
H.H.S. Ip et al. (Eds.): PCM 2007, LNCS 4810, pp. 336–346, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Dynamic Sound Rendering Based on Ray-Caching

Ken Chan1,2, Rynson W.H. Lau2,3, and Jianmin Zhao3

1 Department of Computer Science, City University of Hong Kong, Hong Kong
2 Department of Computer Science, University of Durham, United Kingdom

3 College of Math., Physics and Info. Engineering, Zhejiang Normal University, China

Abstract. Dynamic sound rendering is attracting a lot of attention in recent
years due to its applications in computer games and architecture simulation.
Although physical based methods can produce realistic outputs, they typically
involve recursive tracing of sound rays, which may be computationally too
expensive for interactive dynamic environments. In this paper, we propose a ray
caching method that exploits ray coherence to accelerate the ray-tracing
process. The proposed method is tailored for interactive sound rendering based
on two approximation techniques: spatial and angular approximation. The ray
cache supports intra-frame, inter-frame and inter-observer sharing of rays. We
show the performance of the new method through a number of experiments.

1 Introduction

Real-time spacious sound synthesis in dynamic virtual environments is important in
many applications, such as computer games and architecture simulation. It does not
only provide a sense of presence to the users, but also allow the users to experience
the sound effect of a virtual environment.

The main process of generating real-time spacious sound is sound rendering, which
generates impulse responses to an observer from all the input sound sources of an
environment. The inputs to the sound rendering process include the geometry of the
environment, position and orientation of the observer, and position and waveform of
each sound source. An approach to generate impulse responses is the physical
approach [Gard98], which deals with the geometrical modeling of sound wave
transmission. First, the paths of sound sources are traced to obtain a set of virtual
sound sources. The Head-Related Transfer Functions (HRTFs) at the virtual sound
source positions are then convolved with the sound waves to produce spacious sound.

In general, the physical approach is not efficient as it requires recursive tracing of
sound paths in the environment. A popular method for tracing sound paths is ray-
tracing, by which rays are projected from the observer in all directions. When a ray
hits an object surface, a reflected ray is typically generated. For a transmissive
surface, a transmitted ray may also be generated. Each new ray is further projected to
the environment and recursively traced until either the ray hits a sound source or its
effect to the observer becomes too small. As this approach traverses logarithmic
number of surfaces for each ray, it is generally too expensive for real-time use.

 Dynamic Sound Rendering Based on Ray-Caching 337

In this paper, we propose a method that exploits ray coherence of sound to
accelerate the sound ray tracing process. Our method is based on the ray-history
concept [Sber04]. It incorporates multi-resolution approximation of rays in both
spatial and angular dimensions to maximize the caching performance. Experimental
results show that our method offers a significant performance improvement, making it
suitable for use in interactive dynamic environments.

The rest of the paper is organized as follows. Section 2 describes related work on
sound rendering and acceleration techniques. Section 3 presents an overview of our
ray caching method. Section 4 presents the ray caching method. Section 5 shows the
performance of the proposed method with a number of experiments. Section 6 briefly
summarizes this paper and suggests possible future work.

2 Related Work

There are a few sound rendering methods proposed which are based on the physical
approach. For example, [Funk98] proposes a beam tracing method that considers the
preprocessing of reflection paths. [Funk99] accelerates the method by applying
priority driven and estimation techniques. This method can achieve good results of
discovering reflection paths, but has to deal with expensive beam intersections.
[Muel99] proposes a scalable PC-based software sound rendering system based on ray
tracing. Unfortunately, their experimental results indicate that the system cannot be
used for real-time applications. [CATT] is a software system targeted for architectural
acoustic simulation but it is not for interactive purpose. [LTL] is a hardware/software
system for multi-purpose sound rendering. It makes use of dedicated DSPs to generate
real-time spatialized sounds. Unfortunately, it is expensive and not scalable.

Our method is based on tracing sound rays. There are already a lot of acceleration
techniques proposed for ray-tracing in computer graphics to exploit coherence. These
techniques can be roughly classified into four categories [Rein02, Suth74]:

Object Coherence: It exploits position adjacency between objects. It works by pre-
processing data structures including grids, BSPs (binary space partitions) and BVHs
(bounding volume hierarchies) [Arvo89] to group related objects together. With these
data structures, the number of intersection tests for each ray can be reduced.

Image Coherence: It exploits local constancy between neighboring pixels. In
[Mart01, Havr03], caching methods are proposed to cache intersection points of
previous primary rays in object space with their corresponding pixels in image space.
The cache is then used to direct new rays towards objects that have been previously
hit. In [Havr03], an additional cache storing object orders is maintained, providing
information on which nearest object that a new ray is intersected with. Each entry in
the cache, indexed by pixel position, stores a reference to the nearest intersected
object and the number of times that it is referenced by neighboring pixels. If this
number exceeds a threshold, the same pixel in the next frame would be reprojected to
the same object. Otherwise, the traditional ray tracing technique is applied.

Ray Coherence: It exploits similarity between adjacent rays on traveling directions
and intersected objects. [Wald01] employs parallelism provided by SIMD instructions
and careful memory layout for the BSP data structure to improve the ray tracing

338 K. Chan, R.W.H. Lau, and J. Zhao

performance. Packets of rays are traversed and intersected in parallel since they have
high chance of intersecting the same objects. Ray coherence can be further extended
by tracking the ray paths across consecutive frames. [Sber04] proposes a fast global
illumination method to support moving light sources. As a preprocessing step, all
direct and reflected paths to light sources are traced. The illumination by the traced
paths and the first hit points from the light sources are cached. Then, all the traced
paths are weighted among all frames for indirect illumination and the weighed paths
are cached. During frame generation, direct illumination is recomputed for each frame
while the weighted paths are reused from cache to produce the final image. With this
method, direct illumination should be recomputed while indirect illumination requires
only computing the weighted impact of all virtual light sources. Path splitting and
joining are useful ideas of ray caching. However, the method benefits mostly on
indirect illumination due to its aim on caching shadow paths. As it is based on
preprocessing, it is only suitable for predefined animations.

Frame Coherence: It exploits similarity of the projected rays between consecutive
frames. One approach to frame coherence is spatial subdivision. [Mura90] proposes a
ray-object intersection tree structure with voxel traversal history, which is a list of all
voxels traversed by a path segment, and intersection history, which is a list of
intersection points that hit a moving object. The intersection history helps eliminate
unnecessary intersection tests to non-moving objects. Due to the voxels architecture,
this method has high memory cost and does not support moving camera. In [Davi99],
frame coherence is applied to accelerate animation. It subdivides the scene into
regular voxels and involves a preprocessing step to test all object movements in an
animation against the voxels. All voxels passed through by objects are marked with
frame numbers. During ray tracing, primary and higher order rays are projected from
a pixel, intersecting the voxels. The lowest frame number of all passed through voxels
is referenced and marked in a cache structure called t-buffer, which is then used to
determine the next frame number that the pixel should project rays again. Caching of
rays is inherently achieved by the voxel structure and reuse of rays is inherently
achieved by the t-buffer. This method suffers from the costly preprocessing step, and
is less useful in moving cameras as coherence is only exploited for static background.

3 Method Overview

The core of a sound rendering process based on the physical approach is the search
for virtual sound sources. In our method, this is done by ray tracing. Rays are
projected from the observer in different directions to search for the nearest intersected
objects or sound sources. If an object surface is hit, a reflected ray is generated from
the surface, which further intersects other objects. New rays would be generated until
one hits a sound source. A reverberation path is a sequence of projected rays starting
from the observer until reaching a sound source. By mirroring the reverberation path,
we could locate the position of the virtual sound source at the end of the path. Each
observer maintains a virtual source map in each frame, storing information of all the
virtual sound sources reaching him/her. During the auralization process, we generate
spacious impulse responses by convoluting the virtual source map with HRTFs.

 Dynamic Sound Rendering Based on Ray-Caching 339

Spacious waveform can then be generated by multiplying the spacious impulse
responses with the input sound sources.

In a dynamic environment, observer and sound sources may move around. For
each observer or sound source movement, we need to update all reverberation paths.
With a traditional ray tracing method, we need to perform all the intersection tests
again, making it difficult to achieve real-time response. Our research objective here is
to discover and exploit the coherencies between observer/sound source movements.
Typically, an observer moves step by step, rather than jumps abruptly, from his
current position. During each frame, there are likely a lot of rays with similar
directions to the rays projected in the previous frame, intersecting the same objects at
similar angles and reflecting in a similar way. If we could cache the intersection
history of previous rays and reuse them, we may save a lot of computations.

Our method employs the ray coherence concept for acceleration. Intersection
history of traced rays is cached for future reuse. Rays with similar starting points and
projection directions as previously projected rays do not have to be retraced again. To
cache the intersection history, we subdivide the objects into discrete patches. Ray
transmission is represented by pointers from one patch to another. Thus, the ray cache
is a graph with all the patches as nodes and the rays as edges. When a ray intersects a
previously intersected patch, we can easily locate the next patch to be intersected
from the cache, replacing the costly intersection tests with memory referencing
operations. However, there are a number of issues to be considered when designing a
ray cache. For example, schemes have to be set up to fully utilize the ray cache in
dynamic environments with moving observers, sound sources, and objects.

3.1 Patch Subdivision

We subdivide each object into patches small enough that we may treat all incident
rays the same way if they hit the same patch at the same direction, even at different
intersection points. For rays hitting the same patch from the same direction, all of
their reflected rays will be projected from the center of the patch. In this way, the
original reflective rays of the incoming rays are spatially approximated by the
outgoing ray. In addition, each patch is also subdivided into a number of angular
divisions. Incoming rays falling within the same angular division would be reflected
by the same ray. In this way, the incoming rays are angularly approximated by the
outgoing reflected ray.

3.2 Multi-resolution Patches

The nature of ray tracing is that spatial resolution decreases along with increasing
distance of each projected ray as the separation between two neighbor rays is
proportional to their ray lengths. Missing hits may occur for distant sound sources if
the angular width between neighbor rays is too high or the diameter of the sound
source is too small. To avoid missing hits without adjusting the initial ray sampling
rate, we may increase the diameter of the sound source as the path length increases.

We apply this concept to the size of the patches. Without adjusting the sampling
rate of the projected rays, we may increase the patch size as the path length increases.
This may increase the probability of reusing projected rays without increasing the

340 K. Chan, R.W.H. Lau, and J. Zhao

approximation error. When a ray hits a patch, we apply spatial approximation and re-
project the ray from the patch center. To support variable patch sizes, we apply multi-
resolution modeling techniques here. Each surface of an object is subdivided into a
hierarchy of patches. Although many different multi-resolution methods have been
proposed [To01], we have adopted a simple method in our implementation. For each
surface, we uniformly subdivide it recursively to form a quad-tree. This means that
the patch length reduces by half as we move down the quad-tree from one level to the
next. Hence, when a ray interests a surface patch, we determine the appropriate
resolution of the patch according to its path length.

3.3 Intra-frame, Inter-frame and Inter-observer Coherencies

Intra-frame coherence occurs when a re-projected ray is shared by more than one
reverberation path within the same frame. This could be due to, for example,
neighboring rays that hit the same patch at similar angle. These rays will then have
the same reverberation path, making it possible to reuse the traced paths.

Inter-frame coherence occurs when ray history of previous frames are reused. This
could happen easily if an observer is moving step by step. Figure 1 shows that an
observer moves forward by one step. Paths traced for patches B, C, and E in the last
frame can be reused in the current frame since the rays in both frames intersect the
same patches at similar angles. We may observe that it is more likely to reuse rays
intersecting distant patches than those intersecting nearby patches. For example, the
angle between the dashed arrow and the solid arrow hitting D is larger than that of E.
Hence, there is a higher chance that the two rays intersecting E fall within the same
angular division used in angular approximation, hence reusing the rays intersecting E.

Inter-observer coherence occurs when ray history of another observer is reused.
One scenario of inter-observer coherence is when a group of observers move in a
similar direction, e.g., in a virtual touring.

4 Ray Cache

The ray cache is composed of a tree and a graph attached to the tree. Each object is
composed of a number of surfaces. Each surface is divided into multiple levels of
patches and each patch is further divided into angular divisions. Figure 2 shows an
example object tree, starting from object at the root to angular divisions at the leaves.
Typically, there is only a small amount of angular division nodes which are ever
accessed. To save run-time memory, only the accessed angular division nodes are
instantiated during ray-tracing. We reference each leaf node in the tree by a multiple-
component division index, (object, surface, {patch, patch, ...}, division), which will
simply be referred to as division in remaining text.

When a surface is intersected by a ray, it is recursively subdivided into smaller
patches until the patch length is just small enough proportional to the path length of
the ray. To save memory, only the patches containing intersection points are further
subdivided. When we reach the appropriate patch level, we calculate the angular
division to approximate the incoming ray direction. Figure 3 shows the patch
hierarchy of surface W found in Figure 2. For clarity, we only show the reflective

 Dynamic Sound Rendering Based on Ray-Caching 341

Fig. 1. Inter-frame coherence Fig. 2. The ray cache tree Fig. 3. Patch hierarchy of sur-
face W in Fig. 2

property of the patch. There should be another patch hierarchy to represent the
transmissive property. For each ray we stored in cache, we also store the backward
version of the ray to facilitate path finding in backward direction. This is particularly
useful for locating paths from sound source to observer, in a sound source movement.

4.1 Constructing the Ray Cache

We use an example to illustrate how the ray cache is being constructed. To simplify
the description, we assume in this example that all rays are equidistant and each ray
intersection happens to cause the patch resolution to reduce by one level.

 (a) (b) (c)

Fig. 4. Constructing the ray cache (white circles are observers; black circles are sound sources)

Initially the ray cache is empty. The first path is constructed by tracing the
reverberation path from the observer to the sound source as in Figure 4(a). The
intersected divisions are instantiated in the tree. The division intersection sequence is
recorded by creating an edge entry from one division to another. This intersection
sequence is retained in the ray cache even if the path does not hit a sound source. In
this example, the path traced for observer 1 intersects 4 surfaces via patches A, B, C
and D. The path finally reaches sound source 1. When another path is to be traced, in
addition to instantiating the new divisions and caching the new rays, the process will
seek reuse opportunities as in Figure 4(b). (Note that the patch resolution is reduced

342 K. Chan, R.W.H. Lau, and J. Zhao

whenever a ray intersects a patch.) If we reach a patch of required patch resolution,
which contains child patches, we search the child patches for cached records of the
same incoming division. If the same incoming division exists, we may reuse and
follow the cached edge from the child patch. In other words, each edge entry can be
propagated upwards to parent patches for reuse. In the example, a path is traced for
observer 2 through patches E, F and G. In patch G, a child patch C is found which has
a cached edge of the same division. Thus, patch G is connected to patch C and finally
reaches sound source 1 by reusing the cached path.

The reuse of cached edges follows a policy that only the nearest child patches will
be chosen to minimize the spatial error as in Figure 4(c). Since the re-projection point
of the parent patch is at the center of the patch, the child patch which is nearest to the
center will be chosen. In the figure, observer 3 traces a path through patches H and I.
In patch I, 2 reusable cached edges are found in child patches B and F. The cached
edge in patch B is chosen for reuse since patch B is nearer to the center of patch I.

4.2 Ray Cache Purging

In a dynamic environment, the size of the ray cache will continue to grow in time as
the number of rays projected increases in time. When the cache is full, we need to
remove some of the cached rays. Our experiments (as will be shown in Section 5.2)
show that most of the reused rays are computed in the recent frames. Thus, we may
use time-stamping to keep track of the usage of cached rays for purging.

Each ray in the ray cache is time-stamped during its creation or when it is revisited.
A pointer list is created in each frame to reference to all rays which are created or
reused in that frame. When the ray cache is full, purging of rays need to be carried out
starting from those with earlier frame numbers. The pointer lists of the earlier frames
are used to find out rays which have not been reused in recent frames. These rays,
with their associated divisions, patches, and parent patches, will be all removed.

4.3 Movement of Observers, Sound Sources and Scene Objects

Observer Movement: An observer is a node that initiates sound rays in all directions
to the initial intersected divisions to form edges. When it moves, its virtual source
map and all edges connecting it to the initial intersected divisions are cleared. We
reconstruct new edges from the new position of this observer by projecting new rays
to all direction to find the initial intersected divisions. Once a new ray hits a cached
division, we follow the path starting from the cached edge. If a sound source can be
reached finally, a new path is completed and a new virtual source map entry would be
created. If the initial intersected division has no cached edges, the new path will be
further traced until it reaches a cached division or its effect becomes insignificant.

The main cost of observer movement is on updating the reverberation paths from
the observer. The ray cache helps reduce the number of intersection tests if the newly
projected rays hit a cached division.

Sound Source Movement: A sound source is the reverse version of an observer. A
sound source attaches backward edges to all divisions linked to it. When it moves, all
forward and backward edges linked to it will need to be removed. Then, new initial
rays will be projected from the sound source to search for intersections. When a

 Dynamic Sound Rendering Based on Ray-Caching 343

surface is intersected by a ray, we need to check if it contains any cached divisions.
We start from the surface level, search down the tree for the patch node that contains
the intersection point, until we reach the lowest level. If we find a node with cached
divisions matching the outgoing direction, an edge is created to link that node to the
sound source. A backward edge is also created.

Scene Object Movement: With the ray cache, when a scene object is moved, only a
small number of rays may need to be re-traced in typical situations. To do this, we
first remove the edge entries of all patches of the moved object. We then test all the
remaining edge entries in the cache for intersection with the moved object. If an edge
is found intersecting the moved object, it is removed. At the same time, we also test
all the edges initiated from each of the observers and sound sources for intersection
with the moved object. All the intersected edges would be removed. Finally, we check
all the previously constructed reverberation paths starting from all observers to see
whether there are broken links. If a broken link is found, we apply ray-tracing from
the broken point to re-trace the remaining path.

5 Results and Discussions

To study the performance of the proposed method, we have conducted a number of
experiments, all on a single PC with a P4 2.0GHz CPU and 512MB of memory. There
are a total of 20 sound sources used.

5.1 Inter-frame Coherence vs. Different Enclosure Volumes

As stated in Section 3.3, the degree of inter-frame coherence depends on how far
away the patch is from the observer. To verify this statement, we study the ray cache
usage in 3 different environments with a room of different dimensions but of the same
architecture. Within each of the environments the observer walks into the room from
outdoors, walks around the room and then leaves it.

Figure 5 shows the experimental results. In both the initial and the final frames,
there are only a few projected rays that intersect objects in the environment in all
three cases. This is because the observer is outdoors during these frames. In the
middle frames, where the observer is inside the room, the number of intersected rays
increases significantly. This is due to both the intersection of rays with the room
interior surfaces, and the generation of reflective rays from these surfaces. If we look
at the quantity difference between the two curves in each diagram, i.e., number of
projected rays vs. number of rays reused, we can see that in a small room, the
proportion of rays reused from the ray cache is smaller than that in a large room. This
agrees with our discussion earlier that there is a higher degree of inter-frame
coherence if the objects (or room surfaces) are further away.

5.2 Cache Reuse Performance

To study how the ray cache grows in time, we have plotted the number of projected
rays and the number of cached edges in the ray cache as a function of the frame
number as shown in Figure 6. The memory consumption of the ray cache is

344 K. Chan, R.W.H. Lau, and J. Zhao

proportional to the total number of edges cached. We can see that the size of the ray
cache grows sub-linearly with the total number of projected rays, while the memory
consumption is continuously growing with the frame number.

We have analyzed the distribution of reused rays, as shown in Figure 7. The test
scene is similar to the one used in Section 5.1, where an observer moves from
outdoors to inside a room, walks around and then leaves the room. There are a total of
100 frames and we divide them into three groups: the initial frames when the observer
is outdoors, the middle frames when the observer is inside the room and the final
frames when the observer is again outdoors. The height of each bar in Figure 7
indicates the average number of rays being reused from the cache within a frame

(a) Room dimension = 1 unit.
Fig. 6. Growth of the ray cache

(b) Room dimension = 2 units. Fig. 7. Amount of reused rays

(c) Room dimension = 10 units.

Fig. 5. Ray cache usage Fig. 8. Percentage of reused rays with/without
multi-resolution patch subdivision

 Dynamic Sound Rendering Based on Ray-Caching 345

group. In general, there are more than 74% of the reused rays that are reused within 8
consecutive frames. This high percentage of reused rays is due to the inter-frame
coherence of observer movement. Hence, we may conclude that if we apply the time-
stamping approach to purge the cache up to the last 8 frames, we may still be able to
keep about 74% of reused rays in the cache.

5.3 Multi-resolution vs. Non-multi-resolution Patches

We presented our spatial approximation technique based on multi-resolution patch
subdivision in Section 3.2,. In this experiment, we compare the percentage of reused
rays from the ray cache with and without applying the multi-resolution patch
subdivision technique. The same test scene and same observer movement (only within
the room) are used here. Figure 8 shows the results of the ray cache usage. As the
observer is moving inside the room only, the two percentage reuse curves (with and
without multi-resolution patch subdivision) are increasing as the frame number. This
means that in time, more and more reverberation paths in the ray cache are reused.
We can see that with the multi-resolution technique, the percentage of reused rays is
much higher, meaning that the technique allows more efficient use of the ray cache.

5.4 Performance in Multi-observer Environments

In this experiment, we would like to study the performance improvement of our
method with and without ray caching. We compare the performance by measuring the
average time spent on projecting a single ray in a multi-observer environment. A
number of observers are set to move inside the same room randomly for a period of
25 frames and the response time of the sound rendering server is recorded. Table 1
shows our experimental results. We can see from the table that in general, the ray
caching method could speed up ray-tracing by 38% of the original time when there is
only one observer. The speed up increases as the number of observers increases, due
to more cached rays being reused among the observers.

Table 1. Ray-tracing time with and without ray cache in a multi-observer environment

No. of observers Time per ray (Non-cached) Time per ray (Cached) Speed-up
1 0.0876 ms. 0.0542 ms. 38%
2 0.0822 ms. 0.0486 ms. 41%
3 0.0806 ms. 0.0455 ms. 44%
4 0.0819 ms. 0.0444 ms. 46%

6 Conclusions and Future Work

Sound rendering for dynamic environments based on the physical approach poses a
great challenge due to the high computational cost in computing the reverberation
paths. In this work, we have successfully improved the performance of the physically
based sound rendering process by exploiting ray coherence. Our method is based on
two approximation techniques in caching traced rays for reuse: spatial approximation
and angular approximation. Our experimental results show that significant

346 K. Chan, R.W.H. Lau, and J. Zhao

performance improvements are achieved by using the ray cache. The new method is
particularly beneficial to multi-user, interactive environments, in which a higher
percentage of rays can be reused.

We have attempted to extend our proposed method to a multi-server environment.
However, we observe from our experimental results that networking overheads can
significantly affect the performance. As a future work, we would like to investigate an
efficient scheme to share the cached information. Such a sharing scheme is essential if
the ray caching method is to be used in a multi-server environment.

References

[Arvo89]Arvo, J., Kirk, D.: A Survey of Ray Tracing Acceleration Techniques. In: Glassner
(ed.) An Introduction to Ray Tracing, Academic Press, London (1989)

[CATT]CATT-Acoustic, CATT, Sweden, http://www.netg.se/ catt/
[Davi99]Davis, T., Davis, E.: Exploiting Frame Coherence with the Temporal Depth Buffer in

a Distributed Computing Environment. In: Proc. IEEE Symp. on Parallel visualization and
graphic (1999)

[Funk98]Funkhouser, T., Carlbom, I., et al.: A Beam Tracing Approach to Acoustic Modeling
for Interactive Virtual Environments. In: Proc. ACM SIGGRAPH, pp. 21–32 (1998)

[Funk99]Funkhouser, T., Min, P., Carlbom, I.: Real-Time Acoustic Modeling for Distributed
Virtual Environments. In: Proc. ACM SIGGRAPH, pp. 365–374 (1999)

[Gard98]Gardner, B.: Reverberation Algorithms. In: Applications of Digital Signal Processing
to Audio and Acoustics, Kluwer Academic Publishers, Dordrecht (1998)

[Havr03]Havran, V., Bittner, J.: Exploiting Temporal Coherence in Ray Casted Walkthroughs.
In: Proc. Spring Conf. on Computer Graphics (2003)

[LTL]Lake Technology Limited, Huron acoustic virtual reality
[Mart01]Martin, W., Parker, S., Reinhard, E., Shirley, P., Thompson, W.: Temporally Coherent

Interactive Ray Tracing. Technical Report UUCS-01-005, University of Utah (2001)
[Muel99]Mueller, W., Ullmann, F.: A Scalable System for 3D Audio Raytracing. In: Proc.

IEEE ICME (1999)
[Mura90]Murakami, K., Hirota, K.: Incremental Ray Tracing. In: Proc. EG Workshop on

Photosimulation, Realism and Physics in Computer Graphics, pp. 15–29 (June 1990)
[Rein02]Reinhard, E.: Parallel Global Illumination Algorithms. Practical Parallel Rendering,

AK Peters (2002)
[Sber04]Sbert, M., László, S., László, S.: Real-time Light Animation. In: Proc. Eurographics

(2004)
[Suth74]Sutherland, I., Sproull, R., Schumacker, R.: A Characterization of Ten Hidden-Surface

Algorithms. ACM Computing Surveys 5(1), 1–55 (1974)
[To01]To, D., Lau, R., Green, M.: An Adaptive Multi-Resolution Method for Progressive

Model Transmission. Presence 10(1), 62–74 (2001)
[Wald01]Wald, I., Slusallek, P., Benthin, C., Wagner, M.: Interactive Rendering with Coherent
Ray Tracing. In: Proc. Eurographics, pp. 153–164 (2001)

	Dynamic Sound Rendering Based on Ray-Caching
	Introduction
	Related Work
	Method Overview
	Patch Subdivision
	Multi-resolution Patches
	Intra-frame, Inter-frame and Inter-observer Coherencies

	Ray Cache
	Constructing the Ray Cache
	Ray Cache Purging
	Movement of Observers, Sound Sources and Scene Objects

	Results and Discussions
	Inter-frame Coherence vs. Different Enclosure Volumes
	Cache Reuse Performance
	Multi-resolution vs. Non-multi-resolution Patches
	Performance in Multi-observer Environments

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

