

Lecture Notes in Computer Science 4852
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jeannette Janssen Paweł Prałat (Eds.)

Combinatorial and
Algorithmic Aspects
of Networking

4th Workshop, CAAN 2007
Halifax, Canada, August 14, 2007
Revised Papers

13

Volume Editors

Jeannette Janssen
Paweł Prałat
Dalhousie University
Department of Mathematics and Statistics
Halifax, NS, B3H 3J5, Canada
E-mail: {janssen,pralat}@mathstat.dal.ca

Library of Congress Control Number: 2007941336

CR Subject Classification (1998): F.1.1, F.2.1-2, C.2, G.2.1-2, E.1

LNCS Sublibrary: SL 5 – Computer Communication Networks andTelecommunications

ISSN 0302-9743
ISBN-10 3-540-77293-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77293-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12204793 06/3180 5 4 3 2 1 0

Preface

The advent of the Internet has opened up a wealth of applications, but also
given rise to a host of new problems. Many of those problems have led to ex-
citing new research directions in mathematics and theoretical computer science,
especially in the areas of combinatorics and algorithms. The Fourth Workshop
on Combinatorial and Algorithmic Aspects of Networking (CAAN 2007) was
organized to be a place where the latest research developments on all aspects
of networking could be presented. The topics covered were diverse, with talks
on strategies for searching in networks, for cleaning networks of unwanted in-
truders, on different routing strategies, and on scheduling and load balancing.
The workshop started with an invited lecture by Peter Winkler of Dartmouth
College, who gave a general talk on a topic related to probability, a concept
central to network modeling and managing. The afternoon opened with a short
invited talk by Alejandro López-Ortiz, who gave an overview of various issues
in designing resilient backbone networks.

CAAN 2007 took place on August 14, 2007, at Dalhousie University in
Halifax, Nova Scotia, Canada, co-located with the Workshop on Algorithms and
Data Structures (WADS 2007). Three previous CAAN workshops were held in
Chester, UK (CAAN 2006), Waterloo, Ontario, Canada (CAAN 2005), and in
Banff, Alberta, Canada (CAAN 2004), respectively.

In response to the call for paper we received 17 submissions. Each submission
was reviewed by three referees. Almost all submissions were relevant to the topic
of the workshop, and most contained interesting ideas. Based on the reviews
of the referees we accepted nine papers for presentation at the workshop and
inclusion in this volume. The volume also includes an abstract of the invited
talk by Peter Winkler and an invited paper by Alejandro López-Ortiz.

We would like to thank all those that helped to make this workshop a success,
with special thanks to Anne Publicover, our administrative assistant. Thanks to
the Atlantic Association for Research in Mathematics (AARMS) for financial
support. Many thanks to Andrei Voronkov for providing the EasyChair con-
ference system; with this system, managing the electronic submissions and the
refereeing process has been a breeze. Thanks also to Norbert Zeh, the Local
Arrangements Chair of WADS 2007. Finally, we thank all participants in the
workshop, all authors of the contributed papers, and especially the invited speak-
ers for their contribution in making CAAN 2007 into a collegial and stimulating
platform for new ideas about networks.

October 2007 Jeannette Janssen
Pawe�l Pra�lat

Organization

Steering Committee

Andrei Broder Yahoo! Inc., USA
Angèle Hamel Wilfrid Laurier University, Canada
Srinivasan Keshav University of Waterloo, Canada
Alejandro López-Ortiz University of Waterloo, Canada
Rajeev Motwani Stanford University, USA
Ian Munro University of Waterloo, Canada

Program Committee

Dimitris Achlioptas UC Santa Cruz, USA
Anthony Bonato Wilfrid Laurier University, Canada
Allan Borodin University of Toronto, Canada
Colin Cooper King’s College, UK
Erik Demaine MIT, USA
Thomas Erlebach University of Leicester, UK
Angèle Hamel Wilfrid Laurier University, Canada
Jan van den Heuvel London School of Economics, UK
Klaus Jansen Universität Kiel, Germany
Jeannette Janssen Dalhousie University, Canada
Valerie King University of Victoria, Canada
Danny Krizanc Wesleyan University, USA
Stefano Leonardi Università di Roma “La Sapienza”, Italy
Alejandro López-Ortiz University of Waterloo, Canada
Lata Narayanan Concordia University, Canada
Richard Nowakowski Dalhousie University, Canada
Pawe�l Pra�lat Dalhousie University, Canada
Sunil Shende Rutgers-Camden, USA
Eva Tardos Cornell University, USA

Table of Contents

Invited Lectures (Abstracts)

Luck vs. Skill (Long Invited Talk) . 1
Peter Winkler

Valiant Load Balancing, Benes Networks and Resilient Backbone
Design (Short Invited Talk) . 2

Alejandro López-Ortiz

Contributed Papers

Valiant Load Balancing, Capacity Provisioning and Resilient Backbone
Design . 3

Alejandro López-Ortiz

Cleaning Random d-Regular Graphs with Brushes Using a
Degree-Greedy Algorithm . 13

Margaret-Ellen Messinger, Pawe�l Pra�lat,
Richard J. Nowakowski, and Nicholas Wormald

Nonadaptive Selfish Routing with Online Demands 27
Tobias Harks and László A. Végh

Vertex Pursuit Games in Stochastic Network Models 46
Anthony Bonato, Pawe�l Pra�lat, and Changping Wang

Preemptive Scheduling on Selfish Machines . 57
Leah Epstein and Rob van Stee

Selfish Routing and Path Coloring in All-Optical Networks 71
Ioannis Milis, Aris Pagourtzis, and Katerina Potika

A Worst-Case Time Upper Bound for Counting the Number of
Independent Sets . 85

Guillermo De Ita and Aurelio López-López

Improving the Efficiency of Helsgaun’s Lin-Kernighan Heuristic for the
Symmetric TSP . 99

Dirk Richter, Boris Goldengorin, Gerold Jäger, and Paul Molitor

Combinatorial Algorithms for Listing Paths in Minimal Change
Order . 112

Zareen Alamgir and Sarmad Abbasi

VIII Table of Contents

Improving Topological Routing in N2R Networks . 131
Jose M. Gutierrez Lopez, Ruben Cuevas Rumin,
Jens M. Pedersen, and Ole B. Madsen

Author Index . 149

Luck vs. Skill

(Long Invited Talk)

Peter Winkler

Dartmouth College, Hanover, NH, USA
peter.winkler@dartmouth.edu

Abstract. Recent legislation in the US regarding gambling over the web
has led to renewed interest in the question of which games are games of
skill. We take a statistical approach to the problem, defining the skill
index of a game to be the average amount of playing time after which
variance due to chance and variance due to skill differences are equal.

We then look at tournament results for championship-level duplicate
bridge, PGA golf, and duplicate poker, as well as some simulated toy
games, to see how their skill indices compare.

Biography

Peter Winkler is Professor of Mathematics and Computer Science at Dartmouth
College and Albert Bradley Third Century Professor in the Sciences.

A winner of the Mathematical Association of America’s Lester R. Ford Award
for mathematical exposition, Dr. Winkler is the author of about 125 mathe-
matical research papers and holds a dozen patents in computing, cryptology,
holography, optical networking and marine navigation. His research papers are
primarily in combinatorics, probability and the theory of computing, with forays
into statistical physics.

Dr. Winkler received his BA from Harvard summa cum laude in mathematics,
then after a stint in the US Navy, his PhD from Yale as a student of Abraham
Robinson and Angus Macintyre. He joined the faculties of Stanford and then
Emory University, where he became Professor and Chairman of Mathematics
and Computer Science. In 1989 he left academia for industry, returning in 2004.

When not proving theorems or enjoying his family, Winkler is generally found
on a squash court or playing and composing ragtime piano music. He collects
puzzles both mechanical and mathematical, the latter appearing in two popu-
lar books. In some circles Winkler is notorious as the inventor of cryptologic
techniques for the game of bridge, which have now been declared illegal for
tournament play in most of the western world.

J. Janssen and P. Pra�lat (Eds.): CAAN 2007, LNCS 4852, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Valiant Load Balancing, Benes Networks and

Resilient Backbone Design

(Short Invited Talk)

Alejandro López-Ortiz

University of Waterloo, Waterloo, ON, Canada
alopez-o@uwaterloo.ca

Abstract. At any given time, the traffic on the network can be de-
scribed using a traffic matrix. Entry ai,j in the matrix denotes the traffic
originating in i with destination j currently in the network. As traffic
demands are dynamic, the matrix itself is ever changing. Traditionally
network capacity has been deployed so that it can support any traffic
matrix with high probability, given the known traffic distribution pat-
terns. Recently the need for resilience and reliabilibility of the network
for mission critical data has brought the need for backbone capacity that
can support all traffic matrices. In this talk we give an overview of the
state of the art on networks and routing schemes with this property.

Biography

Alejandro Lpez-Ortiz received his B.Math. degree from the National University
of Mexico (UNAM) in 1989, and his M.Math. and Ph.D. from the University of
Waterloo in 1990 and 1996 respectively. In his research he has combined the de-
velopment of theoretical tools and efficient algorithms with real life applications.
He has been a faculty member in the School of Computer Science, University of
Waterloo since 2001 (promoted to Associate professor with tenure in 2004) and
was Director of Research at Internap network services corporation in Seattle. His
research addresses questions of both theoretical and practical relevance such as
robot navigation, search engines, data streams and the internet. He is currently
co-chair of the DIMACS three year special focus on Algorithmic Foundations
of the Internet, jointly with Jennifer Rexford from Princeton University and
Rebecca Wright of Rutgers University.

J. Janssen and P. Pra�lat (Eds.): CAAN 2007, LNCS 4852, p. 2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Valiant Load Balancing, Capacity Provisioning

and Resilient Backbone Design

Alejandro López-Ortiz

Cheriton School of Computer Science
University of Waterloo

Waterloo, ON N2L 3G1 Canada
alopez-o@uwaterloo.ca

Abstract. The two main alternatives for achieving high QoS on the
public internet are (i) admission control and (ii) capacity overprovision-
ing. In the study of these alternatives the implicit (and sometimes ex-
plicit) message is that ideally, QoS issues should be dealt with by means
of sophisticated admission control (AC) algorithms, and only because
of their complexity providers fall on the simpler, perhaps more cost-
effective, yet “wasteful” solution of capacity overprovisioning (CO) (see
e.g. Olifer and Olifer [Wiley&Sons, 2005], Parekh [IWQoS’2003], Mil-
brandt et al. [J.Comm. 2007]). In the present survey we observe that
these two alternatives are far from being mutually exclusive. Rather, for
data critical applications, a substantial amount of “overprovisioning” is
in fact a fundamental step of any safe and acceptable solution to QoS
and resiliency requirements. We observe from examples in real life that
in many cases large amounts of overprovisioning are already silently de-
ployed within the internet domain and that in some restricted network
settings they have become accepted practice even in the academic liter-
ature. Then we survey the main techniques currently in use to compute
the provisioning capacities required in a resilient high QoS network.

1 Introduction

In the quality-of-service literature (QoS) two main alternatives are given for
achieving high QoS on the public internet. These are (i) admission control and
(ii) capacity overprovisioning. In the study of these alternatives the implicit (and
sometimes explicit) message is that ideally, QoS issues should be dealt with by
means of sophisticated admission control (AC) algorithms, and only because of
their complexity providers fall on the simpler, perhaps more cost-effective, yet
“wasteful” solution of capacity overprovisioning (CO) (see e.g. [22,23,20]). AC
researchers often express the hope that this situation will eventually remedy itself
and that sophisticated AC algorithms will do away with the need for bandwidth
overprovisioning (e.g. [8]). Only recently Menth et al. in a SIGCOMM’06 paper
gave evidence that CO might not be as undesirable as previously thought [19].

In the present survey we observe that these two alternatives are far from being
mutually exclusive. Rather, for data critical applications, a substantial amount

J. Janssen and P. Pra�lat (Eds.): CAAN 2007, LNCS 4852, pp. 3–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

4 A. López-Ortiz

of “overprovisioning” is in fact a fundamental step of any safe and acceptable
solution to QoS requirements. Indeed, a survey of common practices in the field
suggests that this observation has been arrived to independently and empirically
by network engineers in various settings within the Internet and otherwise, yet
the QoS literature so far does not reflect this discovery nor has it attempted to
explain its root causes.

We observe from examples in real life that in many cases large amounts of
overprovisioning are already silently deployed within the internet domain and
that in some restricted network settings they have become accepted practice
even in the academic literature. In other words, distate for overprovisioning is
not a universally held belief outside the QoS domain. In fact, the telephony
network which is considered a classical example of AC is in practice heavily
overprovisioned and actual AC policy is rarely relied upon even though it is
deployed on the network [21]. Then we survey the main techniques currently
in use to compute the provisioning capacities required in a resilient high QoS
network. We term this amount rightprovisioning. Lastly, we give reasons why
QoS over a rightprovisioned network has different needs and goals than those
currently addressed by admission control and other such mechanisms.

2 Internet QoS

The two main mechanisms for achieving a desired level of service on the internet
are admission control and capacity overprovisioning. QoS on the network allows
the user to make choices as to the level of service it requires. Typical parameters
are: data rate (bandwidth), availability, end-to-end delay (latency), variation of
end-to-end delay (jitter), and packet loss rate [8].

2.1 Capacity Overprovisioning

Capacity overprovisioning consists in increasing available bandwidth until it is
large enough to sustain the vast majority of peaks in demand. Depending on the
level of reliability desired this can be as low as 25% above average data rate to
handle 95% of all traffic demands without loss, 50% extra bandwidth to carry
99% of traffic, and double the average bandwidth to meet 99.99% or higher of
all traffic demands without loss (see e.g [32]). This last choice, meaning 50%
utilization of the pipe, is often anecdotically referred to as the upper limit of
utilization currently acceptable by large ISPs, with the load on an average link
often being well below that [7,8].

In contrast, in the QoS literature overprovisioning is considered a simple but
wasteful solution to QoS demands. For example, to quote from a computer net-
works textbook [22]:

Overprovisioned services keep the network infrastructure simple (no ad-
ditional tools and configurations) but are wasteful as 60-70% of potential
network resources are not in use. Under such conditions the best-effort

Valiant Load Balancing, Capacity Provisioning 5

service on a standard IP network turns out to be good enough for all
network applications including time-sensitive ones.

Indeed the term “overprovisioning” itself has the implication that more capacity
than what was required was provisioned and hence it ends up being wasted.
Yet, subutilization of a resource alone does not imply it was overprovisioned. In
fact, most mission critical applications such as avionics routinely rely on highly
redundant configurations, which under normal operational procedures are not
used. For example an ocean liner arriving safely to port did not utilize its life
boats, yet no one would argue that they were thus “overprovisioned”.

2.2 Admission Control

Admission control is mostly about using resource reservation and limits on traf-
fic volume to preven overload on the network. It is predicated on the basis that
not all network traffic is time-sensitive and mission critical. The AC alternative
to overprovisioning is denying resources to non crucial flows. Typical examples
of time-sensitive traffic are real time flows (e.g. video/audio streaming, IP tele-
phony) and high value transactions (stock trades, last bid at an online auction).
Packets are assigned a priority value with higher priority packets being given
preferencial service. Yet a look at the historical development of the internet sug-
gests that, over the years, the majority of the traffic overtime has become more
time sensitive and mission critical. Recall that in the original internet the ma-
jority of traffic was smtp (email) and nntp (usenet) based. These protocols have
acceptable delay tolerances from several minutes to as long as days. Web traffic
which is served interactively has acceptable delays in the 10 second or less range.
VoIP and other streaming traffic have subsecond delay tolerances.

As more of the nation infrastructure migrates to the public internet, a disrup-
tion in the network has larger consequences. The financial, defense, telephone,
commerce, government, and business infrastructure now rely on the availability
of the Internet to operate properly. Even a seemingly non-mission critical ap-
plication such as a standard home network connection which might have been
initially deployed for one parent’s non-time sensitive email (smtp) traffic later on
became used by the kids for highly time-sensitive gaming and audio streaming
as well as by a parent bidding in online auctions for objects worth thousands
of dollars, and as of recently is being used as a carrier for VoIP services which
means that emergency calls (911 or to the family doctor) are routed over it.
These last type of calls are both time-sensitive and mission critical. Thus, it
is not far-fetched to envision a world in which the majority of the traffic will
be labeled as time sensitive and hence the savings from AC would be minimal,
since not many flows can be dropped. This would make packet classification
schemes at admission control points progressively more difficult and less useful,
the majority of the traffic is critical to start with.

This suggests that as more data exchanges migrate to the Internet infrastruc-
ture, the need for higher reliability will further increase while the ability to
differentiate between types of traffic will continue to decrease.

6 A. López-Ortiz

3 Rightprovisioning

Capacity overprovisioning is common place in the current internet [1,8,18,12].
AC based solutions remain unused while anecdotal evidence suggests that CO
is the prefered method for QoS delivery in the commercial internet. Currently
QoS due to CO is such that no packets are dropped in the backbones [8,15,4].
Packet loss occurs mostly in the interface between the end points of the network
and the large ISP providers. As providers have focused on ensuring that there
is sufficient deployed capacity rather than on implementing admission control
solutions. ISPs will go to the extent of delaying by several months the start of
connectivity for a new customer to ensure that there is enough capacity on the
network to support the bandwidth demands of the new customer (this can be
argued is a crude form of admission control). In other words, currently ISPs find
that CO is a cost effective way to achieve QoS.

While most of the literature is critical of CO as a solution of QoS, recent de-
velopments suggest that even in theory its performance is better than originally
thought. Bhagat observes that in certain settings overprovisioning seems to be a
better answer to the performance needs from users, and indeed he goes as far as
questioning the need for admission control based QoS solutions [6]. In a recent
breakthrough paper in SIGCOMM’06 Menth et al. [19] show that if overprovi-
sioned capacity is also used to achieve resilience against network failures, then
the demands in terms of bandwidth of failure-resilient AC and CO schemes are
comparable, as the overprovisioned capacity can be deployed for various uses
depending on the type of congestion and/or failure detected. In sum, so far we
have argued that

1. selective admission as required by AC is becoming increasingly less of an
option at the backbone level since traffic is increasingly time and mission
critical,

2. that CO in large trunks is already in place and provides excellent QoS within
the core of the network,

3. that as such its effectiveness is well supported by established practice, and
that

4. the academic literature has started to explain why CO is such an effective
solution.

The question then remains what is the proper level of overprovisioning, i.e.
rightprovisioning. Currently the model most commonly in use is a statistical
guarantee of the probability of connection denial. We argue that the right metric
is to provide enough capacity so that any valid traffic matrix can be realized.

Definition 1. Formally, let e1, . . . , en be n end points in the network each with
a send and receive capacity si and ri respectively. A traffic matrix A = [aij]
contains in entry aij the instantaneous amount of traffic from node ei destined
to ej.

Valiant Load Balancing, Capacity Provisioning 7

Definition 2. A given traffic matrix is said to be valid if
∑n

j=1 aij ≤ si and
∑n

i=1 aij ≤ rj. That is no node is attempting to send more data than it has
uplink provisioned capacity for and no node is being sent more data than it has
contracted capacity to receive.

In the past providers have deployed enough capacity to handle the average traffic
matrix or a percentage of traffic matrix configurations (say 95% of the time
the traffic matrix should cause no loss in traffic). Since the aim is to provide
connectivity for the worst case traffic matrix we need to determine what is the
minimum or most cost efficient capacity that satisifies this requirement. We
could simply consider the sum of all contracted capacity by users, however this
does not take into account that currently connectivity is provided in an average
fashion, typically at a certain average rate per month with a maximum burstable
rate.

In the new regime, two types of traffic would be provisioned. Traffic of type
A, which is mission critical and always available at the contracted capacity and
traffic of type B, at an average contracted capacity but rate-controlled depending
on connectivity characteristics. In essence this could be thought as rate mod-
ulation over a pipe carrying type B traffic, not unlike in nature and effects to
that performed by a modem in the presence of high levels of line noise. Ob-
serve that this establishes a very simple form of admission control. Traffic of
type A would be unavailable at most on the order of subsecond to few seconds
per year range (seven to eight nines of reliability). At the same time the entire
contracted capacity should be generally available, with traffic of type B being
flow rate controlled in the order of a half a minute to a few minutes a year (five
to six nines range). This last is the current level of service reliability that the
telephone network claims to have, even though arguably telephone traffic is less
time critical than many of the current uses of the network. It is worthy of note
that the telephone network operates at 33% capacity [21] and that the amount
of admission control is minimal. For example “on Monday, Dec. 2, 1991, which
was the busiest day for the AT&T network until then, of 157.5 million calls,
only 228 were blocked on intercity connections” (from [3] as quoted by [21]).
Our proposal parallels this design choice.

Interestingly enough, worst-case traffic matrix n × n capacity already exists
in certain network settings. In the LAN the proper amount of overprovisioning
has evolved to be such that, given n nodes on an Ethernet, a complete set of n/2
disjoint pairs can communicate at full speed. Recall that this was not always the
case, as the original co-axial ethernet only had sufficient capacity for a single pair
to communicate freely at full capacitywithout collision; eventually star switches
with higher capacity buses became commonplace, and currently common n × n
crossbar or Beneš network switches have the ability to sustain n/2 disjoint pairs
of communication [2]. Similarly Network Access Points (NAPs) as well as cores
of large corporate networks often consist of an optical ring providing enough
capacity for all possible crossconnects. This is not unique to the internet. In
the 1970s telephone networks deployed switches with n × n capacity at certain
critical points of the infrastructure [26].

8 A. López-Ortiz

For statistical guarantees the law of large numbers can be used to determine
the maximum simultaneous demand that may originate, on the aggregate, from
a neighborhood of nodes sharing an entry point to the ISP backbone. This is re-
peated for all entry points into the backbone and then a full n × n bandwidth
capability over those averages can be deployed. The size of such an n × n net-
work is well understood. We discuss in detail the various known alternatives in
Section 5.

Lastly, as Menth et al. observed, redundant equipment can be deployed for
multiple purposes, so long as the probability of failure of such equipment is
independent [19]. This amortizes the additional cost of redundant equipment.
In particular redundant capacity can be used to circumvent router and link
failures (digging). This has been observed to reduce the amount of apparent
“subutilization”. As well, secondary sources of traffic which can be quenched at
the source point can be sent over the spare capacity. Examples of this are CDN
content and remote backup data which are resilient under short time delays.
Anecdotal evidence suggests that spam traffic is delivered at off-peak times by
certain ISPs using deployed overcapacity.

4 QoS and AC in a Rightprovisioned World

Observe that we do not claim that overprovisioning at the backbone is sufficient
to achieve all QoS requirements, nor would it make AC trivial. This is in con-
traposition to claims to that end in the literature, e.g. “only when the ratio of
resources at the edges of a network to those available in the core of a network
becomes high is the problem of service differentiation interesting, [...] when this
ratio is low, any QoS mechanism appears redundant as most users receive the
service they require anyway, and so the cost introduced by a QoS scheme appears
unjustified, and research into QoS mechanisms appears unnecessary” [8].

For one, as the network is used for more life-critical operations such as VoIP
phone calls (911), financial transactions (stock exchange), remote surgery, and
air traffic system, perhaps even carrier grade reliability is not good enough. It
is not hard to envision demands for reliability reaching into the 99.999999%
range (in fact today it is possible to provision bandwidth with a stated 100%
reliability guarantee in the sense that any amount of downtime is contractually
heavily penalized). Such high levels of reliability will require overprovisioning,
multihoming, redundancy, admission control and intelligent routing, though the
types of solutions required, their price/performance ratio and their goals change.
As well, end users will still, on occasion, attempt to send or receive more time
critical data that is feasible given their available network connectivity. Admission
control in such situations will be needed to prioritize say, a 911 VoIP call (type
A traffic) over downloading email (type B traffic).

Admission control starts from the assumption that congestion will always take
place at the edge given the reduced capacities of the endpoint as compared to
the capacity of the entire network (i.e. the need to send or receive more data than

Valiant Load Balancing, Capacity Provisioning 9

what we have capacity for). What this work argues is that congestion should
only take place at the edge and that CO is the way to ensure this.

The model we propose assumes that all packets reaching the network core
are assumed to be critical and hence failure of delivery is not an option. Within
the core there would be no differentiated services with AC taking place as a
weak and simplified form of resource reservation: if the packet is admitted, it
can be delivered. The end node would send data in one of two modes: normal
mode in which all traffic is accepted without need for any AC intervention and
exceptional mode in which the application/user is alerted of a temporary service
disruption and given the choice to proceed with the communication at full speed
or throttle down for a few seconds (type A or B classification). Incentives such
as price differentials can be built in to ensure that the user delays non-essential
traffic.

Given the reliability needs detailed above this would occur with a very low
probability, in the range of thirty seconds to a few minutes of service disruption
per year. Such a rare occurrence means that only the simplest of differentiated
services and admission control policies can be justified from the perspective of
economic viability. As it has been observed [8] a weak form of AC already takes
place in the edges in that providers delay customer activation to ensure that
enough capacity is present to satisfy demand. This is a crude yet effective form
of denying a transmission request.

As well routing in an overprovisioned network is more complicated as the
multiplicity of paths allows for an intelligent choice. This determination does
not involve the end point as the network makes best effort for all packets.

5 Valiant Load Balancing and Beneš Networks

Claude Shannon pioneered the study of networks that support n × n commu-
nication pairs. He proved that if the proving that a fabric of n logn switches is
necessary so long as total deployed capacity is linear. Beneš introduced the later
termed Beneš networks which match Shannon’s lower bound switch [2,10,11,26].
Arora et al. combined Beneš networks with the butterfly network to obtain a
similar topology that supports all cross connects in an online fashion, while
preserving the efficiency in terms of deployed capacity.

If there are no restrictions in the total deployed capacity then other alter-
native realizations are possible. Two of the most common being a central high
capacity ring and the n×n crossbar. Pippenger extensively studied the topology
of telephone switches that support n × n connection patterns [24,25,26,27,28].

Valiant proposed an elegant network topology in the context of interproces-
sor communication networks for parallel computers [33,34]. The network starts
with the complete graph on n nodes which trivally can support all independent
connection pairs. However it is an inefficient solution as it requires n2 contracted
capacity. Valiant’s key observation is that a two phase communication protocol
on a complete graph in which every link has capacity 2/n suffices. This reduces
the total deployed capacity to 2n which is a constant times the deployed capacity.

10 A. López-Ortiz

Extensions and generalizations of both Pippenger’s and Valiant’s work have been
the subject of intense study within theoretical computer science [9,14,2] as well
as the networks community [17,30,31,29]. The field is now refered to as a Valiant
Load Balancing Network and/or as a Virtual Private Network load balancing.
The term VPN comes from the fact that VPNs were one the earliest users of
the internet requiring high degree of reliability. Shepherd et al. and Prasad et
al. have run simulations to determine the effect of VPN load balancing in exist-
ing networks, and have observed that peak traffic loads are lowered down while
resilience is improved. Many open questions remain, among them

– how to efficiently design an overprovisioned network under realistic cost mea-
sures?

– design an overprovisioned network which readily scales under incremental
growth?

– given a pre-existing network infrastucture compute the lowest cost links that
must be added for the network to support the worst case traffic matrix

– how to add links to an existing network infrastucture in a way that the can
serve the dual purpose of worst case traffic matrix provisioning and resiliency
under link cuts?

– how to implement the desired routing patterns using the current routing
protocols (BGP/IGP/OSPF)?

6 Conclusions

We have argued that given the evolution path of internet traffic, higher levels
of reliability will be required. As such admission control schemes which refuse
connections are no longer feasible. At the same time we give evidence that ca-
pacity overprovisioning with a high probabilistic guarantee of delivery for n × n
traffic is already in place in the internet, though not generally recognized. We
also observed that in other network settings such large capacity has been openly,
purposely deployed with the full acceptance of theory and practice. We noted
that “overprovisioned” capacity can be put to other uses as others have shown
[19], and CO is more efficient than generally believed. We give general bounds
on the amount of traffic that is required for service guarantees and we term this
rightprovisioning the network. Lastly we argued that there is still need for QoS
and AC policies at the network edge.

References

1. Armitage, G.J.: Revisiting IP QoS: Why do we care, what have we learned. ACM
2003 RIPOS Workshop Report, ACM SIGCOMM Comp. Comm. Rev. vol. 33(5)
(October 2003)

2. Arora, S., Leighton, F.T., Maggs, B.M.: On-line Algorithms for Path Selection in
a Nonblocking Network. In: Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing, pp. 149–158 (May 1990)

Valiant Load Balancing, Capacity Provisioning 11

3. Ash, G.R.: Dynamic Routing in Telecommunications Networks. McGraw-Hill, New
York (1998)

4. Atkinson, R.: QoS vs Bandwidth Overprovisioning. End-to-End mailing list (April
2001)

5. Beneš, V.E.: Optimal rearrangeable multistage connecting networks. Bell System
Technical Journal 43, 1641–1656 (1964)

6. Bhagat, S.: QoS: Solution Waiting for a Problem, position paper, Dept of Comp.
Sci. Rutgers University

7. Casner, S., Alaettinoglu, C., Kuan, C.-C.: A Fine-Grained View of High-
Performance Networking, NANOG 22,
http://www.nanog.org/mtg-0105/casner.html

8. Crowcroft, J., Hand, S., Mortier, R., Roscoe, T., Warfield, A.: QoS’s Downfall:
At the bottom, or not at all! In: Proceedings of the Workshop on Revisiting IP
QoS (RIPQoS), at ACM SIGCOMM 2003, August 27, 2003, Karlsruhe, Germany
(2003)

9. Dellamonica Jr., D., Kohayakawa, Y.: An algorithmic Friedman–Pippenger theo-
rem on tree embeddings and applications to routing. In: Proceedings of the sev-
enteenth annual ACM-SIAM symposium on Discrete algorithm, pp. 1038–1044
(2006)

10. Feldman, P., Friedman, J., Pippenger, N.: Non-blocking networks. In: Proceedings
of the 18th Annual ACM Symposium on Theory of Computing, pp. 247–254 (May
1986)

11. Feldman, P., Friedman, J., Pippenger, N.: Wide-sense nonblocking networks. SIAM
Journal of Discrete Mathematics 1, 158–173 (1988)

12. Fraleigh, C., Tobagi, F., Diot, C.: Provisioning IP Backbone Networks to Support
Latency Sensitive Traffic. In: Proceedings of IEEE Infocom 2003, San Francisco,
USA (2003)

13. Gibbens, R., Kelly, F.: Resource pricing and the evolution of congestion control.
Automatica 35 (1999)

14. Gupta, A., Kleinberg, J.M., Kumar, A., Rastogi, R., Yener, B.: Provisioning a
virtual private network: a network design problem for multicommodity flow. In:
Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp.
389–398 (2001)

15. Van Jacobson: A New View of Networking, Google Tech Talk (2007)
16. Keshav, S.: An Engineering Approach to Computer Networking. Addison-Wesley,

Reading
17. Keslassy, I., Chang, C.-S., McKeown, N., Lee, D.-S.: Optimal load-balancing. In:

Proceedings of IEEE Infocom, pp. 1712–1722 (2005)
18. Martin, R., Menth, M., Charzinski, J.: Comparison of Border-to-Border Budget

Based Network Admission Control and Capacity Overprovisioning. In: Boutaba,
R., Almeroth, K.C., Puigjaner, R., Shen, S., Black, J.P. (eds.) NETWORKING
2005. LNCS, vol. 3462, pp. 1056–1068. Springer, Heidelberg (2005)

19. Menth, M., Martin, R., Charzinski, J.: Capacity Overprovisioning for Networks
with Resilience Requirements. In: Proceedings of SIGCOMM 2006, September 11-
15 (2006)

20. Milbrandt, J., Menth, M., Junker, J.: Experience-Based Admission Control in the
Presence of Traffic Changes. Journal of Communications 2(1) (January 2007)

21. Odlyzko, A.: Data Networks are Lightly Utilized, and will Stay that Way. The
Review of Network Economics 2 (2003)

22. Olifer, N., Olifer, V.: Computer Networks: Principles, Technologies and Protocols
for Network Design. John Wiley & Sons, Chichester (2005)

http://www.nanog.org/mtg-0105/casner.html

12 A. López-Ortiz

23. Parekh, A.: Why there is no QoS and what to do about it. In: Jeffay, K., Stoica,
I., Wehrle, K. (eds.) IWQoS 2003. LNCS, vol. 2707, Springer, Heidelberg (2003)

24. Pippenger, N.: Information Theory and the Complexity of Switching Networks. In:
Proceedings of FOCS, pp. 113–118 (1975)

25. Pippenger, N.: On Rearrangeable and Non-Blocking Switching Networks. Journal
of Computer Systems and Sciences 17(2), 145–162 (1978)

26. Pippenger, N.: Telephone Switching Networks. In: Proceedings of Symposia in
Applied Mathematics, vol. 26, pp. 101–133 (1982)

27. Pippenger, N., Valiant, L.G.: Shifting Graphs and Their Applications. Journal of
the ACM 23(3), 423–432 (1976)

28. Pippenger, N., Yao, A.C.: Rearrange-able networks with limited depth. SIAM Jour-
nal Algebraic Discrete Methods 3(4), 411–417 (1982)

29. Prasad, R.S., Winzer, P.J., Borst, S., Thottan, M.K.: Queuing Delays in Random-
ized Load Balanced Networks. In: Proceedings of IEEE Infocom 2007 (2007)

30. Rui, Z.-S., McKeown, N.: Designing a Predictable Internet Backbone with Valiant
Load-Balancing. In: de Meer, H., Bhatti, N. (eds.) IWQoS 2005. LNCS, vol. 3552,
pp. 178–192. Springer, Heidelberg (2005)

31. Shepherd, F.B., Winzer, P.J.: Selective randomized load balancing and mesh net-
works with changing demands. J. Opt. Netw. 5, 320–339 (2006)

32. Telkamp, T.: Traffic Characteristics and Network Planning. In: ISMA 2002 (Octo-
ber 7-11, 2002)

33. Valiant, L.G., Brebner, G.J.: Universal Schemes for Parallel Communication STOC
1981, pp. 263–277 (1981)

34. Valiant, L.G.: A Scheme for Fast Parallel Communication. SIAM J. Comput. 11(2),
350–361 (1982)

Cleaning Random d-Regular Graphs with

Brushes
Using a Degree-Greedy Algorithm

Margaret-Ellen Messinger1, Pawe�l Pra�lat1, Richard J. Nowakowski1,�,
and Nicholas Wormald2,��

1 Department of Mathematics and Statistics,
Dalhousie University, Halifax NS, Canada
{messnger,pralat,rjn}@mathstat.dal.ca

2 Department of Combinatorics and Optimization,
Waterloo University, Waterloo ON, Canada

nwormald@uwaterloo.ca

Abstract. In the recently introduced model for cleaning a graph with
brushes, we use a degree-greedy algorithm to clean a random d-regular
graph on n vertices (with dn even). We then use a differential equations
method to find the (asymptotic) number of brushes needed to clean a
random d-regular graph using this algorithm. As well as the case for
general d, interesting results for specific values of d are examined. We
also state various open problems.

Keywords: cleaning process, random d-regular graphs, degree–greedy
algorithm, differential equations method.

1 Introduction

The cleaning model, introduced in [5,6], considers a network of pipes that must
be periodically cleaned of a contaminant that regenerates, for example, algae
in water pipes. This is accomplished by having cleaning agents, colloquially,
‘brushes’, assigned to some vertices. To reduce the recontamination, when a
vertex is ‘cleaned’, a brush must travel down each contaminated edge. Once a
brush has traversed an edge, that edge has been cleaned. A graph G has been
cleaned once every edge of G has been cleaned. McKeil [5] considered the model
where more than one brush can travel down an edge and brushes can travel down
cleaned edges. In [6] and this paper only one brush is allowed to travel along an
edge and a brush is not allowed to travel down an edge that has already been
cleaned.

Explicitly, every edge and vertex of a graph is initially dirty and a fixed number
of brushes start on a set of vertices. At each step, a vertex v and all its incident
edges which are dirty may be cleaned if there are at least as many brushes on v

� Research partially supported by NSERC and MITACS.
�� Research partially supported by the Canada Research Chairs Program and NSERC.

J. Janssen and P. Pra�lat (Eds.): CAAN 2007, LNCS 4852, pp. 13–26, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

14 M.-E. Messinger et al.

as there are incident dirty edges. When a vertex is cleaned, every incident dirty
edge is traversed (i.e. cleaned) by one and only one brush, moreover, brushes
cannot traverse a clean edge. This cleaning process is a combination of the chip-
firing game and edge-searching on a simple finite graph. The approach in [6],
and taken here, is that a graph is cleaned when every vertex, and hence every
edge, has been cleaned. This may result in vertices with no dirty edges being
cleaned in which case no brushes move but this approach simplified much of the
analysis in [6]. See Figure 1 for an example of this cleaning process. The initial
configuration has only 2 brushes, both at a. The solid edges are dirty and the
dotted edges are clean. The circle indicates which vertex is cleaned next.

dc

b a

dc

b a

dc

b a

dc

b a

dc

b a

2 brushes at a 1 brush at b

1 brush at c

2 brushes at c

1 brush at d

1 brush at c

1 brush at d

1 brush at c

Fig. 1. An example of the cleaning process for graph G

One condition that this model has, like chip-firing but not searching, is that
the cleaning process is to be automatic, i.e. a union of ‘vertex firing’ sequences
where each sequence cleans the graph, continuing on for the lifetime of the
network. Therefore, the problems to solve are: firstly, a brush configuration and
corresponding vertex firing sequence that cleans the graph; and secondly, having
the final configuration of brushes be a starting configuration for another vertex
firing sequence that also cleans the graph; and so on. In [6], we show that the
final configuration of any cleaning sequence is a valid starting configuration of
another cleaning sequence.

In this paper, we are interested in the asymptotic number of brushes needed
to clean random d-regular (finite, simple) graphs. At one extreme, the graph
could consist of disjoint copies of Kd+1. From [6], Kd+1 requires essentially d2/4
brushes so that the whole graph requires approximately nd/4. At the lower end,
if d is even then a ring of bipartite graphs Kd/2,d/2 chained together (see Figure 2
for the case d = 4) require only d2/4 brushes regardless of the number of vertices
(by working around the ring). If d is odd then every vertex has at least one brush
in either the original or final configuration (see [6] for more details) so that a
graph on n vertices requires at least n/2 brushes.

We propose a linear time algorithm to clean d-regular graphs and an a.a.s.
upper bound ud on the number of brushes required by the algorithm. The as-
ymptotically almost sure lower bound ld follows from the fact that a.a.s. all sets
of size �n/2� have at least ld edges going to its complement.

Cleaning Random d-Regular Graphs with Brushes 15

4

4

Fig. 2. An example of the cleaning process for a 4-regular graph requiring 8 brushes

In Section 4 we observe that if d = 2, then the brush number (asymptotically)
is (1+o(1)) log n; for d = 3, the brush number is equal to n/2+2 a.a.s.; for d = 4,
(1 + o(1))n/3 brushes are enough to clean a graph a.a.s.; and for d = 5, roughly
0.644n. For larger d, numerical evidence suggests that each brush on average
cleans between 2 and 2.5 edges. In order to get an asymptotically almost sure
upper bound on the brush number we use a degree-greedy algorithm, [9], to clean
the graph and then use the differential equation method, studied in [12] to find
the asymptotic number of brushes required.

In Section 2 we introduce the formal definitions for the cleaning process and a
description of the pairing model of random regular graphs which is used instead
of working directly with in the uniform probability space.

2 Definitions

The following cleaning algorithm and terminology was recently introduced in [6].
Formally, at each step t, ωt(v) denotes the number of brushes at vertex v

(ωt : V → N ∪ {0}) and Dt denotes the set of dirty vertices. An edge uv ∈ E is
dirty if and only if both u and v are dirty: {u, v} ⊆ Dt. Finally, let Dt(v) denote
the number of dirty edges incident to v at step t:

Dt(v) =

{
|N(v) ∩ Dt| if v ∈ Dt

0 otherwise.

Definition 1. The cleaning process P(G, ω0) = {(ωt, Dt)}T
t=0 of an undi-

rected graph G = (V, E) with an initial configuration of brushes ω0 is as
follows:

(0) Initially, all vertices are dirty: D0 = V ; Set t := 0
(1) Let αt+1 be any vertex in Dt such that ωt(αt+1) ≥ Dt(αt+1). If no such

vertex exists, then stop the process (T = t), return the cleaning sequence
α = (α1, α2, . . . , αT), the final set of dirty vertices DT , and the final
configuration of brushes ωT

16 M.-E. Messinger et al.

(2) Clean αt+1 and all dirty incident edges by moving a brush from αt+1 to
each dirty neighbour. More precisely, Dt+1 = Dt \ {αt+1}, ωt+1(αt+1) =
ωt(αt+1) − Dt(αt+1), and for every v ∈ N(αt+1) ∩ Dt, ωt+1(v) = ωt(v) + 1
(the other values of ωt+1 remain the same as in ωt)

(3) t := t + 1 and go back to (1)

Note that for a graph G and initial configuration ω0, the cleaning process can
return different cleaning sequences and final configurations of brushes; consider,
for example, an isolated edge uv and ω0(u) = ω0(v) = 1. It has been shown (see
Theorem 2.1 in [6]), however, that the final set of dirty vertices is determined
by G and ω0. Thus, the following definition is natural.

Definition 2. A graph G = (V, E) can be cleaned by the initial configuration
of brushes ω0 if the cleaning process P(G, ω0) returns an empty final set of dirty
vertices (DT = ∅).

Let the brush number, b(G), be the minimum number of brushes needed to
clean G, that is,

b(G) = min
ω0:V →N∪{0}

{ ∑

v∈V

ω0(v) : G can be cleaned by ω0

}
.

Similarly, bα(G) is defined as the minimum number of brushes needed to clean
G using the cleaning sequence α.

It is clear that for every cleaning sequence α, bα(G) ≥ b(G) and b(G) =
minα bα(G). (The last relation can be used as an alternative definition of b(G).)
In general, it is difficult to find b(G), but bα(G) can be easily computed. For this,
it seems better not to choose the function ω0 in advance, but to run the cleaning
process in some order, and compute the initial number of brushes needed to
clean a vertex. We can adjust ω0 along the way

ω0(αt+1) = max{2Dt(αt+1) − deg(αt+1), 0}, for t = 0, 1, . . . , |V | − 1, (1)

since that is how much brushes we have to add over and above what we get for
free.

Our results refer to the probability space of random d-regular graphs with
uniform probability distribution. This space is denoted Gn,d, and asymptotics
(such as “asymptotically almost surely”, which we abbreviate to a.a.s.) are for
n → ∞ with d ≥ 2 fixed, and n even if d is odd.

Instead of working directly in the uniform probability space of random regular
graphs on n vertices Gn,d, we use the pairing model of random regular graphs,
first introduced by Bollobás [1], which is described next. Suppose that dn is even,
as in the case of random regular graphs, and consider dn points partitioned into
n labeled buckets v1, v2, . . . , vn of d points each. A pairing of these points is
a perfect matching into dn/2 pairs. Given a pairing P , we may construct a
multigraph G(P), with loops allowed, as follows: the vertices are the buckets
v1, v2, . . . , vn, and a pair {x, y} in P corresponds to an edge vivj in G(P) if x

Cleaning Random d-Regular Graphs with Brushes 17

and y are contained in the buckets vi and vj , respectively. It is an easy fact
that the probability of a random pairing corresponding to a given simple graph
G is independent of the graph, hence the restriction of the probability space of
random pairings to simple graphs is precisely Gn,d. Moreover, it is well known
that a random pairing generates a simple graph with probability asymptotic to
e(1−d2)/4 depending on d, so that any event holding a.a.s. over a probability space
of random pairings also holds a.a.s. over the corresponding space Gn,d. For this
reason, asymptotic results over random pairings suffice for our purposes. The
advantage of using this model is that the pairs may be chosen sequentially so
that the next pair is chosen uniformly at random over the remaining (unchosen)
points. For more information on this model, see [10].

3 Some Lower Bounds

When a graph G is cleaned using the cleaning process described in Definition 1,
each edge of G is traversed exactly once and by exactly one brush.

Definition 3. Given some initial configuration ω0 of brushes, suppose G =
(V, E) admits a cleaning sequence α = (α1, α2, . . . , αT) which cleans G. As each
edge in G is traversed exactly once and by exactly one brush, an orientation of
the edges of G is permitted such that for every αiαj ∈ E(G), αi → αj if and
only if i < j.

The brush path of a brush b is the oriented path formed by the set of edges
cleaned by b (note that a vertex may not be repeated in a brush path). Then G
can be decomposed into bα(G) oriented brush paths (note that no brush can stay
at its initial vertex in the minimal brush configuration).

The minimum number of paths into which graph G can be decomposed yields
a lower bound for b(G); only a lower bound because some path decompositions
would not be valid in the cleaning process. For example, K4 can be decomposed
into two edge-disjoint paths, but b(K4) = 4.

Following Definitions 1 and 3, every vertex of odd degree in a graph G will be
the endpoint of (at least) one brush path. This leads to a natural lower bound for
b(G) since any graph with do odd vertices, can be decomposed into a minimum
of do/2 paths (see [6] for more details).

Theorem 1. Given initial configuration ω0, suppose G can be cleaned yielding
final configuration ωT . Then for every vertex v in G with odd degree, either
ω0(v) > 0 or ωT (v) > 0. In particular, b(G) ≥ do(G)/2 where do(G) denotes a
number of vertices of odd degree.

The result can be improved a little if there is a lower bound on the vertex degrees
(see Section 4.3 for details).

Another general lower bound for d-regular graphs can be obtained as follows.
By [6, Theorem 3.2],

b(G) ≥ max
j

min
S⊆V,|S|=j

{jd − 2|E(G[S])|.}

18 M.-E. Messinger et al.

(The proof is simply to observe that the minimum is a lower bound on the number
of edges going from the first j vertices cleaned to elsewhere in the graph.) So,
suppose that x and y are such that the expected number of sets S of xn + o(n)
vertices in G ∈ Gn,d with yn + o(n) edges to the complementary V (G) \ S is
o(1). Then this theorem, together with the first moment principle, gives that the
brush number is a.a.s. at least yn + o(n). Some standard calculations using the
pairing model then give us the following lower bounds a.a.s.: 0.220n for d = 4,
0.365n for d = 5 (although this can easily be improved to the lower bound of
0.5n), 0.52n for d = 6, and 0.687n for d = 7. We omit further details from this
paper.

4 Cleaning Random d-Regular Graphs

The differential equations method (described in [12]) is used here to find an
upper bound on the number of brushes needed to the clean the graph using a
degree-greedy algorithm. We consider d = 2 first, then state some general results,
and apply them to the special cases of 3 ≤ d ≤ 5 before discussing higher values
of d.

4.1 2-Regular Graphs

Let Y = Yn be the total number of cycles in a random 2-regular graph on n
vertices. Since exactly two brushes are needed to clean one cycle, we need 2Yn

brushes in order to clean a 2-regular graph.
We know that the random 2-regular graph is a.a.s. disconnected; by simple

calculations we can show that the probability of having a Hamiltonian cycle is
asymptotic to 1

2e3/4√πn−1/2 (see, for example, [10]).
We also know that the total number of cycles Yn is sharply concentrated

near (1/2) logn. It is not difficult to see this by generating the random graph
sequentially using the pairing model. The probability of forming a cycle in step i
is exactly 1/(2n−2i+1), so the expected number of cycles is (1/2) logn+O(1).
The variance can be calculated in a similar way. So we get that a.a.s. the brush
number for a random 2-regular graph is (1 + o(1)) log n.

4.2 d-Regular Graphs (d ≥ 3) — The General Setting

In this subsection, we assume d ≥ 3 is fixed with dn even. In order to get an
asymptotically almost sure upper bound on the brush number, we study an
algorithm that cleans random vertices of minimum degree. This algorithm is
called degree-greedy because the vertex being cleaned is chosen from those with
the lowest degree.

We start with a random d-regular graph G = (V, E) on n vertices. Initially,
all vertices are dirty: D0 = V . In every step t of the cleaning process, we clean
a random vertex αt, chosen uniformly at random from those vertices with the
lowest degree (Dt = Dt−1 \ {αt}) in the induced subgraph G[Dt−1]. In the first
step, d brushes are needed to clean random vertex α1 (we say that this is “phase

Cleaning Random d-Regular Graphs with Brushes 19

zero”). Note that this is a.a.s. the only vertex whose degree in Dt is d at the
time of cleaning. Indeed, if αt (t ≥ 2) has degree d in G[Dt−1], then G[Dt−1]
consists of a connected component(s) of G and thus G is disconnected. It was
proven independently in [2,11] that G is disconnected with probability o(1) and
later extended to d growing with n in [4]. The induced subgraph G[D1] now has
d vertices of degree d − 1 and n − d − 1 vertices of degree d.

In the second step, d − 2 extra brushes are needed to clean a random vertex
α2 of degree d−1. Typically, in the third step, a vertex of degree d−1 is cleaned
and in each subsequent step, a vertex of degree d−1 is cleaned until some vertex
of degree d − 2 is produced in the subgraph induced by the set of dirty vertices.
After cleaning the first vertex of degree d − 2, we typically return to cleaning
vertices of degree d − 1, but after a some more steps of this type we may clean
another vertex of degree d − 2. When vertices of degree d − 1 become plentiful,
vertices of lower degree are more commonly created and these hiccups occur
more often. When vertices of degree d− 2 take over the role of vertices of degree
d − 1, we say (informally!) that the first phase finishes and we begin the second
phase. In general, in the kth phase a mixture of vertices of degree d − k and
d − k − 1 are cleaned.

It is usually difficult to study the behaviour of a greedy algorithm at the end
of the process. Fortunately, in this case we need to study the first �(d − 1)/2�
phases since the rest of vertices are cleaned ‘for free’. The details have been
omitted, but can be found in [9].

For 0 ≤ i ≤ d, let Yi = Yi(t) denote the number of vertices of degree i in G[Dt].
(Note that Y0(t) = n − t −

∑d
i=1 Yi(t) so Y0(t) does not need to be calculated,

but it is useful in the discussion.) Let S(t) =
∑d

l=1 lYl(t) and for any statement
A, let δA denote the Kronecker delta function

δA =

{
1 if A is true,
0 otherwise.

It is not difficult to see that

E(Yi(t) − Yi(t − 1) | G[Dt−1] ∧ degG[Dt−1](αt) = r)

= fi,r((t − 1)/n, Y1(t − 1)/n, Y2(t − 1)/n, . . . , Yd(t − 1)/n)

= −δi=r − r
iYi(t − 1)
S(t − 1)

+ r
(i + 1)Yi+1(t − 1)

S(t − 1)
δi+1≤d (2)

for i, r ∈ [d] such that Yr(t) > 0. Indeed, αt has degree r, hence the term −δi=r.
When a pair of points in the pairing model is exposed, the probability that the
other point is in a bucket of degree i (that is, the bucket contains i unchosen
points) is asymptotic to iYi(t − 1)/S(t − 1). Thus riYi(t − 1)/S(t− 1) stands for
the expected number of the r buckets found adjacent to αt which have degree
i. This contributes negatively to the expected change in Yi, whilst buckets of
degree i + 1 which are reached contribute positively (of course, only if this type
of vertices (buckets) exist in a graph; thus δi+1≤d). This explains (2).

20 M.-E. Messinger et al.

Suppose that at some step t of the phase k, cleaning a vertex of degree d − k
creates, in expectation, βk vertices of degree d − k − 1 and cleaning a vertex
of degree d − k − 1 decreases, in expectation, the number of vertices of degree
d − k − 1 by τk. After cleaning a vertex of degree d − k, we expect to then clean
(on average) βk/τk vertices of degree d− k − 1. Thus, in phase k, the proportion
of steps which clean vertices of degree d − k is 1/(1 + βk/τk) = τk/(βk + τk).
If τk falls below zero, vertices of degree d − k − 1 begin to build up and do not
decrease under repeated cleaning vertices of this type and we move to the next
phase.

From (2) it follows that

βk = βk(x, y1, y2, . . . , yd) = fd−k−1,d−k(x, y1, y2, . . . , yd) = fd−k−1,d−k(x,y),

τk = τk(x, y1, y2, . . . , yd) = − fd−k−1,d−k−1(x, y1, y2, . . . , yd)
= − fd−k−1,d−k−1(x,y),

where x = t/n and yi(x) = Yi(t)/n for i ∈ [d]. This suggests (see [12] for
more information on the differential equations method) the following system of
differential equations

dyi

dx
= F (x,y, i, k)

where

F (x,y, i, k) =

{
τk

βk+τk
fi,d−k(x,y) + βk

βk+τk
fi,d−k−1(x,y) for k ≤ d − 2,

fi,1(x,y) for k = d − 1.

At this point we may formally define the interval [xk−1, xk] to be phase k, where
the termination point xk is defined as the infimum of those x > xk for which
at least one of the following holds: τk ≤ 0 and k < d − 1; τk + βk = 0 and
k < d − 1; yd−k ≤ 0. Using final values yi(xk) in phase k as an initial values for
phase k+1 we can repeat the argument inductively moving from phase to phase
starting from phase 1 with obvious initial conditions yd(0) = 1 and yi(0) = 0 for
0 ≤ i ≤ d − 1.

The general result [9, Theorem 1] studies a deprioritized version of degree-
greedy algorithms, which means that the vertices are chosen to process in a
slightly different way, not always the minimum degree, but usually a random
mixture of two degrees. Once a vertex is chosen, it is treated the same as in the
degree-greedy algorithm. The variables Y are defined in an analogous manner.
The hypotheses of the theorem are straightforward to verify. The conclusion is
that, for a certain algorithm using a deprioritized ‘mixture’ of the steps of the
degree-greedy algorithm, with variables Yi defined as above, we have that a.a.s.

Yi(t) = nyi(t/n) + o(n)

for 1 ≤ i ≤ d for phases k = 1, 2, . . . , m, where m denotes the smallest k for
which either k = d − 1, or any of the termination conditions for phase k hold

Cleaning Random d-Regular Graphs with Brushes 21

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4

x

(a) 3-regular graph, phase 1 (b) 4-regular graph, phase 1

Fig. 3. Solution to the differential equations

at xk apart from xk = inf{x > xk−1 : τk ≤ 0}. We omit all details pointing
the reader to [9] and the general survey [12] about the differential equations
method which is a main tool in proving [9, Theorem 1]. In addition, the theorem
gives information on an auxiliary variable such as, of importance to our present
application, the number of brushes used. Instead of quoting this precisely, we
use it merely as justification for being able to use the above equations as if they
applied to the greedy algorithm. (This is no doubt the case, but it is not actually
proved in [9].) The solutions to the relevant differential equations for d = 3 and
4 are shown in Figure 3.

In the kth phase a mixture of vertices of degree d−k and d−k−1 are cleaned.
Since max{2l − d, 0} brushes are needed to clean vertex of degree l (see (1)), we
need

uk
d = (1 + o(1))n

(

max{d − 2k, 0}
∫ xk

xk−1

τk

τk + βk
dx

+ max{d − 2k − 2, 0}
∫ xk

xk−1

βk

τk + βk
dx

)

brushes in phase k. Thus, the total number of brushes needed to clean a graph
using the degree-greedy algorithm is equal to

ud =
�(d−1)/2	∑

k=1

uk
d = (1 + o(1))n

(�(d−1)/2	∑

k=1

(

(d − 2k − 2)(xk − xk−1)

+ 2
∫ xk

xk−1

τk

τk + βk
dx

)

+ δd is odd

∫ xk

xk−1

βk

τk + βk
dx

)

.

4.3 3-Regular Graphs

Let G = (V, E) be any 3-regular graph on n vertices. The first vertex cleaned
must start three brush paths, the last one terminates three brush paths, and

22 M.-E. Messinger et al.

all other vertices must start or finish at least one brush path, so the number of
brush paths is at least n/2 + 2.

The result mentioned above can be shown to result in an upper bound of
n/2 + o(n) for the brush number of a random 3-regular (i.e. cubic) graph. We
do not provide details because of the following stronger result. It is known [8]
that a random 3-regular graph a.a.s. has a Hamilton cycle. The edges not in
a Hamilton cycle must form a perfect matching. Such a graph can be cleaned
by starting with three brushes at one vertex, and moving along the Hamilton
cycle with one brush, introducing one new brush for each edge of the perfect
matching. Hence the brush number of a random 3-regular graph with n vertices
is a.a.s. n/2 + 2.

4.4 4-Regular Graphs

For 4-regular graphs, we are interested in phase 1 only: we need two brushes to
clean vertices of degree 3, but vertices of degree 2 are cleaned ‘for free’. Note
that y1(x) = y2(x) = 0. We have the following system of differential equations

dy4

dx
=

−6y4(x)
3y3(x) + 2y4(x)

dy3

dx
=

−3y3(x) + 4y4(x)
3y3(x) + 2y4(x)

with the initial conditions y4(0) = 1 and y3(0) = 0. The particular solution (see
Figure 3 (b)) to these differential equations is

y4(x) = 5 − 4
√

1 + 3x + 3x

y3(x) =
4(−3 + 3

√
1 + 3x − 5x + x

√
1 + 3x)

2 −
√

1 + 3x
,

so β1 = −3 + 3
√

1 + 3x and τ1 = 3 − 2
√

1 + 3x. Thus phase 1 finishes at time
t1 = 5n/12 (x1 = 5/12 is a root of the equation τ1(x) = 0) and the number of
vertices of degree 3 cleaned during this phase is asymptotic to

n

∫ 5/12

0

τ1

τ1 + β1
dx = n/6 .

Since we need 2 brushes to clean one such vertex we get an asymptotically almost
sure upper bound of u4 = (1 + o(1))n/3.

On the other hand, it is true that a.a.s. a random 4-regular graph can be
decomposed into two edge-disjoint Hamilton cycles [3], and hence four paths.

Note that the following two problems can be asked in general for any d ≥ 3.

Problem 1. Is it true that for the random case it is best to clean lowest degree
vertices?

In other words, if one is going to choose a random vertex of given degree then
one might as well choose a random vertex of minimum degree.

Cleaning Random d-Regular Graphs with Brushes 23

If Problem 1 is proven to be true, then the following problem should be con-
sidered. To get the brush number one might (in fact, probably should) choose
non-random vertices during the cleaning process. But it might be true that a.a.s.
one cannot save more than o(n) brushes compared to the greedy algorithm under
consideration.

Problem 2. Is it true that a.a.s. the brush number for a random d-regular graph
is ud(1 − o(1))?

4.5 5-Regular Graphs

In order to study the brush number for 5-regular graphs yielded by the degree-
greedy algorithm, we cannot consider phase 1 only as before; we need 3 brushes
to clean vertices of degree 4 but also 1 brush to clean vertices of degree 3. Thus
two phases must be considered.

In phase 1, y1(x) = y2(x) = y3(x) = 0 and we have the following system of
differential equations

dy5

dx
=

−20y5(x)
8y4(x) + 5y5(x)

dy4

dx
=

−8y4(x) + 15y5(x)
8y4(x) + 5y5(x)

with the initial conditions y5(0) = 1 and y4(0) = 0. The numerical solution (see
Figure 4 (a)) suggests that the phase finishes at time t1 = 0.1733n. The number
of brushes needed in this phase is asymptotic to (the numerical solution)

u1
5 = (1 + o(1))

(

3n

∫ t1/n

0

τ1

τ1 + β1
dx + n

∫ t1/n

0

β1

τ1 + β1
dx

)

= (1 + o(1))

(

t1 + 2n

∫ t1/n

0

τ1

τ1 + β1
dx

)

≈ 0.3180n .

In the phase 2, z1(x) = z2(x) = 0 and we have another system of differential
equations

dz5

dx
=

−15z5(x)
6z3(x) + 4z4(x) + 5z5(x)

dz4

dx
=

−3(4z4 − 5z5(x))
6z3(x) + 4z4(x) + 5z5(x)

dz3

dx
=

−6z3(x) + 8z4(x) − 5z5(x)
6z3(x) + 4z4(x) + 5z5(x)

with the initial conditions z5(t1/n) = y5(t1/n) = 0.5088, z4(t1/n) = y4(t1/n) =
0.3180 and z3(t1/n) = 0. The numerical solution (see Figure 4 (b)) suggests that

24 M.-E. Messinger et al.

0

0.2

0.4

0.6

0.8

1

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

x

0

0.1

0.2

0.3

0.4

0.5

0.2 0.3 0.4 0.5 0.6 0.7

x

(a) 5-regular graph, phase 1 (b) 5-regular graph, phase 2

Fig. 4. Solution to the differential equations

the phase finishes (approximately) at time t2 = 0.7257n. The number of brushes
needed in this phase is asymptotic to (the numerical solution)

u2
5 = (1 + o(1))n

∫ t2/n

t1/n

τ2

τ2 + β2
dx ≈ 0.3259n .

Finally, we get an asymptotically almost sure upper bound of u5 = u1
5 + u2

5 ≈
0.6439n.

4.6 d-Regular Graphs of Higher Order

Note that the lower bound for d = 4 (see Section 3) will be considerably lower
than the lower bound of n/2 + 2 for d = 3, whereas the upper bound we have
been discussing is the same degree-greedy algorithm in all cases. However, the
upper bound is also sensitive to the parity of d. For the 4-regular case, vertices
of degree 2 are processed ‘for free’ and so one only really worries about degree
3 vertices and there are fewer of those processed than degree 2 vertices when

Table 1. Upper bounds on the brush number for some d values

d limn→∞ ud/n

3 0.5
4 0.334
5 0.644
6 0.684
7 0.949
8 1.057
9 1.305
10 1.444
11 1.684
12 1.842

d limn→∞ ud/n

13 2.078
14 2.248
15 2.482
16 2.661
17 2.893
18 3.079
19 3.311
20 3.502
21 3.733
22 3.928

d limn→∞ ud/n

23 4.159
24 4.358
25 4.589
26 4.791
27 5.022
28 5.227
29 5.457
30 5.664
31 5.895
32 6.104

d limn→∞ ud/n

99 21.422
100 21.653
149 33.169
150 33.404
199 45.036
200 45.273
249 56.979
250 57.217
299 68.975
300 69.215

Cleaning Random d-Regular Graphs with Brushes 25

0.1

0.12

0.14

0.16

0.18

0.2

20 40 60 80 100

Fig. 5. A graph of limn→∞ ud/dn versus d (from 3 to 100)

d = 3. But it seems that the parity of d does not affect the value of ud for d big
enough (see Figure 5 and Table 1).

Problem 3. Does limd→∞ limn→∞ ud/dn exist?

In Figure 5, the values of limn→∞ ud/dn have been presented for all d-values
up to 100, although we have only listed the first 30 and a few more values for
higher d in Table 1. The computations presented in the paper were performed
by using MapleTM [7]. The worksheets can be found at the following address:
http://www.mathstat.dal.ca/∼pralat/.

Finally, the most important open question is clearly the following:

Problem 4. Let G ∈ G(n, d). Is there a constant c such that the brush number
is asymptotically cdn?

4.7 Other Models

In this section, we present more open problems.

Problem 5. What is the brush number for binomial random graphs G(n, p)?
What is a lower/upper bound? How about other random graph models, for
example models that give power law degree distribution or d-regular graphs
generated by the d-process?

Another version of the cleaning process was introduced in [5]. In this version,
when a vertex is cleaned multiple brushes are allowed to traverse each dirty edge.
Thus, the brush number B(G) of this generalized version is at most the classic
one b(G). Using the degree-greedy algorithm to clean a random d-regular graph
for d even, no brush ‘gets stuck’ in the first �(d − 1)/2� phases, there is no point
to introduce more brushes in the initial configuration, and vertices in the last
phases are cleaned ‘for free’. So the upper bound obtained is the same as before.
For d odd, it is clear that one can save some brushes at phase (d − 1)/2 but the
following is still open.

http://www.mathstat.dal.ca/~pralat/

26 M.-E. Messinger et al.

Problem 6.

– Is it true that for G ∈ Gn,d, d even, b(G) − B(G) = o(n) a.a.s.?
– Is it true that for G ∈ Gn,d, d odd, b(G) − B(G) = Θ(n) a.a.s.? How far

apart are they?

References

1. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of
labelled regular graphs. European Journal of Combinatorics 1, 311–316 (1980)

2. Bollobás, B.: Random graphs, Combinatorics. In: Temperley, H.N.V. (ed.) Lon-
don Mathematical Society Lecture Note Series, vol. 52, pp. 80–102. Cambridge
University Press, Cambridge (1981)

3. Kim, J.H., Wormald, N.C.: Random matchings which induce Hamilton cycles and
hamiltonian decompositions of random regular graphs. Journal of Combinatorial
Theory, Series B 81, 20–44 (2001)

4. �Luczak, T.: Sparse random graphs with a given degree sequence. In: Frieze, A.,
�Luczak, T. (eds.) Random Graphs, vol. 2, pp. 165–182. Wiley, New York (1992)

5. McKeil, S.: Chip Firing Cleaning Processes. MSc Thesis, Dalhousie University
(2007)

6. Messinger, M.E., Nowakowski, R.J., Pra�lat, P.: Cleaning a Network with Brushes.
Theoretical Computer Science (accepted)

7. Monagan, M.B., Geddes, K.O., Heal, K.M., Labahn, G., Vorkoetter, S.M., McCar-
ron, J., DeMarco, P.: Maple 10 Programming Guide. Maplesoft, Waterloo, Canada
(2005)

8. Robinson, R.W., Wormald, N.C.: Almost all cubic graphs are hamiltonian. Random
Structures and Algorithms 3, 117–125 (1992)

9. Wormald, N.C.: Analysis of greedy algorithms on graphs with bounded degrees.
EuroComb 2001. Discrete Mathematics 273, 235–260 (2003)

10. Wormald, N.C.: Models of random regular graphs. In: Lamb, J.D., Preece, D.A.
(eds.) Surveys in Combinatorics. London Mathematical Society Lecture Note Se-
ries, vol. 276, pp. 239–298. Cambridge University Press, Cambridge (1999)

11. Wormald, N.C.: The asymptotic connectivity of labelled regular graphs. Journal
of Combinatorial Theory, Series B 31, 156–167 (1981)

12. Wormald, N.C.: The differential equation method for random graph processes and
greedy algorithms. In: Karoński, M., Prömel, H.J. (eds.) Lectures on Approxima-
tion and Randomized Algorithms. PWN, Warsaw, pp. 73–155 (1999)

Nonadaptive Selfish Routing with Online

Demands

Tobias Harks1 and László A. Végh2,�

1 Institute of Mathematics, Technical University Berlin, 10623 Berlin, Germany
harks@math.tu-berlin.de

2 Department of Operations Research, Eötvös University, Budapest, Hungary, H-1117
veghal@cs.elte.hu

Abstract. We study the efficiency of selfish routing problems in which
traffic demands are revealed online. We go beyond the common Nash
equilibrium concept in which possibly all players reroute their flow and
form a new equilibrium upon arrival of a new demand.

In our model, demands arrive in n sequential games. In each game,
the new demands form a Nash equilibrium and their routings remain
unchanged afterwards. We study the problem both with nonatomic and
atomic player types and with continuous and nondecreasing latency func-
tions on the edges. For polynomial latency functions, we give constant
upper and lower bounds on the competitive ratio of the resulting online
routing in terms of the maximum degree, the number of games and in
the atomic setting the number of players. In particular, for nonatomic
players and affine latency functions we show that the competitive ratio is
at most 4n

n+2 . Finally, we present improved upper bounds for the special
case of two nodes connected by parallel arcs.

1 Introduction

Recent contributions in the field of algorithmic game theory provided much
insight into the structure and efficiency of Nash equilibria in networks that lack
a central coordination. Among others, a prominent result in this field states that
the price of anarchy for a nonatomic selfish routing game, is bounded by a small
constant depending on the class of feasible latency functions, see Roughgarden
and Tardos [30], Roughgarden [29], and Correa Schulz, and Stier-Moses [11].
It is well known that this kind of games applies to the source routing concept
in telecommunication networks, see Qiu, Yang, Zhang, and Shenker [25] and
Friedman [19] for an engineering perspective and Roughgarden [28] and Altman,
Basar, Jimenez, and Shimkin [1] for a theoretical perspective on this topic. In
the source routing model, sources are responsible for selecting paths to route
data to the corresponding sink.

� Supported by the Hungarian National Foundation for Scientific Research, OTKA
K60802 and NK 67867 and by European MCRTN ADONET, Grant Number 504438.
Work was done while visiting the Konrad Zuse Institute in Berlin.

J. Janssen and P. Pra�lat (Eds.): CAAN 2007, LNCS 4852, pp. 27–45, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

28 T. Harks and L.A. Végh

The main focus of the research done so far regarding the source routing con-
cept is to quantify the efficiency loss of a Nash equilibrium compared to the
system optimum. Here, one assumption is crucial: if the traffic matrix changes,
all sources may possibly change their routes and converge to a new equilibrium,
see Even-Dar and Mansour [16] for a further discussion about the convergence be-
havior. This assumption, however, has some important implications: Each source
would have to continuously maintain the current state of all available routes,
which in turn introduces additional traffic overhead by signaling these needed
informations. Furthermore, frequent rerouting attempts during data transmis-
sion may not only produce transient load oscillations as observed by Fischer
and Vöcking [18], but may also interfere with the widely used congestion control
protocol tcp that determines the data rate, as reported by La, Walrand, and
Anantharam in [24]. For these reasons, rerouting attempts in reaction to traffic
changes in the network are not necessarily beneficial and efficient.

In this paper, we study a different model in which demands of players are re-
leased in n sequential games in an online fashion. In each game, the new demands
form a Nash equilibrium, and their routing remains unchanged afterwards, that
is, the routing becomes nonadaptive.

We can interpret this model as follows. Let us introduce a cost for each player
quantifying the cost of rerouting after some initial time frame. Within the stan-
dard equilibrium concept, rerouting comes at no cost. On the other hand, if
this rerouting cost is sufficiently large for each player, then, fixing the initial
equilibrium routing is the best response strategy.

If rerouting is not allowed in general, then, the problem of finding efficient
routings becomes an online optimization problem. In this regard, nonadaptive
selfish routing constitutes an online algorithm, where the goal is to minimize
average congestion cost for all commodities. We present two distributed online
algorithms, called NSeqnash and ASeqnash for this setting. Upon release of a
set of commodities (network game), the online algorithm NSeqnash routes the
commodity such that the flow is at Nash equilibrium provided nonatomic agents
are carrying the flow. The atomic splittable variant is given by ASeqnash.

1.1 Related Work

The fact that the cost of a Nash equilibrium may strictly exceed that of a
system optimum is well known in the transportation literature, see Braess [6]
and Dubey [15]. A first successful attempt to exactly quantify this so called “price
of anarchy” is given by Papadimitriou and Koutsoupias [23] in the context of a
load balancing game in communication networks. Roughgarden and Tardos [30]
studied the price of anarchy in nonatomic selfish routing games. In nonatomic
games, a large number of players is assumed, each consuming an infinitesimal
part of the resources. In particular, they proved for affine latency functions a
bound of 4

3 on the price of anarchy. A series of several other follow-up papers
analyzed the price of anarchy for more general cost functions and model features;
see for example Czumaj and Vöcking [13], Correa Schulz, and Stier-Moses [11],
and Roughgarden [28].

Nonadaptive Selfish Routing with Online Demands 29

For atomic routing games, that is, some players may control a significant part
of the entire demand, Roughgarden and Tardos [30] examined the price of an-
archy for unsplittable flow. Awerbuch, Azar, and Epstein [2] and Christodoulou
and Koutsoupias [9] studied the price of anarchy for linear atomic congestion
games. Cominetti, Correa, and Stier-Moses [10] presented new bounds on the
price of anarchy for splittable atomic routing games that revised previous work
of Roughgarden [29] and Correa, Schulz, and Stier-Moses [12]. Hayrapetyan,
Tardos, and Wexler [22] improved these bounds for special network topologies.

In the online routing field, several papers considered online load balancing
in the context of machine scheduling. Awerbuch et al. [3] considered a greedy
online load balancing strategy, where the goal is to minimize the L2 norm of the
aggregated server loads. Similar to this paper, Suri et al. [31] and Caragiannis et
al. [7] studied Nash solutions for every released job and showed that the resulting
online algorithm outperforms the greedy strategy of [3]. These results, however,
are restricted to m parallel arcs and all jobs have to be assigned to exactly
one machine. In the paper by Awerbuch, Azar, and Plotkin [4], online routing
algorithms are presented to maximize throughput under the assumption that
routings are irrevocable. They presented online algorithms whose competitive
bounds depend on the number of nodes in the network.

Our work is motivated by the paper by Harks, Heinz, and Pfetsch [21], where
online multicommodity routing problems are considered. They considered affine
latency functions and presented a greedy online algorithm for a different convex
cost function that is 4K2

(1+K)2 competitive, where K is the number of commodities.
In their framework, only single demands are released consecutively.

1.2 Our Results and Techniques

We introduce the framework Online Network Games (OnlineNG) to analyze
nonadaptive selfish routing under the assumption that demands (network games)
are released online. For the online algorithm NSeqnash that is characterized
by selfish routing of nonatomic players for a sequence of network games, we
obtain the following results. The online algorithm NSeqnash that produces a
flow that is at Nash equilibrium for every game is 4n

2+n -competitive for affine
latency functions, where n is the number of games within a given sequence.
This result contains the bound on the price of anarchy of 4

3 for affine latency
functions of Roughgarden and Tardos [30] as a special case of our result, where
n = 1. We prove a lower bound of 3n−2

n of NSeqnash showing that for n = 2, the
upper bound is tight. For linear latency functions, we further improve this bound
to 4n2

(1+n)2 . For polynomial latency functions with nonnegative coefficients, we
prove lower and upper bounds on the competitive ratio of NSeqnash that grow
both exponentially in the degree of the considered polynomials. We further show
that for parallel arcs, the competitive ratio is significantly lower. In particular, we
show that in this case, the competitive ratio of the online algorithm NSeqnash

does not exceed the price of anarchy of a related nonatomic network game in
which all games of a given sequence are considered at the same time.

30 T. Harks and L.A. Végh

Furthermore, we consider online network games in which atomic players route
their demand selfishly. Note that the atomic players may split their flow along
different paths. The online algorithm ASeqnash, which produces a flow that is
at Nash equilibrium for every game is min{ 2(3K+1)n

nK+3n+3K+1 , 5K+1
K+5 , 4.92}-competitive

for affine latency functions Here, K denotes the total number of players and n
is the number of games within a given sequence. For general polynomial latency
functions, we prove lower and upper bounds on the competitive ratio of ASeq-

nash that grow both exponentially in the degree of the considered polynomials.
Finally, we prove better bounds for the parallel arc case for ASeqnash, relating
the cost of ASeqnash to the cost of a nonatomic game, generalizing a result of
Hayrapetyan, Tardos, and, Wexler [22].

To prove our main results (Theorem 1 and 2) we generalize the variational
inequality approach previously used by Correa, Schulz, and Stier-Moses [11],
Roughgarden [27], Cominetti, Correa, and Stier-Moses [10], and Harks [20]. The
techniques used to prove upper bounds for ASeqnash in the parallel arc case
(Theorem 4) are based on ideas of Hayrapetyan, Tardos, and, Wexler [22]. Our
extended approach incorporates the known price of anarchy results as a special
case with n = 1.

Note that the online algorithms NSeqnash and ASeqnash are fully dis-
tributed, hence, no coordination mechanism is needed to implement these al-
gorithms. Furthermore, all results for the parallel arc case directly carry over
to the online load balancing problem with parallel (splittable) jobs, where the
objective is to minimize the L2 norm of the server loads.

2 Online Network Games

An instance of the Online Network Game (OnlineNG) consists of a directed
network D = (V, A) together with nondecreasing continuous and convex latency
functions �a : �+ → �+ for each arc a ∈ A. Furthermore, a sequence σ =
1, . . . , n of network games are given. A network game i is characterized by a set
of commodities [Ki] := {i1, . . . , i ni}. For each commodity ij ∈ [Ki], a flow of
rate dij > 0 must be routed from the origin sij to the destination tij . The routing
decision for game i is online, that is, it only depends on the routings of previous
games 1, . . . , i−1. Once the commodities of a game have been routed, they remain
unchanged. Let [K] =

⋃n
i=1[Ki] denote the union of the sets [K1], . . . , [Kn]. The

total number of commodities is given by K =
∑n

i=1 ni.
A routing assignment, or flow, for commodity ij ∈ [Ki] is a nonnegative vector

f ij ∈ �A
+. This flow is feasible, if for all v ∈ V

∑

a∈δ+(v)

f ij
a −

∑

a∈δ−(v)

f ij
a = γij(v),

where δ+(v) and δ−(v) are the arcs leaving and entering v, respectively; further-
more, γij(v) = dij , if v = sij , −dij if v = tij , and 0, otherwise. Alternatively, one
can consider a path flow for a commodity ij ∈ [Ki]. Let Pij be the set of all paths

Nonadaptive Selfish Routing with Online Demands 31

from sij to tij in D. A path flow is a nonnegative vector (f ij
P)P∈Pij . The corre-

sponding flow on link a ∈ A for commodity ij ∈ [Ki] is then f ij
a :=

∑
P�a f ij

P .
We denote by f i

a =
∑

ij∈[Ki] f
ij
a the aggregated flow of game i on link a. The

total aggregate flow on link a is given by fa =
∑n

i=1 f i
a. We define Fi with

i ∈ [n] to be the set of vectors (f1, . . . , f i) such that f j is a feasible flow for
games j = 1, . . . , i. If (f1, . . . , f i) ∈ Fi, we say that it is feasible for the sequence
of network games 1, . . . , i. The entire flow for the sequence 1, . . . , n of games is
denoted by f = (f1, . . . , fn).

The current cost of a feasible flow for game i on link a ∈ A is given by
�a

(∑i
j=1 f j

a

)
f i

a. This expression can be obtained as the routing cost on arc a for
a feasible flow for game i, given the flows (f1, . . . , f i−1) of previous games 1, . . . ,
i − 1 and without knowing about future games j = i + 1, . . . , n. The individual
current cost for commodity ij ∈ [Ki] on arc a is given by �a

(∑i
j=1 f j

a

)
f ij

a . Note
that this individual current cost on arc a may increase if later commodities are
routed on a. The total cost of all sequentially played games is given by:

C(f) =
∑

a∈A

�a(fa) fa =
∑

a∈A

�a

(n∑

i=1

f i
a

)(n∑

i=1

f i
a

)
. (1)

This cost function reflects the routing cost provided all commodities of the entire
sequence of games have been routed. Thus, the cost of routing commodities of
a sequence of games is not separable with respect to the games. That is, if an
online algorithm routes flow for the games i+1, . . . , n along arcs that are used by
commodities of games 1, . . . , i, the latter commodities may face higher individual
cost on these arcs compared to their initial routing costs.

2.1 Player Types

Motivated by the source routing model in telecommunication networks, we focus
on selfish behavior of players routing the demands dij , ij ∈ [K]. In the following,
we use the word commodity ij interchangeably with player ij to indicate that
this player decides on the routing assignment f ij for the demand dij .

In the nonatomic routing variant, we assume infinitely many agents carrying
the flow of a player, where each agent controls only an infinitesimal fraction of
the flow. This is in contrast to the atomic routing variant, where it is assumed
that each player ij controls and coordinates the entire flow for his demand dij .
For a sequence of games, we investigate the online algorithms NSeqnash and
ASeqnash (a formal definition follows) that produce a feasible flow f1, . . . , fn ∈
Fn, where each f i is at Nash equilibrium for the corresponding network game i.

2.2 Nash Equilibria for Nonatomic and Atomic Players

A flow for game i is at Nash equilibrium, if no player has an incentive to uni-
laterally change her strategy. We assume that players of game i decide on their
strategies without taking future games j = i+1, . . . , n into account. It is straight-
forward to check that a Nash flow f i for nonatomic players minimizes the

32 T. Harks and L.A. Végh

potential function Φi(f) =
∑

a∈A

∫ fi
a

0 �a(
∑i−1

k=1 fk
a +z) dz, see for example Rough-

garden and Tardos [30]. Furthermore, using convexity of the potential function
two different Nash equilibria incur the same cost. The following conditions are
necessary and sufficient to characterize a Nash equilibrium for game i.

Lemma 1. A feasible flow f i for the nonatomic game i is at Nash equilibrium
if and only if it satisfies:

∑

a∈A

�a

(i∑

k=1

fk
a

)
(f i

a − xi
a) ≤ 0 for all feasible flows xi for game i. (2)

The proof is based on the first order optimality conditions and the convexity of
the potential function Φi(f), see Dafermos and Sparrow [14].

Definition 1 (�������� for the 	�
�����). Consider an instance of the
OnlineNG with a given sequence σ of n network games. The deterministic
online algorithm NSeqnash produces a feasible flow f = (f1, . . . , fn) ∈ Fn,
such that each flow fk minimizes Φk(f), that is, each fk is at Nash equilibrium
for the corresponding games k ∈ [n].

Note that the problem of minimizing Φk(f) is well defined and admits an optimal
solution with a unique objective value. Hence, NSeqnash is also well defined
by this property. Since this convex program may have several different solutions
(with the same objective value), the flow that NSeqnash produces is not nec-
essarily unique. As this might contradict the notion of a deterministic online
algorithm, we can advise a selection rule to make the flow unique. We omit this
issue in the following, since our results hold for every sequence of Nash flows for
the games 1, . . . , n.

In network games with atomic players, some players may control a signif-
icant part of the entire demand. In the following, we characterize the strat-
egy of an atomic player. It is straightforward to see that a best reply strategy
for player ij of game i is to minimize its individual current cost Cij(f) :=
∑

a∈A �a(
∑i

k=1 fk
a)f ij

a .
The following conditions are necessary and sufficient to characterize a Nash

equilibrium for game i.

Lemma 2. A feasible flow f i for the atomic game i is at Nash equilibrium if
and only if for every player ij ∈ [Ki] the following inequality is satisfied:

∑

a∈A

(
�a

(i∑

k=1

fk
a

)
+ �′a

(i∑

k=1

fk
a

)
f ij

a

)
(f ij

a − xij
a) ≤ 0, (3)

for all feasible flows xij for game i.

The proof relies on the convexity of �a(z) z.

Definition 2 (������� for the 	�
�����). Consider an instance of the
OnlineNG with a given sequence σ of n network games. The deterministic

Nonadaptive Selfish Routing with Online Demands 33

online algorithm ASeqnash produces a feasible flow f = (f1, . . . , fn) ∈ Fn,
such that each flow f ij , ij ∈ [Ki], i ∈ [n] minimizes Cij(f), that is, each f i is
at Nash equilibrium for the corresponding games i ∈ [n].

Since we assume convex latency functions, the minimization problem is well
defined and admits an optimal solution with a unique objective value. Then, the
existence of a flow at Nash equilibrium is guaranteed by the result of Rosen [26].
Hence, ASeqnash is also well defined by this property.

Finally, the total offline optimum minimizes the total cost C(f) among all
feasible flows. For a given sequence σ, we denote by Opt(σ) the optimal value
of this convex problem.

3 Competitive Analysis

For a solution f produced by an online algorithm Alg for a given sequence of
games σ, we denote by Alg(σ) = C(f) its cost. An online algorithm Alg is
called (strictly) c-competitive, if the cost of Alg is never larger than c times the
cost of an optimal offline solution. The competitive ratio of Alg is the infimum
over all c ≥ 1 such that Alg is c-competitive, see for instance Borodin and
El-Yaniv [5] and Fiat and Woeginger [17].

3.1 Competitive Analysis for ��������

In order to derive competitive results for NSeqnash for a sequence of games,
we make use of the variational inequality (2). Using the notation ϑn

a (�a, fa) :=
�a(fa)fa −

∑n
i=1 �a

(∑i
k=1 fk

a

)
f i

a, we define for every a ∈ A, nonnegative vectors
fa, xa ∈ �K

+, and a nonnegative real number λ ≥ 0, the following value (we
assume by convention 0/0 = 0):

ω(�a; n, λ) := sup
xa,fa≥0

(
�a(fa) − λ �a(xa)

)
xa + ϑn

a (�a, fa)
�a(fa)fa

. (4)

Figure 1 illustrates the value ω(�a; n, λ) for n = 3. For a given class L of nonde-
creasing latency functions we further define ω(L; n, λ) := sup

�a∈L
ω(�a; n, λ). Fur-

thermore, we define the following feasible set for the parameter λ.

Definition 3. The feasible scaling set for λ is defined as

Λ(L, n) :=
{
λ ∈ �+|

(
1 − ω(L; n, λ)

)
> 0

}
.

Theorem 1. Consider an instance of the OnlineNG involving a sequence of
n games and latency functions in L. Then, the competitive ratio of NSeqnash

is at most

inf
λ∈Λ(L,n)

[
λ

1 − ω(L; n, λ)

]

.

34 T. Harks and L.A. Végh

0
0

�a(·)

�a(f1
a)

�a(f1
a + f2

a)

λ �a(xa)

�a(f1
a + f2

a + f3
a)

f1
a xa f1

a + f2
a + f3

af1
a + f2

a

Fig. 1. Illustration of the value ω(�a; λ, n) for n = 3. The entire shaded area corre-
sponds to the value ϑn

a(�a, f). For some λ > 1, the dark-gray shaded rectangle corre-
sponds to the first term

�
�a(fa) − λ �a(xa)

�
xa.

Proof. Let f be the flow generated by NSeqnash and let x be any feasible flow
for a given sequence of games σ = 1, . . . , n. Then, we obtain:

C(f) ≤
∑

a∈A

(
�a(fa) fa +

n∑

i=1

�a(
i∑

j=1

f j
a)

(
xi

a − f i
a)

)
(5)

≤
∑

a∈A

(
ϑn

a(�a, fa) + �a(fa)xa

)

= λC(x) +
∑

a∈A

(
ϑn

a (�a, fa) +
(
�a(fa) − λ �a(xa)

)
xa

)

≤ λC(x) + ω(L; n, λ)C(f). (6)

Here, (5) follows by applying the variational inequality in Lemma 1. The last
inequality (6) follows from the definition of ω(L; n, λ) and since λ ∈ Λ(L, n).
Taking x as the optimal offline solution yields the claim.

In the following we relate the value ω(L; n, λ) to the anarchy value α(L) in-
troduced by Roughgarden in [27], the parameter β(L) introduced by Correa,
Schulz, and Stier-Moses in [11], and the value ω(L; λ) introduced in Harks [20].
Our definition of ω(L, n, λ) is equal to ω(L; 1) = β(L) = 1 − 1

α(L) if we have
λ = 1 and n = 1. For arbitrary λ ≥ 0 and n = 1, we have ω(L, n, λ) = ω(L, λ) as
defined in Harks [20]. The difference between these two values is the nonnegative
value ϑn

a(�a, fa), which accounts for the online setting. It increases for n ≥ 1
making the value ω(L, n, λ) larger and, hence, increases the competitive ratio.

Upper Bounds for Linear Latency Functions. In the following, we bound
the value ω(L; n, λ) for affine linear latency functions. We start with some useful
prerequisites.

Lemma 3. For affine functions �(z) = c1z + c0, c1 ≥ 0, c0 ≥ 0, the value
ω(L; n, 1) is at most 3n−2

4n .

Nonadaptive Selfish Routing with Online Demands 35

The proof of the lemma follows from the Cauchy-Schwarz inequality and the
inequality (f − x)x ≤ 1

4 f2.
Equipped with the above lemma, we can apply Theorem 1 to derive an upper

bound on the competitive ratio of NSeqnash for affine latency functions.

Corollary 1. If the latency functions of the OnlineNG are affine, the online
algorithm NSeqnash is 4n

n+2 -competitive, where n is the number of games.

For n = 1, we obtain the bound of 4
3 for nonatomic network games involving

affine latency functions first proved in Roughgarden and Tardos [30].
For purely linear latency functions we can improve the upper bound by defin-

ing λ := n
n+1 below 1.

Corollary 2. If the latency functions of the OnlineNG are linear, the online
algorithm NSeqnash is 4n2

(n+1)2 -competitive, where n is the number of games.

Using a geometric proof as illustrated in Figure 1 the upper bound of 4 also
holds for general continuous, nondecreasing, and concave latency functions.

Corollary 3. If the latency functions of the OnlineNG are concave, the online
algorithm NSeqnash is 4-competitive.

Upper Bounds for Polynomial Latency Functions. Now we consider the
class Ld of polynomials with nonnegative coefficients and degree at most d ∈ �:

Ld := {cd xd + · · · + c1 x + c0 : cs ≥ 0, s = 0, . . . , d}.

Note that polynomials in Ld are nonnegative for nonnegative arguments, nonde-
creasing, and convex. We can easily see that supfa≥0 ϑn

a(�a, fa) ≤ d
d+1 �a(fa) fa

for �a ∈ Ld. Observe that the cost function C(f) is linear in each of the latency
functions �a(·). Therefore, we can reduce the analysis to monomial price func-
tions by subdividing each arc a into d arcs a1, . . . , ad with monomial latency
functions �as(x) = cs xs for every s = 1, . . . , s.

Lemma 4. For the class Md of monomials cs xs of degree 1 ≤ s ≤ d and λ ≥ 1,
we have

ω(Md; n, λ) ≤ max
0≤μ

μ − λμd+1 +
d

d + 1
.

Proof. For �a(·) ∈ Md, we can assume that �a(fa) fa > 0, since otherwise
ω(Md; n, λ) = 0 and the claim is trivially true. By definition, we have

ω(�a; n, λ) = sup
xa,fa≥0

(
�a(fa) − λ �a(xa)

)
xa + ϑn

a(�a, fa)
�a(fa) fa

.

Defining μ := xa

fa
(recall that fa > 0), we obtain

ω(�a; n, λ) ≤ sup
0≤μ

(
�a(fa) − λ �a(μ fa)

)
μ fa

�a(fa) fa
+

d

d + 1
.

36 T. Harks and L.A. Végh

Consider now the monomial price function �a(xa) = cs xs
a of degree s ∈ [d]. To

bound the value ω(�a; n, λ) from above, we have to consider:

sup
0≤μ

(cs fs
a − λ cs μs fs

a)μ fa

cs fs+1
a

= max
0≤μ

μ − λμs+1. (7)

Because of the assumption λ ≥ 1 the maximum is attained at a point with μ ≤ 1.
Thus, it follows that max0≤μ μ − λμs+1 ≤ max0≤μ μ − λμd+1. This shows the
claim.

Proposition 1. For polynomial latency functions � ∈ Ld and λ := (d+1)(d−1),
the value ω(L; n, λ) is at most d2+2 d

(d+1)2 .

Proof. The unique solution of the maximization problem in Lemma 4 is given
by μ∗ = 1

d+1 . Evaluating the objective with λ := (d + 1)(d−1) proves the claim:

ω(�a, n; λ) ≤ 1
d + 1

− (d + 1)(d−1) (
1

d + 1
)d+1 +

d

d + 1
=

d2 + 2 d

(d + 1)2
.

Corollary 4. Consider the OnlineNG with latency functions in Ld. Then, the
competitive ratio of the online algorithm NSeqnash is at most (d + 1)d+1.

Proof. Let the flow f be produced by the online algorithm NSeqnash and let
x be an arbitrary feasible flow for the OnlineNG. We define λ := (d + 1)(d−1)

and apply Proposition 1, which yields ω(L; n, λ) ≤ d2+2 d
(d+1)2 . In order to apply

Theorem 1, we have to verify that λ ∈ Λ(L, n). What remains to be shown
is that 1 − d2+2 d

(d+1)2 > 0 holds. This inequality is equivalent to 1
d+1 > 0. Then,

applying Theorem 1 yields

C(f) ≤ (d + 1)d−1
(
1 − d2+2 d

(d+1)2
) C(x) = (d + 1)d+1 C(x).

Taking x as the optimal offline solution proves the claim.

3.2 Competitive Analysis for �������

In this section, we analyze the efficiency of the online algorithm ASeqnash,
which produces a flow f i that is at Nash equilibrium for every game i provided
that we also allow for atomic players. Recently, Cominetti, Correa, and Stier-
Moses [10] discovered that the price of anarchy may be quite large in network
games with atomic players. Based on the work of Catoni and Pallotino [8], they
presented an example, where the price of anarchy in a network game with atomic
players is larger than that of the corresponding nonatomic game. As we show in
this section, our upper bounds on the competitive ratio of the online algorithm
ASeqnash also exceed that of NSeqnash. In the following we only present the
main ideas. Complete proofs are left for the full version of this paper.

Nonadaptive Selfish Routing with Online Demands 37

We define for every a ∈ A, for any nonnegative vectors fa, xa ∈ �K
+ the value

θa(�a; fa, xa) :=
n∑

i=1

(
�′a(

i∑

k=1

fk
a)

∑

ij∈[Ki]

(
f ij

a xij
a − f ij

a f ij
a

))
.

By assuming 0/0 = 0, we further define

ω(�a; n, K, λ) := sup
fa,xa≥0

(
�a(fa) − λ �a(xa)

)
xa + ϑn

a(�a, fa) + θa(�a; fa, xa)
�a(fa)fa

.

(8)

For a given class L of nondecreasing latency functions and a nonnegative real
number λ ≥ 0, we further define ω(L; n, K, λ) := sup

�a∈L
ω(�a, n, K; λ). We define

the following feasible set for the parameter λ.

Definition 4. The feasible scaling set for λ is defined as

Λ(L, n, K) :=
{
λ ∈ �+|

(
1 − ω(L; n, K, λ)

)
> 0

}
.

Theorem 2. Consider an instance of the OnlineNG involving a sequence of
n games with K players and latency functions in L. Then, the competitive ratio
of ASeqnash is at most

inf
λ∈Λ(L,n,K)

[
λ

1 − ω(L; n, K, λ)

]

.

The proof proceeds along the same lines as the proof of Theorem 1 except that
the value ω(�a; n, K, λ) contains derivatives �′, which account for the ability of
atomic players to coordinate their flow .

Linear and Polynomial Latency Functions. To facilitate the result of The-
orem 2, we bound ω(L; n, K, λ) for linear latency functions.

Lemma 5. For affine latency functions �(z) = c1 z + c0, c1 ≥ 0, c0 ≥ 0, and
λ ≥ 1 the value ω(L; n, K, λ) is less than or equal to 4(K−1)

5K+1 .

Applying Theorem 2 with λ = 1 yields the following result.

Corollary 5. If the latency functions of the OnlineNG are affine, the online
algorithm ASeqnash is 5K+1

K+5 -competitive, where K is the total number of play-
ers.

Corollary 5 gives abound that only depends on the total number of players in
the sequence σ of games. This bound states that ASeqnash is asymptotically 5-
competitive for online atomic network games. By choosing λ = 1.13 and applying
Theorem 2 it is possible to improve the upper bound to 4.92.

In the following, we derive a bound that depends on the number of games.

Corollary 6. If the latency functions of the OnlineNG are affine, the on-
line algorithm ASeqnash is 2(3K+1)n

nK+3n+3K+1 -competitive, where n is the number of
games and K is the total number of players.

38 T. Harks and L.A. Végh

s1

t1

s2

t2

. . .

. . .

sk

tk

s

t

1 2 kz

0 0 0

0 0 0

Fig. 2. Graph construction for the proof of the lower bound in Proposition 2 and
Corollary 9

This bound is asymptotically 6-competitive. It provides, however, an explicit
dependency on the number of games and players involved. For n = 1, we ob-
tain a bound of 3K+1

2K+2 for atomic network games with affine latency functions;
this bound has previously been established by Cominetti, Correa and Stier-
Moses [10]. For K → ∞ we can establish a bound of 6 n

n+3 that only depends on
the number of games.

For latency functions in Ld, we can show the following bounds.

Corollary 7. If the latency functions of the OnlineNG are in Ld, the compet-
itive ratio of the online algorithm ASeqnash is at most

(
1 + 5

4 d + 1
4 d2

)d+1
.

3.3 Lower Bounds

Based on an an instance presented in Harks, Heinz, and Pfetsch [21], we can
easily show that any deterministic online algorithm for the OnlineNG has a
competitive ratio greater then or equal to 4

3 even for linear latencies. In the fol-
lowing, we present an increased lower bound for NSeqnash. Note that all lower
bounds for NSeqnash also provide lower bounds for ASeqnash since we can
simulate a nonatomic player by infinitely many atomic players each controlling
a negligible fraction of the demand.

Proposition 2. In case of affine latency functions, the online algorithm NSe-

qnash for the OnlineNG has a competitive ratio greater than or equal to 3n−2
n ,

where n is the number of games.

Proof. We consider the network presented in Figure 2 with the latency functions:
�(si,s)(z) = 0, �(t,ti)(z) = 0, �(si,ti)(z) = i, i = 1, . . . , k, and �(s,t)(z) = z. We
consecutively release a sequence of games (1, . . . , k), where in each game j, there
is a single player type j1. The demand of player type j1 is 1 that has to be routed
from si to ti, for i = 1, . . . , k. Due to the choice of the affine terms i, NSeqnash

routes for every game the corresponding demand over the arc from s to t. Then

Nonadaptive Selfish Routing with Online Demands 39

we release the (k + 1)-th game with demand d from s to t. Thus, the total cost
for the sequence σ = (1, . . . , k + 1) for NSeqnash with the new cost function is
given by: NSeqnash(σ) = (k + d)2. The optimal offline algorithm Opt routes
the demands of the first k games along the direct arcs from si to ti incurring cost
of:

∑k
i=1 i = k(k+1)

2 . The last demand in game k + 1 is routed from s to t with
cost d2. The total cost for Opt is given by: Opt(σ) = k(k+1)

2 + d2. Replacing
k = n − 1 and setting d = n

2 yields

NSeqnash(σ)
Opt(σ)

=
2(k + d)2

k(k + 1) + 2d2 =
3n − 2

n
, (9)

which proves the theorem.

Remark 1. For n = 2, the upper bound given in Corollary 1 is tight.

Based on the same instance, except using linear latency functions, we can prove
a lower bound for purely linear latency functions.

Corollary 8. For linear latency functions, the online algorithm NSeqnash for
OnlineNG has a competitive ratio greater than or equal to 33+5

√
33

33+
√

33
.

Corollary 9. For latency functions in Ld, the online algorithm NSeqnash for
OnlineNG has a competitive ratio greater than or equal to d+1

d+2 2d+1.

The proof is again based on the instance in Figure 2 except that we use a
monomial zd for the (s, t) arc and the constant terms i become id. The rest of
the proof then consists of technical calculations that are omitted.

The construction of the lower bounds show that the first player that routes its
demand along the arc (s, t) experiences individual cost of (k+x) after routing all
commodities. In the common Nash equilibrium, where all players are adaptive
and reroute their demand, this player would route its demand along the direct
arc incurring cost of 1. Thus, the ratio of the individual cost of a nonadaptive
player and that of an adaptive player is unbounded.

4 Parallel Arcs

For graphs that consist of two nodes and parallel arcs, we can show that NSe-

qnash performs not worse than a Nash flow for the entire game sequence that
is played in parallel. In other words, for a given sequence of games, we compare
the cost of NSeqnash to the cost of a Nash flow of a parallel game, where all
players of the entire game sequence route their demands simultaneously.

For a given instance of the OnlineNG involving a sequence of games σ,
we define the parallel game σ̄ as a single game that contains all players of the
sequence σ simultaneously.

Recall from the Wardrop condition [32] that a flow f is at Nash equilibrium
if and only if the following condition is satisfied:

40 T. Harks and L.A. Végh

s

b

a

t

1

x
0

1

x

Fig. 3. Bad Example 1 based on the Graph of the Braess Paradox

Lemma 6. A feasible flow f for the game σ̄ is a Nash equilibrium if and only
if:

�a(fa) ≤ �â(fâ), for all arcs a, â ∈ A such that fa > 0. (10)

Note that for nonatomic network games, Nash equilibria and Wardrop equilib-
ria are the same. A similar condition holds for the flow that is produced by
NSeqnash.

Lemma 7. A feasible flow f for the sequence of games σ is produced by NSe-

qnash if and only if for all k ∈ [n]:

�a(
k∑

i=1

f i
a) ≤ �â(

k∑

i=1

f i
â), for all edges a, â ∈ A, such that fk

a > 0. (11)

Theorem 3. Let D = (V, A) with V = {s, t} and A a set of edges from s to
t. We are given a sequence of games σ = 1, . . . , n. Let f be a flow produced
by NSeqnash for the nonatomic OnlineNG with a single nonatomic player
routing di from s to t in every game i ∈ [n]. Let f∗ be a flow at Nash equilibrium
for the corresponding game σ̄ with a single player routing

∑n
i=1 di from s to t.

Then, C(f) = C(f∗).

Proof. We prove that the flow f satisfies all conditions of Lemma 6 for the game
σ̄. By the uniqueness of the cost of a Nash equilibrium the claim is proven. The
latency of the flow f on edge a is equal �a(fa). By contradiction assume that
there exist edges a, â ∈ A with �a(fa) > �â(fâ), with fa > 0. Let k ∈ [n] be
the largest index with fk

a > 0. The existence of such an index k is granted since
fa =

∑n
i=1 f i

a > 0 is assumed. As in games k+1, . . . , n, the edge a is not used any
more, we have that �a(fa) = �a

(∑k
i=1 f i

a

)
. Using the assumption that latency

functions are nondecreasing it follows that �â(fâ) ≥ �â

(∑k
i=1 f i

â

)
. By Lemma 7

for game k, we have �â

(∑k
i=1 f i

â

)
≥ �a

(∑k
i=1 f i

a

)
, thus �â(fâ) ≥ �â

(∑k
i=1 f i

â

)
≥

�a

(∑k
i=1 f i

a

)
= �a(fa), a contradiction.

The intuition of the above proof fails, however, for general networks with a single
source and a single destination. To see this, we present an instance, where the
cost of a flow f produced by NSeqnash is larger than that of the corresponding
Nash flow f∗ for the game σ̄.

Nonadaptive Selfish Routing with Online Demands 41

Example 1. Consider the graph of Braess’s paradox in Figure 3 and two games
that are released consecutively. Each game has a single nonatomic player routing
one unit d1 = 1, d2 = 1 from s to t. The path system P1 for the first player
contains P1 = (s, a, t), P2 = (s, a, b, t), P3 = (s, b, t). A flow that is at Nash
equilibrium for the first game routes 1 unit of flow on P2, having path latency
�1(f1) = 2. In the second game, we route 1

2 unit on P1 and 1
2 on P3, both having

path latency �2(f) = 2.5. Now �2
P2

(f) = 3. Thus, the total cost is C(f) =
1 × 2.5 + 1 × 3 = 5.5. However, for the game σ̄ we route 2 units of flow from
s to t. Then, a flow f∗ at Nash equilibrium routes one unit along paths P1
and P3. The path latencies are �P1(f) = �P2(f) = 2, thus the total cost is
C(f∗) = 2 × 2 = 4.

In the following, we investigate the parallel arc setting for ASeqnash. For the
atomic case in a parallel arc network, Hayrapetyan, Tardos and, Wexler [22] have
proved a similar result. Assume we have a single game with an arbitrary number
of atomic players, and x �a(x) is a convex function for all edges a. Then, the equi-
librium cost is at most as much as the cost of the nonatomic Nash equilibrium of
the total demand. Now we generalize this result for the OnlineNG.

We will compare a sequence of games with an arbitrary number of atomic
players with a single game, where nonatomic players routes the flow g such that
the total demand of the entire sequence is satisfied. Instead of comparing the
usual costs, our result involves another cost function C2(f):

C2(f) =
n∑

i=1

∑

a∈A

�a

(i∑

j=1

f j
a

)
f i

a. (12)

C2(f) means that players in game i have to pay only after their current latency
in game i, and no cost according to the games i+1, . . . , n. Note that the relation
C2(f) ≤ C(f) holds because of the monotonicity of �a. In the following, we will
show that C2(f) ≤ C(g). Then, by defining δ := supf (C(f)/C2(f)), we are
still able to bound the usual cost: C(f) ≤ C2(g) ≤ δ C(g). For latency functions
� ∈ Ld, we have for instance δ ≤ d + 1. Now we are ready to state the following
theorem:

Theorem 4. Consider an instance of OnlineNG with a sequence of games
σ = 1, . . . , n and the underlying graph D = (V, A) with V = {s, t} and A
consisting of parallel st-edges. Let f be a flow produced by ASeqnash for this
game with ni atomic players in game i. Let d =

∑n
i=1

∑ni

j=1 dij denote the total
demand over all games. Let g be at Nash equilibrium for a single nonatomic
game with a single player routing d units from s to t. Then C2(f) ≤ C(g).

For n = 1, this gives Theorem 2.3 in [22]. To prove the theorem, we introduce
di =

∑ni

j=1 dij , the total demand in game i. The essence of the proof is the
following lemma:

Lemma 8. Assume we have a sequence of two games with D = (V, A) satisfying
the conditions of Theorem 4. In the first game, n1 atomic players route each d1j

42 T. Harks and L.A. Végh

units of flow from s to t. In the second game, there is a nonatomic player routing
z units. Let h = (h1, h2) be in equilibrium for this sequence, and let m be in
equilibrium for a single game with a single nonatomic player routing d1 +z from
s to t. Then C2(h) ≤ C(m).

Before proving this lemma, we show how it implies Theorem 4. The proof is by
induction. If n = 1, then we apply the lemma for z = 0. If n > 1, suppose we
have proved the theorem for n − 1. Fix the flows of the first game, and modify
the cost function �a to qa(x) = �a(x + f1

a). Consider the games 2, . . . , n − 1 with
cost function qa, and let Cq

2 denote the modified cost function. By definition,
(f2, . . . , fn) is in equilibrium for this sequence, and C2(f) =

∑
a∈A �a(f1

a)f1
a +

Cq
2 (f2, . . . , fn).
Let gq be a routing in Nash equilibrium of z =

∑n
i=2 di units for the cost

function qa; let Cq denote its cost. By induction, Cq
2 (f2, . . . , fn) ≤ Cq. Consider

now the game described in the lemma. h = (f1, gq) is in equilibrium, and the
game m is identical to g as d1 + z = d. By the lemma, C2(h) ≤ C(m) = C(g).

On the other hand,

C2(h) =
∑

a∈A

�a(f1
a)f1

a + Cq ≥
∑

a∈A

�1
a(f1

a)f1
a + Cq

2 (f2, . . . , fn) = C2(f),

and this is what we wanted to prove.
Before proving Lemma 8, we prove two other lemmas, which are motivated

by [22].

Lemma 9. For the game as in Lemma 8, h is in equilibrium if and only if for
any j ∈ [n1], and any edges a, â ∈ A with h1j

a > 0,

�a(h1
a) + h1j

a �′a(h
1
a) ≤ �â(h1

â) + h1j
â �′â(h1

â). (13)

Furthermore, for any edges a, â ∈ A, if h2
a > 0, then �a(ha) ≤ �â(hâ).

This easily follows as player 1j wants to minimize
∑

a∈A �a(h1
a)h1j

a . Let T denote
the minimum edge latency of game m in Lemma 8. We call an edge a overloaded,
if �a(ha) > T and underloaded if �a(ha) ≤ T . The idea is, following [22], that
moving a small flow from an overloaded edge to an underloaded increases the
cost.

Lemma 10. Assume a is overloaded and â is underloaded with ha > 0. Then
h1

a > 0, and modifying h1 by moving a small amount of flow from a to â does
not decrease C2(h).

Proof. Let T2 denote the minimum edge latency in the Nash equilibrium of h2.
We show that T2 ≤ T . Assume by contradiction that T2 > T . Then by moving
flows from edges with latency higher than T2 to edges of lower latency, we can
finally arrive in a Nash-equilibrium of edge latency at least T2, contradicting the
fact that the edge latency is the same in any two different Nash-equilibria, see
Roughgarden [28].

Nonadaptive Selfish Routing with Online Demands 43

By T2 ≤ T , if a is overloaded, then h2
a = 0. This implies h1

a > 0, and �a(ha) =
�a(h1

a). Our aim is to prove, that decreasing h1
a a little bit and increasing h1

â

with the same amount, C2(h) does not decrease. The statement follows if we
can prove that ∂C2

∂h1
a

≤ ∂C2
∂h1

â
. This is equivalent with

�a(h1
a) + h1

a�′a(h
1
a) + h2

a�′a(h1
a + h2

a) ≤ �â(h1
â) + h1

â�′â(h
1
â) + h2

â�′â(h1
â + h2

â). (14)

Let B = {j : h1j
a > 0}. If we sum (13) for j ∈ B, we get

|B|�a(h1
a) + h1

a�′a(h1
a) ≤ |B|�â(h1

â) +
∑

j∈B

h1j
â �′â(h1

â)

Increasing the right hand side by
∑

j /∈B h1j
â �′â(h

1
â) + h2

â�′â(h1
â + h2

â), and adding
h2

a�′a(h1
a + h2

a) = 0 to the left hand side, we get

|B|�a(h1
a) + ha�′a(ha) + h2

a�′a(h
1
a + h2

a) ≤ |B|�â(h1
â) + h1

â�′â(h1
â) + h2

â�′â(h1
â + h2

â)

As a is overloaded and â is underloaded, we have �a(h1
a) = �a(h) > �â(h) ≥

�â(h1
â). This in turn implies (14).

Now we are ready to prove Lemma 8. We modify h by moving flow amounts
from overloaded to underloaded links. We avoid creating new overloaded links:
we increase the flow on the underloaded edge â so that �â(hâ) should not exceed
T . Applying such a modification maintains h2

a = 0 on any overloaded edge a.
Observe that (14) holds not only for h, but for any h̄ satisfying h̄1

a ≤ h1
a and

h̄1
â ≥ h1

â and h̄2 = h2. This is since the monotonicity and convexity of �a(x)
implies that x�a(x + c) is as well convex for c, x ≥ 0.

This ensures that we can always go on by moving flow from overloaded to
underloaded links, as far as some modifications are applicable. Suppose no more
modifications can be applied. In this case for each edge a, �a(ha) ≥ T . If �a(ha) =
T for all edges, then Lemma 8 follows. Otherwise we have some edge a with
�a(ha) > T , and for all edges â with �â(hâ) = T , increasing hâ by an arbitrary
small positive amount would result in �â(h) > T . But this is a contradiction, as
now the flows can be rerouted to obtain a Nash-equilibrium with edge latency
strictly larger than T . Again we use that the edge latency is the same in any
two different Nash-equilibria, and T was the latency of the equilibrium state m.

References

1. Altman, E., Basar, T., Jimenez, T., Shimkin, N.: Competitive routing in networks
with polynomial costs. IEEE Trans. Automat. Control 47(1), 92–96 (2002)

2. Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In:
Proc. of the thirty-seventh annual ACM symposium on Theory of computing
(STOC), pp. 57–66. ACM Press, New York (2005)

3. Awerbuch, B., Azar, Y., Grove, E.F., Kao, M.-Y., Krishnan, P., Vitter, J.S.: Load
balancing in the Lp norm. In: IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 383–391 (1995)

44 T. Harks and L.A. Végh

4. Awerbuch, B., Azar, Y., Plotkin, S.: Throughput-competitive on-line routing. In:
Proc. 34th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
Palo Alto, pp. 32–40 (1993)

5. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

6. Braess, D.: Über ein Paradoxon der Verkehrsplanung. Unternehmenforschung 11,
258–268 (1968)

7. Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli,
L.: Tight bounds for selfish and greedy load balancing. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 311–322.
Springer, Heidelberg (2006)

8. Catoni, S., Pallotino, S.: Traffic equilibrium paradoxes. Transportation Science 25,
240–244 (1991)

9. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion
games. In: Proceedings of the thirty-seventh annual ACM symposium on Theory
of computing (STOC), pp. 67–73 (2005)

10. Cominetti, R., Correa, J.R., Stier-Moses, N.: Network games with atomic players.
In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4051, Springer, Heidelberg (2006)

11. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: Selfish routing in capacitated net-
works. Math. Oper. Res. 29, 961–976 (2004)

12. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: On the inefficiency of equilibria in
congestion games. In: Jünger, M., Kaibel, V. (eds.) Integer Programming and Com-
binatorial Optimization. LNCS, vol. 3509, pp. 167–181. Springer, Heidelberg (2005)

13. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. In: Proceedings
of the thirteenth annual ACM-SIAM symposium on Discrete algorithms (SODA),
pp. 413–420 (2002)

14. Dafermos, S.C., Sparrow, F.T.: The traffic assignment problem for a general net-
work. J. Res. Natl. Bur. Stand. Sect. B 73, 91–118 (1969)

15. Dubey, P.: Inefficiency of Nash Equilibria. Math. Oper. Res. 11, 1–8 (1986)
16. Even-Dar, E., Mansour, Y.: Fast convergence of selfish rerouting. In: Proceedings

of the 16th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA), pp.
772–781 (2005)

17. Fiat, A. (ed.): Online Algorithms. LNCS, vol. 1442. Springer, Heidelberg (1998)
18. Fischer, S., Vöcking, B.: Adaptive routing with stale information. In: Aguilera,

M.K., Aspnes, J. (eds.) Proc. 24th Ann. ACM SIGACT-SIGOPS Symp. on Prin-
ciples of Distributed Computing (PODC), Las Vegas, NV, USA, July 2005, pp.
276–283. ACM Press, New York (2005)

19. Friedman, E.J.: Genericity and congestion control in selfish routing. In: Decision
and Control, CDC. 43rd IEEE Conference on, pp. 4667–4672 (2004)

20. Harks, T.: On the price of anarchy of network games with nonatomic and atomic
players. Technical report, avalaible at Optimization Online (January 2007)

21. Harks, T., Heinz, S., Pfetsch, M.E.: Online multicommodity routing problem. In:
Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, Springer, Hei-
delberg (2007)

22. Hayrapetyan, A., Tardos, E., Wexler, T.: The effect of collusion in congestion
games. In: Proceedings of the thirty-eighth annual ACM symposium on Theory of
computing (STOC), pp. 89–98 (2006)

23. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

Nonadaptive Selfish Routing with Online Demands 45

24. La, R.J., Walrand, J., Anantharam, V.: Issues in TCP Vegas. Electronics Re-
search Laboratory, University of California, Berkeley, UCB/ERL Memorandum,
No. M99/3 (January 1999)

25. Qiu, L., Yang, R.Y., Zhang, Y., Shenker, S.: On selfish routing in internet-like
environments. IEEE/ACM Trans. on Netw. 14(4), 725–738 (2006)

26. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person
games. Econometrica 33, 520–534 (1965)

27. Roughgarden, T.: The price of anarchy is independent of the network topology.
Journal of Computer and System Science 67, 341–364 (2002)

28. Roughgarden, T.: Selfish Routing and the Price of Anarchy. The MIT Press, Cam-
bridge (2005)

29. Roughgarden, T.: Selfish routing with atomic players. In: Proceedings of the 16th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 973–974
(2005)

30. Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49(2),
236–259 (2002)

31. Suri, S., Toth, C., Zhou, Y.: Selfish load balancing and atomic congestion games.
Algorithmica 47(1), 79–96 (2007)

32. Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proceedings
of the Institute of Civil Engineers, 1(Part II), pp. 325–378 (1952)

Vertex Pursuit Games in Stochastic

Network Models�

Anthony Bonato1, Pawe�l Pra�lat2, and Changping Wang1

1 Wilfrid Laurier University
Waterloo, Canada

abonato@rogers.com, cwang@wlu.ca
2 Dalhousie University

Halifax, Canada
pralat@mathstat.dal.ca

Dedicated to the memory of Aubrey C. Hamlyn

Abstract. Random graphs with given expected degrees G(w) were in-
troduced by Chung and Lu so as to extend the theory of classical G(n, p)
random graphs to include random power law graphs. We investigate as-
ymptotic results for the game of Cops and Robber played on G(w) and
G(n, p). Under mild conditions on the degree sequence w, an asymptotic
lower bound for the cop number of G(w) is given. We prove that the cop
number of random power law graphs with n vertices is asymptotically
almost surely Θ(n). We derive concentration results for the cop number
of G(n, p) for p as a function of n.

1 Introduction

Vertex pursuit games, such as Cops and Robber, may be viewed of as a simplified
model for network security. As a general motivation for these games, suppose
that an intruder (the robber) is loose on a network, and travels between adjacent
vertices in an effort to escape the authorities (the cops). The intruder could be
a virus or hacker, or some other malicious agent. The goal is to minimize the
resources (that is, number of cops) required to capture the intruder.

The game of Cops and Robber, introduced independently by Nowakowski and
Winkler [9] and Quilliot [10] over twenty years ago, is played on a fixed graph G.
We will assume in this paper that G is undirected, simple, and finite. There are
two players, a set of k cops (or searchers), where k > 0 is a fixed integer, and
the robber. The cops begin the game by occupying a set of k vertices. The robber
then chooses a vertex, and the cops and robber move in alternate rounds. The
players use edges to move from vertex to vertex. More than one cop is allowed
to occupy a vertex, and the players may remain on their current vertex. The
players know each others current locations and can remember all the previous
moves. The cops win and the game ends if at least one of the cops can eventually

� The authors gratefully acknowledge support from NSERC and MITACS.

J. Janssen and P. Pra�lat (Eds.): CAAN 2007, LNCS 4852, pp. 46–56, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Vertex Pursuit Games in Stochastic Network Models 47

Fig. 1. A cop-win graph

occupy the same vertex as the robber; otherwise, the robber wins. As placing a
cop on each vertex guarantees that the cops win, we may define the cop number,
written c(G), which is the minimum number of cops needed to win on G. The
cop number was introduced by Aigner and Fromme [1] who proved that if G is
planar, then c(G) ≤ 3.

So-called cop-win graphs (that is, graphs G with c(G) = 1) were structurally
characterized in [9,10]. See Figure 1 for a cop-win graph. If x is a vertex, then
define N [x] to be x along with the vertices joined to x. The cop-win graphs
are exactly those graphs which are dismantlable: there exists a linear ordering
(xj : 1 ≤ j ≤ n) of the vertices so that for all 2 ≤ j ≤ n, there is a i < j such
that N [xj] ⊆ N [xi]. No analogous structural characterization of graphs with
cop number k, where k > 1 is a fixed integer, is known; this is a central open
problem in the subject. For a survey of results on the cop number and related
search parameters for graphs, see [2].

In the last few years there was an explosion of mathematical research related to
stochastic models of real-world networks, especially for models of the web graph.
Many technological, social, biological networks have properties similar to those
present in the web, such as power law degree distributions and the small world
property. We refer to these networks as self-organizing. For example, power laws
have been observed in protein-protein interaction networks, and networks formed
by scientific collaborators. While much of the earlier mathematical work on self-
organizing networks focused on designing models satisfying certain properties
such as power law degree distributions, new approaches are constantly emerging.

We study vertex pursuit games in models for stochastic network models in
self-organizing networks. To our best knowledge, our work is the first to consider
such games in these network models. We consider Erdős, Rényi G(n, p) random
graphs and their generalizations used to model self-organizing networks. Define
a probability space on graphs of a given order n ≥ 1 as follows. Fix a vertex set
V consisting of n distinct elements, usually taken as [n] = {1, 2, . . . , n}, and fix
p ∈ [0, 1]. Note that p can be a function of n. Define the space of random graphs

48 A. Bonato, P. Pra�lat, and C. Wang

of order n with edge probability p, written G(n, p), with sample space equalling
the set of all 2(n

2) (labelled) graphs with vertex set V, and

P(G) = p|E(G)|(1 − p)(
n
2)−|E(G)|.

Informally, we may view G(n, p) as of graphs with vertex set V , so that two
distinct vertices are joined independently with probability p.

The cop number of G(n, p) was studied in [3], where the following result was
proved. In this paper, all asymptotics are as n → ∞. We say that an event holds
asymptotically almost surely (a.a.s.) if the probability that it holds tends to 1
as n goes to infinity.

Theorem 1. Let 0 < p < 1 be fixed. For every real ε > 0 a.a.s. for G ∈ G(n, p)

(1 − ε) log 1
1−p

n ≤ c(G) ≤ (1 + ε) log 1
1−p

n.

Recent work of Chung and Lu [5,6] supplies an extension of the G(n, p) random
graphs to random graphs with given expected degree sequence w. The corre-
sponding probability space is referred to as G(w). For example, if w follows a
power law distribution, then G(w) supplies a model for self-organizing networks.
We will define G(w) precisely in the next section.

The results in this paper are divided into two parts: bounding the cop number
of random graphs with given expected degree and random power law graphs
(Section 2), and the cop number of G(n, p) random graphs where p is a function
of n (Section 3). Our approach in both sections is to exploit dominating sets
to give upper bounds for the cop number, while lower bounds usually follow by
considering certain adjacency properties. In random power law graphs, we prove
in Theorem 3 that the cop number is Θ(n).

2 The Cop Number in Random Graphs with Given
Expected Degree Sequence

Let
w = (w1, . . . , wn)

be a sequence of n real nonnegative real numbers. We define a random graph
model, written G(w), as follows. Vertices are integers in [n]. Each potential edge
between i and j is chosen independently with probability pij = wiwjρ, where

ρ =
1

∑n
i=1 wi

.

We will always assume that

max
i

w2
i <

n∑

i=1

wi,

Vertex Pursuit Games in Stochastic Network Models 49

which implies that pij ∈ [0, 1). The model G(w) is referred to as random graphs
with given expected degree sequence w. Observe that G(n, p) may be viewed
as a special case of G(w) by taking w to be equal the constant n-sequence
(pn, pn, . . . , pn).

In our main result of this section, we supply an asymptotic lower bound for
the cop number of graphs G ∈ G(w) which generalizes the lower bound from
Theorem 1. Our results demonstrate that a logarithmic lower bound is ubiquitous
in random graphs with given expected degrees satisfying our conditions. Let
M = maxi wi and m = mini wi.

Theorem 2. Suppose that w be a sequence satisfying

0 < q0 ≤ m2ρ ≤ M2ρ ≤ p0 < 1,

where p0 and q0 are fixed real numbers in (0, 1). Then for all ε ∈ (0, 1) with
probability at least 1 − exp(−Θ(nε)), G ∈ G(w) satisfies

c(G) ≥ (1 − ε) log 1
1−p0

n.

One interpretation of Theorem 2 is that as the network order doubles, on average
Θ(1) more cops are needed to guard the network. For the proof of Theorem 2,
we use the following lemma.

Lemma 1. Let 0 < p < 1, r > 0, and ε ∈ (0, 1) be fixed. If

d =
(

log
1

1 − p

)−1

(1 − ε) ,

then

n�d log n�+1
(
1 − r(1 − p)�d log n�

)n−�d log n�−1
≤ exp(−Θ(nε)). (1)

Proof. It is enough to prove that

nd log n+1 (
1 − r(1 − p)d log n

)n−d log n−1 ≤ exp(−Θ(nε)).

Now

nd log n+1(1 − r(1 − p)d log n)n−d log n−1 = nd log n+1
(
1 − r

n1−ε

)n−d log n−1

= exp (f(n)) ,

where

f(n) = (d log n + 1) log n + (n − d log n − 1) log
(
1 − r

n1−ε

)
.

However, exp (f(n)) ≤ exp(−Θ(nε)).

50 A. Bonato, P. Pra�lat, and C. Wang

Proof of Theorem 2. We employ the following adjacency property. For a fixed
k > 0 an integer, we say that G is (1, k)-e.c. if for each k-set S of vertices of G
and vertex u �∈ S, there is a vertex z /∈ S not joined to a vertex in S and joined
to u. It is easy to see that if G is (1, k)-e.c., then c(G) ≥ k (the robber may use
the property to escape to a vertex not joined to any vertex occupied by a cop).
Let k =

⌊
(1 − ε) log 1

1−p0
n
⌋

. For any graph G ∈ G(w) we claim that a.a.s. G is
(1, k)-e.c. Once this is proved, the desired lower bound for the cop number will
follow.

Fix S a k-subset of vertices of G and a vertex u not in S. For a vertex

x ∈ U = V (G)\(S ∪ {u}),

the probability that a vertex x is joined to u and to no vertex of S is

pxu

∏

v∈S

(1 − pxv) .

Since for x, y ∈ U, x �= y and for v ∈ S, the edges xv are chosen independently
of the edges yv, the probability that no suitable vertex can be found for this
particular S and u is

∏

x∈U

(

1 − pxu

∏

v∈S

(1 − pxv)

)

≤
(
1 − p′(1 − p0)k

)n−k−1
,

where
p′ = min

x∈U
pxu.

By hypothesis, p′ ≥ q0 > 0.
The probability that there exists S and u for which no suitable x can be found

is at most
nk+1(1 − q0(1 − p0)k)n−k−1.

By Lemma 1 with q0 = r, p0 = p, we have that

nk+1(1 − q0(1 − p0)k)n−k−1 ≤ exp(−Θ(nε)),

and the theorem follows.
�
In general power law graphs, there may exist an abundance of isolated vertices,
even as much as Θ(n) many. Since the cop number is bounded from below by
the number of isolated vertices, we expect the cop number of G(w) to be around
cn, for a constant c ∈ (0, 1). We show rigorously that this is indeed the case for
random power law graphs, which we now introduce.

Given β > 2, d > 0, and a function M = M(n) (with M tending to infinity
with n), we consider the random graph with given expected degrees wi > 0,
where

wi = ci−
1

β−1 (2)

Vertex Pursuit Games in Stochastic Network Models 51

for i satisfying i0 ≤ i < n + i0. The term c depends on β and d, and i0 depends
also on M ; namely,

c =
(

β − 2
β − 1

)

dn
1

β−1 , i0 = n

(
d

M

(
β − 2
β − 1

))β−1

. (3)

It is not hard to show (see [5,6]) that a.a.s. the random graphs with the
expected degrees satisfying (2) and (3) follow a power law degree distribution
with exponent β, average degree d(1+ o(1)), and maximum degree M(1+ o(1)).

We prove the following result for the cop number of a random power law
graph, showing the cop number is a.a.s. equal to Θ(n).

Theorem 3. For a random power law graph G(w) with exponent β > 2 and
average degree d, for all ε > 0, a.a.s. the following hold.

1. If X is the random variable denoting the number of isolated vertices in G(w),
then

X = (1 + o(1))n
∫ 1

0
exp

(

−d
β − 2
β − 1

x−1/(β−1)
)

dx.

2. For a ∈ (0, 1), define

f(a) = a +
∫ 1

a

exp
(

−d
β − 2
β − 1

a(β−2)/(β−1)x−1/(β−1)
)

dx.

Then
c(G) ≤ (1 + o(1))n min

0<a<1
f(a).

The theorem demonstrates that the cop number of random power law graphs is
a.a.s. Θ(n), and so is of much larger order than the logarithmic cop number of
G(n, p) random graphs. Hence, we should expect in real-world power law graphs
such as the web graph that the cop number of order is large, and it would be
interesting to conduct experiments which corroborate this claim.

The integrals in the statement of Theorem 3 do not possess closed-form solu-
tions in general. For the integral in item 1, we have that

∫ 1

0
exp

(
−tx−1/(β−1)

)
dx = e−t

∞∑

j=0

Γ (2 − β)
Γ (2 − β + j)

tj +
π csc(πβ)tβ−1

Γ (β − 1)
,

where t = d(β−2)
β−1 . The integral in item 2 may be evaluated in cases depending

on β. For example, if 2 < β < 3, then the integral
∫ 1

a

exp
(
−tα2x

−1/(β−1)
)

dx

equals

e−α2t
∞∑

j=0

Γ (2 − β)
Γ (2 − β + j)

tjα2
j − e−α1t

∞∑

j=0

Γ (2 − β)
Γ (2 − β + j)

tjα1
j

+
π csc(πβ)tβ−1

Γ (β − 1)
tβ−1aβ−3(a − 1),

52 A. Bonato, P. Pra�lat, and C. Wang

where α1 = a(β−3)/(β−1) and α2 = a(b−2)/(b−1).
We supply numerical values for lower/upper bounds of the cop number of

G(w) when d = 10, 20 and β = 2.1, 2.7.

10 20

2.1 0.1806/0.2940 0.5112 · 10−1/0.1265
2.7 0.4270 · 10−2/0.1895 0.4205 · 10−4/0.8261 · 10−1

The proof of Theorem 3 requires some background on the domination number
of a graph. A set of vertices S is a dominating set in G if each vertex not in S is
joined to some vertex of S. The domination number of G, written γ(G), is the
minimum cardinality of a dominating set in G. An easy observation is that

c(G) ≤ γ(G), (4)

(place a cop on each vertex of dominating set with minimum cardinality). How-
ever, if n ≥ 2, then c(Pn) = 1 (where Pn is a path with n vertices) and
γ(Pn) =

⌈
n
3

⌉
. The bound of (4) while useful, is far from tight in general. Dom-

ination in models for self-organizing networks were considered in Cooper et al.
[7].

Proof of Theorem 3. The probability that the vertex i for i0 ≤ i < n+ i0 (that
is, the vertex i corresponds to the weight wi) is isolated is equal to

pi =
∏

j,j �=i

(1 − wiwjρ)

=
∏

j,j �=i

exp (−(1 + o(1))wiwjρ)

= exp

⎛

⎝−(1 + o(1))wiρ
∑

j,j �=i

wj

⎞

⎠

= exp (−(1 + o(1))wi) . (5)

Let Xi be an indicator random variable for the event that the vertex i is isolated.
Then

P(Xi = 1) = 1 − P(Xi = 0) = pi

for i0 ≤ i < n + i0.
As X =

∑
i0≤i<n+i0

Xi, it follows from (5) that the expected value of X is

∑

i0≤i<n+i0

pi = (1 + o(1))n
∫ 1

0
exp

(
−(1 + o(1))c(xn)−1/(β−1)

)
dx

= (1 + o(1))n
∫ 1

0
exp

(

−d
β − 2
β − 1

x−1/(β−1)
)

dx .

Vertex Pursuit Games in Stochastic Network Models 53

A sum of independent random variables with large enough expected value is not
too far from its mean (see, for example, Theorem 2.8 in [8]). Thus, the number
of isolated vertices in G(w) is a.a.s. equal to

X = (1 + o(1))n
∫ 1

0
exp

(

−d
β − 2
β − 1

x−1/(β−1)
)

dx .

Item (1) now follows.
For item (2), we apply (4). Consider A ⊂ V of first an� vertices from

i0, . . . , n + i0. Let B ⊂ V \ A denote the set of vertices that do not have a
neighbour in A. Then D = A ∪ B is a dominating set, and we now estimate the
cardinality of D.

Consider the vertex i, an < i < n+ i0. Since i0 = o(n), there is b ∈ (0, 1] such
that i = (1 + o(1))bn. The probability that i does not have a neighbour in A is
equal to

qi =
∏

j<an+i0

(1 − wiwjρ)

= exp

⎛

⎝−(1 + o(1))wiρ
∑

j<an+i0

wj

⎞

⎠

= exp
(

−(1 + o(1))c(bn)−1/(β−1)(dn)−1n

∫ a

0
c(xn)−1/(β−1)dx

)

= exp
(

−(1 + o(1))d
(β − 2

β − 1

)2
b−1/(β−1)

∫ a

0
x−1/(β−1)dx

)

= (1 + o(1)) exp
(

−d
β − 2
β − 1

b−1/(β−1)a(β−2)/(β−1)
)

.

Thus, using Chernoff’s bound, we obtain that a.a.s.

|B| = (1 + o(1))n
∫ 1

a

exp
(

−d
β − 2
β − 1

a(β−2)/(β−1)x−1/(β−1)
)

dx ,

and that a.a.s.

|D| = |A ∪ B| = an + (1 + o(1))n
∫ 1

a

exp
(

−d
β − 2
β − 1

a(β−2)/(β−1)x−1/(β−1)
)

dx .

Item (2) follows as the above estimate of |D| holds for every a ∈ (0, 1).
�
As the number of isolated nodes is a lower bound for the domination number
of a graph, the proof of Theorem 3 shows that a.a.s. the domination number
of random power law graphs is Θ(n). An analogous result was found in [7] for
graphs generated by the preferential attachment model.

3 The Cop Number in G(n, p) Random Graphs

The cop number of random graphs G(n, p) for a constant p ∈ (0, 1) was first
studied in [3], who proved Theorem 1. We now consider the cop number of

54 A. Bonato, P. Pra�lat, and C. Wang

G(n, p(n)) when p(n) is a function of n. We will abuse notation and refer to p
rather than p(n).

Wieland and Godbole [11] proved the following two-point concentration for the
domination number of random graphs G(n, p) for p approaching zero sufficiently
slowly as n → ∞. Let Ln = log 1

1−p
n, and define

f(p, n) = Ln − L((Ln)(log n))� + 2.

Theorem 4. Let p0 be the smallest p for which

p2/40 ≥ [log((log2 n)/p)]/ logn (6)

holds. A.a.s. G ∈ G(n, p) and p ≥ p0(n) satisfies

f(p, n) − 1 ≤ γ(G) ≤ f(p, n).

In particular,
γ(G) = f(p, n)(1 + o(1)).

We obtain a concentration result for the cop number of the random graphs
G(n, p) where p satisfies (6). Define

g(p, n) = Ln − 2L((Ln)(log n))� + 1.

Note that g(p, n) ≤ f(p, n), and g(p, n) = f(p, n)(1 + o(1)).

Theorem 5. For G ∈ G(n, p) and p ≥ p0, where p0 is the smallest p for which
(6) holds, a.a.s.

g(p, n) ≤ c(G) ≤ f(p, n).

In particular,
c(G) = f(s, n)(1 + o(1)).

The proof will follow from Theorem 4 if we can establish the lower bound for
cop number of G(n, p). We need the following lemma.

Lemma 2. Let k = Ln − 2L((Ln)(log n)). If

p ≥ d log2 n/
√

n (7)

where d > 1 is a fixed constant not depending on n, then

lim
n→∞(k + 1) log n + (n − k − 1) log(1 − p(1 − p)k) = −∞. (8)

Proof. By an elementary but tedious analysis we have by (7) that

(n − k − 1) log(1 − p) log
(
1 − p(1 − p)k

)
= Ω

(
log4 n

)
, (9)

and
− (k + 1) log(1 − p) log n = O

(
log2 n

)
. (10)

Vertex Pursuit Games in Stochastic Network Models 55

By (9) and (10), we obtain that

lim
n→∞((k + 1) log n + (n − k − 1) log(1 − p(1 − p)k))

= lim
n→∞

(k + 1) log(1 − p) log n + (n − k − 1) log(1 − p) log(1 − p(1 − p)k)
log(1 − p)

= −∞,

as desired.

Proof of Theorem 5. Let k = Ln − 2L((Ln)(log n)). Note that the probability
that G is not (1, k�)-e.c. is at most

f(n, k, p) = n�k�+1(1 − p(1 − p)�k�)n−�k�−1.

To show that
n�k�+1(1 − p(1 − p)�k�)n−�k�−1 = o(1),

it suffices to show that

nk+1(1 − p(1 − p)k)n−k−1 = o(1). (11)

Note that (6) implies (7). As (11) is equivalent to (8), the result follows by
Lemma 2.
�
We last consider the cop number of the random graphs G(n, p) for p approaching
zero very fast. For example, if p = o(1/n2), a.a.s. G ∈ G(n, p) is empty. So in
this range of p, a.a.s. the cop number of G is n. We now consider the case when
p = d/n for constant d ∈ (0, 1). Bollobás [4] proved the following result.

Theorem 6. Let 0 < d < 1, p = d/n, and let X be the number of tree connected
components of G(n, p). Then the expectation of X is

E(X) = u(d)n + O(1),

where

u(d) =
1
d

∞∑

k=1

kk−2

k!
(de−d)k.

A.a.s. G(n, p) satisfies

|X | = u(d)n(1 + o(1)).

We note that u(d) ∈ (0, 1). A graph is unicyclic if it contains exactly one cycle.

Theorem 7. Let 0 < d < 1 and p = d/n. Then a.a.s. G ∈ G(n, p) is such that
every connected component is a tree or a unicyclic graph, and there are at most
log log n vertices in the unicyclic components.

56 A. Bonato, P. Pra�lat, and C. Wang

Trees are cop-win graphs, while unicyclic graphs have cop number at most 2.
Each tree component requires exactly one cop, while there are at most 2 log log n
many cops needed for all the unicyclic components. Hence, the number of cops on
the unicyclic components becomes negligible in contrast to the number of cops
on tree components. Therefore, from Theorems 6 and 7 we have the following
concentration result.

Corollary 1. Let 0 < d < 1, p = d/n. Then for the graph G ∈ G(n, p),

E(c(G)) = u(d)n + O(log log n).

A.a.s. G ∈ G(n, p) satisfies

c(G) = u(d)n(1 + o(1)).

Concentration results for the cop number of G(n, p) with p in other ranges (such
as just after the phase transition p ∼ c/n with c > 1) remain open.

Acknowledgements

We would like to thank David Vaughan for discussions on the integrals in
Theorem 3.

References

1. Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Applied Mathe-
matics 8, 1–12 (1984)

2. Alspach, B.: Sweeping and searching in graphs: a brief survey. Matematiche 59,
5–37 (2006)

3. Bonato, A., Hahn, G., Wang, C.: The cop density of a graph. Contributions to
Discrete Mathematics (accepted)

4. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)
5. Chung, F.R.K., Lu, L.: The average distance in a random graph with given expected

degrees. Internet Mathematics 1, 91–114 (2006)
6. Chung, F.R.K., Lu, L.: Complex graphs and networks. American Mathematical

Society, U.S.A. (2006)
7. Cooper, C., Klasing, R., Zito, M.: Lower bounds and algorithms for dominating

sets in web graphs. Internet Mathematics 2, 275–300 (2005)
8. Janson, S., �Luczak, T., Ruciński, A.: Random Graphs. Wiley, New York (2000)
9. Nowakowski, R., Winkler, P.: Vertex to vertex pursuit in a graph. Discrete Math-

ematics 43, 230–239 (1983)
10. Quilliot, A.: Jeux et pointes fixes sur les graphes, Ph.D. Dissertation, Université

de Paris VI (1978)
11. Wieland, B., Godbole, A.P.: On the domination number of a random graph. The

Electronic Journal of Combinatorics 8 #R37 (2001)

Preemptive Scheduling on Selfish Machines

Leah Epstein1 and Rob van Stee2

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il

2 Department of Computer Science, University of Karlsruhe, D-76128 Karlsruhe,
Germany

vanstee@ira.uka.de

Abstract. We consider the problem of scheduling on parallel uniformly
related machines, where preemptions are allowed and the machines are
controlled by selfish agents. Our goal is to minimize the makespan,
whereas the goal of the agents is to maximize their profit. We show
that a known algorithm is monotone and can therefore be used to cre-
ate a truthful mechanism for this problem which achieves the optimal
makespan. We extend this result for additional common goal functions.

1 Introduction

Internet users and service providers act selfishly and spontaneously, without an
authority that monitors and regulates network operation in order to achieve
some social optimum such as minimum total delay. Selfish behavior may affect
the performance, and it is interesting to identify the problems in which this
happens, and to find how much performance can be lost as a result of lack of
coordination. Many algorithmic problems, in which we investigate the cost of the
lack of coordination arise. The study of lack of coordination can be compared
to the lack of information (that is assumed in online algorithms) or the lack of
unbounded computational resources (assumed in polynomial time approximation
algorithms).

There has been a large amount of previous research into approximation and
online algorithms for a wide variety of computational problems, but most of
this research has focused on developing good algorithms for problems under the
implicit assumption that the algorithm can make definitive decisions which are
always carried out. On the internet, this assumption is no longer valid, since
there is no central controlling agency.

To solve problems which occur, e.g., to utilize bandwidth efficiently (according
to some measure), we now not only need to deal with an allocation problem which
might be hard enough to solve in itself, but also with the fact that the entities
that we are dealing with (e.g. agents that wish to move traffic from one point to
the other) do not necessarily follow our orders but instead are much more likely
to act selfishly in an attempt to optimize their private return (e.g. minimize their
latency).

J. Janssen and P. Pra�lat (Eds.): CAAN 2007, LNCS 4852, pp. 57–70, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

58 L. Epstein and R. van Stee

Mechanism design is a classical area of research with many results. Typically,
the fundamental idea of mechanism design is to design a game in such a way that
truth telling is a dominant strategy for the agents: it maximizes the profit for each
agent individually. That is, each agent has some private data that we have no way
of finding out, but by designing our game properly we can induce them to tell us
what that is (out of well-understood self-interest), thus allowing us to optimize
some objective while relying on the truthfulness of the data that we have. This is
done by introducing side payments for the agents. In a way, we reward them (at
some cost to us) for telling us the truth. The role of the mechanism is to collect
the claimed private data (bids), and based on these bids to provide a solution
that optimizes the desired objective, and hand out payments to the agents. The
agents know the mechanism and are computationally unbounded in maximizing
their utility.

A seminal paper by Archer and Tardos[4] considered the general problem of
one-parameter agents. The class of one-parameter agents contain problems where
any agent i has a private value ti and his valuation function has the form wi · ti,
where wi is the work assigned to agent i. Each agent i makes a bid bi depending
on its private value and the mechanism, and each agent wants to maximize its
own profit.

The paper [4] shows that in order to achieve a truthful mechanism for such
problems, it is necessary and sufficient to design a monotone algorithm, and use
a payment function of the form

Pi(b−i, bi) = hi(b−i) + biwi(b−i, bi) −
∫ bi

0
wi(b−i, u) du. (1)

Here (b−i, x) is the bid vector b where the element bi has been replaced by x,
the hi are arbitrary functions, and wi(b−i, x) is the work assigned to agent i if
the bid vector is (b−i, x).

An algorithm is monotone if for every agent, the amount of work assigned to
it does not increase if its bid increases. More formally, an algorithm is monotone
if given two vectors of length m, b, b′ which represent a set of m bids, which differ
only in one component i, i.e., bi > b′i, and for j �= i, bj = b′j, then the total size
of the jobs (the work) that machine i gets from the algorithm if the bid vector
is b is never higher than if the bid vector is b′.

Using this result, monotone (and therefore truthful) approximation algorithms
were designed for several classical problems, like scheduling on related machines
to minimize the makespan, where the bid of a machine is the inverse of its
speed [4,2,6,1,13], shortest path [5,9], set cover and facility location games [7],
and combinatorial auctions [14,16,3].

Problem definition. In this paper, we consider the problem of scheduling jobs in a
multiprocessor setting where jobs may be preempted, and where the performance
measure is the makespan. The makespan of a given schedule is the time at which
the last task finishes.

Preemption means that a job may be split into parts, which can be possibly
assigned to distinct machines. A part of job of size p must be assigned to a

Preemptive Scheduling on Selfish Machines 59

time slot on one of the machines. The length of the time slot should be p
s for

a machine of speed s. The time slots assigned to the parts of one job on the
different machines must all be disjoint.

We denote the number of processors by m and the number of jobs by n.
We consider the version of this problem where the machines are related: each
machine has a speed at which it runs, which does not depend on the job being
run.

Denote the size of job j by pj (j = 1, . . . , n). Denote the speed of machine i
by si (i = 1, . . . , m). In our model, each machine belongs to a selfish user. The
private value (ti) of user i is equal to 1/si, that is, the cost of doing one unit of
work. The load on machine i, Li, is the total size of the jobs assigned to machine
i divided by si. The total work assigned to a machine i, denoted by Wi, is the
total size of jobs assigned to it, i.e., Wi = si · Li. The profit of user i is Pi − Li,
where Pi is the payment to user i by the payment scheme defined by (1).

Our goal is to minimize the makespan. The classical version of this problem
can be solved in polynomial time [12,11,17,8]. As is generally the case in algo-
rithmic mechanism design, we are not interested in maximizing the total profit
of the users.

As mentioned above, in order to imply a truthful mechanism, we need to show
an algorithm for which an increase in a speed of a machine does not reduce the
amount of work it receives.

Our results. We show that the algorithm given by Epstein and Tassa[10] is
in fact monotone and can therefore also be used in this setting. We describe
the algorithm which computes the load of every machine. The algorithm which
creates the actual assignment is omitted, since we are only interested in the loads
of machines and not in the exact assignment. This algorithm can be found in [10]
as well.

Note that even though in principle idle time is allowed, the algorithm does
not create idle time on any machine. The algorithm actually creates a strongly
optimal schedule, in the sense that not only the maximum load is minimized,
but also every subsequent load is minimized after the larger loads have been
fixed. We thus show that it is possible to achieve an optimal makespan even
with selfish agents.

We extend this result to preemptive scheduling with the goal of minimizing
the �p norm of the loads vector, for 1 ≤ p < ∞. This is again done by using the
algorithm of [10] for the cases 1 < p < ∞, and a simple algorithm for p = 1.

Throughout the paper, we assume that the jobs are sorted in order of non-
increasing size (p1 ≥ p2 ≥ . . . ≥ pn), and the machines are sorted in a fixed order
of non-decreasing bids (i.e. non-increasing speeds, assuming the machine agents
are truthful, s1 ≥ s2 ≥ . . . ≥ sm). In case of ties, i.e., machines of identical
speeds, each machine also carries an identifier (a number in {1, . . . , m}), and
a set of machines with the same speed are ordered in a increasing order of
identifiers. We call the order implied by the identifiers a lexicographical ordering
of the machines.

60 L. Epstein and R. van Stee

2 Makespan Minimization (�∞)

2.1 Algorithm

The algorithm is based on the following m lower bounds on the optimal
makespan, given already by Liu and Yang[15] for a special case.

– For k = 1, . . . , m − 1,
k∑

i=1

pi/

k∑

i=1

si ,

That is, the total size of the k largest jobs, divided by the sum of k largest
speeds.

– The last lower bound is
n∑

i=1

pi/

m∑

i=1

si ,

That is, the total size of all the jobs, divided by the sum of the speeds.

It is known that the maximum of all these bounds equals the optimal makespan
[12,11,17,8]. The algorithm below is presented in [10]. The algorithm repeatedly
executes the following steps until all jobs are assigned. Based on the bounds
above, it determines a value k (an index of a machine) which determines the
smallest maximum load that can be achieved for the remaining machines. If
k = m, it assigns the jobs to the machines so that the load on all machines is
equal and halts. Otherwise, it assigns the k largest jobs to k fastest machines
(this set of machines will be called a group).

We use the following notations.

Pk =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k∑

j=1

pj 1 ≤ k ≤ m − 1

n∑

j=1

pj k = m

,

and

S[a : b] =
b∑

i=a

si.

Algorithm 1

1. Set t = 0 and kt = 0 (at each stage kt equals the number of values Wj that
were already determined).

2. For every kt + 1 ≤ k ≤ m, compute

qk =
Pk − Pkt

S[kt + 1 : k]
,

and set kt+1 to be the (minimal) value of k for which qk is maximal. The set
of machines {kt + 1, . . . , kt+1} is defined to be the t + 1-th group.

Preemptive Scheduling on Selfish Machines 61

3. For all kt + 1 ≤ j ≤ kt+1, set

Wj = sj ·
Pkt+1 − Pkt

S[kt + 1 : kt+1]
.

4. If kt+1 < m set t = t + 1 and go to Step 2.

This algorithm is optimal. In our analysis, we will use the following property.

Lemma 1. [10] The loads are monotonically non-increasing as a function of
the machine indices. Within a group, loads are identical.

The following corollary holds since machines are sorted by speed.

Corollary 1. The work assigned to machines is a monotonically non-increasing
function of the machine indices.

Proof. Consider machines i and i + 1 in the sorted list, for some 1 ≤ i ≤ m − 1.
By Lemma 1, Li ≥ Li+1. We have si ≥ si+1 and so

Wi = si · Li ≥ si+1Li+1 = Wi+1.

�

2.2 Monotonicity

In this section, we prove the following theorem.

Theorem 2. Algorithm 1 is monotone.

We number the groups in the order of creation by the algorithm. We use ad-
ditional notations. Let sa(b) be the speed of the a-th machine in group b, we
use (a, b) to denote this machine. Let Sa(b) be the sum of the a largest speeds
among machines in groups b, b+1, If group b consists of at least a machines,
then this is actually the sum of a largest speeds of machines in this group. Let
pa(b) be the size of the a-th largest job remaining after the first b − 1 steps of
the algorithm, and let Pa(b) be the total size of the a largest such jobs.

We consider the situation where one machine (the j-th machine of group
g) becomes faster, that is, decreases its bid. We denote the new speed of this
machine by s′j(g) and we let

ε = s′j(g) − sj(g) > 0.

We use S′
a(b) to denote the sum of the a largest speeds in groups b, b + 1, . . .,

after the speed change. All other bids remain unchanged. We call the instance
with the original speed the original instance, and the instance with the changed
speed the new instance or the modified instance.

The following lemmas reduces the number of cases to be considered.

62 L. Epstein and R. van Stee

Lemma 2. Consider machine (j, g) of the original instance that changes its
speed. If the new location of this machine is later than the machines of groups
1, . . . , h of the original instance (for some h ≤ g −1), the groups 1, . . . , h created
by the algorithm for the new instance consist of the same machines as created
for the original instance.

Proof. Assume by contradiction that the algorithm does not act in the same
way on the first h groups, and let 1 ≤ c ≤ h be the first group that is different
for the new instance compared to the original instance. Let k be the number
of machines in group c for the original instance and let k′ be the number of
machines for the new instance, where k �= k′. Since the algorithm chose a group
with k machines for the original instance, we have

Pk(c)
Sk(c)

>
Pk′(c)
Sk′(c)

(since the algorithm chooses a group of minimal number of machines in case of
ties). If k′ < k, by the assumption above, the machines of groups 1, . . . , c of the
original instance are earlier in the ordering than the machines which changes its
speed. Therefore, the k machines of group c of the original instance remain in
the same location in the ordering and there is no change in the speeds of any
machines of group c for both instances, and so Sk′ (c) = S′

k′(c). This derives an
immediate contradiction since we get

Pk(c)
S′

k(c)
=

Pk(c)
Sk(c)

>
Pk′ (c)
Sk′ (c)

≥ Pk′(c)
S′

k′(c)
,

which would imply our algorithm makes a group of size k instead of k′. Otherwise,
if k′ > k, we have Sk(c) = S′

k(c) and Sk′(c) ≤ S′
k′(c), and the contradiction is

derived similarly. �

Below we consider the cases where a machine that increases its speed either does
not change its location in the sorted list of machines, or changes places with its
predecessor in the sorted list. The following lemma shows that these cases are
sufficient to prove that the algorithm is monotone.

Lemma 3. If there exists an instance for which a machine increases its speed
and is allocated less work by the algorithm as a result, then there exists such an
instance where as a result of the speed change the machine does not change its
location in the sorted list, or appears just one place earlier.

Proof. Assume that there exists an instance which disproves monotonicity. We
may assume that the machine which changes its speed moves to a location which
is at least two places earlier in the sorted list, as a result.

We split the process of change in speed into several phases. Let z be the index
of the machine which changes its speed in the ordering for the original instance
and z′ < z its location for the new instance. A single phase consists of an increase
of speed for a machine until it changes places with the machine before it. There

Preemptive Scheduling on Selfish Machines 63

are z − z′ such phases, and thus we consider z − z′ + 1 instances, starting with
the original instance, and considering also every instance that results from each
additional phase.

Since the machine that changed its speed gets a smaller amount of work, there
must exist at least one phase in which its work decreases. The instances which is
defined just before this phase, with the speed change that results in the instance
just after this phase prove the claim. �

We therefore need to consider three cases. In the first two cases we assume that
(j, g) is located in the ordering of the new instance later than all machines of
groups 1, . . . , g − 1 in the original instance.

Case 1.1. Machine (j, g) remains in the same group. By Lemma 2 this means
that groups 1, . . . , g − 1 remain unchanged as a result of the change in speed.
We consider the case that group g contains machine j in both instances.

Let k denote the number of machines in group g for the original instance, and
let k′ be the number of machines in this group after the increase of speed. Note
that all three cases k < k′, k = k′ and k > k′ are possible in principle.

The original work assigned to machine (j, g) is

sj(g)
Pk(g)
Sk(g)

.

The work assigned to this machine after the speed change is

s′j(g)
Pk′ (g)
S′

k′(g)
.

We show that
Pk′ (g)
S′

k′(g)
≥ Pk(g)

S′
k(g)

holds. This statement is trivial in case k = k′. For k �= k′ it follows from the
choice of the algorithm to create a group of k′ machines and not of k machines.
Therefore,

s′j(g)
Pk′ (g)
S′

k′ (g)
≥ s′j(g)

Pk(g)
S′

k(g)
.

We have that

s′j(g)
Pk(g)
S′

k(g)
≥ sj(g)

Pk(g)
Sk(g)

,

since
sj(g) + ε

(Sk(g) + ε
≥ sj(g)

Sk(g)
for sj(g) ≤ Sk(g),

which obviously holds because Sk(g) =
∑k

i=1 si(g) and j belongs to the g-th
group, i.e., 1 ≤ j ≤ k.

64 L. Epstein and R. van Stee

Fig. 1. The output for the original input

Case 1.2. We now consider the case where machine (j, g) does not remain in the
same group. By Lemma 2 groups 1, . . . , g − 1 still remain unchanged as a result
of the change in speed, but group g changes in a way that it does not contain
machine (j, g) of the original instance. This machine becomes a part of a later
group c > g.

This situation is possible. The increase of a speed of a machine in the group has
the following effect. The lower bounds for the maximum load decrease starting
from this machine. The bound that determined the last machine (k) of the group
g may no longer be a maximum. In this case, one or more new groups are formed
before the one that contains j. Since we assume that the machine which changed
its speed is located in the ordering of the new instance later than all machines
of groups 1, . . . , g − 1 in the original instance, this situation can only mean that
the length of the g-th group has decreased, since in the new ordering, machine
(j, g) cannot appear later than in the original ordering (by the definition of the
sorting, where ties are broken in a consistent way).

For an example, see Figures 1, 2 and 3. The set of jobs is {J1, . . . , J6}, and
their sizes are 110, 70, 55, 18, 9 and 9, respectively. The output of the algorithm
on the original set of speeds (20, 10, 10, 6 and 3) is given in Figure 1. Figure 2
shows the change in the output after the second machine increases its speed to
15. Figure 3 shows the change in the output after an additional change of speed,
in which the fifth machine increases its speed to 3.

Preemptive Scheduling on Selfish Machines 65

Fig. 2. The output after the second machine changes its speed

Note that we may assume that group g is the first group. Since for both
instances the algorithm creates the same groups 1, . . . , g − 1, running the same
jobs, we can omit these machines and jobs from the instance. Thus we assume
that machine 1 is the first machine of group g, and number the machines starting
from the first machine of group g before the speed change, and the jobs excluding
the jobs that are scheduled on the machines of groups 1, . . . , g − 1.

Let k′ be the last machine of the last group before (j, g) (in its new location)
after the speed change. Let k′′ be the last machine of the group which contains
(j, g) after the speed change.

Case 1.2.a: Machine (j, g) remains in the same location in the ordering.
Given the original instance (without the jobs we omitted as described above),
denote the total size of the k′ largest jobs by L, and the remaining total size of
jobs assigned to machines 1 . . . , k by M (that is the difference between the size
of all jobs assigned to these machines, and L). Denote the total size assigned to
machines k′ + 1, . . . , k′′ after the speed change by N .

We define similarly the total speeds of these three groups of machines as S,
T , and U , where S is the total speed of machines 1, . . . , k′, T is the total speed
of machines k′ + 1, . . . , k, and N is the total speed of machines k′ + 1, . . . , k′′.
We denote the speed of the machine which changes its speed by s and the new
speed by s′ = s + ε.

We clearly have T ≥ s, since the machine of this speed is in the set {k′ +
1, . . . , k}. We also let T ′ = T + ε denote the total speed of machines in

66 L. Epstein and R. van Stee

Fig. 3. The output after the fifth machine changes its speed as well

{k′ + 1, . . . , k} after the speed change, and by U ′ = U + ε the total speed
of machines in {k′ + 1, . . . , k′′}.

Since the algorithm chose a group g with machines 1, . . . , k for the original
instance, and not 1, . . . , k′, we have

L

S
≤ L + M

S + T
,

implying
LT ≤ MS. (2)

After the speed change, when the algorithm examines the set of machines k′ +
1, . . . , m, it chooses the index k′′ rather than k (although it may be that k′′ = k),
so we have

N

U + ε
≥ M

T + ε
. (3)

The work assigned to the machine which changes its speed, before the change,
is s(L+M)

S+T , and after the change, it is s′N
U ′ , thus we would like to show

s(L + M)
S + T

≤ s′N
U ′ .

Using (3), it is enough to show that

(s + ε)M
T + ε

≥ s(L + M)
S + T

.

Preemptive Scheduling on Selfish Machines 67

This holds when

Ms(S + T) + Mε(S + T) ≥ s(L + M)(T + ε)
= (L + M)sT + (L + M)sε,

or
s(MS − LT) + ε(M(S + T) − (L + M)s) ≥ 0

which holds because MS ≥ LT and

M(S + T) − (L + M)s ≥ M(S + T) − (L + M)T,

so
M(S + T) − (L + M)s ≥ 0

holds when
M(S + T) ≥ T (L + M),

or
MS ≥ LT,

which is true by (2).

Case 1.2.b: The location of the machine that changed it speed (for the new
instance) is one place before its location for the original instance. In this case
we again assume that the speed changes gradually, and split the change in speed
into three parts, the increase before the change of location, the swap, and an
additional increase. We only need to consider the swap, which happens when the
pair of machines have the same speed, or just after that. By Corollary 1 we have
that the swap can only increase the work of the machine that becomes faster.

Case 2. Machine j is now a part of the previous group. By Lemma 2, this can
only happen if the speed of machine j becomes larger or equal to the speed of
the slowest machine in the group g − 1 of the original instance, and j changes
its location in the sorted list of machines. By Lemma 3 we need to consider the
case where it moves to a location that is just before its previous location.

We consider a process in which the speed of the machine increases gradually,
and partition the speed increase into before the swap, the swap, and after the
swap. Denote the two locations that we consider by i, i + 1.

The proofs of cases 1.1 and 1.2 covers the speed changes before and after the
swap, thus we only need to consider the swap, which takes place when the two
machines have the same speed, or just after that. This means that the machines
changed roles, and thus the machine that used to be in location i + 1 now gets
the work Wi ≥ Wi+1, by Corollary 1.

3 Other Norms

We start with the simple case of the �1 norm. In this case it is noted in [10]
that the jobs are assigned to the set of fastest machines, that is, let b be a

68 L. Epstein and R. van Stee

maximal index such that s1 = . . . = sb, then all the jobs are assigned to the
first b machines. We use a specific variant of this algorithm that assigns all jobs
to machine 1. It is straightforward to see the following. We call this algorithm
Algorithm 2.

Proposition 1. Algorithm 2 is monotone.

We next consider the other cases (1 < p < ∞). We use the terminology of [10]
and define

Sp[a : b] =
b∑

i=a

s
p

p−1
i .

The algorithm works as follows.

Algorithm 3

1. Set t = 0 and kt = 0 (at each stage kt equals the number of values Wj that
were already determined).

2. For every kt + 1 ≤ k ≤ m, compute

qk =
Pk − Pkt

Sp[kt + 1 : k]
,

and set kt+1 to be the (minimal) value of k for which qk is maximal. The set
of machines {kt + 1, . . . , kt+1} is defined to be the t + 1-th group.

3. For all kt + 1 ≤ j ≤ kt+1, set

Wj = s
p/(p−1)
j ·

Pkt+1 − Pkt

Sp[kt + 1 : kt+1]
.

4. If kt+1 < m set t = t + 1 and go to Step 2.

It can be seen that the algorithm acts in the same way that Algorithm 1 would
work if the set of speeds were s

p
p−1
1 , . . . , s

p
p−1
m . Since we are not interested in

the exact schedule but only in the work that each machine receives, in order to
reduce to the proof in the previous section, we only need the following fact, that
follows from p > 1.

Fact 1. For a pair of speeds s, s′ > 0, and 1 < p < ∞ we always have s′ > s if
and only if s′

p
p−1 > s

p
p−1 .

We can thus prove the following.

Theorem 4. Algorithm 3 is monotone.

Proof. As mentioned above, Algorithm 3 simply runs algorithm 1 with adapted
speeds. Thus we need to show that an increase of a speed s occurs if and only if
an increase in “speed” s

p
p−1 occurs. This follows from Fact 1. �

Preemptive Scheduling on Selfish Machines 69

4 Conclusion

We have shown that for a class of preemptive scheduling problems, it is possible
to obtain truthful mechanisms simply by applying previously known algorithms.
This is usually not the case for non-preemptive problems, which are typically
NP-hard, whereas polynomial time approximation schemes lack the structure of
optimal solutions. Note also that for makespan minimization in non-preemptive
scheduling, if running time is not limited, it is possible to find an optimal al-
gorithm which is monotone as follows. The machines are ordered by their lex-
icographical ordering. Given this ordering, the algorithm chooses an optimal
schedule which has a smallest load vector (lexicographically) [4].

References

1. Andelman, N., Azar, Y., Sorani, M.: Truthful approximation mechanisms for
scheduling selfish related machines. In: Diekert, V., Durand, B. (eds.) STACS 2005.
LNCS, vol. 3404, pp. 69–82. Springer, Heidelberg (2005)

2. Archer, A.: Mechanisms for Discrete Optimization with Rational Agents. PhD
thesis, Cornell University (2004)

3. Archer, A., Papadimitriou, C., Talwar, K., Tardos, É.: An approximate truthful
mechanism for combinatorial auctions with single parameter agents. In: Proc. of
14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 205–
214 (2003)

4. Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: Proc.
42nd Annual Symposium on Foundations of Computer Science, pp. 482–491 (2001)

5. Archer, A., Tardos, É.: Frugal path mechanisms. In: Proc. of 13th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 991–999 (2002)

6. Auletta, V., De Prisco, R., Penna, P., Persiano, G.: Deterministic truthful approx-
imation mechanisms for scheduling related machines. In: Diekert, V., Habib, M.
(eds.) STACS 2004. LNCS, vol. 2996, pp. 608–619. Springer, Heidelberg (2004)

7. Devanur, N.R., Mihail, M., Vazirani, V.V.: Strategyproof cost-sharing mechanisms
for set cover and facility location games. In: ACM Conference on E-commerce, pp.
108–114 (2003)

8. Ebenlendr, T., Sgall, J.: Optimal and online preemptive scheduling on uniformly
related machines. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996,
pp. 199–210. Springer, Heidelberg (2004)

9. Elkind, E., Sahai, A., Steiglitz, K.: Frugality in path auctions. In: Proc. of 15th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 701–709 (2004)

10. Epstein, L., Tassa, T.: Optimal preemptive scheduling for general target functions.
Journal of Computer and System Sciences 72(1), 132–162 (2006)

11. Gonzalez, T., Sahni, S.: Preemptive scheduling of uniform processor systems. Jour-
nal of the ACM 25(1), 92–101 (1978)

12. Horvath, E.C., Lam, S., Sethi, R.: A level algorithm for preemptive scheduling.
Journal of the ACM 24(1), 32–43 (1977)

13. Kovács, A.: Fast monotone 3-approximation algorithm for scheduling related ma-
chines. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 616–
627. Springer, Heidelberg (2005)

70 L. Epstein and R. van Stee

14. Lehmann, D.J., O’Callaghan, L., Shoham, Y.: Truth revelation in rapid, approxi-
mately efficient combinatorial auctions. In: ACM Conference on Electronic Com-
merce, pp. 96–102 (1999)

15. Liu, J.W.S., Yang, A.-T.: Optimal scheduling of independent tasks on heteroge-
neous computing systems. In: Proceedings of the ACM National Conference, vol. 1,
pp. 38–45 (1974)

16. Mu’alem, A., Nisan, N.: Truthful approximation mechanisms for restricted com-
binatorial auctions. In: Proc. of the 18th National Conference on Artificial Intel-
ligence and 14th Conference on Innovative Applications of Artificial Intelligence
(AAAI/IAAI), pp. 379–384 (2002)

17. Shachnai, H., Tamir, T., Woeginger, G.J.: Minimizing makespan and preemption
costs on a system of uniform machines. Algorithmica 42(3-4), 309–334 (2005)

Selfish Routing and Path Coloring

in All-Optical Networks�

Ioannis Milis1, Aris Pagourtzis2, and Katerina Potika2

1 Department of Computer Science
Athens University of Economics and Business, Greece

milis@aueb.gr
2 School of Electrical and Computer Engineering
National Technical University of Athens, Greece

{pagour,epotik}@cs.ntua.gr

Abstract. We study routing and path coloring problems in all-optical
networks as non-cooperative games. We especially focus on oblivious
payment functions, that is, functions that charge a player according to
her own strategy only.

We first strengthen a known relation between such games and online
routing and path coloring. In particular, we show that the price of an-
archy of such games is lower-bounded by, and in several cases precisely
equal to, the competitive ratio of appropriate modifications of the First
Fit algorithm.

Based on this framework we provide results for two classes of games
in ring networks: in Selfish Routing and Path Coloring a player must
determine both a routing and a coloring for her request, while in Selfish
Path Coloring the routing is predetermined and only a coloring of re-
quests needs to be specified. We prove specific upper and lower bounds
on the price of anarchy of these games under various payment functions.

1 Introduction

In all-optical networks, communication requests are carried out by assigning to
them a path in the network (routing) as well as a transmission wavelength. By
using wavelength division multiplexing (WDM) it is possible to route several
requests through the same link(s) of the network, and carry them out simulta-
neously by assigning a different wavelength to each request.

In this context, given a network topology and a set of communication requests,
several interesting questions arise. If the routing of the requests is also given,
the Path Coloring (PC) problem asks for the minimum number of colors (wave-
lengths) required such that requests sharing a common link are assigned different
colors. If the routing of the requests is not given, the Routing and Path Color-
ing (RPC) problem asks for both a routing and a color assignment minimizing
� Research supported by “Pythagoras” grant of the Greek Ministry of Education,

co-funded by the European Social Fund (75%) and National Resources (25%) —
Operational Program for Educational and Vocational Training II (EΠEAEK II).

J. Janssen and P. Pra�lat (Eds.): CAAN 2007, LNCS 4852, pp. 71–84, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

72 I. Milis, A. Pagourtzis, and K. Potika

the number of colors under the same constraint. More optimization questions
can be stated by introducing additional parameters and constraints. During the
last decades a large body of work has been concentrated on the complexity and
approximability questions for these optimization problems [1,2,3,4] (for a nice
survey of early results see [5] and references therein).

A recent research direction concerns network optimization under game-
theoretic criteria [6,7,8]. In such a context, an optimization problem can be mod-
eled as a non-cooperative game of independent entities (players). These entities
have their own objectives; they do not necessarily have to obey to a centralized
protocol or they can manipulate this protocol (e.g. by providing false informa-
tion) in order to achieve their own goals. The algorithmic game theory approach
is used to optimize global objective functions taking into account the selfish
behavior of the participating entities.

Following this direction we study the PC and RPC problems in all-optical
networks as non-cooperative games. Each communication request is considered
as a player and a payment function charges each player a cost depending on the
(routing and color) choices of all players (including her own choices). Given a set
of choices for all players we say that the game is in an equilibrium if no player
can decrease her own cost by changing her choices. This equilibrium concept
was first introduced by John Nash [9] and it is known as a Nash equilibrium.
Although Nash has shown that each non-cooperative game has a mixed Nash
equilibrium, the existence of a pure one is an open question for many games.
Moreover, due to the selfish behavior of the players, such a pure equilibrium does
not necessarily optimize a global objective goal. Such a goal is also known as
social cost and for our problems can be defined as the number of colors used for
(routing and) coloring a given set of requests. The global performance of Nash
equilibria is measured by the Price of Anarchy (PoA) or coordination ratio which
is defined as the ratio of the social cost of the worst Nash equilibrium over the
optimal centralized solution [6], and reflects the loss in the global performance
due to lack of coordination between players.

In this paper we study selfish PC and RPC in all-optical networks of ring
topology; let us mention that, as far as we know, selfish PC has not been con-
sidered before. We first prove some general properties that further clarify the
relation between selfish (R)PC and online (R)PC; the most important one is
that the PoA of (R)PC under any oblivious collision-free payment function f
is not smaller than the competitive ratio of a modification of the First-Fit al-
gorithm that uses f as a selection criterion. (Note that the notion of oblivious
collision-free payment function includes all functions that guarantee that no color
collisions occur, but apart from that charge a player according to the player’s
own strategy only.) This property allows to obtain lower bounds on the PoA
from lower bounds on the competitive ratio of First-Fit and its modifications; to
the best of our knowledge no such lower bounds have been presented before for
games in all-optical networks. We then study selfish PC and propose a payment
function with PoA between 5.4 and 9. Finally, we propose two quite natural
payment functions for selfish RPC. For the first of them, which forces players

Selfish Routing and Path Coloring in All-Optical Networks 73

to choose the smallest possible color, we show a tight upper bound for the PoA

which is half the trivial upper bound |R|
OPT , where R is the given set of requests

and OPT is the value of an optimal centralized solution for the corresponding
RPC instance. For the second, which forces players to choose shortest path rout-
ing, we give an upper bound for its PoA which does not depend on the number
of players but only (logarithmically) on the size of the network. Although a pay-
ment function with PoA bounded by a constant was already known [10] our
payment functions are more natural.

The paper is organized as follows: In the next section we describe the formal
model for our problems and the notation used in the paper, while in Section 3 we
give a brief review of related work. In Section 4 we examine the relation between
the solutions obtained by online and offline algorithms for PC and RPC and
the Nash equilibria for the corresponding non-cooperative games. In Sections 5
and 6 we study selfish PC and RPC, respectively; we define payment functions
yielding Nash equilibria and we present upper and lower bounds for the Price of
Anarchy in both cases. We conclude in Section 7 by giving a brief comparison
to earlier techniques and results.

2 Game Theoretic Model

We are given a network (graph) G = (V, E) and a set of communication requests
R. Each request r is a pair of nodes of G, i.e., r = (x, y). When the routing
of requests in R is also given in advance (pre-determined) we simply consider
that a set of paths P is given instead of R. Therefore, an instance of the RPC
problem is denoted by (G, R) and an instance of the PC problem, where players
only have to choose a color for their paths, is denoted by (G, P).

In selfish RPC (selfish PC) on G each player i issues a request ri (a path resp.).
For simplicity, we identify a player with a request. A strategy σi for player i is
a pair (pi, ci) (just (ci) for selfish PC), where pi is a simple path connecting
the endpoints of ri and ci is a color assigned to pi. Let Si denote all possible
strategies of player i. The possible strategies for each player are implicated by the
topology of graph G and the number of colors allowed. If we restrict the number
of colors to be no more than |R| then there is a finite number of strategies for
each player (we do not need to define them explicitly). There is also a payment
function for each player i, that is: fi : S1 × . . .×S|R| → IN. From now on, we will
restrict our study to games where all players have the same payment function f .

Definition 1. By S-RPC we denote the class of Selfish-RPC games, and a
game in S-RPC with input graph G, set of requests R, and payment function f ,
is denoted by a triple (G, R, f).

By S-PC we denote the class of Selfish-PC games (pre-determined routing),
and a game in S-PC with input graph G, set of routed requests P , and payment
function f , is denoted by a triple (G, P, f).

Given a class of graphs G and a payment function f , we denote by S-RPC

(G, f) (S-PC(G, f)) the subclass of S-RPC (S-PC resp.) that consists of games
(G, R, f) ((G, P, f) resp.) such that G ∈ G.

74 I. Milis, A. Pagourtzis, and K. Potika

For a game (G, R, f) (and similarly for a game (G, P, f)) we define the
following:

– A pure strategy profile, or simply strategy profile, is a vector S =
{σ1, σ2, . . . , σ|R|} of strategies, one for each player.

– A (pure) strategy profile is a pure Nash Equilibrium (NE) if for each player
i it holds that

f(σ1, . . . , σi, . . . , σ|R|) ≤ f(σ1, . . . , σ
′
i, . . . , σ|R|)

for any strategy σ′
i ∈ Si.

– The social cost sc(S) of strategy profile S is the number of colors used for
(routing and) coloring, if no color collisions appear; otherwise sc(S) = ∞.

Let OPT denote the optimum social cost for a game, that is, OPT =
minS∈S sc(S), where S is the set of all possible strategy profiles. Note that
OPT coincides with the cost of an optimal solution of the corresponding RPC

(PC) instance.
The price of anarchy (PoA) of a game is the worst-case number of colors used

in a NE (social cost) divided by OPT , that is,

Price of Anarchy =
maxS is NE sc(S)

OPT
.

The price of stability (PoS) of a game is the best-case number of colors used
in a NE (social cost) over OPT , that is,

Price of Stability =
minS is NE sc(S)

OPT
.

The price of anarchy (stability) of the class of games S-RPC(G, f)
(S-PC(G, f)) is the maximum price of anarchy (resp. stability) among all games
in S-RPC(G, f) (resp. S-PC(G, f)).

Definition 2. We say that a payment function for a selfish (routing and) path
coloring game is oblivious collision-free if:

(a) it guarantees that in a Nash Equilibrium no color collisions occur (by charg-
ing a very large amount to players that use the same color and share links
of the network) and

(b) it charges a player (who does not collide with other players) according to
the player’s own strategy only.

Let us observe that for any instance of S-RPC (S-PC) with oblivious collision-
free payment function it holds that sc(S) ≤ |R| (sc(S) ≤ |P |, resp.) if S is a
NE; hence, PoA ≤ |R|

OPT (PoA ≤ |P |
OPT , resp.). All functions considered in this

paper are oblivious collision-free. For the sake of simplicity we will omit from the
descriptions of our payment functions the condition that guarantees collision-free
Nash Equilibria.

Selfish Routing and Path Coloring in All-Optical Networks 75

3 Previous Work

Bilò and Moscardelli [11] consider the existence and performance of Nash equi-
libria of selfish RPC games in all-optical networks. They study four possible
payment functions. They show that only two of these payment functions, namely
when each player pays for her own color and when she pays for the maximum
color used by any other overlapping player, guarantee convergence to a pure NE.
However, they prove that the PoA is as high as |R| even for rings. In [10] they
refine this result to |R|

OPT for any payment function which is a non-decreasing
function of the color of the player.

Bilò et al. [10] consider different information levels of local knowledge that
players may have for computing their payments in selfish RPC games and give
bounds for the PoA in chains, rings and trees. In the complete level of infor-
mation each player knows all other players’ routing and coloring strategies. In
the intermediate level of information each player only knows which colors are
used on any edge of the network and in the minimal level of information each
player knows which colors are used only on edges along paths that the player can
choose. For the complete level they prove that the PoA is the same as the best
approximation ratio for RPC, thus 1 in chains and 2 in rings, under payment
functions specifically constructed according to the corresponding algorithms. For
the intermediate level they give a payment function specifically constructed ac-
cording to Slusarek’s algorithm [12] for online PC in rings (also known as online
circular arc coloring) that results in a PoA that is 3 + O(log L

L) in chains and
6 + O(log L

L) in rings, where L is the maximum load. For the minimal level they
prove that for any payment function which is a non-decreasing function of the
color of the player, the PoA in chains is bounded by the competitive ratio (say
FFchain) of the First-Fit algorithm for online PC in chains and the PoA in trees
is O(log |R|); they also give a payment function for rings with PoA bounded by
2 · FFchain. Pemmaraju et al. [13] have recently shown that FFchain ≤ 8, there-
fore the ratios obtained in [10] are in fact 8 in chains and 16 in rings (instead of
25.72 and 51.44 originally mentioned).

The existence of Nash equilibria and the complexity of recognizing and com-
puting a Nash equilibrium for selfish RPC under several payment functions are
considered by Georgakopoulos et al. [14]. Their results indicate that recognizing
a Nash equilibrium can be done in polynomial time, when each player pays for
her own color, when she pays for the maximum color used by any other overlap-
ping player and when she pays for the most loaded edge that she uses. On the
other hand, when the player pays for all the different colors appearing along her
path, recognizing a Nash equilibrium is NP-complete.

4 Solutions to PC and RPC as Nash Equilibria

In this section we explore the relation of the solutions obtained by online and
offline algorithms for PC and RPC to Nash equilibria for S-PC and S-RPC with
respect to various oblivious collision-free payment functions.

76 I. Milis, A. Pagourtzis, and K. Potika

In the online version of RPC problem requests arrive as an ordered sequence
〈R〉 = 〈r1, r2, . . . , r|R|〉. Such an online instance of RPC is denoted by (G, 〈R〉).
Upon arrival of a request ri, an online algorithm should decide a path and a color
assignment to ri so that no color collisions appear on any edge of paths that are
already colored (that is, corresponding to requests rj with j < i); the algorithm
has no knowledge of requests that are going to appear later (that is, requests rj

with j > i). The objective is to minimize the number of colors used. As before,
an instance of online PC is denoted by (G, 〈P 〉), where 〈P 〉 is a sequence of
paths ordered by arrival time.

Probably the simplest online algorithm for PC is First-Fit, which colors each
request ri with the smallest available color, provided that no color collisions
occur. We will also make use of the following version of First-Fit, which is ap-
propriate for online RPC: the algorithm chooses a path and color for request ri

in such a way that no color collisions occur and the color assigned to ri is the
minimum possible.

We now define a useful generalization of First-Fit for RPC. Consider a cost
function f which specifies a cost for each path and color assignment (p, c) to a
request ri, taking into account the path and color assignment to requests rj , j <
i. Then, First-Fit with criterion f (FF (f) for short) assigns to each request ri the
path p and color c that minimize f(ri, p, c), breaking ties arbitrarily. For example,
the standard First-Fit for RPC described above can be seen as FF (f), where
f(ri, p, c) = c if p does not overlap with any path of color c, otherwise f(r, p, c) =
∞. A similar generalization of First-Fit for PC is defined analogously by using
cost functions that take into account only the color assignment to requests (since
paths are given; in this case the payment function has two arguments p and c).
Formally, in the above description for each payment function f , the path-color
(or just color) assignment to requests rj , j < i, should also appear as argument
of function f ; we will omit it here for the sake of simplicity.

The following two lemmata reveal an interesting relation between selfish rout-
ing and coloring and the corresponding online (centralized) problems. The second
lemma is in fact a slight reformulation of an observation from [10].

Lemma 1. Consider a game (G, R, f) in S-RPC (S-PC) where f is an obliv-
ious collision-free payment function. For any ordering 〈R〉 of R, an execution
of FF (f) algorithm on (G, 〈R〉) gives a strategy profile for (G, R, f) which is a
Nash Equilibrium.

Proof. Consider the path-color assignment obtained by an execution of FF (f) on
(G, 〈R〉). A request ri cannot be assigned a path-color combination of lower cost
unilaterally, otherwise FF (f) would have chosen that path-color combination
for ri. The reason is that if such a different assignment is possible then it does
not cause color collisions with respect to the path-color assignment of all other
requests. Therefore, it certainly does not cause any color collision with respect
to requests rj , j < i; hence, upon arrival of ri, FF (f) would have chosen this
lower cost assignment. �	

Selfish Routing and Path Coloring in All-Optical Networks 77

Lemma 2 ([10]). Consider a game (G, R, f) in S-RPC (S-PC) where f is
collision-free and non-decreasing on the players’ color (hence also oblivious).
For every strategy profile S that is a Nash Equilibrium for (G, R, f), there is
an ordering 〈R〉 of R such that there is an execution of FF (f) algorithm on
(G, 〈R〉) yielding the same path-color assignment to R as S.

We now show how to convert any (routing and) coloring solution to RPC (PC)
to a Nash Equilibrium for the corresponding game in S-RPC (S-PC resp.) with
at most the same number of colors.

Lemma 3. Let k be the number of colors used in a solution to instance (G, R) of
RPC ((G, P) of PC respectively). We can compute a strategy profile which is a
Nash Equilibrium of social cost at most k for game (G, R, f) in S-RPC (S-PC

respectively) where f is oblivious collision-free and a non decreasing function of
the players’ color.

Proof. We convert the solution to instance (G, R) for RPC into a strategy profile
which is a Nash Equilibrium for game (G, R, f) in S-RPC by using the Nash
Conversion algorithm described below.

Algorithm 1. Nash Conversion
for each color c := 1 to k do

for each request r colored with c do
for each color c′ := 1 to c − 1 do

if there exists a path (including the current one) for request r that does not
overlap with any other path colored with c′

then { use that path to route r and color it with c′; exit for }

For PC the above algorithm works by modifying the “if” statement as follows:
“if the path of r does not overlap with any path colored with c′ then assign color
c′ to r”.

Note that no request can move to a smaller color, because Algorithm 1 assigns
the smallest available color, say c′, to r and does not affect afterwards the path-
color assignment of requests that have color smaller than c′. �	

Combining the above lemmata we obtain the following theorem:

Theorem 1. Let G be a class of graphs.

1. The price of anarchy for the class of games S-RPC(G, f) (S-PC(G, f)),
where f is oblivious collision-free, is at least as large as the competitive ratio
of FF (f) for RPC (PC, resp.) in graphs that belong to G.

2. The price of anarchy for the class of games S-RPC(G, f) (S-PC(G, f)),
where f is oblivious collision-free and is a non-decreasing function of the
players’ color, is equal to the competitive ratio of First-Fit for RPC (PC,
resp.) in graphs that belong to G.

78 I. Milis, A. Pagourtzis, and K. Potika

3. The price of stability for any game (G, R, f) in S-RPC (S-PC), where f is
oblivious collision-free and is a non-decreasing function of the players’ color,
is equal to 1.

Proof. 1: By Lemma 1, each execution of FF (f) leads to a path-color assignment
which is a NE for a game in S-RPC(G, f) (S-PC(G, f)); the social cost of that
NE is equal to the number of colors used by FF (f). Dividing by OPT we get
the claim.

2: Let S be a NE of the highest social cost. By Lemma 2, it turns out that there
is an execution of FF (f) on the corresponding RPC (PC) instance that requires
the same number of colors as S. Dividing by OPT we get that the competitive
ratio of FF (f) is at least as large as the price of anarchy for S-RPC(G, f)
(S-PC(G, f) resp.). Combining with 1 we get the claim.

3: It suffices to consider the optimal coloring and convert it to a NE by using
the Nash Conversion algorithm. �	

Using Theorem 1.2 and the fact that the competitive ratio of the First Fit
algorithm for online PC in chains is between 4.4 and 8 [13], we have that:

Corollary 1. The payment function f(p, c) = c induces S-PC games in chains
with a price of anarchy between 4.4 and 8.

5 S-PC in Rings

In this section we propose and study an oblivious collision-free payment function
that results in a relatively low PoA for S-PC in rings.

We first observe that the natural choice of taking as payment function the one
that charges the color value gives 2.53 logn+5 (n is the number of nodes) on the
PoA for S-PC in rings. This is obtained by Theorem 1.2 and the competitive
ratio of the First Fit algorithm for online PC in rings shown in [15].

Let Le be the load on edge e, i.e. number of paths that use e. Let E′ be a
set of edges then we denote by LE′ the maximum load over all edges in E′. Let
L be the maximum load of G. Consider an arbitrary edge e of ring G. Payment
function fe is defined as follows: if a player p (recall that players can be seen
as paths in this case) uses edge e then she is encouraged to use the smallest
available color, since she pays the value of the color she uses; otherwise she is
encouraged to use the smallest available color which is greater than Le (for which
she pays the color value) instead of using any color in {1, . . . , Le} (for which she
must pay a much higher price). Formally,

fe(p, c) = xp,e ×
Le

c
� × |P | + c

where xp,e =
{

0 , if p traverses edge e
1 , otherwise

Recall that FFchain denotes the competitive ratio of First-Fit for online PC
in chains (online interval coloring).

Selfish Routing and Path Coloring in All-Optical Networks 79

Theorem 2. The payment function fe induces S-PC games in rings with a
price of anarchy equal to FFchain + 1.

Proof. Observe that the graph G−e is a chain. Payment function fe implies that
all players that have their path in path set PG−e = P \Pe have no gain by using
a color from the set {1, . . . , Le}, because it results in high cost (at least |P |).
Therefore, a Nash equilibrium S can be seen as the result of two independent
executions of First-Fit on players: (a) the first execution is on players (paths)
that use e, with available colors {1, . . . , Le}, and (b) the second execution is on
players that do not use e, with available colors {Le + 1, . . . , |P |}. Both subsets
of players are ordered according to their color in S (increasingly).

For the first group of players Le colors will be used, while for the second, of
load LG−e, First Fit will need at most FFchain · LG−e colors. Hence, the total
number of colors in S will be

sc(S) ≤ Le + FFchain · LG−e ≤ (FFchain + 1)max {Le, LG−e}
≤ (FFchain + 1)OPT

because any algorithm will need at least as many colors as the maximum load
of requests. Since no specific assumption was made for S, the above inequality
holds for all NE implying that PoA ≤ FFchain + 1.

It is also possible to bound PoA from below by considering an instance where
Pe consists of L requests and PG−e consists of a worst-performance chain instance
for First-Fit of load L. Assume that paths in Pe do not overlap paths in PG−e.
Then OPT = L. On the other hand, if we give this instance as input to FF (fe)
algorithm, with the requests in PG−e ordered as in the worst-performance in-
stance of First-Fit, then FF (fe) will need (FFchain + 1)L colors. By Theorem
1.1 this implies that PoA ≥ FFchain + 1. �	
Corollary 2. The payment function fe induces S-PC games in rings with a
price of anarchy between 5.4 and 9.

6 S-RPC in Rings

In this section we consider S-RPC in rings induced by two different oblivious
collision-free payment functions. The first one forces players to choose the smallest
possible color while the second one forces them to choose shortest path routing.

6.1 The Color-Length Payment Function

We consider the payment function f(r, p, c) = c · n + length(p), where n is the
number of nodes in the ring. It is clear that under this function a player r always
selects the smallest possible color even if it requires to follow the longest one of
her two possible alternative paths.

Theorem 3. The payment function function f(r, p, c) = c·n+length(p) induces
S-RPC games in rings with a price of anarchy equal to |R|

2 OPT + 1, where R is
the given set of requests.

80 I. Milis, A. Pagourtzis, and K. Potika

Proof. We first prove that PoA ≤ |R|
2 OPT + 1.

Let S be a NE for a (Ring, R, f) game. Let R1 be the subset of requests
assigned an exclusive color (assigned only to one of these requests) and R2 be
the subset of requests that share a color with at least one other request. It follows
that

sc(S) ≤ |R2|
2

+ |R1| =
|R|
2

+
|R1|
2

.

We shall prove that |R1|
2 ≤ OPT and therefore

PoA =
sc(S)
OPT

≤ |R|
2 OPT

+ 1.

Clearly the requests in R1 are routed via paths that overlap each other, for
otherwise at least two of them can take the same color. Moreover, each of them is
routed via its shortest path for otherwise S would not be a NE for (Ring, R, f).
This is because such a request, routed via its longest path, can improve its own
cost by choosing its shortest path and keeping its (unique) color. Hence, the
requests in R1 are routed via paths of length at most n/2.

Consider the optimal solution; it uses OPT colors. According to this col-
oring the set of requests, R, can be partitioned into OPT disjoint subsets
C1, C2, . . . , COPT , each one containing the requests assigned the same color.
The requests in each Ci, 1 ≤ i ≤ OPT, are routed via non overlapping paths
and hence they are consecutive in a clockwise traversal of the ring i.e., no request
starts or ends between the start and the end point of any other. Therefore, they,
but at most one, are routed via their shortest paths; that is, at most one of them
is routed via a path of length greater than n/2.

Consider now the routing of the requests in R1 in S and in the optimal solu-
tion. In both cases the routing of these requests coincides (shortest path routing)
except for at most OPT requests i.e., the single requests that are possibly routed
via longest paths in each set Ci, 1 ≤ i ≤ OPT . Since the requests in R1 are
routed via paths overlapping each other, it follows that at most two requests
from each set Ci can be in R1: the one that is routed via its longest path, now
routed via its shortest path, and one of the rest. Therefore, |R1| ≤ 2 OPT .

We prove next, by a counterexample, that PoA ≥ |R|
2 OPT + 1.

Consider the following instance: A ring of 2k+6t nodes and a set R of requests
consisting of k + 2 subsets R0, . . . , Rk+1, each containing t requests:

– R0 consists of t ‘crossing’ requests {k + 2t + (j − 1), (2k + 5t + j)}, 1 ≤ j ≤ t
(the last request is between node k + 3t − 1 and node 2k + 6t).

– Ri, 1 ≤ i ≤ k, consists of t identical requests {i, i + 1} (from node i to node
i + 1).

– Rk+1 consists of t ‘crossing’ requests {k + j, k + j + t}, 1 ≤ j ≤ t.

The optimal solution routes R1 to Rk+1 with shortest paths and R0 with
longest paths, and assigns to each Ri colors {1, . . . , t} (see Figure 1). Thus
OPT = t.

Selfish Routing and Path Coloring in All-Optical Networks 81

k+3t−1

R

R

R

R

1

k

k+1

0

2k+5t+1

2k+6t
1 2

k

k+1

k+t

k+t+1

k+2t

Fig. 1. Example of a S-RPC game and its optimal centralized solution

Consider now the execution of FF (f) algorithm on instance (Ring, 〈R〉) of
online RPC, assuming that requests in Ri appear in 〈R〉 before requests in Rj for
i < j. Then, FF (f) first routes requests in R0 via their shortest paths, that is,
via {1, k + 2t}, and assigns them colors {1, . . . , t}. Then, for each Ri, 1 ≤ i ≤ k,
every two requests are routed via complementary paths and receive the same
color; thus t/2 new colors are needed for each Ri, 1 ≤ i ≤ k (see Figure 2).
Finally, requests in Rk+1 would overlap each other and every other previously
considered request, no matter which of the two possible paths is used. Therefore
t new colors are needed for requests Rk+1 and the shortest path is chosen for
each of them. Altogether, FF (f) uses kt

2 +2t colors. By Theorem 1.1 the number
of colors used by FF (f) is a lower bound of the social cost of the worst Nash
equilibrium, that is

PoA ≥
kt
2 + 2t

t
=

(k + 2)t
2t

+ 1 =
|R|

2OPT
+ 1.

�	

6.2 The Length-Color Payment Function

We consider the payment function f(r, p, c) = length(p) · |R| + c, where R is the
given set of requests. It is clear that under this function a player r always selects
the shortest one of its two possible alternative paths even if it requires to take a
larger color.

Theorem 4. The payment function f(r, p, c) = length(p) · |R| + c induces S-

RPC games in rings with a price of anarchy such that FFchain + 1 ≤ PoA ≤
5.06 logn + 10, where n is the number of nodes in the ring.

82 I. Milis, A. Pagourtzis, and K. Potika

2k+6t
1 2

k

k+1

k+t

k+t+1

k+2t

k+3t−1

2k+5t+1

Fig. 2. Solution obtained by applying algorithm FF (color-length) on the instance of
Figure 1 (only subsets Ri, 0 ≤ i ≤ k, are shown, for the sake of clarity)

Proof. The proof of the upper bound is based on a result for dynamic wavelength
assignment on rings in [15]. This result states that the First Fit algorithm needs
at most 2.53L logn + 5L wavelengths, where L is the maximum load on the
ring. Combining this result with the observation that any shortest path routing
produces a maximum load that is at most twice the one produced by an optimal
routing we get the upper bound.

For the proof of the lower bound we consider the following S-RPC game: A
ring of 2k nodes and a set R of requests consisting of 2 subsets R1 and R2 such
that:

– R1 consists of an arbitrary number of requests which, when routed via their
shortest paths, yield a maximum load of L in the ring links. Moreover, for
each request (i, j) ∈ R1 it holds that 1 ≤ i = j ≤ a < k − 1.

– R2 consists of L identical requests (1, i), k > i > a.

The optimal solution routes R1 via shortest and R2 via longest paths. This way
no request in R1 overlaps with any request in R2. Requests in R1 require L
colors, since they are on the chain 1, 2, . . . , a, and requests in R2 can be colored
by the same L colors. Therefore, OPT = L.

The FF (f) online algorithm on instance (Ring, 〈R〉) of RPC, if requests in
R1 appear in 〈R〉 before requests in R2 (or vice versa), routes all requests via

Selfish Routing and Path Coloring in All-Optical Networks 83

shortest paths and therefore it uses L · FFchain colors for R1 and L new colors
for R2. Using Theorem 1.1 it follows that PoA ≥ FFchain + 1. �	

7 Conclusions

In this paper we studied selfish (routing and) path coloring games in all-optical
networks. We proposed a payment function for S-PC in rings with a PoA be-
tween 5.4 and 9. For S-RPC in rings we studied two natural payment functions:
one called ‘color-length’ which favors smallest colors and one called ‘length-color’
which favors shortest paths. We have shown that the color-length function fails
to achieve a low PoA; however, its PoA is half the PoA of any payment function
that charges according to the value of the color only [10,11]. On the other hand,
the length-color function achieves a PoA which does not depend on the number
of requests but only on the number of nodes of the ring (logarithmically). It is
still open whether the upper bound for the length-color function can be further
improved taking into account that the lower bound we have shown is as low
as 5.4. Note that all our functions require only local color information, namely
to know which colors are used along edges that can be used by a player (minimal
level of information using the classification in [10]).

Comparing to earlier work we observe that, as far as we know, S-PC has not
been considered before. For S-RPC in rings, a payment function with PoA ≤ 16
has been proposed in [10]; however, that payment function forces players to
avoid routing through a particular edge of the graph, which may increase the
total traffic of the network. Therefore, our length-color function might be more
appropriate in cases where reducing the total traffic is important (e.g. if the
social cost takes into account the sum of the loads over all edges).

In order to obtain our results we established a connection of the PoA of selfish
(routing and) path coloring games to the competitive ratio of First-Fit-like algo-
rithms for the corresponding online (routing and) path coloring problems. This
connection is a generalized and strengthened form of an observation from [10]. In
particular, the observation in [10] was used in order to obtain an upper bound on
PoA from the competitive ratio of First-Fit. Our strengthening allows to obtain
lower bounds as well.

References

1. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of
coloring circular arcs and chords. SIAM Journal on Algebraic and Discrete Meth-
ods 1(2), 216–227 (1980)

2. Karapetian, I.A.: Coloring of arc graphs (in russian). Akad. Nauk Armyan. SSR
Dokl. 70(1), 306–311 (1980)

3. Raghavan, P., Upfal, E.: Efficient routing in all-optical networks. In: STOC. Proc.
of the 26th Annual ACM Symposium on Theory of Computing, pp. 134–143 (1994)

4. Erlebach, T., Jansen, K., Kaklamanis, C., Mihail, M., Persiano, P.: Optimal wave-
length routing on directed fiber trees. Theor. Comput. Sci. 221(1-2), 119–137 (1999)

84 I. Milis, A. Pagourtzis, and K. Potika

5. Gargano, L., Vaccaro, U.: Routing in all-optical networks: Algorithmic and graph
theoretic problems. Numbers, Information and Complexity, pp. 555–578. Kluwer
Academic Publishers, Dordrecht (2000)

6. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

7. Mavronicolas, M., Spirakis, P.G.: The price of selfish routing. In: STOC. Proc. of
the 33rd Annual ACM Symposium on Theory of Computing, pp. 510–519 (2001)

8. Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM 49(2), 236–259
(2002)

9. Nash, J.F.: Equilibrium points in n-person games. Proc. of the National Academy
of Sciences of the United States of America 36(1), 48–49 (1950)

10. Bilò, V., Flammini, M., Moscardelli, L.: On Nash equilibria in non-cooperative all-
optical networks. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404,
pp. 448–459. Springer, Heidelberg (2005)

11. Bilò, V., Moscardelli, L.: The price of anarchy in all-optical networks. In: Kralovic,
R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 13–22. Springer, Hei-
delberg (2004)

12. Slusarek, M.: Optimal online coloring of circular arc graphs. Informatique Theore-
tique et Applications 29(5), 423–429 (1995)

13. Pemmaraju, S.V., Raman, R., Varadarajan, K.R.: Max-coloring and online coloring
with bandwidths on interval graphs (manuscript, 2006)

14. Georgakopoulos, G.F., Kavvadias, D.J., Sioutis, L.G.: Nash equilibria in all-optical
networks. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 1033–1045.
Springer, Heidelberg (2005)

15. Gerstel, O., Sasaki, G., Kutten, S., Ramaswami, R.: Worst-case analysis of dynamic
wavelength allocation in optical networks. IEEE/ACM Transactions on Network-
ing 7(6), 833–846 (1999)

A Worst-Case Time Upper Bound for Counting

the Number of Independent Sets

Guillermo De Ita1 and Aurelio López-López2

1 Universidad Autónoma de Puebla
deita@cs.buap.mx

2 INAOE - Tonantzintla, Pue. México
allopez@inaoep.mx

Abstract. The problem of counting the number of independent sets of a
graph G (denoted as NI(G)) is a classic #P-complete problem for graphs
of degree 3 or higher. Exploiting the strong relation between NI(G) and
Fibonacci numbers, we show that if the depth-first graph of G does not
contain a pair of basic cycles with common edges, then NI(G) can be
computed in linear time (in the size of the graph). This determines new
classes of instances of graphs without restrictions on their degrees and
where the number of independent sets is computed in polynomial time.

We design an exact deterministic algorithm for computing NI(G)
based on the topological structure of the graph G, applying the well-
known splitting rule from Davis and Putnam (D&P) procedure. D&P
is a familiar method for solving the Satisfiability Boolean Problem. Our
algorithm for computing NI(G) establishes a leading Worst-Case Upper
Bound of O(poly(n, m)∗1.220744n), n and m being the number of nodes
and edges of the graph G, respectively. The exact technique reported here
can be used to compute the redundancy of a line in a communication
network.

Keywords: Counting the Number of Independent Sets, Exact Counting,
Graph Theory.

1 Introduction

Counting problems are not only mathematically interesting, but they arise in
many applications. For example, if we want to know the probability that a for-
mula in propositional calculus is true, or the probability that a graph remains
connected given a probability of failure of an edge, we have to count to approx-
imate such probabilities.

Regarding hard counting problems, the computation of the number of inde-
pendent sets of a graph has been a key for determining the frontier between
efficient counting and intractable counting procedures. Vadhan [14] showed that
counting the number of independent sets in graphs of maximum degree 4 is #P-
complete. Greenhill [8] refined the previous result showing that counting the
number of independent sets on graphs of degree 3 or on 3-regular graphs is also
#P-complete.

J. Janssen and P. Pra�lat (Eds.): CAAN 2007, LNCS 4852, pp. 85–98, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

86 G. De Ita and A. López-López

Different techniques have been used for counting the number of independent
sets of a graph G. These techniques can be classified in two kinds of methods:
exact and approximate algorithms.

The Markov chain described by Luby and Vigoda [11] is one of the first
approximate counting algorithms for the independence set problem. The appli-
cation of Markov chain Monte Carlo algorithms has achieved some success to
approximate, in polynomial time, the number of independent sets of a graph
G, specially for graphs of maximum degree of at most four [6]. Although more
Monte Carlo algorithms have been developed further in [5,6,7,8,13], this approx-
imation technique is likely to fail for graphs of maximum degree six or higher,
leaving open for now, the case for maximum degree 5 [6].

One of the important trends of research for enumerative combinatorics in
general, and for counting the number of independent sets in particular, has been
the application of the integer polynomial theory. An excellent example of this
line of research is the construction of the independence polynomial of a graph
G, defined as: I(G; x) =

∑α(G)
k=0 skxk = s0 + s1x + s2x

2 + . . . + sα(G)x
α(G) where

α(G) is the size of the maximum independence set in G and the coefficients
sk, k = 0, ..., α(G) represent the number of independent sets of cardinality k
in G. This polynomial is a good representative of the enumerative structure of
NI(G) [2,9,10]. In fact, various aspects of combinatorial information related to
a graph are kept in the set of coefficients.

In our case, we address the computation of NI(G) using the topological struc-
ture of the graph G. We start by traversing G in a depth-first search. We show
that if the resulting depth-first graph of G does not contain intersected basic cy-
cles (no pair of basic cycles shares edges) then NI(G) is computed in linear time
in the size of the graph G. We have called this polynomial class Topologically
Ordered Graphs and it generalizes the polynomial classes showed in [4,12,13]
for counting the number of independent sets. The Topologically Ordered class
establishes a finer border between the class of graphs where the computation
of NI(G) is done efficiently versus those which require an exponential time, at
least up to now.

In the last section, we present an exact algorithm for computing NI(G) based
on the topologically ordered graphs and applying the well-known splitting rule
from Davis and Putnam procedure’s. Our proposal establishes a leading worst-
case upper bound of O(poly(n, m)∗1.220744n) where poly(n, m) is a polynomial
in n and m, the number of nodes and edges in the graph, respectively.

In some cases, we present the relationship between our algorithm and the
equivalent property established based on the independence polynomial, with the
advantage that the analysis of the time complexity is clearer with our algorithmic
point of view. Furthermore, our algorithms can be adapted for solving other
counting problems and then, to impact on the time complexity for solving those
problems.

The determination of the number of independent sets has several applica-
tions in statistical physics [5,7,13,14], e.g. computation in the Potts and hard-
core lattice gas model and the problem of counting q-particle Widom-Rowlinson

A Worst-Case Time Upper Bound for Counting 87

configurations in graphs, where q > 2. Nevertheless, other important applica-
tion of counting independent sets is for estimating the degree of reliability in
communication networks [14].

For example, if we assume that the communication lines (edges) in a network
G have the same ’failure probability’ and those failures are independent of each
other, we can measure different classes of reliability of the network, given that
an edge c ∈ G fails, according to the network component under consideration.
A way to estimate the ’redundancy’ of a line c in the network G is by applying
the conditional probability Pc/G which can be approximated by the fraction of
the number of independent sets which are added, when the edge c is removed
(fails), that is, Pc/G = NI(G)

NI(G−c) . Thus, Pc/G expresses the strategic value of an
edge c in a network G by estimating the redundancy of the line. As c is any edge
of G, Pc/G can be used for estimating the redundancy for any edge of G.

For dynamic networks where their lines are always being reconfigured, as
happens when the networks are modelling the Web, for instance, computing
Pc/G is a growing challenge. Given the intractability nature of the reliability
problems in a network, the design of efficient algorithms for computing Pc/G,
or at least exponential algorithms with low growth rate, has been an important
area of research.

In this article, we show a leading algorithm for computing the number of
independent sets in a graph, so that it can be used to compute the redundancy
of the communication lines in a network.

The paper is organized as follows: Section 2 introduces notation, and Section
3 analyzes the basic cases for counting independent sets. The algorithm to count
independent sets when the graph does not have intersected cycles is detailed in
Section 4, followed by the description of the computation for the general case in
Section 5. Before concluding, the complexity of the latter algorithm is discussed
in Section 6.

2 Notation

Let G = (V, E) be an undirected graph with vertex set (or node set) V and set of
edges E. Two vertices v and w are called adjacent if there is an edge {v, w} ∈ E,
connecting them. Sometimes, the shorthand notation of u v is used for denoting
the edge {u, v} ∈ E.

The neighborhood for x ∈ V is N(x) = {y ∈ V : {x, y} ∈ E} and its closed
neighborhood is N(x)∪{x} which is denoted by N [x]. We denote the cardinality
of a set A, by |A|. The degree of a vertex x, denoted by δ(x), is |N(x)|, and the
degree of G is Δ(G) = max{δ(x) : x ∈ V }. The size of the neighborhood of x,
δ(N(x)), is δ(N(x)) =

∑
y∈N(x) δ(y).

A path from v to w is a sequence of edges: v0v1, v1v2, . . . , vn−1vn such that
v = v0 and vn = w and vk is adjacent to vk+1, for 0 ≤ k < n. The length of
the path is n. A simple path is a path where v0, v1, . . . , vn−1, vn are all distinct.
A cycle is just a nonempty path such that the first and last vertices are identical,

88 G. De Ita and A. López-López

and a simple cycle is a cycle in which no vertex is repeated, except that the first
and last vertices are identical. A graph G is acyclic if it has no cycles.

Given a graph G = (V, E), let G′ = (V ′, E′) be a subgraph of G if V ′ ⊆ V and
E’ contains edges v, w ∈ E such that v ∈ V ′ and w ∈ V ′. If E′ contains every
edge v, w ∈ E where v ∈ V ′ and w ∈ V ′ then G′ is called the induced graph of
G. A connected component of G is a maximal induced subgraph of G, that is, a
connected component is not a proper subgraph of any other connected subgraph
of G. Note that, in a connected component, for every pair of its vertices x, y,
there is a path from x to y. If an acyclic graph is also connected, then it is called
a free tree.

Given a graph G = (V, E), S ⊆ V is an independent set in G if for every two
vertices v1, v2 in S, {v1, v2} /∈ E. Let I(G) denote the set of all independent
sets of G. An independent set S ∈ I(G) is maximal if it is not a subset of any
larger independent set and, it is maximum if it has the largest size among all
independent sets in I(G). The determination of the maximum independent set
has received much attention since it is a NP-complete problem.

The corresponding counting problem on independent sets, denoted by NI(G),
consists of counting the number of independent sets of a graph G. NI(G) is a #P-
complete problem for graphs G where Δ(G) ≥ 3. NI(G) remains #P-complete
when it is restricted to 3-regular graphs [8].

There are different polynomial procedures for computing NI(G) when
Δ(G) ≤ 2 [4,12,13]. In fact, all of them have linear-time complexity. In the fol-
lowing sections, we present exact combinatorial procedures for computing NI(G)
according to the topology of the graph G.

3 Base Cases for Counting Independent Sets

Since NI(G) =
∏k

i=1 NI(Gi) where Gi, i = 1, . . . , k are the connected compo-
nents of G [12,3], then the total time complexity for computing NI(G) is given
by the maximum rule as T (|G|) = max{T (|Gi|) : Gi is a connected component
of G}. Thus, from here on, we consider as an input graph only a connected com-
ponent. We start analyzing the most simple cases for such components.

Case A:
Let G = (V, E) be a graph consisting of a single sequence of nodes (path), i.e.
V = {1, 2, ..., n} and there exists an edge ei = {i, i+1}, i = 1, . . . , n−1, for each
pair of sequential nodes. We build the family fi = {Gi}, i = 1, . . . , n where each
Gi = (Vi, Ei) is the induced graph of G formed by just the first i nodes of V .
We associate to each node vi ∈ V a pair (αi, βi) where αi expresses the number
of sets in I(Gi) where the node vi does not appear, while βi conveys the number
of sets in I(Gi) where the node vi appears, thus NI(Gi) = αi + βi.

The first pair (α1, β1) is (1, 1) since for the induced subgraph G1 = {v1},
I(G1) = {∅, {v1}}. If we know the value for (αi, βi) for any i < n, and as the
next induced subgraph Gi+1 is built from Gi adding the node vi+1 and the edge
{vi, vi+1}, it is not hard to see that the pair (αi+1, βi+1) is built from (αi, βi)
applying the recurrence equation:

A Worst-Case Time Upper Bound for Counting 89

αi+1 = αi + βi ; βi+1 = αi (1)

The series (αi,βi), i=1,...,n, built from recurrence (1), lead to NI(Gi)=αi + βi

for i = 1, ..., n. Thus, the computation of NI(G) is based on the incremental cal-
culation of NI(Gi), i = 1, . . . , n. If we perform a linear search on the sequential
graph G starting at an extreme, e.g. beginning at v1 and moving to its incident
nodes while applying recurrence (1), in linear time on the number of nodes n,
we obtain NI(G) = NI(Gn) = αn +βn = Fn+2, where Fn is the nth−Fibonacci
number [4].

Case B:
Other basic case is when G = (V, E) |V | = n = |E| = m is a simple cycle, i.e.
every node in V has degree two. In this case, the cycle can be decomposed as:
G = G′ ∪ {cm}, where G′ = (V, E′), E′ = {c1, ..., cm−1}. G′ constitutes so a
sequential graph, and cm = {vm, v1} is the edge which, if added to G′, forms the
cycle G.

Observe that every independent set of G is an independent set of G′, that is,
I(G) ⊆ I(G’) since G has one edge more than G′. Thus, if S ∈ I(G′) and v1 ∈ S
and vm ∈ S then S is not an independent set of G. Then, I(G) can be built
from I(G′) by eliminating those independent sets containing the nodes: v1 and
vm. Hence, NI(G) = NI(G′) − |{S ∈ I(G′) : v1 ∈ S ∧ vm ∈ S}|.

We can apply the case (A) for computing NI(G′) since G′ is a single sequence
of nodes. And, in order to count |{S ∈ I(G’) : v1 ∈ S ∧ vm ∈ S }|, we can fix on
I(G′) the independent sets where v1 is involved, which is done by computing a
new series (α′

i,β′
i), i=1,...,m starting with the pair (α′

1, β
′
1) = (0, 1), considering

in this way only the independent sets of I(G′) where v1 appears. We apply (1)
for computing the new series: (α′

i,β
′
i), i=2, . . . ,m and also, in order to consider

only the independent sets where vm appears, the final pair (α′
m, β′

m) is taken
only as (0, β′

m).
In the following examples, we denote with → the application of recurrence

(1) on (αi, βi) in order to obtain (αi+1, βi+1). And, if we express the new series
in terms of Fibonacci numbers, we have that (α′

1,β′
1) = (0, 1) = (F0, F1) →

(α′
2, β

′
2) = (1, 0) = (F1, F0) → (α′

3, β
′
3) = (1, 1) = (F2, F1), . . . , (α′

m, β′
m) =

(Fm−1, Fm−2), and the value for the final pair (α′
m, β′

m) = (0, β′
m) is (0, Fm−2),

then |{S ∈ I(G′) : v1 ∈ S ∧ vm ∈ S}| = 0 + βm = Fm−2.
Then, N I(G) = NI(G′) - |{S ∈ I(G’) : v1 ∈ S ∧vm ∈ S}| = αm +βm −β′

m =
Fm+2 − Fm−2. Thus, we can formulate the following theorem.

Theorem 1. If G is a simple cycle with n nodes then the number of independent
sets of G, expressed in terms of the Fibonacci numbers, is: NI(G) = Fn+2−Fn−2.

The formulas obtained in the cases A and B are equivalent to the formulas
obtained by Arocha [2] using Fibonacci polynomials. The polynomial defined
by F0(x) = 1, F1(x) = 1, and recursively Fn(x) = Fn−1(x)+x·Fn−2(x), for n ≥ 2
is the so-called Fibonacci polynomial. The independence polynomial for a path
(sequence of nodes) Pn and a chordless cycle Cn with n nodes can be expressed,
as: I(Pn; x) = Fn+1(x) and I(Cn; x) = Fn−1(x) + 2x · Fn−2(x), respectively.

90 G. De Ita and A. López-López

1 2 3 4 5 6X XX XX X

(αi, βi) : (1, 1) → (2, 1) → (3, 2) → (5, 3) → (8, 5) → (13, 8)
(α′

i, β
′
1) : (0, 1) → (1, 0) → (1, 1) → (2, 1) → (3, 2) → (5, 3) ⇒ (0, 3)

Fig. 1. Computing NI(G) when G is a simple cycle

Example 1. Let E = {ci}6
i=1 = {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x5, x6},

{x6, x1}} be the set of edges of a simple cycle G = (V, E). Let G′ = (V, E′) where
E = E′ ∪ {c6}, so G′ is G without edge c6. As G′ is a sequence of 6 nodes then
NI(G′) = F6+2 = 21. While the value for |{S ∈ I(G′) : x1 ∈ S ∧ x6 ∈ S}| is
F6−2 = 3. Then, NI(G) = 21 − 3 = 18.

We call Linear NI to the linear procedure that consists of the above two cases
(A and B). Linear NI will be applied to process any single sequence of nodes or
simple cycle that we find as part of a more complex graph.

4 Computing NI(G) When G Has Non-intersected
Cycles

Let G = (V, E) be a connected graph with |V | = n, |E| = m and such that
Δ(G)≥ 2. Let vr be the node of minimum degree in G, that is chosen to start the
depth-first search. Then we obtain a spanning tree TG where vr is the root node
and a set of fundamental cycles C = {C1, C2, ..., Ck}. Each back edge marks the
beginning and the end of a fundamental cycle. Let AG be the depth-first search
graph of G formed by the spanning tree TG and the set of fundamental cycles
C.

We refer as CM to the base cycle matrix of the graph. Each fundamental
cycle of AG is represented in a row of CM . Given any pair of cycles Ci and Cj

from C, i �= j, i, j = 1, . . . k, if Ci and Cj share edges, we call them intersected
cycles, otherwise they are called independent cycles.

Theorem 2. If the depth-first search graph from a given graph G does not con-
tain intersected fundamental cycles, then the number of independent sets of G is
computed in linear time.

Proof: We present as proof a linear time algorithm that computes NI(G) and
where the main idea is to compute NI(G) by calculating NI(C) for every ba-
sic component, i.e. single sequences of nodes or non-intersected cycles, C ∈ G,
guiding such computation by a topological sorting on a directed version of G.

Algorithm. Count Ind Sets()
Input. AG is the graph built by the depth-first search over G, and CM is the
base cycle matrix.
Output. NI(G), the number of independent sets of G.

A Worst-Case Time Upper Bound for Counting 91

Procedure:

1. Translate AG to a Directed Acyclic Graph (DAG), denoted by DG, assigning
an orientation to each edge {u, v} in AG by directing: u → v when v is an
ancestor node of u in TG.

There are two basic structures in DG: Branches and Rings.
A branch Bs of DG is a directed sequence of nodes which starts in a

node vs where δin(vs)=0 and δout(vs)=1, the internal nodes of the sequence
are reached from vs through a linear path formed by nodes vi such that
δin(vi) = 1 = δout(vi). The branch ends in the first node vo such that
δin(vo) > 1 or δout(vo) > 1, and vo is reached through the linear path
started in vs.

A ring Rs of DG is the subgraph formed by the edges and nodes that are
part of a fundamental cycle in TG, so, for each cycle Ci ∈ C, there is a ring
Ri, i=1, ...k. The start-node of Rs is the node vs that is part of the back
edge ci = {vs, vo} and δout(vs)=2, while the second node vo of the back edge
is called the end-node of the ring.

2. Apply a topological sorting procedure on DG, obtaining an ordered number
′o′ associated to each node in DG, such that o(u) < o(v) whenever u → v.

3. Extend the topological sorting to the substructures of DG according to the
topological order number associated to the end-node of each substructure,
such number indicates the order for processing the substructure in step 4.

When a branch and a ring have the same topological number, the branch
is evaluated before the ring. Starting the evaluation of substructures, each
pair (αv, βv) is set to (0,0), for any node v ∈ DG.

4. NI(G) is computed traversing each substructure in DG, according to the
topological order of each substructure. When a node v is visited, the pair
(αv, βv) is computed depending on the substructure in which this node
appears, as follows:
(a) When a branch Bs is evaluated, the basic procedure of case (A) is ap-

plied. The evaluation of the branch starts in its initial node vs, associ-
ating the pair (αs,βs)=(1,1) when vs does not have a stored value yet.
After evaluating the branch, its initial node and its internal nodes are
removed from DG, as well as its associated edges. The end-node vo is
the only node of the branch preserved, maintaining in (αo, βo) the final
value obtained after processing the whole branch.

(b) When a ring Rs is evaluated, the basic case (B) is applied since Rs is
evaluated as an undirected cycle. The processing of Rs starts with the
start-node vs associating the values (αs, βs)=(1,1) or taking the values
already stored in vs. After evaluating the ring Rs, all of its nodes as
well as its associated edges are removed from DG, preserving only the
end-node vo of Rs where the resulting pair (αo, βo) is stored.

When a node v is considered, this could have been visited before and then a
pair (αv1 , βv1) has been already associated with v. When v is visited again,
a new pair (αv2 , βv2) is obtained. The final pair (αv, βv) associated to v is
computed as: αv = αv1 ∗αv2 and βv =βv1 ∗ βv2 , since two different processing
lines have met in a common node.

92 G. De Ita and A. López-López

5. The steps (4a) and (4b) are applied repeatedly, since the internal nodes of
rings and branches are removed from DG and new branches could come
out. The topological order number assigned to the end-node of the emergent
branches determines the order for processing such new branches.

This iterative process finishes when the root node vr of TG is reached and
then, NI(G) =αr + βr.

Example 2. Consider the depth-first search graph G illustrated in figure 2. Tak-
ing x1 as the root node for the depth-first search, the DAG DG showed in figure 3
is generated by the step 1 of the procedure. The evaluation order in DG, accord-
ing to the topological order (step 2), is: x7, x8, x9, x3, x6, x4, x5, x2, x1. And the
substructures of DG are: the branches: x3 → x6, and the rings: x9 → x6 → x4,
x4 → x5 → x2 and x7 → x8 → x2 → x1 that have to be evaluated in the same
order as was previously listed.

X
1

X 3

X
9

X 6

X
7

X
8

X
4

X
5

X
2

Fig. 2. A depth-first graph AG

X
3

X
6

X
4

X
5

X
2

X
1

X
8

X
7

X
9

Fig. 3. The DAG associated with AG

Note that all the sub-procedures involved in Count Ind Sets, such as depth-
first search, topological sorting, processing rings and branches, and so on, are
all linear procedures in the size of the graph. Thus, Count Ind Sets has a time
complexity of O(n + m), n and m being the number of nodes and edges of G.

The graphs that satisfy the conditions of theorem 2, constitute a new poly-
nomial class of graphs for counting the number of independent sets. We called
this class of graphs, the class of Topologically Ordered Graphs. This new class is
a superclass of graphs of degree two and it has no restrictions on the degree of
the graphs, but it depends on the topological structure of the graph.

A Worst-Case Time Upper Bound for Counting 93

5 Computing NI(G) in the General Case

Let G = (V, E) be a graph where |V | = n, |E| = m, and Δ(G) >= 2. Let TG be
the depth-first graph of G. We assume that TG is connected and has intersected
cycles since otherwise, it can be processed by the procedure presented in the
previous section. Let C = {C1, ..., Cnc} be the set of fundamental cycles in TG

which are already set apart in the cycle matrix CM . The basic idea is to choose
a node v and reduce the problem to count separately the number of independent
sets with v and without v.

Algorithm. NI for Max Degree(TG)
Input. TG = (V, E): the depth-first search graph of G containing intersected
cycles.
Output. NI(G): the number of independent sets of G.
Procedure:

1. Apply Linear NI to TG in order to process every single sequence of nodes
or simple cycle that TG could have. This step processes any node u of degree
1 in TG.

2. Take S = {v ∈ V : v is part of an intersected cycle in TG}. We search for
the node v ∈ S such that v is part of a back edge e1 and δ(v) = max{δ(u) :
u ∈ S}. If δ(v) = δ(u) and v and u have maximum degree in S, we select the
node v ∈ S such that δ(N(v)) has maximum value. Note that the edge e1
determines a base cycle C1 and there is at least other cycle C2 determined
by other back edge e2 such that C1 and C2 are intersected in TG.

3. We apply a splitting reduction rule, as is used in the Davis and Putnam
procedure for counting models in Boolean formulas [1,3], being v the selected
node for performing the splitting. The rule generates two new graphs from
TG: G1 and G2, these are proper subgraphs of TG and they are formed as
follows:
(a) Build the independent sets without v (Case v set to false):

Let G1=(V1,E1) be the resulting graph of TG when v is removed as well
as its incident edges, but G1 includes all the remaining nodes of TG.
I(G1) comprises the independent sets of TG that do not contain v.

Since v is part of a back edge e1, v is not an articulation point in
TG given that every path crossing by v in TG, goes now by the other
back edge e2 in G1. Thus, G1 is still a connected graph. |V1|=n1=n − 1,
|E1| = m1 ≤ m − 3, and the number of base cycles in G1 is nc1 =
m1 − n1 + 1 ≤ m − 3 − (n − 1) + 1 = m − n − 1, this is, nc1 ≤ nc − 2.
Then, G1 has at least two cycles less than TG.

(b) Build the independent sets containing v (Case v set to true):
Let G2=(V2,E2) be the graph obtained from TG when the closed neigh-
borhood N [v] is removed from TG as well as any incident edge of N [v].
I(G2) adds up the independent sets where v appears, thus, v and N(v)
do not have to be considered further to build I(G).

94 G. De Ita and A. López-López

If G2 remains a connected graph, then at least the two cycles C1 and
C2 are no longer in G2. If G2 is not a connected graph, this implies that
the cycles C1 and C2 were decomposed in breaking paths and they are no
longer part of G2, in any case, G2 has at least two cycles less than TG.

In any of the two previous cases (a) and (b), at least two intersected cycles
of TG are decomposed and they are no longer part of G1 and G2. The ap-
plication of the splitting rule reduces the number of intersected cycles by at
least two, and builds also an enumerative binary tree EG, where each of its
nodes has associated a subgraph of TG.

4. Once the splitting rule is applied on TG, the linear procedure Linear NI
is employed on the subgraphs G1 and G2 to process every new sequence of
nodes (branch) and simple cycle (ring) that could appear.

5. The splitting rule is applied repeatedly on each subgraph associated with
each node of EG, whenever such subgraph has intersected cycles.

6. When the associated graph Gh of a node of EG does not have intersected
cycles, then NI(Gh) is computed applying the procedure Count Ind Sets. In
such case, the node is a leaf node of EG and does not require the application
of the splitting rule. We now have H(EG) = {Gh : Gh is the graph associated
to a leaf node of EG}.

7. After EG has been built, we have that NI(G) = ΣG′∈H(EG)NI(G′).

The correctness of the algorithm NI for Max Degree follows from the following
lemma.

Lemma 1. The result of recursively splitting on the variable v, computes NI(G).

Proof. Let G = (V, E) be the input graph to the algorithm NI for Max Degree.
If we can find all the independent sets of G, I(G), then for any node v ∈ V
we can consider the subsets Iv(G) ⊂ I(G) where v appears and the subset
I¬v(G) ⊂ I(G) where v does not appear. Note that Iv(G) ∩ I¬v(G) = ∅ and
NI(G) = |I(G)| = |Iv(G)| + |I¬v(G)|. So, when applying the splitting rule (step
3) the branch which considers v set to ’true’, computes |Iv(G)| and the other
branch considers v set to ’false’ and computes |I¬v(G)|. And, at the end of the
splitting procedure, the sum of values obtained in both branches is computed,
that is, |Iv(G)| + |I¬v(G)|, leading in this way to NI(G).

The splitting rule can be seen as the algorithmic implementation of the following
independence polynomial property, described by Hoede and Li in [9]:
I(G; x) = I(G− v; x)+x · I(G−N [v]; x), being v the node selected for applying
the splitting rule (step 2, in the previously described algorithm).

Example 3. Let TG = (V, E) be the graph illustrated in figure 4, Δ(TG) = 3,
and it has intersected cycles. Applying the procedure NI for Max Degree(TG), we
obtain the enumerative tree EG where the subgraph G1 generated when consider-
ing x7 as false is showed in figure 5. Note that the splitting rule has to be applied
again in G1, since it still has intersected cycles. For the case x7 set to true, the
graph G2 is obtained (showed in figure 6), G2 is associated with a leaf node of

A Worst-Case Time Upper Bound for Counting 95

X 2X 1 X 3 X5 X6 X7 X8 X9

X10

X4

Fig. 4. Applying the splitting rule on TG

X1 X2 X3 X4 X5 X6 X9 X8

Fig. 5. The splitting rule has to be applied again on G1

X1

X2

X5

X9

X3 X10

Fig. 6. G2 is associated with a leaf node of the enumerative tree

EG since it has no intersected cycles and G2 can be processed by Count Ind Sets
in linear time.

6 Time Complexity of the Algorithm

Let G = (V, E) be the input graph of the algorithm NI for Max Degree,
|E| = m, |V | = n. The steps 1, 2, 4, 6, and 7 have linear time complexity, in
fact they are O(m + n). The recursive application of the splitting rule (step 5)
generates an enumerative tree EG. The splitting rule (step 3) is applied while
a graph H associated with a node of EG has intersected cycles. This reduction
generates two new graphs H1 = (V1, E1) and H2 = (V2, E2) from H that are
proper subgraphs of H .

Notice that the splitting rule always removes N [v] and its incident edges from
H to form H2, and that, for each node u ∈ N(v) at least one of its incident edges

96 G. De Ita and A. López-López

has been removed from H to form H1. H1 and H2 have at least two intersected
cycles less than H .

The time behavior of the algorithm resides in step 5 and corresponds to the
number of intersected cycles on the graph associated with each node of EG. Let
use the variable nc to denote the number of cycles in a graph associated with
a node of EG. Then, the time complexity of the algorithm can be expressed by
the recurrence: T (nc) = 2 ∗ T (nc − 2) = 2k ∗ T (nc − 2 ∗ k).

Such recurrence ends when nc − 2 ∗ k = 1, that is, when k = (nc − 1)/2. In
consequence, the time complexity is T (nc) ∈ O(2k ∗ (m + n)) = O(2(nc−1)/2 ∗
(m+n)). For the worst case, we can consider that every pair of cycles appearing
in any subgraph of the nodes of EG are intersected, then nc = m−n+1 and so:

O(2(m−n)/2 ∗ (m + n)) (2)

is an upper bound for the time complexity of the algorithm, n and m being the
number of nodes and number of edges of the input graph, respectively.

If Δ(G) = 3:
If we assume that the input graph G has maximum degree three then m ≤
(3n)/2, and the upper bound in (2) is expressed as O(2n/4 ∗ (m + n)) ≈
O(1.1892n ∗ (m + n)). Thus, the above procedure computes NI(G) for graphs
of degree three, including 3-regular graphs, with a worst-case upper bound of
O(1.1892n ∗ (m + n)).

When a node v is selected for splitting reduction, for any u ∈ N(v) such that
δ(u) = 2, u will be processed (and then removed) from H1 by the procedure
Linear NI, since at least one edge incident to u is removed during the appli-
cation of the splitting rule and after, every node with degree 1 is processed by
Linear NI, removing so the node and its incident edge.

Then, if each u ∈ N(v) has δ(u) = 2 then N [v] will not appear either in
H1 or H2, and the recurrence relation for the time complexity of the algorithm
is expressed as: T (n) = 2T (n − |N [v]|) ≤ 2T (n − 4). It follows that T (n) ∈
O((1.1892)n ∗ (m + n)).

When some nodes of N(v) remain in H1 then we need to analyze the relation
between the number of edges m and number of nodes n in the graph H , and how
this relation is kept in the subgraphs H1 and H2. Let rel = m−n be the variable
used to indicate the relation between the number of edges and nodes on a graph
G. Note that if rel ≤ 0 for some graph H , then the procedure Count Ind Sets
computes NI(H) in linear time.

We deepen the analysis of the time complexity, considering the different cases
of the degree of the selected node v where the splitting rule is applied.

Case δ(v) = 4:
When δ(v) = 4, |N [v]| = |{v, u1, u2, u3, u4}| = 5. The only way that N(v) is not
removed at all from H1, after the use of the splitting rule and the application of
Linear NI, is that some nodes of N(v) are part of a cycle in H1. This happens
only if there exist at least two nodes u1, u2 ∈ N(v) with degree higher than
two. Thus, considering the possible edges among nodes of N [v], we have that:
δ(N [v]) =

∑
u∈N [v] δ(u) ≥ 4 + 2 + 1 + 1 + 1 = 9.

A Worst-Case Time Upper Bound for Counting 97

Therefore, the splitting rule builds the subgraph H1, where m1 ≤ |E1| = m−4
and n1 = |V1| = n − 1. The relation between the number of edges and number
of nodes in H1 is: rel1 = m1 − n1 ≤ m − 4 − (n − 1) = m − n − 3 = rel − 3.

By the other branch, we have that V2 = V − N [v] and any incident edge to
a node of N [v] does no longer appear in H2. Then, m2 = |E2| ≤ m − 9 and
n2 = |V2| = n−5. And, rel2 = m2 −n2 ≤ m−9− (n−5) = m−n−4 = rel −4.
So, the time complexity of the algorithm can be expressed by the recurrence:

T (rel) ≤ T (rel − 3) + T (rel − 4) (3)

Such recurrence has the characteristic polynomial p(r) = r4 − r − 1 which has
the maximum real root r ≈ 1.220744. This leads to a worst-case upper bound
O(rn ∗ poly(m, n)) ≈ O(1.220744n ∗ poly(m, n)).

Case δ(v) > 4:
Notice that if δ(v) > 4, e.g. δ(v) = 5 then δ(N [v]) = 6. And if N(v) remains in
H1 this means that δ(N(v)) ≥ 5+2+1+1+1+1 = 11, m2 = |E2| ≤ m−11 and
n2 = |V2| = n − 6. Thus, the relation between the number of edges and number
of nodes in H2 is: rel2 = m2 − n2 ≤ m − 11 − (n − 6) = m − n − 5 = rel − 5.

By the other branch, we have that m1 = |E1| ≤ m − 5 and n1 = |V1| =
n − 1, obtaining rel1 = m1 − n1 ≤ m − 5 − (n − 1) = m − n − 4 = rel − 4.
Then, if δ(v) > 4, this leads to a faster decomposition of the parent graph in
the enumerative tree, since the recurrence equation under this circumstance is:
T (rel) ≤ T (rel − 5) + T (rel − 4).

Finally, the highest order of growth for the time complexity of our algorithm
NI for Max Degree is given by the recurrence (3). Therefore, the worst-case
upper bound is O(rn ∗ poly(m, n)) ≈ O(1.220744n ∗ poly(m, n)).

7 Conclusions

Computing the number of independent sets of a graph G, denoted as NI(G), is
a classic #P-complete problem for graphs of degree 3 or higher [8]. We establish
that if the depth-first graph of a given graph G has no intersected cycles, then
the computation of NI(G) is a tractable problem. The new polynomial class
for NI(G) does not impose restrictions on the degree of the graph, but rather,
it depends on the topological structure of the graph. This polynomial class for
NI(G) allows to establish a finer border between the classes FP and #P for the
problem of counting independent sets.

Regarding graphs of degree 3, we establish, based also on the topological
structure of the graph G, a worst-case upper bound of O((n + m) ∗ 1.1892n)
for computing NI(G), where n and m are the number of nodes and edges,
respectively. For the general case, considering graphs regardless of their degree,
we establish for the time complexity, a leading Worst-Case Upper Bound of
O(1.220744n ∗ poly(m, n)).

One application of the described algorithm is the estimation of the ’redun-
dancy’ of an edge c in a network G. Assuming independence and the same ’failure

98 G. De Ita and A. López-López

probability’ for each edge in G, the redundancy of c is computed as the condi-
tional probability Pc/G = NI(G)

NI(G−c) , which allows to measure the strategic value
for any edge c in the network G. Furthermore, our proposal can be applied to
other counting problems, and it can impact directly on the time complexity of
the algorithms for those problems.

References

1. Angelsmark, O., Jonsson, P.: Improved Algorithms for Counting Solutions in Con-
straint Satisfaction Problems. In: Int. Conf. on Constraint Programming, pp. 81–95
(2003)

2. Arocha, J.L.: Propiedades del polinomio independiente de un grafo. Revista Cien-
cias Matemáticas V, 103–110 (1984)

3. Dahllöf, V., Jonsson, P., Wahlström, M.: Counting models for 2SAT and 3SAT
formulae. Theoretical Computer Sciences 332(1-3), 265–291 (2005)

4. De Ita, G., Tovar, M.: Applying Counting Models of Boolean Formulas to Proposi-
tional Inference. In: Advances in Computer Science and Engineering, vol. 19 (2006)

5. Dyer, M., Greenhill, C.: Some #P-completeness Proofs for Colourings and Inde-
pendent Sets, Research Report Series, University of Leeds (1997)

6. Dyer, M., Frieze, A., Jerrum, M.: On Counting Independent Sets in Sparse Graphs.
SIAM J. Comput. 31(5), 1527–1541 (2002)

7. Dyer, M., Greenhill, C.: Corrigendum: The complexity of counting graph homo-
morphism. RSA: Random Structures and Algorithms 25, 346–352 (2004)

8. Greenhill, C.: The complexity of counting colourings and independent sets in sparse
graphs and hypergraphs. Computational Complexity 9(1), 52–72 (2000)

9. Hoede, C., Li, X.: Clique polynomials and independent set polynomials of graphs.
Discrete Mathematics 125, 219–228 (1994)

10. Levit, V.E., Mandrescu, E.: The independence polynomial of a graph - a survey,
Holon Academic Inst. of Technology (to appear)

11. Luby, M., Vigoda, E.: Approximately counting up to four. In: Twenty-Ninth Annual
Symp. on Theory of Computing, pp. 682–687. ACM, New York (1997)

12. Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence 82,
273–302 (1996)

13. Russ, B.: Randomized Algorithms: Approximation, Generation, and Counting, Dis-
tinguished dissertations. Springer, Heidelberg (2001)

14. Vadhan Salil, P.: The Complexity of Counting in Sparse, Regular, and Planar
Graphs. SIAM Journal on Computing 31(2), 398–427 (2001)

Improving the Efficiency of Helsgaun’s

Lin-Kernighan Heuristic for the Symmetric TSP

Dirk Richter1, Boris Goldengorin2,3,4, Gerold Jäger5, and Paul Molitor1

1 Computer Science Institute, University of Halle-Wittenberg,
D-06099 Halle (Saale), Germany

richterd@informatik.uni-halle.de, paul.molitor@informatik.uni-halle.de
2 Faculty of Economic Sciences, University of Groningen,

9700 AV Groningen, The Netherlands
B.Goldengorin@rug.nl

3 University of Economics and Business, Lviv Highway 51/2,
29016 Khmelnitsky, Ukraine

4 Department of Applied Mathematics,
Khmelnitsky National University, Ukraine

5 Department of Computer Science, Washington University
Campus Box 1045, One Brookings Drive

St. Louis, Missouri 63130-4899, USA
jaegerg@cse.wustl.edu

Abstract. Helsgaun has introduced and implemented the lower toler-
ances (α-values) for an approximation of Held-Karp’s 1-tree with the
purpose to improve the Lin-Kernighan Heuristic (LKH) for the Sym-
metric TSP (STSP). The LKH appears to exceed the performance of all
STSP heuristic algorithms proposed to date.

In this paper we improve Helsgaun’s LKH based on an approxima-
tion of Zhang and Looks’ backbones and an extension of double bridges
further combined with implementation details by all of which we guide
the search process instead of Helsgaun’s α-values. Our computational
results are competitive and lead to improved solutions for some of the
VLSI instances announced at the TSP homepage.

Keywords: Traveling Salesman Problem, Lin-Kernighan Heuristic, Tol-
erances, Backbones, Double Bridge Technique.

1 Introduction

The traveling salesman problem (TSP) is the problem of finding a Hamiltonian
cycle with minimum costs of a graph. If the graph has n nodes, a tour T is a
permutation T = (x1, x2, . . . , xn) of the vector (1, 2, . . . , n) with corresponding
costs c(x1, x2, . . . , xn) =

∑n−1
i=1 c(xi, xi+1) + c(xn, x1). This paper focus on the

symmetric case where all costs satisfy c(xi, xj) = c(xj , xi).
Lin and Kernighan introduced a heuristic which is based on the exchange

of k tour edges, called k-swap or k-opt [20]. This local search algorithm still
remains at the heart of the most successful approaches. In fact, Johnson and

J. Janssen and P. Pra�lat (Eds.): CAAN 2007, LNCS 4852, pp. 99–111, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

100 D. Richter et al.

McGeoch [17] describe the Lin-Kernighan (LK) algorithm as the world champion
heuristic for the TSP from 1973 to 1989. Further, this was only conclusively
superseded by chained or iterated versions of LK, originally proposed by Martin
et al.[21,22]. For the TSP, multiple-run heuristics have long been the method of
choice when very high-quality solutions are required. Lin and Kernighan [20] have
suggested to use pseudo-random starting tours to permit repeated application
of their local search procedure. Besides just taking the best of the tours that
are produced, Lin and Kernighan propose to use the intersection of the edge
sets of the tours as a means to guide further runs of their algorithm. Their idea
is to modify the basic procedure so that it will not delete any edge that has
appeared in each of the tours that have been found up to that point. They start
this restricted search after a small number of tours have been found (they use
between two and five tours in their tests). Variations of this idea have been
explored recently by Helsgaun [16], Schilham [26], and Tamaki [28]. Considering
STSP heuristics, Helsgaun’s LKH [16] appears to exceed all further algorithms
including the multiple runs of Chained Lin-Kernighan and some other high-end
STSP heuristics introduced by Applegate et al. [1], Balas and Simonetti [2],
Cook and Seymour [5], Gamboa et al. [6,7], Kahng and Reda [18], Schilham [26],
Tamaki [28], and Walshaw [30].

Zhang and Looks [32] made an interpretation of a backbone for the STSP as an
edge between two cities that appears in all optimal STSP tours. In fact they have
measured edge appearance frequencies to estimate the probabilities of backbone
variables since to find the backbones is not possible without solving the problem
exactly. A theoretical study of backbones is started in Chrobak and Poljak [3]
by proving that the intersection of edges from the optimal STSP and Minimum
Spanning Tree (MST) solution has at least two common edges. Goldengorin et
al. [10,11] have shown that all common edges in all optimal tours have strictly
positive upper tolerances, but Libura [19] has indicated that it is NP-hard to
find out an upper tolerance for an edge in an optimal tour.

Van der Poort [24] has used the upper tolerance of an edge in MST for an
approximation of the upper tolerance of the same edge in an optimal tour and
Helsgaun [16] has used the lower tolerance (α-value) for the same purpose. Gold-
engorin et al. [10,11] and Turkensteen et al. [29] have shown that the arcs with
strictly positive upper tolerance in an optimal Assignment Problem (AP) solu-
tion are common arcs for all optimal AP solutions. Ghosh et al. [8], Goldengorin
and Jäger [9], Goldengorin et al. [12,13], and Turkensteen et al. [29] have ap-
plied the largest (bottleneck) upper tolerance for an arc in an optimal solution
of the relaxed AP to guide a search of either a high quality heuristic or an
exact algorithm for the Asymmetric TSP. Experimentally Helsgaun has used α-
values (lower tolerances) for indicating the most likely edges in an optimal STSP
solution.

We have used Helsgaun’s implementation as a basis and incorporated back-
bone approximations and tolerances to guide the search process and k-swap-kicks
to speed up the search.

Improving the Efficiency of Helsgaun’s Lin-Kernighan Heuristic 101

In Section 2 we define the notion of tolerances [10,29]. The following sections
discuss special aspects of TSP optimization that are suitable to enhance Hels-
gaun’s TSP heuristic: the application of k-swap-kicks in Section 3, backbones in
Section 4 and further implementation aspects in Section 5. In Section 6 we give
experimental results which show the efficiency of the proposed methods. In par-
ticular, they allowed us to set world records for two well-known TSP instances
[37]. The paper closes in Section 7 with a summary and suggestions for future
work.

2 Tolerances

Tolerances are successfully used to guide the search process within different
frameworks of heuristics for the Asymmetric [8,9,12], and Symmetric TSP [16].
A theoretical background of the tolerance based approach for solving different
classes of combinatorial optimization problems is outlined in [10,11]. We distin-
guish between two types of tolerances: upper and lower tolerances. We introduce
the concept of tolerances for an “optimal” tour having in our mind that the opti-
mality will be further used with respect to either one of the TSP relaxations (for
example, 1-Tree [16]) or a polynomially searchable neighborhood (for example,
k-opt [14,15,23,25]), since finding an exact tolerance for a NP-hard problem is
also a NP-hard problem.

Given an optimal tour T , we define for each edge x ∈ T (x /∈ T) the upper
(lower) tolerance as the maximum increase uT (x) (decrease lT (x)) of the edge
length c(x) preserving the optimality of T under the assumption that the lengths
of all other edges remain unchanged. Formally, for the edges x, y and α ∈ R let

cα,x(y) :=
{

c(x) + α, if x = y
c(y), otherwise

be a modification of the cost function which changes the costs for edge x to
c(x) + α. Further let Tc be the set of all optimal tours. The tolerances with
respect to an optimal tour T are defined as follows:

uT (x) := sup{α ∈ R | T ∈ Tc+α,x}, if x ∈ T

lT (x) := sup{α ∈ R | T ∈ Tc−α,x}, if x /∈ T

Let T +(x) be an optimal tour under the condition that it contains x, and
T−(x) be an optimal tour under the condition that it does not contain x. Then
the upper and lower tolerance of x with respect to the optimal tour T can be
computed as follows (see [10]):

uT (x) = c(T−(x)) − c(T), if x ∈ T (1)

lT (x) = c(T +(x)) − c(T), if x /∈ T (2)

102 D. Richter et al.

3 k-Swap-Kicks

In Helsgaun’s heuristic a greedy initial tour is constructed in each trial, where
a trial is a repeated phase in which an initial tour is permanently improved by
doing k-swaps until no more improving k-swaps can be found (Helsgaun considers
k ≤ 5). The resulting tours are called k-optimal. As the search space for k-swaps
is restricted by a candidate system of all edges, in fact, Helsgaun’s code only
computes approximations of k-optimal tours. Constructing a new initial tour in
each trial leads to the loss of k-optimality. Our idea is to rescue a part of k-
optimality in the next trial instead of constructing a new initial tour. We modify
the k-optimal tour from the last trial by one or more special l-swaps (l > k) and
we choose the resulting tour as the new initial tour. In the literature for k = 4
this technique is known as double bridge technique [17,27]. Figure 1 shows an
example of a double bridge move. If we would use only a simple double bridge
move (a special 4-swap), the 5-swap search would end in the same local minimum
as before. Thus we adopt this technique for special l-swaps with l ≥ 6.

Fig. 1. Double bridge move

In our approach, the edges s1, s2, s3, s4 shown in Figure 1 are replaced by
paths that are segments of the tour, where a segment is an ordered list of nodes.
So a k-segmentation is a split of a tour T into k segments si, so that the con-
catenation in the order s1, s2, . . . , sk gives the original tour T , i.e, concat(s1, s2,
. . . , sk) = T . Given a k-segmentation (s1, s2, . . . , sk) of a tour T , we call the
k-swap which transforms T into the tour T ′ = concat(s1, sk, sk−1, sk−2, . . . , s2)
a k-swap-kick. Clearly this is a natural extension of a double bridge.

4 Backbones

Helsgaun [16] uses α-values to guide the search process of his algorithm which
are lower tolerances to the minimum 1-tree. He shows that using his α-values
instead of costs leads to tours with much better quality.

Improving the Efficiency of Helsgaun’s Lin-Kernighan Heuristic 103

In [25] we have introduced and experimented with tolerances for many prob-
lems related to the TSP and different from α-values (e.g. relaxed assignment,
assignment, 2-opt) with the purpose to improve Helsgaun’s heuristic. Most of
these tolerances give worse results in comparison to α-values. In this section, we
introduce our most promising approach, the backbone tolerance.

It might be possible that there is an edge x which is contained in each optimal
tour (x ∈

⋂
Tc). Edges occurring in each optimal tour are called backbones

[4,31,32]. Identifying edges to be a backbone would therefore reduce the problem
size and thus speed up a heuristic solving the TSP. Note that backbones are
exactly the edges with a strictly positive upper tolerance w.r.t. an arbitrary
chosen optimal tour [10].

In [4,31,32] the probability of being a backbone of an edge x is approximated
by the relative frequency of occurring in approximated k-optimal tours found
during an initialization phase. In our context approximated k-optimal means
k-optimal for the restricted search space, i.e. only for the edges in the candidate
system.

We measure by means of this relative frequency the probability of being a
backbone of an edge x and call it a backbone approximation. In other words, the
relative frequency of an edge will play the opposite role of its cost.

The main distinction between an exact and a heuristic algorithm is that an
exact algorithm proves the optimality of an outputted solution on the whole set
of feasible solutions and a heuristic makes a choice of the best solution among
a small subset of feasible solutions. If this small subset contains an optimal
solution, then the heuristic outputs an optimal solution, otherwise it outputs
the best within that small subset. If we replace the optimal solution by the
best solution in a small subset and treat it as an optimal one, then we are
able to introduce the upper and lower tolerances w.r.t. the best solution for
all edges of this small subset. If the small subset is defined for the set of all
approximated tours found during an initialization phase, then we have arrived
to the notions of approximated backbone tolerances. Using (1) and (2), these
approximated backbone tolerances can be computed as follows:

For an edge e which is contained in any best approximated tour found during
the initialization phase, the upper approximated backbone tolerance of e is defined
as the difference of the optimum value of all approximated tours not containing
e minus the optimum value of all approximated tours.

For an edge e which is not contained in a best approximated tour (but
in at least one approximated tour), the lower approximated backbone toler-
ance of an edge e is defined as the difference of the optimum value of all ap-
proximated tours containing e minus the optimum value of all approximated
tours.

Note that the approximated backbone tolerance is a measure of how likely an
edge is in an optimal tour. Whereas backbone approximations use an average
value over all tours, approximated backbone tolerances are dominated only by
the best tours found during the initialization phase.

104 D. Richter et al.

5 Implementation Aspects

Based on the ideas of k-swap-kicks and backbones, we have developed a new
version of Helsgaun’s heuristic.

In all experiments we use the same standard parameters for Helsgaun’s heuris-
tic, with two exceptions: we use 5 independent runs instead of 10 indepen-
dent runs and the internal constant maxdim = 15, 000 instead of 2, 000 (where
maxdim denotes the maximum dimension for which the costs of the edges are
fully cached into a matrix in memory), as we have observed that increasing this
internal constant considerably improves the general heuristic speed.

At the beginning of the algorithm a set of independent greedy initial tours is
chosen, which are improved by one or more trials of Helsgaun’s original heuristic,
where a trial ends, when 5-swaps can find no further improvement. After this
initialization phase we determine a new candidate system depending on back-
bone approximations. In this way backbone approximations are used to guide the
search process instead of Helsgaun’s α-values. The decision to apply backbone
approximations instead of approximated backbone tolerances is traced back to
the fact that the experiments made so far show that approximated backbone tol-
erances give worse results than backbone approximations in average. Neverthe-
less, we believe that approximated backbone tolerances are the better approach,
thus more sophisticated heuristics have to be found.

Furthermore, in the main phase of the algorithm an initial tour for the next
trial is constructed by applying multiple l-swap-kicks (l > k) randomly to the
approximated k-optimal tour from the last trial. Thus a local optimum can be
left with rescuing a lot of k-optimality. Each such start with a new initial tour is
called step. We choose – like in Helsgaun’s original implementation – the number
of trials as the number of nodes n.

We use two different implementations: one is tuned for speed, the other for
tour quality. In the first implementation which we tuned for speed, at the end of
the initialization phase the tour edges are sorted using a randomized quicksort
to identify duplicates and to count the occurrence for computing the backbone
approximations. In contrast, in the second implementation which we tuned for
quality we use (double) hashing instead of quicksort as it saves memory and
thus enables to handle larger problems and longer initialization phases (hash-
ing behaved slower than quicksort in our experimental runs). Additionally in
the second implementation, the independent initial tours are chosen randomly
instead of greedily (this is more effort but leads to slightly better tours) and
k-swap-kicks are used with tuned parameters, e.g. we use a better distribution
function for the segments.

6 Experimental Results

The following experiments were executed on Intel Xeons 2.4 GHz with 1G RAM.
In total we investigated about 4.5 years of running time for all these experiments.
All times are given in the format “hours:minutes:seconds”.

Improving the Efficiency of Helsgaun’s Lin-Kernighan Heuristic 105

We tested the algorithms BB. . . T1 (the first implementation tuned for speed),
BB. . .T2 (the second implementation tuned for quality), and LKH (the original
version of Helsgaun). For example BB5P2T1 means that a backbone approx-
imation is used after an initialization of cardinality 5% of the dimension (i.e.
�0.05 ∗ n� initial tours are constructed independently) and each step consists of
2 trials.

6.1 Comparison of Quality for the First Trials

First we compare two variants BB3P2T1 and BB5P2T1 with LKH consider-
ing tour quality, more exactly considering the following measure. As the main
differences appear in the first trials, we consider only this area.

Let P be the set of analyzed problems, cX
j,p(i) the costs of the tour found by

heuristic or tolerance X at Trial i in Run j for a problem p ∈ P . Further let
cbest(p) be the costs of the currently best known tour for problem p ∈ P with
dimension np and R the number of runs. Then we define:

avg.excessX(i) =
1

|P |
∑

p∈P

1
R

R∑

j=1

cX
j,p(

i·np

100) − cbest(p)
cbest(p)

(3)

As test instances we use the 33 smallest unsolved problems of the national
and VLSI instances [34,37].

In Figure 2 the results are shown. We consider at the x-axis the number of
trials in percentage up to 20 % of all trials.

Fig. 2. Average quality of the national and VLSI instances for the first trials

106 D. Richter et al.

We observe that the average difference to an optimal solution or to the best
known lower bound is reduced by 21.73 % for BB3P2T1 and by 24.09 % for
BB5P2T1 after all trials.

6.2 Improved Instances

During our experiments we have either improved or confirmed the same quality
for many TSP instances from the TSP homepage [36]. Two of them xsc6880 and
frh19289 were placed at the website [37] as currently best solutions. Note that
despite the efforts of many researchers during recent three years we have not
only found better tours, but also much faster in terms of normalized times [33].
In Table 1 the detailed results can be found. In the last column you find the
normalized running times according to the DIMACS Implementation Challenge.
The current overview of this competition can be found in [33].

Table 1. Results for the improved instances

Problem lb Found by Old ub Algorithm New ub Time Normalized
xsc6880 21,507 Nguyen 21,537 BB3P1T1 21,535 1:28:47 6:08:52

frh19289 55,163 Helsgaun 55,801 BB5P1T1 55,799 49:02:58 125:03:37

6.3 Comparison of Time and Quality

For these experiments again we use the 33 smallest unsolved problems of the
national and VLSI instances (because of too large times, some larger problems
are only tested by the first implementation tuned for speed). Table 2 and Fig-
ure 3 show the results of these experiments. The exact values of average time
and average excess can be found in the second and third column of Table 2,
respectively. In Figure 3, the average computation time for 5 independent runs
is plotted. Thus the more left a point is, the faster the corresponding algorithm
is. Smaller excess means better tours in average (see (3)).

We observe that six parameter settings of our versions found faster and better
tours in average than Helsgaun’s version. The version BB1P3T1 is the fastest al-
gorithm which gives nearly the same tour quality as LKH. The backbone version
BB3P2T2 finds in average the best tours, but needs more time than LKH.

The k-swap-kicks were the main reason for the speed-up, as for each following
trial less k-swaps are needed to find an approximated k-optimal tour. Also we
do not need to construct a new initial tour, which additionally saves some time.
The shorter the initialization phase is, the worse is the backbone approximation.

7 Summary and Future Research Directions

In this paper we have improved Helsgaun’s version of the Lin-Kernighan Heuris-
tic (LKH) which is the world champion heuristic for the Symmetric TSP (STSP)
from 1998 to the current date applied to large instances including the World TSP

Improving the Efficiency of Helsgaun’s Lin-Kernighan Heuristic 107

0.0250

BB3P2T1

BB1P3T1 LKH

BB3P1T1 BB3P10T1

BB5P10T1

BB3P5T2BB1P3T2
BB3P1T2BB1P2T2

BB10P3T1 BB3P3T2

BB3P2T2

0.0225

0.0200

0.0175

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000
2.500 5.000 7.500 10.000 12.500 15.000 17.500 20.000 22.500 25.000 27.500

avg. time of 5 runs in seconds

av
g.

 e
xc

es
s

ov
er

 o
pt

im
um

 in
 p

er
ce

nt
ag

e

 LKH BB1P3T1 BB3P1T1 BB3P2T1 BB3P10T1

BB1P2T2 BB1P3T2

 BB3P1T2 BB3P2T2 BB3P3T2 BB3P5T2

 BB5P10T1 BB10P3T1

Fig. 3. Average time and average quality for the national and VLSI instances

108 D. Richter et al.

Table 2. Average time and average quality for the national and VLSI instances

Version Avg. time in sec. Avg. excess in %
LKH 03:27:47 0.024493

BB1P3T1 00:45:32 0.024716

BB3P1T1 00:55:16 0.016972

BB3P2T1 01:12:29 0.019171

BB3P10T1 02:51:05 0.017121

BB5P10T1 04:13:03 0.015167

BB10P3T1 03:06:33 0.011782

BB1P2T2 02:51:27 0.012631

BB1P3T2 03:16:58 0.012869

BB3P1T2 04:03:36 0.012502

BB3P2T2 05:10:07 0.009563
BB3P3T2 05:32:54 0.010899

BB3P5T2 07:22:21 0.013636

[38] with 1,904,711 cities. Our improvements are based on a fundamental notion
of a backbone edge, coined by Zhang and Looks [32]. Unfortunately to find a
backbone edge has the same computational complexity as to find an optimal
tour (see e.g., [3,10]). We have avoided this difficulty by using the notion of
backbone approximation which can be efficiently computed, compared to the
exact tolerance the computation of which for an optimal tour is also NP-hard.
We have used the backbone approximation to guide the search process instead of
Helsgaun’s α-values (or exactly lower tolerances) computed for the corresponding
1-Tree relaxation of the STSP. Furthermore we have introduced approximated
backbone tolerances which lead to slightly worse experimental results than back-
bone approximations. Nevertheless, we will investigate approximated backbone
tolerances in more detail, as we believe that we can obtain even better results
when applying this approach.

Another improvement is based on a generalization of double bridge move (a
special 4-swap) which can be considered as a k-swap-kick for k ≥ 6 and allows us
to speed up the LKH. The above mentioned improvements are incorporated into
two different implementations of LKH the first of which is tuned for speed at
the initialization phase by a randomized quicksort for computing the backbone
approximations. The second implementation is tuned for quality by using the
double hashing which reduces the necessary memory and allows us to handle
larger instances. Our computational experiments show that, for example, the
first implementation leads to an essential quality improvement of outputted tours
w.r.t. either the known lower bounds (for instances with unknown optimal tours)
or optimal solutions by at least 21% compared to the LKH. Despite the efforts of
many researchers during recent three years we have found not only better tours
but also much faster in terms of normalized times.

An interesting direction of research is to apply the k-swap-kicks not randomly
but guide them by using tolerances for some other promising data structures like
stem and cycle including ejection chains for solving large scale STSP instances.

Improving the Efficiency of Helsgaun’s Lin-Kernighan Heuristic 109

We believe that our notions of backbone approximations and approximated back-
bone tolerances can be applied for construction improvement type heuristics for
other computationally difficult combinatorial optimization problems the first of
which is the Capacitated Vehicle Routing Problem and its variations induced by
distance-capacitated, time windows, pickup and delivery constraints.

Our source code is available at [35].

Acknowledgement

The research of all authors was supported by a DFG grant MO 645/7-3, Ger-
many. The research of the third author was additionally funded by the United
States National Science Foundation grant IIS-053525.

References

1. Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for Large Traveling
Salesman Problems. INFORMS J. Comput. 15(1), 82–92 (2003)

2. Balas, E., Simonetti, N.: Linear Time Dynamic Programming Algorithms for New
Classes of Restricted TSPs: A Computational Study. INFORMS J. Comp. 13, 56–
75 (2001)

3. Chrobak, M., Poljak, S.: On Common Edges in Optimal Solutions to the Traveling
Salesman and Other Optimization Problems. Discrete Appl. Math. 20(2), 101–111
(1988)

4. Climer, S., Zhang, W.: Searching for Backbones and Fat: A Limit-Crossing Ap-
proach with Applications. In: AAAI-02, American Association for Artificial In-
telligence. Proceedings of the 18th National Conference on Artificial Intelligence
(2002), www.aaai.org

5. Cook, W., Seymour, P.: Tour Merging via Branch-Decomposition. INFORMS J.
Comput. 15(3), 233–248 (2003)

6. Gamboa, D., Rego, C., Glover, F.: Data Structures and Ejection Chains for Solving
Large Scale Traveling Salesman Problems. European Journal Oper. Res. 160(1),
154–171 (2005)

7. Gamboa, D., Rego, C., Glover, F.: Implementation Analysis of Efficient Heuristic
Algorithms for the Traveling Salesman Problem. Comput. Oper. Res. 33(4), 1154–
1172 (2006)

8. Ghosh, D., Goldengorin, B., Gutin, G., Jäger, G.: Improving the Performance of
Greedy Heuristics for TSPs Using Tolerances. Communications in Dependability
and Quality Management 10(1), 52–70 (2007)

9. Goldengorin, B., Jäger, G.: How to Make a Greedy Heuristic for the Asymmetric
Traveling Salesman Problem Competitive. SOM (Systems, Organisations and Man-
agement) Research Report 05A11, University Groningen, The Netherlands (2005)

10. Goldengorin, B., Jäger, G., Molitor, P.: Some Basics on Tolerances. In: Cheng,
S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 194–206. Springer,
Heidelberg (2006)

11. Goldengorin, B., Jäger, G., Molitor, P.: Tolerances Applied in Combinatorial Op-
timization. J. Comput. Sci. 2(9), 716–734 (2006)

www.aaai.org

110 D. Richter et al.

12. Goldengorin, B., Jäger, G., Molitor, P.: Tolerance Based Contract-or-Patch Heuris-
tic for the Asymmetric TSP. In: Erlebach, T. (ed.) CAAN 2006. LNCS, vol. 4235,
pp. 86–97. Springer, Heidelberg (2006)

13. Goldengorin, B., Sierksma, G., Turkensteen, M.: Tolerance Based Algorithms for
the ATSP. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS,
vol. 3353, pp. 222–234. Springer, Heidelberg (2004)

14. Gutin, G.: Exponential Neighborhood Local Search for the Traveling Salesman
Problem. Comput. Oper. Res. 26, 313–320 (1999)

15. Gutin, G., Glover, F.: Further Extension of the TSP Assign Neighborhood. Journal
of Heuristics 11(5-6), 501–505 (2005)

16. Helsgaun, K.: An Effective Implementation of the Lin-Kernighan Traveling Sales-
man Heuristic. European Journal Oper. Res. 126(1), 106–130 (2000)

17. Johnson, D., McGeoch, L.: The Traveling Salesman Problem: A Case Study in Lo-
cal Optimization. In: Aarts, E., Lenstra, J.K. (eds.) Local Search in Combinatorial
Optimization, pp. 215–310. John Wiley and Sons, Chichester (1997)

18. Kahng, A.B., Reda, S.: Match Twice and Stitch: A New TSP Tour Construction
Heuristic. Oper. Res. Lett. 32(6), 499–509 (2004)

19. Libura, M.: Sensitivity Analysis for Minimum Hamiltonian Path and Traveling
Salesman Problems. Discrete Appl. Math. 30, 197–211 (1991)

20. Lin, S., Kernighan, B.W.: An Effective Heuristic Algorithm for the Traveling Sales-
man Problem. Oper. Res. 21, 498–516 (1973)

21. Martin, O., Otto, S.W., Felten, E.W.: Large-Step Markov Chains for the Traveling
Salesman Problem. Complex Systems 5(3), 299–326 (1991)

22. Martin, O., Otto, S.W., Felten, E.W.: Large-Step Markov Chains for the TSP
Incorporating Local Search Heuristics. Oper. Res. Lett. 11, 219–224 (1992)

23. Orlin, J.B., Sharma, D.: Extended Neighborhood: Definition and Characterization.
Math. Program., Ser. A 101(3), 537–559 (2004)

24. Van der Poort, E.S.: Aspects of Sensitivity Analysis for the Traveling Salesman
Problem. PhD Thesis, Department of Econometrics and Operations Research, Uni-
versity of Groningen, The Netherlands (1997)

25. Richter, D.: Toleranzen in Helsgauns Lin-Kernighan-Heuristik für das TSP.
Diploma Thesis, Martin-Luther-University Halle-Wittenberg, Germany (2006)

26. Schilham, R.M.F.: Commonalities in Local Search. PhD Thesis, Department of
Mathematics and Computer Science, Technische Universiteit Eindhoven, The
Netherlands (2001)

27. Stützle, T., Grün, A., Linke, S., Rüttger, M.: A Comparison of Nature Inspired
Heuristics on the Traveling Salesman Problem. In: Deb, K., Rudolph, G., Lutton,
E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) Parallel Problem
Solving from Nature-PPSN VI. LNCS, vol. 1917, pp. 661–670. Springer, Heidelberg
(2000)

28. Tamaki, H.: Alternating Cycles Contribution: A Tour Merging Strategy for the
Traveling Salesman Problem. Research Report MPI-I-2003-1-007, Max-Planck-
Institut für Informatik, Saarbrücken, Germany (2003)

29. Turkensteen, M., Ghosh, D., Goldengorin, B., Sierksma, G.: Tolerance-Based
Branch and Bound Algorithms for the ATSP. European Journal Oper. Res., 1–
14 (to appear, 2007)

30. Walshaw, C.: A Multilevel Approach to the Traveling Salesman Problem. Oper.
Res. 50(5), 862–877 (2002)

31. Zhang, W.: Configuration Landscape Analysis and Backbone Guided Local Search:
Part I: Satisfiability and Maximum Satisfiability. Artificial Intelligence 158(1), 1–26
(2004)

Improving the Efficiency of Helsgaun’s Lin-Kernighan Heuristic 111

32. Zhang, W., Looks, M.: A Novel Local Search Algorithm for the Traveling Salesman
Problem that Exploits Backbones. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI
2005. Proceedings of the 19th International Joint Conference on Artificial Intelli-
gence, pp. 343–350 (2005)

33. DIMACS Implementation Challenge: www.research.att.com/∼dsj/chtsp/
34. National Instances from the TSP Homepage:

www.tsp.gatech.edu/world/summary.html
35. Source code of this paper. http://www.informatik.uni-halle.de/ti/forschung

/toleranzen/quelltexte/index.en.php
36. TSP Homepage: www.tsp.gatech.edu/
37. VLSI Instances from the TSP Homepage:

www.tsp.gatech.edu/vlsi/summary.html
38. World TSP from the TSP Homepage: www.tsp.gatech.edu/world/

www.research.att.com/~dsj/chtsp/
www.tsp.gatech.edu/world/summary.html
http://www.informatik.uni-halle.de/ti/forschung/toleranzen/quelltexte/index.en.php
http://www.informatik.uni-halle.de/ti/forschung/toleranzen/quelltexte/index.en.php
www.tsp.gatech.edu/
www.tsp.gatech.edu/vlsi/summary.html
www.tsp.gatech.edu/world/

Combinatorial Algorithms for Listing Paths in

Minimal Change Order

Zareen Alamgir1 and Sarmad Abbasi2

1 Department of Computer Science
National University of Computer and Emerging Sciences

Block B, Faisal Town
Lahore, Pakistan

zareen.alamgir@nu.edu.pk
2 Center for Advanced Studies in Mathematics

Lahore University of Management Sciences
Opposite Sector “U”, DHA

Lahore, Pakistan
sarmadabasi@lums.edu.pk

Abstract. Combinatorial algorithms that list combinatorial objects in
minimal change order are of fundamental interest in computer science
and mathematics. In minimal change ordering, successive elements differ
in some pre-specified small way. In this paper, we deal with the genera-
tion of paths in a special type of minimal change ordering, the revolving
door ordering. We propose a simple algorithm to list all paths in a com-
plete graph, Kn, with n vertices in revolving door order such that each
path is generated exactly once. The algorithm is built using space and
time efficient schemes that list all spanning paths and “path sets” in re-
volving door order. Our algorithm is optimal in the sense that it operates
in constant amortized time (CAT) and uses linear space.

Keywords: Combinatorial algorithms, Minimal change order, Revolving
door order, Complete graph, Generation of paths.

1 Introduction

Generation of the combinatorial objects is of fundamental interest in computer
science. In the last few decades, a tremendous amount of research has been
carried out in this area as the emergence of high speed computers has made it
possible to construct exhaustive lists of combinatorial objects.

We can speed up combinatorial generation by listing objects in minimal
change order; an order in which successive elements differ in a small way. Combi-
natorial algorithms based on minimal change ordering provide new insights into
the structure of combinatorial families as they usually involve elegant recursive
constructions [8]. The minimal change order in which two consecutive objects
have distance two (that is they differ in exactly two positions) is named revolving
door order by Nijenhuis and Wilf [1,5]. Much work has been done in listing trees

J. Janssen and P. Pra�lat (Eds.): CAAN 2007, LNCS 4852, pp. 112–130, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Combinatorial Algorithms for Listing Paths in Minimal Change Order 113

in revolving door order so that successive trees differ only by an edge. Malcolm
Simth [5] proposes a revolving door algorithm for listing all spanning trees in a
graph and recently Korsh [6] gives a gray code scheme for generating rooted and
free trees. However, we know of no published algorithm that generates all paths
in revolving door order in a complete graph, Kn, with n vertices.

Finding all paths in a graph is a fundamental aspect in solving scheduling
problems, measuring accessibility and traffic flows. In some cases, we can map
paths and circuits to some specific class of permutation. This is helpful, since,
generation of all permutations is one of the most studied areas in combinatorial
generation. Recently, Knuth has compiled comprehensive material on permuta-
tion generation in his new volume on combinatorial generation [5]. In [4], Harada
enumerates all hamiltonian circuits in a complete graph, Kn, with n vertices.
His scheme is based on the Johnson-Trotter method [2,9] for listing permuta-
tions. Harada also shows that the hamiltonian paths can be obtained from the
hamiltonian circuits but his hamiltonian paths are not in revolving door order.

A brief outline of our contributions is as follows: we propose efficient algo-
rithms for generating all spanning paths and all paths in Kn in revolving door
order. Our algorithms are optimal in the sense that they use linear space and
operate in CAT, constant amortized time. Thus, they take constant time on
average to generate a path. Secondly, our algorithms are based on a recursive
structure. Generally, recursive generation algorithms are preferred because they
are elegant, flexible and provide insight into combinatorial structure.

The rest of the document is organized as follows: Section 2 gives basic def-
initions. Section 3 presents a revolving door CAT algorithm for generating all
spanning paths in Kn. Section 4 introduces “path set” and gives a recursive
scheme for listing path set for a given n in CAT. In Section 5, we develop an al-
gorithm to enumerate all paths in Kn building on the work of previous sections.
Finally, Section 6 contains concluding remarks.

2 Basic Definitions

This paper is concerned with enumerating paths in a complete graph Kn. We
will assume that the vertex set of Kn is Vn = {1, . . . , n}. A path P in Kn is a
set of edges

{{v0, v1}, . . . , {vk−2, vk−1}}.

An enumeration algorithm will output paths as lists of vertices. Two paths P
and Q are said to be in minimal change order or revolving door order if

|(P \ Q) ∪ (Q \ P)| ≤ 2.

A path
{{v0, v1}, . . . , {vk−2, vk−1}}

of length k corresponds to the list

114 Z. Alamgir and S. Abbasi

L = (v0, . . . , vk−1)

of length k. Let us define

rev(L) = (vk, . . . , v0).

Note that L and rev(L) are two lists representing the same path. We will view
the output of all enumeration algorithm as lists of lists. Thus, in order to show
that two lists, L1 and L2, correspond to different paths we must show that
L1 �= L2 and L1 �= rev(L2).

3 Revolving Door Algorithms for Generating Spanning
Paths

In this section, we outline a recursive technique for enumerating all n!
2 spanning

paths in Kn in revolving door order.

3.1 Naive Idea: List Spanning Path Algorithm

Let P = v0, . . . , vk−1 be a path of length k and 0 ≤ i ≤ k. Define

insert(P, w, i) = v0, v1, . . . , vi−1, w, vi . . . , vk−1

append(P, w) = insert(P, w, k)
prepend(P, w) = insert(P, w, 0)

We also define:

rot(P) = v1, v2, . . . , vk−1, v0

rev(P) = vk−1, vk−2 . . . , v1, v0

The following facts are easy to verify:

Fact 1. For any path P ,

rev(rot(rev(P))) = rot−1(P).

��

Fact 2. Let P and Q be two paths. P = Q if and only if

rotj(P) = rotj(Q)

and P = rev(Q) if and only if

rotj(P) = rev(rot−j(Q)).

Combinatorial Algorithms for Listing Paths in Minimal Change Order 115

Given a list L = P0, . . . , Pt−1 of paths of length n − 1 such that v does not
appear on any path in L we define

EXPAND(L, v) = Q0, Q1, . . . , Qnt−1

where:

Qkn+j =
{

append(Pk, v), if j = 0;
rot(Qkn+j−1) = rotj(append(Pk, v)), otherwise.

where 0 ≤ k ≤ t − 1 and 0 ≤ j ≤ n − 1. The following critical facts are easy to
verify:

Fact 3.
Qkn+n−1 = prepend(Pk, v).

��

Fact 4. If v occurs in position i in Qr then

r ≡ n − i − 1 mod n.

��

Fact 5. The last path of EXPAND(L, v) = prepend(Pt−1, v), where Pt−1 is the
last path in L.

Let L2 = ((1, 2)). Suppose we define

L3 = EXPAND(L2, 3) = ((1, 2, 3), (2, 3, 1), (3, 2, 1)),

we observe that L3 is a complete list of all the spanning paths in K3 in revolving
door order. We let

Ln = EXPAND(Ln−1, n) for n > 3

and show that Ln is also a complete list of all spanning paths in Kn in revolving
door order.

Theorem 1. Ln satisfies the following properties:

1. Paths in Ln are in revolving door order.
2. The first vertex of every path, except the first one, is the last vertex of the

preceding path.
3. For any two distinct paths P and P ′ in Ln we have P �= P ′.
4. For any two (not necessarily distinct) paths P and P ′ in Ln we have P �=

rev(P ′).

116 Z. Alamgir and S. Abbasi

Proof. We proceed by induction on n. The base cases (n = 2, 3) are easily seen
to be true by inspection. Let

Ln−1 = P0, . . . , Pt−1

and
Ln = EXPAND(Ln, n) = Q0, . . . , Qnt−1.

We first show that the paths in Ln are in revolving door order and the last
vertex of each path is the first vertex of the preceding path. The rot operation
maintains these properties. We verify that claims also holds when we apply
the insert operation. Consider two successive paths Qkn+n−1 and Q(k+1)n =
append(Pk+1, n). We have Qkn+n−1 = prepend(Pk, n) by Fact 3. Hence, n is
the last vertex of Q(k+1)n and the first vertex of Qkn+n−1. To see that Qkn+n−1
and Qk(n+1) are in revolving door order, observe that by induction the last
vertex, w of Pk+1 is the first vertex of Pk. Hence, Q(k+1)n and Qkn+n−1 have
the edge {n, w} in common, therefore, the only edges that Q(k+1)n and Qkn+n−1
differ on are the ones that Pk and Pk+1 differ on. By induction Pk and Pk+1
are in revolving door order therefore, Qkn+n−1 and Qn(k+1) are also in revolving
door order.

Next we show that Qr = Qs implies that r = s. If Qr = Qs then these
two paths have the vertex n at the same position, let say at i. By Fact 4 r =
kn + (n − i − 1) and s = k′n + (n − i − 1). Furthermore,

Qr = rotn−i−1(append(Pk, n)) and
Qs = rotn−i−1(append(Pk′ , n))

Since Qr = Qs by Fact 2 append(Pk′ , n) = append(Pk, n) which implies that
Pk = P ′

k. Therefore by induction k = k′ and hence r = s. Lastly we show that
for all r, s we have

Qr �= rev(Qs).

In this case, if n occurs in position i in Qr then it occurs in position n − i − 1 in
Qs. Hence by Fact 4 we have r = kn + n − i − 1 and s = k′n + i for some k and
k′. Furthermore,

Qr = rotn−i−1(append(Pk, n)) and
Qs = roti(append(Pk′ , n))

Now,

rot−n+i+1(Qr) = append(Pk, n)

On the other hand,

rot−n+i+1(Qr) = rot−n+i+1(rev(Qs))
= rev(rotn−i−1((roti(append(Pk′ , n))))
= rev(rotn−1(append(Pk′ , n)))
= rev(prepend(Pk′ , n))
= append(rev(Pk′ , n))

Combinatorial Algorithms for Listing Paths in Minimal Change Order 117

Thus, Pk = rev(Pk′) contradicting the induction hypothesis. Here, we critically
use the fact that Pk �= Pk′ for all k and k′. ��

Corollary 1. Ln is a list of all spanning paths in Kn in revolving door order.
Furthermore, each spanning path in Kn appears in Ln exactly once.

Proof. A simple inductive argument shows that Ln consist of exactly n!
2 span-

ning paths. Since all paths are distinct, hence, each path must occur in it exactly
once. ��

3.2 Block Spanning Path Algorithm

The list algorithm does not seem to have an efficient implementation. In this
section, we show that the output of the list algorithm can be obtained by simple
recursive algorithm that can be implemented efficiently. The reason for intro-
ducing the list algorithm is that it is much simpler to prove the correctness of
the list algorithm. On the other hand, it is easy to see how to implement the
block algorithm efficiently. To show that the block algorithm is correct we simply
prove that it produces the same list as the list algorithm.

Given a path P = v0, v1, v2, . . . , vi−1, vi, vi+1, . . . , vn−1, the operation OPi(P)
removes the edge (vi, vi+1) and inserts a new edge (vi, vn). Thus

OPi(P) = vi+1, . . . , vn−1, vi, vi−1, . . . , v2, v1

(See Figure 1).

V1

Vi+1

V0 Vn−1Vi

Vi+1V1 Vi

V0 Vn−1ViV1

V0 Vn−1

Vi+1

Start

End Start

End

Fig. 1. Operation OPi

The operation OPi can be implemented so that it takes time O(i + 1) using
a simple linked list structure. The following facts are also easily verified:

Fact 6.
OP0(P) = rot(P).

��

118 Z. Alamgir and S. Abbasi

Fact 7.
OPi(prepend(P, v)) = append(OPi−1(P), v).

��

Let O = O1, . . . , Os be an ordered list of operations on paths of length n. Suppose
P is a path of length n, then

O(P) = {P0, . . . , Ps}

where
P0 = P and Pi = OP(Pi−1)

that is, O(P) is a list of paths starting from P that are obtained by successively
applying the operations in the list O. Give two lists of operations

O = O1, . . . , Os and O′ = O′
1, . . . , O

′
t

we define, O ⊕ O′ to be a concatenation of the two lists; that is,

O ⊕ O′ = O1, . . . , Os, O
′
1, . . . , O

′
t.

We also use ⊕ to denote the concatenation of lists of paths.
With these notations in mind, we define a Block Bn,i, of order i, as an ordered

list of operations given as follows:

Bn,0 = ()
Bn,i = Bn,i−1 ⊕ (OPi ⊕ Bn,i−1)n−i

= Bn,i−1 ⊕ OPi ⊕ Bn,i−1 ⊕ OPi · · · ⊕ OPi ⊕ Bn,i−1

We observe the following recursion about Bn,i(P).

Lemma 1.

Bn,i(P) = Bn,i−1(P0) ⊕ Bn,i−1(P1) · · · ⊕ Bn,i−1(Pn−i)

where P0 = P and Ps is obtained by taking the last path in Bn,i−1(Ps−1) and
applying OPi−1 to it.

Correctness of Block Spanning Path Algorithm. We will prove the fol-
lowing recursion for the blocks.

Theorem 2. Let n ≥ 3 and 1 ≤ i ≤ n − 2. If P be a path of length n − 1 and v
be a vertex that is not on P then

Bn,i(append(P, v)) = EXPAND(Bn−1,i−1(P), v).

Combinatorial Algorithms for Listing Paths in Minimal Change Order 119

Proof. We prove this theorem by induction on n where the statement can be
checked for n = 3 by inspection. For the inductive step we assume that the
theorem is true for n−1 and prove it for n by induction on i. Firstly, notice that

Bn,1 = (OP0)n−1

Thus

Bn,1(append(P, v)) = append(P, v), rot(append(P, v)), . . . , rotn−1(append(P, v))
= EXPAND(P, v).

Whereas, Bn−1,0(P) = P and therefore,

EXPAND(Bn−1,0(P), v) = EXPAND(P, v).

Hence the statement is true for i = 1. Now, we proceed with the induction step.
Let i ≥ 2 and consider

EXPAND(Bn−1,i−1(P), v).

By Lemma 1 we have:

Bn−1,i−1(P) = Bn−1,i−2(P0) ⊕ Bn−1,i−2(P1) · · · ⊕ Bn−1,i−2(Pn−i)

where P0 = P and Ps is obtained by taking the last path in Bn−1,i−2(Ps−1) and
applying OPi−2 to it. We denote the last path of Bn−1,i−2(Ps) by Qs. Then we
have

P0 = P and Ps = OPi−2(Qs−1) for s > 0.

Hence,

EXPAND(Bn−1,i−1(P), v) = EXPAND(Bn−1,i−2(P0) ⊕ · · · ⊕ Bn−1,i−2(Pn−i), v)
= EXPAND(Bn−1,i−2(P0), v) ⊕ · · · ⊕ EXPAND(Bn−1,i−2(Pn−i), v))

On the other hand by Lemma 1 we also have

Bn,i(append(P, v)) = Bn,i−1(R0) ⊕ Bn,i−1(R1) · · · ⊕ Bn,i−1(Rn−i)

where R0 = append(P, v) and Rs is obtained by taking the last path in Bn,i−1
(Rs−1) and applying OPi−1 to it. We denote the last path in Bn,i−1(Rs) by Ss.
Thus

R0 = append(P, v) and Rs = OPi−1(Ss−1) fors > 0.

We have to show that

Bn,i−1(Rs) = EXPAND(Bn−1,i−2(Ps), v) for s = 1, . . . , n − i.

By induction on i it suffices to show that

Rs = append(Ps, v).

120 Z. Alamgir and S. Abbasi

We will show this by induction on s. This is clearly true for s = 0 as R0 =
append(P, v) and P0 = P . Hence, we can proceed with the induction step. By
induction (on s) we have

Ps−1 = append(Rs−1, v)

and by induction on i we have,

Bn,i−1(Rs−1) = EXPAND(Bn−1,i−2(Ps−1), v).

This means that the last path Ss−1 in Bn,i−1(Rs−1) is equal to the last path
in EXPAND(Bn−1,i−2(Ps−1), v). However, the last path in EXPAND(Bn−1,i−2
(Ps−1), v) is given by:

prepend(Qs−1, v).

Hence,
Ss−1 = prepend(Qs−1, v).

Now,

Rs = OPi−1(Ss−1)
= OPi−1(prepend(Qs−1, v))
= append(OPi−2(Qs−1), v)
= append(Ps, v)

completing the inductive step. This concludes our proof.
��

The following critical theorem is now easy to prove:

Theorem 3.
Bn,n−2((1, 2, . . . , n)) = Ln.

Proof. The claim can be easily verified for n = 2, 3. We only have to observe
that Bn,n−2((1, 2, . . . , n)) and Ln satisfy the same recursion. ��
The above theorem proves the correctness of the block algorithm. The block
algorithm proceeds as follows: It starts with the path (1, 2, . . . , n) and applies
the operations given in Bn,n−2 to it. This generates all the paths in Kn. We
record one more fact about the block algorithm.

Theorem 4. Let P = v0, . . . , vn−1. Then the last path of Bn,n−2(P) is given by

vn−1, vn−2, . . . , v2, v0, v1

Proof. We proceed by induction on n. The result being trivial for n = 2. For
the inductive step let Q = v0, . . . , vn−2.

Bn,n−2(P) = Bn,n−2(append(Q, vn−1) = EXPAND(Bn−1,n−3(Q), vn−1)

Combinatorial Algorithms for Listing Paths in Minimal Change Order 121

Table 1. Expanded version of Block Unit B5,3 for K5

B3
5

B2
5

B1
5

01: 1 2 3 4 5
02: 2 3 4 5 1
03: 3 4 5 1 2
04: 4 5 1 2 3
05: 5 1 2 3 4

Op1

B1
5

06: 2 3 4 1 5
07: 3 4 1 5 2
08: 4 1 5 2 3
09: 1 5 2 3 4
10: 5 2 3 4 1

Op1

B1
5

11: 3 4 1 2 5
12: 4 1 2 5 3
13: 1 2 5 3 4
14: 2 5 3 4 1
15: 5 3 4 1 2

Op1

B1
5

16: 4 1 2 3 5
17: 1 2 3 5 4
18: 2 3 5 4 1
19: 3 5 4 1 2
20: 5 4 1 2 3

Op2

B2
5

B1
5

21: 2 3 1 4 5
22: 3 1 4 5 2
23: 1 4 5 2 3
24: 4 5 2 3 1
25: 5 2 3 1 4

Op1

B1
5

26: 3 1 4 2 5
27: 1 4 2 5 3
28: 4 2 5 3 1
29: 2 5 3 1 4
30: 5 3 1 4 2

Op1

B1
5

31: 1 4 2 3 5
32: 4 2 3 5 1
33: 2 3 5 1 4
34: 3 5 1 4 2
35: 5 1 4 2 3

Op2

B1
5

36: 4 2 3 1 5
37: 2 3 1 5 4
38: 3 1 5 4 2
39: 1 5 4 2 3
40: 5 4 2 3 1

Op2

B2
5

B1
5

41: 3 1 2 4 5
42: 1 2 4 5 3
43: 2 4 5 3 1
44: 4 5 3 1 2
45: 5 3 1 2 4

Op2

B1
5

41: 1 2 4 3 5
42: 2 4 3 5 1
43: 4 3 5 1 2
44: 3 5 1 2 4
45: 5 1 2 4 3

Op2

B1
5

51: 2 4 3 1 5
52: 4 3 1 5 2
53: 3 1 5 2 4
54: 1 5 2 4 3
55: 5 2 4 3 1

Op2

B1
5

56: 4 3 1 2 5
57: 3 1 2 5 4
58: 1 2 5 4 3
59: 2 5 4 3 1
60: 5 4 3 1 2

122 Z. Alamgir and S. Abbasi

By induction, the last path L of Bn−1,n−3(Q) is given by:

L = vn−2, . . . , v2, v0, v1.

Thus the last path of EXPAND(Bn−1,n−3(Q), vn−1) is

prepend(L, vn−1) = vn−1, vn−2, . . . , v2, v0, v1. ��

The block algorithm has an easy recursive implementation. An iterative version
of this algorithm can also be obtained by implementing a special counter of
length n − 2. The counter keeps track of the OP operation that we have to
perform next. In this counter, the value of jth index is incremented up to the
maximum value of n − 1 − j. Since OPj can be implemented in time O(j + 1)
hence, the total time taken by the algorithm to generate all n!

2 spanning paths
in Kn is

O(
n−2∑

j=0

(j + 1)(n − j)!) = O(n!)

and hence, the algorithm runs in constant amortized time.
G.G.Langdon [7] has proposed a method for listing all n! permutations in

cyclic order, the list of permutations generated by Langdon’s method can be
mapped to the list of all spanning paths on n vertices. Langdon’s method uses
rotate operation to generate all the permutations. Thus, it is not efficient and
requires hardware support [5] for the rotate operation to boost its performance.
However, we have shown above that our block algorithm takes constant time on
average to generate a spanning path with out any need of special hardware.

4 Revolving Door Path Set Algorithm

In this section, we present an idea which is significant in itself and our all path
algorithm is also based on it. Consider the following definition:

Definition 1. A path set is a list of distinct paths PS = P0, P2, . . . , Pt−1 such
that the paths are in revolving door order and V (Pi) �= V (Pj) for i �= j. Here
V (Pi) represents set of vertices of path Pi.

Now we give a recursive scheme to generate the path set PS on n nodes such
that successive paths in PSn differs by an edge that is they are in revolving door
order. This problem can be restated as to list all 2n sets on n nodes such that
two successive sets differ only by start or end element. We need this condition
because any change (add, delete or swap) to the internal node of a path will
affect two or more edges of the path. Therefore, two successive path will not be
in revolving door order. Many algorithms are proposed [3,5,8] for enumerating
all sets and combinations but none full fill our requirement, as ordering in set
does not matter.

Combinatorial Algorithms for Listing Paths in Minimal Change Order 123

4.1 Naive Scheme

Consider following two operations which are inverse of the append and prepend
operations defined above. Let P = v0, . . . , vm, k then let

delrear(P, k) = v0, . . . , vm.

Similarly, if P = k, v0, . . . , vm then let

delfront(P, k) = v0, . . . , vm.

We propose a recursive scheme for generating the path set. For n = 1 the
paths in the list are given as: PS1 = ((1), ()). Note that PS1 is a complete path
set for K1 where successive paths differ by a single vertex. Now, assume that we
have list

PSn−1 = P0, P1, . . . , Pt−1,

where t = 2n−1, that enumerates path set for Kn−1 in revolving door order. To
generate the path set for Kn we take two successive paths in PSn−1, namely P2i

and P2i+1 (these paths differ by exactly one vertex vk by induction), add two
new paths between them by inserting n to P2i and P2i+1 such that revolving door
order is maintained. Continue this procedure, till path set PSn−1 is completely
exhausted. More formally, let

PSn = Q0, . . . , Q2t−1

where,

Q4j = P2j

Q4j+1 = add(P2j , n)
Q4j+2 = add(P2j+1, n)
Q4j+3 = P2j+1

Where,

add(P, n) =
{

prepend(P, n), if n is odd
append(P, n), if n is even

Theorem 5.
PSn = Q0, . . . , Q2t−1

is a complete list of path sets in revolving door order. Furthermore, if n is even
then

Q2i+1 = append(Q2i, n) or Q2i+1 = delrear(Q2i, n)

and if n is odd then

Q2i+1 = prepend(Q2i, n) or Q2i+1 = delfront(Q2i, n).

Proof. The proof is by induction on n and is omitted. ��

124 Z. Alamgir and S. Abbasi

4.2 Algorithm

An interesting way to generate path sets is by using a binary counter. Let x =
x0 · · · xn be a binary string of length n (indexed backwards). We define a set
path set S(x) as follows:

S(x) = {i : xi−1 �= xi : i > 0}

Consider all the strings with x0 = 0. Let us interpret string x in binary and set
y = x + 1. It is easy to see that two sets S(x) and S(y) differ in exactly one
element. Furthermore, one can prove that if x �= y then S(x) �= S(y). Thus, we
can use a counter to generate the path set as follows:

– Initialize a n + 1 bit string x = 0n+1. Let S = ().
– repeat 2n − 1 times.

• increment x and let j be the bit that was changed to 1.
• If xj+1 = 0 and j is odd S := prepend(S, j)
• If xj+1 = 1 and j is odd S := delfront(S, j)
• If xj+1 = 0 and j is even S := append(S, j)
• If xj+1 = 1 and j is even S := delrear(S, j)

With this simple implementation it is easy to generate the path set in revolving
door order.

5 Revolving Door Algorithm for Generating All Paths

A simple idea for generating all paths in Kn is as follows: generate all paths in a
path set using the algorithm described in the previous section and apply the block
algorithm to each path. This will generate all the paths in Kn. Unfortunately,
the paths will not be in revolving door order. Now, the idea is that we use the
reverse operation. We can use this operation as a wildcard. By inserting this
operation at critical points and in right order we can ensure that all the paths
are generated in revolving door order.

Let P be a path of length k. We let BU(P) denote the list and, with a slight
abuse of notation, the last path of Bk,k−2(P). Thus, we assume that the length
of the path is implicitly known to us. Let us define

Z(0, P) = BU(P)

Z(1, P) = rev(BU(P))

Z(2, P) = BU(rev(P))

The option 0, 1, 2 controls if and when the rev operation is applied. Note, as
the reverse operation does not change any edge in a path, therefore, it does not
counts as an operation performed the path. It only reverses the orientation of
the path.

Sn−1 = (P0, . . . , Pt−1)

Combinatorial Algorithms for Listing Paths in Minimal Change Order 125

Table 2. All Path Sets for Kn

No: K1 K2 K3 K4 K5

1: () () () () ()
2: 1 2 3 4 5
3: 1 2 3 2 3 4 5 4
4: 1 2 3 4
5: 1 2 3 2 3 4
6: 3 1 2 3 2 4 5 3 4
7: 3 1 2 4 5 3
8: 1 2 3
9: 1 2 3 2
10: 1 2 4 5 3 2
11: 3 1 2 4 5 3 2 4
12: 3 1 2 3 2 4
13: 3 1 2 4
14: 3 1 4 5 2 4
15: 1 4 5 2
16: 1 2
17: 1 2
18: 5 1 2
19: 5 1 2 4
20: 1 2 4
21: 3 1 2 4
22: 5 3 1 2 4
23: 5 3 1 2
24: 3 1 2
25: 3 1
26: 5 3 1
27: 5 3 1 4
28: 3 1 4
29: 1 4
30: 5 1 4
31: 5 1
32: 1

be a list of paths in a path set such that each path appears exactly once in Sn−1.
Furthermore, suppose we also have d(i) ∈ {0, 1, 2} and paths Q0, . . . , Qt−1 so
that

Qi = Z(d(i), Pi).

Here, we think of the numbers d(i) as our guide which inform us if we should
reverse the current path before/after applying the block unit to get to Qi. Fur-
thermore, assume that Qi and Pi+1 are in revolving door order. Then the list

An−1 = B(P0) ⊕ · · · ⊕ B(Pt−1)

is a list of all the paths of Kn−1 in revolving door order.

126 Z. Alamgir and S. Abbasi

Now we explain how to construct Sn from Sn−1 with similar properties. The
list

Sn = R0, . . . , R2t−1.

We define e(i) ∈ {0, 1, 2} and list

Si = Z(e(i), Ri))

such that Si and Ri+1 are in revolving door order. To do this we combine the
ideas of all spanning path and path set algorithm described in the previous
sections.

We will define R4i, R4i+1, R4i+2, R4i+3, S4i, S4i+1, S4i+2 and S4i+3 in terms of
P2i, P2i+1, Q2i, Q2i+1. Since, Q2i and P2i+1 are in revolving door order, therefore,
there must be a k such that:

P2i+1 = append(Q2i, k) or P2i+1 = prepend(Q2i, k) or
P2i+1 = delrear(Q2i, k) or P2i+1 = delfront(Q2i, k).

We discuss all these cases one by one.

Case 1: P2i+1 = append(Q2i, k) for some k. We define,

R4i = P2i,

S4i = Q2i = Z(d(2i), P2i),
R4i+1 = prepend(S4i, n),
S4i+1 = Z(1, R4i+1)
R4i+2 = append(S4i+1), k),
S4i+2 = Z(1, S4i+1),
R4i+3 = delfront(S4i+1), n) = P2i+1,

S4i+3 = Z(d(2i + 1), P2i+1) = Q2i+1.

Case 2: P2i+1 = prepend(Q2i, k) for some k. We define,

R4i = P2i,

S4i = Q2i = Z(d(2i), R4i),
R4i+1 = append(S4i, n),
S4i+1 = Z(2, R4i+1))
R4i+2 = prepend(S4i+1), k),
S4i+2 = Z(2, R4i+2))
R4i+3 = delrear(S4i+2), n) = P2i+1,

S4i+3 = Z(d(2i + 1), R4i+3) = Q2i+1.

Combinatorial Algorithms for Listing Paths in Minimal Change Order 127

Case 3: P2i+1 = delfront(Q2i, k) for some k. We define,

R4i = P2i,

S4i = Q2i = Z(d(2i), R4i),
R4i+1 = append(S4i, n),
S4i+1 = Z(2, R4i+1))
R4i+2 = delfront(S4i+1), k),
S4i+2 = Z(2, R4i+2))
R4i+3 = delrear(S4i+2), n) = P2i+1,

S4i+3 = Z(d(2i + 1), R4i+3) = Q2i+1.

Case 4: P2i+1 = delrear(Q2i, k) for some k. We define,

R4i = P2i,

S4i = Q2i = Z(d(2i), R4i),
R4i+1 = prepend(S4i, n),
S4i+1 = Z(1, R4i+1))
R4i+2 = delrear(S4i+1), k),
S4i+2 = Z(1, R4i+2))
R4i+3 = delfront(S4i+2), n) = P2i+1,

S4i+3 = Z(d(2i + 1), R4i+3) = Q2i+1.

We have to show that the path set R0, . . . , R2t−1 have the desired properties.
It is clear that R0, . . . , R2t−1 is a complete list of paths in path set of {1, . . . , n}.
Note that we may define e(4i) = d(2i), e(4i + 1) = 1, e(4i + 2) = 1 and e(4i +
3) = d(2i + 1) (only for Case 1). It remains to show that Si and Ri+1 are in
revolving door order and R4i+3 = R2i+1. This is the most critical equality to
be established, as the revolving door property of Ri’s and Si’s then follow by
induction.

Here, we only discuss Case 1 as the remaining cases are similar. Let Q2i =
v1, . . . , vm then P2i+1 = v1, . . . , vm, k. Note that in this case,

R4i+1 = n, v1, . . . , vm.

Hence,
BU(R4i+1) = vm, vm−1, . . . , v2, v1, n

and
S4i+1 = Z(1, R4i+1) = rev(BU(R4i+1)) = v1, n, v2, . . . , vm.

Thus
R4i+2 = append(S4i+1, k) = v1, vn, . . . , vm, k

and
S4i+2 = BU(R4i+2) = k, vm, . . . , v1, vn.

128 Z. Alamgir and S. Abbasi

Thus

S4i+2 = Z(1, S4i+2) = rev(BU(S4i+2)) = n, v1, v2, . . . , vm, k.

Finally, this shows that

R4i+3 = delrear(S4i+2, n) = v1, . . . , vm, k = P2i+1.

Hence,
S4i+3 = Z(d(2i + 1), R4i+3) = Q2i+1.

Where the last equality follows from induction.

The proof that R4i+3 = P2i+1 is similar for all four cases. The definition of
e(i) has to be modified according to the definitions given in each case. Note that
for case 3 and 4 the rev(P) operation is performed only if the length of the path
P is greater than 2.

Table 3. All K3 paths

Kn = 3

No Path Set Last Block
Algo Path

1: 1
2: 3 1
3: 1 3 2 −→ 2 1 3

↙
4: 1 2
5: 2
6: 3 2
7: 3
8: ()

5.1 Implementation

The above mentioned scheme can be implemented either recursively or iteratively
using counters. Due to the complicated nature of the recursion, the implementa-
tion of the above scheme is a bit tricky. It is not hard to show that the algorithm
operates in constant amortized time as it is based on two CAT schemes. Us-
ing two linked lists: one to store path P = v0, . . . , vk in forward direction and
the other to store reverse direction of path, we can implement reverse opera-
tion in O(1) time. We have already shown that the cost of the block algorithm
is constant amortized. Finally, it is easy to see that the outer-recursion which
generates the path set and decides when to apply the reverse operation takes
constant time on average. The implementation details will be included in the
full version of the paper. Tables 3, 4, 5 list all the paths in Kn generated by our
scheme for n = 3, 4, 5 respectively. These tables contain only the path set and the

Combinatorial Algorithms for Listing Paths in Minimal Change Order 129

Table 4. All K4 paths

Kn = 4

No Path Set Last Block
Algo Path

1: 1
2: 1 4
3: 3 4 1 −→ 3 1 4

↙
4: 3 1
5: 1 3 2 −→ 2 1 3

↙
6: 3 1 2 4 −→ 3 1 4 2

↙
7: 1 4 2 −→ 1 2 4

↙
8: 1 2
9: 2
10: 2 4
11: 3 4 2 −→ 3 2 4

↙
12: 3 2
13: 3
14: 3 4
15: 4
16: ()

Table 5. All K5 paths

Kn = 5

No Path Set Last Block
Algo Path

1: 1
2: 5 1
3: 1 5 4 4 1 5
4: 1 4
5: 3 4 1 3 1 4
6: 5 3 1 4 4 1 5 3
7: 3 5 1 1 3 5
8: 3 1
9: 1 3 2 2 1 3
10: 5 3 1 2 2 1 5 3
11: 3 5 1 2 4 4 2 1 3 5
12: 3 1 2 4 3 1 4 2
13: 1 4 2 1 2 4
14: 5 1 2 4 4 2 5 1
15: 1 5 2 2 1 5
16: 1 2
17: 2
18: 5 2
19: 2 5 4 4 2 5
20: 2 4
21: 3 4 2 3 2 4
22: 5 3 2 4 4 2 5 3
23: 3 5 2 2 3 5
24: 3 2
25: 3
26: 5 3
27: 3 5 4 4 3 5
28: 3 4
29: 4
30: 5 4
31: 5
32: ()

last path generated by the block algorithm. All intermediate paths are skipped
due to limited space. Note that the path set generated by all path algorithm
is in reverse order and slightly different from the list generated by the path set
algorithm described in the previous section.

6 Conclusion

Combinatorial path generation is an interesting problem to be studied and its
application can be traced to various practical domains. This paper presents
efficient algorithms for generating all spanning paths and all paths in a complete

130 Z. Alamgir and S. Abbasi

graph, Kn in revolving door order using constant amortized time. Some of the
promising ideas that are worth exploring are: generate all paths in an arbitrary
graph, investigate ways to list all trees and all linear forests in a graph and
develop ranking and unranking schemes for all paths in Kn .

References

1. Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms for Computers and Calculators.
Academic Press, London (1978)

2. Trotter, F.H.: Perm (algorithm 115). Communications of the ACM 8, 434–435 (1962)
3. Ruskey, F., Williams, A.: Generating combinations by prefix shifts. In: Wang, L.

(ed.) COCOON 2005. LNCS, vol. 3595, pp. 570–576. Springer, Heidelberg (2005)
4. Harada, K.: Generation of rosary permutations expressed in hamiltonian circuits.

Communications of the ACM 14, 373–379 (1971)
5. Knuth, D.E.: Art of Computer Programming, vol. 4. Addison-Wesley, Reading

(2005)
6. Korsh, J., Lafollette, P.: A loopless gray code for rooted trees. ACM Trans. Algo-

rithms 2(2), 135–152 (2006)
7. Langdon, G.G.: An algorithm for generating permutations. Communications of the

ACM 10, 298–299 (1967)
8. Savage, C.: A survey of combinatorial Gray codes. SIAM Review 39(4), 605–629

(1997)
9. Johnson, S.M.: Generation of permutations by adjacent transposition. Math.

Comp. 17, 282–285 (1963)

Improving Topological Routing in N2R

Networks

Jose M. Gutierrez Lopez1, Ruben Cuevas Rumin2, Jens M. Pedersen1,
and Ole B. Madsen1

1 Network and Security Department, Aalborg University, Denmark
Niels Jernes Vej 12 9220 Aalborg

jgl@kom.aau.dk, {jens,obm}@control.aau.dk
2 Departamento de Ingeniera Telemtica Escuela Politcnica Superior Universidad

Carlos III de Madrid
Av. Universidad, 30, Edif. Torres Quevedo. E-28911 Legans (Madrid)

rcuevas@it.uc3m.es

Abstract. Topological routing is basically table free, and allows for very
fast restoration and thus a high level of reliability in communication. It
has already been satisfactorily proposed for some regular structures such
as Grid or Honeycomb. An initial proposal has also been developed for
the N2R structures. This paper proposes a modification of this previous
algorithm, and in addition two other alternatives. The three options are
systematically analyzed in terms of executing time and path distances,
showing that trade-offs are needed in order to determine which algorithm
is best for a given case. Also, the possible practical applications the
methods could have, are discussed for different traffic scenarios.

Keywords: Topological routing, N2R, QoS.

1 Introduction

Topological routing is an alternative to traditional routing methods, based on
tables. It allows for very fast restoration, and is particularly well suited for large-
scale communication where table updates can be time consuming and introduces
significant overheads. It has been successfully proposed for a few regular struc-
tures such as Honeycomb and Grid [1]. Related to this topological routing idea
there are Several studies about Small world networks (SWN) which demonstrate
that with limited knowledge of the network, a greedy algorithm can construct
short paths using only local information. Examples of these studies are Klein-
berg’s Small-world models [2] or the Watts and Strogatz Ring Model [3] which
are examples of the huge number of publications that prove the existence of
topological routing algorithms. The question is if an existing algorithm for N2R
structures will perform efficiently.

An initial proposal for using it in N2R structures can be found in [4]; an N2R
structure is a generalized Double Ring (DR) topology, where the inner ring links
do not interconnect physically neighbour nodes. See Fig 1. A deeper introduction

J. Janssen and P. Pra�lat (Eds.): CAAN 2007, LNCS 4852, pp. 131–148, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

132 J.M. Gutierrez Lopez et al.

to the N2R structures is given in 2. As there is already a base to work with,
this paper intends to improve the initial proposal and make a more systematic
analysis of the performance in terms of execution time and path distances, to
decide which is the best option to continue working on, to obtain at least a
method with similar properties as table routing techniques, if not better.

The future networks will demand better characteristics for the different ser-
vices supported. Those characteristics can be related with reliability and a num-
ber of other performance metrics [5].

One of the motivations of this paper was the further work described at [4],
where an idea of improving the path distances obtained, and especially the max-
imum distance in communication between nodes, was launched. The path length
is directly related with the availability [5] of the communications, and the bud-
get related with fiber placement [6]. The availability of a system is proportional
to the possible failure points on a communication. Therefore, if the number of
those failure points is reduced, the availability will be higher. The maximum
path length is an important factor to be able to guarantee a certain level of QoS
at a given network.

When building a network, the budget is always a conditioning factor. The
highest investment on a fiber optic network is the fiber placement (about 70
%) [6]. Minimizing the paths reduces the length of ditches needed to dig up to
install the fiber, hence, this reduction directly implies an important reduction
on the budget.

Wired networks (such as FTTH) have the handicap of the fiber physical cuts
which implies the loss of connectivity between nodes [7]. The topological routing
allows a fast adaptation for a network in case of a failure [4]. If more than one
path can be offered to establish a communication between any pair of nodes,
the consequence is a higher reliable network, decreasing the probability of loss
of communication.

When offering topological routing, the routers do not need routing tables re-
ducing the number of operation to be developed. The question is if more complex
routing algorithms are capable of obtaining better communication paths with no
dramatic impact on the delay of the packet which can be a critical factor. Then,
if this goal is achieved, the performance of the network can be improved.

The goal is to find a general algorithm that gives the opportunity of routing
topologically a packet from any node to any node at any possible N2R config-
uration, improving the previous results. It is assumed that if there is a general
algorithm for all the configurations, there is feasible topological routing solution
for any specific case.

In case that the improvement is achieved, then more arguments can support
the N2R structure to be considered as an option on the network structure design
at any layer level.

The contribution in this paper forms the first step towards a useful algorithm
for topological routing in N2R. We provide algorithms based on node addresses
instead of tables, and evaluate their performance in terms of execution times

Improving Topological Routing in N2R Networks 133

and path lengths. The adaptiveness, which is indeed crucial, must be dealt with
in future research.

The structure of the rest of the document is as follows. Section 2 treats the
definitions and the proper notation to understand the network structure under
study. Section 3 introduces the modification of the previous algorithm, and the
two new proposals implemented for the topological routing. In Section 4 the
proposed algorithms are explained with formulas and examples, and in section 5
the algorithms are simulated and the results are commented. Finally, Section 6
exposes the conclusions extracted from this paper, and it introduces the further
work to be developed in Section 7.

2 Definitions and Notation

The first of the definitions are given to understand the whole concept of this
paper, topological routing. Topological routing is understood as follows:

At a given address scheme, from any node, any packet can be routed given
only knowledge of the addresses of the current node and the destination node,
with no routing tables involved [1].

The number of nodes in the N2R structure is any positive even integer, larger
or equal to 6. These rings each contain the same number of nodes (p). Links in
the outer ring and the links interconnecting the two rings can be described in the
same way as the DR structure, but links in the inner ring are interconnecting
node Ii and node I(i+p)modq, where q is a positive integer. To avoid forming
two separated networks in the inner ring, q must fulfil gcd(p, q) = 1 (Greatest
Common Divisor), also q is evaluated from 1 to p/2 [8].

These N2R structures have been studied and compared to other degree three
topologies. The results show that N2R structures are preferable regarding low
delays, high bandwidth and reliability, and also when errors occur [8]. Therefore,
the effort of improving the topological routing might end up in possible solutions
that, in the future, can be compared to the table routing techniques at a real
scenario. At the moment, the goal is to solve the problems identified at the first
algorithm proposed at [4], to be able to implement an efficient routing algorithm
in terms of path distances and delay of communications.

The addresses of the nodes are given in a certain way to make the algorithm
as easy and fast as possible. The outer ring nodes addresses vary from 0 to p-1
counterclockwise and the inner ring addresses vary from p to 2*p-1. The relation
between the outer and the inner nodes, is in the way that the outer node X is
connected to the inner node X+p.

This address system allows simple operations at the programming of the al-
gorithm, and the addresses of the neighbours are well known by every node.

Each node is connected to the neighbours with three links. In each of the
cases there is a possibility of naming them as left, right and center (L, R, C).
Every node knows the address of the neighbors by looking at the name of the
link it is connected to. At a given address X of a outer node, to follow the link
L means to reach the node X+1, link R means X-1 and link C means X+p. In

134 J.M. Gutierrez Lopez et al.

Fig. 1. N2R(8,3) notation

the same way with the inner nodes, to follow the link L means to reach the node
X+q, link R means X-q and link C means X-p (considering mod p for all the
neighbours addresses at the same ring). Fig. 1 illustrates this idea.

The node mechanism to treat a packet is to identify the destination, run
the proper algorithm, and then forward it using one of the three links it is
connected to. Before and after this operation, the node has no task to work on
such as neighbours recognition or distance vectors. Therefore the node tolerance
to saturation is higher due to the less number of operations to execute.

3 Node Decision

When routing a packet, the nodes have to make the decision of which of their
three links should be used. This decision is based on an internal algorithm that
calculates the values of the different possibilities (distance in number of hops).

In this section the methodology and the different options available to obtain
the different algorithms to support topological routing over N2R structures are
analyzed. This analysis is theoretical, and based on the discussion of the different
options, at Section 4 the algorithms implementation is explained.

The assumed information implicit at every node is:

– p and q of the N2R structure
– Node Id (address): Nx

Each of the nodes has the possibility of knowing exactly which link to forward
the packet, without knowing the source node.

For the purpose of the packet routing, three possibilities are studied and com-
pared to obtain the feasibility of the use of topological routing at a N2R struc-
ture. The subsections 3.1, 3.3 and 3.2 describe the three algorithms proposed:
Fast Response Algorithm, Optimal Path Algorithm and Balanced Algorithm.

3.1 Fast Response Algorithm (FRA)

The algorithm proposed is based on the previous algorithm treated in [4]. The
mathematical properties used are the same, but it is implemented with some
slight differences.

Improving Topological Routing in N2R Networks 135

The previous algorithm made a difference between the source and the middle
nodes. The procedure was to identify at the source node the kind of commu-
nication, (using the outer ring or the inner ring), and then add flags to the
header of the packet to identify the type of communication at the middle nodes.
These flags are helpful when the current and destination nodes are to reduce the
number of instructions to execute:

– When current and destination is both at the outer ring, and the source node
was also at the outer ring.

– When current and destination is both at the inner ring.

At the rest of the cases the middle nodes will have to execute the whole
algorithm, since this flags are not helpful. Further explanation at [4]. In our
implementation, however, we do not use these flags. Thus, in the modified algo-
rithm it does not matter if nodes are source or middle nodes. The motivation
of the modification was also to try to have a header as small as possible to
complete a communication and to try to adapt it to the theoretical definition of
topological routing (just current and destination addresses).

The rest of the mechanism is the same as the previous algorithm, but in any
case it is described and commented to give a better understanding of the two
other proposals. The attribute ”Fast Response” is given due to the goal of a
low execution time algorithm by using simple operations and a relatively short
script.

A main reason to implement this algorithm was to obtain values for the ex-
ecuting time, (at the previous work it was not considered,) in order to be able
to include another testing factor in the analysis of the three possibilities. Hence,
even though there will be executed fewer instructions at some occasions, (the
cases when the flags can be used), the executing time will be assumed to be the
same due to their similarity.

This algorithm gives as a result the same paths as the previous one. Hence,
it is already known that the result of the paths used in the communications
using this method will not always give an optimal solution in terms of distance
(number of hops). This result will be compared with the “Optimal Path” and
“Balanced” solution at Section 5 to find the balance between total path length
and path completion time.

The algorithm is theoretically described below and the implementation infor-
mation is explained in Section 4.

A source node is selected to start the communication, then the relative po-
sition of the destination node is calculated to determine the orientation of the
communication. The structure is virtually split in half from the source node,
if the relative position is at the right half of the structure, the communication
will be established in the right direction, and vice versa with the left half. The
same method is applied for all the possible communications, without mattering
the position of the nodes (at the inner or outer ring). This method simplifies
the implementation of the algorithm to a few instructions. Fig. 2 illustrates this
method with an example of the communication obtained.

136 J.M. Gutierrez Lopez et al.

Fig. 2. N2R(8,3) Fast Response Path calculation

Then, two of the three links are left as possible gateways. The decision between
these two is made by comparing the distances using the outer ring, the inner
ring, or both for the communication. Each type of communication is directly
related with a link, hence the link can be easily recognized.

The best result is used to forward the packet, and at the next node the same
operations are realized, until the destination node is reached. Thus, in every
node the next hop is found by a qualified guessing on which potential hop is
closest to the destination.

3.2 Balanced Algorithm (BA)

The name “Balanced Algorithm” is given because it is a priori expected that the
values of path length and execution time will be in between the values of the
other two algorithms.

This method considers to use the three link to forward the packet (the FRA
only considers two from the very beginning, the third one is discarded at the
side recognition task). The idea is to find the values of the different ways the
communication can be established, using the outer ring, the inner ring or both.
The procedure is the same as at the FRA but also including the opposite orien-
tation of the communication (if the source and destination are at the right half
of the network, the communication oriented to the left is also considered).

Including the third possible gateway has the consequence that more instruc-
tions and conditions are needed for running the algorithm. Hence, the difference
between the executing time and the path length obtained must be analyzed, to
see if the costs make it a real possibility.

The Fig. 3 illustrates the same example as at Section 3.1 obtaining a better
result (in terms of distance) at the end of the communication.

3.3 Optimal Path Algorithm (OPA)

In this case the algorithm implemented obtains the optimal solution in terms of
number of hops. The results obtained were compared to the results of previous
works, to verify the attribute “Optimal Path” [9]. This algorithm includes a
loop to be able to find the best solution, which makes the execution time much

Improving Topological Routing in N2R Networks 137

Fig. 3. N2R(8,3) Balanced Algorithm calculation

longer, directly related with a longer delay at the nodes. Therefore, the time a
node will be treating a packet, is obviously longer than the FRA or the BA and
the discussion must be focused on the trade off between execution time-path
distance.

In case that the paths are shorter, less nodes are involved in the commu-
nication between a pair of nodes. Hence, the algorithm needs to be executed
less times to reach the destination. At Section 5 this discussion will give the
parameters involved in the three cases.

4 Algorithm

At this section the algorithms used to prove the theoretical statements formu-
lated at Section 3 are explained in detail. From the theoretical point of view of
the topological routing methods are quite simple, but at the time of program-
ming an unified algorithm for all the possible configurations, it turned to have
some difficulties for very specific cases (the OPA).

Next, the basic mechanism of the algorithms is deeply commented and ex-
plained with graphic examples. This explanation focuses on the mathematical
properties of the N2R to define the general rules that must be followed to work
on the topological routing issue. One of the bases of the algorithms is that a
packet is never routed to the same node twice. Therefore there is no possibility
of loops, count to infinite problems, or suboptimal results.

4.1 Fast Response Algorithm (FRA)

The algorithm implemented in this case, following the rules defined at Section
3.1, is described as follows:

– Side Recognition: Being S and D any source and destination nodes and their
id NS and ND, the orientation of the communication is easily calculated by
formula (1).

Dout = N ′′
D − NS (1)

138 J.M. Gutierrez Lopez et al.

For this calculation the ring that the nodes belong to must be considered.
The following operations, formulas (2) and (3), are required to obtain a result
in the necessary range to make the comparison 1:

N ′
D =

⎧
⎪⎪⎨

⎪⎪⎩

ND if NS < p & ND < p (O - O)
ND if NS ≥ p & ND ≥ p (I - I)
ND − p if NS < p & ND ≥ p (O - I)
ND + p if NS ≥ p & ND < p (I - O)

(2)

N ′′
D =

{
N ′

D if N ′
D > NS

N ′
D + p if N ′

D < NS
(3)

Applying these properties, the value of Dout gives the orientation of the
communication as it is explained at (4):

Dout

{
≤ p/2 Left orientated
> p/2 Right orientated (4)

Fig. 4. Examples of Side Recognition

In Fig. 4 there are two examples illustrating this idea. Example1 (N2R(8,3),
p=8 ,q=3):

• NS = 0 (outer ring) and ND = 10 (inner ring)
• The nodes are located at different rings:N ′

D= ND−p = 10−8 = 2 = N ′′
D.

• Dout = N ′′
D − NS = 2 − 0 = 2 ≤ p/2

• Left side orientated communication.
Example 2 (N2R(8,3), p=8 ,q=3):

• NS = 15 and ND = 13. Both at the inner ring.
• N ′

D = ND and N ′
D < NS . Then N ′′

D = N ′
D + p = 13 + 8 = 21.

• Dout = N ′′
D − NS = 21 − 15 = 6 > p/2

• Right side orientated communication.

1 O=Outer Ring, I=Inner Ring.

Improving Topological Routing in N2R Networks 139

– Link Decision: The link decision method is to find the best option between
the two links available for the communication (the third one was already
discarded at the side recognition step). Hence, the criterion is to find the
shortest distance (using the outer ring, the inner ring or both). The value of
the distance using the outer ring (DTout) is related with the previous value
of Dout (1). There are two considerations related with this value:

• Depending on the orientation of the communication, the value of Dout

must be converted as it is shown in (5):

D′
out =

{
p − Dout if Dout > p/2
Dout if Dout ≤ p/2 (5)

The reason is that the value obtained was the distance orienting the
communication to the left. Hence, since the number of nodes at the
outer ring is p, this operation will give the distance using a right oriented
communication in the case of being shorter. At Fig. 4 the hops taken at
the outer ring (D′

out) are represented with a blue dotted line at both
examples.

• To obtain the total value of the distance using the outer ring (DTout),
the hops in between rings must be considered (Drout). The total distance
is given by formula (6).

DTout = D′
out + Drout (6)

The value of Drout depends on in which ring the source and the desti-
nation are located, the possible values are presented at (7) :

Drout =

⎧
⎪⎪⎨

⎪⎪⎩

0 if NS < p & ND < p (O - O)
1 if NS ≥ p & ND < p (I - O)
1 if NS < p & ND ≥ p (O - I)
2 if NS ≥ p & ND ≥ p (I - I)

(7)

The inner ring distance (DTin) is related with the number of hops at this
ring to reach the destination (Din). This value is easily calculated by formula
(8)2.

Din = Round(D′
out/q) (8)

There are two possibilities for (DTin), using the inner ring or both, it is
explained at (9):

• If D′
out/q is an integer, the communication will only need to use the inner

ring.
• If D′

out/q is not an integer, the communication will use both of the rings.

DTin =
{

Din + Drin if D′
out/q ∈ I

Din + Drin + Dqout if D′
out/q �∈ I

(9)

The values in these cases for Drin depending on the ring location of the
nodes are presented at (10).

2 The Round function converts a real number to the closest integer.

140 J.M. Gutierrez Lopez et al.

Drin =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 if NS < p & ND < p (O - O)
1 if NS ≥ p & ND < p (I - O)
1 if NS < p & ND ≥ p (O - I)
0 if NS ≥ p & ND ≥ p & D′

out/q ∈ I (I - I)
2 if NS ≥ p & ND ≥ p & D′

out/q �∈ I (I - I)

(10)

The value of Dqout is the distance from the node where the communication
jumps from the inner ring to the outer ring (N ′

q), to the destination node.
This value is calculated as Dout by formula (1) and realizing the same nec-
essary conversions. The value of Nq is calculated by formula (11), “+” for
left oriented and “-” for right oriented:

Nq = NS ± Din ∗ q (11)

The same as in formula (1) the values must be given in the proper range.
Therefore, assuming that 0 ≤ NS < p (value converted if necessary) there
are two conversions depending on the orientation, see (12):

N ′
q =

{
Nq − p if Nq ≥ p (Left orientated)
Nq + p if Nq < 0 (Right orientated) (12)

In this way the values of N ′
q are in the proper range to work with.

– Comparison: At the end, the comparison between the values of DTin and
DTout (the shortest one is chosen) determines how the communication will
be established, hence, the link to use to forward the packet. The algorithm
does not calculate the paths, it calculates the possible distances to be able
to decide which link to use to forward the packet.

Fig. 5 illustrates two examples to better understand the real meaning of the
values calculated. At the Example 3 (same procedure for example 4):

Fig. 5. Examples Node Decision

Improving Topological Routing in N2R Networks 141

– N2R(8,3), p=8 ,q=3
– DTout:

NS = 0 and ND = 11, different rings: Convert N ′
D = ND −p = 11−8 = 3 =

N ′′
D

Dout = N ′′
D − NS = 3 − 0 = 3 = D′

out (Left orientated)
Drout = 1 (Outer-Inner)
DTout = D′

out + Drout = 3 + 1 = 4
– DTin:

Din = D′
out/q=3/3=1, integer. Only inner ring used.

Drin = 1 (Outer-Inner)
DTin = Din + Drin = 1 + 1 = 2

– DTin < DTout, therefore the link is used C (center). Start all over from the
next node.

4.2 Balanced Algorithm (BA)

The basic idea is the same, to find the DTout and DTin to make a decision. In
this case there are two distances related with the inner ring to calculate, one for
a clockwise communication and the other for counterclockwise.

Being Din1 and Din2 the hops at the inner ring to establish a connection in
both directions, Din1 is the value obtained using the already commented formula
(8). Din2 corresponds to formula (13).

Din2 = Round((p − D′
out)/q) (13)

The procedure to calculate the values of DTout, DTin1 and DTin2 are exactly
the same as in Section 4.1, applying the same proper conversions. These three
values are compared and the best option is used to forward the packet. The
procedure is the same at the next node until the destination is reached.

4.3 Optimal Path Algorithm (OPA)

This algorithm obtains at the end of any communication the shortest path pos-
sible for all the situations and N2R configurations. In order to achieve this goal
the algorithm must be much more complex than the FRA and the BA.

The problem identified is that the BA did not consider to take a whole loop or
more at the inner ring to establish the communications. Hence, when q ≈ p/2 the
distances obtained were not the optimal ones, this problem was already identified
at [4]. To solve this problem it is unavoidable to try out this looping around when
implementing the algorithm. Instead of calculating directly the values of Din1
and Din2 it tries all the possible values to find the best in each direction. This
loop range is proportional to p.

Then when the loop has found all the values of Din1 and Din2 and the best
option is considered, the values of the rest of the necessary parameters are cal-
culated to obtain the best DTin1 and DTin2 to compare them with the value of
DTout, just as the previous cases.

142 J.M. Gutierrez Lopez et al.

At the time that the three best values are calculated, compared and the
optimal is chosen, the link related to that option is selected to forward the
packet. Then the procedure starts all over again from the next node until the
destination is reached.

To better understand the effect of using the loop at Fig. 6 the path obtained
for the FRA, BA, and OPA are represented. The configuration chosen is N2R
(12,5) since it was one of the problematic situations found.

Fig. 6. N2R(12,5) Communication Example

5 Analysis

In this section the comparison of the results of the different cases is discussed.
The different natures of traffic demand different QoS levels and different require-
ments [4]. Therefore, two parameters, among others, are analyzed to study the
feasibility of each algorithm depending on the traffic nature:

– Path Length: The fact of obtaining shortest paths as possible is related with
the availability of the network, the BW cost of the packet routing and the
network installation cost. Minimizing the paths, reduces as much as possible
the probability of failure caused by links or nodes failures, there are less
failure points. If the paths are shorter, in connection with the installation, it
will be necessary to use less fibre to build the network (less fiber at each link
to support the traffic). In the case of taking minimum routes reduces the
cost in BW of the communications, the less cost the more communications
are allow with the same link capacity. All these properties are explained in
detail in [5].

The P2P file sharing traffic creates, in most countries, more than 50%
of the total traffic. The delay is not a critical factor for this kind of traffic,
therefore it would be possible to use the longer algorithm (execution time)
[10]. In this way the amount of fiber required to support these services can be
minimized, due to the shortest distances. This also applies to similar kinds
of traffic such as ftp or SAN (Storage Area Network).

– Delay: Obtaining minimum delay at the nodes to complete a communication
improves the performance of the network by reducing working tasks at the
nodes [5]. A short delay is needed for the upcoming real time networks [1].
For real time traffic, such as video conference or TVoIP, the delay becomes

Improving Topological Routing in N2R Networks 143

(a) Average Path Distances

(b) % BW Cost (c) Maximum Path Distances

Fig. 7. Distance Graphs

a critical factor. Therefore, the method used must be able to minimize this,
but with the consequence of more installation budget and more BW cost
per packet if the distances are longer. The path length can impose delays
as well; even though an algorithm has a fast execution, if the paths are too
long, the algorithm must be executed too many times (delaying the packet
more at each execution).

Hence, the three algorithms were run to obtain the average distance for a
communication, diameter (maximum distance), average path completion time
(the time spent at the nodes to reach the destination) and maximum path com-
pletion time3 varying the value of p from 5 to 100 (200 nodes). The q selected for
the graphics at each value of p is the one that obtains the shortest average path
length. These values were obtained simulating all the possible communications
(from all the nodes to all the nodes), and then the average was calculated.

3 The execution time was obtained under the same conditions, since depending on
the machine where these algorithms are executed the result will vary. It is assumed
though that the proportion will be maintained. The machine used is a Genuine
Intel(R) CPU T2050 @1.60 GHz (2 CPU) and 1GB of RAM.

144 J.M. Gutierrez Lopez et al.

Fig. 7(a) illustrates the average path length for the p, for the ranges of the
three algorithms studied. The best option as expected is the OPA. The BA
obtains very small differences for the average values, hence it could be also a
possibility to consider depending on the rest of the factors. In the result for the
FRA there is a significant difference, increasing at the same time as p.

(a) Average Path Completion Time (b) Node Response Time

(c) Maximum Path Completion Time (d) % Delay Cost

Fig. 8. Delay Graphs

Fig. 7(b) illustrates the relative percentage of the BW cost of using the longer
solutions under the same conditions (the same network capacity), in other words,
the percentage of pps (packets per second) reduction. The value of the “Percentile
95” 4 is represented for both cases. This value gives a pseudo maximum avoiding
the maximum peaks at very special situations. The use of BA implies around
maximum 2.3% reduction of the pps and the use of the FRA implies a higher
reduction, around 10.7% of the maximum. These values can be applied in case
of analyzing the cost of having the same throughput for the different cases. To

4 The pth percentile is a value such that at most (100p)% of the observations are less
than this value and that at most 100(1 - p)% are greater. (p is a value between 0
and 1).

Improving Topological Routing in N2R Networks 145

obtain the same performance, the percentages given are the extra amounts of
fibre needed to be installed at the links. Therefore, the increment of the budget
concerning the civilian construction when implanting this kind of networks.

This analysis assumes symmetric traffic (same traffic from all the nodes to
all the nodes) to obtain a general overview of the behaviour of the algorithms.
With asymmetric traffic models the results will vary, e. g. if there is a high traffic
between nodes close to each other, the cost of the BA and FRA will be lower
since they obtain optimal, or close to optimal, paths. But if there is a higher
traffic between pairs of nodes further away, then it can be assumed that the cost
would be higher due to the differences on the distances to the optimal solution.

To be able to guarantee a certain QoS level for any communication the max-
imum values should also be considered. The Fig. 7(c) illustrates the maximum
distance for the p given range. As in Fig. 7(a) the best option is the OPA, but
noticing the small difference with the BA. For 93.7% of the p values the max-
imum value is the same. Only in very specific cases (the rest 6.3%) this value
changes only by one hop. The difference with FRA is very significant. Only for
9.5% of the p values the maximum value is the same.

This small difference between the OPA and BA is due to the q values repre-
sented. It is assumed that when implementing a network, the best configuration
is used for any number of nodes required. At the most of the N2R(p,q) there are
two optimal q values. One is q ≈ p/2, and the other is much smaller [4].

In Section 4.3 it was already identified that the problem of the BA with high
q values. Hence, for equal results for the OPA distances, the smallest q value (in
case there are two optimal) was used for the analysis and the graphics. If the two
algorithms are executed over configurations with larger q values, the differences
would be much more significant.

A priori an idea could be to add a condition to the OPA to decide when it
has to use the loop or not. It is clear that for values of q � p/2 it will not be
necessary. The problem is that there are apparently no mathematical relation
between p and q to be able to give a limit for the condition. Therefore it was
not implemented.

Fig. 8(a) illustrates the average path completion time for the three algorithms.
The conclusion is the opposite than the path length analysis. The cost in delay
of obtaining the optimal paths (OPA) is very high. The completion time for
the other two cases is very similar; depending on the number of nodes the BA
completes the path even faster than the FRA. This fact is due to the shorter
paths obtained, and despite the node response time always being smaller for
the FRA. Fig. 8(b) illustrates the Node Response Time for the three cases as a
function of p.

The nodes response time at the FRA is independent of p and always being
the FRA time (around 32 μs) shorter than the BA time(around 36 μs). The
opposite situation is the OPA, the time is much longer than the other two cases,
and increases with p which makes it scale badly.

Fig. 8(c) illustrates the maximum path completion time. Obviously, the max-
imum time of the OPA is much longer than the maximum time for the other

146 J.M. Gutierrez Lopez et al.

two cases. Out of the comparison between the FRA and the BA an interesting
conclusion is obtained. For 88% of the p values at the BA the maximum delay
for a communication is the minimum among the possibilities. For p < 50 (100
nodes) the maximum times are similar, being in some situations shorter than
the BA and in some situations longer. But for p > 50 the maximum time is
always longer with the FRA, and in addition to the fact that it always obtains
the longest paths, this algorithm can be discarded for these p values.

The last result obtained is shown in Fig. 8(d) which represents the cost in
delay of using the BA or OPA versus the FRA. This cost is represented as a
percentage, depending on the value of the FRA delay, the values for the other
two cases is “(1 + 0.a) ∗ FRAdelay” being a percentage. As for the distance
analysis the percentile 95 is represented for both cases. The OPA values, as in
the rest of the execution time analysis, are extremely high compared with the
other two cases. At the BA in some cases the percentage is even negative, (no
cost, delay reduction) since it takes less time to reach the destination.

6 Conclusion

This paper introduced and compared different algorithms for topological routing
in N2R networks, which can increase the reliability and availability compared to
traditional routing schemes. At this first stage the schemes are still not adaptive,
and as such further research is needed before an implementation can take place.

Three different algorithms were proposed, a modification of a previous algo-
rithm and two new proposals. They all achieved the goal of obtaining paths for
any communication between nodes. Those different algorithms have much dif-
ferent characteristics, but none of them obtains the optimal result for all the
parameters tested. Thus, it is a matter of trade-offs between parameters.

There is a possibility of an algorithm which, at the end of the communica-
tion between any pair of nodes, obtains the shortest path for all the possible
N2R configurations, Optimal Path Algorithm (OPA). But the cost in delay for
this case is the highest among the possibilities, probably at some circumstances
unacceptable.

On the other hand there is no possibility of an algorithm that obtains the
smallest delay in all situations. Related to this factor the Fast Repose Algorithm
(FRA) and the Balanced Algorithm (BA)obtain the best result, depending on
the number of nodes. The BW cost for the FRA is higher than the cost for
the BA, and the maximum value for the path distances makes it an improbable
solution. In the same way the previous algorithm would have the same BW cost,
hence even if there is a reduction of a few instructions on the algorithm of the
middle nodes, due to the flags use to identify the path at some situation it could
be discarded.

The BA does not obtain the best results possible for delay and path distance
in all the situations, but the difference with those minimum values is not very
costly (the most around 2.3% in BW cost and and 5.3% in delay cost5).Another
5 Percentile 95 values.

Improving Topological Routing in N2R Networks 147

important characteristic is the maximum values for the two factors (paths length
and completion time). Both are very similar to the optimal, therefore almost the
same QoS can be guaranteed (only in 12% of the cases for the delay and 6.3%
of the cases for the path distances, the minimum values are not obtained).

These results demonstrate the availability improvement over the previous
studies about the N2R topological routing. The average path lengths and the
maximum path lengths have been reduced. The budget for the installation of the
fiber can be reduced if this new method is applied over the previous algorithm.

But there is still work to do in order to improve the reliability of the network.
A number of tasks mentioned in [4] are not yet solved. There might be some
possible methods to be able to route a packet using a second path (in case of
a failure of any element of the first one) to provide a reliable network system.
This idea is explained at Section 7.

7 Further Work

As an introduction to further work three theoretical solutions are proposed to be
simulated, tested and proved in the next step of this topological routing issue,
in order to offer adaptive path redundancy and fault tolerance.

– Link Restoration: The packets are routed normally through the network. In
case a next hop in the communication is not reachable, the packet is sent
directly using the only link available (one of the other two is the failure
and the last one is the arrival link). At the next steps the shortest path is
followed considering that the packet cannot return to a previous node. This
method is fast but at the same time, some of the communications could take
too long unnecessary paths.

– Path Restoration: When a failure occurs, a node detects it when it tries
to send a packet through that failure. At that moment the node sends a
warning message to the source node and immediately the source uses another
algorithm that can route the packet using an independent (disjoint) second
path. This solution would increase the routing time at the nodes due to
the complexity of the algorithm, but with shorter solutions (in distance).
For this method additional information about the source is needed. Another
problem is the packet loss while the source does not receive the warning
message, therefore this method must be improved.

– Combination: Theoretically the best option found is the combination of both
of the previous proposals. At the transition time, while the source does not re-
ceive the warning message, the solution used must be the “Link Restoration”
and at the moment that the network is stabilized the “Path Restoration”
solution.

These proposals must be analyzed as the first path methods, the distance
and delays, and simulated to obtain clear results of the possible solutions. These
analyses should take into account that different failure characteristics may im-
pose different requirements to the restoration schemes used.

148 J.M. Gutierrez Lopez et al.

References

1. Pedersen, J.M., Knudsen, T.P., Madsen, O.B.: Topological Routing in Large-Scale
Networks. In: IEEE/ICACT 2004, Korea, February 2004, p. 912 (2004), Available:
http://ieeexplore.ieee.org/iel5/9073/28787/01293001.pdf

2. Martel, C., Van Nguyen: Analyzing Kleinberg’s (and other) small-world Models.
In: Annual ACM Symposium on Principles of Distributed Computing archive Pro-
ceedings of the twenty-third annual ACM symposium on Principles of distributed
computing, St. John’s, Newfoundland, Canada, pp. 179–188 (2004), ISBN:1-58113-
802-4

3. Watts, D., Strogatz, S.: Collective dynamics of small-world networks. Nature 393,
440–442 (1998)

4. Pedersen, J.M., Riaz, M.T., Madsen, O.B.: A Simple, Efficient Routing Scheme for
N2R Network Structures. In: IT&T Annual Conference 2005, Cork, Ireland, pp.
69–80 (2005)

5. Grover, W.D.: Mesh-Based Survivable Networks, Options and Strategies for Op-
tical, MPLS, SONET and ATM Network, 1st edn. Prentice Hall PTR, Englewood
Cliffs (2003)

6. Sanchez, M.G.S., Rumin, R.C., Gutierrez, J.M.: Triple Play Network Modelling for
Spain. MsC Thesis. Control Department Aalborg University (June 2006)

7. Pedersen, J.M.: Structural Quality of Service in Large-Scale Network. PhD Thesis.
Control Departament, Aalborg University (April 2005)

8. Jorgensen, T., Pedersen, L., Pedersen, J.M.: Reliability in single, double and N2R
ring network structures. In: CIC 2005. The International Conference on Commu-
nications in Computing, Las Vegas, Nevada, United States, June 2005, pp. 2–4
(2005)

9. Madsen, O.B., Knudsen, T.P., Pedersen, J.M.: SQoS as the Base for Next Gen-
eration Global Infrastructure. In: Proc. of IT&T 2003, Information Technol-
ogy and Telecommunications. Annual Conference 2003, Letterkenny, Ireland, Oc-
tober 2003, pp. 127–136 (2003), Available: http://www.kommunikation.aau.dk
/ddn/Filertildownload/SQoSastheBaseforNextGenerationGlobal.pdf

10. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: Multilevel traffic clas-
sification in the dark. ACM SIGCOMM 35(4), 4 (2005), Available:
http://www.acm.org/sigs/sigcomm/sigcomm2005/paper-KarPap.pdf

http://ieeexplore.ieee.org/iel5/9073/28787/01293001.pdf
http://www.kommunikation.aau.dk/ddn/Filertildownload/SQoSastheBaseforNextGenerationGlobal.pdf
http://www.kommunikation.aau.dk/ddn/Filertildownload/SQoSastheBaseforNextGenerationGlobal.pdf
http://www.acm.org/sigs/sigcomm/sigcomm2005/paper-KarPap.pdf

Author Index

Abbasi, Sarmad 112
Alamgir, Zareen 112

Bonato, Anthony 46

Cuevas Rumin, Ruben 131

De Ita, Guillermo 85

Epstein, Leah 57

Goldengorin, Boris 99
Gutierrez Lopez, Jose M. 131

Harks, Tobias 27

Jäger, Gerold 99

López-López, Aurelio 85
López-Ortiz, Alejandro 2, 3

Madsen, Ole B. 131
Messinger, Margaret-Ellen 13
Milis, Ioannis 71
Molitor, Paul 99

Nowakowski, Richard J. 13

Pagourtzis, Aris 71
Pedersen, Jens M. 131
Potika, Katerina 71
Pra�lat, Pawe�l 13, 46

Richter, Dirk 99

van Stee, Rob 57
Végh, László A. 27

Wang, Changping 46
Winkler, Peter 1
Wormald, Nicholas 13

	Title Page
	Preface
	Organization
	Table of Contents
	Luck vs. Skill (Long Invited Talk)
	Valiant Load Balancing, Benes Networks and Resilient Backbone Design (Short Invited Talk)
	Valiant Load Balancing, Capacity Provisioning and Resilient Backbone Design
	Introduction
	Internet QoS
	Capacity Overprovisioning
	Admission Control

	Rightprovisioning
	QoS and AC in a Rightprovisioned World
	Valiant Load Balancing and Beneš Networks
	Conclusions

	Cleaning Random d-Regular Graphs with Brushes Using a Degree-Greedy Algorithm
	Introduction
	Definitions
	Some Lower Bounds
	Cleaning Random d-Regular Graphs
	2-Regular Graphs
	d-Regular Graphs ($d /geq 3$) --- The General Setting
	3-Regular Graphs
	4-Regular Graphs
	5-Regular Graphs
	d-Regular Graphs of Higher Order
	Other Models

	Nonadaptive Selfish Routing with Online Demands
	Introduction
	Related Work
	Our Results and Techniques

	Online Network Games
	Player Types
	Nash Equilibria for Nonatomic and Atomic Players

	Competitive Analysis
	Competitive Analysis for $NSeqnash$
	Competitive Analysis for $ASeqnash$
	Lower Bounds

	Parallel Arcs

	Vertex Pursuit Games in Stochastic Network Models
	Introduction
	The Cop Number in Random Graphs with Given Expected Degree Sequence
	The Cop Number in $G(n,p)$ Random Graphs

	Preemptive Scheduling on Selfish Machines
	Introduction
	Makespan Minimization (ell_infty)
	Algorithm
	Monotonicity

	Other Norms
	Conclusion

	Selfish Routing and Path Coloring in All-Optical Networks
	Introduction
	Game Theoretic Model
	Previous Work
	Solutions to PC and RPC as Nash Equilibria
	S-PC in Rings
	S-RPC in Rings
	The Color-Length Payment Function
	The Length-Color Payment Function

	Conclusions

	A Worst-Case Time Upper Bound for Counting the Number of Independent Sets
	Introduction
	Notation
	Base Cases for Counting Independent Sets
	Computing $NI(G)$ When G Has Non-intersected Cycles
	Computing $NI(G)$ in the General Case
	Time Complexity of the Algorithm
	Conclusions

	Improving the Efficiency of Helsgaun’s Lin-Kernighan Heuristic for the Symmetric TSP
	Introduction
	Tolerances
	k-Swap-Kicks
	Backbones
	Implementation Aspects
	Experimental Results
	Comparison of Quality for the First Trials
	Improved Instances
	Comparison of Time and Quality

	Summary and Future Research Directions

	Combinatorial Algorithms for Listing Paths in Minimal Change Order
	Introduction
	Basic Definitions
	Revolving Door Algorithms for Generating Spanning Paths
	Naive Idea: List Spanning Path Algorithm
	Block Spanning Path Algorithm

	Revolving Door Path Set Algorithm
	Naive Scheme
	Algorithm

	Revolving Door Algorithm for Generating All Paths
	Implementation

	Conclusion

	Improving Topological Routing in N2R Networks
	Introduction
	Definitions and Notation
	Node Decision
	Fast Response Algorithm (FRA)
	Balanced Algorithm (BA)
	Optimal Path Algorithm (OPA)

	Algorithm
	Fast Response Algorithm (FRA)
	Balanced Algorithm (BA)
	Optimal Path Algorithm (OPA)

	Analysis
	Conclusion
	Further Work

	Author Index

