orness of the arithmetic mean is 0.5. Orness of other OWA operators lies in the unit 
interval. The measure of orness is used frequently as an additional constraint when 
determining weights of the operator. 

One of the main concerns in using OWA operator is how to obtain weights vector. 
There are several approaches introduced by Yager and other people [7], [8], [9], [10]. 
In the next section we will go through this issue in details. 

4   Decision Making Algorithm 

Our algorithm needs to specify a set of attributes for each goal which has to be 
assigned by a user. Set of attributes includes priority, importance and other items 
listed in Table 1 which considered as collection of aggregated objects in the unit 
interval, ai, which has to be ordered and stored in decision table. Agent’s personality 
is used as coefficient which determines its degree of pessimism. In case of using 
OWA operator in decision making algorithm, a weighting vector W should be defined 
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and initialized. The main question would be obtaining the weights associated with 
OWA, because it models process of aggregation used on data set. 

We used a back propagation method to learn from agent’s observations [2], [7]. 
Suggested algorithm is described below: 

1) Each aggregated value will be calculated by classic Hurwicz’s multi-attribute 
method and is considered as desired value:       

daa ii =−+ ii Min)1(Max ρρ  ρ : Agent’s personality                (4) 

2) Following learning algorithm should be applied to estimate the corresponding 
weights:    

)ˆ)(ˆ()()1( kkkkiii dddbwll
i

−−−=+ βλλ  β : Learning rate                    (5) 
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21 21
ˆ  kd̂ : Current estimation of kd  

(7) 

Parameters iλ  determine the OWA weights and are updated with back propagation of 

the error ( kk dd −ˆ ). 

Finally, after 10000 iterations, the best kd̂  with maximum value will be selected as 

current agent’s goal and will be delegated to the production system. Also priority of 
each goal will be decreased and checked out with a threshold so that it would be 
decayed after a while. 

The value of ρ  could be interpreted as a measure of the agent’s “pessimism”. In 

fact, if ρ →1, the agent should tend to pay greater attention to the minimum value of 

the attributes, whereas if ρ →0, agent should consider mainly the maximum value of 

the attributes [6]. Because of having only two types of personality in this research 
(Introversive and Extroversive), we have to set a proper value for ρ  according to the 

definition mentioned above. In general, introversive person is usually pessimistic, so 
we likely use values greater than 0.5 for it. Hence, for extroversive person who is 
more optimistic, we use values less than 0.5. Also the weights wi reflect in some way 
the agent’s personality, too. 

Among possible attributes that we can associate with a goal, we need to consider 
those, which contain the emotion and rational aspects based on personality of an 
agent. In this case, first we prepared a psychological questionnaire and distribute it to 
about 60 people whose personality has been determined by psychological tests and 
proved to be introversive or extroversive [12]. 
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Table 1 is a sample questionnaire that illuminates all the needed attributes for each 
goal which most of them are inputs of MIT’s Kismet [4]. This indicates that goals in 
this research are expressing nine different emotions with facial expressions. Because 
our main objective is to show how data fusion can affect decision making process of 
rational-emotional agent, attributes listed in Table 1 are used to explain the algorithm. 
Also new set of attributes can be replaced anytime in order to have more believable 
agents and accurate decision making.  

Table 1. A sample questionnaire 

Environment Motion Tone Color Sentence
Emotions Imp. 

Calm Noisy 
Skin 

Fast Slow Low Loud R G B Kind Threaten 

Joy x11 x12 x13 x14 x15 x16 x17 x18 x19 x110 x111 x112 x113

Surprise x21 x22 x23 x24 x25 x26 x27 x28 x29 x210 x211 x212 x213

Anger x31 x32 x33 x34 x35 x36 x37 x38 x39 x310 x311 x312 x313

Fear x41 x42 x43 x44 x45 x46 x47 x48 x49 x410 x411 x412 x413

Interest x51 x52 x53 x54 x55 x56 x57 x58 x59 x510 x511 x512 x513

Disgust x61 x62 x63 x64 x65 x66 x67 x68 x69 x610 x611 x612 x613

Sorrow x71 x72 x73 x74 x75 x76 x77 x78 x79 x710 x711 x712 x713

Boredom x81 x82 x83 x84 x85 x86 x87 x88 x89 x810 x811 x812 x813

Calm x91 x92 x93 x94 x95 x96 x97 x98 x99 x910 x911 x912 x913  

Priority of a goal is calculated on the basis of how much it can be determinant the 
realization of goal referring to the current external conditions, it is in connection with 
the actual state of the environment in which the agent works. Importance of a goal is 
calculated on the basis of how much is determinant the realization of the goal in 
relationship to the inner state of the agent and so in connection with its personality to 
its emotional state [6]. 

Other attributes can be sensed via visual and audio sensory devices and calculated 
with high level feature extraction techniques to improve the decisional process. 

Initial xij values, are taken from the people mentioned above or set by an expert 
(Although this will not yield a valid data) and for including in OWA fusion algorithm, 
they must be normalized between 0 and 1.  

During the process, as mentioned before, xij are updated by the information 
processing module based on arrived emotional and environment information. 

5   Experimental Results 

In order to understand the whole mechanism, an example of decision making for an 
extroversive agent is discussed. First, input component gathers required data from the 
environment with its visual and audio sensory systems. After feature extraction, raw 
data yields to the information which indicates how agent cognizes its environment. 

For instance, suppose personality type is extroversive, environment is without 
noise, initial emotion state is Calm and we show the agent a Red object. Other values 
are calculated by means of high level feature extraction. Final perceptions are shown 
in Table 2. 
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Table 2. Agent’s perceptions 

Importance Environment 
Skin 

Detection 
Motion Tone Color Sentence 

1 0.3 0.7 0.35 0.2 0.8 0.5  

Next step is calculating desired values for all of the states. As we mentioned 
before, values of each attribute is available from the questionnaire and stored in 
database. Table 3 contains all the information provided in the questionnaire and Table 
5 indicates initial values for each weight. 

Table 3. A sample of stored values in database to calculate desired values 

Environment Motion Tone Color Sentence
Emotions Imp. 

Calm Noisy 
Skin 

Fast Slow Low Loud R G B Kind Threaten 

Calm 0.4 0.1 0.9 0.5 1 0.2 0.1 1 0.2 0.2 0.3 0.9 0.2  

According to Table 3 and equation (4), if ρ =0.15 and β =0.35, desire values are 

calculated and shown in Table 4. By using equations (5) and (6), iλ  and wi are 

calculated. Table 6 and 7 indicates their values. 

Table 4. Desired values of nine emotions 

d1

(Joy)

d2

(Sorrow) 

d3

(Anger)

d4

(Calm)

d5

(Disgust)

d6

(Fear)

d7

(Surprise)

d8

(Interest)

d9

(Boredom)

0.32 0.205 0.235 0.22 0.21 0.19 0.232 0.31 0.34  

Table 5. Initial values of Weights 

w1 w2 w3 w4 w5 w6 w7 
0.14 0.14 0.14 0.14 0.14 0.14 0.16 

Table 6. Calculated iλ  values 

1 2 3 4 5 6 7

1.244 -0.654 -0.737 -1.35 -1.144 -0.428 3.141  

Table 7. Calculated wi values 

w1 w2 w3 w4 w5 w6 w7 
0.12 0.018 0.016 0.008 0.011 0.022 0.802 
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As it can be understood,∑ =
i

iw 1, ]1,0[∈iw . 

Finally, according to equation (7), value of each kd̂  after 10000 iterations 

calculated and shown in Table 8. 

Table 8. Estimated desired values of nine emotions 

1̂d
(Joy)

2d̂
(Sorrow)

3d̂
(Anger)

4d̂
(Calm)

5d̂
(Disgust)

6d̂
(Fear)

7d̂
(Surprise)

8d̂
(Interest)

9d̂
(Boredom)

0.321 0.208 0.233 0.210 0.219 0.187 0.234 0.313 0.334 
 

Figure 3 depicts learning curve of wi . 

 

Fig. 3. Weights Learning Curve 

According to equation (2), the output of decision making algorithm is:  

∑=
i

kin i
xwxxf ),...,( 1 = 0.322 

The selected goals regarding to threshold of 0.05 are Joy, Interest and Boredom 
with values of 0.32, 0.31 and 0.34 respectively. 

Now this is a time to regulate the decision with current emotional state of an agent. 
Since it is Calm, regarding emotional space depicted in Figure 2 and algorithm 
mentioned lately, final selected goal is Joy. The selected goal will be delegated to the 
Output System in order to be executed with facial expressions. 

6   Conclusion and Future Works 

A main goal of the mentioned architecture is to experiment the interaction between 
rationality, personality and emotions in the framework of rational-emotional agents in 



330 B. Fonooni, B. Moshiri, and C. Lucas 

the application domain which communication with humans is based on facial 
expressions. In particular, the rational component supports a rational state evolving on 
the basis of both rational and emotional knowledge. Such evolutions take place in two 
ways: implicitly, the decision parameters are updated depending on the current 
emotional state; explicitly, the emotional knowledge is encoded as facts in the 
production system working memory. The model supports a rational choice of a set of 
possible actions and an emotional and personality based selection of the current goal 
and action. The rational component has been implemented and under testing with 
different decision algorithms based on Data Fusion techniques especially OWA 
operators. In other words, what actually more in attention, is to show OWA and its 
extensions are making an agent capable to decide more like human and therefore 
creating more believable agents. These additions to similar previous implementations 
[4], [5], [6], we believe, in no way diminish the embeddedness of the proposed 
architecture. Even virtual agents can be considered profoundly embodied and situated. 
On the other hand, many real embodied and situated robots lack profound 
embeddedness. Their bodies and situational circumstances are considered not 
affordances to be taken advantage of, but further problems to be solved by the 
proposed AI methodology [13].   

At the end, we introduce some directions that might be interesting as a future 
works: 
This prototype of rational component can manage a single active goal at the same 
time. In applications containing complex real-time human-machine interaction, there 
might be emerge of several active goals at the same time. 

Other Decision Making Algorithms can be used for goal or action selections which 
improve believability of an agent. This research is only headed for two major types of 
personality which are Extroversive and Introversive, but there are more types that can 
be modeled and used inside the application. Also utilizing any learning algorithm in 
order to learn personality would be another interesting future research in this area. 
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Abstract. The problem of consciousness has been divided by philosophers into 
the problem of Access Consciousness and the problem of Phenomenal 
Consciousness or "raw feel". In this chapter it is suggested that Access 
Consciousness is something that we can logically envisage building into a robot 
because it is a cognitive capacity giving rise to behaviors or behavioral 
tendencies or potentials. A few examples are given of how this is being done in 
current research. On the other hand, Phenomenal Consciousness or "raw feel" is 
problematic, since we do not know what we really mean by "feel". It is 
suggested that three main properties are what characterize feel: the fact that 
feels are different from each other, that there is structure in these differences, 
and that feels have sensory presence. It is then shown how, by taking the 
sensorimotor approach [24], [27] it is possible to account for these properties in a 
natural way and furthermore to make counter-intuitive empirical predictions 
which have recently been confirmed. In conclusion it is claimed that when we 
take the sensorimotor approach to feel, building raw feel into a robot becomes a 
theoretical possibility, even if we are a long way from actually attaining it. 

1   Introduction 

Consider a robot programmed so that it acts in every way as though it is conscious. 
For example when injured, it screams and shows avoidance behavior, imitating in all 
respects what a human would do when in pain. The robot is able to talk about its pain, 
and it reasons and acts like it has the pain. The philosopher Ned Block would say that 
the robot has Access Consciousness to the pain [6].  

However all this would not guarantee that to the robot, there was actually 
something it was like to have the pain. The robot might simply be going through the 
motions of manifesting its pain: perhaps it actually feels nothing at all. Something 
extra might be required for the robot to actually experience the pain, and that extra 
thing is raw feel, or what Ned Block calls Phenomenal Consciousness. 

2   Access Consciousness 

From a theoretical standpoint (although currently no one has actually done it), there 
would appear to be no logical obstacle to implementing Access Consciousness in a 
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robot: the reason is that Access Consciousness ultimately corresponds to a behavioral 
capacity. What we mean when we say someone has Access Consciousness to 
something is that the person currently knows that he (considered as a person with a 
self) is poised to make use of that thing in his ongoing rational decisions, in his 
planning, intentions and linguistic behavior [6]. Agreed, the notions of "self", 
"rational", "decision", "planning", "intention", and "language" required to have access 
consciousness are all difficult notions. We are far from understanding these notions, 
and once we do, building them into a robot may require as yet undiscovered 
principles. But the important point is that there is no logical impossibility preventing 
this from being done: it has been termed the "easy" problem of consciousness [8]. 
Indeed, as the following illustrations show, cognitive scientists and artificial 
intelligence researchers are busy analyzing the components and prerequisites 
necessary to achieve this goal. 

2.1   The Self, Intentions, and Theory of Mind 

One critical aspect of Access Consciousness that has to be understood is the notion of 
self. Studies in cognitive science reveal that the notion is not a unitary notion, but is 
an umbrella term, covering capacities going from the individual to the social, and 
going from knowledge about only the organism itself, to knowledge about other 
organisms and their motivations [13], [22], [32], [33], [47]. Different aspects of the self 
become established at different times as humans grow up, with social pressures and 
individual experience contributing to their development in complicated ways. The 
notion of self is related to "intentions" and to "Theory of Mind", that is, the ability to 
understand other agents' thoughts and goals. The following are just a few illustrations 
where current robotics research is attempting to implement some very simple aspects 
of the self. 

Self-discrimination has been investigated with Domo, a robot constructed at the 
Humanoid Robotics Group at the MIT Computer Science and Artificial Intelligence 
Laboratory (CSAIL). The robot consists of an upper torso equipped with moveable 
eyes, head, arms and grippers. It uses vision-based movement detection algorithms to 
determine whether something is moving in its visual field. It checks whether by 
commanding movements of its own body, the movements it sees are correlated with 
the movements it commands. If such a correlation occurs, it assumes that what it is 
seeing is part of its own body. In this way it is able to figure out what its own hand 
looks like, and later, what its own fingers look like [11]. 

Work on the higher notions of self, namely self-knowledge and knowledge of self-
knowledge is being done using the COG platform, also developed at CSAIL. COG is 
actually one of the first robotic platforms that was built at the Humanoid Robotics 
group, and one might say it is approaching "retirement". It is an upper-torso humanoid 
robot equiped with visual, auditory, tactile, vestibular, and kinesthetic sensors, and 
which can move its waist, spine, eye, head, arms and primitive hands. COG has been 
used by a variety of groups at MIT to do experiments in object recognition, tactile 
manipulation, and human-robot interaction. Since the development of COG, many 
groups throughout the world have been constructing similar devices to study 
embodied cognition.  
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The ideas being used to study the emergence of the higher notions of self in COG 
and similar robots are based on analyses of what psychologists consider to be the 
most basic capacities postulated to underlie this notion in humans [39]. One such basic 
capacity is the ability to locate and follow an agent's gaze direction. For this, skin, 
face and eye detection algorithms in the robot's visual system allow it to locate eyes 
and infer where a human is looking. By extending this gaze following capacity, the 
researchers hope to implement algorithms for joint attention, that is, algorithms that 
allow the robot to attend to an object that another agent is also attending to.  

A further example of a capacity that might be involved in the genesis of the self is 
the ability to distinguish mechanical motion due to inanimate objects and animate 
motion due to living agents like animals and humans. This is perhaps the basis of the 
notion of the ability to ascribe intentions and goals to other agents. To test this idea 
with COG, an algorithm has been used that estimates the variability in the velocity of 
moving objects. Presumably an object whose velocity does not follow simple laws of 
physics probably has a "will of its own" and is likely to be animate.  

Another robotic platform that is being used to investigate the emergence of the self 
is Sony's domestic dog robot, the AIBO. At Sony Computer Science Laboratory in 
Paris the AIBO has for example been used to study joint attention and pointing, 
except this time in a "social" context,  that is, with another AIBO or with a human [18].  

The Domo, COG and AIBO projects are just three samples of work in progress. 
They are only painfully preliminary steps towards implementation of different self 
notions in a robot. But such studies in developmental robotics are a growing research 
field in which researchers attempt to show how from a few basic capacities, robots 
can acquire the social skills that we know humans acquire over the first few years of 
life, skills that are at the root of humans' notions of intention and "Theory of Mind" [1], 

[12], [19], [21]. Much work needs to be done, but the vitality of this and related research 
projects shows that researchers are confident that providing robots with a realistic 
notion of self and accompanying Theory of Mind is an achievable goal. Even if it 
takes many more years, the problem of building a robot with a self seems in principle 
solvable.  

2.2   Language 

Whether beings without language are conscious will probably have to remain a matter 
of debate. But it is obvious to us humans that insofar as we possess the faculty of 
language, it is an important component for Access Consciousness: after all among the 
things we mean by having conscious access to something is being able to talk about it.  

However the goal of providing artificial agents with human-like natural language 
understanding is still far from being attained [10], [17]. The main problem seems to be in 
anchoring the symbols used by machines in the real world. One attempt to do this is 
progressing by accumulating vast amounts of "common sense" knowledge from large 
natural language databases like the web [20] (see http://www.cyc.com). More recently 
researchers are trying to physically embed artificial agents in the real world in order 
to facilitate proper human-like use of language [34], [35]. As was the case for the notion 
of the self, work at MIT and Sony CSL is also illustrative of this. 

An example of how immersion in the real world can help solve problems is Ripley, 
a kind of robot dog from the MIT Media Lab. Ripley can move its neck and pick 
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things up with its mouth. Because Ripley is embedded in the real world, it does not 
need to do any very complicated reasoning concerning how it is physically placed 
with respect to the objects it is dealing with, and how they are placed with respect to 
the person it is talking to: this kind of information is available at any moment in front 
of its eyes, so when someone says "pick up the one on your left", it can just look over 
on the left and find what is being referred to. Furthermore, when it learns words like 
push, pull, move, shove, light, heavy, red, hard, soft, it can make use of information it 
obtains from interacting with objects in order to ground the meaning of the words in 
physical reality, imitating what probably happens when real infants interact with their 
caretakers [36], [37].  

A similar project is being undertaken at Sony CSL, where Sony's robot dog AIBO 
learns the meanings of simple words by interacting with a human [44], [45] (see also 
http://www.csl.sony.fr and http://playground.csl.sony.fr/). Other work at Sony CSL is 
investigating how word meaning and syntax can emerge when humans or robotic 
agents play language-oriented games together in order to achieve common purposes 
[42], [43]. Of course in these examples the interactions between robots and humans is 
much more focussed and the number of utterances involved is much more limited 
than in normal human interactions. But this work suggests that we may be starting to 
model human language acquisition in a plausible way.  

2.3   Conclusion on Access Consciousness 

Though the illustrations in the preceding paragraphs are obviously ridiculously 
simple, and are clearly only the very first steps towards implementation of Access 
Consciousness, they nonetheless suggest that Access Consciousness, though a 
difficult problem, can be decomposed into a collection of simpler problems which are 
logically not beyond the bounds of robotic implementation. Access Consciousness is 
ultimately an aggregate of behavioral capacities, and the necessary ingredients, while 
out of reach today, can conceivably be achieved in the future. Perhaps the most tricky 
problems are on the one hand the notion of "self", with its accompanying concepts of 
intention and Theory of Mind, and on the other hand natural language understanding. 
The hope today is that these problems will be successfully dealt with when 
researchers start working more with actual physically embodied agents in real world 
settings. Indeed, one cannot neglect the fact that humans live, move, and interact in 
particular ways with the objects that they use and with other humans in the real world. 
Human language and thought are not just raw symbol manipulation: the concepts that 
are manipulated are constrained by the physical world and the particular way humans 
interact with it. People have bodies and interact with other people who themselves 
also have bodies. People live in a shared social environment and have desires, 
emotions and motivations that play an important role in conditioning communication. 
It may be that only machines that have human-like immersion in the world will be 
able to have notions of self and use language like humans [10], [29]. 

3   Phenomenal Consciousness or "Feel" 

We have seen that Access Consciousness, though clearly difficult, is not a logically 
insoluble problem. We can hope that we will gradually progress towards its 
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implementation in robots. With Phenomenal Consciousness however, we are in quite 
a different situation. People are convinced that they feel things, but it is hard to say 
exactly what feel is. 

To try to understand better what is meant by feel, consider what happens when I 
look at a red patch of color: I see red. What exactly is this feel of red? What do I 
experience when I feel the feel of red?  

One aspect of the feel of red is the mental associations that I have with red: 
Redness is associated in my mind with, among other things: the word "red", with 
roses, ketchup, blood, red traffic lights, stopping, anger, and certain red cough-drops... 
But these mental associations are in addition to the raw sensation: they are added over 
and above the experience of red itself. Having these mental associations might of 
course produce additional experiences: for example the association with anger may 
make me more likely to get angry. But such effects, if we want to call them 
experiences, would appear to be in addition to the basic, core, raw experience of red 
itself. 

Another aspect of the feel of red may be the automatic physiological states or 
tendencies it creates. For example, red may be a color that has the direct effect on my 
nervous system of making me more excited, whereas blue may calm me down. The 
existence of such effects is controversial, but if they do exist, they are surely over and 
above the actual raw feel of the redness of red: in this example they correspond to 
excitement, not to red. 

Yet another aspect of the feel of red is the learnt bodily reactions that redness 
may engender, caused for example by habits that are associated with red: for example 
pressing on the brake at red traffic lights. But again, such bodily reactions are add-ons 
to the actual raw experience of red.  

To summarize: experiencing red may be accompanied by various mental 
associations, physiological tendencies and bodily reactions. These are extra behaviors 
that come with the feel of red, and they may in turn produce their own, additional 
experiences. But at the root of the feel of red there surely must be more than simply 
mental associations, physiological tendencies and bodily reactions. This extra 
component, which we could call the "raw feel" of red itself, is presumably what 
makes red quite different from green, or from the sound of a bell, or any other 
sensation.  

Now it seems clear that if we wanted to build a robot that experienced sensations 
as humans do, then at least conceptually, building in the additional components 
accompanying the sensations poses no particular problem. This is because these 
components are behaviors or behavioral tendencies or capacities. One could fairly 
easily build into the robot a higher probability of saying "red" when it sees red; one 
could have the robot be more active or agressive in red rooms, and even have it make 
subliminal brake-pressing movements. 

But what could be done to provide the robot with the "core" component of the red 
sensation, namely the raw red feel? This seems to be a much harder problem. What 
"circuit" should be added into the robot to provide it with the raw feel of red? 

The robot played by Arnold Schwarzenegger in the film "Terminator I" is a good 
example of this problem. The designers of the robot could incorporate circuits that 
make the robot wince, say "ouch", and otherwise manifest its disapproval in cases 
where for example it gets its arm chopped off. The robot could know that this kind of 
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injury is a bad thing for it, and it could be programmed to avoid getting into such 
nasty situations in the future. But what extra circuit would the designers have to build 
into the robot so that it actually felt the raw pain itself, instead of just going through 
the motions of feeling the pain? 

3.1   Three Properties of Raw Feel 

Let us look more closely at the raw, core component that is at the basis of feel. In this 
exercise we are purposefully leaving aside all the "extra" components like the mental 
associations and bodily manifestations that might come with feel.  

There are three important aspects to note about raw feel. 

First, raw feels are different from each other. For example there is red, green, pink, 
black. There is the sound of a tractor, of a violin, of middle C, of the wind in the 
willows. There is the smell of lemon, the taste of onion, the touch of a feather, the 
cold of ice, among innumerable others. 

Second, there is structure in the differences. Sensations can be grouped together 
according to their similarity. For example sensations of light form a collection which 
is separate from sensations of sound, which are in turn different from sensations of 
touch, etc. Within each such collection or "modality" there may be further structure. 
Tones for example can be compared and contrasted, and they form a linear order 
going from low pitched to high pitched. Color is more complex, since one can 
distinguish the hue or tint of a color, and its "saturation", that is, the intenseness of the 
color it contains (a color is less saturated when it contains a lot of grey). Furthermore 
the dimension of hue is circular rather than linear: you can arrange colors in a closed 
circle of similarity going from red to orange to yellow to green to blue to purple and 
back to red again.  

Sounds are another complicated case. Clearly loudness is something that can be 
defined along a linear dimension, but then sounds also have "timbre", which seems 
not to be describable in terms of dimensions that can easily be agreed upon. Smells 
also are complicated, and no consensus has been reached on a set of dimensions to 
describe them. A recent study suggests that a minimum of 30 independent dimensions 
are needed to account for smell judgments.  

But whereas sensations form sensory orders [9], [48] or "modalities" within which 
they can be compared and contrasted in this way, across such modalities they cannot. 
For example, how is red different from middle C? Or how is cold different from onion 
flavor? It seems to make no sense to try and compare Red and middle C, since they 
have nothing to do with each other, and can't really be compared at all. Perhaps there 
is one attribute which is common even across different modalities, namely intensity: 
we can talk about intense colors, intense sounds. But apart from that sounds and 
colors are incommensurate (except perhaps to synesthetes!). The same goes for cold 
and onion flavor.  

In summary, sensations form more or less separate modalities across which making 
comparisons is impossible. But within each such modality there may be a structure, 
which may be of varying complexity, depending on the modality. 
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Third, raw feels have a quality rather than no quality, and are perceptually present.  
To understand this statement, consider the fact that the brain continually monitors 

blood oxygen and carbon dioxide, keeps the heartbeat steady and controls a variety of 
other bodily functions. All these activities involve sensors signalling their 
measurements via neural circuits and are processed by the brain. Yet one does not feel 
them, whereas one does feel the redness of the light or the prick of the needle.  

Why should brain processes involved in processing input from certain sensors 
(namely the eyes, the ears, etc.), give rise to a felt sensation, whereas other brain 
processes, deriving from other senses (namely those measuring blood oxygen levels 
etc.) do not give rise to a felt sensation? 

A related, but not identical case is thinking. Thinking obviously involves brain 
processing like controlling the oxygen level in the blood, and like analyzing inputs 
from the sensory systems. But does thinking have a feel?  

Clearly, like the situation for sensory inputs, one is aware of one's thoughts. One 
knows what one is thinking about, and one can, to a large degree, control one's 
thoughts. But being aware of something is not the same as feeling something. Indeed, 
thoughts are more like blood oxygen levels than like sensory inputs: thoughts are not 
associated with any kind of sensory presence. Thoughts may be about things like 
blood and red traffic lights and red cough drops, or even about the raw feel of red, but 
such thoughts do not themselves have a red quality or indeed any sensory quality at 
all. Thoughts may of course be accompanied by feels: the thought of an injection 
makes me almost feel the pain and almost makes me pass out. But the pain I feel is 
the sensory pain normally associated with the injection, not the sensory quality of 
thinking. The thought itself has no sensory quality.  

3.2   Neurophysiological Explanations for Feel 

We have concluded that there are three important aspects of raw feel: feels are 
different from each other, there is structure in the differences, and feels have a quality 
and sensory presence, rather than no quality.  

One's first impulse in seeking for an explanation for these facts is to look in the 
brain.  

Neuroscientists have certainly localised different brain areas which seem to be 
involved in consciousness, but to date no explanation of how any such areas 
contribute is in view. Many hypotheses are entertained and discussed in the literature, 
such as the possibility that consciousness is generated by recurrent activation in 
corticothalamic networks, or by widespread synchrony of oscillations in the gamma 
band, or even that consciousness could be linked to quantum gravity effects in neuron 
microtubules. Such mechanisms might account for the behavioral capacities involved 
in Access Consciousness, but how any such mechanisms could explain why feels 
have the properties that they do is never addressed. 

It would seem that there is a logical problem: Whatever mechanism is invoked to 
generate consciousness, additional "linking hypotheses" will always have to be made: 
a linking hypothesis is a hypothesis that establishes a link that justifies, for example, 
why different neurons or neural mechanisms or firing patterns or quantum 
mechanisms should produce the particular different sensory qualities, with the 
particular structure of similarities and differences that is found, and with the 
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experienced sensory presence. The problem is that there would appear logically to be 
no non-arbitrary way of making such links between the neural states or physical 
characteristics of the firing patterns of neurons, and the experienced sensations.  

4   The Sensorimotor Approach 

A possible alternative way  to understand the problem of Phenomenal Consciousness 
of feel is the sensorimotor approach [24], [25], [27]. This starts from the postulate that 
looking for a circuit or mechanism that generates Phenomenal Consciousness is to 
make what the philosopher Gilbert Ryle called a "category mistake" [38]: Phenomenal 
Consciousness is simply not the kind of thing that can be generated at all. Just as it 
makes no sense to search for the meaning of a word in the shapes of the particular 
letters that compose it, it makes no sense to search for a circuit that generates 
Phenomenal Consciousness in the brain. 

Instead, the sensorimotor approach suggests that what it really means for a person 
to have Phenomenal Consciousness or feel is that the person: 

1. is currently engaged in exercising a certain sensorimotor skill, and 
2. is attending to this engagement and the skill's qualities.  

Under this approach, the quality of a feel is constituted by the particular laws that 
govern an individual's sensorimotor interaction when he is experiencing the feel. 

To understand the idea, one can take as analogy the feel of driving a Porsche as 
compared to driving a Volkswagen. Where lies the essential difference between the 
feel of Porsche driving and the feel of Volkswagen driving? It comes from the mode 
of sensorimotor interaction you have with the cars. It comes from the things you can 
do and the way the car reacts when you do them. When you press on the accelerator, 
the Porsche whooshes rapidly forward, whereas nothing very much happens in a 
Volkswagen. When you so much as slightly touch the steering wheel the Porsche 
swerves immediately whereas the Volkswagen only lumbers slightly to the side. 

Thus: 

1. The Porsche driving feel comes from being engaged in exercising a certain 
sensorimotor skill, namely the Porsche driving skill. What provides the Porsche 
driving feel with its distinctive quality is the different mode of interaction you have 
with the Porsche as compared to other cars. 

2. Furthermore to actually feel the Porsche driving feel, you have to be paying 
attention to the fact that you are doing Porsche driving things. If while you drive you 
get very involved in a discussion with a friend, you might no longer be noticing that 
you were driving the Porsche, and you would rather be experiencing the fact that you 
are conversing with your friend even though your body was actually doing the same 
Porsche driving things as before. 

Taking the Porsche driving analogy seriously and applying it to sensory feels in 
general provides a way of accounting for feel in which feel is not something which 
can be located in some circuit, or which is generated by some mechanism. Instead, 
feel is a way of doing things. Taking this stance allows one to escape from many of 
the conundrums connected with phenomenal consciousness, and provides a principled 
way of explaining the three main properties of feel. 
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Thus, why are feels different from one another, and how exactly are they different? 
If we were to take the neurophysiologist's view that feels are different because they 
correspond to different input channels or different areas or mechanisms in the brain, 
we would be left with the question: What makes this channel or brain area or 
mechanism generate an experience of seeing, and that channel or brain area or 
mechanism generate an experience of hearing? 

But the sensorimotor approach suggests that we should look for the differences 
between sensations in the things that we can potentially do when we have sensations: 
Thus, take the example of seeing and hearing. Seeing is a form of interaction in which 
blinks, movements of the eyes, of the body and of outside objects provoke very 
particular types of change in sensory input. The laws governing these changes are 
quite different from the laws governing sensory input in the auditory modality. For 
example, when one sees, moving forward potentially produces an expanding flow-
field on the retina, whereas when one hears, the change in sensory input is now 
mainly an increase in amplitude of the signal. The claim is now that the sum total of 
these differences constitute precisely what differentiates the sensations of seeing and 
hearing. The same would be true for differences between experiences across other 
sensory modalities. This explanation for differences in sensory modalities escapes 
from the arbitrariness inherent in neurophysiological explanations appealing to brain 
channels, areas or mechanisms. No "linking hypothesis" need be made, because the 
quality of feel is considered to be constituted by what one does when one engages in a 
particular sensorimotor interaction. 

The second main question one can ask about feel is: What determines the structure 
of the differences between feels within a sensory modality? The sensorimotor 
approach suggests that these differences correspond to differences in the laws that 
govern one's interaction with the world when one is experiencing different sensations. 
Contrary to a neural correlate explanation where we have no natural metric linking 
neural firing rates or other brain phenomena with differences in sensation, in the 
sensorimotor approach, there is a natural metric allowing sensations to be compared, 
namely the same metric used by subjects to compare sensorimotor skills in everyday 
parlance. Quite naturally, because the laws governing sensorimotor interactions are 
complex and vary from modality to modality, the structure of the differences between 
feels will be complex. Across two modalities, the sensorimotor interactions are so 
different that little comparison is possible. Within a modality, each change in one's 
mode of interaction determines the change in the quality of the experience involved. 
Later sections will discuss two examples, namely the sensation of touch and the 
sensation of color. 

And finally, what can be said about the third question we asked about sensations, 
namely: Why do they have sensory presence, that is, Why do they have a feel at all, 
rather than having no feel? We will devote a few paragraphs to this question here. 

If having a feel consists in attending to the fact that one is engaged in exercising a 
sensorimotor skill, and if the quality of the feel is constituted by the laws of 
sensorimotor interaction that the skill involves, then by the very definition of feel, the 
feel must have a quality, namely the quality constituted by exercising the particular 
sensorimotor law involved. Thus feels have a quality rather than no quality. 

Then, just as the sensorimotor approach invokes differences in skills to account for 
differences between sensations, the approach will also invoke differences in skills to 
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account for the difference between experiences involved in perceptual acts and the 
experiences associated with other brain activities. In particular, two facts about 
perceptual skills distinguish them from other brain activities. 

First, whereas perceptual acts invariably involve, at least potentially, changes 
caused by motor behavior, this is not true either of internal physiological states or 
"mental" activities. What we call sensory experience can always potentially be 
modified by a voluntary motion of the body: Sensory input to the eyes, ears, or any 
other sensory system is immediately changed in a systematic and lawful way by body 
motions. On the other hand, people cannot reliably control their internal physiological 
states by moving their bodies (although of course states like heartbeat and blood 
oxygen will be affected indirectly by body motions). Likewise, "mental" activities 
like thoughts, memories, and decisions, to the extent that these can be considered as 
skills, are not skills that intrinsically involve voluntary body motions. This then is one 
thing that makes the skills constituting sensory experiences special as compared to 
other brain processes: they are by nature sensorimotor. Even if at any particular 
moment there need be no motion, they have what the sensorimotor approach calls 
"corporality" or "bodiliness" [24],[25],[26]. This strong potential effect of body motions on 
sensory input is what distinguishes sensor states deriving from the world from sensor 
states internal to the body or brain. 

A second characteristic that distinguishes the skills involved in sensory experience 
from those of mental functions is what is termed "alerting capacity" or "grabbiness" 
[24],[25],[26]: this is the fact that sensory systems are genetically endowed with the 
capacity to deflect our cognitive processing. A loud noise or bright flash will 
automatically, incontrovertibly, attract our attention to the locus of the event. We are 
thus, in some sense, "cognitively at the mercy" of sensory input. This is not generally 
the case for either internal states or mental activities. If a change occurs in the visual 
field, like a mouse flitting across the floor, one's attention will immediately be caught 
by it. But variations in heart beat, for example, generally provoke no attentional 
orienting. Only exceptionnally, and then only indirectly through the pounding it 
produces on the chest, for example, is one aware that one's heart is beating very fast. 
Like visceral states, memory, and in general other mental activities, possess no 
alerting capacity or grabbiness: If one forgets a fact, one only discovers this if one 
actively tries to recover the fact from memory (an exception might however be, for 
example, obsessive thoughts). 

Thus: a characterisation of the differences in skills associated with sensory acts, as 
compared to those involved in internal physiological states and mental acts, reveals 
differences which naturally account for the difference in felt quality of sensations as 
compared to other brain processes. What has been called the "presence" of sensations 
seems precisely to consist in the fact that they are both under our control (in that we 
can modify sensory input by our bodily actions — they have corporality or 
bodiliness), and also not under our control (they can cause uncontrollable alerting 
reactions that interfere with our normal cognitive processing: they have alerting 
capacity or grabbiness). The sensorimotor approach suggests that this captures the 
idea that there is "something it is like" to have a sensory experience provoked by an 
outside sensory event, as opposed to it feeling like nothing to have one's heart beat or 
to have a thought. 
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In summary for this section: the sensorimotor approach, unlike appeals to 
neurophysiological mechanisms that generate consciousness, provides a principled 
account of the three main properties of raw feel, namely 

1. the fact that raw feels are different from each other 
2. there is structure in the differences 
3. raw feels have a quality rather than no quality, and are perceptually present. 

The next sections will consider applications of the sensorimotor approach that 
provide interesting new predictions and results. 

4.1   Sensory Substitution 

The sensorimotor approach claims that what determines whether one has the feel of 
seeing, rather than say, the feel of hearing or the feel of smelling, is not the particular 
sensory input channel, but the laws that characterize the sensorimotor interactions that 
are involved when one sees, hears or smells. If this is true, then one ought to be able 
to create conditions where for example one "sees" through one's ears, or through 
stimulation of the skin: In order to do this, things would have to be arranged so that 
the laws that govern the sensory input through the ears or skin corresponded to visual-
type laws, rather than the usual auditory-type laws. 

Indeed the possibility of such "sensory substitution" has been known since Bach y 
Rita equipped blind subjects with an array of tactile stimulators positioned on their 
abdomen or back, connected to a video camera that produced a tactile "image" of the 
world on the observer's skin. Bach y Rita reports in his book that whereas passive 
stimulation was inconclusive, active camera manipulation by subjects very rapidly 
provided them with a sensation that they qualified as "seeing" [5], [14], [15].  

Recently, technical advances have facilitated further development of sensory 
substitution devices, and an active community is investigating different types of 
substitution, ranging from transposing vision to audition, vision to tongue stimulation, 
vestibular to tongue, among others. For reviews see [3], [4]. 

4.2   The Localisation of Touch Sensation 

Another prediction of the sensorimotor approach is as follows. If the quality of 
sensory feel is provided, not by the particular nervous pathways, but by the particular 
mode of sensorimotor interaction that is involved, then one should predict for 
example that the perceived localisation of a touch, say, on the arm, is not caused by 
the activation of a particular brain region, but by the particular sensorimotor laws that 
are involved when that location is touched. More precisely, a touch is felt to be on 
one's arm, rather than, say, on one's leg, when the touch can be modified by moving 
one's arm rather than one's leg; when the touch is accompanied by a visual stimulation 
in the region of the arm, rather than in the region of the leg. 

Conversely, if one were presented with a tactile stimulation on the arm that is 
systematically accompanied by a visual stimulation on some outside object, like say a 
fake arm put on the table in front of one, then the prediction is that one should come 
to feel the sensation on the fake arm. 

This is precisely the situation that has been investigated in an extensive literature 
on the "rubber hand illusion", which confirms this counter-intuitive prediction [7], [46]. 
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The finding is also compatible with a large body of work showing that people can 
rapidly adapt when their body is "extended" by the use of tools or other artefacts. For 
example, you "feel" the paper under the tip of your pencil, not in your fingers. When 
you park your car, you "feel" the curb on the wheels of the car, not on the steering 
wheel.  

4.3   The Structure of Color Sensations 

Psychophysicists since Hering and Helmholtz have been trying to understand the 
structure of color space. Certain colors are considered to be "special" or "unique" in 
the sense that other colors are perceived to be composed of them. For example red, 
yellow, blue and green are seen as "pure", and not containing other colors, whereas 
orange is not pure because it is seen to contain red and yellow. Though some success 
is obtained by the classic opponent process theory of color vision, color scientists 
today agree that the finer details of these phenomena have not up till now been 
adequately accounted for by any neurophysiological findings. 

The sensorimotor approach claims that in fact the structure of color space is to be 
sought not in sensory channels per se, but in the laws of interaction that characterize 
color perception. Thus when one moves a coloured piece of paper under different 
illuminants, or when one moves one's eyes on or off the paper, there are precise laws 
that govern the changes in photon catches made by the three photoreceptor types that 
humans possess. A recent attempt to apply this idea has come up with surprising 
success [30]. In the case of red, for example, it is found that the changes in photon 
catches are confined to a single dimension of variation, suggesting why red is a 
special colour as compared to, say, orange, where three dimensions of variation are 
observed. Unique hues are accurately predicted in this way. Furthermore, the 
approach also accurately correlates with well-known anthropological data concerning 
the way people name colors [30]. 

4.4   Change Blindness 

An interesting point about the sensorimotor approach is the way it explains humans' 
experience of a very rich and continually present visual world. Instead of supposing, 
as does the classic approach to vision, that the perceived richness of visual experience 
requires continuous activation of a rich internal representation of the world, the theory 
says that richness and continuity are due to the fact that a perceiver has immediate 
access, via a flick of attention or an eye movement, to any information about the 
outside world that the perceiver wishes to investigate. The analogy is made of the 
light in the refrigerator: every time you open the fridge, the light is on, so you assume 
it is continually on. Similarly, the reason you feel the visual world as being 
continually present is that whenever you attend to any portion of it, information is 
available about that portion [23].  

According to the sensorimotor approach, a further fact that buttresses the illusion 
of continual presence lies in the "grabbiness" of visual stimuli. The low level visual 
system is equipped with "transient-detectors" that register sudden motion or fast 
changes in luminance or color. These automatically provoke attentional orienting: 
when a flash of light occurs in the visual periphery, you cannot help moving your eye 
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in that direction. One therefore has the illusion that one is continually seeing 
everything, because if anything should suddenly change, one's attention is 
automatically directed to it, and one sees the change [24], [26]. 

An exception to this however would occur if the transient detectors were somehow 
rendered inoperative. This can be done by swamping them with extraneous luminance 
transients. "Change blindness" is a phenomenon which is coherent with this 
prediction: large changes in pictures can go unnoticed if the change occurs 
simultaneously with a global white flash [31] or with several "mudsplashes" [28] 
distributed all over the visual field. Another way of rendering transient detectors 
inoperative is to make the changes so slow that they are no longer "grabby". This is 
what happens in experiments with progressive changes [2], [41], where a large region of 
a picture changes color or appears or disappears without this being noticed. Although 
the interpretation has been contested (cf. [40]), because the phenomenon of change 
blindness is so striking and counter-intuitive, it serves as a convincing confirmation of 
the sensorimotor approach. 

5    Conclusion: Building Consciousness into a Robot 

Can we build Access Consciousness into a robot?  
The first part of this chapter argued that Access Consciousness is a behavioral 

capacity, which, though outside the bounds of current work in AI and robotics, 
presents no fundamental logical problem to a robotic implementation. Future work, 
particularly with embodied systems, bears the hope of gradually approaching the 
notions of self, intentions, and Theory of Mind, as well as natural language 
understanding that are undoubtedly prerequisites to Access Consciousness. 

Can we build Phenomenal Consciousness or "feel" into a robot? 
Although Phenomenal Consciousness or feel is generally considered the "hard" 

problem of consciousness, this chapter has argued that feel may in fact turn out to be 
the easier problem (for a similar view see [16]). If we take the stance suggested by the 
sensorimotor approach, according to which having a feel is, first, engaging in a 
sensorimotor skill, and second, having access consciousness to the skill, then clearly 
once a robot has access consciousness, it will suffice for the robot to engage in an 
embodied interaction with the environment for it to have feel. 
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Abstract. “Without embodiment artificial intelligence is nothing.” Algorithms 
in the field of artificial intelligence are mostly tested on a computer instead of 
testing on a real platform. Our anthropomorphic robot ZAR5 (in German Zwei-
Arm-Roboter in the 5th version) is the first biologically inspired and completely 
artificial muscle driven robot torso that can be fully controlled by a data suit 
and two five finger data gloves. The underlying biological principles of sensor 
technology, signal processing, control architecture und actuator technology of 
our robot platform meet the requirements of biological based technical 
realization and support a distributed programming and control as well as an 
online self-adaptation and relearning processing. The following elaboration 
focuses on biological inspiration for the embodiment of artificial intelligence, 
gives a short insight into technical realisation of a humanoid robot, which is of 
high importance in this context, and accentuates highlights relating to a possible 
paradigm shift in artificial intelligence. 

Keywords: embodied artificial intelligence, biological archetype, humanoid 
robot, biological inspired construction, fluidic muscle, muscle-tendon system, 
weight saving construction, common platform. 

1   Introduction in the Biological Inspiration of the Robot ZAR5 

ZARx is a joint project of the Technische Universität Berlin department Bionik und 
Evolutionstechnik, the company EvoLogics and the company Festo1. 

The aim of this project using the fluidic muscle of Festo [1] is to show the current 
possibilities of biologically inspired construction in embodiment, muscle-tendon 
system, control architecture, radius of action, and weight saving.  

The robot ZAR5 is a human-like torso with two arms and two five-finger hands 
which are strictly developed according to bionical considerations. The combination of 
biology and robotics leads to smoother and compliant movement which is more 
pleasant for us as people. Biologically inspired robots embody non-rigid movements 
which are made possible by special joints and actuators that give way and can both 
actively and passively adapt stiffness in different situations. The more the technical 
                                                           
1 This project was supported by Markus Fischer TC-D, FESTO AG & Co. KG. 
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realisation corresponds with the biological role model the successful is the reflection 
of the true reality. If we want to learn more about the control architecture and their 
functionality in the human being, we have to build an exact copy of the natural role 
model as much as possible to improve our conceivability of artificial intelligence. 

Biological inspiration is not only the morphology – size, proportions and load-
bearing inner structures – but also the physiology – moving mechanical parts and 
muscle tendon systems – as well as parts of the all driven control architecture. The 
better the morphology is understood and transferred to the artificial body the better 
the physiological parts can act and thus finally the controlled software. Morphology, 
physiology and control are an entity and have to be considered always together. 

The next two chapters engage with the importance of a biological inspired 
embodiment for missions in artificial intelligence (AI) and the rest of the paper gives 
a deeper look in selected issues of the humanoid robot ZAR5. 

2   Why Is an Embodiment in AI Necessary? 

Intelligence is the Latin word for cognition, perception or comprehension. Based on 
the natural intelligence of man or animal the essential intelligent criteria can be 
abstracted to: 

• The ability of processing any symbols (not only data), 
• The constitution of an inner model of the outer world, 
• The ability of an adequate use of the knowledge, and more minor features like 
• Reasoning, generalising and specialising. 
 
As archetype of intelligence the human brain is named nearly exclusive. The matter of 
AI is to understand and reproduce the ability of the human brain in technical 
applications. Current areas of AI are pattern recognition, speech synthesis/ 
recognition, programmable machines and expert systems. The fundamental idea of AI 
is to analyse under which conditions computers can reproduce the behaviour pattern 
of the intelligence-based creatures. 

The intelligence of creatures is evolved by interaction with their environment over 
millions of years. The peculiarity of the carrier – the embodiment – of the brain has an 
essential hand in whose development status and intellectual level. The embodiment is 
the interface between natural intelligence and environment. The complexity or the 
intellectual height of the brain is determined by the complexity or miscellaneousness 
of the embodiment. We think always in the complexity of our doing. The more 
(complex) we can do the more intellectual we are generally. 

According to this a detach of an algorithm of AI from their environmentally 
connecting embodiment leads to an incorrect simulation condition and finally to an 
insufficient solution by definition. 

3   Why an Embodiment Close to a Biological Archetype? 

If we accept the above agreement which type of embodiment we should use? That 
depends on what do you want to do. If we are investigate in special bat skills we have 
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to validate the results on an embodiment which fulfils the requirements of a real bat, 
concerning the asked features and interfaces. A test on an other mechanical platform 
seems to be hardly meaningful. 

If we test an AI algorithm in the field of muscle control, we have to build an 
appropriate application which fits the requirements on a muscle-tendon system. The 
better the respective technical solution meets the underlying methods of the biological 
role model, the better works the AI algorithm and reflect the real conditions. 

Biology Technics

Intelligence

NI: Brain AI: Program

Embodiment

eNI eAI ?  

Fig. 1. If the human brain and thinking are archetype to an algorithm or program of AI, how 
should an appropriate body structure be to prove the functional efficiency? 

The possible limits have to be considered depending of what we want to do with 
our AI algorithm and where shall the algorithm run. Surely we do not want to steer a 
man but rather reproduce a human skill on a technical application. But if we want to 
improve a robot with a man’s skill, we have to build a human-like robot as far as 
possible (Fig. 1). Only such an embodiment has the needed requirements to fulfil 
adequate the posed task. 

The AI in terms of a computer algorithm is the technical realisation of the natural 
intelligence – of the thinking brain. This small piece of reality should be validated 
gainfully. To come closer to the reality we have to build an embodiment which 
produces an adequate feedback compared to the archetype. It is not important that the 
embodiment looks like a man but it is highly important that it copes with the task and 
the descriptive functionality. 

The scientific discipline which deals with the analysis of biological systems and 
transferring the underlying principles into technical implementations, is called 
Bionics in German Bionik. Bionics is concerned with decoding ‘inventions’ made by 
living organisms and utilising them in innovative engineering techniques. Bionics is a 
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made-up word that links biology and technology. However, nature does not simply 
supply blueprints which can merely be copied. Findings from functional biology have 
to be translated into materials and dimensions applicable in practical engineering. It is 
less the form here but rather the functional coherences which have to translated in a 
proper way [2]. 

What can we learn from nature about morphology and physiology for the design of 
humanoid robots? If we concur with the law of survival of the fittest, then we believe 
that only optimised individuals can exist in nature in their respective surrounding 
conditions. Bionics initial task is to search for individuals in nature which have the 
same characteristics as the object to be developed. In our case, we are searching for a 
model of a humanoid robot arm and hand. We are thus looking for animals which are 
able to hold and/or carry several kilograms and which have human-like proportions 
with respect to weight and inherent compliance. When looking at the problem more 
closely, the intrinsic problem is how we can produce a multiple of force that is able to 
hold objects that are heavier than the embodiments own weight. This is the so-called 
power-weight ratio; this ratio is about one to one for electric motors. We have found 
other solutions for actuators in nature, particularly linear actuators that produce 
tractive force. The power-weight ratio of these actuators is multiplicatively higher 
than those known for technical actuators. Thus, it seems that nature has a better 
solution for our technical problem under the given terms and conditions. 

We will not look at industrial robots here, as they carry out rigid tasks among 
themselves, or in contact with a technical environment. This field, called contact 
stability [3-5], has been widely investigated and has presented large problems for 
robotic manipulation tasks till date. 

We will instead focus on human-like robots and their interaction with humans and 
the environment. This contact or physical touching between robot and human is 
subject with special requirements regarding softness and compliance of motion [6, 7]. 
The aim of humanoids is not to assemble printed circuit boards that is also hard for 
humans, but to master soft and energy-optimised movement in different situations of 
life. 

The question of the appropriate embodiment – morphology and physiology – 
cannot be answered generally. Certainly it is true that for various questions also a 
more technical embodiment fulfils the given task. A specific analysis of the question 
concerning to sensor input, signal processing, actuator output, control loop and 
interaction with the environment should provide the solution. 

Other humanoid robot projects suitable for AI without claim of completeness are 
e.g. Cog [8], iCub [9], Kismet [10], the Shadow hand [11] or the well-known ASIMO. 

4   Humanoid Robot ZAR5 in the Face of the Embodied AI 

The current humanoid robot project ZAR5 located in the department Bionik und 
Evolutionstechnik of the Technische Universität Berlin is the development and 
construction of a two-arm robot with two five-finger hands attached to a rigid spinal 
column (Fig. 2).  
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Fig. 2. The humanoid robot torso ZAR5 with two arms and two five-finger hands 

The whole robot is 190 cm tall, the torso – the upper part of the robot – has a 
human shape and a weight of about 45 kg and is thus similar to humans of this size. 
The humanoid robot torso is developed according to a biologically inspired approach 
as far as possible. Not only the shape, proportions and radii of action but also the 
deeper and major qualities like skeleton, joints, muscle-tendon systems and data 
processing of the archetype man are implemented. The company Festo has provided 
the linear actuators of the fluidic muscles [1]. Tendons of Dyneema® filaments are 
used to convey the tractive force to the joints regarding tensile strength, lightweight 
and little bending radius. 

The robot ZAR5 can be operated by a batch file, by teach-in and by a data suit and 
two five-finger data gloves. All joint angles of the data suit wearing man are read and 
transferred via a main PC located in the base to the controlling microcontrollers and 
then to the corresponding robot joints. All angular data are read every 20 ms and 
transferred to the CAN-bus connected microcontrollers of the robot body. This is the 
path planning stage. Each main body part of the whole robot: right and left hand as 
well as right and left side of the body is controlled by a system of two 
microcontrollers. One microcontroller organises the control loops of the connecting 
joints of this body part and the other one is responsible for the generation of the PWM 
signals for the fast switching valves. These inner controllers try to follow the given 
path. Before the tasks are finished they are normally overwritten by the next 
datagram’s from the suit or gloves and thus lead to complex movement trajectories. 

The goal of this project in the face of embodied AI is to provide a biologically 
inspired and manlike platform for the most different algorithms in AI. This platform 
could get a common interface and base for the latest developments in the algorithmic 
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AI. The requirements on realistic approach, efficiency, openness, decentralisation and 
free programmability are fulfilled [12]. 

The next three chapters give a deeper look in selected issues of the robot ZAR5. 

4.1   The Muscle-Tendon System 

The study of the physiology of the muscle-tendon system [13-16] of a man and its 
activation by the central nervous system gives us insight into the functions and 
activities of the human body. A tendon transmits the tractive power of the human 
muscle across tissues and special parts of bones. A pair of muscles called ‘agonist’ 
and ‘antagonist’ drives each joint and pulls against each other to build a tonus. All 
muscles of a joint are located always on the top or proximal side to the centre of 
rotation. This construction detail leads to less torque and the ability to carry out fast 
movement with respect to energy need. 

The fluidic muscle actuator from Festo [1] is used to meet the requirements on 
dimensional stability, quantity of shortening and lightweight construction. There are 
three different types of muscles at the market which output different tensile forces 
dependent on diameter. 

This fluidic muscle actuator works as a linear actuator and shortens in length by an 
inside pressure above atmospheric. The advantages are a high power-weight ratio, no 
stick-slip behaviour, works as closed system, no maintenance and no needed retention 
forces. In the robot application the muscle is used with air pressure of 7 bar. The 
muscle shortens as an ideal cylinder and is modelled in [17, 18]. The greater the 
affected force by a constant air pressure is, the smaller is the shortening referred to as 
base length of the muscle rubber tube. Moreover, the higher the air pressure by a 
constant force is, the greater is the shortening. 

A muscle pair in an antagonistic setup drives each joint of the robot ZAR5 except 
of the fingers. Tendons of Dyneema® are guided via Bowden cables and pulleys to the 
joint and transmit the tractive force of the artificial muscle.  

The dimensioning of the muscle type, the length and the deflection pulley are the 
most important tasks in order to fulfil the requirements regarding radius of action, 
velocity of movement and, in the end, weight to be lifted. Due to being scaled to 
human proportions, the type and the length of the muscle is limited. The relationship 
between muscle length and radius of the deflection pulley has been well defined and 
is calculated beforehand. The smaller the pulley, the smaller the length of the muscle 
can be, however the muscle have to be more powerful. 

Two of the new muscle actuators in combination with an artificial tendon build a 
completely new actuator system which allows both soft, elastic and compliant as well 
as force-guided and exact-positioned movements depending on the tonus. This 
compliance is not actively caused but inherent by the medium air and the material of 
the muscle, opened the possibility of energy storage and conversion from kinetic 
energy to potential energy and vice versa and is more pleasant in contact with humans 
e.g. in the field of assistant robotics. The challenge is the mastering of the 
nonlinearities and out of it the utilizing of the advantages in the face of energy-
optimization, material saving and finally efficiency toward to a more natural 
movement. 
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4.2   The Joints 

The joints of a humanoid robot are essential for the later capability of its movement 
shown in different approaches [19-24]. 

The human shoulder is a ball and socket joint. A technical replica has proven to be 
a bold venture; this is because the construction involves a group of muscles which 
covers the shoulder joint and helps to keep the shoulder in the socket and enable the 
movement of the arm. A surface muscle or the placing of muscles around the joint to 
imitate the human shoulder muscle-tendon system is awkward to construct and 
susceptible in operation. A better way to build a complex shoulder joint is to split the 
multi-freedom joint into separate rotational joints each of which have one degree of 
freedom. These single joints are easier to construct, can be attached directly to the 
muscle-tendon system and are more rugged in use. Each of the three rotational joints 
spans a 2D vector plane around an axis of the Cartesian coordinate system. 

The elbow joint – biceps-triceps system – is constructed according to the human 
system. It is technical a hinge and allows bending and straightening but does not 
rotate. 

The human twist behaviour of the ulna-radius system is a rotary motion of the 
wrist which can be simplified by a joint with pulley and vertical rotation axis. The 
challenge of the wrist joint is to duplicate full functionality of the human wrist with a 
simultaneously simple and durable construction. All tendons of the finger joints have 
to be concentrated in the middle of the rotation axes. The mechanical resistance in the 
joint arise from the guidance of the tendons to the sockets of the fingers. In particular, 
the tilt and lift muscle works against this rising mechanical resistance. For this reason, 
we have to limit the maximum range of the joint in each direction. Two muscles – 
flexor und extensor respectively – are used to tilt and lift the joint and are arranged as 
pairs of antagonists. In the technical sense one speaks of an ellipsoid joint which is a 
less flexible version of the shoulder’s ball-and-socket joint. 

The robot’s hand has 12 DOF without the wrist. Only the flexor muscle is attached 
to each finger limb and lays on the extensor as the pullback spring. This construction 
does not constrict the task of grasping, but only active releasing. This leads to a 
decrease in size and mass and, due to this, to a smaller inertia of masses and control 
effort. A disadvantage of this concurrence is the unnecessary additional expenses of 
providing tractive force via the muscles to overcome the resilience of the springs. 

Not only the appearance but rather the function have to be reproduced to build a 
human-like robot. Thus we have to turn attention to human skills which are 
determined by the construction of the concerned joints. The better the joints achieve 
the desired radii of action of man the better the whole robot acts humanoid. Often the 
archetype of a joint is too complex to reproduce it in detail – we have to do Bionics. 
This means we reduce the degrees of freedom of e.g. the shoulder joint and separate it 
in its reference axis. Only by this way we have the chance to control the joint in a 
proper way. The combined activation of the grounding axis leads to the original 
capability of movement of the considered joint. The use of simplified joints allow the 
application of standard bearings and ensure good friction and abrasion properties. 
More construction details of the joints of our application ZAR5 can be found in [12]. 
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4.3   The Control Architecture 

The challenge of the control architecture of an anthropomorphic robot is the design of 
the electronic components concerning their decentralised tasks and the connecting 
communication pathways [8, 25-28]. In techniques data cannot really be processed in 
parallel in opposite to the human brain and the central nervous system of a man. 
Engineers till date have not been able to reproduce this data flow and communication 
network in vitro. The task will be to assemble, place and manage electronic parts in 
the same way as to achieve results similar to that of the human. Many small activities 
and reactions are not controlled by the brain, but rather initiated by the spinal cord or 
local reflexes. The advantage of this is shorter reaction time; specialised distributed 
units can be used as a paradigm to design decentralised control architecture. This 
approach applied to a technical system is tolerant of failure, enables short distances in 
the sensor-control-actuator loop and provides a control and command hierarchy. 

The robot is divided into four units, completely separately assembled and 
controlled, one unit for each five-finger hand and one for each arm and shoulder. 
Each unit has identical circuit devices, functional ranges and consists of two 
communication directions which can be addressed both separately and independent of 
each other. All units are connected among each other via CAN-bus. A barebone PC in 
the base is on the one side connected with the data suit and the two data gloves to read 
the data of the path planning and on the other side connected to the CAN-bus to 
address the units and to monitor various values of the whole robot system. 

The strict separation of different components and data directions enables speedier 
troubleshooting and is a first step towards decentralisation. The distribution of 
responsibilities and the break down of information handling reduces data activities on 
the bus and the complexity of the units. The fast response time of an unit in a control 
loop in case of emergency cannot be affected by a fewer crucial task of monitoring or 
finger play. The remote unit receives a command from the control PC or from another 
unit via CAN-bus and decides which operations to be done. Without any errors, the 
unit will initiate the appropriated control loop to reach the demanded goal angle. This 
stand-alone execution can be interrupted by the control PC or by an exceeded sensor 
limit value. 

The control architecture consists of PC (technical brain), the CAN-bus (technical 
spinal cord) and the sensory and motor units including controlling electronics 
(sensory-motor units) is in simple words the connecting system between command 
(intended action) and action (executive embodiment). The way of doing and extent of 
the signal transmission from the technical brain to the executive embodiment 
determine on the one hand the parallelisation, decentralisation and finally the variety 
of the possible simultaneous and mutually independent movements on the other hand 
the complexity of the common interface for the users. Actually we have four 
independently operating units which can be further subdivided in one independent 
programmable unit per joint in the future. By now the actual software of a unit allows 
independent quasi-parallel software snippet per joint. We use the CAN-bus layer 2 for 
the mutual communication of the units [12]. This CAN-bus is also used as a common 
user interface too. There exists a dedicated interface and protocol description to 
integrate software parts on top of or into the control architecture to test different 
algorithms with the humanoid platform ZAR5.  
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5   Novelty of the Approach and Future Challenges 

The used fluidic muscle as a pure pulling actuator seems to be an applicable 
alternative to the popular electric motor. Through its advantageous properties it is 
more suitable for humanoid robotics than other drive concepts. The main 
disadvantage is the use of a second energy form: compressed air. The electric motor 
obtains the power from the electric current and the fluidic muscle from the attached 
fluid. The air pipes occupy a bigger volume compared to electric cables but allow the 
direct quantification of the compliance of each muscle using pressure sensors. 

The muscle actuator is suited to locate away from the point of force utilisation. 
The actuator mass can be easily located in the centre of rotation whereas the produced 
pulling force is guided via tendons to the point of force taking. Attention has to be 
turned to the joints which have to house the necessary cables and pipes in its centre of 
rotation to prevent the forming of loops or kinks during movements. A reduced to the 
reference axes joint simplifies the measuring of its position and thus the amount of 
electronic and control effort. 

One local electronic control unit per joint allows not only the management of the 
connecting sensor data, signal processing, control and actuator triggering but also the 
implementation of special local functions like reflexes, online learning strategies and 
exception handlings. Local functions are joint dependent, preferably not interruptible 
from the higher levels, independent of the path planning and thus applicable to real-
time use. 

A proper control architecture connects all lower level units and achieves the 
higher level path planning from the main controller in our application an usual 
personal computer. 

The next steps in the development process of the humanoid robot project ZAR5 
are to divide the actual four units into one smaller and low-end unit for each joint for 
basal functions, to provide the possibility of changing and updating the software code 
of all CAN-bus connected units, to implement higher and lower level learning 
strategies and to make the sensor technology and the cable connection points more 
robust. 

Learning strategies enable the optimisation of control parameters or the whole 
control structures during operation. An individual joint or a chain of joints can adapt 
its parameters depending on different requirements like overshoot, transient response 
or simply the speed of movement. Depending on the priority of the measured values, 
that have to be processed, the optimising algorithms can be located on the different 
control levels. The main processor – the brain – is responsible for holding, up-to-
dateness, replacement and finally management of the different kinds of learning 
mechanisms. 

Such kind of open platform is always limited by the used components both 
hardware and software. Are they designed too open no common rules and interfaces 
emerge. Are limited to few features it does not meet the complexity of the real 
situation. A reasonable platform has to be restricted as possible and extensive as 
necessary. 
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6   Conclusion 

An adequate embodiment as reasonable interface to the environmental condition 
seems to be necessary for a testbed of an AI algorithm. A method, which links 
together software and a physical object, is only as good as the flimsiest element. The 
better the used embodiment represents the reality the better the expected solution for a 
characterised task in AI will be. Each task may require its own particular 
embodiment. An AI algorithm for the reproduction of a human motion pattern and 
reflex demands an anthropomorphic representation of at least one joint of a man. The 
respective embodiment has absolutely not look like a man but must reproduce the 
essential requirements on structure and function. The underlying principles of the 
biological archetype have to be implemented. 

With the briefly introduced anthropomorphic and man-like torso a worldwide 
leadoff platform can emerge which facilitates a common working and testing under 
same conditions. Repeated tasks are prevented and the solutions are comparable 
among each other. 

Acknowledgement. The company FESTO AG & Co. KG supports the work on the 
various versions of the humanoid robot ZAR. 
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Abstract. This paper describes a multi-disciplinary initiative to pro-
mote collaborative research in enactive artificial cognitive systems by
developing the iCub : a open-systems 53 degree-of-freedom cognitive hu-
manoid robot. At 94 cm tall, the iCub is the same size as a three year-old
child. It will be able to crawl on all fours and sit up, its hands will allow
dexterous manipulation, and its head and eyes are fully articulated. It
has visual, vestibular, auditory, and haptic sensory capabilities. As an
open system, the design and documentation of all hardware and software
is licensed under the Free Software Foundation GNU licences so that the
system can be freely replicated and customized. We begin this paper by
outlining the enactive approach to cognition, drawing out the implica-
tions for phylogenetic configuration, the necessity for ontogenetic devel-
opment, and the importance of humanoid embodiment. This is followed
by a short discussion of our motivation for adopting an open-systems
approach. We proceed to describe the iCub’s mechanical and electronic
specifications, its software architecture, its cognitive architecture. We
conclude by discussing the iCub phylogeny, i.e. the robot’s intended in-
nate abilities, and an scenario for ontogenesis based on human neo-natal
development.

1 Enactive Cognition: Why Create a Cognitive Humanoid
Robot?

Until recently, the study of cognition and the neuro-physiological basis of human
behaviour was the subject of quite separate disciplines such as psychology, neu-
rophysiology, cognitive science, computer science, and philosophy, among others.
Cognitive processes were mainly studied in the framework of abstract theories,
mathematical models, and disembodied artificial intelligence. It has now become
clear that cognitive processes are strongly entwined with the physical structure
of the body and its interaction with the environment. Intelligence and mental
processes are deeply influenced by the structure of the body, by motor abilities
and especially skillful manipulation, by the elastic properties of the muscles, and
the morphology of the retina and the sensory system. The physical body and its
actions together play as much of a role in cognition as do neural processes, and
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human intelligence develops through interaction with objects in the environment
and it is shaped profoundly by its interactions with other human beings.

This new view of artificial intelligence represents a shift away from the func-
tionalism and dualism of cognitivism and classical AI towards an alternative
position that re-asserts the primacy of embodiment, development, and interac-
tion in a cognitive system [1]. Cognitivism and classical physical symbol systems
AI are dualist in the sense that they make a fundamental distinction between the
computational processes of the mind and the computational infrastructure of the
body, and they are functionalist in the sense that the computational infrastruc-
ture is inconsequential: any instantiation that supports the symbolic processing
is sufficient. They are also positivist in the sense that they assert a unique and
absolute empirically-accessible external reality that is apprehended by the senses
and reasoned about by the cognitive processes.

This contrasts with the emergent embodied approach which is based to a
greater or lesser extent on principles of self-organization [2,3] and best epito-
mized by enactive approaches originally formulated in the work of Maturana and
Varela [4,5,6,7,2,8,9]. The enactive stance asserts that cognition is the process
whereby an autonomous system becomes viable and effective in its environment.
In this, there are two complementary processes operating: one being the co-
determination of the system and environment (through action and perception
and contingent self-organization) and the second being the co-development of
the system as it adapts, anticipates, and assimilates new modes of interacting.

Co-determination implies that the cognitive agent is specified by its envi-
ronment and at the same time that the cognitive process determines what is
real or meaningful for the agent. Co-determination means that the agent con-
structs its reality (its world) as a result of its operation in that world. Perception
provides the requisite sensory data to enable effective action [9] but it does so
as a consequence of the system’s actions. Thus, cognition and perception are
functionally-dependent on the richness of the system’s action interface [10].

Co-development is the exploratory cognitive process of establishing the pos-
sible space of mutually-consistent interaction between the system and its envi-
ronment. The space of perceptual possibilities is predicated not on an objective
environment, but on the space of possible actions that the system can engage
in whilst still maintaining the consistency of the coupling with the environment.
Through this ontogenetic development — through interaction — the cognitive
system develops its own epistemology, i.e. its own system-specific history- and
context-dependent knowledge of its world. This knowledge that has meaning ex-
actly because it captures the consistency and invariance that emerges from the
dynamic self-organization in the face of environmental coupling.

It is important to understand what exactly we mean here by the term in-
teraction. It is a shared activity in which the actions of each agent influence
the actions of the other agents engaged in the same interaction, resulting in a
mutually constructed pattern of shared behavior [11]. This aspect of mutually
constructed patterns of complementary behaviour is also emphasized in Clark’s
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notion of joint action [12]. According to this definition, explicit meaning is not
necessary for anything to be communicated in an interaction: it is simply im-
portant that the agents are mutually engaged in a sequence of actions. Meaning
then emerges through shared consensual experience mediated by interaction.

Enactive approaches assert that the primary model for cognitive learning is an-
ticipative skill construction rather than knowledge acquisition and that processes
that both guide action and improve the capacity to guide action while doing so
are taken to be the root capacity for all intelligent systems [13]. While cogni-
tivism entails a self-contained abstract model that is disembodied in principle
because the physical instantiation of the systems plays no part in the model
of cognition [14,15]. In contrast, enactive approaches are intrinsically embod-
ied and the physical instantiation plays a pivotal constitutive role in cognition
[14,16,17]. A strong consequence of this is that one cannot short-circuit the on-
togenetic development because it is the agent’s own experience that defines its
cognitive understanding of the world in which it is embedded. Furthermore, since
cognition is dependent on the richness of the system’s action interface and since
the system’s understanding of its world is dependent on its history of interac-
tion, a further consequence of enactive AI is that, if the system is to develop an
understanding of the world that is compatible with humans, the system requires
a morphology that that is compatible with a human. It is for this reason that a
robot which is to be used in the research of human-centred natural and artifi-
cial cognition should be humanoid and should possess as rich a set of potential
actions as possible.

2 Why Open-Systems?

The iCub is a freely-available open system. This openness is guaranteed by
releasing the mechanical and electronic design under a GNU Free Document
Licence (FDL) and all embedded software (controller software, interface software,
and cognition software) under a GNU General Public Licence. Thus, the scientific
community can use it, copy it, and alter it, provided that all alterations to the
humanoid design and the embedded software are also made available under a
FDL/GPL.

We have two goals in making the iCub so open. First, we hope that it will be-
come the research platform of choice for the scientific community. This will help
establish a de facto standard and therefore increase the likelihood of collabora-
tion among research groups and, consequently, the amount of resources that can
be shared among these groups. The nature of the GNU licences helps greatly in
this. Second, we hope that by removing the very significant cost of system spec-
ification, design, and validation, it will lower the barrier to entry in humanoid
research both for people who are expert in humanoid robotics and also for those
who simply wish to carry out empirical research in cognitive neuroscience science
and developmental psychology.
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Fig. 1. Details of the iCub design and construction

3 The iCub Robot: Mechanical and Electronic
Specifications

To ensure that the iCub’s interaction is compatible with humans, for the reasons
outlined above, the design is aimed at maximizing the number of degrees of
freedom of the upper part of the body, i.e. the head, torso, arms, and hands.
The lower body, i.e. the legs and feet, has been designed to support crawling and
sitting on the ground in a stable position with smooth autonomous transition
from crawling to sitting. The iCub has 53 degrees of freedom in total: six in the
head (two for azimuth & vergence, one for coupled eye-tilt, and three for the
neck) [18], seven degrees of freedom in each of the arms (three in the shoulder,
one in the elbow, and three in the wrist), nine degrees of freedom in each of the
hands to effect under-actuated control the 17 joints comprising the five fingers),
six degrees of freedom in each of the legs (three for the hip joints, one for the
knee, and two for the ankle), with the waist also having three degrees of freedom.

The sensory system includes a binocular vision system, touch, audition, and
inertial sensors to allow it to coordinate the movement of the eyes and hands,
grasp and manipulate lightweight objects of reasonable size and appearance,
crawl, and sit up.

Figure 1 shows some details of the current status of design and construction
of the iCub .

Although we are focussing for the present on locomotion by crawling, the
torque capabilities of the feet, leg, and hip joints have been specified to be suf-
ficient to support bi-pedal locomotion. The development of a bi-pedal gait con-
troller is something we expect will be contributed to the iCub software repository
under its GNU licence at some point by a third-party developer.
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All of the motors and sensors are controlled by a suite of DSP chips which
channel data over a CAN bus to an on-board PC-104 hub computer. This hub
then interfaces over a Gbit ethernet cable to an off-board computer system which
takes responsibility for the iCub’s high-level behavioural control. Because the
iCub has so many joints to be configured and such a wealth of sensor data to be
processed, to achieve real-time control it is almost inevitable that the iCub soft-
ware has be configured to run in parallel on a distributed system of computers.
This in turn creates a need for a suite of interface and communications libraries
— the iCub middleware — that will run on this distributed system, effectively
hiding the device-specific details of motor controllers and sensors and facilitat-
ing inter-process and inter-processor communication. We discuss this middleware
briefly in the next section.

4 The iCub Software Architecture

We decided to adopt YARP as the iCub middleware [19]. YARP (Yet Another
Robot Platform) is a multi-platform open-source framework that supports dis-
tributed computation with an focus on robot control and efficiency. Yarp com-
prises a set of libraries which can be embedded in many different systems and
robots, and the iCub is just one of the systems in which YARP is embedded.

YARP provides a set of protocols and a C++ implementation for inter-process
communication on a local network (thereby enabling parallel multi-processor
computation), for standardization of the hardware interface through run-time
dynamically loadable modules, for providing data types for images, vectors,
buffers, etc., and for providing various interfaces to commonly used open-source
packages (e.g. openCV).

Typically, when writing the iCub software, each module will spawn a set of
YARP processes and threads whose complexity will be hidden within the module.
The lowest level of the software architecture consists of the level-0 API which
provides the basic control of the iCub hardware by formatting and unformatting
IP packets into appropriate classes and data structures. IP packets are sent to
the robot via the Gbit Ethernet connection. For software to be compliant to the
iCub the only requirement is to use this and only this API. The API will be
provided for both Linux and Windows operating systems. It is then possible to
consider multiple levels of software development and level-n APIs that re-use the
underlying levels to create even more sophisticated modules. The same rationale
of level-0 APIs clearly applies to higher levels.

Higher-level behaviour-oriented application sofware will typically comprise
several coarse-grained Yarp processes. This means that to run iCub applications,
you only need to invoke each process and instantiate the communication between
them. The YARP philosophy is to decouple the process functionality from the
specification of the inter-process connections. This encourages modular software
with reusable processes that can be used in a variety of configurations that are
not dependent on the functionality of the process or embedded code.
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We plan on implementing the iCub cognitive architecture (see next section)
as a set of YARP processes. That is, we expect that each of the iCub phyloge-
netic abilities as well as the modules for their modulation, for prospection and
anticipation, and for self-modification, will be implemented as distinct YARP
processes.

Software

Architecture
Multiple YARP processes

Running on multiple processors

Gbit ethernet

Level 0 APIs: data acquisition & motor control

DSP

iCub

Embedded

Systems

HUB

DSP DSP DSP

Sensors & Actuators

Level 1 APIs: Phylogenetic Sensorimotor Primitives

Cognitive

Architecture
Level 2 APIs: Ontogenetic Action Primitives

Level 3 APIs: Prospective Action Primitives

Fig. 2. The layers of the iCub architecture

5 The iCub Cognitive Architecture: An Infrastructure
for Developmental Learning and Cognition

The iCub cognitive architecture is based on a survey of cognitivist, emergent,
and hybrid cognitive architectures [20], an analysis of the phylogeny and on-
togeny of human neonates [21,22], and a review of design principles for devel-
opmental systems [23,24,16]. The cognitive architecture comprises a network
of competing and cooperating distributed multi-functional perceptuo-motor cir-
cuits, a modulation circuit which effects homeostatic action selection by dis-
inhibition of the perceptuo-motor circuits, and a system to effect anticipation
through perception-action simulation. The modulation circuit comprises three
components: auto-associative memory, action selection, and motivation, based
loosely on the hippocampus, basal ganglia, and amygdala, respectively, while
the anticipatory circuit comprises paired motor-sensor and sensor-motor hetero-
associative memories [25,26,27,28,29,30]. The anticipatory system allows the cog-
nitive agent to rehearse hypothetical scenarios and in turn to influence the mod-
ulation of the network of perception-action circuits. Each perception-action cir-
cuit has its own limited representational framework and together they constitute
the phylogenetic abilities of the system. The crucial issue of self-modification is
catered for in two ways, the first through parameter adjustment of the phylo-
genetic skills through learning, and the second through the developmental ad-
justment of the structure and organization of the system so that it is capable
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Fig. 3. The iCub cognitive architecture

of altering its system dynamics based on experience, to expand its repertoire
of actions, and thereby adapt to new circumstances. This development, driven
by both exploratory and social motives, is effected through the interaction of
the anticipatory and modulation circuits, in particular by the update of the
long-term anticipatory associative memories by the short-term modulation asso-
ciative memory. In its current state, this is very much a strawman architecture:
it has yet to be validated and it will need to be revised and amended as re-
search progresses. This validation will be both empirical (through experiment)
and theoretical (through reference to neuroscientific and psychological models).

6 The iCub Phylogeny: Innate Abilities

Development implies the existence of a basis for development; in other words, on-
togenesis requires some initial phylogenetic configuration on which to build. This
section presents a non-exhaustive list of initially-planned innate perceptuo-motor
and cognitive skills that need to be effected in the iCub in order to facilitate its
subsequent development. They are organized under the two generic headings
perceptuo-motor abilities and enhanced phylogenetic abilities. The perceptuo-
motor abilities can be considered to be in some sense innate (i.e. operative at
or very soon after birth) while the enhanced phylogenetic abilities require some
tuning or practice to become effective. These differ from skills that are the result
of ontogenesis because there has been little or no modification of the system’s
state space, i.e. they aren’t the result of a process of self-modification or devel-
opment, but are more akin to learning by on-line parameter estimation.
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The phylogenetic abilities include the ability to distinguish between relative
and common motion in the visual field, the ability to ascribe objecthood to
parts of the visual field that have persistent and well-defined outer boundaries,
the ability to track objects through occlusion, the ability to re-orient gaze to-
wards local perturbations in tactile, auditory, and visual field, and the ability to
re-orient and locomote based on local view-dependent landmarks (rather than
global scene representations). Since interaction with humans forms an extremely
important component of neo-natal development, the phylogentic skills also in-
clude a propensity to attend to sounds, movements, and features of the human
face and the ability to detect mutual gaze.

The enhanced phylogenetic abilities that we plan to implement initially in-
clude a disposition to bring the hand into the visual field, the ability to detect
human faces and localize eyes in sensorimotor space, the ability to effect smooth
pursuit, and the ability to stabilize percepts in a moving agent, i.e fusion of
frames of reference. Subsequently, we will implement abilities concerned with
the coordination of perceptuo-motor skills such as ocular modulation of head
pose (a tendency whereby head pose is adjusted to centre eye gaze) and the
ability to stabilize the percepts arising from moving scenes through successive
saccades, i.e. opto-kinetic nystagmus.

We represent this collection of innate phylogenetic abilities in the iCub cog-
nitive architecture as a series of arrow circles, in the spirit of Maturana and
Varela’s ideogram of a self-organizing (autopoietic) system [9]; see Figure 3.

Note that this is just a partial list of both perceptuo-motor and enhanced
phylogenetic abilities. Neonates have other innate skills that we also intend to
implement; see [31] for details.

7 The iCub Ontongeny: A Scenario for Development

The primary focus of the early stages of ontogenesis of the iCub is to develop
manipulative action based on visuo-motor mapping, learning to decouple motor
synergies (e.g. grasping and reaching) [32,33], anticipation of goal states, learning
affordances, interaction with other agents through social motives [34,35,36,37]
and imitative learning [38,39,40]. Needless to say, ontogenesis and development
are progressive. We emphasize the early phases of development, building on the
enhanced phylogenetic skills outlined in the previous section and scaffolding
the cognitive abilities of the iCub to achieve greater prospection and increased
(action-dependent) understanding of its environment and to establish a mutual
understanding with other cognitive agents.1

It is important to emphasize that the ontogenetic training program that fa-
cilitates the development of the iCub is biologically inspired and tries to be as
faithful as possible to the ontogenesis of neonates. Consequently, the develop-
ment of manipulative action will build primarily on visuo-motor mapping.

1 An archive of iCub publications can be found at
www.robotcub.org/index.php/robotcub/more information/papers.
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Once the iCub has mastered these skills, we will move on to experimental
scenarios in which the iCub learns to develop object manipulation by playing
on its own and or with another animate agent, that is, grasping objects and
doing things in order to attain effects, like inserting objects into holes, building
towers out of blocks etc. At this stage, social learning of object affordances
becomes crucial. These scenarios will focus on the use of more than one object,
emphasising the dynamic and static spatial relationships between them. In order
of complexity, examples include learning to arrange block on a flat-surface, to
stack blocks of similar size and shape, to stack blocks on similar shape but
different size, and to stack blocks of different shape and size.

The chief point about these scenarios is that they represent an opportunity
for the iCub to develop a sense of spatial arrangment (both between itself and
objects and between objects), and to arrange and order its local environment in
some way. These scenarios also require that the iCub learns a set of primitive
actions as well as their combination.

8 Summary

Enactive embodied emergent cognition represents a fundamental attempt to
break with dualist, functionalist, positivist foundations of classical cognitivist
AI and to put in place instead a research programme grounded in phenomenol-
ogy, reasserting the primacy of embodied developmental interaction in cognitive
systems. We hope to contribute to this programme by making the iCub cognitive
humanoid robot freely available to the research community as cost-effectively as
possible and by providing researchers with a suite of cognition software modules
for both phylogenetic and ontogenetic functionality. We expect and intend that
the research community will improve and add to the iCub hardware and soft-
ware, sharing their designs and code on the iCub repository at www.icub.org.
By working together on this programme, we believe we have a better chance of
making the breakthrough in understanding natural and artificial cognition that
has eluded classical AI over the past 50 years.

Acknowledgements

The content of this paper represents the work of many people. These include:
Paul Fitzpatrick, Lorenzo Natale, Francesco Nori, Francesco Orabona, Mat-
teo Brunettini, University of Genoa; Paolo Dario, Cecilia Laschi, Anna Maria
Carrozza, Giovanni Stellin, Scuola S. Anna, Pisa; Rolf Pfeifer, Gabriel Gomez,
Alexandre Schmitz, Yvonne Gustain, Jonas Ruesch, University of Zurich; Claes
von Hofsten, Kerstin Rosander, Olga Kochukova, Helena Gronqvist, University
of Uppsala; Luciano Fadiga, Laila Craighero, Andrey Olyniyck, Livio Finos,
Giovanni Ottoboni, University of Ferrara; Kerstin Dautenhahn, Chrystopher Ne-
haniv, Assif Mirza, Hatice Kose-Bagci, University of Hertfordshire; José Santos-
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Intelligent Mobile Manipulators in Industrial
Applications: Experiences and Challenges
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Abstract. This paper describes how industrial applications were targeted and
successfully implemented by robotic  manipulators  that  have been developed
from studies in embodied artificial intelligent systems. The goal was to design
mobile, flexible and self-learning manipulators that allow to perform multiple
tasks with very short preparation time, a reasonable working speed and, at the
same time, in a human-like manner. The advantages and disadvantages of these
solutions  compared  to  traditional  industrial  robot  applications  had  to  be
considered  continuously  to  concentrate  on  the  right  market  segments,
applications  and  customers.  Thus,  in  addition  to  develop  the  appropriate
requirements of real-time executions, risk analyses and usability, studies were
established and implemented in collaboration with scientists,  integrators and
end customers.  Acceptance,  impacts  of  the revolution in  personal  intelligent
robotics as well as challenges to overcome in the future are discussed. 

Keywords:  Automation,  intelligent  personal  robotics,  manipulator,  learning,
neural network, genetic algorithms, simulated annealing, robotic arm, mobile

1   Introduction

Studies  in  embodied  systems  in  the  context  of  artificial  intelligence  have  been
conducted  in  depth  by  major  labs  in  Artificial  Intelligence  during  the  last  three
decades [1-3]. They designed principles how robotic systems can behave efficiently in
nondeterministic,  changing  environments.  The  principles  include  hierarchically
organized  behavioral  programs,  sensory-motor  loops,  high  mobility,  self-learning
algorithms, robustness based on adaptivity and redundancy of the sensory system.

How can these principles be applied into a robotic manipulator so that it leads to
real practical advantages compared to traditional robotics and can compete with new
developments of indirect  competitors such as low-cost  linear automation modules,
industrial robots and machines specialized and optimized for one single task? And

Hansruedi Früh , Philipp Keller , and Tino Perucchi

solutions.

finally, how can a self-learning, mobile manipulator compete to monotonous human
labor in regards to performance, logistics and costs?

{hansruedi.frueh, philipp.keller, tino.perucchi}@neuronics.ch 

Neuronics has gone a way which is characterized by focusing on applications in
industrial  environments  and at  the  same time maintaining and  enhancing  the  key
aspects for mobile use. The main reason for this strategy is the insight that both of
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these demands have to be successfully satisfied in order to fulfill the needs of further
changes in industrial plants as well as the emerging service robotics field. 

On  the  algorithm  side,  it  requires  an  ideal  combination  of  traditional  control
structures  (including  Cartesian  space  and  database  functions  as  well  as  teach-in
functions and programming wizards) with adaptive and context sensitive behavior. 

The competitors to the mobile, self-learning and flexible automation systems are very
heterogeneous:

a) Low-cost linear systems, which allow to build an individual handling system by
combining two or more linear movement systems.
b)  Special  purpose  machines.  They  are  optimized  solutions  for  a  given  task  and
usually win when the size of series to be handled or manipulated exceeds around 20
million items per year. The price may be very high, but the return on the investment is
received over the large number of objects to be manipulated.
c) Conventional industrial robots belong to the traditional field of flexible automation.
Their advantage mainly lies within the ability to perform different tasks in parallel
and to be re-programmable for new tasks.
d) Human labor. The advantages of employing humans for monotonous works are
mainly the easiness to introduce them for a new task, their high skills and awareness
for problems to be circumvented and their enormous flexibility. 

The fields where the new kind of robotic manipulators come into play are mainly
the segments occupied by a)  and d):  instead of building a hard wired automation
solution, very flexible, non-dangerous middle-cost robotic solutions are considered as
an alternative which allow additional applications, full programmability and mobility.
And while humans have many advantages, their motivation to perform monotonous
tasks is strongly limited, leading to errors and decreasing performance over time. This
kind  of  work  is  often  a  risk  for  the  health  of  these  people  in  physical  and
psychological regards. Thus, if systems allow to perform in a “human-like” manner,
they can cover both sides optimally: the advantages of machines and those of human
labor.

The software of industrial  robot solutions of key players like Kuka, Adept,  ABB,
Mitsubishi and many others has gone through a huge evolution process during the last
decade.  It  is,  however,  still  strongly  based  on  a  cartesian  coordinate  system and
assumes that the environment is not changing, so that precision is obtained by a fixed
hardware with only minimal elasticities of the whole system. 

Industrial  handling usually assumes fix environmental conditions: The points to
teach in are expected to be at constant positions of the pick-up and place locations.
However, in reality, the environment often moves at least minimally, leading to errors
in handling and thus reducing the reliability of the system. 

1.1   Indirect Competitors: From Simple

1.2   Industrial Robot Interfaces 

inear Systems Up to HumansL

A mobile, flexible and versatile robot that is built for a variety of tasks in industry
cannot rely on such an unchanging environment and in a defined setting with static

Inteliligent Mobile Manipulators in Industrial Applications 371



calibration of its sensory equipment. It must be able to adapt intelligently. For that,
standard  industrial  interfaces  must  be  supplemented  with  both  additional  sensory
equipment and  algorithms able to detect changes in the environment and adapt its
configuration and the robot's behavior accordingly.

Methods available to develop behaviors in a context-sensitive way include artificial
neural networks, fuzzy logic, genetic algorithms and other mathematical methods of
numerical optimization. Neuronics has its focus on neural “learning machines” but
also has implemented a set  of  other  types of AI algorithms.  The architecture and
examples of algorithms and applications in industry are described in more detail in
section  2.2.

The Katana robot is being used in many different industrial environments all over the
world. This Intelligent Personal Robot is allowed to interact directly with humans
based  on  an  extensive  risk  analysis.  It  is  able  to  apply sensors  and sophisticated
software to generate intelligence.

1.3   Intelligent Optimization and Adaptation Techniques

2   Katana – An Intelligent Personal Robot in Industrial Applications

Table 1.  Technical data of the Katana6M robot arm

Drive DC motors with position encoders

Repeat accuracy ± 0.1 mm

Degrees of freedom 4 to 6

Working range Up to 60 cm radius (standard)

Construction Aluminum, anodized

Weight 4.5 kg

Payload 500 g

Power Max. 96 W (24 V / 4 A)

Speed 90°/sec. all joints simultaneously 

CPU Mainboard PPC MPC5200, FPGA on board

Motor Controllers DSP 32bit processors in each axis

Peripherals Industrial Ethernet, CAN, USB, Dig. I/O

Standards CE, EN 12100, EN 61010

Hardware. The total weight of Katana with six axes is about 4.5 kg. This low weight
is possible because the paradigm of high stability of all components has been skipped.
The  mechanics  are  produced  in  aluminum.  Although  elasticity  is  significant,
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Harmonic  Drive  technology  ensures  a  zero-backlash translation  of  the  motor’s
turnings in a relation of up to 1:200. Each joint is controlled by a separate powerful
32bit  DSP controller  communicating at  1Mb/s over an integrated CAN bus.   The
integrated  control  board  with  a  750  MIPS  PPC  processor  running  a  real-time
enhanced embedded Linux brings fully accessible standard interfaces such as USB
host, USB device, Ethernet hub, Digital I/O and industrial field bus connectivity.

additional sensory hardware  is  the Katana

software  is  directly  coupled  with  the  
A  learning  algorithm  increases  the precision  for every point  within  an  array

of target points. The environment can be shifted during  the operation, and still  the
robot  correctly  takes  and  places  the objects.  Thus, mechanical precision in its

hardware  is  optimally  complemented  by
intelligent optimization techniques on the controlling  software side.

Fig. 1. Katana robot with vacuum gripper and high-resolution camera system placed near the
end effector

control  software  of  the  robot  arm.

construction  and additional sensory

The challenges on the hardware side for the construction of a compact and versatile
industrial   robot  are  manifold.  Apart  from  its  mechanical  precision,  it  must  be
replenished  with  sensory  equipment  that  provides  the  input  data  necessary  for
intelligent optimization. Part of the sensory equipment comes with the axis controllers
and their ability to measure drive and current on the axis nodes. This is supplemented
by many different possibilities to add sensors on the robot,  on the gripper tool or
externally in the near environment, communicating via the robot's standard interfaces.

An example  of  such a system with
resolution  camera  system.  The  visualrobot  arm  equipped  with  a  high
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Operating System Requirements. The demands on the platform hosting the Katana
control  are manifold and very much heterogeneous in  the sense that  the different
modules do not require the same execution environment. Controlling the robot and
calculating the kinematics need hard real-time, whereas the visualization and some
optimization algorithms do not necessarily so. Furthermore, the software should be
modular, configurable and easily portable and adaptable to new robots and product
lines. The ultimate choice for the Katana Robot operating system fell on embedded
Linux because its real-time extensions have matured considerably during the last few
years and it brings a highly customizable platform that is largely familiar to a broad
range  of  developers,  non-proprietary  and  unbeatable  regarding  long-term
maintenance.

Real-time  Concept. Making  GNU/Linux  a  hard  real-time  system is  achieved  by
using the co-kernel approach of the Real-Time Application Interface [RTAI] which
takes control  of the hardware interrupt management,  and allows running real-time
tasks seamlessly aside of the hosting GNU/Linux system. The 'regular' Linux kernel is
eventually seen as a low-priority background task of the small real-time executive.
However, this approach has a major drawback: since the real-time tasks run outside
the Linux kernel control, the GNU/Linux programming model cannot be preserved
when porting these applications. The result is an increased complexity in redesigning
and debugging the ported code. That is why  the real-time nucleus Xenomai [12] was
added. This  pre-emption and scheduling concept provides a real-time development
framework cooperating with the Linux kernel in order to provide pervasive, interface-
agnostic,  hard  real-time  support  to  nucleus-,  kernel-  and  user-space  applications,
seamlessly  integrated  into  the  GNU/Linux  environment.  Xenomai  is  based  on an
abstract  RTOS  core  and  relies  on  the  sophisticated  hardware  abstraction  layer
ADEOS [12].

User  Space  Real-Time. The  benefits  of  this  approach  is  mainly  to  keep  the
development process in the GNU/Linux user space environment, instead of moving to
a  rather  'hostile'  kernel  context.  This  way,  the  rich  set  of  existing  tools  such  as
debuggers  and  monitors  are  immediately  available  to  the  application  developer.
Moreover, the standard GNU/Linux programming model is preserved, allowing the
application to use the full set of facilities existing in the user space (e.g. full POSIX
support,  including  interprocess  communication).  Last  but  not  least,  programming
errors  in  a  customers  own  robotics  application  occurring  in  this  context  don't
jeopardize the overall system stability, unlike what can happen if a bug is encountered
on behalf of a hard real-time task in kernel space, which could cause serious damage
to the running Linux kernel.

Once this basic real-time system is set up, giving a particular task over to a real-time
context, be it in a separate real-time process or in the current address space, is very
straightforward.

For  the  Katana  robot  and  its  embedded  Linux  system,  this  means  that  dedicated
applications can fully profit from real-time support even if they run in user space.
That  strongly  simplifies  the  requirements  on  an  interface  that  exports  intelligent
algorithms, robot control and communication functionality.
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Fig. 2. Implementation of a robotic arm control system with a pre-emptible Linux kernel and
real-time scheduling in user space

High-level software. The architecture of the Katana embedded robot control system
has been designed to provide a transparent interface to external and internal control
application programs while retaining the legacy interfaces that were implemented for
earlier  Katana  versions.  This  allows  for  different  legacy  and  new  control  and
visualization clients to have access to the robot at the same time, while the details of
the real-time control implementation remain hidden to them. 

The client applications are to support all kinds of operators and users: those who
like to program literally everything themselves and those who have never written a
line of code. For the former, Neuronics provides the Katana Native Interface KNI, a
C++  library  for  control  application  development  at  the  lowest  interface  level.
Programs written in KNI can also be cross compiled an run directly on the robot. The
interface  to  this  library  is  also  exported  as  a  Python  binding,  so  that  native  and
external programs can be written directly in Python. 

On the side of a comfortable and easy to use programming and control interface,
Neuronics has developed Katana4D. It has been designed for industrial applications
and provides an easy but powerful control environment for the Katana robot. Skills in
any programming language are not required. Additionally, there is the possibility for
the user to create an application easily by means of an inbuilt scripting language or by
simply teaching the robot by hand. There are different possibilities to teach the target
positions within the workspace of the robot. The arm can be moved to the desired
position by hand, and the exact positioning can be achieved with a few mouse-clicks
from within Katana4D. It comes with full inbuilt support for AI algorithms that can
be used for path optimization and adaptation.
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For many tasks and subtasks the robot has to fulfill, artificial intelligence algorithms
can be used. In the following, a set of such modules are described.

Object identification based on sensor data fusion. Up to 16 sensors are supported
in the standard two-finger  gripper  of Katana.  They provide information about the
opening angle (joint encoder values), the actual forces (piezo-resistive force sensors),
proximity of objects or obstacles (active infrared sensors), conductivity, actual current
and more. Katana can learn to categorize these objects by simply executing a pick &
place program built by the application wizard: The user takes Katana at the forearm,
leads it  to  the place where to search and pick up an object,  and then,  eventually
passing additional points on the desired trajectory, shows it where to place the objects
in  the  different  cases.  Then,  the  “feedback”  mode  of  the  program  is  activated,
allowing a continuous dialog with the robot while executing. Thus, the robot learns to
relate the values stored during grasping with the actions to be performed. The sensor
data fusion is performed by a multilayer neural network [8-9]. Its number of inputs
equals  the  number  of  sensors  and  the  number  of  outputs  equals  the  number  of
different actions to be performed dependent on the grasped material. Within a few
minutes, Katana has learned to perform the task in a reliable manner.

2.1   Artificial Intelligence and Optimization Algorithms 

Precision enhancement for object placement. Many industrial applications require
to pick up objects from an array of 100 or more positions and, after the object is
processed  by  a  machine,  to  place  it  in  a  second  array  of  the  same  or  different
dimensions. Not every of these points is taught-in, but only the position of the edges.
The intermediate points are then calculated by the kinematic model of the system.
However, the precision of these intermediate points is not very high and may differ
from reality up to 1 mm. Industrial applications require often a position of a tenth of a
millimeter. Thus, correction algorithms are required.

A measuring device mounted on the end effector allows the robot to explore the
working  area.  At  each  moment,  Katana  stores  the  configuration  of  the  joint
parameters and the values measured by the instrument in the memory. These values
are then processed by a learning algorithm, which will extract the mapping between a
position  and  the  error.  Based  on  this  knowledge,  the  system  is  then  able  to
compensate the position error for any point in the space.

In  [4],  a  neural  network  is  used  to  improve  the  position  accuracy  of  a  robot
manipulator. After the position errors for all grid points of a calibration board are
identified,  the  network  is  used  as  an  interpolator  to  determine  the  errors  for  any
location within the calibration space. The training is executed on-line using the grid
points in the neighborhood of the target position as training patterns. 

For the calibration process of Katana, a modified version of this approach is used.
The network is trained off-line over the entire set of measured points in order to save
processing time during the  execution.  Furthermore,  it  allows to  better  control  the
training process and eventually to repeat it until the desired performance is achieved.

The learning algorithm is composed of a neural network, which has the ability to
learn and generalize from previous experiences. The first step consists of collecting a
set of samples which will be used to train the network. A sample is composed by the
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Fig. 3. Katana during acquisition of a training sample

Fig. 4. Learning scheme 

of  the  end  effector.  Then  the  network  is  trained  using  Quasi-Newton  [5,  10]  or
steepest gradient backpropagation algorithm and a validation set is used for an early
stop of the training process.

After the training process has reached the convergence, the network is used in feed
forward mode to estimate the errors of each new target position. Then, a false target
position is computed and sent to the robot, which will eventually reach the desired
point.

However, simply subtracting the estimated error from the target position will not
lead the end effector to the desired point. This problem is illustrated in figure 3, where
the dotted circle represent the false target computed by subtraction of the error. At this
point,  the error  vector  may be completely different  from that  estimated,  specially
when the robot is close to some critical configurations. As a consequence the robot
will stop at a point ('X') which is far from the desired. A search algorithm based on
simulated annealing [6] and genetic algorithm [7] is then used to compute the best

absolute position of each joint (in encoder steps) and the corresponding position error
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false point in the nearing of the target position which minimize the residual error. The
cost function to be minimized, used to evaluate the partial solution is defined as:

C=d−DK et  y et  . (1)

Where d is the desired position of the end effector, DK et  is the searched false

target and y et  is the output of the neural network when the joint positions et  at
the false target are presented as inputs.

The  Quasi-Newton  training  method  is  faster  than  a  standard  backpropagation
method because it uses, in addition to the gradient, second order approximation of the
error surface [10]. To illustrate the efficiency of this method, a simple simulation is
described. A training set containing 35 patterns is used for training a network with 6
inputs, 10 units in the first hidden layer, 5 units in the second hidden layer and one
output. The validation set consists of 5 patterns. The mean square error, the mean
absolute error and the number of epochs required for convergence are averaged over
10 learning sessions. The results are presented in table 2.

Table 2.  Neural network performance

Learning Method MSE MAE Epochs

Steepest descent 0.033 0.148 3720
Quasi-Newton 0.026 0.117 17

Fig. 5.  Optimal false target position (left) and error compensation scheme (right)
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Fig. 6. Best solution found with Steepest Descent  (upper) and Quasi-Newton algorithm (lower
graph)

Calibration Process. An example of the method described above is the calibration
process for a restricted area in space. First, a subset of points to be measured is being
defined,  usually  placed  along  a  grid.  Eventually,  specific  required  points  can  be
manually added or one can let  the robot choose points  at  random in the working
space. At each point the robot measures the position error, but only if a measuring
equipment is available. Otherwise the user is asked to feedback the error by placing
the end effector at the real point. Once a sufficient number of samples are available,
the learning process may start.  The number of validation patterns plays an important
role  for  the  quality  of  the  solution.  They  are  used  for  cross-validating  the
performances  of  the  network  and  avoid  over-fitting  the  training  samples.  The
application (Katana4D user software, see Figure 6) shows two graphs representing the
squared error over the training (upper) and the validation set (lower curve) of the
patterns in function of  the learning epochs.  Once the learning has terminated,  the
network's weight matrix corresponding to the minimum point in the validation error is
saved. This is the network with the best generalization propriety.

The Quasi-Newton method clearly shows a superior performance, achieving better
results than the steepest descent method in about 200 times epochs less. Figure 4 and
5 show the best solution found by both algorithms. The circles represents the desired
outputs,  while  the  crosses  are  the responses  of  the  neural  networks  for  the  same
inputs.
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Fig. 7. GUI for neural network training process

Self-adaptation to the real space coordinates. In most industrial applications, only a
small part of the complete robot's working space is exploited. There are, in general,
two  or  three  bounded  regions  where  the  robot  has  to  perform  a  task  with  high
accuracy, the remaining portion is used by the manipulator as a transitory space.  A
single calibration process that is valid for the whole working space would require a
large amount of time. First, hundreds of calibration points have to be collected, then a
neural network of medium to large size would be necessary to generate the complex
input output mapping. To overcome this problem, the application allows the creation
of multiple models of local areas. In this way, a neural network may be trained only
with patterns belonging to a limited region, creating a more accurate error estimator.
When the robot is active the joint positions are constantly monitored and, when they
fall into the input boundaries of a neural network, the position of the end effector is
compensated. 

The environment often moves at least minimally, leading to errors in handling and
thus reducing the reliability of the system. A visual system is a powerful possibility to
provide autonomous feedback by continuous screening of the working space. Inverse
kinematics,  visual  object  recognition  and  neural  error  compensation  as  described
above are combined to provide a self learning and robust pick & place system. 

Speech functions. Katana can listen and talk to the user. These functions make use of
the improvements during the last years in both, the language understanding and the
improvement of the comprehension based on training and constraints. Compared to
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manual control of the robot (e.g. by leading it at the forearm to a desired place, using
a joystick or a keyboard), the language interface reacts slower for two reasons: 1) The
word or sentence takes time to be pronounced, and the end has to be detected. 2) The
danger that a wrong action is taking place because of an undesired command which
the robot gets (e.g., from a dialog between humans) requires a confirmation before
execution of the command. However, the language functions can be very useful to
start and stop full programs or for disabled persons to interact with the robot. 

Katana is employed, in two major fields: a) industrial manufacturing, assembling and
quality control and b) in service robotics. The applications in research and education
today  often  target  the  service  robotics  field,  although  there  are  many  interesting
research topics which address fixed-place industrial applications or both.

The use of the algorithms described above is different in these two major fields:
where in the industrial applications the Katana arm is the main component, which also
may  serve  as  master  for  the  control  of  the  connected  machines  and  automation
peripherals, in service robotics the arm is often the slave which is controlled by the
moving platform which may contain computer power higher or equal to that of the
Katana arm. 

Industrial applications.  The Katana robotic arm is ideally suited for pick & place,
assembling and quality control tasks of light-weighted objects. Meanwhile, the system
is used world-wide by small-sized, medium and large companies like BMW, Intel,
Unilever, Mettler-Toledo or Maxon Motors for a variety of applications. The main
advantages are the high flexibility and easiness of its use, both based on the security

2.2   Fields of Applications

Fig. 8.  Cooperation between humans and Katana at a desktop working station. For such kind of
tasks, the safety of the system proven by an extensive risk analysis is crucial.
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Fig. 9. Two Katanas cooperating at a bending machine. The left arm is picking up objects at
positions recognized by a camera system, while  the right one transports the bended objects to a
quality control station.

Service  robotics. Due  to  the  low  power  consumption,  Katana  can  also  be  an
exceptional system component in mobile robotics. The control system architecture
described above makes it an interesting component for several reasons: The concept
of distributed intelligence can be realized under many different aspects; the powerful
and  standalone  real-time  Linux  environment  opens  a  wide  range  of  applications
which  may  include  movements  along  trained  trajectories,  interactive  tasks  with
humans  and  other  robotic  systems  as  well  as  robust  behavior  in  unknown
environments based on the sensory systems available on the arm and its grippers.

Fig. 10. Katana is used on a variety of mobile platforms for service robotics tasks

aspects as well as on the combination of standard and artificial intelligence powered
control and interface solutions. 
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3   Implications

In applied robotics, be it in complex industrial applications or in areas where close
interaction  between  the  robot  and  humans  implies  the  need  for  redundancies  in
intelligent  situational and environmental adaptability, artificial intelligent algorithms
can  play  an  important  role.  Indeed,  in  robotics  implementations  where  the
requirements comprise an adjustability to unforeseen situations, or where substantial
independence from a fixed one-time calibration to the robot's environment is crucial,
self-learning algorithms offer a very viable solution.

In the case of Katana, being one single product that targets many different fields of
application,  flexibility  cannot  be  achieved  solely  by  providing  a  host  of  many
different  configurations.  A  certain  grade  of  self-learning  capabilities  bring  a
considerable advantage in an area of industry that conventionally relies heavily on
highly specialized and tailor-made equipment.

Also for  demands in  practical  industrial  applications such as easier  or partially
automated calibration to multiple end points, paths and grids, AI algorithms can play
a very important part. If implemented properly, the operator or user works with a
system that  is  helpful  in achieving a particular solution and that  acts intelligently
without bringing with it additional complexity in handling the device.

All of these have, of course, a direct repercussion to the robot's instrumentation
with sensory equipment. Senses and perception being a prerequisite to intelligence,
Neuronics invests considerable resources into sensor implementation,  research and
development.  The vision of  a  highly perceptive and intelligent  robot  adaptable to
many  different  areas  of  application  is  a  fundamental  driving  force  behind  the
development of new robotic products in Neuronics.

How will industrial plants change in the future? How do we adapt the robotic systems
to  those  requirements.  What  has  to  be  improved  to  make robots  more  and  more
personal, useful nearly everywhere?

Katana  is  today  a  stand-alone  robot  which  can  execute  several  different  tasks
autonomously.  This  simple  concept  limits  the  class  of  applications  that  can  be
accomplished and requires a constant supervision of the job, since any robot may
encounter problems or fail. As the common experience shows, more units working on
the same task are a clear advantage in terms of speed and robustness. Moreover, a
multi-robot systems can perform more complex tasks that  cannot be done by one
robot alone, such as carrying heavy objects or performing assembly operations. Such
systems require the implementation of cooperation abilities in each unit, allowing the
interchange of information between them. Alternatively, a central unit with a global
view of the main task in execution can coordinate the work. More robots will then
operate together in a cooperative manner to reach the same global goal.

The integration of self-adaptive algorithms allows the robots to acquire knowledge
in a learning-by-doing manner. The behavior and the ability of an individual evolve
based on past experiences but, as with humans, knowledge acquisition often requires

4   Challenges for the Future 
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important  improvement  in  every  learning  process  is  achieved through teaching:  a
skilled  individual  transfers  his  abilities  to  others,  giving them a solid  background
from where to start practicing and learning. 

The increasing capabilities of the robots reflect the complexity of the tasks they are
asked to execute. Nowadays robots are often applied in multi-task environments and
people expect them to act in an intelligent manner and find optimal solutions to the
problems. Thus, multi-task robots need to have a dynamic behavior. One possible
solution for a future version of Katana would be to replace a static task , which is a set
of simple operations performed one after the other, by a goal-oriented model [11].
Several sub-tasks are created, each of them is used to reach a defined sub-goal. In a
higher level,  the behavior of the robot is  represented as a collection of strategies,
which depend on the state of the environment. Then, given a global goal, the robot
will optimally choose the next operation to be executed.

Acknowledgments. Neuronics was founded as a Spinoff company of the Artificial
Intelligence Lab of the University of Zurich, Switzerland. We would like to thank
Prof. Dr. Rolf Pfeifer and his team for their contributions during the company’s early
stage to bring our venture to a success in the industry.

References

1. Pfeifer, R., Iida, F., Gomez, G.: Designing intelligent robots – on the implications
of embodiment. Review article in the Journal of Robotics Society of Japan 24(7),
9–16 (2006)

2. Brooks, R.A., Aryananda, L., Edsinger, A., Fitzpatrick, P., Kemp, C., O’Reilly, U.-
M., Torres-Jara, E., Varshavskaya, P., Weber, J.: Sensing and Manipulating Built-
For-Human Environments. International Journal of Humanoid Robotics 1(1), 1–28
(2004)

3. Christaller, T., Fiorini, P., Choset, H., Prassler, E.: Proceedings SSRR 2004 IEEE
International Workshop on Safety, Security, and Robotics. Fraunhofer IRB Verlag,
Bonn (2004)

4. Wang, D., Bai, Y.: Improving Position Accuracy of Robot Manipulator Using
Neural Networks. In: Instrumentation and Measurement Technology Conference,
Ottawa, Canada (2005)

5. Pham, D.T., Karaboga, D.: Intelligent Optimisation Techniques. In: Genetic Al-
gorithms, Tabu Search, Simulated Annealing and Neural Networks, Springer, New
York (2000)

6. Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines. Wiley, Chich-
ester, UK (1989)

7. Goldberg, D.E.: Genetic Algorithms in Search, Optimisation and Machine Learn-
ing. Addison-Wesley, Reading, MA (1989)

8. Despagne, F., Massart, L.: Neural Networks in Multivariate Calibration. The An-
alyst 123 (1998)

9. Haykin, S.: Neural Networks, a Comprehensive Foundation, 2nd edn. Prentice-Hall,
Englewood Cliffs (1999)

time and effort. Furthermore, the success of the learning is not always guaranteed. An

384 H. Früh, P. Keller, and T. Perucchi



10. Stanevski, N., Tsvetkov, D.: On the Quasi-Newton Training Method for Feed-
Forward Neural Network. In: International Conference on Computer System and
Technologies- CompSysTech 2004 (2004)

11. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: Implementing a BDI-
Infrastructure for JADE Agents. EXP- in search of innovation 3(3), 76–85 (2003)

12. Gerum, P.: Xenomai - Implementing an RTOS emulation Framework on
GNU/Linux (2004)

Inteliligent Mobile Manipulators in Industrial Applications 385



M. Lungarella et al. (Eds.): 50 Years of AI, Festschrift, LNAI 4850, pp. 386–398, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

The Dynamic Darwinian Diorama: 
A Landlocked Archipelago Enhances Epistemology 

Adrianne Wortzel 

Abstract. This paper discusses the relevance of embedding dramatic scenarios 
and expressive language into methodologies employed in the research and 
development of biochemical and/or electronic sentient beings. The author 
demonstrates how integrating imagined modalities into current practices can 
afford a profound and positive effect on outcomes. 

Keywords: drama, scenario, empiricism, truth, language. 

1   Introduction 

The usages of story-telling and metaphorical prose for explication of both natural and 
processed phenomena are not unfamiliar to us. In the history of AI stories have 
evolved at every stage. The Turing test “story” can be retold at any point in time; at 
this time it could be something like: “George is traveling through a three-dimensional 
virtual reality environment.  Inside this world, in various virtual locations (airport, 
museum, store, academic institution, art gallery, private residence, corporate 
headquarters, hospital), George engages in a natural language conversation with two 
other avatars where he is told that one is human and the other a program. In spite of 
his astute “testing” for what he considers the limits of a software robot in a virtual 
environment as opposed to a human, he still cannot reliably tell which is human and 
which is the “machine,” He wonders how much significance there is in the truth, or if 
all that really matters is how one’s representation is perceived.1 

One of the most fertile aspects of Artificial Intelligence is that it draws from so 
many disciplines computer science, psychology, philosophy, neuroscience, 
engineering, linguistics, etc. AI is not a “contained’ field, but could be considered an 
"un systemized system’ a free flowing cluster of disciplines forming and reforming 
dynamic nodes and synapses which intermingle, emulating a dynamic neural network 
of disciplines. Those nodes and synapses could be words or meanings situated in the 
context of a story and offer up many possible worlds.2 

Within this network, the use of narrative within the field would not be restricted to 
either the vernacular of each particular discipline nor to strict adherence to extremely 
orthodox research methodologies. Truths and opportunities for pockets of discovery 
could stretch beyond the designated glossary and syntax for a particular scientific 
                                                           
1  An excellent synopsis of the history of philosophy of AI is provided in this volume: 

“Philosophical Foundations of Enactive AI” by David Vernon and Dermot Furlong. 
2 For an in depth consideration of literary narratives and possible worlds see the section on 

“Possible Worlds” in Ryan, Marie-Laurie, Possible Worlds, Artificial Intelligence, and 
Narrative Theory, Indiana University of Bloomington and Indanapolis Press, 1991, pp. 16-21. 
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field. This “artistic” process would provide an efficacious representational force for 
displaying truths, without those truths suffering diminished credence. 

If we assume, for argument’s sake, that a newborn is not a blank slate, but has all 
the intuitive knowledge (not Information, butt the sense of “knowing) there is in the 
universe and, that the process of growth and learning for the infant is to slowly 
register clues as to which bits of knowledge to integrate and grow with and which to 
discard, then growth constitute trying not to remember discriminately.  A storytelling 
process, embedded in research methodology, could serve the role of “reconstituting” 
memory in such a way that it preserves the ties to a kind of consciousness that 
precedes the compartmentalization of knowing, and keep research methodologies 
open to associations which might otherwise be missed. 

2   Example by Practice 

My practice as an artist includes the invention of narratives nascent to technological 
research and examining methodologies in order to point to their creative and intuitive 
nature built on an armature of empirical knowledge. The content of my work 
examines, or displays obliquely, aspects of technological research such how humans 
might relate to machines, and how machines, if they could, would relate to humans. 
Fictive narrative is embedded in all of my robotic and telerobotic artworks. In these 
works, every technological phenomenon is layered with context and meaning both in 
itself, and in its process of coming into being. Through artistic observation and 
interpretation these layers can be made tangible in art forms such as literature, film, 
installation and live performance. By working with the issues of artificial intelligence, 
artists can move away from mere sculptural or choreographic concerns to develop 
dramatic scenarios, which deal with deeply vital philosophical issues. The armature of 
these stories is always situated in some real event or text. 

2.1   Science Stories 

“The real history of the bee begins in the seventeenth century, with 
the discoveries of the great Dutch savant Swammerdam . . . Before 
Swammerdam, a Flemish naturalist named Clutius had arrived at 
certain important truths, such as the sole maternity of the queen 
and her possession of the attributes of both sexes, but he had left 
these unproved. Swammerdam found the true methods of scientific 
investigation; …contrived injections to ward off decay, was the 
first to dissect the bees, and by the discovery of the ovaries and the 
oviduct definitely fixed the sex of the queen, hitherto looked upon 
as a king, and threw the whole political scheme of the hive into 
most unexpected light by basing it upon maternity.”3 

This quote initially establishes its subject as the history of the science of the bee. As 
described, that history resonates in the very process it is describing, and then is 

                                                           
3 Maeterlinck, Maurice, “The Life of the Bee,” Dodd, Mead & Company, New York – 1958, 

Quoted from the Project Gutenberg online version at http://www.gutenberg.org/dirs/ 
etext03/lfftb10.txt; from the Chapter: "On the Treshhold of the Hive”. 
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“dissected” into its chronological parts, culminating in a conclusion which leaps by 
language, inadvertently, into another realm of, let’s say, gender “politics.” The 
language includes the fact that the researchers were startled and compelled to give up 
a long held belief about the nature of environmental protocols in the hive where a 
paradigm shift occurs in the research. 

That consideration opens the door to investigation of the significance of simultaneously 
relinquishing belief while developing theories through experiment-tation. Charles 
Darwin’s scrupulous empirical observations of the natural world bear witness to this 
phenomenon, as his research and its expression retained simultaneous and subsequent 
reconsideration of beliefs – he really never knew what he would find, and in spite of 
hardships and frustrations, he sustained a grand sense of adventure, conveyed to us 
through his writings. In charting unknown territories, preconceptions could only be 
considered superficially, as a game, and his continual surprise and astonishment were duly 
recorded and not separated out of his writings, remaining expressive and communicative. 

Language exceeding the boundaries of the designated glossary in each field of 
research, despite some relaxed standards in naming, is often thought of as distracting 
or detracting. It is true that the unmitigated use of expressive language and dramatic 
scenarios could be misleading. I believe it will not be distracting if the language 
originates concurrently embedded in, and remains true to, the research at hand not 
literally, but in the same way oral traditions emerge and sustain in the long term with 
allegiance to continued experience and the intrinsic expository and communicative 
qualities and capabilities inherent in the “stories.”  

The following text is typical of signage posted in the American Museum of Natural 
History 

 
“Giant spiders, worms and beetles live on the ground in the forest, 
so even though it looks like a dead heap of trash, the forest floor is 
really alive. In fact, a square foot of dirt in a forest holds four 
times as many dead insects and animals as the amount of humans 
there are on all of the earth at any given time. In every moment of 
time, leaves, flowers, fruits, twigs and dead animals fall on the 
forest floor. If the pile just grew and grew the forest wouldn't get 
any light and air and everything would die and the Cycle of 
Nutrition and Decay would just stop dead in its tracks.” 4 

 
By encapsulating narrative in evolving research one also embeds the philosophy of 

science as an active element in the process. The goal, however, is not to arbitrarily 
manufacture paradigm shifts or scientific revolutions, but to amplify existing 
methodologies so that research remains “ventilated” -- open to combinatory experiments 
with other disciplines -- and, in addition, so that results are resonant with significance in 
these other fields in a way which feeds back into the research there. This, in turn, opens 
up new possibilities for discovery and disclosure by eradicating the need to work within 
the constraints of any paradigm at all. The recursion that makes that makes “no 
paradigm at all” a paradigm in itself will not apply because investment would be in 
“process” rather than “product”; the process being a perpetually fluid one of struggle to 
                                                           
4 American Museums of Natural History, New York, signage in the Hall of North American 

Forests on the Cycle of Nutrition and Decay. 
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throw off a paradigm from the moment it displays evidence of a takeover. The removal 
of paradigm thinking raises the risk of extreme failure as well as the possibilities of 
success in unexpected quarters. The benefit of this is that both kinds of consequences 
will perpetually provide more information than a confined and constrained experimental 
situation locked to a fixed paradigm, even if it is one that emerges from nature. In 
addition, it benefits because it allows the researcher to deal simultaneously with short-, 
middle and long-term research goals and to reach out to community where research 
events provide information relevant to other experimenters. 

2.2   Applying Personae to Developing Entities 

Sayonara Diorama, a play I wrote and produced, creates a fictive narrative of a 
second voyage of the Beagle by Darwin and Fitzroy, thirty years after the first. The 
known history of the first Voyage, and its subsequent lineage of publications by 
Darwin, offer a verdant field for examining the power of expressive language in 
description and developing theory. 

In Sayonara Diorama, the story is that Darwin and Fitzroy, while at sea, share their 
intense positions on organized religion. The resonance of their theological simmer 
rolls over into a quarrel, which triggers a tremendous storm. Simultaneously, Fate is 
forces its way through a fissure in the earth's core up to the underbelly of a nearby 
volcano. Appalled at the lateness of the hour for a visit, the volcano blows its stack. 
Fate, expelled from the volcano's throat, rises up and couches itself like a recalcitrant 
Buddha on the crest of spewing lava and then collides with the fierce gusts of Darwin 
and Fitzroy's altercation. A shipwreck ensues. Captain Fitzroy is dispatched to a well-
documented island called Heaven. Darwin, however, is tossed to an island occupied 
by creatures displaying unusual forms of human physiology. These are, in fact, the 
deformed creatures depicted in ancient sagas and Western European medieval maps, 
where they are placed at the edge of a flat world standing in for what was unknown. 

 
Illustration of the Hereford Mappa Mundi, 1299 – Detail 

Courtesy of The Dean and Chapter of Hereford and the Hereford Mappa Mundi Trust 
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The Darwin character (anagram pseudonym: “Clan-Is-Raw-Herd”), begins 
examining the creatures, and is startled to find that they, in turn, are examining him. 
What ensues is an argument over who has the best evolutionary adaptations and how 
that should reflect their position in the world.  

Clan-Is-Raw-Herd: These creatures are the living expression of the literary 
conventions of Solinus.5 As unseen entities sourced in Africa, east of the Nile, he 
conjured these and marginalized them as gargoyles, demons, monsters, sinners, and 
unformed and deformed inhabitants of the edge of the flat disc that was then the 
world. 

I thought them mere mythical paradigms of strangeness for what we cannot 
actually see or understand. But here they are, as upright as we are, one with the body 
of a man but the head of a dog (Cynocephali), one with no head at all but with his 
eyes, mouth and nose centered in his chest (Blemye), and one whose lower body ends 
in one limb rather than two (Sciapod). 

Clan-Is-Raw-Herd (to the creatures): Those who make maps must divide the world 
into empirical geographical zones in order to examine their position in it. What is 
unknown must be identified at least as idiosyncratic as emblematic of “not-knowing.” 
You three of Solinus should not take personal offense at the peripheral territory you 
are delegated, because in a flat world, all is equal. 

 
Shades of Mr. Panotti and Mr. Sciapod 

Sayonara Diorama 

Blemye: Tis completely foolish! If there are more men like our perpetual recorder 
here, whose eyes are not central in their chest close to their hearts as God intended, 
then why not designate THEM as mythological and monstrous and put THEM at the 
edge for all time. For to me (he leers at Clan-Is-Raw-Herd) they are strange beyond 
endurance. 

Cynocephali: But then, Master Blemye, I must indeed be the missing link indeed 
between you and this venerable gentleman who sits patiently recording what he see. 

                                                           
5 Gaius Julius Solinus, Latin grammarian and geographer, third-century A.D. 
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Certainly, I should be at the center where Jerusalem is now, for I am the link between 
those who have heads and those who do not.  

Sciapod: All I know is that I am the only one of you who is rendered safe and dry in 
rain and snow by my own physiology. If evolution is indeed everything our bearded 
friend here says it is then certainly my ancestors, who have engineered the most 
ingenious and useful adaptation of all, who deserve placement as the centerpiece of 
the world. If inside the edge and outside the edge are as homogenous as he says they 
are, and do not mean completely different things hierarchically, then why not give the 
inside up to the ones you have designated 0utsiders? 

3   The AILAB 

In 2004 I was the recipient of a Swiss Artists-in-Residence Award6 to spend six 
months embedded in the Artificial Intelligence Laboratory, Department of 
Informatics, University of Zurich (“AILAB”). I came to the AILAB with over 10 
years of experience as an artist creating robotic and telerobotic art installations and 
performance productions, both in physical and virtual networked environments.7 For 
these works, I had collaborated with research engineers working in the fields of 
robotics and related fields in the US. 

To a large degree, AILAB researchers develop disparate idiosyncratic robots in 
their individual labs rendering my tenure there an experiential journey because I spent 
my time on the premises traveling from one individual research laboratory to another, 
examining the creatures produced indigenous to each lab. Therefore; both the layout 
and the environment of the AILAB lent itself to my rendering as a geographical 
territory of dispersed islands on which singular robotic species evolve in relative 
isolation. The individual labs became, in my mind, islands in an architectural 
“galapagos” and I proceeded to create video content as a “re--enactment” of Darwin’s 
Chapter 17 of the Voyage of the Beagle: Galapagos.8 The resulting work: 
archipelago.ch is a video depicting that journey. Darwin’s prose fits the content of the 
lab research beyond all reasonable expectations. In the script excerpts for the video 
below Darwin’s verbatim words are in italics. 

The individual labs, depicted as “islands”, both “breed” and sustain creatures 
(robots) as they emerge from the research. In the archielago.ch video, the robot are 
empirically examined and interpreted by a Darwinian voiceover and sensibility, with 
some additional contributions from the researchers’ papers. Islands in this archipelago 
are re-named after the researcher residing there. The terrain of their labs replaces flora 
and fauna with the tools and detritus of each researcher’s individual lab. Depiction of 
isolated robotic parts, particularly those from trial and error experimentation, 
emphasizes a robot’s evolution as a specimen striving for fitness and survival. 
Latitudes ad longitudes in Darwin’s text have been changed to those of Zurich, 
Switzerland.  

                                                           
6 Artist-in-Labs, Project Director Jill Scott, http://www.artistsinlabs.ch/ 
7 Documentation at http://www.adriannewortzel.com/ 
8  The Gutenberg Project at http://www.gutenberg.org/dirs/etext97/vbgle11.txt, Chapter 17, 

Galapagos Archipelago. 
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Why would the words of a 19th century experiential naturalist with such keens 
powers of observation and perception, and such a politicized way with words in 
presenting a revolutionary theory ten years after the journey, be so appropriate for 
illuminating 21st century robotic research endeavors taking place in a state of the art 
(and mind) facility? This paper seeks to exposition that question, if not entirely 
answer it. This experience was personal one, but merits disclosure, because it is what 
led me to, what I think and hope will be a contribution to the field. 

3.1   The AILAB Terrain and Its Text 

The following texts have Darwin’s verbatim words in italics, the remainder are my 
words and in some cases (noted) from the researcher’s papers. Where Darwin’s text 
leaves off, the slack is taken up by an attempt to amplify the scenario so that it sows 
the research projects in a new, personified light. We begin with Darwin’s words 
applied to the lay of the land in the AILab: The geographical details such as longitude 
and latitude have been changed to match those of Zurich. 

The natural history of these islands is eminently curious, and well deserves 
attention. Most of the organic productions are aboriginal creations, found nowhere 
else; there is even a difference between the inhabitants of the different islands; yet all 
show a marked relationship with those of the continent although separated from it by 
a vast and difficult terrain. 

At this time this archipelago consists of several principal islands, of which some 
exceed the others in scope. They are situated above the Equator, Latitude 47.38 
degrees North, Longitude 8.54 degrees East. 

The archipelago is a little world within itself, a satellite which at one time had 
spokes to a continent, whence it has derived a few stray colonists, and has received 
the general character of its indigenous productions, although within the archipelago 
the difference is that its islands somehow appear to encourage each emigrated 
morphology to emerge into something more than it was whence it came.  

Considering the small size of the islands, we feel the more astonished at the 
number of their aboriginal beings, and at their confined range. 

3.2   The AILAB Islands and Their Respective Populations 

St. Simir Island. Of terrestrial mammals, there is only one which must be considered 
as indigenous, namely, a mouse of the species Archipelagogenisis.Mus, or Amouse), 
and this is confined, as far as I could ascertain, to Saint SimMir Island, the most 
easterly island of the group. 

Although no one has a right to speculate without distinct facts, yet even with 
respect to this marvelous creature, we should consider that it may be borne of an 
imported species. For I have seen, in a most unfrequented part of the world below the 
equator, a native mouse living in the roof of a newly built hovel of similar 
comportment, and therefore … transportation of the Amouse’s ancestor in a vessel 
from there to here is not improbable. In fact, its lineage is reminiscent of a division of 
the family of mice characteristic of the Continent in an early stage of its development 
and I can hardly doubt that this mouse is a variety evolved via the new and peculiar 
climate, food, and soil, to which it has been subjected.  
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Photos, courtesy of AILAB 
CREATURE, LEFT TO RIGHT RESEARCHER(S) LOCATION 
amouse Drs. Simon Bovet; Miriam Fend St. Simir Island 
Eyebot Dr. Lukas Lichtensteiger St. Lucia Island 
Fish Marc Ziegler Marcus Cove 
Humanoid Hand Gabriel Gomez Garcia Cove 
Dog Dr. Fumiya Iida Fumiya Island 

 

 
amouse, photo: Nathan Labhart 

Researchers: Drs. Miriam Fend, Simon Bovet 

The Amouse here is of particular interest because of the evolution of certain 
attributes of its whiskers which, in other species I have seen, such as other rodents, 
seals, opossums, and cats, tend to function as little more than accessories. These latter 
creatures, which I have observed in other natural habitats, make manifold use of their 
whiskers, such for hunting in murky water or darkness and detection of movement in 
air or water, but the detection resolution is usually extremely poor, and therefore 
unreliable for assurance of the creature’s safety and comfort. In the instance of this 
Amouse, sensitivity is so acute, and of such a high order that we humans can only 
stand by and watch their operation in awe. 

St Lucia Island. The Beagle sailed St Lucia Island, and anchored in several bays. . . . 
The day was glowing hot, and the scrambling over the rough surface and through the 
intricate thickets, was very fatiguing; but I was well repaid by the strange Cyclopean 
scene. I encountered a large and heavy creature moving in an extraordinarily straight 
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path, low to the ground, whose very embodiment seemed purposed only to 
accommodate its sense of sight. No close analysis was required to see the rods and 
cones of its eye's structure, which were external, rather than internal, to its body. The 
movement of that eye seemed capable of discrimination; of seeking out particular 
sources of light formed in streams, to which it responded by reorganizing its rods so 
that the whole aspect resembled choreography of photosynthesis, the creature 
responding to light by saluting with this gesture of recognition.  

 
Eyebot 

Researcher: Lukas Lichtensteiger 
Photo: Courtesy of AILAB 

 
Indigenous Growth: Fumiya Island 

Fumiya Island. We doubled the south-west extremity of Fumiya Island, and were 
nearly becalmed. The island was covered with immense deluges of black naked lava, 
which have flowed over the rims of the great crater caldrons like pitch over the rim of 
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a pot in which it has been boiled, or have burst forth from smaller orifices on the 
flanks and in their descent they have spread over the entire island. 

I will now turn to an order of mammal, which gives the most striking character to 
the zoology of these islands. The species are numerous, and the numbers of 
individuals for each species are extraordinarily great considering that they are 
confined only to this island. I am referring to a number of creatures I think belong to 
the species of Cynocephalus. 

These animals appear fully-grown in varied sizes, from huge to what seems like a 
miniature size. Examining both the present day animal and the fossils found on the 
southward flank of the craters, one can really trace the evolutionary history. The 
larger specimens existing today are an anomaly. In reality through history, the stature 
of the creatures has generally gone from huge and dinosaur-like to tiny and mouse-
like. It is evident that there are actually many levels of the evolutionary selection 
process ongoing here.  

It seems that ancient generations were created out of one homogenous substance, 
with a skeletal structure that was hard and almost metallic in nature, while the 
materials constituting subsequent generations become extremely diverse in each 
specimen, the separate parts of the creature becoming smaller and smaller, enabling 
the size of the animal to diminish down through the generations to state, I believe, 
where they emerged as marine life out of the surrounding seas. 

 
Fossil Traces 

The island is completely devoid of moisture and it is difficult to discern how these 
creatures survive. Observing these dogs, it would seem they are a minimalist 
quadrupedic model of rapid locomotion inspired by some sort of biomechanical 
paradigm. Albeit, this sounds so artificial and reminiscent of something man-made, 
this is the only way I can explain how the animal forms its idiosyncratic system of 
rapid and robust legged locomotion. From my observations, I concluded that the 
locomotion is induced by spring-like like properties in the muscles of the animal, 
weight distribution, and body dimensions. 
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Passive Joints 

Based on an anatomical study, we found with respect to the number of passive 
joints, dimensions of limbs, weight, and properties and locations of muscles, that the 
creature has evolved from a compromise between nature and a machine-like 
architecture to incarnate its body structure.  

Upon dissection and analysis, it was discovered that the skeleton contains 28 
passive joints, each of which has one passive rotational degree of freedom with each 
joint capable of small translational displacement as well. The passive joints intend to 
be controlled by a muscle actuation method which incorporates electric stimuli from 
the nervous system.  

 
Dogs traveling to and from water sources 

Still from the video “archipelago.ch”, cinematography by Dr. Daniel Bisig 
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The dogs, when thirsty, are obliged to travel from one end of the island to the 
other, as there is a strange system of alternating currents in the rivers of this island. 
Hence broad and well-beaten paths branch off in every direction from the wells down 
to the sea-coast. When I landed at Fumiya Island, I could not imagine what animal 
traveled so methodically along well-chosen tracks. Near the springs it was a curious 
spectacle to behold many of these creatures, one set eagerly traveling onwards with 
outstretched necks, and another set returning, after having drunk their fill.  

When one of them arrives at a spring, quite regardless of any spectator, he buries 
his head in the water above his eyes, and greedily swallows great mouthfuls, at the 
rate of about ten in a minute. The animal stays three or four days in the neighborhood 
of the water, and then returns to the lower country; but they differed respecting the 
frequency of these visits. The animal probably regulates them according to the nature 
of the food on which it has lived. It is, however, certain, that these creatures can 
subsist even on these islands where there is no other water than what falls during a 
few rainy days in the year.  

The dogs, also have an inexplicable practice of sometimes running in place, as if 
on a treadmill, and it is remarkable to see this effort of locomotion when there is no 
discernable goal in sight. It also seems arbitrary when, at a certain time, different in 
each case, they suddenly stop moving, and stand perfectly still for hours on end. It is 
possible that their sense of smell is quite acute, and these spells of stationary running 
maybe be a reaction to some scent that cannot be tracked, but which requires a 
bravado performance on the part of the dog, to show that it can even outrun a scent 
which will always remain elusive. 

Marcus Cove. In the evening we anchored in Marcus Cove. The next day, the water 
being unusually smooth, in some of the gullies and hollows there were beautiful red 
and other brightly colored fishes.  

Their armature seemed to be constructed of oddly shaped bones, mostly flattened 
rectangular shales and they did not appear to exhibit any cartilaginous properties, nor 
do they seem to have any fat external to the bones. These fish are propelled through 
the water via their oscillation of their exoskeleton, the direction, speed and duration 
dependent upon the configuration of their tail or fins, and the lack of or 
preponderance of currents in the water.  

Garcia Cove. [W]hat can be more curious than that the hand of a man, formed for 
grasping, that of a mole for digging, the leg of the horse, the paddle of the porpoise, 
and the wing of the bat, should all be constructed on the same pattern, and should 
include the same bones, in the same relative positions? 9 

4   Summary 

Although the narrative for archipelago.ch remains emblematic of the themes of 
exploration and discovery of previously untouched territory, it also represents a future 
we, at this time, may not begin to fathom. 

                                                           
9 Chapter 13 - Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary 

Organs – 
http://www.literature.org/authors/darwin-charles/the-origin-of-species/chapter-13.html 
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In a moment of time when science has obliterated science fiction, and we go 
forward at varied speeds towards phenomenal technological manifestations, an 
investment in methodologies that are interdisciplinary and involve more leaps of 
imagination furnished by associative narratives and expressive language will help us 
build more creative machines in inventive environments.  

 
“Scientific research is not only about solving problems, and what 
is more important is finding problems. . . . In particular, for the 
studies of autonomous adaptive systems, the research domain is 
very broad, where we need to look through the project from an 
evolutionary perspective. …. by projecting scientific projects onto 
Darwin's expedition, which both artists and scientists are 
interested in, we might be able to find a new way of 
"understanding" nature. . . “ 
    Fumiya Iida, Researcher,  
    Artificial Intelligence Laboratory,  
    University of Zurich 

References 

1. Agre, Philip, E.: The Soul Gained and Lost: Artificial Intelligence as a Philosophical 
Project, in a special issue of the Stanford Humanities Review, entitled ”Constructions of 
the Mind: Artificial Intelligence and the Humanities”. In: Guzeldere, G., Franchi, S. (eds.) 
The official citation is Stanford Humanities Review, vol. 4(2), pp. 1–19 (1995), 
http://www. stanford.edu/group/SHR/4-2/text/toc.html 

2. Friedman, Block, J.: The Monstrous Races in Medieval Art and Thought. 2nd Rev Ed edn. 
Syracuse University Press (June 2000), ISBN 081568269  

3. Goldberg, Ken (eds.): The Robot in the Garden: Telerobotics and Telepistemology in the 
Age of the Internet. The MIT Press, Cambridge (2001) 

4. Goldberg, Ken, Siegwart, Robert (eds.): Beyond Webcams: An Introduction to Online 
Robots. The MIT Press, Cambridge (2001) 

5. Harvey, P.D.A.: The Hereford World Map: Medieval World Maps and their Context, The 
British Library (November 30, 2006), ISBN: 0712347607 

6. Williams, David: Deformed Discourse: The Function of the Monster in Mediaeval 
Thought and Literature, Mcgill Queens Univ. Pr (December 1999), ISBN 0773518711  

7. Murray, Janet, H.: Hamlet on the Holodeck: The Future of Narrative in Cyberspace. The 
MIT Press (August 27, 1998), ISBN: 0262631873  

8. Beyond Productivity: Information Technology, Innovation, and Creativity, National 
Research Council of the National Academies (2003), ISBN 0309088682 

9. Manovich, Lev: The Language of New Media. Reprint edn. The MIT Press (March 7, 
2002), ISBN 0262632551  

10. Ryan, Marie-Laurie: Possible Worlds, Artificial Intelligence, and Narrative Theory, 
Indiana University of Bloomington and Indanapolis Press (1991), ISBN 0253350042  

11. Wheeler, Gregory, R., Pereira, L.M.: A Note on Epistemology and Logical Artificial 
Intelligence. Journal of Applied Logic 2(4), 469–493 (2004) 

 



Author Index

Aminaiee, Hossein 124

Bannasch, Rudolf 347
Behkam, Bahareh 154
Bernardin, Keni 271
Boblan, Ivo 347
Bongard, Josh C. 1
Bonsignorio, Fabio P. 112

Claudio, Galletti 206

Daneshvar, Roozbeh 124
Dautenhahn, Kerstin 288

Eaton, Malachy 42

Fonooni, Benjamin 320
Froese, Tom 63
Früh, Hansruedi 370
Furlong, Dermot 53
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