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Preface

Task analysis and modelling have existed for many years, initially for train-
ing purposes but latterly for providing a principled approach to improving the
usability of existing and proposed interactive systems. There have been many
successes along with critical appraisal of the utility of task analysis. The commu-
nity remains strong, active and enthusiastic. Over the years we have developed a
plethora of theoretical approaches, models and techniques. These differ in terms
of what is modelled, the nature of the representations and notations used, their
scalability, the ease with which they can be applied with good effect, and the
ease with which they can direct the design of systems to support task execution.

Task models and associated diagrams that represent task knowledge and
behavior are in demand now as much as they ever were. Good design is fun-
damental, appreciated by users, sells and improves the quality of our daily
lives, and good system design means supporting users and their interaction
with technology. Technology is changing – we now have mobile and pervasive
systems – and yet we still need to analyze the goals and tasks undertaken using
these systems. The nature of the tasks might be different (shorter in duration,
overlapping, needing to be performed more quickly, be routed in communication
and entertainment), but it is still important to understand, model and support
user goals.

The proceedings give a flavor of the issues facing task modelling at this mo-
ment in time. A primary aim of Tamodia as a conference series is to educate,
to promote and exchange existing ideas and problem solutions, and to generate
new ideas and associated research programmes. As in previous years the scope
of the papers is broad. This year we were very privileged that the invited talk
on ‘Modelling Activity Switching’ was given by Stephen Payne, from Manch-
ester Business School. Other highlights of the conference included sessions on
Workflow-Based Systems; Task Patterns; Task Models for Non-standard Ap-
plications; Model-Driven Engineering; Task-Based Evaluation and Testing; and
Extending Task Models.

A rigorous refereeing process was applied to the papers, and the standard
of the accepted papers is high and represents a good cross-section of academic
research and to a lesser extent industrial research. We are grateful to the authors
for submitting their papers to Tamodia and to the many people who took part in
refereeing including the Programme Committee members. These contributions
have made the conference series a success.

The proceedings is a valuable information resource for both researchers and
industry members alike, who are interested in applying task analysis and mod-
elling techniques to an ever-widening range of domains and problems. The re-
ported research is diverse and gives some indication of the new directions in
which task analysis theories, methods, techniques and tools are progressing.
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Additionally, there are several new challenging opportunities for the use of task
modelling in the future, and we are sure that the Tamodia conference series will
be at the forefront in promoting research in these new areas.

November 2007 Hilary Johnson
Marco Winckler
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Modelling Activity Switching 

Stephen Payne 

School of Informatics, University of Manchester 
PO Box 88, Sackville Street 
Manchester M60 1QD, UK 

stephen.payne@manchester.ac.uk 

Abstract. How do people decide what to do when? Why is it that people often 
given up one task to begin another, only later to resume the first? In this talk I 
will briefly review some experiments on how people allocate their time 
adaptively across multiple texts and multiple tasks.  I will then focus on how 
strategies for adaptive time allocation can be modelled.  The model I develop 
derives from heuristic accounts of animal foraging behaviour.  In the course of 
the talk I will review recent arguments by Roberts and Pashler to suggest that 
the standard criterion of fitting models to experimental data is too lax, even 
though the model I am considering has only two free parameters and even 
though it’s output is being fitted simultaneously to several quantitative 
dependent variables.  Focussing instead on whether the model can predict the 
data leads to a more complicated but more interesting model. This model 
suggests that people orient to their activities in terms of either goal 
accomplishment or currency accumulation, and may switch between these 
orientations.  To understand human activities and in particular the decisions that 
people make to continue or switch activities, we need to understand not only 
goal-subgoal hierarchies but also moment-by-moment gain curves.  

Brief Biography. Stephen Payne is Professor of Interactive Systems Design in 
Manchester Business School.  Previously he has been a lecturer in psychology 
and computing at the University of Lancaster, a research scientist in IBM T.J. 
Watson Research Centre, User Interface Institute, and a Professor of 
Psychology at Cardiff University (1991-2005).  Stephen has consulted for 
several commercial organizations, including Xerox PARC.  He has served on 
the editorial board of 4 major HCI journals (currently on the boards of 
Behaviour and Information Technology and Human-Computer Interaction).  He 
is papers co-chair for the ACM CHI conference in 2007.  Between 2000 and 
2006 he was a member of the management committee for the Joint Research 
Councils’ PACCIT (People at the Centre of Communications and Information 
Technologies) programme.  Stephen continues to be on the EPSRC computing 
college and to serve occasionally as a chair and committee member for EPSRC 
panels.  He is also a member of BPS, EPS and ACM. Stephen Payne is 
interested in many aspects of the psychology of human-computer interaction, 
and more generally in the psychology of learning and performance. One major 
strand of work has been on users’ mental models.  He is currently interested in 
user interactions with on-line information, multi-tasking, and social effects of 
communications technologies. 
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Agile Development of Workflow Applications with 
Interpreted Task Models 

Markus Stolze1, Philippe Riand2, Mark Wallace3, and Terry Heath1  

1 IBM Watson Research Center, Yorktown Heights, NY 10598, 
mgstolze@us.ibm.com 

2 IBM WPLC, Westford TP, Westford, MA 01886-3141 
3 IBM WPLC, Dublin 15, Ireland  

Abstract. We demonstrate that the development of interactive workflow 
applications can be made easier by providing developers with custom user 
interface components that interpret a workflow task model. This enables 
occasional developers to create workflow applications by adapting template 
data objects, template user interface pages, and a template workflow task 
definition. The resulting interactive workflow system is open to agile adaptation 
by experienced developers. This is an improvement over existing workflow 
systems which use workflow task models to create workflow application user 
interfaces that are difficult to extend. 

1   Introduction 

Workflow applications are used in enterprise settings to increase visibility, efficiency 
and compliance of important business processes. They help to realize efficiency 
potentials through the elimination of transport and wait times between process 
activities and provide a detailed level of control over the assignment of work to 
process participants [9]. Examples of such processes are the tracking of candidates, 
tracking of benefit changes, order tracking, prospect follow-up and generation and 
review of quotes and proposals. In these examples, important enterprise data 
(employee, customer, and contract) are worked on by multiple people in predefined 
roles and steps. The Workflow Management Coalition (WFMC) defines workflow as 
the automation of a business process during which documents, information, or tasks 
are passed from one participant to another for action, according to a set of procedural 
rules [8]. These rules (i.e. workflow task models) define the organizational units, 
roles, and activities as well as data, events, and tools that comprise the workflow [7]. 
Interactive workflow applications coordinate the tasks of human actors. Data is 
frequently represented as forms that are passed from one participant to another.  

Development of interactive workflow applications usually follows one of two 
approaches. The first approach uses a workflow system that provides a high-level 
workflow modeling language. Here, system development involves mainly the description 
of the desired workflows in the provided modeling language. Using techniques  
from model-driven development, the workflow model is then used to generate the 
application code of the running system. Examples of commercial systems supporting 
such an approach are FileNet (www.filenet.com), VDoc (www.vdocprocess.com) and 
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Teamworks (www.lombardisoftware.com). The advantage of such a model-driven 
approach is that a running workflow system can be produced very rapidly. Model 
creation and maintenance can be done by people that have a good understanding of the 
business requirements. The disadvantage is that the workflow specification determines 
not only the system architecture and behavior, but also the layout and content of the user 
interface. This is problematic if there are specific user needs that have not been 
anticipated in the design of the workflow modeling language and the associated 
customization points of the system. In this case it can be very cumbersome to adapt the 
generated system to match the specific user requirements. This makes these tools not 
well suited for the development of workflow applications that need to be adapted to 
specific user requirements in an agile way. 

The alternative approach is to develop the workflow application as a custom web-
application. This means that the system needs to be created by software engineers 
who program the system behavior and manually create the web user interfaces. With 
this approach it is possible to accommodate a wide range of user requirements during 
the system development and over the lifetime of the system. The disadvantage is that 
the development cycle is much longer and that the people that have the detailed 
business knowledge are less directly involved in the system development. 

In this paper we present an approach for the development of interactive workflow 
applications that supports rapid creation of an initial workflow system by 
“occasional” developers and also supports flexible adaptation of the user interface for 
agile development and maintenance of the system. This paper focuses on the technical 
implementation of the system.  

2   Workflow Task Model Interpretation with Declarative User  
     Interface Components 

The approach presented here leverages the capability of Lotus Component Designer 
6.0 (LCD) (www.ibm.com/software/lotus/products/componentdesigner/) to create 
template applications and custom UI components. LCD is an IDE (integrated 
development environment) for creating web applications. Systems developed with 
LCD are deployed to a web application server with integrated support for data 
management.  LCD uses XML documents for data storage. Developers define their 
data as XML documents. These XML documents are then persisted by the runtime 
infrastructure. LCD also includes a graphical user interface builder and a declarative 
user interface specification language. One of the special features of LCD is that it 
supports the definition of “custom user interface components” (CUICs). These are 
user-definable user-interface components that specify the layout and other properties 
for one or more constituting UI components. For example, a developer might define a 
“PageHeader” UI component for an application that provides the template for laying 
out the top part of a page. The PageHeader component could define placement of 
icons, background color and text elements. Custom components can define 
parameters. These are used for adapting the appearance or behavior of a component 
instance. For example, the PageHeader component could support the display of bread-
crumb links. In this case, each instance of the PageHeader CUIC in a page needs to be 
parameterized with a list of link names and URLs to determine the text and target 
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pages of the bread-crumb links. CUICs can also access global web-application data 
from the application database and the file system to determine their appearance and 
behavior. Once defined, CUICs appear in the palette of GUI components in the visual 
UI builder that is part of LCD. From the palette, the CUICs can be dragged-and-
dropped onto pages just like any other (standard) UI component.  

CUICs can be stored together with template pages in template applications. These 
template applications are later loaded and adapted for rapid application development. 
The ease of development makes LCD particular useful for the development of 
situational applications by occasional developers who focus on solving business 
problems. 

We used these features of LCD to create a specialized template application for the 
development of interactive workflow applications. The template includes template 
data, a template XML task definition, and template pages and CUICs. The template 
pages reference the data and task definition. Occasional developers create a workflow 
application by (1) adapting the template data objects, (2) adapting the template user 
interface pages, and (3) adapting the template workflow task definition that defines 
the layout and behavior of the workflow-specific user interface components.  

 

Fig. 1. High Level Overview of the Hiring Process. The diagram show the creation and pro-
cessing of a single Job Description and a single associated Job Application by the different 
roles involved in the process. 

Below we will discuss the adaptation of template pages and the workflow task 
definition for a concrete example application that supports a hiring process. The 
application supports the publication of job descriptions and the collection and 
evaluation of job applications that are send in response to the published job 
descriptions. Figure 1 provides a high-level view of the process. It describes the 
processing of a single job description and a single associated job application by the 
different roles involved in the process. The roles defined in this application are:  

− Applicants: Applicants can browse all published job descriptions. They can read 
the public information of the job descriptions, but they cannot see, for example, the 
responsible manager or director. Applicants can add and draft a job application as a 
response to a job description. They can browse and edit the job applications that 
they created.  They can also submit their job application. Applicants cannot edit the 
main part of a submitted job application. After submission they can only add 
individually logged “notes” to a job application. 

− Managers: Managers can add and draft job descriptions. They can submit job 
descriptions for publication. Managers can browse their own job descriptions and 
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all job applications that have been submitted in response to the job applications 
that they published. Managers can edit comments of a job application. These 
comments are visible to directors, but not to applicants. 

− Directors: Directors can browse all job descriptions submitted for publication. 
They can decide to either return them for additional drafting, or publish the job 
description. Directors can also browse all job applications in their area and decide 
the invitation of an applicant for an interview.  

In this example we see that different roles have different rights to browse, read, 
edit, and add forms-data in the different situations. For example, applicants can only 
edit the main part of a job application before it is submitted. Thus, the page presenting 
data of a submitted job application to an applicant should not provide the information 
in editable fields. Similarly, the button that lets applicants submit their application 
should not be displayed any more for a job application that has been submitted 
already. 

Figure 2 shows the example of a “Welcome” page of the hiring portal application. 
The page is created from the unmodified template page by interpreting the 
application-specific workflow task model (Figure 3). The workflow task model 
specifies explicitly the BREAD (Browse, Read, Edit, Add, Delete) operation for each 
role, the available data-objects to that role and the states in which this operation is 
available (canBrowse, canRead, etc). Furthermore, it defines with the “canSubmit” 
clauses which role can initiate a state transition on which object in which state. 

The template Welcome page assembles two workflow specific CUICs. Figure 4 
provides the detailed XML definition of the Welcome page and Figure 5 the 
definition of the swfRoleLinks component. Currently there is no visual editor for the 
XML task definition, so occasional developers will need to edit the XML task 
definition. Instead, changes to pages can be performed in the graphical page editor. 
Thus, occasional developers do not need to edit directly the page code provided in 
Figure 4 and Figure 5. 

 

Fig. 2. Manager Welcome Page: On her Welcome Page “managers1” see a general description 
of the application and the tasks associated with the different roles. As manager1 is in the group 
of managers she is provided with links to the Applicant Home Page (available to every user) 
and a link to the Manager Home Page (available only to members of the group “managers”).  
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Fig. 3. Workflow task model (extract) for the Hiring Portal workflow application  

 

Fig. 4. Welcome Page XML: The Welcome page assembles two CUICs, the swfWelcomePage-
Header and the swfRoleHomePageLinks. The top-level task description text is directly retrieved 
from the workflow definition. 
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Fig. 5. swfRoleHomePageLinks Custom UI Control XML. The UI control lays out the block of 
links to the role-specific home pages. It retrieves the list of defined roles from the workflow 
task model. For each role it creates a panel with a link UI component that has as text the 
printName of the role (plus appended “Home Page”) and as target page the homePage attribute 
specified in the workflow task definition. The JavaScript function isCurrentUserInGroup is 
called to determine whether the link should be made available to the user.   
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Fig. 6. Standard Navigation Structure of IBPA applications 
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Basic interactive workflow applications follow a standard navigation pattern with a 
single “Welcome” page as the entry point for logged-in users (Figure 6). The 
Welcome page lists the available “Home” pages for the current user. Home pages let 
users browse the data-objects available for the user in the selected role. Users can 
select data-objects for reading or editing, or they can add a new data object or delete 
an existing object. Thus, the IPPA pages are supporting management of data-objects 
by making available the standard BREAD operations in a role-specific way. The 
home pages manage the access to the browse, add, and delete operations. The home 
pages include a table for each of the data objects accessible for that user role. The 
table will often only show some of the data items. For instance, in the hiring 
application applicants can only see jobs application that were submitted by them (c.f. 
Figure 7). 

The data detail pages provide role and state-specific access for reading and editing 
data elements. Figure 8 shows a data detail page that lets an applicant draft a job 
application. The current status of the data is ‘DRAFTING’, which is why, in 
accordance to the workflow task definition, the data elements are editable. Also the 
button for submitting the job application is visible, enabled, and indicates the next 
state (SUBMITTED). 

Once the job application has been submitted (i.e. when is not in state DRAFTING 
any more), the page does not allow editing or submitting of the job application any 
more (c.f. Figure 9). The input elements in the data detail pages use calls to a custom 
function (isDataWriteable()) for determining dynamically the access to data and 
functions in accordance to the workflow task model. 

 
Fig. 7. Applicant Home Page 
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Fig. 8. Data Detail Page for an Applicant of a Job Application in State DRAFTING: The data 
fields are editable as specified in the workflow definition, and the button for submitting the data 
is enabled and shows the next state 



10 M. Stolze et al. 

 

Fig. 9. Data Detail Page for an Applicant of a Job Application in State SUBMITTED. The data 
fields are not editable any more; Also, the “Submit” button is not visible any more. 

3   Development Process 

Occasional developers use the following steps to create a new workflow application: 

1. Import a new (empty) template application 
2. Create the new data structures and associated data views.  
3. Create the XML process definition.  
4. Create the role-specific home pages.  
5. Create the role-specific data detail pages.  
6. Deploy and test the solution. 

All of these tasks, with the exception of the editing of the XML process definition, 
are supported by visual editors. LCD provides a visual XML Schema editor and a 
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visual data view editor to support the tasks in step 2. In step 4 the LCD visual page 
editor is used to copy and adapt the template home page. The data views defined in 
Step 2 are placed on the page and page role is specified (c.f. Figure 10). Also for the 
creation of the data detail pages in Step 5 the visual page editor can be used (c.f. 
Figure 11). Finally, the application is deployed to a remote portal server by using the 
LCD application deployment utility. The application is then ready for testing and use 
once users and their group membership have been defined for the portal.  

 

Fig. 10. Creating the Applicant Home Page using the LCD Visual Page Editor 
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Fig. 11. Creating the Director Job Application Data Detail Page using the LCD Visual Page 
Editor 
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4   Discussion and Related Work 

BREAD and the related CRUD (create-read-update-delete) patterns have been used as 
a basis for web-application design before. For example Cachero and Gómez [2], use 
CRUD explicitly as a basis for web-application modeling.  Similarly, WebML [3] a 
language for modeling web application, is well suited for the design of CRUD web-
applications. More recently Bambilla [1] demonstrated that a model-driven 
compilation approach can be used to create WebML models from workflow models. 
Similarly, Koehler et al. [4] showed that business process definitions can be 
transformed into executable web-applications in multiple transformation steps. Task 
and workflow models have also been used for model-driven development of user-
interfaces to web-applications and workflow systems [5, 7].  

These approaches differ from the approach presented here in that they target 
professional software engineers that are well-versed with software engineering 
notations such as UML and OCL, have no difficulty understanding business process 
notations such as BPMN, and want to develop their applications in line with Model-
Driven Software Engineering approaches [6]. Instead, our goal is to support 
occasional developers. We extended a graphical web-application development 
environment with template pages and workflow-specific user-interface components 
that make it easy to create an initial workflow application. Occasional developers can 
build workflow applications without programming by modifying the template pages 
and describing the business logic in the workflow task model. The XML workflow 
task models are used as a way to eliminate the need for JavaScript programming when 
creating an initial application. We realize that it will be useful to provide the 
occasional developers with a graphical editor that reduces the complexities of 
working directly with the XML workflow task definition. The advantage of providing 
the workflow support components as template page and adaptable custom extensions 
to a standard web development environment is that the system can be adapted easily 
in response to new requirements that are discovered in the course of the system 
development. The workflow definition can be changed. Content of pages can be 
changed using the graphical UI editor. And also the workflow-specific UI 
components can be changed or replaced by finer level components that still reference 
the same workflow model. The adaptability of the resulting system sets this approach 
apart from commercial workflow systems that compile a given workflow model into a 
system that is difficult to adapt. 

5   Summary and Future Work 

We demonstrate that a workflow-task-model interpreted by custom user interface 
components facilitates rapid development of interactive workflow applications. 
Occasional developers can create a workflow application by extending template data 
objects, adapting template user interface pages including workflow-specific user 
interface components, and adapting the template workflow task definition that defines 
the layout and behavior of the workflow-specific user interface components. The 
system can then be further adapted by further changing the template pages, modifying 
the workflow custom components, or replacing them by finer-grained UI components 
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that reference the same workflow-task-model. This is an improvement compared to 
existing workflow systems that use workflow task models to generate a workflow 
application user interfaces that are difficult to extend. The proposed approach differs 
from model-driven approaches to workflow web-application development in that it 
provides a mechanism for application development that does not require knowledge 
of formal modeling techniques such as UML. This makes the proposed approach 
more suited for development by occasional developers. The current system can be 
further improved by providing a graphical editor for the XML workflow task model. 
Also support for role-specific and person-specific work-list handling, as well as e-
mail notification will be useful to add. 
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Abstract. Recently, industry has adopted multimodal, context-aware
applications. However, addressing various modalities on heterogeneous
platforms implies a demanding development effort. Therefore, we present
a task-centric methodology and a tool chain leveraging the development
of adaptive multimodal applications.

In order to improve efficiency the tool chain is based on the Model
Driven Architecture approach emphasizing two key principles: model-to-
model transformations and tool integration.

1 Introduction

During the last decade, capabilities of end-user devices have made a remarkable
evolution in terms of multimodality and context-awareness. Nevertheless, the
richness of the applications raises development costs, especially in terms of user
interface adaptation.

The EMODE project [1] addresses this issue. Since Model Driven Architec-
ture (MDA) also tackles the productivity problem [2], the EMODE tool chain
consistently follows the MDA approach.

In contrast to existing projects also proposing a MDA-compliant approach
[3], the EMODE project goes beyond the current exploitation of model-to-model
transformations and tool integration.

Combining essential tools – model editors, model repository, and transforma-
tion engine – in a dedicated design time environment accompanied by a runtime
environment drives the tool integration. Furthermore model-to-model transfor-
mations using the MDA mapping language QVT [5] accelerate the modelling
process. Both assets are the foundation of a cost efficient development lifecycle.
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In this paper, we proceed with a brief discussion of related work in Section 2.
Section 3 describes the methodology our tool chain is based on. Afterwards a
detailed description of the tool chain is given in Section 4. To illustrate the
modelling workflow an example demonstrates the required steps in Section 5.
Finally we draw the conclusion in Section 6.

2 Related Work

Despite the fact that the MDA approach promises a number of benefits [2], MDA-
compliant tool chains supporting the development of multimodal, context-aware
applications are rare.

Focusing multimodal, context-aware user interface development, various re-
search projects are centred on UsiXML [6]. Since UsiXML is widely accepted,
a growing set of tools is available. In particular the CAMELEON [7] and the
SALAMANDRE [8] project made major contributions.

Fig. 1. UsiXML tool chain according to Vanderdonckt [3]

Figure 1 illustrates the variety of tools the UsiXML tool chain consists of.
Editing different models on various abstraction levels and initiating transforma-
tions requires distinct tools which are not part of an integrating environment.
The missing integration hinders a seamless modelling workflow.

While UsiXML and EMODE provide task-centric tool chains to develop mul-
timodal applications, Rousseau et al. focus on tool support for the creation of
behavioural models [9]. The behavioural model expressed by a set of election
rules represents an algorithm to determine when to use what modality. How-
ever, this approach does not provide capabilities to generate user interfaces.

Another model-based approach – the DynaMo-AID project [10] – is devoted to
the development of context-aware user interfaces. The DynaMo-AID design time
environment provides editors for different models and a model-to-model transfor-
mation mechanism. While from a conceptual point of view the MDA principles
are satisfied, the tool support is currently considered a ”limited prototype” [10].
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3 EMODE Methodology

The EMODE methodology, an approach to model multimodal, adaptive user
interfaces, is based on the MDA. It is comprised of a number of modelling and
development phases, artifacts, transformations, and a conceptual architecture.

MDA encourages the (iterative) refinement of models from an abstract to a
platform-specific model [14,15]. EMODE follows the same approach by letting
the developer specify models at different levels of abstraction - very abstract
at the beginning (e.g. goal model) and more concrete at the end (e.g. the UI
model for a specific modality). Among others, the models include goal, concepts,
context, user interface and the (for EMODE central) task model (see Section 3.1).
As in MDA, the modelling phase in EMODE is followed by a code generation
step that produces the application code.

The metamodel for the different models used in EMODE is specified using
the Meta-Object Facility (MOF) [4]. This facilitates the use of MOF-based tools,
especially model-to-model transformations to support the modelling process, as
elaborated in Section 3.2. The EMODE tools presented in Section 4 are im-
plemented on top of the MOF-compliant metamodel and tightly integrated to
support seamless development, despite crossing different levels of abstraction.

Fig. 2. Phases, Core Artifacts, and Transformations

The modelling process is supported by a number of model-to-model trans-
formations. Models are derived from other models, not only in order to reduce
the amount of modelling work which needs to be done, but also to keep the
different models consistent with each other. This is of utmost importance, as
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some of the models are directly connected through mappings. For example, the
task model has relations to the Abstract User Interface (AUI) model, describing
the applications user interface, and the Functional Core Adapter (FCA) model,
which represents the connection to the applications logic. Furthermore, model-
to-code transformations have been implemented, generating the concrete user
interfaces, controller logic, and method stubs to integrate the application logic.
The different phases, models, and transformations are depicted in Figure 2.

The EMODE conceptual architecture describes the components involved in
the development process as well as for runtime support. It has been implemented
in form of the EMODE tool chain, which is comprised of the modelling infra-
structure and runtime components, offering services such as modality handling
and processing of contextual information.

3.1 The EMODE Task Model

The central model of the EMODE methodology is the Task model, with which
the developer describes the applications behaviour, integrating user and system
activities. Task sequencing and parallelism can be modelled, along with a variety
of other modelling concepts that can be used by the developer.

Tasks can be classified similar to CTT [16], into user, interaction, system and
abstract tasks. User tasks represent activities the user is performing himself. In-
teraction tasks represent an interaction between the system and the user. System
tasks represent the activities the system is performing on its own. Abstract tasks
depict the fact that the task is comprised of subtasks.

Besides CTT, concepts from UML Activity Diagrams [17] were used in the
development of the EMODE task metamodel. Tasks can have in and output
pins, acting as endpoint for object flows. Furthermore, tasks can be refined by
task definitions, similar to UML Activities.

Contextual information can be integrated into the task model by using the
EMODE eventing mechanism. Hereby the task model can be connected to a
variety of event sources. Based on events new tasks can be started or information
can be passed on to a running task.

Closely related to the task model are the Abstract User Interface (AUI) model
and the Functional Core Adapter (FCA) model. Whereas the first describes the
user interface (i.e. the realization of the interaction tasks), the later describes
the connection of the system to the application logic (i.e. the realization of the
system tasks).

3.2 Transformations and Mappings

EMODE uses transformations in various ways to support the developer in mod-
elling the application. It is being differentiated between model-to-model and
model-to-code transformations. Closely connected to transformations are map-
pings that link model elements, conveying a meaning [18,19]. Mappings and
transformations are an essential part in EMODE to automate development and
more tightly integrate the different models with each other.
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Model-to-model transformations actively support the developer when model-
ling, altering his most used artifacts, the models. This improves modelling effi-
ciency by reducing the amount of modelling work that needs to be done. Further-
more, it can be used to keep the different models consistent with each other.

Model-to-model Transformations in EMODE are implemented using QVT-
relations [5], a declarative language to specify relations between sets of model
elements. EMODE provides the developer with the needed transformations. It
would be possible for a developer to adapt the transformations by changing the
provided QVT-files. It has to be kept in mind that such changes might have
strong implications for the whole development environment and are therefore
not recommended.

Mappings between model elements make their relation explicit and provide
a meaning to the relation. They are used for example in [18] to improve the
consistency of user interfaces. EMODE specifies a number of possible mappings,
some of them within one model (e.g. Task-to-Task), others spanning different
models, making explicit the connection between more abstract and more concrete
models. For example, the task model is connected to the AUI and the FCA model
(see Section 4.1).

Model-to-code transformations are used as a final step to produce executable
code. This code needs to be extended by the developer in order to integrate
business logic. Code extensions will not be overwritten by repeated transforma-
tions as long as they are inserted into specially protected sections. Model-to-code
transformations have been implemented, generating the concrete user interfaces
(from the AUI model), controller logic (from the task model), and method stubs
to integrate the application logic (from the FCA model).

4 Tool Chain

The EMODE tool chain is divided into a design time environment and a runtime
environment. The design time environment is an integrated modelling environ-
ment, which supports the developer modelling the application. Generation and
adaptation of code is the last step in using the design time environment. After-
wards, the completed application will be deployed into the runtime environment.

4.1 Design Time

The EMODE design time environment is build as a set of Eclipse plug-ins ac-
companied by an external repository.

As shown in Figure 3, the repository fulfils two tasks: storing all modelling
data and performing model transformations. The modelling environment pro-
vides the developer with tools for visualising, editing, and transforming models.

Modelling Environment. The modelling environment consists of a model
navigator and multiple editors. The navigator visualises all models at all ab-
straction levels. Editors for all EMODE models can be opened from within the
navigator.
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Fig. 3. Design time environment

All editors are based on the Graphical Editing Framework (GEF) [11] and
thus provide a common look and feel. The main difference between the individual
editors is the set of model-specific tools they provide. The task editor for example
supports the developer in connecting tasks to each other via task edges and
allows to start model-to-model transformations to AUI or FCA. On the other
hand, e.g., the AUI editor lets the developer specify interactors and supports a
refinement of the user interface, depending on the set of available modalities.

To seamlessly integrate working at the junction between different models,
editors can reference model elements from other models. For example, the task
editor allows to specify mappings between task and FCA model by letting the
developer associate system tasks to FCA calls. The support is depicted in Figure
4. It shows four central editors of the tool chain. The entire development workflow
is controlled from within the modelling environment.

MOF Repository. All models produced by the EMODE editors are stored
in an external model repository. This repository and the Java based editors
are connected via a MOF-to-CORBA-IDL binding, as proposed by the MOF
Specification [4].

Model Transformations. As described in section 3.2, EMODE provides the
developer with a set of MOF QVT transformations [5]. These transformations
can be triggered by the developer from within the modelling environment. Upon
triggering, they are executed in the external repository, which has an integrated
QVT-relations compliant transformation engine. After the execution, the editors
are updated to be in sync with the repository again.
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Fig. 4. Models and the support by the design time environment. The developer is
supported through all stages of the development workflow: from abstract (goal) models
to platform-specific code.

Task-to-AUI and Task-to-FCA transformations are provided. The first trans-
formation maps interaction tasks to interactors, reflecting the hierarchical order
of tasks in the hierarchical order of the produced interactors. The later produces
a FCA call for each systems task, making sure the FCA call supports the parame-
ters and results in the system task needs. Both transformations automatically
set mappings between the source and target elements to depict their relation
(which in this case has the semantic ”task is realized by”).

The task model also plays a key role for the model-to-code transformation.
The model-view-controller pattern was applied [12] where the controller is de-
rived from the Task model during a model-to-code transformation. This trans-
formation was implemented using Java Emitter Templates (JET) [13].

While the model-to-model transformations described above, as well as the
model-to-code transformations are compliant to the MDA idea, EMODE also
supports the direct interpretation of the task model. The task model is inter-
preted at run time by a process engine, which is part of the EMODE project.
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This increases flexibility and removes the need to produce complex code from
the model.

4.2 Run Time

In the last transformation step models will be transformed into code. This step
includes generation of controller code, stubs for the application logic, and differ-
ent implementations of the AUI model. Besides this generated code, the runtime
consists of the two major building blocks: the Multimodality Service Component
(MSC) and the Context Service.

Controller. The controller handles the complete application flow. It is com-
prised of generated Java code resembling the task model with all its control and
data flows. Additionally, the controller provides means to access the Multimodal-
ity Services Component and the Context Service.

Multimodality Services Component (MSC). The MSC takes care of adap-
ting the application to different modalities. To this end it selects from the dif-
ferent UI implementations that have been generated from the AUI model. At
the same time it supports the use of multiple modalities. To enable the user
to switch between multiple available UIs, the MSC supports syntactic input fu-
sion, semantic input fusion and output fission techniques. When deciding which
modality to use, the MSC can make use of the Context Service.

Context Service. The Context Service provides appropriate interfaces to ap-
plications and other context service clients for utilizing of the runtime context
model. This is accomplished in two ways. A query interface provides the possibil-
ity to access context information via a declarative language (like SQL). An event
mechanism allows clients (e.g. the controller) to register for event notifications.

5 Example Application

This section illustrates the EMODE approach by example. Therefore an appli-
cation in the area of plant maintenance will be modelled, by using the EMODE
design time environment. The final deployment of the modelled application in
the EMODE runtime environment creates a fully executable application.

The objective of the application is to support the plant maintenance staff of
a large company. Since the plant maintenance staff is responsible for tending
to occurring problems as quick as possible, the desired benefit of a multimodal,
context-aware application would be an increased efficiency of maintenance order
processing.

In the plant maintenance scenario the following IT-Infrastructure is assumed:

– A Product Lifecycle Management (PLM) System, that acts as a central
server where all maintenance orders are entered.
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– A set of mobile devices serving as a communication interface between the
plant maintenance staff and the PLM System.

To outline the modelling process, the listed steps are required to create the
application:

1. Create the Task Model
2. Derive the AUI Model using Model-to-Model-Transformations
3. Adapt the generated AUI Model regarding the target platform requirements
4. Derive the FCA Model using Model-to-Model-Transformations
5. Adapt the generated FCA Model regarding the Business Logic requirements
6. Run the Model-to-Code-Transformation
7. Write the Business Logic
8. Deploy the Application

5.1 Create the Task Model

The central Task Model captures the flow of the application and represents the
starting point of the modelling process (the optional goal model will not be
regarded). Figure 5 defines the flow of the example application.

Fig. 5. The Task Model of the Example Application

Starting at the initial node, the control flow defines the execution order of the
various tasks. In this example, the PLM System receives a new maintenance order
that will be transmitted to a mobile device assigned to a maintenance employee.
To map the diversity of tasks, system and interaction tasks are introduced. While
system tasks require some kind of computation (e.g. the transmission of a main-
tenance order), the interaction tasks demand end-user interactions (e.g. read
the incoming maintenance order). After receiving the maintenance order, a staff
member can decide whether to accept or to reject the maintenance order. In the
case of acceptance, the responsible staff member receives detailed instructions,
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supporting the maintenance task. Note that the system task retrieves data con-
cerning the current noise level from a context service (represented by the event
consumer) in order to judge whether instructions are delivered via voice or via a
graphical user interface. Afterwards the control flow reaches the final node and
the application will terminate.

5.2 Derive the AUI Model Using Model-to-Model-Transformations

In a second step the AUI Model can be derived from the existing Task Model.
The mapping is expressed using QVT Relations, a declarative approach for model
transformation definitions. The QVT Engine generates an AUI Model requiring
the transformation definition and the Task Model. Figure 6 displays the gener-
ated AUI Model. Since two interactions tasks are declared in the Task Model,
two abstract user interfaces (represented by AUI Interactors) are generated.

Fig. 6. The AUI Model of the Example Application

5.3 Adapt the Generated AUI Model Regarding the Target
Platform Requirements

To meet the demands of distinct modalities and device-restrictions, the AUI
Model can be subject to further refinement. Therefore the generated AUIs can
be either enriched (e.g. add static content like pictures, text, etc.) or a new
version can be derived. The derivation of AUIs is especially important to provide
specific UIs for the available set of modalities. In the example application two
refined AUI Models were created to reflect UIs for the auditory and the visual
modality.

5.4 Derive the FCA Model Using Model-to-Model-Transformations

While counterparts of interaction tasks are laid out in the AUI Model, the cor-
respondents to system tasks are captured in the FCA Model. The initial Model-
to-Model transformation creates a FCA Call for each system task. Also input
and output parameters of the FCA Call correspond to the incoming and out-
going data flows of a system task. Figure 7 shows the result of Task-to-FCA
transformation using the task model from our example application as an input.
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Fig. 7. The FCA Model of the Example Application

5.5 Adapt the Generated FCA Model Regarding the Business
Logic Requirements

Apart from FCA Calls, FCA Methods are also an outcome of the Task-to-FCA
transformation (see Figure 7). Unlike FCA Calls, which are bound to system
tasks, FCA Methods represent methods of the business logic. The benefit of
decoupling FCA Calls and FCA Methods is the reuse of existing business logic
methods because several FCA Calls can be bound to one FCA Method.

5.6 Run the Model-to-Code-Transformation

After the FCA Model adaptation, the Model-to-Code transformation can be
executed. The major return of the transformation is a mapped task model - a so
called Controller – and business logic stubs. Both the controller and the business
logic stubs are represented as pure Java source code. Only the AUI Model can
be mapped to different target languages. Currently, UIs are rendered as Java
AWT Frames or as D3ML [20].

5.7 Write the Business Logic

As mentioned beforehand, the Model-to-Code transformation creates Java
classes containing method stubs. Therefore Business Logic implementation ne-
cessitates filling the marked code blocks. To leverage that task, the Model-to-
Code transformation creates a new Java Project within the Eclipse-based design
time environment. Consequently all the Java editing facilities provided by the
Eclipse IDE are available.

5.8 Deploy the Application

In order to execute the application two steps are requested. At first required
libraries need to be added to the encompassed Eclipse Project (e.g. the context
service library). Secondly the EMODEApplicaton class has to be executed.
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6 Conclusion and Future Work

In this paper, we presented the EMODE tool chain streamlining the development
lifecycle of multimodal, context-aware applications. To encourage cost efficient
development, the tool chain is MDA-compliant and enveloped by an integrated
modelling environment.

The evaluation of the EMODE approach is ongoing. Therefore two demon-
strators are currently under development. While the first demonstrator reflects
a mobile plant maintenance system, the second deals with an in-car travel assis-
tant. Both applications are implemented using the EMODE and several other
tool chains (e.g. the UsiXML tool chain [6]). By means of the developed demon-
strators, benefits of the EMODE approach will be carved out.

First feedback by demonstrator developers has been collected and confirms
the EMODE idea: Developing multimodal, context-aware applications using one
distinct integrated environment facilitates the entire development lifecycle.
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Abstract. Designing and exploring multimodal interaction techniques,
such as those used in virtual environments, can be facilitated by using
high-level notations. Besides task modelling, notations have been intro-
duced at the dialog level such as our notation NiMMiT. For advanced
interaction techniques, there is not yet an established approach to decide
when to stop detailing the task model and continue modelling at the di-
alog level. Also, context-awareness is usually introduced at the task level
and not at the dialog level. We show that this might cause an explo-
sion in the amount of dialog states in situations where context-aware
multimodal interaction is used in one and the same task. Therefore, we
propose an approach which attempts to introduce contextual knowledge
at the dialog level where transitions are chosen upon context informa-
tion. We validate our approach in a case study from which we conclude
that the augmented notation is easy to use and successfully introduces
context at the dialog level.

Keywords: model-based user interface development, multimodal user
interfaces, contextual knowledge.

1 Introduction

When developing interactive computer applications, a lot of time is spent de-
signing and implementing the user interface. This is in particular true with 3D
multimodal interfaces for Virtual Environments (VEs). The process of creating
or selecting interaction techniques for such interfaces is not straightforward. One
possible approach is model-based user interface design as described in [1,2,3].

First, in model-based user interface design, the tasks that the user can perform
in the application and the tasks that the computer must execute accordingly
are modelled in the task model, for example the ConcurTaskTrees notation [4],
which orders these tasks in a hierarchical tree with time dependencies. Next,
this model is used to define the interaction between the user and the system.
An example of such a task is selecting an object in a virtual world. This is
one of the basic tasks in 3D multimodal user interfaces. In order to specify
this interaction, several high level notations have been introduced: NiMMiT [5],
ICO [6], Interaction Object Graphs [7], InTml [8], ICon [9] and CHASM [10].
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Besides being useful for discussion and giving insights into the interaction these
models can also be interpreted at runtime such that the interaction can be
prototyped. In all these notations we need to assign which devices/modalities
should be used during interaction and what events of this device are used, for
example the choice between a spacemouse and voice input. In this paper we use
the flexibility with respect to interaction metaphors and devices as an example
to explain our approach to modelling context at the dialog level.

No consent definition of context exists [11]. In this work we will look at context
as influenced by different factors: user, environment, services, and platform as
defined in the CoDAMoS context ontology [12]. Dey’s definition of context [11]
states that context is only relevant when it has an influence on the user’s task.
About the influence of context on the interaction with the system we can distin-
guish several distinct levels [13]. Two of these are important for the remainder
of this paper:

– Task Level: context influences the tasks that are enabled in a certain state
of the user interface. A change of context may imply a change of active tasks.

– Dialog Level: context influences which state is currently active in the dialog
model. Thus, dialog level influence of context may cause a transition to
another state of the user interface.

When the assignment of a device/modality is static, the interaction descrip-
tion has to be changed for any situation in the interaction technique where the
user would possibly like to switch input devices/modalities. In order to make
this switching more dynamic section 3 introduces a combined approach in order
to benefit from task level and dialog level context influence.

The validation of our approach will be presented through a case study in
section 4. This case study contains some crates that can be positioned by the
user. The user can navigate through the environment and select, move or rotate
these crates. How the interaction with the environment occurs depends on the
setup the user is in. While sitting at a desktop computer, interaction is done
by means of keyboard and mouse input but when the user stands in front of a
large projection screen he uses a tracking glove in combination with voice input
in order to manipulate the scene.

2 Interaction Modelling in NiMMiT

In this section we will discuss NiMMiT (‘Notation for MultiModal interaction
Techniques’), a diagram based notation intended to describe multimodal inter-
action between a human and a computer, with the intention to automatically
execute the designed diagrams.

Several other high level notations exist for designing interaction, some of them
are state driven (ICO [6], Interaction Object Graphs [7] and CHASM [10]) while
others use a data flow architecture (InTml [8] and ICon [9]). All these models
focus on interaction but only ICO, InTml and CHASM have a similar goal as
NiMMiT. They are also oriented towards interaction in (multimodal) VEs. All
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these notations can be used with several devices/modalities in several context
situations but they do not support the integration of changing devices/modalities
according to the context of the VE.

In the remainder of this section, we shortly describe the primitives of our
notation and will discuss a simple example. For a more detailed description of
NiMMiT, we refer to [5].

2.1 NiMMiT Primitives

In NiMMiT, interaction with the computer is considered event-driven: users
initiate an (inter)action by their behaviour, which invokes events into the system.
These events can be triggered by different modalities, such as speech recognition,
an action with a pointing device, or a gesture. Interaction is also state-driven,
which means that not in all cases the system responds to all events. The response
to an event, can bring the interaction in another state, responding to other
events. Being data-driven is another important property of the notation. It is
possible that data needs to be shared between several states of the interaction.
For example, a subtask of the interaction can provide data, which has to be used
in a later phase of the interaction (e.g. touching an object to push it). Finally, an
interaction technique can consist of several smaller building blocks, which can
be considered as interaction techniques themselves. Therefore, hierarchical reuse
should be possible within the notation.

Taking the aforementioned considerations into account, NiMMiT defines the
following basic primitives: states, events, task chains, tasks, labels and state
transitions.

State: A state is depicted as a circle. The interaction technique starts in the
start-state, and ends with the end-state. A state defines a set of events to
which the system responds.

Event: An event is generated by the framework, based upon the user’s input. A
combination of events can be multimodal, containing actions such as speech
recognition, gestures, pointing device events and button clicks. A single event
or a specific combination always triggers the execution of a task chain.

Task Chain: A task chain is a linear succession of tasks, which will be executed
one after the other.

Task: A task is a basic building block of the actual execution of the interaction
technique. Typically, tasks access or alter the internal state of the applica-
tion. E.g. when running in a typical 3D environment, a task can be ‘collision
detection’, ‘moving objects’, ‘playing audio feedback’, etcetera. Tasks can be
predefined by the system, but designers can define their own custom tasks,
as well. All tasks can have input and output ports, on which they receive
or send parameters or result values. Input ports are required or optional,
indicated by a square or circle input port respectively.

Labels: As data can be shared throughout a diagram, NiMMiT needs a system
to (temporarily) store values. This is done in ‘labels’, which can be seen as
high-level variables.
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State Transitions: Finally, when a task chain has been executed completely,
a state transition moves the diagram into the next state. A choice between
multiple state transitions is also possible, based upon the value of a certain
label.

2.2 Example

By means of figure 1 we will give a brief overview of how the NiMMiT nota-
tion should be interpreted. The start-state of this diagram responds to 4 dif-
ferent events (called EVENT1 to EVENT4). When ‘EVENT1’ or ‘EVENT3’ is
fired, ‘Taskchain1’ will be invoked. ‘Taskchain2’ however will only be invoked
if ‘EVENT2’ and ‘EVENT4’ occur at the same time, which is defined by the
melting pot principle [14].

Fig. 1. An abstract NiMMiT Diagram

When a task chain is invoked, all tasks within the chain are executed one
after the other (from top to bottom) using each other’s output when necessary.
The output of a task can be stored in a label in order to be used by a task in
an other task chain. In the example the evaluation of ‘Taskchain1’ will trigger
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the execution of ‘Task1’ and ‘Task3’ of which the last task, ‘Task3’, results in a
boolean value that will be stored in the label ‘OutputT3’

When all tasks in the chain are successfully executed, the next state is deter-
mined based on the exitlabel of the task chain. In ‘Taskchain1’ no exitlabel is
defined so we return to the ‘Start’-state waiting for new events to be fired.

As indicated, ‘Taskchain2’ will only be executed if ‘EVENT2’ and ‘EVENT4’
are fired simultaneously. During the execution of ‘Taskchain2’, the output of
‘Task3’ (stored in the label ‘OutputT3’) is used as input for ‘Task2’, which
again results is a boolean value (stored in label ‘OutputT2’). Since ‘OuputT2’ is
used as exitlabel for this task chain, the result of ‘Task2’ will determine the next
state of execution: if the value in ‘OutputT2’ is false, the next state will again
be the ‘Start’-state; if however, the result of ‘Task2’ is true, the ‘End’-state is
reached and the execution of the interaction finishes.

3 Context and NiMMiT

In this section we first discuss briefly two earlier results of our research in the
area of model-based design (e.g. in mobile or multi-device developments) that
have inspired the approach we use here: (1) incorporating context in task and
dialog modelling and (2) adding modality constraints to tasks. We discuss these
matters in order to introduce a combination of these two approaches enabling
context-aware selection of modalities.

3.1 Context in Task and Dialog Modelling

As discussed before we aim to use context information in order to select the
appropriate modality to perform a certain task. Several approaches already in-
corporate context information at the task level [15,16,17,18]. In our approach we
defined the decision task [18]:

Definition 1. A decision task t denotes a junction in the task model where each
subtree describes the subtasks of t relevant to the execution of t according to the
status of the context. The iconic representation of the decision task is .

Thus during the runtime of the interactive system exactly one subtree of the de-
cision task is active. In [18] we discussed an algorithm to deduct a corresponding
dialog model for each distinct context of use. After the automatic deduction of
the dialog models, the designer makes connections between the dialog models
to describe when exactly a change of context can introduce a switch to another
dialog model.

3.2 Modality Constraints in Task Modelling

In other previous work [19] we have introduced a way to link constraints to the
leaf tasks in the task model to specify which modalities are the most desirable
to perform the corresponding task. Therefore the designer has to select one
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(a) (b)

Fig. 2. (a) Combining modality constraints with the decision task notation (task model
and dialog model). (b) Merged dialog models.

or more modality categories per task and relate the selected categories with a
CARE relation [14]. This enables a runtime selection of a suitable modality with
respect to the available interaction techniques surrounding the user at a certain
moment in time.

However this is not enough considering the scope of this paper. We would
like to take into account more information than the devices populating the VE
(application context) to select the appropriate modality. For example in our case
study (which will be presented in more detail in section 4) we have 2 different
setups (external context) in which we would like to interact with the VE and
both setups require other modalities/devices to be used.

One way to overcome this problem is to use the approach we have discussed
in section 3.1. This is illustrated in figure 2(a). In this example task t2 is divided
into two distinct tasks t2a and t2b. In this way the designer can attach distinct
constraints, m1 and m2 to the two tasks. As a result at runtime the task that
will be active is chosen with respect to the context status (as shown in the
corresponding dialog model in figure 2(a)).

The above described approach works well when just a few tasks require a
context-aware selection of the appropriate modality. However when a lot of leaf
tasks require a context-aware modality a lot of dialog models are generated and
used to describe the same interaction flow. Suppose a task model has got n leaf
tasks where a context-aware selection of the appropriate modality is desired and
each task is divided into two tasks by means of a decision mode. When the dialog
models are extracted from the task specification, all possibilities of context sta-
tuses are taken into account resulting in

(
n
2

)
dialog models. It is obvious that n

should not be that high to result in an impractical amount of dialog models. This
is because the actual purpose of the decision task was to specify different tasks in
different context statuses. However in the scope of this paper, the tasks remain
the same and for this situation we propose context at the dialog level as a more
efficient approach. Note, however, that this way of working can still be combined
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with context modelling at the task level. This is for instance useful when really
different interaction metaphors are offered to the user that do not rely on highly
similar task chains. Usually such interaction metaphors are represented as leaf
nodes in the task tree, and are modelled with separate NiMMiT diagrams.

A solution to overcome the above mentioned problem of an exploding number
of dialog models is to combine the approach of making a distinction between
tasks at the task level and the approach of taking care of context at the dialog
level. In previous work [13] we showed how transitions in the dialog model can be
executed by a change of context information. A combination of the two distinct
approaches of context influence at the two levels can be seen as follows. Instead
of having two distinct dialog models, we can merge these two together, and make
only a distinction between where a difference is made by a context status. This is
illustrated in figure 2(b). The two states containing t1 are merged into one state
in the same dialog model, but a choice is made which state will be reached by
means of the context status. In this way the decision at the task level is modelled
at the dialog level. In the next section we introduce this concept in the NiMMiT
notation.

Fig. 3. The context view of an abstract NiMMiT Diagram, ‘EVENT1’ and ‘EVENT3’
were added to a specific context



Extending a Dialog Model with Contextual Knowledge 35

3.3 Context-Aware Modality Selection at the Dialog Level

Remember the NiMMiT example in section 2.2 (figure 1) where in the ‘Start’-
state several different events (modalities) could trigger the execution of ‘Task-
chain1’. In our new approach we would like to be able to attach a certain context
to a certain event or modality such that depending on this context only those
events belonging to that context will be taken into account when evaluating a
state in the diagram. If for example ‘EVENT1’ is meant for the expert-users
of the application one can attach the ‘expert’-context to the arrow containing
‘EVENT1’, because here this event is fired by a device such as a spacemouse
which is difficult to handle. Similarly ‘EVENT3’ could be used in the ‘beginner’-
context which is coupled to an easier more common device such as a keyboard.

Adding this contextual knowledge to events transforms the view of the dia-
gram depending onto which context of the diagram we are viewing. The resulting
diagram containing the context arrow is shown in figure 3.

In the following section we will discuss our case study in more detail and
illustrate the context integration in a concrete example.

4 Case Study

4.1 Setup

As mentioned earlier we will illustrate our approach through a case study in
which a simple scene can be manipulated. In the constructed VE it is possible

Fig. 4. Setup of the case study: a wall projection combined with a tracked glove and
speech and a desktop setup with mouse and keyboard
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to select, move and rotate some crates onto a plane. To validate our context
integration we created 2 setups for this application between which the user can
switch at runtime. On one side we have a desktop environment in which the user
can interact by means of a keyboard and a mouse, and on the other side we have
a large wall projection in which interaction is done using a tracking glove and
voice input. The complete setup is depicted in figure 4. For a movie on the case
study and our approach see1.

4.2 Creation

The scene modelling application has been created by a more recent version of Co-
GenIVE, a tool supporting the model-based design process depicted in figure 5.
For an overview of CoGenIVE and the supported design process we refer to [1,20].
The process starts with the creation of a ConcurTaskTree (CTT) describing the
different tasks that are available within the application (figure 6). In this case,
some initialisation is done in the ‘Load’-task and consequently the ‘World Mode’-
task becomes enabled. In this task, the user can navigate through the world and
manipulate (select, move and rotate) the objects within the environment.

The next step is to define the leaf-tasks of the CTT. The application tasks can
be mapped onto system tasks but we have experienced that the user interaction
can better be expressed by means of a NiMMiT diagram. Since only the selection
and manipulation tasks are context sensitive in this case study, we will focus on

Fig. 5. The model-based design process used in CoGenIVE [20]

1 http://research.edm.uhasselt.be/lvanacken/Tamodia07/Tamodia07.wmv

http://research.edm.uhasselt.be/lvanacken/Tamodia07/Tamodia07.wmv
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Fig. 6. The ConcurTaskTree of the case study

these tasks in the remainder of the paper. More specific, we will use the select
task to illustrate our approach. The NiMMiT diagram of the ‘Select’-task will
be briefly explained in the remainder of this section and the next section will
clarify how context is integrated into the notation.

As shown in the diagrams in Figure 7 the ‘Start’-state responds to 2 events
(KEYBOARD.MOVE and KEYBOARD.BUTTON PRESSED.0) for the desk-
top setup (Figure 7(a)) and 2 events (GLOVE.MOVE and SPEECH.SELECT)
for the wall setup (Figure 7(b)). The bottom part of both diagrams is the same
and can be seen in figure 8.

When either the keyboard or the glove fires a ‘MOVE’-event the right hand
task chain will be invoked and all tasks within the chain are executed: first the
‘UnhighlightObjects’-task is executed, then the newly collided crates are de-
tected and finally the ‘HighlightObjects’-task will highlight the found objects
and store these objects in the ‘selected’-label. If the chain has been fully evalu-
ated, the diagram returns to the ‘Start’-state.

In order to select the highlighted objects the left-hand task chain should be
executed. Therefor the user should press a key on his keyboard (in the desktop
setup) or issue the speech-command (in the wall setup). Once the ‘SelectObjects’-
task is executed the diagram gets to the ‘End’-state and the interaction technique
finishes.

4.3 Context Integration

As indicated in the previous section, for each context a NiMMiT diagram is nec-
essary resulting in n nearly similar diagrams for each task (n being the number
of possible contexts). In order to solve this problem we use CoGenIVE to add
context information to the NiMMiT diagrams. The possible contexts are pro-
vided through an XML-file as defined in [21] and loaded into CoGenIVE. Next,
the diagrams in figure 7 are merged, this results in Equivalence [14]. But in our
case we would like to enforce a certain modality to a specific context, therefore
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(a) Events active in the Desktop setup.

(b) Events active in the Wall setup.

Fig. 7. Active events in the Select interaction

Fig. 8. NiMMiT Diagram of the Select Interaction with the context arrows
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Fig. 9. NiMMiT Diagram of the Select Interaction in the Wall context

to each of the arrows a context specification is added. Within CoGenIVE, ar-
rows with context specifications are automatically replaced by a context arrow
as shown in figure 8.

In order to interpret these context arrows, the NiMMiT interpreter in our
runtime environment has been extended with a simple ContextManagementSys-
tem to indicate the context and a ContextInterpreter to evaluate it and replace
the context arrows by the activation events that are specified for the current
context.

Further we extended CoGenIVE with a context simulation feature in order to
allow the application designer to have a clear view of the NiMMiT diagrams for
each context. To do so the user can choose the desired context in a combobox,
resulting in a replacement of the context arrows with the activation events that
are specified for that context. Figure 9 illustrates the wall setup being chosen
and the two Wall context arrows that are shown in the diagram.

5 Conclusion and Future Work

We have shown that context-awareness for high level notations used within mul-
timodal interaction is not always appropriate at the task level where it is usually
introduced. As a solution we have presented an approach which attempts to in-
corporate contextual knowledge into the dialog level for those situations where



40 L. Vanacken et al.

the task chains keep the same structure in different contexts. We augmented our
own high level notation NiMMiT with contextual knowledge and illustrated our
approach using a case study in which a simple scene can be manipulated, for
a movie about this work see2. We learned that our approach works simple and
effective and allows designers to use the same interaction descriptions in different
contexts.

In the future we plan to try our approach using other context factors such
as the user. The user profile (and possibly also user actions) can indicate which
modalities are appropriate in certain interaction descriptions expressed in (ex-
tended) NiMMiT diagrams.
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Abstract. The current set of temporal operators is insufficient to make effective 
use of task models as specifications for user interfaces. Moreover, the 
predominant monolithic task tree structure does not scale well for sizable 
applications. In order to overcome these shortcomings, a small collection of 
practical extensions for task models is proposed. In particular, we define new 
temporal operators (stop, non-deterministic choice, deterministic choice and 
instance iteration), concepts in support of modularization and a high-level task 
diagram notation. Finally, we introduce a new concept for expressing 
cooperative task models that distinguishes between different roles as well as 
between actors fulfilling these roles. 

Keywords: Task specifications, cooperative task models, modularization, 
specialization. 

1   Introduction 

In the domain of human-computer interaction (HCI) task analysis is an effective 
requirements elicitation device as it helps to gain understanding of how people 
currently work. According to Johnson, “the role for the task analysis is to provide an 
idealized, normative model” of the tasks users carry out to achieve goals [1].  

In recent years, with the advent of model-based UI development [2-5], task models 
are not only used as analysis models, they are used as a specification of the 
envisioned user interface as well. Based on a task model specification, more concrete 
design specifications (e.g. dialog model [5], presentation model [2]) are successively 
derived until the implementation level has been reached. Within such a model-based 
development lifecycle, purely idealised task models, as proposed by Johnson, are 
insufficient since human errors and system errors are not taken into account. Instead, 
task specifications including failure and error cases are needed in order to obtain a 
complete specification of the user interface.  

Unfortunately the construction of task specifications remains a challenging and 
cumbersome activity [6]. Based on our experiences while working with task models, 
we discovered that the current operator set is not sufficient to effectively describe task 
specifications. For example, CTT—one of the most popular task modelling 
notations—does not have an operator defining the premature termination of a scenario 
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(whether it is due to human or system error). Error handling with the traditional 
operator set results in an explosion of complexity which diminishes the readability of 
the task model [6]. Moreover, from a structural point of view, task models are defined 
as monolithic task trees. Such an approach, does not scale well for applications of 
medium and large sizes.  

In order to overcome these shortcomings we propose a set of practical extensions 
for task models. The extensions are categorized in three different dimensions: (1) 
extensions to the operator set, (2) structural extensions, and (3) extensions in support 
of cooperative task models. The former directly addresses the problem of creating a 
complete task specifications of the UI by introducing additional temporal operators, 
namely stop, instance iteration, non-deterministic choice, and deterministic choice. In 
the second set of extensions we propose structural enhancements for task models. A 
task model is no longer defined as a monolithic task tree but in a modular fashion 
where a task tree may include references to other sub-ordinate task trees. Moreover 
we define a specialization relation between task models and propose a high-level 
notation called “Task Model Diagram”. The third dimension addresses the creation of 
task models for cooperative applications (e.g. multi-user smart environments). In 
particular we define a concept of a cooperative task model. Within such a cooperative 
task model the execution of a task of one model may enable or disable the execution 
of a task in a different task model.  

The structure of the remainder of this paper is as follows. Section 2 briefly reviews 
the task modelling notation CTT and presents relevant related work. In Sections 3 and 
4 we propose extensions to the operator set and structural enhancements, respectively. 
Section 5 presents a new concept for collaborative task models. Finally in Section 6, 
we draw the conclusion and provide an outlook to future research.  

2   Background and Related Work 

Various notations for task modelling exist. Among the most popular ones are GOMS 
[7], GTA [8], HTA [9] and CTT [10]. Even though all notations differ in terms of 
presentation, level of formality and expressiveness, they share the following common 
tenet: tasks are hierarchically decomposed into sub-tasks until an atomic level has 
been reached. In what follows we describe in greater detail the task-modelling 
notation ConcurTaskTrees (CTT). Within the domain of human-computer interaction, 
CTT is the most popular notation, as it contains the richest set of operators and it is 
supported by a tool, CTTE [11], which facilitates the creation, visualization and 
sharing of task models. 

Tasks are arranged hierarchically, with more complex tasks decomposed into 
simpler sub-tasks. CTT distinguishes between several task types, which are 
represented by the nodes in the task tree. There are abstract tasks, which are further 
decomposable into combinations of the other task types including interaction, 
application and user tasks. CTT includes a set of binary (enabling, choice, order 
independence, concurrency, disabling, suspend/resume) and unary operators 
(optional, iteration). The former are used to temporally link sibling tasks at the same 
level of decomposition whereas the latter are used to identify optional and iterative 
(unbounded iteration and n-times iteration) tasks. A complete set of the CTT 
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operators together with their interpretation can be found in [10]. We note that most 
binary operators (except for suspend/resume) have similar (yet not semantically 
identical) counterparts in LOTOS  [12]. 

In order to support the specification of collaborative (multi-user) interactive 
systems, CTT has been extended to CCTT (Collaborative ConcurTaskTrees) [11]. A 
CCTT specification consists of multiple task trees. One task tree acts as a 
“coordinator” and specifies the collaboration and global interaction between involved 
user roles. The individual tasks of each user role are, furthermore, specified by 
separate task trees which contain special activity nodes called “connection tasks”. 
Nodes, of this type exhibit temporal dependencies to connection tasks of other task 
trees. These temporal dependencies are described in the “coordination” task model. In 
this paper we further extend CCTT by taken into account that a role is typically 
fulfilled by several users. For each user we create a copy (instance) of the 
corresponding role task model. At runtime the various instances of the task model are 
executed concurrently. Synchronization points between instances are specified in 
TCL (task constraint language). A coordinator task model, as specified in CCTT, is 
not needed.  

In recent years various attempts were made to extend the CTT notation. In [13; 14] 
Klug and Dittmar propose additional modelling constructs, namely input/output ports 
and object dependencies, respectively. Luyten [15] introduces a new node type 
(decision node) which allows to augment task models with context of use 
dependencies. Forbrig et al. [16] propose a mechanism which allows the definition of 
temporal relationships between arbitrary tasks of a task tree—this is in contrast to 
CTT, where temporal relationships are limited to sibling task, only.  

In order to overcome CTT’s inability to specify task failures and error cases 
Bastide and Basnyat introduce the concept of error patterns [6]. In this paper, we 
tackle the same limitation but instead of using error patterns, we define a new 
temporal operator stop which denotes a premature termination of the current scenario. 
In order to define a consistency relation between use cases and task models, Sinnig et 
al. [17] suggest that a distinction be made between choices (of two tasks) that happen 
non-deterministically vs. deterministically from the user’s point of view. In this work, 
we introduce a corresponding temporal operator for both kinds of choice.  

In the next three sections, we present our proposed extensions to task models. The 
extensions are organized into the following categories: extensions to the operator set, 
structural enhancements, and extensions in support of cooperative task modelling.  

3   Extensions to the Operator Set 

Task models were originally introduced as analysis artefacts, describing how a user 
achieves a goal. As such, task models can be seen as idealised descriptions of how the 
user accomplishes involved tasks; failure of task execution, errors and their 
consequences were not directly taken into account. Fig. 1 depicts such an idealised 
description of a login task included in a secure mail system. The task model is 
idealised as the possibility of login failure is not specified. 
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Fig. 1. Idealised Task Model 

In recent years, with the advent of model-based UI development, task models have 
not only been used as analysis models, but also as a requirements specification of the 
user interface. In model-based UI development frameworks, the task specification 
typically serves as a starting point for the derivation of more concrete design models 
such as the dialog and the presentation model [2-5]. Task models used in such a 
context must not only capture the case of successful task completion but must also 
cope with failure and error scenarios.  

Evidently a purely idealised modelling approach is suitable at the analysis phase, 
but it is incomplete at the design level, since possible interactions between the user 
and the system are not captured. In this paper, we argue that with the current set of 
CTT operators the creation of non-idealised task models is impractical. Work-a-
rounds are cumbersome and require a high degree of duplication of tasks and sub-
tasks. In what follows, we propose a set of additional temporal operators that ease the 
modelling of design-task models. Specifically, we present two unary operators (stop 
and instance iteration) and two binary operators (deterministic choice and non-
deterministic choice).  

Table 1. Additional CTT Temporal Operators 

Operator Syntax Interpretation 

Stop stop (T1) 
Signifies the unsuccessful termination of a task. 
An unsuccessfully terminated task cannot enable 
any task. 

Deterministic Choice T1 []D T2 
Deterministic choice composition: either T1 or 
T2 is performed.  

Non-deterministic 
Choice 

T1 []N T2 
Non-deterministic choice composition: either T1 
or T2 is performed. 

Instance Iteration T# 
Several “instances” of T may be executed 
concurrently.  

3.1   The Unary Stop Operator 

Exhaustive modelling of alternatives and error scenarios is indispensable to capturing a 
full behavioural specification of a user interface. The current set of CTT operators does 
not support the direct specification of tasks that lead to the premature termination of a 
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scenario. The only work-a-round for this shortcoming is to (artificially) create a high-
level choice between the scenarios that terminate prematurely and the scenarios that 
terminate “normally”.  

We therefore propose the introduction of a unary Stop operator. It signifies the 
unsuccessful termination of a task. A task “flagged” with the Stop operator cannot 
enable any tasks. The execution of a Stop task inevitably leaves the super-ordinate 
tasks incomplete which eventually leads to the premature termination of a scenario. 
Syntactically, stop is represented by a STOP sign hovering above the affected task.  

Fig. 2 illustrates a non-idealised task model of the “Secure Mail Client”. It is more 
detailed than the idealised task model of Fig. 1. In particular, the tasks “Provide 
Authentication” and “Provide Feedback” have been refined or modified. The former 
takes into account that the user may “Cancel” the Login task whereas the later takes 
into account that the login task can fail. Both cases lead to the premature termination 
of a scenario as the subsequent tasks “Provide Feedback” and “Use Mail Client” 
respectively will never become enabled.  

 

Fig. 2. Non-idealised Task Model 

3.2   Deterministic Choice and Non-deterministic Choice Operators 

In model-based UI development, task models capture the behaviour of the UI. The 
system is viewed at a level of abstraction which focuses on input-output interactions 
and omits internal system operations. These internal system operations are irrelevant 
for UI design. Opting for such a level of abstraction may lead to apparent non-
determinism in the task-model specification. For example, in Fig. 2, the execution of 
the “Provide Authentication” task may lead to two different system states. In one state 
the system provides “Success Feedback”, whereas in the other the system provides 
“Failure Feedback”. Since internal system states are not part of the model, the choice 
between the two alternatives, “Failure Feedback” and “Success Feedback”, is made 
internally by the system. The user does not participate in the decision making and 
views the choice as non-deterministic. In contrast to this, the choice between 
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“Providing Authentication” or “Cancelling” login is made by the user. Hence, the 
choice between the two tasks is deterministic.   

Based on this observation, we propose to replace the CTT “general purpose” 
choice operator by two operators; one for a deterministic choice and another one for  
non-deterministic choice. As depicted in Fig. 2, the former operator is denoted by the 
symbol []D whereas the latter is represented by the symbol []N. The new operators 
allow for more expressive modelling of the interplay between the user and system. In 
addition, a distinction between non-deterministic choice and deterministic choice will 
help with the definition of a refinement relation between task models. The latter will 
be described in Section 4.2 in greater detail.  

3.3   Instance Iteration  

The unary CTT Iteration operator (*) specifies that a task may be re-executed after 
completion. The constraint of task completion before another iteration takes place 
proves to be too rigid for certain tasks. For illustration purposes let us consider the 
example of writing e-mails using a mail client. Fig. 3 depicts that in order to send an 
e-mail the user has to sequentially perform a number of sub-tasks. After he decides to 
write an e-mail the system displays the input form and the user can compose the e-
mail. Finally the user either submits the e-mail or dismisses it. Furthermore, following 
the paradigm of modern mail clients, the user is allowed to write several e-mails 
concurrently; i.e. he may interrupt the composition of the current e-mail in order to 
start with a new e-mail. In other words, another instance of the “Send Mail” task may 
be executed before the execution of the current instance has terminated.  

In CTT it is not possible to directly specify such a form of instance iteration. Due 
to its frequent applicability (e.g. writing / reading mails, managing calls under 
waiting, browsing websites, etc.) we therefore propose the definition of a new unary 
operator Instance Iteration.  

Definition: (Instance Iteration). The unary operator Instance Iteration (#) is defined 
as follows: A# = [A||| A#].  

The behaviour of the operator is optional and is specified as the concurrent execution 
of the operand task itself and a recursive execution of the instance iteration again. In 
 

 
Fig. 3. Task Model of a Mail Client with Instance Iteration 
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Fig. 3, the tasks “Send Mail” and “Read Mail” are defined using the Instance 
Iteration operator. For sake of conciseness, only the “Send Mail” task has been 
inflated. As an execution example let us assume that there are two instances of the 
“Send Mail” tasks that are performed concurrently. Then we can extract the following 
possible trace of sub-tasks: <<Select Compose Mail(1), Display Input Form(1), Select 
Compose Mail(2), Display Input Form(2), Compose Mail(1), Compose Mail(2), Dismiss 
Mail(1), Submit Mail(2)>>. We have used superscripts to distinguish between the tasks 
of the two iterations.  

4   Structural Enhancements  

In this section we propose two structural operators and a high-level notation for task 
models. Both result from a research project, which had as its goal the cross-
pollination of use-case models and task models. In particular, we define modular task 
models and a specialization relationship between task models. The former was found 
useful in reducing the complexity of task models whereas the latter helps ensuring 
consistency across multiple UIs. Finally we introduce the graphical notation “Task 
Model Diagram” which can be used to visualize the high-level structure of task 
models.  

4.1   Modular Task Models 

In model-based UI development, task models capture the behavioural aspects of the 
user interface within a single monolithic task tree. A monolithic task tree is suitable 
for applications of small sizes but becomes unmanageable (in terms of visualization, 
comprehension and modification) for applications of even moderate size. In order to 
reduce the complexity of task models, we propose creating models in a modular 
fashion. More precisely, higher-level models are created through composition of 
lower-level task models. This becomes possible if we define a task model as a task 
tree, whose leaves are either atomic tasks or references to other task models1.  

Even though it is possible to model the entire behaviour of a user interface within a 
holistic task model without references, we suggest breaking down the overall task 
model into “sub-task models” which are of manageable size and are reusable in 
different contexts of use. Examples of generically applicable (sub) task models are 
“Login”, “Fill Form”, “Search”, “Browse”, etc.  

It is important to note that the structure of a modular task model is similar to the 
structure of the use-case model. A use-case model consists of a set of use cases, which 
are hierarchically organized into summary, user goal and sub-function use cases [18].  
Similar to our task model set up, each lower-level use case is a partial specification of 
the system and a set of use cases is needed to obtain a full specification.   

We believe that such a modular set up is a more realistic reflection of how task 
models are created by the UI developer. It is unlikely that a UI designer develops a 
task model for an entire UI (which potentially address multiple goals) all at once 
within a single, holistic task model. Instead, the task model is likely to evolve through 
                                                           
1 Currently CTT only supports references to tasks within the same task tree. A modular 

construction of the task model out of sub-models is not possible. 
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a series of steps. First the designer identifies a set of “user-goal” tasks that directly 
address a goal of the user. Next, task models for each of these user-goal tasks are 
specified. Note that this step could be carried out concurrently by a team of UI 
designers. Finally, the various user-goal task models are unified within a single global 
task model.  

4.2   Specialization Between Task Models 

With the advent of ubiquitous and mobile devices there has been a shift towards the 
development of multiple user interfaces. That is, the same application can be accessed 
through different user interfaces supporting different devices (e.g. laptops, desktops, 
palmtops, mobile phones, etc.). In such a context it is important to ensure consistency 
between the various interfaces. Consistency can be achieved on different levels 
ranging from the way tasks are supported by the system to a consistent presentation 
and Look & Feel across the different UIs.  One way to accomplish the former is to 
develop the underlying task models of the various UIs based on a common coarse 
grained task description.  

For that purpose we propose a specialization relation between task models. It links 
a sub task model to its super task model such that the former is a specialization of the 
latter. The specialization is possible in two different ways: (1) structural refinement: 
i.e. breaking previously atomic tasks into sub-tasks; (2) behavioural refinement: i.e. 
restricting the set of possible scenarios.  

Table 2. Valid Task Type Specializations 

Task Type in Super Task Model Valid Task Type(s) in Sub Task Model 
abstract abstract, interaction, user, application 
interaction interaction 
user user 
application application 

Structural Refinement. The sub task model may contain more information than its 
super task model. This can be achieved by further refining the action tasks (tasks at 
the leaf level) of the super task model. The specialization is deemed valid if the type 
refinements of Table 2 are preserved. In essence, while abstract tasks can be arbitrarily 
refined, interaction, user and application tasks must only be refined by subtasks of the 
same type.  

Behavioural Refinement. We define behavioural refinement in such a way that a sub 
task model does not allow more scenarios than the original task specification. The sub 
task model may even further restrict the set of scenarios. Such a specialization can be 
achieved by applying one or many of the following five restrictions:  

1. A deterministic choice ([]D) is restricted to either alternative. (Note that a non-
deterministic choice ([]N) cannot be further restricted)  

2. An optional task [T] becomes obligatory or is removed. (Note that the optional 
operator can be defined as follows: [T] = T []D ∅), where the symbol ∅ is a 
placeholder for an empty task.  
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3. A concurrent (|||) or order-independent (|=|) task execution is restricted to a 
more sequential task execution.  

4. Unbounded iteration (*) is restricted to a form of bounded iteration. 
5. Instance iteration (#) is bound to traditional iteration (*)  

The refinement rules ensure that every scenario for the sub task model is also a 
valid scenario for its super task model. Moreover, it is guaranteed that all non-
deterministic choices are preserved. This is important as we require the UI to cater for 
all possibilities that happen non-deterministically. Main reason for this constraint is 
to rule out the possibility of a UI stalemate as a result of being incapable to “process” 
a non-deterministic system response. As an example let us assume we refine the task 
model of Fig. 2 by excluding the “Failure Feedback” task. As a consequence every 
case of Login failure (for whatever reason) would lead to a UI stalemate, as the UI is 
designed to not provide failure feedback. 

4.3   Task Model Diagrams 

In this section, we propose a graphical notation for “Task-Model Diagrams”. A task-
model diagram conveys the structural properties of task models by highlighting 
relationships defined among them.  

Within a task-model diagram, task models are depicted by ellipses and their 
relationships are visualized by arrows and lines. Two relationships exist: Include and 
Specialization. The former is labelled “include” and it denotes the hierarchical 
composition of high-level task models from lower-level task models. The high-level 
task model “Secure Mail Client” (originally introduced in Section 3) invokes the “Use 
Mail Client” task model and the “Login” task model. In other words, “Login” and 
“Use Mail Client” are subordinate to “Secure Mail Client”2. The Specialization 
relationship is denoted by the UML symbol used for this purpose. It is a relationship 
that links a task model to its super task model. Hence, for example, “Fingerprint 
Login” and “Text-based Login” specialize “Login”; i.e. they are specializations of the 
generic “Login” task model.  
 

<<
inc
lud
e>
> <<include>>

 

Fig. 4. Task Model Diagram of a Secure Mail Client 

                                                           
2 In contrast to the task model of Fig. 2, “Login” is factored out of from “Secure Mail Client” 

model (for the sake of increased modularity). 
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Within the software lifecycle the task models related by virtue of specialization are 
typically build from top to bottom, i.e. first the generic task models are created, which 
are then further refined. This corresponds to our assumption of Section 4.2 that 
specialization can be used to ensure consistency in terms of supported tasks across 
multiple-user interfaces. As a side-effect we also envision that the specialization 
relation between task models will contribute to the creation of task-model libraries, 
where recorded task models can be further refined to rapidly and conveniently create 
specialized task models. 

5   Cooperative Task Models  

Imagine the following situation of a meeting in a software company, where several 
persons are involved: The project manager made an appointment to meet the 
consultant and the stakeholder and several developers to discuss the forthcoming 
project. At first the project manager talks about the software company and introduces 
his employees by showing some slides illustrating their experiences in the 
stakeholder’s domain. After this brief introduction the stakeholder is given the floor 
and he talks about the basic requirements of the project and his company. Since there 
has already been a document which describes the basic idea of the project the 
consultant presents his idea of solving the sketched problem. His presentation is 
interrupted by questions of the stakeholder which are answered by the plenum.  

This brief example shows, in part, how cooperative work and interaction is 
performed during a meeting. Several people, fulfilling different roles (e.g. presenter, 
listener, chairman, etc) interact with each other. Each role has an individual objective, 
whose accomplishment, however, may depend on the status and actions of other 
individuals involved in the collaboration. Such a scenario is depicted in Fig. 5. In 
order to design proactive assistance for such meeting settings the following questions 
(among others) have to be addressed:  

• What is an appropriate assistance in a certain situation?  
• How can such an environment be designed or developed? 
• What kind of tasks can be assisted and how?  
• How can personal devices be used to improve the meeting performance? 

In current practice, the analysis phase of a development process for ambient 
environments is not covered appropriately. Often designs are derived without a 
thorough understanding of individual goals and tasks of involved actors [19; 20]. We 
argue that modelling the envisioned scenario in form of collaborative task models is 
crucial for the development of ambient systems. For example, simulation of the 
modelled behaviour is able to expose wrong design decisions (at a very early stage).  

In the remainder of this paper we present an extension for task models which 
supports modelling collaborative work and tasks. The main idea is as follows: The 
behaviour of each user role is modelled by a role task model. At runtime, for each 
active actor, an instance of the corresponding role task model is created. It represents 
individual behaviour and captures the enabled task set of a particular actor. 
Cooperation of actors is defined in terms of a global constraint language. The 
constraints express temporal dependencies between tasks of different actors, which in 
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Fig. 5. Ubiquitous Meeting Setting 

turn are captured in different instance task models. In essence we define a cooperative 
task model as a tuple consisting of a set of roles, a set of task specifications (one for 
each role), a set of actors where each actor belongs to a certain role and a set of global 
constraints. Similar to CCTT, our extension requires the creation of a separate task 
model for each role involved in the interaction. The role task models for the before-
mentioned ubiquitous meeting setting are portrayed in Table 3. 

Next and in contrast to CCTT we create, for each actor, an individual copy 
(instance) of the respective role task model. We denote this process of assigning a task 
model to an actor as instantiation of a role-task model. It is important to note that our 
approach is based on the assumption that in limited and well-defined domains the 
 

Table 3. Role Task Models 

Role Task Model 

Chairman 

 

Presenter 

 

Listener 
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behavioural characteristics of an actor matches, more or less, the stereotypical behaviour 
captured in its role-task model. Constrains between tasks of different instance task 
models are defined in a language called Task-Constraint Language (TCL).  

Contrary to CCTT, where cooperation between users is specified by another 
(global) task tree, TCL is not hierarchical structured. As a result, we are able to 
express constraints between arbitrary tasks of the instance task models. Redundancies 
and duplications are avoided as the structural breakdown of cooperative tasks does 
not need to be re-specified. Moreover with TCL is it possible to define constraints 
between multiple instantiations of the same role task model.  

The basic structure of a constraint expressed in TCL is similar to the one of a CTT 
binary expression. It consists of a left operand, a temporal operator, and a right 
operand. The operands signify tasks, whereas the temporal operator expresses the type 
of the constraint. Tasks are identified in two steps: First, we select the instance task 
model(s) the task belongs to and second we select the task within the model(s). 

Fig. 6 shows a constraint expressed in TCL, which can be paraphrased as follows: 
After the task OpensDiscussion in any task model instance of role Chairman is 
executed the task AsksQuestion in all task model instances of the role Listener 
becomes enabled. In other words, only if a chairman (there may be more than one) 
has opened the floor for discussions, listeners are allowed to ask questions. An 
examination of the operands (Fig. 6) reveals that instances can be identified in two 
ways. In the case of the left operand, the qualifier “oneInstance” is used to denote that 
one particular instance of the role task model “Chairman” is arbitrarily selected. In the 
case of the right operand, “allInstances” is used to select all existing instances of role 
“Listener”. Additional sample constraints for the before-mentioned ubiquitous 
meeting example are displayed in Table 4. We note that the “point notation” used to 
qualify tasks is similar to the OCL notation for identifying instances of classes [21].  

 

 

Fig. 6. Sample TCL Constraint 

In a non-cooperative model the enabled tasks after an execution trace are easily 
determined by examining the temporal relationships defined within the model. Within 
a collaborative task model, however, additionally the global constraints have to be 
taken into account. A task T is defined to be enabled, if the following holds: T is 
enabled according to the local temporal relationships and T is enabled by virtue of the 
global constraints. At this point it is important to note that the semantics of 
collaborative task models allows for the possibility of deadlocks due to conflicting 
constraints. Intuitively a total deadlock occurs when all enabled tasks of all task 
model instances are blocked by TCL constraints. A deadlock is partial, if only a 
subset of the instance task model is affected. For example, a global constraint that 
makes use of the Choice operator causes a deadlock if the operand tasks are 
obligatory in the corresponding instance task models.  
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Table 4. TCL Constraints for Ubiquitous Meeting 

Operator Task Constraints (TC) 
Enabling (>>) Chairman.oneInstance.SitsAndListens>>Presenter.oneInstance.StartsPresentation 

Choice ([]) Chairman.oneInstance.FinishsTalk [] Presenter.oneInstance.EndsPresentation 

Disabling ([>) Listener.oneInstance.AsksQuestion [> Listener.allInstances..AsksQuestion 

Susp/Res. (|>) Presenter.oneInstance.NextSlide |> Chairman.oneInstance.InterruptsTalk  
 

Finally we would like to mention that our approach is based on the assumption that 
the behaviour of an actor can be approximated through its role. In such a case we 
argue that modelling and simulating smart environments by using cooperative task 
models is highly beneficial for the development of proactive assistance. On the one 
hand cooperative task modelling helps establishing a thorough understanding of the 
requirements of the envisioned system. On the other hand the cooperative task 
specification can serve as input for the derivation of probabilistic models, such as 
Dynamic Bayesian Networks, which are widely used in the research field of proactive 
assistance in ambient environments [20]. 

6   Conclusion and Future Research 

We have presented a set of practical extensions for task models. The main motivation 
behind our research was to extend task models such that they can be used as user 
interface specifications. We reasserted that the original idea of an idealised task model 
is not sufficient in the context of specifications since errors and failure cases are not 
covered. Moreover, defining an entire specification within a single monolithic task 
tree is only suitable for small applications and does not scale for sizable applications.  

In order to overcome these shortcomings a richer set of temporal operators as well 
as structural enhancements were proposed. As for the structural enhancements, we 
suggested to modularize the monolithic task tree into a set of trees which are 
connected through references. In order to be able to relate task models to each other, 
we defined a specialization relation. Task-Model Diagrams were proposed as a 
notation to convey structural properties of the task specification.   

Finally, we detailed a novel approach to model collaborative work of users based 
on task models. In general, within a cooperative task model the execution of a task of 
one model may enable or disable tasks in other task models. Within our approach we 
not only distinguish between different roles but also between different actors fulfilling 
the roles. Cooperation of actors is defined in terms of a global constraint language 
called TCL. The constraints express temporal dependencies between tasks of different 
actors, which in turn are captured in different instance task models.  

This paper can be seen as a starting point for more in-depth research for each of the 
proposed operators and concepts. One future research avenue would be the extension of 
TCL to be able to specify temporal dependencies based on the state of the actor. Another 
avenue is the definition of formal semantics for the proposed temporal operators and 
TCL. The formal semantics can serve as a reference point for the development of tools. 
We are currently in the process of developing a graphical design tool for collaborative 
task models and their constraints. In this vein we will also implement a simulator, which 
is able to interpret TCL. We envision using model-checking techniques to detect 
deadlocks which are consequences of conflicting constraints. 
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Abstract. Modelling creative tasks is a complex activity, yet comprehensive 
models are needed in order to better understand creativity, and the process of 
generating creative artefacts. Research on creativity, and how to design useful, 
usable and engaging creativity support tools, has been one focus of HCI in the 
last decade.  In the present paper we briefly overview selective models of 
creativity, and distinguish between them on a number of factors. We then 
outline problems in modelling creative processes in general, and in attempting 
to create relationships and correspondences between current creativity 
modelling approaches, in particular. Finally, we consider the role an analytical 
structure, and task-based models, might play in advancing the state of the art. 

Keywords: Creativity, task modelling, Task Knowledge Structures (TKS). 

1   Introduction 

There are a number of reasons why it is important to develop user interfaces and 
systems that both enhance, and provide informed and principled support for creativity,  
and creative processes. One reason is wealth creation. Both industry and governments 
are conscious of the need for creativity and innovation in our daily lives – and 
creative products sell. A further reason is that creative problem solutions and the 
resulting products typically involve pleasure and surprise, humour and fun, and 
thereby improve the quality of life. Moreover, studying the nature of creativity 
underpins a primary motivation to generate more creative artefacts.  In order to 
achieve this goal, it is necessary to identify theories, methods and tools across 
disciplines to provide both a multidisciplinary and interdisciplinary perspective.  If 
this goal were to be achieved then this would serve as a potential leading edge for 
design, providing that technological support for creativity is well designed.  Thus the 
role for HCI is paramount. 

There is an opportunity to go beyond the current situation by exploiting the best 
aspects of research in the different disciplines, but there are also obstacles to 
advancing the state of the art.  Different foci, concepts, semantics and language - 
terms, labels, and connotations, make working across disciplines a challenge.  
Additionally, modelling creativity is complex due to the assumed ‘magical’ or 
‘creation out of nothing’ characteristic that is frequently referred to in communication 
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about creativity, but which actually may not be reflected in either reality, or in the 
activities engaged in.   

Creativity has a long history of being modelled, therefore making sense of the 
status of the different models can only be a long-term goal.  It would indeed provide a 
significant new contribution to the literature to be able to relate the different models 
with respect to the phenomena modelled, and the uses to which the resulting models 
are put. The focus of the research we are currently undertaking is to understand the 
different models that exist within and across disciplines, relate those models by 
identifying commonalities and differences, and finally, identify and overcome what 
might constitute gaps in the research. 

Consequently, we are pursuing both long-term and short-term goals.   The long 
term research goals are to:- 

i) identify the different cognitive and behavioural structures, mechanisms and 
processes of creativity for both individuals and groups across a range of tasks, within 
different contexts and with different resources, opportunities and constraints; 

ii) establish a way of conceptualizing or framing the different models and the 
mappings between them – this means developing an analytical structure which 
represents the cognitive and behavioural constituents outlined in i); 

iii) consider how current models of creativity relate to the proposed analytical 
structure; 

iv) investigate the role task models might play in providing further understanding 
and explanation of creative activities; and,  

v) investigate the role task models might play in informing creativity support tool 
design.  

Our short-term goals for this paper, given space brevity, are to outline selective 
models of creativity, distinguish between them, and briefly consider how they can be 
related.  Additionally, the inherent problems experienced in both engaging in this 
activity, and in applying some of the models, will be outlined.  We will then consider the 
potential benefits and the role task-based models, with a theoretical underpinning, (in this 
case, Task Knowledge Structures [8]), might play in advancing the state of the art. 

The paper is structured as follows:  Section 2 selectively reviews models of 
creativity; Section 3 makes distinctions between various models and outlines 
problems with modelling in general, in this area.  This section also discusses the 
problems in relating the different models discussed in the paper, and in their 
application. Section 4 presents a proposal for moving research forward, and the role 
task-based models of creative tasks might play in this endeavour.  Section 5 concludes 
the paper. 

2   Models of Creativity and Creative Processes 

There are a plethora of models related to creativity, and creative processes. As an 
illustration of the magnitude of the problem inherent in reviewing models of creativity 
we would refer the reader to Sternberg et al, [16].  These authors provide an excellent 
taxonomy just of the models existing with a psychological foci – these include mystical, 
pragmatic, psychodynamic, psychometric, cognitive, social-personality and social-
cognitive, evolutionary and confluence approaches. Given the extensive literature we 
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are not able to review all approaches in this paper, a more comprehensive review can be 
found in [6]. Consequently, in this section our goal is to briefly refer to a number of 
models of creativity and creative processes which are well-known, acknowledged and 
frequently cited. 

The creative process has a long history of being modelled as a series of stages. In 
1926, Wallas [17] outlined a model incorporating four creative stages: preparation, 
incubation, illumination, and verification. The preparation stage involves 
understanding the problem, and searching for solutions through exploration of 
conceptual spaces, (see also [2]). The preparation stage is considered to involve ‘hard 
work’ and is followed by a more relaxed stage of ‘incubation’ where people filter 
information from conscious awareness to the subconscious to be used for creative 
insight. Creative insight is thought to come in the illumination stage. Tentative 
solutions which evolved during the illumination stage are then subjected to a 
verification phase that involves testing, elaborating and developing.  

Whilst Wallas’s model is still widely cited, the stages have frequently been 
modified. Kneller [9] introduced a stage before preparation called ‘first insight’. Yet 
other researchers describe the creative process as a generative brainstorming stage 
followed by an evaluative focusing stage ([4]; [5]).  

The stages however are neither as separate nor sequential as some creative process 
models seem to suggest, but are interdependent and iterative. For example, idea 
evaluation frequently leads to reformulation of the initial problem, making the process 
cyclical [5]. Similarly, [10] defines creativity as a cycle of re-representations used for 
conceptual exploration.  

One often-cited model, is provided by [1]. She proposed the following stages as 
being involved in individual creative processes: 

 
(1) Problem or task presentation 

The task may be one generated by the individual (internally presented) or one 
presented to the individual (externally presented). 

(2) Preparation 
The individual builds or recalls information and solution approaches relevant to 
the task at hand. 

(3) Response Generation  
Alternatives are produced. 

(4) Response Validation  
Alternatives are evaluated. 

(5) Outcome 
Process terminated with successful outcome, or 
Process terminated in failure with no acceptable solution produced, or 
Individual concludes that some progress has been made and loops back to an 
earlier step in the model. 

 
This model has provided the basis for research in other disciplines, contexts and 

spheres of influence.  
There are also creative process models within HCI that build upon previous 

models, such as that of [17].  Shneiderman [15], for example offers a four-phase 
creativity framework that builds on past models but also departs from them by 
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incorporating some ‘social’ aspects of creativity. These social aspects relate 
principally to consultation with peers and dissemination of results. The genex 
(generator of excellence) proposal consists of four phases:  

 
Collect: Learn from previous works stored in libraries, the web etc;  
Relate: Consult with peers and mentors at early, middle and late stages;  
Create: Explore, compose, and evaluate possible solutions;  
Donate: Disseminate the results.  
 

The four phases are not intended as purely sequential, but as iterative. Shneiderman 
[15] then proposes eight activities that could be supported by computer tools that 
occur during the genex phases. 

 
1. Searching and browsing digital libraries 
Searching libraries or other resources accelerates collection of information 
about previous work. Users may also need to search in order to find 
consultants, or to decide on candidate communities for disseminating 
results.  
2. Consulting with peers and mentors 
Consultation tools start with email, chat, and instant messenger. However, 
specialised forms of exchange are needed that guide participants to clarify 
requests while ensuring credit for and protecting new ideas. 
3. Visualising data and processes 
Drawing mental or concept maps of current knowledge helps users organise 
their knowledge, perceive relationships, identify outliers, recognise clusters, 
and identify missing elements. 
4. Thinking by free associations 
Provide tools that support creative thinking (e.g., brainstorming and lateral 
thinking) and help people break free from their current mindset.  
5. Exploring solutions – “what if” tools 
Enable creative exploration and experimentation to view the implications of 
decisions and perceive complex relationships. 
6. Composing artefacts and performances  
Composition tools include word processors, elaborate music editing 
programmes, graphics composition tools, slide presentations, and photo 
editing tools.  
7. Reviewing and replaying session histories 
History-keeping is the capacity to record activities, review them, and save 
for future use. This will allow users to return to previous steps, edit, store 
frequent patterns of use, and replay histories. 
8. Disseminating results 
Finally, when users create something they like, they need to disseminate it. 
This could include e-mailing to a select group, to all the people whose work 
was influential and to people who had visited the same websites as they had. 
Users could create a web page and add entries for others to explore. 
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The 'Collect, Relate, Create, Donate’, creative phases could be accomplished by 
repeated applications of the eight activities [14] represented below. These eight 
activities could be further subdivided and could occur during any phase.  

 
GENEX PHASE  PRIMARY ACTIVITY  

(but can be used in any phase) 
 
Collect   Searching and browsing digital libraries 
    Visualising data and processes 
 
Relate   Consulting with peers and mentors 
 
 
Create   Thinking by free associations 
    Exploring solutions – what if tools 
    Composing artefacts and performances 
    Reviewing and replaying session histories 
 
Donate   Disseminating results  
 

Fig. 1. Genex phases and the eight iterative activities typically occurring within them 

Shneiderman advocates that supporting these eight activities by appropriately 
designed software and computer tools could greatly facilitate creativity.   

Another influential approach, although not widely cited in HCI, is that of Schön.  
According to [12,13] some activities such as reflection underpin and occur throughout 
the entire process. He describes the reflective nature of the conversation between the 
designer and the ‘artefact’ as a transaction. ‘Seeing-drawing-seeing’ is one example 
of a reflective conversation – the designer sees what is there, draws in relation to it, 
sees what is drawn, which then informs further design.  The designer constructs 
meaning, identifies patterns and gives them ‘meaning beyond themselves’.   

A designer designs by utilising her/his repertoire of examples, images, 
understandings and actions from existing knowledge.  Making sense of a new 
situation, means using ‘something already present in her/his repertoire’.  To see this 
example as ‘that one’ means assessing the similarity and difference between the new 
and the familiar, and this whole process of seeing-as and doing-as may proceed 
without conscious articulation. The process of creative design ceases when the 
designer appreciates that a change has resulted in the situation being improved, and 
given new meaning.  

Schön [12] argued that a computer could enable the simulation of a designer’s 
transactions with the design situation by reproducing the following creative process 
features:- 

 
- the designer’s seeing-moving-seeing; 
- the construction of figures from marks on a page; 
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- the appreciation of design qualities; 
- the evolution of design intentions in the course of the design process, new 

design problems being set for solution; 
- the recognition of unintended consequences of move experiments; 
- the storage and deployment of prototypes, with them being placed in 

transaction with the design situation; and 
- communication across divergent design worlds. 
 
In [6] we extended this model to represent group reflection in collaborative 

creative tasks, and as a consequence added the following functions that needed to be 
supported to Schön’s list:- 

 
- individual, joint, shared and group evaluation; 
- individual, joint, shared and group moves and experiments; 
- local (individual team members or subset of team members) and global (all 

team members) reflection and evaluation; 
- individual and group design transactions; 
- sharing the repertoire of group members; 
- different intensities of collaboration in relation to reflection and evaluation; 
- alternative means by which talk-back can occur with respect to task context 

and group composition; 
- provide early previews of group solutions. 

 
This is clearly not an exhaustive list and is an initial step in considering how group 

reflection of creative tasks could be supported.  These features necessarily need to be 
elaborated to incorporate CSCW and HCI requirements for groupware.   

In this section we have very briefly referred to models of creativity and creative 
processes from psychological, HCI and architectural/design perspectives.  These 
instances will demonstrate the difficulty of relating and making correspondences 
between the different approaches and models.  However, it is necessary to establish 
these relationships and mappings given the divergent sets of requirements generated 
for supporting creative processes. The next section describes distinctions between a 
selection of the models referred to in this section, and notes the problems in applying 
the models. 

3   Model Distinctions, and Problems Applying Creative Process 
     Models 

For the purposes of this paper the models can be primarily distinguished on the 
different levels of abstraction, and generality, of the phenomena modelled.  Some 
high-level models describe general psychological capabilities such as reflection 
[13,14], re-representation and hypothesis testing [10], not limited to creativity.  Other 
models describe rather more specific aspects of creative stages, such as the activities 
of reviewing alternatives [1], whilst yet others describe general processes of 
 



62 H. Johnson and L. Carruthers 

disseminating results [15].  Some of these are high-level phenomena occurring in 
everyday life. Others, whilst not exclusive to creativity are found particularly 
frequently in creative processes. Another class of phenomena include the lower level 
activities not exclusive to creativity which might be considered ‘uncreative’ but 
necessary, such as the dissemination of results. 

In documenting the different models and approaches it is clear that any one 
multistage model or approach is insufficient to provide a reasonably accurate 
representation of creative processes. It is therefore important to devise a means by 
which to relate the models. This is necessary in order that there is some understanding 
at different levels of abstraction about what explanatory power each model pertains 
for explaining different aspects of creative ‘behaviour’.  For instance, for a particular 
creative scenario or task, there needs to be an explanation encompassing high-level 
cognitive processes, how these are harnessed in undertaking the specific creative 
activities during the task, and the actual behaviour which is observable, (the gestures, 
utterances, etc. that are associated with that behaviour). 

In outlining the problems that modellers and models face, we will adopt both a 
theoretical and an empirical perspective.  The theoretical perspective will highlight, as 
a result of our understanding of the research from different disciplines, high-level 
issues to be addressed by modellers of creative processes.  On the other hand, the 
empirical perspective has involved undertaking extensive empirical studies of creative 
activities and tasks, and applying creative process models to those.  These tasks have 
included musical composition, story development, writing poems, and designing 
posters, for example. 

The theoretical problems we have identified with some of the models include:- 
 

i) models being little more than superficial generalizations of stages of problem 
solving; 

ii) models merely labelling or describing procedures within activities, thus 
affording no prescriptive, predictive or explanatory power.  This means any 
attempt to rationalise improvements on past models is flawed; 

iii) models include activities which may or may not be creative in themselves, 
without any consideration of the relationship of these to ‘creative’ activities, 
and a creative process in general; 

iv) models are frequently not exhaustive, which is not a problem in itself as long 
as this is recognized, the scope is clearly defined and other complementary 
models are suggested to overcome the deficiencies; 

v) with respect to iteration - the stage or phases of models are not specified in 
enough detail to understand what the function of iteration might be.  Why are 
previous activities returned to?  What is needed is some understanding or 
exposition of the causal relationships persisting between the stages; 

vi) there needs to be a better attempt to identify the cognitive structures, 
mechanisms, resources and behaviour to be utilized in the modelling 
approach, or in the actual creative episode, activity or task. 
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There are also a number of issues that have arisen as a result of our application of 
existing creative process models. In this paper we will highlight problems experienced 
in applying models to the results of a small-scale study that involved two dissimilar 
tasks in two distinct domains, with different types of support, [3]. As a consequence of 
this research, it is clear that three issues of importance need to be addressed by 
creative process modellers.  

The first issue is concerned with devising a means to perceive and interpret, 
through whatever means, the creative activities and thought processes of study 
participants. This is not just an issue for creativity and HCI, but also for the 
behavioural sciences, and consequently there is a relevant literature with the 
possibility of exploitation. 

The second issue is to understand and map the different levels of abstraction within 
and between models. For example, there is a difference between the generic ‘Consult’ 
phase of [15], and the ‘more cognitive’ phase of ‘thinking by free association’ and 
also the ‘Response Generation’ phase of [1]. Currently differences in level of 
abstraction are not attended to, but are important when considering tool support. 

The third issue relates to mapping observed or reported activities and processes to 
model stages.  Shneiderman [15] has made a very real effort to achieve this in his 
genex framework.  

However, there are a number of sub-issues related to any mapping process:  
 
i) some activities occur but are frequently not modelled;  

ii) stages need to be appropriately labelled, with the chosen labels matching their 
descriptions and clearly indicating the scope of the stage;  

iii) better descriptions and exemplifications of the stages are necessary to avoid 
under and over-interpretation;  

iv) a means to identify on-going, cyclical, iterative, and once-only activities needs 
to be developed; 

v) the ‘same’ activities occurring in a number of different stages need to be 
identified, and whether they have different semantics in each of the activities in 
which they appear, needs to be modelled; 

vi) interdependencies between stages needs outlining; 
vii) the ‘intensity’ of the activities, and the resources expended needs to be 

modelled. 
 
It is obvious that developing modelling approaches that take account of the 

theoretical and empirical issues outlined in this section, is a long-term commitment.  
A first step to achieve this goal is to develop an analytical structure that provides a 
framework for relating phenomena to models, models to each another, and the 
mappings between them.   

A complementary but different step is to consider the benefits of developing a task-
based model of the creative process that builds on current theoretical approaches to 
task modelling.  In the next section we briefly outline the beginnings of an analytical 
structure for relating models, and discuss the potential benefits of constructing task-
based creative process models. 
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4   An Analytical Structure and Task-Based Models of Creative 
     Activities 

4.1   An Initial Analytical Structure 

As previously indicated in Section 3, different creative process models represent 
different phenomena and processes undertaken in developing creative products.  The 
purpose of devising an analytical structure is to provide an early view as to the 
different levels of abstraction in the models, to situate the models within this space, 
and to identify gaps in the research.   

In this paper we will outline an initial version of this analytical structure. It is 
important to note that this version of the framework has benefitted from our wide 
range of studies in different creative domains, and the research undertaken as part of 
the Designing for the 21st Century creativity cluster involving 26 different disciplines 
including ten artists from different perspectives.  However, it is clear that either more 
levels or more comprehensive levels will be needed than are presently outlined, and 
top down theoretical, and bottom up empirical research will both contribute to 
framework validation, and to the next version of this structure.  Therefore, we are 
currently making no claims about how complete or coherent the structure is, rather we 
are using the structure to cause us to ask interesting research questions about what 
each model is representing, and what it contributes to our understanding of either 
cognitive resources, tasks, activities or actual observable behaviour.  Furthermore, the 
framework will allow us to make judgements about the potential contribution to the 
state of the art of any future modelling approaches.   

The framework itself is not testable but the theories developed within the 
framework are testable by empirical means. Currently, the analytical structure 
consists of four layers; cognitive, task, activity and behaviour layers. We are 
assuming perception has already occurred. The cognitive level consists of 
psychological structures, mechanisms and processes, and encompasses the ability for 
example, to problem solve, reflect, decision-make, and so forth.  The task layer 
represents the goal(s) of the activity – e.g. write a poem.  The activity layer represents 
the units of activity, or activities which correspond to Pinelle and Gutwin’s [11] 
taskwork or teamwork mechanics. In the case of individual tasks an activity relevant 
to creativity might be  ‘generate ideas’, or in the case of collaborative creativity 
(teamwork mechanics), an example might be ‘co-ordinate actions’.  The behaviour 
layer constitutes the low level reported or observed actions which include 
manipulation of artefacts, for example, drawing, typing, sorting, and communication 
through whatever implicit or explicit means, for example, utterances, gestures and 
body language. This is summarized below:- 

 
1. Cognitive layer - psychological structures and processes, and abilities, e.g. 

problem solve, reflect, decision make. 
2. Task layer - the goal(s) of the activity, e.g. write a poem. 
3. Activity layer units of activity, e.g. generate ideas, or mechanics, e.g. co-

ordinate actions. 
4. Behaviour layer - low level reported or observed actions. 
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In addition, there are mappings between these layers, which we have yet to fully 
develop theoretically, and identify empirically within our existing range of case 
studies.  This will include both top down and bottom up research activities.  It is 
important to do this in order that we can produce more than rich descriptions of 
behaviour.  Explicitly, we are claiming that stipulating the nature of the mappings 
allows us to generate prescriptions, predictions and explanations that currently do not 
exist.  Once the mappings are fully developed, by observing aspects of behaviour we 
will be able to traverse through the layers of the analytical structure, enabling us to 
identify goals and furnish rationales for implicit and explicit behaviour, and also make 
assumptions about the cognitive activities needing to be supported for goals to be 
accomplished. Eventually, this will provide a well-informed and principled means to 
develop creativity support tools. 

Attempting to fit current creative process models within this analytical structure is 
the next step.  However, this is a complex undertaking because some models only 
have representation at one layer whilst others clearly exist at two or three, but not all, 
layers. Moreover, some modellers emphasize either higher or lower level layers that 
clearly have implicit relationships, often not postulated, with other layers.  

Taking specific examples, ‘reflection’, as in Schön’s [12,13] model fits within the 
cognitive layer, whilst the activities of designing, and possibly seeing-as and seeing-
that within this model fit within the activity layer. Boden’s [2] work on conceptual 
spaces fits within the cognitive layer, but there are clear implications for behaviour.  
Amabile’s [1] model of developing alternatives fits within the activity layer but has 
implications for problem solving and reflection at the cognitive level, and so on. 

Finally, Shneiderman’s [15] Collect, Relate, Create, Donate creative phases exist at 
a number of levels.  Collect and Create are activities within the activity layer with 
appropriate behaviour at the behavioural layer. The Relate and Donate phases include 
modelling at the task and behaviour levels.  However, it is clear that these two phases 
also have some social, cultural function within the field or domain, which needs to be 
taken into account in the next version of the analytical structure that will also 
accommodate collaborative creativity. 

An initial and possibly cursory analysis of the fit of models within the analytical 
structure has suggested to us the paucity of research explicitly discussing purposes, 
needs, and goals and how these might be fulfilled.  Specifically, as discussed in 
section 3 we have found very few attempts to model the causal links between 
activities and behaviour that demonstrates priming, cueing, or following on 
relationships.  One possible conclusion is that the task layer for most creative models 
either does not exist, is not specified in enough detail, or the mappings between this 
and the other layers are not sufficiently defined to be able to derive any conclusions 
about what creative ‘performers’ intended to do, what they will do next, and why. 
Basically we do not know the derivation of activities and/or behaviours. 

A model at the task layer needs to be able to understand when, how and why 
activities occur, the nature of the causal relationships, and the enabling and resultant 
states. 

One solution is to construct task-based models of the creative process and then 
objectively assess whether they provide any explanatory purchase.  In the next section 
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we briefly consider the benefits of constructing task-based creative process models 
and consider what might be gained by building TKS models of creative tasks. 

4.2   A Task-Based Model of Creative Activities 

In the previous section we argued that one possible benefit to constructing task-based 
models is the potential ability to understand when, how and why activities occur, the 
nature of the causal relationships, and the enabling and resultant states.  

A further benefit is that task models have been used effectively in the past for 
representing task knowledge and execution, generating requirements and design solutions 
for everyday simple and complex tasks, supported by technology.  Consequently, we 
believe developing task models will provide a pivotal role in informing the design of 
computer-based creativity support tools.  

Finally, there is a role for task-based models not only in informing design, but also 
in exploiting the existing theoretical underpinnings.  TKS is one of many task 
modelling approaches benefitting from a theoretical foundation. One question to 
address is how does it relate to the analytical structure? 

The analytical structure’s cognitive layer consists of psychological structures, 
mechanisms and processes. For instance, in the case of memory, the cognitive level 
consists of knowledge structures and processes associated with learning through 
experience and undertaking tasks and activities.  These processes include acquisition, 
modifying, categorizing and re-structuring, and retrieving knowledge.  This 
knowledge is represented in either Fundamental Knowledge Structures (FKS, see [7]) 
or Task Knowledge Structures (TKS, see Figure 2).  

FKS represent fundamental psychological knowledge, abilities, and processes that 
are general, high-level and occur across all tasks and behaviour.  These include for 
example, collaboration, communication and explanation; hypothesizing and problem 
solving; representation, re-representation, reflection and evaluation; decision-making 
and risk assessment, and so on. They are fundamental in the sense that they are 
necessary for the successful functioning of humans in their everyday lives.  TKS by 
contrast represent lower level, task-specific knowledge structures, abilities and 
processes that relate to specific tasks, such as designing posters, or writing poems. 

In the case of creativity, a subset of appropriate FKS knowledge would be recruited 
in order to problem solve, reflect on solutions, and make decisions about which 
solution(s) to pursue.  In collaborative creativity, the FKS for collaboration [7] would 
also be instantiated.   

At the task layer, the TKS would represent the following knowledge:- 

i) categorization of task artefacts; 
ii) structure in tasks – central/important, high priority and typical concepts and 

activities; 
iii) causal relationships between task objects leading to cueing, priming or follow-

on task behaviour, and supporting principles of categorical structuring and 
procedural dependency; 

iv) roles; goals; plans within different contexts; current, enabling, conditional, and 
desired states; strategies; procedures; actions and objects. 
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Fig. 2. Knowledge represented in Task Knowledge Structures 

It is likely that each of the above elements exist in creative tasks as they do in other 
everyday simple and complex tasks.  As an example related to i) above, in recent 
funded research, artists in an artist’s forum recounted the role categorization, in the 
form of snippets, photographs, videos, etc. plays in creative inspiration.  Therefore, 
supporting the categorization processes of organizing, storing and re-organising this 
material effectively, has implications for generating creative ideas and solutions, thus 
facilitating creative insight and inspiration. 

Again, in the case of creativity, there is likely to be central and typical elements of 
creative artefacts that need to be preserved and which dictate how the task is 
structured and organised.   

In considering the activity layer, this would be comprised of the different task 
procedures, and the action-object couplings for individual creativity, and 
collaboration mechanics from [11] if collaborative.  Finally, the behavioural layer 
would include the low level behaviours such as typing, drawing and so on – this is 
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presently not part of TKS and therefore it may be necessary to undertake 
modifications to the modelling approach. 

Current research is developing TKS models of various creative tasks across 
domains and in different contexts, with different types of resources.  The results will 
be analysed in the light of the analytical structure proposed in section 4.1 and with the 
aim of providing explanations of creative processes and advancing the state of the art. 

5   Conclusion 

In this paper we have referred to selective creative process models, and made attempts 
to relate and apply the models.  Theoretical and empirical issues related to modelling 
creative tasks, such that we are in a position to move beyond description to 
explanation of activities, have been discussed. 

In section 4.1 we outlined an initial analytical structure that represents different 
levels of abstraction, and provides a means to relate different models. 

Finally, we briefly consider aspects of TKS that might constitute a task-based 
model of creative tasks. A future research agenda includes further development of the 
analytical structure and its application. 
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Abstract. Mixed Interactive Systems (MIS) is a generic term encompassing 
mixed and augmented reality, augmented virtuality, and tangible interfaces 
systems. The work we present in this paper deals with the design of such 
systems. Several models have been proposed to describe mixed interactive 
systems. However, these models neither integrate MIS in the global user 
activity, nor take into account the dynamics of mixed interactive situations. 
Task models offer an interesting approach to cover these aspects. The purpose 
of our work is to contribute to the design of MIS by articulating mixed 
interaction models and tasks models. This paper presents complementarities and 
common points between these models, which will be used as the basis for the 
rules to articulate the task and interaction models.  

Keywords: Mixed interactive system, design, mixed interaction models, task 
models, model driven engineering. 

1   Introduction 

Mixed Interactive Systems (MIS) constitute an advanced form of interactive systems 
and result from the fusion of the physical world and the digital world, thus gathering 
mixed and augmented reality, augmented virtuality, and tangible user interfaces 
systems [1]. Because of this fusion, multiple objects take part in the user task. 
Furthermore, the continuous use of digital and physical objects has an impact on the 
interaction and its dynamic, thus creating new issues in terms of design.  

Developing a design process suitable for MIS is an issue for HCI research. To 
enrich the design approaches dedicated to MIS, we are interested in two 
complementary design aspects: (1) the description of the global user activity and 
dynamics aspects of mixed interactive situations; (2) the description of mixed 
interaction in a way that takes into account the heterogeneity and richness of MIS. 
These two elements are already partly addressed by specific models such as sequence 
diagrams or task models for the former, and class diagrams or mixed interaction 
models for the latter. 

The goal of our work is to explore and characterize the articulation of task models 
with mixed interaction model to contribute to the development of a MIS design 
process, following a Model Driven Engineering (MDE) approach.  For this, we 
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initially chose a notation of each model: K-MAD for task modelling and ASUR for 
mixed interaction modelling. 

In this paper, we present an illustrative case study RAPACE, an interactive 
prototype dedicated to be exhibited in a museum of natural history. Then, we position 
our work according to different design steps of MIS, we briefly introduce the two 
notations we selected and finally, we present a first set of articulation rules between 
K-MAD [2] and ASUR [3]. 

2   Illustrative Case Study 

Our case study is a MIS prototype intended to teach cladistics in an interactive way 
[4]. Cladistics is a philosophy of animal species classification that arranges species 
according to the evolution of their common ancestral criteria and not by their 
morphological similarity. Species are then represented in a tree called cladogram. In a 
cladogram, all species lie at the leaves, and each inner node is the point from which a 
criteria has evolved.  

An educational software based on the WIMP paradigm and coded in Director was 
initially intended to be used as an interactive exhibition in the museum of natural 
history. The application is based on a pedagogic method to teach cladistics: the 
animals are presented by group of three, a reference animal and two comparison 
animals. The common criteria of the animals are listed and the cladogram, a 
hierarchical tree representation, structures the result of these comparisons. This 
approach constitutes an original core to transmit contents in a museal context. But this 
first prototype does not support an easy explanation of the resulting cladogram, nor 
does it offer much flexibility such as changing the comparison order. A second 
prototype has been developed to better support this interactivity. And in order to 
better integrate the exhibit in the museum, the use of mixed interaction technique has 
been chosen.   

Our case study is based on this second prototype. The user handles physical 
pictures of animals, an information tool and an insertion tool (Fig. 1 bottom left). To 
compare two animals, the user brings close together a picture of each animal (Fig. 1 
top left). Common criteria between the two animals are displayed. The user can also 
get information about an animal by bringing close together the picture and the 
information tool. Finally, the user can insert an animal in the cladogram (Fig. 1 right) 
either automatically or manually. To insert automatically, the user brings the picture 
close to the insertion tool. To insert manually, the user choose a node in the 
cladogram in which he wants to insert the animal. He then turns the picture in front of 
the node with a movement analogue to screwing.  The animal is inserted in the 
cladogram displayed. 

The localisation of the pictures is based on video tracking and marker recognition 
[5]: a camera tracks markers associated to pictures. The system identifies markers, 
and two video projectors display respectively the cladogram and the information and 
comparison results. 

We present in the next section our design process and our approach based on 
metamodels.  
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Fig. 1. Projection of the cladogram on the vertical stand, projection of results on the horizontal 
stand and pictures of animals ready to be used on the left 

3   From MDE to Metamodels 

This work is in line with the Model Driven Engineering (MDE) approach, by relating 
notations at the metamodel level. As illustrated in Fig. 2, the design process of MIS 
can be defined into four levels: the requirement and task analysis, the interaction 
design, the software design and the implementation. Several models are necessary to 
cover these four different steps of MIS design and there is so far a lack of means to 
relay the results from one step to the following. A previous work was already done 
proposing a link between the interaction design and the software design with ASUR-
IL [6]. In this paper we focus on the link between the task analysis step and the 
interaction design step. The goal of our work is to realise the loop of the Task 
Analysis, Interaction Design, Refining and Verifying Coherence. A notation used in 
each step has been chosen, K-MAD for the requirement and task analysis and ASUR 
for the interaction design. In the following we study metamodels of each notation and 
establish rules of articulation between the models. 
 

 

Fig. 2. MIS design process 

 

Requirement and Task 
analysis (K-MAD) 

Interaction Design (ASUR) 
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3.1   Strategy 

Our articulating of a task model and a mixed interaction model is based on the  
K-MAD and ASUR notations. The task model describes the activity on a higher level 
than the interaction model since it does not describe the interaction. 

3.1.1   Task Model K-MAD 
To introduce the K-MAD notation [2], we consider one task of our case study: “learn 
cladistics”. This task consists in comparing animals (task “compare animals”) then 
inserting them either manually (task “insert manually”) or automatically (task “insert 
automatically”) (Fig. 3 right).  

 

Fig. 3. Task K-MAD "Learn cladistics" 

K-MAD (Kernel of Model for Activity Description) is centred on the task unit, 
which can be described according to two aspects, the decomposition and the body. 

1) The decomposition of a task unit of a given level gives place to several unit 
tasks of lower level. The decomposition offers operators of synchronization, temporal 
and auxiliary scheduling.  

In our example, the task “compare animals” is composed of four subtasks: (1) 
“indicate comparison” during which the user locates the animal of reference and starts 
the comparison, (2) “process information” during which the system identifies the 
animals and their common criteria, (3) “return results” during which the system 
returns the results of the identification and (4) “observe criteria”. Here the temporal 
scheduling of the decomposed task is described as sequential. 

2) The body supports the characterisation of the task and consists of the core, the 
conditions and the state of the world: 
- The core gathers a set of textual attributes such as name, number, priority, goal, 

etc: for example, the task “insert” is number 2, the task “insert manually” is 
number 2.1 and the task “insert automatically” is number 2.2.  
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- The conditions express pre and post-conditions in a formal way according to a 
preset grammar: conditions are not required in our case study. 

- The state of the world allows identifying the various objects handled by the task: 
for example, the task “return results” uses the objects animal of reference, animal 
of comparison and criteria. 

K-MAD has his own development environment called K-MADe [7] which has 
been used to model examples in this paper.  

Among the different task modelling approaches, we are particularly interested by 
those that have been developed to support the design of interactive systems, and not 
necessarily provides the best support for an in depth analysis of the user-task. We thus 
focused on CTT [8] and K-MAD that have both editors. Like in CTT, there are 
different types of task and a task can use objects. However, K-MAD has its own 
domain model to describe domain objects. CTT and K-MAD both offer the 
decomposition of a task in tasks of lower level. However, in K-MAD, operator of 
synchronization is an attribute of task unit while in CTT operators are used to link sub 
tasks. 

A concise presentation of this model can be given through its metamodel (Fig. 4). 
There are three principal concepts in the K-MAD metamodel: the task, the performer 
and the objects: 

- A K-MAD task is carried out by a performer and uses objects. It can be made up 
of expressions expressing the constraints: pre, post conditions and iterations. The 
decomposition is expressed by the attribute operator specific to the task. A K-
MAD task is also described by attributes like the name, the number, the goal, etc. 
It can generate events or be generated by events and can belong to a task-group.  

- The performer can be system, unknown or a user. In the latter case the attribute 
modality can be specified as cognitive or motor. A K-MAD task is interactive 
when system and user together perform the task. Finally, a K-MAD task can be 
abstract.  

- The objects in K-MAD are managed as follows: an abstract object, object, has 
abstract attributes, attribute. An instance of an abstract object is a concrete object 
whose concrete attribute is an instance of the abstract attribute. Each concrete 
object belongs to a group of objects called in the metamodel object-group. The 
objects in K-MAD are involved in the user activity and can define the conditions, 
but they are not represented on the K-MAD diagram. 

The reasons why we chose K-MAD as a starting point in our work are multiple. 
First it expresses the development of the tasks on a “macro” level. Indeed, it describes 
two kinds of temporal relations between a parent task and its subtasks: 
synchronization (parallel, sequential, simultaneous) and scheduling (and, or, 
alternate). K-MAD also describes the development of a task on a “micro” level, by 
using some of the temporal operators (beginning, end, duration). Moreover, the 
conditions described in the body of task K-MAD allow describing dynamics and tasks 
relations with pre and post-condition described in a formal way. Lastly, the 
management of the world objects supported in K-MAD allows gathering physical and 
digital objects and defining an object’s state before and after task development. 
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Fig. 4. K-MAD metamodel 

3.1.2   Mixed Interaction Model ASUR  
ASUR notation (Adaptor, System, User, Real objects) [3] adopts a user's interaction 
point of view on the design of mixed interactive systems. ASUR highlights the key 
elements that are involved to support the interaction: resources, artefacts and data 
flows are thus represented. But the dynamic of the combination of these aspects is left 
out of the ASUR model. To introduce the ASUR notation, we consider the case study, 
and especially the comparison step. The user grabs in hand the picture of the animal 
of reference and moves it closer to the picture of another animal to perform the 
comparison and discover the common criteria. The system detects the two animals and 
displays the animals and the common criteria. The corresponding ASUR model is 
given in Fig. 5. 

The first step of the ASUR modelling consists in identifying entities involved in 
this task:  

1) ASUR Components. ASUR distinguishes different component types:  
- The Sinfo, Stool and Sobject components depict the computer system, including 

computational and storage capabilities and data acquisition and delivery. In our 
case study the digital animals (animal of reference, animal of comparison and 
criteria) are three Sinfo Components.  

- The U component refers to the user of the system: the visitor. 
- Robject and Rtool components denote physical entities involved when performing the 

task. Robject designates real focus of the task such as the animal of reference and, 
Rtool plays the role of intermediary entities required to perform the task, as animal 
of comparison or the tool to insert animal in the tree or the lens.  

- Ain and Aout components represent adaptors conveying data from the physical to 
the digital world as camera (Ain) and video projector (Aout). 
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Fig. 5. ASUR modelling of the task "Compare animals" 

These components are not autonomous and need to communicate during the task 
realisation. Such communication is modelled with ASUR relationships. 

2) ASUR Relationships. We identified three different types of ASUR 
relationships.  
- Data exchange (A B) means that component B may perceive information 

rendered by component A. In our example, the user observes the animal of 
reference (Robject U) and data displayed by the video projector (Aout U). The 
camera localizes animal of reference and animal of comparison (Robject  Ain, Rtool 

 Ain), and transmits positions to system to identify the animals (Sinfo) and search 
common criteria (Sinfo). After processing the data, results are sent to the video 
projector (Sinfo  Aout). 

- Trigger (A B) is always linked to a data exchange (C D): the data transfer 
from C to D will only occurs when a specific spatial condition is reached between 
A and B. The relationship (Ain  Sinfo criteria) occurs when the animal of 
reference is close to animal of comparison (Robject  Rtool).  The relation between 
the trigger and the data exchange that is triggered, is only specified as a trigger 
property, and is not graphically represented on the ASUR diagram. 

- Physical proximity (A==B) denotes the physical link that exists between two 
entities. No such link is used in this model. 

3) ASUR Characteristics. Additional characteristics are used to refine this 
modelling:  
- Location and perception/action sense indicate where the user has to focus to get 

the information and through which human sense it is perceivable: perception and 
action sense used with animal of reference are visual and physical action. The 
location is the place where data is projected.   

- Dimension (1D, 2D, 3D) and point of view refine the description of information 
transfer. 
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ASUR has his own development environment called Guide-Me [9] which is used 
to model examples in this paper. 

Other mixed interaction notations exist. TAC paradigm [10] and MCPrd [11] 
architecture describe the elements required in Tangible User Interfaces. Close to 
ASUR, some notations support the exploration of Mixed Interactive Systems design 
space [12], [13]: they are based on the identification of artefacts, entities, 
characteristics and tools relevant to a mixed interactive system. More recent works in 
mixed interactive systems try to link design and implementation steps by projecting 
scenarios on software architecture models [14][15] or combining Petri Nets and 
DWARF components [16]. 

A concise presentation of the notation can be given through its metamodel (Fig. 6). 
An ASUR model is composed of components and relationships to describe a task. A 
component can be either a computer system - Sinfo, Stool, Sobject - or a real entity - Rtool, 
Robject -, or an adaptor - Ain, Aout - or a user. Components are connected by 
relationships. A relationship can be either a data exchange, a representation, a real 
association or a trigger. 

 

Fig. 6. ASUR Metamodel 

The reasons why we chose ASUR are multiple. First, it allows identifying physical 
and digital entities implied in the task. ASUR notation completes this representation 
by a detailed description of the role and nature of the entities implied in the 
interaction, and by identifying a predefine set of types of ASUR components and 
relationships. ASUR also contributes to the ergonomic analysis of the system by 
expressing properties with combinations of characteristics of the components and/or 
ASUR relationships, as the perceptual or action sense, perception place, language 
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etc. It also allows to reason on the interaction independently of all device 
considerations, by using components such as Aout to indicate an adaptor, which could 
be a visual device, sound, haptic… 

4   Articulation Between K-MAD and ASUR 

We base the presentation of the articulation of K-MAD and ASUR on the metamodels 
described in the previous section. First, we highlight subsets of the two metamodels 
that relates to the same concept. Then, we establish articulation rules between subsets 
of the metamodels. 

4.1   Links Between Metamodels 

Our study of the two metamodels emphasized articulatory elements between the 
metamodels: some elements of the metamodel refer to the same concept and 
constitute direct links of the articulation, while others are specific to each metamodel.  

It arises from the analysis of the metamodels that three elements of design are 
commonly expressed by K-MAD and ASUR: the concept of task, object and user.  

L1 The subset of the metamodel gathering task, event and task-group in K-MAD 
(Fig. 4. left) represents the unit task independently of the tree. This subset refers to the 
same concept than the element task of the ASUR metamodel (Fig. 6 left). K-MAD 
describes the activity of the user in a procedural way, while ASUR describes the 
interaction of the user with the system for a given task. So K-MAD conveys a global 
vision of the task while ASUR adopts an atomic vision. An ASUR task thus 
corresponds either to a K-MAD leaf, or a K-MAD aggregate of subtasks. 

L2 The subset of the metamodel gathering the objects in K-MAD, object, 
attribute, concrete object, concrete attribute and object-group (Fig. 4 top right) refers 
to the same concept than the elements Real Entity and Computer System of the ASUR 
metamodel (Fig. 6 right). Indeed, K-MAD objects are the domain objects used in the 
task. Thus, the objects can be physical or digital depending on the conceptual choices. 
However, the objects are strongly categorised and described in ASUR in a formal 
way, while K-MAD describes the same objects of the world in a textual way. 

L3 The subset in the K-MAD metamodel gathering user and actor (Fig. 4 
bottom right) refers to the same concept than the element user of the ASUR 
metamodel (Fig. 6 right). A user is always required in an ASUR model since the 
notation describes an interactive task, while in K-MAD a user is only present in user 
and interactive task. Furthermore, only one user is present in the ASUR models while 
several actors might be used in K-MAD model. 

L4 To a lower extent, we also identify a fourth common element: the subset in 
the K-MAD metamodel gathering expression, precondition, postcondition, iteration 
(Fig. 4 right) refers to the same concept than the elements constraint and trigger of 
the ASUR metamodel (Fig. 6 bottom). The concept carried by these elements is 
expressing constraints on tasks. 

These links constitute a first set of articulation rules that will be useful to study the 
coherence between a K-MAD model and an associated ASUR model. 

There thus remain three elements of the metamodels specific to each metamodel: 
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- The performer is specific to K-MAD (Fig. 4 bottom left) notation: the performer 
does not need to be characterized in ASUR model since with ASUR the task 
described is always interactive. 

- The attribute operator and name of the task are specific to K-MAD (Fig. 4). The 
operator specifies the synchronisation of the tasks. This concept is not used in 
ASUR which describes an atomic task. The name is not characterised in ASUR 
also. 

- The adaptor is an ASUR component (Fig. 6 top right) but is not described as 
object in K-MAD because the goal of K-MAD is not to describe the task at a 
device level. 

- The relationship in ASUR (Fig. 6 left) represent the relation between ASUR 
components and such relationship is not represented in K-MAD. 

The specific elements of the metamodels will influence the establishing of the 
additional rules. We present these rules in the following section. 

4.2   Studying the Transition from K-MAD to ASUR  

As already mentioned K-MAD and ASUR do not share the same design goal and are 
at different level of abstraction. Thus, arise two essential questions:  

- When does the transition from a task model to an interaction model occur, i.e. at 
which level of modelling should a designer move from K-MAD to ASUR?  

- How can the transition from a task model to an interaction model be achieved, i.e. 
which links can be drawn between elements of K-MAD and ASUR models to 
facilitate this transition and articulate the two models? 

In this section, we first present the rules identifying the level of transition, then the 
rules of articulation between the subsets or elements of the metamodels (italic in the 
rest of this section). 

4.2.1   When Does the Transition to ASUR Occur?  
K-MAD describes the task in a global way by integrating it in the user activity, while 
ASUR carries out a description of a specific atomic task. The purpose of the study of 
the border between K-MAD and ASUR is to adapt the type of description according 
to the level of granularity considered. Since ASUR considers that one task involves a 
unique user and a unique object of the task, we establish here two rules to define this 
border. 

R1 A unique user: to refine the interaction level of a K-MAD description with 
ASUR, the user (Fig. 4 bottom) involved in the K-MAD description must be unique. 

R2 A unique task object: to refine the interaction level of a K-MAD description 
with ASUR, the object (Fig. 4 top right) constituting the main focus of the user when 
performing the task must be unique. 

On the basis of the metamodels, we now need to explain how this transition can be 
operated with respect to the rules L1, L2, L3 and L4 and by tacking advantages of the 
richness and complementary of each metamodel. 
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4.2.2   How Can the Transition to ASUR Be Achieved? 
For this purpose we present a set of rules that establish correspondences between an 
existing K-MAD model and an ASUR model. These rules can be applied to a K-MAD 
sub-tree, a leaf or a hollow tree, depending on the result of the application of rules R1 
and R2 defining the boundaries of the K-MAD model to transform. Their use in a 
design context would transform a K-MAD tree into an ASUR model or a partial 
ASUR model i.e. an incomplete ASUR model.  

We first present each rule. We then illustrate them on our case study in section 4.3. 
In the example, both models (K-MAD and ASUR) exist before the application of the 
rule to explicitly illustrate the effect of the rule. In a design context, the ASUR model 
would at least partly result from the application of the rule to the K-MAD tree.  

Rule associated to the attribute operator of the task in K-MAD 
R3 Equivalence of decomposition in K-MAD: the equivalent of a subtask in 

K-MAD is an ASUR partial model. 
In such task, the equivalences in ASUR of the K-MAD elements involved are as 

follow: 
R3.1 The name of a K-MAD task is the set of values of the attribute name and/or 

the meaning of the relationship between the ASUR components. These elements of 
the metamodels express in different ways the goal of the task. 

Rule associated to objects in K-MAD 
R4 Equivalence of objects in K-MAD: the equivalent of an object used in K-

MAD is a physical and/or digital ASUR component (Real entity/Computer System). 
R4.1 The concrete object is an ASUR component (Real entity/Computer System) 

with a fixed characterization. 
R4.2 For each K-MAD object, there is at least an ASUR component (Real entity 

and/or Computer System). 

Rules associated to the performer in K-MAD:  
We studied the correspondence rules of a K-MAD user task, a K-MAD system task 

and a K-MAD interactive task (0).  
R5 Equivalence of a K-MAD user task: the equivalent of a user task in K-

MAD (Fig. 4 bottom) is an ASUR partial model composed of user, Real entity and/or 
Computer System components intervening in the task and relationships between 
components (Fig. 6). The rules R3 and R4 also apply to K-MAD user task and 
generate the Real entity and/or Computer System components and the relationships. 

In such task, additional equivalences in ASUR of the K-MAD elements involved 
are as follow: 

R5.1 The user performer (Fig. 4. bottom) is the user component in ASUR (Fig. 6 
right). 

R5.2 The sensory-motor modality, an attribute of the K-MAD user task (Fig. 4 
bottom), is the characteristic perception/action sense of the corresponding ASUR 
component (Fig. 6 bottom right) connected to the user via a relationship. 

R5.3 When the object of the task is digital, the partial ASUR model equivalent to 
the K-MAD task contains necessarily an adaptor (Fig. 4 bottom right). 
R6 Equivalence of a K-MAD system task: the equivalent of a system task in K-

MAD (Fig. 4 bottom left) is an ASUR partial model composed of Real entity and/or 



 Articulating Interaction and Task Models 81 

Computer System components intervening in the task and relationships between 
components (Fig. 6). The rules R3 and R4 also apply to K-MAD system task and 
generate the Real entity and/or Computer System components and the relationships. 

In such task, additional equivalences in ASUR of the K-MAD elements involved 
are as follow: 

R6.1 The equivalent ASUR partial model of a K-MAD system task using 
physical objects contains necessarily an adaptor (Fig. 4 bottom right). 
R7 Equivalence of a K-MAD interactive task: the equivalent of an interactive 

task in K-MAD (Fig. 4 bottom) is an ASUR partial or a complete model composed of 
Real entity and/or Computer System components, relationships, user and adaptors 
(Fig. 6). The rules R3 and R4 also apply to K-MAD interactive task and generate the 
Real entity and/or Computer System components and the relationships. A K-MAD 
interactive task is the fusion of user and system task. Thus, R5 and R6 also apply to 
K-MAD interactive task. 

In such task, additional equivalences in ASUR of the K-MAD elements involved 
are as follow: 

R7.1 The equivalent ASUR partial or complete model of an interactive task in K-
MAD contains at least an adaptor (Fig. 6 top right) and at least a user (Fig. 6 
right). 

4.3   Illustrating the Transition from K-MAD to ASUR 

To illustrate the rules, we consider the K-MAD interactive subtask “compare animals” 
(Fig. 3). The equivalent ASUR model is presented in Fig. 5. The K-MAD model of the 
task “compare animal”, that is to say the sub tree starting from this task, involved only 
one user, the visitor of the museum using this interactive exhibit and one object of the 
task, the physical picture representing the animal of reference. According to rules R1 
and R2, we can refine the K-MAD model with a unique ASUR description.  

According to the rule R4, the equivalent to the object animal of reference and 
animal of comparison in K-MAD (Fig. 3) can be in ASUR physical and/or digital 
object (Real entity and/or Computer System): in our case the equivalent will 
respectively be the Robject animal of reference, the Rtool animal of comparison, the Sinfo 
animal of reference, animal of comparison and criteria in ASUR (Fig. 5). 

According to the rule R3, the equivalent to the name of the K-MAD task “locate 
animal of reference” is the name and/or the meaning of the relationships in ASUR: in 
our case the equivalent is the name locate of the data exchange relationship between 
Robject Animal of reference and the user. The equivalent to the name of the K-MAD 
subtasks “identify animals” and “search criteria” are the names of the data exchange 
relationships “identify” and “search” (Fig. 5 left). 

We then consider the K-MAD subtask “indicate comparison”. The task tree 
describes the activity of the user at an abstract level so the subtask “start comparison” 
has an unknown performer. This subtask can be interactive or performed by the  
system or a user. We chose in the interaction design level to describe this task as a 
user task.  According to the rule R5, the equivalent to the user performer in K-MAD 
is the user component in ASUR (Fig. 5 right) (R5.1); and the equivalent to the sensori-
motor modality in the K-MAD subtask “locate animal” and “start comparison” is the 
value of the characteristic perception/action sense in ASUR: in our example, the 
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equivalent is respectively the visual sense as the value of the perception sense and 
physical action as the value of the action sense relating to the Robject (R5.2). Choosing 
a system performer for this task would mean that the system is a demonstrator rather 
than an interactive exhibit. As mentioned by R6.1, an adaptor to display the selected 
animal would therefore be required. 

We consider now the subtask “process information”. According to the rule R6, the 
adaptor is necessary in the ASUR model since the physical object animal of reference 
is used in the K-MAD system task (R6.1): in our example, the video projector. 

Finally, we consider the K-MAD subtask “return results”. According to the rule 
R7, the equivalent to the interactive K-MAD task is an ASUR model containing a 
user and an adaptor (R7.1): in our example, the ASUR model contains user and the 
video projector as Aout. 

The equivalences expressed previously show that the equivalent to the sub tasks of 
the K-MAD task “compare animals” is the ASUR partial models (R3). For example: 
the equivalent to the K-MAD interactive task “return result” is the ASUR partial 
model composed of: Sinfo {animal of reference, animal of comparison, criteria}  Aout 

 user (Fig. 5 right). 

5   Conclusion and Perspectives 

The work presented in this paper is in line with the development process for Mixed 
Interaction Systems and especially, it focus on the links between the Task Analysis 
step and the Interaction Design step. To articulate task model and mixed interaction 
model, we first chose two particular notations: K-MAD and ASUR. Then, by 
concentrating on their respective metamodels, we highlighted common aspects and 
links between elements of the metamodels. This first set of rules constitutes a basis 
for the articulation of the models. We then establish two types of rules to define 
respectively the boundaries between K-MAD description and ASUR description, and 
the correspondences between a K-MAD and an ASUR models. This second set of 
rules supports the articulation of the two complementary models.  

Based on the articulation rules, complementary aspects will be useful to investigate 
additional considerations. Through our illustration we can observe that ASUR does 
not take into account the order of the subtasks, while the operators of K-MAD allow 
expressing the development of the activity. The study of this complementary point 
will be done through the sequencing of mixed tasks described in ASUR and managed 
by K-MAD operators. This study is interesting to see the impact of the sequence on 
the mixed interaction.  

Starting from this study, we can define for a high level of a K-MAD model the 
elements of choice between various ASUR mixed alternatives: the study of mixed 
interaction sequence will highlights recommendations concerning interaction 
functionalities and their impact on the user activity. Finally, we have to establish rules 
to check the coherence between the models and between the rules through the process 
of development to be sure that there are no incoherencies between the different steps 
of the development process. This aspect might be based on a further use of the basic 
links identified between the metamodels. This work also constitutes a first step toward 
a model-based predictive evaluation of MIS at a design stage. 
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Abstract. The introduction of new technologies leads to a more and more 
complex interactive systems design. In order to describe the future interactive 
system, the human computer interaction (HCI) domain uses specific models and 
tools. In another way, the Model Driven Engineering (MDE) approach has been 
proposed in software engineering domain in order to provide techniques and 
tools for dealing with models in an automated way. MDE approach is based on 
models, meta-models, models transformation and models weaving and aims to 
produce productive models, i.e. models concentrated on their generative power. 
Considering these two domains and the already existing HCI works in MDE, 
the goal of this paper is to understand actual HCI design needs and to study how 
MDE tools can support HCI needs. As a first response, it proposes a survey of 
existing MDE tools in regards to HCI model management.  

Keywords: HCI, MDE, model, meta-model, transformation, MDE tools, User 
Interface Design. 

1   Introduction 

Model-based approaches aim at helping developers understand user needs and design 
solutions in an effective way. In the HCI domain, models can be declarative in order 
to describe the future interactive system, but also generative to (semi-) automate the 
code generation. If the quality of the generated interfaces can be disappointing [22], 
models remain interesting for their declarative power. As a matter of fact, interactive 
systems are more and more complex: they can use everyday life objects to propose 
tangible interfaces; they can couple the virtual and the physical worlds in augmented 
reality systems; they can adapt themselves to the user context, etc. They are 
increasingly difficult to design.  So new models appear to represent augmented reality 
systems [11, 27] or the user context (with a user model, a platform model and an 
environment model [28]). 

In terms of tools, the HCI community uses different tools to support the design of 
interactive systems, e.g. CTTE [21], GUIDE-ME [32] K-MADe [4], and Teresa [5]. 
These tools mainly give support to model editing for task models (CTTE, Teresa and 
K-MADe) or specific models such as ASUR models (GUIDE-ME). In addition, some 
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of them [33, 4] allow model simulation. However, many others operations are 
possible on models, in particular to increase their generative power.  

Model management aims at providing techniques and tools for dealing with models 
in more automated ways. It has been studied independently for years by several 
research communities in the context of databases, document management and 
software engineering. Nowadays, a federative approach emerges: model driven 
engineering (MDE [14]). At the origins of the movement, the Object Management 
Group proposes the Model Driven Architecture for object-oriented technologies. But 
this dependence on a technology and the absence of clear concept definitions lead to a 
more general approach, MDE. In MDE, any kind of models can be taken into account. 
So MDE is spreading quickly, in particular in the HCI domain as can be seen by the 
recurring workshop “Model Driven Development of Advanced User Interfaces” at 
one of the main conferences about MDE, MoDELS. 

Based on related work on MDE for HCI, this paper tries to understand the HCI 
actual design needs related to MDE and proposes a survey of MDE tools for HCI. Our 
goal is not to identify the best tool for HCI design but to find criteria that could help 
HCI designers in the choice of a MDE tool.  

The paper is organized as follows. Section 2 provides the basic definitions of MDE 
concepts. Section 3 describes the existing HCI works related to MDE. Section 4 
provides a survey of MDE tools for HCI in terms of metamodeling, model 
transformation and others operations. Finally, conclusions are presented. 

2   MDE Concepts 

2.1   Models and Meta-models 

MDE is a recent paradigm where code is not considered as the central element of 
software. Code is an element, a model produced by merging different modeling 
elements. So in MDE, everything can be considered a model. Minsky [20] defines 
that “To an observer B, an object M* is a model of an object M to the extent that B 
can use M* to answer questions that interest him about M”. This definition shows a 
model is an object intended to represent a particular behavior, dependent on a 
particular disciplinary context. In the context of MDE, interesting models are those 
that can be formalized to make them productive. Some authors integrate this 
limitation directly into the definition of the notion of model: a model is a description 
of (part of) a system written in a well-defined language [18]. This definition makes an 
explicit reference to the notion of well-defined language. In MDE, such a language is 
described by a meta-model. A meta-model is a specification model that defines the 
language for expressing a model. It defines the concepts that can be used in the 
models, which conform to it. In this way, a meta-model allows designers to specify 
their own domain-specific languages. Models and meta-models are the first main 
concepts in MDE. 

2.2   Model Transformation 

Another important concept in MDE is transformation. A transformation permits, from 
given models, to produce any model [19]. The model produced by transformations can 
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be code, test cases, graphical modeling models, etc. The goal of transformations is 
double: on the one hand, they capitalize on know-how; on the other hand, they permit to 
automate this know-how. So transformations provide the generative power of models. 

There are several kinds of generation. Classically, code can be generated from 
given models. But in reverse engineering, the models are produced from the code. 
There are many examples of translation of a model to another model such as the 
generation of UML models from formal specifications. In MDE, all these operations 
on models are considered as transformations. This is one of the key ideas in MDE that 
permits to consider all the generative operations in the same manner.   

A difficulty remains in finding a language to express the transformations. Many 
different kinds of transformation languages exist: graphical languages like TrML1; 
XML XSLT-based2 languages; languages based on a programming language (for 
instance, JMI3 expresses Java-like transformations); ad-hoc languages like MOLA 
[17] and MTL [33]; and finally languages based on the OMG standard QVT4. QVT 
principles have been implemented in several languages, of which ATL (ATLAS 
Transformation Language [1]) that is currently most widely used. 

2.3   Model Weaving 

MDE is not limited to model transformations. [9] argues that transformations are not 
sufficient to manage the generative power of models and proposes another operation 
called model weaving. Model weaving [9, 10] is an operation on models that specifies 
different kinds of links between model elements. In order to explain model weaving, 
let us consider the simple information system for a library described in [10]. In this 
context, an example of transformation of one relational database R1 into its equivalent 
XML representation X1 is proposed (Figure 1). A model weaving operation is 
specified to capture the links between both schemas with all the information 
semantically relevant.  

These links are represented in the R1_X1 mapping as illustrated in figure 1. In this 
example, both schemas represent the same information but distinct data structures are 
used. For instance, whereas the subjects have a Name in R1, they are called Descr in 
X1. The equality between these elements can be represented by the Equals links in the 
weaving. Moreover, one must also take into account the structure of both schemas: 
the foreign key constraints and the nested elements are respectively represented by 
FK and Nested links. 

This example shows that a weaving is specific to a domain. The weaving 
relationships, e.g. “Equals” or “Nested”, depend on the concepts of the models to be 
manipulated. Thus, a weaving, like any model, must be in accordance with a meta-
model. It allows afterward to define transformations from the mapping. 

Model management is not limited to model transformation or weaving. Other kinds 
of operations can be applied to models. Models can be simulated, consistency can be 
checked between them, etc. If these operations are important to make models more 
 

                                                           
1 TrML. Transformation modelling language, http://www2.lifl.fr/west/trml/ 
2 W3C. World Wide Web Consortium, http://www.w3.org/TR/2007/REC-xslt20-20070123/ 
3 JMI. Java Metadata Interface, http://java.sun.com/products/jmi/ 
4 Query/View/Transformation. OMG Specification, http://www.omg.org/docs/ptc/05-11-01.pdf 
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Fig. 1. Links between a relational and an XML schema of a library  

useful, they are generally not presented as part of MDE for MDE concentrates on the 
generative power of models. We can note that it is important that MDE tools can be 
easily connected to other tools that will provide other operations on models. 

3   Existing HCI Works in MDE 

Model-based Systems for User Interfaces Design (UIDE) have been addressed using 
many approaches over the years. Early works on UIDE such as Foley [15] established 
the foundations for transforming high-level specifications into executable code. Later, 
various approaches have been developed in the field of model-based design of 
interactive applications [24]. More recently, works in UI design are using partially the 
MDE principles. This section describes the existing works in order to identify needs 
related to MDE tools.  

3.1   Models and Meta-models in HCI 

Historically, MDA and consequently MDE approaches have been “inspired” by 
concepts of the UML meta-model and the MOF meta-meta-model. MOF is a model of 
the meta-models proposed by the OMG. In particular, it is the meta-model of the most 
used meta-model, the UML one. MDE uses UML class diagrams as notation for the 
representation of models and meta-models. 

In HCI, UML models are not widely used because they are not adequate but also 
because the HCI domain has developed its own notations such as task models, ASUR 
models, etc. Several meta-models have been proposed for context-adaptive user 
interfaces [28, 6, 7]. Generally, they include a meta-model for the task model, but also 
models related to the user context such as a platform model. For example, Fig. 2 
represents a task meta-model proposed in [28]. In this meta-model, the tasks are 
linked by operators. Logical and temporary operators are considered as binary, 
whereas the decorations on the tasks are supplied by unary operators. 

 

Fig. 2. A task meta-model [28]  
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The use of MDE and meta-models is not limited to the adaptation of the user 
interface to its context. Other domains of HCI also define meta-models for specific 
notations such as ASUR, a graphical notation for augmented reality systems [12] or 
for specific tools like in [16].  

All these meta-models are independent, but they are instances of the same meta-
meta-model (i.e. MOF). They are defined from scratch without being the extension of 
well-known meta-models. Another approach could be to extend an existing meta-
model. In particular, UML proposes profiles to extend the UML meta-model to a 
specific domain. So the meta-models defined as UML profiles take advantage of the 
already existing semantics of UML and must conform to its semantics. For instance, 
some extensions have been proposed for HCI through UMLi [25] and for context-
sensitive user interfaces [31].   

The study of these existing works leads us to conclude that user interfaces design 
needs MDE tools, which support domain-specific meta-models and models. Unlike 
for software engineering (SE), there is no consensus on the models for HCI. In 
addition, even different notations are proposed for task modeling. So the HCI domain 
must manage several meta-models for task models. This diversity brings the need to 
use MDE tools that permit designers to create their own meta-model or to modify an 
existing one.  

Finally if designers want to create links between HCI and SE models, all the meta-
models must be instance of the same meta-model. As SE and MDE communities use 
the MOF as the meta-meta-model reference, it is important that the HCI domain 
conforms to this practice. So the HCI meta-models must be instance of the MOF and 
they must be represented by an UML class diagram. 

3.2   Model Weaving in HCI 

Establishing links between model elements can provide numerous application 
scenarios, such as model comparison, traceability, matching or interoperability. To 
our current knowledge, model weaving has been used in the HCI domain on the 
notion of mapping [29]. In this approach, a UI is described as a graph of models and 
mappings both at the design time and run-time.  

The mappings are specified manually in a semi-formal way by the designer, or are 
created automatically by the system as the result of a transformation function. At 
design time, the mappings convey some properties that help the designer in selecting 
the most appropriate transformation function (e.g. the concepts manipulated within a 
task are grouped together). Either the target element of the mapping is generated 
using a transformation function. At run-time, mappings are keys for reasoning on 
usability (e.g. select the appropriate usability framework in the generation of UIs). 
Mappings models are more than a simple traceability link; they can embed 
transformation in order to manage models consistency. 

The use of model weaving is currently limited in HCI. It is more complex than the 
direct transformations or comparisons as it requires the creation of a weaving meta-
model. But it increases the traceability of model manipulations by explicitly 
representing links between models. Then transformations or model comparisons can 
be more easily executed from the weaving links. So the need of weaving models in 
HCI is important. 
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3.3   Model Transformations in HCI 

More than weaving, transformation operations represent the heart of the MDE. 
Section 2.2 showed that there are several kinds of transformations and that many 
languages have been proposed to represent them.  In this section, we study how the 
HCI community uses transformations for user interface design. 

3.3.1 Transformation Languages Chosen in HCI 
Many transformations languages are currently proposed and still developed in the 
MDE domain. An important decision consists in selecting a suitable language for 
transformations. Our study of existing works suggests that transformation languages 
are currently underused by the HCI community. Most of the work studied does not 
refer to any transformation language, which suggests that transformations are 
currently done in an ad-hoc manner or not formalized at all. Nevertheless, there are 
exceptions. In the domain of web interfaces, the transformation language is XSLT. In 
other domains, several papers [28, 7, 16] refer to ATL. 

So it may be too early to clearly specify the HCI needs in terms of transformation 
languages. The HCI community seems to follow the standard of use. Nevertheless, the 
choice of a transformation language requires it to be easy to understand and to use, 
especially for non-MDE specialists as can be HCI designers. So it is important to note 
for each MDE tool which kind of language it supports. 

3.3.2 Transformations Proposed in HCI 
In section 2.2, we identified the needs to generate code from models, models from 
code or models from models. Even if reverse engineering exists in HCI [3], we did 
not find any examples of model generation from code using MDE approach.  

The idea of transforming one model into another is proposed mainly to bridge the 
gap between HCI and SE models. [23, 8] propose some informal transformations 
between activity diagrams and task model. But transformations are more commonly 
used to produce code. A good example of model transformation can be found in [29]. 
It describes a complete approach based on transformations with the generation of 
models from models and of code from models. Because of space limitations, we will 
comment only one transformation that generates one model from another. The rules 
are expressed in the same way to generate code.  

Based on a case study of a Home Heating Control System (HHCS), this example 
shows that a final UI can be defined by a set of model transformations that follows the 
following steps: from the domain-dependent concepts and task models, an abstract UI 
(Workspace) is derived; this abstract UI is then transformed into a concrete UI (CUI), 
which is transformed into the final UI. To give a more precise example, we shall 
concentrate on the transformation from tasks into workspaces. In this example, the 
tasks are transformed into workspaces; the operators between tasks into chains 
between workspaces. 

Figure 3 presents the meta-models used in the transformation of the tasks into 
workspaces. In this figure, we see that every task is associated with a workspace and 
that the binary operator gives rise to chains between workspaces. 
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Fig. 3. Meta-models used in the transformation from task to workspace [29] 

In the current implementation of HHCS, the mappings between the task model, the 
workspace and the CUI are expressed in ATL; an example is illustrated in figure 4. 
The first rule illustrates the generation of a task into a workspace; it consists in 
creating a space for every task with the assignment of the name of the task. The 
second rule illustrates the transformation of a binary operator into a chain; it considers 
only the operator "Or" and is written in two parts: the first one consists in the 
selection of the binary operators of type "or"; the second describes the access given by 
the space representing the mother task to spaces representing their two daughters. 

 

Fig. 4. Example of the transformation Task to Workspace in ATL [28] 

In MDE, there is no distinction between transformations: a transformation always 
generates one model from another. It is assumed that the code or program is also a 
model. Nevertheless, in the perspective of using MDE tools, one important aspect is 
to guarantee that the transformation result can be expressed in a recoverable format 
that is useful for another tool. This implies that the format of the transformation result 
is important. It is needed to know if the result is a text file that can be compiled or 
interpreted or if it is a structured file (in XML for instance) that can be manipulated 
by design tools.  

In the perspective of comparing MDE tools according to HCI needs, we note that 
the existing works in HCI reflects a clear need to realize transformations of HCI 
models. To go further, the HCI community could define libraries of classic 
transformations that could be integrated and manipulated by MDE tools. So it is 
important that MDE tools propose a transformation repository or at least the load of 
existing transformations. This brings the need to a common language to express 
transformations but also this adds constraints on the format to permit interoperability 
between tools. We note that the format of the transformation result is also important 
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to know in order to determine the future operations that can be realized on the 
resulting model. 

4   Survey of MDE Tools for HCI 

4.1   Diversity of Tools 

Both at the commercial and research levels, several tools for MDE are either available 
or in development. These tools are designed as frameworks [2] or as plug-in [1]. 
Several classification works [13, 26] and tool comparisons [30] were proposed. 
However, no classification estimates the functional criteria that we defined towards 
our needs, in particular in terms of specific models used in HCI domain.  

Table 1 shows a list of tools that we have considered realizing our survey. This list 
is focused on the MDE tools which could be used in the HCI domain as the 
manipulated models are not limited to UML models. 

Table 1. Survey of MDE Tools  

Tool Version Description 
ACCELEO 
GPL - Open source 

2.0.0 Eclipse and EMF template-based system for MDA generation. 
http://www.acceleo.org/pages/accueil/fr 

AndroMDA 
Open source 

3.2 An extensible generator framework. Models from UML tools will be transformed 
into deployable components for your favorite platform (J2EE, Spring, .NET). 
http://galaxy.andromda.org/index.php?option=com_frontpage &Itemid=48 

ADT 
Open source 

2.0 ATL Development Tools are a suite of Eclipse plugins including an ATL engine 
(compiler and virtual machine) as well as an IDE. http://www.sciences.univ-
nantes.fr/lina/atl/atldemo/adt 

AToM3 
Open source 

2.2 A Tool for Multi-formalism and Meta-Modelling supporting modelling of 
complex systems. http://atom3.cs.mcgill.ca/index_html 

DSL Tools (Visual 
Studio 2005 SDK) 

4.0 
 

DSL Tools enable the construction of custom graphical designers and the 
generation of source code using domain-specific diagrammatic notations in Visual 
Studio 2005. http://msdn2.microsoft.com/en-us/vstudio/aa718368.aspx   

Kermeta 0.4.1 A metamodeling language which allows describing both the structure and the 
behaviour of models. http://www.kermeta.org/  

ModFact  
GPL - Open source 

1.0.1 A tool that provides a framework for building application. http://modfact.lip6.fr/ 

Merlin 
Open source 

0.5.0 A software modelling tool based on model transformation and code generation. 
http://merlingenerator.sourceforge.net/merlin/index.php 

MDA Workbench 
Open source 

3.0 The MDA Workbench is a MDA tool implemented as an Eclipse plug-in based on 
modelling and code generation. http://sourceforge.net/projects/mda-workbench 

MOFLON 
Open source 

1.1.0 A meta modelling framework built as plug-in for the graph transformation tool 
Fujaba. http://www.moflon.org/  

OptimalJ Professional 
Edition 

3.0 Generator of J2EE applications using patterns to translate business models into 
working applications. http://www.compuware.com/ products/optimalj/      

QVT Partners 
BSD like license 

0.1 Tools based on QVT for transformation models to models and code generator. 
http://qvtp.org/downloads/qvtp-eclipse/  

SmartQVT 
Open source 

0.1.4 A model transformation tool based on QVT-Operational language. 
http://smartqvt.elibel.tm.fr/  

UMLX 
Open source 

0.0.2 An experimental concrete syntax for a transformation language. 
http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/subprojects/UMLX/  

These tools will be studied according to the needs listed in the previous sections. 
These needs are general to the HCI domain. Any HCI designer must refine them to 
choose his MDE tool. So we do not intend to find the best tool but rather to provide 
relevant information to choose a MDE tool. We will present our survey in terms of 
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the MDE important concepts: models and meta-models, operations on models and 
other functionalities. 

4.2   Tools in Terms of Meta-models and Models Expression 

Regarding models and meta-models, the HCI community needs tools that do not just 
consider UML models, but also specific models. Our list of tools being limited to this 
kind of tools, any tool in the list can be suitable for HCI in terms of model and meta-
model support. Nevertheless, to refine our comparison, we introduce a criterion about 
the way of expressing models and meta-models: models and meta-models can be 
represented either textually or graphically. We also note if constraints can be added to 
complete models and meta-models. Constraints are written in OCL, the constraint 
language for UML.  

Table 2. MDE tools in terms of meta-models and models expression 

Expression (Meta-models)  Expression (Models)  
Tools Graphical (G)  or 

Textual (T) 
Constraints Graphical (G) or 

Textual (T) 
Constraints 

ACCELEO G, T OCL G, T OCL 
AndroMDA T OCL G, T OCL 
ADT T OCL T OCL 
AToM3 G - G - 
DSL tools G, T - G, T - 
Kermeta G,T OCL G, T OCL 
ModFact G - G - 
Merlin G,T OCL G, T OCL 
MDA Workbench G, T OCL G, T OCL 
MOFLON G, T OCL G, T OCL 
OptimalJ G OCL G OCL 
QVT Partners G, T OCL T OCL 
SmartQVT T OCL T OCL 
UMLX G, T OCL G, T OCL 

From the previous table, we would recommend that a user interface designer 
should better choose a tool allowing a graphical expression of models and meta-
models, because graphical representations are of course easier to use than textual 
representations for non specialists.  

4.3   Tools in Terms of Model Transformation and Weaving 

As mentioned in section 3, HCI needs in terms of operations on models are not 
limited to transformations. Table 3 lists all the model manipulations proposed by the 
tools and shows that only ADT provides some part of the infrastructure for the 
manual creation of weaving models, what is a real advantage on other tools. 

Then for transformations, even if there is a standard specification for 
transformations (QVT), there is no standard language. The majority of MDE tools 
support QVT so that, in principle, the use of QVT guarantees that the result of a 
transformation is compatible with another tool that uses QVT. But in practise, the 
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implementations of QVT are different and the compatibility between tools is not 
guaranteed. We also showed in section 3.3 that XSLT and ATL were nowadays the 
only two languages used by the HCI community. So to support the creation of 
transformations libraries for HCI, the tools ADT and UMLX, which support XSLT 
and ATL, should be preferred in the HCI domain. Moreover ATL is already widely 
used in the SE domain. So ATL is a good candidate to facilitate links between HCI 
and SE models.    

Moreover it is important to identify the form (text or model) of the generated 
models in order to identify which kind of tools can manipulate them. In table 3, the 
word "Text" is used when the result of a transformation is textual. Generally the result 
is some code written in a programming language (java, C, C++, Cobol, Fortran, 
VB.net, etc.) that can be compiled or interpreted. The term XMI is used when the 
result of the transformation is a model in the XMI form (XML Metadata Interchange), 
which can be loaded in many design tools. Here again ATL and UMLX (with other 
tools) have an advantage as they provide the XMI and the textual format. 

Considering model operations, two tools are good candidates for the HCI domain: 
ATL that is the solution for works in the SE spirit and UMLX which is more adapted 
for works with web technologies.     

Table 3. MDE tools in terms of models transformation and weaving  

Transformation  
Generated model 

 
Tool Language Graphical (G) or  

Textual (T)  Expression XMI Text 

 
Weaving 

ACCELEO QVT, JMI T - Yes - 
AndroMDA ATL, MofScript T Yes Yes - 
ADT ATL T Yes Yes Yes 
AToM3 Multi formalism (python) G  Yes - 
DSL tools Notation XML T Yes Yes - 
Kermeta QVT T - Yes - 
ModFact QVT T - Yes - 
Merlin QVT, JET T - Yes - 
MDA Workbench QVT T - Yes - 
MOFLON JMI G - Yes - 
OptimalJ QVT T - Yes - 
QVT Partners QVT T Yes Yes - 
SmartQVT QVT T Yes Yes - 
UMLX XSLT, QVT T Yes Yes - 

4.4   Tools in Terms of Other Operations 

The studied MDE tools offer good solutions for meta-modeling and transformations. 
But one may want to reuse models, meta-models or transformations into another tool, 
so it is very important to know the capacity of a tool to interoperate with other tools.   

In sections 3.1 and 3.3, we noted the importance of the format to exchange models 
and meta-models and to bridge the gap with the SE domain. A great part of the tools 
is centred on the MOF specification. So they can cover the modelling needs of 
different domains and especially of HCI. Several implemented formats have been 
proposed for the MOF: ECore, MDR (Metadata Repository), KM3 (Kernel Meta-
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Meta Model), DSL (Domain Specific Language) and CWM (Common Warehouse 
Meta-model). Nevertheless, DSL does not conform to MOF's implementation. That’s 
why KM3 was created: KM3 is a specialized language to specify meta-models and is 
used as a bridge between MOF and DSL. The most used format is ECore, which is a 
simplified version of the MOF. Moreover MDE tools provide many libraries of 
predefined models and meta-models in ECore. So the choice of a ECore compliant 
tool is important to guarantee the development and the exchange of reusable models 
and meta-models.  

Regarding model transformation, XMI is proposed for transformations but it is not so 
widely chosen. As a matter of fact, many other tools prefer textual transformations, in 
particular for QVT tools.  In terms of interoperability, Eclipse proposes de facto methods 
for the storage and the recovery of models based on XMI. So the great majority of MDE 
tools is based on Eclipse and can interoperate with other Eclipse tools. 

Finally, what is more important in the HCI domain is the interoperability of MDE 
tools with existing HCI design tools. Generally HCI design tools do not have a known 
meta-model. However the models produced with them can be saved in an XML 
format. The interoperability between MDE and HCI design tools can be easily 
guaranteed by transforming every XML file in a ECore compatible format, so that it 
could be recovered by the MDE tools that support this format. A longer term solution 
is that HCI tools incorporate the MDE standards and create mechanisms to import or 
export information based on the XMI format.  

Table 4. MDE tools in terms of other operations 

Tool Repository 
Interoperability 
with others tools 

 Metamodeling Model  transformation Constraints  
ACCELEO DSL, MDR, ECORE - XMI Eclipse, Netbeans  
AndroMDA MOF, DSL - XMI Eclipse 
ADT DSL, KM3, MDR, ECORE Text (ATL) XMI Eclipse, Netbeans 
AToM3 Proprietary graphical multi - formalism - 
DSL tools DSL - Proprietary notation  XML / XMI - Eclipse, Netbeans 
Kermeta ECORE Text (QVT) XMI Eclipse 
ModFact ECORE XMI XMI Eclipse 
Merlin ECORE Text (QVT) XMI Eclipse 
MDA 
Workbench 

ECORE XMI XMI Eclipse 

MOFLON ECORE - XMI Eclipse 
OptimalJ CWM, ECORE XMI XMI Eclipse 
QVT 
Partners 

ECORE Text (QVT) XMI Eclipse 

SmartQVT ECORE Text (QVT) XMI Eclipse 
UMLX ECORE XMI, XSLT XMI, XSLT Eclipse 

5   Conclusion 

The goal of this paper is to propose a survey of MDE tools in order to help the HCI 
community in the choice of a MDE tool. Considering existing works in the HCI 
domain, we think that the HCI domain shows a clear need for the MDE approach and 
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tools. First, considering models and meta-models, HCI designers use a lot of domain-
specific models such as task models, ASUR models, etc. that conform to specific 
meta-models. Transformation models and weaving models are also needed in HCI 
domain. In particular, model weaving has been used on the notion of mapping where 
a user interface is described as a graph of models and mappings both at design time at 
run-time. Moreover, transformations allow to generate code from models, but also to 
produce new models from other ones. Two types of transformations are then needed, 
those that generate code (more generally, a text file that can be compiled or 
interpreted) and those that generate graphical models (more generally, a structured 
file that can be manipulated by design tools).  

Based on these needs, we draw a survey of several MDE existing tools. Several 
conclusions can be drawn from this comparison. In terms of modeling, a great part of 
the tools are centered on MOF and allow to model domain-specific models. In terms 
of transformations, there is no standard language to use, but it is important to know 
the language manipulated by the tools and to specify if they are graphical or textual. 
Moreover, it is important to know the format (text or model) of the generated models 
in order to identify the kind of tools that can then manipulate them. Our conclusion is 
that MDE is able to answer the specific needs of the HCI community in terms of 
models. Nevertheless, the HCI community has to incorporate the proposed standards 
that MDE is nowadays using. We hope this comparison will be useful to any HCI 
designer who wants to select a MDE tool based on functional needs in terms of 
graphical (or textual) expression of domain specific models, models transformation, 
models weaving and interoperability with specific HCI tools. 
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Abstract. Many model-based approaches for user interface design start
from a task model, for which the ConcurTaskTrees notation is frequently
used. Despite this popularity and the importance that has been given to
a close relation with UML, no relation has been established with UML
state machines, which have been shown to be useful for the description of
the behavior of user interfaces. This paper proposes a semantic mapping
of tasks and all temporal relations of the ConcurTaskTrees to UML state
machines which forms the basis for a compact dialog modeling notation
using UML state machines. The proposed approach uses a UML profile
to reduce the visual complexity of the state machine.

1 Introduction

The ConcurTaskTrees notation (CTT) [12] is one of the most popular notations
for hierarchical task modeling used in academia for model-based design of user
interfaces. Since the Unified Modeling language(UML) [11] is one of the most
established modeling notations for software models, several approaches have been
presented to integrate the ConcurTaskTrees notation into UML.

Nunes and e Cunha[10] made a mapping to UML class diagrams as part of
the Wisdom notation. They mapped each task in the task model to a UML
class. The relations between parent and child tasks are represented using aggre-
gation relationships while the relations between siblings are represented using
constraints. All task categories are represented using the same task symbol.

Nobrega et al. [9] present a different approach which emphasizes the fact that
tasks in the ConcurTaskTrees notation represent activities. Therefore, they show
tasks using the UML notation for actions. They also propose new symbols for
the temporal operators of the ConcurTaskTrees. All changes they proposed were
made to integrate the ConcurTaskTrees notation both visually and semantically
into the UML.

In earlier work [16] we opted to extend the class diagram to represent the
CTT but to keep the appearance closer to the original. This resulted in some
notable differences with the approach presented in [10]: The relations between
tasks are represented by stereotyped associations and each task category keeps
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its original symbol (and properties), thus keeping the look of the model closer
to the original CTT specification.

A close relationship of the CTT with UML state machines has not been es-
tablished. It has however been shown that (this type of) hierarchical statecharts
can effectively be used to describe [3] and generate user interfaces [1,14]. In this
work, we extend the state-of-the-art by presenting a semantic mapping of the
dynamic aspects of the task model and exploiting this mapping for a compact,
powerful dialog modeling notation using UML state machines.

The mapping between CTT and UML state machines is established by giving
a behavioral specification for a task using UML state machines and is discussed
in section 4 after a short introduction of both notations. This specification is then
used in section 5 to express the behavioral semantics of all temporal operators.
These specifications are used to derive a dialog model from a CTT model. A
UML stereotype is used to reduce the visual complexity of the model. The paper
is concluded by a discussion of related work and conclusions.

2 ConcurTaskTrees

The ConcurTaskTrees notation [12] is a hierarchical task modeling notation that
has a tree-based structure. All nodes in the tree are tasks. There are four task
categories, each having its own symbol: abstraction ( , an abstract task has sub-
tasks of at least two different task categories), interaction ( , a task performed
through interaction of a user with an application), user( , a task performed by
the user without interaction with the application) and application ( , a task
performed by the application). Siblings in the tree are connected using temporal
operators derived from LOTOS [5]. Section 5 discusses these operators into more
detail.

Fig. 1 shows a CTT example. It specifies how a user can check the availability
of a hotel room. First the user specifies the start and end date of the stay or
the start and duration. Next, the user specifies the room type. The application
then checks the available hotel rooms (during that period, Perform Query) and
shows the available rooms to the user. The user can then refine the selection of
available rooms by adapting the period and the room type until the refinements
are submitted. The check for availability can be cancelled at any time (Close
Availability).

3 UML State Machines

UML state machines are an object-based variant of Harel statecharts [2]. Both
have the advantage over other forms of statecharts and state transition networks
that they support concurrent states. This means that when a UML state machine
is executed, it can be in multiple states at a given moment in time. Furthermore
Harel statecharts as well as UML state machines allow hierarchical composition
of states.
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Fig. 1. Example of a CTT specification

Fig. 2 gives an overview of the relevant symbols in this notation. The initial
pseudo state and the final state respectively mark the start and the end of
a composite state or state machine. An exit point can be used to mark an
alternative end point (e.g. due to abnormal behavior). A fork symbol can be
used to specify that a single state is followed by two or more concurrent states.
A join allows to do the opposite. A choice pseudo state can be used to specify
multiple alternative next states. Finally, a small black dot (not shown in Fig. 2 is
the symbol for a junction which allows to merge or split transitions (displayed as
arrows). For a detailed discussion of UML state machines we refer to the UML
Superstructure specification [11].

(a) (b) (c) (d) (e) (f) (g)

Fig. 2. UML state machine symbols: (a) Initial pseudostate, (b) Exit point, (c) Final
state, (d) State with specification of behavior on entry, during and on exit of state,
(e) Composite State with two regions specifying concurrent behavior, (f) Fork/join (g)
Choice pseudostate

UML state machines have no direct formal mapping, although partial map-
pings are already specified to stochastic petrinets for UML state machines with
the UML realtime stereotype extensions applied [15].

4 Tasks in UML

As mentioned in the introduction, different representations of the CTT in UML
have been proposed. Fig. 3 shows the CTT task model of Fig. 1 using the Wisdom
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notation, proposed in [10]. It clearly shows that each task is represented by
the same icon. This icon is related to the stereotype1. The task categories are
represented by tagged values (shown between brackets such as application in
Fig. 3) unless they are interactive tasks. Constraints are used to denote the
temporal relations. When no constraints are applied between the parent-child
relationships of two sibling tasks, these tasks are executed in concurrency.

Fig. 3. The example of Fig. 1 using Wisdom notation [10]

In earlier work [16] we presented an alternative representation in UML with a
notation that is closer to the original. In fact, the CTT model shown in figure 1
can be modeled using the CTT UML profile2. Some differences arise when a task
is optional or iterative. These properties are modeled as tagged values, which
can be shown when desired.

As both of these approaches use classes to represent tasks and classes can own
state machines, a state machine is a natural choice for specifying the behavior of
a task. The state machine specification thus complements the specification using
classes and gives more details about the behavioral properties of the tasks, while
class diagrams can be used to specify the structural properties.

To describe the behavior associated with a task, we model the different states
of execution. At the highest level we discern two stages: active and inactive.
These stages can on their turn be subdivided in different states. A task can
be considered to be inactive, when it is not yet activated, when it has been
successfully completed or when it has been aborted. The active state can be
subdivided into two states: executing and sleeping.
1 Stereotypes are a light-weight method to extend UML metaclasses.
2 The profile is made in MagicDraw and available at http://research.edm.uhasselt.
be/∼jvandenbergh/cup/ContextualConcurTaskTrees.mdzip.

http://research.edm.uhasselt.
be/~jvandenbergh/cup/ContextualConcurTaskTrees.mdzip
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Fig. 4 shows the state machine that can be associated with a task T1. When-
ever the state T1 is activated (T1 being the name of the task), the task is con-
sidered active. The inactive states are depicted in Fig. 4 for completeness. They
will not be depicted in further diagrams. On entry and exit of the states T1 and
Executing, an activity is specified. These activities broadcast an event, which
can trigger state changes for other tasks. All these events have an attribute that
specifies the source of the event. On entry of the state T1 an event, activated,
is broadcasted indicating that T1 is active. When the actual execution of a task
starts an event, started, is broadcasted. When an event stopped is sent, the task
is no longer executing, but the execution might be resumed. The event ended
indicates that the task has become inactive.

Fig. 4. Task states

The exact meaning of these states depends on the task category and on the
platform and context in which the interaction is taking place. Table 1 shows a
possible mapping for the states of an interaction task to a concrete context: desk-
top interaction using a multi-window desktop such as MS Windows or MacOS.
The states of an application task presenting data to the user can be described in
a similar manner. When the application task is not directly represented on the
screen the states might be mapped to the states of the thread or process that
executes the task. Giving a concrete description of the states for a user task in
general is not as straightforward, although it should be easy to do for user tasks
that involve physical activity on a case by case basis.

5 CTT Task Relations and UML State Machines

In this section we discuss how the task representation introduced in section 4
can express the temporal relations of the CTT. For each temporal operator a
diagram is discussed that shows the application of the operator to two tasks.

concurrency. The concurrency operator (|||) expresses that two task can be
executed in any order and can interrupt each other. It has a straightforward
mapping to UML state machines when the state machine definition in Fig. 4 is
used. Fig. 5(a) shows that two parallel tasks can be represented by embedding
each task representation in a separate region of a complex state.
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Table 1. States of task execution for an interaction task on a pc using a graphical user
interface

state description

active the window containing the user interface controls associated to the
task is shown on the screen

sleeping the user interface controls associated to the task are disabled or not
visible

executing the user interface controls associated to the task are enabled and
visible

(a) Concurrency (b) Order Independence

Fig. 5. Concurrency and order independence

order independence. When the order independence operator (|=|) is used be-
tween two sibling tasks T1 and T2, these tasks can be executed in any order but
not concurrently. This means that when T1 is executing, T2 cannot start exe-
cution and vice versa. When one of the tasks is completed, the other can start
executing. Fig. 5(b) also clearly shows that the two tasks cannot interrupt each
other.

suspend/resume. The suspend/resume operator (|>) suspends one task while
another one is executing. Using the terminology introduced in section 4 this
means that for the expression T1 |> T2, T1 cannot be in the state executing
when T2 is in that same state. This is reflected in the diagram in figure 6. The
transition from sleeping to executing is only possible for task T1, when task T2
is not in the executing state. A transition from sleeping to executing of the task
T2 triggers the inverse transition of task T1.

enabling. The main property of the enabling operator is that the tasks that are
its operands are executed one after the other. In terms of the proposed state
machine for tasks, this means that there is only a constraint on the order of
the executing state. Fig. 7 thus shows two different state machines that satisfy
that constraint. Fig. 7(a) corresponds to the situation where only the tasks that
belong to the same enabled task set (ETS) are presented in the user interface. An
ETS is a set of tasks that are logically enabled to start their performance during
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Fig. 6. Suspend/Resume

(a) (b)

Fig. 7. Enabling

the same period of time [12]. Fig. 7(b) corresponds to a situation where two
ETSs are merged into a single task set. [13] proposes some heuristics for when
such a merge can be desired. Note that unlike many dialog models, Fig. 7(b)
still shows that T2 cannot be executed until T1 is finished. This ensures that
the dialog model is consistent with the task model, even when ETSs are merged.

deactivation. The deactivation operator ([>) can be used to let one task inter-
rupt the execution of another task and prevent further execution of that task.
Fig. 8 shows what this means in terms of our UML state machine representa-
tion. T1 [> T2 means that when T2 ends execution, T1 immediately becomes
inactive. Note that both diagrams in Fig. 8 result in the described effect. The
approach in Fig. 8(a) can be extended to work when T2 has subtasks (although
the first subtask of T2 should be used in this case to be compliant with the CTT
specification, while the approach in Fig. 8 cannot but offers a simpler syntax
instead.

choice. The choice operator ([]) offers the option to choose between two tasks of
which only one may be completed. As soon as one of the tasks starts execution,
the other tasks become inactive. This prevents that more than one task is ex-
ecuting at the same time. This type of choice is called a “deterministic choice” in
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(a) (b)

Fig. 8. deactivation

[4]. The same article also describes a non-deterministic choice. This latter type
of choice only allows one task to complete; the other options will not become
inactive until one of the tasks has been completed (see Fig. 9(b)).

(a) deterministic (b) non-deterministic

Fig. 9. Choice

task iteration. The two possibilities that are offered by the CTT notation for
the expression of iterating task can be expressed as is shown in Fig. 10. Both
diagrams using UML state machines clearly show the semantics of the iteration
operators in the CTT; the repeatable task has to be completed before another
iteration of the task can be repeated.

optional. The state machine representation of an optional task contains an addi-
tional transition from the sleeping state to the final pseudo state. The transition
is triggered by the completion of a task that triggers a transition to another
enabled task set.
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(a) infinite iteration (b) finite iteration

Fig. 10. Task iteration

6 Towards a Dialog Model

The previous section showed that it is possible to combine the UML state ma-
chine description of two (or more) sibling tasks. To create an effective dialog
model, however, a complete task model has to be converted into a UML state
machine. In this section, we demonstrate by example that it is possible to do so
for the task model in Fig. 1.

6.1 The CTT Example

Fig. 11 shows the UML state machine corresponding to the CTT task model in
Fig. 1. The hierarchy from the CTT model is preserved in this example. This
is however a choice made, not an obligation. Furthermore, one-to-one mapping
might not always be possible in the general case but no definitive claims can
be made about this without further investigation and in some cases it may be
desirable not to copy all abstraction levels from the CTT to the state machine.

We can see that the top-level state is split into four concurrent regions, each
corresponding to a direct child of the top-level task in the CTT. The fact that
their are four concurrent regions is caused by the choice to use the mapping
in Fig. 7(b) for the enabling operator between the tasks Define period and
Select room type, and the tasks Select Room type and Show and refine
availability. For the enabling operator between the tasks Perform query
and Show Availability, the other option was chosen, resulting in a sequence
of states within the first region of the task Show and refine availability.

When observing the diagram, we can also see the two options to indicate the
deactivation operator. The option in Fig. 8(a) is applied for the task Submit,
while the other option is applied for the task Close Availability. It is clear
that the choice for the second option reduces the complexity of the overall dia-
gram.

The example in Fig. 11 shows that it is possible to use the proposed notation
to map the behavior of the CTT to the UML state machines. The resulting nota-
tion is however too complex to quickly understand the meaning of the diagram.
To resolve this issue we opted to define a UML profile, which should reduce
the complexity of the notation. The profile is discussed into more detail in the
following section.
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Fig. 11. UML state machine corresponding to Fig. 1 and Fig. 3

6.2 Simplified Notation for a Dialog Model

Fig. 12 gives an overview of the UML profile we defined to simplify the nota-
tion for interactive use of the notation. The profile consists of a single stereo-
type, << task>> for the State metaclass. When the UML-profile is applied to a
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Fig. 12. Proposed stereotype for the State metaclass

Fig. 13. Simplified notation of Fig. 11 using the stereotype << task>>

UML state machine, the stereotype should be applied to all instances of the
metaclass State, i.e. all states in the diagram.

Seven tagged values are defined within the stereotype, which relate to the dif-
ferent temporal operators: executeAfter specifies the task after the completion
of which the current task can start executing. It is used in case an overlap in the
active state of the two tasks is desired as is specified in Fig. 7(b). alternativeTo
allows to specify an alternative task. The collection of tasks specified by this
tagged value contains one or more tasks when the corresponding task in the
CTT is an operand of the choice operator. concurrentAlternative is set to
true in case of non-deterministic choice. disables is a non-empty collection of
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tasks when the corresponding task in the CTT is the right-operand of a deactiva-
tion operator and the mapping to Fig. 8(a) is chosen. nonInterruptable is true
when the corresponding task in the CTT is an operand of the operator order
independent. optional is true when the operator optional is applied to the cor-
responding task in CTT. repeatable is set to true when the corresponding task
is repeatable. repetitionCount can be used to set the number of repetitions.

Fig. 13 shows the simplified version of the state machine in Fig. 11. This di-
agram is clearly more readable, because the added complexity of the substates
and associated transitions of the task state active is removed from the diagram.
Since all states have the stereotype << task>> applied to them, this stereotype
is not shown in the diagram. For those states that have a tagged value that con-
tains one or more values, the name of the tagged value as well as the values are
shown below the state name between parentheses. For states whose correspond-
ing task is optional or nonInterruptable or repeatable only the name of the
tagged value will be shown. Note that there is no such task in this example.

Taking into account the concrete semantics for the task states presented in
section 4 and table 1, we can state that we can consider the diagram in Fig. 13 to
be a high-level dialog model. A complex state can correspond to a single dialog
or window or a part thereof. Fig. 13 can thus describe the dynamic composition
of a single window.

7 Related Work

One can find several approaches to define the semantics of the temporal operators
of the CTT in literature. Some provide an informal definition of the temporal
operators such as Mori et al. [7]. They also present an algorithm to transform
the CTT to a set of enabled task sets (ETSs). Mori et al. [8] also propose an
abstract user interface model that contains a dialogue model description. This
notation is based on task sets and transition tasks.

A more formal definition of the CTT is given by Luyten al. [6] who use these
definitions to define an alternative transformation algorithm from the CTT to a
set of ETSs. They do not give semantics of the temporal operators except that
two of them cause transitions: the enabling and deactivation operators.

Both aforementioned approaches do not support nested states, which means
that merging task sets creates inconsistencies between the task model and ab-
stract user interface model.

Nobrega et al. [9] provide a mapping of the CTT to UML 2.0. They define
the semantics of most of the operators by defining a mapping to UML 2.0 ac-
tivity diagrams. In contrast to this work, they do not provide a definition for
the suspend/resume operator. They do propose an extension to UML, with a
hierarchical task notation, which reuses as much symbols of UML as possible
for the newly introduced concepts. This notation is, however, not used to derive
further specifications, such as a dialog or abstract user interface model.

Elkoutbi et al. [1] propose a semi-automated approach to derive interactive
prototypes from scenarios specified using UML use cases, class diagrams and
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collaboration diagrams. This approach uses statecharts as an intermediate step
to specify the behavior of the interactive prototype. Their approach shows the
capabilities of the UML state machines (with nested states) as a specification
language that can be used for generation of user interface prototypes.

8 Conclusion

In this paper we proposed a general description of the task execution cycle using
UML state machines. We described the influence of the temporal operators on
this description. An example that combined the states for a complete task model
into one stage machine demonstrated the complexity of the notation for larger
compositions. We thus proposed an abbreviated notation for this integrated no-
tation using a small UML profile. This profile adds extra semantics to the states,
which can be used to generate the complete specification. The support for nested
states offers enhanced expressiveness over other solutions such as state transition
networks.

The usage of UML enables the application of proven transformation tools
to be applied on the models to generate dialog models at different levels of
abstractions and adapted to different contexts of use. Further exploration of this
route is planned as future work. Building on the work of [15] would allow to
exploit all formal work done on petri nets.
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7. Mori, G., Paternò, F., Santoro, C.: CTTE: support for developing and analyzing
task models for interactive system design. IEEE Transactions on Software Engi-
neering 28(8), 797–813 (2002)



From Task to Dialog Model in the UML 111
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Abstract. Model-driven user interface development environments and their as-
sociated methodologies have evolved over time to become more explicit, flexi-
ble, and reusable but they still lack to reach a level that allows tailoring a 
method to the reality of software development organizations and their projects. 
In order to address this shortcoming, method engineering provides strategies to 
define and tailor software engineering methods. They should address any us-
ability concerns, which are primordial for the integration of model-driven user 
interface development methods in the competitive reality of software organiza-
tions. To address the issues of explicitly defining a flexible method, we defined 
a strategy based on method engineering for model-driven user interface devel-
opment that uses usability goals as a starting point. With the application of this 
strategy, we aim to help method engineers executing the method with more ef-
ficiency when defining or tailoring methods and facilitate the application of 
model-based user interface development methods in software organizations. 

Keywords: model-driven user interface development, methodologies, method 
engineering, business process modeling, usability. 

1   Introduction 

Any development method or methodology, whether it is generic or specific for User 
Interface (UI) for instance, is usually decomposed into three related axes: 

1. Models that capture different facets of the future interactive application. 
2. An Approach which governs the actions conducted on the various models. 
3. Software that supports executing the approach based on the models. 

On the one hand, substantive efforts have been devoted to the definition and the 
usage of models, and extensive development of support software has been achieved. 
On the other hand, the approach aspect has received less attention over the past dec-
ades. Even though, there are many User Interface Development (UID) methods that 
use task models as a starting point to elicit user requirements and more precisely un-
derstand user cognition in order to make UIs more usable. Such a growing interest for 
models is due to the need to provide a more systematic approach to UID.  

Professionals working in systems development usually follow a defined software de-
velopment process, and when it comes to UID, many professionals do their activities 
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more empirically because there is still resistance to the application of usability method-
ologies in software organizations [26], such as resource constraints and lack of knowl-
edge about usability are the factors that most influence professionals. But, a formal UID 
method requires efficiency to be integrated into software development organizations. 
Model-based UID comes as a solution to improve efficiency by reusing models, reduc-
ing development efforts, among other benefits [3]. 

To make model-based UID methods applicable in the competitive reality of soft-
ware development organizations, they need to be explicitly defined with the possibil-
ity of easy adaptation when it is necessary to consider constraints pertaining to  
specific projects [27,33]. Software organizations and their projects have specific char-
acteristics, which require methods to be tailored, for instance, the skills and quantity 
of professionals affect how the method could be applied. UID is a creative process in 
which professionals feel the need for flexibility in their work to address the growing 
complexity of interactive systems. Therefore, a rigid method is no longer desired and 
there is a need to support method definition and adaptation. In the reality of software 
organizations and the need for tailoring the method for specific projects, the possibil-
ity to reuse pre-defined method specifications aids in accomplishing efficiency. 

Considering this scenario, our main research question is: How can method engi-
neers define a model-based (or model-driven) UID method appropriate for the reality 
of the software organization and its projects? 

This research work aims to contribute in supporting the application of model-based 
UID methods efficiently by providing flexibility in its definition. Considering that the 
existing methods are diffused and applied in different projects around the world, such 
knowledge and experience acquired can not be taken for granted. Therefore, it is not 
the intention of this work to define a method nor to compare existing methods be-
cause we consider that a more appropriate method is adapted to the problem domain 
or context of the project, which has been investigated since the early 90’s [17,27]. 

Concerning a possible automation for this support, it is important to address issues 
related to the creation and maintenance of a method base with propagation of changes 
in method specifications; how the model editors are integrated with the method tool; 
collaboration between professionals in the creation of models; the automatic or semi-
automatic generation of UIs; coordination of the use of tools; change management of 
models; and support coordination of cooperative work. Solutions for these issues are 
appropriately addressed by technology for process automation, which allows execut-
ing methods. But such technology requires explaining many details that are not the 
focus of this work, but subject for another ongoing work. 

This paper compares some existing solutions for the definition of methods and points 
out some shortcomings when considering model-based UID. In the upcoming sections, 
it proposes an approach for defining a model-based UID method by analyzing goals and 
activities, and it concludes by presenting the expected advantages and future work. 

2   Related Work 

A survey performed on Model-Based User Interface Development Environments (MB-
UIDE) [16] showed that most of them provide a methodology for UI generation. These 
environments however support the execution of the methodology by automating some 
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steps to generate a running UI or a specification of the UI; and even though some favor 
concurrent work or different sequence possibilities, they do not allow adapting the 
methodology according to the context of the project.  

There are many MB-UIDEs that follow a formalized method [6,28,32], but their 
supporting tools do not provide facilities to change the sequence of the method activi-
ties, thus restricting the possibilities to adapt the method. Fig. 1 depicts the level of 
method flexibility of MB-UIDEs over time: oldest systems in the 90s had no method 
at all, except perhaps the one induced by the software; old systems like TRIDENT [5] 
has a very limited method flexibility since the method is completely coupled to the 
software and no tailoring is possible;  TEALLACH [16] offers some flexibility since the 
design can start from one of the task, domain, and presentation models and evolve to 
the other models depending on the project; Cameleon-compliant software [10] are 
much more numerous today ([14,17,22,28,30] among others) and provide some adap-
tation of the method they rely on. 
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Fig. 1. The evolution of MB-UIDEs 

The TEALLACH design process [16] aims to support the flexibility for the designer 
lacking in existing environments by providing a variety of routes in the process; from 
one entry point, the designer/developer can select any model to design independently 
or associate with other models. Even though this is a flexible approach to design UIs, 
it still hinders a complete flexibility because it is restrictive to the sequence of ma-
nipulation of models. Its flexibility is not extended enough to address the entire set of 
activities, roles, tools, and artifacts. For example, if a software organization aims at 
applying a method with such characteristic, it is limited by a set of models and activi-
ties implemented in the environment. Following, we present an overview of the as-
sessment of model-based methodologies considering three main criteria: 

Explicitness. Most methodologies have some kind of method definition, but not all 
aspects are explicitly defined, such as the association of roles, activities, models, and 
tools. For instance, some define the lifecycle as a sequence of transformation between 
models [32], some associate activities with the creation of models, but there is no as-
sociation with the role responsible for executing them [6], while others have the 
methodology implemented in the environment, but not explicitly defined. Most of 
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them do not mention tool in the lifecycle because their proposal is an environment to 
support the lifecycle. 

Flexibility. The methodologies that are part of a MB-UIDE are not flexible enough 
[16], but TEALLACH comes as a solution to fulfill this need. Even though it provides a 
flexible approach, in the point of view of software development organizations, flexi-
bility has a broader sense, which advocates the ability to change any aspect of the 
method and integrate with any existing process and tool. 

Reuse. Some methodologies in MB-UIDE have a set of activities to be performed, 
within them, there is usually a set of activities that are not mandatory and can be exe-
cuted or not, depending on the project’s need. But, the idea of reuse is to offer a larger 
set of activities that provide a wider range of possibilities in different types of projects 
that could be selected for the method as necessary. This type of strategy is not com-
mon in MB-UIDE since the methodology is composed of a small set of activities tar-
geted at a specific goal, such as in the use of patterns [28]. 

For application in real projects, existing approaches and their environments require 
organizations to start from scratch to apply the methodology available in the envi-
ronment. To enhance the effect of methods, we need to adapt existing methods or cre-
ate a new one that fits to the characteristics of each new project [27].  

In a response to this demand, the term method engineering has been introduced as 
the “engineering discipline to design, construct and adapt methods, techniques and 
tools for the development of information systems.” [7,8] 

As an effort to address demands of flexible methods, there are several proposals to 
automate method engineering, as one of them, Computer Aided Method Engineering 
(CAME) supports building project-specific methods [27]. CAME has two types of 
tools; the first one is a method editor that creates a method and the second one is a 
generator of model editors based on the method meta-model to support the created 
method. This approach to generate CASE tools based on the method description de-
creases the possibilities of applying the newly created method with external tools, 
which are currently widely accepted for modeling software systems, as proposed in 
[17]. This work does not mention how this proposal applies in projects in which the 
software organization already has standardized a set of tools.  

MetaEdit+ offers a CAME environment that allows method specification, integra-
tion, management, and maintenance [33]. It focuses on reuse and maintenance aspects 
for methodology specifications. It provides five strategies when requirements change 
may affect both the generated models and also the methodology. One detected draw-
back is that there is still no feature to support the reuse operation in building relation-
ships between methodologies. We envision that during method specification it is  
primordial to allow integration with other methodologies because software organiza-
tions already applying a method may want to accommodate new techniques, in order 
not to start from scratch with a brand new method. 

Decamerone [19] provides a way to adapt and integrate methods stored in a 
method base. Mentor [29] provides patterns for method engineers to easily design the 
method. An important aspect is that the generated methods and/or model editors are 
aimed for information system development, such as database systems, such editors do 
not address the complexity and creativity necessary in model-based UID. 

After analyzing some approaches, the major weaknesses in these approaches is 
that MB-UIDEs focus on a specific and not so flexible methodology and CAME 
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tools, even though they provide explicitness, flexibility and reuse, they only focus 
on system development, letting aside the concerns of usability, therefore not fully 
addressing the definition of model-based UID methods. MB-UIDEs do not allow 
the definition or adaptation of a method according to the characteristics of the or-
ganization and project, which makes them difficult to introduce certain activities 
that support model-based UID, such as version control. CAME tools are limited to 
software engineering models and method fragments and since they use a product 
meta model to generate model editors, they can profit from a meta model for UI 
models. Therefore, there is a need of interaction between MB-UIDEs and method 
engineering environments.  

In this paper, our goal is to suggest a Model-Based User Interface Method Engi-
neering that can address issues related to method engineering for model-based UID. 
We shall investigate model-based UID activities to be performed by designers and 
other usability team members to envision how usability goals specified by stake-
holders in the beginning of the project affect the way the usability team works. In 
other words, we seek to demonstrate the relationship between model-based UID 
method activities and the desired usability goals and how this association helps out-
line a method that best suits the context of the project. 

3   UID Activities 

Considering the evolution of MB-UIDEs and their methodologies over time, it is no-
ticeable the increase in flexibility, as presented in Fig. 1. The Cameleon Reference 
Framework [10] brings a solution that supports the realization of multiples types of 
development paths within a single framework. This framework structures a set of 
models that provide a support for the current user interaction challenges. This frame-
work has 5 models distributed in 4 levels of abstractions in order to express the UID 
life cycle for different contexts of use. These levels of abstraction are aligned with the 
model-driven approach, which aims to reduce both the amount of developer effort and 
the complexity of the models used [18]. 

The language UsiXML [22] was created as a XML extension to describe UIs for 
multiple contexts of use, such as graphical, auditory and vocal user interfaces, virtual 
reality, and multimodal user interfaces. As a language explicitly based on the Came-
leon Reference Framework, it adopts four development steps: 1) Task & Concepts, 2) 
Abstract User Interface (AUI), 3) Concrete User Interface (CUI), and 4) Final UI. The 
first step generates the task model, domain model and context model, the second step 
generates the AUI, and the third step generates the CUI. The language does not con-
sider the Final UI as the framework does. The UsiXML methodology is structured as 
presented in Fig. 2 [30]. 

 

Fig. 2. The distribution of UsiXML models 
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The UsiXML language will be used to exemplify our proposal in the next sections 
since it provides the necessary support to represent models in a structured form and it 
supports the flexibility provided by the Cameleon Framework.  

There is a suite of tools, automated techniques, and a framework to support the 
creation of models, and there is also a running effort to define a detailed model-based 
UID method. As follows, we explain how we intend to define such a method and how 
to integrate it with a software development process. 

3.1   Theoretical Concepts 

In this section, we describe the main theoretical concepts considered as the foundation 
of our proposal: model-based UID method engineering. 

The proposed structure is based on the definition of method content from the Soft-
ware Process Engineering Metamodel (SPEM), a meta-model for defining software 
development processes [25]. Considering that SPEM is “limited to the minimal ele-
ments necessary to define any software and systems development process, without 
adding specific features for particular development domains or disciplines” [25], we 
aim to add specific elements for UID. The main goal is to make usability as a central 
point not only for UI designers, but even before they come into action during software 
development processes; making usability also a concern for method engineers. 

Fig. 3 depicts a class diagram with the most relevant elements for the definition of 
a model-based UID method. This proposal shall evolve progressively to address the 
organization of method activities in a process lifecycle nor does it consider the 
method enactment (or execution). This proposal extends the basic elements of a 
method engineering notation by associating usability goals with activities, which will 
be presented in the next sub-section. In general, a method is defined by describing 
Activities, which are selected for a Project based on Usability Goals. Activities are 
performed by Roles, and act upon Work Products using Tools to manage the work 
products, which can be UI Models. 

Usability Goals should be established early in the project to drive professionals 
into focusing on UID efforts, and to use these goals as precise resources to evaluate 
their work towards accomplishing these goals. Usability goals can shorten the UID 
lifecycle, as stated in the Usability Engineering Lifecycle [23]. This methodology es-
tablishes usability goals in the requirements analysis phase and uses them to assess 
UIs during usability evaluation. In our work, usability goals have yet another purpose 
because they are used in the identification of activities that are appropriate for a spe-
cific project. The impact that usability goals can bring to method definition is to pro-
vide a manner to make method engineers (as well as project managers) more aligned 
with usability from the beginning until the end of the project, in order to make sure 
that all stakeholders value the importance to check whether or not such goals were ac-
complished in the end. 

Projects are composed of activities that are performed to develop a system. Activi-
ties represent the work that is performed by roles when acting upon work products 
and using a tool. Roles define a set of competencies that professionals must have to 
execute such role by performing activities and being responsible for work products. 
Work Products are assets or artifacts that are used, produced or updated during the 
execution of activities using a tool. Work Products can be input or output of activities 
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Fig. 3. Concepts for Model-Based UID Method Engineering 

performed by roles. For a model-based UID method, the main work products are UI 
models. Tools support the execution of activities by managing work products, that is, 
a tool can manage one or more kinds of work products. 

Activities can also be supported by other kinds of implementation besides tools, 
when it is necessary to implement functionalities that do not need tools or that can be 
available in more than one tool. In such cases and considering the current technology 
for process automation, we propose the use of web services. 

In general, web services “allow access to a functionality via the web using a set of 
open standards that make the interaction independent of implementation aspects, such 
as the operating system platform and the programming language used” [12]. This 
technology promotes a high level of coherence and a low level of coupling, which 
contributes to assemble services to compose a method. Business Process Execution 
Language (BPEL) [4] was defined by W3C to promote assembling services. It has 
reached a good maturity and it is supported by the main architectures available in the 
market, such as JEE and .NET. 

3.2   Strategy to Define a Method  

Aiming at systematizing how a method can be defined and evolved, an evolution 
driven method engineering approach [2] was defined with two main goals: construct a 
product model and construct a process model. Focusing on the process model, this 
approach proposes four strategies to describe a process model: 

i) activity-based, description of a set of actions to be carried out; 
ii) context-driven, description considering the context, which is composed of the 

situation in which the product is undergoing transformation and the intention to be 
achieved in this situation; 

iii) pattern-driven, use of a catalogue of patterns with the identification of generic 
problems and proposal of solutions applicable whenever the problem occurs; 

iv) strategy-driven, integration of several process models into a complex multi-
process model. 



 Towards Method Engineering of Model-Driven User Interface Development 119 

We selected the activity-based strategy to help method engineers in identifying ac-
tivities to construct a method. We have adapted this strategy to the HCI domain, by 
proposing the identification of usability goals and their association with UID activities 
that can be included in the method to achieve the desired goals.  

Depending on the usability goals presented early in the project specification and 
system requirements, a set of UID activities could be selected as part of the tailored 
method. Consequently, the activities performed by the professionals are aligned with 
the usability goals of the project with two main advantages. First, they are more effec-
tive in performing their work because each activity performed has a specific purpose. 
Second, if any non-planned goal is presented during the UID lifecycle, the method 
can be adapted with the selection of appropriate activities. A usability goal is a ge-
neric specification that can be addressed by one or more UID activities (see Table 1). 

Table 1. Association of Goals and Activities 

Usability Goal  UID Activity  Description 
Design UIs considering users’ 
mental models to perform their 
tasks 

Create task model Describe tasks in a hier-
archical manner. 

Design user-centered UIs Create context of 
use model 

Describe user’s character-
istics, platform used and 
environment. 

Design UIs focused on the ap-
plication domain 

Create domain 
model 

Describe the manipulated 
data. 

Design for many devices Create Abstract UI 
(AUI) model 

Specify objects in a UI, 
independent of device. 

Design focused on the look-
and-feel of the system 

Create Concrete UI 
(CUI) model 

Specify positioning of ob-
jects in a UI, considering 
device constraints. 

Create context of 
use model 

Specify user’s character-
istics. 

Adapt the user interaction ac-
cording to users’ personal 
characteristics Create task model Specify user’s tasks ac-

cording to their specific 
characteristics. 

Transform task and 
domain models into 
AUI model 

Receive task model and 
domain model as input 
and generate AUI model. 

Automate the generation of 
UIs considering many devices 

Transform AUI 
model into CUI 
model 

Receive AUI model as 
input and generate CUI 
model. 

Automate the generation of 
UIs for a specific device 

Transform task and 
domain models into 
CUI model 

Receive task model and 
domain model as input 
and generate CUI model. 

Automate the generation of 
specification of UIs 

Transform AUI into 
task model 

Receive AUI as input and 
generate task model. 
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An activity can be associated with one or more usability goals, which is the case of 
the UID activity “Create task model”. But, this does not mean that once the position 
and ordering of this activity has been defined, it has to be repeated twice for the dif-
ferent goals to be accomplished. On the other hand, it means that if a project needs to 
achieve both goals, the execution of this activity addresses both of them. 

Depending on the usability goals, activities can be selected independently of each 
other, which is the case for the activities “Create task model” and “Create context of 
use model” with their own specific goal. But, in cases of a usability goal triggering 
more than one activity, their order of execution is clearly specified because one activ-
ity has a direct impact on the other, which is the case of executing the activity “Create 
context of use model” before the activity “Create task model” for the usability goal 
“Adapt the user interaction according to users’ personal characteristics”. 

In cases when stakeholders state that they want some kind of automation in UID to 
achieve more productivity, certain activities can be selected depending on the goal. 
For instance, the activity “Transform task and domain models into AUI model” is ap-
propriate when various devices are considered and the activity “Transform AUI 
model into CUI model” also aids in the productivity level of designers since they re-
ceive UIs with the necessary objects as a starting point to work on the look-and-feel. 
The activity “Transform task and domain models into CUI model” is useful when one 
specific device is the aim.  

UID activities that are commonly used may already be included in software devel-
opment processes, such as defining a style guide, prototyping, usability evaluation, 
among others. But, in cases where such activities are not yet part of the organizational 
software process, usability goals must be considered to correctly apply these activi-
ties. It is our intention to further improve the list in Table 1 with usability goals associ-
ated to such activities. 

3.3   Tool Support 

Tool support for method engineers can be very useful for their productivity when de-
fining or customizing methods. The process of deciding which are the most appropri-
ate activities for specific projects requires knowledge and experience, but tools can 
help them to maintain a base of experiences and learned lessons, when easily accessed 
can add value to their work. Therefore, in addition to the strategy presented in the 
previous section, we selected Business Process Modeling Notation (BPMN) as a stan-
dard with available tools to support method engineers. 

BPMN was proposed to be applied in the representation of organizational proc-
esses [24], and we propose to use BPMN in method definition because: i) it has be-
come a pattern for process modeling; ii) there are many tools available in the market 
implementing it; iii) it has been intended as a human-readable layer that hides the 
complexity of designing transactional business processes; and iv) BPMN can be trans-
formed in BPEL to be automated using web services, as described at the end of  
section 3.1. 

There are many tools available that implement BPMN, which provide the neces-
sary support for method engineers that follow a common structure as in the tool pre-
sented in Fig. 4. But, after the assessment of model-based UID methods, we noticed 
the need to use method engineering techniques to improve method definition.  
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Therefore, we have analyzed the alignment of BPMN with a software engineering no-
tation, more specifically with SPEM. The alignment and complementary aspect is 
confirmed by quoting the SPEM documentation [25]: “SPEM 2.0 does not aim to be a 
generic process modeling language, nor does it even provide its own behavior model-
ing concepts. SPEM 2.0 focuses on providing the additional information structures 
that you need for processes modeled with UML 2.0 Activities or BPMN/BPDM to 
describe an actual development process.” Using a process modeling tool to define a 
method, we have followed three steps, as pointed out in Fig. 4: 

1. Definition of activities – we have defined a list of activities for a model-based UID 
method based on the Cameleon Framework. 

2. Association of BPMN and SPEM – we have associated BPMN elements with 
SPEM elements to give meaning and use business process elements in the method 
engineering domain. 

3. Reuse of activities – drag and drop activities from the pre-defined list (on the left 
of the tool) and reuse them when defining the method for a specific project, in the 
desired or recommended order. 

The method defined on the right side of the tool in Fig. 4 is clearly related with the 
concepts defined in Fig. 3. For example, the Role “Usability Expert” performs the Ac-
tivity “Create AUI” and acts upon (by creating) the Work Product, which in this case 
is a UI Model “AUI Model” by using the Tool “IdealXML”. To complete, this activ-
ity is present in this method because the stakeholders stated the Usability Goal “De-
sign for many devices”, which is directly associated with the activity “Create AUI”. 

After analyzing which activities are important to achieve certain usability goals and 
selecting the appropriate ones, it becomes easier to define a method. We must fur-
thermore be able to define methods that are applicable in software development  
 

 

Fig. 4. Activity selection using a process modeling tool [31] 
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projects and also provide support for model-based UID. Following, we demonstrate 
an example of integration of model-based UID activities in a software development 
process. 

4   Integration of Methods 

In an attempt to make UID methods really effective in real projects, there have been 
various efforts to bridge the gap between software engineering and HCI. Some pro-
posals focus on user involvement [15], on how to help software engineers execute us-
ability techniques [13], on addressing usability issues using architectural patterns 
[20], others are product-oriented and adapt an object-oriented notation to support HCI 
techniques [11], but all aim at making usability techniques applicable in real-life soft-
ware development projects. 

The technique to define project-specific methods from parts of existing methods is 
called method assembly [8], which can produce a powerful new method. Using this 
technique, we integrate the best from both domains: activities from a world-wide ac-
cepted commercial software development process, the Rational Unified Process 
(RUP) [21]; and activities for creating UI models. Works, such as [9], demonstrate 
that the integration with RUP can make model-driven methods in general more acces-
sible to a wider audience of software engineers. 

While some HCI methods have specific and unique structures, like the Usability 
Engineering Lifecycle [23], many proposals that integrate SE and HCI are based on 
the RUP structure, such as the integration of development activities with usability 
techniques [13] is based on the RUP process structure; and the UCD [15] creates a 
new discipline for usability design in the RUP. 

This is an example of the integration of a model-based UID method and a software 
development process. Picture a software organization that already has a well-deployed 
software development process, such as the RUP and wants to focus on UID. For  
 

 

Fig. 5. Integration of software and UID activities 
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instance, when the organization already has a standard way to do tests, reviews, and 
controls of change requests, but it wants to increment its way of working with models, 
it is possible to make a smooth integration. In Fig. 5, we present activities related to 
model-based UID: create context of use model and create AUI, and SE activities: re-
view requirements, review the design, and submit change request. 

Our proposal to support the integration scenario is provided with the association of 
goals with activities that can be appropriately allocated in the method. For instance, if 
a new project aims at designing UIs for many devices, the activity “Create AUI” is 
included in the organizational software process to accomplish this usability goal, as 
specified in Table 1. In addition, the method engineer might also need support in de-
fining the sequence of the activities; therefore, a proposed model-based UID method 
that integrates UID activities and RUP activities can be provided as a source of guid-
ance, which is subject for future work. 

5   Conclusion 

The main goals we intend to achieve with our proposal of a model-based UID method 
engineering is to aid method engineers when creating methods more efficiently and 
also to make model-based UID methods applicable in the competitive reality of soft-
ware development companies. 

Method engineers can define a model-based UID method appropriate for the reality 
of the software organization and its projects using an activity-based strategy. This 
strategy is founded on usability goals and brings together two different domains: 
method engineering and UID methods. In other words, when method engineers rely 
on usability goals to define a method, they also profit from clearly specifying goals 
that must be accomplished after each activity is concluded.  

Our ongoing and future works are related to extending this proposal to address the 
organization and sequence of UID activities in a process lifecycle, such as the organi-
zation of activities in phases and disciplines; to provide guidance for the integration of 
UID and software engineering activities; to define activities related to UID, but not 
necessarily to model-based design and associate them to usability goals; and to pro-
pose a solution to execute the method and a strategy for model traceability [1]. 
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support model that can be used to aid group awareness.  We explain how the 
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1   Introduction 

Advances in technology over the last twenty years have enabled work groups to 
become increasingly geographically distributed.  However, this is not the way that 
many small organizations choose to work. Work groups that have co-located meetings 
to schedule their individual tasks, discuss and progress group objectives and build 
group knowledge, despite usually working alone or in sub-groups, are a common 
pattern in reality [21] and the laboratory-based study reported in this paper has been 
designed to emulate this work pattern.  In this paper, we focus on the weekly co-
located meetings of the groups in our study.   

The development of groupware that effectively supports work groups is always 
limited by how well groups are understood and, consequently, how well they can be 
modeled to support system design.  A better understanding of group activities would 
also provide a better basis to determine requirements for collaborative systems [14].  In 
this paper we report on an empirical study of groups that has led to the development of a 
taskwork support model that can be used to aid group awareness. 

Awareness has previously been taken to mean group members’ sensitivity to each 
other’s behavior, whilst engaged in their own activities [10], although sometimes it 
can be used to describe awareness of more specific elements of group work, such as 
collaboration [17] or workspace [9].  In this paper we show that awareness of task is 
as important as awareness of group when complex tasks are attempted. 
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A recent meta-review of group models by Ilgen et al. [13] describes how 
‘structuring models’ – those that describe the development and maintenance of group 
norms, roles and interactions – have been dominated by the constructs of shared 
mental models and transactive memory.  Shared mental models treat group 
knowledge as a group level construct, whereas the transactive memory perspective 
considers it to be a collection of individual perspectives, with a collective shared 
awareness.  We discuss how both perspectives can be used together to model complex 
task completion in groups.  Through negotiation, knowledge artifacts repeatedly shift 
between being group constructs and individual constructs.  We explain how the 
adoption of artifacts, including knowledge, by work groups influences the division 
and distribution of tasks within the group, show how this can be observed in co-
located group work and suggest how observing groups in this way can be used to 
support groupware design for better awareness. 

2   Work Groups and Their Tasks 

Adair [1] defines a work group as a group whose members have a common task or 
tasks, explicitly stated, which is the main purpose of the group; the group’s leadership 
is typically competency-based. 

When work groups are faced with complex or highly unstructured tasks, they need 
to organize them into sub-tasks so that they can both be better understood and the 
work suitably divided between group members.  Some models require this task 
division to be split down into sub-tasks that can be performed as a single action and 
are sometimes termed unit tasks [4].  The level of granularity required for our model 
is higher than this, although harder to define precisely.  The groups that we have 
observed are looking for a level of task division that means each sub-task is fully 
understood.  To be fully understood, the sub-task must have a specific objective; it 
must be associated with all the artifacts required to complete it; it must be allocated to 
a group member or members that are capable of completing it and its outcome must 
lead to the partial completion of the original complex super-task. 

Vogel et al. [25] considered how collections of knowledge as objects could be used 
to support tasks in distributed groups, both synchronously and asynchronously.  Hill 
and Gutwin [12] also produced a toolkit to support awareness in synchronous 
distributed groups. In studying distributed groups, however, it is easier for the 
communication medium to double as a capture mechanism that can be manipulated to 
support the group, because the overhead of that medium already exists.  In co-located 
settings, this presents a different problem, because capturing the information built in 
the meeting is an extra group activity. 

Carroll et al. [5] identified that there is a cyclic relationship between tasks and 
artifacts.  Observing and analyzing tasks provides new requirements for artifacts, 
whereas the introduction of novel artifacts stimulates new ways of approaching tasks.  
The task-artifact cycle has been widely used to inform and support the development 
of tangible artifacts.  In this paper we show that it is also a useful model for 
describing shorter, low-level interactions, which in addition helps the group adopt 
knowledge. 
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Stahl [23] suggests that knowledge can be viewed as a type of artifact in group 
work.  Dealing with knowledge in this way presents us with some new challenges.  
For example, something physical like a mobile phone would generally be identified as 
a single artifact, and two phones as two artifacts, but with intangibles such as 
knowledge it is harder to identify this boundary.  It is also important to note that there 
is a hierarchical nature to knowledge, where some knowledge artifacts exist at a meta-
level to groups of others, providing such things as organizational information about 
them.  Practically, however, group knowledge is a resource that is used to inform 
other activities.  In the model reported in this paper, the development of group-owned 
knowledge artifacts supports the understanding of the set task and its sub-division into 
well-bounded, clearly understood sub-tasks. 

Artifacts are adopted into a group through negotiation; a concept that has also been 
extended to include knowledge and information [24].  Olson and Olson [20] saw this 
process as one of clarification, and split clarification activities according to whether 
the group was clarifying issues, goals or other activities.  The negotiation process can 
lead to the adaptation of artifacts, as well as their adoption [7], and this process leads 
to there being a difference between the artifact proposed by a individual and what is 
finally used by a group.  The nature of this adaptation depends upon the physical 
adaptability of the artifact; if a tangible artifact is not easily adaptable, a group can 
adapt their understanding of it instead, so that novel uses develop as group emergent 
knowledge. Rittel and Webber [22] claim that in ‘wicked’ problems, or those that are 
essentially unique or ill defined, rebounding the issues is an essential part of the 
negotiation process.  In this paper we also consider the reverse influence of how 
rebounding the task affects the adoption of knowledge artifacts. 

3   Observing Activity-Focused Interaction 

To observe how work groups used artifacts to organize their tasks, we set up an 
empirical study.  The study comprised two groups of four people over a four-week 
period, with the groups being asked to meet together once each week to report their 
work, fit this into the task and schedule each member’s work for the next week. 

The group members were all graduate students from the same department of the 
university campus. They had met previously around the department, but had not 
worked together in the groupings organized for this study. 

The task the groups were asked to perform was to compile a flora and fauna survey 
of the university campus. The task was deliberately open-ended, so that team 
members had to balance the demands of breadth versus depth in their survey, given 
the time constraint upon them. They were required to produce a poster by the end of 
the fourth week. To encourage the groups to make their best effort at the task there 
was a small cash prize offered for the survey considered best by two independent 
judges. 

The two groups shared a number of resources: they both used the same meeting room; 
they both had individual notebook diaries in which they were asked to record their work 
schedules in the meetings and their findings and intra-group communications between 
meetings; finally, they shared the same external environment – both as a location for their 
survey and as a location to use unspecified external resources. 
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The principal difference between the groups was that one was asked to support 
their survey and produce a poster only using pen and paper, whereas the other group 
was asked to maintain their group records and produce the poster on a computer.  
Both groups’ members had individual diaries, in which they were asked to record the 
work that they undertook during the week in between meetings, as well as any 
communication with other group members relating to the survey.  There were no 
restrictions placed on the groups as to how they communicated between themselves in 
between meetings. 

At the beginning of each meeting, the room layout was always laid out in the same 
way for both groups, including the distribution of resources. There was a central table 
around which the chairs were initially placed; the other resources were distributed 
around the room, the group record (notepad or laptop) on a desk at one end of the 
room and the resources to make a poster (desktop, or pens/paper/scissors/glue) on 
another desk at the other end of the room. 

The layout of the room gave the group members three distinct areas in which they 
could work. In the middle of the room they had their meeting area, and at the two 
ends they had resource areas. The purpose of defining these spaces was to observe 
how the group divided its members according to the sub-tasks they wanted to work on 
at any given time. 

There was no restriction placed upon group members as to whether, when or by 
what means they could communicate between the fixed meetings. If they felt that they 
required extra meetings, then this was allowed too. In fact, only one extra meeting 
was requested by one group, and this was during the last week of the study when they 
preferred to split their work for poster production over two days, into planning and 
output sessions. 

Normally, communication between meetings was limited to e-mails or unplanned 
face-to-face contact (i.e., bumping into each other on campus). Group members 
recorded these interactions in their individual diaries and copies of e-mails were 
forwarded to the researchers. Video recordings were made of all the scheduled co-
located meetings, using two fixed cameras and additional cameras or computer output 
capture, as appropriate, to capture a quad mixed image. 

We encoded the verbal and non-verbal communication of group members in the 
co-located meetings using SYMLOG, a system for the multiple-level observation of 
groups devised by Bales and Cohen [2].  The system enables an observer to construct 
messages that describe group behavior.  One feature of SYMLOG is that it separates 
the behavior of the group members towards the target of each interaction from their 
behavior towards the subject of that interaction, which we have used to analyze 
interactions specific to taskwork and task development. 

In making this coding, we discovered an interesting recurring pattern in the 
encoded meetings that showed specific periods of activity-focused interaction.  We 
identified this by analyzing the communication instances when the group’s task was 
the subject of the interaction and the target was one, some or all of the other group 
members.  The pattern that recurred was one where a group member had a brief 
period of clear understanding about part of the task, which they communicated to one 
or more other group members.  Whenever this type of interaction was observed, the 
group made significant developments in their work towards task completion. 
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The activity-focused interactions pushed the groupwork between a number of 
distinct states that gradually broke down the original task into something more 
manageable.  The relationship between these states and interactions forms the basis of 
the taskwork support model that is described in the next section of this paper. 

The drivers for the activity-focused interactions that push the group between states 
are the artifacts that they use to address the tasks and this in turn shapes the use of 
physical artifacts, as well as generating new group knowledge artifacts.  This low-
level, quick looping of the task-artifact cycle [5] is supported by continual artifact 
negotiation within the group. 

 

Fig. 1. The negotiation process for group artifact adoption, showing how the artifact’s in-group 
ownership shifts between the individual and group levels 

Artifacts were adopted (or rejected) by the groups through negotiation, followed by 
a ‘sign-off’.  The negotiation process (Figure 1) begins with an artifact being 
introduced to the group by one of its members.  At this point, the introducer can be 
considered to be the sponsor of the artifact, and the discussion begins with them 
making a case for it.  Whether the artifact is tangible or not, the case for the sponsor 
will be linked to how it progresses a sub-task and how it fits with the overall 
understanding of the main goal at any given time. 

How well the proposal meets the needs of the group depends on the common 
ground [6] that the group members can draw upon to understand a shared perspective.  
So, in early group meetings these negotiation processes will drive the group towards 
shared understanding, which in itself is the negotiation and adoption of group 
knowledge.  Later, these knowledge artifacts will help establish group norms as part 
of the group members’ shared history [8], which limit the appropriation of further 
artifacts to within defined boundaries.   
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The negotiation process that leads to the group deciding whether or not to adopt the 
artifact can also lead to the generation of further knowledge artifacts, which are also, 
implicitly or explicitly, proposed and considered for adoption.  This multi-threading is 
partly responsible for the difficulty that groups have in seeing this process as they 
perform it. Once group norms begin to be established, the negotiation processes 
become quicker and more focused, because fewer concurrent negotiations are 
required to reach a point of common understanding and make a decision. 

When the group makes a positive decision to adopt an artifact, the individual has to 
relinquish control of it.  It is no longer theirs to shape in terms of content or use, 
without reference to the group.  By contrast, if an artifact is not adopted by the group, 
then it is returned to the individual.  Often the same artifacts, tangible or otherwise, 
are re-presented to the group at other times, when the proposer thinks that something 
has changed in the task understanding to justify another attempt. 

4   A Taskwork Support Model 

We have analyzed the data to produce a taskwork support model (Figure 2), which 
explains the behaviors and activities that take place in low-level group work.  It can 
be used by designers to help support the interactions that co-located groups use to 
understand and complete tasks.  Tasks are frequently carried out with various levels 
of interleaving and interruption [15] and the task of structuring a group’s work is no 
exception.  This model restructures the complexity into a series of recurring states, so 
that it can be better understood.  Each of the states in the model represents a key 
phase of group interaction, through which the group gradually understands and 
completes their original unstructured, complex task. 

The periods of activity-focused interaction that we observed progress the group in 
a particular state and make it necessary for them to shift states, as shown by the 
arrows in the model, as it becomes necessary to develop their taskwork in a different 
context. 

The model identifies six key phases within group taskwork that need to be 
supported.  Each of these can be supported by awareness of a group’s artifact 
adoption and how these in turn drive activity-focused interaction. 

Understanding the task. This is usually the first problem a new group needs to face, 
where a complex task needs to be assessed and group members contribute what they 
think they understand about it.  For the flora and fauna survey, both groups first tried 
to identify skills that they had within the group that might help them progress the task.  
In terms of artifact negotiation and adoption, the acceptance that someone has a 
potentially useful skill becomes a group knowledge artifact.  The negotiation process 
involves not only a group acceptance that one of their members has a particular skill, 
but also that it is relevant and useful to the task and so their perceived understanding 
of the task increases. 

At some point the group members become aware that their understanding of the 
task has increased to a level where they need to use the new understanding.  This is 
the point as which they shift state with a period of activity-focused interaction, with 
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one or more group members deliberately changing the focus of the group to identify 
sub-tasks or consider the main task boundary. 

This phase was continually revisited in the flora and fauna survey as individual and 
group knowledge increased, providing new insights into the original requirement.  
Because none of the participants were experts in flora and fauna, they were forced to 
continually revise what they knew about extrapolating their observations to the rest of 
the environment. For example, there is a period early on in the second meeting of one 
group where a group member, STA, uses his report on his sub-task progress to 
question the detail that the group is looking for. 

STA – “One question I have is how detailed do we go on bugs?” 

The nature of this communication shows how the speaker’s interaction with the 
team and task can have different concurrent moods. To the group, he is submissive 
but friendly: he is genuinely seeking their opinion and his tone suggests that he 
appreciates their input. At the same time, however, the speaker is demonstrating 
control over the task – he doesn’t know how to overcome his problem, which is why 
he is asking the group, but he has developed a clearer understanding of what the 
problem is, and so is taking personal control of the task development by asking the 
question. 

The impact of this statement on the task development is that the group now has to 
define part of the task more closely and think about how this affects sub-tasks that 
they have already identified, as well as potential new ones.  It also begins a 
knowledge artifact adoption cycle.  Although it isn’t fully formed, the knowledge 
artifact proposed by STA is an entity containing the group’s understanding of their 
requirement with respect to insects. 

Bounding the task.  In order to limit and focus the work, group members will try to 
define or redefine the boundary of the task.  Such a definition requires the approval of 
other group members and changes in the boundary definition can lead to a reappraisal 
of outstanding sub-tasks. 

Again, the shared understanding of the task boundary is a knowledge artifact that is 
proposed, negotiated and then accepted into the group’s domain.  If the perceived 
boundary of the task changes, then the next group state will be to focus back on 
understanding the task within the new domain.  It might be that previously accepted 
knowledge artifacts need to be modified by the group.  This is an example of the task-
artifact cycle [5] working at the micro level. 

In the flora and fauna survey, one of the biggest problems each group had to 
overcome was deciding what was possible within the four-week survey period.  In 
particular, they had to resolve to competing pressures of breadth versus depth in the 
survey.  The following dialogue comes from one of these discussions: 

 
TIC – “… Common things we can deal with, but obviously there’s going to be like 

a thousand types of plant”. 
TIH – “I think we should aim at the big things, and not worry about the little 

details…” 
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Fig. 2.  The Taskwork Support Model, showing the interactions required understand and 
complete a complex, unstructured task 

Although this example shows a more negative attitude towards the task, it still also 
exhibits awareness of what is required to progress it. TIC has identified a specific 
problem with the granularity of data that they are trying to gather and, in voicing this 
issue, is encouraging his teammates to re-evaluate their plans for data gathering. This 
was negotiated within the groups several times, but each time they would reach a 
point at which someone decided they had the correct balance and proposed this to the 
group.  Once accepted, this naturally led the group members to reconsider what they 
now thought the task meant, what they understood and what was still missing.  Each 
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of the iterations of this process produces new group-adopted knowledge, which is 
used as artifacts in the task of trying to understand the complex super-task more fully. 

Structuring sub-tasks.  As the group members begin to understand their task they start 
to structure the work as sub-tasks that are more manageable, either by requiring fewer 
people to complete them or by having a shorter timescale. An example of this is when 
one group tried to split the data collection into zones. From an initial suggestion by 
one group member, this developed into a three-way discussion: 
 

ADA – “How would it be if we worked on zones of different types of land? For 
example, this area here…” (he points at a campus map they have on the table, and 
continues to expand on what he thinks the various zones might be) 

DUN – “This says to me why don’t we build a system based on plants…” 
ADA – “Yeah, so this one and this one are going to be quite similar…” (He takes 

this idea on board and continues to build a profile of suitable zones – having the map 
in front of him gives him great control in this discussion and, although it is effectively 
a three-way conversation, everything flows though ADA and his use of the artifact) 

STA – “That makes a lot of sense for the presentation, however what maybe 
<DUN> is suggesting is that we have zones clearly defined … so that we know where 
we’ve been…” 

ADA – “and it’s quite easy to divide it up according to visible landmarks…” 
 
When the group is operating in this state, it needs to manage its repository of 

artifacts so that they support the sub-tasks as available resources.  The negotiation 
process in the group is aimed at defining meta-level knowledge artifacts that tie 
together existing artifacts, tangible or otherwise, into a package that supports a low-
level goal. 

The conversation in this example shows the difficulty that groups have in framing 
their existing knowledge in a way that is suitably structured for the way they decide to 
split tasks.  In order that some sub-tasks can be performed by individuals or sub-
groups, the group has to work very hard so that the correct group knowledge is 
explicitly tied to the correct sub-task, in a way the whole group agrees upon. 

We observed that the outcome or breakdown of this negotiation process could 
move the group to three other states.  If the negotiation process led to agreement that 
the group had a fully supported sub-task then usually at some point there would be a 
phase of activity-focused interaction that led the group to move to the state where 
they negotiated the allocation of work instead.  Occasionally, however, someone 
would identify that the group knowledge development had given the group sufficient 
resource to complete some sub-task and then the activity-focused interaction would 
shift the group’s state to negotiating sign-off for completed sub-tasks. 

At other times, the negotiation of sub-tasks led to the creation of knowledge 
artifacts that group members identified as important in developing existing sub-tasks 
and then the new knowledge would be used to shift the group into the state of 
developing existing sub-tasks. 

When a group has co-located meetings as part of primarily distributed work, as in 
the flora and fauna study, this state is critical to the success of the meeting.  Group 
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members leave with a schedule of tasks and a personal mandate to use a subset of the 
group’s artifacts to try to progress or complete those tasks before the next meeting. 
 
Developing sub-tasks.  As the group develops its understanding of the main task, they 
may need to redefine sub-tasks because their needs have changed, or they may see 
more complexity in a sub-task that shows it needs to be further sub-divided or 
modified. 

In the flora and fauna study, this state was shown to always be a precursor to re-
bounding the main task.  During the negotiation of how sub-tasks should be defined, a 
group member always noticed that the new knowledge artifacts created has 
challenged their existing understanding of the boundary of the task.  In our particular 
study, we often observed that this was triggered by discussions of extra complexity 
that had been identified during data gathering between meetings. 

In the following dialogue, the group is challenged by MAT to define more clearly 
what their output is going to be. This is an example of how clear activity focus can be 
generated by group members challenging each other to improve on their ideas. 
MAT’s original question is not itself clearly activity focused – he had no particular 
insight – but it forced the team to collaborate in defining their approach to the 
problem more clearly. 

 
MAT – “Have we any thought at all on how we’re going to present this? … if we 

have any idea now, it might save us hassle further down the line” 
ADA – “The way I’d imagined was that we’d draw a map on it, with little lines 

coming off, but that might incredibly busy, so we might have to get selective with the 
pictures” The discussion continues between MAT and ADA, but then DUN says… 

DUN – “I thought we were going to do areas, the areas that we identified as being 
similar…” This is controlled by ADA, who shows that the two ideas are the same. 

ADA – “But that would be an elaboration of the map idea, yeah?” 
 
From the progression of this sub-task, the group are now able to re-evaluate what 

they have been doing individually, and how this now fits into the overall picture.  If 
the sub-task itself is sufficiently complex – it may only be defined as an area of work 
the group knows it needs to address – then this state becomes a new iteration of the 
whole taskwork support model, but at a lower level. 

This example clearly shows the negotiation process for the adoption of knowledge 
into a group.  ADA starts with a very clear idea of what he believes the group needs 
and proposes it, but the other group members go to great trouble to modify the idea, 
until what is finally adopted has been jointly constructed as part of a collaborative 
exercise. 

Distributing work between group members.  Early in a group’s development, 
members find it easier to identify sub-tasks that suit their own skills and 
competencies, and then volunteer to complete them.  As group members gain a 
greater awareness of each other’s skills and competencies they are more able to 
suggest work for other people or shared work. 

Group collaboration requires the group members to take responsibility for parts of 
the shared work [11].  In the flora and fauna study, group members negotiated 
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individual responsibility from the shared pool of identified sub-tasks.  Combined with 
this was the return to individual responsibility for the artifacts previously associated 
with each sub-task.  This cycle of knowledge responsibility is important when it 
comes to trying to complete sub-tasks.  Group members take knowledge that the 
group has agreed to be usable for a sub-task, attempt the sub-task and then re-present 
the knowledge back to the group in a revised manner.  The negotiation of acceptance 
of this revision is effectively the group deciding whether to ‘sign-off’ the sub-task as 
complete or not.  If they are unable to do this, then the group will have to rebound the 
task again, as they clearly have not all understood the goal for the sub-task in the 
same way. 

In describing the development of the sub-tasks, we discussed a three-way 
discussion between group members as they tried to identify and define zones on a 
map that would be a suitable sub-division of the survey. However, it was the fourth 
member of the group that waited for this discussion to resolve itself, before joining in 
with an attempt to divide the surveying of these zones among the group. 

 
MAT – “I was going to say, if we’re doing it in that way, then it might make sense 

seeing how I’ve done woodland here” (points to map) “then I might as well do the 
woodland there, there and there…” (more pointing) “because then we don’t duplicate 
stuff…” 

 
This encourages ADA to explain areas he has looked at, and so what he thinks he 

is more suited to. This interaction leads to a period where a feeling of clear 
understanding of the task is less apparent. The group is working with the newly 
formed idea of zones, and so they are trying to feel for a best way to use it. They 
begin to rely on other group members more, rather than trying to force through their 
own fully formed ideas. 

The group members will try to complete the sub-tasks allocated to them with the 
artifacts that the group has negotiated to be fit for that purpose.  Once the individual 
owner of a sub-task has made this attempt, they will need to present this to the group, 
so that acceptance or rejection of the completion can be negotiated. 

Completing sub-tasks.  For a sub-task to be completed, the work needs to be approved 
by the whole group in terms of a ‘sign-off’.  If a sub-task is not signed-off by the 
group, then group members will have difficulty in integrating that piece of work into 
the overall work towards completing their main task, forcing the group to re-evaluate 
what the main task boundary should be. 

In the flora and fauna surveys, group members often proposed this ‘sign-off’ by 
sharing information that they had collected individually during the week.  Because 
individual information capture is goal-oriented [3], the proposer has a particular 
purpose in collecting it and presenting it to the group.  However, in the negotiation 
process group members might see a wider scope for the information, or see that it 
affects the overall understanding of the task boundary.  Individuals presenting new 
knowledge to the group can quickly drive the group from low-level sub-task 
discussion to high-level main task discussion, because other group members see 
different things and make different links with the new knowledge artifact.  This is 
another example of an artifact being modified at a low level by the task. 
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An example of this from the observed data came when a group member had taken 
some photos and got somebody else to identify the fauna in the photos for him. He 
tries to get the group to accept that this data is complete, but one other group member 
refuses to accept it. The discussion continues for about four minutes without being 
resolved, so in this case the appropriate ‘sign-off’ has not been made, finishing with: 

 
PET – “I think we’ve just hit the conflict that this survey was made to encounter, 

which was depth or breadth” 
TIH – “I’m not asking for depth. I’m asking for accuracy.” 
 
The discussion does lead to the group then discussing what is good and bad about 

this data, which then feeds back into their own sub-tasks and their understanding of 
the overall problem. 

5   Conclusion and Future Work 

Our study shows that co-located work groups address complex tasks by organizing 
them into manageable sub-tasks that are both informed and supported through the 
adoption of artifacts.  Although this is a recurring process throughout group meetings, 
group members are largely unaware of it because it happens at a low level and states 
shift quickly during activity-focused periods of the meetings. 

We have developed a taskwork support model that can be used to help explain the 
behaviors and activities that take place at a low level in group work.  The model can 
be used to help model groups more effectively, and show how existing approaches 
should be modified to better support co-located work groups.  We believe that the 
relationship between this process model and group knowledge adoption provides a 
useful insight into the way in which new groupware for co-located groups could  be 
developed. 

Historically, Groupware Support Systems (GSS) have been categorized as Group 
Decision Support Systems (GDSS) or Group Communication Support Systems 
(GCSS) [16].  We have shown that in work groups the two categories are 
fundamentally indivisible, as an awareness of communication is required to fully 
understand and support decision-making. 

Groupware systems that support the development and organization of group 
knowledge should also support a meta-level awareness, so that the link between group 
knowledge adoption and task sub-division is apparent to the group members as they 
work.  This would help group members keep in focus their reasons for knowledge 
adoption. 

In many GSS, particularly GDSS, there is a focus on explicit voting on knowledge 
adoption following a period of negotiation [23].  Although this is possible to support 
for big decisions, it is impractical at the level reported in this study.  The knowledge 
artifacts are too small and the group’s focus changes too quickly; in this case explicit 
voting would likely be a cause of production blocking. 

A promising area of research to find support for these low-level interactions is in 
knowledge management (KM). Many KM systems use methods to externalize know-
ledge so that it can be structured in useful ways.  However, although many systems exist 
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to capture and structure knowledge, few use this knowledge to tailor the KM system to 
the group.  Mandviwalla and Olfman [19] found that one of the key requirements of 
groupware was that it should be adjustable to the group’s context and, while this has been 
addressed at a high level, the model presented in this paper shows how lower level group 
interactions can be structured as useful knowledge artifacts.  Malone et al. [18] 
introduced the idea of ‘radical tailorability’, where users can easily see and modify the 
reasoning processes of their support systems, as well as the data captured within them.  
This is the approach needed to develop the next generation of groupware that deal with 
interactions at a much lower level than those in existence today. 

Additionally, the research area of computer-supported collaborative learning 
(CSCL) has provided insights into many of the issues facing task-oriented work 
groups [23], but the generalisability of these findings is often undersold.  Learning is 
just as important outside the domain of formal education and all group development is 
tightly coupled with learning within the group.   

The observations reported here, and the conclusions drawn from them, all relate to 
synchronous co-located groups and how groupware might better support them.  In 
further work we will look to establish the generalizability of these findings, including 
how well they model distributed and asynchronous interactions. 
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Abstract. This paper claims that the design and construction of safety critical 
interactive systems require both a task centred approach to support efficiently 
operator’s goals and activities and a system centred approach to increase the 
dependability of the system. The approach presented proposes a model-based 
approach integrating tasks and system models. This integration is done at the 
model level (in a similar way as in [13]) and at the tool level exploiting PetShop 
environment [3] for the system side and AMBOSS [1] for the task side. The 
tool level integration describes three different protocols each of them having 
advantages and limitations. The model-based approaches are introduced 
through a case study in the field of command and control systems. The 
application called AGENDA allows operators to define and organize work plan 
for satellite ground systems. 

Keywords: Model-based design, Task modelling, Dialog modelling, Scenarios 
based simulation. 

1   Introduction 

Model based approaches have been identified for a long time now as a mean of 
dealing with the intrinsic complexity of interactive systems [18]. Models are used to 
organize and store various type of information according to the area of interest of the 
designer. User models [4] capture information about user capabilities, knowledge or 
beliefs for instance. Context models aims at capturing information about the various 
contexts in which a given interactive can be used [8]. Such models are more and more 
important when dealing with interactive systems that can be used on the move i.e. 
confronting the users with radically different environmental constraints. Other models 
like domain models, behavioural models … are not specific to interactive systems and 
thus are not addressed in this paper, but approaches like UML [5] are dedicated to 
model-based design of non interactive aspects of software. Research work in the field 
of HCI has been trying to extend UML to support the interactive aspects of software 
(like14]) through various means like inclusion of usability aspects in RUP (the 
development process associated to UML) or via the extensions capabilities in UML 
like stereotypes [15]. 
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This paper focuses on two models of primary importance for interactive systems 
design: tasks models and system models. Task models gather information related to 
users goals and activities while system models provide a complete description of 
system behaviour. As far as interactive systems are concerned, such description must 
make explicit all the possible states of the system and, for each state, which actions 
are available to the user on the interface. On the rendering side, the system model 
must describe, according to any state change how this state change is presented to the 
user. As the system model describes the actions available to the user and as the task 
model describes the actions that have to be performed by the user in order to reach a 
goal, these two models provide two different views on the same elements.  

For these reasons, this paper focuses on the possible articulations of task models 
and system models. This integration is done at the model level (in a similar way as in 
[13]) as well as at the tool level exploiting PetShop environment [3] for the system 
side and AMBOSS [1] for the task side. Other approaches such as [7] [20] provide a 
similar view on the complementarities of tasks and systems descriptions even though 
they don’t address the modelling aspects directly. Other research works, instead of 
using the complementarity of models, propose the generation from one model to 
another one such as in [19] and [10] where the authors generates the system model 
from the task model, or in [9] where the authors do the opposite. The tool level 
integration describes three different protocols each of them having advantages and 
limitation (section 3 of the paper). The model-based approaches are introduced 
through a case study (section 2) in the field of command and control systems. The 
application called AGENDA allows operators to define and organize work plan for 
satellite ground systems. 

2   Case Study 

The work presented in this paper is partly based on the study from both the tasks point 
of view and the system point of view of the interactive application called AGENDA 
used in the field of command and control for space-ground systems. AGENDA is a 
tool that allows an operator from a Satellite Control Planning Facilities such as for 
SPOT4 or HELIOS1 (SCPF) to monitor the sequence of basic tasks performed by one 
or more satellite.  

2.1   General Context of the Case Study 

Fig. 1 presents a snapshot of the application called AGENDA. 

The main goals of using the AGENDA in a SCPF are: 
• To prepare the daily work plan (called PGT) that consists in defining a 

sequence of operating tasks. 
• To automatically execute the PGT (for pasts SPOT 1, 2 and 3, this was 

mainly manually done). 
• To supervise the execution of operating tasks (e.g. a real time 

visualisation of the whole activity). 
• To control the execution of these tasks (e.g. the operator may intervene on 

this execution).  
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Fig. 1. Snapshot of the AGENDA application 

In the following paragraphs, with use terms used from SCPF activities that are 
explained hereafter: 

• An operating task is called a Procedure. 
• A sequence of tasks is called a Chain. 
• A working plan is called a PGT and is a set of chains that may evolve in 

parallel. 

2.2   Sub Part of the AGENDA Application 

Due to space constraints, in the following parts of the paper we only used a very small 
sub part of the specification of the AGENDA to illustrate our approach, event if the 
work was done on most of the AGENDA application. This part of the application is 
based on a simple task which consists in providing a list of conditioning procedures 
for one procedure. A PGT may be seen as a workflow where basic tasks are 
procedure, and the possible execution of these procedures may be related to the 
correct execution of previous procedures. The AGENDA adds some constraints to 
these conditioning procedures by fixing their maximum number to five. 

For this sub part of the AGENDA, the following two sections present first the 
related task model by recalling basics of the approach called Amboss, and then 
present the system model using the ICO notation. 

3   Two Approaches 

This section presents the two approaches used in the work presented in this paper. The 
choice of these two notations and tools is the result of the cooperation the two groups 
(from the University of Paul Sabatier and from the University of Paderborn), where 
both group was trying to find a notation with which a synergistic cooperation should 
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be possible. The work presented here is surely adaptable to others task centred and 
system centred approaches. 

3.1   A Task Centred Approach 

There are various approaches that aim to specify tasks. They differ in aspects such as 
the type of formalism they use, the type of knowledge they capture, and how they 
support the design and development of interactive systems. In this paper we consider 
task models that have been represented using the Amboss notation. Amboss [1] is a 
free tool developed at the University of Paderborn supporting hierarchical task 
modelling. 

In Amboss tasks are described at different abstraction levels in a hierarchical 
manner, represented graphically in a tree-like format (see Fig. 2 for an example for 
both the notation and the tool). Amboss provides a set of temporal relations between 
the tasks like; sequential: The subtasks have to in a fixed sequence, serial: where the 
subtasks have to execute in an unsystematic sequence, parallel: in this relation he 
subtasks can start and end at random relation to each other, simultaneous: here the 
subtasks start in an arbitrary sequence with the constraints that the must be a moment 
when all tasks are running simultaneously before any task can end, alternative: just 
one randomly selected subtask can execute and the last temporal relation called 
optional: in this case one or no subtask at all can be executed. There almost the same 
temporal relations which can be found in TOMBOLA. [21] A task node with out any 
subtasks is automated noted as an atomic task. 

The software has got distinct additional views of a task model, which can be used 
for inspecting particular attributes of the tasks. For example if an analyst likes to 
 

 

Fig. 2. The task model of the case study 
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observe what kind of objects (for example procedures from our case study) are 
manipulated in a system by a particular tasks, he can switch to the object view, take a 
look over the model and analyse the dependencies between tasks and objects. This 
tool allows editing as well as directly manipulating the task structure in an easy and 
intuitive way. 

One of the challenges related to modelling socio-technical systems is to involve 
communication and its parameters into a model. In the model the communication is 
depicted with white ovals between the tasks. 

It is allowed precise description of communication with parameters describing the 
physical condition using options with respect to the medium of communication, form of 
message as well as type of transfer. For example if a message is critical for a system, the 
user can mark the message with a red envelop. In addition the user is able to describe 
what type of feedback is required in a particular communication process and also if a 
communication is controlled by a protocol. Both parameters ensure the communication 
process; additionally control object can be applied to protect information. 

The main purpose during the development of AMBOSS was to provide a 
hierarchical task modelling environment that provides support for developing and 
analyzing task models in safety critical domains. For modelling tasks in such an 
environment the model needs to be enhanced with more adequate parameters. 
Amboss allows specifying parameters like barriers protecting human life or computer 
systems, riskfaktors estimating the risk and also timing describing the time frame of 
tasks. Additional the user is able to describe what kind of object is associated to a 
particular task and what kind of access (read or write) the task does. Furthermore 
there is a possibility to describe actors related to a task. 

 

Fig. 3. Amboss for extracting scenarios 
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By using these parameters it is possible to describe a task model more in detail and 
have a good overview of the tasks. In order to mark a task as critical the user can change 
the colours of a task to red. A task modified this way can be easily found in a model.  

Similar to other modelling approaches [11] Amboss is able to simulate a task 
model. The Simulator is depicted on the Fig.4 and shows to the user exactly what 
happen in a task environment on a particular moment.  

A finished task model can be simulated by taking into account the task hierarchy, 
temporal relations providing the task execution order, communication flow showing 
messages including their parameters. Additionally during the simulation the user is 
able to observe the activation and deactivation of barriers, so he can see if a necessary 
barrier is active or inactive while a critical task is executed. For analysing and reusing 
different threads of simulation there is a possibility to save scenarios in an xml file.  

3.2   System Centred Approach 

System modelling is done using the ICO formalism and its development environment 
is called PetShop. Both of them are presented through the case study. The ICO 
formalism is the continuation of early work on dialogue modelling using high-level 
Petri nets [1].  

This section recalls the main features of an ICO specification and illustrates them 
using the case study. The ICO formalism is a formal description technique dedicated 
to the specification of interactive systems [2]. It uses concepts borrowed from the 
object-oriented approach (dynamic instantiation, classification, encapsulation, 
inheritance, client/server relationship) to describe the structural or static aspects of 
systems, and uses high-level Petri nets [6] to describe their dynamic or behavioural 
aspects. 

ICOs are dedicated to the modelling and the implementation of event-driven 
interfaces, using several communicating objects to model the system, where both 
behaviour of objects and communication protocol between objects are described by 
the Petri net dialect called Cooperative Objects (CO) [1]. 

In the ICO formalism, an object is an entity featuring four components: a 
cooperative object which describes the behaviour of the object, a presentation part, 
and two functions (the activation function and the rendering function) that make the 
link between the cooperative object and the presentation part. 

Behaviour: Fig. 4 presents the behaviour of the case study.  The detailed description 
of this behaviour is partly out of the scope of this paper, but to summarize it, the Petri 
net may receive events when a procedure is added (or removed) to (from) the set of 
conditioning procedures. When it is an addition, the behaviour asks the functional 
core to check if the procedure is a valid as a conditioning procedure or not. The place 
availableSlots initially contains 5 tokens, and every time a procedure is added, a token 
is removed from this place, and every time a procedure is removed, a token is added. 
When empty, this place disabled the transition askForAdding (which leads to the 
popup of the procedure selection window) so that it respects the constraints of 
maximum 5 conditioning procedures. 
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Fig. 4. Behaviour of the application 

Presentation part: The presentation of an object states its external appearance. This 
presentation is a structured set of widgets organized in a set of windows. Even if the 
method used to render (description and/or code) is out of the scope of an ICO 
specification, it is possible for it to be handled by an ICO in the following way. The 
presentation part is viewed as a set of rendering methods (in order to render state 
changes and availability of event handlers) and a set of user events, embedded in a 
software interface, in the same language as for the CO interface description. 

 

Fig. 5. Window used for editing conditioning procedures 

The presentation part is made up of a set of widgets that are used for both rendering 
information and provides the user with means to interact with the interactive systems. 
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Public interface ConditioningProceduresEdition extends ICOWidget { 

 //List of user events. 
 public enum Events {select, remove, askAddition} 

 //List of activation rendering methods. 
 void setAdditionEnabled(Events event, List<ISubstitution> availableSubstitutions); 
 void setRemoveEnabled (Events event, List<ISubstitution> availableSubstitutions); 
 void setSelectionEnabled (Events event, List<ISubstitution> availableSubstitutions); 

 //List of rendering methods. 
 void showSelection (IMarkingEvent anEvent); 
 void showConditioningProcedures (IMarkingEvent anEvent); 
} 

Fig. 6. Software interface of the presentation part 

The layout of the presentation part (Fig. 5) is out of the scope of the ICO 
specification, but this presentation part is seen as a collection of rendering methods and 
ways to provide events as shown in Fig. 6. 

Activation function: The user actions on the system (inputs) only takes place through 
widgets. Each user action on a widget may trigger one of the CO event handlers. The 
relation between user services and widgets is fully stated by the activation function 
that associates each event from the presentation part with the event handler to be 
triggered and the associated rendering method for representing the activation or the 
deactivation. 

Fig. 7 present the activation function related to the case study. Each line of this 
table links one of the events from the presentation part (listed by the enumeration in 
Fig. 6) to an event handler from the behaviour. For instance, when the user select of 
procedure in the list, the presentation part triggered the event select which finally 
leads to the firing of the event handler selectProcedure. And, when the event handler 
becomes available (or not) the activation rendering method setSelectionEnabled is 
called with parameters that describe it as available (or not). 

User Events Event handler ActivationRendering 
select selectProcedure setSelectionEnabled 
remove removeProcedure setRemoveEnabled 
add askForAdding setAdditionEnabled 

Fig. 7. Activation function 

Rendering function: The system rendering to the user (outputs) aims at presenting 
the state changes that occurs in the system to the user. The rendering function 
maintains the consistency between the internal state of the system and its external 
appearance by reflecting system states changes. 

Fig. 8 presents the rendering function related to the case study. Each line links a 
change of the behaviour state to the call of a rendering method of the presentation 
part. For instance, when a token enters the place ConditioningProcedures (e.g. a 
procedure has been added), the rendering method showConditioningProcedures is 
called with the marking of the place as a parameter. 
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ObCSNode name ObCS event Rendering method 
ConditioningProcedures token_enter showConditioningProcedures 
ConditioningProcedures token_removed showConditioningProcedures 
SelectedProcedure token_enter showSelection 
SelectedProcedure token_removed showSelection 

Fig. 8. Rendering function 

ICOs are used to provide a formal description of the dynamic behaviour of an 
interactive application. An ICO specification fully describes the potential interactions 
that users may have with the application. The specification encompasses both the 
"input" aspects of the interaction (i.e. how user actions impact on the inner state of the 
application, and which actions are enabled at any given time) and its "output" aspects 
(i.e. when and how the application displays information relevant to the user). 

PetShop: An ICO specification is fully executable, which gives the possibility to 
prototype and test an application before it is fully implemented [Error! Reference 
source not found.] within the associated environment PetShop. 

4   Integration Protocols 

The integration framework we have followed takes full advantage of the specific tools 
that we have been developed initially in a separate manner. One advantage of this 
separation is that it allows for independent modification of the tools, provided that the 
interchange format remains the same. 

We have previously investigated the relationship between task and system models. 
For instance in [16] we proposed a transformation mechanism for translating UAN 
tasks descriptions into Petri nets and then checking whether this Petri net description 
was compatible with system modelling also done using Petri nets. In [17] we 
presented the use of CTT for abstract task modelling and high level Petri nets for low-
level task modelling. In that paper the low-level task model was used in order to 
evaluate the “complexity” of the tasks to be performed, by means of performance 
evaluation techniques available in Petri net theory.  

In [13] we proposed a synergistic use of the tools CTTE and PetShop through the 
exchange of scenarios (provided as files) from CTTE to PetShop. The two notations 
model slightly different aspects: as CTT is a notation for task modelling whereas ICO 
is a notation for specifying concurrent systems, an automatic conversion from one 
notation to the other one would have been difficult. We have preferred a different 
solution that is easier to implement and better refers to the practice of user interface 
designers. Indeed, often designers use scenarios for many purposes and to move 
among the various phases of the design cycle. So, they can be considered a key 
element in comparing design solutions from different viewpoints. 

The main gap the user of this framework had to face was the important length of 
iterations while producing scenarios (i.e. build a scenario and save it as a file), testing 
it on the system model (i.e. load both the task model and the scenario within the 
system dedicated tool), change the scenario and/or the task model... 
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The work presented in this paper is based on the work done in [13] and is basically 
the investigation of overriding this gap, by first presenting the basic bricks for the 
integration of the two tools, then by presenting a solution to the gap presented above 
and finally by presenting a prospective reflection on a stronger integration. 

4.1   Tools Inside Notations and Their Associated Environments 

As our main interest in this paper is to show it is possible to make task modelling and 
system modelling cooperate, we present in this section features from each notations 
and their associated environment as basic tools for the integration framework. 

Amboss. As described above, Amboss environment provides a set of tools for 
engineering task models. For the purpose of integration we only use the interactive 
tool for editing the tasks and the simulation tool for task models that allows scenario 
construction from the task models. Thus the two main outputs are a set of task models 
and a set of scenarios. These two sets are exploited in the following way: 

• From the tasks specification a set of human and system tasks is extracted 
providing a set of manipulations that can be performed by the user on the 
system and outputs from the system to the user. 

• While building a scenario Amboss notifies the evolution of this scenario as 
Amboss provides an API that allows receiving data from the simulator. 

For the case study the interesting tasks are the leaves of the task tree: 

Actors Name Kind 
Human choose procedure to add input 
Human choose procedure to remove input 
Human validate remove input 
Human validate list of procedures output 
System check procedure validity output 

ICO. Amongst the features of the ICO environment (PetShop) presented above, the 
one that is used for the integration is the tool for editing the system model. It allows 
executing the system model. 

From this specification we extract the activation and rendering function which may 
be seen as the set of inputs and outputs of the system model.  

From the case study, we use each line of the activation and rendering functions 
presented on Fig. 7 and Fig. 8. 

4.2   Protocol 1 for the Integration of Notations and Associated Environment  

As in the paper [13], the integration protocol is made up with two phases: the 
definition of the correspondence between the two models and the execution of the 
system model controlled by a scenario provided by the Amboss simulator. 

Correspondence between models. The principle of editing the correspondences 
between the two models is to put together user input tasks (from the task model) with 
system inputs (from the system model) and system outputs (from the system model) 
with system output tasks(from the task model). Correspondence may show 
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inconsistency between the task and system model. The correspondence edition 
process may be seen as presented on Fig. 9, where each tool provides the 
correspondence editor with API in order to notify it each time modifications are done 
one both the task model or the system model. 

 

Fig. 9. Correspondence Edition process 

The description of the correspondence edition is illustrated hereafter using the case 
study (see Fig. 10). 

Type Task Items System Items Match 
Input choose procedure to add add activation adapter OK 
Input choose procedure to remove select activation adapter OK 
Input validate remove remove activation adapter OK 
Output validate list of procedures ConditioningProcedures rendering adapter OK 
Output check procedure validity  Not OK 
Output  SelectedProcedure rendering adapter Not OK 

Fig. 10. Correspondences between the task and system models 

While observing Fig. 10, we may see that there are two weak correspondences: 

• Task “check procedure validity” does not find any corresponding feedback 
within the system. It may be a problem because it means that the system does 
not validate the selected procedure and does not provide any feedback for this. A 
solution may be to add a new rendering adapter to the rendering function (and a 
new rendering method to the presentation part), such as: 

ObCSNode name ObCS event Rendering method 
InvalidProcedures token_enter showInvalidProcedure 

• “SelectedProcedure rendering adapter” is not linked to any task. It means that 
the system provides extra feedback that is maybe not useful for the user. Such a 
problem is not necessary a real problem as it is not an extra function provided to 
the user. 

Execution of the system model controlled by the Amboss simulator. The execution of 
the system model controlled by the Amboss simulator behaves as follow: while building 
a scenario, if the task performed within the scenario is one of the identified input tasks, an 
event is sent to the activation function (simulating the corresponding user event), so that 
it will fire the corresponding event handler from the ObCS of the system model. Fig. 11 
presents the architecture of this protocol of integration between tools. The top part of the 
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figure is the correspondence edition part, presented above. The bottom part of the figure 
presents the architecture of the execution part. The principle is the following one: 

• Through an API, the Amboss simulator notifies the Simulation controller of the 
evolution of the current scenario (it notifies whether a task begins or ends). 

• Through another API, the Simulation controller fires the corresponding 
activation adapter (according to the correspondence provided by the 
Correspondence editor), simulating a user event. 

Simulator Interpretor

Correspondence 

Editor

Simulation 

Controller

Tasks

Correspondences

Adapters

Notifications Firing

Amboss

Task Model

PetShop - ICO

System Model

 

Fig. 11. Protocol 1 for the tools integration 

As a scenario may be seen as a sequence of tasks and as we are able to put an input 
task and an activation adapter into correspondence, it is now possible to convert the 
scenarios into a sequence of firing of event handlers in the ICO specification. 

An ICO specification can be executed in the ICO environment and behaves 
according to the high-level Petri net describing its behaviour. As the Amboss 
scenarios can be converted into a sequence of firing of event handlers, it can directly 
be used to drive the execution of the ICO specification.  

The gap identified in the introduction of this section finds a solution as the direct 
link between the Amboss simulator and PetShop allows a designer to make the two 
models co-evolve, removing the activity that consists in creating scenario files and in 
fully separating the two tools. 

4.3   Protocol 2 for the Integration of Notations and Associated Environment 

We have started a prospective work on how coupling these two tools in a more 
synergistic way, introducing a communication from the ICO environment to Amboss. 
The architecture of this second integration protocol is presented on the Fig. 12. The 
correspondence edition (the top part of the figure) remains the same as in the one 
described in the previous section. Even if only input aspects are addressed by the first 
protocol of integration, the correspondence edition links both input and output tasks 
from the task model with input and output adapters from the system model. The 
bottom part of the figure proposes a more integrated way to make the two tools 
communicate. The communication from Amboss to PetShop remains the same 
(Amboss notifies the Simulation Controller which then ask the firing of the related 
corresponding adapters in the system model). The addition is the following one: 
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• Through an extended API, the PetShop interpreter notifies the Simulation 
controller of the evolution of the current execution of the system model (it 
notifies rendering changes that comes from both rendering and activation 
functions). 

• Through an extended API, the Simulation controller start or stop the 
corresponding task (according to the correspondence provided by the 
Correspondence editor), simulating the user manual action on the Amboss 
simulator. 
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Fig. 12. Protocol 2 for the tools integration 

The advantages of this integration protocol a real co-evolution of the two models, 
as the execution of both tools impacts the execution of the other tool. This integration 
protocol still provides the designer with shorter iterations in the task and system 
modelling process in the same way as for the previous protocol. But this protocol may 
also be an improvement for the final user. The principle would be to use the execution 
of the system to point out where the user is on the task model. The advantage is to use 
the task model as an input for providing the user with a partly automated contextual 
help in two phases: 

• As the system model execution point out the corresponding task in the task 
model, it is easily possible to provide the corresponding task description and 
attached help. 

• Knowing the task on which the user works, it is possible to extract from the task 
model possible scenarios which start with this task, and then “play” it on the 
system model as a demonstration of what is possible to do knowing the current 
context. 

5   Conclusion 

This paper addressed the issue of integrating task models and system models within a 
single framework. It claims that modelling approaches for these two critical 
components of the design of interactive systems provide a valuable mean for 
managing the complexity of interactive systems. The paper presented on a case study 
the information that is conveyed by a task model and the one embedded in a system 
model.  
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Beyond this modelling level, the paper also presents different ways of relating 
these two modelling approaches. It presents three protocols that have been identified 
and describes the advantages and limitation of each of them.  

Finally, the paper presents how one of these protocols has been implemented 
through the coupling of two modelling environments: AMBOSS for the edition and 
simulation of tasks models and PetShop for the edition and simulation of system 
models.  

The work presented in this paper belongs to a longer term research programme 
targeting at the design of resilient interactive systems using model-based approaches. 
Future work targets at exploiting these two models to support the usability evaluation 
of interactive systems. Indeed, task models provide a unique view on the goals and 
sequences of actions the users have to perform in order to reach such goals, while 
system models provide a unique view of the inner behaviour of the system.  
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Abstract. In this paper we present a method and a supporting environment that 
allows remote evaluation of mobile applications. Various modules have been 
developed in order to gather contextual data about the usage of such 
applications in different environments. In addition, issues related to how to 
visualise usability data have been addressed in order to support the designers’ 
work in analysing such data.  

Keywords: Remote usability evaluation, Usability in Mobile Applications, 
Representation of Usability Data. 

1   Introduction 

In remote usability evaluation, evaluators and users are separated in space and possibly 
time during the evaluation [1]. This type of evaluation is becoming increasingly 
important for the number of advantages it offers. Indeed, it allows the collection of 
detailed information on actual user behaviour in real contexts of use, which is especially 
useful in contexts in which it is not possible (or convenient) having an evaluator directly 
observing or recording the session. In addition, the fact that the users carry out the 
evaluation in their familiar environments contributes to gain more ‘natural’ users’ 
behaviour.   

In order to have a complete picture of what users did during the session and derive 
consequent conclusions about the usability of the application, it is crucial for the 
evaluators to reconstruct not only the interactions that users carried out during the 
session, but also the contextual conditions that might have affected the user 
interaction itself. Indeed, if such conditions are not completely known, the evaluators 
might draw incorrect conclusions about the usability of the considered application. 
This problem becomes even more difficult to address when dealing with mobile 
applications. Indeed, while for desktop applications the lack of co-presence between 
users and evaluators can be compensated to some extent by equipping the test 
environment with devices such as web cams, mobile applications require different 
solutions that are able to flexibly support evaluation in different contexts without 
being too obtrusive on the user side.  When dealing with remote applications for 
mobile devices, there are some additional problems that make it more difficult to 
gather data to remotely evaluate such applications. For instance, we have to take into 
account the more limited capability of mobile devices, which imposes constraints on 
the kinds of techniques to be used for tracking user interactions. In addition, there is 
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the further problem of detecting the environmental conditions in which the session 
takes place.  

In this paper we discuss a novel extension of a tool able to remotely process 
multimodal information on users interacting with desktop applications. The new 
solution is enriched with the possibility of tracking and evaluating also user interfaces 
of mobile applications, including the detection of environmental conditions that might 
affect user interaction (e.g.: noise in the surrounding environment, battery level 
consumption, etc.). The new tool, MultiDevice RemUsine, is able to identify where 
users interactions deviate from those envisioned by the system design and represented 
in the related task model. In addition, we also improved the graphical representations 
that are provided to the evaluators for visualizing the gathered data. Indeed, especially 
when dealing with a large amount of information, it is very important to use effective 
representations highlighting relevant information so as to enable evaluators to better 
identify potential issues and where they occur. 

The structure of the paper is the following one: in the next section we discuss 
related work, and next we introduce our general approach. Then, we present the main 
features of the additional component (Mobile Logger) we developed for supporting 
the detection of user interactions with mobile applications and environmental 
conditions that might affect the performance of user’s activity. In the following, we 
also discuss the issue of more effective visualisation techniques for representing the 
data that have been collected regarding the user activity. Lastly, we conclude with 
some remarks and indications for future work. 

2   Related Work 

Interest in automatic support for usability evaluation is rapidly increasing [2], 
especially as far as the remote evaluation is concerned, because, on the one hand, it is 
important that users interact with the application in their daily environment, but, on 
the other hand, it is impractical to have evaluators directly observe users' interactions. 
In [1] one of the first examples of remote-control evaluation is described. The remote-
control method checks a local computer from another computer at a remote site. 
Using this method, the evaluator's computer is located in the usability lab where a 
video camera or scan converter captures the users' actions. The remote users remain in 
their work environment and audio capture is performed via the computer or telephone. 
This is an example of a flexible technique for asynchronous remote evaluation which 
is restricted to be used on desktop systems due to some software limitations. 

Other studies [3] have confirmed the validity of remote evaluation in the field of 
Web usability. The work by Lister [4] has been oriented to using audio and video 
capture for qualitative analysis performed by evaluators on the result of usability 
testing. Other works have highlighted the importance of performing a comprehensive 
evaluation able to take into account data derived from multiple sources, and the 
consequent need to provide analysts from a variety of disciplines (each using distinct 
sets of skills to focus on specific aspects of the problem) to work cooperatively, in 
order  to adequately gain insight into large bodies of multisource data [5].  A more 
recent work [6] compares three methods for remote usability testing and a 
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conventional laboratory-based think-aloud method. The three remote methods are a 
remote synchronous condition, where testing is conducted in real time but the test 
monitor is separated spatially from the test subjects, and two remote asynchronous 
conditions, where the test monitor and the test subjects are separated both spatially 
and temporally. The authors claim that the two methods identified almost the same 
number of usability problems, and users spent the same time completing the tasks. 
The asynchronous methods are more time-consuming for the test subjects and identify 
fewer usability problems, yet they may still be worthwhile because they relieve the 
expert evaluators from a considerable amount of work, and enable collection of use 
data from many participants. 

Since most applications have been developed for the desktop, the majority of 
remote evaluation methods have addressed this type of platform. Only a few 
proposals have been put forward for remote evaluation of mobile applications. An 
example in this area is the paper by Waterson et al. [7], where the authors discuss a 
pilot usability study using wireless Internet-enabled personal digital assistants 
(PDAs), in which they compare usability data gathered in traditional lab studies with 
a proxy-based logging and analysis tool. They found that this remote testing technique 
can more easily gather many of the content-related usability issues, whereas device-
related issues are more difficult to capture. In [8] the authors describe a usability 
evaluation study of a system that permits collaboration of small groups of museum 
visitors through mobile handheld devices (PDAs). As usability evaluation 
methodology, they propose a combination of a logging mechanism and an analysis 
tool (the ColAT environment [9]), which permits mixing of multiple sources of 
observational data, a necessary requirement in evaluation studies involving mobile 
technology, when users move about in physical space and are difficult to track.  The 
museum system evaluated is based on a client–server architecture and an important 
characteristic of the application is that the server produces a centralized XML log file 
of the actions that occur during the visit, and this log file can be combined with a 
video recording of the visit allowing evaluation of activity during the visit. The 
methodology was able to deliver data useful for deriving quantitative information 
(e.g. total and average times for solving the puzzles, etc.), aspects related to group 
activities (number of exchanges between the group, strategies used for solving the 
puzzles, ..), behavioural patterns of participants. In general, while logging tools for 
mobile devices have already been proposed [10], we wanted to develop a novel 
solution for this purpose able also gather data useful to better identify the context of 
use related to aspects such as environmental conditions, connectivity and so on. 

Another emerging need in this area concerns tools able to support effective 
representations for enabling the evaluators to analyze the evaluation data collected. 
To aid analysis of the gathered usability test data, the WebQuilt [11] visualization 
provides filtering capabilities and semantic zooming, aiming to allow the designer to 
understand the test results at the overall view of the navigation graph, and then drill 
down to sub-paths and single pages. A first attempt to provide visual representations 
linking task models and log data was provided by Maly and Salvik [12]. In this paper, 
we present a representation sharing similar goals that is based on our experience in 
order to provide useful information for evaluators. 
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3   General Approach 

Our approach is mainly based on a comparison of planned user behaviour and actual 
user behaviour [13]. Information about the planned logical behaviour of the user is 
contained in a (previously developed) task model, which describes how the tasks 
should be performed according to the current design and implementation. The task 
model can be built in various way. It can be the result of an interdisciplinary 
discussion involving end users, designers, application domain experts, and 
developers. There are also reverse engineering techniques able to build automatically 
the system task model of Web pages starting with their implementation.  

The data about the actual user behaviour are provided by the other modules (eg: the 
logging tools), which are supposed to be available within the client environment. An 
overview of the general approach is described in Figure 1.  A logging tool, which 
depends on the type of application considered, stores various user or system-
generated events during the user session. In addition, other sources of information 
regarding the user behaviour can be considered, such as Web Cams showing the 
actual user behaviour and face expressions or eye-trackers detecting where the user is 
looking at.  

 

Fig. 1. The architecture of Multi-Device RemUsine 

As for the expected user behaviour, CTT [14] task models are used to describe it 
by their graphical representation of the hierarchical logical structure of the potential 
activities along with specification of temporal and semantic relations among tasks. It 
is worth pointing out that, with the CTT notation used, the designer might easily 
specify different sequences of paths that can correspond to the accomplishment of the 
same high-level task: this is possible thanks to the various temporal operators 
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available in the CTT notation, which also include, for instance, the specification of 
concurrent, multitask activities, or activities that interrupt other ones. On the one 
hand, for the designer is quite easy to specify in a compact manner even a complex 
behaviour, on the other hand the behaviour of such operators is automatically mapped 
by the underneath engine into all the corresponding possible paths of behaviours. 

In order to enable an automatic analysis of the actual user behaviour identified by 
the sequences of actions in the logs against the possible expected behaviours 
described by the task model there is a preparation phase. In this phase the possible log 
actions are associated with the corresponding basic tasks (the leaves in the task 
model). Once this association is created then it can be exploited for analysing all the 
possible user sessions without further effort. In this way, the tool is able to detect 
whether the sequence of the basic tasks performed violates some temporal or logical 
relation in the model. If this occurs then it can mean that either there is something 
unclear on how to accomplish the tasks or the task model is too rigid and it is not able 
to consider possible ways to achieve user goals. Thus, by comparing the planned 
behaviours (described within the task model) with the information coming from log 
files, MultiDevice RemUsine is able to offer the evaluators useful hints about 
problematic parts of the considered application. To this regard, it is worth pointing out 
that the tool is able to discriminate to what extent a behaviour deviates from the 
expected one (for instance, whether some additional useless tasks have been 
performed but they did not prevent the user from completing the main target task, in 
comparison with other cases in which the deviation led to unsuccessful paths).  

4   Mobile Logging 

With mobile interaction there are some contextual events that should be considered 
since they can have an impact on the user’s activity. Among the relevant events that 
might be taken into consideration there are the noise of the environment, its lightness, 
the location of the user, the signal power of the network, as well as other conditions 
related to the mobile device, e.g. the residual capacity of the battery.  

When we deal with usability evaluation in which stationary devices are used, the 
contextual conditions under which the interaction occurs and involving the location of 
the user remain unchanged over the experiment session. In this case, the information 
about user interaction might be sufficient. When we consider interaction with mobile 
devices, since the interaction occurs in an environment that can considerably change 
not only between two different executions, but also within the same execution, this is 
no longer valid. Thus, it is important to acquire comprehensive and detailed 
information about the different aspects of the context of use in which the interaction 
currently occurs since they might have an impact on the user’s activity.  

Each of these variables, as well as combinations of them can affect the user 
interaction, and in our tool we developed a separate module for detecting to what 
extent each of these components can affect the user interaction.  Currently, we 
consider aspects connected with the current position of the user (the position itself, 
together with the noise and lightness of the surrounding environment, according to 
such a position) together with other variables, which are more connected to objective, 
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Fig. 2. The architecture of the logging system 

technological requirements for enabling/disabling features involving the PDA overall 
working (battery level and network signal). Differently from the latter ones, the 
impact of the first aspect has to be put in relation with how the users might 
subjectively perceive the user interface, therefore, managing them could be harder. 

The general architecture of the tool is shown in Figure 2. The core of the logging 
tool is the Mobile Logger, which is in an intermediate position between the 
application to be evaluated and MultiDevice RemUsine. Indeed, on the one hand it 
has to communicate with the operating system to detect events and track the user’s 
activity, and, on the other hand, it has to record and communicate the logged data to 
the evaluation tool. In the following sub-sessions we will detail both aspects in more 
depth. 

4.1   Tracking the User’s Activity: Events and Messages 

The task of tracking the activity of the user is carried out by a procedure that is 
executed by the application evaluated, which uses libraries included in the operating 
system to detect events, and which exploits  an inter-process communication model 
based on exchanges of messages. The execution of an interactive graphical 
application is driven by events, notified in Windows systems by means of messages. 
Indeed, WindowsCE, like other Windows systems, is an operating system based on 
the “push” mechanism: every application has to be coded to react to the notifications 
(namely: messages) that are received from the operating system. Each window  has a 
window procedure that defines the behaviour of the component.   

Therefore, it is theoretically possible to derive all the information associated with 
the interaction from such messages. However, it is worth noting that not all messages 
received by the window procedure of a window/component are useful to reconstruct 
the user interaction. Indeed, there are messages that do not directly regard the user 
 



 Remote Evaluation of Mobile Applications 161 

interaction, for instance the WM_PAINT message forces the refreshing of the display 
of a certain component, but it is not triggered by the user. As a consequence, only a 
subset of the messages is considered for our purposes. Such set includes, for instance: 
WM_LBUTTONDOWN, a message that is received from every component as soon 
as a click event is detected on it; WM_KEYDOWN, a message that is sent to the 
component that currently has the focus as soon as the user presses a key on the 
keyboard.  

The functionality to track and save all the interactions of the user with the system 
is not centrally delegated to a single module but instead distributed over multiple 
modules that track the activity of the user according to a specific aspect: 

• NoiseMod: It is the module that has to track possible conditions that 
might interfere with the user activity on the audio channel. In order to 
track the conditions on the audio channel, this module executes at regular 
intervals of time a sampling of the audio. Depending on the samplings 
recorded, the value to be recorded in the log file is calculated. 

• PowerMod: It is the module that monitors the battery consumption of the 
device. The values are saved as they are provided by the system, without 
performing any calculation on them. 

• LightMod: It is the component that is in charge of tracking conditions 
that might interfere on the visual channel, for instance variations on the 
brightness of the surrounding environment. 

• SignalMod: Some applications might depend on the availability of a 
communication network and on the intensity of the signal. In these cases, 
the task of recording the power of such a signal is delegated to this 
module. 

• PositionMod: Some applications might be affected by the current 
position of the user. In this case, this module will track the location of the 
user and how it changes over the time. 

These modules have been identified taking into account the possibilities opened up 
by the sensing technologies of current mobile devices. Such modules for gathering 
environmental data are dynamically loaded only if a logging session is started and the 
activation of these specific components is requested. They record events using a 
sampling frequency algorithm, which is able to adapt the frequency at which the 
sampling is taken.  

Therefore, the sampling is not carried out at fixed time intervals. It starts with 
setting an initial interval of time in which events are acquired. Then, it proceeds in the 
following way: if, in the last interval of time no variation has been registered, the 
interval of time to be considered for the next acquisition becomes larger, otherwise it 
decreases (following an exponential law). This choice is based on the consideration 
that using a fixed interval of time for the sampling frequency might not be a good 
solution. For instance, if the sampling frequency is much smaller than the frequency 
at which the environmental condition changes, a more flexible algorithm can avoid 
the activation of useless event detection during some intervals of time, saving battery 
consumption, which is not an irrelevant aspect for mobile devices.   
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4.2   Saving the Logged Data 

The tool receives notification messages from the application to be tested, and delivers 
XML-based log files in which the events are saved according to a specific structure 
that will be detailed later on in the section. 

Therefore, Mobile Logger communicates with  Multi-Device RemUsine through 
the log files: in such files the logging tool records the detected events, and from such 
log files Multi-Device RemUsine gets the information needed to reconstruct the user’s 
activity. 

The log file is an XML-based file, and it is structured into two main parts: a header 
and the list of events that have been registered by the logger. The header contains 
information related to the entire evaluation session, for instance, the username of the 
tester, the temporal interval spent performing the test, the application tested, the list of 
contextual aspects that have been registered and the related parameters of sampling.  

The events are recorded according to the following structure: (temporal event, type 
of event, value), and they have been categorised into different classes: contextual 
events (all the events that have been registered as a consequence of a contextual 
condition); intention event (which is used to signal that the user has changed the 
target task, which has to be explicitly indicated); system event (the events generated 
by the system for replying to a user’s action); interaction event, further specialised 
into different categories like: click focus, select, check, scroll, edit. 

As an example, we can consider an application of the tool focusing on the use of 
information regarding noise and battery power. In this case, the tested application was 
a museum guide available on a PDA device. When the tool is activated it appears as 
shown in Figure 3(a): the user is supposed to fill identification information, then 
specify the aspects of the environment s/he is interested to consider, and also specify 
the target task (intention) that she wants to achieve (Fig. 3c), by selecting it from a list 
of high-level tasks supported by the application (Figure 3-b).  

 

Fig. 3. The logging tool: (a) when it starts; (b) after selecting the environmental conditions of 
interest; (c) after selecting the intention 
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Then, after selecting the “Start” button the log file regarding the user’s activity is 
created. Figure 4 shows an excerpt of the log file indicating the detection of the noise 
with an initial frequency of 500 ms and an increment factor of 50 ms. In addition, 
only variations not less of 3dB with respect to the previously detected values will be 
tracked. As for the battery level, the temporal parameters used are similar apart that 
the resolution is of only 1 percentage point. 

 

Fig. 4. An excerpt of log file recorded by the MobileLogger 

During the session evaluated, the user is supposed to interact with the application. 
Figure 5 shows an excerpt of the log file highlighting some events that have been 
registered and referring to the abovementioned scenario. From top to bottom, we have 
highlighted two environmental data regarding battery and noise; then, we have the 
notification of a system event (the loading of a window in the application), lastly, we 
have the  notification of the selection of the target task (intention)  made by the user.  

 

Fig. 5. Different types of events recorded by the Mobile Logger 
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5   Representing Usability Data 

Usability evaluation is strictly connected to how the gathered data are represented and 
provided to the evaluator. Therefore, the choice about the particular representation to 
use is important for enabling an effective assessment by the evaluators. Indeed, the 
data that are gathered might produce a large amount of information, which, if not 
adequately represented, might become a burden for the evaluators rather than 
facilitating their work. A previous version of the tool (see [13]) already provided the 
possibility to visualise the data gathered during the evaluation session, so that the 
evaluators could analyse them and derive their results accordingly.  

However, the evaluation reports were mainly textual, and therefore they were not 
able to highlight the main aspects effectively (see Figure 6-top part). The new version  
 

 

 

Fig. 6. Representing the evaluation results in the previous version of the tool (top) and in the 
new version (bottom) 
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of the tool offers graphical visualisations of the data gathered, which can be managed 
more easily by the evaluators (an example is shown in Figure 6-bottom part), thereby 
representing a step forward with respect to the previous visualisation technique. The 
new graphical representations will be described in further detail in the next sections. 
One of the most important points to bear in mind when deciding the technique to use 
for representing evaluation data is that such representation should make it easy to 
identify the parts of the application where users encounter problems. Therefore, the 
information represented is effective insofar as it is able to highlight such information, 
and consequently enable the evaluator to draw conclusions about the usability of the 
application. One relevant aspect for effectively reconstructing a user session is  
providing data according to its evolution over the time. In addition, evaluators should 
be able to easily carry out comparisons between the behaviour of different users; 
therefore, the use of graphical representations (rather than e.g. lengthy text-based 
descriptions) can also provide the evaluators with an overview of the collected data 
and allow them to compare data on different users. 

Such considerations led to the type of representation we have investigated to 
represent usage data, the timelines. In particular, we identified three types of 
timelines: 

• Simple Timeline: linear representations of the events that have been recorded; 
• State-timeline, which is an extension of the first one, enriched with 

information about the current state of the target task, which is represented 
through different colours associated with disabled, enabled or active; 

• Deviation-timeline, which is a representation of the registration over three 
different parallel levels, in which squared elements indicate the level of 
deviation from a sort of “ideal” path. 

 

Fig. 7. Deviation Timeline and State Timeline visualized in the tool 
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In particular, we developed a number of panels in which not only whole sessions but 
also segments of them are represented both in relation to a single user and group of 
users. Figure 7 shows an example of both representations (the white circles identify 
the temporal occurrence of  basic tasks whose performance is detected by an analysis 
of the log file), each one associated with a different user. The lines contained within 
the State Timeline identify the evolution of the state of the target task that has been 
selected: disabled, enabled, active, which are represented in different colours. For the 
Deviation timeline (see Figure 7), each square represents a degree of deviation from 
the ideal path which was supposed to be followed by the designer.  

As Figure 7 shows, the evaluators can select the preferred type of representation 
and specify if they are interested to visualise data associated with a whole session or 
associated with single tasks. The two solutions are basically similar, but the second 
one is especially useful when the evaluator wish to perform some comparisons, 
because the selection of a single task provides information independent of absolute 
times. In this way, a target task explicitly selected by a user after a certain period of 
time from the start of the session will be perfectly lined up with another one from a 
different user, which started exactly at the beginning of the session. Within the 
timelines it is possible not only to identify when the task occurred, but also the type of 
task that occurred, through the use of a particular colour (see Figure 8).  

 

Fig. 8. The different types of intentions represented through different colours 

The knowledge about the different contexts in which the user session evolved is 
relevant for deriving whether any condition might have interfered with the user’s 
activity, then it is important for completely reconstructing the conditions in which the 
experiment took place. Contexts that are relevant for the evaluation might physically 
correspond to a certain place and situation, but they might also be associated with the 
variation of some specific aspects (for example, noise or light) even if the user is still 
in the same position. Then, two basic manners for defining contexts can be 
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considered: on the one hand, there is the possibility to explicitly list the contexts that 
are judged relevant and define each of them in terms of the various contextual 
dimensions we are interested in. For instance, it might be the case that we are 
interested to only two specific contexts, one characterised by high level of noise, light 
and network connectivity (such as the office), another one characterised by low levels 
of noise, medium level of light and low level of network connectivity, which might be 
at home. On the other hand, we might wish to specify in other cases just the variations 
that  determine the change of context, e.g. the variation of a certain parameter beyond 
a specific threshold value or percentage. For instance, we might want to investigate 
the impact on the usage of the application whenever a reduction/increase of 30% in 
light is registered in the environment. 

 

Fig. 9. Possibility of selecting task performance information related to a specific context of use 

Once the different contexts have been identified, various aspects can be analysed 
by the evaluator. For instance, if the achievement of a certain goal is obtained by 
carrying out the related activities partially in an environment and partially in other 
environments, it might be interesting to see how the performance of a certain task 
evolves. In other cases, it might be interesting for the evaluator to carry out an 
analysis that takes into account a specific context and understand the evolution of the 
sessions in that specific context. For instance, it might be useful to understand the 
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amount of time the user has spent in a specific environment and the number of tasks 
that have been completed in such an environment. In Figure 9 the time spent for 
carrying out a certain task in a specific context is visualised: the evaluator can select 
the specific context (“Home” in Figure 9) and then the tool shows how much time 
was needed by the user in order to carry out the tasks in that specific context. 

6   Conclusions and Future Work 

In this paper we describe an extension of a tool for remote usability evaluation. The 
extension aimed at supporting the evaluation of mobile applications through a logging 
tool also able to detect some environmental conditions that might affect the user 
interaction, which can be useful information for the evaluator. The resulting 
environment is able to support usability evaluation of applications that are executed in 
different types of interactive devices using a range of logging techniques. In addition, 
we also present how we have improved the visualization techniques for enabling 
evaluators to effectively use the gathered data and focus on the aspects that allow 
them to identify parts of the application in which usability problems might hamper a 
user experience of high quality.  

Future work will aim at enriching the analysis by integrating further aspects of 
environmental conditions, and also to improve the effectiveness of the representations 
provided to the evaluator.   In addition, some work will be dedicated to the validation 
of the approach and tools, for instance on the usability diagnosis power, the 
assessment of evaluator support, etc. 
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Abstract. For many years, tailorability has been identified as a very important 
property of system design in order to take care of the emerging users needs to-
wards their working environments. In the same time component-based ap-
proaches have been revealed as an interesting solution for tailorability, allowing 
dynamic integration of components in global environments supporting specific 
tasks. However, component technologies still face some drawbacks mainly due 
to a semantic problem. In order to palliate these lacks we propose in this paper 
a new solution that tends to merge tasks models, from the HCI research field, 
and existing component models. It particularly consists in a new design ap-
proach — the Task Oriented (TO) approach — supported by STOrM, a tool 
dedicated to the creation and manipulation of Task Oriented Components 
(TOCs). 

Keywords: Component, integration, task, modeler.  

1   Introduction 

For the past years and building their experience on multidisciplinary, many different 
research fields related to the HCI (Human Computer Interaction) research domain 
have demonstrated that tailorability is a key concept that has to be taken into account 
while designing software applications [27]. In the same time and following the 
growth of the Internet, the need for global environments supporting complex and 
eventually cooperative activities has been identified. In this track, CSCW (Computer 
Supported Cooperative Work) researchers have shown that component-based ap-
proaches could support tailorability in global environments [15]. 

As defined by Szyperski and Pfister [25], “Components can be deployed independ-
ently and are subject to composition by third parties”. The fact that a component 
should be designed for use by third parties implicitly raises questions about its inte-
gration in the environment where it will be used: this integration should not be real-
ized by its developers but by its users.  

We have been working for many years in the CSCW research domain while creating 
groupware systems like CooLDev (Cooperative Layer supporting software Develop-
ment) [11]. This work leads us to identify a strong issue in existing component-based 
technologies regarding their integration means. In this paper, we will firstly show that 
this issue is closely linked to a semantic loss. The second part will propose a new  
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solution corresponding to an augmented software component model inspired by Object 
Oriented (OO) approaches but putting the user task in the center of the component de-
sign process: the Task Oriented Component (TOC) approach. The third part will define 
the five main steps helping to create TOCs. We will also introduce the STOrM (Simple 
Task Oriented Modeler) Eclipse plug-in that is designed to support this TOC creation 
process. The fourth part will present the benefits resulting from the TOC approach re-
garding the integration issue. The fifth part will describe some collateral development 
showing that this approach is part of a global thinking that goes beyond the facet pre-
sented in this paper. The last part will present our conclusions and perspectives.  

2   The Component Integration Problem 

In order to illustrate the type of integration we are interested in here, we now intro-
duce the work we have realized in the CooLDev project. CooLDev is a global, coop-
erative and integrated environment designed to support Software Development (SD) 
cooperative activities. This exemplification will help us to underline the lacks existing 
in the current means for component integration. 

2.1   The CooLDev Project 

Briefly described, CooLDev is a distributed environment that aims at proposing an inte-
grated space for the use of diverse tools serving its users activities. From this point of 
view, it can be compared to existing environments like SourceForge [1], also dedicated 
to support SD activities, or even Moodle [7] widely used in the distance-learning do-
main. This paper does not aim at listing all the concepts and properties that differentiate 
CooLDev from existing platforms. The reader may find more information about this in 
[11]. We will just underline here the fact that in CooLDev, the client part of the envi-
ronment is not supported by Web browsers, but is realized as an extension of the Eclipse 
platform that is widely used by the community of software developers. 

Anyway, these environments aim at providing a sort of portal allowing their users to 
access a set of tools that have been integrated in it. This way, thanks to Sourceforge or 
CooLDev, users can directly and concurrently use a forum tool, a chat, a CVS, a bug-
tracking system, etc., because these tools have been put together in order to support 
global SD activities. We can consider that each of these tools is a component that has 
been integrated and contextualized for supporting the global and specific user’s activity. 
For example, a chat tool is not a priori dedicated to a particular application domain but, 
once contextualized into CooLDev, it is automatically connected to the discussion pro-
ject’s channel and the user’s community. Without the global environment, each user 
would have to furnish her/his connection parameters for each tool and in each specific 
project. Thanks to CooLDev, the user only has to identify her/himself once and the plat-
form controls and configures each integrated tool in order to automatically propose a 
coherent working environment. Moreover, this integration also allows managing some 
synergy between the components supporting the same activity. For example, in 
CooLDev, we can imagine that realizing a CVS “commit” will trigger an automatic 
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message in the chat tool, thus warning the community about the changes, and that it will 
dynamically modify the users’ rights regarding other tools/components thus for example 
allowing the “testers” to evaluate and annotate the new software version. 

Finally, it is important to remember that platform tailorability is a strongly required 
property [27][16][28]. Tailorability involves that the components supporting a par-
ticular activity do not know each other a priori: in other words, the chat and the CVS 
have not been created by the same developers and do not know that they will be in-
volved in such a synergy. In the same time, CooLDev cannot anticipate the future 
needs of its future users and thus, it cannot know in advance which components it will 
eventually integrate. The main issue is then to propose the means making these com-
ponents open enough and well designed to be easily and finely integrated in order to 
support the mechanisms that we have just presented. 

2.2   Existing Integration Means 

Component integration is a complex research domain. Many technical solutions try to 
propose solutions to the many aspects of this problem. For example, components like 
JavaBeans, Corba, EJB, and Web Services are designed to be integrated. Their different 
integration methods generally follow the same principle: it is possible to dynamically 
find objects over the Internet, to create instances of them, to study them using introspec-
tion [13], to discover their public methods and their event channels, and finally to use 
them. Even if these mechanisms are useful in order to finely and dynamically integrate 
components, they mainly address the technical part of the problem. We can also notice 
that these means are exclusively directed to experienced developers [9]. 

The dynamic and fine integration of a component supposes that we can use it, but 
also and moreover that we can understand how to use it. Integrating a chat in 
CooLDev is a typical example of this problem. CooLDev is partially realized over 
Eclipse and then, the chat is an Eclipse plug-in that follows, among others, the Java-
bean model. A CooLDev user that needs to design a particular activity support that in-
tegrates the chat will be able to download it (as a “jar” file for example) and to dis-
cover its integration means allowing to dynamically create an instance of it, to 
discover its methods and to call them. Supposing that the chat has been designed as an 
open component, it will certainly propose a set of methods allowing its control like         
sendMessage, connect, disconnect, or even changeUserInfo. Even if 
the name of these methods may appear explicit enough, it is often hard to know what 
to do with these latter. In order to palliate this first semantic problem, Object Oriented 
(OO) technologies propose some support for their comprehension. We can cite as an 
example the WSDL [3], a Web Services description language, or the Javadoc, a Java-
beans documentation mean. This documentation will usually be shaped as the one 
presented in Fig. 1. 

However, even if useful, this kind of documentation mainly succinctly describes 
the methods, and does not really help in knowing how and when to use them. Every 
developer has been faced to this problem, raising many questions in which the main is 
probably: “in which order the integrating application has to call these methods in or-
der to make the component work properly?” For example, in the case of our chat, a 
direct call to sendMessage will raise an error at run-time because the connect 
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Fig. 1. A chat component Javadoc sample 

method that effectively registers the user in a server channel should have been called 
first. Of course, in the chat example, one can imagine that someone integrating the 
component and discovering connect and sendMessage will certainly understand 
that authentication has to be performed before sending messages. This can be ex-
plained because this corresponds to a well-known and stereotyped task (a kind of pat-
tern), thus also explaining why we have chosen this example in this paper. However, 
comprehension is less evident while considering the changeUserInfo method. 
One can imagine that if the user’s data like her/his nickname or icon are stored in 
her/his own computer, it is possible to call changeUserInfo without a preliminary 
connection step. On the other hand, one can imagine that if the data are centralized in 
the server, the connect method has to be called first… From the component user, 
the ambiguity exists and the question cannot be solved without proceeding to fastidi-
ous tests, or without having to explore the component implementation, if available. 
More generally, and considering more complex and less stereotyped examples, with 
components proposing method names making sense for their designers but not neces-
sarily for their users, it appears that the components comprehension allowing their 
appropriate integration is still a strong issue. 

For all these reasons, only very motivated developers are usually capable to really 
integrate most of the components emerging from the Internet because, by studying ex-
isting source code, they have to mentally reconstruct almost all the functioning 
mechanisms of the tool they need to integrate. This issue limits reuse to very special-



174 G. Bourguin, A. Lewandowski, and J.-C. Tarby 

ized users and reveals a strong drawback in the existing component-based technolo-
gies regarding the expectation they have generated in trying to support the creation of 
tailorable environments.  

This analysis let us think that the difficulties encountered in component integration 
mainly come from a semantic loss in their documentation. In fact, the interested re-
search community has already noticed this semantic lack and some work trying to 
propose new solutions is already in progress [10][14]. However, and considering the 
existing models, even computer scientists have difficulties in integrating external 
components to create their applications. This explains why we can notice that these 
new propositions are still directed to experienced developers. In our own work re-
garding tailorability [4], we have shown that facilitating the fine and dynamic compo-
nent integration would also be very valuable for less experienced users. However, one 
point seems important for guiding our work: these users, computer scientists or not, 
are not necessarily familiar with the involved technology, but they all are guided by 
the task they need to perform. 

3   Task Oriented Components: TOCs 

Because we have been working for many years in the HCI research domain, particu-
larly in the CSCW (Computer Supported Cooperative Work) research field, we have 
adopted this particular viewpoint: each tool or component can be considered as sup-
porting a more or less generic and complex user task. From this viewpoint, a tool like 
Firefox supports the generic ‘web exploration’ task. This is a complex task that can be 
decomposed in (sub-)tasks like the ‘bookmark management’ or even the ‘string 
search inside a web page’. An instance of this generic task may correspond to ‘col-
lecting information for writing a research paper for TAMODIA’. In the same way, the 
generic task that is supported by the chat component is distant and synchronous dis-
cussion that will for example support a particular debate activity during a global soft-
ware design activity supported by CooLDev. It then appears that contextualizing a 
component means putting its task in the context of a more global one: the integrating 
environment’s task. This contextualization will then be realized by creating links be-
tween the integrating task and the component’s one.  

The task notion takes a more and more important place inside software engineer-
ing, mainly in the HCI domain where a lot of work aims at expressing the users’ 
tasks. This task-oriented approach is generally used in the early or in the last stages of 
the development process [6][12][21]. However, if these methods propose to start 
component design by a tasks modeling, the task notion progressively disappears dur-
ing the development process and is finally replaced by the Object Oriented (OO) 
paradigm. This classical design approach tends to transform tasks models into object 
models from which results the class-based structure of the component (cf. Fig. 1, up-
per part). The component tasks model is then implicitly drowned in the complexity of 
the produced code. In fact, the (user) task notion is mostly not used during the design 
and development cycle, i.e. after the requirements analysis. Moreover, the existing 
tools used by software engineers like IDEs (Integrated Development Environments – 
supporting coding and test phases) or CASE tools (Computer Aided Software Engi-
neering – supporting the whole design process like Rational Rose) do not integrate 
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Fig. 2. Classical Object-Oriented design approach versus Task-Oriented approach 

task-oriented approaches, even if several propositions have tried to palliate this lack 
[5][18][20][23]. Unfortunately, we can only observe the lack of concrete results in re-
cent software development teams’ tools. 

Thus, it appears that the tasks model used in preliminary phases of the design proc-
ess is progressively diluted in the implementation and is not explicitly accessible 
anymore in the delivered component. This mainly explains why, as we mentioned be-
fore, the integrators have to go in the component’s code to try and extract the func-
tioning and especially the use logic [22]. In other words, the integrator has to mostly 
completely and mentally reconstruct the underlying tasks model in order to make it 
explicit again.  

This is why we propose to better use the components’ tasks models that can be 
seen as a kind of missing link disappearing between the design phase and the pro-
duced code. We call Task Oriented Component (TOC) this new software component 
type. As shown in Fig. 1 (lower part), the basic principle behind a TOC is that it con-
tains its classical OO documentation and is explicitly augmented by the tasks model 
describing its use logic. In this approach, some parts of the functional code (compo-
nent methods) are linked to the tasks model they come from, thus allowing TOC con-
textualization from a higher abstraction level.   

Moreover, we can notice that tasks models – when created – already serve as 
shared objects facilitating a better communication between the different actors (in-
cluding end-users) involved in the complex design process. Thus, the TOC approach 
should also serve as a better support for collaboration between these actors. 

4   Creating TOCs 

4.1   The Approach 

As a beginning, we have chosen a top-down approach for creating TOCs. We propose 
a method and design means supporting the creation of TOCs. This process defines 
several steps in which the five most important are the following: 
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1. Ideally, the development process should include an early task-modeling phase in 
order to describe the expected behavior of the future component. The resulting 
model will be the starting point of the TOC creation. The ergonomist collaborating 
with other design process actors like developers or future end-users constructs a 
task tree. Each task can be annotated in order to make the tasks model well under-
stood by all the actors and serve as a shared representation of the TOC. 

2. The tasks model is then augmented by the computer scientist while specifying 
methods that will be directly linked to the tasks and annotations that have been 
brought to the fore. 

3. Implementation and documentation skeletons can then be directly deduced (auto-
matically generated) from the augmented tasks model. 

4. Skeletons are implemented (using a classical OO approach) while following the 
specifications of the augmented tasks model. 

5. The component is delivered with its classical OO documentation, but also with its 
hybrid model linking the user’s task and the component’s code, thus forming the 
TOC documentation. 

The integration activity needs an access point allowing the tierce environment to 
communicate with the component: when a TOC instance is created, it should provide 
a reference with which the integrative application will interact. This front object, also 
called “wrapper”, proposes a set of methods making possible the control of the com-
ponent by another application by replacing or “simulating” the component’s user. 
These methods in some way allow to automatically realize or “shunt” some user tasks 
defined in the TOC model: for example, in our chat, calling the connect method re-
places the fact that the user has to fill in a dialog box asking for his/her connection pa-
rameters; it is CooLDev that performs the chat connection to the good server instead 
of its user and by using the known information about this user and about the global 
software development task in which the chat is involved. 

These particular methods are thought for the external component’s integration and 
control. Their implementation calls other methods that are internal to the component. 
The technical solution consists in generating the wrapper skeleton as an additional 
class that will serve as a mediator between the tasks model and the component code. 
This is illustrated in the Fig. 3.  

  

Fig. 3. Linking tasks model and implementation code through the integration wrapper 
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4.2   STOrM: A TOC Design Tool 

4.2.1   An Augmented Task Modeler 
Because the TOC development process is intimately linked to its augmented tasks 
model definition, we have developed a modeler supporting this activity. This tool has 
been called STOrM (Simple Task Oriented Modeler) (cf. Fig. 4).  

STOrM has been realized as an Eclipse plug-in for many reasons. Proposing an 
Eclipse plug-in dedicated to software user tasks modeling that maintains strong links 
between user tasks models and implementation code appears as a first step towards 
the effective integration of user tasks modeling inside widely used development tools. 
Moreover, we have already underlined that a TOC development results from a close 
collaboration between different actors of the design process and that CooLDev aims 
at better supporting this collaboration. This environment being itself partially realized 
over the Eclipse platform, we want to involve STOrM inside the collaborative activi-
ties supported by CooLDev. 

The concepts we have used to create and represent tasks models are both inspired 
by CTTE [17] and K-Made [2]. The reason is that we wanted to be able to freely cre-
ate tasks models with, for example, isolated tasks (i.e. without parent), eventually un-
typed tasks, etc., things that are somehow not globally possible with only one of these 
formalisms. We also wanted to augment them with new elements directly inspired 
from our specific approach. These choices result from many years using these model-
ing tools with very diverse publics like computers scientists (students, teachers, de-
velopers), simple computer users and ergonomists. We then decided to select interest-
ing elements issued from each formalism like the CTTE tree view, the K-Made icons 
and “unknown” task concept. We also mixed the temporal operators, merging the 
“unknown” temporal operator from K-Made with those from CTT, etc. 

4.2.2   Creating a Chat TOC 
To illustrate the use of STOrM for creating TOCs, we will once again consider the 
chat example that has been described since the beginning of this paper. Thus, STOrM 
is used to create the tasks model of the future chat TOC. This model is partially pre-
sented in Fig. 4. Using STOrM, the developer can augment the produced tasks model 
while specifying the basis of the component’s functional code. As mentioned before, 
a tierce environment will use these integration methods to create shunts over desired 
user tasks. This explains why the developer takes benefit in reasoning on the compo-
nent’s tasks model to identify the tasks that may serve this mechanism. STOrM  
supports this extension phase by providing the means to augment each task while de-
fining the public methods signatures that will make the augmented tasks accessible 
from a tierce environment. The augmented tasks model of the chat component is 
shown in Fig. 4 where one can notice that the developer has for example augmented 
the Connect to the chat task, thus making possible for a tierce environment like 
CooLDev to automatically configure this component by taking the place of its user in 
providing the adequate connection data. This is characterized by the existence of the 
connect method. If an integrating environment calls connect while providing the 
required parameters, the connection task is directly realized. If the parameters are not 
provided, the component will open a dialog box requiring a user interaction. Finally,  
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Fig. 4. The chat tasks model augmented by integration method signatures 

it is important to notice that, with this augmentation, the designers clearly indicate 
that connect is the first method to be called when the chat is instantiated. 

4.2.3   An Implementation Skeleton Generator 
Once the tasks model has been augmented, STOrM is able to generate the correspond-
ing implementation skeletons. More precisely, a Wrapper (java) class is generated on 
 

 

Fig. 5. Sample code of the generated wrapper class 
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demand. This class provides the entry points that will be involved in the future TOC 
integration. Considering the chat augmented tasks model already introduced, the 
ChatIntegrationWrapper class has been generated and is shown in Fig. 5. A 
Javadoc embryo is also generated, taking benefit from information (e.g. annotations) 
available in the task associated to each method. This skeleton is a basis element that 
the development team will “just” have to complement while implementing the meth-
ods bodies and the Javadoc from its point of view. 

5   Using TOCs 

Even if the classical OO introspection mechanism is still available, the TOC provides 
a new viewpoint over its integration methods because its tasks model is delivered 
with the component. This way, opening a TOC in STOrM (or any future compatible 
tool) provides a new introspection type that helps in discovering the integration meth-
ods, not only through a simple list, but now through the task that is supported by the 
component. This new viewpoint palliates the semantic problems we exposed before. 
Considering the chat example (cf. Fig. 6), it is now possible to easily study it’s func-
tioning and to quickly discover its functions that have been judged as key elements by 
its designers. Each possibility offered by the component regarding integration corre-
sponds to an augmented task that is contextualized in the frame of the global task 
supported by the component. The integration methods are linked to these tasks. 
Thanks to this, the ambiguity described before and introduced by the changeUser-
Info method directly disappears because the augmented tasks model, with the task 
transition semantics, clearly indicates that the connection task has to be realized first. 
The integrator does not need to know where data are stored: the tasks model is clear 
 

 

Fig. 6. TOC introspection facilitating its integration 
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enough. Finally, we will underline that, going further in displaying the different as-
pects of the TOC, STOrM can simultaneously display the component’s augmented 
tasks model and each method’s Javadoc. This contextualizes classical information, 
coming from a lower abstraction level like comments about the method’s parameters, 
in the frame of the task higher abstraction level. 

6   Collateral Development  

In this paper and due to a lack of space, we have limited our demonstration to the 
components’ integration issue. However, we also would like to briefly underline an-
other point closely linked to our approach. Another issue about component-based 
technologies is related to the means to verify how a component effectively supports 
the task it has been designed for. More precisely, we are interested in finding solu-
tions that help to generate and analyze components’ use traces.  

From this point of view, our work uses the Aspect Oriented Programming (AOP) 
[8] to generate traces [26] reflecting the component’s use: its execution involves 
method calls that support the interactions between the user and the component; trac-
ing these methods help to analyze the task performed by a user with the component. 
This technique offers several benefits that we will not describe here. However, with-
out our TOC approach, one drawback is that the ergonomist wanting to trace a com-
ponent has to browse the code to identify and select the methods that have to be 
traced. Due to the semantic loss we have described in this paper, this work can only 
hardly be realized since an ergonomist is usually not a computer scientist and because 
the available implementation methods do not easily correspond to the user tasks he 
needs to trace.  

This further explains how the TOC approach also truly tries to take care about the 
ergonomist’s needs, and how this method should amplify and favor a balanced coop-
eration: in the first step of the method, while creating the tasks model, the ergonomist 
also describes the tasks he want to trace later. While augmenting this tasks model in 
step 2, the computer scientist then also defines key methods for tracing. These meth-
ods are not necessarily integration methods constituting the wrapper, but correspond 
to the core implementation code of the component, i.e. the component’s classes that 
may be involved in the wrapper’s implementation as described in Fig. 3. Using a tool 
like STOrM, the corresponding skeleton can be generated and implemented according 
to the augmented tasks model. Thus, thanks to the TOC technology, an ergonomist 
can more easily create aspects that will generate the expected use traces. He does not 
have to hardly browse the component’s code anymore. He now just has to identify the 
tasks he wants to trace, which corresponds to his/her abstraction level. Since the tasks 
model is directly connected to the corresponding methods, STOrM can help in gener-
ating the aspects over the (implicitly) selected methods.  

7   Conclusion 

As demonstrated by many years of multidisciplinary research involved in software 
design, tailorability has to be an intrinsic property of new interactive systems in order 
to take into account the inevitable emerging users’ needs.  It has been shown that  
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tailorability can be supported by component-based technologies. However, we have 
demonstrated in this paper that existing component models still present semantic 
problems. This lack hardens component integration. To palliate this problem, we have 
proposed a new Task Oriented (TO) design approach trying to marry HCI tasks mod-
els and existing Object Oriented (OO) component models. We have noticed that user 
tasks models are poorly involved in current software design. In the TO approach, the 
tasks model become the center around which components are constructed while fed-
erating the expertise of the different actors involved in the design process. This ap-
proach defines five main steps that guide the creation of Task Oriented Components 
(TOC). 

 The main advantage of a TOC is that it contains its tasks model that has been 
augmented by key methods signatures providing concrete means for its integration in 
a tierce environment. These methods are used to generate an integration wrapper 
skeleton. TOCs then augment the classical OO introspection mechanisms by adding 
the semantic linked to their tasks model. This facilitates the component discovery and 
comprehension, thus easing its integration because the tasks model contextualizes the 
methods that enable its control and indicates which tasks can be called and/or shunted 
by an integrating environment.   

The TO approach is now partially supported by STOrM (Simple Task Oriented 
Modeler), a tool dedicated to the creation and manipulation of TOCs. STOrM, as this 
TO approach, is still subject to evolutions but these first results are opening several 
exciting perspectives. One of them is to further develop STOrM in order to support 
graphical components integration. As we said, integrating a component in a specific 
environment corresponds to contextualizing its generic task in the frame of a more 
global one. We strongly believe that component integration will then be possible by 
graphically linking tasks models together. We hope that this mechanism will make 
component integration more accessible, maybe even to end-users, thus better support-
ing the tailorability principle. 

Finally, we have shown in the last part of this paper that the TOC approach aims at 
facilitating more than component integration. This is why STOrM has been realized 
as an Eclipse plug-in that can be integrated in the CooLDev environment. CooLDev is 
precisely dedicated to the support of global cooperative software development activi-
ties like the one we have described in this paper for creating TOCs. This should help 
us to test and further develop this work that takes place in a global research approach 
dedicated to better software design and complex application development support. 
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Abstract. The development of user interfaces is influenced by various chal-
lenges in recent years. These are foremost caused by increasing complexity of 
the underlying applications and the use of these applications on different de-
vices, by different user types and in changing environments. Model-based user 
interface development approaches have been shown to be suitable to face these 
challenges. However, creating, transforming and linking the various included 
models are complex tasks. Employing patterns can avoid these disadvantages 
and provide an advanced concept of reuse. In this paper a general framework is 
introduced that describes how model-based approaches can be extended with 
patterns. The implementation of the framework is exemplarily shown in order 
to derive a concrete pattern-driven model-based approach for user interface de-
velopment. A case study is used to illustrate the derived approach.  

Keywords: Pattern, Model-based User Interface Design, Pattern Notation. 

1   Introduction 

User interfaces have to handle increasing challenges. They convey the output of the 
underlying application and the input from application users and hence have to cope 
with the complexity of both sides [6], as Fig. 1 illustrates. 

On the one hand the increasing complexity of software applications in general in-
fluences the user interface design, since the application functionality has to be ac-
cessed via the user interface. 

On the other hand the user interface needs to accommodate different types of users, 
ranging from computer novices to computer experts. Additionally, a wide spectrum of 
new devices beside the desktop PC, like PDAs or mobile phones, has caused a grow-
ing demand for device spanning applications in the last years. However, running the 
application on different devices often meant developing a user interface for each of 
the devices. Eventually different and dynamically changing environments, where the 
applications are used in, have to be considered. 



 Patterns in Task-Based Modeling of User Interfaces 185 

 

Fig. 1. User interface development challenges 

 

Model-based user interface development has gained momentum in the recent years. 
Various development approaches have been suggested. However, they often differ in 
the underlying models, the modeling method and the modeling notation used to de-
scribe the models. Beside the benefits of model-based user interface development, 
creating the models and linking them to each other is still a time-consuming activity. 
Furthermore the approaches lack an advanced concept of reuse. 

To avoid these disadvantages patterns may be employed. Patterns describe recurring 
solutions in a generic form, so that they are applicable in different contexts while 
adapting the solution to the given situation. Since the solution has to be specified only 
once when creating the pattern, patterns provide an advanced concept of reuse. Fur-
thermore patterns are suitable to reduce complexity of model-based approaches, be-
cause they provide a more aggregated perspective in the development. 

In this paper an approach for integrating model-based and pattern-driven ap-
proaches for user interface development is introduced. In the next chapter related 
work is discussed. Following, in the third chapter, a framework is introduced that 
describes the general idea of how model-based approaches for user interface devel-
opment can be extended with patterns. Afterwards, in the fourth chapter, it is shown 
exemplarily how to implement the framework in order to derive a concrete pattern-
driven model-based approach. The capability of the derived approach will be illus-
trated by presenting a case study within the fifth chapter. Finally the concepts intro-
duced in this paper will be summarized and future avenues will be outlined. 

2   Related Work 

The idea of model-based development of user interfaces is to describe the user inter-
face by a set of models, whereby each specifies a certain aspect of the user interface. 
For this purpose various model-based approaches have been suggested in recent 
years. Usually each approach contains a modeling method that describes which mod-
els have to be created in order to specify the final user interface and a modeling lan-
guage that is used to specify the single models. 

The left box in Fig. 2 highlights exemplarily three model-based approaches. The 
Mobi-D (Model-based Interface Designer, [13]) approach includes a modeling 
method that is based on a user-task, a domain, a user, a dialog and a presentation 
model. Furthermore XIML (Extensible Interface Markup Language, [23]) is included 
in the approach in order to specify the single models. The “One Model Many Inter-
faces” [12] approach suggests task, abstract and concrete models for user interface 



186 F. Radeke and P. Forbrig 

modeling. It aims to support the development of multimodal user interfaces. For the 
purpose of specifying the single models it contains the Teresa XML notation [16]. 
The UsiXML (User Interface Extensible Markup Language, [9]) approach is struc-
tured according to the Cameleon Unifying Reference Framework [5] that attempts to 
characterize the process of developing user interfaces applicable in different contexts 
of use. The UsiXML approach contains among others task, domain, context, abstract 
and concrete user interface models. 

 

Fig. 2. Model-based and pattern-driven approaches for user interface development 

Patterns, pattern languages and a process of pattern application were first proposed 
by Christopher Alexander in the domain of urban architecture [1, 2]. According to 
Alexander a pattern describes “… a problem which occurs over and over again in our 
environment, and then describes the core of the solution to that problem, in such a 
way that you can use this solution a million times over, without doing it the same way 
twice.” [2]. 

The pattern concept was quickly adapted to other domains. First references to 
Alexander’s work in user interface related papers were published in “User Centered 
System Design” [10]. However, interest in pattern languages for interaction design 
has gained momentum only in recent years [3]. As outlined on the right hand of Fig. 2 
user interface patterns have been suggested in form of pattern collections and pattern 
languages. Van Duyne et al. [19] focus on patterns that describe solutions in cos-
tumer-centered web design. Thereby the authors follow closely Alexander’s format of 
pattern representation. Tidwell [17] defines a pattern language that may be employed 
in user interface design for desktop applications as well. While emphasizing on how 
and why usability is improved by employing their patterns, Wilie et al. [21] focus on 
providing user-centered solutions for user interface design. The patterns in the men-
tioned languages are mainly described in a textual or graphical notation. 

Patterns in the context of user interface modeling are a rather new and rarely exam-
ined research field. Such patterns encapsulate solutions for the creation of the single 
user interface models. In [11] Paternó suggests task and architectural patterns. The 
task patterns capture a high level description of recurring activities performed while 
interacting with the application. For describing the patterns a textual pattern notation 
is used. Additionally the task structure of the task patterns is described using the CTT 
(ConcurTaskTree, [11]) notation. In line with task patterns the architectural patterns 
describe recurring system components used to support interaction with the user  
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independent of the implementation language. Some task patterns based on the sug-
gested approach are introduced in [4]. 

Sinnig [15] proposes a framework for employing patterns in model-based user in-
terface design. The framework includes a set of models, a model-based user interface 
development method for constructing these models and a set of user interface patterns 
that can be used in this construction. The patterns are described in a uniformed textual 
and graphical notation. For the task patterns TPML (Task Pattern Markup Language) 
a machine-readable notation was proposed. 

3   General Pattern Application Framework 

In this section a general pattern application framework is introduced that describes 
how model-based development of user interfaces can be extended while employing 
patterns. The framework abstracts from a concrete model-based approach, a concrete 
pattern language and a concrete pattern notation for specifying the single patterns in 
order to be applicable for different underlying model-based approaches. 

Fig. 3 shows the architecture of the framework. It contains three general phases. 
The user interface designer is involved in all these phases. It also shows the three 

 

 

Fig. 3. General Pattern Application Framework 
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abstract components of the framework. The abstract components are specified when 
the framework is implemented. In what follows the framework’s phases, its main 
elements and the abstract components are discussed in more detail. 

During the pattern selection phase the designer selects an appropriate user inter-
face pattern that shall be applied to the user interface models. The pattern is chosen 
out of the pattern repository which contains the available patterns of the pattern lan-
guage. Within the pattern language the patterns are hierarchically structured into 
patterns and sub-patterns. Each pattern in the pattern language is specified according 
to a specific pattern notation. A user interface modeling pattern in the framework 
contains a model fragment that describes the pattern solution. Compared to concrete 
user interface models the model-fragment is generic in order to be applicable in vari-
ous contexts and to allow the pattern to be instantiated in multiple ways. 

The generic parts of the selected pattern are concretized during the pattern instan-
tiation phase. This interactive process results in a pattern instance derived from the 
original pattern. Since all generic pattern parts are concretized the resulting pattern 
instance does not differ in its structure from a concrete user interface model. 

Eventually the pattern instance is integrated in the user interface models. This is 
done in the pattern integration phase. First the model fragment of the created pattern 
instance is integrated into the corresponding model. Next the model elements contrib-
uted by the pattern instance are linked with the existing elements of the user interface 
model. As a result one coherent model is obtained. 

4   Implementing the Framework 

As outlined in the previous chapter the general pattern application framework con-
tains abstract components that have to be replaced by concrete ones when implement-
ing the framework. In this chapter a model-based approach, a pattern notation and a 
pattern language are proposed in order to replace the abstract components. As a result 
a concrete pattern-driven model-based approach for user interface development is 
achieved. 

4.1   Model-Based User Interface Development Approach 

The modeling approach as proposed in [22] was adapted in order to serve as modeling 
approach component within the framework implementation. Fig. 4 outlines the ap-
proach and the included models. In the following the approach is briefly introduced. 
A more detailed introduction can be found in [22]. 

The development usually starts with creating a task model that describes the tasks, 
which shall be performed via the user interface. The business object model describes 
properties of domain objects that are needed for the task performance. The user model 
is used to specify characteristics of typical user groups of the application. The device 
model contains information about platforms the user interface shall run on. Following 
the creation of these initial models, a dialog model is specified that describes the 
navigational structure of the user interface in form of views and transitions between 
these views. Using the information of the models created so far an abstract user inter-
face model is generated automatically, which is interactively refined into the final 
concrete user interface model afterwards. 
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Fig. 4. Model-based approach as suggested by Wolff et al. [22] 

 4.2   Pattern Notation 

Patterns contained in pattern languages suggested so far describe the single patterns 
mainly in a textual and graphical form. This information helps the developer to de-
termine whether a specific pattern is applicable in a concrete design situation. In the 
following it is referred to this kind of information as contextual information. How-
ever, the patterns usually do not contain machine-readable information about the 
solutions captured by them. Thus implementing the solutions is usually left up to the 
developer. Including this information in the pattern would enable computer support 
for the entire pattern application process. Such machine-readable information is re-
ferred to as implementational information in the following. 

In the context of the pattern application framework the UsiPXML (User Interface 
Pattern Extensible Markup Language) has been developed. It allows describing as 
well contextual and implementational information for a pattern. The composition of 
UsiPXML is illustrated in Fig. 5. 

The contextual information in UsiPXML is structured according to the format as 
suggested by PLML (Pattern Language Markup Language, [8]). PLML was an output 
of the CHI 2003 (Conference on Human Factors in Computing Systems) workshop 
with the goal to define a common structure for patterns. Up to that point most authors 
used their own format for describing their patterns. PLML contains common ele-
ments, like for instance the pattern name, the problem and the solution, that can be 
found in most of the patterns suggested so far. 

As mentioned before user interface modeling patterns describe the solution in form 
of model fragments. In order to specify these fragments in a machine-readable way 
UsiPXML is based on UsiXML (User Interface Extensible Markup Language, [18]). 
Since UsiXML is suitable for user interface model specification it is as well suitable 
for description of the pattern solution captured in form of a model fragment. How-
ever, by definition patterns describe the solution in a generic way. Thus the solution 
can be applied in different contexts. In order to describe the solution in a machine-
readable but generic way UsiXML has been extended with pattern-specific compo-
nents as outlined in the lower part of Fig. 5. These components are structure attrib-
utes, variable declarations and assignments and pattern references and interfaces. 
These extensions will be introduced in the following using an illustrative example. A 
more detailed description of the extensions can be found in [14]. 
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Fig. 5. Composition of UsiPXML 

Fig. 6 (a) shows the UsiPXML structure of the “Form Pattern” [15]. It can be em-
ployed in situation where the user shall enter a set of related values. Fig. 6 (b) shows a 
possible instance generated from the pattern. A first concept that can be found in 
UsiPXML are structure attributes. Structure attributes are used to assign the numbers 
of allowed occurrences to elements that are contained in the pattern structure. The 
minimum and maximum number of allowed occurrences of an element is indicated in 
brackets behind the element. For instance the element “Box: Single Input (0, un-
bound)” that can be found in the middle of Fig. 6 (a) is allowed to occur arbitrarily 
often in the final pattern instance. The concrete occurrence number of the element is 
determined by the designer during the pattern instantiation. In the instance shown in 
Fig. 6 (b) the single input element occurs five times. 

Furthermore variables can be defined within patterns. They serve as placeholders 
for concrete values. During the pattern instantiation the designer is prompted to assign 
values to all variables that occur within the selected pattern. The “Form Pattern” con-
tains for instance a variable “introductionText” that allows to specify an introduction 
text, which is displayed in top of the form as shown exemplarily in Fig. 6 (b). Vari-
ables are evaluated by assignment elements in the pattern. This evaluation returns a 
value that is assigned to attributes of pattern elements. To summarize, variables repre-
sent the design decisions of the user interface designer. Assignments evaluate these 
decisions and according to this evaluation adapt the structure of the pattern solution. 

A last concept that can be found in UsiPXML are pattern references and pattern in-
terfaces. Pattern references allow employing sub-patterns in order to refine a pattern 
solution. As shown in the lower part of Fig. 6 (b) the “Form Pattern” refers to the 
“Unambiguous Format Pattern” [15, 20] as a sub-pattern. The purpose of the “Unam-
biguous Format Pattern” is to provide a single input element depending on the type of 
information that is entered in this input. Therefore the type of information that shall 
be entered in the input is passed to the sub-pattern via its pattern interface. The sub-
pattern evaluates this information and provides the appropriate input element. 

It can be summarized that UsiPXML allows describing contextual and implementa-
tional information of a pattern. The implementational information describes the pat-
tern solution in a machine-readable, generic way. 
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(a) 

 

(b) 

Fig. 6. UsiPXML structure (a) of the "Form Pattern" and a pattern instance generated from the 
pattern (b) 

4.3   Pattern Language 

A last component that has to be specified in order to implement the pattern applica-
tion framework is the pattern language. It contains the available patterns and relations 
among these patterns. For this purpose a set of patterns in UsiPXML format has been 
developed and has been integrated into the “User Interface Modeling Pattern Lan-
guage”. Fig. 7 shows that the language is divided in four pattern classes. 

Task patterns describe recurring tasks in a generic manner. A set of task patterns 
has already been specified by Sinnig [15] in the TPML (Task Pattern Markup Lan-
guage) pattern notation. Some of these patterns have been transformed to the 
UsiPXML pattern notation and have been integrated into the pattern language as dis-
played in the top left of Fig. 7. Dialog patterns describe recurring navigational struc-
tures of user interfaces. They are employed in the creation of the dialog model.  
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Layout patterns capture recurring solutions for the layout of user interface elements. 
Examples are the positioning of elements or setting layout attributes like size, color or 
font. Presentation patterns describe recurring concrete user interface structures. That 
may be groups of concrete user interface elements or single user interface elements in 
more specific patterns. In the next chapter some patterns will be introduced using an 
illustrative example. The entire pattern language can be found in [14]. 
 

 

Fig. 7. User Interface Modeling Pattern Language 

5   Tool Support and Case Study 

The UsiPXML pattern notation allows the description of the patterns in a machine-
readable format. Thus the pattern application can be supported by software tools. 
Such tools have been developed in order to implement the concrete pattern-driven 
model-based approach that has been derived in the last chapter. The tools are devel-
oped as so called plug-ins for the Eclipse [7] environment. They strictly follow the 
three steps of the pattern application process proposed by the framework introduced 
above: Pattern selection, pattern instantiation and pattern integration. The designer 
can browse the pattern hierarchy and retrieve contextual information for each of the 
patterns in order to select an appropriate pattern. The instantiation of a selected pat-
tern is afterwards supported by an “Instantiation Wizard”. It helps to determine the 
structure of the pattern instance and to assign values to variables that occur within the 
pattern. The integration of the resulting pattern instance into a target model is finally 
supported by an “Integration Wizard”. The tools summarized in the pattern plug-in 
work closely together with Eclipse plug-ins that support the model-based approach. 
   In order to validate the functioning of the pattern tools a case study has been con-
ducted. The user interface for a “Maintenance Support System” application shall be 
developed. The supposed system shall assist the technicians of greater enterprises or 
organizations in managing the maintenance jobs that arise. In the following the devel-
opment of a user interface for the desired application using the pattern-driven model-
based approach will be briefly outlined. The entire case study is discussed in more 
detail in [7].  
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5.1   Task Modeling 

The task modeling is started with creating an initial task model as outlined in Fig. 8. It 
shows that the user has to authenticate himself before he can access the main func-
tionality. After having accessed the main functionality he can concurrently perform 
the “Manage Service Schedule”, “Find Documentation” and “Assemble Maintenance 
Jobs” tasks. 

 

Fig. 8. Initial task model 

For the further refinement of the initial task model task patterns are employed. Exem-
plarily the application of the “Login” [15] task pattern for refining the “Authenticate” 
task is shown. The “Login Pattern” is applicable when the user needs to identify him-
self in order to access secured data or perform authorized operations. The “Login 
Pattern”, as outlined in Fig. 9 (a), employs the “Multi Value Input Form Pattern” [11, 
15] as a sub-pattern. 

The “Multi Value Input Form Pattern” can be used when the user has to provide a 
set of related values. In the context of the “Login Pattern” it is employed to specify, 
which coordinates have to be provided to authenticate the user. Fig. 9 (b) shows the 
pattern instance that has been achieved while instantiating the “Login” and its sub-
pattern for the “Maintenance Support System” application. In the next step this pat-
tern instance is integrated into the initial task model while replacing the “Authenti-
cate” task. In a similar way the other task may be refined by applying appropriate task 
patterns. This shall not be discussed here any further. 

 

(a)  (b)  

Fig. 9. "Login Pattern" (a) and instance (b) 
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5.2   Dialog Modeling 

A dialog pattern that can be employed in the creation of the application’s dialog 
model is the  “Clear Entry Point Pattern” [17]. It suggests a navigational structure 
where, starting from an entry view, transitions to all main sub-views are provided. 
The user thus can easily overlook the provided content and navigate to the desired 
sub-view. Fig. 10 (a) shows the UsiPXML structure of the “Clear Entry Point  
Pattern”. 

In the creation of the dialog model for the “Maintenance Support System” applica-
tion the “Clear Entry Point Pattern” is employed to design a “Main View” from where 
the user can navigate to a “Manage Schedule View”, “Find Documentation View” and 
“Assemble Maintenance Jobs View”. The resulting instance is shown in Fig. 10 (b). 

 

     

                                  (a)                                                                    (b) 

Fig. 10. "Clear Entry Point Pattern" (a) and instance (b) 

5.3   Layout and Presentation Modeling 

Presentation and layout patterns are employed to refine the abstract user interface 
model as described in 4.1. In order to keep the example simple it will be focused on 
refining the “Assemble Maintenance Jobs” window, which was automatically derived 
from the corresponding view. 

Within the “Assemble Maintenance Jobs” window the technician can select single 
jobs, retrieve detailed information or send this information to the PDA. Therefore the 
window is split in two panes. One pane contains a list of maintenance jobs and the 
second provides interaction elements needed to perform the actions described above. 
To split the window in different panes the “Split Pane” layout pattern is employed. 
The structure of the pattern is outlined in Fig. 11 (a). The first variable declaration 
assignment pair allows determining the orientation of the single panes. The second 
pair allows setting the size of each single pane. The instance may contain an arbitrary 
number of such panes. Fig. 11 (b) shows two possible instances of the pattern. The  
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                                   (a)                                                          (b) 

Fig. 11. "Split Pane Pattern" (a) and instances (b) 

instance that has been instantiated to split the content of the “Assemble Maintenance 
Jobs” window is similar to the instance on the left-hand side of Fig. 11 (b). 

The “Table” presentation pattern is employed to fill the left pane provided by the 
“Split Pane Pattern” instance. It may be used when multiple records of similar struc-
ture have to be listed in a user interface. In the context of the maintenance support 
system it is applied to display the maintenance jobs information. 

 

 

Fig. 12. Content of the “Assemble Maintenance Jobs Window” 

In order to fill the right pane provided by the “Split Pane Pattern” instance the 
“Button Group Pattern” is instantiated. The pattern provides a group of buttons that 
may be employed to access related functionality. During instantiation of the pattern 
the number, orientation and labeling of the buttons can be determined. Fig. 12 shows 
the resulting content of the “Assemble Maintenance Jobs Window”. 

6   Summary and Outlook 

In this paper a framework has been suggested that integrates model-based and pattern-
driven development of user interfaces into one approach. The framework is  
sufficiently abstract in order to be applicable for different underlying model-based 
approaches. The implementation of the framework in order to derive a concrete pat-
tern-driven model-based approach for user interface development was shown exem-
plarily. In this context the UsiPXML pattern notation has been suggested that allows 
describing patterns in a generic but machine-readable way and thus enables tool  
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support for the pattern application process. Furthermore the “User Interface Modeling 
Pattern Language” was introduced that contains the patterns, which can be applied to 
models. Finally the capability of the derived pattern-driven model-based approach 
was demonstrated with a case study of developing the user interface of a “Mainte-
nance Support System” application. 

For the further development of the proposed pattern-driven model-based user inter-
face development approach additional patterns have to be specified in order to pro-
vide the designer for each design situation with a sufficient set of available patterns. 
Additionally it has to be examined how the application of patterns on one modeling 
level influences the application of patterns on other model levels. For instance the 
application of the “Multi Value Input Form Pattern” at the task level tends to employ 
the “Form Pattern” on the presentation level. Prospective patterns could integrate both 
pattern solutions. Eventually a way to identify already applied patterns in models in 
the context of reengineering has to be examined.  
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Abstract. Activity representations are proposed as an extension to
traditional task models. Basically, an activity representation describes
fragments of knowledge about several tasks and how to interleave or
merge them. Knowledge about single tasks is spread over several repre-
sentations at different levels of abstraction. Lower-level models are more
ephemeral and help people to organise their day-to-day activities. On
the one hand, their creation is supported by more stable representations
reflecting goals, activity rhythms, domain knowledge etc. On the other
hand, situated action is necessary to create such (task) knowledge.

We show that higher-order activity representations provide a bet-
ter explanation of some task-related aspects than monolithic single task
models. For example, they support re-/on-the-fly planning and contribute
to dispel the belief in complete and consistent task descriptions. The
paper focuses on task redefinition, task grouping and polymotivated ac-
tions, activity spaces, goal elaboration, and the interplay between habits
and learning. Some conclusions for interaction design are given.

Keywords: dynamically planned on-the-fly activities, collaborative
and multiple tasks, cognitive task models, task modelling, activity
representations.

1 Introduction

Task analysis and task modelling are well-known techniques in HCI. They are
mainly used for designing and evaluating user interfaces. Basically, a task is con-
sidered as an activity undertaken by one or more agents to achieve a certain
change of state in a given domain. It is assumed that ”task knowledge is rep-
resented in a person’s memory... which is assumed to be activated during task
execution” [20]. It is furthermore assumed that the underlying mental activity of
work can be elaborated, analysed, and represented as cognitive task models. The
comparison in [24] reveals that most existing task analysis approaches like HTA
(Hierarchical Task Analysis, [2]), GOMS (Goals,Operators,Methods, Selection
rules, [6]), TKS (Task Knowledge Structures, [20]), and CCT (Concur Task
Trees, [27]) characterise tasks in terms of goals, actions, operations, task domain
objects, roles etc. Although there are differences in the use of basic concepts and
the level of detail task structures are decomposed hierarchically and temporal
dependencies between sub-tasks are described.
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Though task analysis approaches claim to support a task-oriented and user-
centred interaction design they are often criticized for explaining actual working
practices insufficiently. Traditional approaches have concentrated on single users
and single tasks. They fail to model dynamically changing situations, task inter-
ruption [25] as well as multiple and collaborative tasks [36]. The position papers
of the workshop on the temporal aspects of tasks [36] also show that existing
approaches do not allow a more fine-grained consideration of temporal aspects
(e.g. activity rhythms) and of triggers which direct the task process (see also
[15]). In [31], task models are seen as idealised and normative. They are criti-
cised as ”treating tasks as discrete, isolated chunks of behaviour as if they were
representations of how the work is actually done”. In other words, task models
might reflect what Dourish calls a “narrowly cognitive perspective”. It is more
or less assumed that the mind is “the seat of consciousness and rational decision
making, with an abstract model of the world that can be operated upon” and
that the objective, external world is “a largely stable collection of objects and
events to be observed and manipulated according to the internal mental states
of the individual” [16]. In contrast, approaches like ethnography (e.g. [1]) try to
explain human behaviour as shaped by the interaction with the actual situation
rather than by abstract mental models or plans. As a consequence they propose
to support work with resources rather than automating ‘work flows’ on the basis
of formal models of work routines.

However, a dichotomy between planned and situated actions is rejected by
Bardram and others. Plans are seen as cognitive or material artifacts “which
support the anticipatory reflection of future goals for actions, based on expe-
rience about recurrent structures in life” [3]. Bardram’s understanding is based
on activity theory which considers consciousness “as the product of an individ-
ual’s interactions with people and artifacts in the context of everyday practical
activity” and provides a better explanation of dynamic aspects of human ac-
tivity [22]. However, an advantage of cognitive task models is their elaborated
notion of task. Payne suggests in [30] that cognitive task models might (still)
help to understand the balance between planned and responsive behaviour that
characterises any complex activity which is collaborative in its nature.

In this paper, we explore the limits of task representations and how they might
be better dealt with. Activity representations are suggested as an extension to
traditional task models in order to achieve a richer task understanding. Activ-
ity representations are models at different levels of abstraction. The formation
of models at a higher-level is rather driven by goals, values, and beliefs. These
models help to trigger certain internal or mental actions in order to produce or
manipulate other mental representations. In the case of planning activities this
can result in more situated models. Reflection activities might result in new goals
or in discarding goals. Models at a more concrete level help to trigger certain
external or physical actions in an actual situation. Their development is rather
resource-driven (time, location, collaborators, available artifacts etc.). Activity
representations reflect our idea that people do not hold monolithic task models
for each single task. Instead, a task is represented by a set of models at different
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levels of abstraction. However, one activity representation reflects not only one
single task but a ‘state of merging’ of multiple tasks at a certain level of detail.
Humans never develop ‘complete plans’ containing all possible alternatives of
how to achieve a certain goal but elaborate them to a great deal on demand.
Plans are seen as means that people use to (try to) direct their behaviour. How-
ever, human actions imply constant refining of plans as well as re- and on-the-fly
planning activities. We believe that this is supported by maintaining of and oper-
ating on activity representations with different grades of stability. In this paper,
a description of models is assumed, which is grounded in existing approaches.
We still focus on goal-oriented or intentional behaviour which is controlled by
feedback. However, by proposing activity representations as an open system we
emphasise the interplay between mental and physical actions to enable humans
to adapt to unforeseen changes of the environment (to be in harmony). We fo-
cus on the following aspects of multiple and collaborative tasks: task redefinition
(Sect. 2.2), task grouping and polymotivated actions (Sect. 2.3), activity spaces
(Sect. 2.4), and goal elaboration and abstraction (Sect. 2.5). We further explore
the interplay between externalised and internalised task descriptions. We discuss
the higher-order property of activity representations and the interplay between
habits and learning (Sect. 3). Finally, we show how an enriched task understand-
ing can influence the understanding of interaction design (Sect. 4).

2 Activity Representations: Basic Ideas and Related
Work

In this section, we use an example scenario to introduce our approach and to
relate it to other work in this area. The task domain is a software engineering
(SE) course at a university. Collaborators are the professor who gives the lecture,
the assistants who give tutorials and supervise the work of project groups, and
the students who attend the lecture, the tutorials, and who work on projects.

2.1 “Traditional” Task Models

Fig. 1 shows two CTT-like task models describing the tasks of giving a tutorial
and of supervising a project. Equations in the boxes specify temporal relations
between sibling sub-tasks. It is said that an assistant has to meet the professor.
Afterwards, he has to prepare and give the tutorial and so on. For reasons of
brevity, a task domain description is omitted in most of the examples (for more
details see e.g. [13]). But in a meeting, the assistant gets information about the
last lecture and proposals for exercises and homework (sub-task T1). In sub-task
P3 he deals with source code, user documentation etc.

Wild says in [36] “that tasks are about writing papers, developing courses
or collaborating to run something like a conference. Not a key press or mouse
movement. Overall there is something in the work patterns around us that we
can point to and say, that’s a task, sub task, project etc.” This might be in line
with Dowell and Long who distinguish between work systems and application
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Fig. 1. CTT-like task models for an assistant

domains (see Fig. 2a). They consider tasks as “means by which the work system
changes the application domain. Goals are desired future states of the application
domain that the work system should achieve by the tasks it carries out” (in [11]).

Fig. 2. a) General model of work (in [11]), b) Task redefinition according to [19]

In this sense, task models like those in Fig. 1 are external representations of
normative task knowledge. This is not a problem as such. Human behaviour
is determined by division of labour, existing artifacts and norms. It becomes
problematic if norms are drawn from dogmatic visions of life. One can use a task
description to convey domain knowledge. However, one can also use them to gain
control over others by imposing one’s orders on them (e.g. [33]). But this is a
general problem with any artifact. Humans are always responsible for what they
create and how they use it. In our example, we could imagine that an assistant
whom we call Paul got the task descriptions in Fig. 1 from his professor. Now he
has to internalise these assignments to be able to accomplish his work. This is
an active process called task redefinition.



202 A. Dittmar and P. Forbrig

2.2 Task Redefinition in Collaborative Tasks

The idea of task redefinition is introduced in [19]. Hackman says that a task
may be assigned to a person or a group by an external agent or it may be
self-generated. But either way, it has to be interpreted. Fig. 2b) illustrates this
process and the distinction between external task descriptions and their subjec-
tive internalisation. The concept of self-generated tasks suggests that humans
not only redefine external task representations but also act upon internal ones.
This supports our idea of higher-order representations as introduced in [12].

Fig. 3. Pauls redefinition of assignment supervise project of Fig. 1

In the example, let us assume that following points refer to Paul’s understand-
ing and attidudes concerning the task of supervising projects.

- If the first version of the SRS (Software Requirements Specification) of a project
group is okay they don’t need to supply a revised version.

- Project goals cannot fully be explained at the beginning. They have to be developed
over time. Their elaboration depends strongly on available tools and skills.

- Project groups have to solve their problems by themselves.

The model in Fig. 3 describes Paul’s redefinition as a snapshot. It does not
explain why and how Paul developed his task understanding. Furthermore, we
can also discuss whether it is an expressive description of above mentioned points
but it is one. And it illustrates the following points.

- Temporal relations are modified. For example, sub-task P23 is optional, P1 is
iterative and is performed at any time before P3.

- Sub-tasks are discarded (e.g. P5).
- Sub-tasks are refined (e.g. P1).
- The task hierarchy is re-structured. For example, P4 is now a sub-task of P1.

Now imagine we ask Paul why he doesn’t help students who have trouble to
work together. He answers: “I know the professor expects me to do that but it
makes me sick to mediate between people.” Take note that although Paul acts
upon his redefined model the underlying assignment is still there and influences
his acting. He might feel a tension between it and his redefinition caused by the
image of himself and the belief to have to fulfill his professor’s assignments.

Tasks have to be accomplished by actions of individuals who, typically, work
in several domains and groups. Their collaboration is, among other things,
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Fig. 4. An illustration of some collaborative aspects in the example

characterised by task delegation as illustrated in Fig. 4. Models in boxes are
actual redefinitions. Only some of the assignments (indicated by arrows) are
specified.

2.3 Task Grouping and Polymotivated Actions in Multiple Tasks

Most task analysis approaches have concentrated on single tasks and related
goals. However, “a person can also perform an action on the basis of unrelated
goals” [11]. In [3] actions are seen “as usually polymotivated; two or more activi-
ties can temporarily merge, motivating the same action”. In addition, goals can
be prioritized differently in different contexts and, often, a combination of goals
is needed to trigger some behaviour [11]. McFarlane remarks that it “is unusual
for a person to be engaged in only a single activity from start to finish to the
exclusion of all other tasks” [25]. England and Du propose in [36] to consider the
management of interleaved tasks and of interruptions as necessary in multitask-
ing as tasks themselves. This further supports our assumption of higher-order
representations related to tasks.

Like most approaches, we assume that humans develop representations for
single tasks. Such goal-oriented plans focus on an object of interest. Associated
ordered actions are intended to manipulate this object in a desired way. However,
we further suggest that humans develop additional models with a shift of focus
from objects of interest to objects describing the actual environment such as
people, locations, actual time constraints, available artifacts etc. This is in line
with task grouping by deadline, by location, by participants, or by role as pro-
posed in [35]. However, Wild et al. do not consider grouping strategies as tasks
themselves and they do not elaborate possible consequences on task structures.

Though we assume activity representations structured like existing task mod-
els we coined a new term for several reasons. First, task models are often as-
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sociated with properties like completeness or consistency (see e.g. [8]). Even if
complete and consistent descriptions were possible it would not necessarily be
useful. For example, the absence of ‘gaps’ in plans and a too detailed descrip-
tion of action sequences can interfere with the ability of a person or a group
to cope with interruptions. Second, an activity representation at one level of
abstraction describes fragments of knowledge about several tasks and how to
interleave or merge them in a hopefully effective, efficient, and sustainable way.
In consequence, the description of a single task is spread over several representa-
tions. We suggest that activity representations at a lower level of abstraction are
more ephemeral. They help people to organise their day-to-day activities. Take
note, they are still explicit representations that people hold when planning and
executing tasks. Certainly low-level activities can have patterns that are very
persistent like habits or proceduralised action sequences. The creation of lower-
level models is supported by more stable, higher-level representations reflecting
the “recognition of recurrent structures in the world” [3] (goals, values, beliefs,
but also activity rhythms as mentioned in [36], domain knowledge in general).

Fig. 5. Prof. Smith and Paul: Activity representations at different levels of abstraction

In Fig. 5, example representations are sketched to show the general idea. In
addition, the heighlighted points should be considered in more detail.

1. Activity representations can reflect temporal patterns or rhythms. Here, a
weekly rhythm over a certain period of time concerning a lecture is described.

2. More concrete representations can contain ‘inconsistencies’ to more stable
ones reflecting actual conditions. In the example, the lecture starts this week
at 11:30, though normally it starts 11:00.

3. Most ad hoc plans and close to moment plans are basically structured linear
plans. The ”this Monday” plan in Fig. 5 is another example. One reviewer
suggested that humans are pretty bad at modal thinking. So, much beyond
short ’extensions’ from the main plan (in their head) will be hard.
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4. This is an example of multiple tasks.
5. An example for interleaving multiple tasks and also for grouping by time.

Parts of tasks are woven into the daily rhythm (indicated by lunch and
dinner).

6. An example for grouping by deadline (that is for prioritising and sequencing)
though not described explicitly. If possible, Paul uses the morning hours for
doing research. But this Monday, he has to return the SRS to the project
groups. Because the review for the second group is not finished yet he wants
to complete it this morning. Another aspect might also be interesting. More
concrete plans often contain “abbreviations”, which are clear in their context.
In the example, it is clear to Paul that he reviews the first version of the
SRS of the second group (though several versions are described explicitly in
Fig. 3).

7. A grouping by location and people: Paul intends to use the tutorial to return
the SRSs to both project groups.

8. Paul plans to prepare a dinner together with his son. A polymotivated action:
while doing some housework he ‘teaches’ his son how to do that.

9. Sub-task deal with class diagrams is an ‘instance’ of deal with topic from last
lecture.

Let us assume that Paul realised this Monday morning while reviewing the
SRS that the students didn’t really understand statecharts. Although he has
prepared a tutorial about class diagrams (point 9 in Fig. 5) he decides to discuss
statecharts again. He puts away the paper from yesterday and starts to read
in a paper about statecharts & task modelling instead. Maybe he can also find
some examples for his tutorial this afternoon... This is a typical example for
interrupting the actual activity and for re-planning as a response to unexpected
changes in the environment. Here, Paul’s assumptions about the skills of his
students have changed. (Take note, that the reading of the ‘statecharts paper’
is also polymotivated: for literature research and for preparing the tutorial).

Re-planning and on-the-fly planning is supported by the concept of activ-
ity representations rather than by single task models. First, it is easier to give
up actual plans, and then to use more stable representations to create new or
modify actual plans. Second, it allows ‘inconsistencies’ between representations
(e.g., point 2 in Fig. 5). This supports an acting, which is rather guided but
not fully controlled by norms. Third, it is easier to add (or remove) an activity
representation. It can reflect a more fine-grained interleaving of multiple tasks
(elaboration) as necessary e.g. to cope with interruptions. It can also abstract
from non-relevant aspects with respect to a single task.

One of the reviewers of a previous attempt to explain our task modelling
ideas criticised that this approach is “based on perspective that the interaction
is completely structured and structurable”. Of course, we do not believe that
human acting is completely structured and structurable (a description of their
actions is probably somehow). However, people plan and reflect their behaviour
(anticipatory reflection). They think in and by action. Mental representations
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are a resource for but also a result of human acting. By doing actions again and
again habits are developed and mental models are ‘fine tuned’.

2.4 Task Environments as Activity Spaces

The authors of [15] criticise that task models consider objects of a task environ-
ment always as “second class”. However, task activities are not only centered
around the creation of artifacts they can only be accomplished by interacting
with them. The role of triggers in timing and pacing a task is, for example,
well explored in [15]. In the literature, it is often distinguished between physical
artifacts which are important in sequencing, triggering and closure of tasks, and
cognitive artifacts as physical objects made by humans for the purpose of aid-
ing, enhancing, or improving cognition (Spillers in [36]). Kirsh coined the term
activity space to emphasise that not the environment itself is important but how
people deliberately alter it according to their goals (in [32]).

The question when things in their environment really become artifacts for hu-
mans still remains open. In our example, it is probably not only the fact that this
paper about statecharts & task modelling is lying on his desk that lets Paul re-
plan this Monday in the way described in Sect. 2.3. There must be ‘internal coun-
terparts’ to such external clues that let them work as artifacts. Paul must have
internalised the assignment of reading research papers. The concept of functional
organs in activity theory might give an explanation of this phenomenon. They are
“created by individuals through the combination of both internal and external re-
sources. Functional organs combine natural human capabilities with artifacts to
allow the individual to attain goals that could not be attained otherwise” [22].
Human eyes in combination with eyeglasses are an example.

Fig. 6. Prof. Smith reduces the cost of his mental operations by task delegation

In Fig. 6, we emphasise the dynamics inherent in functional organs. On the left
side, an activity representation of Prof. Smith is shown, which might or might not
work in combination with a watch (‘watch reads 10:50’ is the intended trigger for
action ‘leave for lecture’). The representations on the right side are the result of
delegating the task of paying attention to time to the secretary. Generally, such
fragmentations of plans into more situated plans by using artifacts are necessary
to successfully accomplish tasks. Take note that fragmentation processes often
involve task delegation and require the creation of new artifacts including task
representations (assignments) to support a shared task continuity. Take also note
that a person is skilled if their (fragmented) plans reflect a deep understanding
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of the environment, in particular of own and other people’s habits. Prof. Smith
might know that he usually ‘forgets the time’ and that his secretary as reminder
is a more safe trigger to interrupt his morning work and to leave for the lecture.
He might also know that his assistants are more engaged in supervising projects if
they can propose some themes (see Fig. 4). Or that most students (in his culture)
only do their homework if they get some points. But of course everything changes,
and so do human habits. Maybe, lists with points and marks for homework will
not be necessary some day ;) To summarise, there is a constant learning and a
constant adaptation of mental models to actual situations.

2.5 Goal Elaboration and Abstraction

The concept of goals is one of the most vague in task analysis. Goals are mostly
defined as desired states of task domain objects. That is they seem to be given
once and for all. However, we suggest to consider goals as active processes con-
stituting a context for actions which are focused on a common object of interest
(OoI in Fig. 7). However, humans do not only need to elaborate actions describ-
ing their understanding of how to achieve goals. They also need to shape their
understanding of what they want, why they want it and how they can establish
such desired states. Again, they do it by acting. Often, a goals’ object of interest
constitute the range of future goals. If the goal is achieved, the object of interest
is shaped more clearly. This is illustrated in Fig. 7. While ‘teach students mod-
ern SE’ is a rather abstract goal, it becomes more concrete with ‘teach students
object-oriented ideas’.

By considering goal elaboration as occurring over several steps and involving
several activity representations we can explain the fluidity between motives and
goals as they become consciously perceived and then forgotten (see e.g. [22]). In
the example, Prof. Smith might have forgotten why he explains object-oriented
ideas because goal ‘teach students modern SE’ works as a motive after its elab-
oration. However, what happens when new promising concepts emerge? Maybe
he can remember why he deals with OOA/D techniques and will restructure his
lecture. Or maybe he will change his goals...

The processes of elaboration and abstraction of goals and action plans become
more intertwined by frequent repetition of actions (including deliberate alterations

Fig. 7. Prof. Smith: Two elaboration steps to shape the goal understanding
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to the environment, see Sect. 2.4). On the one hand, this may result in polymoti-
vated actions, and then in routines or habits as recurrent, often unconscious pat-
terns of behaviour which are honed in such a way that “the most minimal of ac-
tions [often shared between two or more people] has a wealth of significance and
well understood mutual accountabilities” [34]. On the other hand, it may result
in more stable goals and values as well as in deeper domain knowledge.

3 Activity Representations and the Dynamic of Action

In the last section, the idea of activity representations was introduced and in-
tegrated in existing work. It was argued that humans develop activity represen-
tations by collaborating and, generally, by acting in the world. Deep knowledge
(‘fine tuning’ of models) can only be acquired by doing actions over and over
again, by reflecting processes and results, by empathising with collaborators and
so on. It was also argued that tasks belonging to certain work systems and appli-
cation domains (Fig. 2) are typically represented by several activity representa-
tions at different levels of abstraction. Higher-level representations rather reflect
single tasks. They are more stable and developed over a longer period of time.
Lower-level, more ephemeral representations rather describe an interleaving of
fragments of multiple tasks which seems to fit a concrete situation.

To summarize, activity representations are seen as mental configurations hu-
mans develop in the hope that they ‘evoke’ adequate mental or physical responses
when confronted with certain cues in a situation. This argumentation is in line
with Rorty who says that knowledge “[is not] a matter of getting reality right,
but rather... a matter of acquiring habits of action for coping with reality” (cited
in [22]). It is also in line with Hacker who speaks of “Wissensinseln” (islands of
knowledge) [18]. Activity representations are such islands. They are constantly
evolving, neither ‘complete’ nor ‘consistent’. On the contrary, inconsistencies
between different representations are seen as important in order to cope with
actual situations. Humans constantly make exceptions to rules.

In [26], Naur points out that “[d]escribing people in terms of ‘knowledge’
or ‘mental models’ has the consequence that the dynamic of thought, the way
thoughts develop, tend to be ignored. In particular the all-pervading importance
of habit on all human activity is lost from sight.” This view on thoughts as results
of habitual thought processes might be better supported by activity represen-
tations. Though they are still mental models the related higher-order approach
does not emphasise task structures as such (as in traditional task analysis) but
also their development and use. Generally, a combination of an activity repre-
sentation and a cue triggers a certain habit. However, activity representations
do not only trigger physical behaviour in combination with physical cues. They
can also serve as cues themselves for other representations to trigger a certain
mental behaviour. They may guide elaboration steps like sequencing, refinement,
merging to create polymotivated actions, interleaving to support task grouping
in multiple tasks, or creation of assignments to support task delegation. They
may guide abstraction activities like selection, generalisation (e.g. of temporal
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Fig. 8. Abstract examples for manipulating activity representations in learning

constraints), extension (e.g. by new alternatives), or modification. While elabo-
ration is important to initiate (intended) behaviour, abstraction is important to
develop behavioural alternatives to be better prepared for possible future worlds.

In [5], single-loop learning, double-loop learning, and learning to learn are pro-
posed as three fundamental levels of human learning. Perhaps, these categories
and Fig. 8 help to clarify our understanding of mental activities.

- Single-loop learning serves and refines habits. It involves modifications of activ-
ity representationsbymental activities like sequencing, refinement, ormerging.

- Double-loop learning changes habits because they no longer serve a certain
goal. It involves mental activities like extension or new action grouping to
explore alternatives for achieving the same goals.

- Learning to learn as the third level changes how we change habits. This
learning might include how humans develop goals (Sect. 2.5), how they create
polymotivated actions (Sect. 2.3), and how they create artifacts (Sect. 2.4)1.

4 Some Conclusions for Interaction Design

A ‘classical’ application area of task modelling is model-based design (MBD).
Mostly, task models are used to derive user interface specifications (e.g. [28]). As
a consequence of single task models, most approaches concentrate on single appli-
cations. Even extensions like [29] or [9] dealing with multiple devices or context-
aware systems use basically CTT models. Further limitations of existing MBD ap-
proaches like the ‘myth’ of generalised task models or the weak conceptual under-
standing of differences between task and dialog models are discussed in [14]. There
are two application areas that we want to explore more deeply in the future.

Activity-Based Computing. In [21], interactive systems focussing on higher-level
user activities are discussed. Such systems support the activity-based computing
paradigm which was proposed in [4] to complement the prevalent application-
and document-centred computing paradigm. Activity-based computing aims to
support the management of parallel activities and interruptions. Hence, the ba-
sic computational unit is no longer a file or an application but the activity of
1 The interplay between learning and habits is well described in [5]:“Paradoxically,

habit is both the product of learning and the escape from learning. We learn in
order not to learn. Habit is efficient; learning is messy and wasteful. Learning that
doesn’t produce habit is a waste of time. Habit that does not resist learning is failing
in its function of continuity and efficiency.”
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a user. We think that activity representations can help to elaborate and refine
this approach. In particular, the idea of goal elaboration and abstraction and
of polymotivated actions could serve as foundation for developing tools to help
users organize their activities.

Activity Representations as Sketches. Carroll points out in [8] that traditional
task analysis not only assumes correct and complete structural task descriptions
but also that they are always desireable. It is, furthermore, assumed that the
objective is optimal performance. However, all representations including task
models foster certain ways of thinking and acting. They also reflect power rela-
tions and are used to convince others of one’s own views (see e.g. [23]). Hence,
Carroll is certainly right when saying that detailed normative descriptions of ex-
isting work can support the interests of managers because other aspects of work
are typically not in the focus. In addition, our own experiences confirm that
task models as used in MBD do not really support reflection and a ‘provocative’
discussion but a more specification-driven design process. There are questions
concerning action sequences and answers like “In order to achieve goal G the
user has to perform A1 first, and then A2 or A3.” But one rarely hears ques-
tions concerning underlying motives, assumptions, or interests. Carroll points
out that traditional task analysis might hinder the stakeholders to bring in their
own values into the design process. In [14], we propose not only to accept the
fragmentary character of task models but to use such fragments and represen-
tations created in complementary analysis and design approaches in a creative
way. Activity representations can further enrich our task understanding. We
argue that humans do not hold mental models of single tasks but that tasks
are reflected in several, more or less stable activity representations at different
levels of abstraction, which are neither complete nor necessarily consistent to
each other and which are under constant development by shaping the environ-
ment. With such an understanding, activity representations may also be used
as sketches in the design process2 and may contribute to a more creative use of
task modelling in interactive design.
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Abstract. The increasing importance of unstructured, knowledge-intensive 
processes in enterprises is largely recognized. Conventional workflow solutions 
do not provide adequate support for the management and optimization of such 
processes. Therefore the need for more flexible approaches arises. This paper 
presents a conceptual framework for unobtrusive support of unstructured, 
knowledge-intensive business processes. The framework enables modeling, ex-
change and reuse of light-weight, user-defined task structures. In addition to the 
person-to-person exchange of best-practices, it further enables ‘outsourcing’ of 
dynamic task structures and resources in personal workspaces and organiza-
tional units where these are managed according to local domain knowledge and 
made available for reuse in shared repositories. The delegation of tasks enables 
the generation of enterprise process chains, spreading beyond the boundaries of 
a user’s personal workspace. The structures emerging from user-defined tasks, 
task delegations and on-demand acquisition of dynamic, externally managed 
tasks and resources adequately represent agile, human-centric business proc-
esses. Thereby the framework facilitates effective knowledge management and 
fosters proactive tailoring of underspecified business processes through end us-
ers in a light-weight, unobtrusive manner. The presented concepts are supported 
within the Collaborative Task Manager (CTM), a novel prototype for email-
integrated task management. 

Keywords: Task management, ad-hoc workflow, computer supported coopera-
tive work, knowledge management, human computer interaction, agile business 
processes. 

1   Introduction 

The amount of unstructured, knowledge intensive processes in organizations is in-
creasing. Conventional workflows do not provide sufficient flexibility to reflect the 
nature of such processes and to provide adequate support for their optimization [3], 
[18]. Therefore the need arises to elaborate more flexible approaches, able to repre-
sent and manage underspecified, highly dynamic user tasks. This is accompanied with 
the increasing demand to facilitate effective Knowledge Management (KM) in or-
ganizations, which could increase the efficiency of business users, engaged in non-
routine tasks and which could enable them to better shape their everyday work 
through application of shared best-practices [12], [20].  
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The presented paper focuses on intrinsic flexibility and KM aspects, concerning 
ad-hoc, knowledge-intensive processes. The described framework aims to deliver a 
generic conceptual base for a software system, which is able to support light-weight, 
unobtrusive composition and management of underspecified processes in different en-
terprises from various business domains. The concepts are supported within the Col-
laborative Task Manager (CTM), a novel prototype which enables proactive tailoring 
of ad-hoc business processes through end users.  

The paper is organized as follows. Section 2 provides an overview of related work 
in the area of software support for agile business processes. Section 3 describes the 
basic solution approach behind the framework. Sections 4, 5, 6 and 7 describe the ba-
sic framework entities and the associated functionalities. In section 8 conclusions and 
future research directions are given. 

2   Related Work 

Software support for unstructured, knowledge-intensive processes has been in the fo-
cus of extended research in the last years. The reuse of emerging task hierarchies 
within a global enterprise infrastructure is often described as one of the major possi-
bilities to support such processes. Riss et al. [17] discuss the challenges for the next 
generation business process management by suggesting the generation, recognition 
and application of reusable ‘task patterns’ and ‘process patterns’ as an alternative to 
static workflows. The task pattern technique is further considered by Grebner et al. 
[9], who describe basic directions for the utilization of task-based approaches to sup-
port users engaged in intensive, unstructured knowledge work. Within the presented 
paper a task is generally referred to as a self contained unit of work, which can be re-
fined through an arbitrary number of sub tasks and aims to achieve a certain business 
goal. Thereby the focus is set on high-level tasks, representing single steps in ad-hoc 
business processes, and the notion of task patterns presented in the above studies is 
used. In the literature ‘task patterns’ are discussed also regarding reusable structures 
for task models in the field of interactive systems design [8], [14], [15]. However, 
such observations focus on low-level interactive activities like e.g. searching, brows-
ing or providing generic system input, and are beyond the scope of the presented  
paper. 

A comprehensive approach, addressing the gap between completely ad-hoc proc-
esses, which are in the focus of Computer Supported Cooperative Work (CSCW), and 
rigid, predefined business processes, which are well supported through conventional 
workflow solutions, is provided by Bernstein [7]. This approach provides “contextual 
basis for situated improvisation” by enabling delivery of “process models, process 
fragments, and past cases” for tasks and providing shared, distributed-accessible, hi-
erarchical to-do lists, where different process participants can access and enrich task 
resources and information. An extended state of the art study in the area of flexible 
workflows and task management and a further approach for integrating ad-hoc and 
routine work is presented by Jorgensen [13]. He reveals major issues concerning 
business process flexibility and how it can be facilitated through interactive processes 
models.  



 A Framework for Light-Weight Composition and Management 215 

Approaches focusing on completely ad-hoc processes are also known. A case-
based approach for enabling business process flexibility, where “the knowledge 
worker in charge of a particular case actively decides on how the goal of that case is 
reached” is provided by van der Aalst et al. [2]. A further solution of supporting com-
pletely ad-hoc processes is presented by Holz et al. [11]. It provides document-based 
and task-based proactive information delivery, which enables evaluation of similar 
cases and instance-based task reuse. Thereby it is suggested that frequently recurring 
tasks, relevant for an enterprise, are modeled more formally using process types if the 
enterprise is willing to make an investment into process modeling. Advanced tech-
niques for building personal knowledge spaces and wiki-based collaborative docu-
ment spaces are also integrated in the latter solution.  

The major difference of the framework presented in this paper to the above men-
tioned approaches is that it focuses on the unobtrusive support for ad-hoc business 
processes. It enables users to act as close as possible to their usual work practices 
without confronting them with new working environments or upfront process defini-
tion tools. Thereby a software system supporting this framework should be able to 
provide added value by unfolding emergent process structures behind the scenes in an 
unobtrusive, implicit manner. The motivation behind this approach is that enterprise 
processes are generally executed by multiple actors, who have different level of tech-
nical skills and different attitude towards maintaining process data. At the same time 
analysis, reuse and adaptation of knowledge-intensive processes is often desired in a 
way similar to conventional workflows. The framework therefore enables end users 
without advanced technical expertise or process understanding to manage tasks in 
personal to-do lists, which are integrated in a common software working environment. 
As such the framework uses email, which plays a central role for the exchange of 
tasks and task-related information in organizations [6], [10], [19]. Behind the scenes, 
personal task hierarchies of multiple process participants are reconciled to overall en-
terprise processes in central repositories, where context information and resources are 
provided on-demand to advanced users and process analysts. Thereby no formal proc-
ess modeling, explicit definition of rules or user roles is required.  

3   Solution Approach 

This study is based on intra-organizational knowledge sources accumulating customer 
requirements as well as on dedicated site visits and interviews at companies represent-
ing predominantly small and medium enterprises from various industries (automotive, 
software, textile), and builds on the state-of the art research in the areas of task man-
agement, flexible workflows and CSCW. 

Unstructured, knowledge-intensive processes are generally executed through ‘situ-
ated actions’ [4]. Within this paper we assume that tasks can be executed, cancelled 
or completed without meeting any pre- or post-conditions. Thereby the process flow 
is determined solely through the sequence of the task execution, which is decided by 
the end users according to their current work situation. This raises various flexibility 
and KM issues, related to the overall process structure and context information. Van 
der Aalst et al. [1] discuss business process flexibility by stating that: “Workflows are 
case-based, i.e., every piece of work is executed for a specific case: an order, an in-
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surance claim, a tax declaration, etc. The objective of a workflow management system 
is to handle these cases (by executing tasks) as efficiently and effectively as possible.” 
The authors further describe, that a task is executed through specific resources which 
might be e.g. a tool or an employee and suggest three basic dimensions of a workflow 
– “case”, “process” and “resource” dimension. Human activities thereby comprise 
cases, which are handled with corresponding tasks using the appropriate resources. 
Unpredictability of human activities hence implies deviations in case handling and 
dynamic adaptations of tasks and resources. The framework presented herewith fo-
cuses on intrinsic flexibility and KM aspects considering these basic issues.  

As a concrete solution approach, the framework suggests tracking of user actions, 
which are executed on personal workspace level in a common user working environ-
ment, and unobtrusive (implicit) replication of task data on central enterprise reposito-
ries. This process is further referred to as externalization. Externalized task structures 
and the accompanying data of different users are integrated in the repositories to 
overall enterprise processes. Furthermore, logically unconnected tasks from different 
processes and users can be associated in the central repositories based on different cri-
teria to provide advanced KM. Concretely, the CTM prototype uses Microsoft Out-
look as an office integration environment by exploiting the fact that tasks and email 
are provided in the same office application. Web services are used to track user ac-
tions, executed in the CTM Outlook Add-In, on a CTM back-end application. It is 
based on the Java Platform Enterprise Edition and deployed on a JBoss server. The 
tracked data is persisted in a MySQL Database (DB), which provides the repository 
functionality for the basic framework entities. The CTM prototype is not explicitly 
discussed in this paper as the focus here is set on generic flexibility and KM concepts 
for supporting dynamic resource and task adaptations and for handling case deviations 
in unstructured, knowledge-intensive processes. These concepts are implemented 
through the basic framework entities, described in the following sections. Certain 
CTM functionalities are mentioned as clarifications to the discussed concepts. 

4   Artifacts 

An artifact refers to a file, e.g. a text document, a spreadsheet or an executable file, 
which is associated (attached) to a task. Artifacts generally represent resources (cf. 
Sec. 3), which are used or generated during task execution. The presented framework 
provides three basic types of task artifacts. These are described in Fig. 1. The depicted 
entities are designed equally in all figures in the paper. 

4.1   Externally-Managed Artifact (EMA) 

An EMA is an artifact, the content of which is managed by a user or a user group out-
side of the scope of a user task. An EMA can be e.g. a document, which is being elabo-
rated by multiple users as part of a concrete process. Collaborative authoring tech-
niques are known in the literature (cf. [11]) and are not discussed in this paper. Another 
type of EMA could be a document, which is provided as a template from a company 
department and is used in various processes throughout an enterprise. Such could be 
e.g. an employment contract template provided by a Human Resources (HR) depart-
ment. The user or user group managing the artifact content, e.g. HR employee(s), is re-
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ferred to as external artifact manager(s) (see Fig.1). The latter can edit the artifact con-
tent in their workspaces and submit a consolidated EMA version to a globally accessi-
ble artifact repository. It can be e.g. file system or DB based and should be able to 
maintain artifact history. References to an EMA can be added in user tasks. Within the 
presented framework an EMA reference in a task stores a unique identifier and a ver-
sion number of the EMA. Changes to an EMA increase its version on the repository 
and trigger notifications to all referring tasks. An owner of such a task can thereby 
switch the reference to the updated version or preserve the current reference. 

In the CTM prototype, the artifact repository is realized through an artifact table in 
the MySQL DB, containing paths to actual artifact files on the server file system. Us-
ers are able to view different artifacts and artifact versions and submit an EMA 
through an Artifact Repository Explorer component which is part of the CTM Out-
look Add-In. This component enables also setting of references to an EMA in a user-
defined task and EMA reference handling upon notifications. 

 

Fig. 1. User-defined tasks (gray ellipses with a black outline) reside with their sub task hierar-
chies in the workspaces (top layer denoted on the right) of users (U1 and U2). A group of exter-
nal artifact managers (G1) edit an Externally-Managed Artifact (gray circle with a black, dot-
ted outline), in the following referred to as EMA, in their local workspaces and submit it to a 
central artifact repository (bottom layer denoted on the right). An EMA reference (a white cir-
cle with a black, dotted outline) can be set in a user-defined task (A2). An artifact, emerging as a 
common user attachment to a task is either explicitly protected as Locally-Managed, Non-
Externalized Artifact (black circle in A1.1) or implicitly replicated to a central artifact repository 
as Externalized Artifact (a gray circle with a black outline), in the following referred to as EA. 
The task preserves a local EA representation (white circles with a black outline in A1.1 and B2), 
comprising a local copy of the attachment and a reference to the EA in the repository. 

4.2   Externalized Artifact (EA) 

An Externalized Artifact (EA) is contained in the local task definition of a user and is 
additionally replicated on a central enterprise repository (see Fig.1). The software in-
frastructure supporting the presented framework should do this in an unobtrusive 
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manner, without additional user effort by tracking user actions on tasks in the local 
workspace and replicating task attachments to a central artifact repository. Tasks are 
themselves replicated to a task repository (cf. Sec. 6). During artifact externalization a 
single artifact copy, identified in a unique manner, should be created in the artifact re-
pository for artifacts with the same name and the same content. As a consequence a 
one-to-many relation can be created from a single EA to multiple tasks, which are us-
ing it. In Fig. 1 task A1.1 and task B2 use the same EA in two independent processes. 
Furthermore, queries with different criteria can be executed in the central repositories 
to retrieve similar artifacts and the referencing tasks. Externalization hence enables 
unobtrusive detection of recurring tasks and recognition of global optimization possi-
bilities based on usage of similar resources in dispersed, independent processes. 

The second consequence from task externalization is that in case of extraction of a 
Task Pattern (TP) (cf. Sec. 7) from a user-defined task containing an artifact, a result-
ing TP document can contain only a short reference to the EA in the repository. This 
prevents from any explicit encoding of binary content, which could result in increased 
TP document size, and further provides a system dependent representation of artifacts 
within reusable task structures. Consequently, artifacts will not be provided outside of 
the system context and the appropriate artifact access policy. When a TP is reapplied 
for reuse artifact content can be retrieved upon request from the central artifact reposi-
tory based on the unique identifier and according to the repository access policy.  

4.3   Locally Managed, Non-externalized Artifacts 

The access policy for artifacts in the artifact repository might not suffice the privacy 
needs of end users in different business domains and occupation areas. The frame-
work hence provides possibility to store artifacts in a local, non-externalized manner 
(see task A1.1 in Fig.1). Tasks using such kind of representation however do not bene-
fit from the unobtrusive KM and data protection enabled through EA and extended 
flexibility provided through EMA.  

5   Human Actors 

The framework uses a light-weight representation of human actors, associated to 
tasks. In related literature human actors are considered resources for tasks (cf. [1], 
[13]). The representation of human actors within the framework has mainly the pur-
pose to store knowledge about the person, who has expertise related to a given task. 
This knowledge is important for unstructured, ad-hoc work. Ribak et al. state for ex-
ample that “employee’s key asset is their network of contacts and those people they 
can approach for advice or help” [16].  

To avoid the need of introducing domain-specific roles, which may harm the ge-
neric character of the framework, two basic roles for human actors are currently pro-
vided – owner and recipient. The owner of a task is a person, who’s to-do list contains 
the task, i.e. who is or was responsible for the task execution. If a task owner decides 
to delegate a task to another person, recipient information is additionally stored in the 
owner task. The recipient is a person, who has received a task through a delegation 
from other system user. Thereby we generally suggest that delegations are handled by 
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creating a copy of the requester task at recipient site. The recipient task, generated 
through this, holds the same context information and artifacts as the requester task 
and can be further adapted by the recipient. A requester task hence contains two hu-
man actor representations: owner – referring to the requester; recipient – describing 
the recipient of the task delegation. The recipient task holds a single human actor – an 
owner referring to the recipient. On the lowest level human actors in both roles are 
represented through an email address and a human-readable name. In the current 
CTM implementation such representations are stored within the user-defined tasks, 
where an owner is always set when a task is inserted in a personal to-do list and a re-
cipient is set when a delegation is triggered. User data is also replicated in a central 
user repository during task tracking. In CTM the repository is a user DB table.  

6   Tasks  

Within the presented framework enterprise processes emerge as dynamic, user-
defined task hierarchies, where tasks are represented through system objects, de-
scribed through certain attributes like e.g. subject, description, owner, due date, status 
etc. Artifacts and human actors are associated to tasks as described in the above sec-
tions. The framework enables association of tasks according to the collaborative flow 
in human-centric processes and association of tasks of logically independent proc-
esses for KM purposes. 

6.1   Task Delegation Graph (TDG) 

In a collaborative process tasks can be delegated between different process partici-
pants. An overall enterprise process can be therefore observed as a Task Delegation 
 

 

Fig. 2. Individual task hierarchies of different users (U1 - U4) are contained in users’ personal 
workspaces (dotted-line areas). In collaborative processes tasks are distributed between users 
through delegations (dotted line arrows), which enable interconnection of personal task hierar-
chies to an overall Task Delegation Graph (TDG). 
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Graph (TDG), which emerges through the evolution of user-defined task hierarchies 
beyond personal workspaces (see Fig. 2). A TDG has the purpose to integrate indi-
vidual task hierarchies to a complete, end-to-end process structure. Within the pre-
sented framework a TDG is generated through tracking of user actions, which are 
executed on tasks in the personal user workspace, on a shared enterprise repository. 
The individual task hierarchies of multiple users are integrated through tracking of 
email exchange for task delegation. As a consequence task hierarchies, defined by end 
users in the personal workspace, are replicated with all context, artifact and human  
actor information and connected to overall enterprise processes in a central task re-
pository. The structure of these processes is determined by the adaptations of the  
individual task hierarchies (to-do lists) within the local workspace of each process 
participant, and by the collaborative flow for task delegation. No further process 
modeling or definition of rules is required.  

6.2   Externally-Managed Task (EMT) 

While a TDG connects task hierarchies with respect to process flow, tasks may be re-
lated in process independent manner for KM purposes. Such relations are enabled 
through EMT (see Fig.3). Similarly to an EMA, an EMT is managed according to 
specific expertise by one or more users, in the following referred to as external task 
manager(s). While an EMA enables reuse of resources, an EMT addresses the reuse 
of others’ process knowledge for the elaboration of the individual tasks. Two major 
types of EMT can be distinguished. To the first type belong tasks, which are part of 
concrete processes. Referencing such a task in a task from another process, results in 
cross-process references which allow peering of related (parallel) tasks. An EMT of 
the second type represents a recommendation of best-practice. Such a task can be cre-
ated e.g. by a Quality Assurance (QA) department in a software company to describe 
routines, which need to be executed by developers prior to code submissions. This 
task will represent certain organizational policy and will need to be used by all devel-
opers for the organization of their personal tasks.  

An EMT is generally provided in a shared task repository. The tracking of tasks 
used for the generation of TDG has the consequence that all system users are implic-
itly external task managers to their own tasks. Therefore the task tracking repository 
is also an EMT repository. An EMT in the repository can contain further references to 
other EMT, which provides recurring task flexibility. An EMT can contain artifacts of 
all presented types (cf. Sec. 4). However, only EMA and EA will be externally acces-
sible. An important note is that the artifacts, contained in tasks in the local workspace 
of users U1 and U2 in Fig. 3 also have references to artifacts in the artifacts repository 
(see Fig. 2), which are not shown for simplicity reasons.  

When an EMT reference task is declared in a local user workspace, it may be syn-
chronized with the repository to copy locally the complete EMT structure and context 
information. In Fig. 3 no sub tasks are given for A2 and B2.1 for simplicity. When an 
EMT is updated or removed, notifications are sent to all owners of reference tasks. An 
owner can accordingly update a changed reference task, remove it or release the EMT 
reference and preserve the currently used local copy. The latter operation corresponds 
to an apply pattern operation (cf. Sec. 7) and will generate the corresponding ances-
tor/descendant references.  
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Fig. 3. An Externally-Managed Task (a gray ellipse with a black, dotted outline – see Q and R), 
in the following referred to as EMT, is defined and edited in the workspace(s) of one or more 
external task managers (G1 on the left and G2 on the right) and submitted for reuse in a central 
task repository (middle layer denoted on the right). Users, including external task managers, 
may reuse an EMT through an EMT reference task (a white ellipse with a black, dotted outline 
– see A2 and B2.1). A reference chain ends with an EMT without further references. 

7   Task Patterns (TP) 

In the presented framework cases are handled through user-defined tasks, which hold at-
tributes with context information, associated artifacts and human actors. Tasks can be 
extracted with their complete context, artifact and actor information to a Task Pattern 
(TP). A TP provides explicit best-practice recommendation for handling of recurring 
cases as introduced in [17] and clearly refers to the case dimension (cf. Sec. 3). 

7.1   Overall Functionality 

An overview of the TP functionality is given in Fig. 4. A TP can have different granu-
larity. Such can be extracted from an arbitrary item in a task hierarchy, contained in a 
local user workspace. Furthermore, a TP can be extracted from the task tracking re-
pository and represent a complete TDG. The central repository with tracked user tasks 
 



222 T. Stoitsev, S. Scheidl, and M. Spahn 

 

Fig. 4. A task P with a sub task hierarchy is created by user Ux and exported as a Task Pattern 
(TP) in XML format. The task P from the TP is applied in the workspaces of users U1 and U2 
respectively on tasks A and B. Thereby the complete content and structure of P is applied to 
tasks A and B and replicated in the central task, artifact and user repositories. The replicated 
structures and the artifact and user repositories are not explicitly represented for simplicity rea-
sons. The initial TP structure under task B has been changed by user U2. To enable tracing and 
evaluation of such deviations ancestor/descendant relationships are set when the TP is applied. 

is hence implicitly also a TP (case) repository. The current CTM implementation en-
ables search, extraction and editing of TP in a Task Pattern Explorer/Editor compo-
nent. A TP can be exported in XML format. The TP format represents the generic task 
model for the framework (cf. Sec. 7.2). All entities contained in the TP structure pre-
serve their type – EMA and EA are represented through unique system identifiers and 
may not contain any binary content. An EMT can be included only through a unique 
task identifier without explicit task structure and context information.  

Changes in reusable best-practice might often be required to adapt it to the current 
work situation. In Fig. 4 task A has preserved the same structure as P. However, user U2 
has changed the initial TP structure of task B. The framework provides advanced KM 
techniques, which help to evaluate deviating solutions for similar cases. This is accom-
plished through ancestor/descendant relationships, which emerge when a TP is applied. 
Ancestor references are set iteratively for all tasks in a task hierarchy. In  
Fig. 4 an ancestor reference to task P ( P) is set in tasks A and B, an ancestor reference 
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to P1 is set in A1 and B1 etc. Therewith it is guaranteed that ancestor information will be 
available also for fine-grained extraction of a TP from a sub task. Furthermore, repeated 
extraction and application of TP can generate complex ancestor hierarchies. If user U2 
declares a TP from task B, a task resulting from the application of the latter TP will have 
an ancestor reference to B, which will have ancestor reference to P etc. 

While an ancestor relationship enables tracing of the case history backwards, a de-
scendant relationship enables tracing of task adaptations in different application cases 
for tasks, which have been extracted as a TP. In Fig. 4 users U1 and U2 have reused 
the TP originating from task P. The framework suggests storing of descendant rela-
tions to tasks A and B in the repository instance of task P. Hence a one-to-many rela-
tion from a single ancestor task to multiple descendant tasks is maintained. In the  
current CTM implementation this is done in the task DB repository, whereby descen-
dants can be retrieved upon request through the CTM front-end. 

7.2   TP Format – Task Model Implementation and Structural Overview 

The format for TP documents is described in a XML schema definition as shown in 
Fig. 5. This schema provides also an implementation and an overview of the task 
model used in the framework.  

Representation of artifacts is defined through the ‘artifact’ complex type. An ‘arti-
factName’ element holds a human-readable artifact name e.g. the name of a file at-
tached to a task. A choice element enables representation of different artifact types. 
The ‘content’ element enables local, non-externalized artifact representation through 
inclusion of artifact content as base64 encoded binary data. The ‘artifactId’ element 
provides a system-generated identification of an EA. A group element containing an 
‘artifactRefId’ element and a ‘version’ element provides EMA representation.  

The ‘user’ complex type defines the representation of human actors. It is currently 
highly simplified and might be extended in the future to contain e.g. role information. 
This type contains a ‘personId’, which holds unique user identification like e.g. an 
email address, and a ‘personName’, which specifies a human-readable user name. 

Task delegations are defined through the ‘delegation’ complex type, which con-
tains a ‘recipient’ and a ‘task’ element. The latter provides the possibility to store a 
complete TDG through iteratively storing recipient tasks which have emerged from 
task delegation.  

Finally, the ‘task’ complex type describes the structure of a task, where the 
‘taskName’ is the only required user-defined field in a task. We suggest that under-
specified task definition is important as users may often record tasks in highly simpli-
fied manner e.g. by only writing down several keywords [5]. Tasks are generally 
identified through a system-generated id, which is stored in the ‘taskId’ element. An 
EMT is additionally referred through a ‘taskRefId’. The ‘description’ element pro-
vides a human-readable description of a task whereas a suggested task execution time 
is given in a ‘time’ element. An ‘owner’ element represents a task owner (cf. Sec. 5) 
whereas recipients are contained in a ‘delegation’ element, complying with the dele-
gation complex type. The ancestor and descendant references (cf. Sec. 7.1) are repre-
sented accordingly with an ‘ancestor’ and ‘descendant’ elements. A task can have 
multiple artifacts, which are described in ‘artifact’ elements. Sub tasks within a task 
definition are represented through nested ‘task’ elements.  
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Fig. 5. The XML schema definition provides the format for Task Pattern (TP) description docu-
ments and an implementation and an overview of the task model used in the framework. Each 
complex type is described with its elements, which are given with their name, followed by oc-
currence ([1..1] required; [0..1] optional; [0..*] zero or more; [1..*] one or more ) and a con-
tent type. While simple types like String and base64binry provide implementation specifics, the 
presented complex types depict basic model building blocks, which refer to the framework enti-
ties described in the previous sections – artifact, user (human actor) and task. 

8   Conclusions and Future Work 

The offered framework provides adequate support for agile business processes and 
appropriately reflects the dynamic nature of unstructured, knowledge-intensive work. 
The solution focuses on email-based, human-to-human cooperation, where the col-
laborative flow determines the enterprise process flow. The users are the main drivers 
of enterprise processes. As such, they are enabled to shape and share best-practices in 
a light-weight, ad-hoc manner. The value of reusing previous experience on a per-
sonal level is expanded by integrating personal task hierarchies in overall enterprise 
process structures, exceeding users’ personal workspaces. Such processes are gener-
ated dynamically an unobtrusively on a central enterprise repository through tracking 
of user activities on personal tasks and collaborative message exchange related to 
these tasks. As a result the solution facilitates effective KM through rich process  
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mining capabilities, and enables end users to proactively tailor underspecified busi-
ness processes. 

The next steps in our research will include the evaluation of the framework through 
the CTM prototype by conducting user tests with real end users from partner compa-
nies. The prototype and the generic framework may then be extended according to the 
received user feedback and its detailed analysis. 
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Abstract. Within ERP systems, workflow models are used by business
analysts to specify which business processes the system supports. The
workflow model specify which actors that performs what activity in what
sequence and the required resources. Within user interface (UI) design
task models are used to develop task-centric user interfaces. Task-centric
UIs can increase systems’ usability as it focuses on the end-user. In this
article we will show how task models together with other models used
in the field of model-based UI design can be created within the context
of already existing workflow models. We show how standard tasks can
be defined as editable UI components allowing role-based composition of
the UI with support from the workflow model.

Keywords: ERP, MBUID, Workflow, Task modeling.

1 Introduction

Enterprise Resource Planning (ERP) systems are off-the shelf business applica-
tions providing a tightly integrated solution to organizations’ information sys-
tem needs [27]. ERP benefits include best practice business processes, real-time
access to information and shared practices across the entire enterprise. One im-
portant characteristic of ERP systems is the fact that they are pre-built software
packages designed to meet the general needs of a business sector instead of the
unique requirements of a particular organization [1]. To be able to deliver such
huge software packages, ERP vendors use different business process models in
their overall description of the system to describe the supported processes and or-
ganizational structures together with the structure of data and objects [13]. The
reference models are founded upon what the vendor considers being the indus-
trial best practices, that is, the most efficient way the business processes should
be structured [5]. SAP uses Event Process Chain (EPC) models to document
the system’s functionality [12] while Microsoft uses Business Process Modeling
Notation (BPMN) to describe the business domain. These are descriptive models
documenting the existing software (in contrast to prescriptive models that are
used as a specification of what to create) [15].

In this article we use models and information collected from a large company
developing ERP systems and show how prescriptive task models can be con-
nected to descriptive workflow models. The company currently runs a project
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where the ERP system’s functionality is modeled using workflow modeling. The
intention is to use the models as documentation in implementation projects. In
addition there is an interest in investigating how these models can be reused in
other contexts. We want to show how they can take advantage of model-based
user interface design (MBUID) to allow flexible role-centered composition of user
interfaces in the context of the workflow models. Role-based access and portal
solution is considered the answers to the severe usability problems identified in
ERP systems [7].

A challenge with role-based systems is how to keep the number of roles on
a manageable level. When new functionality is added, should this result in the
creation of a new role? A single person typically fulfills several roles, and the
combination of roles users have differs among companies. Flexibility in creating
user interfaces (UI) for various combinations of roles is therefore important.
We will explore a systematic way to define what needs to be included in the
UI for one particular user based on her participation in the workflow process.
The workflow model defines what tasks need to be fulfilled and their possible
ordering; hence the workflow model is suitable as a ‘frame’ for creating task
models. A task model typically focuses on modeling the work of an individual
user.

A short introduction to task and workflow modeling is given in section 2,
and we discuss how MBUID and workflow models by virtue of coming from
different research traditions have differences in concepts, focus and pragmatics.
Our work take advantage of existing modeling languages proved useful in one
context, and proposes how they can be combined to add value in an industrial
context. Section 3 describes relevant aspects of the ERP vendor organization, and
describe our approach by showing a practical example. In section 4 we explain
how to make use of pattern structures to compose role-oriented user interfaces so
that the highly detailed, executable dialogue models can be wrapped into easier
to work with lesser detailed components. We have discussed our approach with
the user interface developers in the company and report some of their first-hand
comments. Finally, in section 5 we conclude and give some notes on future work.

2 Different Modeling Traditions and Their Relation

We will give a short introduction to task modeling and explain how task models
relate to other models used in MBUID. Workflow modeling is then introduced
before the relationship between task modeling and workflow modeling is dis-
cussed. Based on our discussion we argue for the choice of modeling languages
used in the case study.

2.1 Task Models and Model-Based User Interface Design

Task modeling is often used first in the analysis phase to understand and com-
municate the problem domain (resulting in a descriptive model), and later on
as a prescriptive task model for the system to be designed (as e.g. the DUTCH
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method using GTA [33]). Examples of task modeling languages are: Méthode An-
alytique de Description des tâches (MAD)[26], Task Knowledge Structure (TKS)
[11], GroupWare Task Analysis (GTA) [32] and ConcurTaskTrees(CTT)[19]
which all support designers by hierarchically decomposing tasks, defining ob-
jects manipulated and the role responsible for performing the task.

The vast number of task modeling notations results in semantic and syntactic
differences which are discussed by e.g. [14] and [35]. Based on their analysis
a uniform task model is created which includes concepts like: task and goal
hierarchies, operators that express temporal constraints between task, some role
concept to deal with co-operative aspects, and objects with possible actions.

Task models are considered one of the viewpoints in the model-based com-
munity [20]. Viewpoints are related to both abstraction level and focus of the
model. Is the level of detail high and is the focus on the task or on the UI?
Models with different viewpoint are:

1. Task model and object model represent the highest level of abstraction and
their focus is on user’s goals, tasks and what objects that are manipulated
(the object model is often referred to as a domain model).

2. The second layer is the abstract user interface describing the structure and
behaviour of the user interface [29].

3. The third level involves building a concrete user interface specification defin-
ing the platform dependent look and feel of the interface.

4. The fourth level is the final user interface which is the running interface
implemented on a specific software environment.

Model-based user interface design (MBUID) processes often start with a task
related model that is evolved through an incremental approach to the final UI
[4]. In each of the transformation phases the designer has the possibility to
manually change the generated artefact, and the modification is preserved when
regenerating the UI.

The concept of tasks is very similar to that of processes (in a workflow); the
difference is mainly that of scope and focus. Processes typically relate directly to
organizational goals, while tasks focus on the goal and actions of individual users
playing a role. Hence, a task model may be seen as a refinement of a process
model, in the context of a specific user role [28].

2.2 Workflow Modeling

Workflow models focus on how work is done to accomplish some organizational
goals. It defines how documents, information and tasks are passed between hu-
man or other actors in the enterprise [25]. Important workflow characteristics
are tasks/activities that are performed by role-playing persons using supporting
tools that give access to various shared information resources [17] [2].

In the literature there is confusion about the differences on business process
models and workflow models. According to [10] a business process is defined by
a process definition and managed by a workflow management system. Hence the
process model includes the workflow model.
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Many workflow modeling languages have formal semantic built on Petri nets
[25]. A Petri net is a directed graph with a mathematical formalism facilitating
visual modeling on the one hand and formal analysis, verification and validation
of the model on the other. An example of such a language is Yet Another Work-
flow Language (YAWL) [31]. Informal workflow modeling languages includes
Event-Process Chain (EPC) [12], Action Port Model (APM) [2] and Business
Process Modeling Notation (BPMN) [8]. BPMN is defined by the Object Man-
agement Group and offers a rich notation for workflow modeling. The notation
supports decomposition of processes into sub-processes and tasks. A task is an
atomic activity and cannot be decomposed further. A task can usually be per-
formed by an end-user and/or an application [8].

2.3 The Relation Between Models

We will use a two-dimensional representation framework to discuss how dif-
ferent modeling notations used by different research traditions relate to each
other. The representation space is shown in figure 1. The problem/requirement-
solution/design dimension say something about how tight the model is connected
to the final design. While problem-oriented notations describe goals and require-
ments to the design in abstract manners, solution-oriented notations describe
aspects of the artifact we are designing and give specific details on the envi-
ronment the artifact will act in. Along the problem-solution axis models have
different granularity, which is the second dimension. Business processes (BP)
have high granularity as they describe the activities businesses undertake to
reach their business goals. Workflow models (WF) need to include more details
to be executable by a workflow management system. The task model (TM) is
partly overlapping the workflow model since the lowest level of workflow mod-
els usually is a task performed by one actor. A task performed by one actor is
typically the highest level in a task model describing which sub-task that must
be completed to reach the goal of its parent task. Dialogue models (DM) add
details of the functionality and the interaction that the UI provide. Dialogue
models and task models together cover the same area of the problem-solution
axis as workflow models, but have lower granularity. A model of the concrete
interaction (CIM) is very close to the final system, and has a low granularity
specifying both visual details (e.g. layout, widget usage, etc.) and interaction
(keyboard and mouse).

As we have explained, different modeling notations cover different areas of the
representation space. We emphasize the following differences between workflow
and task modeling:

– Different research tradition: Workflow models have their origin in orga-
nizational theory. Hammer stated in [9] that usability was a “second order
issue” and should only be considered when all other functionality has been
considered. “The important thing for automated office application were: (1)
functionality; (2) functionality; (3) nothing; (4) functionality; and only then,
(5) everything else” [6, page 119]. Task models come from the field of human
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Fig. 1. A representation framework for classification of modeling languages

factors [21] and are used with the aim of increasing usability of computerized
systems. This naturally leads on to the second difference:

– Difference in focus: In workflow models the focus is on how to reach
organizational goals. In task modeling the focus is on the goals of individual
users. It is important to be aware of the difference between organizational
goals, the individual goals and how they are related as they might not be
aligned [34].

– Differences in concepts: Section 2 pointed to the mixture in concept def-
inition between task models, and the same mixture is present if we consider
concepts across task models and workflow models. As [21] point out, a con-
cept defined in a task model can be used in a workflow model with a different
meaning. This gives a pragmatic problem across modeling languages.

When a combination of workflow models and task models are considered these
differences must be taken into consideration. In the next section we choose which
modeling languages we will use in our case study.

2.4 Selection of Modeling Languages

Our case study company use BPMN for workflow modeling, so these models are
kept and used directly. Because of the considerable overlap in workflow and task
modeling concepts, we have considered the possibility of extending BPMN so
that it also can be used for task modeling. However, because of the difference
in focus and use of concepts, we think that it is useful to have two separate
notations and instead emphasize that the focus shifts from being about orga-
nizational goals to considering individual users’ goals. BPMN uses swimlanes
for modeling the responsibility of actors, which generally is problematic when it
comes to decompositions. For these reasons we have chosen to use Taskmodl [29]
which is a task modeling language with its origin both from the workflow tradi-
tion and the tradition of task modeling and analysis. It was created with the aim
to narrow the gap between workflow and task modeling and it is based on the
workflow modeling language APM [2]. The main APM concepts are interpreted
in the context of task modeling [29] resulting in a notation supporting the tradi-
tional hierarchical sequence-oriented style typical for task modeling languages.
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Taskmodl supports decompositions of BPMN tasks into user-centric task hier-
archies, specify resources, actors and sequence constraints. To model the user
interface we will use Diamodl [29] [30] which is an executable modeling nota-
tion for abstract user interface specification developed to be used together with
Taskmodk. Central for our approach is that the UI models should be editable
and result in a running UI. Diamodl satisfies this requirement.

3 Models from a Real World Company and Their
Relation to MBUID

We will show how a workflow model developed at a large international ERP
vendor can be used as a starting point for creating a task-oriented user interface.
We call the vendor ProERP and explain the models they currently use in their
developing organization before we show how a MBUID approach can be pursued
in connection to this information.

To aid the software development ProERP uses a model of the business domain
as a common point of reference. The model is split into two representations:

– User and Organizational Model has the individuals and their organiza-
tional relationship as focus. The users are described using Personas [3] [24].
A Persona is an archetype of an actual user and included in the Persona
description is information stating what roles a Persona can take and what
tasks he or she is responsible for. The numerous Personas are grouped into
departments, and each department is illustrated by organizational charts.

– Business Process Model has a supply chain perspective and is decom-
posed into the activities involved in the business process. The processes are
grouped together and placed within departmental borders, showing which
department is responsible for which processes. The business process shown
in figure 2 is one of seven business processes grouped under the ”Operations”
department.

The two model representations describe the same world, but with different
perspective. The information used in this case study is based on this generic
model together with documentation that was provided by two other projects.
ProERP had a project that decomposed the business process model into BPMN
diagrams and the uppermost diagram in figure 3 is from that project. In addition,
documentation from a user interface development project lead by the UI design
team is used.

When new functionality is designed, the Personas that should participate are
identified and used as leading actors when developing scenarios [22] describing
the functionality. Detailed information concerning the business domain and what
is required for the new functionality is provided by domain experts participating
on the design project. The UI design specification consists of sketches of the user
interface drawn with a drawing tool and supplemented by textual description of
the interaction. For usability evaluation Powerpoint slides are used.
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Fig. 2. Example of business process

The process steps in figure 2 are further decomposed into BPMN diagrams
showing which activities that are carried out to execute the process. In topmost di-
agram in figure 3 one of the decompositions under “Manage purchase requisitions
and orders” is shown. Sara (which is a Purchaser) first creates a purchase order
(PO). The PO is then transferred to the stack of outgoing, awaiting PO’s and she
can choose when she wants to communicate the PO by sending it to the supplier.
The supplier must send an order acknowledgment before a pre-defined time has
elapsed, otherwise a rule triggers and the PO is put into the stack of PO’s awaiting
for order acknowledgment. A reminder should then be sent to the supplier.

Each of the boxes in the BPMNmodel is a task suitable for one person and canbe
considered the highest level in a task model hierarchy modeled in a task modeling
language. The decomposition of the Create PO task is shown in the task structure
in the lower part of the figure 3. The rounded rectangles are tasks, with an identi-
fier and a name in the top compartment. The lower compartment is optional and
contains the resources necessary for the task and the actor performing the task
(shown in the parent task). A middle compartment can be added with a task de-
scription, but we have not used this compartment in this figure. The resources that
are sent between tasks are flow resources triggering the execution of the following
task (e.g. PO and Product). The circle enclosing the arrow means that the tasks
need to be executed in a fixed sequence. To create a purchase order Sara has to find
the products, add them to a requirement list and then generate a purchase order
from the requirement list. How to accomplish a task is a question of design and
requires domain knowledge and knowledge about constraints in the software. In
the current user interface design process, the designers in ProERP create scenario
descriptions and sketches of the user interface to describe the functionality.

The task model describe “what to do” but does not include the “how to do
it” knowledge describing how users accomplish a task in the UI using interaction
objects, state and data flow specification. This is information typically specified
in a dialogue model. Dialogue models are suitable for representing abstract inter-
action tasks as selecting an element from a set of elements or pushing a button
to trigger some functionality. We have developed dialogue models for each of the
leaf node tasks of the Create PO tasks tree in figure 3 based on the UI designers
description of how the UI should look like and behave. As it seems to be essential
for the user interface designer to have complete control of the design process, we
have not pursued a more formal derivation of the dialogue model from the task
model as done e.g. by [16].
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Fig. 3. Workflow model showing the process in which a PO is manually created and a
task model that show the decomposition of one of the tasks
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The abstract user interface model is drawn using DiaModl notation, and
figure 4 shows the dialogue model for the task 1.1 Find Product. Interactors
are drawn as rectangles with a name describing their functionality. Attached to
the interactor’s left side are gates which define user input (pointing outwards)
and output to the user (pointing inwards). The free floating triangle is a com-
putation with functionality as indicated by the description (match). The edges
between elements are connections, and define flow of data. The Product object
is from the domain model. To find a product the user first search for the product
by typing the product number. For each digit the user types, a match function
filters the product list and highlights the first product that match. Some of the
attributes of the supplier and product object is displayed to the user.

The dialogue model shows an abstract model of the interaction which can be
used as a specification for the concrete implementation of the UI. The interactor’s
input/output signature determines a set of concrete interactor objects (e.g. a set
of standard widgets) that can replace the abstract user interface component.
The lower model in figure 4 show how the abstract interactors are replaced with
concrete ones matching their input/output signature.

4 A Role-Oriented Approach to Dialog Composition

When creating a homepage for a specific user with a different role composition
than the ones in the pre-defined Persona description, the BPMN diagram can
be used as a starting point for creating task models. Using task models, the
necessary steps for solving the BPMN tasks identified in the workflow model can
be modeled in a user-centric way. Our experience from the case study indicate
that each of the BPMN tasks are candidates for being the top level of a task
structure accessible directly from the employee’s personal homepage.

Since the low-level tasks encapsulate a dialogue structure, a task-oriented user
interface can be created by assembling the dialogue fragments for the required
set of tasks. As noted by [18] modeling the user interface of an interactive system
in sufficient details to be “run” soon becomes an overwhelming task - and an
abstraction mechanism is required to get the “big picture” of the system. To
reduce this complexity we suggest using task model components as patterns for
how standard tasks can be solved. Patterns give a generic solution to a problem
and should be adapted to the specific problem [19]. Composing a UI then will
consist of defining which tasks are needed, plug together the dialogue fragments
and do possible adaption to the standard structure. For example if a specific user
needs to search for a product using supplier name instead of product number as
the abstract dialogue model in figure 4 prescribe, it is possible to edit the model
to support search on supplier name by adding the supplier object as a resource
in the interactor.

In large software development organizations like ProERP, UI designers and
developers work in different, disperse teams. The designer wants to be in charge
of the UI design, but as paper prototypes “do-not-fly” in ProERP, they need
to spend much time drawing the UI and “implementing” the interaction using
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Fig. 4. Dialogue model of the task “1.1 Find Product”, the domain model and a con-
crete UI specification of the abstract dialogue model
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power-point slides. On the developer side it is required to have a précis descrip-
tion of the UI and what specific business objects that are used. Having a library
of standard UI components will make it quicker for the UI designer to create a
prototype of a running UI which can both be used in usability testing and as
design specification to developers. It is important that the designer is still in
charge of the UI design and has complete control of the model.

Presenting our approach to UI designers at ProERP they suggested that if
they could be in charge of designing and testing such standard components, the
developers could implement them and return them to the UI design team. The
design team could then use the components as a resource when designing new
UIs. Since designers and developers are grouped into two disperse teams the UI
design ideas are communicated through scenarios for some illustrative example
cases that demonstrate the principles the UI should follow. The information is
supplemented with design guidelines handed over to the developing team. As a
consequence the UI designers have not complete control over the look-and-feel
of the final UI. Having a library of standard UI components for solving common
tasks will help assure consistence across different UIs.

In this paper the approach is presented as a linear process moving from the
workflow diagram towards the final user interface using several models along the
way. However, this is done purely for explanatory reasons. For UI designers, it is
also relevant to move from a concrete UI design towards the abstract design. Af-
ter all, people tend to prefer to think in concrete terms instead of abstract terms.
It is equally relevant to support starting with a concrete design for thereafter
specifying its abstract and formal structure and behavior.

It is important that models are used as design aid for the UI designers. We
do not believe that an automation of the design process will be appreciated.
Presenting this approach to the UI designers in ProERP they commented that
having a library with standard tasks (designed by them) that are editable would
be a feature, not a limitation for their work.

5 Conclusion and Future Work

In an ERP domain many of the same or similar tasks are performed by different
people having different subsets of roles within an organization. We have proposed
an approach where models from the field of model-based user interface design are
used in the context of workflow models to allow role-centric composition of ERP
systems’ UI. As the suggested UI components are defined using an executable
modeling notation, they can be edited and thereby allowing tailoring of the UI.
Typical cases where editing would be relevant is when a user should be allowed to
take shortcuts compared to what is considered the standard process (e.g. create
a purchase order without getting a requisition from the manager).

In the suggested approach the transition from a task model to a dialogue
structure is a matter of design decisions from the UI designer. We do not provide
design support for determining a useful mapping from the task model to the
abstract user interface model as done in the methodology proposed by [23].
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They provide a decision tree for selecting an abstract interaction object fitting
the task. We need to consider whether such support would be appreciated by the
UI designers in the ERP domain. Also, the appropriate size of the UI components
needs to be investigated further.
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Abstract. Task modelling has been entering the development process of web 
applications. However, modelling web processes from a usage-centred perspec-
tive is still challenging due to the strong distinctions of traditional interactive 
systems and state-of-the-art web applications. This paper proposes the Web-
TaskModel approach, by which task model concepts are adapted for the purpose 
of modelling interactive web applications. The main difference to existing task 
models is the introduction and build-time usage of a generic task lifecycle. 
Hereby the descriptions of exceptions and error cases of task performance 
(caused by, e.g., the stateless protocol or Browser interactions) are on the one 
hand appended to the task while, on the other hand, being clearly separated.  

Keywords: usage-centred design, task model, model-driven development, task 
lifecycle. 

1   Introduction 

Current solutions (platforms, protocols, frameworks, etc.) are well-suited for the de-
velopment of traditional web-sites, but cause problems in realizing state-of-the-art 
web applications. Modelling the special requirements of web processes is still a criti-
cal point. State-based task sequences, for example, have to be implemented based on 
the stateless HTT Protocol. A further problem results from interactions enabled by 
Web browsers that allow the user to backtrack to an earlier sub-task of a sequence, 
bookmark an interaction and come back to it later to finalize the task. This situation 
comes along with an increasing occurrence and importance of processes in web appli-
cations in general. Task modelling has been entering the development process to face 
the problems. Both Web Engineering (WE) and Human-Computer-Interaction (HCI) 
contribute to this but with different emphasis on various aspects in each community 
due to the respective origin and background.  

Traditional interactive systems (desktop applications) and web sites of the first 
days (content-driven web sites) are quite different. Their characteristics are contrasted 
in Table 1, whereby the focus is on usage related aspects. Web applications are in-
between the two, as shown by the grey fields marking their key features. A single 
application, however, might cover a feature with different intensity. For example, 
when a customer visits an online book store information about books and relations 
between them may be in the foreground. Once the customer wants to check out, the 
activities to be performed are dominating. From the users’ point of view, however, the 
distinction between content-oriented interactions (accessing the information space) 
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and process-oriented interactions (accessing the function space) is of no interest. They 
simply want to reach their goals easily – which has to be accomplished by an appro-
priate design.  

Table 1. Comparison of traditional interactive systems and content-driven web-sites (grey 
fields mark characteristics of web applications)  

 Traditional interactive 
systems 

Content-driven  
web-sites 

agentive persons visitors / consumers 
target groups 

known users 
most of the time unknown, hetero-
geneous users 

purpose / goals  users want to execute task 

site visitors want to search, 
browse, and explore information 
site providers want to inform, 
advertise, … 

primary subject of 
design 

functionality and access to it 
through a user interface 

information and access to it 
through web pages 

documentation detailed handbooks 
hardly, most of the time no printed 
material 

central paradigm interaction navigation 

state information  
state is meaningful 
important: task/interaction 
completion  

stateless 
important: current position 

control system has control user has control  

interactivity complex simple 

metaphor direct manipulation navigation 

genres 
isolated dedicated applica-
tions 

interlinked applications of differ-
ent genres 

basic design princi-
ples/claim 

usability and utility user experience 

An adequate modelling approach demands the combination and adaptation of both 
UI models and web site models in different combinations. Whereas some areas (sub-
sites, pages, or even areas within a page) are dominated by the tasks and their struc-
tures, other areas might be structured according to the content or user roles. There-
fore, a web modelling approach has to facilitate emancipated specification of task-
driven, role-driven and content-driven views.  

The WebTaskModel (WTM) presented in this paper is a part of a broader model-
ling approach, within which the task, the object and the role models are loosely linked 
but strongly related to each other. It allows the developer to switch and alternate be-
tween them so that none of the concepts is dominating the construction of the applica-
tion and its user interface. In [3] we have been showing the derivation of an initial 
task-based navigation model and its combination with content-driven domain and 
navigation models. The focus in this paper is on the extensions aiming at the descrip-
tion of usage-oriented processes of web applications. In section 2 we first clarify 



242 B. Bomsdorf 

different perspectives taken during modelling of the processes to point out where our 
approach fits in. Task model concepts cannot be applied straightforwardly due to the 
differences between traditional user interfaces and web applications. The second part 
of section 2 introduces basic concepts by means of an example. Section 3 goes on 
with the WTM presentation detailing the description of behavioural aspects. After-
wards, section 4 depicts the connections to role, object and context models. This is 
followed by the introduction of a first WTM simulation tool in section 5. 

2   Basic Concepts of WebTaskModel 

2.1   Different Perspectives of Modelling Web Processes  

Since the build-time usage of task state machines leads from time to time to misun-
derstandings, we first reflect different modelling perspectives. Web applications, as 
considered here, are characterized by three kinds of processes: 

Usage-oriented processes represent from the perspective of the users how they per-
form tasks and activities by means of the web application. 

Domain-oriented processes result from the domain and the purpose of the web appli-
cation. Examples of such processes are business processes in e-commerce or di-
dactical design in e-learning. The process specification reflects the view point of 
the site owner and his goals.  

System-based processes are specified from the perspective of the developer aiming at 
implementation. The description is conditioned by, e.g., business logic and sys-
tem internal control information. This group of processes also includes the mod-
els of web services which are specified by business processes as well. 

Both WE and HCI provide answers of how to model such web processes but with 
different emphasis of the usage perspective and different utilization of the resulting 
specifications in subsequent design steps. The inclusion of process specification in 
existing modelling approaches leads to the adoption and adaptation of different mod-
els, whereby business processes (OO-H and UWE [9], OOHDM [14], workflow 
(WebML [6]) or user task models (WSDM [7], CTT [11]) are most commonly util-
ized. In principle they provide similar concepts, but usage in existing approaches 
differs. 

As a rule of thumb, task models concern mainly usage-oriented processes, whereas 
business process models and workflows are more used to cover the domain- and sys-
tem-oriented perspective. Generally, process/workflow models focus more on respon-
sibilities and task assignment, whereas the concept tasks relate more to user goals. 
Control structures used in process/workflow models are basically adopted from pro-
gramming languages, whereas constructors in task models are more influenced by the 
domain and the users. The prevalent focus in modelling differs as well. Task models 
put the decomposition structure into the foreground which is typically denoted by 
means of a hierarchical tree notation. Process models lay the primary focus on the 
sequencing information, formulated in most cases in terms of UML activity diagrams. 

Each model is dedicated to one perspective or a mixture. All perspectives and their 
relations are needed (separation of concerns). The WebTaskModel (WTM) describes 
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web processes from the perspective of using a web application, whereby it provides 
clear interfaces to link task with additional process descriptions. 

2.2   Basic Task Description 

WTM enhances our previous work on task based modelling [5]. Since that approach 
was from the beginning similar, but not identical to other task models it can not make 
use of existing tools and notations, such as CTTE [11]. In our current work we extend 
the modelling concepts to account more appropriately for characteristics of interactive 
web applications. In contrast to other approaches of task modelling, we assume the 
developer not to describe the complete application by means of a connected task 
model; instead task modelling can be applied whenever usage-centred aspects are 
under investigation. In the case aspects of the information space (objects and their 
semantic relations) are dominating the modelling focus, the well-known models and 
notations (such as UML and Entity-Relationship diagrams) are applied. The resulting 
specification consists of several task models, interrelated and linked to data-centric 
model parts. Since from this a first navigation structure is derived [3], neither the task 
nor the content structure dominates the entire web user interface but only those parts 
where appropriate. 

As an example of task modelling, Figure 1 shows parts of a model of an online 
travel agency.1 As in general, the task hierarchy, showing decomposition of a task into 
its subtasks, and different task types are modelled. In the specification of high-level 
usage behaviour we distinguish cooperation tasks (represented by  ) to denote pieces 
of work that are performed by the user in conjunction with the web application; user 
tasks (  ) that denote the user parts of the cooperation and are thus performed without 
system intervention; system tasks (  ) to define pure system parts. Abstract tasks (  
), similarly to CTT are compound tasks the subtask of which belong to different task 
categories.  

Figure 1 depicts three separate task models specifying the login/logout procedure, 
the booking of a flight and a hotel, and the single-task model get tourist information. 
We define no dependency between these models to allow a user to switch between the 
tasks, e.g., to perform the login process at every point within the booking process. At 
this modelling stage, all isolated task models are conceptually related by the web ap-
plication (here Flight Application). The position in the final site and thus inclusion of 
the related interaction elements into pages depends on the navigation and page design. 

The number of task executions is constrained by cardinalities of the form 
(min,max), whereby no label indicates mandatory performance, i.e, card=(1,1). The 
task perform login process is marked with (1..*) to denote that the user can repeat it 
as often as he wants. Labels indicating min=0 define optional tasks (in the example 
alter shipping data and alter payment data). Additionally, the label T is used to define 
transactional tasks, i.e., task sequences that have to be performed completely success-
fully, or not at all (payment in the example).  

The order of task execution is given by temporal relations, which are assigned con-
ceptually to the parent task so that the same temporal relation is valid for all of the 
subtasks. Relations typically used in task models are sequential task execution,  
 

                                                           
1 The representations are used here to explain the concepts but not to introduce a new notation. 
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Project: Flight Application 

book flight and hotel 

find a flight 

enter flight 
details 

choose 
a flight

provide 
departure

provide 
arrival 

choose a hotel payment 

alter 
data

alter shipping data alter payment data 

accept
conditions confirm

validate 
data

perform login process 

login logout

1-*

Seq

Seq

Seq SeqB

ASeq
ASeq

get tourist 
information 

0-*

0-10-1

 

Fig. 1. Examples of Task Models 

parallel task execution, and selection of one task from a set of alternative tasks. Fur-
ther relations are described in [11] and [5]. In the notation used in Figure 1, temporal 
relations are denoted by abbreviations. The tasks find a flight, choose a hotel and 
payment have to be performed strictly one after the other (denoted by Seq) in the 
specified order (denoted by ).  

Tasks of an arbitrary sequence, such as provide departure and provide arrival or 
alter shipping data and alter payment data, are performed one after the other in any 
arbitrary order (denoted by ASeq), so that at one point in time only one of the tasks is 
under execution. SeqB is an extension we made to describe task ordering that often 
exists in web applications: going “back” systematically to an already executed task 
of a sequence. Hereby, the results of that task or of the complete sequence up from 
that task are rolled back and the tasks can be performed again. In the example, the 
user is guided through the tasks of payment. Before he accepts the conditions or 
confirms he is allowed to go back to re-perform alter data and accept conditions, 
respectively. Since validate data is a system task, the user cannot step back to it, but 
it is performed automatically after each execution of alter data. Guided tours as 
traditionally implemented in web sites provide similar behaviour but the effect is 
different. Visitors are guided through an information space enabling them to leave 
the tour at any arbitrary point without any effect on the information space or domain 
model.  

The example shows some extensions made by WTM; further extensions are pre-
sented together with the task state machine, which is used as an explicit build-time 
concept.  
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3   Generic Task Lifecycle 

Tasks undergo different state changes while they are performed. The states are also 
significant to users since in their planning of follow-up activities they take into ac-
count current task situations. It is important to a user, whether he can start to work on 
a task (initiated) or not because of unfulfilled conditions, or if he is already perform-
ing a task and thus its subtasks (running). Further task states and the possible transi-
tions between them are given in Figure 2. All in all, the behaviour of each task is 
represented by its state machine aiming at task control at run time [2, 4]. The static 
task model is transformed into a hierarchy of task state machines for this purpose. 
Conditions and temporal relations are translated into specifications of the transitions, 
e.g., preconditions are linked to the transition from initiated to running, so that a task 
can only be started if the conditions are fulfilled. Subtasks are coordinated by the 
superior task state machine, e.g., their state machines are invoked if the superior is 
running.  

 

terminated

initiated 

completed 

skipped 

suspendedrunning
Suspend

Start 

End

Resume 

Abort
(vii

Restart

Restart 

Skip

events valid 
in all states 

timeout
navigate_out 
navigate_in 

State Meaning 

initiated if all preconditions are 
fulfilled the task can 
be started 

skipped the task is omitted  

running denotes the actual 
performance of the 
task and of it’s 
subtasks, if applicable 

completed marks a successful 
task execution  

suspended the task is interrupted  

terminated indicates an abort 
 

Fig. 2. Generic Task State Machine 

We applied our extended task model in small projects (in industry as well as in 
students’ projects) before implementing an editor. The experiences show that the 
models are more structured and concise in the cases the developers could make use of 
the task state machine directly. Although we do not regard this as a representative 
evaluation, it motivated us to re-design our first editor conception. As a result, the 
main task structure is modelled as before by means of a hierarchical tree notation but 
additional behaviour can be assigned explicitly to states and transitions.  

3.1   Task Behaviour 

States and transitions can be extended by additional behaviours, which are specified 
by triggers and actions. The actions of a behaviour may affect tasks, objects, roles 
and/or conditions as well as context information. An action affects  

 



246 B. Bomsdorf 

− a task by sending a global or specific task event to it (task-action), 
− an object by sending an event to the object (object-action), 
− a role by sending an event to the role model (role-action), 
− the context by sending an event to the context model (context-action) 
− a condition by setting its value (condition-action). 
The actions are triggered  
− either by a global task event or a specific task event (event-trigger), 
− or by entering or leaving a state (on-entry, on-exit) or while the task is in the state 

(state-trigger). 

As an abbreviation we use here the notation: task.task-state.task-event  action 
where task-event is either an event-trigger or a state-trigger, and action is a task-
action, an object-action, a role-action, a context-action or a condition-action. Let us 
consider the case of an interruption as a first example of refining task behaviour. 

A further extension of our web-task model is given by the explicit specification of 
interruptions from the users’ point of view2. Here we distinguish three phases: The 
prologue description contains the information presented to the user and the required 
behaviour when the task is going to be suspended. Similarly, the epilogue (phase of 
resuming a task) description shows the information to be presented to the user and 
required behaviour to continue. The phase of the interruption is called within interrup-
tion. If in the example the task find a flight gets interrupted we might want the current 
selection to be stored (prologue). Once the task is resumed, the selection and the mes-
sage “Flight selection incomplete” should be provided to the user (epilogue).  

Referring to the task life cycle, prologue specifications are assigned to the Suspend 
transition, within interruption specifications are assigned to in_state and epilogue 
specifications are assigned to Resume transition. The resulting behaviours for the 
example are: 

    select flight.running.Suspend  send store to object myFlight  
    select flight.suspended.Resume  send restore to object myFlight  
    select flight.suspended.Resume  send flight_selection_incomplete  
                    to object message 

3.2   Specific Task Events 

The specific events Start, End, Skip, Restart, Suspend, Resume and Abort can be used 
on the one hand to represent internal system events influencing task execution. 
Hereby we realize the coordination of the usage-oriented processes with the domain-
oriented and system-based processes. On the other hand, the specific task events can 
be used to represent events resulting from user interactions. Within the runtime sys-
tem the task control layer is complemented by a dialog layer that controls the user-
system dialog and forwards interactions events to the task control component [2, 4]. 
At build time the developer has to specify, which interactions should match a task 
event.  

The screen fragments in Figure 3 show two possible implementations of the same 
task description, whereby the screen shots were taken after the execution of the first 

                                                           
2 This extension is also useful in the context of tradition interactive applications. 
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task. On the right hand a solution with two selection lists (drop down boxes) is shown. 
The lower list is customized according to the current selection resulting from the 
From-selection. On the left hand the tasks are implemented by means of an interactive 
map presenting all supported airports. Each time the mouse cursor is positioned upon 
a city name all existing connections are visualized by means of lines. After activating 
the left mouse button, they are fixed (as shown by the screenshot of the example) and 
the user can perform the subsequent task by a mouse click on the destination. We 
could take those solutions to implement the dialog for the example task enter flight 
details, whereby the subtasks are to be performed in strict sequential order. The reali-
zation of a strict sequential dialog would impose a restriction, but would not violate 
the predefined ASeq access specification. In the resulting web user interface different 
interaction possibilities are provided for performing the same task. Thus, the respec-
tive events are bound to the same task events, e.g., both the selection from the list and 
the mouse click on the map are bound to the End event of provide arrival.  

 

 

Fig. 3. Possible implementations of the task enter flight details 

Events resulting from interactions and task events can be mapped arbitrarily to 
each other. Although all specific events can be linked to interactions, Start, End and 
Skip are particularly significant in designing the web user interface since they signal-
ize the need for interaction elements. However, there is no need to define an explicit 
interaction for each task event. For example, often a task is skipped by just perform-
ing another one. The optional subtasks of alter data (Figure 1) might be, for exam-
ple, skipped by accepting the conditions, i.e., by an interaction assigned to another 
task.  
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3.3   Unexpected User Navigation and Timeout: Global Task Events 

The global events timeout, navigate_out and navigate_in are generated from the “out-
side” and are valid for all states but the end states (skipped, completed and termi-
nated). The timeout event is a pure system event introduced here to deal with the 
occurrence of session timeouts. In contrast to user interfaces of traditional applica-
tions the Client/Browser provides additional navigation interactions (e.g., Back-
button, navigation history). The WebTaskModel provides the events navigate_in and 
navigate_out to deal explicitly with unexpected user navigations by which he leaves 
or steps into a predefined ordering of task execution. Such user behaviour as well as 
session timeouts have to be considered at the level of task modelling since they may 
significantly impact the predefined processes. Online shops are often exemplified in 
this context, e.g., the Orbitz Bug (actual bug in the flight-reservation program of Or-
bitz.com) as reported in [10]. 

First of all the relevance of a global event for a specific task is to be decided: 
Should something happen at all or should a global event cause no special behaviour of 
the “task”. If it is relevant, the impact on further task executions and on the results 
reached so far is to be fixed: Should a task be aborted, be interrupted or should occur 
nothing? Should modifications on objects remain or is a rollback to be performed? 
Reaction in each case is in general a matter of application design (examples are given 
below). Furthermore, as in the case of a specific task event, the related trigger is to be 
defined.  

In our example we want to treat a navigate_out, occurring while the task select 
flight is running, as an interruption, which is formulated by  

    select flight.running.navigate_out  send Suspend to task select flight  
 

The specification does not describe from what user interaction the navigate_out re-
sults. For example, it may be generated because the user starts to browse through the 
tourist information:  

    get tourist information.running.on_entry  send navigate_out to task select flight 
 

In general, the specification of how to handle an event is uncoupled from its occur-
rence. The reactions are described locally in the context of each task. A navigate out, 
however, cannot be detected in all cases (due to the HTTP protocol). The user may 
navigate to an external web site leaving the current task process open. At a predefined 
point in time the web application server will terminate the user session, whereby the 
timeout event is generated. We could make use of this event to formulate the same 
behaviour as defined for navigate_out:  
    select flight.running. timeout  send Suspend to task select flight  
 

However, if the user is not logged in we do not know how to assign to him the data 
collected so far. So we model a system task handle timeout that differentiates the 
cases:  
    select flight.running.timeout  send Start to task handle timeout 
 

Another irregular navigation transition is given by requesting a page assigned to a task 
whose previous mandatory tasks were not carried out. All in all, there are diverse causes 
and different ways of detecting navigations beyond task sequencing. It can be specified 
at task level as well as at user interface level, e.g., supported by the JStateMachine 
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framework that handles allowed and forbidden UI state transitions [1]. As shown by 
these few examples, the task life cycle model can be used in a flexible way to describe 
complex behaviour of high level tasks. The events timeout, navigate_out and navi-
gate_in are used only if they impact high-level behaviour. If, for example, two tasks are 
represented and accessible, respectively, by the same page, it is rather useless to attach 
reactions to the navigate_out and navigate_in events. Furthermore, a simple structured 
task, e.g. entry of a word, does not require control by means of all states of the generic 
life cycle. Our experience so far shows, that in particular navigate_out specifications are 
not very often defined at the task abstraction layer, but if so they are effective in keeping 
the web application behaviour consistent over all web pages presenting the same task.  

4   Relating Object, Roles and Context 

We make use of simplified object models as well as of detailed models describing 
conceptual domain objects. The descriptions are detailed as needed during modelling 
of abstract behaviour, refined and completed in subsequent development steps. A 
simplified object model is used particularly for describing task objects. Such objects 
represent information units as observed and used by the user (i.e., by the different 
roles) during task performance. They are not considered as irredundant information 
sources, but rather as views on the information and function space.  

enter flight 
details 

choose 
a flight

ASeq

departureSet  

visible: Boolean 
involves  

arrivalSet  

visible: Boolean 
provide 

departure

all destinations 
of the selected 
departure 

involves  
provide 
arrival 

 

Fig. 4. Examples of Task Objects 

In the example, the customer should be able to choose the departure from a set and 
afterwards the destination depending on the selected departure. Thus sets for the two 
selection tasks are provided (see Figure 4). The connections between tasks and task 
objects are denoted by involves relations, which are defined by the specifications of 
object-actions (see above). Additional information, such as constraints or derivation 
from the domain objects, is attached informally. In the example, in the underlying 
database we would provide a relation between departure and arrival entities, based on 
which the second set can be dynamically derived and inserted into a web page.  

Properties of task objects and task object types, respectively, are described by means 
of attributes while their life cycles are specified by means of a finite state machine. 
Hereby, only those aspects are modelled that are relevant to the user while performing 
a task and interacting with the system, respectively. Later on in the process, we apply 
UML diagrams by which the model can be described in a very detailed way and with 
ongoing refinement the object-actions are replaced by, e.g., method invocations. 
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Role and context models are linked in the same way: Roles as well as context ob-
jects are described by attributes and state machines for specifying role and context 
changes, respectively. Role change in web applications is often more dynamical than 
in traditional desktop applications. For example, a user requesting the start page of the 
online travel agency is unknown. Taken this role he is allowed to choose a flight and a 
hotel. The task can be finalized only if he is logged in, adopting the role of a regis-
tered user. Role changes resulting from task execution as well as determination of a 
task space resulting from a role change occurs more often than in traditional interac-
tive applications. In addition, contextual changes have to be handled likewise. In 
WTM, these interplays are modelled by the actions resulting from state transitions and 
events triggered from elements of the task, role, object, and context model.  

Long-term dependencies are modelled by conditions. Task execution mostly de-
pends also on business rules, context information and results of tasks performed so 
far. These dependencies are specified by pre- and post-conditions. A pre-condition is 
a logical expression that has to hold true before starting the task. Once it is started the 
condition is no longer checked. A post-condition is a logical expression which has to 
be satisfied for completing the task. In contrast to pre- and post-conditions, temporal 
relations decide on ordering of task execution. Once a task could be performed be-
cause of the sequencing information, the conditions can be evaluated to determine if 
an execution is actually enabled and may be finalized, respectively. In WTM structur-
ing and composition of conditions are separated from their usage in task performance 
(as well as from roles, objects, and context). A condition may be relevant for more 
than one task, possibly assigned to a task as a pre-condition while being a post-
condition for another one. Since conditions are formulated separately from tasks, 
objects, and roles they can be attached flexibly to the respective model.  

5   Simulation of Usage-Oriented Web Processes 

Due to the diverse interrelations of the task, role, object and context model the overall 
behaviour can become difficult to check. Following the tradition of simulating task 
models [5, 8, 11] we currently work on a WTM simulation that takes into account the 
various models. Figure 5 shows a first prototype of the tool.3  

Each task is represented by an icon showing static and dynamic information about 
the task (such as the task type, temporal relations, and the current state). The current 
state of a task is indicated by means of the state name and a dedicated colour. A task 
icon context menu enables to trigger one of the events that are defined by the generic 
task state machine and are currently valid (i). The detailed specifications as resulting 
from the task model can be viewed as well within an additional window (not shown 
here).  

The hierarchical task structure is presented on the left side (ii). The views (iii) and 
(iv) list all tasks that can be started and ended at a current point in time, respectively. 
(The Endable Leaf Task view is empty in this example because the option for ending 
a task automatically by the tool is activated.)  

                                                           
3 Again we are not going to propose a new notation; the “nice” ellipses will be replaced. 
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(iv) (i) 

(ii) 

(iii) 

(v) 

(vi) 

(vii)

(viii) 

(ix) 

 

Fig. 5. Proof-of-concept simulation tool 

The simulator provides not only the simulation of the tasks, theirs behaviours and 
interdependencies, but also task performance in conjunctions with the other model 
specifications. The object area (v) on the right side shows the task objects and their 
manipulations during task execution. Similarly, the role area (vi) depicts all roles and 
their states specified, allowing investigating role changes resulting from task execu-
tion as well as disabling and enabling of tasks because of role changes. The context 
area (vii) represents the context specification, which is empty in this example. Like-
wise in the case of the role, task, and object models effects on context settings can be 
tested and the reactions to context changes. 

The condition area (viii) presents the conditions and their value changes resulting 
from modifications occurring in the role, task, object and context model. All in all, the 
mutual dependencies of all the models can be investigated. In addition, the special 
case of a session timeout can be tested. A respective event is sent to all tasks if the 
Session Timeout button is activated (ix). 

6   Conclusion 

The task model enhancements presented in this paper aim particularly at developing 
web applications but are applicable to traditional interactive systems as well. The 
main extension introduced by the WebTaskModel is the explicit description of task 
performance by means of state information at build time. Application specific rules 
can be added to the generic task behaviour and are used at run time as part of the 
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control information. Hereby also system functionality required for handling the inter-
ruptions can be invoked in the context of a task.  

WSDM [7] and OOWS [12] are modelling approaches that also put a strong em-
phasis on the user-centred view; both describe the user tasks by means of a task model 
(CTT notation [11] but in a slightly modified version). In OOWS the task model is 
used for requirement elicitation and specification concerning system operations, 
which is similar to our previous work [13]. The WebTaskModel approach, in contrast, 
is similar to WSDM, where task models are part of the conceptual modelling and thus 
more formally used in deriving the domain objects and the navigation model. Other 
web modelling approaches, e.g., UWE [9] claim their activity diagrams to be user-
oriented, but mostly cover the system perspective.  

In our approach we make use of less detailed described task objects, which is dif-
ferent to WE but often applied in HCI. Similarly to our work in [13] the modifications 
on task objects are described by means of state-transition-diagrams. In that work, 
however, task models are only used as an informal input to derive the objects’ transi-
tions. In the WebTaskModel approach we retain the task model and bind it to the 
objects by means of conditions and events that guard the objects’ transitions. This is 
replaced with method invocations with ongoing refinement of the objects, which are 
then described by means of UML. This is more flexible and allows using both the task 
and the object model as formal input within the subsequent navigation and interaction 
design [3]. First experience showed that developers tend to favour only one of the 
object types at a time depending on their background.  

The general objective of our work is to provide a modelling and runtime support 
for multiple user interfaces. One of the steps towards this direction is the presented 
link to context models, which will be refined in a follow-up work. The WebTask-
Model is used at build time to generically define the task and domain specific behav-
iour of the site. The tasks can be refined down to the dialog level, e.g., as done in 
WSDM. Alternatively, the dialog can be described by a separate dialog model, as for 
instance introduced in [16]. Currently, we investigate both directions. In [2] a refined 
WebTaskModel is combined with so-called Abstract Dialog Units. The resulting 
models are transformed into a runtime system, whereby the task state machines be-
come part of the controller [4]. All in all, we make multi-use of runtime task models: 
as a small scale workflow system within an e-learning application, as a generic exten-
sion of the application architecture, and within the simulation of task models. Hereby, 
modelling the task-related behaviour has been gaining importance. In our work on the 
WebTaskModel so far we concentrate mainly on its concepts and their applications in 
projects. First proof-of-concepts editors and simulation tools have been implemented 
as part of Bachelor theses and are currently developed further.  

Acknowledgements 

The author would like to thank Sebastian Schuth for implementing the first simulation 
tool and also the reviewers (particularly “Reviewer 2”) for their valuable comments 
about this paper. 



 The WebTaskModel Approach to Web Process Modelling 253 

References 

1. Anderson, D., O’Byrne, B.: Lean Interaction Design and Implementation: Using State-
charts with Feature Driven Development. In: Proceedings of the 2nd International Confer-
ence on Usage-Centered Design - ForUse 2003 (2003) 

2. Betermieux, S., Bomsdorf, B.: Finalizing Dialog Models at Runtime. In: 7th International 
Conference on Web Engineering - ICWE 2007. LNCS, vol. 4607, pp. 137–151. Springer, 
Heidelberg (2007) 

3. Bomsdorf, B.: Modelling Interactive Web Applications: From Usage Modelling towards 
Navigation Models. In: Proceedings of the 6th International Workshop on Web-Oriented 
Software Technologies - IWWOST 2007, pp. 194–208 (2007) 

4. Bomsdorf, B.: First Steps Towards Task-Related Web User Interface. In: Proceedings of 
the 4th International Conference on Computer-Aided Design of User Interfaces - CADUI 
2002, pp. 349–356. Kluwer, Dordrecht (2002) 

5. Bomsdorf, B.: A Coherent and Integrative Modelling Framework for Task-Based Devel-
opment of Interactive Systems (in German), PhD Thesis, Heinz-Nixdorf-
Institut/Universität Paderborn (1999), http://pi1.fernuni-hagen.de/bomsdorf 

6. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process Modeling in Web Applica-
tions. In: ACM Transactions on Software Engineering and Methodology (TOSEM) (2006)  

7. De Troyer, O., Casteleyn, S.: Modeling Complex Processes for Web Applications using 
WSDM. In: Proceedings of the International Workshop on Web-Oriented Software Tech-
nologies (IWWOST 2003) (2003) 

8. Klug, T., Kangasharju, J.: Executable task models. In: 4th Forth International Workshop 
on Task Models and Diagrams for User Interface Design - TAMODIA 2005, pp. 119–122 
(2005) 

9. Koch, N., Kraus, A., Cachero, C., Meliá, S.: Integration of business processes in web ap-
plication models. Journal of Web Engineering 3(1), 22–49 (2004) 

10. Licata, D.R., Krishnamurthi, S.: Verifying interactive web programs. In: Proceedings of 
the IEEE International Conference on Automated Software Engineering, pp. 164–173. 
IEEE Computer Society Press, Los Alamitos (2004) 

11. Paternó, F.: Model-based Design and Evaluation of Interactive Applications. Springer, 
Berlin (1999) 

12. Ruiz, M., Pelechano, V., Pastor, Ó.: Designing Web Services for Supporting User Tasks: 
A Model Driven Approach. In: Proceedings of the International Workshop on Conceptual 
Modeling of Service-Oriented Software Systems - CoSS 2006, pp. 193–202 (2006) 

13. Szwillus, G., Bomsdorf, B.: Models for Task-Object-Based Web Site Management. In: 
Forbrig, P., Limbourg, Q., Urban, B., Vanderdonckt, J. (eds.) DSV-IS 2002. LNCS, 
vol. 2545, pp. 267–281. Springer, Heidelberg (2002) 

14. Schmid, H.A., Rossi, G.: Designing Business Processes in E-commerce Applications. In: 
Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, pp. 
353–362. Springer, Heidelberg (2002) 

15. Vilain, P., Schwabe, D.: Improving the Web Application Design Process with UIDs. 2nd 
International Workshop on Web-Oriented Software Technology (2002) 

16. Winckler, M., Vanderdonckt, J.: Towards a User-Centered Design of Web Applications 
based on a Task Model. In: International Workshop on Web-Oriented Software Technolo-
gies - IWWOST 2005 (2005) 

 



Exploring Usability Needs by
Human-Computer Interaction Patterns

Markus Specker1 and Ina Wentzlaff2

1 Siemens IT Solutions and Services, C-LAB, 33102 Paderborn, Germany
markus.specker@c-lab.de

2 University Duisburg-Essen, Software Engineering, 47057 Duisburg, Germany
ina.wentzlaff@uni-duisburg-essen.de

Abstract. Covering quality aspects such as usability through the software devel-
opment life cycle is challenging. These “-ilities” are generally difficult to grasp
and usually lack an appropriate quantifiability, which would ease their system-
atic consideration. We propose a pattern-based development method supporting
the identification of usability requirements and their proper specification. By tak-
ing usability principles from Human-Computer Interaction (HCI) design patterns
and incorporate them into patterns for software analysis (problem frames), we ob-
tain a new kind of patterns applicable for requirements engineering: HCIFrames.
They are used for exploring usability needs of a given problem situation.

1 Motivation and Related Work

Patterns for developing software have become popular for quite some time. They sup-
port reuse of development knowledge, which has proven of value, and can assist devel-
opers to build software efficiently. A common approach is using design patterns, which
represent best practice solutions for recurrent, but also varying design problems. They
were originally introduced in architecture by Alexander et al. [1] and first transferred to
the software domain by Beck and Cunningham [2]. Gamma et al. [7] developed a pat-
tern catalog for Software Engineering (SE). Recently, design patterns have encountered
high interest in Human-Computer Interaction (HCI), where various pattern collections
for different purposes exist, e.g. web design [14], user interfaces [13], groupware appli-
cations [11], navigational design [10], or collections of general HCI design patterns [3].

From the SE point of view there are two drawbacks for HCI design patterns that
we take into account. Firstly, many HCI design patterns are still merely represented
by graphics such as screenshots and a corresponding text passage containing their
natural-language description, even though approaches for formalizing them exist [6].
This meets the philosophy to provide patterns understandable by laymen, but constrains
their methodical deployment in the software development life cycle. Secondly, there are
many synonym patterns in diverse collections, even if the pattern authors use different
names for their design patterns and describe them in different ways.

From the HCI point of view common SE approaches neglect to address quality as-
pects or so-called non-functional software properties [4]. Primarily, they concentrate on
describing the functionality of a program, although quality aspects, e.g. usability should
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be built systematically into software from the beginning. As different views of the term
usability exist [15], our understanding of usability refers to ISO 9241-110:2006 [9].

By means of patterns we start integrating Software and Usability Engineering
activities. Design patterns are used for solving problems, but they do not suffice to
describe development problems themselves. Therefore, we consider another kind of
pattern, which is used for characterizing problems that should be solved, namely the
problem frames approach by Jackson [8]. A problem frame is a pattern for structuring a
simple problem situation. It classifies the problem without determining how to solve it.

In this article, we continue our prior work [16], where we introduced HCIFrames,
which are patterns especially considering usability problems. In Section 2, we extend
and detail our method by extracting usability principles that refer to ISO 9241-110:2006
from given HCI design patterns. These usability principles are incorporated to problem
frames, which we introduce in Section 3 by deriving usability concerns for them. In
Section 4, a basic problem frame is extended by these usability concerns to obtain an
HCIFrame. Section 5 concludes our results and gives a prospect of future work.

2 Extracting Usability Principles from HCI Design Patterns

We are interested in a systematic use of HCI design patterns, since these patterns address
best practice solutions affecting implicitly the usability of software. Thus, evidence in
the early development phases is required for directing a reasonable HCI design patterns
deployment. A usability problem has to be specified before deciding on an HCI design
pattern for solving it.

Table 1. Classification of design patterns by their underlying principles

Software Engineering Human-Computer Interaction
Common Principles design patterns design patterns

Gamma et al. [7] Tidwell [13] Schümmer [11]

user’s activity Command - Unit of Work
cancel activity - Cancelability -

remember activity Memento Command History Elephant’s Brain
create list (of activities) Iterator - -

undo activities - Multi-level Undo -

Smith and Williams note that a pattern is “a realization of one or more princi-
ples” [12, p. 263], which can be embedded into various (anti-)patterns. “These princi-
ples are applicable during the early phases of software development” [12, p. 242] and
”help to identify design alternatives” [12, p. 241]. We examined the problem descrip-
tion sections of several design patterns and deduced their inherent, common principles
(Tab. 1, first column) for their classification, accordingly. This classification is still an
ongoing job, we present a part of the already obtained results in this article.

For patterns in the same row, we imply that they share the same principle to solve
problems, e.g. in the third line, the design patterns “Memento”, “Command History”,
and “Elephant’s Brain” are different applications of the same problem-solving principle,
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Table 2. Classification of usability principles according to ISO 9241-110:2006

ISO 9241-110:2006 Usability Principles taken from Tab. 1
dialogue principles

suitability for the task user’s activity
self-descriptiveness see input hint, input prompt, and progress indicator

applied in prior HCIFrames [16]
suitability for learning no match (n.m.)

conformity with user expectations n.m.
controllability cancel activity
error tolerance undo activities

suitability for individualization n.m.

which we name “remember activity”. This classification of design patterns according
to their underlying principles is done by analogies, which we see as a powerful even
though subjective reasoning technique for pattern application.

To find out, which of the principles in Tab. 1 are of relevance for usability, we have
related them to the dialogue principles of ISO 9241-110:2006 [9] given in Tab. 2.

For example, “user’s activity” of Tab. 1 means that a coherent task can be accom-
plished by a corresponding user interaction. We relate this principle to the dialogue
principle suitable for the task in Tab. 2, because both share the need to provide a work-
ing implementation of a user task. The “cancel activity” principle becomes applicable,
when a user interaction shall be stopped immediately. Thus, it supports the dialogue
principle controllability, which requires that a user should be in the position to con-
trol the place and sequence of an interaction. “Undo activities” fits the error tolerance
dialogue principle, which demands that a dialogue should be forgiving. An undo re-
verses an undesired user interaction, and a preceding software state can be restored. In
Tab. 2 “remember activity” and “create list (of activities)” are unconsidered, because
they cannot be related reasonably to the ISO 9241-110:2006 dialogue principles. We
still mention them in Tab. 1, because they are necessary to accomplish for instance the
“undo activities” principle. Investigating these pattern relationships, however, is out of
the scope of this work.

For describing usability problems we transfer those principles behind (HCI) design
patterns, which are of relevance for usability, into patterns of the SE analysis phase.
This yields a strong analysis/design pattern relationship, which can guide developers in
selecting among design alternatives that are of importance for solving a specific (usabil-
ity) development problem. Thereby, we found a reason for the existence of synonymic
patterns in diverse collections, it is because they rely on the same basic principles.

3 Problem Description and Decomposition Using Problem Frames

For establishing a continuous pattern-based software development process, we make
use of Jackson’s problem frames approach [8] for requirements engineering. Prob-
lem frames are patterns for structuring and classifying simple software development
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Editing
Tool

Command

US!E3

ET!E1
WP!Y2

E3

Y4

B

X
Workpieces

User

effects

E3 : {user event}
Y4 : {workpieces status}
E1 : {machine command}
Y2 : {workpieces state}

Fig. 1. Problem frame diagram for “Simple Workpieces”

problems. Jackson provides a set of five basic problem frames, which can be extended
by combining them or creating variants of them [5], which we do not discuss further.

Each problem frame such as Jackson’s “Simple Workpieces” is represented by a
frame diagram (Fig. 1, cf. [8] for more details) containing different kinds of domains
(boxes), interfaces with shared phenomena (labeled lines with related set of operations,
actions or events representing domain properties) and a requirements oval.

Problem frames support deriving specifications from requirements. Specifications
describe the desired machine behavior (interfaces at the box with two vertical bars) and
thus are translations of customer requirements into corresponding technical descriptions
of software services used by developers. Therefore, the basic frame concern of a prob-
lem frame must be addressed [8, p. 105ff]. In our method we represent the basic frame
concern of “Simple Workpieces” by template statements for its requirement Command
effects in (R CE) and its corresponding specification in (S CE) (angle brackets are
placeholders for domains and shared phenomena of Fig. 1):

(R CE) : A <user>, who commands the machine <editing tool> to execute
<E3 event>, expects to change the <workpieces> state to <Y4 status>.

(S CE) : On behalf of <user> command <E3 event> the machine <editing tool>
manipulates the <workpieces> state <Y2 state> by <E1 command> to achieve
the desired <workpieces> state <Y4 status>.

In Fig. 2 we instantiate the problem frame “Simple Workpieces” by the example
requirement “A player wants to move Pac-Man to a new location”. It assigns values
to the frame diagram and its basic frame concern stated in (R1) and (S1):

(R1) : A Player, who commands the machine Game to execute move, expects to change
the Pac-Man state to new location.

(S1) : On behalf of Player command move the machine Game manipulates the Pac-Man
state position by turn to achieve the desired Pac-Man state new location.

"move"

"new location"

Game

Player

Pac−Man

R1

PL!{move}

PM!{position}
GM!{turn}

Fig. 2. Instantiated problem frame “Simple Workpieces” used for a Pac-Man Game
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By means of problem frames simple problem descriptions can be derived that suffice
for specifying the core functionality of a desired software system. However, currently
they lack of a systematic account of non-functional properties or quality attributes such
as usability. We incorporate our usability principles to problem frames by extending
their basic frame concerns where reasonable for guiding usability specifications.

4 HCIFrames: Attaching Usability Principles to Problem Frames

By means of usability principles from Section 2 we derive usability concerns. They
are represented as template requirements and corresponding specifications considering
usability needs. HCIFrames are created by adding these usability concerns to a problem
frame diagram and adapt its domains and shared phenomena correspondingly. By the
example of “Simple Workpieces” we incorporate the found usability principles into
several usability concerns for developing a new HCIFrame for it in Fig. 3.

Editing
Tool

US!E3

ET!E1
WP!Y2

E3

Y4

B

X
Workpieces

User

R_UA
R_CE,           R_CA,

E3 : {user event, cancel event, undo event}
Y4 : {workpieces status}
E1 : {machine command,

mc cancel, mc restore}
Y2 : {workpieces state}

Fig. 3. HCIFrame for “Simple Workpieces” (additions in bold face and italic type)

The first usability principle user’s activity of Tab. 2 is already covered by the shared
phenomenon user event of interface E3. It does not cause any change of the frame
diagram itself, e.g. no additional domains have to be introduced. Now (HCI) design
patterns that support the principle user’s activity can be applied for solving a problem
specified by “Simple Workpieces”, e.g. “Command” and “Unit of Work” in Tab. 1.

In contrast to user’s activity, a new usability concern for cancel activity given by
the template requirement (R CA) and its corresponding specification (S CA) is added
to “Simple Workpieces” accompanied by a new shared phenomenon at interface E1.

(R CA) : A <user>, who commands the machine <editing tool> to execute
<E3 event> for changing the <workpieces> state to <Y4 status> can stop the
execution of this command immediately by issuing command <cancel E3>.

(S CA) : The <workpieces> state <Y4 status> remains untouched, if a <user> com-
mand <E3 event> is in process and canceled by a subsequent command <cancel-
E3>. The machine <editing tool> ensures if necessary via <E1 cancel>

commands that the <workpieces> state <Y2 state> is unchanged.

Comparable to cancel activity a new usability concern has to be created for undo
activities. Without detailing its corresponding template statements, we add (R UA) to
the requirements oval and an additional phenomenon to interface E1, and E3 of the
frame diagram for “Simple Workpieces” in Fig. 3 for handling the undo activities prin-
ciple. The resulting HCIFrame shows, that if a problem fits the “Simple Workpieces”
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frame, then specific usability needs such as introduced by the template requirements
(R CA), and (R UA) are of relevance and should be considered as well in addition to
(R CE). Developers only need to check, if one of these usability concerns is applicable.
Because HCIFrames and (HCI) design patterns are strongly related to their common
usability principles, an implementation of a corresponding solution for these usability
problems is supported. Getting back to the prior Pac-Man example, this means that
besides move Pac-Man, user interactions for cancel move and undo move should be
considered for affecting the game’s usability.

5 Conclusion and Future Work

By extracting usability principles from HCI design patterns and incorporating them to
problem frames, we obtain HCIFrames, which are patterns for characterizing usability
problems. They allow the exploration of usability needs in early software development,
which is a prerequisite for building usability into software applications systematically.
By using HCIFrames, a developer is guided in the identification, specification and re-
viewing of usability demands and does not solely depend on personal experience any-
more. To determine the efficiency of HCIFrame use, more research is needed. Our ap-
proach already provides a basis for a continuous pattern-based software development
method by explicitly linking patterns of software analysis to corresponding patterns of
software design via common usability principles.

Motivated by the findings presented here, we are working on additional HCIFrames
and their proper implementation by means of corresponding (HCI) design patterns.
Furthermore, we are interested in investigating interactions of usability requirements
with other quality aspects such as security, safety or performance. How possible con-
flicts of these can be resolved by our method, is future research, as well.
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Abstract. This article describes a method for choosing of interaction peripher-
als for wearable computer in Mobile and Augmented Reality context. This 
method is based on a transformational process starting by user tasks modeling 
and their decomposition on user, machine and interaction tasks. Interaction 
tasks are expressed by interaction atoms (device independent) which are real-
ized by interaction techniques related to interaction devices. A referential of in-
teraction devices helps designers in choosing devices in relation with tasks to be 
supported and contextual requirements (functional and non-functional). A well 
organized selection process based on several devices/criteria matrixes allows 
explicit comparison of configurations in regard with usability criteria.  

Keywords: task model, interaction tasks, interaction atoms, interaction tech-
niques, wearable computer peripherals, configuration process. 

1   Introduction  

The engineering of mixed [1] and mobile [2] systems is not an easy activity, because 
it requires mastering interaction devices and technologies for wearable computer to 
satisfy application requirements. Our objective was to elaborate a process organizing 
the study and the selection of wearable computer and associated devices in adequacy 
with the tasks allocated to the actor. 

The diversity of the interaction devices used with a PDA or a Tablet PC, such as 
HMD (head-mounted display) for augmented reality, datagloves, RFID readers and so 
on, is very important. These devices are more or less specialized and adapted or 
adaptable to tasks to carry out. Their great number and their specialization contribute 
to make this choice difficult. An unsuited choice can compromise effective and ergo-
nomically valid tasks achievement. Moreover the tasks independence in relation to the 
contexts and the devices is known as a very important constraint for user interface 
plasticity [3]. How to determine and compose logically interaction devices most 
adapted to the needs expressed by application tasks according to working contexts 
and in the same time to maintain this independence as long as possible, is the question 
which we try to answer. Our study aims to propose a process to determine in a con-
structive way the devices most adapted to the application tasks in adequacy with dif-
ferent contexts of use while minimizing the number of them. 

Our process is organized in two major stages, in the first stage we acts to identify 
and model the application tasks that the actor (user) will have to carry out, then we 
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decompose these tasks to discover interaction tasks which put in interaction the actor 
and the augmented reality based information processing system, and finally to iden-
tify interaction atoms concerned. The second stage of our process provides to the 
designer a reference model of interaction devices organized to facilitate the choice 
according to an approach of Design Rationale [4]. The choice of devices is based on a 
logical reasoning and rational QoC taking into account various criteria [5]. This proc-
ess proposes an iterative approach to analyze progressively the tasks to be carried out, 
with the satisfaction of main criteria “interaction continuity in and between the tasks”, 
to reduce of the number of devices in respect of working contexts. 

2   First Stage of the Process: Multilayer Modeling 

Identification of tasks in charge of the actor using wearable computer constitutes the 
starting point of our process. Task modeling is a very active research field, with dif-
ferent formalisms and associated tools as CTT with CTTE [6]. Both, after having 
considered high level tasks, very abstract, gradually transform them into more precise 
tasks: user tasks, known as cognitive tasks, machine tasks, known as calculation and 
interaction tasks, which express the exchanges between the actor and the system. 
These interaction tasks are directly concerned by the choice of interaction devices to 
be used as support for man-machine interaction. 

An application task results from the requirement analysis done and expressed by 
the future users. These tasks are the tasks which the users want to achieve. They can 
be in large number. The concept of interaction task finds naturally and commonly its 
place in all the models of tasks and in particular those quoted above [6]. Historically it 
is in the article of J.D. Foley et al. [7] where they are defined and studied in a com-
prehensive way. Foley determined 6 different: Selection, Position, Orientation, Path, 
Quantity and Text input. Obsolete for some, we think that they constitute an interest-
ing starting point for at least illustrating the principle of the interaction tasks, because 
they are interaction oriented and generic. They can not cover all the interaction tasks, 
but they constitute a good base of it. Each one corresponds to "a sequence of interac-
tion, identified, named and distinguishable in the decomposition of an application task 
and what is important, generic (semantically neutral) and independent of the context 
and devices". These tasks constitute building blocks able to participate, according to 
the point of view, either in the construction or decomposition of application tasks. 
They are user-based and are the units of action which the user can apprehend. Next 
step is the decomposition of interaction tasks using interaction techniques. Several 
definitions have been proposed considering them either as peripherals dependent or 
independent. In this way J. Foley associated to his generic tasks precise interaction 
techniques directly related to interactions devices. Another historical way, which is 
concerned by portability, i.e. independence between interaction devices (mainly 
graphical) and applications using them was in GKS (concepts of logical inputs and 
outputs), PHIGS and OSF/Motif (concept of logical input devices). This elementary 
level seems to exist, even if the four key concepts of exchange between the user and 
the application (via devices) such as: pick, choice, locate and valuate slightly evolved: 
for example, [8] added two primitives related to cooperation (sender and receiver 
actions). 
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Fig. 1. Relation between tasks, atoms, techniques and devices 

We call interaction devices all physical devices, either traditional (not-carried), 
like the alphanumeric keyboards, the various types of mouse or joystick, or carried 
(wearable) devices like glasses integrating opaque screen, "see-through" HMD, datag-
love for gestural interaction, and so on. Our process is concerned by the decomposi-
tion of application task into a series of interaction and calculation tasks in order to 
determine the interaction devices most appropriate to the interaction. We thus take 
into account all kinds of physical devices, existing or ad hoc, wearable or not, ubiqui-
tous or non-ubiquitous. The choice of devices is done first for each interaction task 
separately but so considered with the whole of the interaction tasks to which it be-
longs. To evaluate the capacity of a device to fit interaction task requirements, in 
relation with the diversity of possible interaction tasks, an intermediary level between 
interaction tasks (device independent), interaction techniques (device dependent) and 
devices themselves, we propose to use a new intermediate level, needed for portabil-
ity reasons in relation to plasticity requirements. We call them "interaction atoms", 
which are for us device-independent smallest elements (thus atoms) of exchange be-
tween the application and interaction devices. We identified four different atoms that 
we define: "Navigation atom" to reach the entity to be selected; "Identification 
atom" inspired by [9] in charge of entity selection; "Location atom" to collect area 
location; and "Value atom" used to collect alphanumeric values known only by the 
user himself. 

To emphasize the relationship between interaction atoms, techniques and devices, 
we present a scenario issued from HMTD project [10], which aim is to organize the 
assistance to maintenance in an industrial situation. In this scenario, a technician, in 
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competence failure, would collaborate remotely with an expert. This last one is able to 
guide the technician by graphic, oral or textual indications. The context of interven-
tion is the following: the technician is working in mobility in a noisy environment and 
would collaborate remotely without the use of his two hands occupied to fix the ma-
chine. In the diagram of Figure 1 we summarize our approach. In the tree (on the right 
part), we clearly let appear the various layers of Figure 1a and the context and the 
devices independent and dependent parts. The connection between these two parts 
takes place through interaction atoms "Navigation" and "Identification" and interac-
tion techniques "Voice text input" and "gestural interaction", technique integrating the 
gestural modality. The input interaction devices which we are proposing are appropri-
ate in the context of the application task, i.e. gestural sensors (based on dataglove 
technology) distributed on the body, in order to compensate impossibility for the actor 
to use his two hands, and a microphone allowing vocal conversation. 
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Fig. 2. Referential of devices for mobile and augmented reality systems 

3   Second Stage of the Process: Choice of Devices 

Our device referential was elaborated to integrate all the devices potentially being 
able to be selected during the configuration of the wearable computer for the activities 
of a particular actor. This referential is organized in axes (figure 2), which can be used 
or not in the configuration to build. If an axis is not used, it takes value 0. More the 
device is located towards the end of the axis more powerful it is. For example for the 
axis Display, the various devices are located according to the criterion of gaze continu-
ity to catch information. This referential is appropriated for the design of mobile and 
AR systems. Its organisation is based on 4 groups. Three groups propose input, output 
and information exchange devices. Last one is devoted to system communication. 
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The principle of devices allocation is the following: To assign a device to an inter-
action task, it is necessary to know which interaction atoms and techniques it is able 
to carry out. In our process that means to evaluate:  

1. Device adequacy with interaction task in relation with the criteria such as the 
continuity of the interaction or the minimization of the number of devices.  

2. Device capacity to realization the task in respect with environmental no-functional 
(magnetic fields. temperature...) or user-related (0, 1 or 2 free hands, special work-
ing conditions) requirements. 

3. Device performance related the interaction task and to working situations. 

A multicriteria matrix is defined in the following manner; the criteria are on the 
columns (C1, C2... CN), the devices are on the lines. The last column contains the 
score of the device. The score is the total value of the device; its value is defined by a 
formula established by the designer and used to calculate the value of the scores of 
each device of the same matrix. The simplest formula being the sum of the values of 
the device in each criterion, other formulas such as the sum of the value of the 
weighted criteria can prove to be relevant. The last line contains one or more values 
characteristic for each one of the criteria and the score. It can be the average value of 
the criterion or the score, or the value MAM (Minimum/Average/Maximum) which 
makes possible to compare deeply different devices. 

 
I.T. Device Mobility Efficiency User satisfaction SCORE 

Mobile Eye-
tracker 

2 4 2 8 

Mobile micro-
phone  

5 2 2 9 

SCROLL 

Average 3,5 3 2 8,5 
 

Mobile Eye-
tracker 

2 5 3 10 

Mobile micro-
phone  

5 2 2 9 

CHOOSE 
AN ITEM 

Average 3,5 3,5 2,5 9,5 
 

Mobile Eye-
tracker 

2 3 2 7 

Mobile micro-
phone  

5 4 4 13 

CONFIRM 

Average 3,5 3,5 3 10 

Fig. 3. Matrixes device/criteria for three interaction techniques 

The assignment of notes to each criterion and to each device must be done with care, 
most objectively possible and can be carried out only by field experts with appropriate 
knowledge of mobile and AR systems in relation with usability appreciation. Once all 
elements collected and modelled selection process can start. It is based on in-depth in-
spection of application tasks to which interaction tasks then devices are assigned accord-
ing to a compromise tending to maximize the performance, within the meaning of the 
values of the device in each criterion. It is also necessary to take into account all the 
interaction techniques used by the task in order to make a good choice of device in rela-
tion with the devices which already were selected to carry out other task and sub-task to 
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be able to minimize the number of devices, the cost of them, their weight and to maxi-
mize the continuity of the interaction and any other criterion relating to the overall appre-
ciation of the result. A tool supporting the process manipulates different criteria and their 
values, calculating the score progressively in relation with options chosen.  

We present in figure 3, different matrixes device/criteria comparing the use of two 
devices (mobile eye-tracker and mobile microphone) for three interaction techniques 
(scroll, choose an item and confirm). We can observe that the wearable microphone 
appears as the most appropriate device in relation with our needs. 

4   Conclusion 

In this paper, we described a process organizing the choice of devices for wearable 
computer in the context of mobility and augmented reality. We described the various 
elements which it requires and gave an outline of its effectiveness and its reproduci-
bility on a concrete example. This process wants to be generic and applicable to a 
large set of existing interaction devices and to devices newly introduced or created 
specifically mainly in the context of augmented reality and mobility. The transforma-
tional process presented can be improved by at least two levels of patterns, firstly 
between interaction tasks and interaction atoms and secondly related to interactions 
techniques depending on interaction devices. Both are important, for UI plasticity, to 
remain as long as possible independent of interaction device is required. For aug-
mented reality, association with existing devices or design of new augmented real 
objects is another important challenge which was not completely tackled in this paper.  
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Abstract. Since early ergonomics, notations have been created focusing on the 
activities, jobs and task descriptions. However, the development of a wide vari-
ety of devices led to the generation of different interfaces from the same  
description of the tasks. The generation of complete current interfaces needs 
different types of information, some of which are not represented in usual task 
models. The goal of this paper is to present information that seems to be lacking 
in the task models. 

Keywords: Task models, generation. 

1   Introduction 

Since early ergonomics, activities, jobs and task descriptions have been the center of 
any ergonomic diagnosis for assessment, evaluation and eventually for design and  
redesign. Lots of efforts were dedicated to data gathering, such as interviewing methods, 
and to identify issues with cognitive tasks (e.g. in air traffic control, nuclear power 
plants, etc.). Models for description, namely task models, have been then published and 
used [1, 2]. Tools supporting these models were later on developed, often not usually 
formal enough to allow full simulation and reuse of data.  

Benefits from task-based modeling are nowadays largely reported in research [3]. 
Validation appears as the first aim of task-based approaches. In order to facilitate 
validation, some approaches, the model-based systems (MBS) [4], were developed to 
product user interfaces (UI) from models (of whom one is task models). More, the 
development of numerous devices and platforms requires to product UI capable of 
adapting to the context of use [5]. In order to design these kind of UIs, one strategy is 
to derive different UIs for several platforms from the same task model containing 
common information. This approach has been followed by ARTStudio [6], TERESA 
[7] and Dygimes framework [8]. After several steps, they produce final UIs adapted 
for a particular platform.  

All these approaches are based on the generation of (all or a part of) UIs. However, 
during the different steps of generations, somme information are added (by users or 
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tools). Thus, the initial task model is modified. Then, validation according initial task 
models becomes complicated.  

This paper is based on both a literature survey and case studies (on an email sys-
tem, on a medical system). Exploring these case studies from the task model data 
highlights four challenges imposing to complete task models: interface presentation, 
definition of task to dialogue model transformations, connecting tasks with errors and 
undo patterns, and finally support rich forms of interaction (post-WIMP). In this pa-
per, we expose these challenges respectively in section 2, 3, 4 and 5.  

2   Tasks and Interface Presentation 

Task models does not naturally contain elements of interface presentation. However, 
presentation has to provide mandatory elements to allow users to perform the tasks 
specified in task models. This consistency between task model and presentation may 
be exploited to verify that presentation allow to perform the feasible tasks (according 
to the scheduling).  

Presentation contains interactive objects (widgets) that users need to carry out their 
tasks, applying some recommendations [9] (for example, to complete fields in a form, 
the user may use a customary order). A way to arrange widgets is to lay them accord-
ing to the order of corresponding tasks as defined in the task tree (TERESA behaves 
that way). This approach uses semantics of order in the task model description. These 
semantics are useful for the presentation, completing the operators semantic. Thus, 
tasks linked by the “concurrent” operator should be performed concurrently, but the 
usual order is the order of description.  

Furthermore, application presentation has to adapt to the platforms taking into ac-
count their space constraints. However, deducting the space constraints from the task 
model is impossible. Therefore studied approaches either respect the definition of the 
position of every element in the windows (as an example ARTStudio) or place the 
widgets according to screen size constraints (as an example Dygimes). Taking into 
account space constraints may impose addition of actions and thus modify task model. 
For example, consulting a menu on a computer necessitates less actions than on a 
phone. 

At last, one of the functions of the presentation is to present the required informa-
tion in order to execute a task for the user. However, existing approaches do not inte-
grate this functionality. Cognitive tasks are usually added before interactive tasks, in 
order for the user to define an action strategy. Frequently, the execution of these cog-
nitive tasks requires data to be displayed. For example, one needs to access a list con-
tent to pick a name from it. Such requirements could be fulfilled using objects, but, in 
our knowledge, no researcher’s work has yet followed this trend of researches. 

3   Tasks and Dialogue Control 

In most architectural models for HCI, the dialogue controller plays a central role, split 
in two responsibilities. First, it must associate user actions and functional core proce-
dures and functions. Second, it must control the dialogue, e.g. the exchange between 
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the user and the application. That last point stands for ordering possible user actions 
depending on functional core and interface states, which is closely related to temporal 
control. 

Temporal Control. Dialogue and task model seems to be very closed as shown by 
simulation tools of some task model editors (such as ConcurTaskTrees Environment 
[3] (CTTE1) or K-MADe2 [10]). These task model editors supply designers to select 
from a set of enabled tasks which they want to evaluate (to create scenarios). More, an 
evaluation of the sets of feasible actions has to be performed on the dialogue control 
of interactive applications. The evaluation of enabled task sets [3] and feasible actions 
intuitively appears to share close similarities, and are even sometimes considered as 
identical [8, 7]. 

Nevertheless, is it true that these two sets can be considered as identical? Due to 
the difference between the points of view concerning the application that these two 
sets represent, some differences between the feasible actions and the enabled tasks 
sets exist. For example, task models present tasks entirely performed by user in the set 
of feasible tasks whereas they may not correspond to actions. Thus, whilst task model 
can express that a task can be performed only when a user task was carried out (using 
enabled operator in CTT or sequential operator in K-MAD), it is impossible to trans-
late this relation in actions.   

Furthermore, passing from a set of enabled tasks to another is performed through 
the execution of specific tasks (amongst a set of enabled tasks), such as when a user 
ought to enter a text before performing another task. In that example, only the user 
knows when the text is completed, the interface knows the end of the execution of the 
task when the user executes the following task. Thus, the second task can be per-
formed as soon as and only when the first task begins. In order to generate interface 
from task models, detecting when the execution of these specific task ends has to be 
done. How can this be automatically done?  

Link between Tasks and Functional Core. Interfaces need to be linked with the 
functional core in order to enable functions and procedures to be performed. Through 
this link, the various available actions are translated according to previously executed 
actions. Some information concerning the linked tasks is needed for the translation 
process, and several variables are manipulated.  

Task model links are used to represent task decompositions as well as temporal or-
ganization between tasks. In task models, links can be expressed between sister tasks 
or between a mother task and its daughters. However, task executions may be linked 
through other relationships. For example, when the execution of a task can interrupt a 
set of others, they are linked together even if they are neither sisters nor mother and 
daughter. Representing the relations between tasks in a task model is sometimes chal-
lenging whereas it is necessary to identify and exploit all relations to design the dia-
logue. A first approach lies in the use of the deactivation operator. However, if the use 
of this operator allows to represent some conditions concerning the execution of the 
tasks, it does not answer the deletion issue. The temporal operators are not satisfac-
tory for a precise control, but K-MAD [11] proposes the use of objects and conditions 

                                                           
1 http://giove.cnuce.cnr.it/ctte.html 
2 http://www-rocq.inria.fr/merlin/kmade/ http://kmade.sourceforge.net/download.php  
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to improve the description. The semantics of these objects and conditions allows to 
represent some relation between tasks (the use of the same objects) but not all (dele-
tion). More, task models present the user’s viewpoint, thus the defined objects are the 
ones manipulated by user (corresponding to the state-of-the-world objects) and not the 
ones only required by the system (ex: boolean). How to deduct these non real-world 
objects from task models while they are not manipulated by the user?  

4   The Human Factor  

A great particularity of users is that… they often make errors, mistakes, and also, 
change their mind. Task models are not a good support to handle user errors, and 
express ways to correct them. Even if they can be used efficiently to explain errors, 
we will see in this section that they are not the best way to express error correction.  

Whereas task models usually describe user activities without errors (the intention 
of the user), interface need to be designed for (the task execution). Including errors in 
the model leads to very hard representations. In order to take into account invalid data 
entries, tasks are split into two tasks, one to treat the entry of a valid data and another 
to the entry of invalid entries. However, the task models do not explain how to choose 
between the execution of these tasks although this information is necessary in order to 
perform error protection [9]. How should we complete task trees to, at the same time, 
allow user error anticipation and keep model readability? 

The user may change his/her goal while using the application. Then, the interface 
should allow to undo a user action, as well as to go back to some previous state. How-
ever, task models do not take very well into account “undo” tasks. One can think of 
adding an “undo” task to each user action. But this design raises two questions:  

(1) Can every task be undone? For example, when the user sends an email (click-
ing on a button “send”), the system realizes the associated action. This is an action 
you cannot undo, as it is impossible to have an email back once sent. 

(2) Does a same “undo” task allow several user actions? For example, is undoing a 
writing task undoing all that was writing or only undoing the last word? 

5   Tasks and Interaction 

Task models are not designed to indicate what interaction is used to perform tasks. 
However, to make a complete interface, it is necessary to know what interaction is 
used. In order to proceed with generation from task models information are added. 
Some approaches such as Dygimes Framework [8], associate atomic tasks with the 
widget that allows its execution. Interaction with this type of approach is only com-
posed of possible interactions with widgets. Furthermore, it assesses a bijective link 
between atomic tasks and widgets, which is very reducing for interaction (tasks may 
be executed differently according to the chosen interaction instruments). 

Completing or modifying task models becomes necessary due to the fact that an 
atomic task may be performed by a succession of interactive actions (using, for ex-
ample, drag and drop), and that knowing where the action is done (on a file, in the 
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message field…) may be important. Adding this information in the task models signi-
fies inserting data that do not belong to the abstraction level of task models. 

Today, more and more applications use new interaction techniques, generally 
grouped under the name “post-WIMP”, in order to enhance direct manipulation prin-
ciples [12]. Following these principles leads to the fact that user actions and system 
responses are very close and to the deletion of intermediaries such as dialogue boxes 
[13]. The order of the task execution may be modified according to the chosen inter-
action or instruments. Thus, some tasks may be deleted or added.  

Even if all interactions for a given task could be represented in task models, how 
can we indicate when a task may be performed by two different interaction tech-
niques? In SUIDT [14], a concrete task is created for each interaction. For example, 
if a task can be performed either clicking a button or shortcutting (“Ctrl+S”), then 
the task is refined in two concrete tasks linked by the alternative operator. This de-
sign increases the number of concrete tasks. Furthermore, as previously stated, the 
interaction chosen may modify or delete completely a task. Then, modifications of 
the task model may be made at a higher level and is not limited to adding concrete 
tasks. 

Moreover, the scheduling of tasks is very close to the dialogue of the application. 
However, adding the interaction may modify the dialogue itself. For example, moving 
or deleting a file are completely different tasks from the point of view of the task 
model. Nevertheless, with Drag and Drop, their beginning phases are merged. The 
user starts by clicking on the file, and drags it. At this stage, it is not possible to know 
what is his/her goal, moving or deleting. The goal appears when the document is 
dropped: at another place in the document for moving, out of the window for deleting. 
The equivalence between the task model and the dialogue model is broken. 

6   Conclusion and Perspectives 

Our study aimed to find challenges to generate interactive applications from task 
models. We have identified four different ones partially filled by generation ap-
proaches. Each of them reveal different ways for future work. 

How to rely presentation to task models will be our first challenge. Particularly, we 
will study the use of the cognitive aspects of activity in order to check the correspon-
dence between the user needs and the presentation.  

Concerning the management of user errors, we established that task models can 
participate to prevent errors, but are not well adapted to correct them. Connecting task 
models to errors and “undo” patterns is, in our opinion, a promising research trend 
that will encompass our second challenge. 

The dialogue control seems to be very close to task models, as shown in the simu-
lations of task model editors and in [15]. Nonetheless, our study shown that it is not 
so easy. Complex task models cannot be completely derived towards dialogue mod-
els. Transformations must be defined. Being able to keep links during this transforma-
tion is our third challenge. Even if generating full dialogue control from task models 
is impossible, this link requires to be exploited. We aim at using task models to help 
the design of the dialogue and to validate it. Then, we will study how to establish the 
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communication between these two models using, for example the MDE (Model-
Driven Engineering) approaches3 as Metamodels.  

At last, we conclude with the study of rich models of interaction that evolve into 
post-WIMP interfaces, opening new ways for transformations between models. 
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Abstract. Interaction designers and software engineers design interactive sys-
tems under different yet complementary perspectives. It is necessary, however, 
to build bridges between the two areas, so that both professionals may contribute 
with their own expertise to the quality of the final product. One way to foster this 
communication is by means of shared representations. This paper presents a 
qualitative study that investigated the use of a set of HCI design representations 
as a boundary object to convey to software engineers the interaction design solu-
tion in the form of a blueprint of the application’s apparent behavior.  

Keywords: communication between HCI professionals and software engineers; 
boundary objects; interaction modeling. 

1   Introduction 

Interactive systems development processes involve professionals from various disci-
plinary backgrounds, each one with a different focus and purpose. Among these dis-
ciplines, we may cite human-computer interaction (HCI) and software engineering in 
general. HCI focuses, generally, on understanding the characteristics, needs, wants, 
and values of the system’s users, their usage context, the specific goals and tasks the 
users need or want to achieve with the system, why and how, in order to design the 
user–system interaction and prototype the system’s user interface, constantly evaluat-
ing with users the produced artifacts (Preece et al. 1994). And software engineering 
has as its main goal the specification, implementation, and testing of the interactive 
system’s architecture and functionalities (Pressman 2005).  

The work of each professional influences and constrains one another, and all share 
a common goal: in the end, an interactive system must be built that addresses the 
needs of the applications’ users and stakeholders. To achieve this goal, it is paramount 
that these professionals communicate with each other to create a shared understanding 
and consensus about the problems to be addressed and what must be ultimately built, 
avoiding that each professional carries on with his work based on different hypotheses 
and, moreover, avoiding duplicate work. This paper explores the role of an interaction 
model, together with some detailed information about it, in mediating the communica-
tion between HCI professionals and software engineers. It assumes that HCI design 
precedes the (functional) software design, a decision which also needed to be evalu-
ated among software engineers (in particular, software designers). 
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This paper is organized as follows: section 2 briefly presents the semiotic engineer-
ing theory of HCI, section 3 presents the model-based communicative tool proposed 
to enhance the communication between HCI professionals and software engineers, 
section 4 presents a case study and section 5 concludes the paper. 

2   Theoretical Motivation: Semiotic Engineering 

Semiotic engineering is a theory of HCI that describes and explains the user–system 
interaction as a communication process between people (software designers and pro-
ducers, stakeholders and users) through software (de Souza 2005). This communica-
tive phenomenon occurs because interactive artifacts are intellectually built according 
to the decision-making processes of designers, and are communicated by them to 
users through signs1 at the user interface that must be interpreted, learned, used and 
adapted to various contexts. Thus, this theory aims to support the designers’ produc-
tion of this discourse, to present the computational resources to users. Through the 
designer–to–user discourse, the HCI designer must support users by communicating 
to them: the range of goals they may achieve with the system, the various paths to 
achieve these goals, the user interface signs that users may use or manipulate in an 
interaction path to achieve a goal; and the user interface signs that tell users the an-
swers the system gives during the interaction (de Souza 2005, p.111). The designer 
must make it explicit for users the design logic underlying what is being presented, so 
that they may produce an interpretation of the discourse that is compatible with what 
the designer defined. To achieve this, the designer puts in the user interface his “rep-
resentative” – the designer’s deputy –, and it is with this deputy that the user will 
interact while using the interactive system.  

As mentioned in the introduction, there are multiple professionals involved in the 
development process. Ultimately, software engineers are also involved in building this 
interactive discourse, because they are responsible for specifying the software’s func-
tionalities and implementing the entire software. In building the software, however, the 
software engineer should not make decisions that are incompatible or that negatively 
affect the discourse as defined by the HCI designers, because this will have an impact 
on the user interaction with the system, and ultimately on its perceived quality. 

In order for the application to be compatible with the interaction design, it is impor-
tant that the software engineer get to know and understand the user–system interac-
tion design as early as possible. For the interaction design to be adequately conveyed 
to software engineers, this paper proposes to use a set of representations that represent 
the user–system communication.  

3   Supporting the Communication Between Interaction Designers 
and Software Engineers 

Our goal is to increase the understanding and support the communication between 
HCI professionals and software engineers about the interaction design. The set of 
representations used in this communication make up a “communicative tool” com-
posed of the following components (Fig. 1): the presentation of knowledge about the 

                                                           
1 A sign is “anything that stands for something for someone” (Peirce, 1931-1958). 
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domain, its users, the tasks they need to achieve and the context of use (part 1); a 
language to design the user–system interaction (part 2); elements to support the ex-
planation of the design solution (part 3); and correspondences with software design 
representations (part 4). Part 1 is a subset of the artifacts and knowledge produced by 
the requirements elicitation activity, and due to space constraints will not be described 
here. Likewise, this paper will also omit the description of part 4, because it only 
consists of UML skeletons that aim to save software designers some time in their 
initial representations. 

 

Fig. 1. Components of the communicative tool 

3.1   Interaction Design 

To communicate the interaction design to software engineers, we have decided to use 
MoLIC, the Modeling Language for Interaction as Conversation (Barbosa & Paula 
2003, Silva, 2005). MoLIC is grounded in the semiotic engineering, and it has been 
conceived to support the HCI designers in representing all possible conversations that 
may take place between the user and the designer’s deputy during the usage of the 
interactive system. MoLIC is currently composed of four artifacts: a goals diagram, a 
conceptual sign schema, and an interaction diagram complemented by a textual speci-
fication. The goals diagram indicates what users may do with the application. The 
sign conceptual schema defines and organizes the concepts involved in the system, 
especially those that emerge at the user interface. The interaction diagram represents 
how the goals may be achieved during interaction, and the textual specification fur-
ther details the content of the interaction diagram by detailing the content of the signs, 
as well as restrictions on their expression. 

When interaction is viewed as conversation, an interaction model should represent 
the whole range of communicative exchanges that may take place between users and  
the designer’s deputy. In these conversations, designers establish when users can  
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“talk about” the domain concepts and other application signs. The designer should 
clearly convey to users when they can talk about what, and what kinds of response 
to expect from the designer’s deputy. Fig. 2 presents a diagrammatic representation 
of a partial interaction model for a “search documents” goal in an intranet. Scenes 
represent a moment in the interaction where the user may take his turn to participate 
in the conversation, whereas system processes represent the designer’s deputy’s 
turn. The arrows represent the transition utterances where either user (u:) or 
designer’s deputy (d:) gives turn to the other interlocutor to proceed with the 
conversation.  

 

Fig. 2. Sample abbreviated interaction diagram 

3.2   Communication About the Interaction Design 

Since the goals of this work are the communication and negotiation of HCI design 
decisions, it is necessary to facilitate the understanding of the HCI design by software 
engineers. To do this, it is essential to make explicit the HCI design logic that under-
lies the solution represented in the interaction model. Therefore, we have decided to 
create a component that acts like a communication layer on top of this model. This 
layer makes use of questions that either the interaction designer or the software engi-
neer may pose about MoLIC elements, in order to make explicit the HCI designer-to-
user communication represented in MoLIC. The questions are the following2: What’s 
this? What’s this for? Why must/can this be done? How can/must the user do this? Is 
it possible to undo this? How? Who can do this? On what/whom does this depend? Is 
there another way of doing this? Who/What is affected by this?. The answers to these 
questions should be elaborated taking into account what software engineers’ will need 
to know about the interaction and usability goals to make appropriate software design 
decisions or to negotiate with HCI designers about the interaction design solution and 
the constraints it has imposed on their work. 

                                                           
2 These questions were inspired in the works of communicability evaluation (Prates et al. 2000) 
and help systems design (Silveira 2002). 
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4   Case Study 

To evaluate this work, a qualitative case study was planned, conducted and analyzed 
(Yin, 2003, p.15), with an overall goal to obtain evidence about the usefulness and 
ease of use of the communicative tool to support the communication of the HCI de-
sign solution between HCI designers and software engineers. The case study involved 
the participation of three software engineers with practical experience in software 
development using UML and comprised the following steps: [1] responding a survey 
about the participants’ knowledge of HCI; [2] attending a seminar about the commu-
nicative tool; [3] a hands-on session where the software engineer should make use of 
the communicative tool to specify the software functionalities in UML; and [4] an 
interview to capture data about the participant’s understanding of the produced docu-
mentation and its perceived usefulness. The summary of results is presented accord-
ing to the category of analysis. 

The role of HCI professionals in the software development process: All partici-
pants recognized the importance of having a professional in the software development 
team whose responsibility is to think about the user–system interaction and the sys-
tem’s usability. However, participant 2 believes that the HCI professional must define 
only the presentation of the user interface, to facilitate the user–system interaction, 
and not the interaction semantics. The understanding of the HCI design solution 
represented in the tool: All of the three participants understood the HCI design. 
Usefulness of each one of the tool’s components: All of the three participants un-
derstood the purposes of each tool component, as well as MoLIC’s semantics and 
notation. However, there were divergences in the opinions regarding the usefulness of 
each component. For participant 1, the part about the knowledge about the domain, 
users, tasks etc. and the communication about the HCI design (parts 1 and 3 of the 
tool) will only be useful when the application domain is more complex. For partici-
pant 2, MoLIC’s goals diagram is unnecessary, and the description of the domain 
concepts (part 1 of the tool) and the description of MoLIC signs are redundant. All 
three participants agree that the communicative tool as a whole is useful for their 
work as software engineers. Information, knowledge or decisions that were neces-
sary but weren’t represented in the tool: Participant 2 stressed that, together with 
the tool, he needs the requirements specification document. Participant 3 said that he 
needed information regarding project management. Usefulness and adequacy of the 
correspondences with UML (part 4): All participants found the definition of the 
correspondences with UML useful, although they didn’t use all of them. Comparison 
with the usage of different artifacts used to represent HCI concerns: Participant 1 
said he prefers to work with the communicative tool than with a list of requirements 
and UML diagrams. Participant 2 said he prefers to work directly with UML, instead 
of the tool. Participant 3, in its turn, said he needs to develop a pilot project with the 
tool in order to decide whether to adopt the tool. All three participants agreed that 
screenshots or user interface sketches do not substitute the role of the communicative 
tool in the development process. The order of the activities - first the HCI design 
solution modeling and only later the software specification: All three participants 
agreed with the order of the modeling used in the case study. Adoption of the com-
municative tool in practice: Participant 1 agrees with the adoption of the tool.  
Participants 2 and 3 agreed that a pilot project must be conducted to measure the 
cost/benefit ratio of such an adoption. 
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5   Concluding Remarks 

As seen in the case study results, the tool was overall well accepted by software engi-
neers. All three participants agreed that it is useful and that it facilitates the work of 
specifying the internal software functionalities. Moreover, the tool’s components were 
understood an used easily and quickly. From this small case study, we may state that 
the communicative tool has served as a boundary object between the areas of HCI and 
software engineering. Boundary Objects are objects that support the intersection be-
tween different social world and provide information for each world (Star and  
Griesemer 1989). The MoLIC language and the communication about it, in the con-
text of this work, has the goal of  representing all the information about the HCI de-
sign solution that both HCI professionals and software engineers need to carry on 
with their work. As for future work, we need to conduct more specific case studies to 
explore in depth some of the considerations made by the participants, and to evaluate 
whether and how the tool should be revised. 
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Abstract. This paper discusses and illustrates work in progress on the MEMO

workbench for early model-based usability evaluation of interface designs. Char-
acteristic features of the workbench include (a) the prediction of errors via rules
that refer to user attributes; and (b) the automatic generation of methods for per-
forming specific tasks and for recovering from errors.

1 Introduction and Example

This short paper discusses work in progress in the project MEMO, which is an effort at
T-Labs, a research division of Deutsche Telekom, to introduce task modeling into the
design and development process for interactive systems. The MEMO workbench ([1])
is intended to enable the evaluation of the usability of new designs in an early phase of
the design process.

Before discussing the salient features of the MEMO workbench on a general level,
we will introduce a simple example that will make the subsequent discussion easier
to follow. Our minimal example system is inspired by a part of a web site that allows
a user to determine, for a given telephone rate package, how much it costs to make a
phone call to a particular foreign country. The example system as modeled in MEMO

offers information only on the 5 countries shown in the top screen shot of Figure 1.
Together with the screens labeled “2” and “3”, this screen illustrates the correct method
for finding the rate for a call to the United States of America: The user clicks on the
radio button for that country and then clicks on the “Next” button, which takes her to a
screen showing the desired rate. The two lower right-hand screens (“4” and “5”) show
the analogous sequence when the country clicked on is the United Arab Emirates.

One topic of interest for MEMO is the prediction of possible errors and their con-
sequences. Even with the simple first task, the user could commit a description error
([2]), clicking on the first country in the list whose name starts with “United”. This
error takes her to State 4, which is off the correct path for her task. At this point she
might notice that the wrong country has been selected, in which case she can easily get
back onto the correct path by clicking on “United States of America”. But if she instead
proceeds to click on “Next”, she will end up looking at an incorrect rate (State 5).

� The research described in this paper is being conducted in the context of the project MEMO,
which is funded by Deutsche Telekom AG Laboratories.
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Fig. 1. Screen shots illustrating the possible system states that can be reached in the simple exam-
ple used in this paper as well as the possible paths through these states during the performance of
the task of finding the rate for phone calls to the United States of America

2 Goals of MeMo and Relationship to Previous Work

In this simple example, the overall purpose of the MEMO workbench is to allow the
interface designer to predict how often each of the paths shown in Figure 1 will be
taken by users who are performing the task of finding the rate for the United States—
different predictions being made for each combination of user attributes such as visual
acuity and the amount of attention devoted to the task.

More generally, MEMO is intended to allow the interface designer to compare a
number of alternative designs for a given interface in terms of the likely behavior of
users on a specified set of tasks given different combinations of attributes.

We can locate MEMO in the space of existing approaches to model-based evalua-
tion by mentioning some important sources of inspiration. A number of aspects of the
MEMO workbench were inspired by COGTOOL (see, e.g., [3]). Both COGTOOL and
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MEMO enable an interface designer to (a) construct a medium-fidelity prototype of
each of several variants of a to-be-designed system; (b) specify how users are likely to
interact with each variant of the system while performing specified tasks; and (c) run
simulations to predict certain aspects of the users’ performance on these tasks (e.g.,
execution time).

Instead of aiming to match COGTOOL’s sophisticated prediction of execution times,
MEMO aims at a more explicit and automated prediction of error-related behavior:
Errors are generated during simulations by rules that aim to capture known types of
error. In this way, MEMO builds both on well-known taxonomies and analyses of hu-
man error (e.g., [2]; [4]) and on recent efforts to use these concepts to predict errors
in the context of model-based evaluation (see, e.g., [5]; [6]; [7]; [8]). Relative to most
such approaches, MEMO tries to automate the prediction of errors to a greater extent,
as opposed to relying on human judgment for the specification of likely errors. It is
clear that there are limits to such automation, but it seems worthwhile to explore these
limits.

In a similar vein, another salient feature of MEMO is the use of automatically com-
puted methods for performing particular tasks—and recovering from errors—as an al-
ternative (or complement) to methods that are explicitly specified by an analyst.

For the realization of the vision sketched so far, a number of questions need to be
dealt with. In the following sections, we discuss the approach to each question that is
being taken with MEMO.

3 What User Attributes Should Be Distinguished?

Even if an interface design is generally successful, it may be problematic for users who
have particular (combinations of) attributes (e.g., low visual acuity combined with a
limited knowledge of English). Especially problems that are likely to arise only given
a combination of two or more attributes may be hard to discover without a systematic,
exhaustive search through the space of combinations. In MEMO workbench, various
aspects of the simulation of users can be made to depend on such attributes, which can
include: perceptual and motor capabilities (e.g., visual acuity); relevant prior knowledge
and experience (e.g., amount of experience with systems like the one under consider-
ation); and temporally variable factors (e.g., the amount of attention that the user is
devoting to the performance of the task).

4 How Is the System Design to Be Specified?

For reasons that will become clear below, in MEMO each system is modeled with a
state diagram, as in COGTOOL ([3]). Figure 2 illustrates how a designer can model a
system in terms of (a) drawings of individual screens, each of which contains one or
more widgets; and (b) transitions between screens that are made when certain actions
are performed with the widgets. As is well known, this type of modeling works much
better for some types of system than for others.
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Fig. 2. Screen shot of the MEMO workbench’s interface for specifying a system variant along
with ideal methods for the performance of tasks with that system variant

5 How Are the Tasks and Ideal Methods to Be Specified?

It is assumed that the designer wants to simulate users’ performance on a number of
tasks for a number of system variants. A typical approach in model-based evaluation is
to specify somehow a correct or “ideal” method of performing each task for each variant
and then perhaps to characterize various deviations from this method (see, e.g., [8]).

One way of specifying an ideal method for a task (realized, for example, in COG-
TOOL) is to demonstrate a relevant sequence of steps by operating the relevant widgets
in the system model; and the simple method that can be seen in the upper left-hand win-
dow of Figure 2 was in fact defined in this way. This approach can become tedious or
even impractical, however, when a large number of tasks and (similar) system variants
are considered.

An alternative approach that we are currently pursuing is available if each task can be
specified in terms of an initial state and a goal state (e.g., States 1 and 3 in Figure 1). In
this case, the problem of finding an ideal method for the task can be seen as the problem
of finding a good route from the initial state to the goal state within the state diagram,
where the goodness of a route depends on properties such as the number of steps or
the predicted total execution time. To be sure, a method automatically derived in this
way may not be realistic for all users. For example, the quickest way to accomplish a
particular task in a complex commercial website may be to go to the site map and click on
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one of the hundreds of links found there—a method unlikely to be applied by most users.
We therefore expect that the automatic generation of methods will have to be subjected
to some constraints, both general ones and constraints for users with particular attributes
(e.g., the constraint that keyboard shortcuts are not employed by users who lack previous
familiarity with the system in question).

In this way, the generation of an appropriate method for a given task is analogous
to the problem of finding a route with a navigation system from a starting point to a
destination; and the imposition of constraints on the nature of the methods is analogous
to the use of constraints such as “no highways”.

6 How Should the Basic Simulation Process Work?

As was mentioned above, the basic goal of MEMO is to predict what will happen when a
user with certain attributes performs a certain task with a particular variant of the system.
For the moment, we assume for the sake of exposition that the simulated user always
performs the task according to the ideal method that has been derived for users with the
attributes in question; the simulation of errors will be discussed below.

For a given system variant, the generation of simulation runs proceeds as follows:

1. The designer specifies a set of user groups for which the simulation is to be carried
out, each user group being defined in terms of a combination of values for particular
attributes.

2. The designer lists the tasks for which the simulation is to be carried out.
3. The designer specifies a certain number of simulation runs for each user group and

each task.
4. In each simulation run, the system generates a trace by assuming that the simulated

user applies the ideal method for the user group in question.
5. Once all of the simulation runs have been completed, the system generates a report

on the results for each user group and task. In the case considered so far, where no errors
are simulated, this report reflects aspects of performance such as the time required by
each user group to perform the task and the frequencies with which particular types of
operation (e.g., clicking on icons) are performed.

In the case of our simple example, the error-free simulations simply reflect the fact
that, for all user groups, each of the possible tasks is performed straightforwardly with
two mouse clicks.With realistically complex systems and tasks, however, this simulation
approach can yield some interesting results. For example, it may turn out that the ideal
method for a particular task involves an unacceptably large number of operations (of
a certain type) for at least one user group (e.g., a group that is assumed always to use
menus rather than keyboard shortcuts).

7 How Should the Workbench Predict Errors?

One way of modeling behavior that involves errors (used, e.g., in COGTOOL) is to treat
a method that contains an error simply as one possible method for performing the task.
The remarks made above about the limitations of the manual specification of correct
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methods apply to an even greater extent here: Once errors are considered, the number
of possible methods for performing a task becomes very large, especially since errors
can occur in combination.

The approach currently being explored in MEMO is to use a set of general error gen-
eration rules to produce incorrect behavior at various points during a simulation: The
general procedure for simulating the performance of a given task is to assume that the
user will perform the correct next step unless an error generation rule applies to the sit-
uation, in which case an error is generated with a probability specified by the rule. In
our introductory example, the following rule will generate a description error in some
of the simulation runs:

– If the correct action is to select the item I with the label L,
– and there is another item I ′ whose label begins with the same word as L,
– then the user will select I ′ with a probability of p1 if the user’s attention to the task

is low and p2 if it is high.

Even this highly simplified rule captures the important fact that this error can occur
and that it is more likely under certain conditions than under others. The introduction of
error generation rules affects the generation of simulation runs as follows:

Whenever the simulated user enters a given state, the workbench checks whether there
is an error generation rule that applies in that state (taking into account the next action
specified by the ideal method currently being applied by the simulated user). If so, with a
probability specified by that rule, the incorrect action prescribed by the rule is simulated,
and the system enters a state that is not on the ideal path for the task in question.

We still need to deal with the question of the extent to which errors are detected and
recovered from and the consequences that they have.

8 How Should the Workbench Predict Error Recovery?

For the sake of exposition, we assume for the moment that the user will do the right
thing as soon as an error has occurred: recognize the error and recover from it in the
most straightforward possible way.

When an error step is predicted during a simulation run, the MEMO workbench in
effect views the user as being confronted with a new task which in general overlaps partly
with the original task: The user’s task is now to recover from the error and then proceed
towards the original goal state. More concretely, the workbench computes on the fly an
appropriate method for getting to the goal state starting from the state that resulted from
the error; in doing so, the workbench uses the same algorithm that is used for generating
ideal methods in the first place.

In our simple example, the workbench’s reporting would reveal that, in the simulation
runs that contained a description error, the user would quickly recover simply by clicking
on the correct country.

If the workbench operated in exactly this way, it would of course yield overly opti-
mistic predictions, assuming optimal error recovery behavior in all cases. Still, the re-
porting would contain some useful information. For example, a comparison between the
simulation runs that contained errors and those that did not might reveal that all of the
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predictable errors can be straightforwardly recovered from as long as they are detected
immediately—or at the other extreme, it might reveal cases in which no recovery at all
was possible. Still, it should also be possible to simulate cases in which the user does
not detect an error.

9 How Should the Workbench Simulate Failed Error Detection?

On the whole, the question of when users will recognize that they have made an error is
a complex one (see, e.g., [5]). MEMO’s current approach to error detection is applicable
in cases where detection of an error by the user is in principle so straightforward that
failure to detect the error can be viewed as an error in itself.

As an illustration, consider our simple example: Once a user has mistakenly clicked
on “United Arab Emirates”, the screen shows a filled radio button next to the unintended
country; so if the user quickly checks the result of her action before clicking on “Next”,
she will see the need to do exactly what the MEMO workbench predicts according to the
principles described in the previous section: Click on the radio button next to “United
States of America” and then proceed.

The user can fail to notice her error if she doesn’t bother to check but just proceeds
to click on “Next”. This pattern of omitting a verification step can be modeled roughly
with a rule such as the following:

– If on the current screen item I ′ is marked has having been selected
– and the item that really ought to be selected is some other item I
– and there is a button B that the user can click on to proceed to the next screen
– then the user will (incorrectly) click on B with probability p1 if the user’s attention

to the task is high and p2 if it is low.

Like the first error-generation rule introduced above, this one is hard to formulate
in such a way that (a) it applies with some generality and (b) the probabilities p1 and
p2 are empirically reasonably accurate. Still, even a rough formulation can lead in our
example to the useful prediction that some users—especially those with low attention
to the task—will end up in an incorrect final state (i.e., looking at an incorrect rate)—
provided that they clicked on the wrong country in the first place. Given that the first error
was likewise more probable given low attention to the task, the MEMO workbench will
predict a nonnegligible frequency of ending up in the wrong state only for users who
show low attention to the task.

Note that, in a different but analogous setting, the first error might be likely given
user attribute A (e.g., poor knowledge of English) while the second one was associated
with some completely different attribute (e.g., poor visual acuity). In this case, the work-
bench would predict a nonnegligible frequency of ending up in the wrong state only for
users who have both of the problematic attributes—thereby uncovering an undesirable
outcome that would be hard to detect without systematic search through a large number
of attribute combinations and simulation runs.

In sum, this approach to the modeling of (the lack of) error detection is applicable
only in cases where errors are basically easy to detect. But it does help call attention to
the subset of these cases in which an error is committed and not detected, so that the
implications of these cases can be contemplated by the designer.
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10 Conclusions and Current Work

Some of the characteristic features of the MEMO approach appear to work quite natu-
rally for some types of system, task, and error and less well for others: the representation
of a system with a state diagram; the automatic derivation of ideal methods for perform-
ing tasks; the rule-based prediction of errors and error detection; and the dependence
of predicted behavior on user attributes. We have argued that, where applicable, these
features of MEMO make possible some useful types of simulation and analysis that go
beyond what is possible with user testing, inspection-based evaluation, and other types
of model-based evaluation. The special promise of these features lies in the ability of the
MEMO workbench to search systematically through a large space of possibilities that
is defined by different system variants, different tasks, different user attributes, and the
nondeterministic occurrence of errors. The simulations generated in this way can hardly
be as accurate as those yielded by more focused, hand-crafted simulation models, but
they may have a greater ability to uncover potential problems that arise only in certain
specific situations.
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Abstract. The development of Collaborative Systems implies taking into ac-
count not only a greater number of users but also the interactions among them 
to accomplish complex tasks. Besides, the nature of these tasks is different from 
traditional tasks considered in mono-user systems. Theses differences justify 
the need to tackle the task modelling for collaborative systems in a different 
way than traditionally, considering the special features that this kind of systems 
have. In this paper we propose a conceptual model to describe tasks and group 
tasks for multi-user systems in order to make a precise characterization. This 
characterization is applied to a simple example to show its applicability.  

Keywords: Tasks, task modeling, Group, Conceptual Model, Computer-
Supported Cooperative Work. 

1   Introduction 

Web development has experienced a spectacular change in the last years mainly mo-
tivated by the improvements in technology, infrastructures and the way of developing 
software applications more focused on the users’ needs. 

The user interacts with the system performing tasks. This is one of the typical top-
ics concerning HCI. However, the user also interacts with other users through the 
system performing cooperative tasks. And that is the typical topic concerning CSCW 
(Computer-Supported Cooperative Work). 

In this paper we propose a conceptual model to describe the tasks that should be 
performed to achieve the application goals. To get this, we have based on the con-
cepts proposed by relevant authors in the area of task analysis and collaborative 
environments, in such a way that every task, identified and described by means of 
a task analysis process, has into account the traditional and most relevant tasks 
characterizations.  

A good characterization of the tasks makes possible the development of the appli-
cation with a high quality level.  

The rest of the paper is organized as follows: In the next section, some related 
works are analyzed. Section 3 introduces the conceptual model we propose and  
describes the way in which group tasks are characterized. Section 5 describes an ex-
ample of application with the proposed concepts. Finally, section 6 contains some 
conclusions and final remarks concerning this work. 
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2   Related Work 

As commented before, current software combines collaboration among users to per-
form tasks and the use of the Web as an infrastructure. 

Therefore, the specification of systems has to take into account some special char-
acteristics regarding such systems. 

Some mechanisms, as described in [6] [7] [10], provides a way to represent the or-
ganization of the tasks performed in a system in order to provide the designer with a 
clearer information about what does who, in what way something has to be carried 
out, etc. Some other works characterize groupware systems and the way the users 
interact each other [1] [2] [3] [4] [5]. The conceptual model we propose in this paper 
describes the tasks which are necessary to perform in the system to inform the design-
ers about the nature of such tasks. 

In [1], a conceptual model is proposed to characterize groupware systems. This 
model describes objects and operations on such objects, dynamic aspects, and the 
interface between the system and the users and amongst users. This characterization 
describes a groupware system from its users’ point of view. 

Our approach is centred on the description of the tasks that take place in a group-
ware system, also taking into account the task features found in the aforementioned 
mechanisms to analyze tasks [6] [7] [10]. 

Other approaches, as the ones used to classify CSCW tools, could be used to char-
acterize the tasks the users must perform as a group to achieve a common objective. 
Typical CSCW features, as described in [8] or time-space features as proposed in [5], 
are not enough to described group tasks. However, the combined use of all these fea-
tures together with features from the task analysis [6] provides a rich way to describe 
the tasks in a system. Such information helps the designers to achieve better quality 
systems. 

This paper presents a conceptual model to describe tasks in general and group tasks 
in particular, and an example where it is applied. It is based on all these features that 
have been considered fundamental throughout the years. 

3   A Task Conceptual Model Considering Group Tasks 

When modelling the tasks a user has to perform, it is known that it is necessary to 
consider many other concepts such as the objectives of the tasks, the roles, the own 
user, the context, etc. Nevertheless, by means of the model presented in this paper, we 
specially try to characterize tasks. That is the reason why we will focus on it. Figure 1 
shows the conceptual model we use to relate the different concepts we identify as 
fundamental regarding tasks when representing human-computer and human-
computer-human interactions within a CSCW system. This model is connected to 
some other models to characterize concepts related to context, awareness, roles, 
groups, users, and so on. As we mentioned before, the objective of this work is task 
characterization, thus, these other concepts are not shown here, in spite of being taken 
into account when modelling CSCW systems. 
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Fig. 1. A conceptual model to describe and characterize tasks in CSCW systems 

As has been traditionally considered, we also take into account that some tasks –
composite tasks– are decomposed into other more specific tasks, and these ones in 
other more specific, and so forth. Finally, there are atomic tasks which cannot be 
divided into other tasks. Atomic tasks are the smallest granularity level. 

Paternò has established a classification of tasks based on the allocation of their per-
formance, and has classified them into application, user, interaction or abstract tasks 
[6]. This classification is widely accepted as has shown to be good for modelling tasks 
and provides a way of clearly identifying different tasks to be performed in the system 
to reach an objective. Thus, it has been taken into account in the definition of the 
proposed conceptual model.  

A special group of tasks has been traditionally called cooperative tasks. However, 
in this characterization, we have preferred to call them group tasks over the other 
term, inasmuch as it refers to CSCW tasks [3], whose bases are coordination, com-
munication and information sharing [8].  

Typical concepts around CSCW provide a way to characterize tasks depending on 
their orientation to the coordination, to the communication [111], to the cooperation 
or to the collaboration [4] [8] [9]. 
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Additionally, a group task could be characterized depending on its time-space fea-
tures. Johansen [5] established a time-space matrix which clarifies these concepts and 
which describes how a task could be performed in the same place or in different 
places, as well as in a synchronous (real-time) or asynchronous way. 

4   Example of Application 

An easy example is explained in this section to show all these concepts in practice. 
The example is about a typical shared whiteboard. Some sub-problems are explicitly 
obviated to focus the problem on the co-participation of the users within the applica-
tion: how different users draw a design together. 

CTT graphical notation has been used in the example to describe the organization 
of the tasks, as can be appreciated in the following figures. 

 
A) B) 

 

Fig. 2. a) Organization of roles tasks using CTT. b) Decomposition of the composite task 
‘Painting’. This task is characterized as a composite group task oriented to the synchronous 
cooperation within different places. 

4.1   Description of the Application 

It is no worth describing the shared whiteboard application because it is well-known. 
Basically, this system allows the user to draw on the screen, to show what a user and 
the rest of them are drawing, and to go out of the system. Every task could be per-
formed without taken into account the others, that is, whatever task could be perform 
in every moment. They are tasks that could be performed concurrently, but the last 
one finishes the session. That is represented by the second level tasks on Figure 2a. 
These tasks are characterized in the following sections according to the conceptual 
model we have presented. 

4.2   Group Task Characterization 

Because of the lack of space we will focus on group task characterization. The users 
of the system need to participate all together. They need to cooperate to achieve a 
common design. The task representing several users with the role ‘painter’ is ‘Paint-
ing’. This task is also a composite task divided into two tasks (see Figure 2b): 
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‘Send_picture’ and ‘Showing’. These two tasks are performed depending on the tasks 
a user playing the role ‘painter’ performs. 

The composite task called ‘Painting’ is composed by two tasks which could be per-
formed by different users playing the role ‘painter’. Actually, such tasks would be 
performed by users’ application because they are application tasks. That is a normal 
situation in order to achieve a common design by using a shared whiteboard. 

Therefore, the ‘Painting’ task is also a group task. This composite and group task is 
performed in real-time, that is, every user can see on the screen whatever another user 
draws immediately. The design is done by a group of users in a synchronous way, 
according to Johansen’s features. 

Commonly, the users of this shared whiteboard will achieve a common design with 
independence of the place they are and they will make use of the Internet as a way of 
cooperation among them. According to Johansen’s spatial features, it is a task ori-
ented to different places. 

In spite of the fact that the users are somehow coordinated to generate a common 
design, it is not a coordination task. Something similar happens with the communica-
tion. The ‘Painting’ task is a cooperative task because different users cooperate 
among them to draw a common design, therefore the ‘Painting’ task is characterized 
as a composite group task oriented to the synchronous cooperation within different 
places. 

5   Conclusions 

This work briefly presents a conceptual model to describe the tasks involved in col-
laborative systems. This conceptual model has been built taken into account some 
traditional and widely accepted concepts and classifications in the CSCW and Task 
Analysis fields.  

The proposed conceptual model allows the complete specification of all kind of 
tasks that might be involved in collaborative environments, in which the participation 
of several users making use of the network infrastructure is frequent. This proposal 
helps designers of collaborative systems by providing them with the most complete 
and structured information regarding tasks according to the traditional foundations.  

Even more, this conceptual model is an open system that could allow new ways of 
characterizing tasks. It also could allow the introduction of new features identified 
upon the group tasks to provide an accurate definition. 

The proposed characterizations of tasks has been applied to a simple example of a 
shared whiteboard to show its applicability and how this conceptual model can help 
designers in the identification and characterization of complex tasks usually involved 
in multi-user systems.  

As a result, we can conclude that the correct and complete specification of all the 
tasks to be performed in collaborative systems provides designers with a very useful 
source of information to make possible the development of this kind of applications 
with a high quality level. 
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Abstract. As the technology evolves, the existence of different computational  
devices has made ad-hoc software development no longer acceptable in the devel-
opment of multi-platform software applications. This article presents Ren-
derXML, a software tool developed to facilitate the creation of multi-platform  
applications. RenderXML acts as a renderer, mapping concrete UI’s described in 
UsiXML to multiple platforms, and also as a connector, linking the rendered UI to 
application logic code developed possibly in multiple programming languages. 
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1   Introduction 

Computer software development has nowadays as an important requirement the pos-
sibility of execution in more than one platform, either through desktop computer, 
handhelds or mobile phones. To address this demand, ad-hoc software development is 
no longer acceptable in terms of the cost and time required for software construction 
and maintenance. In this way, many research projects are being developed in order to 
allow the creation of software applications that can be executed in multiple use con-
texts, with minimal alteration of its algorithm. 

One of the proposed solutions is the development user interfaces (UI) with plastic-
ity, capable of adapting themselves to different use contexts. In order to obtain  
plasticity, High-level UI Descriptions (HLUID) are commonly used, enabling the 
definition of UI’s in a platform independent form. Among the available HLUID’s, 
UsiXML [8] is based on the Cameleon reference framework [4], allowing the descrip-
tion of UIs for multiple use contexts. 

This paper presents RenderXML, a software tool developed to facilitate the crea-
tion of multi-platform applications. RenderXML acts as a renderer, mapping concrete 
UI’s described in UsiXML to multiple platforms, and also as a connector, linking the 
rendered UI to application logic code developed possibly in multiple programming 
languages. Thus, RenderXML is intended to support not only the development of new 
(multi-platform) applications but also the migration of legacy applications to a multi-
platform environment.  

The main goal of this application is to help the UI developer, acting in the UI engi-
neering process. As explained later in this paper, the tool doesn’t have the objective of 
helping in the UI definition. 
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The paper is structured as follows: firstly, we describe some related work and the 
main concepts of RenderXML, discussing its features and benefits, and how to use it. 
An actual multi-platform application example illustrates the process of multi-platform 
UI rendering and multilanguage application logic connection. Some concluding re-
marks and future work are presented in the final section.   

2   Related Work 

The accomplishment of multi-platform UIs is also the goal of some related works in 
the literature, which can be classified in two categories: a) tools working with 
UsiXML UI descriptions and b) UI rendering tools, for UsiXML or other UI models. 

Among the projects which use UsiXML, SketchiXML [5] can generate a UsiXML 
Concrete UI (CUI) and also a UIML UI specification, receiving as input hand 
sketched UI descriptions, having as main objective the creation of evolutionary UI 
prototypes. Working with another kind of input, GrafiXML [7] is a visual designer 
which allows the creation of CUI specifications, based on the visual positioning of UI 
components by the developer.  

In the category of UI rendering tools, QTKiXML [6] can map UsiXML description 
to the Tcl-Tk language. FlashiXML [3] can also map UsiXML descriptions, but to 
UI’s described in vectorial mode, being interpreted by Flash or SVG plug-ins. Inter-
piXML [11] performs the mapping of UsiXML CUI descriptions using Java Swing UI 
components. 

Using another UI models, Uiml.NET [9] and TIDE [2] map UIs specified in UIML 
[1] to the .Net and Java platform respectively. TERESA (Transformation Environment 
for InteRactivE System representations) [10] uses the TERESAXML language to per-
form forward engineering design and development of multi-platform applications. 

3   RenderXML 

In order to create multi-platform UIs based on the Cameleon Reference Framework, 
the lifecycle shown in Figure 1 must be followed. This lifecycle is based on a generic 
task-model, which envisions all the tasks to be performed by the interactive system, 
and is mapped to a final UI for a specific device through multiple reification steps. 

In practice, to obtain a final UI following the mapping steps presented in Figure 3, 
a generic task model (Task Model) has to be created, which is specified to a task 
model of a specific kind of device (Task Model Desktop). From the specific task 
model, the UI is further specified to an abstract UI (Abstract UI Desktop), which is 
dependent on the kind of interaction being used, and then to a concrete UI (Concrete 
UI Desktop), which depends on the target platform of the application. Finally, the 
concrete UI can be mapped to a final UI to be executed in a device (Desktop com-
puter).All these steps can be performed supported by tools, which perform an auto-
matic or semi-automatic mapping from one level to another. 

RenderXML is a rendering tool projected to work in the last level of this transfor-
mation process, mapping concrete UIs described in UsiXML to final UIs for a specific 
device. In addition, RenderXML offers to the user another level of independence,  
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Fig. 1. Multi-platform UI development process 

allowing the connection of the rendered UI to application logics developed in different 
programming languages. 

We should clarify here that RenderXML is a rendering tool, and not a design tool. 
Thus, RenderXML does not detect or solve usability problems of the specified UI. As 
shown in Figure 3, this kind of problems should be solved in earlier phases of the UI 
mapping process, in a manual or automatic way, with the utilization of other 
UsiXML. 

With these features, RenderXML is an useful tool in the prototyping and develop-
ment process of multi-platform applications. Since UsiXML allows the specification 
of all needed features of an UI, it can be used in the development of final UIs. In this 
particular situation, it is very important the possibility of developing UIs to multiple 
platforms using only one design language, setting the UI developer free from the need 
of mastering many different technologies. Using RenderXML the UI developer needs 
to know only UsiXML. In addition, the possibility of multi-language application logic 
connection allows applications developed in different programming languages to have 
their UI created with UsiXML. 

It should be clarified here that RenderXML is a rendering tool, and not a UI design 
tool. In fact, RenderXML is not supposed to guide the designer’s choice among de-
sign alternatives. Clearly, RenderXML does not check the designer’s decisions and 
does not evaluate or identifies (actual or potential) UI usability aspects. As shown in 
Figure 3, this kind of problems should be solved in earlier phases of the UI mapping 
process, in a manual or automatic way, with the utilization of other UsiXML based 
tools. 

In order to be used in these situations, RenderXML is specified as described in the 
next sections.  

3.1   Architecture Overview 

The proposed architecture is shown in Figure 2. In this representation, dotted lines 
describe the UI rendering process, and normal lines the logic application connection. 
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In order to perform the UI rendering, RenderXML receives as input a CUI 
UsiXML description (UsiXML UI in Figure 2), and forwards it after validation to the 
target platform renderer (Platform 1 Renderer in Figure 2). The renderer is responsi-
ble for the UI components instantiation, being the application logic method calls redi-
rected to the UsiXML kernel (Translation Process in Figure 2). 

To connect the UI to its application logic, the RenderXML kernel (Translation 
Process in Figure 2) receives methods invocations and translates them to a language 
independent format. This description is forwarded to a plug-in for the target pro-
gramming language (Language 1 Connector in Figure 2), which calls the method in 
the application logic being executed. 

 

 

Fig. 2. RenderXML architecture 

4   Using RenderXML: A Multi-platform Calculator  

To evaluate the first implementation of RenderXML and the idiosyncrasies of the 
process of multi-platform development, an example application was implemented: a 
multi-platform calculator. The main goal was the UI rendering in three different plat-
forms, Java Swing and Microsoft Windows Forms for a desktop version of the appli-
cation, and Java Swing also for its mobile version, using the J2ME Connected Device 
Configuration (CDC). In addition, all UI’s should be able to connect to two different 
application logics, in Java and C#. 

 

 

Fig. 3. Calculator UsiXML description 
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To this, a UsiXML CUI description of the calculator UI was created. In Figure 3 a 
part of this description can be seen. In this description there is a window (window 
element), which uses a flowbox layout manager (flowbox element), and is composed 
by a display (inputText element) and buttons (button element). 

To maintain programming language independence, the CUI UI description directs 
its methods invocations to RenderXML, informing its name and parameters. This 
definition is translated to the application logic programming language being executed, 
and the method is invoked. 

In this way, an UI for the three different platforms can be created, and it can be 
tested with logic application developed in three different programming languages. 
Having as example Figure 4, 6 different UI-application logic combinations could be 
created (A,1; B,1; A,2; B,2; A,3; B,3). In this case, the mobile version of the UI could 
be connected to a C# source code only if the device used to display the UI could exe-
cute C# applications. 
 

 

Fig. 4. Example application 

5   Conclusion and Future Work 

This paper described a practical approach to the prototyping and development of 
multi-platform applications, and presented the first version of RenderXML, which 
acts as a UI renderer in multiple platforms, and also allows the UI connection to ap-
plication logic developed in multiple programming languages. RenderXML stimulates 
the utilization of HLUID’s (like UsiXML) in the development of multi-platform ap-
plications, as much in the development of new applications, as in the migration of 
legacy applications to a multi-platform environment. 

Future work consists in the evolution of RenderXML, allowing the creation of UI’s 
to other (conventional or not) devices and platforms, in addition to multimodal UI’s. 
Examples of devices/platforms we intend to investigate are mobile phones, smart-
phones, PDA’s, web-based interfaces and desktop interfaces. 

The final objective is to allow the creation of UsiXML-based user interfaces 
for a great number of platforms and devices, and also expand the number of sup-
ported programming languages. In particular, our work aims to provide a tool 
which can be used in actual user interface developing in such diversity of contexts 
of use. 
 
Acknowledgments. This research is partially funded by CNPq (LIFAPOR/CNPq-
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Mahr, Angela 279
Masserey, Guillaume 261
Mendonça, Hildeberto 112

Middup, Christopher Paul 126
Mistrzyk, Tomasz 140

Navarre, David 140
Neumerkel, René 15
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