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Abstract. Training multilayer neural networks is typically carried out
using gradient descent techniques. Ever since the brilliant backpropaga-
tion (BP), the first gradient-based algorithm proposed by Rumelhart et
al., novel training algorithms have appeared to become better several
facets of the learning process for feed-forward neural networks. Learning
speed is one of these. In this paper, a learning algorithm that applies
linear-least-squares is presented. We offer the theoretical basis for the
method and its performance is illustrated by its application to several
examples in which it is compared with other learning algorithms and
well known data sets. Results show that the new algorithm upgrades the
learning speed of several backpropagation algorithms, while preserving
good optimization accuracy. Due to its performance and low computa-
tional cost it is an interesting alternative, even for second order methods,
particularly when dealing large networks and training sets.

1 Motivation

Among the many variants of neural network architectures that exist, feed-
forward neural networks (and specially, those based on the MultiLayer Percep-
tron, MLP), are one of the most popular models with successful applications
in many fields. The power of these networks comes from having several layers
of adaptive weights and nonlinear activation functions (e.g. the sigmoid or hy-
perbolic tangent). Generally, the sum-of-squares error function is employed for
estimating the performance of the network, that compares the desired signal
with the network’s output. There is not a closed-form solution to find the weight
values that minimizes the sum-of-squares error function [9]. Hence the common
approach is to use the derivatives of the error function with respect to the weight
parameters in gradient-based optimization algorithms for finding the minimum
of the error function.

Ever since the first gradient-based algorithm, the brilliant backpropagation
(BP) proposed by Rumelhart et al. [1], researchers have focused their efforts
on improving the convergence properties of BP, the main concern being the
slow convergence speed due to its gradient-descent nature. Some of the newly
proposed algorithms that try to improve this aspect are modifications of the
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original BP such as adding a momentum term [1,2], an adaptive step size [3] or
using stochastic learning [4].

Others are second order methods that use the second derivatives of the er-
ror function. Some of the most relevant examples of these types of methods are
the quasi-Newton approaches including the Levenberg-Marquardt [5] and the
conjugate gradient algorithms [6]. Second order methods are among the fastest
learning algorithms, however due to their computational cost they are not fea-
sible for large neural networks trained in batch mode.

At last, it is also possible to find methods based on linear least-squares
[7,8,9,10,11]. These methods are mostly based on measuring the error of an
output neuron before the nonlinear transfer function instead of after it, as is
the usual approach. Usually, they are recommended as training methods for
one-layer networks or as initialization methods for multilayer networks.

Specifically, in [10] a method is described to solve a one-layer non-linear neural
network using linear least squares. Also using this solution in [12] an algorithm is
proposed that linearly calculates the weights of every layer for a multilayer per-
ceptron. However, in this algorithm layers are solved independently and therefore
it can only be used as an initialization method. In this paper, we modified this
approach by solving each layer in order, from the output layer to the input layer,
in such way that the weights in each layer are solved by taking into account the
new weights calculated for the succeeding layers. As a consequence, we developed
a learning algorithm that improves the learning speed of the basic backpropaga-
tion in several orders of magnitude, while maintaining its optimization accuracy.

The organization of this paper is as follows. First, in section 2, we present the
method for learning the weights of the network. In Section 3 we investigate the
performance of the proposed method on benchmark classification problems and
it is compared with several other well-known training methods. In Section 4 these
results are discussed. Finally, section 5 bids some suggestions and conclusions.

2 The Proposed Algorithm

In this research we will consider, without loss of generality, a two-layer MLP like
the one shown in Fig. 1. The variable names are described below.

Constants I, K, J and S symbolize respectively, the number of inputs, hidden
units, outputs and training samples. Each layer of the network consists of a linear
matrix W(n) of weights w

(n)
ji connecting neuron j in layer n with neuron i in

layer n−1, thus the superscript n = 1, . . . , N is used to refer to each layer. These
weight matrices are followed by nonlinear mappings f

(n)
j , regularly selected to

be sigmoid-type functions.
For each layer n, the input vectors of the MLP are represented as x(n). The

bias of each layer has been included into weight matrix by adding constant inputs
x

(n)
0s = 1, ∀n.
In addition, for all j = 1, ..., J ; s = 1, ..., S, we will denote by yjs the real

output obtained by the network, zjs the inputs to the non-linearities of the
output layer and by djs the desired response provided in the training set. Finally,
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Fig. 1. Architecture of a two-Layer MLP

in the following we will consider as the training optimization criterion, the MSE
between the real y and the desired output d.

2.1 One-Layer Linear Learning: Determining the Weights

Take, for instance, the one-layer neural network corresponding to the shadowy
part of Fig. 1. In [10,11,12], the authors considered the approximate least squares
optimization of an one-layer nonlinear network assuming the MSE before the
nonlinearity as the criterion to be optimized by means of the following theorem
(see the proof in [12]),

Theorem 1. Minimization of the MSE between d and y at the output of the
nonlinearity f is equivalent (up to first order) to minimizing a MSE between z
and d̄ = f−1(d), where the inverse function is evaluated at each entry separately.
Mathematically, this is given by

min
W

S∑

s=1

J∑

j=1

(
fj

(
K∑

k=0

wjkxks

)
− djs

)2

≈

min
W

S∑

s=1

J∑

j=1

(
f

′

j(d̄js)

(
K∑

k=0

wjkxks − f
(−1)
j (djs)

))2 (1)

According to this new error criterion the weights can be optimized by solving
a system of J × S linear equations defined by:

∂MSE

∂wjp
= 2

S∑

s=1

(
f

′

j(d̄js)

(
K∑

k=0

wjkxks − f
(−1)
j (djs)

))
xpsf

′

j(d̄js) = 0;

p = 0, 1, . . . , K; ∀j .

(2)
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The use of this system presents two main advantages: 1) the global optimum
of the training set is obtained, and 2) there is a considerable savings in training
time with respect to other gradient-based optimization techniques.

2.2 One-Layer Linear Learning: Determining the Inputs

In [11,12], the authors considered that the weights W can be fixed, and therefore
the input vector x becomes the free optimization variable. This is a very useful
result if x corresponds to the output (after non linearity) of a hidden layer (see,
for example, x(2) in Fig. 1). Consequently, this result allows the backpropagation
of the desired signal for z to a desired signal for x through the linear weight layer.
The result is summarized in the following theorem, that is proved in [12].

Theorem 2. Let W be the fixed weight matrix and x the actual input. Then
the optimal input xopt that minimizes the MSE between d̄ = f−1(d) and z is
the input xopt that minimizes a modified MSE criterion between x and the best
solution to Wxopt = d̄ in the least squares sense. That is,

min
x

E[(d̄ − z)T (d̄ − z)] ≈ min
x

E[(xopt − x)T WTW(xopt − x)] (3)

In this case, the bias is included in the matrix W and its corresponding input
(x0) is fixed to 1. In this way, xopt = {x1s, x2s, ..., xKs}, ∀s.

2.3 Combining Theorem 1 and Theorem 2 for Linear Learning of a
MLP

Theorem 1 can be used as a basis to provide the desired signal before the non-
linearity for every layer of the network and, therefore, linearly find the optimal
weights for each layer. Moreover, and in combination with Theorem 2, it is em-
ployed to provide a global linear solution for the networks.

The proposed algorithm for linear learning of a multilayer feedforward neural
network is as follows:

Step 1: Set the initial weights W(n)∀n.
Step 2: Using the current weights, propagate the signal forward to calculate the
outputs of each layer.
Step 3: Evaluate the value of the MSE between y and d and update W(2) (i.e.,
the output layer) using the linear system of equations presented in equation 2.
Step 4: Calculate the optimum desired inputs of the output layer (i.e. the desired
outputs for the hidden layer) by using the linear system of equations resulting
from the right side of equation 3.
Step 5: Update the weights of the hidden layer W(1) according to the opti-
mal desired outputs calculated in Step 4 and using again the linear system of
equations in 2.
Step 6: Check convergence criteria. If they are not reached, continue from Step 2.
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The main difference between this algorithm and the proposed one in [12] is the
order as the weights of each layer are optimized. In the previous approach first
the desired target of all layers is estimated and second the weights are calculated.
However, in this case the estimation of the desired output and the calculation
of the weights are simultaneously obtained, layer by layer, in a backward way.

3 Experimental Results

In this section the proposed method (linear algorithm) is illustrated by its ap-
plication to three classification problems of different size, and its performance
is compared with four popular learning methods. Two of these methods are of
complexity O(n): the gradient descent (GD) and the gradient descent with adap-
tive momentum and step sizes (GDX), in which the proposed method is based.
The other two methods are the scaled conjugated gradient (SCG) (complexity
of O(n2)), and the Levenberg-Marquardt (LM) (complexity of O(n3)).

For each experiment all the learning methods shared the following conditions:

– They were carried out in MATLAB R© on a 3.20 GHz Pentium 4 processor
with 2.5 GB of RAM memory.

– The logistic function was used as the nonlinear functions for neurons.
– The input data set was normalized in the interval [0,1].
– The training process was run for a maximum of 200 epochs.
– For the GDX and the proposed algorithms initial step size was set to 0.005.

Moreover the factor used to decrease/increase the learning rate was fixed to
0.01. These values were tuned in order to obtain good results.

– Regarding the topology, a cross-validation method was used to obtain the op-
timal number of hidden neurons. In this paper only results of the best topol-
ogy are shown. Specifically for the Breast Cancer and the Wine datasets, 9
and 15 hidden neurons were employed, respectively.

– Each experiment was repeated five times, using a different set of initial
weights for each one. This initial set was the same for all the algorithms,
and was obtained by the Nguyen-Widrow [13] initialization method.

3.1 Breast Cancer Wisconsin

This two-class problem determines if a patient suffers breast cancer based on
several characteristics of the nuclei’s cells. The database contains a sample set
of 699 instances. The network topology has 9 hidden neurons, 9 inputs and 2
outputs.

Fig. 2 shows the mean MSE training error curves, obtained by each of the
tested methods, for the 5 simulations. As can be observed, already in the fourth
epoch the proposed method obtains its minimum.

Also, in table 1 some performance measures are shown that allow for the
comparison of the algorithms. The first column (M1) measures corresponds to
the minimum MSE obtained by each method in the training process. The second
column (M2) is the obtained MSE by each method in the epoch in which the
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Fig. 2. Mean MSE training error curves for the Breast Cancer Wisconsin dataset

Table 1. Performance measures for the Breast Cancer Wisconsin dataset

Algorithm M1 M2

GD 5.22 × 10−1 ± 2.89 × 10−1 1.26 ± 3.63 × 10−1

GDX 6.17 × 10−2 ± 4.76 × 10−3 1.24 ± 3.98 × 10−1

SCG 1.35 × 10−2 ± 4.54 × 10−3 4.42 × 10−1 ± 3.26 × 10−1

LM 1.10 × 10−1 ± 2.88 × 10−1 3.59 × 10−1 ± 1.3.99 × 10−1

Linear 9.40 × 10−2 ± 5.57 × 10−3 9.41 × 10−2 ± 5.49 × 10−3

Table 2. Train and Test Accuracy for the Breast Cancer Wisconsin dataset

Algorithm Acc. Train (%) Acc. Test (%)

GD 81.6 ± 2.79 80.3 ± 2.08
GDX 97.7 ± 1.09 96.7 ± 2.36 × 10−1

SCG 99.8 ± 3.99 × 10−2 94.6 ± 6.90 × 10−1

LM 94.5 ± 6.46 87.8 ± 5.21
Linear 96.0 ± 3.06 × 10−2 96.0 ± 2.59 × 10−1

proposed method obtained its minimum MSE. As these measures are calculated
over the 5 simulations they all are provided in terms of mean and corresponding
standard deviation. Moreover, in table 2 train and test classification accuracy,
measured at the end of the simulation, are presented.

Finally, table 3 shows both the mean time (in seconds) per epoch Tepochmean

and the mean time of the whole training process T totalmean of every algorithm.
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Table 3. CPU time comparison (in seconds) for the Breast Cancer Wisconsin dataset

Algorithm Tepochmean Tepochstd T totalmean T totalstd

GD 1.49 × 10−2 2.96 × 10−2 3.081 0.627
GDX 1.40 × 10−2 2.85 × 10−2 2.867 0.168
SCG 2.63 × 10−2 2.99 × 10−2 5.249 0.628
LM 8.05 × 10−2 4.52 × 10−2 15.312 4.988
Linear 4.04 × 10−2 2.78 × 10−2 0.349 0.202

3.2 Wine

These data are the results of a chemical analysis of wines growing in the same
region in Italy but derived from three different cultivars. The analysis determined
the quantities of 13 constituents found in each of the three types of wines. The
database includes 178 instances. The network topology has 15 hidden neurons,
13 inputs and 3 outputs.

Fig. 3 shows the mean MSE training error curves obtained by each of the
tested methods for the 5 simulations. As can be observed, already in the third
epoch the proposed method obtains an error very close to its minimum.

Also, in table 4 again the performance measures M1 and M2 are shown that
allows for the comparison of the algorithms. In this case, 200 iterations are
not enough for the other methods to obtain the MSE that the linear algorithm
exhibits at the 3rd epoch. Moreover, in table 5 train and test accuracy, measured
at the end of the simulation, are also presented.

Finally, table 6 shows the mean time per epoch Tepochmean and the mean
time of the whole training process T totalmean of every algorithm.
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Fig. 3. Mean MSE training error curves for the Wine dataset
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Table 4. Performance measures for the Wine dataset

Algorithm M1 M2

GD 8.20 × 10−1 ± 2.76 × 10−1 1.43 ± 3.33 × 10−1

GDX 2.10 × 10−2 ± 3.77 × 10−2 1.37 ± 3.36 × 10−1

SCG 4.16 × 10−2 ± 1.53 × 10−1 1.01 ± 2.82 × 10−1

LM 1.29 × 10−1 ± 2.58 × 10−1 7.18 × 10−1 ± 4.07 × 10−1

Linear 1.66 × 10−2 ± 2.18 × 10−3 1.68 × 10−2 ± 2.23 × 10−3

Table 5. Train and Test Accuracy for the Wine dataset

Algorithm Acc. Train (%) Acc. Test (%)

GD 49.4 ± 5.32 48.7 ± 9.37
GDX 99.8 ± 1.78 × 10−1 97.5 ± 6.46 × 10−1

SCG 96.7 ± 4.71 94.0 ± 3.60
LM 89.4 ± 8.10 86.5 ± 8.63
Linear 99.9 ± 3.41 × 10−2 99.0 ± 2.48 × 10−1

Table 6. CPU time comparison (in seconds) for the Wine dataset

Algorithm Tepochmean Tepochstd T totalmean T totalstd

GD 0.59 × 10−2 0.77 × 10−2 1.246 0.145
GDX 0.58 × 10−2 0.76 × 10−2 1.182 0.055
SCG 1.25 × 10−2 0.73 × 10−2 2.041 0.972
LM 1.48 × 10−1 5.18 × 10−2 23.309 12.444
Linear 2.1 × 10−2 0.82 × 10−2 0.139 0.143

4 Discussion

From Figs. 2 and 3 and tables 1 and 4 we can see that the proposed method
obtains its minimum error at a very early epoch. Regarding its accuracy, it im-
proves the one exhibited by the classical backpropagation and also the Levenberg
Marquardt algorithm. Moreover for wine dataset 200 iterations are not enough
for the other methods to obtain the minimum MSE that the linear algorithm
exhibits.

Also from measure M2 in tables 1 and 4 it can be concluded that when our
method reaches an error value near its minimum the other algorithms are in a
minimum several orders of magnitude higher.

Regarding the accuracy measures shown in tables 2 and 5 it can be deduced
that the proposed algorithm again improves the gradient descent and the Leven-
berg Marquardt algorithms while maintaining an accuracy similar to the GDX
and SCG algorithms. It is important to notice that from the tested algorithms it
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is the one that shows the more similar accuracy when the results over the train
and test sets are compared, thus confirming its generalization ability. Finally,
as it can be observed, our method avoids the overfitting since it maintains the
same behavior for the training and test sets.

This conclusion, together with the short time needed for training by the pro-
posed method, as shown in tables 3 and 6, definitely makes it a fast and suitable
learning algorithm.

5 Conclusions and Future Work

The analyzed results allow us to confirm that the proposed method offers an
interesting combination of speed, reliability and simplicity. The method obtains
good approximations that even overcome those provided by classic or second
order algorithms. These features makes the proposed algorithm suitable for those
situations when the speed of the method is important in reaching a good solution,
although this could not be always the best one.
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