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Abstract. We investigate a committee-based approach for active learn-
ing of real-valued functions. This is a variance-only strategy for selection
of informative training data. As such it is shown to suffer when the model
class is misspecified since the learner’s bias is high. Conversely, the strat-
egy outperforms passive selection when the model class is very expressive
since active minimization of the variance avoids overfitting.

1 Introduction

In process control we might wish to identify the effect of factors such as tem-
perature, pH, etc. on output but obtaining such information, for example by
running the system at various temperatures, pHs, etc., may be costly. In query
learning, our goal is to provide criteria that a learning algorithm can employ to
improve its performance by actively selecting data that are most informative.
Given a small initial sample such a criterion might indicate that the system be
run at particular temperatures, pHs, etc. in order for the relationship between
these controls and the output to be better characterized.

We focus on supervised learning. Many machine learning algorithms are pas-
sive in that they receive a set of labelled data and then estimate the relationship
from these data. We investigate a committee-based approach for actively select-
ing instantiations of the input variables x that should be labelled and incorpo-
rated into the training set. We restrict ourselves to the case where the training
set is augmented one data point at a time, and assume that an experiment to
gain the label y for an instance x is costly but computation is cheap. We inves-
tigate under what circumstances committee-based active learning requires fewer
queries than passive learning.

Query by committee (QBC) was proposed by Seung, Opper and Sompolinksy
[1] for active learning of classification problems. A committee of learners is
trained on the available labelled data by the Gibbs algorithm. This selects a
hypothesis at random from those consistent with the currently labelled data.
The next query is chosen as that on which the committee members have max-
imal disagreement. They considered two toy models with perfectly realizable
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targets. The algorithm was implemented in the query filtering paradigm; the
learner is given access to a stream of inputs drawn at random from the input
distribution. With a two-member committee, any input on which the committee
members make opposite predictions causes maximal disagreement and its label is
queried. It was shown under these conditions that generalization error decreases
exponentially with the number of labelled examples, but for random queries (i.e.
passive learning), generalization error only decreased with an inverse power law.

Freund et al. [2] showed that QBC is an efficient query algorithm for the
perceptron concept class with distributions close to uniform. This provided a
rigorous proof of the earlier results, along with some relaxations in the require-
ments. They suggested a reasonable heuristic for filtering of queries would be to
select and label those inputs expected to reduce prediction error. They note that
this could be applied when the labels were not binary or even discrete. This is
related to the variance-based regression methods described below. For the QBC
approach to work, there must be some disagreement over the committee. In the
original work, this was achieved by means of a randomized algorithm. An alter-
native approach is to use different subsets of the data, as in query by bagging
and query by boosting [3]. This is also the approach taken in the regression
framework investigated below.

2 Active Learning of Real-Valued Functions

The aim in active learning of a real-valued function is to query the labels of
inputs such that the generalization error is minimized. The expected error is:

∫
x

ET

[
(ŷ(x; D) − y(x))2|x

]
q(x)dx ,

where ET [·] denotes expectation over P (y|x) and over training sets D, q(x) is
the input distribution and ŷ(x; D) is the learner’s output on input x, given the
training set D. The expectation in the integrand can be decomposed as [4]:

ET

[
(ŷ(x; D) − y(x))2|x

]
= E

[
(y(x) − E[y|x])2

]
+ (ED[ŷ(x; D)] − E[y|x])2

+ ED
[
(ŷ(x; D) − ED[ŷ(x; D)])2

]
,

where ED denotes expectation over training sets and the other expectations are
with respect to the conditional density P (y|x). The first term on the right hand
side is the variance of y given x, i.e. the noise. The second term is the squared
bias. The third term is the learner’s variance. The bias and variance comprise
the learner’s mean squared error (MSE).

Assuming the learner is approximately unbiased, Cohn, Ghahramani and Jor-
dan [5] propose to select inputs for labelling that minimize the variance of the
learner. It is assumed that an estimate of σ2

ŷ , the variance of the learner at x is
available. For a new input x̃, an estimate of the learner’s new variance at x given
x̃ is computed. This requires an estimate of the distribution P (ỹ|x̃), or, at least,
estimates of its mean and variance. This gives an estimate of

〈
σ̃2

ŷ

〉
, the expected
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variance of the learner at x after querying at x̃. This is integrated over the input
space to give an estimate of the integrated average variance of the learner. In
practice, a Monte Carlo approximation was used,

〈
σ̃2

ŷ

〉
was evaluated at 64 ref-

erence points and x̃ chosen to minimize the average expected variance over the
reference points. In [6], this approach was used to select data to train a neural
network. In [5], it was extended to mixtures of Gaussians and to locally weighted
regression. Active data selection based on minimizing variance was superior to
random data selection for a toy 2-degree-of-freedom robot arm problem. This is
a noisy problem where the target function is not perfectly realizable. Note, how-
ever, that this technique of selecting statistically ‘optimal’ training data cannot
be applied to all machine learning algorithms.

Krogh and Vedelsby [7] considered committees of neural networks for learning
real-valued functions. The committee consists of k networks and the output of
network α on input x is ŷα(x). They defined the ambiguity at an input point x̃
as the variance in the predictions of the committee members:

a(x̃) =
∑
α

(ŷα(x) − y(x))2 .

This provided a reliable estimate of the generalization error of the committee,
and to determine the optimal voting weights of the committee members in deter-
mining the committee’s predictions. These two contributions of that work have
subsequently been cited a number of times in the literature. However, a third
aspect of the work that is rarely cited relates to active learning. They propose
to query at each step the label of the input for which the ambiguity is maximal,
i.e. where the committee’s variance is highest. This can be seen to be a minimax
approach to the problem of minimizing the learner’s variance over the input
distribution. The networks were trained on the same set of labelled examples,
starting from one labelled example and adding one labelled example at a time.
The disagreement in the predictions of the individual committee members arises
from the differing random initializations of the network weights. A committee
of five neural networks, each with 20 hidden nodes, was trained to approximate
the univariate square wave function. This is a noise-free problem where the tar-
get function is not realizable. Active selection of training data led to improved
performance compared to random selection.

RayChaudhuri and Hamey [8] used a similar approach to [7]. However, the
disagreement among committee members arose from their being trained on dif-
ferent sub-samples of the available data. An initial random sample of ten points
was queried. Ten neural networks were each trained on random sub-samples of
half the data. An unlabelled input with maximal variance over the committee is
then selected. This approach is similar to query by bagging used in classification
[3]. It was argued that this approach should lead to better performance than [7].
The target function was generated by a univariate neural network with three
hidden nodes. The committee members all had the same architecture. The em-
phasis was not to minimize generalization error, but to minimize data collection.
Active learning was shown to require fewer queries than passive learning to reach
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agreement among the committee members, but its advantage was reduced when
a small amount of noise was added (signal-to-noise ratio (SNR) ca. 40). Passive
learning was superior when more noise was added (SNR ca. 2.5). In [9], a com-
mittee of five neural networks with one hidden node was used to approximate
the step function using the criterion of [8]. Limited evidence was provided that
their approach outperformed that of [7]. In [10], it was demonstrated that this
active learning approach could be used for system identification by training a
neural network on all of the data actively selected and using it as a feed-forward
controller. In [11], RayChaudhuri and Hamey propose a similar criterion to es-
timate the variance of a learner at x. Instead of ambiguity they use a jackknifed
[12] estimate of the variance combined with a noise estimate. Generalization
error when using this selection criterion is not significantly different from that
obtained using ambiguity for the problems considered here.

All of the criteria defined above were proposed within the framework of se-
lective sampling. It is assumed that a set of unlabelled inputs is provided and
we wish to query the labels of as few inputs as possible whilst minimizing the
generalization error. In the toy problems considered in [5,6,7,8,9,10,11], it was
assumed that the input distribution, q(x), was uniform, and that the label of
any input point, x̃, drawn from q(x) could be queried. There are thus two basic
approaches to optimizing the query criterion. As suggested in [5], the criterion
could be optimized by hillclimbing on ∂

〈
σ̃2

ŷ

〉
/∂x̃. The same idea could be ap-

plied to the other two criteria, by using a gradient free search to find a local
maximum. In practice, in low dimensions, it is computationally more efficient to
draw m candidate points from q(x) at each iteration and choose the best x̃ from
these. This is known as pool-based selective sampling. For example, [5] choose
m = 64, [7] choose m = 800 and [8] choose m = 100. In situations where active
learning outperforms passive learning, we would expect a large m to be bene-
ficial. Conversely, in situations where active learning performs badly, a large m
could lead to a substantial deterioration in performance1.

Use of a committee to estimate the variance of a learner as a query criterion for
active learning does not appear to have been pursued further than the foregoing
references2. The aim of this paper is to investigate the performance of these
criteria under various conditions.

3 Numerical Examples

The passive (P) selection strategy selects the next input point, x̃ at random
from the unlabelled examples. For the active strategy, a committee of k = 5
learners is maintained. Each is trained on a subset of the labelled data by leaving
out disjoint subsets of size �n/k�, where n is the number of labelled data. The
1 Expressed in the saying ‘give ’em enough rope and they’ll hang themselves.’
2 According to CiteSeer (http://citeseer.ist.psu.edu/), apart from the work by

RayChaudhuri and Hamey, [7] has only been cited once with reference to active
learning, viz. [13]. The work by RayChaudhuri and Hamey has also only been cited
once, viz. [14]. Neither of these later works took a committee-based approach.
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ambiguity (A) selection strategy selects x̃ to maximize a(x), x̃ is chosen from a
pool of m = 1000 unlabelled examples. Results are averaged over 1000 runs.

We consider the toy 1-d problem described in [15]. The input dimension is
d = 1 and the target function is:

f(x) = 1 − x + x2 + δr(x) .

where

r(x) =
z3 − 3z√

6
with z =

x − 0.2
0.4

.

The number of queries is n = 100 and the labels are corrupted by i.i.d. noise
∼ N(0, 0.32). The test input density is q(x) = N(0.2, 0.42) and is assumed to be
known. The model class is linear regression with a polynomial kernel of order
two. Three cases are considered, δ = 0, 0.005, 0.05, termed correctly specified,
approximately correct, and misspecified, respectively.

The signal-to-noise (SNR) ratio for this problem is 0.42/0.32 = 1.8. This is
roughly the same as the ‘highly noise’ problem in [8]. It was observed therein that
ambiguity criterion did not outperform a passive selection strategy in the ‘highly
noisy’ case. Following [8], we also consider low-noise, σε = 0.1 and zero-noise,
σε = 0.0, versions of the same problem.

High Noise. Box-plots of the generalization error for the high noise case are in
figure 1 (top). The mean and standard deviation of the generalization error are
given in table 1. The passive committee learner does not have significantly dif-
ferent generalization error than reported in [15]. For the correctly specified and
approximately correct cases, active selection does not have significantly differ-
ent performance to passive selection. For the misspecified case, active selection
performs significantly worse than passive learning. We do not necessarily expect
the active strategy to work well in this case since the assumption that the bias
is approximately zero has been violated.

Low Noise. Box-plots of the generalization error for the low noise case are in
figure 1 (middle). The mean and standard deviation of the generalization error
are given in table 2. There are no significant differences in performance between
the passive and active strategies for the correctly specified case. In the misspec-
ified and approximately correct cases, the performance of the active strategy is
significantly worse than that of the passive strategy.

Table 1. The mean and standard deviation of the generalization error in the high-noise
case. The best method and comparable ones by the t-test at 95% are emphasized in
bold. All values in the table are multiplied by 103.

δ = 0 δ = 0.005 δ = 0.05

P 2.86±2.35 2.90±2.62 6.11±3.44
A 2.74±4.24 3.09±4.45 46.5±14.6
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Fig. 1. Box-plots of the generalization error for the passive (P) and ambiguity (A)
selection strategies. The box-plots show the distribution of log10 of the mean squared
error on 1000 test points. The notches indicate robust estimates of the median gener-
alization error.

Zero Noise. Box-plots of the generalization error for the zero noise case are given
in figure 1 (bottom). The mean and standard deviation of the generalization error
are given in table 3.

Active learning outperforms the passive strategy in the correctly specified
case. This confirms the result of [8]. In the approximately correct and misspec-
ified cases the active learning strategy is significantly worse than the passive
strategy. This result is at odds with that reported in [7], although they used

Table 2. The mean and standard deviation of the generalization error in the low-noise
case. The best method and comparable ones by the t-test at 95% are emphasized in
bold. All values in the table are multiplied by 103.

δ = 0 δ = 0.005 δ = 0.05

P 0.31±0.33 0.36±0.28 3.44±1.35
A 0.30±0.48 0.76±0.64 41.8±7.34
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Table 3. The mean and standard deviation of the generalization error in the zero-noise
case. The best method and comparable ones by the t-test at 95% are emphasized in
bold. All values in the table are multiplied by 103, except the values for δ = 0, which
are multiplied by 1030.

δ = 0 δ = 0.005 δ = 0.05

P 42.5±139 0.03±0.01 3.11±1.24
A 1.35±1.65 0.42±0.07 41.3±6.18

a different method to create diversity across the ensemble. The generalization
performance actually worsened as more points were queried.

In summary, active learning outperforms the passive strategy when the model
class is correctly specified and there is no output noise. This performance gain
is lost when the outputs are noisy or the model class is misspecified. Further
consideration of this issue is given below.

3.1 Discussion

The problems of stagnation and deterioration in performance for the active learn-
ing strategy could be avoided by tracking the variance. This could be estimated
from the working set, as in [8], or from a separate reference set, as in [5]. If
the variance doesn’t decrease then training can be halted, or the learner can
switch to a passive strategy. A stochastic approach could also be taken, whereby
the learner chooses an active or passive strategy probabilistically based on the
change in average variance induced by the previous query. We do not investigate
these ideas further but consider why the active strategy does not perform well.

In active learning the input density, p(x), of training points differs from the
input density, q(x), of unlabelled points. This is known as the covariate shift.
When δ = 0, σε = 0, the active strategy outperform the passive strategy and
empirically p(x) is as shown in the left of figure 2. For the other cases, the active
strategy does not outperform the passive strategy and p(x) is as shown in the
right of figure 2. In the previous work [7,8,9,10] q(x) was taken to be uniform.
This is likely to be the case in system identification and control [10]. We repeated
the above experiments with q(x) uniform having the same mean and standard
deviation. Passive learning outperformed the active strategy in all cases.

When the model used for learning is correctly specified, the covariate shift
does not matter since ordinary least squares (OLS) regression is unbiased under
a mild condition [15]. In this case the median generalization error3 of (A) is
significantly lower than that of (P). When the model is misspecified, OLS is no
longer unbiased. The active strategy investigated here is a variance-only method
so we do not necessarily expect it to perform well when δ > 0 and it does not.
It is known that a form of weighted least squares is asymptotically unbiased for

3 The expected generalization error of (A) is not significantly different from that of
(P) since the active strategy is more variable in performance (see tables 1–3).
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Fig. 2. Empirical input density, p(x), for the active strategy. For the correctly specified,
zero-noise case (left), the active strategy outperform the passive strategy. For the other
cases (right), the active strategy perform the same or worse as the passive strategy.
The test input distribution, q(x), is superimposed.

misspecifed models [16]. Each training input point, xi, is weighted by q(xi)/p(xi).
This requires an estimate of p(x). We repeated the above experiments, at each
iteration estimating p(x) and using weighted least squares. The density p(x) was
estimated as N(μ, σ) where μ and σ are the maximum likelihood estimates. This
did not improve the performance of the active strategy. It would be preferable
to estimate p(x) as a mixture of Gaussians, but this is not reliable with so few
data, especially in higher dimensions.

For most real-life problems in function estimation and systems control, the
target function or system is noisy and not perfectly realizable. When the model
class is not correctly specified, this variance-only active learning strategy seems
at best useless and at worst counterproductive. We now consider a different
scenario and outline how to avoid the above problems.

When the model class is correctly specified, the active strategy is not sig-
nificantly better than passive learning. When the model class is not correctly
specified, the active strategy may be worse than passive learning. However, we
have only considered cases where the model class is underspecified, i.e. learning
tasks for which the learner is underfitting the available data. In most real-world
situations, the functional form of the system is unknown. Ideally, we would use
a very expressive model class in order to approximate the system as closely as
possible. For example, it is known that a neural network with enough hidden
nodes is able to approximate any function to arbitrary accuracy. This is not pos-
sible with noisy data since it will lead to overfitting. Overfitting occurs when the
model variance is high [17]. Therefore, one way to avoid overfitting is to actively
minimize the variance of the learner. This is exactly the approach taken by the
active learning strategy considered here. Moreover, when the model class is very
expressive the learner’s bias is small.
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Fig. 3. Generalization error after 100 queries for the passive (solid line) and ambiguity
(dotted line) selection strategies with a polynomial kernel as a function of the order of
the polynomial for the toy data set (left) and the Boston housing data set (right). The
error bars indicate 95% confidence limits for the mean.

In the following we consider only the misspecified, highly noisy case as this
is the most realistic. The generalization error of (P) and (A) with polynomial
kernels of order θ = 1, . . . , 9 is illustrated in figure 3 (left). When θ = 1, 2, the
learner underfits and (P) has lower generalization error than (A). As θ increases
the model class becomes more expressive and performance of (P) deteriorates.
However, (A) is robust to overspecification and has lower generalization error
than (P) for θ ≥ 4. The lowest generalization error after 100 queries is for
θ = 3.

The Boston housing data set [18] has 506 examples and 13 attributes. The
passive and active strategies were used to query the label of 100 points with
polynomial kernels of orders θ = 1, . . . , 9. The generalization error averaged
over 1000 runs is shown in figure 3 (right). The lowest error is at θ = 1, when
the passive strategy slightly outperforms the active. However, again the active
strategy is much more robust to overspecification of the model class.

4 Conclusion

We have investigated a seemingly forgotten strategy for active selection of train-
ing data in real-valued function estimation. The main idea is to train a committee
of learners and query the labels of input points where the committee’s predic-
tions differ, thus minimizing the variance of the learner by training on input
points where variance is largest. This approach only works when the learner’s
bias is small. Its main advantage is that it is more robust to overspecification of
the model order and thus less prone to overfitting than the passive strategy. The
attractiveness of a committee-based approach is that there are no restrictions
on the form of the committee members provided they are not identical.
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