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Message from the Program Chair

Welcome to the 14th International Conference on High-Performance Computing
(HiPC 2007), which took place amidst the rich culture and pristine beaches of
exotic Goa! Continuing in the tradition of HiPC, this year’s conference featured
a high-quality peer-reviewed technical program, five keynote talks by leading
experts, four workshops, two tutorials, industrial and research exhibits, mini
symposium on high-performance computing, and a poster session.

We received 253 submissions from 31 countries, reflecting the international
character of this conference. A majority of the submissions came from India
(52%) and the USA (20.1%), but contributions came from all corners of the
world including the Asia/Pacific region, Europe, Middle East, Africa, North
America and Latin America. A preliminary review process was carried out by
the Program Vice Chairs and myself to identify manuscripts that lacked original
content. The remaining 221 submissions were put through a rigorous peer-review
process. Each paper was reviewed by three Program Committee members. In
some cases, external reviews were solicited. Each paper was then assessed in the
context of reviews in an on-line Program Committee meeting that generated
a week of lively discussion. Particular attention was paid to understanding the
contribution of manuscripts that received divergent initial reviews. A decision
on each manuscript was taken based on the results of this discussion, taking
into account constraints imposed by the conference schedule. Only 53 out of the
total 253 submissions (20.95%) were eventually accepted for presentation and
publication in the proceedings. These submissions reflect the efforts of authors
spanning 13 countries. Fifty-two of these papers were presented in ten technical
sessions spanning the three days of the conference.

The conference featured a separate plenary session for presenting best pa-
per and best poster awards. One outstanding paper was selected for the best
paper award based on the following procedure: A pool of six papers was ini-
tially identified based on high ratings and review scores. These papers were
carefully studied and discussed by the six Program Vice Chairs and myself. The
final selection was based on originality and novelty of the contribution, impor-
tance of the results, likely impact on the field, interest to a diverse audience,
and clarity of presentation. The paper “Distributed Ranked Search,” authored
by Vijay Gopalakrishnan from AT&T Research, Ruggero Morselli from Google,
and Samrat Bhattacharjee, Peter Keheler and Aravind Srinivasan from Univer-
sity of Maryland was selected for the award. The authors presented an efficient
algorithm using random sampling to rank documents in a distributed search
where the documents are spread over a peer-to-peer network. The best paper
award was sponsored by Infosys Corporation and the best poster awards were
sponsored by the IEEE Technical Committee on Parallel Processing (TCPP).

Inspiring keynote speeches by leading experts has been a tradition at HiPC.
This year, we were fortunate to have five distinguished talks: Michael Flynn on the
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dawn of the “parallel” future, David Keyes on petaflop computing, Vipin
Kumar on high-performance data mining, Yale Patt on the era of multi-cores, and
Prabhakar Raghavan on Web search.

The high-quality technical program was the highlight of the conference, and
was the result of the hard work of many individuals. I would like to thank au-
thors of all submitted papers, for choosing this conference for disseminating their
technical work. The program and proceedings in your hands (or on your com-
puter drive!) would not be possible without their hard work, and I look forward
to their continued patronage in the coming years. To evaluate these contribu-
tions, we assembled a team of 98 Program Committee members, a diverse team
of experts that cover the many areas of interest to the conference. It is their hard
work and timely review submissions that allowed us to assemble the program.
The selection of PC members and individual review assignments were handled by
an able and dedicated team of six Program Vice Chairs overseeing the six tracks
of the conference: Peter Sanders (Algorithms), Sivan Toledo (Applications),
Peter J. Varman (Architecture), Dhabaleswar K. (DK) Panda (Communication
Networks), Ahmed Helmy (Mobile and Sensor Computing), and Manish Gupta
(Systems Software). They made tremendous contributions in helping me craft
the technical program by leading discussions on contributed papers beyond the
initial reviews, in a week-long Program Committee deliberation.

Several organizers and volunteers worked tirelessly to make the conference
a successful and productive meeting and I would like to take this opportunity
to express my gratitude: Manimaran Govindarasu for organizing the workshops,
Rajeev Sivaram for organizing the tutorials, Rajeev Thakur for organizing the
poster session, Sushil K. Prasad for putting together the proceedings and pro-
viding us with an excellent archival record, and Viraj Bhat for maintaining the
conference Web site on a continual basis.

Finally, I would like to thank the primary leadership group of this year’s con-
ference: General Co-chairs Manish Parashar and Badrinath Ramamurthy, Vice
General Co-chairs Rajendra V. Boppana and Rajeev Muralidhar, and Steering
Committee Chair Viktor K. Prasanna. I relied on their advice and guidance
throughout the process. I want to thank Viktor Prasanna for giving me the
opportunity to serve you as the Program Chair. Not only did he direct the
overall effort and always found time when I needed his counsel and advice,
he also obliged my Vice Chair Ahmed Helmy and served as a Program Com-
mittee member in the Mobile and Sensor Computing track! It is through his
dedication and continued leadership from the inception of the conference that
we have this highly regarded international conference to publish our ideas and
learn from each other. Please join me in learning from the keynote speakers and
authors of contributed papers. I hope you enjoyed all that Goa had to offer during
the breaks and conference organized events, and that you had a productive and
enjoyable meeting.

December 2007 Srinivas Aluru



Message from the General Co-Chairs and the

Vice General Co-Chairs

On behalf of the organizers of the 14th International Conference on High-
Performance Computing (HiPC), it was our pleasure to welcome you to Goa. I
do hope you found the conference exciting and rewarding.

The HiPC call for papers, once again, received an overwhelming response,
attracting 253 submissions from 31 countries. Srinivas Aluru, the Program Chair,
and the Program Committee worked with remarkable dedication to put together
an outstanding technical program consisting of the 53 papers that appear in these
proceedings.

Several events, complementing this strong technical program, made HiPC
2007 another special and exciting meeting. The HiPC 2007 keynotes were pre-
sented by internationally renowned researchers. The conference featured the mini
symposium “High-Performance Computing Technologies, Applications and Ex-
perience,” which aimed at bringing together the users and providers of HPC. The
poster session presented hot off-the-press research results. Finally, there was a
dedicated industry session and the industry and research exhibits. The meeting
was preceded by a set of tutorials and workshops highlighting new and emerging
aspects of the field.

Arranging an exciting meeting with a high-quality technical program is easy
when one is working with an excellent and dedicated team and can build on the
practices and levels of excellence established by a quality research community.
HiPC 2007 would not have been possible without the tremendous efforts of the
many volunteers. We would like to acknowledge the critical contributions of each
one.

We would like to thank Srinivas Aluru, Program Chair, and the Program
Committee for their efforts in assembling such an excellent program, and the
authors who submitted the high-quality material from which that program was
selected. We would also like to thank the presenters of the keynotes, posters and
tutorials, the organizers of the workshops, and all the participants, who complete
the program.

We would specially like to thank Viktor Prasanna, Chair of the HiPC Steer-
ing Committee, for his leadership, sage guidance, and untiring dedication, which
have been key to the continued success of the conference. We would also like to
welcome our new volunteers to the team – your efforts are critical to the con-
tinued success of this conference. Finally, we would like to gratefully acknowledge
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our academic and industry sponsors including IEEE Computer Society, ACM
SIGARCH, Infosys, DELL, Google, IBM, Intel, NetApp, Satyam, Yahoo, HP,
AMD and Cray.

December 2007 General Co-Chairs
Manish Parashar

Ramamurthy Badrinath

Vice General Co-Chairs
Rajendra V. Boppana

Rajeev Muralidhar



Message from the Steering Chair

It was my pleasure to welcome you to the 14th International Conference on
High-Performance Computing.

This conference would not be possible without the dedicated effort of many
volunteers over the past year. First, I would like to single out the contributions
of Srinivas Aluru, Program Chair, for his outstanding contributions in putting
together an excellent technical program. I am indebted to him for his thorough
evaluation of the submitted manuscripts and his relentless efforts to further im-
prove the quality of the technical program. Manish Parashar and Ramamurthy
Badrinath as General Co-chairs provided the leadership in resolving numerous
meeting-related issues and putting together the overall meeting program includ-
ing the workshops and tutorials. They were ably assisted by Rajeev Muralidhar
and Rajendra Boppana, Vice General Co-chairs. The industry track was coor-
dinated by Rama Govindaraju and Raghuram Tupuri. The Poster/presentation
session was organized by Rajeev Thakur. The meeting offers scholarships for
India-based students. These scholarships were administered by Anu Bourgeois
and Madhusudhan Govindaraju. We have several continuing as well as new work-
shops. These workshops were coordinated by Manimaran Govindarasu. The Web
site was maintained by Viraj Bhat. Raghuram Tupuri and Rama Govindaraju
coordinated the industry exhibits. Rajeev Sivaram assisted us with the tutori-
als. The local arrangments were handled by Ch. Kalyana Krishna and Venkatesh
Kamat. Sushil Prasad liaised with the authors and Springer to bring out the pro-
ceedings. Sumir Chandra, Manisha Gajbe and Rajeev Raje handled the publicity
for us. Sally Jelinek acted as the Registration Chair. Ajay Gupta and Thondiyil
Venugopalan handled the meeting finances.

Tirumale Ramesh and Raghuram Tupuri with assistance from Santosh Sreeni-
vasan put together the Mini Symposium on High-Performance Computing Tech-
nologies, Applications and Experience. They were ably assisted by Haresh Bhatt
and Venkat Ramana. The intent of the mini symposium is to provide a forum
for vendors as well as HPC users in India to present the technologies and user
experiences.

I would like to thank all our volunteers for their tireless efforts. The meeting
would not be possible without the enthusiastic commitment of these individuals.

Major financial support for the meeting was provided by several leading IT
companies and multinationals operating in India. I would like to acknowledge
the following individuals and their organizations for their support:

– N.R. Narayana Murthy, Infosys
– Kris Gopalakrishnan, Infosys
– Harish Grama, IBM India
– Manish Gupta, IBM Watson
– David Ford, NetApp
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– Siddhartha Nandi, NetApp
– B. Rudramuni, Dell India
– Ramesh Rajagopalan, Dell India
– Reza Rooholamini, Dell
– V. Sridhar, Satyam
– Prasad Ram, Google R&D, India
– Prabhakar Raghavan, Yahoo! Inc.
– Arun Ramanujapuram, Yahoo! India R&D
– Vittal Kini, Intel Research, India
– Akshay Kadam, Intel Research, India
– Dinkar Sitaram, HP India
– Faisal Paul, HP India
– Raghuram Tupuri, AMD
– Venkat Ramana, Hinditron Infosystems

December 2007 Viktor K. Prasanna
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Olaf Bonorden
Humberto Calderon
Andrey Chernikov
Francisco Alfaro Cortés
Maurizio D’Arienzo
Stefan Donath
Suryanarayana

Durbhakula
Andriy Fedorov
Mruggesh R. Gajjar
Carlo Galuzzi
Naveen Garg

Georgios Goumas
Tobias Gradl
Jordi Guitart
Pavol Hell
Martin Hirt
Gavin Holland
Wei-jen Hsu
Mauro Iacono
Klaus Iglberger
Alexandru Iosup
Shyam Iyer
Michael Klemm
Andriy Kot
Sriram Krishnamoorthy
Volker Krumel
Daniele Ludovici
Amith Mamidala
R. Manikantan
Rajit Manohar

Stefano Marrone
Faisal Ghias Mir
Pabitra Mitra
Naveen Muralimanohar
Tamer Nadeem
Bharath Narasimha

Swamy
Rupesh Nasre
Leandro Navarro-Moldes
Shivaraj Nidoni
Ramon Nou
Sreepathi Pai
Sagar Pandit
Ali Pinar
Antoniu Pop
Massimiliano Rak
Sebastian Isaza Ramirez
Toby Sebastian
Daniele Scarpazza



XVIII Organization

Ahsan Shabbir
A.P. Shanthi
Tim Smith
Thomas Sodring
Dimitris Theodoropoulos
Nathan Thomas

Nils Thuerey
Ravi Tiwari
Jan Treibig
Ana Lucia Varbanescu
Anitha Varghese
Salvatore Venticinque

Rajesh Vivekanandham
Nawaporn

Wisitpongphan
George Zagaris
Yan Zhang
Youtao Zhang



Table of Contents

Keynote Addresses (Abstracts)

The Future Is Parallel But It May Not Be Easy . . . . . . . . . . . . . . . . . . . . . . 1
Michael J. Flynn

Petaflop/s, Seriously . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
David Keyes

High Performance Data Mining - Application for Discovery of Patterns
in the Global Climate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Vipin Kumar

The Transformation Hierarchy in the Era of Multi-core . . . . . . . . . . . . . . . 5
Yale Patt

Web Search: Bridging Information Retrieval and Microeconomic
Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Prabhakar Raghavan

Plenary Session - Best Paper

Distributed Ranked Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Vijay Gopalakrishnan, Ruggero Morselli, Bobby Bhattacharjee,
Pete Keleher, and Aravind Srinivasan

Session I - Applications on I/O and FPGAs

ROW-FS: A User-Level Virtualized Redirect-on-Write Distributed File
System for Wide Area Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Vineet Chadha and Renato J. Figueiredo

No More Energy-Performance Trade-Off: A New Data Placement
Strategy for RAID-Structured Storage Systems . . . . . . . . . . . . . . . . . . . . . . 35

Tao Xie and Yao Sun

Reducing the I/O Volume in an Out-of-Core Sparse Multifrontal
Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Emmanuel Agullo, Abdou Guermouche, and Jean-Yves L’Excellent

Experiments with a Parallel External Memory System . . . . . . . . . . . . . . . . 59
Mohammad R. Nikseresht, David A. Hutchinson, and
Anil Maheshwari



XX Table of Contents

An FPGA-Based Accelerator for Multiple Biological Sequence
Alignment with DIALIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Azzedine Boukerche, Jan Mendonca Correa,
Alba Cristina Magalhaes Alves de Melo,
Ricardo Pezzuol Jacobi, and Adson Ferreira Rocha

A Speed-Area Optimization of Full Search Block Matching Hardware
with Applications in High-Definition TVs (HDTV) . . . . . . . . . . . . . . . . . . . 83

Avishek Saha and Santosh Ghosh

Session II - Microarchitecture and Multiprocessor
Architecture

Evaluating ISA Support and Hardware Support for Recursive Data
Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Won-Taek Lim and Mithuna Thottethodi

qTLB: Looking Inside the Look-Aside Buffer . . . . . . . . . . . . . . . . . . . . . . . . 107
Omesh Tickoo, Hari Kannan, Vineet Chadha, Ramesh Illikkal,
Ravi Iyer, and Donald Newell

Analysis of x86 ISA Condition Codes Influence on Superscalar
Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
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Mathieu Jan

A Proxy-Based Self-tuned Overload Control for Multi-tiered Server
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Rukma P. Verlekar and Varsha Apte

Session V - Scheduling

Approximation Algorithms for Scheduling with Reservations . . . . . . . . . . . 297
Florian Diedrich, Klaus Jansen, Fanny Pascual, and Denis Trystram

Enhanced Real-Time Divisible Load Scheduling with Different
Processor Available Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Xuan Lin, Ying Lu, Jitender Deogun, and Steve Goddard

A General Distributed Scalable Peer to Peer Scheduler for Mixed Tasks
in Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Cong Liu, Sanjeev Baskiyar, and Shuang Li

An Energy-Aware Gradient-Based Scheduling Heuristic for
Heterogeneous Multiprocessor Embedded Systems . . . . . . . . . . . . . . . . . . . . 331

Lee Kee Goh, Bharadwaj Veeravalli, and Sivakumar Viswanathan

On Temperature-Aware Scheduling for Single-Processor Systems . . . . . . . 342
Deepak Rajan and Philip S. Yu



XXII Table of Contents

Session VI - Energy-Aware Computing

Reuse Distance Based Cache Leakage Control . . . . . . . . . . . . . . . . . . . . . . . 356
Yulai Zhao, Xianfeng Li, Dong Tong, and Xu Cheng

Self-optimization of Performance-per-Watt for Interleaved Memory
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Bithika Khargharia, Salim Hariri, and Mazin S. Yousif

Distributed Algorithms for Lifetime of Wireless Sensor Networks Based
on Dependencies Among Cover Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Sushil K. Prasad and Akshaye Dhawan

DPS-MAC: An Asynchronous MAC Protocol for Wireless Sensor
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Heping Wang, Xiaobo Zhang, Farid Näıt-Abdesselam, and
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The Future Is Parallel But It May Not Be Easy

Michael J. Flynn

Maxeler Corporation
Stanford University, USA

Abstract. Processor performance scaling by improving clock frequency
has now hit power limits. The new emphasis on multi core architectures
comes about from the failure of frequency scaling not because of break-
throughs in parallel programming or architecture. Progress in automatic
compilation of serial programs into multi tasked ones has been slow. A
look at parallel projects of the past illustrates problems in performance
and programmability. Solving these problems requires both an under-
standing of underlying issues such as parallelizing control structures and
dealing with the memory bottleneck. For many applications performance
comes at the price of programmability and reliability comes at the price
of performance.

Biography: Michael Flynn is Senior Advisor to the Maxeler Corporation, an
acceleration solutions company based in London. He received his Ph.D. from
Purdue University and joined IBM working there for ten years in the areas of
computer organization and design. He was design manager System 360 Model 91
Central Processing Unit. Between 1966 and 1974 Prof. Flynn was a faculty mem-
ber of Northwestern University and the Johns Hopkins University. From 1975
until 2000, he was a Professor of Electrical Engineering at Stanford University
and served as the Director of the Computer Systems Laboratory from 1977 to
1983. He was founding chairman of both the ACM Special Interest Group on
Computer Architecture and the IEEE Computer Society’s Technical Committee
on Computer Architecture. Prof. Flynn was the 1992 recipient of the ACM/IEEE
Eckert-Mauchley Award for his technical contributions to computer and digital
systems architecture. He was the 1995 recipient of the IEEE-CS Harry Goode
Memorial Award in recognition of his outstanding contribution to the design and
classification of computer architecture. In 1998 he received the Tesla Medal from
the International Tesla Society (Belgrade), and an honorary Doctor of Science
from Trinity College (University of Dublin), Ireland. He is the author of three
books and over 250 technical papers, and he is also a fellow of the IEEE and the
ACM.
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Petaflop/s, Seriously

David Keyes

Applied Physics and Applied Mathematics, Columbia University, USA
Acting Director, Institute for Scientific Computing Research, LLNL, USA

Abstract. Sustained floating-point rates on real applications, as tracked
by the Gordon Bell Prize, have increased by over five orders of magni-
tude from 1988, when 1 Gigaflop/s was reported on a structural simu-
lation, to 2006, when 200 Teraflop/s were reported on a molecular dy-
namics simulation. Various versions of Moore’s Law over the same in-
terval provide only two to three orders of magnitude of improvement for
an individual processor; the remaining factor comes from concurrency,
which is of order 100,000 for the BlueGene/L computer, the platform of
choice for the majority of recent Bell Prize finalists. As the semiconduc-
tor industry begins to slip relative to its own roadmap for silicon-based
logic and memory, concurrency will play an increasing role in attaining
the next order of magnitude, to arrive at the long-awaited milepost of
1 Petaflop/s sustained on a practical application, which should occur
around 2009. Simulations based on Eulerian formulations of partial dif-
ferential equations can be among the first applications to take advantage
of petascale capabilities, but not the way most are presently being pur-
sued. Only weak scaling can get around the fundamental limitation ex-
pressed in Amdahl’s Law and only optimal implicit formulations can get
around another limitation on scaling that is an immediate consequence of
Courant-Friedrichs-Lewy stability theory under weak scaling of a PDE.
Many PDE-based applications and other lattice-based applications with
petascale roadmaps, such as quantum chromodynamics, will likely be
forced to adopt optimal implicit solvers. However, even this narrow path
to petascale simulation is made treacherous by the imperative of dynamic
adaptivity, which drives us to consider algorithms and queueing policies
that are less synchronous than those in common use today. Drawing
on the SCaLeS report (2003-04), the latest ITRS roadmap, some back-
of-the-envelope estimates, and numerical experiences with PDE-based
codes on recently available platforms, we will attempt to project the
pathway to Petaflop/s for representative applications.

Biography: David E. Keyes is the Fu Foundation Professor of Applied Math-
ematics in the Department of Applied Physics and Applied Mathematics at
Columbia University, an affiliate of the Computational Science Center (CSC)
at Brookhaven National Laboratory, and Acting Director of Institute for Scien-
tific Computing Research (ISCR) at Lawrence Livermore National Laboratory.
Keyes graduated summa cum laude with a B.S.E. in Aerospace and Mechani-
cal Sciences and a Certificate in Engineering Physics from Princeton University
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in 1978. He received his Ph.D. in Applied Mathematics from Harvard Univer-
sity in 1984. He then post-doc’ed in the Computer Science Department at Yale
University and taught there for eight years, as Assistant and Associate Profes-
sor of Mechanical Engineering, prior to joining Old Dominion University and
the Institute for Computer Applications in Science and Engineering (ICASE) at
the NASA Langley Research Center in 1993. At Old Dominion, Keyes was the
Richard F. Barry Professor of Mathematics and Statistics and founding Direc-
tor of the Center for Computational Science. Author or co-author of over 100
publications in computational science and engineering, numerical analysis, and
computer science, Keyes has co-edited 10 conference proceedings concerned with
parallel algorithms and has delivered over 200 invited presentations at univer-
sities, laboratories, and industrial research centers in over 20 countries and 35
states of the U.S. With backgrounds in engineering, applied mathematics, and
computer science, and consulting experience with industry and national labora-
tories, Keyes works at the algorithmic interface between parallel computing and
the numerical analysis of partial differential equations, across a spectrum of aero-
dynamic, geophysical, and chemically reacting flows. Newton-Krylov-Schwarz
parallel implicit methods, introduced in a 1993 paper he co-authored at ICASE,
are now widely used throughout engineering and computational physics, and
have been scaled to thousands of processors.



High Performance Data Mining - Application for

Discovery of Patterns in the Global Climate
System

Vipin Kumar

William Norris Professor, Head of the Computer Science and Engineering
Department University of Minnesota, USA

Abstract. Advances in technology and high-throughput experiment
techniques have resulted in the availability of large data sets in com-
mercial enterprises and in a wide variety of scientific and engineering
disciplines. Data in terabytes range are not uncommon today and are
expected to reach petabytes in the near future for many application do-
mains in science, engineering, business, bioinformatics, and medicine.
This has created an unprecedented opportunity to develop automated
data-driven techniques of extracting useful knowledge. Data mining, an
important step in this process of knowledge discovery, consists of meth-
ods that discover interesting, non-trivial, and useful patterns hidden in
the data. This talk will provide an overview of a number of data min-
ing research in our group for understanding patterns in global climate
system and computational challenges in addressing them.

Biography: Vipin Kumar is currently William Norris Professor and Head of
Computer Science and Engineering at the University of Minnesota. His research
interests include High Performance computing and data mining. He has au-
thored over 200 research articles, and co-edited or coauthored 9 books including
the widely used text book ”Introduction to Parallel Computing”, and ”Intro-
duction to Data Mining” both published by Addison-Wesley. Kumar has served
as chair/co-chair for over a dozen conferences/workshops in the area of data
mining and parallel computing. Currently, he serves as the chair of the steer-
ing committee of the SIAM International Conference on Data Mining, and is
a member of the steering committee of the IEEE International Conference on
Data Mining. Kumar is founding co-editor-in-chief of Journal of Statistical Anal-
ysis and Data Mining, editor-in-chief of IEEE Intelligent Informatics Bulletin,
and series editor of Data Mining and Knowledge Discovery Book Series pub-
lished by CRC Press/Chapman Hall. Kumar is a Fellow of the AAAS, ACM
and IEEE. He received the 2005 IEEE Computer Society’s Technical Achieve-
ment Award for contributions to the design and analysis of parallel algorithms,
graph-partitioning, and data mining.
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The Transformation Hierarchy in the Era of

Multi-core

Yale Patt

Professor of Electrical and Computer Engineering,
Ernest Cockrell, Jr. Centennial Chair in Engineering,

University of Texas at Austin, USA

Abstract. The transformation hierarchy is the name I have given to the
mechanism that converts problems stated in natural language (English,
Spanish, Hindi, Japanese, etc.) to the electronic circuits of the computer
that actually does the work of producing a solution. The problem is first
transformed from a natural language description into an algorithm, and
then to a program in some mechanical language, then compiled to the
ISA of the particular processor, which is implemented in a microarchitec-
ture, built out of circuits. At each step of the transformation hierarchy,
there are choices. These choices enable one to optimize the process to
accomodate some optimization criterion. Usually, that criterion is micro-
processor performance. Up to now, optimizations have been done mostly
within each of the layers, with artifical barriers in place between the lay-
ers. It has not been the case (with a few exceptions) that knowledge at
one layer has been leveraged to impact optimization of other layers. I
submit, that with the current growth rate of semiconductor technology,
this luxury of operating within a transformation layer will no longer be
the common case. This growth rate (now more than a billion trnasistors
on a chip is possible) has ushered in the era of the chip multiproces-
sor. That is, we are entering Phase II of Microprocessor Performance
Improvement, where improvements will come from breaking the barriers
that separate the transformation layers. In this talk, I will suggest some
of the ways in which this will be done.

Biography: Yale Patt is a teacher at The University of Texas at Austin, where
he also directs the research of nine PhD students, while enjoying an active con-
sulting practice with several microprocessor manufacturers. He teaches the re-
quired freshman intro to computing course to 400 first year students every other
fall, and the advanced graduate course to PhD students in microrchitecture every
other spring. His research ideas (HPS, branch prediction, etc.) have been adopted
by almost every microprocessor manufacturer on practically every high end chip
design of the past ten years. Yale Patt has earned the appropriate degrees from
reputable universities and has received more than his share of prestigious awards
for his research and teaching. More detail on his interests and accomplishments
can be obtained from his web site: www.ece.utexas.edu/ patt.
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Web Search: Bridging Information Retrieval and

Microeconomic Modeling

Prabhakar Raghavan

Head, Yahoo! Research
Consulting Professor, Computer Science Department, Stanford University, USA

Abstract. Web search has come to dominate our consciousness as a
convenience we take for granted, as a medium for connecting advertis-
ers and buyers, and as a fast-growing revenue source for the companies
that provide this service. Following a brief overview of the state of the
art and how we got there, this talk covers a spectrum of technical chal-
lenges arising in web search- ranging from spam detection to auction
mechanisms.

Biography: Prabhakar Raghavan has been Head of Yahoo! Research since 2005.
His research interests include text and web mining, and algorithm design. He is
a Consulting Professor of Computer Science at Stanford University and Editor-
in-Chief of the Journal of the ACM. Raghavan received his PhD from Berkeley
and is a Fellow of the ACM and of the IEEE. Prior to joining Yahoo, he was
Chief Technology Officer at Verity; before that he held a number of technical
and managerial positions at IBM Research.
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Distributed Ranked Search

Vijay Gopalakrishnan1, Ruggero Morselli2, Bobby Bhattacharjee3, Pete Keleher3,
and Aravind Srinivasan3

1 AT&T Labs – Research
2 Google Inc

3 University of Maryland

Abstract. P2P deployments are a natural infrastructure for building distributed
search networks. Proposed systems support locating and retrieving all results,
but lack the information necessary to rank them. Users, however, are primarily
interested in the most relevant results, not necessarily all possible results.

Using random sampling, we extend a class of well-known information re-
trieval ranking algorithms such that they can be applied in this decentralized
setting. We analyze the overhead of our approach, and quantify how our sys-
tem scales with increasing number of documents, system size, document to node
mapping (uniform versus non-uniform), and types of queries (rare versus popular
terms). Our analysis and simulations show that a) these extensions are efficient,
and scale with little overhead to large systems, and b) the accuracy of the re-
sults obtained using distributed ranking is comparable to that of a centralized
implementation.

1 Introduction

Search infrastructures often order the results of a query by application-specific notions
of rank. Users generally prefer to be presented with small sets of ranked results rather
than unordered sets of all results. For example, a recent Google search for “HiPC 2007”
matched over 475,000 web pages. The complete set of all results would be nearly use-
less, while a very small set of the top-ranked results would likely contain the desired
web site. Moreover, collecting fewer results reduces the network bandwidth consumed,
helping the system scale up—to many users, hosts, and data items— and down—to
include low-bandwidth links and low-power devices.

Ranking results in a decentralized manner is difficult because decisions about which
results to return are made locally, but the basis of the decisions, rank, is a global prop-
erty. Technically, we could designate one node as being responsible for ranking all the
search results. Such an approach, however, would result in this peer receiving an unfair
amount of load. Further, there are the issues of scalability and fault-tolerance with using
just one node.

The main contribution of this paper is the design and evaluation of a decentralized
algorithm that efficiently and consistently ranks search results over arbitrary documents.
Our approach is based on approximation techniques using uniform random sampling,
and the classic centralized Vector Space Model (VSM) [1]. Our results apply to both
structured and unstructured networks.

S. Aluru et al. (Eds.): HiPC 2007, LNCS 4873, pp. 7–20, 2007.
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Our analysis shows that the cost of our sampling-based algorithm is usually small
and remains constant as the size of the system increases. We present a set of simulation
results, based on real document sets from the TREC collection [2], that confirm our
analysis. Further, the results show that the constants in the protocol are low, e.g., the
protocol performs very well with samples from 20 nodes per query on a 5000 node net-
work, and that the approach is robust to sampling errors, initial document distribution,
and query location.

The rest of the paper is organized as follows. We first present some background on
ranking in classical information retrieval in Section 2. We then discuss our design for
ranking results in Section 3 and analyze its properties. In Section 4, we present exper-
imental results where we compare the performance of the distributed ranking scheme
with a centralized scheme. We discuss other related work in Section 5 before concluding
in Section 6.

2 The Vector Space Model (VSM)

The Vector Space Model (VSM) is a classic information retrieval model for rank-
ing results. VSM maps documents and queries to vectors in a T -dimensional term
space, where T is the number of unique terms in the document collection. Each term
i in the document d is assigned a weight wi,d. The vector for a document d is de-
fined as d = (w1,d, w2,d, . . . , wT,d). A query is also represented as a vector q =
(w1,q, w2,q, . . . , wT,q), where q is treated as a document.

Vectors that are similar have a small angle between them. VSM uses this intuition to
compute the set of relevant documents for a given query; relevant documents will differ
from the query vector by a small angle while irrelevant documents will differ by a large
angle. Given two vectors X and Y , the angle θ between them can be computed using
cos θ =

∑ n
i=1 xiyi√∑

n
i=1 x2

i

√∑
n
i=1 y2

i

. This equation is also known as the cosine similarity, and

has been used in traditional information retrieval to identify and rank relevant results.

2.1 Generating Vector Representation

The vector representation of a document is generated by computing the weight of each
term in the document. The key is to assign weights such that terms that capture the
semantics in the document and therefore help in discriminating between the documents
are given a higher weight.

Effective term weighting formulae have been an area of much research (e.g., [3, 4]),
unfortunately with little consensus. While any of the commonly used formulae can be
used with our scheme, we use the weighting formula used in the SMART [5] system as
it has shown to have good retrieval quality in practice:

wt,d = (ln ft,d + 1) · ln
(

D

Dt

)

(1)

where wt,d is the weight of term t in document d, ft,d is the raw frequency of term t in
document d, D is the total number of documents in the collection, and Dt is the number
of documents in the collection that contain term t.
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3 Distributed VSM Ranking

In this section, we present our distributed VSM ranking system for keyword-based
queries. There are three main components needed for ranking: generating a vector rep-
resentation for exported documents, storing the document vectors appropriately, and
computing and ranking the query results. We first describe our assumed system model
and then discuss each of these components in detail.

3.1 System Model

Our ranking algorithm is designed for both structured and unstructured P2P systems.
Our algorithm constructs an inverted index for each keyword and these indexes are dis-
tributed over participating nodes (which are assumed to be cooperative). An inverted
index of a keyword stores the list of all the documents having the keyword. We as-
sume that the underlying P2P system provides a lookup mechanism necessary to map
indexes to nodes storing them. While APIs for lookup are available in all structured
systems, we rely on approaches such as LMS [6] and Yappers [7] for lookup over un-
structured systems. The underlying P2P system dictates how the indexes are mapped to
nodes; structured P2P systems store indexes at a single location, while an index may
be partitioned over many locations in unstructured systems. Each node exports a set of
documents when it joins the system. A set of keywords (by default, all words in the
document) is associated with the document. The process of exporting a document con-
sists of adding an entry for the document in the index associated with each keyword.
When querying, users submit queries containing keywords and may specify that only
the highest ranked K results be returned. The system then computes these K results in
a distributed manner and returns the results to the user.

3.2 Generating Document Vectors

Recall that to generate a document vector, we need to assign weights to each term of
the document. Also recall Equation (1), which is used to compute the weight of each
term t in a document. The equation has two components: a local component, ln ft,d +1,
which captures the relative importance of the term in the given document, and a global
component, ln(D/Dt), which accounts for how infrequently the term is used across all
documents. The local component can be easily obtained by counting the frequency of
the word in the document. The global component is stated in terms of the number of
documents D in the system, and the number of documents Dt that have the term t. We
use random sampling to estimate these measures.

Let N be the number of nodes in the system, and D and Dt be as above. We choose k
nodes uniformly at random. This can be done either with random walks, in unstructured
systems [6], or routing to a random point in the namespace in structured systems [8].
We then compute the total number D̃ of documents and D̃t of documents with term
t at the sampled nodes. For simplicity, we accept that the same node may be sampled
more than once. It is easy to see that E[D̃] = k D

N and E[D̃t] = k Dt

N where E indicates
expectation of a random variable. The intuition is that if we take enough samples, then
D̃ and D̃t are reasonably close to their expected value. If that is the case, then we can
estimate D/Dt as D

Dt
≈ D̃

D̃t
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To derive a sufficient condition for this approximation, we introduce two new quan-
tities. Let M and Mt be the maximum number of documents and maximum number of
documents with the term t, respectively, on a node. We call the estimate D̃ (resp. D̃t)
“good”, if it is within a factor of (1±δ) of its expected value. The estimate can be “bad”
with a small probability (ε). As usual, we let e denote the base of the natural logarithm.

Theorem 1. Let D, N , k, M be as above. For any 0 < δ ≤ 1 and ε > 0, if

k ≥ 3
δ2

M

D/N
ln(2/ε) (2)

then the random variable D̃ (as defined above) is very close to its mean, except with
probability at most ε. Specifically:

Pr[(1 − δ)kD/N ≤ D̃ ≤ (1 + δ)kD/N ] ≥ 1 − ε. (3)

Proof. The proof is an application of the Chernoff bound [9]. For i = 1, . . . , k, let
Yi be the random variable representing the number of documents found during the i-th
sample. Note that D̃ =

∑k
i=1 Yi. In order to apply the Chernoff bound, we need random

variables in the interval [0, 1]. Let Xi = Yi/M and let X =
∑k

i=1 Xi = D̃/M . Define:

μ = E[X ] =
kD

MN
.

Since the Xi are in [0, 1] and are independent, we can use the Chernoff bound, which
tells us that for any 0 < δ ≤ 1.

Pr[|X − E[X ]| > δ E[X ]] ≤ 2e−
μδ2

3 ,

which can be rewritten as:

Pr[(1 − δ)kD/N ≤ D̃ ≤ (1 + δ)kD/N ] ≥ 1 − 2e−
μδ2
3 .

We now impose the constraint that the probability above is at least 1 − ε:

2e−
μδ2

3 ≤ ε,

from which we derive the bound on k:

k ≥ 3
δ2

M

D/N
ln(2/ε). ��

If we replace D, M , D̃ with Dt, Mt, D̃t, the theorem also implies that if

k ≥ 3
δ2

Mt

Dt/N
ln(2/ε) (4)

then the random variable D̃t is also a good estimate.
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The following observations follow from Theorem 1:

– Theorem 1 tells us that for a good estimate, the number of samples needed does not
depend on N directly, but on the quantities D/N and Dt/N and, less importantly,
on M and Mt. This means that as the system size grows, we do not need more
samples as long as the number of exported documents (with term t) also increases.

– If the number of documents D is much larger than the system size N and queries
consist of popular terms (Dt = Ω(N)), then our algorithm provides performance
with ideal scaling behavior: Sampling a constant number of nodes gives us provably
accurate results, regardless of the system size.

– In practice, documents and queries will contain rare (i.e., not popular) terms, for
which ln(D/Dt) may be estimated incorrectly. However, we argue that such esti-
mation error is both unimportant and inevitable. The estimation is relatively unim-
portant because if the query contains rare terms, then the entire set of results is
relatively small, and ranking a small set is not as important. In general, sampling
is a poor approach for estimating rare properties and alternative approaches are
required.

– The number of samples is proportional to the ratios between the maximum and the
average number of documents stored at a node (i.e., M

D/N and Mt

Dt/N ). This means
that, as the distribution of documents in the system becomes more imbalanced,
more samples are needed to obtain accurate results.

Special case: uniform distribution. We next restrict our attention to the special case in
which the underlying storage system randomly distributes documents to the nodes, uni-
formly at random and independently. Such a distribution approximately models the be-
havior of a DHT. In this special case, a stronger version of Theorem 1 holds, provided we
do sampling without replacement (alternatively, we do rejection sampling where, if we
sample a node that has already been sampled, we reject this sample and sample again):

Theorem 2. Let D, N , k be as above and assume each document is stored indepen-
dently and uniformly at random at one node. For any ε > 0, if we choose k samples
without replacement with

k ≥ 3
δ2

1
D/N

ln(2/ε), (5)

then the random variable D̃ (as defined above) is very close to its mean kD/N , except
with probability at most ε. Specifically:

Pr[(1 − δ)kD/N ≤ D̃ ≤ (1 + δ)kD/N ] ≥ 1 − ε. (6)

This probability is taken over the random distribution of the documents, as well as the
randomness in our sampling.

Proof. As opposed to the proof of Theorem 1, we now crucially use the fact that the
documents have been mapped independently. For every document d, define the random
variable Xd as the indicator of the event that the document d is stored at one of the k
sampled nodes (i.e., Xd is 1 if this event happens, and is 0 otherwise). So, E[Xd] =
k/N . Defining X =

∑
d Xd, we see that E[X ] = kD/N .
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We note that the different random variables Xd are independent, which is a conse-
quence of the fact that we are conducting sampling without replacement. To see this,
suppose we have distinct documents d1, d2, . . . , di. We want to show that
Pr[

∧i
j=1 Xdj = 1] =

∏i
j=1 Pr[Xdj = 1]. Let S be the random variable representing

the set of k distinct samples and let U be the family of all sets of k nodes. Exposing the
value of S, we can write:

Pr[
i∧

j=1

Xdj = 1] =
∑

S∗⊂U

Pr[S = S∗] Pr[
i∧

j=1

Xdj = 1|S = S∗] =

=
∑

S∗⊂U

Pr[S = S∗](k/N)i = (k/N)i =
i∏

j=1

Pr[Xdj = 1],

where we exploited the facts that the documents are stored independently and that the
probability that di has been stored in S∗ is exactly k/N . Since the Xd are all binary-
valued, it is known that the above implies that the random variables Xd are all mutually
independent. This is because the probability of any possible assignment for the Xd can
be written as a linear combination of probabilities such as above. (This follows, for
instance, from basic Fourier analysis.) As an example, note that

Pr[Xd1 = 1, Xd2 = 0] = Pr[Xd1 = 1] − Pr[Xd1 = Xd2 = 1].

We now apply the Chernoff bound to X to yield our result; the calculation-details
are the same as in the proof of Theorem 1. ��

Hence, for the uniform case, the number of samples does not need to be proportional to
the maximum number M of documents at any node. Therefore, the cost of our sampling
algorithm is significantly decreased.

3.3 Storing Document Vectors

Document vectors need to be stored such that a query relevant to the document can
quickly locate them. We store document vectors in distributed inverted indexes. As
mentioned previously, an inverted index for a keyword t is a list of all the documents
containing t. For each keyword t, our system stores the corresponding inverted index
like any other object in the underlying P2P lookup system. This choice allows us to
efficiently retrieve vectors of all documents that share at least one term with the query.

Figure 1 shows the process of exporting a document. We first generate the corre-
sponding document vector by computing the term weights, which uses the procedure
described in section 3.2. Next, using the underlying storage system API, we identify the
node storing the index associated with each term in the document and add an entry to
the index. Such entry includes a pointer to the document and the document vector.

The details of storing document vectors in inverted indexes depend on the underly-
ing lookup protocol. In structured systems, given a keyword t, the index for t is stored
at the node responsible for the key corresponding to t. The underlying protocol can be
used to efficiently locate this node. A similar approach using inverted indexes has pre-
viously been used by [10,11,12,13] for searching in structured systems. In unstructured
networks, indexes would need to be partitioned or replicated [7, 6].
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Fig. 1. Various steps in exporting documents and their vector representation

Reducing storage cost. So far, we have assumed that each word in the document is a
keyword. Hence an entry is added for the document in the indexes of all the words in the
document. A document, however, will not appear among the top few results when its
weights for the query terms are low. Hence, not having these low-weight entries in the
index does not reduce the retrieval quality of the top few results. We use this intuition to
reduce the cost of propagating and storing vectors in indexes. We assume that there is
a constant threshold wmin, that determines if the document entry is added to an index.
The vector is not added to the index corresponding to the term t if the weight of t is
below the threshold wmin. Note that the terms with weights below this threshold are
still part of the vector. This heuristic has also been successfully used in eSearch [10].

3.4 Evaluating Query Results

A query is evaluated by converting it into a vector representation, and then comput-
ing the cosine similarity with respect to each “relevant” document vector. We compute
query vectors using the same techniques used to generate the document vector. The next
step is to locate the set of relevant documents. For each keyword in the query, we use
the lookup functionality provided by the underlying system to identify the node storing
the index of that keyword. We then compute the cosine similarity between the query
and each of the document vectors stored in the index. This gives us a ranking of the
documents available in this index. Finally, we fetch the top-K results computed at each
of the indexes and compute the union of these result sets. The top-K documents in this
union, sorted in the decreasing order of cosine similarities, give us our final result set.

4 Evaluation

In this section, we validate our distributed ranking system via simulation. We measure
performance by comparing the quality of the query results returned by our algorithm
with those of a centralized implementation of VSM.

Experimental setup. We use the TREC [2] Web-10G data-set for our documents. We
used the first 100,000 documents in this dataset for our experiments. These 100K doc-
uments contain approximately 418K unique terms. Our default system size consists of
1000 nodes. We use two different distributions of documents over nodes: a uniform
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distribution to model the distribution of documents over a structured P2P system and a
Zipf distribution to model distribution in unstructured systems.

Since our large data set (100K documents) did not have queries associated with it,
we generated queries of different lengths. Our default query set consists exclusively
of terms that occur in approximately 5000 documents. We denote this query set as the
Q5K query set in our experiments. The intuition behind picking these query terms is
that they occur in a reasonable number of documents, and are hence popular. At the
same time, they are useful enough to discriminate documents. We also use query sets
that exclusively contain keywords that are either very popular (occur in more than 10K
documents) or those that are very rare (occur in less than 200 documents). We denote
these query sets as Qpop and Qrare respectively. Each result presented (except for
details from individual runs) is an average of 50 runs. We use three metrics to evaluate
the quality of distributed ranking:

1. Coverage: We define coverage as the number of top-K query results returned by
the distributed scheme that are also present in the top-K results returned by a cen-
tralized VSM implementation for the same query. For example, if we’re interested
in the top 3 results, and the distributed scheme returns documents (A, C, D) while
the centralized scheme returns (A, B, C), then the coverage for this query is 2.

2. Fetch: We define fetch as the minimum number R′ such that, when the user obtains
the set of R′ results as ranked by the distributed scheme, R′ contains all the top-K
results that a centralized implementation would return for the same query. In the
previous example, if the fourth result returned by the distributed case had been B,
then the fetch for K = 3 would be 4.

3. Consistency: We define consistency as the similarity in the rank of results, for the
same query, for different runs using different samples.

4.1 Coverage

In the first experiment, we measure the coverage of the distributed retrieval scheme. We
show that by sampling only a few nodes even on a reasonably large system, our scheme
produces results very close to a centralized implementation.

In our base result, we use a 1000 node network. The documents are mapped uni-
formly to nodes. To compute the global weight of term t, we sample 10, 20 and 50
nodes in different runs of the experiment. The queries consist of keywords from the
Q5K query set, i.e. the keywords occur in approximately 5000 documents.

The results are presented in Table 1. It is clear from Table 1 that the distributed
ranking scheme performs very similar to the centralized implementation. On a 1000
node network with documents distributed uniformly, the mean accuracy for the top-K
results is close to 93% with 50 random samples. Even with 10 random samples, the
results are only slightly worse at 85% accuracy.

With 5000 nodes, the retrieval quality is not as high as a network with 1000 nodes.
With 20 random samples, the mean accuracy is 77% for top-K results. There is a 8%
increase in mean accuracy when we increase the sampling level and visit 1% (50) of the
nodes. This result is a direct consequence of Theorem 2. Here, the number of documents
has remained the same, but the number of nodes has increased. Hence, higher number
of nodes sampled leads to better estimates.
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Table 1. Mean and Std. Deviation of coverage with the distributed ranking scheme

Network Number of Top-K results
Setup Samples 10 20 30 40 50

10 8.49 (1.08) 16.99 (1.20) 25.30 (1.55) 33.68 (2.07) 42.28 (2.01)1000
20 8.90 (0.99) 17.81 (1.04) 26.44 (1.26) 35.23 (1.87) 44.30 (1.82)uniform
50 9.28 (0.82) 18.63 (0.82) 27.66 (1.04) 36.08 (1.45) 46.30 (1.46)
10 6.78 (1.39) 13.58 (1.74) 20.43 (2.39) 27.35 (2.99) 34.59 (3.40)5000
20 7.74 (1.29) 15.41 (1.46) 22.92 (1.96) 30.50 (2.47) 38.49 (2.58)uniform
50 8.52 (1.09) 16.96 (1.18) 25.20 (1.56) 33.59 (2.11) 42.34 (1.98)
10 8.27 (1.15) 16.52 (1.26) 24.66 (1.71) 32.82 (2.21) 41.20 (2.27)1000
20 8.82 (0.99) 17.63 (1.06) 26.22 (1.35) 34.83 (1.93) 43.70 (1.88)Zipf
50 9.26 (0.80) 18.54 (0.88) 27.52 (1.12) 36.71 (1.49) 46.12 (1.56)
10 6.09 (1.54) 12.29 (1.97) 18.58 (2.68) 25.01 (3.39) 31.67 (3.97)5000
20 7.34 (1.31) 14.71 (1.62) 21.89 (2.10) 29.34 (2.64) 36.93 (2.90)Zipf
50 8.41 (1.13) 16.73 (1.22) 24.92 (1.61) 33.22 (2.08) 41.71 (2.03)

Table 1 also shows the retrieval quality for documents mapped to nodes using a
Zipf distribution with parameter 0.80. With 1000 nodes and 50 samples, the retrieval
quality is similar to that of the uniformly distributed case. With 10 samples, however,
the mean accuracy drops a few percentage points to between 82–83%. With 5000 nodes
and 50 samples, we see similar trends. While the quality is not as good as it is with
the uniformly distributed data, it does not differ by more than 2%. With 10 samples,
the results worsen by about much as 7%. Hence, we believe our scheme can be applied
over lookup protocols on unstructured networks without appreciable loss in quality.

4.2 Fetch

In this experiment, we measure how many results need to be fetched before all the top-
K results from the centralized implementation are available (we called this measure
Fetch). We experiments with both 1000 and 5000 nodes with the documents uniformly
distributed. We used the Q5K query set for our evaluation. We plot the result in Figures 2
and 3. The x-axis is the top-K of results from the centralized implementation, while the
y-axis represents the corresponding average fetch.

With a 1000 node network, we see that fetch is quite small even if only ten nodes
are sampled. For instance, sampling 10 nodes, we need 13 results to match the top-10
results of the centralized case. With samples from 50 nodes, fetch is minimal even for
less relevant documents: we need 11 entries to match the desired top-10 results and 63
to match the top-50 results from the centralized implementation.

As expected, with increasing network size, but same document set, the fetch in-
creases. When we sample 1% of the 5000 nodes, we need 13 results to cover the top-10
and 88 to cover the top-50. With lesser sampling, however, we need to fetch a lot more
results to cover the top-K . This behavior, again, is predicted by Theorem 2: when the
number of nodes increases without a corresponding increase in the number of docu-
ments, the samples needed to guarantee a bound on sampling error also increases.
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Other experiments indicate similar results when the document distribution is skewed.
We merely summarize those results here. With a 1000 node network and 10 random
samples, the fetch increases by 10% compared to the network where documents are
mapped uniformly to nodes. In a 5000 node network, this increases by 35% compared
to the uniform case. The results in both the network sizes with 50 random samples,
however, are comparable to the uniform case.

4.3 Consistency

In our system, a new query vector is generated each time a query is evaluated. This
leads to different weights being assigned to the terms during different evaluations of the
same query. This can increase the variance in ranking, and potentially lead to different
results for different evaluations of the query. In this experiment, we show that is not the
case, and that the results are minimally affected by the different samples.

We use a network of 1000 nodes with documents mapped uniformly to these nodes.
We sample 20 random nodes while computing the query vector. We use Q5K and record
the top-50 results for different runs and compare the results against each other and
against the centralized implementation.

Figure 4 shows the results obtained during five representative runs for three repre-
sentative queries each. For each run, the figure includes a small box corresponding to
a document ranked in the top-50 by centralized VSM if and only if this document was
retrieved during this run. For example, in Figure 4, query 1, run 2 retrieved documents
ranked 1 . . . 25, but did not return the document ranked 26 in its top 50 results. Also,
note that the first 25 centrally ranked documents need not necessarily be ranked exactly
in that order, but each of them were retrieved within the top-50.

There are two main observations to be drawn: first, the sampling does not adversely
affect the consistency of the results, and different runs return essentially the same re-
sults. Further, note that these results show that the coverage of the top results is uni-
formly good, and the documents that are not retrieved are generally ranked towards the
bottom of the top-50 by the centralized ranking. In fact, a detailed analysis of our data
shows that this trend holds in our other experiments as well.
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Table 2. Mean coverage when the number of
nodes and documents scale proportionally

Network Top-K results
Setup 10 20 30 40 50

500 nodes 7.75 16.11 25.08 33.62 42.24
1000 nodes 7.99 16.33 24.58 32.98 41.59
2000 nodes 7.67 15.85 23.96 32.00 40.11
5000 nodes 6.95 15.21 22.99 30.66 38.85

4.4 Scalability

In this experiment, we evaluate the scalability of our scheme with increasing system
size. Theorems 1 and 2 states that the number of samples required is independent of the
system size, under the condition that the size of the document set grows proportionally
to the number of nodes. We demonstrate this fact by showing that coverage remains
approximately constant as we increase the system size ten-fold (from 500 to 5000),
while sampling the same number of nodes (20).

The number of documents in each experiment is 20 times the number of nodes in the
system. For all the configurations, the terms used in queries occur in more than 10% of
the total documents. For the 5000 node network, this corresponds to the Qpop query set.
In each case, we sample 20 random nodes to estimate the global weights.

Table 2 shows the mean coverage of our distributed scheme. As the table shows, the
coverage of the distributed retrieval is very similar in most cases. This result confirms
that our scheme depends almost entirely on the density of the number documents per
node, and that it scales well as long as the density remains similar.

4.5 Reducing Storage Cost

Recall our optimization to store document vectors only in the indexes of keywords
whose weights are greater than a threshold wmin. In this experiment, we quantify the
effect of this optimization. For this experiment, we used a network of 1000 nodes with
documents distributed uniformly at random over the nodes. We use all the three query
sets and sample 20 nodes to estimate the weights. Note that we normalize the vectors; so
the term weights range between 0.00 and 1.00. We present results for thresholds ranging
from 0.00 to 0.30. We compare the results retrieved from the centralized implementation
with wmin = 0.00.

The results of this experiment are tabulated in Table 3. Coverage of distributed rank-
ing is not adversely affected when the threshold is set to 0.05 or 0.10. However, larger
thresholds (say 0.20 and above) discard relevant entries, and consequently decrease rank
quality appreciably. In order to understand the reduction obtained by using the thresh-
old, we recorded the total number of index entries in the system for each threshold.
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Table 3. Mean coverage of distributed ranking for different weight thresholds. Numbers in paren-
thesis indicate percentage reduction in size of indexes corresponding to the different thresholds.

Weight Q5K Qpop Qrare

Threshold 10 30 50 10 30 50 10 30 50
0.0 (0.0) 8.90 26.44 44.30 8.32 26.31 44.49 8.59 26.01 44.47

0.05 (55.5) 8.90 26.44 44.34 8.33 26.32 44.40 8.50 26.01 44.47
0.10 (85.0) 8.90 26.40 44.22 8.32 26.17 43.87 8.59 26.01 43.54
0.20 (97.2) 7.64 20.43 30.97 6.39 17.90 26.70 8.46 21.41 28.43
0.30 (99.3) 4.53 7.98 8.88 2.79 6.84 9.90 6.66 9.78 9.99

The total number of index entries in our system is 15.9M when the threshold is 0.0.
Our experiments show a reduction of 55.5% entries when we use a threshold of 0.05.
Increasing the threshold to 0.1 leads to an additional 30% reduction in index size. A
threshold value of 0.1 seems to be a reasonable trade-off between search quality and
decreased index size.

5 Related Work

Our paper builds on prior work on efficient lookup and storage schemes. We assume
the existence of a lookup protocol provided by the underlying system. Such lookup
protocols have been studied in detail both in a structured setting (e.g., Chord [14] and
Pastry [15]) and in an unstructured setting (e.g., Yappers [7] and LMS [6]). Providing
a useful search facility has been an important area of research. Prior work in searching
can broadly be classified into two categories: traditional centralized approaches, and
search strategies over structured P2P networks.

Classic Information Retrieval. A lot of effort has gone into the area of information
retrieval and ranking. We discussed the Vector Space Method [1] in Section 2. Latent
Semantic Indexing (LSI) [16] is an extension to VSM that attempts to eliminate the
issues of synonyms and polysemy. LSI employs singular value decomposition (SVD)
to reduce the matrix generated by VSM. It is still an open question as to how LSI
could be implemented in a completely distributed manner. There has also been work
on implementing PageRank [17] in a distributed setting (e.g., [18]), but it cannot be
applied on an arbitrary document set because of the lack of hyper-links.

Fagin et al.’s Threshold Algorithm (TA) [19] can also be used to compute the top-K
results. Cao et al. [20] and [21] provide optimizations to TA in a distributed setting. In
this paper, we store the entire vector in each index entry and use the union operation to
group the results. Instead, we could just store the term weights in the index and use TA
to compute the final result set. We plan to explore this option in the future.

Distributed Search over P2P systems. The idea of using Vector Space Methods has
been applied previously in the context of P2P search. PlanetP [22] is a content-based
search scheme that uses VSM. Nodes store vectors locally, but gossip digests of their
local content. Queries are evaluated by ranking the nodes first and then evaluating the
query using VSM at the top-ranked nodes. pSearch [23] uses VSM and LSI to generate
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document and query vectors, and maps these vectors to a high-dimension P2P system.
Bhattacharya et al. [24] use similarity-preserving hashes (SPH) and the cosine similarity
to compute similar documents over any DHT. Odissea [21], a P2P distributed search in-
frastructure, proposes to make use of TA to rank search results. None of these schemes,
however, discuss how to compute the vectors. The work presented in this paper can be
applied in all these settings to generate the document and query vectors.

There have also been proposals that use distributed inverted indexes to support the
boolean query model. Reynolds et al. [12] and eSearch [10] use inverted indexes for
searching in structured P2P systems. Loo et al. [13] design a hybrid solution that uses
a DHT with inverted indexes to locate rare documents and Gnutella-style flooding for
popular documents. None of these directly support ranking search results.

6 Conclusions

In this paper, we have presented a distributed algorithm for ranking search results. Our
solution demonstrates that distributed ranking is feasible with little network overhead.
Unlike previous work, we do not assume that the document vectors are provided to
the system. Instead, our algorithm computes such vectors by using random sampling
to estimate term weights. Through simulations and formal analysis, we show that the
retrieval quality of our approach is comparable to that of a centralized implementation
of VSM. We also show that our approach scales well under the reasonable condition
that the size of the document set grows with the number of nodes.
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Abstract. We propose a virtualization approach to implement redirect-on-write 
capabilities that overlay a traditional distributed file system. The redirect-on-
write distributed file system (ROW-FS) is implemented via a user-level proxy 
that is able to selectively steer Network File System (NFS) RPC calls to one of 
two servers: a “main” read-only server, and a “shadow” read-write server. By 
employing virtualization by means of a user-level proxy and using the de-facto 
standard NFS protocol, ROW-FS can be mounted as an NFS file system by ex-
isting, unmodified clients from a variety of platforms, and requires no changes 
to existing kernels. Its primary application is in supporting wide-area computing 
environments, where ROW-FS can provide improved performance   and fault-
tolerance (file system modifications can be check-pointed along with applica-
tion state). Results show that benchmark applications including Linux kernel 
compilation and instantiation of virtual machines across wide-area networks 
achieve substantially better performance with ROW-FS as compared to NFS. 

Keywords: File System, Virtual Machine, Distributed Computing, Redirect-on-
write, Grid Computing, Virtualization. 

1   Introduction 

A key challenge arising in wide-area, Grid computing infrastructures is that of data 
management – how to provide data to applications, seamlessly, in environments span-
ning multiple domains. In these environments, data movement and sharing is often 
mediated by middleware that schedules applications and workflows [25], and data 
management is achieved by means of explicit file transfers [26][29][28].  This paper 
presents a novel approach that enables wide-area applications to leverage on-demand 
block-based data transfers and a de-facto distributed file system (NFS) to access data 
stored remotely and modify it in the local area.  

The approach is based on user-level redirect-on-write virtualization techniques that 
address two important needs. First, the ability of accessing and caching file system data 
and meta-data from remote servers, on-demand, on a per-block basis, while buffering 
file system modifications locally. This is key in supporting applications that rely on the 
availability of a file system or operate on sparse data – a representative example is the 
instantiation of customized execution environment containers such as system virtual 



22 V. Chadha and R.J. Figueiredo 

machines (VMs) [19][14][23][14][3] or physical machines provisioned on demand 
[17]. Second, the ability to checkpoint filesystem modifications to facilitate application 
recovery and restart in the event of a failure. Checkpointing/migration in wide-area 
computing systems is often achieved at the level of operating system processes by 
means of library interposition or system call interception [11], which limits the appli-
cability of checkpointing to a restricted set of applications. In contrast, ROW-FS en-
ables checkpoint/restart of modifications made by a client to a mounted distributed file 
system.  

The approach is unique in supporting this functionality on top of existing, widely 
available kernel distributed file system clients and servers that implement the NFS 
protocol. The paper describes the organization of the ROW proxy and the techniques 
used to virtualize NFS remote procedure calls, and evaluate the performance of a 
user-level implementation of these techniques in a variety of micro-benchmarks and 
applications. Results show that ROW-FS mounted file systems can achieve better 
performance than non-virtualized NFS in wide-area setups by steering data and meta-
data calls to a local-area shadow server, and that it enables an unmodified application 
running on a VM container and operating on data within a ROW-FS file system to be 
successfully restarted from a checkpoint following a failure. 

This paper is organized as follows. Section 2 discusses motivations, background 
and applications of ROW-FS. Section 3 describes its architecture and approaches to 
deploying ROW-FS in conjunction with file system caching proxies. Section 4 details 
the virtualization of a representative subset of NFS remote procedure calls. Section 5 
presents experimental results and analysis of the performance of ROW-FS. Section 6 
discusses consistency considerations, and Section 7 gives a brief survey of related 
work. Section 8 concludes with a summary and discussion of future directions. 

2   Motivation and Background 

There are three goals which motivate the approach of this paper. First, with ROW-FS 
a primary server can be made read only, thus preventing the integrity of data mounted 
from the primary server from unintentional user modification. Second, since hetero-
geneity and dynamism in distributed computing makes failure recovery a difficult 
task, we provide a consistent point-in-time view of a recently modified file system. 
Third, to facilitate deployment, ROW-FS leverages capabilities provided by the un-
derlying file system (e.g. NFS) without requiring kernel-level modifications.  

An important class of Grid applications consists of long-running simulations, 
where execution times in the order of days are not uncommon, and mid-session faults 
are highly undesirable. Systems such as Condor 11 have dealt with this problem via 
application check-pointing and restart. A limitation of this approach lies in that it only 
supports a restricted set of applications - they must be re-linked to specific libraries 
and cannot use many system calls (e.g. fork, exec, mmap). ROW-FS, in contrast, 
supports unmodified applications; it uses client-side virtualization that allows for 
transparent buffering of all modifications produced by DFS clients on local storage.  

ROW-FS is well-suited for systems where execution environments are created, al-
located for an application to host their execution, and then terminated after the appli-
cation finishes. This approach is taken by several projects in Grid/utility computing 
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(e.g. In-VIGO[14], COD[17] and Virtual Workspaces[23]). In this context, ROW-FS 
complements capabilities provided by “classic” virtual machine (VMs [18][19]) to 
support flexible, fault-tolerant execution environments in distributed computing sys-
tems. Namely, ROW-FS enables mounted distributed file system data to be periodi-
cally check-pointed along with a VM’s state during the execution of a long-running 
application. ROW-FS also enables the creation of non-persistent execution environ-
ments for non-virtualized machines. For instance, it allows multiple clients to access 
in read/write mode an NFS file system containing an O/S distribution exported in 
read-only mode by a single server. Local modifications are kept in per-client 
“shadow” file systems that are created and managed on-demand.  

2.1   NFS-Mounted Virtual Machine Images and O/S File Systems 

One important application of ROW-FS is supporting read-only access of shared VM 
disks or O/S distribution file systems to support rapid instantiation and configuration 
of nodes in a network. The ROW capabilities, in combination with aggressive client-
side caching, allow many clients to efficiently mount a system disk or file system 
from a single image – even if mounted across wide-area networks.  

One particular use case is the on-demand provisioning of non-persistent VM envi-
ronments. In this scenario, the goal is to have thin, generic boot-strapping VMs that 
can be pushed to computational servers without requiring the full transfer or storage 
of large VM images. Upon instantiation, a diskless VM boots through a pre-boot 
execution environment (PXE) using one out of several available shared non-persistent 
root file system images, stored potentially across a wide area network.  
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Fig. 1. Middleware Data Management: - Grid Users G1, G2 and G3 accesses file disk.img from 
server and customize for personal use through ROW proxy. G1 modifies second block B to B’, 
G2 modifies block C to C’ and G3 extends the file with additional block D (a) Modifications 
are stored locally at each shadow server (b) virtualized view. 

This approach delivers capabilities that are not presently provided by VM monitors 
themselves. Without an NFS-mounted file system on the host, on-demand transfer of 
VM image files is not possible, thus the entire VM image would need to be brought to 
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the client before a non-persistent VM could start. In shared Grid computing environ-
ments it is difficult to acquire privileges on the host to perform such file system 
mounts; in contrast, with ROW-FS, the NFS-mounted file system can be kept inside a 
guest, and no host configuration or privileges are required to deploy the boot-
strapping VM and the diskless VM. Section 6.3 discusses experiments that evaluate 
the performance of ROW-FS in this environment. 

2.2   Fault Tolerant Distributed Computing with Virtual Machines 

Existing VM monitors have support for check-pointing/resuming of VM state – a key 
capability upon which many fault-tolerant techniques can be built. However, check-
pointing of the VM state alone is not sufficient to cover the scenarios envisioned for a 
VM-based distributed computing environment. Consider a virtual machine based 
client/server session using traditional NFS and ROW-FS. A long-running application 
may take hours to complete; if it operates on data mounted over a distributed file 
system, a failure in the client may require restarting the entire session again – even if 
the VM had been check-pointed. In contrast, a ROW-FS session with regular check-
points provides fault tolerance additional to VM checkpointing by allowing file sys-
tem-mounted data used by the application to be checkpointed with the VM.    

In this use case, the role of ROW-FS in supporting checkpoint/restart is to buffer 
file system modifications within a VM container. The actual process of checkpointing 
is external and complementary to ROW-FS. It can be achieved with support from 
VMM APIs (e.g. vmware-cmd and Xen’s “xm”) and distributed computing middle-
ware. For instance, the Condor 11[30] middleware is being extended to support 
checkpoint/restore of entire VMs rather than individual processes; ROW-FS sessions 
can be conceivably controlled by this middleware to buffer file system modifications 
until a VM session completes.  

3   Architecture 

The architecture of ROW-FS is illustrated in Figure 2(a). It consists of user-level DFS 
extensions that support selective redirection of DFS calls to two servers: the main 
server and a copy-on-write server. The architecture is novel in the manner it overlays 
the ROW capabilities upon unmodified clients and servers, without requiring changes 
to the underlying protocol. The approach relies on the opaque nature of NFS file han-
dles to allow for virtual handles [8] that are always returned to the client, but map to 
physical file handles at the main and ROW servers. The file handle hash table stores 
such mappings, as well as information about client modifications made to each file 
handle. Files whose contents are modified by the client have “shadow” files created 
by the ROW server in a sparse file, and block-based modifications are inserted in-
place in the shadow file. A presence bitmap marks which blocks have been modified, 
at the granularity of NFS blocks (8-32KB).  

Figure 2(b) shows possible deployments of proxies enabled with user-level disk 
caching and ROW capabilities. For example, a cache proxy configured to cache read-
only data may precede the ROW proxy; thus effectively forming a read/write cache  
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Fig. 2. (a) Architecture – The Redirect-on-write file system is implemented by means of a user-
level proxy which virtualizes NFS by selectively steering calls to a main server (MS) and 
shadow server (SS). (b) Proxy Deployment - Cache-before-redirect (CBR), Redirect-before-
cache (RBC), Non-local shadow server. MS: Main server, SS: shadow server, CP:  cache 
proxy. 

hierarchy. Such cache-before-redirect (Figure 2(b), top) proxy setup allows disk  
caching of both read-only contents of the main server as well as of client modifica-
tions. Write-intensive applications can be supported with better performance using a 
redirect-before-cache (Figure 2(b), middle) proxy setup. Furthermore, redirection 
mechanisms based on the ROW proxy can be configured with both shadow and main 
servers being remote (Figure 2(b), bottom). Such setup could, for example, be used to 
support a ROW-mounted O/S image for a diskless workstation.  

3.1   Hash Table 

The hash table processor is responsible for maintaining in-memory data structures on 
a per-session basis to keep mapping of file handles between the client and the two 
servers. Two hash tables are employed. The shadow-indexed (SI) hash table is used to 
keep mappings between the shadow and main servers. This hash table is indexed by 
shadow file handle because the number of file system objects in the shadow server is 
a superset of the file system objects in main server. The main-indexed (MI) table is 
needed to maintain state information about files in the main server. Figure 3 (left) 
shows the structure of the hash table and flag information.  The readdir flag (RD) is 
used to indicate the occurrence of the invocation of an NFS readdir procedure call for 
a directory in the main server. Generation count (GC) is a number inserted into hash 
tuple for each file system object to create a unique disk based bitmap. Remove (RM) 
and Rename (RN) flags are used to indicate deletion/rename of a file. 
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Fig. 3. Hash Table and Flag descriptions (left). Remote procedures call processing in redirect-
on-file deployment. Any response from main server other than NFS_OK, forwards call to 
shadow server (right). 

3.2   Bitmap Processor 

The bitmap processor processes file handle and offset information and checks the 
presence bitmap data structure to determine whether read and write calls should be 
directed to the main or shadow server. The bitmap is a disk-based hierarchical data 
structure to keep information about individual blocks within a file. The parent direc-
tory in the bitmap data structure is a concatenation of the hashed value of a shadow 
file handle and the generation count, which results in a unique bitmap directory for 
each file system object.  As in NFS, reads and writes are performed in a per-block 
basis in ROW file system. To keep track of current location of updated block, each 
file is represented by a two-level hierarchical data structure in disk. The first level 
indicates the name of file which contains information about the block. The second 
level indicates the location of a presence bit within the bitmap file.  

4   Implementation 

This section describes how a ROW-FS proxy handles NFS protocol calls. Each pro-
cedure call is handled in three phases: predicate, process and update. In the following 
discussion, for the sake of brevity, we explain supporting examples and scenarios for 
a representative subset of NFS procedure calls. The complete implementation and 
semantics of RPC calls for ROW-FS is presented in detail in a technical report 24. 
Figure 4 describes the various hash table entries stored in the proxy which are refer-
enced throughout this section.  
 
MOUNT: The mount procedure is modified to obtain initial mount file handle of 
shadow server. Specifically, the mount proxy forwards a mount call to both shadow 
and main server.  When the mount utility is issued by a client, the shadow server is 
contacted first to save the file handle of the directory to be mounted. This file handle 
is later used by NFS procedure calls to direct RPC calls to the shadow server. The 
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initial mapping of file handles of a mounted directory is inserted in the SI hash table 
during invocation of the getattr procedure.   

 
LOOKUP: The lookup procedure returns a file handle reference (FH) to the file sys-
tem object sought by the client. The indirection of lookup calls between shadow and 
main server works as follows. In the predicate phase, the proxy obtains SI hash table 
mapping of parent file handle. We choose to first forward the lookup call to shadow 
server since more often client session involves repeatedly accessing same file and 
data.  Further lookup call semantics depend on status of state flags as explained in 
section 3. 

 
READ /WRITE: Read call reads data from a file referred by a given file handle and 
at a given offset. Again, read/write call is always preceded by a lookup call. Hence, 
file handle is always valid once the RPC call invokes read/write procedure. Note that 
mounted file system block size depends on parameters specified during invocation of 
mount utility (after proxy initialization) and bitmap block size is specified at initiali-
zation of ROW proxy. Hence, it may be the case that proxy forwards calls to both 
shadow and main server if requested data is present partly in main and shadow server.   

5   Consistency Considerations 

It is important to consider consistency in distributed file systems because data can be 
potentially shared by multiple clients. In the current ROW-FS architecture, we make 
the assumptions that 1) ROW-FS file systems are ephemeral; they are dynamically 
created and terminated by middleware that oversees the scheduling of application 
workflows, and 2) data stored in the main server of a file system mounted as ROW-
FS remains unmodified for the duration of such an ephemeral file system session. 
Previous work has described techniques for establishing such dynamic file system 
sessions and enforcing exclusive access to shared data with a service-oriented archi-
tecture [27]; it is also conceivable to integrate the logic to configure, create and tear-
down ROW-FS sessions with application workflow schedulers such as [25]. 

During the time a ROW-FS file system session is mounted, all modifications are 
redirected to the shadow server. For consistency, two different scenarios need to be 
considered. First, there are applications in which it is neither needed nor desirable for 
data in the shadow server to be reconciled with the main server; an example is the 
provisioning of system images for diskless clients or virtual machines.  

For applications in which it is desirable to reconcile data with the server, the 
ROW-FS proxy holds state in its primary data structures that can be used to commit 
modifications back to the server. The approach is to remount the file system at the end 
of a ROW-FS session in read/write mode, and signal the ROW-FS proxy to traverse 
its file handle hash tables and bitmaps to commit changes (moves, removes, renames, 
etc) to directories and files, and commit individually each data block modified at the 
shadow server back to the main server by crafting appropriate NFS calls to the server. 
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6   Experiments 

Experiments have been conducted to measure the performance of a ROW-FS user-
level implementation for varied application such as VM instantiation. We simulated 
wide area network links using the NISTnet network emulation package 16. The 
NISTnet emulator is deployed as a virtual Router in a VMware VM with 256MB 
memory and running Linux Redhat 7.3. Redirection is performed to a shadow server 
running in a virtual machine in the client’s local domain. 

6.1   Microbenchmarks 

The goal of micro-benchmarks is to measure the performance of basic file system 
operations. For ROW-FS, we stress important NFS procedure calls.  Specifically, we 
conducted benchmarks for lookup, remove/rmdir and readdir to evaluate overheads in 
these operations. For LAN, measured TCP bandwidth (using iperf) is 40Mbits/s. For 
the WAN setup, the bandwidth is 5Mbits/s with round-trip latencies of 70ms.  We 
tested the benchmarks on file system hierarchy of nearly 15700 file systems objects 
(the total disk space consumed is approximately 190MB). In all micro-benchmark 
experiments, the main server is a Linux VM with 256MB memory hosted on an Intel 
Pentium 4 1.7GHz workstation with 512MB memory. The WAN router is hosted in 
the same machine as the main server. The client machine is an Intel Pentium 1.7.Ghz 
workstation with 512 MB memory running cache and ROW proxies. 

 
Lookup/Stat benchmark: Lookup is often the most frequent operation in the NFS 
protocol. Since the initial request for a file handle invokes a lookup request, we  
decided to measure individual lookup latency and a recursive stat of file system 
hierarchy. For a random set of individual files (in the LAN setup), the average 
lookup time for initial run of ROW-FS is 18ms and the second run is executed in 
approximately 8ms. In comparison, NFSv3 executes a lookup call in approximately 
11ms.  The results summarized in Table 1 show that ROW-FS performance is supe-
rior to NFSv3 in a WAN scenario, while comparable in a LAN. In the WAN experi-
ment, recursive stat shows nearly five times improvement over second run of ROW-
FS, because all the file objects are present in the shadow server during the second 
run of recursive stat. 

 
Readdir: For newly created files and directories, the Readdir micro benchmark scans 
completely a directory to display the file system objects to the client.  Results for 
Readdir along with lookup and recursive stats are shown in Table 1. Clearly, perform-
ance for WAN for ROW-FS during the second run is comparable with LAN perform-
ance and much improved over NFSv3. This is because once a directory is replicated at 
the shadow server, subsequent calls are directed to the shadow server by means of 
readdir status flag. The initial readdir overhead for ROW-FS (especially in LAN 
setup) is due to the fact that dummy file objects are being created in the shadow 
server during the execution. 
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Table 1. LAN and WAN experiments for lookup, readdir and recursive stat micro-benchmarks 

LAN (sec) WAN (sec) 
ROW-FS ROW-FS 

Benchmark 

1st

RUN 
2nd

RUN 

NFSv3
1st

RUN
2nd

RUN

NFSv3 

Lookup 18msec 8msec 11msec 89msec 18msec 108msec 
Readdir 67 17 41 1127 17 1170 
Recursive Stat 425 404 367 1434 367 1965 

 

Remove:  To measure the latency of remove operations, we deleted a large number of 
files (greater than 15000 and total data size 190MB). We observed that in ROW-FS, 
since only remove state is being maintained rather than complete removal of file, 
performance is nearly 80% better than that of conventional NFSv3.  It takes nearly 37 
minutes in ROW-FS in comparison to 63 minutes in NFS3 to delete 190MB of data 
over wide area network. Note that each experiment is performed with cold caches, 
setup by re-mounting file systems in every new session.  If the file system is already 
replicated in shadow server, it takes only 18 minutes (WAN) to delete the complete 
hierarchy.      

Table 2. Remove Statistics for WAN and LAN 

REMOVE   ROW-FS (sec) NFSv3 (sec) 

LAN 160 230 

WAN 2250 3785 

6.2   Application Benchmarks 

The primary goal of the application benchmark experiments is to evaluate perform-
ance of redirect-on-write file system in comparison to traditional kernel network file 
system (NFSv3). Experiments are conducted for both local area and wide area net-
works. The client machine is a 1.7 GHz Pentium IV workstation with 512MB RAM 
and RedHat 7.3 Linux installed.  The main and shadow servers are VMware-based 
virtual machines. Each VM is based on VMware GSX 3.0 and are configured with 
one CPU and 256 MB RAM.  They are hosted by a dual-processor Intel Xeon CPU 
2.40GHz server with 4GB memory.   

Andrew Benchmark: We tested Andrew benchmark to gauge performance of ROW 
file system in local and wide area networks. In addition, we collected statistics of 
RPC calls going to shadow and main server to evaluate our performance. Table 3 
summarizes the performance of Andrew benchmark and Figure 4 provides statistics 
for number of RPC calls.  The important conclusion taken from the data in Figure 5 is 
that ROW-FS, while increasing the total number of calls routed to the local shadow 
server, reduces the number of RPC calls that cross domains to less than half. Note 
increase in number of getattr calls is due to invocation of getattr procedure to virtual-
ize read calls to main server.  We need to virtualize Read calls with shadow attributes 
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(the case when blocks are read from Main server) because  the client is unaware of the 
shadow server; file system attributes like file system statistics and file inode number 
has to be consistent between read and post-read getattr call. Nonetheless, since, all 
getattr calls go to the local-area shadow server, the overhead of extra getattr calls is 
small compared to getattr calls over WAN. 

Table 3. Andrew Benchmark and AM-Utils execution times in local- and wide-area networks 

  Benchmark ROW-FS (sec) NFSv3 (sec) 
Andrew (LAN)   13  10  
Andrew(WAN)  78  308 
AM Utils LAN  833  703  
AM Utils WAN  986   2744 
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Fig. 4. Number of RPC calls received by NFS server in non-virtualized environment, and by 
ROW-FS shadow and main servers during Andrew benchmark execution 

AM-Utils: We also used Berkeley automounter 20 build as an additional benchmark 
to evaluate performance. The automounter build consists of configuration tests to 
determine required features for build; thus generating large number of lookups, read 
and write calls. The second step involves compiling of am-utils software package. 
Table 3 provides readings for LAN and WAN. The resulting average ping time for the 
NIST-emulated WAN is 48.9ms in the ROW-FS experiment and 29.1ms in the 
NFSv3 experiment. Wide-area performance of ROW-FS for this benchmark is again 
better than NFSv3, even under larger average ping latencies. 

Linux-Kernel Compilation: Compilation of the Linux kernel is used to benchmark 
the application-perceived performance of ROW for a typical software development 
environment application. This is a representative application with a mix of compute- 
and I/O-intensive features which runs for minutes and generates thousands of NFS 
calls of various kinds – block reads/writes, file and directory creation, and metadata 
lookups and modifications. The kernel used is debian 2.4.27 with compilation steps 
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including: make “oldconfig”, make “dep” and make “bzImage”.  Table 4 shows per-
formance readings for both LAN and WAN environments.  

We achieve comparable LAN performance and substantial improvement in the per-
formance over the emulated WAN.  Note that, for WAN, kernel compilation perform-
ance is nearly five times better with the ROW proxy in comparison with NFSv3 (cur-
rent ROW-proxy is based on NFSv2). The results shown in Table 4 do not account for 
the overhead in synchronizing the main server. Nonetheless, as shown in Figure 4, a 
majority of RPC calls do not require server updates (read, lookup, getattr); further-
more, many RPC calls  (write, create, mkdir, rename) are also aggregate in statistics – 
often the same data is written again, and many temporary files are deleted and need 
not be committed.  

Table 4. Linux kernel Compilation execution times on a LAN and WAN 

Setup FS Oldconfig time (s) Dep time (s) BzImage time (s) 
NFSv3 49 120 710  

LAN ROW-FS 55 315 652 
NFSv3 472 2648 4200  

WAN ROW-FS 77 1590 780 

 
Fault tolerance: Finally, we tested the check-pointing and recovery of a computa-
tional chemistry scientific application (Gaussian 21). A VMware virtual machine 
running Gaussian is checkpointed (along with ROW-FS state in the VM’s memory 
and disk). It is then resumed, runs for a period of time, and a fault is injected. Some 
Gaussian experiments take more than hour to finish and generate lot of temporary 
data. For example, an execution of Gaussian run generated about 300MB of data. 
With ROW-FS, we observe that the application successfully resumes from a previous 
checkpoint. With NFSv3, inconsistencies between the client checkpoint and the server 
state crash the application, preventing its successful completion. 

6.3   Virtual Machine Instantiation 

Diskless Linux:  We performed experiments to boot diskless Linux nodes over the 
emulated WAN. We choose to measure diskless boot setup over wide area network as 
VM booting is often a frequent operation in dynamic system provisioning. The NIST-
net delay is fixed at 20ms with measured bandwidth of 7Mbit/s. In this experiment, 
VM1 is the diskless virtual machine, and VM2 is a boot proxy machine configured 
with two NIC cards for communication with host only and public network. Both 
ROW and cache proxies are deployed in VM2, which proxies NFS requests to a re-
mote file server. In addition, VM2 is configured to run DHCP and TFTP servers to 
provide an IP address and initial kernel image to VM1. Table 5 summarizes the per-
formance of diskless boot times with different proxy cache configurations. The results 
show what pre caching of attributes before redirection and post redirection data cach-
ing deliver the best performance, reducing wide-area boot time with “warm” caches 
by over 300%.   
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Table 5. Wide Area Experimental Results for Disk Less Linux boot/Second Boot for (1) ROW 
proxy only (2) ROW proxy + data cache (3) attribute + ROW + data cache 

WAN Boot (sec) 2nd Boot (sec) 
Client -> ROW -> Server 435 236 

Client -> ROW -> Data Cache -> Server 495 109 
Client -> Attr Cache -> ROW -> Data cache -> Server 409 76 

 
VM boot/Second boot: This experiment involves running a Xen virtual machine 
(domU) with the root file system mounted over ROW-FS. The primary goal is to 
measure the overhead for additional layer of proxy indirection.  The experiments are 
conducted in two parts. In the first part, there is only a ROW proxy and no cache 
proxy. The Xen domU VM is booted with and re-booted to capture the behavior of 
ROW-FS with the presence of data locality. 

Table 6. Remote Xen boot/reboot experiment with ROW proxy and ROW proxy + cache 

ROW Proxy ROW Proxy + Cache Proxy NISTNet Delay 

Boot (sec) 2nd Boot (sec) Boot (sec) 2nd Boot (sec) 

1ms 121 38 147 36 
5ms 179 63 188 36 

10ms 248 88 279 37 
20ms 346 156 331 37 
50ms 748 266 604 41 

 
We benchmarked the time to boot a Xen VM because we believe this will be a fre-

quent operation - a container can be started for just the duration of an application run. 
Results for this experiment are summarized in Table 6. In the second part, we tested 
the setup with aggressive client side caching (Figure 2(b)). Table 6 also presents the 
boot/ second boot latencies for this scenario.    

For delays smaller than 10 ms, the ROW+CP setup has additional overhead for 
Xen boot (in comparison with ROW setup); however, for delays greater than 10 ms, 
the boot performance with ROW+CP setup is better than ROW setup. Reboot execu-
tion time is almost constant with ROW+CP proxy setup. Clearly, the results show 
much better performance of Xen second boot for the ROW+CP experimental setup. 

7   Related Work 

The notion of network file system call indirection is not new; interposition of a proxy 
for routing remote procedural calls was previously addressed to provide scalable 
network file system services [4].  In past, researchers have used NFS shadowing tech-
nique to log users’ behavior on old files in a versioning file system [31]. Emulation  
of NFS mounted directory hierarchy is often used as a means of caching and perform-
ance improvement [6]. Kosha provides a peer to peer enhancement of network file 
system to utilize redundant storage space [7]. In past, file virtualization was addressed 
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through NFS mounted file system within the private name spaces for group of  
processes with motivation to migrate the process domain 9. To leverage on RAID 
performance, striped network file system is implemented which increases throughput 
by striping file between multiple servers [10]. A copy-on-write file server is deployed 
to share immutable template images for operating systems kernels and file-systems in 
[3]. The proxy-based approach presented in current paper is unique in how it not only 
provides copy-on-write functionality, but also provides provision for inter-proxy 
composition. Checkpoint mechanisms are integrated into language specific byte-code 
virtual machine as means of saving application’s state [2]. VMware and Xen 3.0 vir-
tual machines have provision of taking checkpoints (snapshots) and reverting back to 
them. These snapshots, however, do not support checkpoints of changes in a mounted 
distributed file system.   

8   Conclusion and Future Work 

The paper proposes a novel architecture that enables redirect-on-write functionality 
using virtualization techniques. It is designed to overlay existing NFS deployments, 
and can leverage virtual machine techniques to support client-side checkpointing of 
distributed file system modifications.  For a benchmark application (Linux kernel 
compilation), the performance of ROW-FS across an emulated wide area network is 
four times better than conventional NFS. For the provisioning of non-persistent vir-
tual machine execution environments, the performance of Xen virtual machine boot-
up over wide area networks is comparable with local-area networks if the ROW-FS 
proxy is coupled with user-level NFS caching proxies. This is because the majority of 
calls are redirected to local domain machine. Initial results are encouraging; future 
research directions will address consistency between files shared among multiple 
users, and leveraging user-level redirection mechanisms to support request redirection 
to replicated servers for load distribution and fault tolerance.  
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Abstract. Many real-world applications like Video-On-Demand (VOD) and 
Web servers require prompt responses to access requests. However, with an 
explosive increase of data volume and the emerging of faster disks with higher 
power requirements, energy consumption of disk based storage systems has 
become a salient issue. To achieve energy-conservation and prompt responses 
simultaneously, in this paper we propose a novel energy-saving data placement 
strategy, called Striping-based Energy-Aware (SEA), which can be applied to 
RAID-structured storage systems to noticeably save energy while providing 
quick responses. Further, we implement two SEA-powered RAID-based data 
placement algorithms, SEA0 and SEA5, by incorporating the SEA strategy into 
RAID-0 and RAID-5, respectively. Extensive experimental results demonstrate 
that compared with three well-known data placement algorithms Greedy, SP, 
and HP, SEA0 and SEA5 reduce mean response time on average at least 
52.15% and 48.04% while saving energy on average no less than 10.12% and 
9.35%, respectively.  

Keywords: Data placement, energy conservation, response time, RAID. 

1   Introduction 

Many real-world applications intensively read data stored in large-scale parallel disk 
storage systems like RAID, Redundant Arrays of Inexpensive Disks. To guarantee the 
quality of service demanded by end-users, prompt responses to read requests are 
essential for these applications. For example, a Video-On-Demand (VOD) server has 
to quickly respond access requests from multiple users so as to provide them with 
continuous glitch-free video [6]. It is obvious that reducing mean response time of 
parallel disk storage systems is a must for these applications.  

There are a wide variety of ways of reducing the mean response time or improving 
the system throughput for parallel I/O systems [1][6][10][12]. Data placement, or file 
assignment, allocating of all the data onto a disk array before they are accessed, is one 
of such avenues that can significantly affect the overall performance of a parallel I/O 
system [1][12][19]. Generally, these algorithms place data onto a parallel disk array 
so that a special cost function or performance metrics can be optimized. While 
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common cost functions include communication costs, storage costs, and queuing 
costs, popular performance metrics are mean response time and overall system 
throughput [5]. It is well-known that finding the optimal solution for a cost function 
or a performance metric in the context of data placement on multiple disks is an NP-
complete problem [5]. Thus, heuristics algorithms became practical solutions. 

Energy consumption of disk based storage systems has become a salient issue that 
not only raises the costs but also inversely affects our environment [18]. According to 
a recent industry report [17], storage devices contribute for around 27% of the total 
energy consumed by a data center. This problem will become much more severe with 
an explosive increase of data volume and the emerging of faster disks with higher 
power requirements. Therefore, energy-conservation and prompt response need to be 
achieved simultaneously through intelligent data placement. Unfortunately, traditional 
data placement algorithms such as Greedy [7], Sort Partition (SP) [12], and Hybrid 
Partition (HP) [12], for parallel disk systems only pursue minimized mean response 
times and normally ignore energy-conservation. Furthermore, most current energy-
saving techniques adversely affect system performance [4][16]. Thus, seeking a good 
trade-off between energy-saving and graceful performance degradation becomes their 
feasible goal. Now the question is: can we develop a new data placement strategy so 
that energy-saving can be achieved without a trade-off of performance? 

In this paper we address the problem of energy-saving yet quick-response data 
placement in a parallel disk storage system where data accesses exhibit Poisson 
arrival rates and fixed service times. Each data can be viewed as a file, which will be 
assigned onto an array of disks in a striping manner. We propose a novel energy-
saving data placement strategy, called Striping-based Energy-Aware (SEA), which 
aims at minimizing mean response time and overall energy-consumption 
simultaneously. The basic idea of SEA is to statically place popular data onto a subset 
of the disks in the array and assign unpopular data onto the rest of disks. The rationale 
behind this idea is that the distribution of web page requests generally follows a Zipf-
like distribution [12] where the relative probability of a request for the i’th most 
popular page is proportional to 1/iα, with α typically varying between 0 and 1 [2][15]. 
Moreover, the request frequency and the file size are inversely correlated, i.e., the 
most popular files are typically small in size, while the large files are relatively 
unpopular [12]. Based on these workload characteristics, we divide all data into two 
categories: popular and unpopular according to their popularity weights [15]. 
Similarly, we separate disks in a disk array into two zones: hot disk zone and cold disk 
zone. Disks in hot disk zone are called hot disks with popular data, whereas disks in 
cold disk zone are named cold disks with unpopular data. As a result, the overall load 
balancing between two zones can be achieved, which improves the inter-request 
parallelism. Next, we employ multi-speed disks in the disk array to save energy. 
Specifically, hot disks are always running in a higher speed mode with more energy 
consumption, while cold disks are continuously operating in a lower speed mode with 
less energy dissipation. Although real multi-speed (more than 2 speeds) hard disks are 
not widely available in the market yet, a few simple variations of multi-speed disks, 
such as a two-speed Hitachi Deskstar 7K400 hard drive has recently been produced 
[9]. For simplicity, in this study we only utilize 2-speed hard disks. Note that once a 
disk was configured as a hot disk or a cold disk, its operation characteristics such as 
transfer (read) speed and energy consumption rate is fixed and it cannot be 
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dynamically switched to the other mode during the process of serving requests. 
Further, to provide quick responses, we combine SEA with RAID structures so that 
each data (file) is partitioned into multiple same size stripe blocks, which are then 
allocated across an array of disks. This way all disks in the same zone can 
simultaneously serve a request. The implication is that the response time of the 
request can be dramatically decreased due to an enhanced intra-request parallelism. 

The rest of the paper is organized as follows. In the next section we discuss the 
related work and motivation. A system model and an energy consumption model were 
built in Section 3 and Section 4, respectively. Section 5 presents the SEA strategy and 
introduces three existing algorithms. In Section 6 we evaluate performance of our 
algorithms based on synthetic benchmarks. Section 7 concludes the paper with 
summary and future directions. 

2   Related Work and Motivation 

Very recently energy-saving for parallel disk storage systems began to draw much 
attention from research community [3][4][8][10][16]. A multi-speed parallel disk 
system that can modulate disk speed dynamically was proposed by Gurumurthi et al. 
[8]. In [10] data replication was used to dynamically place copies of data in free 
blocks according to the disk access patterns. 

Comparing with the energy-efficient techniques mentioned above, data placement 
shows its unique advantages. First, to save disk energy, it has no need to modify 
applications. Next, no extra hardware such as cache is necessary. Last, the overhead 
of data placement strategy is relatively low and it is easy to implement. Attracted by 
these advantages, a research group led by Son proposed an array of energy-aware disk 
layout algorithms very recently [18]. Based on our knowledge, their studies are the 
only results of energy-aware data placement for parallel disk storage systems reported 
in the literature so far. However, their techniques have some obvious limitations. 
First, they are only dedicated for array-based scientific applications. Still, there are 
many other types of disk I/O-intensive applications, where energy conservation and 
quick response need to be realized simultaneously through data placement. Therefore, 
a more general energy-response efficiency data placement scheme that can be applied 
to a wide range of disk I/O-intensive applications is needed. Further, to apply their 
algorithms, one has to modify compiler to make it be aware of disk layout 
information. This requirement prevents them from being readily used because it 
incurs an extra burden for system software programmers. Besides, to better exploit 
existing power-saving capabilities, their disk layout algorithms need to be combined 
with application code restructuring to increase length of idle periods. This strategy 
demands modifications of application’s code, and thus brings users additional 
overhead. As a result, the need of a new energy-response efficiency data placement 
strategy that bridges the gap between the existing algorithms and the open problems is 
greatly felt. 

In this paper, we are proposing a static heuristic energy-aware strategy SEA, which 
can be incorporated with RAID structures to generate energy-aware data placement 
algorithms like SEA0 and SEA5. Our schemes are orthogonal to existing disk layout 
strategies. First, there is no need to modifying any software using our methods. 
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Second, our schemes are not dedicated for some particular applications. Thus, they 
are more general in the sense that they can be applied in multiple application domains. 
Without loss of generality, we assume that (1) each data is viewed as an independent 
file; (2) each data is allocated in a striping manner across an array of disks; (3) 
communication delays between any pair of disks are identical and negligibly small 
[12]; (4) disk access (read) to each data is modelled as a Poisson process with a mean 
access rate λi; (5) a fixed service time si for each data; for example, each read on a 
data results in a sequential scan of the entire data. For large size data, this assumption 
is valid because when the basic unit of data access is entire data, seek time, rotation 
latency, and controller overhead are negligible in comparison with data transfer time. 

3   System Model 

Data placement algorithms such as Greedy, SP, HP, SEA0, and SEA5 allocate a set of 
data (hereafter file) onto a group of 2-speed disks so that the mean response time can 
be minimized. The set of files is represented as F = {f1, ..., fu,  fv, …, fm}, which is 
further categorized into a popular file set Fh = {f1, ..., fh, ..., fu} and au unpopular file 
set Fc = {fv, ..., fc, ..., fm} (F = Fh ∪ Fc and Fh ∩ Fc = Ø). Since each file will be 
allocated onto a set of disks in a striping manner, let sp denote the size of a stripe in 
Mbyte and it is assumed to be a constant in the system. A file fi (fi ∈F) is modeled as 
a set of rational parameters, e.g., fi = (si, λi), where si, λi are the file’s size in Mbyte 
and its access rate. In this paper, requests to a file fu are modeled as a Poisson process 
with a mean access rate λi. Also, we assume each access to file fi is a sequential read 
of the entire file, which is a typical scenario in most file systems or WWW servers 
[11]. Besides, we assume that the distribution of file access requests is a Zipf-like 

distribution with a skew parameter θ = log 100
X /log 100

Y , where X percent of all 

accesses were directed to Y percent of files [12]. The value of X:Y is called skew 
degree (SD) in this paper and α =1- θ (see Section 1 for α). In addition, the file access 
frequency is inversely correlated to the file size. The number of popular files in F is 
defined as |Fh| = (1-θ) * m. Similarly, the number of unpopular files is |Fc| = θ * m. 
Thus, the ratio between the number of popular files and the number of unpopular files 
in F is defined as η 

θ
θη −= 1 . (1) 

A disk array storage system consists of a linked group D ={d1, ..., de, df, …, dn} of n 
independent 2-speed disk drives, which can be divided into a hot disk zone  Dh ={d1, 
..., dh, …, de} and a cold disk zone Dc={df, ..., dc, ..., dn}(D = Dh ∪ Dc and Dh ∩ Dc = 
Ø). Disks in the hot zone are all configured to their high speed modes, which always 
run in the high transfer rate th (Mbyte/second) with the high active power 
consumption rate ph (Joule/Mbyte) and the high idle power consumption rate ih 
(Watt). Similarly, disks in cold zone are set to their low speed modes, which 
continuously operate in the low transfer rate tl (Mbyte/second) with the low active 
power consumption rate pl (Joule/Mbyte) and the low idle power consumption rate il 
(Watt). In the system, a hot disk dh (dh ∈  Dh) is modeled as a tuple dh = (c, th, ph, ih) 
where c is the capacity of dh in GByte. Similarly, a cold disk dc (dc ∈  Dc) is modeled 
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as a tuple dc = (c, tl, pl, il) where c is the capacity of dc in GByte. Since we only 
consider homogeneous disks, all disks have the same capacity c. We assume that 
disks are always large enough to accommodate files to be assigned on them. Each 
popular file fh ∈  Fh is partitioned in multiple units with the size of each unit equal to 
sp. All units of fh will be allocated across the hot disks in a RAID-0 (striping without 
parity) or a RAID-5 fashion (striping with parity). Similarly, each unpopular file fc ∈  
Fc is also partitioned into multiple size sp units and then allocated across the cold 
disks in a RAID-0 or a RAID-5 manner. Let svi be the expected service time of file fi 
(fi ∈F). It can be computed by 
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Since the combination of λi and svi accurately gives the load of fi, we define the 
load hi of fi as follows [12]: 

hi = λi · svi. (3) 

The ratio between the number of hot disks and the number of cold disks is defined 
as γ, which is decided by the ratio between the total load of popular files and the total 
load of unpopular files as below 
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We employ the First-Come-First-Serve (FCFS) scheduling heuristic to schedule 
arrival requests. Suppose there are totally u requests in a request set, which visits a 
file set that has been allocated on a disk array. The request set is designated as R = 
{r1, ..., rk, …, rx}, which can be separated into a hot request set  Rh ={rb, ..., rh, …, ro} 
and a cold request set Rc={rp, ..., rc, ..., rs} (R = Rh ∪ Rc, Rh ∩ Rc = Ø). Each request is 
modeled as rk = (fidk, ak), where fidk is the file identifier targeted by the request and ak 
is the request’s arrival time. For each arrival request, the FCFS scheduler uses the 
allocation scheme X generated in data placement stage to find the disks on which the 
target file of the request resides. In fact, the request workload is an m-class workload 
with each class of requests having its fixed λi. 

To obtain the response time of a request rk, two important parameters, the earliest 
start time and the latest finish time of rk must be computed. We denote the earliest 
start time and the latest finish time of rk by est(rk) and lft(rk), respectively. In what 
follows we present derivations leading to the final expressions for these two 
parameters. Since each file is distributed across multiple disks in a striping manner, 
we need to compute the start time and the finish time for each stripe of the file that 
request rk is targeting on. Suppose rk is visiting file fi, which was distributed on a disk 
set {da, ..., dg, …, dw} (a ≤  g ≤ w, 1 ≤ a, g, w ≤ e or f ≤ a, g, w ≤ n). The stripe set of   
fi is represented as { 1

is , ..., k
is , …, z

is }, where 
sp

s
z i= . Also, a disk dg has its own 

local queue Qg in the set {Qa, ..., Qg, …, Qw}. There are three cases when rk arrives on 



40 T. Xie and Y. Sun 

disk dg. First, dg is idle and Qg is empty. Second, dg is busy but Qg is empty. Third, dg 

is busy and Qg is not empty. Thus, the start time for a strip k
is on disk dg is 
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where rg represents the remaining service time of a request currently running on dg, 
and ∑

≤∈ kpgp

p
aaQr

fidt
,

 is the overall service time of requests in Qg whose arrival times are 

earlier than that of rk. Consequently, k
gft (rk) can be calculated by 

)( k
k
g rft  = )( k

k
g rst + tsi, (6) 

where tsi is the service time of the stripe k
is on disk dg and it can be computed using 

the following formula  
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As a result, the earliest start time of request rk can be obtained by  

est(rk)=min{ )(1
kg rst ,., )( k

k
g rst , ., )( k

z
g rst }. (8) 

Consequently, the latest finish time of rk can be calculated by  

lft(rk)=max{ )(1
kg rft ,., )( k

k
g rft ,., )( k

z
g rft }. (9) 

Hence, the response time of rk can be obtained  

t(rk) = lft(rk) - est(rk). (10) 

Thus, the mean response time of the request set R is expressed as below  
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4   Energy Consumption Model   

For a request rh in the hot request set Rh, assume it accesses a popular file fh in the 
popular file set Fh, which is allocated in the hot disk zone. The energy consumed by rh 
can be written as below 

h
hactive

h p

s
e =  (12) 
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The service time for rh provided by a set of hot disks, where file fh were allocated 
can be computed as follows  

h
hactive

h t

s
at =  (13) 

Thus, the energy consumption of the whole hot request set can be derived by  
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Similarly, the total service time imposed by the whole hot request set Rh in the hot 
disk zone is  

∑
=

=
|R|

1

h

h

active
h

active
R atat

h
 (15) 

In addition, we define rftk as the finish time of request rk. Then, we obtain the 
analytical formula for the energy consumed by the hot disks when they are idle: 
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Hence, the total energy consumed by the hot disk zone can be computed by  
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Similarly, the total energy consumed by the cold disk zone can be obtained by  
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Therefore, the total energy consumption for the whole storage system is: 

coldhottotal eee +=   (19) 

5   The SEA Strategy 

In this section, we first present a detailed description of the SEA strategy. Then we 
briefly introduce the three baseline algorithms Greedy, SP, and HP. 

Fig. 1 outlines SEA with some detailed explanations. Note that the input F has 
been sorted in an ascending order in terms of popularity before it is fed into SEA. In 
other words, file f1 is the most popular file with the smallest file size, whereas file fm is 
the most unpopular one with the largest file size. First, SEA uses the skew parameter 
θ to derive the number of popular files and the number of unpopular files in F based 
on Eq. 1 (Step 1). Second, Step 2 calculates γ, the ratio between the number of hot 
disks and the number of cold disks, based on Eq. 4, which in turn results in the 
number of hot disks HD and the number of cold disks CD. Consequently, HD of n 
disks are configured to their high speed modes and CD of n disks are set to their low 



42 T. Xie and Y. Sun 

speed modes (Step 4). Next, SEA assigns all popular files onto the hot disk zone in a 
striping manner (Step 5–Step 16). Similarly, all unpopular files are allocated onto the 
cold disk zone in a striping fashion (Step 17 – Step 28). 

Input: A disk array D with n 2-speed disks, a collection of m files in the set F, and the 
skew parameter 

Output: A file allocation scheme X (m, k), where 
sp
sk i

m

i 1
max

1.  Use Eq. 1 to compute the number of popular files and number of unpopular files in F
2.  Use Eq. 4 to compute 
3.  Hot disk number 

1
nHD , cold disk number CD = n – HD, dh=1,  dc=1

4.  Configure HD of n disks to high speed mode and set CD of n disks to low speed mode 
5. for each popular file fp Fh do            
6.      p = 1; 
7.      for each stripe spp of fp do
8.         X(fp, p) = dh                  
9.             p = p + 1               
10.           if dh = = HD             
11.                dh = 1 
12.           else
13.               dh = dh + 1 
14.           end if 
15. end for
16. end for
17. for each unpopular file fu Fc do
18.      u = 1; 
19.      for each stripe spu of fu do
20.         X(fu, u) = dc                        
21.           u = u + 1                         
22.           if dc = = CD                   
23.               dc = 1 
24.          else
25.               dc = dc + 1 
26.         end if 
27. end for
28. end for

 

Fig. 1. The SEA strategy 

The average disk load ρ can be obtained by the following equation: 

∑ =
⋅= m

i ih
n 1

1ρ  (20) 

Note that all the three existing algorithms assign nonparitioned files onto a disk 
array. In other words, each file must be allocated entirely onto one disk. In addition, 
since they only pursue minimized mean response times, all disks in the disk array are 
set to hot disks with high speed. The three algorithms are briefly described below. 
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(1) Greedy:  It first calculates the mean load of all files and then assigns a consecutive 
set of files whose total load is equal to the mean load onto each disk.  
(2) SP (Sort Partition): It first computes the average disk utilization using Eq. 13. 
Next, it sorts all files into a list I in descending order of their service times.  Finally, it 
allocates each disk dj the next contiguous segment of I until its load loadj reaches the 
maximum allowed threshold ρ. The remainder files (if any) after one round allocation 
will be assigned to the last disk dn.  
(3) HP (Hybrid Partition): For each batch, HP assigns files to disks in distinct 
allocation intervals. It selects, for each allocation intervals l, a different disk dk as the 
allocation target. It chooses the disk with the smallest accumulated load. A number of 
files are allocated to dk until its load reaches the threshold Tk. 

6   Performance Evaluation 

6.1   Simulation Setup  

We adopt the same strategy used in [16] to derive corresponding low speed mode disk 
statistics from parameters of a conventional Cheetah disk. The main characteristics of 
the 2-speed disk are shown in Table 1. The performance metrics by which we 
evaluate system performance include: 

(1) Mean response time: Average response time of all file access request submitted to 
the simulated parallel disk storage system. Note that the mean response times are 
normalized in the scale [0, 1]. 
(2) Energy consumption: Energy (in Joules) consumed by the disk systems during the 
process of serving the entire request set.  
(3) Mean slowdown: The ratio between average request turnaround time and average 
request service time. 

Table 1 summarizes the configuration parameters of a simulated parallel disk array 
system used in our experiments and characteristics of the synthetic workload. All 
synthetic workload used were created by our trace generator. 

Table 1. Characteristics of system parameters 

Parameter Value  
Transfer rate in low mode 9.3 Mbytes/second 
Idle power at low mode 2.17 Watts 
Active energy at low mode (8-KB read) 43 mJoules 
Transfer rate in high mode 31 Mbytes/second 
Idle power at high mode 5.26 Watts 
Active energy at high mode (8-KB read) 61 mJoules 
Number of files (5000) 
Simulation duration (1000) seconds 
Aggregate access rate (35) – (21~45) (1/second) 
γ 3:13 ~ 10:6 
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6.2   Overall Performance Comparison    

The goal of this experiment is to compare the proposed SEA0 and SEA5 algorithms 
against the three well-known file assignment schemes, and to understand the 
sensitivity of the five heuristics to the aggregate access rate in a parallel disk storage 
system, where an array of 2-speed disk drives serve requests simultaneously. The 
aggregate access rate varies from 21 (1/second) to 45 (1/second). The file sizes were 
generated according to a Zipf-like distribution with skew degree 70:30 and file size 
base is set to 1 Mbyte. 

(b) (c) (a)  

Fig. 2. Impact of aggregate access rate 

Fig. 2 shows the simulation results for the five algorithms on a parallel disk array 
with 16 disk drives, where 5 of them are hot disks and 11 of them are cold disks. We 
observe from Fig. 2a that SEA0 and SEA5 consistently outperform the three exiting 
approaches in terms of mean response time.  This is because they employ a striping-
based data placement scheme, where intra-request parallelism is very high. Compared 
with the SP algorithm, SEA0 and SEA5 can reduce mean response time on average by 
52.15% and 48.04%,  while saving energy on average no less than 10.12% and 
9.35%, respectively (see Fig. 2b). Although we only test a relatively light physical 
read workload (in the range [21, 45] 1/second), the actual system workload can be 10 
times heavier (in the range [210, 450] 1/sccond) because of very low miss rates (less 
than 10%) provided by the high speed buffers on the data servers. The implication is 
that both SEA0 and SEA5 can be applied in applications where system workload is 
heavy. One example of such applications is OLTP (Online Transaction Processing). 

7   Summary and Future Work 

In this paper, we developed a new energy-saving strategy, called striping-based 
energy-aware (SEA), to generate optimized file allocation schemes. SEA0 and SEA5, 
two SEA-powered RAID-based data placement algorithms are implemented to 
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evaluate the effectiveness and practicality of SEA. Comprehensive experimental 
results show that both SEA0 and SEA5 consistently improve the performance of 
parallel disk storage systems in terms of mean response time and save energy over 
three well-known data placement algorithms. Normally, there are two inherent 
drawbacks of current multi-speed disk based energy-saving approaches. First, disk 
speed mode transitions bring extra overhead in terms of transition time and transition 
energy [16], which is against their original goals. Second, frequent disk speed mode 
transitions are detrimental to the lifetime of hard disks [3]. SEA0 and SEA5 avoid 
these two shortcomings by statically configuring all disks to one of the multiple 
modes prior to serving requests. Furthermore, there is no speed mode transition 
during the process of serving the requests.  

In summary, the SEA strategy realizes energy-saving not at the cost of 
performance degradation. Rather, it delivers much shorter mean response times 
compared with existing non-energy-aware data placement algorithms. Besides, it can 
provide fault-tolerance because of the RAID structures that it relies on. We will 
extend our scheme to a fully dynamic environment, where file access characteristics 
are not known in advance and may vary over time. As a result, a dynamic energy-
saving data placement strategy is mandatory so that dynamically arrived files can be 
re-allocated by migrating files from one disk to another. File migration, however, 
incurs a relatively heavy overhead. How to make a good trade-off between migration 
cost and algorithm efficiency is a problem that needs to be solved. 
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Abstract. High performance sparse direct solvers are often a method
of choice in various simulation problems. However, they require a large
amount of memory compared to iterative methods. In this context, out-
of-core solvers must be employed, where disks are used when the storage
requirements are too large with respect to the physical memory avail-
able. In this paper, we study how to minimize the I/O requirements in
the multifrontal method, a particular direct method to solve large-scale
problems efficiently. Experiments on large real-life problems also show
that the volume of I/O obtained when minimizing the storage require-
ment can be significantly reduced by applying algorithms designed to
reduce the I/O volume.

1 Introduction

We are interested in solving a sparse system of linear equations of the form
Ax = b by a so-called direct method. Such methods work in three phases: (i) an
analysis phase, that orders the variables of the problem to limit the computations
and prepares the work for the factorization; (ii) a numerical factorization phase,
where A is factored under the form LU , LLt or LDLt; and (iii) a solve phase,
where triangular factors are used to obtain the solution of the problem. Because
of their large memory requirements, several authors have worked on out-of-core
sparse direct solvers [1,3,8,12,15,16,17]. Left-looking and multifrontal methods
are two main classes of sparse direct methods that can be extended to an out-of-
core context. In that case, a left-looking approach allows to reduce significantly
the minimal memory requirements, while the multifrontal method may lead to
large frontal matrices that prevent processing arbitrarily large problems [16] if
frontal matrices are not assembled and factored with out-of-core algorithms. On
the other hand, for problems in which the largest frontal matrix fits in memory
or can be treated reasonably using an out-of-core algorithm, the multifrontal
method remains interesting [7,14] and motivates the design of robust software
solutions [2,15].

In the multifrontal method, the factorization of a sparse matrix A is done
by a succession of partial factorizations of small dense matrices called frontal
� Partially supported by ANR project SOLSTICE, ANR-06-CIS6-010.
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matrices. Since the frontal matrices are dense, this method allows an efficient
use of memory hierarchy and caches, where optimized dense kernels (BLAS) can
be applied. For matrices with a symmetric structure (or in approaches like [6]
when the structure of matrix A is unsymmetric), each frontal matrix is associated
with a node of a so-called assembly tree which represents the dependencies of
the tasks in the factorization algorithm. Before a partial factorization of a parent
node can be performed, temporary data (so-called contribution blocks) extracted
from the frontal matrices of children are assembled into the frontal matrix of the
parent. The parent is then factored and the contribution block it produces is in
turn kept in memory for later use at the upper layer of the tree. Since the factors
are terminal data for the factorization phase, it appears natural to write them
to disk as soon as they are produced. Focusing on memory handling issues, the
multifrontal algorithm may be presented as follows:

foreach node k in the tree (postorder traversal) do
Allocate memory for the frontal matrix of k
if k is not a leaf then

Assemble and free contributions from children
Perform a partial factorization of the frontal matrix of k, writing factors to
disk on the fly
Keep the contribution block of k for later use

Note that, because we rely on a post-order traversal, the multifrontal algo-
rithm can use a stack mechanism to store the contribution blocks: the contri-
bution blocks produced last are the first ones assembled. Still, there is a lot of
freedom to order the siblings at each level of the tree so that the tree traversal
can have a significant impact on both the number of contribution blocks stored
simultaneously and the memory usage. Liu [13] (and, more recently, [11,10])
have shown the impact of the tree traversal on the memory behaviour and pro-
posed tree traversals that minimize the storage requirements of the multifrontal
method when factors are systematically written to disk. With this assumption,
Liu suggested in the conclusion of [13] that minimizing the storage requirements
was well adapted to an out-of-core execution.

In this paper we focus on the volume of I/O related to the stack of contribution
blocks and we aim at designing optimal tree traversals with respect to minimizing
the volume of I/O. By expressing this volume in a formal way, we show that
minimizing the storage requirements is different from minimizing the volume of
I/O.

Note that we consider several minor variants of the multifrontal algorithm.
We call last-in-place a variant of the assembly scheme (available, for example,
in a code like MA27 [9]) where the memory of the frontal matrix at the parent
node is allowed to overlap with the contribution block of the last child. In that
case, we save memory by not summing the memory of the frontal matrix of
the child with the memory of the frontal matrix of the parent (a maximum
between these two values is enough). We also propose a new variant, where we
overlap the memory for the frontal matrix of the parent with the memory of the
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child having the largest contribution block (even if that child is not processed
last). For each variant, we present the tree traversal that minimizes memory
(algorithms so called MinMEM); then, we show by how much the volume of I/O can
be reduced (depending on the physical memory available) with new algorithms
(called MinIO) that minimize the I/O volume.

The paper is organized as follows. In Sections 2 and 3, we explain how to
model and minimize the volume of I/O induced by the classical and last-in-
place schemes, respectively. In Section 4, we discuss the new variant of the in-
place algorithm. Section 5 illustrates the difference between MinMEM and MinIO
on matrices arising from real-life problems, and shows the interest of the new
in-place variant proposed.

2 Limiting the Amount of I/O

Before discussing the volume of I/O, we introduce some general notations. In
a limited memory environment, we define M0 as the volume of core memory
available. As described in the introduction, the multifrontal method is based on
a tree in which a parent node is allocated in memory after all its child subtrees
have been processed. When considering a generic parent node and its n children
numbered j = 1, . . . , n, we note:

– cbj , the storage for the contribution block passed from child j to the parent;
– m / mj , the storage of the frontal matrix associated to the parent node / to

child j (note that mj > cbj and mj − cbj is the size of the factors produced
by child j);

– S / Sj , the storage required to process the subtree rooted at the parent /
at child j (note that if Sj < M0, no I/O is necessary to process the whole
subtree rooted at j);

– V I/O / V
I/O
i the volume of I/O required to process the subtree rooted at

node j given an available memory of size M0.

2.1 Illustrative Example

To illustrate the memory behaviour, let us take the toy example described in
Figure 1(left): we consider a root node (e) with two children (c) and (d). The
frontal matrix of (e) requires a storage me = 5. The contribution blocks of (c)
and (d) require a storage cbc = 4 and cbd = 2, while the storage requirements
for their frontal matrices are mc = 6 and md = 8 respectively. (c) has itself two
children with characteristics cba = cbb = 3 and ma = mb = 4. We assume that
the core memory available is M0 = 8.

To respect a postorder traversal, there are two possible ways to process this
tree: (a-b-c-d-e) and (d-a-b-c-e). (Note that (a) and (b) are identical and can be
swapped.) For each sequence we now describe the memory behaviour and I/O
operations. We first consider sequence (a-b-c-d-e). (a) is first allocated (ma = 4)
and factored (we write its factors of size ma − cba = 1 to disk), and cba = 3
remains in memory. After (b) is processed, the memory contains cba + cbb = 6.
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a b

c d

e

cba = 3 cbb = 3

cbc = 4 cbd = 2

me = 5

ma = 4 mb = 4

mc = 6 md = 8

Sequence a-b-c-d-e

Storage: S = 12

I/O: V I/O = 8

⇒ Memory minimized

Sequence d-a-b-c-e

Storage: S = 14

I/O: V I/O = 7

⇒ I/O minimized

Fig. 1. Influence of the tree traversal on the storage requirement and on the volume of
I/O (with M0 = 8)

Then a peak of storage Sc = 12 is reached when the frontal matrix of (c) is
allocated. Since only 8 (MegaBytes, say) can be kept in core memory, this leads
to write to disk a volume of data equal to 4. During the assembly process we
first assemble contributions that are in memory, and then read (r4) data from
disk to assemble them in turn in the frontal matrix of (c). After the factors
of (c) of size mc − cbc = 2 are written to disk, its contribution block cbc = 4
remains in memory. When leaf node (d) is processed, the peak of storage reaches
cbc+md = 12. This leads to a new volume of I/O equal to 4 (and corresponding to
cbc). After (d) is factored, the storage requirement is equal to cbc+cbd = 6 among
which only cbd = 2 is in core (cbc is already on disk). Finally, the frontal matrix of
the parent (of size me = 5) is allocated, leading to a storage cbc + cbd +me = 11:
after cbd is assembled in core (into the frontal matrix of the parent), cbc is read
back from disk and assembled in turn. Overall the volume of data written to
(and read from) disk1 is V

I/O
e (a-b-c-d-e)= 8 and the peak of storage was Se(a-

b-c-d-e)= 12.
When the tree is processed in order (d-a-b-c-e), the storage requirement suc-

cessively takes the values md = 8, cbd = 2, cbd + ma = 6, cbd + cba = 5,
cbd + cba + mb = 9, cbd + cba + cbb = 8, cbd + cba + cbb + mc = 14, cbd + cbc = 6,
cbd + cbc + me = 11, with a peak Se(d-a-b-c-e)= 14. Nodes (d) and (a) can be
processed without inducing I/O, then 1 unit of I/O is done when allocating (b),
5 units when allocating (c), and finally 1 unit when the frontal matrix of the
root node is allocated. We obtain V

I/O
e (d-a-b-c-e)= 7.

We observe that the postorder (a-b-c-d-e) minimizes the peak of storage, while
(d-a-b-c-e) minimizes the volume of I/O. This shows that minimizing the peak
of storage is different from minimizing the volume of I/O.

2.2 Expressing the Volume of I/O

Since contribution blocks are stored thanks to a stack mechanism, some con-
tribution blocks (or parts of contribution blocks) may be kept in memory and

1 Remember that we do not count I/O for factors since factors are written to disk
systematically in all variants considered.
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consumed without being written to disk [3]. Assuming that the contribution
blocks are written only when needed (possibly only partially), that factors are
written to disk as soon as they are computed, and that a frontal matrix must
fit in core memory, we focus on the computation of the volume of I/O on this
stack of contribution blocks.

When processing a child j, the contribution blocks of all previously pro-
cessed children have to be stored. Their memory size sums up with the storage
requirements Sj of the considered child, leading to a global storage equal to
Sj +

∑j−1
k=1 cbk. After all the children have been processed, the frontal matrix (of

size m) of the parent is allocated, requiring a storage equal to m +
∑n

k=1 cbk.
Therefore, the storage required to process the complete subtree rooted at the
parent node is given by the maximum of all theses values, that is:

S = max

(

max
j=1,n

(Sj +
j−1∑

k=1

cbk), m +
n∑

k=1

cbk

)

(1)

Knowing that the storage requirement S for a leaf node is equal to the size of
its frontal matrix m, applying this formula recursively (as done in [13]), allows
to determine the storage requirement for the complete tree.

In our out-of-core context, we now assume that we are given a core memory
of size M0. If S > M0, some I/O will be necessary. Since the contribution blocks
are accessed with a stack mechanism, writing the bottom of the stack first results
in an optimal volume of I/O. To simplify the discussion we first consider that
Sj ≤ M0 for all children j. The volume of contribution blocks that will be written
to disk corresponds to the difference between the memory requirement at the
moment when the peak S is obtained and the size M0 of the memory allowed
(or available). Indeed, each time an I/O is done, an amount of temporary data
located at the bottom of the stack is written to disk. Furthermore, data will only
be reused (read from disk) when assembling the parent node. More formally,
the expression of the volume of I/O, V I/O, using Formula (1) for the storage
requirement, is:

V I/O = max

(

0, max(max
j=1,n

(Sj +
j−1∑

k=1

cbk), m +
n∑

k=1

cbk) − M0

)

(2)

Suppose now that ∃j : Sj > M0. We know that child j will have an in-
trinsic volume of I/O V

I/O
j (recursive definition based on a bottom-up traver-

sal of the tree). In addition, we know that it cannot occupy more than M0
in memory. Thus, we can consider it as a child using exactly M0 memory
(Aj

def
= min(Sj , M0)), and inducing an intrinsic volume of I/O equal to V

I/O
j .

With this definition of Aj as the active memory, i.e. the amount of core memory
effectively used to process the subtree rooted at child j, we can now generalize
Formula (2). We obtain:

V I/O = max

(

0, max(max
j=1,n

(Aj +
j−1∑

k=1

cbk), m +
n∑

k=1

cbk) − M0

)

+
n∑

j=1

V
I/O
j (3)
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To compute the volume of I/O on the whole tree, we apply recursively For-
mula (3) at each level of the tree (knowing that V I/O = 0 for leaf nodes). The
volume of I/O for the factorization is then given by the value of V I/O value at
the root.

2.3 Tree Traversals

It results from Formula (3) that minimizing the volume of I/O is equivalent to
minimizing the expression maxj=1,n(Aj +

∑j−1
k=1 cbk), since it is the only term

sensitive to the order of the children.

Theorem 1. (Liu, 86) Given a set of values (xi, yi)i=1,...,n, the minimal value
of maxi=1,...,n(xi +

∑i−1
j=1 yj) is obtained by sorting the sequence (xi, yi) in de-

creasing order of xi − yi, that is, x1 − y1 ≥ x2 − y2 ≥ . . . ≥ xn − yn.

Thanks to Theorem 1 (proved in [13]), we deduce that we should process the
children nodes in decreasing order of Aj −cbj = min(Sj , M0)−cbj . (This implies
that if all subtrees require a storage Sj > M0 then MinIO will simply order
them in increasing order of cbj .) An optimal postorder traversal of the tree is
then obtained by applying this sorting at each level of the tree, constructing
Formulas (1) and (3) from bottom to top. We will name MinIO this algorithm.

Note that, in order to minimize the peak of storage (defined in Formula (1)),
children had to be sorted (at each level of the tree) in decreasing order of Sj −cbj

rather than Aj − cbj . The corresponding algorithm (that we name MinMEM and
that leads to sequence (a-b-c-d-e) on the example from Section 2.1) is thus
different from MinIO (that leads to (d-a-b-c-e)).

3 In-Place Assembly of the Last Contribution Block

In this variant (used in of the MA27 [9] and its successors, for example) of the
classical multifrontal algorithm, the memory of the frontal matrix of the parent is
allowed to overlap with (or to include) that of the contribution block from the last
child. The contribution block from the last child is then expanded (or assembled
in-place) in the memory of the parent. Since the memory of a contribution block
can be large, this scheme can have a strong impact on both storage and I/O
requirements. In this new context, the storage requirements needed to process a
given node (Formula (1)) becomes:

S = max

⎛

⎜
⎝max

j=1,n
(Sj +

j−1∑

k=1

cbk), m +
n-1
∑

k=1

cbk

⎞

⎟
⎠ (4)

The main difference with Formula (1) comes from the in-place assembly of the
last child (see the boxed superscript in the sum in Formula (4)). In the rest of the
paper we will use the term last-in-place to denote this scheme. Liu has shown[13]



Reducing the I/O Volume in an Out-of-Core Sparse Multifrontal Solver 53

that Formula (4) could be minimized by ordering children in decreasing order of
max(Sj , m) − cbj .

In an out-of-core context, the use of this in-place scheme induces a modi-
fication of the amount of data that has to be written to/read from disk. As
previously for the memory requirement, the volume of I/O to process a given
node with n children (Formula (3)) becomes:

V I/O = max

⎛

⎜
⎝0, max(max

j=1,n
(Aj +

j−1∑

k=1

cbk), m +
n-1
∑

k=1

cbk) − M0

⎞

⎟
⎠ +

n∑

j=1

V
I/O
j

Once again, the difference comes from the in-place assembly of the contribu-
tion block coming from the last child. Because m +

∑n−1
k=1 cbk = maxj=1,n(m +

∑j−1
k=1 cbk), this formula can be rewritten as:

V I/O = max

(

0, max
j=1,n

(max(Aj , m) +
j−1∑

k=1

cbk) − M0

)

+
n∑

j=1

V
I/O
j (5)

Thanks to Theorem 1, minimizing this quantity can be done by sorting the
children nodes in decreasing order of max(Aj , m)− cbj , at each level of the tree.

4 In-Place Assembly of the Largest Contribution Block

In order to do better than equation (4), one is tempted to try to overlap the
memory of the parent not with the contribution from the last child, but with
the largest child contribution block. Compared to Equation (1) corresponding to
the classical scheme, cbmax must be subtracted from the term m+

∑
j cbj . Since

cbmax is a constant that does not depend on the order of children, minimizing
the storage (MinMEM) is done by using the same tree traversal as for the classical
scheme (decreasing order of Sj − cbj). We call this new scheme max-in-place.
From an implementation point of view, note that the in-place assembly of the
largest contribution block requires storing it in a particular area, rather than in
the main stack. While processing the tree using a postorder, we thus need to
use two stack mechanisms: one for the normal contribution blocks (for example
on the left of a workarray), and one for the largest contribution blocks of each
family (for example in the right part of the same workarray). The second one
is used to extend the adequate contribution block into the frontal matrix of the
parent.

In an out-of-core context, it is not immediate or easy to generalize MinIO.
Indeed, there is no guarantee that we will be able to keep the largest contribution
block of a family in core memory to enable its in-place assembly (suppose, for
example, that a subtree ordered after that which induces the largest contribution
block forces us to write this contribution to disk). Therefore, we propose the
following heuristic. We first try to apply MinMEM + max-in-place to a given
family (in a bottom-up process). If this leads to a storage smaller than M0, we
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keep this approach to process this family. Otherwise, we switch to MinIO + last-
in-place to process this family and any parent family. In the following we name
this heuristic MinIO + max-in-place.

5 Experimental Results

In this section we experiment the behaviour of strategies presented in Sections 2,
3, and 4 on different matrices issued from the Parasol, Rutherford-Boeing or
university of Florida collections. The matrices used, numbered from 1 to 30,
are: AUDIKW 1, BCSSTK, BMWCRA 1, BRGM, CONESHL MOD, CONV3D 64, GEO3D-20-20-20,
GEO3D-50-50-50, GEO3D-80-80-80, GEO3D-20-50-80, GEO3D-25-25-100, GEO3D-120-80
-30, GEO3D-200-200-200, GUPTA1, GUPTA2, GUPTA3, MHD1, MSDOOR, NASA1824, NASA2910,
NASA4704, SAYLR1, SHIP 003, SPARSINE, THERMAL, TWOTONE, ULTRASOUND3, ULTRASOUND-
80, WANG3 and XENON2. Matrices GEO3D*, BRGM and CONV3D 64 come from Geoscien-
ces Azur, BRGM, and CEA-CESTA (code AQUILON), respectively. We used several
ordering heuristics, that, for a given matrix, define the task dependency graph
(or assembly tree) and impact the computational complexity. The volumes of
I/O were computed by instrumenting the analysis phase of MUMPS [5], which
allowed us to experiment four ordering heuristics: AMD, AMF, METIS and PORD. The
matrices have a size from very small up to very large (a few million equations)
and can lead to huge factors (and storage requirements). For example, the factors
of matrix CONV3D 64 with AMD ordering represent 53 GB of data.

As previously mentioned, the I/O volume depends on the amount of core
memory available. Figure 2 illustrates this general behaviour on a sample ma-
trix, TWOTONE ordered with PORD, for the 3 assembly schemes presented above, for
both MinMEM and MinIO algorithms. For all assembly schemes and algorithms
used, we first notice that exploiting all the available memory is essential to limit
the I/O volume. Before discussing the results we remind the reader that the
I/O volumes presented are valid under the hypothesis that the largest frontal
matrix may hold in-core. With a core memory lower than this value (i.e. the
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Fig. 2. I/O volume on matrix TWOTONE with PORD ordering as a function of the core
memory available, for the 3 assembly schemes presented above, for both MinMEM and
MinIO algorithm. The vertical bar represents the size of the largest frontal matrix.
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area on the left of the vertical bar in Figure 2), the I/O volumes presented are
actually lower bounds on the effective I/O volume. They are computed as if
we could process the out-of-core frontal matrices with a read-once write-once
scheme. They however remain meaningful because the extra-cost due to the spe-
cific treatment of frontal matrices will be independent of the assembly scheme
used. We first notice that the last-in-place assembly schemes strongly decrease
the amount of I/O compared to the classical assembly schemes. In fact, using
an in-place assembly scheme is very useful in an out-of-core context: it divides
the I/O volume by more than 2 on most of our test matrices. With the classical
assembly scheme (presented in Section 2) we observe (on this particular matrix)
that the MinIO and MinMEM algorithms produce the same I/O volume (their
graphs are identical). Coming back to Formula (3), we have minimized the term
max

(
maxj=1,n(Aj +

∑j−1
k=1 cbk), m +

∑n
k=1 cbk

)
by minimizing the first mem-

ber (the second one is constant); unfortunately on this particular matrix the
second term is usually the largest and there is nothing to gain. From the list of
matrices presented above, we have extracted four cases (one for each ordering
strategy) for which the gains are significant and we report them in Figure 3(a).
To better illustrate the gains resulting from the MinIO algorithm, we analyze
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Fig. 3. I/O volume obtained with MinMEM divided by the one obtained with MinIO. For
each matrix/ordering, the filled (right) part of the curve matches the area where the
amount of core memory is larger than the size of the largest frontal matrix, while the
dotted (left) part matches the area where this amount is lower. For each matrix, we
normalized the memory (x-axis) to the in-core minimum requirement.

the I/O volume ratios as a function of the amount of core memory available
(in percentage of the core memory requirements). For instance, the point of
(x = 80%, y = 1.3) (obtained with both BCSSTK and BMWCRA) means that MinMEM
leads to 30% more I/O when 80% of the in-core memory requirement is provided.

We now focus on the in-place assembly scheme (described in Section 3). As we
cannot show the graphs obtained for our whole collection of matrices, we again
decided to present in Figure 3(b) four cases (one for each ordering strategy)
for which MinIO was significantly more efficient than MinMEM (I/O volume was



56 E. Agullo, A. Guermouche, and J.-Y. L’Excellent

divided for instance by more than 2 for a large range of core memory amounts
on MHD1-AMF matrix). An extensive study has shown that the largest gains from
MinIO are obtained when matrices are preprocessed with orderings that tend to
build irregular assembly trees (AMF and PORD and to a lesser extent AMD - see [11]
for more details). On such trees, there is a higher probability to be sensitive to
the order of children.
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Fig. 4. Impact of max-in-place assembly scheme

We show in Figure 4(a) by how much the MinIO algorithm with a max-in-place
assembly scheme improved the MinIO last-in-place one, again on four matrices
of the collection (one for each ordering heuristic) for which we observed large
gains. To extend a contribution block different from the last one, this block must
be kept in memory. However, when the core memory available decreases, keeping
that data in-core may become a handicap. In this case the MinIO heuristic for
the max-in-place assembly scheme switches (as explained in Section 4) to a last-
in-place scheme. Thus, with a small amount of core memory, the last-in-place
and max-in-place MinIO heuristics have a similar behaviour (the left part of their
curves are identical in Figure 2(b); the ratio is equal to 1 in Figure 4(a)).

Figure 4(b) shows that the peak of storage (critical for the in-core case) can
also be decreased significantly. This allows us to interpret the extreme right parts
of the curves in Figure 4(a) which tend to (or are equal to) infinity: the max-
in-place assembly scheme does not induce I/O while the last-in-place scheme
does.

6 Conclusion and On-Going Work

Table 1 summarizes the contributions of this paper. We have reminded the exist-
ing memory-minimization algorithms for the classical and last-in-place assembly
schemes. We have shown that these algorithms are not optimal to minimize the
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Table 1. Summary. Contributions of this paper are in bold.

Objective function
Assembly scheme Algorithm Memory minimization I/O minimization
classical MinMEM • Optimum ([11], adapting[13]) • Reasonable but not optimum

MinIO • Not suited • Optimum
last-in-place MinMEM • Optimum[13] • Bad especially on irregular trees

MinIO • Not suited • Optimum
max-in-place MinMEM • Optimum • Not suited

MinIO • Optimum • Efficient heuristic

I/O volume. 2 We have proposed optimal algorithms for the I/O volume mini-
mization and have shown that significant gains could be obtained on real prob-
lems (especially with the in-place assembly scheme). We have then presented a
new assembly scheme (which consists in extending the child with the largest con-
tribution block) and a corresponding tree traversal which is optimal to minimize
memory and leads to an efficient heuristic when the objective is to minimize the
I/O volume.

This work is particularly important when applied to large-scale problems (mil-
lions of equations) in limited-memory environments (which is actually always the
case, even on high-end platforms). It is applicable for shared-memory solvers re-
lying on threaded BLAS libraries. In a parallel distributed context, it will help
to limit memory requirements and to decrease the I/O volume in the sequential
(often critical) parts of the computations.

We are currently working on adapting this work to a more flexible task alloca-
tion scheme, where the parent node is allowed to be allocated before all children
have been processed [10]. Again, instead of limiting the storage requirement of
the methods, the goal consists in minimizing the volume of I/O involved. The
work presented in this paper is a basis to this new and more difficult flexible
context.
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Abstract. The theory of bulk-synchronous parallel computing has pro-
duced a large number of attractive algorithms, which are provably op-
timal in some sense, but typically require that the aggregate random
access memory (RAM) of the processors be sufficient to hold the entire
data set of the parallel problem instance. In this work we investigate the
performance of parallel algorithms for extremely large problem instances
relative to the available RAM. We describe a system, Parallel Exter-
nal Memory System (PEMS), which allows existing parallel programs
designed for a large number of processors without disks to be adapted
easily to smaller, realistic numbers of processors, each with its own disk
system. Our experiments with PEMS show that this approach is practi-
cal and promising and the run times scale predictable with the number
of processors and with the problem size.

1 Introduction

In this work we investigate the performance of parallel algorithms for extremely
large problem instances relative to the available Random Access Memory (RAM).
Using theoretical results of [1,2], we transform parallel algorithms designed for a
large number of processors without disks to smaller, realistic numbers of proces-
sors, each with its own disk system.

External Memory (EM) Algorithms: These algorithms are designed so that
their run times scale predictably even as the size of their data increases far be-
yond the size of internal RAM. This huge data size requires that such algorithms
optimize the transfer of data between RAM and some sort of secondary memory
devices, typically moveable-head disk drives. The time to access an element of
data at an arbitrary position on a moveable-head disk is several orders of mag-
nitude greater than for RAM access. In addition, the time to set up the data
transfer (disk head movement, rotational delay) is much larger than the time
to actually transfer the data. Data items are grouped into blocks and accessed
block-wise by efficient external memory algorithms in order to amortize the setup
time over a large number of data items.
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A critical quality in a good EM algorithm is its locality of reference to items
in a disk block (or collection of disk blocks). EM algorithms are designed to
use all, or a significant fraction, of the elements in a block while the block is in
memory, avoiding the cases where the same block must be brought into memory
many times. The operating system’s data cache may interfere with the operation
of an EM algorithm, as it may make useless copies of data blocks, and occupy
RAM that could be used more effectively for other purposes. EM algorithms
manipulate huge data volumes relative to their RAM size, and so the time to
move data between RAM and disk dominates the running time in most cases.
For this reason, the Parallel Disk Model (PDM) [3] uses the number of distinct
disk block input or output (I/O) operations as a measure of the goodness of
an EM algorithm. If D disks are present and the block size is B items, a single
I/O operation can transfer BD items in parallel in this model. An optimal EM
algorithm is one that achieves the minimum number of I/O operations possible.

Coarse Grained Parallel Algorithms: These algorithms have a number of
interesting and useful properties for our purposes: (a) the processors perform
multiple rounds of computation separated by communication of interim results,
(b) during each computation round, the processors perform a chunk of compu-
tational work. For this period of time the processors operate completely inde-
pendently, and are restricted to accessing the data in their own local memories.
and (c) between computation rounds the processors synchronize and exchange
information via a communication network.

The simulation techniques described in [1] permit coarse grained parallel algo-
rithms to be executed efficiently on machines with p real processors rather than
the number of processors v required by the original algorithm, where 1 ≤ p ≤ v.
We refer to the original v processors as virtual processors. The tradeoff is that
each of the real processors must have enough disk space to store the internal
memory for v/p of the virtual processors plus the messages that would be sent
between the virtual processors in each communication round. The real proces-
sors must have enough RAM to represent at least one virtual processor at a
time, and that should be at least DB items in size so swapping between virtual
processors is I/O efficient. Finally, the communication should be I/O efficient,
meaning that at least DB blocks should be sent and received by each virtual pro-
cessor in each communication round. Intuitively, the simulation technique works
because the coarse grained property of the original parallel algorithm ensures
that the requisite locality of reference is present in the resulting EM algorithm.
We can “trade-off” some parallelism for blocked I/O but retain some parallelism
to take advantage of multiple real machines and the scalability of multiple disk
systems. The theoretical guarantees of asymptotically optimal parallelism and
I/O in the resulting algorithms makes them interesting for practical use, since
their parameters (v, p, B, D) can be scaled to fit the parallel hardware at hand.

Previous Work: The work of this paper extends the results of previous imple-
mentation work reported in [2] from a single processor to multiple real proces-
sors. LEDA-SM [4], TPIE [5] and STXXL [6] are I/O workbenches developed to
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explore external memory algorithm implementations for sequential machines.
TPIE provides prototype implementations of many contemporary EM algo-
rithms but currently it does not offer algorithms for multiple processors or mul-
tiple disks. STXXL provides a mechanism for asynchronous I/O and therefore
allows overlapping of I/O and computation. It handles multiple disks but it does
not itself support multiple processor algorithms. SSCRAP is a framework for
implementing parallel coarse grained algorithms and has been extended [7] to
support the simulation of certain parallel algorithms in external memory with
reference to the theoretical framework of [1]. However, it is not clear whether
SSCRAP handles communication traffic between virtual processors in an I/O-
optimal way, or whether very large problem instances relative to RAM size have
been tested.

Organization and Contributions of this Paper: This paper takes a step
forward in determining the practicality of the simulation approach. In Sect.
3, we describe a framework that allows existing MPI-based implementations
of CGM algorithms (or BSP algorithms with appropriate parameters) to be
executed efficiently on a machine with fewer real processors but with disk storage.
Such MPI-based programs are modified in the following ways: (a) calls to the
MPI library are replaced by calls to corresponding procedures in the PEMS
library and (b) calls to the C dynamic memory management routines are replaced
by calls to corresponding PEMS routines. In Sect. 4, we report preliminary
timing results for sorting that are comparable with TPIE and STXXL, two
contemporary workbenches for high performance I/O experiments. We compare
single processor instances of sorting on these workbenches with sorting using
various numbers of real processors running a CGM sample sort implementation.
While our timing results lagged those of TPIE and STXXL for a single processor,
we are able to surpass both by adding more processors. Our experiments show
that this approach is practical and promising and the run times scale predictable
with the number of processors and with the problem size.

2 Preliminaries

In this section we present the main ideas behind the simulation technique pro-
posed in [1]. It optimizes blockwise data access and disk I/O and at the same
time utilizes multiple processors connected via a communication network or
shared memory. The Bulk-Synchronous Parallel (BSP) model [8] consists of v
processor/memory components, a router that delivers messages in a point to
point fashion, and a facility to synchronize all processors. Each processor has a
unique label in the range 0, 1, . . . , v − 1. Computation proceeds in a succession
of supersteps separated by synchronizations, usually divided into communication
and computation supersteps. In computation supersteps processors perform local
computations on data that is available locally at the beginning of the superstep
and issue send operations. Between computation supersteps, a communication
superstep is performed, where each processor exchanges data with its peers, via
the router. This is done through an h-relation, where O(h) data are sent and
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received by every processor in a superstep. In addition to the parameters v and
h, BSP uses two additional parameters. The parameter g is the time required to
send a single word of data between two processors, where time is measured in
number of CPU operations, and the parameter L is the minimum setup time or
latency of a superstep, measured in CPU operations.

The technique in [1] simulates a v (virtual) processor BSP algorithm A′,
executing a problem of size N , which communicates via h-relations of size h =
O(N

v ) with λ supersteps/rounds, local memory size μ, computation time β +λL,
communication time gα + λL as a p (real) processor EM-BSP algorithm A with
v
pλ rounds, computation time v

p (β + O(λμ)) + v
pλL, communication time v

pgα +
v
pλL, and I/O time v

pG · O(λ μ
B ) + v

pλL for M = Θ(μ), N = Ω(vB), B = O( N
v2 ),

p < v. The parameter G is the ratio between the local computational capacity
and the local I/O capacity and the parameter B is the disk block size.

Next we sketch the main steps of the simulation. We distribute v virtual
processors evenly on p real processors. Each real processor i, 0 ≤ i ≤ p executes
the following steps (for a single processor simulation, we set p = 1, i = 0 and
omit Step 5):

For j = 0 to v
p − 1 do in parallel on each real processor i

1. Read the context of virtual processor i v
p + j from the local disk.

2. Read any messages addressed to virtual processor i v
p + j from the local disk.

3. Simulate the computation superstep of virtual processor i v
p + j, collecting

all generated messages in the local internal memory.
4. Send all generated messages to the required (real) destination processors.
5. Receive all messages addressed to real processor i on behalf of virtual pro-

cessors i v
p to (i + 1)v

p − 1 in local internal memory and write them to the
local disk.

6. Write the changed context for virtual processor i v
p + j back to the local disk.

3 Software Design

In this section we explain our software design and show how different components
work and interact together in the Parallel External Memory System (PEMS).
In PEMS a virtual processor is represented by a user space thread. The input
to our system is an existing MPI program implementing a coarse grained BSP
algorithm. In such a program MPI is responsible for interprocessor communi-
cations. Most of the MPI functions are for sending and receiving messages. In
PEMS, each MPI call is replaced by call to a corresponding PEMS service. These
PEMS calls may in turn incorporate MPI calls. The communication between vir-
tual processors is managed using the disk, memory buffers and communication
network. This is the main challenge in the design and implementation of PEMS.

To date, our focus has been on confirming the high level behavior of the simu-
lation approach, that is to confirm that the behavior of PEMS scales predictably
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Fig. 1. PEM System Software Layers

as problem sizes and the number of real processors vary. This involves both run-
ning time and disk space usage behaviors. We have not been overly concerned
about optimization in this initial version of PEMS.

Figure 1 shows the layered software design of PEMS. The user program is
shown as the top layer in the diagram. The EM System Interface (Layer 2)
provides the external memory communication primitives. All MPI and memory
allocation calls in the original user program are replaced by a call to a simi-
lar PEMS function in this layer. Layer 3 has four major components. The Disk
I/O Subsystem (DIS) is responsible for reading and writing data blocks to disk
efficiently. The Memory Management Subsystem (MMS) is responsible for al-
locating memory for virtual processor data and for swapping this data when
required. The Process Management Subsystem (PMS) is responsible for creat-
ing, scheduling and synchronizing virtual processors. The Open MPI library [9]
is used for communication between real processors and also for starting the soft-
ware on multiple machines. In subsequent subsections we discuss layers 2 and 3
in more detail.

Virtual Processor Simulation and Process Management Subsystem
(PMS): The GNU pth thread library [10] is used for representing virtual pro-
cessors as threads. Each virtual processor is a user level thread. Each thread
runs a copy of the modified MPI-based user program. Modifications include re-
placement of MPI and memory allocation calls with the corresponding PEMS
calls. The PMS consists of a set of functions to initialize, start, synchronize,
manage, and schedule threads. These functions are implemented using the GNU
pth thread library which is responsible for the creation and cooperative schedul-
ing of threads. At the end of every computation superstep each virtual processor
calls EM yield(). This first invokes the services of MMS. The data for the cur-
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rent thread must be swapped out and the data for the new thread must be
swapped in. Then the services of the thread library are invoked to perform a
context switch and transfer control to the new thread. Coordination of differ-
ent processes on different machines is achieved using the open MPI library [9].
Each virtual processor has a global identification number which we will call its
PEMS rank, as well as a local thread number within its user space process, and
an MPI rank that identifies which MPI process contains it. The PEMS rank of
a virtual processor is computed based on the MPI rank of the process and its
local thread number. When virtual processors are communicating, their PEMS
ranks are used to distinguish them from each other. It is possible to change the
total number of virtual processors by changing the number of virtual processors
in each MPI process or by changing the number of MPI processes which are
running on different machines.

Memory Management Subsystem (MMS): As PEMS runs, context switch-
ing between threads occurs whenever a virtual processor reaches the end of a
computation superstep. The simulation technique resizes each virtual proces-
sor (thread) to use the available physical memory. To accommodate many such
threads it would normally be necessary for the operating system to allocate mem-
ory from its swap space or virtual memory. Each time a thread starts execution,
the operating system would swap in the needed pages of data from the disk swap
area. This is done based on a page fault mechanism which may not be efficient
for our purposes. Even if the operating system was able to perform swapping
efficiently, the total amount of memory needed for all virtual processors could
be well beyond the virtual address space of the combined operating system and
the hardware. This is especially true for 32-bit machines. Therefore, we need
complete control over the PEMS physical memory and all of the disk activities
related to the execution of the PEMS program.

The Memory Management Subsystem determines how much physical memory
is available at the beginning of the program execution (initialization phase). Half
of this memory is used as a buffer for communication purposes and for assem-
bling and disassembling messages. The other half is reserved for use by virtual
processors; they can allocate memory from this area by calling EM malloc().

Disk I/O Subsystem (DIS): This layer allows the higher layers of the system
to be independent of specific operating system I/O calls. This makes the system
more flexible and portable, and potentially allows PEMS to interface to third
party I/O packages. The DIS currently contains implementations of direct I/O
based on the native Linux direct I/O which is supported in kernel versions 2.6
and above, asynchronous I/O and synchronous I/O. Currently, PEMS uses di-
rect synchronous I/O for swapping and buffered synchronous I/O for messaging.

EM System Interface and Messaging: This layer is the most important
layer in our implementation. While the contexts (local data) of each virtual pro-
cessor can be swapped between RAM and disk using efficient streaming I/O, this
is not genereally true for delivering messages between virtual processors in the
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simulation. All of the PEMS functions have the same number and type of param-
eters as their MPI counterparts. This makes it easier to transform an MPI pro-
gram into a PEMS program. In fact we believe that there are simple automated
ways of doing this. We have also implemented EM data types corresponding to
the MPI data types (e.g. MPI INT, MPI CHAR). As mentioned earlier, commu-
nication is done through the disk, memory buffer, network, or a combination of
them depending on the communication function. If two communicating virtual
processors are on the same machine then they communicate through the disk
or memory buffer, depending on the communication function invoked. If they
are on two different machines they communicate through the network as well.
PEMS splits the available physical memory into two partitions, each equal to
the data memory size of a virtual processor. One partition is used by the virtual
processors and the other partition is used by PEMS as a large buffer. Any mes-
sage which fits into this buffer is kept there instead of being written to the disk.
Since no virtual processor can receive a message bigger than its data memory
size, it is possible to keep most of the messages in this buffer. The exceptions are
messages generated by the functions EM Alltoall and EM Alltoallv. In this type of
communication, potentially all of the virtual processors are generating messages
which are destined to all other virtual processors and each virtual processor may
receive different sizes and numbers of messages. Since it is not possible to keep all
of these messages in the shared memory buffer, they are written to the disk. The
destination virtual processor will read the relevant messages from the disk when
it becomes active. This requires maintaining information pertaining to where
these messages are stored on the disks, as well as efficient retrieval mechanisms
of the disk blocks corresponding to these messages.

We now turn to communication between virtual processors running on differ-
ent physical machines. The sending virtual processor generates a message and
calls the relevant PEMS function for communication. PEMS determines the MPI
rank of the destination virtual processor and sends the message to the real pro-
cessor on which it is hosted. The destination virtual process (or thread) may not
be running at the time that the messages arrives, however. The current running
virtual processor at the destination machine receives the messages on behalf of
the destination virtual processor and saves the messages in the memory buffer or
on the disk. The actual receiver can read the messages later whenever it becomes
active.

The most complicated communication primitive is EM Alltoallv. This primi-
tive allows all virtual processors to send messages to all other virtual processors.
The messages can be of different sizes and may be made up of multiple packets.
The only restriction is that they need to fit into the local buffers of each virtual
processor. As real processor pi simulates v

p virtual processors, in each round of
communication it will receive all messages addressed to the virtual processors
which it simulates. It is possible, in our current implementation, that a user
thread representing virtual processor vij , associated with the real processor pi,
is called on to handle many messages addressed to the virtual processors in pi.
The total size of these messages may be more than the total physical memory of
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pi. More precisely, let the data memory of each virtual processor be μd, then the
maximum message size is bounded by μd. There are v

p virtual processors in each
real processor pi, so pi may receive a total of min(p, v

p )×μd messages which may
be beyond the real processor’s RAM capacity. If we use the personalized com-
munication algorithm by Bader et.al. [11] then the message size for each virtual
processor is at most μd

v + v−1
2 . Then the maximum message size for each real

processor is O(min(p, v
p ) × μd

v ) which is O(μd). This is within reasonable limits
and can be handled by a real processor. During the personalized communication
the memory buffer is used as a working area for assembling and disassembling
messages and packets.

3.1 Discussion on Design Choices

In this section we highlight some of the design alternatives for different compo-
nents of the PEM system and provide some reasoning behind our choices.

Kernel Space Threads versus User Space Threads: In our implementa-
tion each virtual processor is simulated as a user space thread. We could have
used kernel space threads. There are advantages and disadvantages in using one
over the other. We decided to use the user space threads to shorten development
time; they are easier to manage and synchronize, switching between threads is
faster and coding and debugging is easier. We chose the GNU pth thread library
for our implementation. This library is portable, has a Posix pthread interface
as well as has its own specific interface.

Choices for Communication: We categorize two types of communication.
Communication between virtual processors within a real processor is called in-
ternal communication, whereas communication between virtual processors on
different processors is called external communication.

Option 1: We assign the job of communication (either internal or external)
to a separate process (a kernel level thread). As virtual processors generate data
for communication, they send them to the communication process, which de-
cides if those data should be communicated internally or externally. Here we
also need an interprocess communication mechanism to send data from the sim-
ulating process to the communication process.
Option 2: As the internal communication is fairly simple, each virtual processor
can submit its internal communication to the DIS and send its external commu-
nication to the communication process as in Option 1.
Option 3: Internal communication is done as in Option 2 but external com-
munication is done by the main thread of the process which simulates virtual
processors. This avoids the need for interprocess communication. In this ap-
proach the main thread also has a synchronizing role. Before allowing the next
superstep to start, it waits until communication data from all virtual processors
are written to the disk and all external communication data are received by peer
processors and written to the disk or the memory buffer.
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Option 4: Internal and external communication is done by the current running
threads on all machines. Each running virtual processor calls the communication
routines as subroutines. Communication routines classify messages, communi-
cate with other running virtual processors and gather all the messages sent to
their real processor (on behalf of all virtual processors being simulated in this
real processor). We chose to use this approach in the current version of PEMS for
the following reasons: First, messages to other machines are sent out as they are
generated so there is no additional disk I/O or buffer activity for them. Second,
there is no need for a separate process to do the communication. Third, each
time virtual processors communicate through MPI, they can also go through a
synchronization phase with other virtual processors and in fact all real proces-
sors can be synchronized without the need to wait for the main threads of the
processors.

Direct and Asynchronous I/O: Direct I/O allows an I/O operation to be
performed directly on a user space buffer without additional buffering by the
operating system. Incorporating Linux direct I/O imposes constraints on the
buffer size, alignment and also on the file offset especially when we want to use
disk I/O functions such as pread or pwrite. The buffer size must be a multiple
of the disk block size, it must also be aligned on a memory address which is a
multiple of the disk block size. The same alignment constraint applies to file offset
on a read or write operation. This complicates the PEMS versions of MPI-like
collective primitives, as we often need to read and write at arbitrary file offsets
and at arbitrary addresses in the buffer space. As a result, we decided to use
direct I/O for swapping the context data and buffered I/O for communication
purposes.

4 Experiments

Objectives: The main objective of our present work has been to see whether the
simulation technique as proposed in [1,2] is practical. At this stage of PEMS de-
velopment, our experiments focus primarily on scalability of performance when
the problem size and number of processors are varied. In order to shorten de-
velopment time we have not yet placed much emphasis on optimizing our use
of low level services such as asynchronous I/O and and kernel threads. While
our experiments show running times for sorting with TPIE and STXXL, we in-
clude these measurements only as general reference points that highlight room
for improvement in our single processor results.

Experimental Setup: Single processor tests are performed on the following
configuration: AMD Opteron 2.4GHz CPU with 2GB of RAM, 3 Hard Disks
each with at least 30GB of free space, two partitions across two disks configured
as software RAID 0, hard disk bandwith is 71MB/Sec, RAID bandwith is 112
Mb/Sec (measured by hdparm utility), file system is EXT3, GNU/Linux 64bit v.
2.6.15 operating system and we used gcc v.4.1.1. Multiple processor experiments
are performed on a cluster of Linux machines with the following hardware and
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software configuration1. Intel 2 × Xeon 2.0 GHz CPUs with 1.5 GB of RAM
(only one processor was used in practice), one hard disk each with at least 46GB
of free space, hard disk bandwith of 45Mb/Sec (measured by hdparm utility),
GNU/Linux 32bit kernel version 2.6.9-42.0.2. ELsmp, EXT2 file system, gcc v
3.4.6 compiler and Gigabit ethernet for the communication between machines.

We use parallel sample sort to test our implementation. In our experiments
we have simulated parallel sample sort [12] as an external memory algorithm.
For comparison, we include timings from TPIE’s [5] test sort and STXXL’s [6]
test sort1. We have slightly modified test sort and test sort1 functions to restrict
them to one round of sorting (with no extra tests). All of the test programs
use 128MB of RAM for sorting. The record size is 4 bytes and timing includes
the data generation, but none of the test programs create a separate output
file. PEMS uses 128MB of memory but 64MB of this memory is used as buffer
and shared memory for communication, and only 64MB is used for sorting. (In
PEMS, we have disabled the extra memory so that the operating system cannot
use it for caching.)

Test data was generated using the C or C++ standard random generator
or the package specific random generator method. We do not use any special
integer sorting techniques in the parallel sample sort algorithm or in other test
programs. Operating system swap has been disabled in all of the tests.

Experimental Results: Figure 2 shows running times for PEMS sample sort
on 1, 2, 4, 8 and 16 real processors. It also includes running time of TPIE and
STXXL external memory sort test programs on a single processor. We include
the TPIE and STXXL results only as general reference points that highlight
room for improvement in our single processor results. The reader should not
draw conclusions about the relative running times of TPIE and STXXL sort, for
instance, as we have not ensured that this is a fair comparison. The TPIE and
STXXL sort programs are 3 to 5 times faster than our single processor sort with
this version of PEMS, but as more real processors are added, PEMS becomes
faster. At 7 billion integers, the running time of PEMS with 16 processors reduces
by 65%, 53%, and 48%, in comparison to TPIE, STXXL and PEMS with 8
processors, respectively. The PEMS running times increase almost linearly with
problem size when the number of real processors is fixed.

Limitations: An important limitation of PEMS is its internal disk usage. It
needs v

p × μd for swapping of data on each real processor. Here μd represents
data memory of each virtual processor. It also reserves 2 v

p × μd for communica-
tion on each real processor. We are currently investigating ways to reduce this
requirement on the reservation of the disk space for the messages.

Concluding Remarks: PEMS is runtime library for creating parallel external
memory programs from implementations of BSP-like coarse grained parallel al-
gorithms. The primary application area is problems that require processing of
massive amounts of data. We see our work as relevant from several practical

1 This is part of HPCVL Lab www.hpcvl.org.
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Fig. 2. Wall clock timings for sorting. The X-axis is the problem size in billions of
integers. The Y-axis is wall clock time per sorted item in microseconds.

perspectives: a class of theoretically optimal parallel algorithms can be scaled to
fit the hardware at hand, using both processors and disks; for a large set of prob-
lems for which suitable parallel algorithms exist, I/O optimal parallel algorithms
can be used instead of single processor EM algorithms; and, both computational
and I/O load are spread over multiple machines, contributing to the scalability.

Our experiments show several important properties of the PEMS approach.
First of all the methodology is practical. Secondly, increasing the number of real
processors decreases the running time in a predictable way. The ability to exploit
parallel machine resources such as disks gives the ability to handle extremely
large data sets on practical architectures such as a network of workstations. On
such a system, one can inexpensively add computational power, RAM, disks,
and bandwidth between RAM and disk by adding machines to a network. Using
a coarse grained parallel algorithm and PEMS, our experiments in this paper
suggest that one can take advantage of all of these resources, as well as adapting
the theory of coarse grained parallel algorithms to the reality of a smaller number
of real processors, each with a disk system. We believe that our experiments with
sorting, for instance, showed good speedups in parallel running time primarily
due to disk parallelism. More computationally intensive applications may be able
to also make use of the additional computation power.

This brings us to several suggestions for further work: (1) PEMS algorithms
have the disadvantage that they may do more I/O, than a conventional sin-
gle processor EM algorithm due to the need to swap the contexts of virtual
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processors between RAM and disk. Our experiments suggest that this can be
offset by the scalability of I/O bandwidth in our model. However, since I/O is
so prevalent in PEMS we expect that improving the low level I/O performance
may make a significant improvement in running times. To this end we plan to
investigate the use of asynchronous (no-wait) I/O in PEMS. This would allow
the overlapping of computation and I/O and the use of multiple independent
parallel disks on each real processor. We noticed that STXXL [6] has a well
designed and efficient asynchronous parallel disk I/O layer which can be used
without calling its higher level functions. (2) We plan to further investigate the
use of kernel threads in the asynchronous sending and receiving of communica-
tion traffic between virtual processors. (3) With multiple core CPUs becoming
a commodity, adjustments should be considered for PEMS to take full advan-
tage of symmetric multiprocessor machines. (4) In order to study the behavior
of PEMS when simulating different algorithms more examples should be imple-
mented. To this end we have implemented and tested a randomized list ranking
algorithm and our preliminary results are promising (see [13]).
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Abstract. Multiple sequence alignment (MSA) is a very important problem in 
Computational Biology since it is often used to identify evolutionary relation-
ships among the organisms and predict secondary/tertiary structure. Since MSA 
is known to be a computationally challenging problem, many proposals were 
made to accelerate it either by using parallel processing or hardware 
accelerators. In this paper, we propose an FPGA based accelerator to execute 
the most compute intensive part of DIALIGN, an iterative method to obtain 
multiple sequence alignments. The experimental results collected in our 200-
element FPGA prototype show that a speedup of 383.41 was obtained when 
compared with the software implementation. 

1   Introduction 

In the last decade, genome projects have produced a very huge amount of biological 
data. In order to better understand newly sequenced organisms, biologists compare 
their sequences against other organisms contained in genomic databases, in order to 
infer properties. Nowadays, this comparison is done millions of times a day, all over 
the world. 

Sequence alignment (or sequence comparison) is in fact a problem of finding an 
approximate pattern matching between the sequences [21]. It can involve only two 
sequences (pairwise alignment) or more than two sequences (multiple sequence 
alignment) [9]. In a multiple sequence alignment (MSA), similar residues among a set 
of nseq sequences are aligned together. Usually, sequences compared with MSA are 
known to be biologically related and the goal is to obtain conserved subpatterns [5].  

 MSAs are often scored with the sum-of-pairs (SP) objective function [4] and the 
exact SP MSA problem is known to be NP-complete [25]. Therefore, heuristic 
methods are usually used to solve this problem, even when the number of sequences 
is small.  

In general, an MSA problem can be solved with progressive or iterative methods 
[15]. Progressive methods are executed in three steps. First, the NW algorithm [17] is 
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used to perform pairwise alignments with all sequences. After that, a phylogenetic 
tree is constructed with the information obtained in phase 1 and, finally, the tree is 
used to guide the alignment of the sequences sequentially, from the most closely 
related to the less related ones. CLUSTALW [24] and T-COFFEE [16] and examples 
of progressive MSA methods. Iterative methods also use dynamic programming but, 
unlike the progressive methods, iterative methods periodically evaluate the quality of 
the scores produced and realign subgroups of already aligned sequences. PRRP [8] 
and DIALIGN [14] are examples of iterative methods. 

Many dedicated architectures [2,10,12,18] and parallel applications [3] have been 
proposed to tackle pairwise sequence alignment by accelerating the dynamic 
programming matrix computation. Fewer examples [11,19] do exist that accelerate 
MSA algorithms. In this case, the hardware is not used to execute the whole 
algorithm, but only the most compute intensive part of it. [19] and [11] proposed an 
FPGA-based accelerator to execute the first phase of CLUSTALW [24], that executes 
pairwise sequence comparisons among all the sequences.  

In this article, we present and evaluate an FPGA-based architecture to execute the 
most compute intensive part of the DIALIGN algorithm for multiple sequence 
alignment. Our architecture is designed as a systolic array which is able to compare 
sequences of any size using the DIALIGN recurrence relations [14]. As far as we 
know, this is the first hardware-based approach to execute DIALIGN.  

The results obtained on a 200-element prototype synthesized for the FPGA Altera 
Stratix 2 EP2S180F1508I4 show that a speedup of 383.41 is achieved when 
comparing real DNA sequences of size 194439 bp (base pairs) and 169786 bp, 
respectively. In this case, the software implementation took 3 hours and 4 minutes and 
our FPGA implementation took 28.839 seconds.  

The rest of this paper is organized as follows. Section 2 describes the MSA 
problem and the DIALIGN algorithm to solve it. In Section 3, related work in the area 
of FPGA architectures for sequence alignment is discussed. Section 4 describes our 
FPGA-based architecture. Some results are discussed in section 5. Section 6 
concludes the paper. 

2   Biological Sequence Comparison with DIALIGN 

2.1   The Sequence Alignment Problem 

To compare two sequences, we need to find the best alignment between them, which 
is to place one sequence above the other making clear the correspondence between 
similar characters from the sequences [21]. We define alignment as the insertion of 
spaces in arbitrary locations along the sequences so that they finish with the same 
size.  

Given a pairwise alignment between two sequences s and t, an score can be 
associated for it as follows. For each two bases in the same column,  we associate, for 
instance,  +1 if the two characters are identical (match), -1 if the characters are 
different (mismatch) and –2 if one of them is a space (gap). The score is the sum of 
the values computed for each column. The maximal score is called the similarity 
between the sequences. 



An FPGA-Based Accelerator for Multiple Biological Sequence Alignment with DIALIGN 73 

One of the first exact methods to globally compare two sequences was NW [17]. It 
is based on dynamic programming and calculates a similarity matrix of size m x n, 
where m and n are the sizes of the sequences. NW has time and space complexity 
O(mn). The NW algorithm was modified to deal with local alignments (SW)[22]. An 
algorithm based on SW that uses an affine gap function is proposed in [7]. 

 
G A - C G G A T T A G  
G T - C G G - T T A -  
G A T C G G A A T A G  

+3 -1 –6 +3 +3 +3 -3 –1 +3 +3 -3 = 4 

Fig. 1. Alignment of sequences s, v and t, with the SP score for each column 

An MSA involves more than 2 sequences. In this case, the scoring function to be 
used is not straightforward. Often, MSAs are scored with the Sum-of-Pairs (SP) 
function, where every pair of bases is scored with the pairwise scoring function and 
the score is the addition of all  these values [9]. Figure 1 shows an example of a MSA 
and its score. 

2.2   The DIALIGN Algorithm 

DIALIGN (DIAGonal ALIGNment) [14] is a method for sequence alignment that can 
be either used to pairwise alignment or multiple sequence alignment. This method 
searches for fragments (or diagonals) that have no gaps and aligns them. In 
DIALIGN, a pairwise alignment is defined to be a chain of fragments [13].  

When applied to the MSA problem, DIALIGN is executed in three phases. In the 
first phase, all pairwise alignments are computed, i.e., there are nseq(nseq-1)/2 chains 
of fragments, one for each pairwise alignment, where nseq is the number of sequences 
[13].  In the second phase, the diagonals that compose the pairwise alignments are 
sorted by their weight and the degree of overlap with other diagonals. This sorted list 
is used to obtain a multiple alignment with a greedy algorithm, generating alignment 
Al. In the last phase, the alignment Al is completed with an iterative procedure where 
the parts of the sequences that are not yet aligned with Al are realigned by executing 
phase 2 again, in such a way that consistent non-aligned diagonals are included in Al 
[14]. This phase is repeated until no diagonal with a positive weight can be included 
in Al. 

Now, we will explain in detail the first phase, which is the core of this algorithm. 
For each pairwise alignment,  it is necessary to calculate the relevance of each 

diagonal found before attempting to align it [13]. This is done by E(l,sm) = -
ln(P(l,sm)), where P(l,sm) is the probability of a diagonal D of size l have at least sm 
matches.  

For each candidate diagonal Di, a weight w(Di) is assigned as E(l,sm) if E(l,sm) is 
above a given threshold T and 0, otherwise.  

When the algorithm obtains a new significant diagonal, it tries to align it 
consistently with other previously calculated significant diagonals [14]. In an 
alignment of k diagonals D1,  D2,  …,  Dk  the total score S is given by the addition of all 
weights w(Di),  i=1 to k. 
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To discover the score S,  a dynamic programming based strategy is used.  Consider 
two sequences A  and  B,  having sizes m and n,  respectively. For each pair (i,j), it 
will be determined all integers  k with k≤min(i,j) where the diagonal  (ai-kbi-k,...,aibj) 
beginning at position (i-k,j-k) and ending in position  (i,j) has a positive weight w.  For 
each position  (i,j)  is defined a score(i,j) for the alignment in the prefixes  (a1a2...ai) 
and (b1b2...bj).  

The last diagonal Dk aligned in position (i,j) is recovered by function prec(i,j)= Dk 
(formula 2). For each diagonal Dk aligned in position (i,j), prec(i,j) chooses the chain 
of diagonals with the greatest score so far. The score is calculated as in formula 1, 
where σ(Di,j) is defined as the largest score chain of diagonals that ends in point (i,j). 

score(i,j) = max{score(i-1,j), score(i,j-1), σ(Di,j) } (1) 

                        prec(i,j-1) , If score(i,j)=score(i,j-1) 
prec(i,j)  =       prec(i-1,j), If score(i,j-1) < score(i,j) = score(i-1,j)  

               Di,j , If score(i,j-1),  score(i-1,j) < score(i,j) = σ(Di,j) 

(2) 

Two dynamic programming matrices are calculated. One for scores (formula 1) 
and other for the preceding diagonal  (prec in formula 2). Once these matrices are 
calculated, the reverse path on the precs matrix gives the alignment. One example of 
such alignment is given in figure 2. In figure 2(a), the subsequences belonging to 
diagonals are shown in gray and the aligned diagonals are shown as lines. Figure 2(b) 
shows the final alignment. 

 

Fig. 2. Example of a pairwise DIALIGN alignment 

DIALIGN-P [20] is a parallel version of DIALIGN that executes the first phase of 
the algorithm in parallel, with an strategy that tries to distribute evenly the pairs of 
sequences to be compared among the processors. An optimization called anchored 
alignment is introduced to reduce the execution time of each pairwise alignment. 
Nevertheless, this optimization potentially reduces the quality of the alignment 
produced [20]. Speedups of 19.32 were obtained in a 64-processor cluster, when 
comparing 20 sequences. 

3   Related Work 

There are many proposals in the literature of FPGA-based architectures to accelerate 
pairwise sequence alignment applications [2,10,12,18] by calculating the similarity 



An FPGA-Based Accelerator for Multiple Biological Sequence Alignment with DIALIGN 75 

matrix antidiagonals in hardware. In this approach, each element is capable of 
calculating one matrix score per turn. Thus, an N elements array can generate N 
scores at a time.  

Figure 3 shows how each anti-diagonal of the dynamic programming matrix is 
calculated in parallel by a 5-element systolic array. The query sequence (ACGAT) is 
previously stored in the elements of the array and the database sequence (CTTAG) 
flows through the systolic array.  Each element calculates one cell in the current anti-
diagonal (shown in gray in figure 3) at the same time.  

Most of the hardware solutions do not store the entire similarity matrix, obtaining 
only the similarity score [2]. Besides that, there is a limited number of computing 
elements that can be put in the systolic array. To deal with it, the smallest sequence 
being aligned is often stored on the computing elements as a query sequence. The 
other sequence can be of any size, since it “passes” through the FPGA (figure 3). 

5-element systolic array

antidiagonals 
calculated

 

Fig. 3. Generic systolic array to calculate the similarity matrix 

Frequently, it happens that even the query sequence is greater than the number of 
computing elements contained in the FPGA. In this case, a partitioning technique is 
used. To break query sequences, it is necessary to keep some scores onboard to allow 
new scores to be calculated. Some designs avoid this problem by putting many query 
bases on the same computing element. The drawback is that it requires more registers 
per element and thus decreases the maximum number of computing elements in the 
systolic array. 

As an alternative, dynamic reconfiguration can be used. In this case, the first part 
of the query sequence is put directly in the processing elements using the dynamic 
reconfiguration capability. After that, the FPGA is reconfigured to contain the next 
part of the query sequence and the database sequence passes again  through the 
FPGA. This procedure continues until the last part of the query sequence is processed. 
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A drawback of this approach is that reconfiguration time normally takes a few 
milliseconds.  

Table 1 presents some hardware approaches to accelerate biological sequence 
comparison applications. Most of these accelerator proposals tackle the pairwise 
sequence comparison problem. The only ones that deal with multiple sequence 
alignment [11,19] accelerate the most compute intensive phase of Clustal-W [24], 
which does NW[17]-based pairwise sequence alignment among all sequences. Most 
of the proposals do query sequence splitting either by using reconfiguration or storing 
many characters at the same systolic cell. The speedups obtained range from 5.6 to 
246.9 over the software implementation. Finally, all proposals implement in hardware 
variations of the NW or SW with constant gap functions [17,22] or affine gap 
functions [7]. As far as we know, there is no proposal of hardware accelerator for 
DIALIGN. 

Table 1. Comparative Analysis of the Hardware Accelerator Proposals 

Paper Alignment Algorithm Alignment 
Problem 

Seq. 
Split 

Speedup 

Oliver et al. [18] Smith-Waterman [22] / Gotoh [7] Pairwise Yes 170 / 125 
Lavenier [10] Smith-Waterman [22] Pairwise Yes 83 
Marongui et al. [12] Smith-Waterman [22] Pairwise No 5.6 
Anish [1] Gotoh [7] Pairwise Yes 170 
Boukerche et al. [2] Smith-Waterman [22] Pairwise Yes 246.9 
Oliver et al. [19] Needleman-Wunsh [17] /Gotoh [7] Multiple Yes 50.9 
Lin et al. [11] Needleman-Wunsh[17] Multiple Yes 34 

4   Design of a Reconfigurable Architecture for DIALIGN 

As discussed in section 2.2, the most compute intensive phase of DIALIGN is the first 
one [20], which calculates pairwise alignments among all sequences. These 
alignments are independent from each other and, therefore, very suitable for hardware 
parallelization. 

As most of the previous works (section 3), we will parallelize the antidiagonal 
calculation of the dynamic programming matrix using a systolic array (figure 3). 
However,  since the recurrence relations of DIALIGN (formulae 1 and 2) are different 
from the ones in NW and SW, an entirely distinct design must be made for each 
systolic element. 

The goal of our architecture is to find the best DIALIGN score and its position. To 
do that, the following modifications were applied. First, we set sm=l in the probability 
calculation. Second, the ln logarithm (section 2.2) was replaced by a base 2 logarithm. 

Our linear systolic array calculates the antidiagonals as shown in figure 4, using as 
a basis the generic systolic array (figure 3). In figure 4, the scores already calculated 
are shown in gray. The border between the gray and white part shows the antidiagonal 
being calculated. Diagonals greater than the threshold T are shown in black. For a 
diagonal that ends in position (i,j), the architecture decides if it will be extended or 
ended and, in this case, whether it can be consistently aligned to other diagonal or not 
(section 2.2). 
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Fig. 4. Dynamic programming matrix calculation 

An architecture that performs DIALIGN must contain formulae 1 and 2. To 
improve the performance, diagonal finding and diagonal alignment can be done 
simultaneously in the systolic vector. The algorithm for each systolic element is 
shown in figure 5. 

 
calculate_recurrence_systolic (db_pair, prec(i, j-1), score(i, j-1), i) 
begin 

 prec(i,j) = find_prec(prec,score); 
 if (match(i,j)) 
  D(i,j)=extend_current_diagonal(); 
 else 

  if (w(D(i,j)) < T) 
   discard (D(i,j)); 
  else 
   if (consistent (D(i,j), prec(i-1,j), prec(i, j-1))) 
    prec(i,j) = D(i,j); 
    score(i,j) = σ(D(i,j)); 
   else 
    if (w(D(i,j)) > prec(i-1,j) and w(D(i,j)) > prec(i,j-1)) 
     prec(i,j) = D(i,j); 

     score(i,j) = w(D(i,j)); 
    endif 
   endif 
  endif 
 endif 
 best_diagonal_systolic = prec(i,j); 
 best_score_sytolic = score(i,j); 
 send_to_next_systolic(prec(i,j),score(i,j),w(D(i,j)),flags); 
end 

Fig. 5. Algorithm executed in each systolic element 

Figure 6 shows the systolic array diagram. The database sequence base pairs are 
input on the left side and the scores and their respective positions are output on the 
right side of the circuit. A handshake protocol is included to transfer scores and 
positions between the elements (blocks marked as “I” (input) and “O” (output)). Clk 
stands for the clock and Rst for reset signal. The DIALIGN recurrence relations are 
processed in the DAC (Diagonal Alignment Circuit) block. 
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Fig. 6. Systolic Array Design 

R - Register File
M - Multiplexers

 

Fig. 7. Diagonal Alignment Circuit (DAC) 

Figure 7 shows the DAC element. The register bank (R) contains values used in 
recurrence relations.  They are selected by a network of multiplexers (M) to enter the 
“Recurrence Module”. The results are stored in registers by another set of 
multiplexers. The control part is done by the “Control Module”.  

Figure 8 shows the recurrence module circuit. Inputs (from In1 to In15) and control 
lines  (C1 to C9) for the multiplexers are on left side and outputs(Out1 to Out6)  are 
on right side. This circuit is utilized many times to perform all relations. The adder 
(+), In15 and C9 are utilized to extend weights w(D) of current diagonal D by 1 when 
a match happens. In15, In14 and “+” are used to calculate the sum of scores σ(D). 
The comparator “=” verifies if the bases are equal and whether some flag values are 
equal to zero or one (In5 to In8 depend on C4 and C5, giving Out3). The comparator  
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Fig. 8. Recurrence Module 

“>” decides if w(D) is above T and is also used to find score(i,j) (formula 1). The 
recurrence relation in formula 2 is implemented by “>”, “=”and “&”. The first line in 
formula 2 is computed by the “=” comparator. The second and third are translated to 
“>”, “=” and “&” by the expression (score(i,j) > score(i,j-1) & (score(i,j)=score(i-
1,j))) .   

To eliminate current diagonal Di,j if it is inconsistent, we must test if the ending 
position of the previously aligned diagonal is greater than the starting point of the 
current diagonal. To calculate this, an OR (“|”) and two “>” are used. If Di,j is 
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inconsistent with prec(i-1,j) or it is inconsistent  with prec(i,j-1) then Di,j  is 
inconsistent. 

We also designed a partition method based on dynamic reconfiguration to compare 
query sequences which have more bases than the FPGA systolic elements (section 3). 

5   Experimental Results 

Our proposed architecture was designed in SystemC [23] and was translated to 
Verilog with the FORTE tool [6]. It was then synthesized for a FPGA Altera 
STRATIX 2 EP2S180F1508I4 using QUARTUS II. Our 200-element prototype 
works at 74.48 MHz.  

In order to verify the speedup of our architecture, we implemented DIALIGN in C, 
generating an optimized C program. We used the C program and our prototype to 
compare 2 pairs of real DNA sequences retrieved from the NCBI site. The sequences 
compared were from fungus Aspergillus niger contig An18c0160 (AM270408),  
Aspergillus niger contig An16c0230 (AM270375) and Encephalitozoon cuniculi 
(AL590443), with sizes 121589bp, 169786bp and 194439bp, rescpectively. The 
wallclock time to compare the first two fungi for the optimized C program running on 
a   Pentium 4  3 GHz 512 MB was 6812 seconds and the  FPGA took 17.9 seconds 
(wallclock time), achieving a speedup of  380.56. The comparison between the second 
and third sequences took 11053.70 seconds in software and 28.83 seconds in our 
FPGA prototype, leading to a speedup of 383.41. Note that the wallclock times do not 
include data transfer times (FPGA prototype) nor disk read operations (software 
implementation). 

Also, we measured the time needed to reconfigure the FPGA, in the case where the 
size of the query sequence is longer than 200. For this test, we used two variations of 
annellovirus from NCBI (sequences NC_009225 and AB290918, with sizes 3245bp 
and 3242bp, respectively). The comparison done by the FPGA took 0.01s and the 
software comparison took 3.48s, achieving a speedup of 348. The time needed to 
reconfigure the systolic array was 0.0008s. Finally, we simulated a database search of 
a 200bp sequence on a 10Mbp synthetic genomic database. 

As presented in table 2, the speedup achieved was between 340 and 383.41, when 
compared with the software implementation. 

The pairwise stage of multiple alignment with DIALIGN was performed with 4 
variants of Human Adenovirus. The DNA sequences used were NC_004001, 
NC_001405, NC_002067 and NC_003266 with sizes of 34794bp, 35937bp, 35100bp 
and 35994bp respectively. Each cell in table 3 shows the time in seconds for a given 
pairwise alignment for both the FPGA architecture and the software implementation. 

Table 2. Speedups Achieved by Our Architecture 

Query Seq size Database Seq size Time FPGA (s) Time software (s) Speedup 
169,786 194,439 28.83 11,053.70 383.41 
121,589 169,786 17.9 6812.00 380.55 

3245 3242 0.01 3.48 348.00 
200 10,000,000 1.74 661.39 343.03 
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Table 3. Pairwise Aligment Times for the FPGA and the software implementation 

 Time (s) FPGA / Software 
Sequences 34794bp 35937bp 35100bp 

35937bp 1.09   /  415.31 --- --- 
35100bp 1.07   /  406.81 1.11   /  419.35 --- 
35994bp 1.10   /  416.33 1.14  /  431.42 1.11  /  420.12 

 
In table 3, six comparisons were made. The total time for software alignment and 

the FPGA prototype were 2509.34 seconds and 6.62 seconds, respectively. The 
speedup achieved was 379.05. 

The FPGA STRATIX 2 EP2S180F1508I4 has an estimated price of $10,688. 
Comparing against a Pentium 4 3 GHz costing $1000, the price/performance ratio is 
10688/ 383.41 = 27.87 against 1000/1 for the Pentium. So the FPGA’s 
price/performance ratio is 35.88 times lower than the Pentium. 

6   Conclusions and Future Work 

In this paper, we proposed and evaluated a new hardware architecture that performs 
multiple sequence alignment. Our architecture was designed to accelerate the pairwise 
step of DIALIGN that is the most compute intensive part of this algorithm for 
multiple sequence alignment. The proposed architecture was designed to handle large 
sequences by splitting the  query sequence in blocks of 200. It was then successfully 
synthesized in an Altera FPGA STRATIX 2 EP2S180F1508I4. 

As results for real DNA sequences of sizes 121 Kbp and 169 Kbp,  we obtained a 
speedup of 383.41 against an optimized C implementation, indicating it can be very 
useful to accelerate the multiple sequence alignment problem. The speedups achieved 
with 3 very different sizes of sequences were between 343 and 383 and that indicates 
that the speedup achieved in not very dependent on the size of the sequences. As 
future work, we intend to integrate our architecture, which implements the first phase 
of DIALIGN, with a software algorithm that implements phases 2 and 3, leading to an 
integrated hardware/software approach. Also, we intend to investigate if the iterative 
phase of the algorithm (phase 3) can be implemented partially or fully in an FPGA. 
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Abstract. HDTV based applications require FSBM to maintain its sig-
nificantly higher resolution than traditional broadcasting formats (NTSC,
SECAM, PAL). This paper proposes some techniques to increase the
speed and reduce the area requirements of an FSBM hardware. These
techniques are based on modifications of the Sum-of-Absolute-Differences
(SAD) computation and the MacroBlock (MB) searching strategy. The
design of an FSBM architecture based on the proposed approaches has
also been outlined. The highlight of the proposed architecture is its split
pipelined design to facilitate parallel processing of macroblocks (MBs) in
the initial stages. The proposed hardware has high throughput, low silicon
area and compares favorably with other existing FPGA architectures.

1 Introuction

Rapid growth in digital video applications accompanied with the demand for
better video quality has resulted in increasing popularity of high-definition TVs
(HDTV) in the consumer market. An aspect of this trend is the increased interest
in designing portable devices capable of encoding HD quality video data. How-
ever, the typical HD-compatible video encoders are based on MPEG2 MP@HL.
MPEG2 MP@HL encoder uses the exhaustive Full Search Block Matching Algo-
rithm (FSBMA) based motion estimation. In this case, the power consumption
of the encoder is prohibitively high, particularly for portable implementations.
Again, in a typical video encoder, the ME module occupies more than 80% of its
computational complexity. Software based methods are unable to meet the real-
time constraints of FSBM-ME implementations [1]. Hence, a highly efficient ME
processor core is required to realize portable HD video encoding applications.

FSBM architectures can be broadly classified into FPGA [2,3,4,5,6,7] and
ASIC [8,9,10,11,12,13,14,15,16,17,18] implementations. This work focusses on
using FPGA technology to implement a high-performance ME hardware. A sys-
tolic array architecture for FSBM implementing realtime video encoding on a
single FPGA chip was proposed in [3]. A novel OnLine Arithmetic (OLA) based
design, where each bit is processed in successive clock cycles operating with
the most significant bit (MSB) at first, was proposed in [4]. [5] proposed low-
power core-based architectures for real-time motion estimation on FPGAs, that

S. Aluru et al. (Eds.): HiPC 2007, LNCS 4873, pp. 83–94, 2007.
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are customizable for different coding parameters and hardware resources. Some
FSBM hardware architectures proposed in [8] were implemented and their per-
formance evaluated in [6]. The results show that, real-time motion estimation for
CIF (352 × 288) sequences can be achieved with 2-D systolic arrays and mod-
erate capacity (250 k gates) FPGA chip. Finally, [7] implements an adder-tree
model based 16 × 1 SAD operation in FPGAs and also extends the 16 × 1 SAD
implementation to perform the 16 × 16 SAD operations.

This paper proposes two approaches for speed-area optimization of the Full
Search Block Matching Algorithm(FSBMA) hardware. The novelty of this work
lies in the combined optimization of the mutually conflicting design parameters
of high throughput and low silicon area. The first approach uses a modification
of the SAD operation so as to reduce the overall computational complexity of
the ME module. This modification reduces the number of operations that need
to be performed for each SAD based block matching within a pre-defined search
window. Subsequently, an MB scan technique has been proposed which takes
advantage of the SAD modification in a manner so as to further enhance the
performance of the hardware implementation. The proposed hardware design
uses a pipelined architecture which reduces the processing cycle count for each
MB and thus increases the overall throughput. The initial stages of the pipeline
have been split to facilitate parallel processing of MBs.

The paper is organized is as follows. The next section provides a background
on FSBM-based motion estimation. Section 3 describes in detail the SAD mod-
ifications and the MB search strategy. Based on the approaches proposed in
Section 3, the design outline of an FSBM hardware has been sketched in Sec-
tion 4. The hardware implementation results and it’s comparison with existing
FPGAs are presented in Section 5. Finally, Section 6 concludes this paper.

2 Full Search Block Matching

In video compression, motion-compensated prediction assumes that the pixels
within the current picture can be modeled as a translation of those within a previ-
ous picture. This motion information is represented by two dimensional displace-
ment vectors or motion vectors. Due to the block-based picture representation,
many ME algorithms employ block-matching techniques. In such techniques, the
motion vector is obtained by minimizing a cost function measuring the mismatch
between a current MB and the reference MB. Several cost measures are avail-
able to measure the amount of distortion between the block in the current frame
and candidate block in the reference frame, such as, mean-of-absolute-differences
(MAD), sum-of-absolute-differences (SAD), mean-square-error (MSE) etc. SAD,
the most commonly used matching criterion, between the pixels of the current
MB x(i, j) and the search region y(i, j) can be expressed as,

SAD(u, v) =
N−1∑

i=0

N−1∑

j=0

|x(i, j) − y(i + u, j + v)| (1)
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where, (u, v) is the displacement between these two blocks. Thus, each search
requires N2 absolute differences and (N2 − 1) additions.

To find the MB producing the minimum mismatch error, we need to calcu-
late SAD at several locations within a search window. The simplest but the most
computationally intensive search method, known as the FSBM, evaluates SAD at
every possible pixel location in the search area. In FSBM-based motion estima-
tion, each N×N macroblock of the current frame is compared with all candidate
MBs in the (N+2p)×(N+2p) search window defined within the previously pro-
cessed frame, where p is the maximum displacement of the N×N MB in all four
directions around its boundary. The motion vector is determined by identifying
a best matching MB. The FSBMA exhaustively evaluates all possible search
locations and hence is optimal [19] in terms of reconstructed video quality and
compression ratio. High computational requirements, regular processing scheme
and simple control structures make the hardware implementation of FSBM a
preferred choice.

Fig. 1. Execution profile of a typical video encoder

Fig. 1 shows the execution profile of a standard video encoder, obtained using
the GNU gprof tool. As can be seen, among the various afore-mentioned modules
of a typical video encoder, the motion estimation is the most computationally
expensive. Furthermore, it is to be noted that, the SAD computations are the
most time consuming due to the complex nature of the absolute operation and
the subsequent multitude of additions.
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3 Proposed Approaches

This section gives a detailed description of the speed-optimized architecture. The
first subsection explains the modification of the SAD equation. The MB searching
technique adopted to facilitate the SAD sum derivation in Subsection 3.1 has
been presented in Subsection 3.2.

3.1 Modified SAD Based Fast Block Matching

In this section, we try to modify the SAD computation so as to constrain the
computational complexity of the FSBM search process, while preserving the
optimal solution for the motion vector. Let us again consider the SAD Eq. 1,

SAD(u, v) =
N−1∑

i=0

N−1∑

j=0

|x(i, j) − y(i + u, j + v)| (2)

The above equation can be re-written as,

SAD(u, v) ≥
∣
∣
∣
∣

N−1∑

i=0

N−1∑

j=0

x(i, j) −
N−1∑

i=0

N−1∑

j=0

y(i + u, j + v)
∣
∣
∣
∣ (3)

because it can be shown that,

N−1∑

i=0

N−1∑

j=0

|x(i, j)−y(i+u, j+v)| ≥
∣
∣
∣
∣

N−1∑

i=0

N−1∑

j=0

x(i, j)−
N−1∑

j=0

N−1∑

i=0

y(i+u, j+v)
∣
∣
∣
∣ (4)

The proof of Eq. 4 is presented in Appendix A.
Let SADmin denote the current minimum SAD value. Now we posit that,

if,
∣
∣
∣
∣

N−1∑

i=0

N−1∑

j=0

x(i, j) −
N−1∑

i=0

N−1∑

j=0

y(i + u, j + v)
∣
∣
∣
∣ ≥ SADmin (5)

then, SAD(u, v) ≥ SADmin (by inequality 3) (6)

So, if Eq. 6 is satisfied, we may skip computing the SAD at the (u, v)th location.
Otherwise, we need to compute the OriginalSAD (ref. Eq. 1) at the (u, v)th

location and compare it with SADmin. The initial SADmin can be obtained
by calculating the OriginalSAD for the first search location only. Thereafter,
Eq. 6 can be used to decide on whether or not to peform the OriginalSAD on a
particular search location. If the OriginalSAD needs to be calculated for some
particular search location and the newly obtained OriginalSAD is less than the
exisiting SADmin, then the OriginalSAD is set as the new SADmin. At this
point, it is to be noted that, this approach is not an approximation and always
finds the minimum SAD without making any compromise on compression ratio
and/or video quality. This is because the algorithm tries to take an initial decision
of whether to compute the OriginalSAD. The decision is based on comparison
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with SADmin. Again, all SADmin values are obtained after OriginalSAD cal-
culations only. Thus, no decisions are made based on approximate computations
and the video quality with this SAD modification is same as that of FSBM with
OriginalSAD for all search locations.

Again, the right hand term of Eq. 4 can be expressed as,
∣
∣
∣
∣

N−1∑

i=0

N−1∑

j=0

x(i, j) −
N−1∑

i=0

N−1∑

j=0

y(i + u, j + v)
∣
∣
∣
∣ = |X − Y (u, v)| (7)

where, X =
∑N−1

i=0
∑N−1

j=0 x(i, j) and Y (u, v) =
∑N−1

i=0
∑N−1

j=0 y(i +u, j + v), i.e.,
X is the sum of the intensity values of the pixels in the current MB of the current
frame and Y (u, v) is the sum of the pixel intensities in the (u, v)th MB location
in the search region of the previous frame. It is to be noted that, for an entire
search region the sum X for the current MB has to be calculated only once. For
each search location, the sum Y (u, v) needs to be calculated. Moreover, the sum
Y (u, v) at the (u, v)th location can be derived from its immediately previous
value Y (u− 1, v) at (u− 1, v)th by subtracting from Y (u− 1, v) the sum of pixel
intensities of the first column at the (u − 1, v)th MB location and adding to the
result, the summation of the pixel values at the last column of the (u, v)th MB
location.

3.2 Macro Block Searching Strategy

The FSBM algorithm primarily searches an N × N macroblock within the cor-
responding (2p+1)× (2p+1) search locations, where p is the search range. The
traditional FSBMA requires N2 absolute differences and (N2 − 1) additions to
compute every SAD value. Hence, the total operations required to find the best
match of an MB within a search range is (2p+1)2×(2N2−1). However, our modi-
fied SAD equation requires only (N2−1) additions for the current MB + (N2−1)
additions and 1 absolute difference for each of the (2p + 1)2 search locations =
(N2 −1) + (N2 −1+1)(2p+1)2 = a total of (N2 −1) + N2(2p+1)2 operations.

Let, the search locations in the search region be scanned in a manner shown
in Fig. 2. As mentioned in subsection 3.1, the sum of the pixel intensities at each
search location can be derived from the pixel intensity sum at the previous search
location. Compared to the traditional raster scan, the proposed scan technique
facilitates this derivation of the SAD sums, particularly in situations where the
search locations moves to a row below the current row position. As shown in
Fig. 2, the sum at search location (2, 2p + 1) can be easily derived from the
sum at search location (1, 2p + 1). However, this derivation is not possible if
we compute the sum at location (2, 1) immediately after computing the sum at
location (1, 2p + 1).

Let, the kth search location is represented by SRk and it’s right and bottom
adjacent search locations are represented by SRk+r and SRk+b then the SADk+r

and SADk+b can be calculated by following equations.

SADk+r =

∣
∣
∣
∣
∣
{SRk +

(
N−1∑

i=0

SRi,j+N −
N−1∑

i=0

SRi,j

)

− MBc

∣
∣
∣
∣
∣

(8)
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Fig. 2. Movement of search locations in the search region

SADk+b =

∣
∣
∣
∣
∣
{SRk +

⎛

⎝
N−1∑

j=0

SRi+N,j −
N−1∑

j=0

SRi,j

⎞

⎠ − MBc

∣
∣
∣
∣
∣

(9)

where SRk and MBc represents the sum of the pixel values of kth search loca-
tion and current (cth) MB respectively. Eq. 8 has been used to derive the SAD
sums when the scan control moves towards right or left in a column-wise manner
and Eq. 9 has been used to derive the SAD sums when the scan control moves
downward in a row-wise manner.

Example: The sum of the second search location (SL2) can be derived from
the sum of the first search location (SL1) by subtracting from SL2, the sum of
the pixel values of the 1st column and then adding to it, the sum of the pixel
values of the 17th column. Again, to derive SL34 (assume p = 16) from it’s
previous sum at the 33rd search location (SL33), we need to subtract the sum of
the pixel values of the 1st row from SL33 and then add to it the sum of the pixel
values of the 17th row.

Each derivation of the SAD sum requires 2(N − 1) additions [to find the sum of
one old and one new column] + 2 additions/subtractions and 1 AD operation
[Eq. 8 and Eq. 9] = a total of (2(N − 1) + 2) adds/subs and 1 AD = 2N
operations and 1 AD. Thus, an entire search region of size (2p + 1) × (2p + 1)
requires (N2 − 1) operations and 1 AD for the first search location + (2N + 1)
operations and 1 AD for the remaining (2p + 1)2 − 1 search locations each =
[(N2 −1) + [(2p+1)2 −1]2N ] operations and (2p+1)2 ADs. For N = 16, p = 16,
the proposed technique requires only 35071 addition/subtraction operations and
1089 ADs, as against the traditional raster search scan, which requires 277695
addition/subtraction operations and 278784 AD operations.
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4 Hardware Design for FSBM

Fig. 3 shows the hardware architecture of the SAD calculation unit. The hard-
ware unit consist of one pipelined datapath, two memory banks, datapath and
memory controller and some registers. The modified SAD calculation for FSBM
algorithm is performed by the datapath in eight independent sequential steps.

Datapath
Controller

In
pu
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ut

pu
t I

nt
er
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ce

Memory
Controller

Column
Memory bank

Row
Memory bank

2:1

stage 1

stage 2
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REG MEM

REG SR

2:1

Fig. 3. Architecture of the proposed SAD unit

The proposed hardware adopts the scanning technique shown in Fig. 2. A
p = 16 search region consist of 48 × 48 pixels (Pi,j , where 0 ≤ i, j ≤ 48), which
are formed (2p+1)2 = 332 = 1089 different search locations. The SAD unit first
loads one macro block and the respective search region into the on-chip memory.
The memory controller is responsible to store the pixels into the right place by
following some special organization procedure. The pixels are organized into the
memory banks in such a way that the consecutive SAD calculation could be
performed by only one memory access. The pixels are stored into the Column
Memory Bank (Fig. 3) in column-major format so that one column of a search
location (16 pixels) can be accessed in a single clock.

The SAD unit first computes the sum of the macro-block and the sum of the
first search location and stores the resultant values into the respective REGMB

and REGSR registers (Fig. 3). It computes the first SAD value by performing
an absolute difference operation between REGSR and REGMB and store it into
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the SAD-register. It is to be explained in the previous section that the next
right-adjacent search location has only one column difference from the previous
location. Hence, to compute the sum of the new search location from the previous
REGSR value we need to access all the pixels of 1st and 17th columns (Pi,1 and
Pi,17, where 0 ≤ i ≤ 48). Thus our column memory bank have two 16×8 = 128-
bit ports. The second SAD value is computed by the absolute difference operation
between new REGSR and the respective REGMB values. Then the least SAD
value between the previous and the latest one is restored into the SAD-register.
This procedure is performed iteratively for every new right as well as left adjacent
search locations within the respective search region.

The difficulty will be arises when we need to move down from the previous
search location. In these cases we need to access two set of row pixels (Pi1,j

and Pi2,j , where 0 ≤ j ≤ 48). The previously organized column memory bank
does not support to access those pixels in a single clock. Hence, we have stored
the required row values in another Row Memory Bank (Fig. 3). This bank also
have two 128-bit data access ports. The size of the row memory bank is only
(32 × 128) + (16 × 128) bits, which is equal to 768 bytes.

Different level of data reuse are discussed in [20], which are primarily reduce
the memory accesses in FSBM-based architectures. The current SAD unit adopts
the data reuse defined as Level A and Level B in [20]. The locality of data within
the candidate block strip where the search locations are moving within the block
strip are defined as the data reuse in Level A. Level B describes the locality
among the candidate block strips which are overlapped vertically. The present
design easily adopts these two levels of data reuse schemes.

5 Results

The Verilog RTL of the proposed design has been synthesized on a Xilinx Vir-
tex IV 4vlx100ff1513 FPGA and verified with RTL simulations using Mentor
Graphics ModelSim SE. The synthesis results for a macroblock (MB) of size
16 × 16 and a search range of p = 16 show that the design can achieve a highest
frequency of 221.322 MHz. In addition, the design requires 333 CLB Slices, 416
DFFs/Latches and a total of 278 input/output pins. The area required by the
implementation is 380 look-up tables (LUTs). It is to be noted that, given the
high operating frequency of our architecture, the area required by this design
is substantially low. The modification of the SAD operation contributes to this
high speed and small area and low hardware complexity. The use of memory
banks has led to higher on-chip bandwidth. However, this has also led to the
only drawback of our design, which is the high number of input/output pins.

The first SAD result is generated by the SAD unit after 23 clock cycles.
Thereafter, every successive clock cycle generates one SAD value. For a search
range of p = 16, which has (2p + 1)2 = 1089 search locations, the number of
cycles required by the proposed hardware to find the best matching block is, 23
(for the first search location) + (1089-1) (for the remaining search locations) =
1111 cycles. Thus, our proposed FPGA implementation processes a 16×16 MB
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in, 1111 clock cycles per MB * 4.52 ns per clock cycle = 5.022 usec. Similarly,
a 720p HDTV frame of dimension 1280×720 can be processed in, 3600 MBs
per frame * 5.022 usecs per MB = 18.078 msec. At this speed, 55.33 number of
720p HDTV frames can be processed by the proposed hardware every second.
Thus, the number of frames processed per second by our design is much higher
than other existing architectures, which is evident from Table 1. Modification of
the SAD computation, the proposed MB search strategy and the split-pipeline
design contributes to this high speed and throughput of our proposed hardware
design.

Table 1. Comparison of hardware performance with N=16 and p=16

Design Frequency CLBs HDTV 720p Throughput Throughput/Area
(in MHz) (in slices) (fps) (MBs/sec)

Loukil et al. [2] 103.8 1654 3.4 12237.7 7.4
(Altera Stratix)

Mohammad et al. [3] 191.0 300 2.09 7536.3 25.1
(Xilinx Virtex II)

Olivares et al. [4] 366.8 2296 3.71 13347.4 5.8
(Xilinx Spartan3)

Roma et al. [5] 76.1 29430 7.55 27178.6 0.92
(Xilinx XCV3200E)

Ryszko (AB2) et al. [6] 30.0 948 5.26 18939.4 11.9
(Xilinx XC40250)

Wong et al. [7] 197.0 1699 1.2 4307.1 2.5
(Altera Flex20KE)

Our 221.322 333 55.33 199209.7 598.2
(Xilinx Virtex IV)

Table 1 compares the performance of various existing architectures for a 16×16
MB with a search range of p = 16. This paper aims toward the combined speed-
area optimization of FSBM hardware. Hence, a new performance criteria of
throughput/area has been used to compare the speed-area optimized perfor-
mance of different architectures. High speed-area optimization of an architecture
is denoted by its high values of the throughput/area parameter. The architec-
tures have been compared in terms of (a) operating frequency, (b) CLB slices,
(c) number of HDTV 720p (1280x720) frames that can be processed per second,
(d) throughput or MBs processed per second, (e) throughput/area, and (f) the
I/O bandwidth. As can be seen, the proposed design has a very high throughput
and can process the maximum number of HDTV 720p frames per second (fps).
The fps value of 55.33 is close to that of 60 fps, which denotes that the proposed
architecture can support both frame (25fps or 30 fps) and field (50 fps or 60 fps)
processing. This is a big advantage over other existing FPGA designs. Moreover,
the superior speed-area optimization in the proposed design is exhibited by its
substantially high throughput/area value of 598.2.
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As can be seen, in Table 1, the different implementations have been carried
out on different platforms having varying perfomance levels. Xilinx Virtex IV,
designed for higher performance as compared to already exisitng FPGAs, can
inherently make implemented designs faster. To overcome this drawback in com-
parison results of Table 1, Table 2 makes a comparison of the proposed design on
different FPGA implementation platforms of Xilinx, namely, Spartan3, Virtex
II and Virtex IV.

Table 2. Performance comparison of our hardware on different FPGA platforms with
N=16 and p=16

Platform Frequency CLBs HDTV 720p Throughput Throughput/Area
(in MHz) (in slices) (fps) (MBs/sec)

Xilinx Virtex II 147 333 36.75 132300 397.3

Xilinx Spartan 3 121 333 30.25 108900 327.03

Xilinx Virtex IV 221.322 333 55.33 199209.7 598.2

Table 2 shows that the area requirements of our design are similar in Spartan3,
Virtex II and Virtex IV. However, the MBs processed per second is different for
different platorms with Virtex IV resulting in the highest throughput. Hence,
among the three compared platforms, Virtex IV yields the best throughput/area
ratio. It is to be noted that, Mohammad et al. [3], whose design was also imple-
mented on Virtex II, has much lesser throughput/area value of 25.1, as compared
to our Virtex II implementation with a throughput/area value of 397.3. Simi-
larly, the Spartan3 implementation by Olivares et al. [4] has a throughput/area
value of only 5.8. This is substantially lesser than our Spartan3 implementation
value of 327.03.

6 Conclusions

This paper has presented some approaches toward throughput-area optimization
of FSBM architectures. The first approach proposed a modification of the SAD
computation. This modification reduced the total number of addition/subtraction
operations involved in macroblock-matching within a pre-defined search window.
In addition, this approach has been utilized to derive the SAD sum at the current
MB location from the already computed SAD sum at the previous MB location.
Finally, an FPGA hardware design to implement the proposed approaches has
been outlined. The highlight of this design is the initial splitting of its pipeline
to facilitate parallel processing of MBs. In addition, our hardware has used the
proposed MB scan technique so as to take further advantage of the SAD modifi-
cation. Experimental results demonstrate the higher throughput and smaller area
requirements of our design when compared to other existing FPGA architectures.
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A Proof of Eq. 4

Lemma 1

| ||A||1 − ||B||1 | ≤ ||A − B||1, where, ||A||1 =
∑

k

|ak|

Proof. We know that, by triangle inequality [21] and reverse triangle inequality
[21],

| a + b | ≤ |a| + |b| (10)

| a − b | ≥ |a| − |b| (11)

Again, by Minkowski’s inequality [22],

| ||A + B||1 | ≤ ||A||1 + ||B||1 (12)

Let, ||A||1 =
∑

|a| =
∑

|b + (a − b)| ≤
∑

|b| +
∑

|a − b| [by Eq. 12]

or,
∑

|a| ≤
∑

|b| +
∑

|a − b| or,
∑

|a| −
∑

|b| ≤
∑

|a − b|
which implies, ||A||1 − ||B||1 ≤ ||A − B||1 (13)

Analogously, we can show that, ||B||1 − ||A||1 ≤ ||A − B||1 (14)

Hence, from Eq. 13 and Eq. 14, we have,

||A||1 − ||B||1 ≤ ||A − B||1,
and ||B||1 − ||A||1 ≤ ||A − B||1, i.e.,||A||1 − ||B||1 ≥ −||A − B||1

which gives, | ||A||1 − ||B||1 | ≤ ||A − B||1 (15)

Hence, the result follows. �

http://www.math.utah.edu/ pa/math/equations/equations.html
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Abstract. Recursive data layouts for matrices (two dimensional arrays) have 
been proposed to ameliorate the poor data locality caused by traditional layouts 
like row-major and column-major [3][12]. However, recursive data layouts 
require non-traditional address computation which involves bit-level 
manipulations that are not supported in current processors. As such, a number of 
software-based address computation techniques have been developed ranging 
from table-lookup based techniques to arithmetic-and-logic-operation based 
techniques. This effectively creates a tradeoff of extra computation for locality. 
In this paper, we design the appropriate instruction set architecture (ISA) support 
and hardware support to achieve address computation for recursive data layouts. 
Our technique captures the benefits of locality of the sophisticated data layouts 
while avoiding the cost of software-based address computation. Simulations 
reveal that our hardware approach improves the performance of matrix 
multiplication by factors ranging 30% to 59% over software-computed 
Morton-ordered indexing, especially at larger matrix sizes. 

1   Introduction 

The performance of many applications is limited by the memory bottleneck. 
Reorganizing the computation or data to improve locality and hence improve memory 
system performance can yield significant performance benefits for such applications. 
Linear algebra kernels which operate on large matrices, in particular, often suffer from 
poor locality, and hence poor overall performance. Naturally, significant research effort 
has been expended to improve locality by transforming the computation and the data 
layout for such applications[1][2][3][4][5][6][7][8][10][11][13]. This paper focuses on 
one particular recursive data-layout –  Morton ordering –  that has been known to 
improve locality [3]. 

Morton-ordered data layout for two dimensional matrices1  is an alternative to 
traditional array layouts like row-major or column-major layout. Unfortunately, 
Morton index computation—the computation of the linear index from the 
multidimensional indices—requires bit-interleaving operations which are not readily 
supported on modern processors. In contrast, the index computation in row-major and 
                                                           
1 The technique is applicable to higher dimension arrays. For ease of exposition, we limit 

discussion to two dimensional arrays. 
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column-major use addition and multiplication that are supported on all processors. 
There exist several software-based techniques that rely on arithmetic and logical 
manipulations and/or table-lookup [3][5] to reduce the cost of Morton index 
computation to a level comparable to that of row-major index computation. However, 
the row-major index computation often cannot be eliminated since it may serve other 
purposes (such as testing loop termination conditions). As such, Morton index 
computation imposes a software overhead cost to exploit the locality benefits of 
Morton ordered layout.  

This paper addresses the challenge of hardware-based Morton address computation 
in order to capture the benefits of improved locality without suffering the cost of 
software-overheads. It makes three key contributions.  

First, this paper proposes the first hardware-based Morton address computation and 
demonstrates that our technique can eliminate the software overheads resulting in 
significant speedups ranging from 30% to 59% for the matrix multiply kernel. 

Second, we offer two key insights that enable low-overhead, hardware-based Morton 
address computation. We adopt the approach of translating full row-major addresses2 to 
Morton order addresses which eliminates the need to compute the Morton index in 
addition to the row-major based index. This is enabled by (a) the use of aligned matrices 
in which the index bits can be easily extracted and (b) hardware-based Morton 
conversion of row-major addresses by using a single crossbar based bit permutation unit. 

Finally, we evaluate two variants of the hardware-based Morton address 
computation. One version is purely hardware driven and transparently translates 
row-major addresses to Morton addresses. The second version uses instruction set 
support by adding a new instruction (“morton”) that can be used to convert row-major 
addresses to Morton addresses. 

Evaluations with two variants of tiled, loop-unrolled matrix multiply kernels reveal 
that the hardware based Morton indexing scheme outperforms both the row-major case 
and the software-based Morton indexing schemes by factors ranging from 30% to 59% 
at larger matrix sizes. 

The rest of this paper is organized as follows. Section 0 provides the background on 
recursive layouts and describes related work on recursive data layouts. Section 3 
describes two versions of hardware supported Morton indexing we propose. Section 4 
describes our evaluation methodology. Section 5 presents the experimental results. 
Finally, Section 6 concludes this paper. 

2   Background and Related Work 

The layout of two dimensional arrays in linear memory can have a significant impact on 
the performance of algorithms that operate on such matrices. In this section, we offer a 
brief background on the Morton layout [12] for two dimensional arrays and contrast it 
with the traditional and well-understood row-major layout. (The column-major layout 
is symmetrical. As such, we omit column-major layout from our discussion.) 

                                                           
2 Full addresses (as opposed to index computation) include the base address of the array, the 

index which acts as an offset into the array and the data-size which controls the size of array 
elements. 
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Figure 1 illustrates the contrast between row-major and Morton indexing. On the 
left, we have a traditional row-major matrix of size 8x8. Each matrix element displays 
the corresponding linear index corresponding to the matrix’s layout in memory. To 
illustrate the differences with an example, we focus on the element at the Cartesian 
coordinates (1,3). As expected, the location of the element is computed as 11 (=8x1+3) 
in the row-major layout. In the special case of matrix dimensions that are powers of 
two, the row-major index is simply a bit-wise concatenation of the two indices as 
shown in the lower half in the center of Figure 1.  

The array layout in the right half of the figure illustrates one flavor of the Morton 
order layout called the Z-Morton layout. There are other variants of the Morton layout. 
We restrict our discussion to the Z-Morton flavor referring to it as “the Morton order” 
without distinguishing the exact variant. The intuitive description of the Morton order 
can be described as a recursive layout order where the four quadrants are laid out in 
Z-order shown in the figure. Each quadrant is recursively subdivided using the same 
Z-layout till the recursion terminates at individual elements. As can be seen in Figure 1, 
the same element (1,3) maps to index 7 in the Morton layout. Unlike the row-major 
index which is equivalent to bit-wise concatenation (for square matrices of powers of 
two dimensions), the Morton index is simply a bit-wise interleaving of 1 and 3 as 
shown in the middle part of Figure 1. The interest in Morton layout arises because of its 
superior locality compared to row-major layout. Note, Morton order is only defined for 
square matrices whose dimensions are powers of two. Others have demonstrated that 
this restriction is not a problem since non-square matrices and/or non-powers of two 
dimensions can be accommodated via a combination of (a) padding and (b) 
decomposition to sub-matrix multiplications [10]. One caveat is that our technique 
imposes some alignment restrictions in addition to the padding required by previous 
techniques  (as we describe later in Section 3.1). 
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Fig. 1. Row Major vs. Morton Ordered Layout (Adapted from [10]) 

Given that Morton indexing uses bit-interleaving and that such bit-wise interleaving 
operations are not directly supported in modern processors, existing solutions typically 
use arithmetic/logical operations to achieve bit interleaving or use a table-lookup from 
a table that contains the bit-interleaved values at each corresponding entry. We 
demonstrate that software overheads associated with these approaches are expensive. 
Further, we demonstrate in Section 3 that merely providing hardware for bit-wise 
interleaving is not adequate to avoid the software overhead. 
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2.1   Related Work 

Wise et al. proposed the application of recursive layouts [11] to achieve improved 
locality for matrix multiplication and also developed the compiler toolset – OPIE – to 
automatically generate Morton-ordered layouts [3][4][5]. While there is a large body of 
work examining the locality benefits of Morton-ordered matrices 
[2][3][4][5][6][7][8][14] in the context of matrix multiplication, our work is orthogonal 
to the entire portfolio since we are the first to  evaluate the benefits of hardware-based 
Morton indexing. Cache oblivious algorithms, which use recursion to achieve 
cache-optimality also aim to exploit locality benefits of recursion [13]. However, 
cache-oblivious algorithms use control recursion and not recursive data-layouts as in 
this work. Pre-fetching may be seen as an alternate technique to improve the cache 
behavior of traditional layouts with significantly less overhead than Morton ordering. 
However, unlike Morton ordering, prefetching only hides the latency (by prefetching 
data that would otherwise miss in the cache) and does not reduce memory bandwidth 
requirements. In contrast, Morton ordering improves locality and reduces bandwidth 
requirements as well. 

3   Hardware-Assisted Morton indexing 

One may think, from the discussion in Section 2, that the hardware support for Morton 
indexing is a trivial bit-interleaving unit. Unfortunately, there are two key 
complications. First, the bit-interleaving shown in Figure 1 is required only for the 
index computation. The address computation of each matrix access involves three 
components: the base address of the array, the index in the array and a component that 
accounts for the word-size. The other two components must not be affected by the 
interleaving.  

One obvious solution to this complication is to maintain the interleaved index 
separately and add it to the base address prior to the memory access. Unfortunately, the 
overhead of maintaining a separate Morton index, in addition to the basic row-major 
index computation is precisely the largest component of the overhead in software-based 
Morton indexing. Note, the basic row-major address computation cannot, in general, be 
avoided by replacing it with Morton indexing alone if the row major index has any use 
other than array access (e.g., loop bounds testing). This is especially true when higher 
levels of compiler optimization options are used since they often eliminate the 
induction variable and test the loop termination by directly examining the final address. 
As such, we skirt this issue by performing full-address conversion wherein we convert 
entire row-major addresses (including base address and word size) to corresponding 
Morton index-based addresses. 

This design choice directly leads to the second complication. In the full-address 
conversion scheme, any hardware-assisted Morton indexing must carefully operate on 
the index component without affecting the base address and the word-offset.  Isolating 
the word-offset is trivial since word sizes are typically powers of two. However, in 
general isolating the index requires a subtraction to eliminate the base-address from the 
overall adder. The index will then have to be bit-wise interleaved and added to the base 
address to get the final address. Typically, this adds three instructions for each memory 
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access. (We ignore the alternate option of a single instruction that does the subtraction, 
interleaving and addition as it represents a step toward complex instruction sets.) We 
overcome this complication by requiring matrices to be aligned such that the 
index-field is bit-separable. This means that any 2n x 2n matrix of 2w sized words each 
must begin at an address that has the lower (2n+w) bits set to zero. This 
index-separability by bit extraction eliminates the need for subtraction to isolate the 
index as well as the addition to get the final address.  
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Fig. 2. Logical view of Bit-Permutation Unit (Crossbar actually extends to all bits) 

Prior work has proposed aligning Morton-ordered matrices at page boundaries[14] 
to improve locality. Our bit-separable alignment is different on two counts. First, our 
alignment is not to improve locality but to facilitate reduction of Morton-conversion 
software overhead. Second, our alignment granularity is significantly larger than a page 
since it corresponds to the matrix size. 

The rest of our design flows naturally from these two design choices. Section 3.1 
describes the basic hardware unit to achieve full address conversion.  

3.1   Hardware Support for Morton Indexing: The Bit-Permuting Unit 

The basic operation of arbitrary bit-permutation can be achieved by a crossbar that 
accepts one address as the input and permutes them in any permutation. The left half of 
Figure 2 illustrates the crossbar setting for bit-interleaving the row-major index of (1,3) 
to achieve a Morton index conversion. Recall that we make an assumption that the 
arrays are address aligned to be index-separable. This assumption is central to our 
technique because the unchanged bits which correspond to the base address and the 
word offset must pass through without being permuted as shown in right half of Figure 
2. However, since the size of the index can vary depending on the matrix size and the 
word size, we use a crossbar that is as wide as the entire address word and configure the 
crossbar to pass the base address and word-offset through. (The figure showing only the 
index part being permuted in a crossbar is purely illustrative.) The crossbar must be 
configured specifically for a specific matrix-size and word-size. The crosspoint buffers 
in the crossbar can each be controlled by a single bit. As such, the process of 
configuring a crossbar amounts to copying a bit for each crosspoint in the crossbar and 
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can be achieved with tens of instructions with memory-mapped control bits and 
wide-word writes.  

The above described hardware unit serves as the basic Morton-conversion hardware 
called the Bit-Permuting Unit (BPU). In the remainder of this section, we examine two 
designs that use the BPU to achieve hardware-based Morton-indexing. 

3.2   Transparent Address Computation 

In this section, we consider a hardware-only approach that transparently translates 
row-major addresses to Morton-order addresses by adding an optional pipeline stage. 
By “transparent” we do not mean that there is no programmer responsibility. We do 
hold the programmer responsible for configuring the crossbar for the appropriate 
data-size and matrix size. The crossbar configuration ensures that the base address and 
word-offset are passed through unaltered and that the “bit-separable index” is suitably 
interleaved.  Further, it is also necessary to detect the addresses that require Morton 
conversion. To address this requirement, we hold the programmer/compiler responsible 
for setting the address ranges occupied by the matrices A, B and C in a masked, content 
addressable memory (CAM) that serves as an address match detector. Because of our 
property of index separability, we mask all the lower address bits and perform a CAM 
search for the upper bits alone. Thus any element in the matrix is guaranteed to match 
against the CAM entry. Further, because each entry (say the matrices A, B and C) 
associated with the BPU will have the same mask, we do not store a per-entry mask as 
done in ternary content-addressable memories (TCAMs). If a match is detected, the 
virtual address is Morton-converted before TLB access as also L1 access if L1 is 
virtually indexed. We add a one cycle penalty to TLB hits and L1 cache hits to account 
for the Morton-conversion delay. Note, the 1-cycle penalty applies whenever the 
Morton converter is active since each memory access has to be range-checked 
irrespective of whether the location accessed by the dynamic instruction has to be 
Morton-converted or not. We use the term “transparent” in the limited sense that once 
the address ranges and the crossbar configurations have been finalized, there is no 
responsibility on the software to individually demarcate individual load instructions as 
matrix accesses that need Morton conversion. 

3.3   Instruction-Based Morton Address Translation  

One weakness of the transparent version is that once configured, the range-checking 
imposes a 1-cycle penalty on all TLB and L1 cache accesses. Here we consider an 
alternate design where matrix accesses can be identified, possibly by the programmer 
or compiler. For that case, we add a single instruction with the mnemonic opcode 
“morton” with the following specification. It has one input register operand and one 
destination register operand. The instruction’s input is a row-major address and its 
output is the corresponding Morton address that is saved to a reserved register. It 
performs a bit-permute operation (assuming a pre-configured bit-permuter) and places 
the Morton-converted address in the output register.  

Figure 3 illustrates the use of the additional instruction. Assuming that a load 
instruction (ld.d) in the unmodified code is identified as an instruction that accesses a 
Morton-ordered matrix, the morton instruction is inserted as illustrated.  Two other 
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practical considerations with the instruction supported version are: (1) Load/store 
instructions targeted by the morton instruction may only be used with a zero 
immediate offset. This is because addition of the immediate offset to a Morton layout 
address will result in incorrect results. If a non-zero offset is used, the load instruction is 
further split into two instructions: one to add the non-zero immediate offset and another 
load instruction with a zero-offset. This results in additional instructions when 
unrolling loops where non-zero immediate offsets are typically used. (2) The crossbar 
configuration information is part of the process’ state and must be swapped out and in 
when the process is context switched out and in. 

addu $2,$3,$14

ld.d $f0, 0($2)

sll $2, $10,3

addu $2,$3,$14

morton $26, $2

ld.d $f0, 0($26)

sll $2, $10,3
 

Fig. 3. Instruction-based Morton Conversion: An Example 

One may think that adding another Morton-load/store instruction is a superior 
alternative instead of adding a special instruction for bit-permuting and then 
performing a normal load. This approach reduces the fetch bandwidth requirements 
since the morton instruction does not need to be fetched. However, this approach has 
two drawbacks. First, this extends the clock cycle since the bit-interleaving has to be 
interposed between the effective address computation and memory access. (Note, this 
may not be a concern on architectures which dynamically decompose complex 
instructions to RISC-like micro-ops for pipelining. We do not consider dynamic 
instruction processing in our experiments.) Second, with properly pipelined execution 
in a RISC processor, there should be no difference in instruction latencies since the 
bit-permuted address will be bypassed to the load instruction without unnecessary 
delay. We do not consider this approach a practical approach due to the clock cycle 
constraint. However, we do include experiments that consider an idealized case which 
“Mortonizes” the address for free purely for comparison purposes.  

Summary: In summary, our design choice of using full-address conversion 
necessitates the use of aligned arrays in which the index field is bit separable. A 
crossbar-based bit-permuter can then achieve the necessary bit-interleaving on the 
index bits alone. We then describe two schemes that use this bit-permuter to achieve 
Morton-conversion (A) transparently on each access to specified memory address 
ranges OR (B) by programmer/compiler inserted Morton conversion instructions. 

4   Evaluation Methodology 

We use a modified version of the Simplescalar 3.0 [9] simulator for our experiments. 
For the ISA-supported version, we added the “morton” instruction to the PISA 
instruction set. We were able to identify an unused register to serve as the intermediate 
register. For the transparent version, we assumed an additional pipeline stage for the 
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load instruction between the effective address computation and translation lookaside 
buffer (TLB) lookup. The pipeline stage (a) verifies that the address is within the 
specified range(s) and (b) if so, performs the Morton-indexing operation on the address.  

We do not include the one-time cross-bar configuration costs for both the 
ISA-supported version and transparent version and the cost for address range(s) 
initialization for the transparent version. Note that these costs will not exceed tens of 
instructions compared to the millions of workload instructions simulated.  

We simulated a common 4-way issue superscalar processor configuration with 
memory hierarchy as shown in Table 1. The L2 cache size is deliberately kept smaller 
than typical L2 of current processors because of the problems of workload scaling. 
With large caches, larger workloads need to be simulated. However simulation 
slowdown prevents simulation of large scale workloads as we note later in this section. 
Note, TLB and L1 cache access is nominally listed as 1-cycle. For the transparent 
Morton support version, L1 cache access and TLB access take two cycles.  

Table 1. Processor and Memory Hierarchy Configuration 

Instr. Fetch Queue 4 

Instr. Issue 4 way out-of –order 
Branch Predictor Bimod, 2K entry BTB 
RUU/LSQ size RUU: 32, LSQ: 8 

CPU 

FU ALU: 4 int. 4 FP , Multiplier/Divider: 1 int. 1 FP 
L1 D-cache 4-way, 32KB, 32B cache block 
Unified L2 cache 8-way 512KB, 32B cache block Cache 

Latency(cycles) 
L1 hit: 1, TLB hit: 1, L2 hit: 8, Memory: 300 TLB 
miss: 30 

for(i = 0; i < MSize; i++) {

for(j = 0; j < MSize; j++) {

temp = 0; 

for(k = 0; k < MSize; k++) {

temp += a[i*MSize +k]*b[k*MSize +j];   

}

c[i*MSize +j] += temp;

} 

}  

for(k = 0; k < MSize; k++) {

for(i = 0; i < MSize; i++) {

temp = a[i* MSize +k]; 

for(j = 0; j < MSize; j++) { 

c[i* MSize+j] += temp*b[k*MSize+j]; 

}

}

}

 

(a) COUT version  (b) AOUT version 

Fig. 4. The Basic Matrix Multiply Versions (We use blocked, loop unrolled versions) 

We use two versions of the tiled, loop-unrolled, matrix multiply kernels. The first is 
the traditional version that iterates over the elements of the product matrix (matrix C in 
C = A x B ) in the outermost iterations. We refer to this version as the “Cout” version. 
The second version [1] iterates over elements of A in the outermost loop. Figure 4 
shows the basic 3-loop version of the two kernels. Note, the three-loop versions are 
shown for brevity due to lack of space. Our experiments use tiled (for both L1 and 
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L2), loop unrolled versions of these two kernels which are included in a technical 
report [15].  

We compare the hardware supported Morton indexing schemes against the version 
generated by Opie[5]. Opie uses purely software mechanisms to convert the Cartesian 
indices to a single Morton index. We also include the software morton versions of the 
code in the technical report [15]. 

We used square matrix sizes of dimensions 128, 256, 512, 1024 and 2048 for all 
three (i.e., A, B and C) matrices. The workloads were compiled with the “–O3” option 
on the gcc version 2.7.2.3, cross compiler for the SimpleScalar PISA. For the 
instruction-based version, the relevant loads and stores that need the additional Morton 
instructions were identified manually by code inspection. Our simulation runs are run 
to completion for all matrix sizes.  We used multilevel tiling corresponding to the 32kB 
L1 cache and the 128kB L2 cache configuration. We used 32x32 level 1 tile and 
128x128 level 2 tile size for allocating three tiles (A, B and C matrix). 

5   Results 

The three primary conclusions from the experimental evaluation of this paper are as 
follows: 

[1] Canonical layouts are hard to beat at smaller matrix sizes even with free Morton 
addressing. 

[2] Hardware-assisted Morton-indexing offers significant speedup and is clearly faster 
than purely software based Morton-indexing at larger matrix sizes with speedups 
ranging from 30% to 59%. 

[3] The software overhead of Morton indexing is significant. Opie incurs nearly twice 
as many instructions as our transparent version. The ISA-supported version 
reduces the number of instructions by 17%-26%.  

The remainder of this section presents detailed simulation results that quantify these 
three conclusions.  

Figure 5 includes 2 graphs in all, one for each multiply version (aout or cout). Each 
graph has five bars each for the row major (xbase), Opie (xopie), instruction-based 
morton conversion (xmorton) transparent morton conversion (xhw) and the impractical 
free-morton-conversion (xideal). The X-axis has clusters of bars for each matrix size 
and the Y-axis plots the speedup of each configuration normalized to the Opie 
configuration. 

Two observations are immediately apparent. First, across all the larger (>512) 
matrix sizes and matrix multiply versions, the hardware based Morton conversion 
techniques offer speedup varying between 30% and 59% over Opie with the transparent 
version outperforming all other techniques. Interestingly, at the smaller matrix sizes, 
the row-major version outperforms Opie consistently. This is not surprising because 
smaller matrices do not suffer from internal conflict misses and thus the locality 
benefits of Morton indexing do not matter while the overhead costs are still suffered. 
Interestingly, in the cout, configuration, the row major configuration outperforms all 
Morton configurations including the transparent version. In contrast, the row-major 
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configuration is clearly outperformed by Opie and more so by our hardware-assisted 
Morton indexing schemes at the larger matrix sizes. Finally we observe that our 
transparent version captures most of the opportunity as compared to the ideal version. 
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Fig. 5. Overall Speedup (Normalized to Performance of Opie) 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

128 256 512 1024 2048
Matrix Size

# 
of

 in
st

s.
(n

or
m

al
iz

ed
 to

 O
PI

E
)

abase
aopie
amorton
ahw
aideal

(a)aout version 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

128 256 512 1024 2048
Matrix Size

# 
of

 in
st

s.
(n

or
m

al
iz

ed
 to

 O
PI

E) cbase
copie
cmorton
chw
cideal

(b) cout version  

Fig. 6. Number of Instructions (Normalized to Opie) 

5.1   Overhead 

The graphs in Figure 6 plot the total number of instructions normalized to the Opie 
version for the matrix multiply versions and cache configurations. As expected, the 
basic row-major version has the least number of instructions (between 51% and 68% of 
Opie) which is exactly matched by the transparent versions. Including the small 
overhead of crossbar configuration, the overhead would remain negligible. The 
instruction-based version which includes additional (a) morton instructions and (b) 
instructions to eliminate non-zero immediate offsets in load instructions has between 
74% and 84% of the instructions in Opie. Note, there is no difference in the matrix 
access patterns of the Morton-indexing schemes (Opie, instruction-based and 
transparent versions) since they all use the same matrix layout.  

One possible reason for the performance gap is the difference in the number of 
instructions as the additional instructions may cause increased contention for fetch 
bandwidth, superscalar processor resources (e.g., ROB entries) and commit bandwidth. 
Note, our instruction-based version represents a lower bound on overhead since it 
incurs exactly one instruction overhead per access (not counting the overhead of 
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handling loop unrolling which is also incurred in all other software versions). There are 
other Morton-conversion methods that aim to reduce the overhead incurred by Opie[8]. 
However, they also incur more than one instruction overhead per access because an 
additional operation is required to compute the final address after the Morton-index is 
looked-up in a table. 

6   Conclusions and Future Work 

The locality benefits of recursive layouts have been discussed widely in the literature. 
Unfortunately, the software overheads for computing the Morton index and the 
complexity of including hardware support has resulted in a failure to capture a 
significant fraction of the benefits of recursive layouts. This paper makes the following 
three contributions. First, we demonstrate that software based Morton indexing, though 
clearly superior to the base row-major indexing at larger matrix sizes, incurs significant 
performance penalties due to software overheads. Our technique demonstrates that 
hardware-support for Morton indexing can improve the performance of matrix 
multiplication by as much as 59% for the aout and as much as 31% for the cout version. 
Second, this paper offers the insight that “full-address conversion” and “index-bit 
separability” are key enablers that reduce software overhead which cannot be 
eliminated by simple bit-interleaving hardware. Finally, we evaluate two different 
versions of the hardware-based Morton indexing. The first version is an all-hardware 
version that transparently achieves full-address Morton conversion for all addresses in 
a specified address range. The second version introduces a special instruction to 
achieve full-address Morton-conversion. The transparent version out-performs the 
instruction-based version. The difference is not due to locality benefits since the 
memory access patterns of both versions are identical. We conjecture that the increased 
number of instructions in the instruction-based versions directly cause the performance 
loss due to contention for processor resources like fetch bandwidth and ROB entries. 
We conclude that the benefits of hardware-supported Morton indexing are compelling 
enough to merit serious consideration of its inclusion in processors (or in FPGA based 
application specific co-processors) targeting high-performance computing.  

Future Work: Evaluation of the hardware-based Morton address mechanism for other 
applications/kernels (such as LU decomposition) and evaluation of support for other 
non-linear layouts (such as Hilbert layout) is part of our ongoing research. 
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Abstract. Rapid evolution of multi-core platforms is putting additional stress 
on shared processor resources like TLB. TLBs have mostly been private 
resources for the application running on the core, due to the constant flushing of 
entries on context switches. Recent technologies like virtualization enable 
independent execution of software domains leading to performance issues 
because of interesting dynamics at the shared hardware resources. The advent 
of TLB tagging with application and VM identifiers, however, increases the 
lifespan of these resources. In this paper, we demonstrate that TLB tagging and 
refraining from flushing the hypervisor TLB entries during a VM context 
switch can lead to considerable performance benefits. We show that it is 
possible to improve the TLB performance of an important application by 
protecting its TLB entries from the interference of other low priority 
VMs/applications and providing differentiated service. We present our QoS 
architecture framework for TLB (qTLB) and show its benefits. 

1   Introduction 

CMP architectures are increasingly used for server and workload consolidation  [8] [9]. 
Industry trend is moving towards sharing the on-die and off-die platform resources 
across multiple heterogeneous applications or VMs running simultaneously on 
multiple cores of CMP systems. The success of CMP platforms depends not only on 
the number of cores but also heavily on the other platform resources (cache, memory, 
etc) available and their efficient usage. Traditionally, processor and platform 
architectures have been designed to perform well while running a single application. 
However, with the evolving software use models, CMP platforms are being geared 
towards running multiple applications simultaneously. The rapid deployment of 
virtualization  [11] [6] as a means to consolidate multiple applications on a platform is 
a prime example. When these disparate applications run simultaneously on CMP 
architectures, the quality of service (QoS) that the platform provides to each 
individual application will be non-deterministic (or chaotic) because it depends 
heavily on the behavior of the other simultaneously running workloads. As expected, 
recent studies  [11] [16] [6] have indicated that contention for critical platform 
resources (e.g. cache, memory, I/O) is the primary cause for this lack of determinism. 
In this work we focus on the impact of virtualization on another major processor 
resource: translation look-aside buffer (TLB). 
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In order to design efficient virtualized systems on a CMP platform, the key 
challenge is to understand how micro-architectural features impact the performance of 
workloads in such environments. Recent studies  [3] [2] show that significant 
performance overhead can be attributed to increased cache and TLB misses. TLBs are 
used to reduce the overhead of address translations in paging systems such as the x86. 
The TLB semantics mandate almost complete TLB flushes after context switches, in 
order to maintain consistency. While previous studies have relied on measurements to 
assess the performance impact of virtualization of existing workloads and systems, it 
is important to understand the impact of this new use model in the context of 
upcoming processor features like TLB tagging. 

Typically, in a virtualized environment, process switches between different virtual 
machines (VMs) lead to complete TLB flushes. In typical consolidation 
environments, VM switching is often a very frequent event. Even though VMs in a 
virtualized environment are often scheduled based on different schedulers (such as 
BVT, SEDF in Xen)  [11], the fun5damental problem of performance degradation due 
to TLB flushing on a context switch remains the same due to uncontrolled assignment 
and removal of TLB resources for applications running in different virtual machines. 
In fact, the TLB flushing behavior during frequent VM switches mitigates the 
advantage of faster address translations [2]. Our experimental results with SPEC CPU 
2000 benchmarks support this argument. In the past, TLBs have been tagged with a 
global bit to prevent flushing of global pages such as shared libraries and kernel data 
structures. In some of the current system architectures, context switch overhead can 
be reduced by tagging TLB entries with address-space identifiers (ASID). A tag based 
on the virtual machine’s ID (VMID) could be further used to improve I/O 
performance for virtual machines. New processor architectures, with hardware 
virtualization support, incorporate features such as virtual-processor identifiers 
(VPID) to tag entries in the TLB [4] [10]. This level of tagging increases the longevity 
of TLB entries, and mitigates the performance penalty currently incurred on context 
switches. 

Recent studies on shared resource management have either advocated the need for 
fair distribution between threads and applications, or unfair distribution with the 
purpose of improving overall system performance. The work presented here aims to 
extend these concepts to TLBs with a goal of improving the performance of an 
individual application at the cost of the potential detriment of others, with guidance 
from the operating environment. This is motivated by usage models such as server 
consolidation where service level agreements motivate the degree of performance 
differentiation  [15] desired for some applications. Since the relative importance of the 
deployed applications is best managed by the operating software environment, we 
experiment with software-guided priorities (e.g. assigned by server administrators) to 
efficiently manage hardware resources. We compare the use of software-guided 
priorities (qTLB - QoS-aware TLBs) against non QoS-aware schemes. We also 
present the effect of scaling the TLB sizes (instruction and data), on application 
performance. Our full system simulation infrastructure is supplemented with detailed 
performance models for the caches and TLBs with QoS tuning knobs to be used by 
the system soft-ware. To our knowledge, this is the first study using full-system 
simulation to evaluate quality of service for TLBs using virtualized workloads for a 
CMP platform. 
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2   Analysis Methodology 

In this section, we present an overview of our full system simulation analysis 
methodology. We choose to employ Xen VMM for workload characterization 
because it is a de-facto para-virtualized (split I/O) open source VMM. In our test 
framework we ported Xen VMM to run on a full system simulation environment. To 
identify the hardware TLB entries belonging to different VMs we needed to pass the 
VM information for each specific memory access to the hardware modules. We 
accomplished this by modifying the Xen hypervisor to provide this information on 
each context switch. 

The Xen virtualized environment includes the Xen hypervisor, the service domain 
(Dom0) with its O/S kernel and applications, and a guest, “user” domain (DomU) 
with its O/S kernel and applications (Figure 1). This environment allows us to 
characterize different applications for workload characterization. The DomU guest 
uses a front end driver to communicate with a backend driver inside Dom0, which 
controls the I/O devices.  

To evaluate the TLB dynamics in virtualized environments, we need an 
experimental framework that allows us visibility into both the hardware system 
architecture and the software stack. We chose SoftSDV[17] simulator for our studies. 
In the past, SoftSDV has been deployed to measure hardware resource usage under 
virtualized execution environments  [19]. The simulation setup is shown in Figure 1. 
The execution-driven simulation environment combines functional and performance 
models of the platform. For this study, we chose to abstract the processor performance 
model and focus on detailed TLB models with QoS support to enable the coverage of 
multiple phases and a long execution period of the workload. 

Figure 2 summarizes the profiling methodology and the tools we used. The 
following sections describe the individual steps in detail; these include (1) Full system 
simulation with virtualized workload, and (2) Performance simulation with QoS 
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services. The SoftSDV simulation framework was extended to support TLB QoS [19]. 
The simulation environment provides us with the capability of changing the 
underlying hardware architecture to evaluate architecture enhancements and their 
impact on workload performance. We tagged the TLB entries with their 
corresponding VMIDs, and added TLB QoS by enhancing the replacement algorithm. 
Our environment supported monitoring of TLB resources per VM, enforcement of 
QoS at the TLB level and an interface for software to communicate information about 
the currently running VM and individual VM priorities.  

We calculated TLB utilizations while concurrently running applications in a 
virtualized environment. Figure 2 shows the QoS management module used to 
communicate with the abstract TLB model to provide QoS services. We employed a 
simple LRU based TLB replacement policy to evaluate the performance of various 
applications. QoS analysis is performed by using application level priorities to 
determine the percentage of TLB flushing and reservations. In addition, we 
considered the locality and working sets of the benchmarks for evaluation of our 
prototype. Section 3 discusses our proposed architecture in detail.  

3   QOS-Aware Architecture 

We propose a layered QoS architecture that implements static and dynamic QoS 
policies. Our proposed QoS-aware TLB architecture consists of three primary layers: 
priority enforcement, pri-ority assignment and priority classification.  

The priority classification layer is responsible for identifying and providing e QoS 
information i.e. priority levels of each running application (e.g. 0 for high and 1 for 
low) and the associated targets/constraints. As shown in Figure 3, this layer requires 
support in the execution environment (either OS or hypervisor) as well as the 
processor architecture. Operationally, support (in the form of a QoS API) is required 
for the user or administrator to supply the required QoS in-formation to the execution 
environment. The support in the execution environment is the ability to maintain the 
QoS information in the thread state and the ability to save and restore it in the process 
architectural state when the thread is scheduled to run. The support in the processor is 
essentially a new control register called Platform QoS Register (PQR) needed to 
maintain the QoS information for the run time. The execution environment sets the 
PQR with the platform priority level of the currently running application. When static 
QoS assignments are used, different priority levels can be directly mapped to various 
resource utilization thresholds. In contrast, maintaining a pre-defined target 
performance level of an application during run-time entails the need for dynamic QoS 
strategies. The PQR register will be used to convey the mapping of priority levels into 
resource thresholds (for static QoS) and the mapping of priority levels to tar-
gets/constraints (in case of dynamic QoS). For priority assignment, resource targets 
are used for QoS level mapping, and to indicate the TLB occupancy thresholds for 
each priority level.  In this paper, we only used static QoS policies.  

Figure 3 illustrates the priority enforcement layer in the architecture and shows the 
components involved. The inputs to the enforcement layer are the tagged memory 
accesses and the QoS re-source table. As shown in Figure 4, each line in the TLB is 
tagged with a priority level in order to keep track of the current TLB space utilization 
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per priority level. The QoS resource table uses this information to store the TLB 
utilization per priority level. This is done simply by incrementing the resource usage 
when a new line is allocated in the TLB and decrementing the resource usage when a 
replacement or eviction occurs.  
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Fig. 3. QoS Architecture for TLB Resources 

The static QoS policy is implemented by modifying the TLB replacement policy to 
be QoS aware. For each priority level, the utilization and the static QoS thresholds are 
available (in the QoS Resource Table - QRT) on a per priority level basis. If 
utilization of a priority level is lower than the specified threshold, then the 
replacement policy works in normal mode using the base policy (like LRU). When 
the utilization reaches the static QoS threshold, the QoS based replacement policy 
overrides the LRU policy to ensure that a victim is found within the same priority 
level (thus keeping the utilization for the priority level constant).  

4   Experiments and Results 

The goal of our experiments is to study the impact of various TLB configurations on 
virtualized workload performance. Keeping in mind that different applications have 
different working set sizes, our experiments are designed to evaluate the interaction 
between different applications at the TLB level. We also investigate the effect on 
individual applications due to different TLB QoS management policies in virtualized 
systems. 

In following sections, we present the data TLB (DTLB) and instruction TLB 
(ITLB) study results.  It is important to evaluate the performance of ITLB and DTLB 
separately because TLB access dynamics vary for data and instructions. We will first 
focus on the DTLB.  
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Fig. 4. QoS-Enabled TLB Enforcement 

4.1   Data TLB 

We evaluated DTLB performance of different workloads comprising the CPU 2000 
benchmark suite. The results show that in virtualized environments, per-application 
TLB resource requirements vary both with the application under consideration, and 
the set of other applications running concurrently.  In scenarios of applications 
running concurrently on different VMs, different QoS mechanisms are needed to 
achieve the desired performance for high priority applications. 

 

Fig. 5. Relative Change in data TLB miss rate with changing TLB size 

To understand the TLB requirements for different applications, we broadly 
categorize the workloads on the basis of their working set sizes (Figure 5). Depending 
on the working set profile and data access locality, applications can fall into TLB 
friendly or TLB un-friendly categories. For description purposes we will categorize 
them into highly friendly, medium friendly and minimal friendly.  
 
Highly TLB Friendly: These applications are characterized by a high degree of 
temporal and spatial locality. The applications tend to benefit highly with increased 
TLB resources. The more you give the better the performance is. Of the SPEC CPU 
2000 workloads we studied parser and gcc show this behavior of TLB locality.  
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Medium TLB friendly: The applications in this category show localization over a 
long range of memory addresses.  Thus, while performance gains are evident at lower 
TLB sizes, increasing the TLB sizes leads to proportional decrease of the TLB miss 
count. Figure 5 illustrates this behavior for the swim benchmark.  
 
Minimal TLB friendly: The working set for these applications exhibits a high degree 
of randomness in terms of addresses accessed. Therefore, TLB scaling has very little 
or no impact on the performance of such applications. From the SPEC CPU 2000 
suite, ammp and art (Figure 5) exhibit such behavior. 
 

Next we will look into simultaneous execution of workloads and the impact of 
VMID tagging.  

4.2   Impact of VM Tagging (VMID) 

In current virtualization environments, a context switch from one VM to another leads 
to a complete TLB flush and subsequent repopulation of the TLBs from a clean state. 
Major processor manufacturers are employing TLB tagging with VMIDs in their new 
processor offerings. Tagging the TLB entries with global VMIDs and subsequently 
avoiding the flushing of these entries on a VM context switch will potentially improve 
the TLB performance considerably.  The results from our experiments with VMID 
tagging are shown in Figure 6. We observe that depending on the nature of 
applications, significant reductions in DTLB miss count can be obtained by tagging 
the TLB lines with VMIDs which prevents flushing of the hypervisor mappings on 
context switches. Note that the graphs in Figure 6 show the percentage change in the 
miss count and not the absolute values of the miss count. In terms of absolute values, 
the miss count (or misses per instruction - MPI) of different workloads vary widely 
from each other depending on the nature of the individual workloads. But it can be 
observed that at small number of TLB entries, the impact of VMID is not that 
significant. As we increase the number of TLB entries, combinations with lower 
DTLB utilization benefit from tagging. This is due to the fact that a destructive 
application running after the context switch wipes the TLB out before the VM is 
scheduled again. One solution to this problem is to reduce the interference from the 
destructive VM through QoS as shown in the next section. 

4.3   Impact of DTLB QoS  

Our next step is to understand the TLB level interactions between multiple 
applications with different working set sizes and the effect of TLB QoS on 
performance.  In our simulation setup, two different applications are run under the 
Xen virtualization environment with one workload running in Domain-0 and another 
one in a dedicated virtual machine.  The TLB footprint obtained for Domain-0 is 
influenced by the combination of the test workload running in Domain-0 and other 
Xen related processes running in the administrative domain. To understand the effect 
of TLB QoS on an individual workload performance, we assign higher priority to the 
workload running in the isolated VM. The exact QoS metrics are tunable and are 
described in detail below. We use VMIDs to tag the TLB entries for QoS enforcement 
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purposes. In the graphs presented below, we plot the miss ratios for high priority 
applications with changing occupancy limits for the lower priority application. The 
miss counts are plotted relative to the miss count when no QoS is enforced. Table 1 
shows the different TLB configurations analyzed. 

 

 

Fig. 6. DTLB performance impact of VMID tagging 

Consider a scenario where the high priority application exhibits characteristics of 
highly TLB friendly workload. Since, the applications benefit from being allocated 
more entries in the TLB, restricting the background app will provide considerable 
performance improvement. This is more significant when the TLB size is small. 
Better management of the TLB can provide better results for the important application 
in this scenario. We will look at two sets of results to demonstrate this behavior. The 
first set of results (Figure 7) uses SWIM as the background process. It may be noted 
that the highly TLB friendly applications gcc and parser benefit highly from the 
increased TLB resources provided by TLB QoS. On the other hand, art and ammp 
which are minimal TLB friendly get minimal benefit out of TLB QoS. 

Another important observation is that the VMID tagging benefits dwarfed by the 
excessive TLB resource utilization are now moderated by employing TLB QoS.  

Table 1. TLB configurations supported 

System Scenarios TLB Semantics 
Legacy  
System 

TLBs are flushed on each context switch. 

VMID tagging 
(No  application TLB QoS) 

VMID tagging and TLB entries are not flushed on VM 
switches. LRU is used to replace the TLB entries across 

VMs. 

X% 
(preferential 

Resource allocation) 

VMID tagging with QoS Aware replacement. Low 
priority application gets at most X% of the TLB capacity. 

X= 40, 30, 20, 10, 0 (examples) 
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(a) Miss Rates for parser in swim vs. parser 
(parser has higher priority) 

(b) Miss Rates for gcc in swim vs. gcc (gcc has 
higher priority)  
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(c) Miss Rates for art  in swim  vs. art (art  
has higher priority) 

(d) Miss Rates for ammp in swim vs. ammp 
(ammp has higher priority) 

Fig. 7. Impact of VMID and TLB QoS on various applications with SWIM in background 
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Fig. 8. Miss Rates for swim in art vs. swim (swim has higher priority) 

It should be noted that the impact of TLB QoS depends both on the foreground as 
well as on the background application. Results with art as a background application 
are shown in Figure 8. Since art is less TLB intensive than swim, the impact of art on 
the foreground application is considerably less. This results in better QoS results even 
with smaller TLB sizes. The art vs swim plot shows that TLB QoS is needed to ensure 
that the a minimum number of entries must necessarily stay dedicated for the high 
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priority application. The performance gains for swim reduce after a minimum TLB 
size of 128 entries is reached or when the TLB QoS mechanism ensures a minimum 
level of allocation for swim.  

4.4   ITLB QoS 

Locality behavior of instructions is different than that of data.  Applications typically 
have small code working sets that fit into smaller TLBs. They also exhibit a high 
degree of locality. Instruction TLB behavior with TLB scaling is shown in Figure 9. 
We note that with increase in the size of the TLB, relative miss ratio decreases and is 
almost constant after size of 128. We infer that an ITLB size of 128 entries is 
sufficient to incorporate almost all possible address translations during the TLB stage, 
hence reducing the performance penalty.  

ITLB performance with scaling
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Fig. 9. ITLB Scaling Impact Fig. 10. ITLB Miss Rates for swim in art vs. 
swim (swim has higher priority) 

Intuitively, we expect that most  applications will have a fairly smaller instruction 
working set when compared with the data working set. Our experimental results 
support this intuition. Consequently, to improve the ITLB hit rates for higher priority 
applications in heterogeneous operating environments, we can either increase the size 
of ITLBs to a minimum acceptable level (128 entries for high priority VM from 
Figure 9),  or tune the QoS factor to achieve equivalent capacity for the high priority 
application. It should also be noted that VMID tagging alone works well with all TLB 
sizes. 

As Figure 10 shows, high gains are obtained at moderate ITLB sizes and moderate 
capacity restrictions for low priority applications. In fact, ITLB size of 128 entries and 
a QoS factor close to 0.5 ensuring fair distribution of the ITLB provides close to 
maximum performance boost. QoS tuning beyond this point does not produce 
proportionate results.  

This type of behavior was observed in all the studied workloads leading us to 
conclude that providing ITLB QoS in virtualized systems is less application sensitive 
than the DTLB QoS and may amount to ensuring a fair TLB distribution in most 
cases.  
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5   Conclusion and Future Work 

Virtualization and multi-core architectures are two complementary upcoming 
paradigms that throw open interesting workloads and applications scenarios. In this 
paper we analyzed the TLB level interactions of different applications operating in 
virtualized settings. Our execution driven simulation based results show that 
modifications to default TLB management policies are needed for efficient operation 
in such settings. We show that using VMIDs to avoid flushing the global (VMM) 
entries from TLBs on VM context switches leads to significant drops in TLB miss 
rates. 

We also investigated the effect of prioritizing the applications and providing QoS 
in terms of TLB capacity. Our investigations show that different applications display 
different TLB related behaviors depending on the working set sizes and access 
locality. Running multiple applications within different virtual machines raises 
interesting TLB sharing scenarios. In such conditions, our experiments show that an 
administrator can potentially provide a preferential performance boost to high priority 
applications using TLB QoS. The knowledge of application working-set sizes and 
access locality can be used to determine the QoS factors needed for a targeted TLB 
miss count. 

We are investigating how QoS services will affect TLB coherence protocols in 
context of performance and overhead.  We are currently in the process of designing a 
dynamic TLB QoS policy that tunes the QoS factor during run-time to achieve a 
guaranteed minimum performance level for high priority applications. We are also 
investigating hardware and software enhancements for architecting QoS aware multi-
core platforms. 
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Abstract. Instruction sets may have particular characteristics that produce a 
negative impact into the amount of available parallelism. The x86 instruction 
set architecture includes some of those characteristics. In particular, it is well 
know the negative impact of condition codes usage. In a coarse approximation, 
they can be considered responsible for a greater code coupling. Moreover, 
several in-depth works show that they introduce additional complexity in the 
procedures both to perform microcode binary translation and to support for 
precise exception mechanisms among others. To the extent of our knowledge 
no quantitative evaluation has been carried out that may determine the impact 
of condition codes usage on the x86 processors performance. In this work we 
will present a proposal of such quantification based on Graph Theory. 

Keywords: Condition codes; Instruction set architecture; Instruction level 
parallelism; Graph theory. 

1   Introduction 

Instruction set design has always been a fundamental issue in Computer Science. 
Design criteria for building instruction sets have evolved in time as some theoretical 
studies [2, 12] show. However, evaluation of instruction set architecture has not been 
explored as much as it could be expected, given the importance of the subject. We 
propose the analysis of instruction set architectures emphasizing that they have a 
definitive influence in the final performance. 

In-depth analysis of the impact that instruction sets on their own have on 
performance has been abandoned in favor of considering a single unit for study (the 
instruction set and the hardware that should interpret it), under the assumption that 
this is a sounder computational approach. Another circumstance that has also 
contributed to the lack of research in this type of analysis is the extensive use 
(sometimes abuse) of simulation as the performance evaluation method. Simulation 
does not differentiate between the impact on performance arising by the language 
itself and the impact of limited physical resources [15]. 

Performance in the field of superscalar execution depends on many factors: the 
intrinsic parallelism of algorithms, the capabilities of the used high level language, the 
compilation process, the target machine instruction set and, of course, the physical 
layer. Indeed, the ISA has a significant impact in the availability of fine-grain 
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parallelism before reaching the physical layer, which can reduce exploitable 
parallelism degree at run time. 

Nowadays, one of the most important objectives in Computer Engineering is code 
decoupling, that is, avoid data dependency among instructions in order to obtain 
maximum concurrency in superscalar processing of code. However, the machine 
language layer can be responsible for an over-ordering of the code that has no 
solution in the physical layer or that may cause increased execution complexity and 
power consumption. It is, therefore, important to move the focus from the physical 
layer to the machine language layer by itself. 

The x86 Instruction Set Architecture (ISA) was designed to fulfill basically two 
objectives: decrease the semantic gap between the high level languages and the 
machine level languages and obtain a compact executable code. These criteria are 
now obsolete but the instruction set has been maintained for binary compatibility 
reasons. Unfortunately, it behaves inefficiently in superscalar implementations. The 
x86 ISA shows many features that may compromise the intrinsic concurrency of the 
original computational task such as dedicated use of registers, condition code 
dependent branching and effective address computation where up to three registers 
may be involved. The sources of potential code coupling in x86 ISA have been 
identified from the distribution of data utilization in programs [7, 14]. 

Moreover, the x86 ISA performs poorly in superscalar environments compared 
with non-x86 sets for different architectural proposals. The IPC (Instructions Per 
Cycle) is 0.5 to 3.5 in different x86 execution models [13, 17]; compared to an IPC of 
2.5 to 15 (and peaks of 30) of non-x86 processors [18, 19]. This seems to confirm that 
indeed the architecture of the instruction set is a limiting factor on its own. 

In particular, it is well know the negative impact of condition codes usage. The 
main purpose of the condition codes is to communicate some information between 
process instructions and conditional branch instructions but they have additional 
functions in the case of x86 ISA. In a coarse approximation, they can be deemed 
responsible for a greater code coupling. In this sense, the condition codes have been 
considered accountable for the appearance of output dependence chains in the 
Literature [7]. Moreover, several in-depth works show that they introduce additional 
complexity in the procedures both to perform microcode binary translation and to 
support for precise exception mechanisms among others. 

Regarding binary translation, it is well known that most of condition codes 
writings are never used. In the setting of static binary translation the proposed 
solution is the deferred materialization [6] but in the setting of dynamic binary 
translation no similar solution has been proposed so far. 

Regarding precise exceptions, it can be said that patents have been filed providing 
solutions that include condition codes renaming (e.g., USPatent 5659721: “Processor 
structure and method for checkpointing instructions to maintain precise state”). 
Nevertheless, the renaming capacity is pretty limited (no more than 10 registers are 
reserved for this purpose). 

In fact, there is no available information from vendors about the degree of usage in 
the real world of the described techniques. Oddly enough, for example, no vendor has 
reported the practical use of the renaming solution for the complete instruction 
window, which in principle could be considered simpler. Several reasons could 
explain this fact: the unconditional materialization of condition codes which in 



 Analysis of x86 ISA Condition Codes Influence on Superscalar Execution 121 

practice are seldom read [7]; the extra cost due to the additional information that must 
be stored if precise exceptions are to be maintained [10, 16]; the impact on the ROB 
due to different life span of processed data and their associated condition codes; etc. 

Popular wisdom states that the negative impact due to condition codes is 
minimized at the micro-architectural level for the case of x86 ISA. Though appealing 
this turns out to be not exactly true. The binary translation results in a increased 
number of instructions (micro-operations) to be scheduled. Since the scheduling block 
does not scale well, the pressure on it becomes larger. 

To relax the pressure on the scheduling block several solutions have been proposed 
[8, 11]. Essentially they consist in fusing instructions. The pairs formed by the 
instruction producing the condition code and the consumer conditional branch are 
among the best candidates to be fused. However, it is clear that this mechanism is 
orthogonal with respect to the treatment of dependences produced by condition codes. 

Finally, although the condition codes represent a problem in the superscalar 
execution setting, as far the authors know, no quantitative evaluation has been carried 
out that permits to determine their effect on the performance of x86 processors. In this 
work we present a proposal for such quantification. 

2   The Analytical Model and Quantification Tools 

Applying Graph Theory [1, 5] to evaluate instruction sets architectures has several 
advantages: 

• it provides a simple description of the problem, 
• it allows to predict behavior, 
• it simplifies the transmission of knowledge, 
• it allows an easy quantification, 
• it separates the study of instruction set characteristics from the hardware that 

should interpret it. 
We represent data dependences found in code sequences as directed graphs and 

then use a matrix representation for the graph to apply mathematical relations. Details 
about the mathematical development leading to the following summary of definitions 
can be found in [3, 4]. 
• For a sequence of n instructions the n x n dependence matrix D is defined as: 
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 This matrix should comply with several properties and restrictions in the ILP 
setting. From this matrix we can derive a set of metrics: code coupling, critical path 
length, and degree of parallelism: 

• We call total coupling CT the total number of dependences registered by matrix D. 
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 To obtain a coupling measurement independent of the amount of instructions in the 
sequence, we define a normalized coupling, CTN, as the ratio CT vs. the binomial 
coefficient n over 2. 

• The critical path length L measures the longest data dependence path found in the 
n instructions window. The units are computing steps. It is an asynchronous concept, 
i.e., defined as the process of eliminating all the nodes in the graph with no data 
dependences. The first power of D (in the set of integer numbers) that is identically 
zero indicates the length of the critical data path in computation steps: 
 

L = l computation steps if and only if Dl–1 •  0 and Dl = 0. (3)
 

 To obtain a critical path length measurement independent of the amount of 
instructions in the sequence, we define a normalized critical path length, LN, as the 
ratio L vs. the number n of instructions in the instruction window. 

• The parallelism degree Gp is inversely related to the critical path length L: the longer 
the length, the stricter the partial ordering of the code sequence, limiting the ability of 
concurrent processing. Consequently, we define the parallelism degree, Gp, as: 

.
L

n
Gp =  (4)

• One of the most powerful properties of the method is the compositional nature of 
matrix D, which states that this matrix corresponds to the resultant of the 
contribution from different sources of dependence Si which are, in turn, individual 
matrices representing isolated sources of dependences. So, it is possible to isolate 
and estimate the impact produced by different data types on the whole set and also 
perform several interesting combinations and obtain their specific contributions to 
the total. The expression is: 
 

D = Ds1 OR Ds2 OR … OR Dsn (5)
 

• The following equations bound CT and L as a function of the values of their 
components CTsi and Lsi and the size of the instruction window n: 
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While analytic Graph Theory is very rich, our model in its current version assigns a 

computational meaning to a limited number of its concepts. However modest the use of 
Graph Theory may seem up to now, the full power of the theory is available, since we 
have carefully established a link from superscalar setting to Graph Theory [3, 4]. 

3   Condition Codes in Instruction Set Architectures 

Using condition codes is an alternative for implementing conditional control flow. 
The evaluation of the branch condition is performed using one or more condition-
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code bits. These bits are grouped, for practical reasons, into a status register where 
they get updated upon the execution of processing instructions; setting or unsetting 
each individual bit, the collection completely describes the result. A processing 
instruction typically precedes a conditional branch and therefore it creates a 
dependence which requires serial execution. Architectures using this schema are 
called status register architectures; the x86 is one of them. Considering superscalar 
execution, condition codes increment the ordering of instructions as they pass 
information from one instruction to the next. 

Theoretically, there are other two alternatives for implementing conditional control 
flow: evaluation of the contents of a register named in the branch instruction against a 
criteria also contained in the branch instruction, and atomization of the comparison and 
branching actions into a single instruction. The first alternative, commercially adopted 
in the Alpha and MIPS architectures for instance, is simple and also optimal for 
superscalar execution while the second one, used in the PA-RISC and VAX processors, 
makes the pipeline design more complex as it results from the union of two operations 
in one. 

The PowerPC is another status register architecture but, in contrast to the x86, its 
instruction set was designed to avoid the negative effect produced by output 
dependences due to condition codes: data processing instructions format includes a bit 
used to indicate whether the condition bits must be materialized or not. This 
effectively limits the coupling produced by condition codes to the cases where it 
really has computational meaning, and the compiler is in charge of driving the 
decision. 

The x86 ISA has not solved the output dependences problem because it needs to 
keep backward binary compatibility. 

4   Condition Codes in the x86 ISA 

Condition codes are used for conditional branching and they are located into the status 
register. This register hosts bits with different meaning that can be classified into one 
of the following two groups: control flags and status flags. 

Control flags include miscellaneous information related to the operation modes of 
the processor. These control flags do not contain computational information and 
therefore are not taken into account in our analysis. Status flags qualify the result of 
processing operations. A single or a combination of status flags correspond to what 
we generally refer to as a condition code. Status register has thus this dual 
consideration being a unique storage location while each bit has its own independent 
meaning and management procedure. 

Condition codes are typically used for conditional branching in status register 
architectures. In the case of the x86 ISA, the status flags can also be used as input 
operands for some operations. In these particular cases, where information flows from 
one operation to the next, it exists a true dependence and the instructions involved 
cannot be executed independently. It is necessary therefore to include these cases into 
the analysis and evaluate their influence into the general code coupling. 

We should not forget that condition codes in the x86 ISA are used by different 
instructions with other purposes as well: status register moving, processing 



124 V. Escuder, R. Durán, and R. Rico 

instructions using condition codes as an extra input operand, and some special 
instructions such as repetition prefixes. 

In all cases, the access to condition codes is done implicitly, it can not be avoided 
by the programmer and there is no mechanism to disable the access when it has no 
computational meaning. 

5   Micro-operation Level Impact 

Processors of the x86 family use a 2-level microarchitecture to improve performance. 
The top level acts as an interface to the CISC instruction set, translating instructions 
into RISC-type micro-operations which are executed in the low level machine. 
Obviously, computational semantics must be preserved across the transformation. 
Following our formalism, the RISC code corresponding to a CISC code will also have 
a graph representing it. 

Decoding is performed in three different units: the simple, the general and the 
sequencer units. Instructions decoded by the sequencer unit are executed serially, while 
instructions decoded by the other two units are executed in a superscalar fashion. 

Huang and Peng have analyzed the distribution of the number of micro-operations 
a single CISC instruction gets decomposed [9]. Most instructions (67%) are translated 
into only one micro-operation and from the rest almost 90% get translated into two 
micro-operations. The reported weighted average value is 1.47 micro-operations per 
CISC instruction. 

According to these numbers, we can conclude that the transformation from CISC 
to RISC only increases the number of nodes in the dependence graph by a factor of 
1.5. 

Once the graph nodes analyzed, the question now is how many arcs the new graph 
will have after the transformation. To answer this question we need to analyze how a 
CISC instruction gets decomposed into several RISC instructions. Basically it 
depends on addressing modes. When a CISC operand is in memory, it gets 
automatically translated into two operations: a RISC load/store operation used to 
transfer the operand to/from memory from/to the CPU registers and a RISC 
processing instruction that gets the operands from the CPU registers and performs the 
operation. Consequently, dependence chains experiment an enlargement that basically 
corresponds to the increase of the number of nodes in the graph. 

The result is a negligible increase of the parallelism compared with that present in 
the sequence of CISC code given that Gp is the relation between n (nodes) and L 
(chain length). Since the equivalent RISC graph is essentially the same as the CISC 
graph we can conclude that the binary translation does not yield by itself any new 
parallelism opportunity. 

6   Methodology 

We apply the analytical model based on Graph Theory proposed in Section 2 to 
obtain code coupling quantification. The input data set is the execution traces of a set 
of programs used as testbench for the experiment. 



 Analysis of x86 ISA Condition Codes Influence on Superscalar Execution 125 

6.1   Defining Compositions 

The selection of contributing data dependence sources depends on the objective of the 
ongoing analysis. Then, applying our metrics to the compositions resulting from the 
inclusion or exclusion of particular sources of data dependences, we obtain figures of 
their relevance. 

In our case, we are focusing on condition codes as source of dependences, and, 
therefore, our space is divided into two data types: condition codes and the rest. So, 
we will study the following contributions: 

a) contribution from all data types 
b) contribution from condition codes only 
c) contribution from non condition codes only 

We also wish to distinguish among the different types of dependences: true 
dependences (RAW: Read After Write), anti-dependences (WAR: Write After Read) 
and output dependences (WAW: Write After Write). We build meaningful 
compositions by combining data types and dependence type contributions. So for 
each dependence type we have information about the contribution from all data, from 
condition codes solely and from data other than condition codes. 

By interpreting values in different compositions we can reach valuable information 
about the effective impact of condition codes on real programs. 

Whereas the statistical analysis based on instruction distributions provide a 
qualitative knowledge of the impact caused by condition codes to superscalar 
execution, the analytical method provides a quantification for this impact. 

6.2   Experimental Framework 

The proposed analysis follows the typical methodology of the trace driven simulation 
but replacing the simulator block by an application that implements our mathematical 
model (available at: CVSROOOT:pserver:anoncvs@atc2.aut.uah.es:2401/home/ 
cvsmgr/repositorio). This application performs an automatic computation of the 
metrics proposed in Section 2. It allows the use of instruction windows of variable 
size. Given a profile for the dependence contributions, it builds the relevant 
dependence matrices and stores the desired results. 

The first step is to generate a set of traces where, obviously, loops are unrolled and 
branch targets are exactly known since they are written in the trace file (this could be 
considered the omniscient predictor sometimes used in simulators). 

The testbench is a set of DOS utility programs (comp, find and debug) compiled in 
real mode as well as some popular common applications such as file compressor rar 
(v.1.52) working as compress (trace rar(c)) and uncompress (trace rar(d)) modes, and 
the tcc C-language compiler (v. 1.0). Program go from the SPECint95 suite has also 
been included using two different compilation options: one optimizes for size (trace 
go(t)) and the other optimizes for speed (trace go(v)). For simplicity, the 16 bit subset 
of x86 ISA has been selected. 

The programs were run in step-by-step mode and under a specific workload 
conditions to avoid excessively long traces. Nevertheless, more than 190 million 
instructions were executed. 
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We selected static 512 instruction sequence windows. Sliding windows, the typical 
mode used for the physical layer of processors and simulators, is an excessively heavy 
load for the computation and it adds no additional precision compared with a scenario 
where sufficiently large static windows are used. We tested window sizes up to 2,048 
instructions and found no significant change in the results obtained, while computing 
time substantially increased. 

7   Quantifying the Impact of Condition Codes Accesses 

7.1   Condition Codes in the Basic Block 

A basic block is defined as a sequence of linear instructions without any branches. 
This structure is frequently used in compiler theory as it is a basic unit to apply local 
optimizations to. The structure is also a good scenario to identify and understand 
different data coupling patterns produced by condition codes. 

Table 1 shows the average size (in number of instructions) of the basic block found 
for each testbench program. It also shows the average number of processing 
instructions in the block. The complete work about the distribution of instructions and 
data usage called “Analysis of x86 Data Usage (16 bit subset)” is available at: 
http://atc2.aut.uah.es/~gap/. 

Table 1. Average block size and average processing instructions per basic block for each 
program in the testbench 

Program 
Average 

instructions per 
BB 

Average 
processing 

instructions per 
BB 

comp 6.00 1.94 
find 7.68 1.56 
go(t) 10.31 3.14 
go(v) 10.16 2.89 
rar(c) 3.19 1.25 
rar(d) 12.56 5.52 
debug 3.92 1.35 
tcc 8.98 2.28 

Considering condition code data dependences only, each basic block necessarily 
contains a true dependence between the last instruction updating the condition codes 
and the branch instruction that reads them. This communication holds real 
computational meaning. From a statistical point of view, the number of true 
dependences will increase with the number of basic blocks present in the code. In 
other words, the smaller the basic block, the higher the number of true dependences in 
the trace. Table 1 shows that programs rar(d) and debug have the smallest basic 
blocks. 
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Another typical coupling in the basic block is due to output dependences: the order 
imposed by processing instructions performing successive writes to the same 
resource, in this case, the status register. The limitation on the amount of available 
parallelism due to this type of dependence is a direct consequence of the instruction 
set architecture and it has no computational meaning at all. 

Statistically, the average length of output dependence chains grows with the 
number of processing instructions in a basic block. Large basic blocks also tend to 
contain a large number of processing instructions and, consequently, may increase the 
length of output dependence chains caused by condition codes. 

7.2   Coupling 

Figure 1 shows for each considered program some information about the normalized 
total coupling CTN due to different contributions. Two types of graphs have been used: 
stacked area chart and line chart. First of all, the normalized total coupling due to 
contributions from non condition codes CTNno-cc (cross hatched), and then, the 
normalized total coupling due to contributions from condition codes CTNcc (gray 
dotted); both of them are represented by stacked areas. Finally, the normalized total 
coupling CTN due to contribution from all data is represented by a solid line. 

 

 

Fig. 1. Normalized total coupling: in stacked areas the contributions from non condition codes 
plus condition codes; in solid line, the normalized total coupling due to the contribution from 
all data 

It is noticeable that the solid line is slightly below the total area. This means that 
the contributions from both condition and non condition codes are essentially non 
overlapping, thus proving that the contribution from condition codes is relevant. 

Figure 2 shows the normalized total coupling due to the contribution from 
condition codes (CTNcc) split into the three types of data dependences: true, anti- and 
output dependences. 

It is apparent that the biggest contribution of conditions codes to the coupling 
comes from output dependences for all the programs. This quantification confirms the 
observations already made by some authors [7]. 
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Fig. 2. Normalized total coupling due to the contribution from condition codes. Each column 
depicts the contribution of each different type of dependence. 

 

Fig. 3. Normalized critical path length for the different data dependences types: in overlapped 
areas the contributions from non condition codes and condition codes; in solid line, the critical 
path length due to the contribution from all data 

7.3   Critical Path Length 

Figure 3 presents the normalized critical path length LN for the different data 
dependence types for all the programs in the testbench. The contributions from 
condition codes and non condition codes are shown in the overlapped areas. The 
normalized critical path length due to the contributions from all data is shown in solid 
line. 

The first graph shows the compositions for all types of dependences. We can see 
that the normalized critical path length due to the contribution from condition code is 
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in the range of the contribution from the other sources. Sometimes, it is even larger: in 
the case of rar(c) and debug the normalized critical path length LNcc exceeds the value 
obtained from the composition of the rest of sources LNncc. Indeed, for these two 
programs, the normalized critical path length LNcc is a low bound limit to the complete 
composition of dependences. The solid line seems to reflect the influence of the 
contributions due to condition codes especially on the mentioned programs. 

The other graphs show that the only relevant contribution to the normalized critical 
path length from condition codes is the one due to output dependences. 

Figure 4 provides a view of the contribution to LN of the condition codes source for 
each dependence type on all program traces. 

 

Fig. 4. Normalized critical path length due to condition codes: in stacked columns the 
contributions from the different types of data dependences; in the column in the back, the 
normalized critical path length due to the complete composition 

We observe that condition codes contribution to normalized critical path length 
arises, mainly, from output dependences in agreement with the corresponding 
coupling measurements that can be observed in Fig. 2. However, the columns for true 
and anti-dependences are negligible; this is in contrast with the corresponding 
coupling measurements where the contribution due to true and anti- dependences are 
indeed significant (see Fig. 2). 

Moreover, in general, the combination of true dependences and anti-dependences 
with the output dependences seems to enlarge the overall dependence chains. In fact, 
as we can see in Fig. 4, the normalized critical path length due to the complete 
composition is greater than the sum of the contributions from the different types of 
data dependences. This seems to suggest that the few existing true and anti-
dependences would link two or more output dependence chains, thus producing a new 
longer chain. 

Observe also that for the traces of the programs rar(c) and debug the resulting total 
dependences are much larger than for the rest of program traces. As both of these 
programs exhibit a block size quite small compared with that of the others programs 
from the testbench, there seems to be a correlation between the size of the basic block 
and this effect of “irregular enlargements.” 

Figure 5 shows the same information as the previous figure but for the rest of 
dependence sources. It is remarkable that this figure shows a more equilibrated 
contribution among the different dependence types when condition codes contribution 
is excluded. Composing all dependence types increases the normalized critical path 
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length, although in a rather heterogeneous manner. Contrary to what happened in Fig. 
4, we can see in Fig. 5 that the normalized critical path length due to the complete 
composition is smaller than the sum of the contributions from the different types of 
data dependences. 

 

Fig. 5. Contribution of non condition codes data types to the different compositions of 
dependence types for each program 

7.4   Degree of Parallelism Gp 

Now, we turn our attention to Gp, namely, the degree of parallelism. Figure 6 shows Gp 
contributed by all data dependence sources and Gpncc contributed by all sources but 
condition codes. The per-program basic block size has been also presented in vertical 
bars. 

As far as the parallelism degree by all data dependences is concerned, we observe 
that since Gp ranges from 1.22 to 1.67, the conclusion is that it is only possible to 
obtain a global parallelism of just about 2 instructions per computation step. This 
result is in agreement with the results obtained in other research work about the x86 
ISA [9, 13, 14, 17], which is an important fact to validate our methodology. 

If we avoid the impact of condition codes, we observe that Gpncc shows a greater 
degree of parallelism than Gp. In fact, according to vertical bars in Fig. 6, the 
programs rar(c) and debug display the smallest basic block size, and black squared  

 

 

Fig. 6. Per program degree of parallelism Gp contributed by all sources (stars) and all sources 
but condition codes (black squares). Vertical bars show the per-program basic block size. 
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line displays that precisely those programs exhibit the highest potential for 
parallelism. This seems to suggest that some correlation between these two 
characteristics may be present. 

8   Conclusions and Future Work 

Focusing our analysis to dependences caused by condition codes, it becomes apparent 
that a larger basic block decrements the hazard of coupling due to true dependences 
but, at the same time, may also produce lengthening of output dependence chains. 

The quantification based on coupling leads to the conclusion that condition codes 
show their coupling essentially through output dependences. In spite of this, when we 
measure critical path lengths, the contribution to it due to true and anti dependences 
increases substantially the length of the critical path due just to output dependences 
(see Fig. 4). Condition codes decrease the amount of available parallelism. 

Figure 6 seems to suggest a correlation between the length of the dependence 
chains and the basic block size so that when the latter is short, the former is found to 
be higher. We conjecture that this may be due to the contribution of true dependences 
but this should be confirmed by further studies. 

Register renaming techniques are not a suitable solution since they mean a waste of 
resources. For example, additional information should be stored if precise exceptions 
are to be maintained [10, 16]. 

Transforming the stream of CISC instructions to RISC instructions does not 
produce a substantial modification on the impact caused by condition codes to the 
instruction level parallelism, even at the micro-operation level. 

Though this work has been done with the 16 bit subset of x86 ISA, we think that 
the conclusions are meaningful. As a future work we plan to extend the analysis to the 
full x86 ISA. 

Since most condition codes have no computational meaning and are only 
originated due to the architecture of the x86 ISA, the conditional materialization could 
be a solution to be explored in future works. Actually, we are already evaluating a 
software conditional materialization that seems to be suitable in the dynamic binary 
translation setting performed in x86 processors. The method could be as good as the 
hardware conditional materialization used by PowerPC but maintaining binary 
compatibility of x86 family. 

 
Acknowledgments. This work was partially supported by the Vicerrectorado de 
Investigación de la Universidad de Alcalá under Grant UAH PI2005/072. 

References 

1. Biggs, N.L.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge 
(1993) 

2. Bose, P.: Instruction Set Design for Support of High-Level Languages. Ph.D. Thesis, 
University of Illinois at Urbana-Champaign (1983) 

3. Durán, R., Rico, R.: Quantification of ISA Impact on Superscalar Processing. In: 
Proceeding of EUROCON 2005, pp. 701–704 (2005) 



132 V. Escuder, R. Durán, and R. Rico 

4. Durán, R., Rico, R.: On applying graph theory to ILP analysis. IEEE Latin America 
Transactions, 289–296 (2006) 

5. Godsil, C.D., Royle, G.F.: Algebraic Graph Theory. Springer, Heidelberg (2001) 
6. Gschwind, M.: Method for the deferred materialization of condition code information. 

Research Disclosures (1999) 
7. Gschwind, M., Ebcioglu, K., Altman, E., Sathaye, S.: Binary Translation and Architecture 

Convergence Issues for IBM System/390. In: Proceedings of the 14th International 
Conference on Supercomputing, pp. 336–347 (2000) 

8. Hu, S., Smith, J.E.: Using Dynamic Binary Translation to Fuse Dependent Instructions. In: 
Proceedings of the International Symposium on Code Generation and Optimization CGO, 
pp. 213–224 (2004) 

9. Huang, I.J., Peng, T.C.: Analysis of x86 Instruction Set Usage for DOS/Windows 
Applications and Its Implication on Superscalar Design. IEICE Transactions on 
Information and Systems E85-D(6), 929–939 (2002) 

10. Hwu, W.W., Patt, Y.N.: Checkpoint repair for out-of-order execution machines. IEEE 
Transactions on Computers C-36, 1496–1514 (1987) 

11. Kim, I., Lipasti, M.H.: Macro-op Scheduling: Relaxing Scheduling Loop Constraints. In: 
Proceedings of the 36th International Symposium on Microarchitecture, pp. 1496–1514 
(2003) 

12. Maurer, W.D.: A theory of computer instructions. Journal of the ACM 13(2), 226–235 
(1966) 

13. Mutlu, O., Stark, J., Wilkerson, C., Patt, Y.N.: Runahead Execution: An Alternative to 
Very Large Instruction Windows for Out-of-order Processors. In: Proc. of the 9th Intl. 
Symp. on High-Performance Computer Architecture, pp. 129–140 (2003) 

14. Rico, R., Pérez, J.I., Frutos, J.A.: The impact of x86 instruction set architecture on 
superscalar processing. Journal of Systems Architecture 51.1 (2005) 

15. Skadron, K., Martonosi, M., August, D.I., Hill, M.D., Hill, D.J., Pai, V.S.: Challenges in 
Computer Architecture Evaluation. IEEE Computer 36.8 (2003) 

16. Sohi, G.S.: Instruction Issue Logic for High-Performance, Interruptible, Multiple 
Functional Unit, Pipelined Computers. IEEE Transactions on Computers, 349–359 (1990) 

17. Stark, J., Brown, M.D., Patt, Y.N.: On Pipelining Dynamic Instruction Scheduling Logic. 
In: Proc. of the 33rd Annual ACM/IEEE Intl. Symp. on Microarchitecture, pp. 57–66 
(2000) 

18. Stefanovic, D., Martonosi, M.: Limits and Graph Structure of Available Instruction-Level 
Parallelism. In: Proceedings of the European Conference on Parallel Computing (2000) 

19. Wall, D.W.: Limits of instruction-level parallelism. In: Proc. of the 4th Intl. Conference on 
Architectural Support for Programming Languages and Operating Systems, pp. 176–188 
(1991) 



Efficient Message Management in Tiled CMP

Architectures Using a Heterogeneous
Interconnection Network

Antonio Flores, Juan L. Aragón, and Manuel E. Acacio
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Abstract. Previous studies have shown that the interconnection network
of a Chip-Multiprocessor (CMP) has significant impact on both overall
performance and energy consumption. Moreover, wires used in such in-
terconnect can be designed with varying latency, bandwidth and power
characteristics. In this work, we present a proposal for performance-and
energy-efficient message management in tiled CMPs by using a heteroge-
neous interconnect. Our proposal consists of Reply Partitioning, a tech-
nique that classifies all coherence messages into critical and short, and
non-critical and long messages; and the use of a heterogeneous intercon-
nection network comprised of low-latency wires for critical messages and
low-energy wires for non-critical ones. Through detailed simulations of 8-
and 16-core CMPs, we show that our proposal obtains average improve-
ments of 8% in execution time and 65% in the Energy-Delay2 Product
metric of the interconnect over previous works.

Keywords: Chip-Multiprocessor, Energy-Efficient Architectures, Het-
erogeneus On-Chip Interconnection Network, Parallel Scientific Applica-
tions.

1 Introduction

High performance processor designs are evolving toward architectures that im-
plement multiple processing cores on a single die. Chip-multiprocessors (CMPs)
can provide higher throughput, more scalability and greater energy-efficiency
compared to wider-issue, single-core processors. Furthermore, energy-efficient
architectures are currently one of the major goals pursued by designers in both
high performance and embedded processor domains.

On the other hand, tiled architectures provide a scalable solution for support-
ing families of products with varying computational power, managing the design
complexity, and effectively using the resources available in advanced VLSI tech-
nologies. Therefore, it is expected that future CMPs will be designed as arrays of
replicated tiles connected over a switched direct network [1,2]. In these architec-
tures, the design of the on-chip interconnection network has been shown to have
significant impact on overall system performance and energy consumption, since
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it is implemented using global wires that show long delays and high capacitance
properties. Recently, Wang et al. [3] reported that the on-chip network of the
Raw processor consumes 36% of total chip power. Magen et al. [4] also attribute
50% of overall chip power to the interconnect. Most of this power is dissipated
in the point-to-point links of the interconnect [5,3].

By tuning wire’s characteristics such as wire width, spacing or repeater size, it
is possible to design wires with varying latency, bandwidth and energy properties
[6]. Using links that are comprised of wires with different physical properties, a
heterogeneous on-chip interconnection network is obtained. In [7], the authors
propose the use of links that are comprised of two wire implementations apart
from baseline wires (B-Wires): power optimized wires (PW-Wires) with fewer
and smaller repeaters, and latency optimized wires (L-Wires) that have high
widths and spacing. Then, coherence messages are mapped to the appropriate
set of wires taking into account their latency and bandwidth requirements, ob-
taining a reduction in both execution time and energy consumption for a CMP
with a two-level tree interconnect topology. Unfortunately, the authors report
insignificant performance improvements for the direct network topologies em-
ployed in tiled CMPs (such as a 2D-mesh).

In this work, we present a proposal for efficient message management (from
the point of view of both performance and energy) in tiled CMPs. Our proposal
consists of two approaches. The first one is Reply Partitioning, a technique that
allows all messages used to ensure coherence between the L1 caches of a CMP to
be classified into two groups: a) critical and short, and b) non-critical and long
messages. The second approach uses a heterogeneous interconnection network
comprised of only two types of wires: low-latency wires for critical messages and
low-energy wires for non-critical ones.

The main contribution of our proposal is the partitioning of reply messages
that carry data into a short critical message containing the sub-block of the cache
requested by the core as well as a long non-critical message with the whole cache
line. This partitioning allows for a more energy-efficient use of the heterogeneous
interconnect since now all short messages have been made critical whereas all
long messages have been made non-critical. The former can be sent through the
L-Wires whereas the latter can be sent through the PW-Wires. Differently to
proposals in [7], our partitioning approach first, eliminates a complex logic for
choosing the correct set of wires (we need a single bit in the message length field
instead of checking the directory state or the congestion level of the network) and
second, it obtains significant energy-delay improvements when direct topologies
are used. Additionally, our proposal allows for a more balanced workload across
the heterogeneous interconnect.

The rest of this paper is organized as follows. Our proposal for efficient mes-
sage management in tiled CMPs is presented in section 2. Section 3 describes
the evaluation methodology and presents the results of the proposed mechanism.
Section 4 reviews some related work, and finally, section 5 summarizes the main
conclusions of the work.
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2 A Proposal for Efficient Message Management in Tiled
CMPs

In this section we present our proposal for efficient message management in
tiled CMPs. This section starts with a description of the tiled CMP architecture
assumed in this paper, followed by a classification of the messages in terms of
both their criticality and size and, finally, the description of the proposed Reply
Partitioning mechanism.

2.1 Tiled CMP Architectures

A tiled CMP architecture consists of a number of replicated tiles connected over
a switched direct network (Figure 1). Each tile contains a processing core with
primary caches (both I- and D-caches), a slice of the L2 cache, and a connection
to the on-chip network. The L2 cache is shared among the different processing
cores, but it is physically distributed between them. Therefore, some accesses
to the L2 cache will be sent to the local slice while the rest will be serviced by
remote slices (L2 NUCA architecture). In addition, the L2 cache tags store the
directory information needed to ensure coherence between the L1 caches. On
a L1 cache miss, a request is sent down to the appropriate tile where further
protocol actions are initiated based on that block’s directory state. In this paper
we assume a process technology of 65 nm, tile area of approximately 25 mm2,
and a die size in the order of 400 mm2 [2]. Note that this area is similar to the
largest die in production today (Itanium 2 processor – around 432 mm2). Note
also that, due to manufacturing costs and form factor limitations, it would be
desirable to keep die size as low as possible. Further details about the evaluation
methodology and the simulated CMP configuration can be found in section 3.1.

Fig. 1. Tiled CMP architecture overview

2.2 Classification of Messages in Tiled CMP Architectures

There are a variety of message types travelling on the interconnect of a CMP,
each one with properties that are clearly distinct. In general, we can classify
messages into the following groups: Request messages, that are generated by
cache controllers in response to L1 cache misses and sent to the corresponding
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home L2 cache to demand privileges over a memory line. Response messages
to these requests, generated by the home L2 cache controller or, alternatively,
by the remote L1 cache that has the single valid copy of the data, and they
can carry the memory line or not. Coherence commands, that are sent by the
home L2 cache controller to the corresponding L1 caches to ensure coherence.
Coherence responses, sent by the L1 caches back to the corresponding home L2
in response to coherence commands. Replacement messages, that the L1 caches
generate in case of exclusive or modified lines being replaced.

Messages involved in the L1 cache coherence protocol can be classified ac-
cording to their criticality into critical and non-critical messages. We say that a
message is critical when it is in the critical path of the L1 cache miss, otherwise
the message is non-critical. As expected, delaying a critical message will result
in longer L1 cache miss latencies. On the other hand, slight slowdowns in the
delivery of non-critical messages will not cause any performance degradation.

Using this criterion, we can observe that all message types but replacement
messages and some coherence replies (such as revision messages) are critical.
It is clear that performance is increased if critical messages are sent through
low-latency L-Wires. At the same time energy is saved, without affecting perfor-
mance, when non-critical messages travel on slower, power-efficient PW-Wires.

On the other hand, coherence messages can also be classified according to
their size into short and long messages. Coherence responses do not include the
address or the data block and just contain control information (source/destina-
tion, message type, MSHR id, etc). In this way, we can say that they are short
messages. Other message types, in particular requests and coherence commands,
also contain address block information but they are still narrow enough to be
classified as short messages. Finally, replacements with data and data block
transfers also carry a cache line and, therefore, they are long messages.

Table 1. Area, delay and power characteristics of wire implementations (extracted
from [7])

Wire Type Relative Latency Relative Area Dynamic Power (W/m) Static Power
α=Switching Factor W/m

B-Wire (8X plane) 1x 1x 2.65α 1.0246
B-Wire (4X plane) 1.6x 0.5x 2.9α 1.1578
L-Wire (8X plane) 0.5x 4x 1.46α 0.5670

PW-Wire (4X plane) 3.2x 0.5x 0.87α 0.3074
PW-Wire (8X plane) 2x x 0.80α 0.2720

Table 1 shows the relative area, delay and power characteristics of L- and
PW-Wires compared to baseline wires (B-Wires), as reported in [7]. A 65 nm
process technology is considered, where 4X and 8X metal planes are used for
global inter-core wires that are routed over memory arrays, as in [8]. It can be
seen that L-Wires yield a two-fold latency improvement at a four-fold area cost.
On the other hand, PW-Wires are designed to reduce power consumption with
twice the delay of baseline wires (and the same area cost).
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Regarding the power dissipated by each message type, Figure 2 plots their
power breakdown for the baseline configuration using only B-Wires. As it can
be seen, most of the power in the interconnect is associated to reply messages
that carry L2 cache lines (55%-65%). As previously commented, most of this
power is dissipated in the point-to-point links and, therefore, message size plays
a major role.

Fig. 2. Percentage of the power dissipated in the interconnection network by each type
of message for an 8-core (left) and a 16-core CMP (right)

The use of a heterogeneous interconnect comprised of low-latency L-Wires and
power-efficient PW-Wires allows for a more energy-efficient interconnect utiliza-
tion. However, as the number of L-Wires is smaller because of their four-fold
area cost (relative to baseline wires) only short messages can take full advantage
of them. On the other hand, since message size has direct impact on the power
dissipated in the interconnect, significant energy savings can be obtained when
long messages are sent using PW-Wires.

Table 2. Classification of the messages that travel on the interconnection network
according to their criticality and length

Message Type Critical? Length Preferred Wires (assuming unbounded number)
Request Yes Short L-Wires
Response Yes Short/Long L-Wires (Performance) / PW-Wires (Energy)
Cohe Command Yes Short L-Wires
Cohe Replies Yes/No Short L-Wires (Critical) / PW-Wires (Non-critical)
Replacements No Short/Long PW-Wires

Table 2 summarizes the characteristics of each message type and points out
the links that would be preferred in every case. In general, short messages are
critical and, therefore, should be sent using L-Wires. On the other hand, long
messages can be critical (responses with data) or non-critical (replacements with
data), and the choice of wires is not clear. If we pursuit performance (criticality),
then L-Wires might be the best choice. Contrarily, if energy savings are more
important (length), then PW-Wires should be utilized. In this way, the policy of
sending critical messages on L-Wires and non-critical on PW-Wires leaves the
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latter links underutilized since only replacements would make use of them, and
small energy savings would be obtained. On the other hand, the policy of sending
long messages on PW-Wires and short ones on L-Wires causes important delays
to responses with data, which would finally translate into intolerable performance
degradation. Differently to the policies proposed in [7], which are mainly based
on message criticality, in this work we present an efficient message management
mechanism based on taking advantage of both criticality and length properties
simultaneously by means of Reply Partitioning as we will describe next.

2.3 Reply Partitioning for Decoupling Data Messages into Critical
and Non-critical Parts

In this work we propose Reply Partitioning, a technique aimed at dealing with
reply messages that carry data. Reply Partitioning is based on the observation
that on a L1 cache miss, the full line could not be necessary in that moment
but only a small subset of it. In this way, our proposal splits replies with data
into two messages. The first is a short Partial Reply (PR) message that carries
a sub-block of the cache line that includes the word requested by the processor.
And the second message, called Ordinary Reply (OR), is the original message
and includes the full cache line.

This division of replies with data into PRs and ORs makes all critical mes-
sages short (note that PRs are critical since they contain the word requested by
the processor) and, therefore, they can be sent using the low-latency L-Wires. At
the same time, all long messages are non-critical (note that ORs become non-
critical as the requested word also travels on a short message that hopefully will
arrive sooner) and they can be sent using the power-efficient PW-Wires without
hurting performance.

Additionally, splitting reply messages into a critical PR and a non-critical
OR has slight implications on the coherence protocol. Recall that, in a non-
blocking cache, MSHR registers are used to keep track of outstanding misses. In
our mechanism, we have two different replies, and we need to define the actions
required after the arrival of each one. Furthermore, with direct networks, the
arrival order is not guaranteed and, although unlikely, the non-critical OR could
be received before the critical PR.

When a Partial Reply arrives we are sure that all coherence actions have been
done. Therefore, after its arrival all waiting requests that can be satisfied are
processed (e.g., read requests that hit in the cache line sub-block and all write
requests). For a read request, the corresponding value is sent to the processor
and, for a write request, the value is held in the MSHR but the rest of hard-
ware resources are released. In both cases, appropriate processor instructions
are committed. Only MSHR with no processed read requests and all the write
requests, if any, are kept until the arrival of the Ordinary Reply. At the OR ar-
rival time, the rest of read requests are performed and the block is modified with
the corresponding write values held in the MSHR. In case of receiving the OR
before the PR, all requests waiting in the MSHR register are processed and the
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corresponding instructions are committed; all hardware resources are released
but the MSHR, which is released when both replies arrive.

2.4 Interconnect Design for Efficient Message Management

As discussed previously, L-Wires have a four-fold area cost compared to baseline
wires and, therefore, the number of L-Wires is quite limited. Considering that
they will be used for sending short, critical messages, the number of wires should
be fixed by considering the typical size of short messages. The remaining area
will be used by PW-Wires for sending long, non-critical messages.

In this work, we use the same main parameters for the interconnect as in [7]. In
particular, message sizes and the width of the original links of the interconnect
are the same. Short messages can take up to 11 bytes. Requests, coherence
commands and partial replies are 11-byte long since beside control information
(3 bytes) they also carry address information (in the first two cases) or the sub-
block of data of one word size (for PRs). On the other hand, coherence replies
are just 3-byte long. Finally, OR reply messages are 67-byte long since they carry
control information (3 bytes) and a cache line (64 bytes).

In order to match the metal area of the baseline configuration, each original
75-byte unidirectional link (600 B-Wires) is designed to be made up of 88 L-
Wires (11 bytes) and 248 PW-Wires (31 bytes). For a discussion regarding the
implementation complexity of heterogeneous interconnects refer to [7].

The resulting design is similar to that proposed in [7], but with some important
differences. First of all, the election of the right set of wires for a message does
not require any additional logic since it can be made based exclusively on one
bit in the length field (some of the proposals developed in [7] require checking
the directory state or tracking the congestion level in the network). Secondly,
the routing logic and the multiplexers and de-multiplexers associated with wires
are simpler since we only consider two types of wires instead of three. Finally,
our proposal achieves better levels of utilization of each set of wires (as we will
discuss in section 3.2).

3 Experimental Results

This section shows the results that are obtained for our proposal and compares
them against those achieved by two different configurations of the intercon-
nect. The first is the configuration that employs just B-Wires, which is taken
as baseline. The second configuration is an implementation of the 3-subnetwork
heterogeneous interconnect proposed in [7] that uses L-, B- and PW-Wires.

3.1 Evaluation Methodology

The results presented in this work have been obtained through detailed simula-
tions of a full CMP. We have employed a cycle-accurate CMP power-performance
simulation tool, called Sim-PowerCMP [9], that estimates both dynamic and
leakage power and is based on RSIM [10]. RSIM is a detailed execution-driven
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simulator that models out-of-order superscalar processors (although in-order is-
sue is also supported), several levels of caches, an aggressive memory and the
interconnection network, including contention at all resources. In particular, our
simulation tool employs as performance simulator a modified version of RSIM
that models the architecture of the tiled CMP presented in section 2. We have
incorporated into our simulator power models already proposed and validated
for both dynamic power (from Wattch [11]) and leakage power (from HotLeak-
age [12]) of each processing core, as well as the interconnection network (from
Orion [13]). Further details about the implementation and validation of Sim-
PowerCMP can be found in [9].

Table 3. Configuration of the baseline CMP architecture (left) and applications eval-
uated (right)

CMP Configuration
Process technology 65 nm
Tile area 25 mm2

Number of tiles 8, 16
Cache line size 64 bytes
Core 4GHz, in-order 2-way model
L1 I/D-Cache 32KB, 4-way
L2 Cache (per core) 256KB, 4-way, 10+20 cycles
Coherence Protocol MESI (with $-$ transfers)
Directory access time 10 cycles (tags access)
Memory access time 400 cycles
Network configuration 2D mesh (BW of 75 GB/s)
Router latency 1 cycle
Link width 75 bytes (8X-B-Wires)
Link latency/length 4 cycles / 5 mm

Application Problem size
Barnes-Hut 16K bodies, 4 timesteps
EM3D 9600 nodes, 5% remote links, 4 timesteps
FFT 256K complex doubles
LU-cont 256 × 256, B=8
LU-noncont 256 × 256, B=8
MP3D 50000 nodes, 2 timesteps
Ocean-cont 258 × 258 grid
Ocean-noncont 258 × 258 grid
Radix 2M keys
Raytrace car.env
Unstructured mesh.2K, 5 timesteps
Water-nsq 512 molecules, 4 timesteps
Water-spa 512 molecules, 4 timesteps

Table 3 (left) shows the architecture configuration used along this paper.
It describes an 8- and 16-core CMP built in 65 nm technology. The tile area
has been fixed to 25 mm2, including a portion of the second-level cache [2].
With this configuration, links that interconnect routers configuring the 2D mesh
topology would measure around 5 mm. Reply messages are 67-byte long since
they carry control information (3-bytes) and a cache line (64 bytes). On the
contrary, request, coherence and coherence reply messages that do not contain
data are, at most, 11-byte long (just 3-byte long for coherence replies).

Table 3 (right) shows the applications used in our experiments. EM3D and
Unstructured are from the Berkeley suite, the rest of them are from the SPLASH/
SPLASH-2 benchmark suites. Problem sizes have been chosen commensurate
with the size of the L1 caches and the number of cores used in our simulations.
All experimental results reported in this work are for the parallel phase of these
applications. Data placement in our programs is either done explicitly by the
programmer or by our simulator which uses a first-touch policy on a cache-line
granularity. Thus, initial data-placement is quite effective in terms of reducing
traffic in the interconnection network.

In order to match the metal area of the baseline configuration, each origi-
nal 75-byte unidirectional link (600 B-Wires) is designed to be made up of 88
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L-Wires (11 bytes) and 248 PW-Wires (31 bytes) using the 8X metal plane. For
comparison purposes, the 3-subnetwork heterogeneous interconnect described in
[7] was also implemented. In that configuration, each link is comprised of three
types of wires in two metal planes. Each wire type has the area, delay, and power
characteristics described in Table 1, so each original link is designed to be made
up of 24 L-Wires (3 bytes), 512 PW-Wires (64 bytes), and 256 B-Wires (32
bytes).

3.2 Simulation Results and Analysis

In this section, we report on our simulation results. First of all, we show how
messages distribute between the different types of wires of the heterogeneous
networks evaluated in this work. Then, we analyze the impact of our proposal
on execution time and on the energy dissipated by the inter-core links. Finally,
we report the energy and energy-delay2 product (ED2P ) metrics for the full
CMP. As in [7], all results have been normalized with respect to the baseline
case where only B-Wire, unidirectional 75-byte wide links are considered.

Fig. 3. Breakdown of the messages that travel on the interconnection network for an 8-
core (left) and 16-core CMP (right) when an L-Wire/PW-Wire heterogeneous network
is used and long critical messages are splitted

Figure 3 plots the percentage of each message type over the total number of
messages sent in the baseline configuration for the 8- and 16-core configurations.
It is important to note that Reply Partitioning increases the total number of
messages that travel on the interconnect. The reason is that replies with data are
converted into two messages, the Partial Reply and the Ordinary Reply. In our
particular case, we have observed that the number of messages increases around
30% on average. This extra traffic has been considered in all our evaluations.

Figure 4 plots the workload distribution between the different types of wires
for both the 3- and 2-subnetwork heterogeneous interconnects. This figure is ob-
tained measuring the traffic observed for each type of wire, normalized to the
width of the wire. As it can be seen in the left graph, there is an underutilization
of L- and PW- wires that leads to an imbalanced workload distribution when
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Fig. 4. Workload distribution for the 3-subnetwork approach (as in [7]) (left) and for
the 2-subnetwork approach (right)

the 3-subnetwork configuration is used. However, the use of a 2-subnetwork in-
terconnect, where B-Wires have been replaced by wider L-Wires, in conjunction
with the Reply Partitioning technique, leads to a much more balanced workload
distribution (Figure 4, right).

Fig. 5. Normalized execution time (left) and link energy (right) when heterogeneous
links are used

Figure 5 (left) depicts the normalized execution time with respect to that
obtained for the baseline configuration for an 8- and a 16-core CMP. The first
barline (P=8/16, wires (3)) shows the normalized execution time for the 3-
subnetwork interconnect (as in [7]). An average performance degradation of 4-
8% is observed, which is a trend also reported in [7] when a 2D torus topology
is employed. The reason of this degradation is the low use of the L-Wires as
it was shown in Figure 4. Similar results are obtained when a 2-subnetwork in-
terconnect (L-Wire/PW-Wire) is considered without using the proposed Reply
Partitioning mechanism, as shown by the second barline (P=8/16, wires (2)).
The reason of this performance degradation is the increased latency of the reply
messages that carry data (sent through the slower PW-Wires) which cannot be
hidden by using faster L-Wires for critical messages. This degradation has high
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variability, ranging from almost negligible for MP3D and Water-NSQ applica-
tions to almost 40% for Ocean-Cont application. This result is quite interesting
because it shows that the increased latency imposed by the use of PW-Wires for
replies with data can be hidden in some applications, whilst in others, as Barnes
or Ocean-Cont, it translates into significant performance degradation. This high
variability is related with the access pattern and utilization of the cache lines. A
sequential access pattern to the whole cache lines leads to a performance degra-
dation whereas with a more irregular access pattern or an underutilization of the
cache lines the increased latency is hidden. Finally, the third barline (P=8/16,
wires (2) PR) shows the case when reply messages are split into critical, short
Partial Replies (PR) and non-critical Ordinary Replies. On average, we observe
performance improvements of 16% over the two previous options for a 16-core
CMP as a direct consequence of the better distribution of the messages between
L-Wires and PW-Wires that Reply Partitioning allows for. Again, high vari-
ability is found, with improvements ranging from 1-2% in some applications to
50-55% in other. Compared with the baseline configuration, where no heteroge-
neous network is used, an average performance improvement of 8% is obtained.

Figure 5 (right) plots the normalized link energy. Our proposed Reply Par-
titioning approach results in an average reduction of 60%-65% in the energy
dissipated by the inter-core links. This reduction shows little variability. The
ED2P metric shows average improvements close to 75% although, in this case,
the variability between applications is higher because in the ED2P metric the
execution time gains importance. Note also that, although Reply Partitioning
increases the total number of messages that travel on the interconnect around
30% on average, the use of PW-Wires for sending long reply messages leads to
important energy savings that overcome this drawback.

Finally, Figure 6 presents both the normalized energy and ED2P product
metrics for the full CMP. As it can be observed, important energy savings are
obtained for our proposal. The magnitude of these savings depends on the total
number of cores of the CMP, ranging from 12% for the 8-core configuration to
17% for the 16-core configuration. On the other hand, when the ED2P metric

Fig. 6. Normalized energy and ED2P for the full CMP
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is considered, we find an increased improvement which ranges from 19% for the
8-core CMP to 25% for the 16-core one, due to bigger emphasis on the execution
time.

4 Related Work

The on-chip interconnection network is a critical design element in a multi-core
architecture and, consequently, it is the subject of several recent works. Among
others, Kumar et al. [8] analyze several on-chip interconnection mechanisms and
topologies, and quantify their area, power, and latency overheads. The study
concludes that the design choices for the interconnect have a significant effect
on the rest of the chip, potentially consuming a significant fraction of the real
estate and power budget.

A reduced number of works have attempted to exploit the properties of a
heterogeneous interconnection network at the microarchitectural level in order
to reduce the interconnect energy share. Beckmann and Wood [14,15] propose
the use of transmission lines to access large L2 on-chip caches in order to reduce
the required cache area and the dynamic power consumption of the interconnec-
tion network. Nelson et al. [16] propose the use of silicon-based on-chip optical
interconnects for minimizing the performance gap that the separation of the
processing functions creates in a clustered architecture in an effort to alleviate
power density. In [17], Balasubramonian et al. make the first proposal of wire
management at the microarchitectural level. They introduce the concept of a het-
erogeneous interconnect that is comprised of wires with varying area, latency,
bandwidth and energy characteristics, and they apply it to register commu-
nication within a clustered architecture. Subsequently, they extend their pro-
posal in [18] with new techniques aimed at accelerating cache accesses in large
L2/L3 splitted caches by taking advantage of a lower-bandwidth, lower-latency
network.

Very recently, Cheng et al. [7] applied the heterogeneous network concept to
the cache coherence traffic problem in CMPs. In particular, they propose an
interconnection network composed of three sets of wires with varying latency,
bandwidth and energy characteristics, and map coherence messages to the appro-
priate set taking into account their latency and bandwidth needs. They report
significant performance improvement and interconnect energy reduction when
a two-level tree interconnect is used to connect the cores and the L2 cache.
Unfortunately, insignificant performance improvements are reported for direct
topologies.

Finally, Balfour and Dally [19] evaluate a variety of on-chip networks designed
for 64-core tiled CMPs, and compare them in terms of performance, area and
energy efficiency. They conclude that a concentrated 4×4 mesh architecture (each
router is shared by four cores to reduce the hop count), replicated subnetworks
and express channels is the best option. Differently from our work, the authors
focus on the interconnection network design and obviate the cache coherence
protocol (they assume an abstract communication protocol).
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5 Conclusions

In this work we propose a performance- and energy-efficient message manage-
ment mechanism for tiled CMPs that consists of two approaches. The first one is
Reply Partitioning, a technique that allows all coherence messages to be classi-
fied into two groups: critical and short, and non-critical and long. In particular,
Reply Partitioning concentrates on replies that carry data and splits them into a
critical and short Partial Reply message that carries the word requested by the
processor and a non-critical Ordinary Reply with the full cache block. The second
approach of our proposal is the use of a heterogeneous interconnection network
comprised of low-latency wires for critical messages and low-energy wires for
non-critical ones which also allows for a more balanced workload.

Results obtained through detailed simulations of 8- and 16-core CMPs show
that the proposed on-chip message management mechanism can reduce the
power dissipated by the links of the interconnection network about 65% with
an additional reduction in execution time of 8% over previous works. Finally,
these reductions translate into overall CMP energy savings ranging from 12%
for the 8-core configuration to 17% for the 16-core one (from 19% to 25% if the
ED2P metric is considered). These results reveal that correctly organizing the
interconnection network and properly managing the different types of messages
through it have significant impact on the energy consumed by CMPs, especially
for next-generation dense CMP architectures.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their helpful insights. This work has been jointly supported by the Spanish
MEC and European Comission FEDER funds under grants “Consolider Ingenio-
2010 CSD2006-00046” and “TIN2006-15516-C4-03”.

References

1. Taylor, M.B., Kim, J., et al.: The Raw Microprocessor: A Computational Fabric
for Software Circuits and General-Purpose Programs. IEEE Micro 22(2), 25–35
(2002)

2. Zhang, M., Asanovic, K.: Victim Replication: Maximizing Capacity while Hiding
Wire Delay in Tiled Chip Multiprocessors. In: Proc. of the 32nd Int’l Symp. on
Computer Architecture, pp. 336–345 (2005)

3. Wang, H., Peh, L.S., Malik, S.: Power-driven Design of Router Microarchitectures
in On-chip Networks. In: Proc. of the 36th Int’l Symp. on Microarchitecture, pp.
105–111 (2003)

4. Magen, N., Kolodny, A.W., et al.: Interconnect-power dissipation in a microproces-
sor. In: Proc. of the 2004 Int’l Workshop on System Level Interconnect Prediction,
pp. 7–13 (2004)

5. Shang, L., Peh, L., Jha, N.: Dynamic voltage scaling with links for power opti-
mization of interconnection networks. In: Proc. of the 9th Int’l Symp. on High-
Performance Computer Architecture, pp. 91–102 (2003)

6. Banerjee, K., Mehrotra, A.: A power-optimal repeater insertion methodology
for global interconnects in nanometer designs. IEEE Trans. on Electron De-
vices 49(11), 2001–2007 (2002)



146 A. Flores, J.L. Aragón, and M.E. Acacio

7. Cheng, L., Muralimanohar, N., et al.: Interconnect-Aware Coherence Protocols for
Chip Multiprocessors. In: Proc. of the 33rd Int’l Symp. on Computer Architecture,
pp. 339–351 (2006)

8. Kumar, R., Zyuban, V., Tullsen, D.M.: Interconnections in Multi-Core Architec-
tures: Understanding Mechanisms, Overheads and Scaling. In: Proc. of the 32nd
Int’l Symp. on Computer Architecture, pp. 408–419 (2005)

9. Flores, A., Aragón, J.L., Acacio, M.E.: Sim-PowerCMP: A Detailed Simulator for
Energy Consumption Analysis in Future Embedded CMP Architectures. In: Proc.
of the 4th Int’l Symp. on Embedded Computing, pp. 752–757 (2007)

10. Hughes, C.J., Pai, V.S., et al.: RSIM: Simulating Shared-Memory Multiprocessors
with ILP Processors. IEEE Computer 35(2), 40–49 (2002)

11. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: a framework for architectural-level
power analysis and optimizations. In: Proc. of the 27th Int’l Symp. on Computer
Architecture, pp. 83–94 (2000)

12. Zhang, Y., Parikh, D., et al.: HotLeakage: A Temperature-Aware Model of Sub-
threshold and Gate Leakage for Architects. Technical report, University of Virginia
(2003)

13. Wang, H.S., Zhu, X., et al.: Orion: a power-performance simulator for interconnec-
tion networks. In: Proc. of the 35th Int’l Symp. on Microarchitecture, pp. 294–305
(2002)

14. Beckmann, B.M., Wood, D.A.: TLC: Transmission Line Caches. In: Proc. of the
36th Int’l Symp. on Microarchitecture, pp. 43–54 (2003)

15. Beckmann, B.M., Wood, D.A., et al.: Managing Wire Delay in Large Chip-
Multiprocessor Caches. In: Proc. of the 37th Int’l Symp. on Microarchitecture,
pp. 319–330 (2004)

16. Nelson, N., Briggs, G., et al.: Alleviating Thermal Constraints while Maintaining
Performance via Silicon-Based On-Chip Optical Interconnects. In: Workshop on
Unique Chips and Systems (2005)

17. Balasubramonian, R., Muralimanohar, N., et al.: Microarchitectural Wire Man-
agement for Performance and Power in Partitioned Architectures. In: Proc. of the
11th Int’l Symp. on High-Performance Computer Architecture, pp. 28–39 (2005)

18. Muralimanohar, N., Balasubramonian, R.: The Effect of Interconnect Design on
the Performance of Large L2 Caches. In: 3rd IBM Watson Conf. on Interaction
between Architecture, Circuits, and Compilers (P=ac2) (2006)

19. Balfour, J., Dally, W.J.: Design tradeoffs for tiled CMP on-chip networks. In: Proc.
of the 20th Int’l Conf. on Supercomputing, pp. 187–198 (2006)



Direct Coherence: Bringing Together

Performance and Scalability in Shared-Memory
Multiprocessors

Alberto Ros, Manuel E. Acacio, and José M. Garćıa
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Abstract. Traditional directory-based cache coherence protocols suffer
from long-latency cache misses as a consequence of the indirection intro-
duced by the home node, which must be accessed on every cache miss
before any coherence action can be performed. In this work we present a
new protocol that moves the role of storing up-to-date coherence infor-
mation (and thus ensuring totally ordered accesses) from the home node
to one of the sharing caches. Our protocol allows most cache misses to be
directly solved from the corresponding remote caches, without requiring
the intervention of the home node. In this way, cache miss latencies are
reduced. Detailed simulations show that this protocol leads to improve-
ments in total execution time of 8% on average over a highly optimized
MOESI directory-based protocol.

1 Introduction

Shared-memory multiprocessors are quite popular since the communication be-
tween the processors that conform the machine occurs implicitly as a result of
conventional memory access instructions (i.e. loads and stores), which makes
them easier to program than message-passing multiprocessors. In most of these
architectures, memory accesses are accelerated using one or several levels of pri-
vate caches to each processor. Caches are made transparent to software through
a cache coherence protocol. Supporting cache coherence in hardware, however,
requires important engineering efforts.

In general, there are several approaches to solve the cache coherence problem
in hardware. Snoopy protocols [5] typically rest on one or several buses to broad-
cast coherence operations. In this way, coherence messages go directly from the
requesting caches to their proper recipients (those caches that hold a copy of the
corresponding memory block), which reduces cache miss latencies. TokenB [9]
removes the requirement of using buses and enable low-latency cache-to-cache
transfer misses on unordered interconnection networks. Unfortunately, the fact
that the latter two alternatives are based on broadcasting coherence actions
restricts their scalability. Currently, scalable cache coherence is based on a dis-
tributed directory that keeps the location and state of cached blocks (directory-
based protocols [5]). In these protocols, each memory block is assigned to the
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home node which keeps the directory information for the memory block and acts
as an intermediary for it. When a cache miss takes place, a request is sent over
an unordered interconnection network to the corresponding home node, which
performs the coherence actions necessary to satisfy the miss. In this way, apart
from providing main memory storage for every memory block and keeping the
associated directory information, the home node acts as an ordering point for
the different requests that several caches issue over the block.

The fact that cache misses must reach the home node before any coherence
action can be performed introduces indirection, which adds unnecessary hops
(and thus, cycles) into the critical path of cache misses, finally resulting in long
cache miss latencies. Moreover, the increasing gap between processor and mem-
ory speeds (the memory wall problem [16]) and the availability of low-latency
interconnects make that cache coherence protocols that exploit cache-to-cache
transfers for blocks in shared state (MOESI-like protocols) will be preferable to
those that obtain them from main memory (MESI-like protocols)1. This results
in a very significant fraction of the cache misses suffering from indirection.

In this work, we address the design of a solution to the cache coherence prob-
lem that avoids this indirection without using any brute-force method (as broad-
casting requests) or requiring particular network topologies. The later two as-
pects compromise scalability. In particular we present Direct Coherence, a novel
cache coherence protocol that based on MOESI decouples the role of providing
main memory storage for every memory block, which is still responsibility of the
home, from the role of storing up-to-date sharing information (and thus ensuring
totally ordered accesses) for every memory block, which is moved from the home
to one of the nodes that actually shares the block, particularly the node that
provides the block on a cache miss. We call this node the owner node, and that
copy of the block will be the primary copy.

In Direct Coherence, each cache keeps up-to-date sharing information for every
primary copy of a block stored on it and every miss is solved by sending the
request to the owner node instead of the home node. We have found that for
most cache misses the owner node is the last node that invalidated the copy from
the rest of caches. Hence, this information can be stored in a small structure to
find the owner node when a subsequent miss takes place. Moreover, as the owner
node changes on write misses, the requests sent by several caches for a particular
block could be distributed among different nodes, thus helping prevent potential
bottlenecks at the home node, and therefore, helping scalability.

Direct Coherence, therefore, reduces the latency of cache misses by avoiding
the indirection added by the access to the home node. In this way, our proposal
offers both the performance advantage of snoopy-based protocols, since coher-
ence messages are directly sent from the requesting caches to those that must
observe them, and the scalability of directory-based ones, since our proposal is

1 Cache-to-cache transfers of clean data has also been recently used as a simple form of
cooperation that reduces the number of off-chip accesses in CMPs [3]. In the context
of cc-NUMAs, it has been also shown that cache-to-cache transfer for clean blocks
can reduce average cache miss latency [14].
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not based on any brute-force method or requires any particular network topol-
ogy. Detailed simulations using a modified version of RSIM and several scientific
applications demonstrate that using Direct Coherence most of the cache misses
can be completed without requiring indirection, which leads to improvements in
total execution time of 8% on average over a highly optimized MOESI protocol.
In this work, Direct Coherence has been evaluated in the context of cc-NUMAs,
although it is equally applicable to other domains, such as CMPs.

The rest of the paper is organized as follows. Direct Coherence is described in
Section 2. Section 3 introduces the methodology employed in the evaluation. In
Section 4 we show the performance results obtained for our proposal. In Section
5 we present a review of the related work. Finally, Section 6 concludes the paper.

2 Direct Coherence

2.1 The Owner Node and the Home Node

In directory-based protocols the home node maintains cache coherence and all
the misses must go through it to obtain the directory information. Direct Coher-
ence avoids this indirection by storing the directory information in the node that
must provide the block in case of cache misses, the owner node, and by assigning
the role of keeping cache coherence to this node. Then, when a cache miss takes
place the request is sent to the owner node instead of the home node. Since the
owner node is no longer fixed and can change on write misses, it is necessary
to keep the identity of the current owner node in some place. In particular, the
home node has the role of storing the identity of the owner and it is notified of
every change.

The owner node of a block is either main memory when the block is not stored
in any cache, an L2 cache in exclusive state, or the last L2 cache that wrote the
block when there are multiple sharers. In this way, it is easy to find out the
owner node because the other nodes can easily store the identity of the last
node that invalidated their copy. Moreover, being the owner node the last one
that wrote the block, many upgrades avoid indirection for some common sharing
patterns. For the producer-consumer pattern, the node that updates the block is
always the same one, and therefore the upgrades always take place in the owner
node. For the migratory-sharing pattern, upgrades that follow the load misses
just need two hops since the identity of the owner is known once the load misses
have been completed, and the owner is the only node that must be invalidated
in this case.

2.2 Changes to the Structure of the L2 Caches

Direct Coherence requires the L2 caches included in each node of the system
to store extra coherence information. This information can be divided into the
following three categories:
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Fig. 1. Organization of the L2 caches required by Direct Coherence

– Updated Sharing Information (USI): This information is necessary for all the
primary copies of all the blocks stored in any L2 cache, since the node that
holds one of these copies in its L2 cache is responsible for keeping coherence
between the accesses to this memory block. The USI must identify all the
sharers of the block.

– Current Owner Information (COI): For each block stored in any cache, its
home node must maintain a pointer which identifies the owner node. This
information must be updated whenever the owner node changes and it is
accessed when the requesting cache is not able to locate the current owner.

– Extra Owner Information (EOI): This information is stored in any node
except the home and the owner. It is used for avoiding the access to the
home node on a cache miss. Particularly, each node keeps a pointer in its
L2 cache that identifies the last node that invalidated its previous copy of a
memory block. Future misses will use the value of this pointer to send the
request directly to the owner node, thus removing indirection. Our cache
coherence protocol can perform correctly in absence of EOI, but performs
more efficiently when this information is included.

For storing this information, we propose the L2 cache organization shown in
figure 1. The sharing code field is used to store the USI for the primary copies
of the blocks held in the data cache. The pointer cache is used for storing the
identity of the owner (COI if it is the home node or EOI in other case). Note
that our proposal does not need to keep directory information in main memory
nor the use of additional directory caches.

2.3 Description of the Coherence Protocol

Requester node. When a cache miss takes place in a node (requester node),
the identity of the owner node must be obtained. If the identity of the owner
is found in the pointer cache (COI for local misses or EOI in other case) the
request is sent to this node. Otherwise (first reference to a block or replacement
in the pointer cache), the request is sent to the home node which subsequently
redirects the miss to the current owner.
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Request received by a node that is not the owner. When a request
arrives to a node that is not the owner of the block, the request must be resent
to another node. If the former node is the home and the COI is found in the
pointer cache, the request is sent to the owner node. The COI is recent since
this information is updated whenever the owner changes. Hence, in absence of
race conditions the request will reach the owner node. On the other hand, if the
home node does not find the COI in the pointer cache, the owner of the block
is main memory because the block is not held by any cache. Then the miss is
solved by providing the block from main memory, and the home node allocates
a new COI entry in its pointer cache. Finally, if the request reaches any other
remote node, it is resent to the home node.

Request received by the owner node. Every time a request reaches the
owner node, it is necessary to check whether this node is currently processing a
request from a different processor for the same block. In this case, we can say
that the block is in busy state, and the request must be returned to the requester
node asking it to try again.

On the other hand, if the block in the owner node is not in busy state, the
miss can be solved. Read misses are completed by sending a copy of the block
to the requester node and adding it to the sharing code. For write misses, the
owner node must invalidate all the copies from all the caches before it can send
the block to the requester. If the miss is an upgrade the owner node checks the
sharing code field to know whether the requester still holds a copy of the block
(note that a previous write miss from a different processor could have invalidated
its copy and in this case the owner node should also provide a new copy of the
block). In this case, the owner node replies to the requester with the ownership
of the block once the rest of the copies have been invalidated. Note that upgrade
misses that take place in the owner node just need to send invalidations and
receive acknowledgements (two hops in the critical path).

Moreover, as the home node must have up-to-date information of the owner
of the block (COI), every time that an owner node gives its ownership to other
node, it must send a control message to the home node indicating the identity
of the new owner. Note that messages reporting ownership changes for a par-
ticular block should be processed by the home node in the same order in which
they were generated. Otherwise, the COI could fail to store the identity of the
current owner. Although there are other alternatives to ensure this order, in our
particular implementation we associate a version number to every primary copy.
This version number is stored in both the home node and the current owner of
the block, and is increased on every ownership change. The idea is that when
a message reporting an ownership change arrives to the home node, it is only
processed (the identity of the new owner is stored) if the version number in the
message has the same value than the one stored in the home, along with the
COI. In other case, the message could be buffered or NACKed to the processed
later. In practice, we have found that this version number could be stored using
a small 3-bit wrapping counter.
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Replacements. In our particular implementation the replacement of a block
stored in any cache only requires coherence actions when it is a primary copy. In
other case, the replacement is performed transparently to the rest of the sharers.
The replacement algorithm used in the data caches is LRU, but the age of the
primary copy of every block is updated every time that it is accessed by any
local or remote request.

When the primary copy of a block is evicted, it is looked for another node
that will receive the responsibility of keeping coherence for the block (the owner
property is moved to one of the sharers). Since the owner node knows the current
set of the sharers, it sends the request to one of them (chosen randomly). If the
new owner node had previously invalidated its copy, it resends the request to
another node (note that the request includes directory information for the block
as well). The node that receives this request and has a valid copy of the block
will be the new owner node, and therefore, must notify the home node of the
change of the owner. On the other hand, if all the nodes had replaced its copy,
the request is finally sent to the home node which removes the COI from the
pointer cache and stores the block in main memory.

On the other hand, replacements in the pointer cache also follow the LRU
algorithm, but it is distinguished between COI and EOI. EOI entries are prefer-
ably evicted for two reasons. First, we have found that keeping EOI entries too
much time is not worthy since this information gets obsolete (it would cause a
significant number of misses when finding the identity of the owner node). Sec-
ond, when a COI entry is replaced, the home node must ask the owner node to
invalidate all the copies of the block and main memory must be updated.

2.4 Preventing Deadlock and Starvation

Direct Coherence ensures that not deadlock can occur by returning back to the
issuing nodes those requests that cannot be solved instead of enqueuing these
requests in a buffer.

On the other hand, in directory-based protocols starvation can be easily
avoided if the requests are buffered in FIFO order at the home node. In Direct
Coherence each write miss implies that the identity of the owner node changes.
If a memory block is repeatedly written by several nodes, a request could take
some time to find the owner node, even when it is sent by the home node. Hence,
some nodes could be solving their misses while other misses are starved. Figure
2 shows an example of a scenario in which starvation appears. The nodes N1
and N2 are issuing write requests repeatedly, and therefore, the owner node is
continually moving from N1 to N2 and vice versa. Each time that the owner
changes, the home node is notified. However, at the same time, the home node
is trying to send the request issued by the node N3 to the owner node, but this
request could always be returned to it whenever the write request issued by the
other node arrives before.

Since this kind of scenario is very infrequent, we think that it is more impor-
tant for the starvation avoidance mechanism to be simple rather than efficient.
In particular, each time that a request must be retried, a counter is increased.
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Starvation is detected when this counter reaches a certain maximum value. To
guarantee that the identity of the owner node does not change during certain
period of time, and therefore, the owner can be reached by the request, each
time that a starved request arrives to a node that cannot solve it, the node is
blocked and it cannot issue new requests for the same block. Once the starved
request is solved by the owner node, some messages are sent to the nodes that
were blocked to allow them to continue issuing requests for the block. Through
experimentation we have found that a value of 100 hops works fine in most cases.

3 Simulation Environment

We have implemented and evaluated the Direct Coherence protocol through
RSIM, a detailed execution-driven simulator that models cc-NUMA multiproces-
sors [7]. Our proposal is compared against a highly optimized MOESI directory-
based protocol that employs unbounded directory caches in each node to cut
down the number of accesses to main memory (base configuration from now on).
Moreover, this MOESI protocol has been optimized to allow that a read miss can
be directly solved by providing the requesting block from the home node when-
ever this node has a copy of it in its cache (either in shared or owned state).
MOESI states allow that for most cache misses the corresponding memory block
is provided by a remote cache instead of main memory.

In both cases, bit-vector has been used as the sharing code (4 bytes per entry
in a 32-node system). Therefore, the L2 cache used in Direct Coherence protocol
employs 32 KB of additional storage for the sharing code field. The size of the
pointer cache (5 bits per pointer) is just 2 KB. We have found that this small
size avoids replacements of COI entries. In this way, the total memory overhead
of our proposal is very small (6.6% of the L2 cache storage). Remember that for
the base configuration we consider unbounded directory caches.

We have simulated multiprocessors with 32 uniprocessor nodes. Table 1 shows
the main parameters used for our proposal. Simulations have been performed
using an optimized version of the sequential consistency model with specula-
tive load execution [7]. The nine scientific programs used in our simulations
cover a variety of computation and communication patterns. Barnes (8192 bod-
ies, 4 time steps), Cholesky (tk16.O), FFT (256K complex doubles), Ocean
(258x258 ocean), Radix (1M keys, 1024 radix) and Water-NSQ and Water-SP
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Table 1. System parameters

32-Node System
ILP Processor Parameters Directory Parameters

Processor speed 5 GHz Directory controller cycle 1 cycle (on-chip)
Max. fetch/retire rate 4 Coherence information 6 hit cycles
Instruction window 128 Message creation time 4 cycles first, 2 next
Branch predictor 2 bit agree, 2048 count Memory Parameters

Cache Parameters Memory access time 300 cycles
Cache block size 64 bytes Memory interleaving 4-way
Split L1 I & D caches: write-through Internal Bus Parameters

Size 32 KB Bus width 8 bytes
Associativity direct mapped Bus cycles 1 cycle
Hit time 2 cycles Network Parameters

Unified L2 cache: write-back Topology 2D mesh (4x8)
Size 512 KB Flit size 8 bytes
Associativity 4-ways Non-data message size 2 flits
Hit time 6 + 9 cycles (tag + data) Flit delay 4 cycles
Pointer cache 2 KB, 4-ways, 6 hit cycles Arbitration delay 5 cycles

(512 molecules, 4 time steps) are from the SPLASH-2 benchmark suite [15].
Unstructured (Mesh.2K, 5 time steps) is a computational fluid dynamics appli-
cation. Finally, EM3D (38400 nodes, 15% remotes, 25 time steps) is a shared
memory implementation of the Split-C benchmark. All the programs were run
to completion, but all experimental results reported in this paper are for the
parallel phase of these benchmarks. The size of the L2 caches (512KB in our
simulations) has been chosen taking into account both current L2/L3 cache
sizes and the characteristics of the applications used for the evaluation.

4 Evaluation Results

In this section, we present and analyze the simulation results obtained for the
Direct Coherence protocol (DiCo configuration) presented in this work. Our
proposal is compared against the base system described in the previous section
(Base configuration).

4.1 Impact on the Number of Hops Needed to Solve Cache Misses

In general, Direct Coherence can reduce the number of hops needed to solve a
miss by avoiding the indirection that the access to the home node introduces.
The extent of the reductions varies depending on the cache miss type (read miss,
write miss or upgrade miss). Therefore, we study separately how the number of
hops is reduced according to the miss type. Figure 3 shows how each type of
cache miss is solved in both the base protocol and Direct Coherence protocol.
These results are normalized with respect to the base case. Each cache miss can
be classified in one of the following types:

– 2-hop misses : This miss type does not suffer indirection. Read and write
misses are solved using two hops when the identity of the owner node is
stored at the requesting cache (and invalidation messages are not necessary).
Upgrade misses fall into this category when they take place in the owner
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Fig. 3. How each miss type is solved

node, or alternatively, when the block is just shared by the node that issues
the miss and the owner node.

– 3-hop misses : A miss belongs to this type when the requesting cache has
not EOI and the home node resends the request to the proper owner, which
solves the miss without invalidation messages.

– +3-hop misses : We include in this category misses that need more than three
hops to be solved.

– Memory misses: When the block is provided by main memory since it is not
held by any L2 cache.

As shown in figure 3, in general, our protocol increases the number of misses
solved in two hops. The number of read misses that need only two hops increases
in some applications, especially in Barnes. In EM3D and FFT applications, all
the read misses are already solved in two hops. Finally, in other applications
the number of 2-hop read misses does not increase since the optimized MOESI
protocol already increases the number of read misses solved in two hops by
providing the block from the home node’s cache whenever clean data is found in
it (even when it is not the current owner of the block).

The percentage of two-hop write misses is smaller than the percentage of two-
hop read misses, but fortunately, write misses are less frequent than read misses.
This lower percentage is because some blocks are continuously written by dif-
ferent nodes, and therefore, the EOI becomes obsolete quite soon. Nevertheless,
Direct Coherence increases the number of two-hop write misses with respect to
the base protocol for all the applications except Barnes and Water-SP.
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Upgrade misses, that account for 23% of all misses on average, usually take
place in the owner node when Direct Coherence is used (see Section 2.1). In this
case, invalidation messages are directly sent to all the sharers, thus reducing the
number of hops in the critical path needed to solve the miss from four to two.
In Em3d and FFT, they are already solved in two hops with the base protocol.
In contrast, Barnes, Cholesky, Unstructured and Water-NSQ need four hops to
solve a great fraction of the upgrade misses in the base case, and many of these
misses can be solved in just two hops with Direct Coherence. The most important
growth happens in Unstructured (88%), in which upgrade misses represent a
significant fraction of the total misses.

On the other hand, the number of +3-hop misses is increased for some ap-
plications. This is because either the EOI does not point to the owner node or
the owner node is changing or busy (race conditions). In the last case, the extra
number of hops in our protocol is equivalent to the cycles that in the base pro-
tocol some requests spend waiting in the node home until it can solve the miss,
and therefore, it does not suppose extra latency.

Finally, the number of misses changes in some applications from the base
configuration to the DiCo one. In general, our proposal reduces the miss latency,
and therefore, the number of attempts per lock acquisition2. We have found that
this number is greatly reduced in Ocean (from 11.9 to 4.3 tries). This is the
reason for the lower number of misses observed in applications like Cholesky,
Ocean, Unstructured and Water-SP. On the other hand, our proposal increases
the number of misses in Barnes. This is because in our protocol owner blocks
cannot be evicted from cache when they have pending requests (busy state).
If a cache set has several busy blocks for long time, the rest of blocks stored
in the same set will be evicted quite frequently, even when they are frequently
requested by the local processor. This growth can be easily avoided in L2 caches
with higher associativity. Radix is also affected by this fact, but the total number
of misses does not increase because many upgrade misses are removed when
Direct Coherence is used. The latter is because in our protocol replacements of
the primary copy of memory blocks are sent to another node, thus informing of
the replacement and changing the identity of the owner of the block. In this way,
when the new owner subsequently upgrades the block and finds that no other
cache holds it, the miss is avoided. In the base protocol, only when the upgrade
miss reaches the directory is when it is known that the requesting cache is the
only sharer for the block. Finally, some applications like FFT and Water-SP
convert some write misses into upgrades, since they keep the primary copy of
some blocks in cache longer.

4.2 Impact on L2 Cache Miss Latencies

For each miss type, figure 4 shows the speed-up obtained for Direct Coherence
with respect to the base protocol. We can observe that the latency of read misses

2 Note that locks in RSIM are implemented using the well-known test-and-test&set
method.
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Fig. 4. Percentage improvements for
cache miss latencies
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is reduced in all the applications except Unstructured. In this application, we
have found that Direct Coherence increases the number of +3-hop read misses
due to that the EOI gets obsolete. On the other hand, read misses are signifi-
cantly accelated in Barnes and Ocean (1.22 and 1.36 respectively). Both appli-
cations increase the number of two-hop misses, and contrary to Unstructured,
the increase in the number of +3-hop misses is due to race conditions that do
not increase the latency of the misses.

The important speed-up (2.37) for write misses found in FFT is due to almost
all the write misses are solved in two hops instead of accessing memory. Barnes,
Ocean and Water-NSQ also obtain important speed-ups ranging from 1.49 to
2.07.

For upgrade misses some applications like Barnes, Cholesky, Unstructured
and Water-NSQ increase very significantly the total number of two-hop misses,
and therefore, obtain speed-ups ranging from 1.56 in Barnes to 2 in Cholesky.
Radix reaches a reduction in the number of upgrade misses. As these misses do
not have to invalidate any copy in the base case, they have low miss latencies.
This is why there is a growth in the average miss latency in our protocol.

4.3 Impact on Execution Time

Finally, the percentage improvements in terms of L2 miss latency translate into
reductions on applications’ execution time. Figure 5 plots the execution times
that are obtained for the base configuration (Base), the oracle configuration
(Oracle) which shows the improvements in total execution time that would be
obtained by Direct Coherence if the identity of the owner were known on every
miss, and Direct Coherence (DiCo). Results have been normalized with respect
to the base case.

Important reductions are observed for Barnes (15%), Ocean (30%) and Un-
structured (12%). In Barnes and Ocean important reductions have been reported
for the L2 cache misses. Unstructured reduces considerably the latency of up-
grade misses that are the bottleneck of this application. For the rest of the
applications (except for FFT), reductions range from 1% for Cholesky, Em3d
and Radix to 5% for Water-NSQ and Water-SP. Water-NSQ and Water-SP do
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not obtain great improvements in execution time in spite of having important
reductions in the miss latencies because they spend little time solving cache
misses.

Finally, we can see that for most applications Direct Coherence obtains exe-
cution times that are very close to those of the oracle configuration. This implies
that the accuracy of the EOI pointers is very high. The exception is Unstruc-
tured in which in most cases the requesting caches find an obsolete identity for
the owner node. In Barnes, the oracle configuration obtains worse performance
due to the growth in the cache miss rate that results as a consequence that
Direct Coherence do not replace owner blocks in busy state (see Section 4.1).

5 Related Work

Snoopy protocols do not introduce indirection because they are based on a
totally-ordered interconnection network. Unfortunately, these interconnection
networks are not scalable. Some proposals have focused on using snoopy pro-
tocols with arbitrary network topologies. Martin. et al. [10] present a technique
that allows SMPs to utilize unordered networks (with some modifications to
support snooping). Bandwidth Adaptive Snooping Hybrid (BASH) [11] is an
hybrid coherence protocol that dynamically decides whether to act like snoopy
protocols (broadcast) or directory protocols (unicast) depending on the avail-
able bandwidth. TokenB coherence protocol [9] avoids both the need of a totally
ordered network and the indirection caused by the directory by assigning N to-
kens to every memory block. In this way, a node can read a block if it has at
least one token and can update the block if it has all the tokens. Subsequently,
TokenM [8] was proposed to reduce the demand of interconnect bandwidth by
using destination-set prediction. However, TokenB and TokenM increase network
traffic becoming a bottleneck for large-scale systems. In contrast, our proposal
keeps network traffic low by sending only one message per cache miss.

Acacio et al. propose to avoid the indirection for cache-to-cache transfer misses
[1] and upgrade misses [2] separately by predicting the current holders of every
cache block. In contrast, our protocol avoids the indirection for cache-to-cache
transfer misses by using recent information about the node that must solve the
miss, and for upgrade misses by removing the directory information from the
home node and by storing it in the node that issues the upgrade request. In this
way, our proposal does not need extra hardware to predict neither the owner nor
the sharers of the block.

Recently, Cheng et al. have proposed converting 3-hop read misses into 2-hop
read misses for memory blocks following the producer-consumer sharing pattern
[4]. They need extra hardware to detect when a block is accessed according to
this pattern. In contrast, our proposal obtains 2-hops misses for read, write and
upgrade misses without taking into account sharing patterns.

Finally, directory caches (originally proposed in [6] for cutting down directory
memory overhead) can be also used for reducing the latency of cache misses by
obtaining directory information from a much faster structure than main memory
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[12]. In [13], we evaluated the impact that completely removing the directory
structure from main memory and storing directory information at the last-level
caches has in terms of cache miss rate and performance. In this proposal, the
directory information is only stored in the home node, but in Direct Coherence
this information is stored in the owner node for avoiding indirection.

6 Conclusions

In this work we have presented Direct Coherence, a novel cache coherence pro-
tocol that avoids the indirection introduced by the directory-based protocols.
Direct Coherence moves the role of storing up-to-date sharing information (and
ensuring totally ordered accesses) from the home node to the owner node. In this
way, indirection is avoided by directly sending the requests to the owner node.

Direct Coherence offers both the performance advantage of snoopy-based pro-
tocols, as coherence messages are directly sent from the requesting caches to
those that must observe them, and the scalability of directory-based ones, as
our proposal is not based on broadcasting or any other brute-force method.

We have described the implementation of Direct Coherence and we have evalu-
ated it using the RSIM simulator. Simulation results show that our proposal can
increase the number of misses without indirection. The reduction in the number
of hops translate into an average reduction in the latency of the L2 misses of
20.7%, which finally leads to improvements in applications’ execution time up to
30% (8% on average) when compared with a MOESI directory-based protocol.
In this way, Direct Coherence is revealed as a promising alternative to current
cache coherence protocols, bringing together performance and scalability.
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Abstract. Within the next decade, we expect that large-scale CMP (LCMP) 
platforms consisting of 10s of cores to become mainstream. The performance 
and scalability of these architectures is highly dependent on the design of the 
cache hierarchy. In this paper, our goal is to explore the cache design space for 
LCMP platforms, which can be vast with several constraints. We approach this 
exploration problem by developing a constraint-aware analysis methodology 
(CAAM). CAAM first considers two important constraints and limitations -- 
cache area constraints and on-die / off-die bandwidth limitations. We determine 
a viable range of cache hierarchy options. We then estimate the bandwidth 
requirements for these by running server workload traces on our LCMP 
performance model. Based on allowable bandwidth constraints, we narrow the 
design space further to highlight a few cache options. Finally, we compare these 
options based on performance, area and bandwidth trade-offs to make 
recommendations. 

Keywords: Large Scale CMP, constraint-aware design, cache hierarchy, 
CAAM, LCMP. 

1   Introduction  

The momentum behind CMP architectures [5] is pushing architects and designers to 
consider integrating more and more cores on the die resulting in large-scale CMP 
(LCMP) architectures. However, for LCMP architectures to be scalable, it is critical 
that the on-die cache/memory hierarchy be designed to support many cores / threads 
efficiently. In this paper, our focus is on exploring the cache hierarchy design for 
LCMP platforms.  

When investigating cache hierarchy design for LCMP platforms, there are  
several important factors to consider (die area, power consumption, etc.). Keeping 
these constraints in mind, in this paper, we attempt to answer the following key 
questions: 1) how do we go about pruning the cache design space for LCMP 
architectures? What methodology needs to be put in place? How should the cache be 
sized at each level and shared at each level in the hierarchy? How much memory and 
interconnect bandwidth is required for scalable performance? 

Previous studies on cache design space exploration have largely been focused on 
performance [2, 3, 4, 15], with few that have considered the implications of power 
and/or area [1, 8, 14]. To our knowledge, this is the first study that proposes a 
methodology to study area, bandwidth and performance implications on cache design 
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space exploration. Furthermore, this is the first study that applies such a methodology 
in the context of LCMP platforms. 

2   Cache Hierarchy for LCMPs 

In this section, we introduce the LCMP architecture and discuss the cache design 
considerations in more detail. 

2.1   Architecture Overview 

Figure 1(a) illustrates the LCMP platform architecture with a single socket. Figure 
1(b) describes a potential on-die architecture of the LCMP socket. We chose this 
architecture because it offers the opportunities mentioned in Figure 1(c). The on-die 
architecture consists of several nodes (each with some number of multi-threaded cores 
and a shared node cache), an on-die fabric that interconnects the nodes, potentially a 
shared last-level cache (L3), integrated memory controllers and other external 
interfaces. 

This study focuses on massively (64 to 128 hw threads) parallel on-die 
architectures. The performance scalability of such massively parallel architectures 
depends significantly on efficient design of the cache, interconnect and memory 
subsystems with sufficient capacity and/or bandwidth. In the next section, we discuss 
in more detail the cache hierarchy considerations for LCMP architectures. 

2.2   LCMP Cache Design Considerations  
We focus on the cache hierarchy design of LCMP architectures with 16 or 32 quad-
threaded light weight cores. The scalar performance of each core is assumed to be 
low, but many cores packed together can provide a throughput computing advantage. 

There are several design parameters when exploring cache hierarchy design. The 
typical first order questions are: (a) How many levels of cache should we employ? (b) 
What should the cache size be at each level? and (c) How many cores should share a 
cache at a given level?  

There are several design considerations to account for when exploring cache 
hierarchy design for LCMP platforms. Some of the key considerations are: (a) Area  
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Fig. 1. LCMP Architecture Overview: Opportunities and Constraints 
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constraints, (b) Bandwidth Constraints, (c) Power Implications and (d) Performance 
of the cache hierarchy and overall platform. In this paper, we study three of the above 
four considerations (excluding power implications).  

2.3   Constraints-Aware Analysis Methodology 
In order to prune the cache design space, we propose a constraints-aware analysis 
methodology (CAAM). This methodology assumes that the area constraint, the on-die 
bandwidth constraint and the off-die bandwidth constraints are known. The CAAM 
methodology consists of three major steps: 

(1) Area-Constrained Options: This step essentially attempts to prune the design 
space by the area constraints. We first estimate the area required for L2, and then 
apply the overall area constraints to this cache. All options that exceed the area 
constraints are immediately discarded. The same process is repeated for each 
level until the desired number of levels of cache has been covered. 

(2) Bandwidth-Constrained Options: This step attempts to further prune the options 
of those already pruned by area constrained as above by applying the on-die and 
off-die bandwidth constraints.  

(3) Overall Performance: Once the area and bandwidth constraints are applied, we 
have a pruned set of design options that are viable. The performance of these 
options is then compared to determine the top two or three design choices.  

3   Evaluation Tools and Workloads 

In this section, we describe the simulation environment, area estimation tools and the 
workloads used. 

3.1   LSIM Simulation Environment 
Analyzing the performance behavior of LCMP platforms with numerous cores and 
threads is challenging because simulation speed becomes a critical bottleneck. With 
speed and accuracy in mind, we developed the LSIM simulation environment to allow 
for varying degrees of fidelity. 

The simulation environment starts with instruction traces (either on a real system 
or from a full-system simulator) that are collected for the workloads of interest. In 
order to simulate many cores with multiple threads, the instruction traces can then be 
run through a micro-architecture simulator. The micro-architecture simulator is 
configured with only an L1 cache and the output of this simulation is a trace that 
represents the execution profile -- compute delays (time spent on the CPU between 
memory events) and the memory events (L1 misses, L1 writebacks, synchronization 
events etc). For our study here, we used an abstract CPU simulator with a 
configurable internal CPI and a L1 cache.  

The annotated CPU traces are then fed into the LSIM simulator. The LSIM core 
simulation mimics the execution profiles present in the traces and injects memory 
events into the interconnect/cache subsystem. We simulate a hierarchical interconnect 
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– a first level interconnect between the L1 and L2 caches as well as a 2nd level 
interconnect between the L2 and L3 caches (if an L3 is present). The L2 and the L3 
caches are configurable to be private caches per core or shared cache per node. A 
detailed invalidation-based coherence protocol is implemented with appropriate 
ordering constraints enforced within the interconnect subsystems. The cache 
hierarchy is modeled to be inclusive by modeling the back-invalidation messages 
required to evict L2 copies of a line that is replaced in L3. 

The operating frequency (of the core, interconnect, etc), queue sizes (interconnect 
interface and cache controller structures), bandwidths (interconnect, cache & 
memory) and latencies (delays between L2 and L3s, etc) are all configurable in LSIM 
and allows us to explore the design space sufficiently.  

3.2   Workloads and Traces 
Our focus in this study is largely on LCMP server platform architecture and 
performance. As a result, we picked a few important commercial server workloads 
(OLTP [16], SAP [10] and SPECjbb [13]) as well as high performance computing 
kernels (from SPECrate [12]). 

For all of these workloads, we collected long instruction traces on Intel Xeon 
platforms. These instruction traces are used to drive LCMP simulation. Wherever 
sufficient number of instruction traces is not available, we replicate the execution 
profiles appropriately to feed the remaining cores/threads. When replicating traces, 
we make sure that the code memory accesses are shared, whereas data accesses are 
privatized in order to not artificially inject any incorrect data sharing. Based on 
detailed understanding of the workloads as well as measurements to validate them, we 
already know that SAP, SPECjbb and SPECrate workloads have negligible data 
sharing. TPC-C is known to have significant data sharing (which we do not simulate 
sufficiently well due to the nature of our tracing/simulation environment), but newer 
databases seem to be trending towards reduced data sharing to avoid synchronization 
penalties. 

The workload characteristics described and/or traces collected were not audited 
and the data presented in this paper should not be misused to represent benchmark 
performance of the architecture under evaluation. 

3.3   Area Estimation Tools 
For area estimation, we used CACTI (version 3.2), an integrated cache access time, 
cycle time, area, aspect ratio, and power model [11]. This model allows us to estimate 
the area of different cache sizes and organization. The parameters we held constant in 
our evaluation are the line size at 64 bytes. We vary the cache size, the number of 
banks and the associativity depending on L2 or L3 caches. We assume that a shared 
L3 cache across all of the cores/threads in the socket. However, we assume that the 
shared L3 cache is actually distributed in organization (somewhat like in NUCA [6]) 
with independent smaller caches and associated controllers. All cache area estimates 
are based on a 45nm process as our intention is to look at architectures around the end 
of the decade. 
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3.4   Baseline Configurations and Assumptions 
In this section, we cover the baseline architecture and associated simulation 
configurations that we evaluate.   

The simulated LCMP on-die architecture consists of 16 or 32 cores (with 4 threads 
each) operating at a frequency of 4GHz. As discussed in Section 3.1, we assume that 
the processor core has 32KB of L1 icache and dcache. The effect of the L1 cache is 
already captured within the execution profile trace that is fed to LSIM. The execution 
duration consisted of over 100 million instructions and we ensured that the caches and 
the platform have been sufficiently warmed up. 

The on-die architecture is made up of several nodes. Each node may consist of 1, 2 
or 4 cores. In LSIM, we simulate L2 cache size per node that varies from 128K to 
4M. The L2 cache may be configured as either private per core or shared between all 
of the cores in the node. For configurations where an L3 cache appeared to be viable 
(based on area constraints), we simulated an L3 cache with size varied from 8M to 
32M to a perfect L3 cache. All the caches have used 64-byte line size. L3 cache hit 
latency of 50 cycles (varied) is assumed. Interconnect bandwidth is varied between 
128 GB/s to 512 GB/s. Memory access time is set to 400 cycles and bandwidth is 
varied from 32 GB/s to 128 GB/s. L3 MSHR is set to 16 entries, memory queue 
length is set to 64 or 128, coherence controller queue is set to 16 and interconnect 
interface is set to 8 entries. 

4   Area and Bandwidth Implications 

In this section, we present our evaluation of the LCMP cache hierarchy design space 
based on CAAM. 

4.1   Implications of Area Constraints 
We start applying the CAAM methodology to LCMP cache design space exploration 
by first considering area constraints. Figure 2(a) summarizes the L2 cache area 
estimates for a 32-core LCMP as a function of the L2 cache size per node (128K to 
4M) and the number of cores per node (1 to 4). The CACTI data shows that as the L2 
cache size increases from 128K to 512K, the space consumed by the cache does not 
increase linearly. However, as the cache size increases past 512K, the cache area 
starts showing closer to a linear increase. Also note that as the cache size per core 
goes to 1M and beyond, the area consumed by the cache space is about 400 mm2 or 
higher. 

Due to manufacturing costs as well as form factor limitations, it is important to 
keep the die size of the processor as low as possible. Server chips are larger than 
desktop processor chips and have been generally less than 400 mm2. The largest die in 
production today is an Itanium 2 processor (estimated to be around 432 mm2 [7]). In 
order to keep the die area under 400 mm2, it is important to keep the cache area to a 
reasonable fraction of the overall area. In this paper we study the effect of 
constraining the cache space to 50% (200 mm2) or 75% (300 mm2). Figure 2(b) shows 
the constraint on a 32-core LCMP. The two horizontal lines in the figure represent the 
200mm2 and 300mm2 constraints. 
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The next step is to identify design options where there is provision for a shared L3 
cache. Figure 3(b) highlights the configurations where there is a potential for a L3 
cache. Since we are considering traditional inclusive cache hierarchies, it is important 
that the area available to an L3 cache allow for at least twice the size of the L2 cache 
area. By applying this criteria, we have figured L3 cache size estimates (numbers to 
the right of the bars) for both area constraints (200 mm2 and 300 mm2 in a 45nm 
process). For example, with the configuration of 128K per node, 1 core per node and 
a total of 32 cores, we cannot employ a suitable L3 cache if the area constraint is 200 
mm2. This is because the amount of area available cannot accommodate an inclusive 
L3 cache that is equal to or larger than twice the size of the L2 cache size (which is 
4M = 128K*32 in this case). However, if the area constraint is relaxed to 300 mm2, 
then a L3 cache that is roughly 12 MB in size can be accommodated. A similar 
process is applied to 16-core LCMP configuration. 
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Fig. 2. Area Considerations for a 32-Core LCMP Cache Design 

4.2   Implications of Bandwidth Constraints 
Another crucial step in the CAAM methodology is to apply on-die and off-die 
bandwidth limitations to the cache design space exploration. Note that unlike area 
constraints which can be applied independent of the workload running on the 
platform, the bandwidth constraints need to be considered along with a representative 
set of workloads that place bandwidth demand on the platform. For this exercise, we 
chose TPC-C from server workloads and Swim from SPECrate as they are more 
memory intensive. 

To understand the bandwidth demand on the on-die interconnect (between L2 and 
L3), we first simulated the LCMP architecture and measured the number of L2 misses 
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per instruction (MPI) for TPC-C and swim. Note that there is a single L2 cache per 
node and all of the cores share the cache.  

The data shows that it is best to share the cache space across 4 cores in the node as 
opposed to having private caches per core. The benefits are more pronounced for 
TPC-C since at these small to moderate cache sizes, a large fraction of the cache is 
occupied by code which is shared by many threads. Replicating the code in private 
caches obviously wastes space; hence, shared caches provide significant 
performance/area benefit for CMP architectures [9]. The benefit for swim is moderate 
because even if there is no sharing in SPECrate workloads, it is possible for a core to 
perceive a larger cache when another core is not using the cache as heavily. In 
addition, it is worth noting that the L2 MPI reduces significantly when going from 
256K to 512K. Therefore, the 512K cache size appears to be a sweet spot for this 
workload in such a configuration. 

 

Fig. 3. MPI and Bandwidth Characteristics of LCMP Server Platforms 

Figures 3 (a) and (b) show the on-die and off-die bandwidth demands of these 
workloads for a 32-core LCMP with 8 nodes and 4 cores per node (since this had the 
lowest MPI). We estimated the on-die bandwidth demand for three cases: (i) with no 
L3, (ii) with a 32M L3, represented by “L3=32M-ondie” line in the graph and (iii) 
with a perfect L3. The use of a perfect cache points to the maximum demanded on-die 
bandwidth. For TPC-C, the maximum bandwidth demand appears to be ~180 GB/s.  
Swim, on the other hand, places a maximum bandwidth demand of about 350GB/s. 
With a large L3 cache, the bandwidth demands reduce significantly to the range of 50 
to 100 GB/s. Since it would be preferable that the interconnect utilization is low 
(avoiding high queuing delays or saturation), it is clear that an on-die interconnect 
with 200 GB/s sustainable data bandwidth or more would be sufficient for the LCMP 
architecture. 

Off-die memory bandwidth is also a key consideration when determining the cache 
hierarchy. For example, if sufficient interconnect bandwidth is available, but the 
memory bandwidth is meager, it is desirable to allocate more space to the L3 as 
opposed to the L2. Figures 3(a) and 3(b) show the memory bandwidth demands of 
TPC-C and swim respectively for three configurations: (i) with no L3 cache (L3=0M), 
(ii) with a 16M L3, represented by “L3=16M-offdie” line in the graph, and (ii) with a  
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Table 1. LCMP Cache Options Summary 

Number of 
Cores

Cores per 
Node

Number of 
Nodes

L2 Cache 
per Node

L3 cache 
size

32 cores 1 32 128K ~12M
2 16 256K - 512K 8M - 16M
4 8 512K - 1M 10M - 18M

16 cores 1 16 128K - 256K 8M - 18M
2 8 256K - 512K 10M to 20M
4 4 512K - 1M 10M to 20M  
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Fig. 4. Detailed Comparison of the 32-core LCMP Cache Hierarchy Options 

32M L3 cache, represented by “L3=32M-offide” line in the graph. As we can see, 
TPC-C memory bandwidth demands range between 50GB/s and 75 GB/s. With a 32 
MB L3 cache, the memory bandwidth demands reduce down to 40 GB/s. Swim shows 
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much larger memory bandwidth demands than TPC-C (~85GB/s without L3, 
~75GB/s with L3). 

In order to have a low memory utilization (< 50%), it is important that a 32-core 
LCMP memory subsystem (with a L3 cache) provide a sustainable bandwidth of over 
100 GB/s. Based on DDR/FBD memory trends [9], we expect that towards the end of 
the decade (when 45nm is available), the peak memory bandwidth will be around 64 
to 128 GB/s. Applying a 64GB/s constraint essentially shows that the “no L3” options 
are not viable for TPC-C and swim workloads. Even with the options with L3 cache 
(as much as 32M), memory bandwidth remains a bottleneck for swim, but the TPC-C 
workload may scale.  

As expected, the 16-core configurations showed lower sensitivity to on-die and off-
die bandwidth constraints. However, in order to build a modular architecture, the 
observations from the 32-core analysis need to be taken into account even while 
building a 16-core LCMP platform. 

Based on the area and bandwidth constraints, we were able to prune the design 
space sufficiently and summarize a smaller set of configurations as listed in Table 1. 
The major factors that affected the pruning process are: 1) Applying area constraints 
showed that around 128K to 256K per core seems viable for 16-core and 32-core 
LCMP, 2) Applying area constraints resulted in L3 sizes ranging from 8M to about 
20M depending on the configuration being considered, and 3) Applying bandwidth 
constraints essentially showed that configurations without L3 cache were not viable. 

5   LCMP Cache Hierarchy Performance 

In this section, we study the performance of the LCMP cache hierarchy options 
summarized in Table 1. The metrics used in this section are both performance and 
performance/area, although area constraints have already been applied to prune the 
design space sufficiently. 

5.1   Performance of LCMP Cache Options 
We have collected performance data for the 32-core LCMP cache hierarchy options. 
Figure 4 shows this data for TPC-C, swim and SPECjbb workloads. The variation in 
the number of cores per node, the L2 cache size per node and the L3 cache size are 
shown on the x-axis. The on-die bandwidth is 512 GB/s and the maximum sustainable 
memory bandwidth is 64 GB/s. The vertical bars in Figure 4 show the CPI broken 
down into the time spent in the core, between the core and L2, between the L2 and L3 
and finally in the memory subsystem. A simple observation is that the dominating 
factors are the performance of the core and the performance of the memory subsystem 
as the time spent in L2 & L3 subsystems are fairly low.  

From a performance (CPI) perspective, it is not surprising that the configuration 
that performs the best is the one with 4 cores per node, 1M L2 per node and 32 M of 
L3 cache. It should be noted that in all configurations except those with 32M, the area 
consumed remains between 170 mm2 and 350mm2. If we exclude the options with 
32M L3 cache, then the high performance option is the 4-core node configuration 
with 16M L3 cache and either 1M or even 512K of L2 cache per node. 
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However, this performance comes at the expense of additional area. Placing equal 
emphasis on performance and area shows that the configuration with the least amount 
of cache area (4 cores per node, 512K per node, 8M L3) turns out to be the best 
configuration. We then looked at performance3/area as a potential metric. The 
behavior of the two metrics (performance/area and performance3/area) is significantly 
different for TPC-C and Swim, but not as much for other workloads. The reason for 
minimal change with other workloads is their insensitivity to cache size beyond 8M 
and minimal performance impact as a result. However, TPC-C and Swim are very 
memory-intensive.  As a result, the performance (CPI) is affected significantly for 
these workloads. Overall, since the area constraints have already been applied (except 
for options with 32M L3 cache), the design option that provides good performance 
with low area overhead consists of 4 cores per node, 512K to 1M of L2 cache and 
16M L3 cache. 

5.2   Bandwidth Considerations (Off/On-Die) 

Memory bandwidth has a significant impact on the LCMP application performance. 
All applications show a significant improvement as the memory bandwidth is 
increased from 32 to 64GB/s. Further increase in memory bandwidth to 128 GB/s 
does not provide significant boost in performance for four of the six workloads 
(exceptions are art and swim). 

We also study the impact of on-die interconnect bandwidth by varying it from 
128GB/s to 512GB/s. We find that most of the workloads do not generate sufficient 
demand requests to stress the interconnect subsystem. The detailed data is not shown 
here for space limitations. 

6   Conclusions 

Designing large-scale CMP processors is a challenging endeavor because of the vast 
design space. In this paper, we performed the first study of performance, area and 
bandwidth implications on LCMP cache exploration. We introduced a constraints-
aware analysis (CAAM) methodology for exploring the LCMP cache hierarchy 
options. We applied this methodology to 16-core and 32-core LCMP architectures 
and showed the pruning process.  
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Abstract. The Fast Fourier Transform (FFT) is of primary importance
and a fundamental kernel in many computationally intensive scientific
applications. In this paper we investigate its performance on the Sony-
Toshiba-IBM Cell Broadband Engine, a heterogeneous multicore chip
architected for intensive gaming applications and high performance com-
puting. The Cell processor consists of a traditional microprocessor (called
the PPE) that controls eight SIMD co-processing units called synergis-
tic processor elements (SPEs). We exploit the architectural features of
the Cell processor to design an efficient parallel implementation of Fast
Fourier Transform (FFT). While there have been several attempts to
develop a fast implementation of FFT on the Cell, none have been able
to achieve high performance for input series with several thousand com-
plex points. We use an iterative out-of-place approach to design our
parallel implementation of FFT with 1K to 16K complex input samples
and attain a single precision performance of 18.6 GFLOP/s on the Cell.
Our implementation beats FFTW on Cell by several GFLOP/s for these
input sizes and outperforms Intel Duo Core (Woodcrest) for inputs of
greater than 2K samples. To our knowledge we have the fastest FFT for
this range of complex inputs.

1 Introduction

The Cell Broadband Engine (or the Cell/B.E.) [15,8,9,18] is a novel
high-performance architecture designed by Sony, Toshiba, and IBM (STI), pri-
marily targeting multimedia and gaming applications. The Cell BE consists
of a traditional microprocessor (called the PPE) that controls eight SIMD co-
processing units called synergistic processor elements (SPEs), a high speed mem-
ory controller, and a high bandwidth bus interface (termed the element in-
terconnect bus, or EIB), all integrated on a single chip. The Cell is used in
Sony’s PlayStation 3 gaming console, Mercury Computer System’s dual Cell-
based blade servers, and IBM’s QS20 Cell Blades.

In this paper we present our design of an efficient parallel implementation of
Fast Fourier Transform on the Cell Broadband Engine. FFT is of primary im-
portance and a fundamental kernel in many computationally intensive scientific

S. Aluru et al. (Eds.): HiPC 2007, LNCS 4873, pp. 172–184, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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applications such as computer tomography, data filtering and fluid dynamics.
Another important application area of FFTs is in spectral analysis of speech,
sonar, radar, seismic and vibration detection. FFTs are also used in digital filter-
ing, signal decomposition, and in solution of partial differential equations. The
performance of these applications rely heavily on the availability of a fast routine
for Fourier transforms.

The literature contains several publications related to FFTs on the Cell/B.E.
processor. Williams et al. [19] analyze the Cell’s peak performance for FFT
of various types (1D, 2D), accuracy (single, double precision) and input sizes.
Cico, Cooper and Greene [7] estimate the performance of 22.1 GFLOP/s for a
single FFT that is reside in the local store of one SPE, or 176.8 GFLOP/s for
computing 8 independent FFTs with 8K complex input samples. (Note that all
other computation rates given in this paper – except for Cico et al. – consider
the performance of a single FFT and include the overheads when considering
that the source and output of the FFT are both stored in main memory.) In
another work, Chow, Fossum and Brokenshire [6] achieve 46.8 GFLOP/s for a
large FFT (16 million complex samples) on the Cell that is highly-specialized
for this particular input size. FFTW on the Cell [11] is a highly-portable FFT
library of various types, precision and input size.

In our design of FFTC we use an iterative out-of-place approach to solve
1D FFTs with 1K to 16K complex input samples. We describe our method-
ology to partition the work among the SPEs to efficiently parallelize a single
FFT computation where the source and output of the FFT are both stored in
main memory. This differentiates our work from the prior literature and bet-
ter represents the performance that one realistically sees in practice. The al-
gorithm requires a synchronization among the SPEs after each stage of FFT
computation. Our synchronization barrier is designed to use inter SPE commu-
nication without any intervention from the PPE. The synchronization barrier
requires only 2 log p stages (p: number of SPEs) of inter SPE communication
by using a tree-based approach. This significantly improves the performance,
as PPE intervention not only results in a high communication latency but also
in sequentialization of the synchronization step. We achieve a performance im-
provement of over 4 as we vary the number of SPEs from 1 to 8. We attain
a performance of 18.6 GFLOP/s for a single-precision FFT with 8K complex
input samples and also show significant speedup in comparison with other ar-
chitectures. Our implementation is generic for this range of complex inputs.
The source code is freely available from our CellBuzz project in SourceForge
(http://sourceforge.net/projects/cellbuzz/).

This paper is organized as follows. We first describe the Fast Fourier Trans-
form and the algorithm we choose to parallelize in Section 2. The novel architec-
tural features of the Cell processor are reviewed in Section 3. We then present
our design to parallelize FFT on the Cell and optimize for the SPEs in Section 4.

http://sourceforge.net/projects/cellbuzz/
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2 Fast Fourier Transform

Fast Fourier Transform (FFT) is an efficient algorithm that is used for comput-
ing the Discrete Fourier Transform. Some of the important application areas of
FFTs have been mentioned in the previous section. There are several algorith-
mic variants of the FFTs that have been well studied for parallel processors and
vector architectures [1,2,3,4].

In our design we utilize the naive Cooley-Tukey radix-2 Decimate in Frequency
(DIF) algorithm. The pseudo-code for an out-of-place approach of this algorithm
is given in Alg. 1. The algorithm runs in log N stages and each stage requires
O(N) computation, where N is the input size.

Algorithm 1: Sequential FFT algorithm
Input: array A[0] of size N

1 NP ←− 1 ;
2 problemSize ←− N ;
3 dist ←− 1;
4 i1 ←− 0;
5 i2 ←− 1;
6 while problemSize > 1 do

7 Begin Stage;
8 a ←− A[i1];
9 b ←− A[i2];

10 k = 0, jtwiddle = 0;
11 for j ← 0 to N − 1 step 2 ∗ NP do

12 W ←− w[jtwiddle];
13 for jfirst ← 0 to NP do

14 b[j + jfirst] ← a[k + jfirst] + a[k + jfirst + N/2];
15 b[j + jfirst + Dist] ← (a[k + jfirst] − a[k + jfirst + N/2]) ∗ W ;

16 k ← k + NP ;
17 jtwiddle ← jtwiddle + NP ;

18 swap(i1, i2);
19 NP ← NP ∗ 2;
20 problemSize ← problemSize/2;
21 dist ← dist ∗ 2;
22 End Stage;

Output: array A[i1] of size N

The array w contains the twiddle factors required for FFT computation. At
each stage the computed complex samples are stored at their respective locations
thus saving a bit-reversal stage for output data. This is an iterative algorithm
which runs until the parameter problemSize reduces to 1. Fig. 1 shows the
butterfly stages of this algorithm for an input of 16 sample points (4 stages).
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Fig. 1. Butterflies of the ordered DIF FFT algorithm

Apart from the theoretical complexity, another common performance metric
used for the FFT algorithm is the floating point operation (FLOP) count. On
analyzing the sequential algorithm, we see that during each iteration of the
innermost for loop there is one complex addition for the computation of first
output sample, which accounts for 2 FLOPs. The second output sample requires
one complex subtraction and multiplication which accounts for 8 FLOPs. Thus,
for the computation of two output samples during each innermost iteration we
require 10 FLOPs, which suggests that we require 5 FLOPs for the computation
of a complex sample at each stage. The total computations in all stages are
N log N which makes the total FLOP count for the algorithm as 5N log N .

3 Cell Broadband Engine Architecture

The Cell Broadband Engine (Cell/B.E.) processor is a heterogeneous multi-core
chip that is significantly different from conventional multiprocessor or multi-core
architectures. It consists of a traditional microprocessor (the PPE) that controls
eight SIMD co-processing units called synergistic processor elements (SPEs),
a high speed memory controller, and a high bandwidth bus interface (termed
the element interconnect bus, or EIB), all integrated on a single chip. Fig. 2
gives an architectural overview of the Cell/B.E. processor. We refer the reader
to [17,10,16,12,5] for additional details.

The PPE runs the operating system and coordinates the SPEs. It is a 64-bit
PowerPC core with a vector multimedia extension (VMX) unit, 32 KByte L1
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Fig. 2. Cell Broadband Engine Architecture

instruction and data caches, and a 512 KByte L2 cache. The PPE is a dual issue,
in-order execution design, with two way simultaneous multithreading. Ideally,
all the computation should be partitioned among the SPEs, and the PPE only
handles the control flow.

Each SPE consists of a synergistic processor unit (SPU) and a memory flow
controller (MFC). The MFC includes a DMA controller, a memory management
unit (MMU), a bus interface unit, and an atomic unit for synchronization with
other SPUs and the PPE. The SPU is a micro-architecture designed for high
performance data streaming and data intensive computation. It includes a 256
KByte local store (LS) memory to hold SPU program’s instructions and data.
The SPU cannot access main memory directly, but it can issue DMA commands
to the MFC to bring data into the Local Store or write computation results
back to the main memory. DMA is non-blocking so that the SPU can continue
program execution while DMA transactions are performed.

The SPU is an in-order dual-issue statically scheduled architecture. Two SIMD
[14] instructions can be issued per cycle: one compute instruction and one mem-
ory operation. The SPU branch architecture does not include dynamic branch
prediction, but instead relies on compiler-generated branch hints using prepare-
to-branch instructions to redirect instruction prefetch to branch targets. Thus
branches should be minimized on the SPE as far as possible.

The MFC supports naturally aligned transfers of 1,2,4, or 8 bytes, or a multiple
of 16 bytes to a maximum of 16 KBytes. DMA list commands can request a
list of up to 2,048 DMA transfers using a single MFC DMA command. Peak
performance is achievable when both the effective address and the local storage
address are 128 bytes aligned and the transfer is an even multiple of 128 bytes.
In the Cell/B.E., each SPE can have up to 16 outstanding DMAs, for a total
of 128 across the chip, allowing unprecedented levels of parallelism in on-chip
communication. Kistler et al. [16] analyze the communication network of the
Cell/B.E. and state that applications that rely heavily on random scatter and or
gather accesses to main memory can take advantage of the high communication
bandwidth and low latency.

With a clock speed of 3.2 GHz, the Cell processor has a theoretical peak
performance of 204.8 GFLOP/s (single precision). The EIB supports a peak



FFTC: Fastest Fourier Transform for the IBM Cell Broadband Engine 177

bandwidth of 204.8 GB/s for intrachip transfers among the PPE, the SPEs,
and the memory and I/O interface controllers. The memory interface controller
(MIC) provides a peak bandwidth of 25.6 GB/s to main memory. The I/O
controller provides peak bandwidths of 25 GB/s inbound and 35 GB/s outbound.

4 FFTC: Our FFT Algorithm for the Cell/B.E. Processor

There are several architectural features that make it difficult to optimize and
parallelize the Cooley-Tukey FFT algorithm on the Cell Broadband Engine. The
algorithm is branchy due to presence of a doubly nested for loop within the outer
while loop. This results in a compromise on the performance due to the absence
of a branch predictor on the Cell. The algorithm requires an array that consists
of the N/2 complex twiddle factors. Since each SPE has a limited local store
of 256 KB, this array cannot be stored entirely on the SPEs for a large input
size. The limit in the size of the local store memory also restricts the maximum
input data that can be transferred to the SPEs. Parallelization of a single FFT
computation involves synchronization between the SPEs after every stage of
the algorithm, as the input data of a stage is the output data of the previous
stage. To achieve high performance it is necessary to divide the work equally
among the SPEs so that no SPE waits at the synchronization barrier. Also, the
algorithm requires log N synchronization stages which impacts the performance.
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Fig. 3. Partition of the input ar-
ray among the SPEs (e.g. 8 SPEs
in this illustration)

It is difficult to vectorize every stage of the FFT
computation. For vectorization of the first two
stages of the FFT computation it is necessary to
shuffle the output data vector, which is not an
efficient operation in the SPE instruction set ar-
chitecture. Also, the computationally intensive
loops in the algorithm need to be unrolled for
best pipeline utilization. This becomes a chal-
lenge given a limited local store on the SPEs.

4.1 Parallelizing FFTC for the Cell

As mentioned in the previous section for best
performance it is important to partition work
among the SPEs to achieve load balancing. We
parallelize by dividing the input array held in
main memory into 2p chunks, each of size N

2p ,
where p is the number of SPEs.

During every stage, SPE i is allocated chunk
i and i + p from the input array. The basis for
choosing these chunks for an SPE lies in the fact
that these chunks are placed at an offset of N/2
input elements. For the computation of an output complex sample we need to
perform complex arithmetic operation between input elements that are separated
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Fig. 4. Vectorization of the first two stages of the FFT algorithm. These stages require
a shuffle operation over the output vector to generate the desired output.

by this offset. Fig. 3 gives an illustration of this approach for work partitioning
among 8 SPEs.

The PPE does not intervene in the FFT computation after this initial work
allocation. After spawning the SPE threads it waits for the SPEs to finish
execution.

SPE 1 SPE 2 SPE 5 SPE 6 SPE 7 SPE 8SPE 3 SPE 4

Send
1

Send
1

Send
1

Send
1

Send 2 Send 2

Send 3

Recv. Recv. Recv. Recv.

Recv. Recv.

Recv.

Fig. 5. Stages of the synchronization barrier using inter SPE communication. The
synchronization involves sending inter SPE mailbox messages up to the root of the
tree and then sending back acknowledgment messages down to the leaves in the same
topology.



FFTC: Fastest Fourier Transform for the IBM Cell Broadband Engine 179

Algorithm 2: Parallel FFTC algorithm: View within SPE
Input: array in PPE of size N

Output: array in PPE of size N

1 NP ←− 1 ;
2 problemSize ←− N ;
3 dist ←− 1;
4 fetchAddr ←− PPE input array;
5 putAddr ←− PPE output array;
6 chunkSize ←− N

2∗p
;

7 Stage 0 (SIMDization achieved with shuffling of output vector);
8 Stage 1 ;
9 while NP < buffersize && problemSize > 1 do

10 Begin Stage;
11 Initiate all DMA transfers to get data;
12 Initialize variables;
13 for j ← 0 to 2 ∗ chunkSize do

14 Stall for DMA buffer;
15 for i ← 0 to buffersize/NP do

16 for jfirst ← 0 to NP do

17 SIMDize computation as NP > 4;

18 Update j, k, jtwiddle;

19 Initiate DMA put for the computed results

20 swap(fetchAddr , putAddr);
21 NP ← NP ∗ 2;
22 problemSize ← problemSize/2;
23 dist ← dist ∗ 2;
24 End Stage;
25 Synchronize using Inter-SPE communication;

26 while problemSize > 1 do

27 Begin Stage;
28 Initiate all DMA transfers to get data;
29 Initialize variables;
30 for k ← 0 to chunkSize do

31 for jfirst ← 0 to min(NP, chunkSize − k) step buffersize do

32 Stall for DMA buffer;
33 for i ← 0 to buffersize do

34 SIMDize computation as buffersize > 4;

35 Initiate DMA put for the computed results;

36 Update j, k, jtwiddle;

37 swap(fetchAddr , putAddr);
38 NP ← NP ∗ 2;
39 problemSize ← problemSize/2;
40 dist ← dist ∗ 2;
41 End Stage;
42 Synchronize using Inter SPE communication;



180 D.A. Bader and V. Agarwal

4.2 Optimizing FFTC for the SPEs

After dividing the input array among the SPEs, each SPE is allocated 2 chunks
each of size N

2p . Each SPE, fetches this chunk from main memory using DMA
transfers and uses double-buffering to overlap memory transfers with computa-
tion. Within each SPE, after computation of each buffer, the computed buffer is
written back into main memory at the correct offset using DMA transfers.

The detailed pseudo-code is given in Alg. 2. The first two stages of the FFT
algorithm are duplicated, that correspond to the first two iterations of the outer
while loop in sequential algorithm. This is necessary as the vectorization of these
stages requires a shuffle operation (spu shuffle()) over the output to re-arrange
the output elements to their correct locations. Please refer to Fig. 4 for an
illustration of this technique for stages 1 and 2 of the FFT computation.

The innermost for loop (in the sequential algorithm) can be easily vectorized
for NP > 4, that correspond to the stages 3 through log N . However, it is impor-
tant to duplicate the outer while loop to handle stages where NP < buffersize,
and otherwise. The global parameter buffersize is the size of a single DMA get
buffer. This duplication is required as we need to stall for a DMA transfer to
complete, at different places within the loop for these two cases. We also unroll
the loops to achieve better pipeline utilization. This significantly increases the
size of the code thus limiting the unrolling factor.

SPEs are synchronized after each stage, using inter-SPE communication. This
is achieved by constructing a binary synchronization tree, so that synchronization
is achieved in 2 log p stages. The synchronization involves the use of inter-SPE
mailbox communication without any intervention from the PPE. Please refer to
Fig. 5 for an illustration of the technique.

This technique performs significantly better than other synchronization tech-
niques that either use chain-like inter-SPE communication or require the PPE
to synchronize between the SPEs. The chain-like technique requires 2p stages of
inter-SPE communication whereas with the intervention of the PPE latency of
communication reduces the performance of this barrier.

5 Performance Analysis of FFTC

We use the Cell SDK 2.1 for instruction level profiling and performance analysis
of the code. The code was compiled using the xlc compiler, that is included in
the SDK, with level 3 optimization.

For parallelizing a single 1D FFT on the Cell, it is important to divide the work
among the SPEs. Fig. 6 shows the performance of our algorithm with varying
the number of SPEs for 1K and 4K complex input samples. The performance
scales well with the number of SPEs which suggests that load is balanced among
the SPEs.

Our design requires a barrier synchronization among the SPEs after each
stage of the FFT computation. We focus on FFTs that have from 1K to 16K
complex input samples. For relatively small inputs and as the number of SPEs
increases, the synchronization cost becomes a significant issue since the time
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(a) (b)

Fig. 6. Running Time of our FFTC code on 1K and 4K inputs as we increase the
number of SPEs

Fig. 7. Performance comparison of FFTC with other architectures for various input
sizes of FFT. The performance numbers are from benchFFT from the FFTW website.

per stage decreases but the cost per synchronization increases. With instruction
level profiling we determine that the time required per synchronization stage
using our tree-synchronization barrier is about 1 microsecond (3200 clock cycles).
We achieve a high performance barrier using inter-SPE mailbox communication
which significantly reduces the time to send a message, and by using the tree-
based technique we reduced the number of communication stages required for
the barrier (2 log p steps).
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Fig. 8. Analysis of the pipeline utilization using the IBM Assembly Visualizer for Cell
Broadband Engine. The top figure shows full pipeline utilization for certain parts of
the code and the bottom figure shows areas where the pipeline stalls due to data
dependency.

Fig. 7 shows the single precision performance for complex inputs of FFTC,
our optimized FFT, as compared with the following architectures:

– IBM Power 5: IBM OpenPower 720, Two dual-core 1.65 GHz POWER5
processors.

– AMD Opteron: 2.2 GHz Dual Core AMD Opteron Processor 275.
– Intel Duo Core: 3.0 GHz Intel Xeon Core Duo (Woodcrest), 4MB L2 cache.
– Intel Pentium 4: Four-processor 3.06 GHz Intel Pentium 4, 512 KB L2.
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We use the performance numbers from benchFFT [11] for the comparison with
the above architectures. We consider the FFT implementation that gives best
performance on these architectures for comparison.

The Cell/B.E. has a two instruction pipelines, and for achieving high perfor-
mance it is important to optimize the code so that the processor can issue two
instructions per clock cycle. This level of optimization requires inspecting the
assembly dump of the SPE code. For achieving pipeline utilization it is required
that the gap between dependent instructions needs to be increased. We use the
IBM Assembly Visualizer for Cell/B.E. tool to analyze this optimization. The
tool highlights the stalls in the instruction pipelines and helps the user to reorga-
nize the code execution while maintaining correctness. Fig. 8 shows the analysis
of pipeline utilization. Some portions utilize these pipelines effectively (top fig-
ure) whereas there are a few stalls in other parts of the code which still need to
be optimized (bottom figure).

6 Conclusions

In summary, we present FFTC, our high-performance design to parallelize the
1D FFT on the Cell Broadband Engine processor. FFTC uses an iterative out-of-
place approach and we focus on FFTs with 1K to 16K complex input samples.
We describe our methodology to partition the work among the SPEs to effi-
ciently parallelize a single FFT computation. The computation on the SPEs is
fully vectorized with other optimization techniques such as loop unrolling and
double buffering. The algorithm requires a synchronization among the SPEs af-
ter each stage of FFT computation. Our synchronization barrier is designed to
use inter SPE communication only without any intervention from the PPE. The
synchronization barrier requires only 2 log p stages (p: number of SPEs) of inter
SPE communication by using a tree-based approach. This significantly improves
the performance, as PPE intervention not only results in a high communication
latency but also results in sequentializing the synchronization step. We achieve
a performance improvement of over 4 as we vary the number of SPEs from 1 to
8. We expect that the performance of FFTC will scale on the next generation
of the IBM Cell Broadband Engine processor that may offer 32 SPEs [13]. We
also demonstrate FFTC’s performance of 18.6 GFLOP/s for an FFT with 8K
complex input samples and show significant speedup in comparison with other
architectures. Our implementation outperforms Intel Duo Core (Woodcrest) for
input sizes greater than 2K and to our knowledge we have the fastest FFT for
these range of complex input samples.
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Abstract. Molecular dynamics simulations are a common and often
repeated task in molecular biology. The need for speeding up this treat-
ment comes from the requirement for large system simulations with many
atoms and numerous time steps. In this paper we present a new approach
to high performance molecular dynamics simulations on graphics process-
ing units. Using modern graphics processing units for high performance
computing is facilitated by their enhanced programmability and moti-
vated by their attractive price/performance ratio and incredible growth
in speed. To derive an efficient mapping onto this type of architecture,
we have used the Compute Unified Device Architecture (CUDA) to de-
sign and implement a new parallel algorithm. This results in an imple-
mentation with significant runtime savings on an off-the-shelf computer
graphics card.

1 Introduction

The fast increasing power of the Graphics Processing Unit (GPU) and its stream-
ing architecture opens up a range of new possibilities for a variety of applications.
With the enhanced programmability of commodity GPUs, these chips are now
capable of performing more than the specific graphics computations they were
originally designed for. Recent work shows the design and implementation of
algorithms for non-graphics applications. Examples include scientific computing
[1], image processing [2], computational biology [3,4], and fast Fourier trans-
form [5], just to name a few. The evolution of GPUs is driven by the computer
game market. This leads to a relatively small price per unit and to very rapid
developments of next generations.

Currently, the peak performance of state-of-the-art GPUs is approximately
ten times faster than that of comparable CPUs. Furthermore, the growth rate of
the number of transistors used on GPUs is greater than for microprocessors [6].
Consequently, GPUs will become an even more attractive alternative for high
performance computing in the near future.

However, there are still a number of challenges to be solved in order to enable
scientists other than computer graphics specialists to facilitate efficient usage of
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c© Springer-Verlag Berlin Heidelberg 2007



186 W. Liu et al.

these resources within their research area. The biggest challenge in order to solve
a specific problem using GPUs is reformulating the proposed algorithms and data
structures using computer graphics primitives (e.g. triangles, textures, vertices,
fragments). Furthermore, restrictions of the underlying streaming architecture
have to be taken into account, e.g. random access writes to memory is not
supported and no cross fragment data or persistent state is possible (e.g. all the
internal registers are flushed before a new fragment is processed).

The Compute Unified Device Architecture (CUDA) [7] is a new hardware and
software architecture for issuing and managing computations on GPUs. It treats
the GPU as a data-parallel computing device without the need of mapping com-
putations to the graphics pipeline. CUDA technology gives computationally in-
tensive applications access to the tremendous processing power of GPUs through
a revolutionary new programming interface. Providing orders of magnitude more
performance and simplifying software development by using the standard C lan-
guage, CUDA enables developers to create innovative solutions for data-intensive
problems.

Molecular dynamics (MD) is a computationally intensive method of studying
the natural time-evolution of a system of atoms using Newton’s classical equa-
tions of motion. In practice, MD has always been limited more by the current
available computing power than by investigators’ ingenuity. Researchers in this
field have typically focused their efforts on simplifying models and identifying
what may be neglected while still obtaining acceptable results. This has led to
much skepticism on the ability of MD to be used as a predictive tool for experi-
mental work. High-performance computing holds the key to making biologically
relevant calculations tractable without compromise. In this paper we show how
MD simulations can benefit from the computing power of GPUs. In order to
exploit the GPU’s capabilities for high performance MD simulation we present
new algorithms based on the CUDA programming model. These algorithms have
been implemented using C++ and CUDA and tested on a physical system of
16,384 atoms. We show that our new MD algorithms lead to a significant per-
formance improvement on an NVIDIA GeForce 8800 GTX card.

The rest of this paper is organized as follows. In Section 2, we introduce the
basic MD simulation algorithms and highlight previous work on parallelization
of these algorithms on different parallel architectures. Important features of the
CUDA programming model are described in Section 3. Section 4 presents our
new CUDA-based MD algorithms and their efficient GPU implementation. A
performance evaluation is given in Section 5. Finally, Section 6 concludes the
paper with an outlook to further research topics.

2 Molecular Dynamics Simulations

Computer simulations play a very important role in scientific research. They
act as bridges among microscopic length, time scales and the macroscopic world
of the laboratory [8]. In very broad terms, we can identify two categories of
computer simulation techniques: MD and Monte Carlo (MC). In contrast with
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the MC method, MD is a deterministic technique. That is, given an initial set of
parameters, the subsequent time evolution is in principle completely determined
[9]. In an MD simulation, the time evolution of an atomic system is followed
by integrating their equations of motion described by the following classical
equations of motion:

{
Fi = miai

Fi = − �ri V (r1, . . . , rN ) (1)

In Eq.(1), the atomic system contains N atoms. mi is the atom mass, ai =
d2ri/dt2 is its acceleration, and Fi is the force acting upon it. V (r1, . . . , rN ) is the
function of the positions of the atoms. It represents the potential energy of the
system. In practice, function V can be written as a sum of pairwise interactions:

V (r1, . . . , rN ) =
∑

i

∑

j

u2(ri, rj) +
∑

i

∑

j

∑

k

u3(ri, rj , rk) + · · · (2)

In Eq.(2), the three body (and higher order) interactions are usually neglected
[10], only leaving the pair potential as the concentration of the simulation. In
practice, the Lennard-Jones (LJ) potential [11] is the most commonly used in-
teraction model. It is given by the following expression:

u(r) = 4ε

[(
δ

r

)12

−
(

δ

r

)6
]

(3)

where r is the distance between two interacting atoms, δ is the diameter and
ε is the well depth. Both ε and δ are constants and they are chosen to fit the
physical properties of the material.

One of the most time-consuming parts in MD simulations is the computation
of interaction forces, which takes more than 90% of the total simulation time [12].
From Eq.(2.2) and (2.3) we can see this is mainly because the force computation
requires to calculate the interactions between each atom in the system with every
other atom, giving rise to O(N2) evaluations of the interaction in each time
step. The interaction forces decrease rapidly with increasing distance between
atoms. Thus, it is possible to neglect forces between atoms separated by more
than a cutoff distance rc. This means an atom has only interaction forces with
atoms that are in a sphere with a radius equal to rc [10]. The cutoff method is
also called the neighbor list method. It reduces the computational complexity
to O(N). Forces computed using the cutoff method are also called short-range
forces.

Figure 1 illustrates how to reduce computational complexity by using the
cutoff method. When the neighbor list is built, all of the nearby atoms within an
extended cutoff distance rlist = rc + skin are stored. At the first step in a MD
simulation, the neighbor list is constructed for all the neighbors of each atom.
From time to time the list is reconstructed.

Because of their inherent parallelism [13], MD simulations are suitable can-
didates for mapping onto parallel architectures. In the past twenty years, re-
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r
c

skin

Fig. 1. Make use of rc and skin to construct the neighbor list

searchers have exploited MD’s parallelism on various parallel machines. In ad-
dition to architectures specifically designed for MD simulations, existing pro-
grammable sequential and parallel architectures have been used for solving them.

Special-purpose architectures can provide the fastest means of running a par-
ticular algorithm with very high processing element (PE) density. Each PE is
specifically designed for the pariwise force calculation. However, such architec-
tures are limited to one single algorithm, and thus cannot supply the flexibility
necessary to run a variety of algorithms required for MD simulations. GRAPE
[14] is a series of application specific processor designs, which is specially built to
accelerate the MD simulations. More recent examples, better tuned to the needs
of MD simulations, include ATOMS [15], FASTRUN [16], and MDGRAPE-3 [17].

Considerable effort has been spent by researchers to implement MD simulation
algorithms on vector supercomputers [18]. Several other approaches are based
on SIMD or MIMD parallel machines with a few dozens of processors [19,20].
SIMD and MIMD architectures are programmable and can be used for a wider
range of applications. Since these architectures contain more general-purpose
parallel processors, their PE density is less than the density of special-purpose
architectures. Nevertheless, these solutions can still achieve significant runtime
savings. However, the costs involved in designing and producing SIMD archi-
tectures are quite high. As a consequence, none of the above solutions has a
successor generation, making upgrading impossible.

All these approaches can be seen as accelerators – an approach satisfying
the demand for a low cost solution to compute-intensive problems. The main
advantage of GPUs compared to the architectures mentioned above is that they
are commodity components. In particular, most users have already access to PCs
with modern graphics cards. For these users this direction provides a zero-cost
solution. Even if a graphics card has to be bought, the installation of such a card
is trivial (plug and play). Writing the software for such a card does still require
specialist knowledge, but new high-level programming models such as CUDA [7]
offer a simplified programming environment.
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3 CUDA Programming Model for Computing on GPUs

Compute Unified Device Architecture (CUDA) is a novel hardware and pro-
gramming model for issuing and managing computations on the GPU as a
data-parallel computing device without the need of mapping them to a graphics
API [21]. For now, it is available for NVIDIA 8800 series, NVIDIA Quadro FX
5600/4600, and beyond.

From the hardware point of view, CUDA treats the GPU as a set of SIMD
multiprocessors. Each multiprocessor is composed of eight processors. The mul-
tiprocessor specifications of NVIDIA 8800 series and Quadro FX 5600/4600 are
shown in Table 1.

Table 1. General specifications for NVIDIA CUDA-ready GPUs [21]

Number of Clock frequency Amount of device
Multiprocessors (GHz) memory (MB)

GeForce 8800 GTX 16 1.35 768
GeForce 8600 GTX 12 1.2 640
Quadro FX 5600 16 1.35 1500
Quadro FX 4600 12 1.2 768

A multiprocessor has on-chip memory of four types:

(1) one set of registers per processor,
(2) a parallel data cache or shared memory,
(3) a read-only constant cache,
(4) a read-only texture cache.

These on-chip memories are used to implement fast I/O operations, especially,
to speed up read and write access to the non-cached device memory. Thus,
applications can take advantage of them by minimizing over-fetch and round-
trips to the low bandwidth device memory. Although the device memory has a
low bandwidth, it is big in size and shared by all multiprocessors.

In the CUDA programming model, each multiprocessor is viewed as a multi-
core device that is capable of executing a very high number of threads in parallel.
These threads are organized as thread blocks. Threads in the same thread block
can cooperate together by efficiently sharing data and synchronizing their ex-
ecution to coordinate memory access with other threads. However, threads in
different thread blocks cannot communicate or synchronize with each other. The-
oretically, having more active threads per multiprocessor can help hide memory
latency, and can also better fill the instruction pipeline so there are no idle
processors. According to [21], the maximum number of threads that can run
concurrently on a multiprocessor is 768. In practice, the number of threads is
further limited by the shared on-chip memory and hence, the maximal number
of threads is application-dependent.
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4 CUDA-Based MD Simulation Algorithms

Many parallel algorithms for MD simulations have been proposed and imple-
mented by different researchers. The details of these algorithms vary widely since
there are numerous application-dependent and architecture-dependent charac-
ters to consider. Generally, from the point of view of data decomposition, they
can be categorized into three types:

(1) Atom-decomposition (AD): Each processor is assigned a subset of N/P
(N is the number atoms; P is the number of processors) atoms at the begin-
ning of the simulation. As each processor must keep identical copies of atom
information, it is also called replicated-data method [13]. The AD method
has been widely used especially on shared memory architectures.

(2) Force-decomposition (FD): In this method, a subset of the force loops
inherent in Eq.(2.2) is assigned to each processor. It reduces the expensive
communication and memory costs by a factor

√
P compared with the AD

method. However, FD cannot maintain load-balance as easily as AD.
(3) Spatial-decomposition (SD): This method corresponds to a geometric

decomposition of the physical simulation domain. Each processor computes
only the forces on atoms in its sub-domain. As the simulation progresses, pro-
cessors exchange atoms when they move from one sub-domain to another.
SD is very well suited to large-scale MD simulations. It achieves optimal
O(N/P ) scaling and achieves better performance on Coarse-grained archi-
tectures, such as Clusters, than AD and FD [13].

In this section we describe how MD simulations can be efficiently mapped
onto a GPU using CUDA. We take advantage of the inherent parallelism of
MD simulations and design parallel algorithms using the AD method. The main
reasons we choose the AD method to design our algorithms is: (1) good load bal-
ancing and scalability can be easily achieved, (2) according to the CUDA model
described in Section 3, the GPU hardware is viewed as a shared memory multi-
processor system, the AD method can give good performance in such a system.

The outline in Figure 2 illustrates how a sequential MD simulation works. In
Figure 2, the computational complexity of each operation is listed on the end of
them. In practice, the neighbor list update and force computation are the most
time-consuming operations in each time step.

In the neighbor list update step (step (4) in Figure 2), a list is constructed
for all neighbors of each atom. There are a large number of pairwise calculations
in this step: each atom will loop over all other atoms to compute the pairwise
distance between them. This corresponds to compute an N ×N distance matrix
D. As rij == rji, only the lower triangle matrix has to be computed, thus the
calculation is half reduced. If the pairwise distance with the head atom of current
column is within rlist (see Section 2), the index of current atom is added into
the neighbor list array of current head atom.

There are two problems we should consider when design our CUDA-based
neighbor list update algorithm. First, as mentioned in Section 2, in CUDA,
thread blocks cannot communicate or synchronize with each other. This
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1. Initialize atoms’ status and the LJ potential table;
set parameters controlling the simulation; O(N)

2. For all time steps do
3. Update positions of all atoms; O(N)
4. If there are atoms who have moved too much, do

Update the neighbor list, including all atom pairs that are within a
distance range (half distance matrix computation); O(N2)

End if
5. Make use of the neighbor list to compute forces acted on all atoms; O(N)
6. Update velocities of all atoms; O(N)
7. Update the displace list, which contains the displacements of atoms; O(N)
8. Accumulate and output target statistics of each time step; O(N)
9. End for

Fig. 2. The outline of a sequential MD simulation (with the computation complexity
listed, N is the number of atoms)

limitation will make the full computation of the distance matrix D necessary. For
example, assume each column of the distance matrix D is assigned to a single
thread and there are two threads in a thread block (see Figure 3).

In Figure 3, if we only calculate the lower triangle matrix then except for
Thread 1, all other threads cannot keep the whole information of local neighbor
list. For instance, as to Thread 4, the current head atom 4 will not know whether
atoms 1, 2 and 3 are in the local neighbor list or not. In order get this information,
Thread 4 must access the local neighbor lists of atoms 1, 2 and 3. In CUDA,
this access is very expensive because it has to be done in the low bandwidth
device memory. In order to solve this problem, we let each thread loop over all
other atoms for current head atom. That is, in Figure 3 both the lower triangle
and upper triangle matrices are calculated. Figure 4 shows our algorithm for
neighbor list update using CUDA. Because the coordinates of head atoms will
be reused many times in the inner loop over all other atoms in order to calculate
pairwise distances, we put them into a register before the inner loop so as to
speedup access for them.

After the neighbor list update step, the indices of all eligible atoms will be
stored in the neighbor list array in the device memory for later usage. This is
mainly because the size of the neighbor list may be very large and there is no
enough on-chip memory to store it. During the compute force step, each thread
will loop over the local neighbor lists to do force calculations.

Figure 5 gives our CUDA-based algorithm for the force computation. Because
the coordinates of head atoms and the forces acted on them are reused many
times in the inner loop over all atoms in the neighbor list, we put them into
registers before the inner loop so as to increase the access efficiency for them.
The results of force computation fi will be used by other operations, such as the
position and velocity update operations (step (3) and (6) in Figure 2), so we put
them into a dynamically allocated shared memory to speedup access to them.
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Fig. 3. Parallel neighbor list update illustration (Red circles denote head atoms). As-
sume each thread is allocated one column of the distance matrix and each thread block
consists of two threads.

1. For all allocated head atoms do
2. Put the coordinates of current head atom into a register;
3. For all atoms exclude the current head atom do
4. Compute the pairwise distance between the current atom and

head atom (full distance matrix computation);
5. Compare the pairwise distance with rlist and put the indices

of eligible atoms into the neighbor list in the device memory;
6. End for
7. Reset the displace list of current head atom with the value 0;
8. End for

Fig. 4. CUDA-based neighbor list update algorithm

Figure 6 shows our CUDA-based MD simulation algorithm. In order to elim-
inate the overhead for launch multiple kernels, we have put all time step loops
into a single kernel. As the kernel cannot output results directly, all statistics
have to be read back to CPU for further processing and outputting.
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1. For all allocated head atoms do
2. Put the coordinates of current head atom i into a register;
3. Set the value of forces acted on atom i as 0

(fi = 0, fi is put into a register);
4. For atoms in the current neighbor list do
5. Compute the distance dij between the current

atom j and head atom i;
6. If dij < rc do
7. Calculate and accumulate the force fi acted on atom i;
8. End if
9. End for
10. Put the value of fi into on-chip shared memory;
11. End for

Fig. 5. CUDA-based force computation algorithm

/*Host program executed on CPU*/
1. Initialize atoms’ status and the LJ potential table;

set parameters controlling the simulation;
2. Load data into GPU device memory and launch the kernel;

/*Kernel program executed on GPU*/
3. For all time steps do
4. Update positions of all atoms;
5. If there are atoms who have moved too much, do

CUDA-based neighbor list update algorithm;
End if

6. CUDA-based force computation algorithm;
7. Update velocities of all atoms;
8. Update the displace list;
9. Put statistics of each time step into the device memory;

10. End for
11. Read back statistics to CPU;
12. For all time steps do
13. Output statistics of each time step;
14. End for

Fig. 6. CUDA-based MD simulation algorithm

5 Performance Evaluation

We have implemented the proposed algorithm using CUDA Toolkit 0.8 [7] and
evaluated it on the following graphics card:
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- nVidia GeForce 8800 GTX : 1.35 GHz engine clock speed, 16 multiprocessors,
768 MB device memory, 16 KB shared memory/multiprocessor.

Tests have been conducted with this card installed in a PC with an AMD
Opteron 2210 1.8GHz, 2GB RAM running Windows XP.

Table 2. Comparison of runtimes (in milliseconds) and speedups of MD simulation
running on a single Pentium4 3GHz to our GPU-accelerated version running on an
AMD Opteron 2210 1.8GHz with an NVIDIA GeForce 8800 GTX 512 for various time
steps. The cutoff distance is fixed at 2.5δ.

Time steps 100 200 300 400 500
Indices in the neighbor list 1096077 1096077 1096077 1096077 1096077
MD-CPU Overall(ms) 22468 36063 49703 63406 78078
MD-GPU Kernel(ms) 1168 1914 2656 3399 4149

(8800GTX) Overall(ms) 1468 2265 3078 3875 4671
Speedup Overall 15.3 15.9 16.1 16.4 16.7

A set of performance evaluation tests have been conducted using different
numbers of time steps and cutoff distances, to evaluate the processing time of the
GPU implementation versus that of the original MD simulation on the PC. The
MD simulation program is benchmarked on an Intel Pentium IV 3GHz processor
with 1GB RAM. We have modified the MD code (md3.f90) from Ercolessi ([9],
available online at http://www.fisica.uniud.it/ ercolessi/md/f90/) into a 32bit
version for our evaluation. This is because for now, there is only a 32bit version
of CUDA. In our experiments, there are 16,384 atoms in the simulated physical
system.

Table 3. Comparison of runtimes (in milliseconds) and speedups of MD simulation
running on a single Pentium4 3GHz to our GPU-accelerated version running on an
AMD Opteron 2210 1.8GHz with an NVIDIA GeForce 8800 GTX 512 for various
cutoff distances. The time step is fixed at 100.

rc 2.5δ 3.0δ 3.5δ 4.0δ 4.5δ
Indices in the neighbor list 1096077 1597512 2549064 3243673 4607456
MD-CPU Overall(ms) 22468 29984 41234 53984 69765
MD-GPU Kernel(ms) 1168 1634 2309 3111 4446

(8800GTX) Overall(ms) 1468 1968 2641 3437 4796
Speedup Overall 15.3 15.2 15.6 15.7 14.5

Table 2 reports the performance of the sequential MD and our CUDA im-
plementation for different time steps. In Table 2, we set the cutoff distance rc

2.5δ and skin 0.5δ. Table 3 shows the performance of the sequential MD and our
CUDA implementation for different cutoff distances. In Table 3, we make both
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programs run 100 time steps while skin = 0.5δ. From Table 2 and Table 3 we can
see, our GPU implementation achieves speedups of almost seventeen compared
to the sequential MD simulation runtime.

6 Conclusions and Future Work

In this paper we have introduced CUDA-based MD simulation algorithms that
can be efficiently implemented on modern graphics hardware. We have made use
of the fast on-chip memory in CUDA to design and implement our algorithms.
All key components of our algorithms have been mapped onto the GPU for
execution. The evaluation of our implementation on a high-end graphics card
shows a speedup of almost seventeen compared to a Pentium IV 3.0GHz. The
results are especially encouraging and to our knowledge this is the first reported
implementation of MD simulations on graphics hardware using CUDA.

Our implementation of the MD simulation algorithm using CUDA is quite
generic. Our future work will include the extension and integration of this im-
plementation into Gromacs [22] and Autodock [23].
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Abstract. Large graphs involving millions of vertices are common in many prac-
tical applications and are challenging to process. Practical-time implementations
using high-end computers are reported but are accessible only to a few. Graphics
Processing Units (GPUs) of today have high computation power and low price.
They have a restrictive programming model and are tricky to use. The G80 line
of Nvidia GPUs can be treated as a SIMD processor array using the CUDA pro-
gramming model. We present a few fundamental algorithms – including breadth
first search, single source shortest path, and all-pairs shortest path – using CUDA
on large graphs. We can compute the single source shortest path on a 10 million
vertex graph in 1.5 seconds using the Nvidia 8800GTX GPU costing $600. In
some cases optimal sequential algorithm is not the fastest on the GPU architec-
ture. GPUs have great potential as high-performance co-processors.

1 Introduction

Graph representations are common in many problem domains including scientific and
engineering applications. Fundamental graph operations like breadth-first search,
depth-first search, shortest path, etc., occur frequently in these domains. Some problems
map to very large graphs, often involving millions of vertices. For example, problems
like VLSI chip layout, phylogeny reconstruction, data mining, and network analysis can
require graphs with millions of vertices. While fast implementations of sequential fun-
damental graph algorithms exist [4,8] they are of the order of number of vertices and
edges. Such algorithms become impractical on very large graphs. Parallel algorithms
can achieve practical times on basic graph operations but at a high hardware cost [10].
Bader et al. [2,3] use CRAY supercomputer to perform BFS and single pair shortest
path on very large graphs. While such methods are fast, the hardware used in them is
very expensive.

Commodity graphics hardware has become a cost-effective parallel platform to solve
many general problems. Many problems in the fields of linear algebra [6], image pro-
cessing, computer vision, signal processing [13], etc., have benefited from its speed and
parallel processing capability. GPU implementations of various graph algorithms also
exist [9]. They are, however, severely limited by the memory capacity and architec-
ture of the existing GPUs. GPU clusters have also been used [5] to perform compute
intensive tasks, like finite element computations [14], gas dispersion simulation, heat
shimmering simulation [15], accurate nuclear explosion simulations, etc.

S. Aluru et al. (Eds.): HiPC 2007, LNCS 4873, pp. 197–208, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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GPUs are optimized for graphics operations and their programming model is highly
restrictive. All algorithms are disguised as graphics rendering passes with the pro-
grammable shaders interpreting the data. This was the situation until the latest model
of GPUs following the Shader Model 4.0 were released late in 2006. These GPUs fol-
low a unified architecture for all processors and can be used in more flexible ways
than their predecessors. The G80 series of GPUs from Nvidia also offers an alter-
nate programming model called Compute Unified Device Architecture (CUDA) to the
underlying parallel processor. CUDA is highly suited for general purpose program-
ming on the GPUs and provides a model close to the PRAM model. The interface
uses standard C code with parallel features. A similar programming model called Close
To Metal (CTM) is provided by ATI/AMD. Various products that transform the
GPU technology to massive parallel processors for desktops are to be released in
short time.

In this paper, we present the implementation of a few fundamental graph algo-
rithms on the Nvidia GPUs using the CUDA model. Specifically, we show results on
breadth-first search (BFS), single-source shortest path (SSSP), and all-pairs shortest
path (APSP) algorithms on the GPU. Our method is capable of handling large graphs,
unlike previous GPU implementations [9]. We can perform BFS on a 10 million vertex
random graph with an average degree of 6 in one second and SSSP on it in 1.5 sec-
onds. The times on a scale-free graph of same size is nearly double these. We also show
that the repeated application of SSSP outscores the standard APSP algorithms on the
memory restricted model of the GPUs. We are able to compute APSP on graphs with
30K vertices in about 2 minutes. Due to the restriction of memory on the CUDA de-
vice, graphs above 12 million vertices with 6 degree per vertex cannot be handled using
current GPUs.

The paper is organized as follows. An overview of the CUDA programming model is
given in Section 2. Section 3 presents the specific algorithms on the GPU using CUDA.
Section 4 presents results of our implementation on various types of graphs. Conclusion
and future work is discussed in Section 5.

2 CUDA Programming Model on the GPU

General purpose programming on graphics processing units (GPGPU) tries to solve a
problem by posing it as a graphics rendering problem, restricting the range of solutions
that can be ported to the GPU. A GPGPU solution is designed to follow the general
flow of the graphics pipeline (consisting of vertex, geometry and pixel processors), with
each iteration of the solution being one rendering pass. The GPU memory layout is also
optimized for graphics rendering. This restricts the GPGPU solutions as an optimal
data structure may not be available. The GPGPU model provides limited anatomy to
individual processors[11]. Creating efficient data structures using the GPU memory
model is a challenging problem in itself [7]. Memory size on GPU is another restricting
factor. A single data structure on the GPU cannot be larger than the maximum texture
size supported by it.
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2.1 Compute Unified Device Architecture

On an abstract level, the Nvidia 8800 GTX graphics processor follows the shader model
4.0 design and implements the 4-stage graphics pipeline. At the hardware level, how-
ever, it is not designed as 4 different processing units. All the 128 processors of the 8800
GTX are of same type with similar memory access speeds, which makes it a massive
parallel processor. CUDA is a programming interface to use this parallel architecture
for general purpose computing. This interface is a set of library functions which can
be coded as an extension of the C language. A compiler generates executable code for
the CUDA device. The CPU sees a CUDA device as a multi-core co-processor. The
CUDA design does not have memory restrictions of GPGPU. One can access all mem-
ory available on the device using CUDA with no restriction on its representation though
the access times vary for different types of memory. This enhancement in the memory
model allows programmers to better exploit the parallel power of the 8800 GTX pro-
cessor for general purpose computing.

Fig. 1. CUDA Hardware interface Fig. 2. CUDA programming model

CUDA Hardware Model. At the hardware level, the 8800 GTX processor is a collec-
tion of 16 multiprocessors, with 8 processors each (Figure 1). Each multiprocessor has
its own shared memory which is common to all the 8 processors inside it. It also has a
set of 32-bit registers, texture, and constant memory caches. At any given cycle, each
processor in the multiprocessor executes the same instruction on different data, which
makes each a SIMD processor. Communication between multiprocessors is through the
device memory, which is available to all the processors of the multiprocessors.

CUDA Programming Model. For the programmer the CUDA model is a collection
of threads running in parallel. A warp is a collection of threads that can run simultane-
ously on a multiprocessor. The warp size is fixed for a specific GPU. The programmer
decides the number of threads to be executed. If the number of threads is more than
the warp size, they are time-shared internally on the multiprocessor. A collection of
threads (called a block) runs on a multiprocessor at a given time. Multiple blocks can
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be assigned to a single multiprocessor and their execution is time-shared. A single exe-
cution on a device generates a number of blocks. A collection of all blocks in a single
execution is called a grid (Figure 2). All threads of all blocks executing on a single
multiprocessor divide its resources equally amongst themselves. Each thread and block
is given a unique ID that can be accessed within the thread during its execution. Each
thread executes a single instruction set called the kernel.

The kernel is the core code to be executed on each thread. Using the thread and block
IDs each thread can perform the kernel task on different set of data. Since the device
memory is available to all the threads, it can access any memory location. The CUDA
programming interface provides an almost Parallel Random Access Machine (PRAM)
architecture, if one uses the device memory alone. However, the multiprocessors follow
a SIMD model, the performance improves with the use of shared memory which can
be accessed faster than the device memory. The hardware architecture allows multiple
instruction sets to be executed on different multiprocessors. The current CUDA pro-
gramming model, however, cannot assign different kernels to different multiprocessors,
though this may be simulated using conditionals.

With CUDA, the GPU can be viewed as a massive parallel SIMD processor, limited
only by the amount of memory available on the graphics hardware. The 8800 GTX
graphics card has 768 MB memory. Large graphs can reside in this memory, given a
suitable representation. The problem needs to be partitioned appropriately into multiple
grids for handling even larger graphs.

3 Graph Algorithms and CUDA Implementation

As an extension of the C language, CUDA provides a high level interface to the pro-
grammer. Hence porting algorithms to the CUDA programming model is straight for-
ward. Breadth first search (Section 3.2) and single source shortest path (Section 3.3)
algorithms reported in this paper use one thread per vertex. All pairs shortest path imple-
mentations (Section 3.4) use V 2 threads for the Floyd Warshall algorithm and V threads
for other implementations. All threads in these implementations are multiplexed on 128
processors by the CUDA programming environment.

In our implementations of graph algorithms, we do not use the device shared mem-
ory, as the data required by each vertex can be present anywhere in the global edge array
(explained in the following section). Finding the locality of data to be collectively read
into the shared memory is as hard as the BFS problem itself.

Denser graphs with more degree per vertex will benefit more using the following al-
gorithms. Each iteration will expand the number of vertices being processed in parallel.
The worst case will be when the graph is linear which will result in one vertex being
processed every iteration.

3.1 Graph Representation on CUDA

A graph G(V,E) is commonly represented as an adjacency matrix. For sparse graphs
such a representation wastes a lot of space. Adjacency list is a more compact representa-
tion for graphs. Because of variable size of edge lists per vertex, its GPU representation
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may not be efficient under the GPGPU model. CUDA allows arrays of arbitrary sizes
to be created and hence can represent graph using adjacency lists.

We represent graphs in compact adjacency list form, with adjacency lists packed into
a single large array. Each vertex points to the starting position of its own adjacency list
in this large array of edges. Vertices of graph G(V,E) are represented as an array Va.
Another array Ea of adjacency lists stores the edges with edges of vertex i + 1 imme-
diately following the edges of vertex i for all i in V . Each entry in the vertex array Va

corresponds to the starting index of its adjacency list in the edge array Ea. Each entry
of the edge array Ea refers to a vertex in vertex array Va (Figure 3).

Fig. 3. Graph representation with vertex list pointing to a packed edge list

3.2 Breadth First Search

BFS finds use in state space searching, graph partitioning, automatic theorem proving,
etc., and is one of the most used graph operation in practical graph algorithms. The BFS
problem is, given an undirected, unweighted graph G(V,E) and a source vertex S, find
the minimum number of edges needed to reach every vertex V in G from source vertex
S. The optimal sequential solution for this problem takes O(V + E) time.

CUDA implementation of BFS. We solve the BFS problem using level synchroniza-
tion. BFS traverses the graph in levels; once a level is visited it is not visited again. The
BFS frontier corresponds to all the nodes being processed at the current level. We do
not maintain a queue for each vertex during our BFS execution because it will incur
additional overheads of maintaining new array indices and changing the grid configu-
ration at every level of kernel execution. This slows down the speed of execution on the
CUDA model.

For our implementation we give one thread to every vertex. Two boolean arrays,
frontier and visited, Fa and Xa respectively, of size |V | are created which store the BFS
frontier and the visited vertices. Another integer array, cost, Ca, stores the minimal
number of edges of each vertex from the source vertex S. In each iteration, each vertex
looks at its entry in the frontier array Fa. If true, it fetches its cost from the cost array
Ca and updates all the costs of its neighbors if more than its own cost plus one using
the edge list Ea. The vertex removes its own entry from the frontier array Fa and adds
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Algorithm 1. CUDA BFS (Graph G(V,E), Source Vertex S)
1: Create vertex array Va from all vertices and edge Array Ea from all edges in G(V,E),
2: Create frontier array Fa, visited array Xa and cost array Ca of size V .
3: Initialize Fa, Xa to false and Ca to ∞
4: Fa[S] ← true, Ca[S] ← 0
5: while Fa not Empty do
6: for each vertex V in parallel do
7: Invoke CUDA BFS KERNEL(Va,Ea,Fa,Xa,Ca) on the grid.
8: end for
9: end while

Algorithm 2. CUDA BFS KERNEL (Va,Ea,Fa,Xa,Ca)
1: tid ← getThreadID
2: if Fa[tid] then
3: Fa[tid] ← false, Xa[tid] ← true
4: for all neighbors nid of tid do
5: if NOT Xa[nid] then
6: Ca[nid] ← Ca[tid]+1
7: Fa[nid] ← true
8: end if
9: end for

10: end if

to the visited array Xa. It also adds its neighbors to the frontier array if the neighbor is
not already visited. This process is repeated until the frontier is empty. This algorithm
needs iterations of order of the diameter of the graph G(V,E) in the worst case.

Algorithm 1 runs on the CPU while algorithm 2 runs on the 8800 GTX GPU. The
while loop in line 5 of Algorithm 1 terminates when all the levels of the graph are tra-
versed and frontier array is empty. Results of this implementation are given in Figure 4.

3.3 Single Source Shortest Path

Single source shortest path (SSSP) problem is, given weighted graph G(V,E,W ) with
positive weights and a source vertex S, find the smallest combined weight of edges
that is required to reach every vertex V from source vertex S. Dijkstra’s algorithm is
an optimal sequential solution to SSSP problem with time complexity O(V logV + E).
Although parallel implementations of the Dijkstra’s SSSP algorithm are available [12],
an efficient PRAM algorithm does not exist.

CUDA implementation of SSSP. The SSSP problem does not traverse the graph in
levels. The cost of a visited vertex may change due to a low cost path being discovered
later. The termination is based on the change in cost.

In our implementation, we use a vertex array Va an edge array Ea, boolean mask Ma

of size |V |, and a weight array Wa of size |E|. In each iteration each vertex checks if it
is in the mask Ma. If yes, it fetches its current cost from the cost array Ca and its neigh-
bor’s weights from the weight array Wa. The cost of each neighbor is updated if greater
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Algorithm 3. CUDA SSSP (Graph G(V,E,W ), Source Vertex S)
1: Create vertex array Va, edge array Ea and weight array Wa from G(V,E,W )
2: Create mask array Ma, cost array Ca and Updating cost array Ua of size V
3: Initialize mask Ma to false, cost array Ca and Updating cost array Ua to ∞
4: Ma[S] ← true, Ca[S] ← 0, Ua[S] ← 0
5: while Ma not Empty do
6: for each vertex V in parallel do
7: Invoke CUDA SSSP KERNEL1(Va,Ea,Wa,Ma,Ca,Ua) on the grid
8: Invoke CUDA SSSP KERNEL2(Va,Ea,Wa,Ma,Ca,Ua) on the grid
9: end for

10: end while

Algorithm 4. CUDA SSSP KERNEL1 (Va,Ea,Wa,Ma,Ca,Ua)
1: tid ← getThreadID
2: if Ma[tid] then
3: Ma [tid] ← false
4: for all neighbors nid of tid do
5: if Ua[nid]> Ca[tid]+Wa[nid] then
6: Ua[nid] ← Ca[tid]+Wa[nid]
7: end if
8: end for
9: end if

than the cost of current vertex plus the edge weight to that neighbor. The new cost is
not reflected in the cost array but is updated in an alternate array Ua. At the end of the
execution of the kernel, a second kernel compares cost Ca with updating cost Ua. It up-
dates the cost Ca only if it is more than Ua and makes its own entry in the mask Ma. The
updating cost array reflects the cost array after each kernel execution for consistency.

The second stage of kernel execution is required as there is no synchronization be-
tween the CUDA multiprocessors. Updating the cost at the time of modification itself
can result in read after write inconsistencies. The second stage kernel also toggles a
flag if any mask is set. If this flag is not set the execution stops. Newer version of
CUDA hardware (ver 1.1) supports atomic read/write operations in the global memory
which can help resolve inconsistencies. 8800 GTX is CUDA version 1.0 GPU and does
not support such operations. Timings for SSSP CUDA implementations are given in
Figure 4.

Algorithm 5. CUDA SSSP KERNEL2 (Va,Ea,Wa,Ma,Ca,Ua)
1: tid ← getThreadID
2: if Ca[tid] > Ua[tid] then
3: Ca[tid] ← Ua[tid]
4: Ma[tid] ← true
5: end if
6: Ua[tid] ← Ca[tid]
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3.4 All Pairs Shortest Path

All pairs shortest path problem is, given weighted graph G(V,E,W ) with positive
weights, find the least weighted path from every vertex to every other vertex in the graph
G(V,E,W ). Floyd Warshall’s all pair shortest path algorithm requires O(V 3) time and
O(V 2) space. Since APSP requires O(V 2) space, it is impossible to go beyond a few
thousand vertices for a graph on the GPU, due to the limited memory size. We show re-
sults on smaller graphs for this implementation. An implementation of Floyd Warshall’s
algorithm on SM 3.0 GPU can be found in [9]. Another approach for all pair shortest
path is running SSSP from all vertices sequentially, this approach requires O(V ) space
as can be seen by SSSP implementation in section 3.3. For this approach, we show
results on larger graphs.

CUDA implementation of APSP. Since the output is of O(V 2), we use an adjacency
matrix for graphs rather than the representation given in section 3.1. We use V 2 threads,
each running the classic CREW PRAM parallelization of Floyd Warshall algorithm
(Algorithm 6). Floyd Warshall algorithm can also be implemented using O(V ) threads,
each running a loop of O(V ) inside it. We found this approach to be much slower
because of the sequential access of entire vertex array by each thread. For example on
a 1K graph it took around 9 seconds as compared to 1 second taken by Algorithm 6.

Algorithm 6. Parallel-Floyd-Warshall(G(V,E,W))
1: Create adjacency Matrix A from G(V,E,W )
2: for k from 1 to V do
3: for all Elements in the Adjacency Matrix A, where 1 ≤ i, j ≤ V in parallel do
4: A[i, j] ← min(A[i, j], A[i,k]+A[k, j])
5: end for
6: end for

The CUDA kernel code implements line 4 of Algorithm 6. The rest of the code is
executed on the CPU. Results on various graphs for all pair shortest path are given in
Figure 6.

Another alternative to find all pair shortest paths is to run SSSP algorithm from every
vertex in graph G(V,E,W ) (Algorithm 7). This will require only the final output size
to be of O(V 2), all intermediate calculations do not require this space. The final output
could be stored in the CPU memory. Each iteration of SSSP will output a vector of size
O(V ), which can be copied back to the CPU memory. This approach does not require
the graph to be represented as an adjacency matrix, hence the representation given in
section 3.1 can be used, which makes it suitable for large graphs. We implemented this
approach and the results are given in Figure 6. This runs faster than the parallel Floyd
Warshall algorithm because it is a single O(V ) operation looping over O(V ) threads. In
contrast, the Floyd Warshall algorithm requires a single O(V ) operation looping over
O(V 2) threads which creates extra overhead for context switching the threads on the
SIMD processors. Thus, due to the overhead for context switching of threads, the Floyd
Warshall algorithm exhibits a slow down.
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Algorithm 7. APSP USING SSSP(G(V,E,W ))
1: Create vertex array Va, edge array Ea, weight array Wa from G(V,E,W ),
2: Create mask array Ma, cost array Ca and updating cost array Ua of size V
3: for S from 1 to V do
4: Ma[S] ← true
5: Ca[S] ← 0
6: while Ma not Empty do
7: for each vertex V in parallel do
8: Invoke CUDA SSSP KERNEL1(Va,Ea,Wa,Ma,Ca,Ua) on the grid
9: Invoke CUDA SSSP KERNEL2(Va,Ea,Wa,Ma,Ca,Ua) on the grid

10: end for
11: end while
12: end for

4 Experimental Results

All CUDA experiments were conducted on a PC with 2 GB RAM, Intel Core 2 Duo
E6400 2.3GHz processor running Windows XP with one Nvidia GeForce 8800GTX.
The graphics card has 768 MB RAM on board. For the CPU implementation, a PC with
3 GB RAM and an AMD Athlon 64 3200+ running 64 bit version of Fedora Core 4 was
used. Applications were written in CUDA version 0.8.1 and C++ using Visual Studio
2005. Nvidia Graphics driver version 97.73 was used for CUDA compatibility. CPU
applications were written in C++ using standard template library.

The results for CUDA BFS implementation and SSSP implementations are sum-
marized in Figure 4 for random general graphs. As seen from the results, for graphs
with millions of vertices and edges the GPU is capable of performing BFS at high
speeds. Implementation of Bader et al. of BFS for a 400 million vertex, 2 billion
edges graph takes less than 5 seconds on a CRAY MTA-2, the 40 processor supercom-
puter [2], which costs 5–6 orders more than a CUDA hardware. We also implemented
BFS on CPU, using C++ and found BFS on GPU to be 20–50 times faster than its CPU
counterpart.

SSSP timings are comparable to that of BFS for random graphs given in Figure 4,
due to the randomness associated in these graphs. Since the degree per vertex is 6–7 and
the weights vary from 1–10 in magnitude it is highly unlikely to have a less weighted
edge coming back from a far away level. We compare our results with the SSSP CPU
implementation, our algorithm is 70 times faster than its CPU counterpart on an average.

Many real world networks fall under the category of scale free graphs. In such graphs
a few vertices are of high degree while the rest are of low degree. For these graphs we
kept the maximum degree of any vertex to be 1000 and average degree per vertex to be
6. A small fraction (0.1%) of the total number of vertices were given high degrees. The
results are summarized in Figure 5. As seen from the results, BFS and SSSP are slower
for scale free graphs as compared to random graphs. Because of the large degree at some
vertices, the loop inside the kernel (line 4 of Algorithm 2 and line 4 of Algorithm 4)
increases, which results in more lookups to the device memory slowing down the kernel
execution time. Loops of non-uniform lengths are inefficient on a SIMD architecture.
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Fig. 4. BFS and SSSP times with weights rang-
ing from 1-10
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Figure 6 summarizes results of all pair shortest path implementation on the CUDA
architecture. The SSSP implementation of all pair shortest path requires only one vector
of O(V ) to be copied to the CPU memory in each iteration, it does not require adjacency
matrix representation of the graph and hence only O(V ) threads are required for its
operation. For even larger graphs this approach gives acceptable results. For example on
a graph with 100K vertices, 6 degree per vertex, it takes around 22 minutes to compute
APSP. We also implemented CPU version of the Floyd Warshall algorithm and found
an average improvement of a factor of 3 for the Floyd Warshall CUDA algorithm and a
factor of 17 for the all pair shortest path using SSSP CUDA implementation. As shown
by the results APSP using SSSP is faster than Floyd Warshall’s APSP algorithm on the
GPU, it was found to be orders of magnitude slower when implemented on the CPU.

Figure 7 summarizes the results for BFS and SSSP implementations for increase
in degree per vertex. As the degree increases the time taken by both BFS and SSSP
increases almost linearly, owing to the lookup cost for each vertex in the device memory.

Table 1 summarizes the results for BFS and SSSP for real world data. The graphs
were downloaded from the DIMACS challenge site [1]. The results show that for both
BFS and SSSP the GPU is slower than CPU on these graphs. This is due to the low
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Table 1. BFS and SSSP timings for real world graphs with 2–3 degree per vertex, weights are in
the range 1–300K

Number of Number of BFS CPU BFS GPU SSSP CPU SSSP GPU
Vertices Edges time(ms) time(ms) time(ms) time(ms)

New York 250K 730K 313.117 126.04 1649.85 760.14
Florida 1M 2.7M 1055.22 1143.99 7357.83 7906.49

USA-East 3M 8M 3844.35 4005.75 27000.2 35777.52
USA-West 6 M 15M 6688.78 7853.19 48814.4 63749.54

average degree of these graphs. A degree of 2–3 makes these graphs almost linear. In
the case of linear graphs parallel algorithms cannot gain much as it becomes necessary
to process every vertex in each iteration and hence the performance decreases.

5 Conclusions and Future Work

In this paper, we presented fast implementations of a few fundamental graph algorithms
for large graphs on the GPU hardware. These algorithms have wide practical applica-
tions. We presented fast solutions of BFS, SSSP, and APSP on large graphs at high
speeds using a GPU instead of expensive supercomputers. The Nvidia 8800GTX costs
$600 today and will be much cheaper before this article comes to print. The CUDA
model can exploit the GPU hardware as a massively parallel co-processor.

The size of the device memory limits the size of the graphs handled on a single GPU.
The CUDA programming model provides an interface to use multiple GPUs in parallel
using multi-GPU bridges. Up to 2 synchronized GPUs can be combined using the SLI
interface. Nvidia QuadroPlex is a CUDA enabled graphics solution with two Quadro
5600 cards each. Two such systems can be supported by a single CPU to give even
better performance than the 8800GTX. Nvidia has announced its Tesla range of GPUs,
with up to four 8800 cores and higher memory capacity, targeted at high performance
computing. Further research is required on partitioning the problem and streaming the
data from the CPU to GPU to handle even larger datasets. External memory approaches
can be adapted to the GPUs for this purpose.

Another drawback of the GPUs is the lack of double or higher precision, a serious
limitation for scientific applications. The regular graphics rendering applications and
games – which drive the GPU market – do not require high precisions. Graphics hard-
ware vendors have announced limited double precision support to make their hardware
more appealing to high performance computing community. The use of GPUs as eco-
nomical, high-performanceco-processors can be a significant driving force in the future.
It has the potential to bring double precision support to the GPU hardware in the future.

References

1. Nineth DIMACS implementation challange - Shortest paths
http://www.dis.uniroma1.it/challenge9/download.shtml

2. Bader, D.A., Madduri, K.: Designing multithreaded algorithms for breadth-first search and
st-connectivity on the Cray MTA-2. In: ICPP, pp. 523–530 (2006)

http://www.dis.uniroma1.it/challenge9/download.shtml


208 P. Harish and P.J. Narayanan

3. Bader, D.A., Madduri, K.: Parallel algorithms for evaluating centrality indices in real-world
networks. In: ICPP 2006. Proceedings of the 2006 International Conference on Parallel Pro-
cessing, pp. 539–550. IEEE Computer Society Press, Los Alamitos (2006)

4. Cho, J.-D., Raje, S., Sarrafzadeh, M.: Fast approximation algorithms on maxcut, k-coloring,
and k-color ordering for vlsi applications. IEEE Transactions on Computers 47(11), 1253–
1266 (1998)

5. Fan, Z., Qiu, F., Kaufman, A., Yoakum-Stover, S.: GPU cluster for high performance com-
puting. In: SC 2004. Proceedings of the 2004 ACM/IEEE conference on Supercomputing, p.
47. IEEE Computer Society, Los Alamitos (2004)
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Abstract. This paper describes FT64 and Multi-FT64, single- and multi-coprocessor 
systems designed for high performance scientific computing with streams. We 
give a detailed case study of porting the Mersenne Prime Search problem to FT64 
and Multi-FT64 systems. We discuss several special problems associated with 
streamizing, such as kernel processing granularity, stream organization and 
workload partitioning for a multi-processor, which are generally applicable to 
other scientific codes on FT64. Finally, we perform experiments with eight 
typical scientific applications on FT64. The results show that a 500MHz FT64 
achieves over 50% of its peak performance and a 4.2x peak speedup over 1.6GHz 
Itanium2. An eight processor Multi-FT64 system achieves 6.8x peak speedup 
over a single FT64.  

1   Introduction  

FT64 is a programmable 64 bit processor that executes scientific applications, 
programs structured as streams of data passing through computation kernels. Multiple 
boards, each consisting of a scalar host processor and eight FT64s, can be used to 
construct a high performance computer system for scientific computing. On several 
scientific computing applications, a single-chip FT64 stream processor achieves 
between 8% and 53% of its peak performance (between 1.3 and 8.5 64-bit GFLOPS). 
The multiprocessor board can get 2.2x-6.8x speedups over a single FT64. FT64 
possesses four key attributes as follows: 

Decoupling of memory operations and computation: A stream module running 
stream level instructions reads sequentially organized streams from main memory to 
on-chip RAM. An array of arithmetic clusters quickly executes kernel level instructions 
to process each stream element. Memory latency is effectively hidden by buffering and 
software pipelining.  

A large number of arithmetic units: FT64 supports 16 fully-pipelined 
double-precision floating point multiply-add (FMAC) units on a chip. At an operating 
frequency of 500MHz, a single FT64 can support tens of billions of arithmetic 
operations per second. 

Bandwidth hierarchy: FT64's memory hierarchy consists of DRAM, an on-chip 
Stream Register File (SRF) and per-cluster Local Register Files (LRF). FT64’s 
bandwidth hierarchy increases the available bandwidth by almost an order of 
magnitude at each level of the hierarchy by taking advantage of the locality exposed by 
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the stream model and the intensive computation of scientific computing. The ratio of 
bandwidths provided by FT64 is 1:10:85. 

High speed inter-chip Network Interface: The Network Interface on each FT64 is 
used to connect the SRF to other FT64 chips directly. A Multi-FT64 system can be 
easily constructed for scientific computing based on stream networks. 

The FT64 system is based on the Imagine system from Stanford [5], it has a similar 
instruction set, a similar memory hierarchy and similar SIMD/VLIW arithmetic 
clusters. The difference is that FT64 is a 64 bit processor for scientific computing while 
Imagine is a 32 bit processor for media processing. FT64's scientific computing support 
includes symmetric FMAC units and a specialized network interface. Our prior work 
introduced the FT64 system and discussed compilation support [1]. This paper extends 
that work by describing interconnection between processors including the 
programming model for Multi-FT64, by detailing the mapping of an application 
(LUCAS) to FT64, and by analyzing additional scientific applications on both FT64 
and Multi-FT64. 

The rest of this paper is organized as follows. Section 2 presents the FT64 
programming model. Section 3 describes the architecture of FT64. Section4 discusses 
how an example application, LUCAS, is mapped to FT64. Experimental results, 
including performances of FT64 processor and Multi-FT64 board are discussed in 
Section 5. Section 6 presents related work. The last section summarizes the conclusions 
drawn in this paper. 

2   FT64 Programming Model 

The stream programming model exposes the inherent parallelism of scientific 
applications and makes communication explicit. The FT64 model has three levels: 
stream-thread level, stream scheduling level and kernel execution level. Figure 1 shows 
an instance of this model. 

 

Fig. 1. FT64 Programming Model 
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The kernel level specifies computation. Kernel level programs are written in 
KernelC [7] and compiled to the FT64 kernel ISA which combines the control and 
communication instructions of the Imagine kernel ISA with the arithmetic instructions 
of IA64 [4]. The design of kernel instructions focuses on support for scientific 
computing, especially for double-precision floating-point calculations. All of the 
operands are 64 bit integer and IEEE754 double-precision floating point. 

The stream scheduling level schedules kernels and manages communication between 
them. Stream level programs are written in streamC [7] or SF95 [1] and compiled to the 
FT64 stream ISA [1]. The StreamC language is a derivative of C++ that includes 
commands for transferring streams of data to and from the FT64 system, for defining 
control and data flow between kernels and for executing kernels. To map scientific 
applications to FT64 more effectively, we designed a new stream programming 
language. SF95 extends FORTRAN95 with ten compiler directives for scientific 
stream programming to facilitate streamization of legacy FORTRAN codes.  

At the top, the stream thread level enables the construction of multithreaded 
streaming applications.  The stream thread level is programmed using a derivative of 
StreamC or SF95 with MPI library support and compiled to codes that run on  the 
Itanium2 host processor. It is responsible for kernel scheduling in Multi-FT64 and for 
non-stream communication between threads. Threads are explicitly declared and 
assigned to FT64 processors using the SetProcessor (index of FT64, thread) function. 
Within a single board, each thread execute on one of eight FT64 processors. Thread 
communication and synchronization is also explicit and exposed to the programmer. 
Threads transfer data between processors using the StreamSend (StreamRoute, stream) 
and StreamRecieve(StreamRoute, stream). A StreamRoute variable, which is declared 
as a global variable in the stream program, defines a route between two FT64 
processors in the 2D torus network. The pseudocode shown in Figure 1 gives an 
example of two threads running on two FT64s. In summary, the thread library is used 
for programming FT64s on one board. For programming multiple boards, MPI and 
StreamC/SF95 mixed programming model is used. 

3   FT64 Architecture 

FT64 is designed to be a stream coprocessor for a general purpose processor 
(Itanium 2) that acts as the host. A block diagram of the FT64 architecture is shown 
in Figure 2(a). FT64 consists of a 256Kbytes Stream Register File (SRF), 16 
double-precision floating point multiply-add (FMAC) units in four arithmetic 
clusters controlled by a Microcontroller, a Network Interface (NI), a streaming 
memory system with two DDRRAM channels, and a Stream Controller (SC). All 
data stream transfers are routed through SRF. The streaming memory system 
transfers entire streams between the SRF and off-chip SDRAM. Kernel programs 
consist of a sequence of VLIW instructions and are stored in a 2K × 688-bit RAM 
in the Microcontroller. The Microcontroller issues kernel instructions to the four 
arithmetic clusters in a SIMD manner. The NI routes streams between the SRF of its 
node and the external network. The multiprocessor solution can take advantage of 
even more parallelism by using the NI. 
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Fig. 2. (a) FT64 Architecture Block Diagram. (b) A Muti-FT64 Board Block Diagram. 

The stream programming model exposes the application’s bandwidth requirements 
to the hardware. FT64 exploits this by providing a three-level bandwidth hierarchy: 
off-chip memory bandwidth (51.2 Gbits per second), SRF bandwidth (512Gbits per 
second) and intra-cluster Local Register File (LRF) bandwidth (4352 Gbits per 
second). Stream programs use memory bandwidth only for application input and output 
and when intermediate streams cannot fit in the SRF and must spill to memory. SRF 
bandwidth is used when streams pass between kernels. Intra-cluster bandwidth into and 
out of the LRFs handles the bulk of data during kernel execution. 

The Network Interface on FT64 is used to connect the SRF to other FT64 chips in 
multiprocessor systems or to read or write from I/O devices. NI consists of two main 
parts: network controller (NC) and network router (NR). NI provides 4 external 
bidirectional channels, each of which supports two virtual channels. Each channel is 
able to transfer 64 bytes each 26 internal clock cycles, for a total network bandwidth of 
38.4Gbps per node. This is matched to the total bandwidth supported by the network 
stream buffers. Critical parameters of the FT64 network are presented in Table 1. A 
stream is partitioned into multiple packets. Stream send or receive instructions are used 
to transfer streams across the network. Basically, a message is transported from the 
sender to the receiver by SC giving a send instruction to the sender NI and a receive 
instruction to the receiver NI, which initiates the NI sides of the transaction. At the 
same time, SC also writes to the corresponding SCRs as well, thus opening the SRF 
ports at both ends. The route information is determined by the stream scheduler [7], 
which keeps track of link usage and tries to distribute the load in some static way. 
Destinations and routes are written from the host processor into an entry in the Network 
Routing Register File. Since source routing is used, arbitrary network topologies with 
up to four physical channels per node are supported. One example of a supported 
topology is a 2D torus network as shown in Figure 2b. A Multi-FT64 system includes 
multiple boards, aeach of which contains an Itanium2 host processor and eight FT64s. 
Within one board, the Itanium2 host processor communicates to the FT64s through the 
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HIs by message passing. Multiple boards are connected to a message passing network, 
in which the data block transfer protocol is used for the FT64s or hosts in different 
boards to communicate to each other. 

Table 1. Critical parameters of FT64 network 

 

We have designed and implemented FT64 64-bit stream processor in 2006. Our goal 
is to validate architectural studies and provide an experimental prototype for scientific 
computing with stream. At a controlled voltage and temperature, the chips operate at 
500 MHz, at which speed the peak performance is 16 billion 64-bit floating-point 
operations per second and power consumption is estimated 8.6W. The processor is 
implemented on a 12*12 mm2 die in a 1.2-V (IO 3.3V/1.8V), 0.13-μm process with a 
full standard-cell design flow.  

4   Application Study 

Mersenne Prime is an important application in number theory research. LUCAS, which 
is one of SPEC2000 Benchmarks, distinguishes the primality of Mersenne numbers 
based on Lucas-Lehmer-test method [6]. Let Mersenne number tested M(p) = 2 p – 1, in 
which p is Mersenne exponent. The algorithm has two steps. First, it constructs a 
LUCAS sequence as follows: L(0) = 4 ,…,L(i + 1) = ((L(i)2 − 2) (i=p-2). Then performs 
L(p-2) mod M(p). If the result is 0, the Mersenne number tested is a prime. Calculating 
the square of a large number consumes most of the time; an FFT algorithm is used to 
accelerate this calculation.  

4.1   Basic Implementation 

The program we implement on FT64 is called Stream-LUCAS. The initial inputs of the 
program are the execution length n, iteration number iter and Mersenne exponent p. 
The program processes a (n/8) × 8 2D array which represents large number L(i), and 
needs to iterate iter times, in which iter maximum value is p-1. Stream-LUCAS 
consists of 14 kernels, the simplified stream-kernel graph (n = 8192) is shown in Figure 
3. The figure presents the kernel execution sequence and inter-kernel stream 
communication. Kernels main_init, mers_init and fft_init are responsible for 
initialization. The significant portion of calculation in Stream-LUCAS is spent 
calculating the square of each large number (L(i)) 2 using an FFT algorithm (marked as 
fft_square by rectangle in Figure 3). Correspondingly, kernels with prefix passes 
perform the Fourier transformation or Fourier inverse transformation. The pass  
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numbering reflects the passes performed in a standard radix-2 algorithm. Kernel 
hex_res64 is an assistance kernel that transforms the result of L(p-2) mod M(p) into 
hexadecimal outputs. A scalar function run on the host processor determines whether 
M(p) is a prime according to the result. Figure 4 shows partial pseudo-code for 
Stream-LUCAS. The stream program for fft_square is on the left, the kernel programs 
for passes123 and passes456 are on the right. 

 

Fig. 3. Simplified Stream-Kernel Graph of Stream-LUCAS 

 

Fig. 4. Part Pseudo-code of stream-LUCAS  
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4.2   Kernel Processing Granularity  

The core procedure of LUCAS is a 2D loop performing fft_square. The inner loop 
processes 16 words independently and so a natural way to organize stream-LUCAS is 
to divide the data streams into 16-word records and set the kernel processing 
granularity at 16 words. Figure 5 shows kernel passes123 as an example. Array 
elements b[0][0], b[1][0] … - b[15][0] are bundled into record1 of input stream b. This 
record is the first record processed by cluster0. Records 2, 3, and 4 are organized in a 
similar way and processed by clusters 1, 2, and 3, respectively. Compared with 1-word 
at a time processing, grouping streams into 16-word records provides three advantages: 
(i) it enlarges the parallel granularity in each cluster, (ii) it reduces stream organization 
complexity, and (iii) it reduces the number of stream reads. The effect of this 
optimization is significant. For the LUCAS test case (p = 2203, n = 1024, iter = 2202), 
the 16-word version of fft_square is 59% faster than the 1-word version. 

 

Fig. 5. Stream organization for kernel passes123 and passes456 

4.3   Stream Organization and Processing 

The original LUCAS processes 2D arrays. Stream-LUCAS processes 1D streams. One 
of the challenges of streamizing is organizing the 2D arrays into 1D streams. According 
to the data access sequence, kernel input streams should be organized by columns 
left-to-right (i.e., column major order). However, computation produces the output 
stream organized by rows (i.e., row major order). This means that the output stream 
from one kernel has to be re-organized through off-chip memory from row-major to 
column-major before being sent to the next kernel. Unfortunately,this makes the kernel 
dependent on memory access whose latency cannot be hidden.  

To reduce off-chip memory access, we don’t re-organize kernel output streams. 
Streams are read in the order in which they are produced. Because stream records are 
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independent of each other, high degrees of data-level parallelism are still possible. 
Figure5 shows an example using kernels passes123 and kernel passes456. Stream a 
and b represent 128×8 matrices. Input stream b to kernel passes123 is in column-major 
order. Output stream a is in row-major order, record 1 contains the first two rows, 
record 2 the second two rows, etc. Kernel passes456 reads this stream directly. Each of 
the four clusters reads two records so that collectively they acquire 16-word columns of 
array a. However, the result is that a each logical column is distributed among the four 
clusters. Because each cluster processes an entire column, clusters must communicate 
pieces of columns to each other. This is shown as the dark block in Figure 5. Although 
this organization greatly increases inter-cluster communication, it significantly reduces 
memory accesses. 

4.4   Multiprocessors 

With increasing Mersenne numbers, the amount of computation in Stream-LUCAS 
increases greatly. The large-scale computation is more suited to be executed on 
multiple FT64s. Separate kernels can run on multiple nodes of a system while data 
flows in streams from one node to another. Computation is divided among multiple 
FT64 processors either at the task level, where separate threads run on each node, or by 
running the same thread on multiple nodes, each working on a subset of the data. Figure 
6 shows the Stream-LUCAS kernel execution schedule on eight FT64s. To improve 
efficiency, the kernels are software-pipelined relative to each other so that dependent 
kernels from the same iteration are separated in time. In Figure 6, black arrows show 
inter-processor communication. Kernel fft_init is an initialization kernel on which all 
kernels depend. It runs on each FT64 processor in parallel with a different input stream. 
Kernel mers_check depends on kernels with prefix passes from the same iteration, but 
is independent of those kernels across iterations. As Figure 6 shows, one FT64 executes 
mers_check from one loop iteration (performing mod(L(i))) while another FT64 
executes kernels with prefix passes from the next loop iteration (performing 
square(L(i+1))). Kernels with prefix passes and kernel hex_res64 can be executed in 
parallel in a similar way. 

 

Fig. 6. Kernels on Multi-FT64 
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5   FT64 Applications and Performance 

This section describes the performance for eight applications: Ygx2 is an IAPCM 
benchmark [14] which combines Lagrange and Euler method to calculate 2D 
detonation hydrodynamics problems with 64*603 fluid grids; LUCAS (presented in 
section 4) and Swim are SPEC2000 benchmarks; LU-SGS performs numerical 
simulations of complex steady flow in hypersonic free stream with 300 thousands input 
points [15]; FFT is a 512x512 2D complex FFT; QRD converts a 1536x768 complex 
matrix into an upper triangular and an orthogonal matrix, and is a core component of 
space-time adaptive processing [16]; SCPMV and SGTSV are LAPACK auxiliary 
routines, the result matrix of CSPMV is 128*1 while the size of coefficient matrix ins 
SGTSV is 128*128. 

Table2. Application Performance 

 

Results for the applications above are summarized in table 2 with performance on 
one FT64 and an eight-processor FT64 board. The third column in the table, which lists 
the number of floating arithmetic operations executed per second, shows that FT64 can 
sustain between 1.3 and 8.5 Gflops. When compared to the conventional Itanium2 
processor (1.6 GHz), four applications (FFT, QRD, LUCAS and Ygx2) perform better, 
three applications (Swim, CSPMV, LU-SGS) perform comparably, and one application 
(SGTSV) performs relatively worse. The fifth column shows the applications’ real 
runtime on a single FT64. In fact, most achieved performance values are suitable for 
scientific computing systems. Furthermore, as shown in last two columns of table 2, on 
the eight-processor Multi-FT64 system, these applications can achieve even more 
operations per second and 2.2x-6.8x speedups over a single FT64. These high absolute 
performance numbers are the result of the stream programming model itself, which 
exposes the parallelism and locality in the applications, and of the FT64 architecture, 
which has been optimized for scientific applications.  

One key to achieving high performance on FT64 applications is keeping each 
functional unit as busy as possible. Compared to the peak capabilities of FT64, the 
applications achieve between 8% and 53% of the maximum arithmetic performance. 
The difference between the peak performance of FT64 and the achieved performance is 
due to several factors, shown graphically in Figure 7. The entire execution time is 
composed of several parts: including cluster busy and SRF stall times (waiting for data 
read from or write to SRF); non-kernel overheads, including memory stalls (waiting for 
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a stream load or store to complete), stream controller overhead incurred once per 
stream instruction, and stalls due to inadequate Host Interface bandwidth and scalar 
operations on the host. While these non-kernel overheads occupy less than 20% of the 
total execution time for FFT and QRD, they occupy 40%-60% of the time for LUCAS, 
Ygx2, LU-SGS and CSPMV and over 70% of the time for Swim and SGTSV. The two 
biggest culprits are memory stalls and host overhead. The large overhead caused by 
memory stalls occurs because a stream produced by one kernel needs to be reorganized 
through DRAM before being consumed by the next kernel. This memory latency 
cannot be hidden. The other major non-kernel overhead for some applications, host 
overhead, arises when control-flow decisions on the host are serialized on kernel results 
or when large amount of data transfer between host and FT64.  

 

Fig. 7. Execution time breakdown of applications 

 

Fig. 8. Achieved bandwidths on a FT64   Fig. 9. Achieved bandwidths on a muti-FT64 board 

A second key to FT64 performance is that applications map well to the bandwidth 
hierarchy. Figure 8 illustrates achieved bandwidths for selected applications on a single 
FT64. It can be seen that LRF bandwidth is two orders of magnitudes higher than 
DRAM bandwidth over all applications. This means that locality within kernels is fully 
captured. The difference between SRF bandwidth and DRAM bandwidth varies across 
applications. For LUCAS, FFT, QRD, CSPMV, SRF bandwidth is one order of 
magnitudes higher than DRAM bandwidth, which indicates that the bandwidth 
hierarchy effectively captures the producer-consumer locality exhibited by these 
applications. However, for other applications, SRF bandwidth is close to DRAM 
bandwidth. There are two main reasons: (i) inherent producer-consumer locality is 
limited and irregular, and (ii) a large data set causes on-chip memory spilling, resulting 
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in pressure on memory bandwidth. Figure 9 illustrates achieved bandwidths per FT64 
for several applications on a board (Host is connected to 8 FT64s, Host-HIs bandwidth 
is summed over all FT64s). For this configuration, application data sets are reasonably 
enlarged. For applications with a large amount of irregular producer-consumer locality, 
such as Ygx2, Swim and LU-SGS, Host-HI bandwidth is relatively high. On the 
multi-FT64s system, DRAM bandwidth per FT64 of is lower than that on a single FT64 
system (for all applications) because spilled streams are reduced by multiple SRFs. For 
communication between FT64s, SRF bandwidth per FT64 is higher than that on a 
single FT64 system (again, for all applications). Especially for applications with large 
data sets or ample parallelism, such as Ygx2, LU-SGS and FFT, SRF bandwidth 
increases significantly. The corresponding NI bandwidth is high. 

6   Related Works 

Hoare's communicating sequential processor (CSP) [7] first presented stream models. 
Along with improvement of VLSI technology, stream models are further applied in the 
domains of graphics, multimedia and signal processing, where many architectures and 
processors supporting stream models have emerged, such as Imagine, RAW [8], 
VIRAM [9], TRIPS [10], SCORE [11]. Merrimac [2], MASA [12] and FT64 applied 
stream models to scientific computing. In addition, Cell [13] also supports stream 
models and is claimed to have tremendous potential for scientific computing. [1] 
describes the deference between FT64 and other stream processors in detail. Some 
papers discuss scientific applications streamization on stream processors. Erez presents 
a detailed case study of porting the GROMACS molecular-dynamics force calculation 
(kernel) to Merrimac [3]. Several techniques for dealing with the variable number of 
interactions of each molecule are developed.  Wen discusses mapping and optimization 
of the fluid dynamics calculation with 2D Lagrange and Euler Method on MASA [16]. 
Data blocking and data reorganization are used to deal with the large 2D data set. This 
paper discusses selection of parallel processing granularity of a streamized LUCAS 
application, the exploitation of producer-consumer locality and  the mapping of the 
application to multiple nodes. 

7   Conclusions 

FT64 is a 64-bit stream processor for scientific applications. The FT64 stream 
processor integrates 16 500MHz FMACs on a single-chip, which support peak 
performance of 16 Gflops. This paper describes how a multiprocessor system 
(Multi-FT64) is constructed using the Network Interface on each FT64 to connect the 
SRF to other FT64 chips directly. It also presents the mapping of scientific applications 
to FT64, using the program Stream-LUCAS as an example. Several problems in the 
streamization of Stream-LUCAS are discussed, including kernel processing 
granularity, stream organization and workload partitioning for a multiprocessor. 
Techniques for dealing with these problems are also generally applicable to other 
scientific codes on FT64.  

We performed experiments with eight typical scientific applications on FT64. The 
results show that a single FT64 processor achieves over 50% of its peak performance and 
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a 4.2x peak speedup over a 1.6GHz Itanium2. A multiprocessor board containing eight 
FT64 processors achieves a 6.8x peak speedup over a single FT64. The results confirm 
FT64’s potential to deliver high performance in several scientific computing domains.  
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Abstract. In this paper, we explore an efficient streaming implementation of 
Jacobi iteration on the Imagine platform. Especially, we develop four 
programming optimizations according to different stream organizations, 
involving using SP, dot product, row product and multi-row product methods, 
each highlighting different aspects of the underlying architecture. The 
experimental results show that the multi-row product optimization of Jacobi 
iteration on Imagine achieves 2.27 speedup over the corresponding serial 
program running on Itanium 2. It is certain that Jacobi iteration can efficiently 
exploit the tremendous potential of Imagine stream processor through 
programming optimization.  

Keywords: scientific application, Imagine, Jacobi iteration, matrix-vector multi-
plication, computational intensiveness. 

1   Introduction 

The Imagine processor is designed to address the processor-memory gap through 
streaming technology at low cost and low power [1, 2]. It has shown tremendous 
effects on media applications [3]. However there is little research on using Imagine 
for scientific applications, which require much higher arithmetic rate and memory 
bandwidth. Therefore it is necessary to research the programming optimizations for 
scientific applications on Imagine to exploit the underlying hardware performance. 

Jacobi iteration is one of the most well-studied problems in computer science since 
it is a fundamental problem in many scientific applications, in particular as an 
effective algorithm for solving linear systems. Thus it is important to research on 
performance optimization techniques for Jacobi iteration. In this paper, we focus on 
exploring efficient stream organization and kernel partition methods of Jacobi 
iteration on Imagine. Our specific contribution includes that we develop four 
programming optimizations according to different stream organizations, involving 
using SP, dot product, row product and multi-row product methods, each highlighting 
different aspects of the underlying architecture and reflecting the tradeoff among 
memory access, computation and communication. The experimental results on the 
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ISIM simulation of Imagine show that the multi-row product optimization of Jacobi 
iteration on Imagine achieves 2.27 speedup over the corresponding serial program 
running on Itanium 2. It is certain that Jacobi iteration can efficiently exploit the 
tremendous potential of Imagine stream processor through programming 
optimizations. 

2   Related Work 

Though media applications are becoming the main consumers of stream processors 
[4-6], there is an important effort to research whether scientific applications are 
suitable for stream processors. Examples including efficient fluid flow simulation [7, 
8] and iterative solvers for sparse linear systems [9, 10] have been demonstrated to 
run on GPU, which is a graphic stream processor. Many linear algebra routines and 
scientific applications have been mapped to the Merrimac supercomputer that is also 
stream architecture [11, 12]. Some dense and sparse matrix applications and some 
mathematic algorithms such as transitive closure have been implemented on Imagine 
[13]. However there is little research on Jacobi iteration on Imagine, which is an 
important scientific kernel widely used in many applications. The core operations of 
Jacobi are matrix-vector multiplication and iteration process, which are hard to 
implement efficiently on Imagine because they are reduction operation and true 
dependent operation respectively. Papers [14, 15] developed some general automatic 
optimizations for mapping scientific programs to Imagine. Our work is a further effort 
to research the optimal programming approach on special scientific kernels to exploit 
the parallelism and high memory bandwidth within Imagine processor. 

3   The Imagine Stream Processing System 

Imagine developed at Stanford University is a single-chip stream processor. It 
consists of 48-ALUs arranged as 8 SIMD clusters and a three-level memory hierarchy 
including several local register files (LRFs), a 128 KB stream register file (SRF) and 
off-chip DRAM to keep so many ALUs saturated during stream processing [16]. Each 
LRF relates to a 256-word scratchpad unit (SP) used for local arrays, each SRF bank 
contains 8 stream buffer (SB) banks used to interface between the SRF and the 8 
clusters and the memory system contains 2 address generators (AG) used to generate 
streams in various addressing modes. Fig. 1 diagrams the Imagine stream architecture. 

The programming model of Imagine is described in two languages: the stream 
level and the kernel level. The stream level program executed for the host thread 
represents the data communication between the kernels that perform computations. 
However, programmers must consider the stream organization and communication 
using this explicit stream model, increasing the programming complexity [4]. So the 
programming optimization is important to achieve significant performance 
improvements on Imagine. 
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Fig. 1. The Imagine stream architecture 

4   Implementation of Jacobi Iteration on Imagine 

Jacobi iteration is used to solve the system of equations Ax=b, where A is a 
coefficient matrix, b is a determinate vector and x is the solution vector.  The main 
operations of Jacobi iteration focus on computing inner product shown in formula (1). 
Fig. 2 shows the program of Jacobi iteration, which includes an imperfectly nested 
loop iterating on one matrix and two vectors. The computational complexity and the 
temporal overhead of the program are both O(N2), thus it isn't a computational 
intensive application. Therefore the suited stream organization and kernel partition 
method of Jacobi need to be studied to exploit high parallelism and fine locality. 
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for(k=0; k<Iter; k++){
for(i=0; i<N; i++){

sum = 0.0;
for(j=0; j!= i && j<N; j++){

sum += A[i][j]*x[j];
}
xn[i] = (b[i] - sum) / A[i][i];

}
for(j=0; j<N; j++){

x[j] = xn[j];
}

}

Matrix-vector 
multiplication

Multi-vector 
operation

Vector 
updating

 

Fig. 2. Jacobi iteration program 

According to the program structure, Jacobi iteration can be divided into three 
stages shown in Fig. 2: matrix-vector multiplication, multi-vector operation and 
vector updating. The detailed stream programming methods of the three stages are 
described in the following sections. 
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4.1   Matrix-Vector Multiplication 

The kernel of matrix-vector multiplication stage is to compute inner product between 
every row in matrix A and vector x. A new intermediate vector is produced through 
multiplying matrix A by vector x. According to different stream organizations, we 
implement four programming approaches for matrix-vector multiplication on 
Imagine, each highlighting different aspects of the underlying architecture and 
processing the tradeoff among memory access, computation and communication.  

4.1.1   Using SP 
The scratchpad (SP) unit provides a 256-word indexable memory used for local arrays 
within the clusters [17]. In the first implementation of matrix-vector multiplication 
stage, we consider using the SP units to keep operators as many as possible, in order 
to reduce overall LRF and SRF storage overhead, and avoid SRF and DRAM 
bandwidth overhead of additional data transfers. First, vector x is distributed among 
SPs of 8 clusters to avoid memory overhead and improve computational intensiveness 
of the program. And then each row in matrix A is placed to a cluster, which is 
multiplied by vector x to produce an element. Fig. 3(a) shows the implementation of 
using SP version. Especially, we can adopt two different programming methods 
according to the matrix scale. When the matrix size is smaller than 40, all the 
operators can be stored in the SP units so that Jacobi iterative process would be 
accomplished within the kernel level. This method eliminates memory access 
overhead during iterative process, and thus it can achieve high computational 
intensiveness.  Otherwise, the SP units cannot store the whole matrix A if the matrix 
is big, and the matrix should be partitioned at the stream level to fit the kernel 
computation. So, using SP to perform matrix-vector multiplication is an unscalable 
measure owing to the limited SP capacity despite its novelty. 

4.1.2   Dot Product 
The microoperation in matrix-vector multiplication is the dot product of the row in the 
matrix with the vector, which results in a scalar. Therefore the columns of the matrix 
can be executed in parallel completely during the matrix-vector multiplication stage. 
To exploit the powerful parallel processing ability of so many ALUs in Imagine, the 
vector is first loaded in the clusters and the matrix is streamed to the clusters to 
produce the resulting vector. This is the dot product pattern shown in Fig. 3(b). After 
producing partial sum in each cluster, the summation is produced through intercluster 
communication. The advantage of this method includes its simple stream organization 
and no communications during the multiplication of the corresponding elements in the 
matrix and the vector. But due to the restriction of SIMD parallel mode, for a N×N 
matrix, producing the cumulative sum of the partial sum needs N*log2(ClusterNum) 
communications, where ClusterNum denotes the number of clusters. Though the 
communications are few compared with all the arithmetic operations, these 
communications cannot be pipelined fully with the computations owing to the 
dependence between the cumulative sum and the partial sum, so that the 
communication delay cannot be overlapped. Besides computing the dot product in a 
tree-based fashion on Imagine, only log2(ClusterNum) of the clusters on an average 
do useful work, resulting in poor performance. Furthermore, the input vector is 
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reloaded N-1 times, yielding worse LRF reuse and lower computational intensiveness, 
so that the stream throughput is poor. In terms of the above disadvantages, the matrix-
vector multiplication of the dot product form may be inefficient on Imagine. 
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Fig. 3. Four implementations of matrix-vector multiplication 

4.1.3   Row Product 
To improve the operation granularity of a cluster and the efficiency of the dot product, 
we consider implementing the third method of matrix-vector multiplication denoted 
as row product shown in Fig. 3(c). From macro analysis, matrix-vector multiplication 
depends on every row of the matrix and the iterative vector. Thus each cluster gains 
the whole row of the matrix and the vector as records respectively to compute an 
element of the result, and the dot product is iterated within a cluster. This method can 
eliminate intercluster communication for the dot product computation, and exploit the 
instruction parallelism of so many ALUs within clusters. Especially, deriving matrix 
A at the stride of the length of vector x ensures that the inner loop with the true 
dependence is placed on the same cluster, which presents the parallel processing 
ability of the clusters. But the row product method needs to duplicate the vector x 8 
times as a new stream, thus the stream organization is complex compared with the dot 
product method. And the vector is also reloaded N-1 times, so the redundant memory 
access overhead results in low computations per memory access.   

4.1.4   Multi-row Product 
The arithmetic ability of Imagine processor is more outstanding than its memory 
access ability. Therefore for reducing the memory access amount of the dot product 
method and the row product method, and enhancing the reuse ratio of the vector, we 
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propose the fourth method of matrix-vector multiplication, namely multi-row product 
given in Fig. 3(d). Same as the row product mode, this method distributes each row of 
the matrix A to different clusters so that the dot product arithmetic of a row can be 
finished within a cluster. However, different from the third method, vector x is not 
used through duplicating 8 times. This method loads vector x only one time and 
makes every cluster gain all the elements of vector x through intercluster 
communications, avoiding repeated memory accessing. In other words, outputting 
ClusterNum results just needs load vector x once. The method brings N2/ClusterNum 
communications and reduces the number of loading vector x to N/ClusterNum. 
Moreover, the intercluster communication delay is much smaller than the memory 
access delay, thus the intercluster communication can be overlapped with the 
computation through using loop unrolling and software pipelining optimizations. 
Multi-row product method presents simple stream organization, high computational 
intensiveness and low memory access overhead. Therefore it can exploit more 
efficiency of Imagine. 

4.2   Multi-vector Operation 

The multi-vector operation is the second stage of Jacobi iteration, aiming at 
performing some arithmetic operations on the vector produced by the first stage. 
There are two key techniques for programming optimization.  

4.2.1   The Stream Organization of Partial Irregular Data 
The diagonal data a(i,i) of the matrix A is used as an operator in the second stage. 
Since the matrix A has already formed a basic stream, the diverse stream 
organizations of the diagonal data a(i,i) would influence the application performance. 
This problem can be amplified as the discussion on the stream organization of partial 
irregular data of the basic stream. Considering the tradeoff between the space 
overhead and the communication overhead, the stream organization for partial 
irregular data can be classified as three modes: forming individual basic stream, 
deriving from the basic stream A and using intercluster communication. The first 
mode can achieve fast run-time performance but needs the basic stream creating 
overhead in the DRAM and SRF. Compared with the first mode, deriving the 
diagonal stream based on the basic stream A has no spatial and temporal overhead in 
the DRAM, but it cannot transfer the stream data from DRAM to SRF in the burst 
mode, resulting in long transfer delay.  The third method just loads the basic stream 
A, and obtains the diagonal data through intercluster communication. This method has 
no deriving overhead but communication spending, and its scalability is poor for the 
whole basic stream A needs be loaded to LRF once.  

4.2.2   Improving Reuse of the Read-Only Streams 
In Jacobi iteration, all the streams are read-only streams except vector x. Since the 
SRF capacity is limited, as the matrix A grows larger and occupies the most SRF 
space, the read-only streams cannot reside in the SRF permanently. Thus we need to 
improve reuse of the read-only streams to avoid unnecessary memory access. We 
adopt the following two optimizations. First, while the data size is small 
comparatively, the read-only vectors including vector b and a(i,i) can be stored in SPs 
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to improve reuse on chip. But this method increases the kernel complexity, making 
against overlapping between computation and memory access. Furthermore, its 
scalability is poor. Another method partitions the matrix A to some blocks and loads 
each block to SRF in batches, aiming at making the block occupy relatively small 
SRF space to ensure reuse of read-only vectors. This method is much better than the 
first one for it is in favor of hiding memory access delay.  

4.3   Vector Updating 

The third stage of Jacobi iteration is updating vector x, that is, use the new vector just 
produced by the second stage as the input operator of the next iteration. Aim at 
improving the SRF locality, we use the same stream variant of vector x in the 
consecutive iterations to avoid accessing off-chip memory. If all the streams are larger 
than the SRF capacity, the stream operations write and read them using double-
buffering, which limits the throughput of those operations and wastes the available 
memory bandwidth. To eliminate this bottleneck, stripmining technique partitions the 
input stream into segments known as strips, such that all of the intermediate state for 
the computation on a single strip fits in the SRF [4]. Since the consecutive iterations 
exhibit true dependence of vector x, a strip generated during an iteration cannot be 
consumed by the next iteration until all the strips are generated by the previous 
iteration. Therefore stripmining in Jacobi iteration cannot capture the producer-
consumer locality among kernels at strip granularity but just capture the producer-
consumer locality between iterations through changing the name of vector x. The 
iterative process cannot exploit the potential ability of stripmining technique. 

4.4   Improving the Utilization of AG and SB 

The powerful arithmetic ability of Imagine is limited by the relatively low bandwidth 
utilization. Thus the stream programming optimization focuses on reducing memory 
access overhead. There are 2 AGs that connect off-chip DRAM to SRF, and SRF has 
8 SBs to supply streams to the clusters [2]. That is, Imagine supports 2 streams loaded 
from memory and 8 streams transferred to each cluster at the same time. Therefore, if 
the stream parameters of kernels haven't exceeded 8 streams, we should increase input 
streams as many as possible to improve the utilization of AG and SB.  

 

Fig. 4. Performance variety by partitioning matrix A to 2 input streams 
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Consider increasing the number of input streams of Jacobi iteration kernel. For the 
rows of matrix A can be executed in parallel, loading 2 parts of matrix A can 
maximize the parameters of the kernel. This method not only exploits the utilization 
of AG and SB effectively, but also reduces memory accesses at stream level and 
increases instruction-level parallelism by using so many ALUs in each cluster. Fig. 4 
shows the performance improvement by partition matrix A to 2 input streams. 

5   Experimental Results and Analysis 

We evaluate various versions of Jacobi iteration, including serial FORTRAN version 
(Seri), using SP version (SP), dot product version (DP), row product version (RP) and 
multi-row product version (MRP). Note that the four stream versions all adopt the 
best programming optimizations in the multi-vector operation and vector updating 
stages. The matrix size used for this paper is 128×128 with 4-byte elements. The 
original FORTRAN programs are compiled by Intel's compiler ifort (version 9.0) with 
the optimization option -O3, and then executed on a single-core Itanium 2 server. 
Itanium 2 runs at 1.6GHz and the sizes of the caches are 16KB for the L1 cache, 
256KB for the L2 cache and 6MB for the L3 cache. There is also a 4GB off-chip 
memory with the bandwidth of 6.4GB/s [18]. The other stream versions highly 
optimized run on ISIM that is a cycle-accurate simulator of Imagine [19], which 
works at 500MHz. 

Table 1 illustrates the performance results of the different versions running on 
Imagine compared to the corresponding serial program running on Itanium 2. It is 
obvious that MRP performs better on Imagine than Itanium 2, DP and RP perform 
comparably, and SP performs poorer. For MRP's highest performance speedup, this is 
because loading vector x once can be multiplied by 16 rows in matrix A, thus the 
complex kernel increases ALU utilization in kernels to exploit sufficient ILP and 
hides memory access overhead, while Itanium 2 is highly sensitive to memory 
latency. DP and RP cannot overlap computation with memory access efficiently in 
terms of overfull redundant operations in kernel and tremendous memory access 
overhead respectively. For SP's lowest speedup, this is because its effective execution 
time is dominated by the complex kernel overhead, which is consumed in SP 
operation and intercluster communication. It is certain that the optimizing program of 
Jacobi iteration can efficiently exploit the tremendous potential of Imagine. 

Table 1. Performance speedup of different versions of Jacobi iteration 

Versions Seri SP DP RP MRP 
Time (s) 7.53E-05 9.91E-05 7.61E-05 7.24E-05 3.32E-05 
Speedup - 0.76 0.99 1.04 2.27 

 
The overlapping degree between computation and memory access in stream 

processing is an important factor that decides a stream processor's performance. Fig. 5 
demonstrates memory access time and kernel execution time when different versions 
running on Imagine. Note that Imagine is an access/execute decoupled processor, and 
thus there is no inevitable relation between memory access time and kernel execution 
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time. It is obvious that the kernel execution time of SP and DP is much larger than 
memory overhead. Because the 2 programs adopt a lot of assistant operations in their 
kernels, such as communication and SP operation, which cannot be pipelined 
efficiently, thereby producing overfull stalls. Besides only RP's execution time is 
occupied by memory access overhead due to the duplication of vector x, and most of 
the kernel time are spent in waiting for data. MRP reuses vector x to process multiple 
rows to increase the computations in its kernel, aiming at reducing memory overhead 
and achieving high ILP and pipelining performance in the kernel. 

 

Fig. 5. Memory access time and kernel execution time 

Fig. 6 shows the memory throughput efficiency on Imagine, which displays the 
locality exploited by different programs. It is obvious that SP and MRP can achieve 
high LRF throughput efficiency for dissimilar reasons respectively. SP keeps vector x 
in the SP units within clusters and the overfull SP operations increase the throughput 
efficiency of LRF. Moreover, MRP achieves high LRF throughput efficiency due to 
the short execution time and the effective utilization of the computational resources. 
Meanwhile, observing SRF's result, it can be seen that DP, RP, MRP's SRF to 
memory throughput ratio is larger than 4, which shows that these programs' kernel has 
caught the producer-consumer or producer-producer locality caused by true 
dependence between iterations in SRF, and as a result higher speedup is achieved. 
And SP's SRF throughput efficiency is as twice as that of memory, which shows SRF 
just transfers the data from memory to LRF resulting in low SRF reuse ratio. 

Fig. 7 presents the computation rate of the various versions measured in GFLOPS. 
Imagine's peak performance can achieve 16GFLOPS. The results show that the 
sustained performance of all the stream programs except SP has reached more than 
10% of the peak performance, which explains that the optimizing Jacobi iteration can 
efficiently exploit Imagine's potential through optimizations including reusing the 
iterative vector in SRF, partitioning matrix to fully utilize AGs and SBs, and so on. 
Though the large granularity of SP's kernel can exploit ILP and reduce memory 
overhead, SP still achieves low computation rate because there are tremendous 
assistant operations in the kernel, which is a bottleneck to performance improvement. 
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Fig. 6. Memory throughput efficiency 

 

Fig. 7. Computation rate 
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Fig. 8. Speedup variety 

To evaluate the scalability of the various versions on Imagine, we adjust stream 
length to observe speedup's variation over Itanium 2. Fig. 8 shows that when stream is 
short, the performance of all the versions is poorer than that on Itanium 2. But with 
the increase of stream length, DP, RP and MRP's speedups are largely increased for 
computation and memory access can be efficiently overlapped. It can be concluded 
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that the optimizing version of Jacobi iteration presents fine scalability on Imagine. On 
the contrary, SP presents unscalable feature because it is limited by the SP capacity. 

6   Conclusion and Future Work 

We have presented the efficient implementation of Jacobi iteration on Imagine. 
Especially we have developed four programming optimizations according to different 
stream organizations, each highlighting different aspects of the underlying 
architecture. The results indicate that the optimizing program of Jacobi iteration can 
efficiently exploit the tremendous potential of Imagine stream processor.  

There are many avenues for future work. One is to research more scientific kernels 
mapping to stream processor to exploit more architectural features. We would like to 
abstract the programming optimizations as some efficient algorithms that will be 
implemented in the stream compiler. 
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Abstract. Energy consumption has become a major constraint in providing in-
creased functionality for devices with small form factors. Dynamic voltage and
frequency scaling has been identified as an effective approach for reducing the
energy consumption of embedded systems. Earlier works on dynamic voltage
scaling focused mainly on performing voltage scaling when the CPU is waiting
for memory subsystem or concentrated chiefly on loop nests and/or subroutine
calls having sufficient number of dynamic instructions. This paper concentrates
on coarser program regions and for the first time uses program phase behavior
for performing dynamic voltage scaling. Program phases are annotated at com-
pile time with mode switch instructions. Further, we relate the Dynamic Voltage
Scaling Problem to the Multiple Choice Knapsack Problem, and use well known
heuristics to solve it efficiently. Also, we develop a simple integer linear pro-
gram formulation for this problem. Experimental evaluation on a set of media
applications reveal that our heuristic method obtains a 38% reduction in energy
consumption on an average, with a performance degradation of 1% and upto 45%
reduction in energy with a performance degradation of 5%. Further, the energy
consumed by the heuristic solution is within 1% of the optimal solution obtained
from the ILP approach.

1 Introduction

As the popularity of embedded systems increases, the demand for providing sophis-
ticated applications for these devices also increases. Research has shown that power
is fast becoming a first-class architecture design constraint [17]. Although significant
progress has been made in the area of low-power circuit and system design [4], the re-
search community has been focusing on a synergistic approach involving both hardware
and software to achieve higher energy reduction.

It is known that dynamic power consumption can be reduced significantly by reduc-
ing the supply voltage. Dynamic Voltage Scaling (DVS) is a technique that varies CPU
frequency and supply voltage during run-time to provide multiple power modes with
different performance levels [9], [10], [11], [19]. Performing DVS for energy reduction

S. Aluru et al. (Eds.): HiPC 2007, LNCS 4873, pp. 233–244, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



234 K. Shyam and R. Govindarajan

requires us to consider, in addition to the energy-performance trade-offs, the following
aspects as well.

– Granularity of program regions at which DVS is applied. Changing the supply
voltage (mode change) during the execution of a program is an expensive op-
eration which could take quite a large number of clock cycles (in the range of
10,000’s) [12]. Hence, identifying program regions large enough to compensate
the overheads involved in switching the supply voltage is important.

– How many such regions exist in typical programs that are executed in embed-
ded/portable systems ? How do we identify these regions?

– Given various supply voltages of a processor and various regions of a program,
how do we efficiently choose the operating mode of a particular region so as to ob-
tain the maximum energy reduction possible, while ensuring that the performance
slowdown is within acceptable limits?

In this paper we address the DVS problem by combining two interesting techniques,
namely (i) the use of phase behavior of programs [20] to identify program regions [21]
and (ii) relating the DVS problem to a well known Multiple Choice Knapsack Prob-
lem [18]. The key contributions of this paper are:

– We show that program phases (periods of distinctive behavior) can be used for DVS.
Each of these phases (identified at compile time and having coarser granularity) can
be treated as a candidate region for performing DVS. We use the method described
in [21] to identify and mark the phases at compile-time. This approach helps us
to identify program regions at a much coarser granularity, which in turn, helps to
reduce the complexity of the DVS problem.

– We formulate the problem of assigning operating mode to each of these phases as
a Multiple-Choice Knapsack problem. We use a well-known heuristic described
in [18], with appropriate modifications to solve the formulation. We refer to this
approach as DVS-MCKP-H.

– The DVS problem can also be formulated as an ILP problem and solved using the
commercial ILP solvers. This approach is referred to as DVS-MCKP-ILP. Using
coarser granular program regions helps to reduce the time taken to solve the ILP
problem.

We have used a power simulation tool, meant for Intel Xscale architectures, de-
scribed in [8], for the purpose of our experiments. Initial experiments on five real-world
media applications show that DVS-MCKP-H obtains, on an average, 38% reduction
in energy consumption with a performance slowdown of 1%. Further, the solution ob-
tained by using the DVS-MCKP-H scheme is within 1% of the optimal solution obtained
from the DVS-MCKP-ILP scheme.

Section 2 presents the necessary background regarding dynamic voltage scaling and
phase identification. Section 3 motivates our problem formulation. In Section 4 we de-
scribe our approach to solve the problem. Section 5 reports the results of our experi-
ments. Section 6 compares our work with other related work. Finally, we conclude the
paper in Section 7.
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2 Background

2.1 Dynamic Voltage Scaling

The dynamic power1 Pdyn dissipated is proportional to CV 2f where C, V , and f are,
respectively, the capacitance, the supply voltage, and the operating frequency. The dy-
namic energy consumed is given by Pdyn ∗ T where is T is the execution time of the
program. Thus, Dynamic Voltage Scaling (DVS) reduces the energy consumption by
reducing the operating frequency and voltage of the CPU. DVS is accomplished by pro-
viding multiple power modes with different performance levels and support for toggling
between them. In performing DVS, we must take cognizance of the fact that reducing
the supply voltage and operating frequency has a negative effect on the execution time,
which in turn may increase the energy consumed. There are a wide variety of proces-
sor cores like Transmeta’s Crusoe [6], Intel’s Xscale [12], AMD’s K6-IIIE+ [1] which
provide support to dynamically change the supply voltage and operating frequency.

2.2 Identifying Program Phases

Run-time behavior of programs exhibit cyclic repetitive behavior over several archi-
tecture performance metrics such as IPC, cache hits e.t.c. It has been shown that the
behavior of a program depends on which region of that program is being executed [20].
Programs execute as a series of phases, each of them possibly different from the other.
But within a phase, the program exhibits fairly homogeneous behavior. A phase of a
program can be thought of as a sequence of dynamic instructions of the program where
there exists only little variations in program characteristics like cache behavior, IPC
values, etc.

We have used the method proposed in [21] to identify static program regions (a
set of basic blocks) which cause the phase behavior. Their approach identifies phases
of a coarser granularity extending beyond loop nests and subroutines. The approach
followed in [21] uses a frequency-based filtering of basic block traces obtained using
active profiling to identify program phases. Active profiling is a technique where the
program is profiled with an artificial input that is designed specifically to expose the
desired behavior of the program.

The process of phase identification is split into two parts. In the first part the outer-
most phase is detected. The program is executed with a profile input, and an instruc-
tion trace of this execution is obtained at basic-block granularity. Using this instruction
trace, the number of dynamic instructions bi between two occurrences of a basic block
b is obtained. One can now calculate the average and standard deviation of number of
dynamic instructions across all occurrences of this block b as rb and σb. Similarly, the
above metrics for all non-initial instances of each basic block p that occur in the pro-
gram, are calculated and denoted by rp and σp. Finally σq , the standard deviation of rp

across all blocks is also calculated.

1 In addition to the dynamic power, there is a leakage power that is dissipated by the circuit.
However, for the current 0.13μ technology used in embedded systems, the leakage power is
not a major component and hence we do not consider it in this paper.
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Now, if a basic block has to signify an outer phase marker, it must have that rb ≈ rp,
and σb ≈ σp, i.e., the average and standard deviation of the number of dynamic
instructions between any two occurrences of a basic block, must be approximately equal
to the average and standard deviation of the number of dynamic instructions across all
basic blocks that appear in the program. Those blocks for which (rp − rb) > 3σp

or |σp − σb| > 3σq are filtered out and are marked as candidate blocks for outermost
phase marker. Now, the original instruction trace that was obtained is searched in reverse
order, and the first outermost phase marker candidate block that occurs, is marked as
the outermost phase of the program. Intuitively, the outermost phase can be thought of
as a marker that demarcates the end of a phase, or the end of execution.

Once the outermost phase has been identified, it is marked back into the program us-
ing binary re-writing. Now, to identify the innermost phase markers, the program is exe-
cuted with the normal input. Those basic blocks that appear only once in most instances
(90%) of occurrence of outermost phase marker block are the candidate blocks for in-
nermost phase-markers. Let cb1 and cb2 be any two consecutive candidate blocks. Then
the average number of dynamic instructions ad, executed between these two blocks and
the standard deviation σd are calculated. Similarly the average and standard deviation
values between all pairs of consecutive blocks are also calculated. Now, if the number
of dynamic instructions between the blocks cb1 and cb2 is greater than ad + 3 ∗σd, then
the block cb1 is designated as a inner phase marker. All inner phase markers are found
in a similar manner.

Once these phases are marked in the basic block trace, they are mapped back to
the original source code. Thus at the end of this process a set of program phases have
been identified, which can be considered as candidate regions for performing Dynamic
Voltage Scaling. More details on identifying and marking phases can be found in [21].

3 Motivation

In this section we motivate the Dynamic Voltage Scaling problem and our approach
using an example. For the purpose of this example we choose the tomcatv benchmark
from the SPEC’95 suite. We run this benchmark through the phase detection tool [21]
and observe that it has five phases including three unique phases. We consider the Xs-
cale core having a default operating frequency of 400MHz [12]. It provides support for
DVS, with the operating frequencies of 200MHz and 300MHz apart from 400MHz2.
The supply voltages for these frequencies are 1.0V, 1.1V and 1.3V respectively. We as-
sume that it takes 50 microseconds3 to perform DVS, i.e., to switch from one frequency
of operation to another frequency of operation during program execution. The remain-
ing architectural parameters of the processor are specified in Section 5.2. Table 1 gives
details on the execution times (in milliseconds) and energy consumed (in microJoules)
for the different phases under various frequencies of operation. These values are ob-
tained using the XTREM [8] simulator. Note that instructions in Phase 2 and Phase 4

2 Scaling down the frequency reduces the impact of cache misses (i.e., miss penalty in terms of
CPU cycles) on program execution time. Although we do not model this in our work, the pro-
posed DVS formulation using Multiple Choice Knapsack problem can incorporate the same.

3 The mode switching overhead for an Xscale core as reported in [12] is 50 microseconds
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Table 1. Execution Times and Energy Consumed for Various Phases for tomcatv benchmark

Freq. Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Total
200MHz Exec. Time (mSec) 151 6827 335 6828 334 14475

Energy Cons. (μJ) 81.86 125.31 39.11 125.41 39.23 410.92
300MHz Exec. Time (mSec) 100 4552 223 4551 223 9649

Energy Cons. (μJ) 148.52 163.02 72.01 163.1 71.90 618.54
400MHz Exec. Time (mSec) 76 3414 168 3413 167 7238

Energy Cons. (μJ) 197.54 274.41 175.81 274.61 175.86 1098.23
Frequency (MHz) 200 400 300 400 300 —

DVS Exec. Time (mSec) 151 3414 223 3413 223 7424
Energy Cons. (μJ) 81.86 274.41 72.01 274.61 71.90 774.79

correspond to different instances of the same static region (a set of basic blocks). Simi-
larly Phase 3 and Phase 5 correspond to another region in the code.

The DVS problem is to choose the appropriate operating mode for each phase such
that the execution time is close to what can be achieved with 400MHz frequency, but
with a reduced energy consumption. Note however since we associate the different
modes to different phases in the program statically (i.e., at compile time), phases which
correspond to the same static region should operate in the same mode. Observe that
Phase 3 and Phase 5, which consume a comparable energy as other phases, take an ex-
ecution time which is an order or magnitude lower. Thus, if we can reduce the energy
consumed by Phases 3 and 5 by DVS, the respective increase in the execution time of
these phases, may not significantly affect the overall execution time. The last group of
rows in Table 1 shows that by choosing appropriate (lower) frequency for these phases,
the overall energy of the program can by reduced to 774.79 microJoules (29.5% reduc-
tion) while increasing the execution time by only 2%.

From the motivating example described, above, we observe that there are five phases,
which correspond to three static regions in the code, each of which can take one of
three possible modes, for a total of 33 = 27 possible ways in which the regions can
be assigned to modes. However, for programs with a large number of (static) program
regions, the number of possible operating mode assignments is significantly higher.
Hence, a brute-force enumerative approach may be prohibitively expensive. The opti-
mal frequency assignment problem is known to be NP-Complete.

4 Our Approach

4.1 DVS as a Multiple Choice Knapsack Problem

In this section we formulate the problem of choosing the operating mode to each region
so as to minimize the total energy consumed while keeping the performance degrada-
tion within certain percentage of the original execution time. Let us denote the unique
program regions as r1, r2,· · · , rm. Each region ri is executed ni times in the program.
We shall assume a processor which has k operating modes o1, o2, · · · , ok with supply
voltages v1, v2, · · · , vk and corresponding operating frequencies f1, f2, · · · , fk. Let
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eij and tij be the energy consumed and the execution time of region ri when executed
under the operating mode oj .

We now need to choose a particular frequency assignment, and thereby a supply
voltage value, for each of these regions so that the energy consumed is reduced. For
each of these regions if we denote the energy consumption as a profit and the execution
time as a weight, and each frequency assignment as a class, the problem can be logically
mapped to the Multiple-Choice Knapsack Problem. For each region ri, we need to
choose one of the operating mods o1, o2, · · · , ok, hence the name Multiple-Choice.
Note that in our DVS problem every region has to be selected unlike in the simple
Knapsack problem. Next we use the 0-1 variable xij = 1 to denote that operating mode
oj is chosen for region ri. Since one operating mode has to be assigned to each region,
we have

k∑

j = 1

xij = 1, for all i = 1, ..., m (1)

If oj is the chosen operating mode for region ri, then the energy consumed by the
ni instances of this region is ni ∗ eij . Using the above notation of xij , we can say
that the energy consumed is ni ∗ eij ∗ xij . We need to choose the appropriate operat-
ing mode such that the total energy is minimized (profit function) while keeping the
performance degradation within certain percentage. Formally the objective of Multiple-
Choice Knapsack Problem is to minimize the energy. That is

minimize
m∑

i=1

k∑

j = 1

nieijxij (2)

Note that ni and eij are constants in the objective function.
If o1 is the default operating frequency, then the original execution time T of the

program is given by

T =
m∑

i=1

ni ∗ ti1 (3)

We need to keep the execution time within a certain percentage of the original execution
time T . Thus if z% degradation is acceptable, then the total execution time under DVS
should be within T ∗ (1 + z/100). This constraint can be stated formally as

m∑

i=1

k∑

j = 1

nitijxij ≤ T ∗ (1 + z/100) (4)

The value z in Equation 4 is used to control the performance impact of performing
Dynamic Voltage Scaling. The constraint in Equation 4 does not capture the overheads
due to mode switching. It is possible to model this as an integer constraint as in [19].
However, this will add to the complexity of the problem formulation. Fortunately, our
approach of choosing coarser program regions (typically consisting of several 100,000
instructions) allows even a small degradation in performance (z = 1%) to capture the
mode switching overheads of 10,000 – 20,000 cycles or instructions. Our experimental
results justify such an assumption.
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4.2 Solution Methods

The above formulation of the DVS problem as Multiple Choice Knapsack Problem
facilitates using well-known heuristic algorithm for obtaining near-optimal solution.
We use solvers described in [18] where we set the various frequency values as classes,
the energy consumption as profits and execution times as weights.

Alternatively the DVS problem can also be formulated as an Integer Linear Program-
ming Problem. Here the objective function is given by Equation 2. Also, the constraints
are given by Equation 1 and Equation 4. The ILP problem can be solved using standard
solvers. We have used the CPLEX [5] commercial solver.

5 Experimental Results

5.1 Implementation Details

In this section we give a brief description of our implementation details. We have built
a cross-compiler tool-chain for compiling applications with Xscale as target architec-
ture, with mode switch instructions. Our tool-chain (refer to Figure 1) consists of gcc-
2.95.2, binutils-2.10, and glibc-2.13. We have made modifications to both gcc-2.95.2
and binutils-2.10 to recognize the mode switching instruction that might occur in the
source code. The output of the DVS-MCKP-H scheme or the DVS-MCKP-ILP scheme
is an assignment of frequencies to various phases. Appropriate frequency switching
instruction is added at the boundaries of each phases if there is a mode switch.

Xscale toolchain Simulator 

Phase

Performance and energy
in Default Mode

Toolchain
Xscale Simulator

after DVS
Performance and energy

Source Code
Unmodified

Simulator
Marking
Tool

Xscale

Toolchain
Phase Marked
Source Code

Performance and energy
in Various Modes

Source code with mode
switch instructions

DVS’ed Program

DVS−MCKP−H

DVS−MCKP−ILP

Formulate

Instruction
Switch
Mode
Insert

Fig. 1. Flow Diagram of our Experimental Framework

We have modified the XTREM [8]
simulator which is an instruc-
tion simulator for Xscale cores.
Firstly, the necessary modifica-
tions are made to recognize the
mode switching instruction. Sec-
ondly modifications are made to
perform DVS as follows. When
a mode switching instruction is
encountered, all subsequent in-
struction fetches are stalled un-
til the functional units complete
all previous instructions, including
all pending memory requests. The

mode switching instruction is executed incurring the overhead. After this, the appropri-
ate frequency value is used for power calculations and the processor resumes instruction
fetch in the new operating mode.

Figure 1 depicts an overview of our implementation. Given a benchmark’s source
code, we first compile it using an unmodified (no support for mode switch instructions)
tool-chain and simulator to obtain the performance (execution time) and energy values
in the default operating mode. We then mark the phases in the source code using the
method depicted in [21]. Once phases are marked, we compile the program using the
modified tool-chain and execute it using the modified simulator (shown using shaded
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boxes), to obtain the performance and energy values for the various operating modes
supported. We provide these values to the Multiple-Choice Knapsack Problem solver,
which provides us with a near optimal assignment of operating modes to various phases
of the program. We add the mode switching instructions as appropriate, and compile
and execute the program using the modified tool-chain and simulator to obtain the per-
formance and energy values.

5.2 Evaluation Methodology

The details of the benchmarks, the inputs used for profiling and actual performance
measurements are given in Table 2. All benchmarks are compiled with -O2 optimiza-
tion using our Xscale tool-chain and are run to completion. We have used actual pro-
prietary optimized programs which are currently in use in a large number of mobile
phones, in order to get a good picture of how useful our energy reduction techniques
are in real-world embedded applications. All the inputs used for phase marking and for
performance measurements are part of the conformance test cases for various fora for
these benchmarks. For the purposes of our experiments we have assumed a single pro-
gram environment, and a system that does not provide support for virtual memory. Most
of the previous studies on DVS [9,10,19] make similar assumptions about the system.

Table 2. Benchmark Inputs used in Performance Measurements

Benchmark Source of Input Profiling Input Actual Input
Jpeg JPEG Baseline Compression Progressive Compression
Decoder Committee (ref [13]) QCIF (176x144) Dimension VGA (640x480) Dimension
MP3 MPEG Stereo MP3 Audio Stereo MP3 Audio
Decoder Forum (ref [16]) 44.1 KHz, 128 Kbps 44.1 KHz, 128 Kbps

Constant Bit Rate Variable Bit Rate
Text-to- rsynth Program small input.txt large input.txt
Speech Mibench suite (ref [15])
GSM Stack ETSI (ref [7]) Voice Call Transmission Voice Call Transmission
MPEG-4 MPEG Video Sample, 170x120 Size Video Sample, 176x144 Size
Decoder Forum (ref [16]) 30 FPS, having MP3 Audio 27 FPS, having MP3 Audio

at 44.1 KHz, 96Kbps at 44.1 KHz, 128Kbps
Constant Bit Rate, Stereo Constant Bit Rate, Stereo

The Xscale core that we have used in the simulator is a seven to eight stages single
issue super-pipelined microprocessor. It has a 32KB 32-way set associative instruction
cache and a 32KB 32-way set associative data cache. A 128-entry direct mapped Branch
Target Buffer (BTB) with a 2-bit branch predictor is used for predicting branches. We
have assumed that Level-2 caches are not present. The memory subsystem operates at
a frequency of 100MHz with a supply voltage of 3.3V. The energy consumption values
for various operations like cache reads and writes, are set to the defaults as specified in
the simulator.
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5.3 Results

Firstly, the benchmarks are executed with their inputs at each of the operating frequen-
cies supported by the processor. Table 3 gives the Execution Times (in milliseconds)
and the Energy Consumed (in microJoules) for each of the benchmarks under various
operating frequencies. The number of statically identified program regions for each of

Table 3. Execution Times and Energy Consumed for Various frequencies for the benchmarks

Benchmark Freq. = 200 MHz Freq. = 300 MHz Freq. = 400 MHz
Exec. Energy Exec. Energy Exec. Energy

Time (mSec) Cons.(μJ) Time (mSec) Cons.(μJ) Time (mSec) Cons.(μJ)
Jpeg Decoder 1227.44 150.39 818.29 194.37 613.72 278.18
MP3 Decoder 902.64 112.44 601.76 143.12 451.32 201.18

Text-to-Speech 421.04 41.44 280.69 52.61 210.52 73.87
GSM Stack 356.69 24.71 237.79 35.39 178.35 55.12

MPEG-4 Decoder 1631.05 164.75 1087.37 211.90 815.52 301.88

the benchmarks is given in Table 4. It can be observed that the number of program re-
gions is as high as 8, which corresponds to 38 possible mode assignments, for the Jpeg
benchmark. Clearly an enumerative solution is prohibitively expensive.

Table 4. Dynamic Instruction Statistics for the Benchmarks

Benchmark No. Unique Dynamic Number of Instructions Dynamic Total Dynamic
Name Phases in a Phase Phase Count Instructions in

Min Max Avg Benchmark
Jpeg Decoder 8 894,541 1,192,676 1,072,088 119 137,105,818
MP3 Decoder 3 630,818 922,427 781,553 92 78,217,940
Text-to-Speech 4 367,965 523,628 389,282 73 29,362,539
GSM Stack 3 508,121 894,541 673,488 65 49,458,561
MPEG-4 Decoder 5 316,612 704,473 463,720 291 145,544,153

Figure 2 plots the energy consumed by the program normalized to the base where
DVS is not performed. Figure 3 plots the execution times of the benchmarks normalized
to the case when the benchmark is executed without DVS. Note that our simulation
results take into account the mode switching overhead of 50 microseconds. From these
figures we observe that we are able to obtain a maximum energy reduction of 38% –
40%. Also the performance degradation is within 1%, for most of the cases with the
worst case being 1.6%.

We also observe that the our DVS-MCKP-H scheme performs as well as DVS-MCKP-
ILP scheme. This assumes significance because the heuristic takes a few seconds (at-
most two) to produce a near-optimal solution, while ILP solvers, especially for pro-
grams with large number of phases, can take hundreds of seconds to solve the same
problem. However for the benchmarks that we tested, where the number of identified
regions is small, thanks to the (static) program identification method which identifies



242 K. Shyam and R. Govindarajan

Fig. 2. Normalized Energy
Consumptions of various
Benchmarks

Fig. 3. Normalized Execu-
tion Times of various Bench-
marks

Fig. 4. Energy Reduction un-
der Various Performance De-
lay Values

coarser program regions, the ILP solver also takes almost similar execution time as the
heuristic. Table 4 also gives details regarding the dynamic number of instructions in
a program phase. We see that our method of obtaining program phases is able to find
phases that have large number of dynamic instructions.

Finally we investigate the effects of varying the z value, the percentage degradation
in performance, used in Equation 4. Figure 4 plots the normalized energy reduction
values for a performance delay of 1%, 5%, 10%, 15%. From the figure we observe that
an energy reduction of upto 45% can achieved if we relax the performance delay to 5%.
Thus for those tasks for which such a delay is acceptable, we can obtain considerable
energy savings. We also note that as we relax the z value from a 5% to 10%, the achieved
energy reduction is not significant.

6 Related Work

Though there are a number of approaches to performing DVS [3,14,2], in this section
we compare our work with other compiler-directed approaches for DVS.

Dynamic Voltage Scaling as proposed in [10,11] is based on the idea of reducing
the operating frequency of the CPU when it is waiting for the memory access to be
completed. To this extent they find memory-bound regions of the program, and per-
form voltage scaling on one such region which gives the largest benefit. Also they do
not consider performing DVS across multiple regions due to the complexity involved
in assigning operating modes for these regions. In [19] Saputra et al. combine loop
optimization with Dynamic Voltage Scaling. They also propose an ILP problem formu-
lation for assigning multiple operating modes to each loop nest that occur in the source
code. The phase behavior based program region approach used in this paper is more
generic and and can go across loop nest boundaries to identify larger program regions,
and amortize the mode switching overhead.

More recently, Xie, et al., have proposed an exact (but exponential) and a near-
optimal (but linear time) algorithms for determining the upper bound of energy savings
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using DVS [22]. Their approach attempts to construct the state-space and efficiently
prune nodes which will (may) not lead to an optimal (near-optimal) solution. Further,
they model the program using a set of fine-grain scaling points, a series of events such
as timer interrupts or cache misses where voltage/frequency scaling can occur.

In [9] Magklis et al. perform DVS by first isolating loop nests and subroutines having
10,000 or more dynamic instructions as their candidate regions for performing DVS.
From among these regions, they chose the operating mode depending on the temporal
differences involved in instruction completion in these regions which arises due to two
different operating modes. A histogram of such differences is constructed and using this
histogram and a predefined performance slowdown factor, an assignment of frequencies
to these program regions is obtained.

7 Conclusions

Dynamic Voltage Scaling is now acknowledged as the most effective way to reduce
energy consumption. In this paper we use a compiler-directed approach for DVS. We
use phase behavior of programs to identify coarser grain program regions, and DVS
is applied on those regions. We relate the DVS problem to Multiple-Choice Knapsack
Problem and use existing heuristic approaches to obtain near optimal solution quickly.
The heuristic approach that we have proposed is simpler and produces significant en-
ergy savings by assigning the appropriate operating mode to multiple regions, when
compared to the ones proposed in [9,19]. We are able to obtain on an average, 38%
energy reduction with a performance slowdown of just 1% and 45% reduction in en-
ergy with a performance slowdown of just 5%. Although it may not be appropriate to
compare, earlier compiler directed proposals result in an energy reduction of 31.8%
for significant a performance degradation of 20.8% [19] for similar workload. We have
also shown that the DVS problem can be formulated as an ILP problem and the result
obtained from our heuristic is within 1% of the optimal solution obtained using ILP.
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Abstract. Compiler optimizations need precise and scalable analyses to
discover program properties. We propose a partially flow-sensitive frame-
work that tries to draw on the scalability of flow-insensitive algorithms
while providing more precision at some specific program points. Provided
with a set of critical nodes — basic blocks at which more precise infor-
mation is desired — our partially flow-sensitive algorithm computes a
reduced control-flow graph by collapsing some sets of non-critical nodes.
The algorithm is more scalable than a fully flow-sensitive one as, assum-
ing that the number of critical nodes is small, the reduced flow-graph
is much smaller than the original flow-graph. At the same time, a much
more precise information is obtained at certain program points than
would had been obtained from a flow-insensitive algorithm.

Keywords: compilers, dataflow analysis, compiler optimizations, points-
to analysis.

1 Introduction

Compiler optimizations largely depend on the program properties that the com-
piler could discover. Precision and scalability are two conflicting goals that such
analyses have to meet. Control flow abstraction is an useful technique to attain
high scalability, though at the cost of precision. A flow-sensitive algorithm takes
the program control-flow into account to come up with a highly precise solution
at each program point. On the other hand, a flow-insensitive algorithm neglects
all control-flow leading to a high degree of scalability, while coming up with a
summary solution for the whole flow-graph.

It is the need for scalability that forces many of the analyses to be implemented
as flow-insensitive algorithms. However, it is possible that many opportunities
for optimization could be exploited if precise solutions are known even at a very
few program points. For instance, if a profile run for a program selects a few
“hot” methods, aggressive optimizations of these few methods would give high
runtime gains. However, one needs to analyze well, not only the specific method,
but also the caller method to discover all such opportunities.

Fig. 1 presents an example. The function process_node() allocates a new ele-
ment and passes it to the populate() method. The populate() method checks
if the argument passed is not NULL and then proceeds to populate the same.
� Supported in part by doctoral fellowship provided by Philips Research, India.
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(a)

(b)

(c)

return()

populate(elem)

free(elem)

elem = NULL

elem = allocate()

...

...

...

...

...

...

...

...

elem = allocate()

...

populate(elem)

...

free(elem)

elem = NULL

return

...

if (q)

return()

q->data1 = ...

q->data2 = ...

...

Fig. 1. A motivating example: Fig. (a) shows the original CFG for process_node().
Fig. (b) shows the reduced CFG for process_node() obtained via the PFS algorithm.
Fig. (c) shows the CFG for the function populate(). The gray node is the critical node
selected. The dotted line shows the parameter binding of ’elem’ to ’q’.

The important thing to note is that it is never possible that the argument q
passed to populate() is NULL (as the allocate() method is supposed to al-
ways return a valid element1 ). Hence the check “if (q)” could be eliminated
from populate() if the above fact can be discovered2. A flow-insensitive analysis
would simply miss the fact. A flow-sensitive algorithm would surely indicate that
fact; however, it would be hugely expensive. This leads us to an important obser-
vation : even if process_node() was analyzed well enough to provide a better
estimate of program properties at only the program points where populate() is
called, our purpose would be served.

We propose a middle path between full flow-sensitivity and flow-insensitivity
— that of partial flow-sensitivity. If we preserve some partial flow-sensitivity at a
few points in a program, without losing much on scalability, we might be able to
discover opportunities to optimize the program that a flow-insensitive algorithm
would miss. Our partially flow-sensitive algorithm expects from the user a set
of program points (currently we accept the specification in the granularity of
basic-blocks) where we are interested to have a better estimate of the program
properties. We term such basic-blocks as critical nodes in the program’s flow-
1 The code for allocate() is not shown here. However, such a method can be imple-

mented simply by spinning in a loop till the malloc() call succeeds.
2 We assume that the analyzer is made aware of the fact that allocate() will always

return valid elements using suitable annotations.
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graph. Our algorithm then goes about merging some sets of non-critical nodes
to compute a reduced flow-graph (r-CFG), on which we perform a flow-sensitive
analysis. Assuming such critical nodes to be a very small fraction of all the nodes
in the flow-graph, the algorithm achieves the desired scalability by running over
a very small flow-graph. In fact, the scalability is then a function of the fraction
of the nodes selected as critical — the algorithm reduces to a completely flow-
insensitive algorithm when none of the nodes are critical, to a completely flow-
sensitive one, when all the nodes are selected critical.

The reduced flow graph for fig. 1(a) is shown in fig. 1(b) with the node con-
taining the call to populate() marked critical. One can see that a flow-sensitive
points-to analysis on this much smaller flow-graphof the method process_node()
can deduce the fact that the parameter q in populate() can only point to valid
memory locations and hence the null-check in populate() is redundant.

2 Previous Work

[1] proposes a flow-sensitive interprocedural alias analysis that they claimed
was, at that time, the most precise and efficient interprocedural method known.
Andersen[2] described a flow-insensitive subset based algorithm based on con-
straint solving that computes a single solution for the whole program. [3] propose
an algorithm to improve the precision of flow-insensitive interprocedural alias
analysis using precomputed kill information.

[4,5,6] propose techniques towards solving a demand dataflow analysis algo-
rithm, that answers a query about a single given dataflow fact holding at a single
given program point. However, this technique differs from our work as our par-
tial flow sensitive framework computes a solution for all program points, though
of varying precision.

[7] proposed to use the SSA form to improve the precision of flow-insensitive
pointer analysis. The algorithm uses repeated iterations to improve the preci-
sion of the analysis, and the final result could even be as good as that com-
puted using a flow-sensitive analysis. However, the worst case time requirement
for translating a code in SSA form is cubic. Also, the SSA translation could
result in a program that is quadratic in the size of the original program. More-
over, as the algorithm has to be primed with points-to relations, it requires a
points-to analysis in its initial phase. Recently, [8] reported a new approach to
solving subset-based points-to analysis for Java using Binary Decision Diagrams
(BDDs).

[9] proposes a client-driven pointer analysis, where the analysis adapts to the
need of the client analyses. However, our work differs from this work in the way
flow-sensitivity is provided; while the mentioned work looks at using the SSA
from to provide flow-sensitivity to some variables at all programs points, our
work looks at providing better precision to the dataflow solutions of all variables
at some program points. Also, we do not need to use the SSA form, construction
of which itself needs a prior pointer analysis phase [7].
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3 The Reduced Control-Flow Graph (r-CFG)

The Partially Flow-Sensitive Algorithm (PFS algorithm) allows the user to spec-
ify a set of critical nodes from the program’s flow-graph. We define Critical Nodes
as basic blocks at which the user is interested in having a more precise informa-
tion about some program properties. The selected functions could be call-sites of
“hot” methods (a better estimate of the points-to sets of the passed arguments at
their call-sites could enable us to drive better optimizations within these “hot”
methods) or basic blocks having a high execution count identified through a
profile run.

Depending on the critical nodes selected, the PFS algorithm computes a re-
duced control-flow graph by collapsing some sets of non-critical nodes. Finally a
flow-sensitive analysis algorithm is run on the reduced flow-graph.

The Partial Flow Sensitive algorithm is safe as all the control-flow edges in the
CFG are also preserved in the r-CFG; any path in the CFG being traceable in
the latter3. Thus, the PFS algorithm does not “miss” any flow-path along which
the program properties could propagate.

3.1 Yardsticks for a Reduced Control-Flow Graph (r-CFG)

Both the scalability and the precision of the Partial Flow Sensitive algorithm
depends on the r-CFG. We define the notions of Precision and Size optimality
to understand how good is a given r-CFG for a given flow-graph.

Precision Optimality: The reduced CFG is said to be precision optimal if the
following holds for each critical node c : if there does not exist a path from
any node n to c in the original flow graph, such a path would not exist even
in the reduced flow-graph. 4

Size Optimality: The reduced CFG is said to be size optimal, if there do not
exist nodes ni and nj s.t. merging them still maintains precision optimality.

3.2 Algorithm for Computing the r-CFG

Our algorithm is shown Fig. 3. Equation 1 and 2 compute the set ρ(n) for all the
nodes n ∈ Gorig; ρ(n) represents the set of all critical nodes that are reachable
from the node n. This computation can be done efficiently by setting it up as
a simple bit-vector dataflow problem where each bit in the bit-vector stands for
a particular critical-node and an extra bit for distinguishing critical nodes from
non-critical nodes.

Equation 3 represents the condition when two nodes are not mergeable —
when one of them reaches a certain critical node c and the other does not.
Equation 4 represents the symmetric nature of this relation. Equation 5 finally
3 Using flow-insensitive analysis over a set of statements can be seen as a flow-sensitive

analysis over a complete flow-graph formed with these set of statements.
4 This also implies that if there exists a path, n to c, in the reduced graph, such a

path surely exists in the original graph.
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specifies when two nodes can actually be merged — when none of them is critical
and the predicate not_mergeable() does not forbid their merge.

The reduced CFG is created by representing all the nodes merged together by
a single aggregate node. Actually, this reduced CFG is just a conceptual graph
— it need not be created. All the nodes belonging to the same aggregate node
are simply assigned a common Aggregate Node ID (anid). The anid identifies
each of the aggregate node in the original CFG. All the later algorithms actually
work on the original CFG, identifying the aggregate nodes by the anids.

3.3 Analyzing the Algorithm

Let us define some notations: N and C denote the set of all nodes and the set
of critical nodes respectively in the original CFG (Gorig). The r-CFG is denoted
by Greduced. The relation path(ni, nj) ∈ G represents that there exists a path
from ni to nj in the graph G. The relation ρ is computed over Gorig.

Claim: The above algorithm produces a precision optimal reduced CFG.

Proof. Assume ∃ni ∈ N s.t. for some c ∈ C, path(ni, c) ∈ Greduced and
path(ni, c) /∈ Gorig. Such a path is only possible due to a merge of ni with some
nj ∈ N where path(nj , c) ∈ Gorig (see Fig. 2). This implies that ρ(ni) = ρ(nj)
as otherwise the algorithm would not have merged the nodes. This causes a
contradiction as the critical node c ∈ ρ(nj) but c /∈ ρ(ni).

Claim: The above algorithm produces a size optimal reduced CFG.

Proof. Assume ∃ni, nj ∈ N, ni �= nj , not merged by the above algorithm, s.t.
merging them still maintains precision optimality for Greduced. Obviously, ∃c ∈ C
s.t. c ∈ ρ(ni) and c /∈ ρ(nj) — otherwise the nodes ni and nj would had been
merged by the algorithm. This causes a contradiction as then precision optimality
w.r.t the node c ∈ C is compromised.

3.4 Size of the Reduced CFG

Lemma: The above algorithm partitions the non-critical nodes into 2n equiva-
lence classes, where n is the number of critical nodes.

Proof. The above algorithm allows two non-critical nodes to be collapsed iff they
reach exactly the same set of critical nodes. It is obvious that the relation5 is an
equivalence relation. As each equivalence class corresponds to a possible subset
of the set of critical nodes, there can only be 2n such equivalence classes.

Claim: The number of nodes in the reduced CFG is bounded by 2n + n where n
is the number of critical nodes. Also, the same is a tight bound.

5 Nodes a and b are related iff they reach exactly the same set of critical nodes.
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nj

c

ni

merge

Fig. 2. Proving
that the r-CFG is
precision optimal

�

�

�

�

crit, node ∈ Gorig critical(crit) node = crit

crit ∈ ρ(node) (1)

crit, node, succ ∈ Gorig node ∈ Pred(succ) crit ∈ ρ(succ)

crit ∈ ρ(node) (2)

n1, n2, c ∈ Gorig critical(c) c ∈ ρ(n1) c /∈ ρ(n2)

not_mergeable(n1 , n2) (3)

n1, n2 ∈ Gorig not_mergeable(n2, n1)

not_mergeable(n1, n2) (4)

n, n1, n2 ∈ Gorig n1 �= n2

¬critical(n1) ¬critical(n2) ¬not_mergeable(n1, n2)

merge(n1, n2) (5)

Fig. 3. The optimal algorithm for computing the r-CFG. The
solution can be found by performing a fixpoint computation over
the above rules.

Proof. According to the above lemma, as each of the non-critical node must
belong to one of the equivalence classes and there are at most 2n such classes
— the reduced CFG can at most have 2n aggregate nodes formed by merging
of the non-critical nodes. None of the n critical nodes is merged with any other
node. Hence, the reduced CFG can at most have 2n + n nodes.

Also, the above bound is tight. Fig. 4 shows a case where the above bound is
actually reached for n=3. The critical nodes are marked gray. The table shows
the value of ρ(x) for each non-critical node (x). Note that none of the nodes can
be merged. A graph of similar structure can be constructed for any value of n.

Surely, the total number of nodes possible in the r-CFG is also bounded by the
total number of nodes in the graph. If all the nodes are selected critical, then
the r-CFG is same as the original CFG and the PFS algorithm reduces to a
flow-sensitive algorithm.

4 The Analysis Phase in the PFS-Algorithm

We explain the analysis phase of the PFS algorithm using a classic compiler
analysis — points-to analysis. We choose points-to analysis for the purpose as
most compilers implement a flow-insensitive version of this analysis to attain
scalability. Our experiments show that the PFS algorithm not just manages to
get much better solutions at the critical nodes (arbitrarily chosen), but also
improves the solution at most of the other nodes as a side-effect.
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a

b

k

e f g

dc

h i j

“x” ρ(x)

a {}
e {b}
f {c}
g {d}
h {b,c}
i {c,d}
j {b,d}
k {b,c,d}

Fig. 4. An example illustrat-
ing the tight bound of the
number of nodes in the re-
duced CFG

...

y = &b

x = y 

y = x

...

z = y

x = y

y = &c

z = y 

y = &b

return

A

B

C

D

E

G

...

...

y = &b

x = y 

x = &a

y = x

...

z = y 

x = y 

y = &c

z = y 

y = &b

return

ABC

DFG

E

(a) (b)

x = &a

 ... 

C

F

Fig. 5. An Example: The (a) original CFG and
the (b) reduced CFG, taking the node ’E’ as the
critical node

4.1 Updating Points-To Sets for Each Statement Type

The operational semantics for updating of points-to sets is very similar to that
proposed earlier in literature [2,10]. Some of the rules in the update semantics
for the various statements is shown in fig. 6. The complete set of rules for all the
important statement templates is given in [11]. πcs,pp(x, y) denotes the points-to
relation that x points-to y at the program point pp under the call-string cs.

�

�

�

�

stmpp(”x = y”) πcs,pp(y, z)

πcs,pp(x, z) (1)

stmpp(”x = ∗y”) πcs,pp(y, y1)

πcs,pp(y1, z)

πcs,pp(x, z) (2)

stmpp(”x = ∗y”) πcs,pp(y, g)

garbage_value(g)

πcs,pp(x, g) (3)

stmpp(”x = &y”)

πcs,pp(x, y) (4)

stmpp(” ∗ x = y”) πcs,pp(x, z)

πcs,pp(y, y1) ¬garbage_value(z)

¬null_value(z)

πcs,pp(z, y1) (5)

Fig. 6. Points-to set update semantics. πcs,pp(x, y) denotes the points-to relation that
x points-to y at the program point pp under the call-string cs. The stmpp(S) indicates
that the S is statement encountered at program point pp.
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For a critical node (which undergoes flow-sensitive analysis), a variable gets
its previous points-to set killed if it gets assigned a new value unambiguously
and it is not a heap variable6.

4.2 Intraprocedural Analysis

We define either of two types of transfer functions for each basic-block in the r-
CFG — a weak transfer function and strong transfer function. The weak transfer
functions perform flow-insensitive updates over all the nodes belonging to a
aggregate node in the r-CFG while a strong transfer function does flow-sensitive
updates. The non-critical aggregate nodes in the r-CFG — with the control-flow
within the constituent nodes smudged — use the weak transfer function. The
critical nodes retain their identity even in the r-CFG and hence use the strong
transfer functions. Fig. 7 shows the semantics of these transfer functions for
points-to analysis. Finally, we perform a flow-sensitive analysis over the whole
r-CFG to generate the required program properties.

�

�

�

�

π
strong
cs,pp (x, y) = πcs,pp(x, y) ∨

8<
:

πstrong
cs,pp−1(x, y) ¬killedcs,pp(x)

φ killedcs,pp(x)

∨

8<
:

πIN
cs,node(x, y) pp ∈ node

φ

π
weak
cs,node(x, y) =

X
∀nodesf (n),pp∈n,anidf (n)=anidf (node)

n
πcs,pp(x, y) ∨ π

IN
cs,n(x, y)}

πOUT
cs,node(x, y) =

8<
:

πstrong
cs,pp (x, y) criticalf (node)∧

πweak
cs,node(x, y) ¬criticalf (node)

π
IN
cs,node(x, y) =

X
p∈predf (node)

π
OUT
cs,p (x, y)

Fig. 7. The semantics for the strong and weak transfer functions for points-to analysis.
π(x, y) denotes that the variable x points-to y. cs refers to the call-string, pp and node
refer to the program point or the basic-block where the relation is being computed
and f indicates that the relation is being defined for the procedure f. The relation id
returns a unique identifier for all nodes. A relation π(x, y) is killed if there exists an
unambiguous definition to x. The solution can be computed by a fixpoint computation
over the rules.

4.3 Interprocedural Analysis

Interprocedural analysis is performed using the k-limit call-string approach [12].
For critical nodes, the actual parameters carry the program properties exist-
ing at the call-site into the callee. For non-critical nodes, if the call-site x ∈
6 We summarize heap locations by summarized heap variables per allocation-site.
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�
�

�
	

πstrong
cs,pp (x, y) =criticalfunc caller(caller node) ∧ (πRET

cs,pp(x, z) ∨ πMOD
cs,pp (x, z) ∨ πstrong

cs,pp (x, y))

πweak
cs,node(x, y) =¬criticalfunc caller(caller node)

∧ (πRET
cs,pp∈node(x, z) ∨ πMOD

cs,pp∈node(x, z) ∨ πweak
cs,node(x, y))

Fig. 8. Interprocedural PFS Points-to Analysis Semantics. The solution can be com-
puted by a fixpoint computation over the rules.

nodes(Gorig) and x ∈ x′, x′ ∈ nodes(Gred), then the analysis information from
OUTx′ is made to pass into the callee. For procedure return at a basic block n in
the callee, it is always the OUT{x′|n∈x′,x′∈nodes(Gred)} value that is passed back
to the caller.

Fig. 8 shows the interprocedural semantics of the weak and strong transfer
functions for our PFS points-to analysis. For simplicity, we assume that a func-
tion call is the first statement in a basic block, global variables are absent and
parameters are passed by value. The πRET

cs,pp relation defines the semantics of a
return statement — if the callee returns with a statement “return(y)” to the
caller who had initiated the call with “x=func_callee(...)”, the equation up-
dates the points-to set of the variable x with that of the return parameter y.
The πMOD relation updates all points-to relations generated due to indirect ref-
erences in the called procedure. The detailed description of the interprocedural
semantics is given in [11].

We give an example to illustrate the effect of the PFS analysis. Fig. 5(a)
shows the original flow-graph; fig. 5(b) shows the reduced flow-graph (taking
the node ’E’ as the critical node). The results for flow-sensitive, flow-insensitive
and partially flow-sensitive analyses are shown in table 1. Note that for the PFS
case, flow-insensitive analysis is done on the aggregate nodes “ABC” and on “DFG”
while we perform flow-sensitive analysis on the critical node ’E’ to compute the
local properties. A flow-sensitive analysis is then performed on the r-CFG.

The reduced CFG is much simplified as the number of nodes drop to three
and the two loops in the original CFG get dissolved. In fact, the r-CFG in this
case gets reduced to a DAG; note that the number of iterations required for
a flow-sensitive analysis to reach a fixpoint depends on the loop-depth. Hence,
performing a flow-sensitive analysis over the r-CFG is a lot cheaper than doing
the same on the original CFG.

Let us look at the results of the analysis in table 1. For the critical node
’E’, the PFS solution is much better than that obtained by the flow-sensitive
analysis but is not as good as that obtained by the flow-insensitive analysis. The
reason for the loss in precision is the inability of the PFS algorithm to use “kill”
information within the aggregate nodes reaching the critical node. In the given
example, the dataflow fact x may-point-to b, generated at the node ’B’, is killed
at the node ’C’. However, the PFS algorithm is unable to use this information
as a flow-insensitive analysis is carried on the aggregate node “ABC”. However,
the result is better than the flow-insensitive case, as the dataflow facts from the
nodes ’D’, ’F’, and ’G’ were not allowed to pollute the information at the critical
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Table 1. The dataflow facts discovered for the CFG and r-CFG in fig. 5. The program
points corresponding to a node ’X’ is the point just after ’X’. The notation V1 → V2

implies that any variable v1 ∈ V1 may point to any of the variables v2 ∈ V2.

BB Flow-Sensitive Flow-Insensitive Partial Flow-Sensitive
A φ {x, y, z} → {a, b, c} {x} → {a, b}, {y} → {b}
B {x, y} → {b} {x, y, z} → {a, b, c} {x} → {a, b}, {y} → {b}
C x → {a}, y → {b} {x, y, z} → {a, b, c} {x} → {a, b}, {y} → {b}
D {x, y, z} → {b} {x, y, z} → {a, b, c} {x, y, z} → {a, b, c}
E {x, y} → {a} {x, y, z} → {a, b, c} {x, y} → {a, b}
F {x} → {a, b}, {y} → {b}, {z} → {c} {x, y, z} → {a, b, c} {x, y, z} → {a, b, c}
G {x} → {a, b}, {y} → {b}, {z} → {c} {x, y, z} → {a, b, c} {x, y, z} → {a, b, c}

node ’E’. As a bonus, the solutions at the nodes ’A’, ’B’ and ’C’ are also improved
over the flow-insensitive one.

5 Experimental Results and Conclusion

We have implemented a framework for partial flow-sensitive points-to analysis
using the Lance compiler framework [13] and the bddbddb [14] tool. The details
of the implementation can be found in [11]. The results are shown in Fig. 9, 11
and 10. We selected the critical nodes arbitrarily for computing the solutions us-
ing the PFS algorithm. We used Andersen’s algorithm [2] for the flow-insensitive
analysis within the aggregate nodes. The results were obtained by performing
an intraprocedural analysis on the respective functions by setting all the pointer
arguments and the global pointer variables used in the procedure to be point-
ing to undefined (implying that they could potentially point to any location).
The analysis was performed on the intermediate code generated by the Lance
Compiler Framework [13].

Fig. 9 shows the effect of partial flow-sensitivity on the function “SwapNode()”
from the “ks” benchmark (from [15]) with nodes 5 and 8 arbitrarily selected as
the critical nodes. The results for a fully flow-sensitive and a flow-insensitive
analysis are also shown. The partial flow-sensitive analysis yields a very precise
solution for the critical nodes. In fact, they are as good as the flow-sensitive
solution in this case. Also, as a side-effect, the solution at many of the other
nodes are much better than that obtained using a flow-insensitive algorithm.
However, though close, the FS and PFS solutions may not coincide in all cases
as the PFS algorithm is unable to use kill information within the aggregate
nodes.

Fig. 10 compares the number of nodes in the original and the reduced graphs.
For instance, note that for the function PrintChannel(), the PFS solution is
almost the same as the flow-sensitive one, even though the analysis was done on
a reduced CFG with 5 nodes while the original CFG had 88 nodes. However,
how close is the PFS solution to the flow-sensitive solution is hugely dictated by
the choice of the critical nodes.
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Fig. 9. The effect of Partial Flow Sen-
sitivity (on function “SwapNode” from
the “ks” benchmark suite) : The plot
shows the number of may-point-to re-
lations that hold at each basic-block in
the program for the flow-sensitive (FS),
flow-insensitive (FI) and the partially
flow-sensitive (PFS) algorithms.

Function Benchmark Ncrit #No #Nr

SwapNode ks {5,8} 11 5

DensityChannel yacr2 {7,28} 32 5

PrintChannel yacr2 {6,22,89} 88 5

HasVCV yacr2 {6,11} 13 5

gen_bitlen gzip {4,15} 32 5

build_tree gzip {4,8} 16 5

init_block gzip {4,7} 10 5

Fig. 10. Details on the benchmarks used.
The column ’Ncrit’ denotes the nodes se-
lected as critical in the original flow-graph.
# No and # Nr denotes the number of
nodes in the original and the reduced flow-
graphs.
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Abstract. As computational clusters increase in size, their mean-time-to-failure
reduces. Typically checkpointing is used to minimize the loss of computation.
Most checkpointing techniques, however, require a central storage for storing
checkpoints. This severely limits the scalability of checkpointing. We propose a
scalable replication-based MPI checkpointing facility that is based on LAM/MPI.
We extend the existing state of fault-tolerant MPI with asynchronous replication,
eliminating the need for central or network storage. We evaluate centralized stor-
age, SAN-based solutions, and a commercial parallel file system, and show that
they are not scalable, particularly beyond 64 CPUs. We demonstrate the low over-
head of our replication scheme with the NAS Parallel Benchmarks and the High
Performance LINPACK benchmark with tests up to 256 nodes while demonstrat-
ing that checkpointing and replication can be achieved with much lower overhead
than that provided by current techniques.

1 Introduction

Computational clusters with hundreds and thousands of processors are fast-becoming
ubiquitous in large-scale scientific computing. This is leading to lower mean-time-to-
failure and forces the system software to deal with the possibility of arbitrary and un-
expected node failure. Since MPI provides no mechanism to recover from a failure, a
single node failure will halt the execution of the entire MPI world. Thus, there exists
great interest in the research community for a truly fault-tolerant and transparent MPI
implementation.

Several groups have included checkpointing within various MPI implementations.
MVAPICH2 now includes support for kernel-level checkpointing of Infiniband MPI
processes [1]. Sankaran et al. also describe a kernel-level checkpointing strategy within
LAM/MPI [2,3]. However, these implementations suffer from a major drawback: a re-
liance on a common network file system or dedicated checkpoint servers.

We consider the reliance on network file systems, parallel file systems, and/or check-
point servers to be a fundamental limitation of existing fault-tolerant systems. Storing
checkpoints directly to network storage incurs too great an overhead. Using dedicated
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checkpoint servers saturates the network links of a few machines, resulting in degraded
performance. Even parallel file systems are quickly saturated. As such, we make the
following contributions in this paper:

1. We propose and implement a checkpoint replication system that distributes the
overhead of checkpointing evenly over all nodes participating in the computation.
This significantly reduces the impact of heavy I/O on network storage.

2. We show that common existing strategies, including the use of dedicated check-
point servers, storage area networks (SANs), and parallel file systems, are inade-
quate for even moderately-sized computations.

The remainder of this paper is outlined as follows: in Section 2 we provide a brief
introduction to LAM/MPI and checkpointing. In Section 3we discuss existing LAM/MPI
checkpointing strategies. In Section 4 we compare existing checkpoint storage strategies
and evaluate our proposed replication technique. In Section 5we provide a brief overview
of the work related to this project. Finally, in Section 6 we present our conclusions.

2 Background

2.1 LAM/MPI

LAM/MPI [4] is a research implementation of the MPI-1.2 standard with portions of
the MPI-2 standard. LAM uses a layered software approach in its construction [5]. In
doing so, various modules are available to the programmer that tune LAM/MPI’s runtime
functionality including TCP, Infiniband, Myrinet, and shared memory communication.
The most commonly used module, however, is the TCP module which provides basic
TCP communication between LAM processes. A modification of this module, CRTCP,
provides a bookmark mechanism for checkpointing libraries to ensure that a message
channel is clear. LAM uses the CRTCP module for its built-in checkpointing capabilities.

2.2 Checkpointing Distributed Systems

Checkpointing itself can be performed at several levels. In kernel-level checkpoint-
ing, the checkpointer is implemented as a kernel module, making checkpointing fairly
straightforward. However, the checkpoint itself is heavily reliant on the operating sys-
tem (kernel version, process IDs, etc.). User-level checkpointing performs checkpoint-
ing using a checkpointing library, enabling a more portable checkpointing implementa-
tion at the cost of limited access to kernel-specific attributes (e.g. user-level checkpoint-
ers cannot restore process IDs). At the highest level is application-level checkpointing
where code is instrumented with checkpointing primitives. The advantage to this ap-
proach is that checkpoints can often be restored to arbitrary architectures. However,
application-level checkpointers require access to a user’s source code and do not sup-
port arbitrary checkpointing.

There are two major checkpointing/rollback recovery techniques: coordinated check-
pointing and message logging. Coordinated checkpointing requires that all processes
come to an agreement on a consistent state before a checkpoint is taken. Upon failure,
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all processes are rolled back to the most recent checkpoint/consistent state. Message
logging requires distributed systems to keep track of interprocess messages in order to
bring a checkpoint up-to-date. Checkpoints can be taken in a non-coordinated manner,
but the overhead of logging the interprocess messages can limit its utility. Elnozahy et
al. provide a detailed survey of the various rollback recovery protocols that are in use
today [6].

3 LAM/MPI Checkpointing

We are not the first group to implement checkpointing within the LAM/MPI system.
Three others [7,3,8] have added basic checkpoint/restart support. Because of the previ-
ous work in LAM/MPI checkpointing, the basic checkpointing/restart building blocks
were already present within LAM’s source code. This provided an ideal environment
for testing our replication strategy. We begin with a brief overview of checkpointing
with LAM/MPI.

Sankaran et al. first added checkpointing support within the LAM system [3] by
implementing a lightweight coordinated blocking module to replace LAM’s existing
TCP module. The protocol begins when mpirun instructs each LAM daemon (lamd) to
checkpoint its MPI processes. When a checkpoint signal is delivered to an MPI process,
each process exchanges bookmark information with all other MPI processes. These
bookmarks contain the number of bytes sent to/received from every other MPI process.
With this information, any in-flight messages can be waited on and received before the
checkpoint occurs. After acquiescing the network channels, the MPI library is locked
and a checkpointing thread assumes control. The Berkeley Linux Checkpoint/Restart
library (BLCR) [9] is used as a kernel-level checkpointing engine. Each process check-
points itself using BLCR (including mpirun) and the computation resumes.

A problem with the above solution is that it requires identical restart topologies. If,
for example, a compute node fails, the system cannot restart by remapping checkpoints
to existing nodes. Instead, a new node would have to be inserted into the cluster to
force the restart topology into consistency with the original checkpoint topology. This
requires the existence of spare nodes that can be inserted into the MPI world to replace
failed nodes. If no spare nodes are available, the computation cannot be restarted.

Two previous groups have attempted to solve the problem of migrating LAM check-
point images. Cao et al. propose a migration scheme that parses the binary checkpoint
images, finds the MPI process location information, and updates the node IDs [10].
Wang, et al. propose a pause/migrate solution where spare nodes are used for migration
purposes when a LAM daemon discovers an unresponsive node [8]. Upon detecting
a failure, their system migrates the failed processes via a network file system to the
replacement nodes before continuing the computation.

We use the same coordinated blocking approach as Sankaran’s technique described
above. To perform the checkpointing, we use Victor Zandy’s Ckpt checkpointer [11].
Unlike previous solutions, we allow for arbitrary restart topologies without relying on
any shared storage or checkpoint parsing. Instead, we reinitialize the MPI library and
update node and process-specific attributes in order to restore a computation on varying
topologies. Due to space limitations and our focus on the replication portion of our
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implementation, we omit the details of the basic checkpoint/migrate/restart solution. A
more detailed description is available in our extended work [12].

4 Checkpoint Storage, Resilience, and Performance

In order to enhance the resiliency of checkpointing while simultaneously reducing its
overhead, we include data replication. While not typically stated explicitly, nearly all
checkpoint/restart methods rely on the existence of network storage that is accessible to
the entire cluster. Such strategies suffer from two major drawbacks in that they create a
single point of failure and also incur massive overhead when compared to checkpointing
to local disks.

A cluster that utilizes a network file system-based checkpoint/restart mechanism may
sit idle should the file system experience an outage. This leads not only to wasteful
downtime, but also may lead to lost data should the computation fail without the ability
to checkpoint. However, even with fault-tolerant network storage, simply writing large
amounts of data to such storage represents an unnecessary overhead to the application.
In the sections to follow, we examine two replication strategies: a dedicated server tech-
nique, and a distributed implementation.

We acknowledge that arguments can be made in support of the use of SANs or paral-
lel file systems for the storage of checkpoints. The most powerful supercomputers, such
as the IBM Bluegene/L, have no per-node local storage. Instead, parallel file systems
are used for persistent data storage in order to reduce the number of disk related node
failures. We do not position our implementation for use on such massive supercom-
puters. Instead, we target clusters consisting of hundreds or thousands of commodity
nodes, each with its own local storage.

For our implementation testing we used a Wayne State University owned cluster con-
sisting of 16 dual 2.66 GHz Pentium IV Xeon processors with 2.5 GB RAM, a 10,000
RPM Ultra SCSI hard disk and gigabit ethernet. A 1 TB IBM DS4400 SAN was also
used for the network storage tests. We evaluate both centralized-server and SAN-based
storage techniques and compare them against our proposed replication strategy using
the SP, LU, and BT benchmarks from the NAS Parallel Benchmarks (NPB) suite [13]
and the High Performance LINPACK (HPL) [14] benchmark.

To gauge the performance of our checkpointing library using the NPB tests, we
used exclusively “Class C” benchmarks. Our HPL benchmark tests used a problem
size of 28,000. These configurations resulted in checkpoints that were 106MB, 194MB,
500MB, and 797MB for the LU, SP, BT, and HPL benchmarks, respectively. The LU
and HPL benchmarks consisted of 8 CPUs each, while the BT and SP benchmarks
required 9 CPUs. We describe the scalability tests and configuration in Section 4.4.

In order to test the overhead of our implementation we chose to checkpoint the
benchmarks with much greater frequency than would otherwise be used. By check-
pointing at frequencies as short as 1 minute, we are better able to demonstrate the indi-
vidual components of the overhead. In a real application, users would likely checkpoint
an application at intervals of several hours (or more).

As a baseline, we compare the SAN storage, dedicated server storage, and replica-
tion storage techniques against the local disk checkpoint data shown in Figure 1. Here
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we show the result of periodically checkpointing the NAS Parallel Benchmarks as well
as the HPL benchmark along with the time taken to perform a single checkpoint. Our
implementation shows very little overhead even when checkpointed at 1 minute inter-
vals. The major source of the overhead of our checkpointing scheme lies in the time
taken in writing the checkpoint images to the local file system.

In Figure 1(a) we break the checkpointing overhead down by coordination time,
checkpointing time, and continue time. The percentages listed above each column in-
dicate the overhead of a checkpoint when compared to the baseline running time of
Figure 1(b). The coordination phase includes the time needed to acquiesce the network
channels/exchange bookmarks (see Section 3). The checkpoint time consists of the time
needed to checkpoint the entire memory footprint of a single process and write it to sta-
ble storage. Finally, the continue phase includes the time needed to synchronize the
resumption of computation. The coordination and continue phases require barriers to
ensure application synchronization, while each process performs the checkpoint phase
independently.

As confirmed in Figure 1(a), the time required to checkpoint the entire system is
largely dependent on the time needed to checkpoint the individual nodes. Writing the
checkpoint file to disk represents the single largest time in the entire checkpoint process
and dwarfs the coordination phase. Thus, as the memory footprint of an application
grows, so too does the time needed to checkpoint. This can also impact the time needed
to perform the continue barrier as faster nodes are forced to wait for slower nodes to
write their checkpoints to disk.

4.1 Dedicated Checkpoint Servers Versus Checkpointing to Network Storage

The two most common checkpoint storage techniques presented in the literature are
the dedicated server(s) [15] and storing checkpoints directly to network storage [2,1].

(a) % indicates the contribution of check-
pointing (in terms of overhead) at 8 minute
intervals over the base timings without
checkpointing (from Figure 1(b)).

(b) Multiple checkpointing intervals.

Fig. 1. A breakdown of overheads when checkpointing to local disks
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We begin our evaluation with a comparison of these two common strategies. To do so,
we implemented both a dedicated checkpoint server solution as well as a SAN-based
checkpoint storage solution by extending the LAM daemons and mpirun to collect and
propagate checkpoints.

(a) Checkpointing to SAN-based storage. (b) Checkpointing to a central server.

Fig. 2. Runtime of NPB with checkpoints streamed to central checkpoint server vs. saving to
SAN

In Figure 2 we show the results of checkpointing the NAS Parallel Benchmarks with
the added cost of streaming the checkpoints to a centralized server or storing the check-
points to a SAN. In the case of the LU benchmark, we notice a marked reduction in
overhead when comparing the SAN data in Figure 2(a) to the checkpoint server data
presented in Figure 2(b). Indeed, the overhead incurred by streaming an LU checkpoint
every 4 minutes is less than 6% – a dramatic improvement over saving checkpoints to
shared storage, which results in an overhead of nearly 14% for LU and 25% for SP. The
situation is even worse for the BT benchmark which incurs an overhead of 134% at 4
minute checkpointing intervals.

However, we can also see that as the size of the checkpoint increases, so too does
the overhead incurred by streaming all checkpoints to a centralized server. At 8 minute
checkpointing intervals the SP benchmark incurs an overhead of approximately 4%
while the overhead of BT is nearly 16%. The increase in overhead is due to individual
lamds overwhelming the checkpoint server, thereby creating too much network and disk
congestion for a centralized approach to handle.

Nevertheless, the use of a dedicated checkpoint server shows a distinct cost-advantage
over the SAN-based solution despite suffering from being a single point of failure as well
as being network bottlenecks. Techniques using multiple checkpoint servers have been
proposed to mitigate such bottlenecks [15]. However, their efficacy in the presence of
large checkpoint files has not been demonstrated in the literature (NPB class B results
are shown).

Wang et al. propose a technique to alleviate the impact of checkpointing directly
to SANs [8]. Their technique combines local checkpointing with asynchronous check-
point propagation to network storage. However, their solution requires multiple levels
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of scheduling in order to prevent the SAN from being overwhelmed by the network
traffic. The overhead of their scheduling has not yet been demonstrated in the literature,
nor has the scalability of their approach, where their tests are limited to 16 nodes.

4.2 Checkpoint Replication

To address the scalability issues shown in Section 4.1, we implemented an asynchronous
replication strategy that amortizes the cost of checkpoint storage over all nodes within
the MPI world. Again we extended LAM’s lamds, this time using a peer-to-peer strat-
egy to replicate checkpoints to multiple nodes. This addresses both the resiliency of
checkpoints to node failure as well as the bottlenecks incurred by transferring data to
dedicated servers.

A variety of replication strategies have been used in peer-to-peer systems. Typically,
such strategies must take into account the relative popularity of individual files within
the network in order to ascertain the optimal replication strategy. Common techniques
include the square-root, proportional, and uniform distributions [16]. While the uniform
distribution is not used within peer-to-peer networks because it does not account for a
file’s query probability, our checkpoint/restart system relies on the availability of each
checkpoint within the network. Thus, each checkpoint object has an equal query proba-
bility/popularity and we feel that a uniform distribution is justified for this specific case.

We opted to distribute the checkpoints randomly in order to provide a higher re-
silience to network failures. For example, a solution that replicates to a node’s nearest
neighbors would likely fail in the presence of a switch failure. Also, nodes may not
fail independently and instead cause the failure of additional nodes within their vicin-
ity. Thus, we feel that randomly replicating the checkpoints throughout the network
provides the greatest possible survivability.

Figure 3(a) shows the results of distributing a single replica throughout the cluster
with NPB. As can be seen, the overhead in Figure 3(a) is substantially lower than that of
the centralized server shown in Figure 2(b). In each of the three NAS benchmarks, we

(a) Periodic NPB checkpointing
with a single replica.

(b) Periodic HPL checkpointing
with a single replica.

Fig. 3. Benchmark timings with one replica
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are able to reduce the overhead of distributing a checkpoint by at least 50% when com-
pared to streaming all checkpoints to a single server. For the most expensive checkpoint
(BT), we are able to reduce the overhead of checkpointing to 9% at 4 minute intervals
and 5.5% at 8 minute intervals (compared to 38% and 16% at 4 minute and 8 minute
intervals, respectively).

In Figure 3(b) we show the results of distributing a single replica every 4, 8, 16, and
32 minutes for the HPL benchmark. We found that our network was unable to handle
checkpoint distribution of HPL at intervals shorter than 4 minutes, due to the size of the
checkpoint files. We notice a steady decrease in overhead as the checkpoint interval in-
creases to typical values, with a single checkpoint resulting in an overhead of only 2.2%.

4.3 The Degree of Replication

While the replication strategy that we have described has clear advantages in terms
of reducing the overhead on a running application, an important question that remains
is the number of replicas necessary to achieve a high probability of restart. To help
answer this question, we developed a simulator capable of replicating node failures,
given inputs of the network size and the number of replicas.

Table 1. Maximum number of allowed failures with 90, 99, and 99.9% restart probability

1 Replica 2 Replicas 3 Replicas 4 Replicas
Allowed Failures for Allowed Failures for Allowed Failures for Allowed Failures for

Nodes 90% 99% 99.9% 90% 99% 99.9% 90% 99% 99.9% 90% 99% 99.9%

8 1 1 1 2 2 2 3 3 3 4 4 4
16 1 1 1 2 2 2 5 4 3 7 5 4
32 2 1 1 5 3 2 8 5 4 11 8 6
64 3 1 1 8 4 2 14 8 4 19 12 8
128 4 1 1 12 6 3 22 13 8 32 21 14
256 5 2 1 19 9 5 37 21 13 55 35 23
512 7 2 1 31 14 7 62 35 20 95 60 38
1024 10 3 1 48 22 11 104 58 33 165 103 67
2048 15 5 2 76 35 17 174 97 55 285 178 111

From Table 1 we can see that our replication strategy enables a high probability
of restart with seemingly few replicas needed in the system. Further, our replication
technique scales quite well with the number of CPUs. With 2048 processors, for exam-
ple, we estimate that 111 simultaneous failures could occur while maintaining at least a
99.9% probability of successful restart and requiring only 4 replicas of each checkpoint.

4.4 Scalability Studies

To evaluate for scalability we tested our implementation with up to 256 nodes on a
University at Buffalo Center for Computation Research owned cluster consisting of
1600 3.0/3.2 GHz Intel Xeon processors, with 2 processors per node (800 total nodes),
a 30 TB EMC SAN as well as a high performance Ibrix parallel file system. The network
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is connected by both gigabit ethernet and Myrinet. Gigabit ethernet was used for our
tests. 21 active Ibrix segment servers are in use and connect to the existing EMC SAN.

Because our checkpointing engine, Ckpt [11], is only 32 bit while the University at
Buffalo’s Xeon processors are each 64 bit, we simulated the mechanics of checkpoint-
ing with an artificial 1 GB file that is created and written to local disk at each checkpoint
interval. Aside from this slight modification, the remaining portions of our checkpoint-
ing system remain intact (coordination, continue, file writing, and replication).

In Figure 4 we demonstrate the impact of our checkpointing scheme. Each number of
nodes (64, 128, and 256) operates on a unique data set to maintain a run time of approx-
imately 1000 seconds. For comparison, we also present the overhead of checkpointing
to the EMC SAN and Ibrix parallel file system in Figure 4(d). We chose to evaluate
our system for up to 4 checkpoints as the results of our failure simulation (see Table 1)
suggest that 4 replicas achieves an excellent restart probability with high node failures.

The individual figures in Figure 4 all represent the total run time of the HPL bench-
mark at each cluster size. Thus, comparing the run times at each replication level against

(a) HPL with one replica per checkpoint. (b) HPL with two replicas per checkpoint.

(c) HPL with three replicas per checkpoint. (d) HPL with four replicas per checkpoint
compared with EMC SAN and Ibrix PFS.

Fig. 4. Scalability tests using the HPL benchmark
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the base run time without checkpointing provides a measure of the overhead involved at
each replication level. From Figure 4(a) we can see that the replication overhead is quite
low - only approximately 6% for 256 nodes or 3% for 64 nodes (at 16 minute check-
point intervals). Similar results can be seen at 2, and 3 replicas with only a minimal
increase in overhead for each replication increase.

The most important results, however, are those shown in Figure 4(d). Here we in-
clude the overhead data with 4 replicas (labeled “16 min” in Figure 4(d)) as well as with
checkpointing directly to the SAN (a common strategy in nearly all MPI checkpointing
literature) and the Ibrix parallel file system. In every case, checkpoints are taken at 16
minute intervals. As can be seen, the overhead of checkpointing directly to a SAN not
only dwarfs that of our distributed replication strategy but also nullifies the efficacy of
additional processors for large clusters. The Ibrix file system, while scaling much better
than the EMC SAN, is quickly overwhelmed as the ratio of compute nodes to segment
servers increases. Indeed, the overhead of saving checkpoints to the Ibrix parallel file
systems for cluster sizes of 128 and 256 nodes is 37.5% and 55% respectively, while
our replication strategy results in overheads of only 15.4% and 18.7%.

5 Related Work

Other MPI implementations aside from LAM/MPI have been extended with check-
pointing support. MPICH-GM, a Myrinet specific implementation of MPICH has been
extended to support user-level checkpointing [17]. Similarly, Gao et al. [1] demonstrate
a kernel-level checkpointing scheme for Infiniband (MVAPICH2) that is based on the
BLCR kernel module [9]. DejaVu [18] implements an incremental checkpoint/migra-
tion scheme that is able to incrementally capture the differences between two check-
points to minimize the size of an individual checkpoint.

Coti, et al. implemented a blocking coordinated protocol within MPICH2 [15]. Their
observations suggested that for high speed computational clusters blocking approaches
achieve the best performance (compared to non-blocking/message-logging approaches)
for sensible checkpoint frequencies. Our scalability results from Section 4.4 lend addi-
tional evidence supporting their claim.

Using Charm++ and Adaptive-MPI, Chakravorty et al. add fault tolerance via task
migration to the Adaptive-MPI system [19,20]. Zheng, et al. discuss a minimal replica-
tion strategy within Charm++ to save each checkpoint to two “buddy” processors [21].
Their work, however, is limited in that it only provides a minimal amount of resiliency
and is vulnerable to multiple node failures.

Other strategies such as application-level checkpointing have also been extended to
MPI checkpointing, particularly the C3 [22] system. Application-level checkpointing
carries advantages over kernel-level or user-level in that it is more portable and of-
ten allows for restart on varying architectures. However they do not allow for periodic
checkpointing and require access to a user’s source code.

Our work differs from the above in that we handle checkpoint redundancy for added
resiliency in the presence of node failures. Our checkpointing solution does not rely
on the existence of network storage for checkpointing. The absence of network storage
allows for improved scalability and also reduced checkpoint intervals (where desired).
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6 Conclusions

We have shown that it is possible to effectively checkpoint MPI applications using the
LAM/MPI implementation with low overhead. Previous checkpointing implementa-
tions have typically neglected the issue of checkpoint replication. We comprehensively
addressed this issue with a comparison against all major storage techniques, includ-
ing commercial SAN strategies and a commercial parallel file system. Our replication
implementation has proven to be highly effective and resilient to node failures.

Further, we showed that our replication strategy is highly scalable. Where previous
work discussed within the literature typically tests scalability up to 16 nodes, we have
demonstrated low overhead up to 256 nodes with more realistic checkpoint image sizes
of 1 GB per node. Our work enables more effective use of resources without any re-
liance on network storage. We hope to continue this work with a greater interest in
applying our replication strategies toward fault-tolerant HPC. By combining our check-
point/restart and migration system with a fully fault-tolerant MPI, even greater resource
utilization would be possible while still maintaining user-transparency.
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Abstract. As grids become more and more attractive for solving complex prob-
lems with high computational and storage requirements, the need for adequate
grid programming models is considerable. To this purpose, the GridRPC model
has been proposed as a grid version of the classical RPC paradigm, with the goal
to build NES (Network-Enabled Server) environments. In this model, data man-
agement has not been defined and is now explicitly left at the user’s charge. The
contribution of this paper is to enhance data management in NES by introducing a
transparent data access model, available through the concept of grid data-sharing
service. Data management is totally delegated to the service, whereas the applica-
tions simply access shared data via global identifiers. We illustrate our approach
using the DIET GridRPC middleware and the JUXMEM data-sharing service.
Notably, our experiments performed on the Grid’5000 using a real-life applica-
tion show the efficiency of using JUXMEM for managing persitent data in the
GridRPC model: application execution times in a grid environment are of the
same order as in a cluster environment.

1 Introduction

Computational grids have recently become increasingly attractive, as they adequately
address the growing demand for resources of today’s scientific applications. Thanks to
the fast growth of high-bandwidth wide-area networks, grids efficiently aggregate var-
ious heterogeneous resources (processors, storage devices, network links, etc.) belong-
ing to distinct organizations. This increasing computing power, available from multiple
geographically distributed sites, increases the grid’s usefulness in efficiently solving
complex problems. Multi-parametric applications, for instance, which consist in apply-
ing the same algorithm to different input data, can benefit from an efficient use of grid
computing infrastructures.

Running such applications on large-scale grid infrastructures requires the use of ad-
equate programming paradigms. The Grid Remote Procedure Call (GridRPC) [1] ap-
proach provides such a paradigm, which extends the classical RPC model by enabling
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asynchronous, coarse-grained parallel tasking. GridRPC seems to be a good approach
to build NES computing environments (for Network-Enabled Servers). In such systems,
clients can submit problems to one (possibly distributed) agent, which selects the best
server to use among a large set of candidates.

A team of researchers of the Global Grid Forum (GGF 1) has defined a standard
API for the GridRPC paradigm [2]. However, in this specification, data management
has been left as an open (although fundamental) issue. For instance, data transfer in
the distributed environment is left to the user, who must explicitly move them back
and forth between clients and servers. This clearly increases the program complexity,
especially as the number of servers used to solve a problem increases.

In this paper, we define a model for transparent access to shared data in GridRPC
environments. In this model, the data-sharing infrastructure automatically manages data
localization, transfer, as well as consistent data replication. We illustrate our approach
with an implementation using the DIET [3] GridRPC middleware and the JUXMEM [4]
grid data-sharing service. We evaluate our approach through experiments realized on the
Grid’5000 [5] testbed.

The remainder of the paper is organized as follows. Section 2 introduces the
GridRPC model, presents the requirements of a sample application with respect to data
management, then briefly describes previous attempts to solve data management issues
in NES systems. Section 3 describes our transparent data access approach provided by
our concept of grid data-sharing service. Section 4 presents the implementation of our
proposal, using JUXMEM and DIET. Section 5 presents and discusses our experimental
results using a real-life application. Finally, Section 6 concludes the paper and suggests
possible directions for additional research.

2 Data Management in the GridRPC Model

Various programming models have been proposed in order to reduce the programming
complexity of grid applications. The GridRPC model is such an ongoing work carried
out by the Open Grid Forum (OGF), with the goal of standardizing and implementing
the Remote Procedure Call (RPC) programming model for grid computing.

2.1 The GridRPC Model

The GridRPC model enhances the classical RPC programming model with the ability
to invoke asynchronous, coarse-grained parallel tasks. Requests for remote computa-
tions may indeed generate parallel processing, however this server-level parallelism
remains hidden to the client.

The GridRPC approach has been defined in the GRIDRPC-WG [6] working group of
the GGF. The goal of this group is to specify the syntax and the programming interface
at the client level [1]. This is meant to enhance the portability of GridRPC applications
to various GridRPC middleware.

1 GGF, recently merged with EGA (Enterprise Grid Alliance) to create the OGF (Open Grid
Forum).
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The GridRPC model aims at serving as a basis for software infrastructures called
Network-Enabled Servers (NES). Such infrastructures allow multiple applications to
concurrently run on a shared set of grid resources. Examples of middleware that imple-
ment the GridRPC specification are Ninf-G [7], NetSolve [8], GridSolve [9], DIET [3],
and OmniRPC [10].

Note that the GridRPC model knows the target server. Nevertheless some GridRPC
middleware proposes to discover the best server automatically. In this case, servers
register services to a directory. To invoke a service, instead of using the server given by
GridRPC call function, clients bypass this parameter and look for a suitable, possibly
“the best” server according to some performance metric. This selection is made out of
a set of candidates proposed by the directory. GridRPC does not define any standard
for the underlying resource discovery mechanism. The server selection is performed by
one or several agents pr schedulers. The decision is usually made based on performance
information provided by an information service. Informations can be static, such as
processor speed or size of the memory, but also dynamic: available services, server load,
input data location, etc. Based on this information, the agents make their decisions so
as to optimize the overall throughput of the platform.

Two fundamental concepts in the GridRPC model are the function handle and the
session ID. The function handle represents a binding between a service name and an
instance of that service available on a given server. Function handles are returned by
agents to clients. Once a particular function-to-server mapping has been established,
all GridRPC calls of a client will be executed on the server specified by that function
handle. A session ID is associated to each asynchronous GridRPC call and allows to
retrieve the status of the request, wait for the call to complete, etc. Based on these two
concepts, the interface of the GridRPC model mainly consists of the following two
functions: grpc_call and grpc_async, which allow to make synchronous and
asynchronous GridRPC calls respectively.

As regards data, most GridRPC middleware systems specify three access modes
(also known as access specifiers) for parameters of a GridRPC call: 1) in data for
input parameters that are not allowed to be modified by servers; 2)inout data for
input parameters that can be modified by the server; 3) out data for output parameters
produced by the server.

2.2 Requirements for Data Management in the GridRPC Model

To illustrate the requirements related to data management in the GridRPC model, we
have selected the Grid-TLSE project [11]. This application aims at designing a Web por-
tal exposing expertise about sparse matrix manipulation. Through this portal, the user
may gather statistics from runs of various sophisticated sparse matrix algorithms on spe-
cific data. The input data are either submitted by the user, or picked up from a matrix
collection available on the site. In general, matrix sizes can vary from a few megabytes
to hundreds of megabytes. The Grid-TLSE application uses the DIET GridRPC mid-
dleware to distribute tasks over the underlying grid infrastructure. Each such task con-
sists in executing a parallel solver, such as MUMPS [12], over a matrix, with fixed
parameters. We focus on the MUMPS solver for our experiments (see Section 5.2).



272 G. Antoniu et al.

When using Grid-TLSE, a typical scenario consists in determining the ordering sen-
sitivity of a class of solvers, that is, how performance is impacted by the matrix traversal
order. It consists of three phases. Phase 1 exercises all possible internal orderings in turn.
Phase 2 computes a suitable metric reflecting the performance parameters under study
for each run: effective FLOPS, effective memory usage, overall computation time, etc.
Phase 3 collects the evaluation of this metric for all combinations of solvers/orderings
and reports the final ranking to the user. If phase 1 requires exercising n different kinds
of orders with m different kinds of solvers, then m × n executions are to be performed,
using the same input data. If the server does not provide persistent storage, the matrix
has to be sent m × n times to the server! If the server provided persistent storage, the
data would be sent only once. Second, if the various pairs solvers/orderings are handled
by different servers in phase 2 and 3, then transparent and consistent data transfer or
replication across servers should be provided by the data management service. Finally,
as the number of solvers/orderings is potentially large, many nodes are used. This in-
creases the probability for faults to occur, which makes the use of fault tolerant algo-
rithms to manage data mandatory.

Based on this application example, we can draw the requirements for a data manage-
ment service for the GridRPC model.

Persistent storage. Clients should be able to invoke services on input data that is al-
ready present on the grid infrastructure, to avoid repeated data transfers to servers.

Passing arguments by reference for shared data. This is a consequence of the above
requirement, as clients need a means to reference data which is shared by multiple
GridRPC calls. Consequently, data consistency must be guaranteed in case of con-
current accesses.

Transparent data localization and transfer. Such a transparency would simplify the
use of the GridRPC paradigm at a large scale, as developpers would no longer need
to explicitly move data.

Efficient communication. An efficient use of the available bandwidth for data trans-
fers requires to adequatly manage data granularity: only the data needed to perform
computations should be copied or moved.

GridRPC interoperability. Any solution addressing the previous issues needs to be
compatible with the existing core API of the GridRPC model. Thus current ap-
plications can take advantage of any improvement in data management without
modifications.

2.3 Current Proposals for Data Management in the GridRPC Model

In the current GridRPC model, as defined by OGF, data persistence is not yet provided
and has been left as an open issue. Therefore, output data of a computation (inout
and out) are systematically sent to the client, whereas input data (in) are destroyed on
the server. Hence, data needs to be transfered again if needed for another computation.
Moreover, if data are required on multiple servers at the same time, multiple transfers
from the client are needed.

The issue of data management in the GridRPC model has however been recognised
as a topic of major interest. The very first proposal related to data management relies
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on the concept of request sequencing [13]. This feature consists in scheduling a se-
quence of GridRPC calls made by a client on a given server. In the client program, a
sequence is identified by keywords begin_sequence and end_sequence. Data
movements due to dependencies in calls between such keywords are then optimized.
Request sequencing has been implemented in NetSolve and Ninf. To enable the calls
of a sequence to be solved in parallel on two different servers, NetSolve has been en-
hanced [14] with data redistribution between servers (which however requires explicit
calls in the NetSolve client application).

Another approach for data management relies on distributed storage infrastructure,
such as Internet Backplane Protocol (IBP [15]). In this approach, clients send data to
storage servers, which retrieve data as needed. NetSolve has been modified in such
a way. However, data is still explicitly transfered to/from the storage servers at the
application level. Besides, no support for data replication and consistency management,
nor for fault tolerance is provided.

Finally, other GridRPC systems have developped ad-hoc, specific mechanisms for
data management. The OmniRPC GridRPC middleware supports a static persistence
model for input data of a set of GridRPC calls [16]. The user has to manually define a
initialization procedure to indicate which input data should be sent and stored prior to
computations. Then, these data can be reused for subsequent calls. In an earlier version,
the DIET GridRPC middleware relies on an internal data management system, called
Data Tree Manager (DTM), which allows to store persistent data [17] on the computing
servers. However, as in both cases ad-hoc solutions are used to handle data persistence,
GridRPC interoperability cannot be guaranteed, as data cannot be shared among multi-
ple GridRPC middleware frameworks. Besides, none of these solutions addresses fault
tolerance and consistent replication.

Based on such preliminary efforts, an attempt to standardize data management in
NES is currently being pursued within the framework of the GridRPC working group of
the OGF [2]. It relies on the concept of data handle, which abstracts a given data as well
as its location. In addition to the possibility of referencing data stored inside external
storage systems, transparent access to data is also envisioned. However, replication,
consistency guarantees and fault tolerance issues have not been addressed yet.

3 Our Approach: A Transparent Data Access Model

3.1 The Concept of Data-Sharing Service

Let us recall that one of the major goals of the grid concept is to provide an easy access
to the underlying resources, in a transparent way. The user should not need to be aware
of the localization of the resources allocated to applications. When applied to the man-
agement of the data used and produced by applications, this principle means that the
grid infrastructure should automatically handle data storage and data replication and/or
transfer among clients, computing servers and storage servers as needed. It should also
transparently provide fault tolerance and data consistency guarantees in such dynamic,
large-scale, distributed environments.

In order to achieve a real virtualization of the management of large-scale distributed
data, a step forward has been made by the proposal of a transparent data access model,
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as a part of the concept of grid data-sharing service [18]. In this transparent data access
approach, the user accesses data via global identifiers, which allow to do argument
passing by reference for shared data. The service which implements this model handles
data localization and transfer without any help from the programmer. The data sharing
service concept is based on a hybrid approach inspired by DSM systems (for transparent
access to data and consistency management) and peer-to-peer (P2P) systems (for their
scalability and volatility tolerance). An illustration of this concept has been realized
through the JUXMEM software experimental platform [4]. The service specification
includes three main properties.

Persistence. The data sharing service provides persistent data storage and allows the
applications to reuse previously produced data, by avoiding repeated data transfers
between clients and servers.

Data consistency. Data can be read, but also updated by the different codes. When
data is replicated on multiple sites, the service has to ensure the consistency of the
different replicas, based on previously defined consistency models and protocols.

Fault tolerance. The service has to keep data available despite disconnections and fail-
ures, e.g. through the transparent use of failure detection mechanisms and replica-
tion techniques.

Let us note that these properties match well the requirements for data management in
the GridRPC model, as discussed in Section 2.2. We therefore propose to jointly use the
two approaches. In this paper, we show how persistence can be provided in a transpar-
ent way. Data consistency is ensured by providing a multi-protocol framework allow-
ing various consistency models and protocols to be implemented. JUXMEM currently
supports the entry consistency model through a hierarchical, fault-tolerant protocol. A
description of the concepts and technical details related to data consistency and fault
tolerance is beyond the focus of this paper. The corresponding mechanisms have been
detailed in [19].

3.2 Overview of the JUXMEM Data-Sharing Service

The JUXMEM [4] software experimental platform illustrates the concept of data-sharing
service. The architecture of the service has been designed so as to address the proper-
ties mentioned in Section 3.1. JUXMEM’s architecture mirrors a grid consisting of a
federation of distributed clusters and it is therefore expressed in terms of hierarchical
groups. The goal is to accurately take into account the latency hierarchy of the phys-
ical network topology, to take advantage of the low-latency links within the clusters
and reduce higher-latency, inter-cluster communications. All nodes participating to the
data-sharing service network overlay are members of the JUXMEM group. All members
of the JUXMEM group that belong to the same physical cluster form a cluster group.

Any cluster group consists of provider nodes which supply memory for data storage.
Each cluster group is managed by a special peer, called a manager. Managers make up
the backbone of a given JUXMEM overlay and handle the propagation of memory allo-
cation requests. Any node (including providers) may use the service to allocate, read or
write data as clients, in a peer-to-peer approach. Any data stored in JUXMEM is trans-
parently accessed through a global, location-independent identifier, which designates a
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Fig. 1. Hierarchy of the entities in the network overlay defined by JUXMEM

specific data group that includes all replicas of that data. These replicas are kept con-
sistent despite possible failures and disconnections [19]. This software architecture has
been implemented using the JXTA [20] generic P2P platform.

3.3 JUXMEM from the User’s Perspective

The programming interface proposed by the JUXMEM grid data-sharing service pro-
vides users with classical functions to allocate and map/unmap memory blocks, such
as juxmem_malloc, juxmem_calloc, etc. When allocating a memory block, the
client has to specify: 1) on how many clusters the data should be replicated; 2) on how
many providers in each cluster the data should be replicated; 3) the consistency protocol
that should be used to manage this data. The allocation operation returns a global data
ID. This ID can be used by other nodes in order to access existing data through the use
of the juxmem_mmap function. It is the responsibility of the implementation of the
grid data-sharing service to localize the data and perform the necessary data transfers
based on this ID. This is how a grid data-sharing service provides a transparent access
to data.

According to the entry consistency model implemented by JUXMEM, processes that
need to access data need to properly synchronize by acquiring a lock associated to that
data. This is done by calling juxmem_acquire_read (prior to a read access) or
juxmem_acquire (prior to a write access). Note that juxmem_acquire_read al-
lows multiple readers to simultaneously access the same data. The juxmem_release
primitive must be called after the access, to release the lock. These synchronization
primitives allow the implementation to provide consistency guarantees according to the
consistency protocol specified by the user at the allocation time of the data.
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To make local data globally available in JUXMEM, the juxmem_attach function
can be used. This function creates the corresponding data replicas (similarly to the
juxmem_malloc primitive) and returns a data ID which is used by other nodes to
get access to the data. When they no longer need to access the shared data, clients can
remove their local data copies using the juxmem_unmap primitive. Finally, to keep
the local data copy while removing it from the control of the grid data-sharing service,
clients must use the juxmem_detach primitive.

4 Using JUXMEM for Transparent Data Sharing in the DIET
GridRPC Middleware

To illustrate how a GridRPC system can benefit from transparent access to data, we
have implemented the proposed approach inside the DIET GridRPC middleware, using
the JUXMEM data-sharing service. Note however that the concept of grid data-sharing
service can also be used in connection with other GridRPC middleware.

4.1 An Overview of a GridRPC Middleware Framework: DIET

The Distributed Interactive Engineering Toolbox (DIET) platform [3] is a GridRPC
middleware, whose architecture is described on Figure 2. It relies on the following en-

Fig. 2. The hierarchical organization of DIET

tities. A Client is an application which uses DIET to solve problems. Agents receive
computation requests from clients. A request is a generic description of the problem
to be solved with data information (type, size, etc.). Agents collect the computational
capabilities of the available servers, and selects the best server according to the given
request. Eventually, the reference of the selected server is returned to the client, which
can then directly submit its request to this server. As opposed to other GridRPC middle-
ware, for scalability purpose, agents can be organized in a set of trees forming a forest
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of local agents (LA) rooted at a master agent (MA). The Server Daemon (SeD) encap-
sulates a computational server and makes it available to its parent LA. It also provides
the potential clients with an interface for submitting their requests.

Like other GridRPC middleware, DIET specifies three access modes for each data
involved in a computation (see section 2.1).

4.2 How DIET Uses JUXMEM to Manage Data

In our work, DIET internally uses JUXMEM whenever a data is marked as persis-
tent. However, we distinguish two cases for persistent data. If the DIET client needs
to access persistent data at the end of the computation, the persistence mode is set to
PERSISTENT_RETURN. Otherwise, it is set to PERSISTENT.
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Fig. 3. Multiplication of two matrices by a DIET client configured to use JUXMEM for persistent
data management

Listings 1.1 and 1.2 show an example of how DIET internally uses JUXMEM to man-
age data for the multiplication of two matrices A and B. The output of the computation
produces the matrix C. Figure 3 presents the entities involved: one DIET client D, one
DIET SeD S1 and two JUXMEM providers F1 and F22. Let us assume that all ma-
trices are persistent. First, input matrices are stored into JUXMEM by the client (step 1
of Figure 3, lines 5 and 6 of Listing 1.1), and their IDs ID(A) and ID(B) are sent
in the computational request to S1 (step 2, line 8). On the server side, these IDs are
used to locally map and acquire the input matrices in read mode (step 3, lines 5 to 8
of Listing 1.2). Then, the computation produces matrix C (line 10). Therefore, the read

2 For the sake of clarity on the figure, however in practice F2 can be equal to F1.
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lock on matrices A and B is released (lines 12 and 13), and matrix C is attached inside
JUXMEM (step 4 and line 14). Its identifier (ID(C)) is sent back to the client D (step 5),
so that it can be locally mapped and acquired in read mode by the client (steps 6, lines 10
to 12 of Listing 1.1).

1 grpc_error_t
2 grpc_call (grpc_function_handle_t *handle) {
3 grpc_serveur_t *SeD = request_submission(handle);
4 ...
5 char *idA = juxmem_attach(handle->A, data_sizeof(handle->A));
6 char *idB = juxmem_attach(handle->B, data_sizeof(handle->B));
7 ...
8 char *idC = SeD->remote_solve(multiply, idA, idB);
9 ...

10 juxmem_mmap(handle->C, data_sizeof(handle->C), idC);
11 juxmem_acquire_read(handle->C);
12 juxmem_release(handle->C);
13 }

Listing 1.1. Internal DIET client code related to JUXMEM for the multiplication of two persistent
matrices A and B on a SeD

1 char*
2 solve (grpc_function_handle_t *handle,
3 char *idA, char *idB) {
4 ...
5 double *A = juxmem_mmap(NULL, data_sizeof(handle->A), idA);
6 double *B = juxmem_mmap(NULL, data_sizeof(handle->B), idB);
7 juxmem_acquire_read(A);
8 juxmem_acquire_read(B);
9 ...

10 double *C = multiply(A, B);
11 ...
12 juxmem_release(A);
13 juxmem_release(B);
14 return idC = juxmem_attach(C, data_sizeof(handle->C));
15 }

Listing 1.2. Internal DIET SeD code related to JUXMEM for the multiplication of two persistent
matrices A and B on a SeD

Table 1 summarizes the interaction between DIET and JUXMEM in each case, de-
pending on the data access mode (e.g. in, inout, out) on both client/server side. In
the previous example, matrices A and B are in data, and matrix C is an out data. Note
that for inout and out data, calls to JUXMEM are executed after the computation on
the client side only if the persistent mode is PERSISTENT_RETURN.

Modifications performed inside the DIET GridRPC middleware to use JUXMEM

for the management of persistent data are small. They consist of 200 lines of C++
code, activated whenever DIET is configured to use JUXMEM. Consequently, DIET is
linked with the C/C++ binding of JUXMEM. In our setting, DIET clients or SeDs use
JUXMEM’s API to store/retrieve data, thereby acting as JUXMEM clients. Note also that
our solution supports GridRPC interoperability, DIET simply uses JUXMEM’s API,
with no extra code for data management.
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Table 1. Use of JUXMEM inside DIET for in, inout and out persistent data on client/server
side, before and after a computation. The juxmem prefix has been omitted.

Client side SeD side
Computation Before After Before After
in attach;

msync;
detach;

mmap;
acquire_read;

release;
unmap;

inout attach;
msync;

acquire_read;
release;

mmap;
acquire;

out mmap;
acquire_read;

release;

attach;
msync;
unmap;

5 Experimental Evaluations

In this section, we present the experimental evaluation of our JUXMEM-based data
management solution inside DIET.

5.1 Experimental Conditions

We performed tests using 4 clusters (Rennes, Orsay, Toulouse and Lyon) of the French
Grid’5000 testbed [5], using a total number of 3 sites simultaneously for a total number
of 129 nodes. Grid’5000 is an experimental grid platform consisting of 9 sites (clusters)
geographically distributed in France, whose aim is to gather a total of 5,000 CPUs in
the near future. The nodes used for our experiments consist of machines using dual
(2.2, 2.4, 2.6 GHz) AMD Opteron, outfitted with 2 GB of RAM each, and running a 2.6
version Linux kernel; the network layer used is a Giga Ethernet (1 Gb/s) network inside
each cluster of Grid’5000. Between clusters, links of 10 Gb/s are used and the latency
ranges from 4,5 ms to 10 ms.

Tests were executed using JUXMEM 0.3 and DIET 2.1. All benchmarks are com-
piled using gcc 4.0 with the -O2 level of optimization. As regards deployment, we
used the ADAGE [21] generic deployment tool for JUXMEM and GoDIET [22] for
DIET.

5.2 Experiments Using MUMPS: A Sparse Parallel Solver

Our goal is to demonstrate and measure the benefits of the management of persistent
data by JUXMEM, in terms of impact on the overall execution time of a real-life appli-
cation. We focus on MUMPS (“MUltifrontal Massively Parallel Solver”), a package for
solving systems of linear equations of the form Ax = b, where A is a square sparse
matrix that can be either asymmetric, symmetric positive definite, or general symmet-
ric. MUMPS uses a multifrontal technique which is a direct method based on either the
LU or the LDLT factorization of the matrix. We refer the reader to the paper [23] for
full details of these techniques.

We performed 3 sets of experiments using MUMPS (noted E1, E2 and E3). E1 has
been performed in a one-cluster environment, whereas E2 and E3 are performed in a
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multi-cluster environment, using the Grid’5000 testbed, with E3 at a larger scale com-
pared to E2. In all our experiments, a client loops 32 times on a synchronous GridRPC
call to MUMPS, with the aforementioned linear equation to solve. A and b are input
data (data access mode set to in) whereas x is an output data. Between each GridRPC
call, b is changed according to the resolution needs while A is unchanged and its per-
sistence mode is set to PERSISTENT. Therefore note that when JUXMEM is used by
DIET for the management of matrices A, DIET calls JUXMEM primitives according to
the first row of Table 1. For all experiments we used 2 different sizes for the A matrix:
a medium size of 22 MB (A1) and a larger size of 52 MB (A2). Let us stress the diffi-
culty of setting up such kind of experiments for a real-life, complex application, using
an environment which relies on 2 different runtime software (JUXMEM and DIET),
based on different technologies (JXTA and CORBA respectively) and using different
deployment tools that need to interact with each other.

As a first experiment performed inside a single Grid’5000 cluster, we simply de-
ployed a DIET hierarchy made of 1 MA, 1 LA and 1 SeD, as well as a JUXMEM

network made of 1 provider and 1 manager. The goal of this experiment E1 is to mea-
sure the overhead of using JUXMEM for data management. Results show that if DIET
is configured to use JUXMEM to store persistent data, the total execution time of all
calls slightly increases, compared to DIET configured without JUXMEM: from 36.6 to
41.3 seconds with A1 and from 957 to 961 seconds with A2. We can argue that the
overhead of using JUXMEM for data management of large matrices inside DIET is
therefore low: it is less than 1 % with A2. Note however that this overhead increases
when using smaller matrices, e.g. it reaches 13 % for matrix A1.

In a second experiment, our goal is to measure the (expected!) benefits of using
JUXMEM for transparently managing persistent data in grid environment (however at
a small scale). To do this, we deployed a 3-cluster configuration. In each cluster, we
deploy a DIET hierarchy made of 1 LA and 1 SeD and a JUXMEM network made of
1 provider and 1 manager. We use 3 clusters of the Grid’5000 testbed, namely Lyon,
Toulouse and Rennes. Results show a clear advantage to use JUXMEM, as the total
execution time of the application is reduced by 42 % with A1 and by 38 % with A2,
compared to results obtained for DIET configured without JUXMEM (see Table 2).
Compared to the E1 experiment, the smaller execution time with A2, when JUXMEM

is used, is explained by the difference of processor performance on the three sites that
are used for the computations.

Finally, we performed a third experiment (E3) similar to E2, where we increased
the configuration sizes, by using 32 SeDs and 8 JUXMEM providers in each cluster. The
goal of this experiment is to measure the impact of an increasing number of SeDs on
the performance of JUXMEM (as this leads to an increasing number of JUXMEM clients
accessing the data). With A1, the total execution time is the same for both configurations
(DIET configured with or without JUXMEM): 103 seconds. With the larger A2 matrix,
this time is reduced by 38 % when JUXMEM is used (843 seconds), compared to DIET
configured without JUXMEM (1358 seconds). Note that these results are averaged based
on 4 runs, since the DIET agent may take different scheduling decisions by choosing
different nodes (and clusters) from one computation to another. This also explains the
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Table 2. Total execution time in seconds of a MUMPS application when DIET is configured to
use JUXMEM or not, for 2 different matrices A1 and A2

Matrix A1 A2

DIET configured Without JUXMEM With JUXMEM Without JUXMEM With JUXMEM

Experiment E1 36.6 41.3 957 961
Experiment E2 92.6 53.7 1420 880
Experiment E3 103 103 1358 843

difference between results obtained for A2 in this experiment and experiment E2: the
number of GridRPC calls performed on 1 site may change between runs.

Finally, Table 2 summarizes obtained results for experiments E1, E2 and E3 based
on MUMPS. Notably, these results demonstrate the advantage to use JUXMEM for man-
aging persistent data in the GridRPC model in a grid environment: the execution time
of a MUMPS application is kept to its value as in a cluster execution, despite the high-
latency WAN connections. As explained previously, the reduced times (rows 2 and 3 of
last columns of Table 2) come from the difference in processor speeds of nodes used
for the various computations across the sites.

6 Conclusion

Programming grid infrastructures remains a significant challenge. The GridRPC model
is the grid form of the classical RPC approach. It offers the ability to perform asyn-
chronous coarse-grained parallel tasking, and hides the complexity of server-level par-
allelism to clients. In its current state, the GridRPC model has not specified adequate
mechanisms for efficient data management. One important issue regards data persis-
tence, as multiple GridRPC calls with data dependencies are executed.

In this paper, we propose to couple the GridRPC model with a transparent data ac-
cess model. Such a model is provided by the concept of grid data-sharing service. Data
management (persistent storage, transfer, consistent replication) is totally delegated to
the service, whereas the applications simply access data via global identifiers. The ser-
vice automatically localizes and transfers or replicates the data as needed.

We have illustrated our approach by showing how the DIET GridRPC middleware
can benefit from the above properties by using the JUXMEM grid data-sharing service.
Experimental measurements on the Grid’5000 testbed show that introducing persistent
storage has a clear impact on the execution time. Using a real-life application based on
a sparse matrix parallel solver, experiments performed on the Grid’5000 testbed show
that the use of JUXMEM allows to keep an execution time as if the application was
executed in a cluster, despite the high-latency WAN connections.

The main contribution of our approach compared to related work having dealt with
data persistence in GridRPC environments consists in showing that efficiency can
be obtained through the use of a generic data-sharing service, providing location-
transparent data access. Moreover, our approach also allows to transparently benefit
from replica consistency and fault-tolerance mechanisms. We did not develop these
aspects in this paper (they have been illustrated in [19] in a more general way). A
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GridRPC-specific study of these aspects could be addressed in future work. For in-
stance, it would be interesting to evaluate the impact of using the fault tolerance mecha-
nisms provided by JUXMEM on application execution time, in presence of data storage
failures.

To extend our contributions to data management in NES through the features of-
fered by JUXMEM, several directions can be pursued. First, we plan to provide data
placement information to the request scheduling algorithms. This would make it pos-
sible to balance more precisely the load among available servers. Then, we would like
to implement a cache mechanism inside JUXMEM clients to avoid fetching data from
providers at each GridRPC call. In addition, JUXMEM consistency and fault-tolerance
mechanisms have been tested using synthetic benchmarks [19], outside the GridRPC
model. We would like to further evaluate them by using other real-life DIET applica-
tions which exhibit such requirements, such as climate modeling and cosmology simu-
lations. Besides, we also plan to compare JUXMEM with non location-transparent data
access solutions, such DIET DTM for instance. Finally, the implementation of a clas-
sical file-system API over JUXMEM would allow applications based on this API to
transparently leverage JUXMEM’s functionalities. We have already started such a work,
called JUXMEMFS, by relying on the FUSE library [24] available on Linux systems.
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Abstract. Web-sites, especially E-commerce ones, are often faced with
incoming load of requests that exceeds their capacity, i.e, they are sub-
jected to overload. Most existing servers show severe throughput degra-
dation at high overload. Overload control mechanisms are required to
prevent such occurrences. In this paper, we present a proxy-based over-
load control mechanism, which uses the drop in throughput relative to
arrival rate as an indicator of overload. On overload detection, a self-
clocked admission control is activated, which admits a new request only
when a successful reply is observed to be leaving the server system. Thus,
the mechanism is self-tuned, and requires no knowledge of the system.
We validate our approach on an experimental testbed consisting of a
two-tier Web application, and find that even at very high overload, the
server operates at its maximum capacity while keeping response times
within acceptable bounds.

1 Introduction

Online services of today, such as banking, shopping, stock market trading are
supported by Web-based multi-tiered server systems. Such services are exposed
to variable load, due to peak hour usage phenomenon, or events such as sales,
holiday shopping, or headline events. Peak load during such events can sometimes
be orders of magnitude higher than average load, and can exceed the capacity of
the system. When the incoming request rate on a system exceeds its processing
capacity, it is said to be overloaded.

Most server systems display unstable behaviour when overloaded. Although
ideally a system should operate at its maximum capacity when overloaded, many
systems experience a drop in throughput (successful request completion rate),
which is often drastic. Overload results in an increase in the request response
times which results in many requests timing out, or abandoning the server
system. after being serviced for some amount of time. Abandonments (either
manual or protocol-triggered) lead to retries which further elevate the effective
load on the servers. The overloaded server ends up being busy serving a large
number of requests which timeout, resulting in a severe drop in throughput. This
“feedback phenomenon” further deteriorates the performance of the Web-site.
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While the problem of overload could be partially eliminated by proper server
capacity planning through server duplication, data redundancy and request redi-
rection, it cannot fully done away with it. Unexpected peak hour usage of a Web-
site can always happen; e.g., due to a major breaking news event for a popular
news Web-site, or server-side failures that reduce total capacity. Since it is not
prudent to size server systems for such occasional overload situations, a mecha-
nism is required which specifically aims to keep the server system operating in
a stable manner, even in the presence of overload.

Overload can be controlled using two broad approaches. The first approach is
a pro-active approach, where the control mechanism prevents the system from
getting overloaded by exercising admission control. A fair amount of knowledge
of the system’s capacity, a request’s resource needs and monitoring of system
resources is required to be able to make an accurate decision about admission.
Such complex mechanisms are best employed when user QoS requirements are
precisely expressed, and when the server system is required to be a QoS-aware
system, that provides specific and differentiated performance guarantees..

However, most Web-sites aim for a simple “best-effort” service, where the
users do not express any explicit QoS targets - thus the system goals are those of
ensuring stability on overload, maintaining the throughput near capacity, and re-
sponse times that do not result in a large number of abandonments. Such systems
can activate an appropriate overload control mechanism only upon overload de-
tection - a reactive overload control. For a reactive approach, two components are
required: an overload detection mechanism, and an overload control mechanism.

A number of existing approaches [3, 2, 4] use overload detection mechanisms
based on resource utilization. These mechanisms assume that the potential bot-
tleneck resource is known and can be monitored - thus, high utilization of this re-
source can indicate an overload. However, system bottlenecks may not be known
a-priori; they may vary based on the type of workload (CPU intensive, network
I/O intensive, etc.), machine hardware configuration (CPU speed, network band-
width, system cache and memory sizes etc.), software configuration (thread pool
size, buffer size, object pool size, etc); hence determining the bottleneck resource
is nearly impossible in the case of multi-tiered heterogeneous systems which sup-
port varying workload mixes. This motivates the need for an overload detection
mechanism that does not require the knowledge of the bottleneck resource, and
therefore does not need to monitor it.

We claim that an “absolute” indicator of a system in overload is when its
throughput (rate of successful completion of requests) is lower than its request
arrival rate. As long as requests arrive at a rate that the system can process
them, the completion rate has to be close to the arrival rate. If the completion
rate (smoothed and averaged, to ignore transient effects) drops below arrival
rate, it is a clear indicator, that the server cannot process the requests at the
rate they are arriving, and is hence, overloaded.

In this paper, we propose a proxy-based, reactive overload control mechanism
which uses the ratio of the throughput to the arrival rate as an indicator of
overload. Overload is flagged by the proxy when this ratio is lower than 1 by
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a given amount (determined by a threshold value). On overload detection, the
proxy uses a “self-clocked” admission control on incoming requests that are
queued at the proxy. The request at the head of the queue is admitted into the
server system, only when a request is seen successfully exiting from the server,
indicating that there is “room” for a new request. The mechanism is similar in
concept to window-based flow control mechanisms used in networking.

Both these mechanisms, are clearly self-tuned - they require no information
about the capacity of the system, the amount and type of resources required by
requests, or the potential system bottlenecks. The throughput-based overload
indicator and the self-clocked admission control can be expected to work without
any configuration.

We validate our claim by implementing the proxy on a testbed consisting of
benchmark Web applications, and provide results from our experimentation on
these benchmarks. We validated our proposed mechanism against different Web
servers, workloads, and hardware platforms. Experimental validation reveals that
our approach is able to sustain system throughput to its peak capacity even
at loads 40 times the system’s maximum capacity with only 15% increase in
response times.

The rest of the paper is as follows: in Section 2 we provide background and
motivation for overload control. We present the details of our overload control
approach in Section 3. In Section 4, we present the experimental setup and
results which validate our approach. We conclude the paper in Section 5.

2 Background and Motivation

Figure 2 shows results from an experiment, in which a multi-tiered Web applica-
tion consisting of a Web server and a database server (details in Section 4) was
subjected to increasing load. Observe the throughput behaviour when there is no
overload control ((Figures 2(a) and 2(e), plots corresponding to “Without PB-
SCOC”). At low loads, the throughput of the system is equal to the offered load.
As the load offered to the system exceeds the capacity, the system becomes unsta-
ble, as indicated by the drop in throughput and the increase in the rate of request
timeouts and internal server errors (Figures 2(g) and 2(h)). The average response
time of the completed requests also shows a sharp increase (Figures 2(b) and 2(f)).

An overload control mechanism would prevent this degradation of perfor-
mance of the server. With overload control, our aim would be that the system
should operate near its capacity, even after the overload sets in. A large amount
of research has already been done in the area of overload prevention and control.
Here we discuss a few approaches and conclude with the motivation behind the
approach proposed by us.

Cherkasova and Phaal [3] propose a session based admission control policy. In
this technique every new request which belongs to an already admitted session is
given priority over any other newly arrived request. The number of new session
requests to be admitted is based on the prediction of CPU utilization in the next
control interval.
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Chen and Mohapatra [2] use a session based classification of requests, where
the requests are sorted into different queues which are associated with different
resource consumption demands. A weighted fair sharing method is used for dif-
ferentiated overload control, which selects a request to be scheduled on the basis
of criteria such as estimated resource requirement of the request vs. the capacity
of the system, the delay bounds specified by the request and the actual response
delays that can be provided.

The approach suggested by Elnikety et al. [4] addresses the problem of over-
load control in multi-tiered Web sites, where the bottleneck resource is known
a-priori. An external entity such as a proxy is placed in front of the server of the
bottleneck resource. The proxy observes the request resource demands externally
and compares them against the current remaining capacity of the system. A new
request is admitted only if the system has the capacity to serve it, otherwise it is
placed in a queue which is processed on implicit demand from the server, using
the shortest job first (SJF) with an aging policy.

Voigt et al [8] propose a scheme based on admission control which estimates
the expected resource consumption demands of a request. Each request is clas-
sified on the basis of its HTTP header as a CPU intensive, bandwidth intensive
or other. At the end of each monitoring interval, based on the capacity analysis
of each of these resources a threshold is set on admission rate of each class of
request. A new request belonging to a particular class is admitted only if the
corresponding resource has the capacity to serve it.

In addition to the above, new approaches to server architecture have also been
proposed, which provide robust performance at overload (e.g. Welsh et al [9]).
In our work, we concentrate on mechanisms that can be implemented using
available servers and operating systems.

Our review indicates that many of the existing approaches depend on the
knowledge of the utilization of a resource or estimation of the resource demands
of the resource which has been identified as the bottleneck. This seems reason-
able if in a system the bottleneck remains unchanged with the varying workloads.
However, in a complex multi-tiered server system, determining which resource is
the bottleneck resource can be very difficult. Furthermore, the bottleneck resource
itself may vary with changing workloads or software and hardware configurations.

Figures 2(c) and 2(d) show values of CPU utilizations of the two servers in
the testbed and the number of busy Web server threads during the experiment.
We see that although the system overloads at 80 requests per second, the CPU
utilization for the database and the Web server is only 21% and 49% respectively.
Similarly, the number of Web server threads in use at overload is 214, but the
maximum number of threads that this server is allowed to spawn is 250. Thus,
the bottleneck based overload detection approaches as discussed above would
have failed to detect overload in the system. These observations motivate the
need for an approach that can control system overloads and ensure stability
without any knowledge of the bottleneck resources.

Once overload is detected, we need an approach that would regulate entry of
requests into the server system without a-priori knowledge of the capacity of the



A Proxy-Based Self-tuned Overload Control for Multi-tiered Server Systems 289

system, or the resource requirement of the request. Thus, for e.g., we would like to
avoid complexmechanisms required to estimate resource requirements of a request.

In the following sections we present a platform and configuration-independent
method for overload detection, and an entirely “self-clocked” admission control
mechanism that is activated on overload.

3 Proposed Overload Control Approach

We propose an approach which includes a throughput based overload detection
mechanism and a self-clocked admission control that activates after overload is
detected.

The throughput of an overloaded system drops due to high response times
at overload which result in frequent request abandonments. We use a threshold
value which flags overload in the system, when the ratio of measured throughput
to arrival rate (also termed as offered load or simply load) drops below this
threshold. The overload detection mechanism then triggers the overload control
strategy. Our overload control strategy represents a “serve on demand” scenario,
where every successful reply from the server sends an implicit notification for a
new admission into the system. The rationale behind this approach is as follows:
at overload, the server resources can be assumed to be full, and only a successful
exit from the system can indicate that there is a room in the server system for a
new request. This method is self-clocked, in the sense that no explicit “admission
rate” needs to be specified to the mechanism. Further, since the control is active
only on overload, we avoid the situation where this control may degenerate into
a “stop-and-wait” type control, where only one request may be active in the
system at a time. The admission control is turned off as soon as the system
comes out of overload.

Based on the above mentioned requirements, we need three interacting mod-
ules for overload detection, namely, for load calculation, throughput calculation,
and for overload detection itself. We need a fourth module for overload con-
trol, which when triggered by the overload detection module, is able to control
admission of every new request into the system.

Since we would like our mechanism to work without the knowledge of which
server is the bottleneck server, the requests made to the system as well as the
replies should be measured by an external entity. Thus, a proxy which sits at
the “front end” of the server system can be used to implement the modules and
mechanisms mentioned above.

For our implementation, we used a Java based proxy called Muffin as an
external entity which could act as an observer for the incoming requests and
outgoing replies. All the four modules discussed above were implemented in this
proxy. We will now look at the proposed system architecture in detail.

3.1 Implementation Architecture

We used a Java based lightweight proxy called Muffin [5] for this implementation.
It is freely available under the GNU General Public License and provides support
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for HTTP/0.9, HTTP/1.0, HTTP/1.1, as well as SSL (https). Source code for
Muffin was obtained and modified to implement our overload detection and
control mechanism. We refer to this modified proxy as Muffin-M.

Figure 1 shows the block diagram of the system with Muffin-M and its corre-
sponding components, implemented by us, namely the load calculation, through-
put calculation, overload detection and the overload control modules. In the
figure, the functionality of each of the modules is displayed using pseudo-code.
Now we discuss each of the modules in Figure 1 in detail.

If(New Request)

EndIf
NoOfRequests++

EndIf

EndIf

NoOfReplies++
If(Successful Reply)

Send Average
Throughput

Throughput Calculation Module

Overload Control Module

INIT: Start of the new TCM
monitoring interval

Load Calculation Module

INIT: Start of a new LCM
monitoring interval

If(End of LCM Monitoring Interval)
Calculate the average Load

If(Overload Status = ON)

Overload Detection Module

INIT: Overload Status = OFF

5
If(Request pending in queue)

Dequeue the Request
Forward the request to Load
Calculation Module

EndIf
EndIf

Enqueue the request
Wait for a successful Reply

EndIf

Else

Do Nothing
EndIf

If(New Request)

If(Overload Status = ON)
When(Successful Reply)

Request

Send

Request Director

Overload Status = ON
Overload Status = OFF

Muffin-M Modules

ServerRequest

Reply

Client

Request

Notify Overload Control Module

Notify Overload Detection Module
Calculate average Throughput

If(End of TCM Monitoring Interval)

EndIf

Start a new TCM monitoring
interval

Notify Overload Detection Module

EndIf
interval
Start a new LCM monitoring

Module
Notify the Overload Control
Calculation Module
Notify the Throughput

Overload Status = ON
If (Throughput/Load < threshold)

Throughput

EndIf

EndIf

interval

A Successful Reply

Overload Status
= ON

3

2

Send Average
Load

1

6

Overload Status

4

Calculate Smoothed Load and

Start a new ODM monitoring

If(End of ODM Monitoring Interval)

Fig. 1. Block structure of Muffin-M with its corresponding modules
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Load Calculation Module (LCM): Each arriving request is routed through this
module. It calculates the load at the end of each monitoring interval, and sends
an exponential average to the Overload Detection Module (arrow number 1).

Throughput Calculation Module (TCM): Each successfully exiting request is
observed by this module, which calculates the throughput at the end of the
monitoring interval. It then sends an exponential average of the throughput to
the Overload Detection Module (arrow number 2). After an overload notification
is received from the overload detection module (arrow number 3), for every
successful reply received from the server, it sends a notification to the overload
control module, throughout the overloaded interval.

Overload Detection Module (ODM): At the end of its monitoring interval, this
module calculates the average load and throughput, using the values received
from the LCM and TCM at the end of their respective monitoring intervals.
We use a Threshold value in order to flag overload in the system. The ratio of
throughput to load as computed by this module is compared with this threshold.
If the ratio is below the set value of Threshold, the system flags ‘overload’. (Note
that Threshold is the only parameter in the overload control mechanism that
needs to be manually configured). On detecting overload, a notification is sent
by this module to the TCM (arrow number 3) as well as the overload control
module (arrow number 4). If the ratio is above the threshold, the overload status
is reset to “OFF”.

Overload Control Module (OCM): This module is notified by the ODM when
overload is detected. On overload, all the requests which otherwise go through the
LC module directly, are re-directed to this module. On arrival of a new request,
the request is simply queued into its buffer, waiting for a notification from the
TC module. Upon receiving a successful reply notification (arrow number 5),
the module checks for the waiting but not timed out request at the head of its
buffer queue; it dequeues such a request and forwards it to the LC module. If
overload flag has not been set, this module does nothing and every new request
passes directly to the LC module.

4 Results

In this section we present results for validation our overload detection and control
approach. We begin the section with the discussion of our system setup, the type
of workloads and their compositions. This is followed by the discussion of results
of the experiments, which validate our approach.

4.1 The Testbed Setup

The testbed setup consisted of the following components:
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Application: All experiments were carried out on the “Duke’s Bank” applica-
tion [1] which is an online banking application that can be used for testing
purposes. Duke’s Bank is a J2EE application whose components include a J2EE
server with a Web container, and a database server at the second tier. Duke’s
Bank supports typical banking transactions such as opening a new account,
closing an existing account, transferring funds from one account to another, etc.

Workload: The workload of the Duke’s Bank application was used for represent-
ing dynamic requests. The workload mix used was as follows: open a new account
(15%), close an existing account (2%), transferring funds from one account to
another (13%), account enquiry (15%) and update existing account (55%).

The WebSPEC99 benchmark [7], in which the file sizes follow a Zipf’s distri-
bution, was used to represent static file workload. The static workload consisted
of individual requests which retrieved files from the WebSPEC99 distribution
consisting of the following four classes. Class 0: 100 bytes - 900 bytes (35%),
Class 1: 1 Kbytes - 9 Kbytes (50%), Class 2: 10 Kbytes - 90 Kbytes (14%) and
Class 3: 100 Kbytes - 900 Kbytes (1%).

Out of the three types of available workloads, namely: static (WebSPEC99),
dynamic (Duke’s Bank) and mixed (both), we used dynamic and mixed work-
loads in our experiments. Httperf [6], which can emulate “open” arrivals was
used for load generation.

Software: Two different servers were used for the Web component of the Duke’s
Bank application: a JBoss application server (EJB container) with an embedded
Tomcat Web server (servlet container), and the Apache Web Server. In case of
the Apache Web server, PHP scripts were written to emulate the same function-
ality as the J2EE-based Duke’s Bank application. In all experiments, MySQL is
used as the database server.

Hardware: In all the experiments, the machine hosting the database server is a
P4 machine with 256MB RAM and running the Linux 2.6.15 kernel. The Web
servers are deployed on either of the following two machines: an AMD 64-bit
machine with 1GB RAM, running Linux 2.6.15 kernel and an Intel based 32-bit
machine with 256MB RAM, running Linux 2.6.16 kernel. Muffin-M is deployed
on the same machine as that of the Web server (JBoss with Tomcat and Apache).

Table 1 lists the combinations of the hardware, software and workload con-
figurations used in the eight experiments that were carried out to validate our
approach (denoted by “PBSCOC”: Proxy Based Self Clocked Overload Control),
and summarizes the results. The main aim of the experiments was to demon-
strate that the mechanism works effectively with little configuration, under vary-
ing scenarios which change the capacity of the system. The only parameter that
requires setting is the threshold that determines whether throughput has fallen
below arrival rate. We present detailed results only for Experiment 1, 2 and 3
from the above.

Experiment 1: This corresponds to the setup with Tomcat on the 64 bit AMD
machine and with dynamic workload. Figure 2(a) shows that the throughput
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Table 1. Hardware, server and workload configuration for various experiments

Exp. Web Machine Workload Maximum Throughput Throughput
No. server specs. Type Throughput at overload at overload

no PBSCOC with PBSCOC

1 Tomcat 64 bit AMD dynamic 63 35 61
2 Tomcat 64 bit AMD mixed 120 30 120
3 Apache 32 bit Intel mixed 42 0 42
4 Apache 64 bit AMD mixed 47 0 45
5 Tomcat 32 bit Intel dynamic 32 28 32
6 Tomcat 32 bit Intel mixed 40 28 40
7 Apache 32 bit Intel dynamic 37 0 33
8 Apache 64 bit AMD dynamic 40 0 40

drops from its maximum capacity of 63 requests per second to 30 reqs/sec and
finally to a value of 9 reqs/sec on very heavy loads, in the absence of overload
control. On application of the PBSCOC, the throughput saturates near its ca-
pacity at around 61 reqs/sec. Furthermore, the stability in throughput is also
accompanied by only 15% increase in the net response time of every successful
request, which increases exponentially otherwise as seen in Figure 2(b).

Experiment 2: This experiment uses the same hardware and software setup as
in Experiment 1, but uses a mixed workload. Figure 2(e), shows the throughput
drop from the maximum capacity of 120 reqs/sec to 31 reqs/sec in the system
without any overload control. With overload control the throughput is sustained
at 118 reqs/sec, even at loads 15 times the system capacity. Figure 2(f) compares
the corresponding values of response times for the system with and without
overload control. Also, as is seen from Figures 2(c) and 2(d), PBSCOC works
even when none of the CPUs, nor the Web server threads, are the bottleneck.

For Experiment 1 and 2, we also compared the number of timed out requests
with and without overload control (Figures 2(g) and 2(h)). We can see that the
improvement in throughput is achieved mainly by preventing timeouts.

Experiment 3: This corresponds to the setup with Apache on the Intel machine
with mixed workload. We observed that unlike the Tomcat server which is quite
stable and reacts slowly to the increasing load, Apache server was unstable when
subjected to heavy loads. The server crashes completely, with its throughput
dropping to zero, when presented with heavy loads even for a small amount of
time. In Figure 3(a), we can see that the server throughput drastically drops to
zero on overload. The server is crashed at this point and needs reload for any fur-
ther activity. However our technique prevents its crashing, by detecting overload
and controlling it. The server supports a maximum throughput of 40 reqs/sec,
even at loads 50 times its capacity. Figure 3(b) shows corresponding values of
response time. The value of CPU utilization observed at the overload point (40
reqs/sec) was 99%, indicating in this case that the CPU is the bottleneck.
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(b) Response time (dynamic).
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(e) Throughput comparison (mixed).
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(f) Response time comparison (mixed).

 10

 100

 1000

 10000

 100000

 10  100  1000  10000

T
ot

al
 r

eq
ue

st
s 

tim
ed

ou
t

Arrival rate in requests per second

With PBSCOC 
Without PBSCOC 

(g) Timeouts (Dynamic).

 100

 1000

 10000

 100000

 1e+06

 10  100  1000  10000

T
ot

al
 r

eq
ue

st
s 

tim
ed

ou
t

Arrival rate in requests per second

With PBSCOC 
Without PBSCOC 

(h) Timeouts (Mixed).

Fig. 2. Experiments 1 and 2 (Tomcat+AMD64+dynamic/mixed)



A Proxy-Based Self-tuned Overload Control for Multi-tiered Server Systems 295

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10  100  1000

T
hr

ou
gh

pu
t i

n 
co

m
pl

et
io

ns
 p

er
 s

ec
on

d

Arrival rate in requests per second

With PBSCOC 
Without PBSCOC 

(a) Throughput comparison.

 2500

 3000

 3500

 4000

 4500

 5000

 10  100  1000

R
es

po
ns

e 
tim

e 
in

 m
s

Arrival rate in requests per second

With PBSCOC 
Without PBSCOC 
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Fig. 3. Experiment 3 (Apache+Intel32+mixed): Performance Comparison

Recall that the value of threshold used by the overload detection module is
not self-tuned and needs to be configured by the system administrator. In case
of the servers which are highly sensitive to overloads, for e.g. the Apache server,
the value of threshold needs to be set cautiously. We set this value to 0.7 for
experiments with Apache server and to 0.8 for the Tomcat server. Apache server
was observed to crash if the threshold was set to a higher value. However the
value of threshold did not affect the performance of Tomcat server significantly.
Experimental results (with the setup used in Experiment 1) show the value of
saturation throughput for Tomcat threshold 0.6 was 60.2, with 0.7 was 60.72
and with 0.9 was 61.2. Also, in all other cases shown in Table 1, the server shows
dramatic improvement in throughput with the proxy-based overload control,
thus demonstrating its robustness under varying scenarios.

5 Conclusions

In this paper, we presented a simple yet effective method of overload detection
and control in multi-tiered systems. The mechanism was a reactive overload
control, which required detection of overload. We used a drop in throughput
with the increasing load as an “absolute” indicator of overload. This was done
by using a proxy, to observe the load and the throughput of the system, and
draw a conclusion on whether the system is overloaded. Once it is detected,
overload is controlled by using a “self-clocked” admission control, which admits
a request only when a successful reply exits the server system. We validated the
approach using a variety of hardware and software deployments, and different
workloads to illustrate its generality and robustness. In all our experiments, the
overload control mechanism detected the overload, and was able to sustain server
throughput at nearly the maximum capacity of the server. This approach can be
coupled with a more comprehensive vision of self-tuned systems, which optimize
their performance by re-configuring some parameters to scale the system towards
supporting higher loads.
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Abstract. We study the problem of scheduling n independent jobs on
a system of m identical parallel machines in the presence of reservations.
This constraint is practically important; for various reasons, some ma-
chines are not available during specified time intervals. The objective is
to minimize the makespan. This problem is inapproximable in the general
case unless P = NP which motivates the study of suitable restrictions. We
use an approach based on algorithms for multiple subset sum problems;
our technique yields a polynomial time approximation scheme (PTAS)
which is best possible in the sense that the problem does not admit an
FPTAS unless P = NP. The PTAS presented here is the first one for the
problem under consideration; so far, not even for special cases approxi-
mation schemes have been proposed. We also derive a low cost algorithm
with a constant approximation ratio and discuss additional FPTASes for
special cases and complexity results.

1 Introduction

In parallel machine scheduling, an important issue is a scenario where time in-
tervals of machine unavailability must be taken into account. This phenomenon
occurs due to periods of regular maintenance or because high-priority jobs are
present. Here we obtain deterministic models capturing realistic industrial set-
tings and scheduling problems in parallel computing. We study non-preemptive
scheduling of sequential jobs on a system of identical parallel machines; however,
these may be unavailable for certain periods of time which are known beforehand.
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This setting is also called the non-resumable case [17,19,20]. The objective is to
minimize the makespan Cmax, which is the maximum of the completion times
of all jobs. As discussed below, quite restricted special cases of the model con-
sidered here have been studied. On the algorithmic side, only list scheduling
algorithms (or similar approaches) and exact exponential algorithms have been
analyzed and experimentally evaluated, respectively.

Contributions. We take a novel approach by using algorithms for multiple sub-
set sum problems to govern the scheduling of jobs on identical parallel machines
with reservations. We obtain a dual approximation algorithm [8], more precisely
a PTAS, for the case of an arbitrary number m of machines. We show that our
problem does not admit an FPTAS unless P = NP and present additional com-
plexity results. For m ∈ {1, 2} with one reservation we obtain FPTASes; we also
discuss how fast greedy algorithms can be obtained from our approach.

This article is organized as follows. Sect. 2 defines the problem and discusses
the inapproximability of the general case. In Sect. 3 we present a PTAS for a suit-
ably restricted problem as well as FPTASes for m ∈ {1, 2} with one reservation.
Finally we sketch how to obtain a fast approximation algorithm for our gen-
eral problem. In Subsect. 3.3 our approximation algorithms are complemented
by suitable hardness results. Finally we summarize the results and conclude in
Sect. 4.

Related problems and previous results. Lee [16] and Lee et al. [18] stud-
ied identical parallel machines which may have different starting times; here,
the LPT policy (where tasks are greedily scheduled from the largest task to the
smallest task) was analyzed. Lee [17] studied the case where at most one reser-
vation per machine is permitted while one machine is continuously available and
obtained suitable approximation ratios for low-complexity list scheduling algo-
rithms. Liao et al. [20] presented an experimental study of an exact algorithm
for m = 2 within the same scenario. Hwang et al. [9] studied the LPT policy for
the case where at most one interval of unavailability per machine is permitted.
They proved a tight bound of 1 + �m/(m − λ)�/2 where at most λ ∈ [m − 1]
machines are permitted to be unavailable simultaneously. The reader can find
in [19], Chapt. 22, problem definitions and a survey about previous results.
In [23], Scharbrodt et al. present approximation schemes and inapproximability
results for a setting where the reservations also contribute to the makespan. So
far, the model under consideration has not been approached with approximation
schemes, not even for the special cases which have already been studied [9,17,20].

The approach taken in our work is based on multiple subset sum problems.
These are special cases of knapsack problems, which belong to the oldest prob-
lems in combinatorial optimization and theoretical computer science. Hence, we
benefit from the fact that they are relatively well understood. For the classical
problem (KP) with one knapsack, besides the result by Ibarra & Kim [10], Lawler
presented a sophisticated FPTAS [15] which was later improved by Kellerer &
Pferschy [13]; see also the textbooks by Martello & Toth [21] and Kellerer et
al. [14] for surveys. The case where the item profits equal their weights is called
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the subset sum problem and denoted as SSP. The problem with multiple knap-
sacks (MKP) is a natural generalization of KP; the case with multiple knapsacks
where the item profits equal their weights is called the multiple subset sum prob-
lem (MSSP). Various special cases and extensions of these problems have been
studied [1,2,3,4,5,11,12], finally yielding PTASes and FPTASes for the cases upon
which our approach is based [2,4,12].

2 Problem Definition and Preliminaries

Now we formally define our problem. Let m ∈ N
∗ denote the number of machines.

An instance I consists of n jobs characterized by processing times p1, . . . , pn, and
r reservations R1, . . . , Rr. For each k ∈ [r], Rk = (ik, sk, tk) indicates unavail-
ability of machine ik in the time interval [sk, tk), where sk, tk ∈ N, ik ∈ [m]
and sk < tk. We suppose that for reservations on the same machine there
is no overlap; for two reservations Rk, Rk′ such that ik = ik′ holds, we have
[sk, tk) ∩ [sk′ , tk′) = ∅. For each i ∈ [m] let R′

i := {Rk ∈ I|ik = i} denote
the set of reservations for machine i. Finally, for each i ∈ [m] suppose that
R′

i is sorted increasingly with respect to the starting times of the reservations;
more precisely, R′

i = {(i, si1, ti1), . . . , (i, siri , tiri)} such that si1 < · · · < siri

where we set ri := |R′
i|. These assumptions are established algorithmically in

O(r log r) time by sorting {R1, . . . , Rr} lexicographically with respect to the
first two components of its elements and partitioning it into R′

1, . . . , R
′
m and

finally merging adjacent reservations in R′
i for each i ∈ [m] \ {1}. In the sequel

we use P (I) :=
∑n

j=1 pj to denote the total processing time of an instance I and
for each S ⊆ [n] we write P (S) :=

∑
j∈S pj for the total processing time of S. A

schedule is a function σ : [n] → [m] × [0, ∞) that maps each job to its executing
machine and starting time; if σ is clear from the context it may be dropped from
notation. Our goal is to compute a non-preemptive schedule of the tasks such
that no task is scheduled on a machine that is unavailable, and on each machine
at most one task runs at a given time; the objective is to minimize the makespan
Cmax. Using the 3-field notation, we denote our problem by Pm|nr-a|Cmax and
show its inapproximability for m ≥ 2.

Lemma 1. No polynomial time algorithm for Pm|nr-a|Cmax with m ≥ 2 has a
constant approximation ratio unless P = NP.

Proof. Let c ∈ N
∗; for an instance I of Partition, which is NP-complete [7],

given by I = {a1, . . . , an} such that
∑

i∈I ai = 2A, we define an instance I ′

of Pm|nr-a|Cmax by setting pi := ai for each i ∈ [n], R1 := (1, A, A + c),
R2 := (2, A, A + c) and Rk := (k, 0, A + c) for k ∈ [m] \ {1, 2}. Then I is a
yes-instance of Partition if and only if I ′ has an optimal makespan of C∗

max = A.
However, any suboptimal schedule of I ′ for a yes-instance I of Partition has a
makespan Cmax > A + c; by choosing c large, any suboptimal solution can be
arbitrarily bad. ��

The inapproximability of the general case is due to the permission of intervals
in which no machine is available. Hence it is reasonable to suppose that at each
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time step there is an available machine. This is not sufficient since we can prove
in this case the same inapproximability result by considering, for example, the
following instance: there is, for a given period p, a set of reservations which
alternate on two machines in a such a way that there are no two reservations at
the same time and the period between two consecutive reservations is smaller
than the length of any task of the instance. In this case, no task can be put
during time period p and we get the same inapproximability result as if we had
on each of these machines a big reservation of length p. Hence we suppose that
at least one machine is always available. If we consider that reservations are
jobs with high priority which are already scheduled, then, since the machines
are identical, the reservations can be put on the machines in such a way that
w.l.o.g. the first machine is always available, hence ik = 1 for each reservation
Rk. This can be done by distributing the reservations one by one and always
putting a reservation on the machine with maximum index i ∈ [m] among the
available machines.

We use Pm, 1up|nr-a|Cmax to denote this restricted problem; 1up means that
at least one machine is always available. This problem is NP-hard even for m = 2,
which can be seen by following the lines of the proof of Lemma 1 using one
reservation R1 := (2, A, A + 1) and arguing that I ′ has an optimal makespan
C∗

max = A if and only if I is a yes-instance of Partition.

3 Approximation Algorithms and Complexity Results

We present approximation algorithms and complexity results. In Subsect. 3.1 we
obtain approximation schemes; in Subsect. 3.2 we discuss fast greedy algorithms
that are based on the same idea. We close the section with complexity results in
Subsect. 3.3.

3.1 Polynomial Time Approximation Schemes

We explain the MSSP approach for m ≥ 2 to obtain a PTAS for our problem.
Later we discuss the cases m ∈ {1, 2}, which admit FPTASes for the case where
one reservation is permitted. Our idea is based on obtaining a complementary
representation for the periods of availability in order to reduce the problem to
MSSP which admits a PTAS [2,4]; we derive a dual approximation algorithm [8]
by using binary search on the makespan where a PTAS for MSSP serves as a
relaxed decision procedure, as illustrated with a Gantt chart in Fig. 1. In Sect. 2
we argued how to obtain sorted sets R′

i of reservations for each i ∈ [m]\ {1}. We
use the algorithm in Fig. 2 to obtain sets of inclusionwise maximal availability
intervals Ai for each i ∈ [m], each containing elements (i, s, t) indicating that
machine i is available in [s, t) where s ∈ N and t ∈ N ∪ {∞}. Due to space
restrictions a detailed discussion of Fig. 2 is omitted.

The running time of the algorithm in Fig. 2 is linear in m, r and independent
from n; at most 2r intervals of availability are generated. For a fixed i ∈ [m], we
use the initial sorting of R′

i to obtain that the intervals of availability for machine
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m1

m2

m3

A1

A2 R2 A3 R3 A4 R5

A5 R1 A6 R4 A7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

target makespan t = 14

time

Fig. 1. Sketch illustrating the approach of the algorithm in Fig. 4. The grey zones
R1, . . . , R5 are the reservations. If the target makespan is 14, we try to fill all the jobs
in knapsacks of sizes corresponding to A1, . . . , A7; zones A1 and A7 end at time 14.

1. Set A1 := {(1, 0, ∞)} and for each i ∈ [m] \ {1} set Ai := ∅.
2. For each i ∈ [m] \ {1} execute Steps 2.1–2.3.

2.1. If ri = 0, set Ai := Ai ∪ {(i, 0, ∞)} and proceed with the next iteration of the
loop in started in Step 2.

2.2. Set t := 0.
2.3. For each r ∈ [ri] execute Steps 2.3.1–2.3.2.

2.3.1 If sir = 0 then proceed with the next iteration of the loop started in
Step 2.1, otherwise set Ai := Ai ∪ {(i, t, sir)} and t := tir.

2.3.2 If r = ri then set Ai := Ai ∪ {(i, t,∞)}.

Fig. 2. Algorithm GenAvail

i are sorted with respect to their starting times. More important is the following
subroutine that uses A1, . . . , Am to generate the finite intervals of availability
for a fixed finite planning horizon [0, t) where t ∈ N.

Step 1.1 in Fig. 3 removes all intervals of availability that begin outside of
[0, t) while Step 1.2, if necessary, truncates the last interval on a machine to fit
exactly into the planning horizon. The running time of the algorithm in Fig. 3
is independent from n and linear in m, r. We denote A(t) := ∪m

i=1A
′
i(t) and

will use the at most 2r intervals stored in A(t) as knapsacks in which we like
to pack the jobs in [n]. To this end, we use a PTAS for MSSP and for each
job j ∈ [n] define an item j with weight pj to obtain an instance of MSSP.
The algorithm is described in Fig. 4, where MSSPPTAS is a PTAS for MSSP
where the capacities of the knapsacks may be different [2,4]. We suppose that
MSSPPTAS does not only select a desired S ⊆ [n] but also stores the feasible
assignment to the knapsacks as a byproduct.

1. For each i ∈ [m] execute Steps 1.1–1.2.
1.1. Set A′

i(t) = {(i, s′, t′) ∈ Ai|s′ < t)} and ai := |A′
i(t)|.

1.2. If ai > 0 set tiai := min{tiai , t}.

Fig. 3. Algorithm GenAvailFinite
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1. Use the algorithm in Fig. 2 to generate Ai for each i ∈ [m].
2. Set LB := 0 and UB := P (I).
3. While UB − LB > 1 repeat Steps 3.1–3.3.

3.1 Set t := �(UB − LB)/2�. Use the algorithm in Fig. 3 to generate A(t), the set
of availability intervals for fixed planning horizon [0, t).

3.2 Use MSSPPTAS with accuracy ε/m to select a set of jobs S ⊆ [n] such that

P (S) ≥ (1 − ε/m) max{P (S′)|S′ ⊆ [n],

S′ permits a feasible packing into the intervals in A(t)}.

3.3 If P (S) < (1 − ε/m)P (I) then set LB := t else store S and set UB := t.
4. Schedule the jobs in the last stored set S into the interval [0, UB) as indicated by

the solution generated by MSSPPTAS when S was returned; schedule the jobs in
[n] \ S in the interval [UB , ∞) on the first machine without unnecessary idle time.

Fig. 4. Algorithm MultiSubsetSumScheduler

Theorem 1. The algorithm in Fig. 4 is a PTAS for Pm, 1up|nr-a|Cmax.

Proof. Since the first machine is available at each time step t ∈ [0, ∞), the sum
of processing times P (I) is an upper bound for the optimal makespan C∗

max;
hence in Step 2, the lower bound LB and the upper bound UB are initialized to
have the following properties.

1. LB < C∗
max.

2. There is a set S ⊆ [n] such that the jobs in S permit a feasible schedule into
the time horizon [0,UB) and P (S) ≥ (1 − ε/m)P (I).

The second property follows from the fact that, since C∗
max ≤ UB , all jobs can

be scheduled in [0,UB) and thus it is impossible that the algorithm MSSPPTAS
returns a set S ⊆ [n] such that P (S) < (1 − ε/m)P (I) holds; both properties
are invariant under the update of LB and UB in Step 3.3. The number of it-
erations of the binary search in Step 3 is bounded by log P (I) ≤ log(npmax) =
log n + log pmax which is polynomially bounded in the encoding length of I.
On termination of the binary search in Step 3, LB + 1 = UB holds, hence
UB ≤ C∗

max since LB < C∗
max is satisfied. This means that the set S selected in

Step 4 can be scheduled in [0,UB) and satisfies P (S) ≥ (1 − ε/m)P (I); hence
P ([n] \ S) ≤ εP (I)/m holds. Furthermore the jobs in [n] \ S can be scheduled
on the first machine in [UB , ∞) since the first machine is available. We have
P (I)/m ≤ C∗

max; in total, the makespan of the schedule generated by the algo-
rithm in Fig. 4 is bounded by UB + εP (I)/m ≤ C∗

max + εC∗
max = (1 + ε)C∗

max
and we obtain the desired approximation ratio. ��

However, since the running time of MSSPPTAS may grow exponentially in 1/ε,
the running time of the algorithm in Fig. 4 may also grow exponentially in
m. Furthermore, it is known that MSSP does not admit an FPTAS even for
the special case of two knapsacks of equal capacity, unless P = NP holds, as
discussed in [14], Subsect. 10.4. Hence it is impossible for the approach used
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above to yield an FPTAS for our scheduling problem by replacing MSSPPTAS
with a better algorithm, which is not surprising in the light of Corollary 1 in
Subsect. 3.3.

For m = 1 the situation is different. Lee [17] remarked that 1|nr-a|Cmax is
strongly NP-hard via reduction from 3-Partition, and the inapproximability can
be seen by generalizing a suitable construction. If there is only one reservation,
an FPTAS can be obtained since in [12,14] an FPTAS for SSP is available. This
case corresponds to a simple knapsack problem; if all the tasks can be scheduled
before the reservation then we get an optimal solution; otherwise we use the
FPTAS for SSP to schedule as much as possible load before the reservation.

Now we sketch m = 2 with one reservation R1 = (2, s, t); for this case, an
FPTAS can be obtained. Due to space constraints we omit the precise algorithmic
details. The FPTAS is based on dynamic programming which yields an optimal
algorithm with a pseudopolynomial runtime bound. This dynamic programming
algorithm can be used to build an FPTAS by a suitable discretization of the
state space; we obtain the following result.

Theorem 2. The problem P2, 1up|nr-a|Cmax with one reservation admits an
FPTAS.

3.2 Greedy Algorithms

In [5], a greedy 2-approximation algorithm for MSSP with running time O(n2)
is briefly mentioned; the subject is also discussed in [14], Subsect. 10.4.1, with
a slightly different approach yielding the same runtime bound. By using this
algorithm instead of MSSPPTAS and changing the bound 1 − ε/m to 1/2 in
Step 3 of the algorithm in Fig. 4 we obtain an approximation algorithm with ratio
1+m/2 for Pm, 1up|nr-a|Cmax by following the lines of the proof of Theorem 1.
On the other hand, scheduling all jobs on the first machine here yields an m-
approximation algorithm; hence the algorithm sketched above yields a better
bound than this approach only if m > 2 holds.

In [17], Lee studied the case where at most one reservation per machine is
permitted and one machine is always available; a tight approximation ratio of
(m+1)/2 for LPT is proved. For our generalization Pm, 1up|nr-a|Cmax we obtain
the same asymptotic behaviour in m with our greedy approach. Comparing our
result here with the tight bound 1+�m/(m−λ)�/2 for LPT [9] where λ ∈ [m−1]
is the maximum number of machines which are permitted to be unavailable at
the same time, we basically get the same ratio for our case λ = m − 1. In total,
we obtain similar approximation ratios for more general problems, which comes
at the cost of increased computational effort, however.

3.3 Complexity Results

We present an inapproximability result which shows that the PTAS for
Pm, 1up|nr-a|Cmax is close to best possible; hence Pm, 1up|nr-a|Cmax is sub-
stantially harder than Pm||Cmax which permits an FPTAS [22].
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m1

m2

m3

R1 R2 Rn

Rn+1

. . .B B

(a) Structure of reservations

m1

m2

m3

R1 R2 Rn

Rn+1

. . .=̂S1 =̂S2

J3n+1 (dummy job)

(b) Optimal solution of I ′

Fig. 5. Sketch illustrating the proof of Theorem 3

Theorem 3. The problem Pm, 1up|nr-a|Cmax is strongly NP-hard for m ≥ 2.

Proof. We reduce from the strongly NP-complete problem 3-Partition [7]; see
Fig. 5 for a sketch of the construction.

– Given: Index set S = [3n], ai ∈ N
∗ for each i ∈ S and B ∈ N

∗ such that
B/4 < ai < B/2 for each i ∈ S and

∑3n
i=1 ai = nB holds.

– Question: Is there a partition of the set S into S1, . . . , Sn such that
∑

i∈Sj

ai = B holds for each j ∈ [n]?

Given an instance I of 3-Partition we define an instance I ′ of the problem
Pm, 1up|nr-a|Cmax for m ≥ 2. We set pi := ai for each i ∈ [3n] (small jobs),
p3n+1 := n(B + 1) (dummy job) and define suitable reservations Ri := (2, i(B +
1)−1, i(B+1)), i ∈ [n], Rn+i := (2+i, 0, n(B+1)) for each i ∈ [m−2]. I ′ can be
generated from I in time polynomial in the length of I and yields C∗

max = n(B+1)
if and only if I is a yes-instance of 3-Partition by putting the small jobs according
to the partition S1, . . . , Sn in the intervals [0, B), . . . , [(n−1)(B+1), n(B+1)−1)
on machine 2 and putting the dummy job on machine 1; conversely in a schedule
with makespan n(B+1) the dummy job must be put on machine 1 and hence the
small jobs run on machine 2 which indicates the partition of S into S1, . . . , Sn

since no more than 3 small jobs can fit into an interval of length B. In total,
Pm, 1up|nr-a|Cmax is strongly NP-hard. ��

Since the objective values of feasible schedules for Pm, 1up|nr-a|Cmax are integral
and C∗

max ≤ P (I), the next result immediately follows from [6].

Corollary 1. Pm, 1up|nr-a|Cmax does not admit an FPTAS for m ≥ 2 unless
P = NP.

It is a natural question whether the problem becomes easier if the number of
reservations per machine is restricted to one. Surprisingly, this is not the case,
which can be shown by adaptation of a construction from [1]. The following
result implies that Pm, 1up|nr-a|Cmax with at most one reservation per machine
for m ≥ 3 is strongly NP-hard.

Theorem 4. Pm, 1up|nr-a|Cmax does not admit an FPTAS, even if there is at
most one reservation per machine, for m ≥ 3 unless P = NP.
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Proof. We use a reduction from the following problem, Equal Cardinality Par-
tition or ECP for short, which is NP-complete [7]; see Fig. 6 for a sketch of the
construction.

– Given: Finite list I = (a1, . . . , an) of even cardinality with ai ∈ N
∗ for each

i ∈ [n], A ∈ N
∗ such that

∑n
i=1 ai = 2A holds.

– Question: Is there a partition of the list I into lists I1 and I2 such that
|I1| = n/2 = |I2| and

∑
i∈I1

ai = A =
∑

i∈I2
ai holds?

Given an instance I of ECP we define an instance I ′ of Pm, 1up|nr-a|Cmax
for m ≥ 3 as follows. We set pi := 2A + ai for each i ∈ [n] (small jobs),
pn+1 := 2A(n+1) (dummy job) and Rk := (k, A(n+1), 2A(n+1)) for k ∈ {2, 3}
and Rk := (k, 0, 2A(n + 1)) for each k ∈ [m] \ {1, 2, 3}. I ′ is generated from I
in running time polynomial in the length of I. Furthermore I ′ has an optimal
makespan of C∗

max = 2A(n + 1) if and only if I is a yes-instance by executing
the small jobs according to the partition I1 and I2 on machines 2 and 3 and
putting the dummy job on machine 1; conversely in a schedule with makespan
2A(n + 1) the dummy job is put on machine 1 and hence the small jobs run
on machines 2 and 3 which indicates the partition of I into I1 and I2 since no
more than n/2 jobs fit into an availability interval of length A(n + 1). Let I be
a yes-instance of ECP and consider a suboptimal schedule of I ′; the makespan
of a suboptimal schedule of I ′ must be at least 2A(n + 1) + A since every job
in I ′ has a processing time larger than A and is scheduled either on machine
i ∈ [m] \ {1} or on machine 1 together with the dummy job, unless the dummy
job is scheduled on a machine other than the first one. Given an FPTAS for
Pm, 1up|nr-a|Cmax, choose ε ∈ (0, 1) such that

1 + ε <
2A(n + 1) + A

2A(n + 1)
=

2n + 3
2n + 2

holds, which is equivalent to ε < 1/(2n+2); consequently ε can be chosen in such
a way that 1/ε is polynomially bounded in n and hence polynomially bounded in
the encoding length of I. Then, the FPTAS generates a schedule with makespan
Cmax such that

Cmax ≤ (1 + ε)C∗
max <

2A(n + 1) + A

2A(n + 1)
2A(n + 1) = 2A(n + 1) + A

m1

m2

m3

m4

R1

R2

R3

A(n + 1)

A(n + 1)

(a) Structure of reservations

m1

m2

m3

m4

R1

R2

R3

=̂I1

=̂I2

Jn+1 (dummy job)

(b) Optimal solution of I ′

Fig. 6. Sketch illustrating the proof of Theorem 4
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holds. Hence I ′ is solved to optimality in polynomial time and I is identified as
a yes-instance of ECP, which is impossible unless P = NP. ��

4 Conclusion

We studied scheduling on a constant number of identical parallel machines with
reservations and have shown that a sensible restriction to Pm, 1up|nr-a|Cmax is
necessary to obtain a bounded approximation ratio. On the algorithmic side we
have taken an approach that is based on using approximation algorithms for SSP
and MSSP. We obtained FPTASes for 1|nr-a|Cmax and P2, 1up|nr-a|Cmax with
one reservation, respectively. For the case of arbitrary constant m our approach
yields a PTAS and we have shown that no FPTAS exists unless P = NP holds,
even if the number of reservations per machine is restricted to one.

Acknowledgements. The authors thank Érik Saule and Ulrich M. Schwarz for
many fruitful discussions.
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Abstract. Providing QoS and performance guarantees for arbitrarily
divisible loads in a cluster has become a significant problem. While
progress is being made in scheduling arbitrarily divisible loads, some
of the proposed approaches may cause Inserted Idle Times (IITs) that
are detrimental to system performance. Two contributions are made in
addressing this problem. First, we propose two constraints that, when
satisfied, lead to an optimal partitioning in utilizing IITs. Second, we
integrate the new partitioning method with a previous approach and de-
velop an enhanced algorithm that better utilizes IITs. Simulation results
demonstrate the advantages of our new approach.

Keywords: Real-Time Scheduling, Inserted Idle Time, Cluster Com-
puting, Divisible Load.

1 Introduction

Arbitrarily divisible applications consist of an amount of data that can be di-
vided arbitrarily into a desirable number of independent load fractions, and each
sub-task (fraction) itself is arbitrarily divisible. This perfectly parallel model is
a good representation of many scientific applications that consist of huge num-
bers of identical, low-granularity loads. For example, the CMS (Compact Muon
Solenoid) [1] and ATLAS (AToroidal LHC Apparatus) [2] projects, associated
with the LHC (Large Hadron Collider) at CERN (European Laboratory for Par-
ticle Physics), execute cluster-based applications with arbitrarily divisible loads.
Usually, such applications require a large amount of resources and can only be
deployed in commodity clusters or computational grids.

To efficiently utilize large-scale clusters, an on-line resource management sys-
tem (RMS) is needed to provide real-time guarantees or QoS. This is becom-
ing a significant issue for research computing facilities, such as the U.S. CMS
Tier-2 sites [3], that execute large numbers of arbitrarily divisible loads. Thus,
researchers, e.g., [4,5], have begun to investigate real-time divisible load schedul-
ing, with significant initial progress in important theories and applications.

However, the challenge, to efficiently schedule a job when there are not enough
resources, has not yet been adequately addressed for real-time divisible loads.
When scheduling a parallel job, if a sufficient number of processors are available,
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the processors are allocated and the job is started. But if the required number
of processors is not available, the job waits for additional processors. This es-
sentially leads to a waste of processing power as some processors sit idle waiting
to start the job. This is a system inefficiency that we refer to as the Inserted
Idle Times (IITs) problem [6]. To alleviate this limitation, backfilling algorithms
[7] have been proposed, where small jobs could be moved ahead and run on
processors that would otherwise remain idle.

Leveraging characteristics of arbitrarily divisible loads, we have previously
developed a real-time scheduling algorithm that utilizes IITs [6]. Although the
approach has significantly improved the system performance, it cannot fully
utilize IITs. In this paper, we propose a new strategy to further make use of
IITs. Not only can our enhanced algorithm schedule real-time divisible loads
with different processor available times, when certain conditions hold, it can also
optimally partition and schedule jobs to fully utilize IITs. Two contributions are
made in this paper. First, we propose a new partitioning approach to fully utilize
IITs and investigate its applicability constraints. Second, we integrate this with
our previous work [6] and propose a new real-time scheduling algorithm.

The remainder of this paper is organized as follows. Related work is presented
in Section 2. We describe both task and system models in Section 3. Section 4
discusses real-time scheduling algorithms investigated in this paper. We evaluate
the algorithms performance in Section 5 and conclude the paper in Section 6.

2 Related Work

The scheduling models investigated for real-time distributed systems most often
(e.g., [8]) assume periodic or aperiodic sequential jobs where each job is allocated
to a single resource and must be executed by its deadline. With the evolution of
cluster computing, researchers have begun to investigate real-time scheduling of
parallel applications. However, each of these studies assume the existence of some
form of task graph to describe communication and precedence relations between
computational units called subtasks (i.e., nodes in the task graph). Despite the
increasing importance of arbitrarily divisible applications [4], to the best of our
knowledge, only a few researchers [5,9] have investigated the real-time scheduling
of arbitrarily divisible loads.

Utility-driven cluster computing has been well researched [10] to improve the
utility delivered to users. Proposed cluster RMSs [11] have addressed the schedul-
ing of both sequential and parallel loads. The goal of those schemes is similar to
ours: to harness the power of resources based on user objectives.

The most closely related work to ours is the scheduling of “scalable tasks”
[9] or “moldable jobs” [12], where only a few papers [9] have considered QoS
support. In [5] we investigated real-time cluster-based divisible load scheduling
and proposed several algorithms for homogenous clusters. In [6], we developed a
real-time scheduling approach that utilizes Inserted Idle Times (IITs). A mecha-
nism to utilize processor idle-times, also called fragments, was investigated in [9],
wherein a task is assigned a larger number of nodes to utilize more processing
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power. Complementary to that approach, our algorithm in [6] enables a task
to utilize a processor as soon as it becomes available. While results in [9] show
that the performance improvement of their approach is negligible, our previous
approach [6] has led to much better performance, even though it cannot fully
utilize IITs. In this paper, we propose a new partitioning approach. We prove
that if certain constraints hold, any task can be partitioned optimally to fully
make use of IITs. By integrating such an optimal partitioning method with al-
gorithms we have proposed in [6], system resources are better utilized and the
performance is further improved.

Divisible load theory (DLT) provides an in-depth study of distribution strate-
gies for arbitrarily divisible loads [13]. In our previous work [5], we demonstrated
that the application of DLT leads to significantly better approaches for real-time
divisible load scheduling. Encouraged by its performance benefits, we again ap-
ply DLT to develop our new partitioning algorithm.

3 Task and System Models

In this paper, we adopt the same task and system models as our previous work
[5,6]. For completeness, we briefly present these below.

Task Model. Similar to the classic real-time aperiodic task model, we assume
each aperiodic task Ti consists of a single invocation specified by the tuple
(Ai, σi, Di), where Ai is the task arrival time, σi is the total data size of the
task, and Di is its relative deadline. The task absolute deadline is given by
Ai + Di. We present in Section 4 how task execution time is dynamically com-
puted based on total data size σi, resources allocated (i.e., processing nodes and
bandwidth), and the partitioning method applied to parallelize the computation.

System Model. We consider a common cluster model, which consists of a head
node, denoted by P0, connected via a switch to N processing nodes, denoted
by P1, P2, . . . , PN . We assume a homogeneous model in which all processing
nodes have the same computational power and all links from the switch to the
processing nodes have the same bandwidth. Like a typical cluster environment,
the system model assumes the head node does not participate in computation.
The role of the head node is to accept or reject incoming tasks, execute the
scheduling algorithm, divide the workload and distribute data chunks to pro-
cessing nodes. Since different nodes process different data chunks, the head node
sequentially sends every data chunk to its corresponding processing node via the
switch. We assume that data transmission does not occur in parallel, although
it is straightforward to generalize our model and include the case where some
pipelining of communication may occur.

As with divisible load theory, we use linear models to represent processing
and transmission times [14]. In the simplest scenario, the computation time of a
load σ is calculated by a cost function Cp(σ) = σχ, where χ represents the time
to compute a unit of workload on a single processing node. The communication
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time of a load σ is calculated by a cost function Cm(σ) = στ , where τ is the
time to transmit a unit of workload from the head node to a processing node.

The following notations, partially adopted from [14], are used in this paper.

– T = (A, σ, D): A divisible task, where A is the arrival time, σ is the data
size, and D is the relative deadline;

– α = (α1, α2, ..., αn): Data distribution vector, where n is the number of
processing nodes allocated to the task, αj is the data fraction allocated to
the jth node, i.e., αjσ, is the amount of data that is to be transmitted to
the jth node for processing, 0 < αj ≤ 1 and Σn

j=1αj = 1;
– τ : Cost of transmitting a unit workload;
– χ: Cost of processing a unit workload.

4 Algorithms

This section presents real-time divisible load scheduling algorithms that utilize
Inserted Idle Times (IITs) in a cluster. Due to space limitations, we omit the
proofs of the theorems in this Section.

4.1 Real-Time Divisible Load Scheduling

An admission controller, which is a part of our scheduler, executes on the head
node. As is typical for dynamic real-time scheduling algorithms , when a task
arrives, the scheduler dynamically determines if it is feasible to schedule the new
task without compromising the guarantees for previously admitted tasks. The
task’s schedulability test will be described in Section 4.5.

In [5], we encapsulated the logic of a real-time divisible load scheduling algo-
rithm in three modules. The first module determines the task execution order,
which could be based on policies, such as FIFO (first in first out) or EDF (ear-
liest deadline first). The second task partitioning module chooses a strategy to
divide loads, while the third module decides the node assignment for each task.
In [5] we have shown that assigning only the minimum number of nodes to a
task to meet its deadline is an efficient approach. However, this strategy, as with
many others, leads to the IITs problem. To utilize IITs, we focused on the second
module in [6]. That is, we designed a new task partitioning module for real-time
divisible load scheduling. However, that approach has limitations. First, it does
not guarantee optimal partitioning [14] and cannot ensure all assigned nodes
complete their computations at the same time. Second, not all IITs are fully
utilized. In the following sections, we first find the scenario when the IITs can
be fully utilized and propose an optimal partitioning approach to fully make use
of IITs. We then integrate this partitioning method with algorithms proposed
in [6] to improve the system’s real-time performance.

4.2 Inserted Idle Times Problem

The IITs problem occurs when the number of processors available is less than
that required by the next job. Many parallel job scheduling algorithms [7,5] lead
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to this problem. If no strategy is implemented to make use of IITs, the job
has to wait until enough processors become available, which leads to a waste
of processing power as some processors are idle waiting. Backfilling [7] is an
approach proposed in the literature to alleviate this problem. It is a general
approach applicable to all types of parallel jobs — whether task graph based
and modularly divisible or arbitrarily divisible.

An arbitrarily divisible load, however, has a unique property, that is, it can be
arbitrarily partitioned into a large number of independent subtasks of arbitrar-
ily small size. Thus, the subtasks can be scheduled flexibly and independently.
Exploiting this property of arbitrarily divisible loads, we have proposed algo-
rithms [6] that schedule divisible loads with different processor available times
and utilize IITs in a cluster.
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Fig. 1. Timing Diagrams

As shown in Figure 1a, when a task arrives at time r1, the scheduler decides
to assign the task n processors. However, it is not until time rn that all of the n
processors become available. We denote the available time of the ith processor as
ri, i = 1, . . . , n. Without loss of generality, we assume the processors are ordered
by their available times, that is

r1 ≤ r2 ≤ ...ri ≤ ... ≤ rn

When scheduling the task, if we do not make use of the processors before time rn,
as shown in Figure 1a, the task will not start until time rn. Let pi = rn − ri, i =
1, 2, . . . , n. Since the ith processor is idle during the time period [ri, rn], the
total wasted cycles for these n processors is

∑n
i=1 pi, which leads to sub-optimal

cluster performance.

4.3 Optimal Partitioning

The unique property of a divisible load provides flexibility in scheduling. We can
start part of the load on a processor as soon as the processor becomes available.
However, the challenge is to optimally partition the load among the n assigned
processors. According to DLT, the optimal execution time is obtained when all
nodes allocated to a divisible task finish their computations at the same time
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[14]. Let si represent the start time of the ith node and E(σ, n) denote the task
completion time. To ensure all nodes finish at the same time, we have

E(σ, n) = s1 + α1σ(τ + χ) = s2 + α2σ(τ + χ) = ...

= sn + αnσ(τ + χ).
(1)

If any processor i can start as soon as it becomes available at time ri (i.e.,
si = ri, i=1,. . . ,n), we can fully utilize IITs. Following DLT, with no IITs, an
optimal partitioning will result in the task completion time of Equation (2).

E(σ, n) = r1 + α1σ(τ + χ) = r2 + α2σ(τ + χ) = ...

= rn + αnσ(τ + χ)
(2)

Theorem 1. If ∀i : 1 ≤ i ≤ n, si = ri, Equations (3) and (4) result in an
optimal partitioning of the load with no unused IITs.

α1 =
1
n

+
(n − 1)p1 −

∑n
i=2 pi

nσ(τ + χ)
(3)

αi = α1 − p1 − pi

σ(τ + χ)
where pi = rn − ri. (4)

Figure 1b shows the task execution time diagram following this optimal parti-
tioning scheme. We can see in this scenario every processor is busy for either its
data transmission or its subtask computation.

4.4 Constraints for Optimal Partitioning

The start time may not always be equal to the release time, as in our model data
transmission is not parallel, the start time si of the ith node may be delayed by
data transmissions to the 1st, 2nd, . . . , (i − 1)th nodes. Thus, we have

s1 = r1, si = max (ri, si−1 + αi−1στ), i = 2, . . . , n

And in the worst case when r1 = r2 = . . . = rn, we have

s1 = r1, s2 = r2 + α1στ, s3 = r3 + α1στ + α2στ

. . . . . .

sn = rn +
n−1∑

i=1

αiστ

In the dynamic scheduling process, the n processor available times could be
arbitrary. Thus, the analysis to get a closed-form solution for the completion
time becomes very difficult. For this reason, in [6] we cast a homogenous cluster
with different processor available times to a heterogeneous cluster model and
then applied a DLT heterogeneous model to guide the task partitioning and to
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derive a task execution time function. Although the intensive simulation results
show that our previous approach does improve system performance, it cannot
utilize all of the IITs (

∑n
i=1 pi).

In the remainder of this section, we first prove that IITs cannot always be
completely eliminated. Then we focus on identifying the scenarios where we can
fully utilize IITs.

Theorem 2. It is not always possible to eliminate all IITs.

Constraint 1. ri − ri−1 ≥ στ, i = 2, 3, . . . , n.

Constraint 1 requires that the difference between available times of two successive
processors to be no less than the total task data transmission time. This is a
strong constraint. Later, we will propose another weaker constraint.

Theorem 3. If Constraint 1 holds, Equations (3) and (4) result in an optimal
partitioning of the load with no IITs.

As we have mentioned, Constraint 1 is very strong. It is a sufficient but not
a necessary condition for applying the optimal partitioning scheme. In some
cases, Constraint 1 does not hold but the optimal partitioning approach is still
applicable. Next we propose a weaker constraint to replace Constraint 1 and
thus overcome its pessimism.

Note that for i = 2, 3, . . . , n, the start time of the ith node will not be delayed
if the data transmission time for the (i − 1)th node is equal to or smaller than
the difference between the two nodes’ available times. Based on this observation,
Constraint 2 is derived and Corollary 1 follows immediately from Theorem 1,
since ∀i : 1 ≤ i ≤ n, si = ri in this case.

Constraint 2. αi−1στ ≤ ri − ri−1, i = 1, . . . , n.

Corollary 1. If Constraint 2 holds, Equations (3) and (4) result in an optimal
partitioning of the load with no IITs.

4.5 Constraint-Based Algorithms

We first design algorithms based on Constraint 1. Figure 2 shows the general
process of the schedulability test. After we detect IITs (i.e., ∃ ri, rj : ri �= rj),
we first test whether Constraint 1 holds. If so, we repartition the task using our
optimal partitioning approach presented in Section 4.3. Otherwise, we use the
homgeneous-to-heterogeneous remodeling approach of [6] to repartition the task.

Various scheduling order policies can be integrated into our framework. In [6],
we consider two such policies. One is FIFO, which is a common practice adopted
by cluster administrators. The other is EDF, the Earliest-Deadline-First algo-
rithm, which is a common real-time scheduling algorithm. The two algorithms
we proposed in [6] are FIFO-DLT and EDF-DLT. They adopt different schedul-
ing policies but apply the same partitioning and node assignment strategies. In
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Fig. 2. Schedulability Test

this paper, by integrating our optimal partitioning approach with the two algo-
rithms, we obtain two new algorithms: FIDO-I (FIfo Divisible load with Optimal
partitioning) and EDDO-I (EDf Divisible load with Optimal partitioning).

The other two corresponding algorithms based on Constraint 2 are FIDO-II
and EDDO-II. Unlike Constraint 1, Constraint 2 can only be verified after the
task partition is determined because the value of αi cannot be known until we
have the partitioning scheme. Thus, we first assume that Constraint 2 will be
satisfied and use the optimal approach to partition the task. We check after-
wards whether or not Constraint 2 really holds. If so, we are assured that the
task partition is optimal. Otherwise, we fall back to applying the non-optimal
partitioning strategy defined in [6].

5 Performance Evaluation

In this section, we first evaluate the proposed two sets of real-time scheduling
algorithms: Set 1 = {FIDO-I, EDDO-I} and Set 2 = {FIDO-II and EDDO-II}.
We compare the two algorithms in each set with the corresponding algorithms,
FIFO-DLT and EDF-DLT, that we proposed in [6], which do not apply the
optimal partitioning approach presented here. Second, we evaluate how commu-
nication cost will affect the performance of our approach.
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5.1 Simulation Configurations

A discrete simulator is used to simulate a range of clusters that are compliant
with the system model presented in Section 3. Three parameters, N , τ and χ
are specified for every cluster.

We adopt the same configurations for the simulation as our previous work
[5,6]. For a set of tasks Ti = (Ai, σi, Di), Ai, the task arrival time, is speci-
fied by assuming that the interarrival times follow an exponential distribution
with a mean of 1/λ. On the other hand, task data sizes σi are assumed to be
normally distributed with the mean and the standard deviation equal to Avgσ.
Task relative deadlines (Di) are assumed to be uniformly distributed in the range
[AvgD

2 , 3AvgD
2 ], where AvgD is the mean relative deadline. To specify AvgD, we

use the term DCRatio [5]. It is defined as the ratio of mean deadline to mean
minimum execution time (cost), that is AvgD

E(Avgσ,N) , where E(Avgσ, N) is the exe-
cution time assuming the task has an average data size Avgσ and is allocated to
run on all N nodes simultaneously. Given a DCRatio, the cluster size N and the
average data size Avgσ, AvgD is implicitly specified as DCRatio×E(Avgσ, N).
Thus, task relative deadlines are related to the average task execution time. In
addition, a task relative deadline Di is chosen to be larger than its minimum
execution time E(σi, N). In summary, we could specify the following parameters
for a simulation: (N, τ , χ, 1/λ, Avgσ, DCRatio).

To analyze the cluster load for a simulation, we use the metric SystemLoad [5].
It is defined as, SystemLoad = E(Avgσ,N)

λ , which is the same as, SystemLoad =
TotalTaskNumber×E(N,Avgσ)

TotalSimulationTime . For a simulation, we could specify SystemLoad in-
stead of average interarrival time 1/λ. Configuring (N, τ , χ, SystemLoad, Avgσ,
DCRatio) is equivalent to specifying (N, τ , χ, 1/λ, Avgσ, DCRatio), because,
1/λ = SystemLoad

E(Avgσ,N) . To evaluate the performance of the real-time scheduling algo-
rithms, we use the metric, Task Reject Ratio, defined as the ratio of the number of
task rejections to the number of task arrivals. The smaller the Task Reject Ratio,
the better the real-time scheduling algorithm.

For all figures, a point on a curve corresponds to the average performance of
ten simulations. For all ten runs, the same parameters (N, τ , χ, SystemLoad,
Avgσ, DCRatio) are specified but different random numbers are generated for
task arrival times Ai, data sizes σi, and deadlines Di. For each simulation, the
TotalSimulationT ime is 10,000,000 time units, which is sufficiently long.

5.2 Advantages of Optimal Partitioning Strategy

As discussed in Section 4.4, the optimal partitioning strategy is applicable when-
ever Constraint 1 or Constraint 2 is satisfied. Therefore, we first analyze the fre-
quency of cases in which Constraint 1 or Constraint 2 holds. If most of the time
Constraint 1 or Constraint 2 does not hold, then the corresponding constraint-
based algorithms are not going to be very useful. For convenience, we refer to the
scenario when the scheduler detects IITs as S-IITs. In addition, if Constraint 1
holds, we refer to it as Opt-IITs, and if Constraint 2 holds, we refer to it as
Opt-IITs-II.
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To estimate the occurrence ratio of Opt-IITs and Opt-IITs-II to S-IITs, we
conducted an experiment with the baseline system configuration N = 16, τ = 1,
χ = 100, Avgσ = 200, DCRatio= 2 [6]. We executed the FIFO-DLT algorithm [6]
and measured occurrences of S-IITs, Opt-IITs and Opt-IITs-II. The results are
summarized in Table 1, where the last two columns present the occurrence ratio
of Opt-IITs to S-IITs and the occurrence ratio of Opt-IITs-II to S-IITs. From
the data we observe that in all cases 12%-16% of S-IITs are in fact Opt-IITs,
and 14% -20% of S-IITs are Opt-IITs-II. This indicates there are a large number
of opportunities to apply our new approach to utilize IITs more efficiently and
thus to improve system performance.

Figures 3a and 3b respectively show the comparison of algorithms FIDO-I
and EDDO-I, FIDO-II and EDDO-II with their corresponding algorithms FIFO-
DLT and EDF-DLT. From Figure 3a we observe that FIDO-I has a lower Task

Table 1. Occurrences of S-IITs and Opt-IITs. The S-IITs column indicates the number
of times the scheduler detects IITs. The Opt-IITs column indicates the number of times
Constraint 1 holds after the scheduler has detected IITs. The Opt-IITs-II column
indicates the number of times Constraint 2 holds after the scheduler has detected IITs.
The last two columns are the ratio of Opt-IITs to S-IITs and the ratio of Opt-IITs-II
to S-IITs.

System Number Number Number Ratio Ratio
of of of of Opt-IITs of Opt-IITs-II

Load S-IITs Opt-IITs Opt-IITs-II to S-IITs to S-IITs

0.1 131 21 22 16% 17%

0.2 262 31 36 12% 14%

0.3 665 105 113 16% 17%

0.4 1092 142 158 13% 14%

0.5 1927 229 289 12% 15%

0.6 2304 297 321 13% 14%

0.7 3560 493 601 14% 17%

0.8 4551 553 735 13% 16%

0.9 5661 757 980 14% 17%

1.0 6108 890 1203 15% 20%
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Reject Ratio than FIFO-DLT, which shows that applying the new partitioning
approach leads to better performance. We also observe that FIDO-II has even
better performance. These results confirm that because Constraint 2 is not as
tight as Constraint 1, there are more chances to apply the optimal partitioning.
Figure 3b shows similar results. We conclude that it is beneficial to integrate our
new partitioning approaches with real-time divisible load scheduling.

5.3 Effects of Communication Cost

In this section, we run simulations with decreasing values of τ to study the effects
of communication cost. With recent advancements in technology, networks are
becoming faster and faster, and gigabits per second bandwidth has become com-
monplace. Moreover, the availability of thousands of wavelengths per fiber, and
the development and deployment of all-optical switches and routers will result
in further reductions in communication cost. For this reason, we investigate how
decreases in communication costs will affect the performance of our approach.

For the simulation, we varied the values of τ from 8 to 4, 2 and 1, while
keeping the other parameters constant as the baseline configuration presented in
Section 5.2. Each point in Figure 4 represents the difference in Task Reject Ratios
for EDF-DLT and EDDO-II algorithms. The three curves represent the cases
when SystemLoad is equal to 1.0, 0.8 and 0.6 respectively. We can see that, as
the communication cost decreases, the difference in Task Reject Ratios becomes
larger. This indicates that applying our new partitioning approach has more
significant impact on system performance as the communication cost decreases.
The reason is that στ becomes smaller when communication cost decreases, and
thus both Constraints 1 and 2 become less restrictive. Consequently, we have
more opportunities to apply the optimal partitioning and better utilize IITs.

6 Conclusion

In this paper, we address the Inserted Idle Times (IITs) problem in the context
of real-time divisible load scheduling [5]. Two contributions are made. First, we
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propose two constraints for the existence of the optimal partitioning that can
fully utilize IITs. Second, we integrate this approach with our previous work [6] to
develop new real-time scheduling algorithms that utilize IITs. Simulation results
show that our approach makes use of IITs to a larger extent and significantly
improves the system performance. Currently, we are working on expanding our
approach to show that by adopting multi-round scheduling [13], we can further
improve the IITs utilization and the system performance.
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Abstract. We consider non-preemptively scheduling a bag of independent mixed 
tasks in computational grids. We construct a novel Generalized Distributed 
Scheduler (GDS) for tasks with different priorities and deadlines. Tasks are 
ranked based upon priority and deadline and scheduled.  Tasks are shuffled to 
earlier points to pack the schedule and create fault tolerance.  Dispatching is 
based upon task-resource matching and accounts for computation as well as 
communication capacities. Simulation results demonstrate that with respect to 
the number of high-priority tasks meeting deadlines, GDS outperforms prior 
approaches by over 40% without degrading schedulability of other tasks. Indeed, 
with respect to the total number of schedulable tasks meeting deadlines, GDS 
outperforms them by 4%. The complexity of GDS is O(n2m) where n is the 
number of tasks and m the number of machines. GDS successfully schedules 
tasks with hard deadlines in a mix of soft and firm tasks, without a knowledge of 
a complete state of the grid.  This way it helps open the grid and makes it 
amenable for commercialization.  

1   Introduction 

A major motivation of grid computing [5] [6] is to aggregate the power of widely 
distributed resources to provide services. Application scheduling plays a vital role in 
pro- viding such services. A number of deadline-based scheduling algorithms already 
exist. However, in this paper we address the problem of scheduling a bag of 
independent mixed tasks in computational grids. We consider three types of tasks: hard, 
firm and soft [8]. It is reasonable for a grid scheduler to prioritize such mission critic- al 
tasks while maximizing the total number of tasks meeting deadlines. Doing so may 
make the grid commercially viable as it opens it up for all classes of users. 

To the best of our knowledge, GDS is the first attempt at prioritizing tasks according 
to task types as well as considering deadlines and dispatch times. It also matches tasks 
to appropriate computational and link bandwidth resources. Additionally, GDS consists 
of a unique shuffle phase that reschedules mission critical tasks as early as possible to 
provide temporal fault tolerance. Dispatching tasks to peers is based upon both 
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computational capacity and link bandwidth. Furthermore, GDS is highly scalable as it 
does not require a full knowledge of the state of all nodes of the grid as many other 
algorithms do. For GDS’s peer to peer dispatch, knowledge of peer site capacities is 
sufficient. One must consider that obtaining full knowledge of the state of the grid is 
difficult and/or temporally intensive.  

The rest of this paper is organized as follows. A review of recent related works has 
been given in Section 2. In Section 3, we outline the task taxonomy used in this work. 
Section 4 describes the grid model. Section 5 presents the detailed design of GDS. 
Section 6 presents a comprehensive set of simulations that evaluate the performance of 
GDS. Conclusions and suggestions for future work appear in Section 7. 

2   Related Work 

Several effective scheduling algorithms such as EDF [9], Sufferage [11], and Min-Min 
[12] have been proposed in previous works. The rationale behind Sufferage is to 
allocate a site to a task that would “suffer” most in completion time if the task is not 
allocated to that site. For each task, Min-Min tags the site that offers the earliest 
completion time. Among all tasks, the one that has the minimal earliest completion 
time is chosen and allocated to the tagged site.  

Few scheduling algorithms take into account both the task types and deadlines in 
grids. A deadline based scheduling algorithm appears in [16] for multi-client, multi- 
server environment existing within a single resource site. It aims at minimizing 
deadline misses by using load correction and fallback mechanisms. In [2], a deadline 
scheduling algorithm with priority appropriate for multi-client, multi-server 
environment within a single resource site has been proposed. Since preemption is 
allowed, it leaves open the possibility that tasks with lower priority but early deadlines 
may miss their deadlines. Also, it does not evaluate the fraction of tasks meeting 
deadlines. 

Venugopal and Buyya [17] propose a scheduling algorithm that tries to minimize the 
scheduling budget for a bag of data-intensive applications on data grid. Casanova [3] 
describes an adaptive scheduling algorithm for a bag of tasks in Grid environment that 
takes data storage issues into consideration. However, they make scheduling decisions 
centrally, assuming full knowledge of current loads, network conditions and topology 
of all sites in the grid. Liu and Baskiyar [10] propose a distributed peer to peer grid 
scheduler that solves the scalability issue in grid systems. Ranganathan and Foster [15] 
consider dynamic task scheduling along with data staging requirements. Data 
replication is used to suppress communication and avoid data access hotspots. Park and 
Kim [14] describe a scheduling model that considers both the amount of computational 
resources and data availability in a data grid environment. a 

The aforementioned algorithms do not consider all of the following criteria: task 
types, dispatch times, deadlines, scalability and distributed scheduling. Furthermore, 
they require a full knowledge of the state of the grid which is difficult and/or expensive 
to maintain.  
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3   Task Taxonomy 

We consider three types of tasks: hard, firm and soft. GDS uses such a task taxonomy 
that considers the consequence of missing deadlines, and the importance of task. Hard 
tasks are mission critical since the consequences of failure are catastrophic, e.g. 
computing the orbit of a moving satellite to make real-time defending decisions [13]. 
For firm tasks a few missed deadlines will not lead to total failure, but missing more 
may. For soft tasks, failures only result in degraded performance.  

An example of mission-critical application is the Distributed Aircraft Maintenance 
Environment [4], a pilot project which uses a grid to the problems of aircraft engine 
diagnosis and maintenance. Modern aero-engines must operate in highly demanding 
environments with extreme reliability. As one would expect, such systems are equipped 
with extensive sensing and monitoring capabilities for real-time performance analysis. 
Catastrophic consequences may occur if any operation fails to meet its deadline.  

An example of a firm task with deadline is of financial analysis and services [7]. The 
emergence of a competitive market force involving customer satisfaction, and 
reduction of risk in financial services requires accuracy and fast execution. Many 
corresponding solutions in the financial industry are dependent upon providing 
increased access to massive amounts of data, real-time modeling, and faster execution 
by using grid job scheduling and data access. Such applications do have deadlines; 
however, the consequences of missing them are not that catastrophic. 

Applications which fall in the category of soft tasks include coarse-grained 
task-parallel computations arising from parameter sweeps, Monte Carlo simulations, 
and data parallelism. Such applications generally involve large-scale computation to 
search, optimize, and statistically characterize products, solutions, and design space but 
normally do not have hard real-time deadlines. 

4   Grid Model 

In our grid model, as shown in Fig. 1, geographically distributed sites interconnect 
through WAN. We define a site as a location that contains many computing resources 
of different processing capabilities. Heterogeneity and dynamicity cause resources in 
grids to be distributed hierarchically or in clusters rather than uniformly. At each site, 
there is a main server and several supplemental servers, which are in charge of 
collecting information from all machines within that site. If the main server fails, a 
supplemental server will take over. Intra-site communication cost is usually negligible 
as compared to inter-site communication. 

5   Scheduling Algorithm 

The following are the design goals of GDS: 

• Maximize number of mission-critical tasks meeting their deadlines 
• Maximize total number of tasks meeting their deadlines 
• Provide temporal fault tolerance to the execution of mission-critical tasks 
• Provide Scalability 
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Fig. 1. Grid Model 

Since neither EDF nor using priorities alone can achieve the above goals, we 
proposed GDS. GDS consists of three phases. First incoming tasks at each site are 
ranked. Second, a shuffling based scheduling algorithm is used to assign each task to a 
specific resource on a site, and finally those tasks that are unable to be scheduled are 
dispatched to remote sites where the same shuffling based algorithm is used to make 
scheduling decisions. The pseudo code of GDS’s main function is shown in Fig. 2.  

5.1   Notations 

The following notations have been used in this paper. 

• ti: task i 
• eijk: estimated execution time of ti on machinek at sitej 
• cij: estimated transmission time of ti from current site to sitej 
• lijk: latest start time of tasks ti on machinek at sitej 
• ei: instruction size of ti 
• di: deadline of ti 
• CCRij: communication to computation ratio of taski residing at sitej 
• nj: number of machines within sitej 
• ccjk: computing capacity of machinek at sitej 
• Spkj: start time of the pth slack on mk at sj 
• Epkj: end time of the pth slack on mk at sj 
• CCj: average computing capacity of sitej 
• Ave_CCi: average computing capacity of all the neighboring sites of sitei 
• Ave_Cij: estimated average transmission time of ti from sitej to all the neighbors 
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A task is composed of execution code, input and output data, priority, deadline, and 
CCR. Tasks are assigned one of the priorities: high, normal, or low, which correspond 
to mission-critical, firm, and soft tasks. A task’s CCR-type is decided by its 
Communication to Computation Ratio (CCR), which represents the relationship 
between the transmission time and execution time of a task. It can be defined as:        

CCRij=Ave_Cij / (ei / Ave_CCi) (1) 

If CCRij >>1, we assign a CCR-type of communication-intensive to task ti. If CCRij 
<<1, we assign a CCR-type of computation-intensive to ti. If CCRij is comparable to 1, 
we assign a CCR-type of neutral to ti. In estimating CCR, we assume that users can 
estimate the size of output data. This assumption can be valid under many situations 
particularly when the size of input output data are related.  

Each site contains a number of machines. The average computing capacity of sitej is 
defined as: 

j

n
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jkj nccCC

j

∑
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GDS  
// Q is a task queue in site S  

 Sort Q by decreasing priority then by decreasing CCR-type  
then by increasing deadline 

     Schedule 
 If unscheduled tasks remain in Q 
     Send message to each m∈ S to execute Shuffle 
    Schedule 
 endif 
 If unscheduled tasks remain in Q 
     Dispatch 
 endif 

end GDS 
 

Fig. 2. GDS 

5.2   Multi-attribute Ranking 

At each site, various users may submit a number of tasks with different priorities and 
deadlines. Our ranking strategy takes task priority, deadline and CCR-type into 
consideration. The scheduler at each site puts all incoming tasks into a task queue. First, 
tasks are sorted by decreasing priority, then by decreasing CCR-type and then by 
increasing deadline. Sorting by decreasing priority allows executing mission-critical 
tasks as soon as possible. Sorting by decreasing CCR-type allows executing most 
communication-intensive tasks locally. If we were to dispatch such tasks to a remote 
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site, the transfer time may be negative to performance. Experimental results show that 
sorting by CCR-type gives us good performance. 

5.3   Scheduling Tasks Within Slacks 

To schedule task ti on a site sj, each machine mk at sj will check if ti can be assigned to 
meet its deadline. If tasks have already been assigned to mk, slacks of varying length 
will be available on mk. If no task has been assigned, slacks do not exist, thus: 

Spkj=0  &&  ∞=pkjE  (3)

The scheduler checks whether ti may be inserted into any slack while meeting its 
deadline. The slack search starts from the last to first. The criteria to find a feasible 
slack for ti are: 

eijk + max(Spkj, cij) <= Epkj  &&  eijk + max(Spkj, cij) <= di (4) 

If the above conditions are satisfied, we schedule ti to the pth slack on mk at sj, and set 
its start time to: 

lijk = min(di, Epkj) - eijk (5) 

Setting tasks start time to their latest start times creates large slacks, enabling other 
tasks to be scheduled within such slacks. Also, if sj is the local site for ti, the 
transmission time is ignorable; in other words, cijk = 0. The pseudo code of Schedule is 
shown in Fig. 3.  

 Schedule 
for each unscheduled task t∈Q 

dofor each machine m∈S //visit in random order to balance load 
Visit slacks from latest to earliest 
If t fits within slack  // while meeting deadline 

         Schedule t on m at the latest possible time within the slack 
         Mark t scheduled 

Update count of unscheduled tasks in Q 
 endif 

until t is scheduled 
endfor 

end Schedule  

Fig. 3. Schedule 

5.4   Shuffle 

If after executing Schedule, unscheduled tasks remain, a shuffling procedure is 
executed on each machine of the site. Shuffle tries to move all mission-critical tasks as 
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early as possible. Next, it moves other tasks as close as possible to their earliest start 
times. In doing so, Shuffle creates larger slacks for possible use by unscheduled tasks. 
The pseudo code of Shuffle is shown in Fig. 4. An example of GDS’s ranking, 
scheduling and shuffling phases are given in Fig. 5. The advantages of shuffling are two 
fold: 

• Longer slacks may be obtained by packing tasks. 
• Executing mission-critical tasks early provides temporal fault-tolerance. 

 Shuffle 
for each task t // select tasks from highest priority to lowest priority 

Re-Schedule t to the earliest available slack 
   endfor 
end Shuffle 

 

Fig. 4. Shuffle 

5.5   Peer to Peer Dispatching 

Each task is assigned a ticket, which is a very small file that contains certain attributes 
of a task. A ticket [1] has several fields: ID, priority, deadline, CCR-type, instruction 
size, input data size, output data size, schedulable flag and route information. Since 
tickets are small they are dispatched in scheduling decisions, rather than the tasks 
themselves. If a task can not be scheduled locally, its ticket is dispatched to a remote 
site to find a suitable resource. 

In dispatching, previous works have selected a remote site randomly or used a single 
characteristic, such as computing capacity, bandwidth, or load. GDS uses both the 
computing capacity and bandwidth in dispatching. Furthermore, GDS helps decrease 
communication overhead since each site only needs to maintain its immediate 
neighbors’ basic information such as bandwidth and average computing capacity.  

Every site always maintains three dispatching lists which are used for the three 
CCR-type tasks. In each list, immediate neighbors are sorted according to different 
attributes. The order of neighbors represents the preference of choosing a target 
neighboring site for dispatch. For computation-intensive tasks, the corresponding list 
has neighboring sites sorted by decreasing average computing capacity. For 
communication-intensive tasks, neighboring sites are sorted by decreasing bandwidth. 
For neutral-CCR tasks, neighboring sites are sorted by decreasing rank. The rank of 
sitej, a neighbor of sitei, is defined as:  

∑∑
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where r is the number of neighbors of sitei. The three lists are available at each site and 
are periodically updated. A site will check whether any of its neighbors can consume a 
task within deadline or not. Neighbors are checked breadth-first. If none can, the most  
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Task Priority Exec. Time Deadline 

1 Mission-critical 1 3 

2 Mission-critical 1.5 7 

3 Mission-critical 1 11 

4 Firm 2 14 

5 Firm 0.5 1 

6 Soft 1 4.5 

7 Soft 1.5 9 

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15 

5 1 6 2 47 3

Initial Scheduling 

5 1 3 6 2 7 4 

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15 

Time 

Time Final Schedule 

Slack Assigned Task 

Ranked Tasks at a Resource Site

 

Fig. 5. An example of GDS schedule 

favorite neighbor will search its neighbors. This process continues until suitable remote 
resource has been found, or all sites have been visited. The pseudo code of Dispatch is 
shown in Fig. 6.  

5.6   Complexity 

Let n be the number of incoming tasks, m the number of machines within each site, and 
s the number of sites. Then, the complexity of Shuffle is O(n), of Schedule is O(n2m) 
and of Dispatch is O(ns). The complexity of GDS’s ranking phase is O(nlogn). 
Therefore, the complexity of GDS is O(n2m), assuming s < nm. If in Schedule, the 
slacks within each machine were to be evaluated in parallel by each machine in a 
non-blocking fashion, the complexity of GDS would be O(n2). We note that the 
complexity of Sufferage and MinMin is O(n2m).  



328 C. Liu, S. Baskiyar, and S. Li 

Dispatch 
  for each unscheduled task t∈ Q 
     for each neighbor N of S 

// visit neighbors in order depending upon CCR-type of t 
        Send t’s ticket to N 
        if N can successfully schedule t 
           Send t to N 
           Mark t scheduled 

       endfor 
endfor 

end Dispatch 
 

Fig. 6. Dispatch 

6   Simulations 

We conducted extensive simulations to evaluate GDS. The goal of simulations was two 
fold: (i) to compare GDS against other heuristics, and (ii) to evaluate the merits of each 
component of GDS. 

We generated 17 sites with each site having a random number of computers between 
20 and 50. The CCR value of each task was varied between 0.05-20. We varied other 
parameters to understand their impact on different algorithms. The deadlines and 
number of tasks were chosen such that the grid system is close to its breaking point 
where tasks start to miss deadlines. We varied the instruction size, size of input and 
output data, bandwidth between sites, and each machine’s processing capability. Each 
data point is an average of 20 runs. The Critical Successful Schedulable Ratio (Critical 
SSR) and the Overall SSR have been used as the main metrics of evaluation. They are 
defined as: 

tasksofnumbertotal

deadlinesmeetingtasksofnumber
OverallSSR

taskscriticalmissionofnumbertotal

deadlinesmeetingtaskscriticalmissionofnumber
SSRCritical

=

=  

6.1   Performance 

The first experiment set was to evaluate the performance against other algorithms. We 
compared GDS against three other heuristics: EDF, Min-Min, and Sufferage. 

For Critical SSR, from Fig. 7, we observe that GDS yield 41% better performance  
on average than others especially when the number of tasks is high. The other  
three heuristics do not consider task priority, which results in a number of 
un-schedulable mission-critical tasks. Also, ranking tasks by CCR-type brings benefits 
to GDS through executing communication-intensive tasks locally and dispatching 
computation-intensive tasks to other sites. 
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With respect to Overall SSR, as shown in Fig. 8, the performance difference among 
the five heuristics diminishes. Although EDF, Min-Min and Sufferage do not consider 
priorities of tasks, overall they are very effective. But, the fact that GDS still 
outperforms them by 4% on average is important. Thus, GDS not only maximizes the 
number of mission-critical tasks meeting deadlines, but it does so without degrading 
the Overall SSR. 
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      Fig. 7. Critical SSR                                       Fig. 8. Overall SSR  

6.2   Impact of Shuffling 

In this experiment, we investigate the use of the shuffling component of GDS. To do so, 
we use GDS1, which is the scheduler obtained upon removing the shuffling portion 
from GDS. From Fig.9, we see that GDS’s Critical SSR is almost identical to GDS1. 
However, From Fig. 10 we observe that GDS’s Overall SSR is higher than GDS1 by 5%. 
In other words, Shuffle schedules more tasks with firm and soft deadlines while 
maximizing the number of mission-critical tasks that meet deadlines. It also provides 
temporal fault tolerance to mission-critical tasks by re-scheduling them earlier. 
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7   Conclusion 

In this paper, we proposed a novel algorithm to schedule independent tasks with 
different priorities and deadlines in grid systems. Detailed simulations demonstrate that 
GDS significantly increases both the Critical SSR and the Overall SSR of all incoming 
tasks. In the future, we will investigate the schedulability analysis of GDS in order to 
provide deadline guarantees as well as address temporal fault tolerance. 
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Abstract. In this paper, we propose a heuristic static energy-aware
scheduling algorithm for scheduling tasks with precedence constraints on
a heterogeneous multiprocessor embedded system consisting of process-
ing elements equipped with dynamic voltage scaling capabilities. While
most energy-aware scheduling algorithms in the literature assume that
the mapping of the tasks to the processors is known and consider only
task ordering and voltage scaling, our algorithm takes into considera-
tion all three factors using the concept of energy gradient. Higher values
of energy gradient result in larger reduction in the energy consumption
together with smaller increase in the makespan of the schedules. We
compare our algorithm to a genetic algorithm in the literature and show
that although our algorithm does not consider intra-task voltage scaling,
it still provides an average energy savings of about 4% while reducing
the optimization time by more than 93%. These energy savings are more
significant for larger task graphs.

Keywords: Energy-aware scheduling, dynamic voltage scaling, power
management, heterogeneous multiprocessor, embedded systems.

1 Introduction

Many applications today, such as multimedia streaming and medical imaging,
require high-speed processing and are commonly implemented on embedded sys-
tems consisting of multiple heterogeneous processing units. These processing
units may include general purpose central processing units (CPU), digital signal
processors (DSP) and application specific integrated circuits (ASIC). In addi-
tion, many of these devices are portable. As a result, they require efficient energy
management schemes in order to extend their battery life. Modern day devices
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utilize processing units with dynamic voltage scaling (DVS) to reduce the energy
consumption. DVS is a technique that lowers the supply voltage and operational
frequency of the processing unit during runtime at the expense of a longer ex-
ecution time. By carefully scheduling the tasks to execute at different voltage
levels, an optimized schedule with minimum energy consumption can be obtained
without compromising the performance. However, this problem is known to be
NP-complete [21] for multiprocessor systems and there are no known algorithms
that solve the problem optimally in polynomial time.

There have been several papers in the literature that focus on energy-aware
scheduling using DVS. These papers can be classified into three main categories:
energy-aware scheduling on uni-processors [10,12,14,18], on homogeneous multi-
processors [1,2,4,5,6,8] and on heterogeneous multiprocessors [7,9,11,15,16,3]. In
this paper, we shall focus on energy-aware scheduling of dependent tasks on het-
erogeneous multiprocessors. In heterogeneous multiprocessors, each task requires
different amount of execution time and consumes different amount of energy on
different processors. [15,16,11,3] are some common energy-aware scheduling al-
gorithms that can be used to schedule dependent tasks on both homogeneous
and heterogeneous multiprocessor systems. However, these algorithms assume
that the assignment of tasks to processors is already known and consider only
the task ordering and/or voltage scaling aspects of the schedule. In [9], Schmitz
et al. proposed an energy-efficient mapping and scheduling strategy for hetero-
geneous multiprocessors. In their strategy, they used a genetic algorithm (GA)
to determine the priorities of the tasks for list scheduling and a voltage scaling
heuristic [11] to stretch the tasks in order to reclaim the available slack. This was
then nested inside another GA used to determine the optimal processor map-
ping of the tasks. Although this approach is efficient in generating low-energy
schedules, the optimization time is very high due to the nested nature of the GA
and the high complexity of the voltage scaling heuristic that is being used.

In this paper, we shall look into the problem of scheduling a set of tasks
with precedence constraints onto a given heterogeneous multiprocessor architec-
ture with the objective of minimizing the total energy consumption of the system
while meeting real-time constraints. As we assume that the multiprocessor archi-
tecture is already given, factors such as area constraints and monetary costs need
not be taken into consideration. We propose a fast and efficient energy-aware het-
erogeneous embedded multiprocessor scheduling algorithm for scheduling tasks
with precedence relationship as represented by a task precedence graph. A task
precedence graph is a directed, acyclic graph where nodes represent sequential
tasks and edges between the nodes, for example the edge between i and j re-
quires that task i be completed before task j starts its execution. The weights
on the edges represent the time required to communicate intermediate results
from one task to another if they are placed on different processors. Our algo-
rithm considers the processor mapping, the ordering of the tasks and the voltage
levels at which the tasks are to be executed in order to derive an energy-efficient
schedule that satisfies the deadline requirements of the tasks. The algorithm uses
the concept of energy gradient to schedule a task precedence graph. Here, when
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a task is scheduled onto a processor at a particular voltage level, the entire task
is assumed to be executed on the same processor and at the same voltage level.
We compare the performance of our algorithm with the nested GA approach [9]
using both hypothetical and real-life task graphs.

The remainder of the paper is organized as follows: We introduce the various
models for power, system and tasks in the next section. Section 3 describes our
proposed algorithm in detail. Simulation results and discussions are presented
in Section 4. Lastly, we present the conclusions in Section 5.

2 Problem Formulation

Our objective is to obtain a static schedule for assigning tasks in a task prece-
dence graph onto a heterogeneous multiprocessor system such that the total
energy consumption is minimized while the task precedence constraints are ob-
served and all the tasks meet their deadline requirements. We shall describe the
power, system and task models in this section.

The dominant source of power dissipation in a digital CMOS circuit is the
dynamic power dissipation [20], which is given by (1), where P denotes the
dynamic power consumption, Cef the effective load capacitance, Vdd the supply
voltage and S the processor frequency. Let t denote the execution time of the
task, nc the number of execution cycles required to execute the task and E the
energy consumption. Since t = nc

S and E = P · t, the total energy dissipation is
therefore given by (2). On the other hand, the circuit delay is given by (3), where
TD denotes the circuit delay, k a proportionality constant, VT the threshold
voltage and α the velocity saturation index. VT and α are properties of the
CMOS circuit and are constant for a particular circuit. Most papers in the
literature [1, 4, 6, 8, 9, 11, 12, 18] use the value α = 2.

P = Cef · V 2
dd · S (1)

E = Cef · V 2
dd · nc (2)

TD = k
Vdd

(Vdd − VT )α
(3)

From the above equations, we see that when there is a reduction in the supply
voltage, the energy consumption decreases quadratically while the circuit delay
increases. DVS exploits this feature to reduce the energy consumption of the
processor at the expense of longer execution times for the tasks.

Our system consists of a set of Np heterogeneous processors, {PE1, PE2, . . . ,
PENp}, connected to a single bus. Each processor is equipped with DVS func-
tionality. The available discrete voltage levels of PEj are given by V (j, k), k =
1, 2, · · · , N(j), where N(j) denotes the total number of discrete voltage levels of
PEj . Without loss of generality, we let N(1) = N(2) = ... = N(Np) = Nv in
this paper for simplicity. The power consumption and processor speed of PEj

at voltage level V (j, k) are given by P (j, k), and S(j, k) respectively. The power
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consumption of the bus is denoted by Pb. We assume that negligible power is
consumed by the processors and the bus when they are idle.

We consider a set of Nt dependent tasks {T1, T2, . . . , TNt} that are related by
some precedence constraints as given in the task precedence graph. The amount
of time required to execute a task might vary on different processors and also
voltage levels. Suppose Ti is executed on PEj at the voltage level V (j, k), the
worst-case execution time needed to execute Ti in this case is given by t(i, j, k)
while its energy consumption is given by e(i, j, k). In addition, for a task Ti and
its predecessor Tp, if they are executed on different processors, a communication
time of C(p, i) is incurred. Let d be the deadline (the latest possible time) by
which all the Nt tasks in the task precedence graph must be completed. In our
model, when a task is assigned to a processor, we force it to run to completion
on the same processor at the same voltage level without task migration. Then,
the total energy consumption of the Nt dependent tasks is given by:

E = Pb · tc +
Nt∑

i=1

Np∑

j=1

Nv∑

k=1

(x(i, j, k) · e(i, j, k)) (4)

where tc denotes the total duration of time for which the bus is used to transfer
data and x(i, j, k) is a 0-1 variable whose value is 1 if Ti is scheduled on PEj at
V (j, k) and 0 otherwise.

3 Energy Gradient-Based Multiprocessor Scheduling
Algorithm

In energy-aware scheduling of task precedence graphs on heterogeneous embed-
ded multiprocessor platforms, there are three main factors that affect the quality
of the solution obtained: the mapping of tasks to processors, the ordering of the
tasks, and the voltage levels at which the tasks are executed. The mapping of
tasks to processors plays an important role in obtaining both a feasible and
energy-efficient schedule. A good mapping will ensure that tasks are assigned to
low-power processors while meeting all the deadlines. The ordering of the tasks
affects the makespan as well as the available slack of the schedule. The makespan
of a schedule is the period of time required to completely process all the jobs
while the slack is the time interval between the time when the execution of a
task at a processor is completed and the deadline requirement of that task. If
the tasks can be ordered in a way such that the makespan is minimized, there
will be more slack available for voltage scaling. Lastly, the assignment of voltage
levels affects the total energy consumption of the schedule. Based on the avail-
able slack, the tasks should be assigned the voltage levels in such a way so as to
minimize the total energy consumption.

Our Energy Gradient-based Multiprocessor Scheduling algorithm (EGMS)
takes into consideration all the above mentioned factors and obtains a schedule
that minimizes the energy consumption while satisfying the deadlines of the
tasks. We consider a system having Np processors, Nt tasks and Nv discrete
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voltage levels for each processor (as described in Section 2). We use vectors
Mp and Mv to denote the processor and voltage level mapping of the tasks
respectively. The flow chart of our algorithm is presented in Figure 1.

In this algorithm, we first assign the tasks to the processors that can complete
their execution in the shortest amount of time so that there is a higher chance
of obtaining an initial schedule that is feasible. We then reorder the tasks using
a generic priority-based list scheduling algorithm. Based on the schedule that is
generated, the makespan ms and energy consumption e are then calculated.

Next, we select a task to be mapped onto a new processor and/or voltage level
in each iterative step so as to optimize the schedule. For each <task,processor,
voltage> triplet, we define two types of priorities pr1 and pr2 as follows:

pr1(i, j, k) =

⎧
⎨

⎩

δE if (δE > 0) and (δt ≤ 0)
and (m′

s ≤ d)
−∞ otherwise

(5)

Fig. 1. Flow chart for Energy Gradient-based Multiprocessor Scheduling algorithm
(EGMS)
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pr2(i, j, k) =

⎧
⎨

⎩

δE
δt if (δE > 0) and (δt > 0)

and (m′
s ≤ d)

−∞ otherwise
(6)

Here, δE = e − e′ and δt = m′
s − ms, where e′ and m′

s are the new energy
consumption and makespan obtained by mapping Ti to PEj at V (j, k). From
the above equations, we see that pr1 is used to calculate the priority when the
new schedule reduces both the energy consumption and the makespan. In this
case, the priority is given by the amount of decrease in energy consumption.
On the other hand, pr2 is used to calculate the priority when the new schedule
reduces the energy consumption but increases the makespan. The priority in this
case is calculated using the concept of energy gradient (i.e. the ratio between the
decrease in energy consumption and the increase in makespan of the schedule).
In this way, the triplet that results in the largest decrease in energy consumption
with the smallest increase in makespan will be assigned a higher value of pr2.

We then select the triplet with the highest value of pr1. If this value is equal
to −∞, we will select the triplet with the highest value of pr2 instead. We do
this so as to give higher priorities to triplets that result in both lower energy
consumptions and shorter makespans. We then update ms, e, Mp and Mv us-
ing the selected triplet. This process of selection continues until it is no longer
possible to select a triplet that can decrease the energy consumption further
without exceeding the deadline. If the makespan of the resulting schedule does
not exceed the deadline, a feasible schedule is found.

However, due to the heuristic nature of our algorithm, it is possible that the
solution gets trapped in a local minimum instead of a global minimum. Hence,
we randomly choose γ% of the tasks and assign them to other processors at
their highest voltage levels. A low value of γ may not be sufficient to bring the
solution out of the local minimum while a high value of γ results in a longer
optimization time for the next iteration. Therefore, we select the value γ = 50
in our algorithm. We then go back to the start of the iterative step to obtain a
new schedule. This is repeated until there is no significant improvement in the
energy consumption (> β%) of n successive schedules. Here, n is a user-defined
parameter that determines the terminating condition of our algorithm and we
set β = 1 in our algorithm. It shall be noted that by reassigning the tasks and
applying the algorithm repeatedly, we try to lower the total energy consumption
further at the expense of an increase in optimization time.

4 Simulation Results

In this section we describe the simulation study performed to evaluate the perfor-
mance of our algorithm in terms of energy minimization as well as the optimiza-
tion time. We compare our algorithm to the nested GA approach [9]. We choose
to compare our algorithm with the nested GA approach since it also considers
all three factors (processor mapping, task ordering and voltage level mapping)
and is able to obtain good solutions as shown in their simulation results. In this
approach, a GA-based task scheduling algorithm EE-GLSA was nested within
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another GA-based task mapping algorithm EE-GMA in order to obtain the best
processor mapping, task ordering and voltage level mapping. However, it should
be noted that while our algorithm considers mapping a task to a single discrete
voltage level only, the nested GA approach may map a task to two voltage lev-
els on the same processor (i.e. intra-voltage scaling is allowed). In addition, we
omitted the area penalty in the calculation of the fitness function in EE-GMA,
since processor area is not a constraint in our analysis.

The algorithms are implemented using C++ in a Cygwin environment on
a Pentium-IV/ 3.2GHz/ 2GB RAM PC running Windows XP. We randomly
generated 40 task graphs comprising a maximum of 100 tasks using TGFF [19].
The time required to execute the tasks on the processors at the highest voltage
level were defined in an expected time to compute (ETC) matrix which was
generated using the method described in [17]. We assumed that each processor
has four voltage levels at 0.9V, 1.7V, 2.5V and 3.3V. The mean task execution
time (μtask) was set as 10 and the mean power consumption of each processor at
maximum voltage level (μpower) was set as 100. The maximum power ratings for
the processors were randomly generated using a gamma distribution. The power
ratings of the processors at other voltage levels were calculated using (1). As in
most literature [1,4,6,8,9,11,12,18], we also set the velocity saturation index to
be 2. The communication time between 2 tasks with precedence constraints was
uniformly distributed between 1 and 5. Lastly, the bus power was set at 10.

For each task graph, we obtained the energy consumption and optimization
time required by the nested GA approach as well as our EGMS algorithm for
the case where n (the number of successive iterations in which there is no sig-
nificant improvement to the solution before the algorithm terminates) is 1, 100
and 500 respectively. For the purpose of comparison, we normalized the energy
consumption and the optimization time obtained using the various methods by
those obtained using nested GA. However, we found that out of the 40 task
graphs, the nested GA approach were unable to obtain feasible solutions for 5
task graphs. Using the results obtained from the remaining 35 task graphs, we
plot the distribution of the task graphs with respect to their normalized energy
consumption and optimization time for the various scheduling algorithms. The
results are shown in Figure 2.

For the remaining 35 task graphs, we observe that although EGMS does not
use intra-task voltage scaling, it is still able to obtain a similar or slightly better
performance in terms of energy minimization compared to nested GA. On the
average, EGMS consumes 1% more energy when n = 1, 2% less energy when
n = 100 and 4% less energy when n = 500. We also observed that our algorithm
is able to reduce energy consumption further when n increases.

Next, let us look at the optimization time required by the various algorithms
to derive a feasible schedule. Nested GA requires about 6 - 19765 seconds to
derive a feasible schedule while EGMS takes about 0.01 - 6.25 seconds when
n = 1, 0.5 - 43 seconds when n = 100, and 1.7 - 97 seconds when n = 500 for
optimization. We observe from Figure 2(b) that the optimization time required
by EGMS increases when n increases from 1 to 500. On the average, EGMS
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(a) Normalized Energy Consumption (b) Normalized Optimization Time

Fig. 2. Distribution of task graphs with respect to energy consumption and optimiza-
tion time required by: (A) Nested GA, (B) EGMS (n = 1), (C) EGMS (n = 100)
and (D) EGMS (n = 500) for mapping optimization. All values are normalized to the
values obtained using nested GA for comparison purposes.

requires about 0.1%, 2% and 7% of the time taken by nested GA when n = 1,
100 and 500 respectively. From these results, we observe that when we increase
the number of iterations, EGMS is able to obtain feasible schedules with lower
energy consumption at the expense of a longer optimization time. However, this
optimization time is still shorter than that required by nested GA.

In addition to the hypothetical task graphs generated using TGFF [19], we also
applied our algorithm to some task graphs corresponding to real-life examples.
We repeat the experiment using the set of task graphs used by Bambha et
al. [13]. The set of task graphs consists of 2 differently implemented fast Fourier
transforms (fft1, fft3), a Karplus-strong music synthesis algorithm (karp10), a
quadrature mirror filter bank (qmf4), and a measurement application (meas).
These applications are run on multiprocessor platforms consisting of identical
processors. The normalized energy consumption and normalized optimization
time of the various algorithms are shown in Table 1.

Table 1. Normalized energy consumption and optimization time required by Nested
GA and EGMS for mapping optimization using real-life applications used in [13]

Task
Graph

Normalized Energy Consumption/Normalized Optimization Time
Nested GA EGMS(1) EGMS(100) EGMS(500)

fft1 1.000/1.000 0.928/0.00032 0.885/0.01349 0.885/0.06490
fft3 1.000/1.000 1.047/0.00003 0.987/0.00112 0.987/0.00497

karp10 1.000/1.000 0.981/0.00009 0.893/0.00482 0.892/0.01890
qmf4 1.000/1.000 1.049/0.00067 0.998/0.02947 0.998/0.16589
meas 1.000/1.000 1.053/0.00088 1.029/0.02236 1.029/0.09356
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We achieve similar results when we compare our EGMS algorithm with the
nested GA approach. For the case when n = 500, EGMS generates schedules
that consume an average of 4% less energy when compared to the nested GA
approach using less than 7% of the optimization time needed by nested GA. From
the results, we observe that our EGMS algorithm can be used for homogeneous
multiprocessor systems as well.

Lastly, we evaluate the performance of our algorithm with respect to the
size of the task graph. We randomly generated task graphs with 10 to 50 tasks
each and obtained their average normalized energy consumption. The results
are shown in Figure 3. From the graph, we observe that our EGMS algorithm
performs better when n is increased from 1 to 500. We also observe that for
small task graphs consisting of 20 or less tasks, the nested GA performs better
than EGMS in terms of energy minimization. This is because EGMS does not
support intra-task voltage scaling while nested GA uses intra-task voltage scaling
to reduce the energy consumption further. However, when the number of tasks
increases, our algorithm performs better. This is due to the fact that when the
number of tasks increases, the search space becomes exponentially larger and the
genetic algorithms used in the nested GA approach are unable to converge fast
enough before the terminating condition is met. In addition, we also observe that
when the number of tasks is large, the average normalized energy consumption
of EGMS is almost the same for all three values of n. This is due to the slow
convergence of the algorithms as a result of a large search space. Hence, we
conclude that the use of small values of n is sufficient for large task graphs.

Fig. 3. Average normalized energy consumption as the number of tasks increases

5 Conclusions and Future Work

In this paper, we proposed a novel heuristic energy-aware scheduling algorithm,
EGMS, for scheduling task precedence graphs on a heterogeneous multiprocessor
embedded system. In EGMS, we use the concept of energy gradient to obtain an
energy-efficient schedule. The algorithm is applied repeatedly until there is no
improvement in the solution for n successive iterations. The larger the value of
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n, the higher the probability of obtaining a feasible schedule with a lower energy
consumption. However, the optimization time also increases as a result.

We compared the performance of our algorithm with the nested GA approach
using both hypothetical and real-life task graphs. The simulation results showed
that our algorithm is capable of obtaining energy-efficient schedules using less
optimization time. In particular, we showed that for the case when n = 500,
our algorithm is able to reduce the average energy consumption by 4% when
compared to the nested GA approach even though we do not consider intra-task
voltage scaling. At the same time, the average optimization time is also reduced
by 93%. Our results also showed that our algorithm is able to reduce the energy
consumption of larger task graphs by up to 35% when compared to the nested
GA approach. This shows that our algorithm is much more effective in reducing
energy consumption for larger task graphs while still meeting the deadlines.

The nested GA allows intra-task voltage scaling in order to minimize the
energy consumption further. This is especially useful for processing elements
with a small number of voltage levels. Therefore, we shall extend our algorithm
to include intra-task voltage scaling in our future work.
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Abstract. Power-aware operating systems/processor controllers ensure
that the system temperature does not exceed a threshold by utilizing
system-throttling, where the clock speed is scaled to an equilibrium load.
We denote this as the Constant policy, and compare against Zig-Zag
policies that alternate between phases of cooling and heating. In this
paper, we characterize and calculate the best possible Zig-Zag policy,
and argue that simple system-throttling rules are often optimal.

In reality, however, the system design often forces us to implement
Zig-Zag policies. In particular, we consider the case where the processor
can operate only at a few discrete states; thus it is required to alternate
between cooling and heating phases. In such a setting, we develop an
algorithm that outperforms all other Zig-Zag policies, and present com-
putational experiments emphasizing the performance of our algorithm.

1 Introduction

Energy and temperature management of processor systems is an increasingly
important problem as their power consumption rises drastically with every new
generation, while the rate of technological improvements in cooling systems has
not been keeping pace [1]. Naturally, this has resulted in a large body of work
attempting to incorporate energy and temperature considerations into processor
scheduling levels. This is now implementable at the operating system/program
level since most modern day processors have interfaces that allow the user to
control its speed in real-time using a mechanism called dynamic voltage scal-
ing (DVS) [2]. For a detailed investigation into DVS and other mechanisms for
implementing dynamic thermal management, see [3,4].

Processors usually ensure that the system temperature does not exceed a max-
imum amount by system-throttling. In [5], we showed that such simple system-
throttling policies (represented by the class of Constant policies) are optimal
under certain simplifying assumptions. In this paper, we are interested in devel-
oping the optimal Zig-Zag policy, for two main reasons. Firstly, such an analysis
allows us to determine the exact conditions when a carefully constructed Zig-Zag
policy can outperform the best Constant policy. Secondly, in most real systems,
it is not possible to implement simple system-throttling using a Constant policy;
one is forced to Zig-Zag because of the constraints of the system. In particular,
this is true of current implementations of DVS; the processor can operate only
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in a small discrete set of speeds [4]. Under such settings, an optimal Zig-Zag
policy can provide significant benefits over a naive implementation. Note that
all operating policies that do not maintain a constant processor speed belong to
the class of Zig-Zag policies.

We begin in Section 2 by introducing the thermodynamics models. The main
contributions of this paper are presented in Section 3, where we carefully de-
construct many simplifying assumptions in an attempt to analyze the effective-
ness of system-throttling, and in Section 4, where we characterize the optimal
Zig-Zag policy and compare it against Constant. In Section 5, we develop an
efficient speed-scaling algorithm that implements our results. To illustrate our
approach, we consider a practical setting where the Constant policy can not be
implemented, and present the results of computational experiments in Section 6.
Finally, in Section 7, we summarize the contributions of this work.

1.1 Related Work

Many other researches have looked at power management of processors. This
list is by no means exhaustive, but illustrates some settings where speed-scaling
has proved to be effective. In many scenarios, the tasks have different processor,
memory and I/O requirements. Thus, it is possible to mix and match tasks to
reduce net system power utilization [6,7]. In multi-processor systems, if it is pos-
sible to move jobs among the different processors, then a scheduling algorithm
can outperform system-throttling by moving jobs between hot and cold proces-
sors [8,9]. In some settings, the net energy available is limited; studied both in
a theoretical setting [10,11,12,13], and in a practical setting [14,15,16]. In other
studies, the authors present a variety of scheduling and workload management
strategies to develop temperature-aware computing centers [17,18,19].

2 Problem Setting

We first present the heat model for estimating the temperature of the system. We
formalize system-throttling using the Constant policy, which keeps the workload
constant such that the temperature threshold is not violated. We formalize all
other scheduling policies using the notion of a Zig-Zag policy, since it must have
alternate periods of cooling and heating. We consider a single processor system,
which at speed � can complete w units of work in time w/�.

We assume that the system is cooled using Newton’s law; dT = −ρT , where dT
is the instantaneous rate of change of temperature, and ρ is a positive constant
[20]. To model the heat gain due to the processor, we assume that dT = βP ,
where P is the power dissipated and β is a positive constant [13,21]. We model
the power dissipated by the processor as P = �α, where α is strictly larger than
1, and � is the speed of the processor [10,22]. Combining these effects,

dT = β�α − ρT. (1)

This is an ordinary differential equation that can be easily solved [23] for con-
stant speed. Let us define τ(�) = β�α/ρ. We mention that the system cools/heats
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up exponentially until it reaches a stable temperature. This temperature is
unique for speed � and is given by τ(�). Similarly, we also define the speed
that stabilizes the system at temperature T as �(T ). Let �0 be the speed at
which the system operates at the maximum system design temperature Tmax;
then, �0 = �(Tmax). One way to ensure that the system never exceeds Tmax is:

1. If the temperature hits Tmax, the system enforces throttling (speed = �0).
2. If the temperature is below Tmax, the system increases the speed to 1.

In the absence of idling, the system operates at speed 1 initially, followed by speed
�0. System-throttling can be represented by a policy that keeps the temperature
constant (denoted as Constant); see dashed-and-dotted line in Figure 1. In gen-
eral, the scheduler can decide to operate at any intermediate speed (�0 ≤ � ≤ 1)
depending on the state of the system. Furthermore, the scheduler may choose
to operate at any speed 0 ≤ � ≤ l0 so as to increase the rate of cooling. We
describe such alternate (but quite general) policies by the Zig-Zag policy, and
characterize it as follows:

– The operating temperature range is [Tm, Tmax].
– The operating speeds are �b (cooling) and �a (heating), where �b < �0 < �a.

We illustrate this policy in Figure 1 using solid lines. Note that a Constant policy
maintaining temperature T0 operates at a speed between the cooling and heating
speeds of a Zig-Zag policy operating between temperatures Tm and T0.

Temperature

time

Load

time

T0

Tm

0 t1 t2 t3 0

�0

�a

t1 t2 t3

�b

�m

Fig. 1. Zig-Zag and Constant policies

3 Analysis of System-Throttling

In previous work [5], we showed that system-throttling is optimal for single-
processor systems when the goal is to maximize the amount of work done, and
this work is assumed to be a single task. We state the result here as Theorem 1.
In Sections 3 and 4, we consider some of the inherent assumptions in this result.
For the rest of this paper, we assume without loss of generality that the Constant
policy operates at speed �0 = �(Tmax); thus maximizing the amount of work done
among all possible policies that maintain a constant temperature.

Theorem 1. The Constant policy does more work than any Zig-Zag policy.
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3.1 Multiple Tasks

All realistic scenarios involve a variety of tasks, each with its own processing
requirements and importance. Let there be n tasks, each with work wi. At speed
�, the time taken to complete task i is therefore wi/�. These tasks may have
different levels of importance; we measure this by associating a weight γi with
task i. Let the system begin at time 0. The jobs may arrive at different times;
i.e., job i has release date ri. Initially, we assume that all jobs arrive at time 0.

Given a schedule, we can calculate the completion time for each task in the
system. We limit our attention to all objective functions that are non-decreasing
functions of the completion times (“natural” objective functions). All commonly
used metrics (make-span, weighted completion times, weighted flow time, max-
imum flow time, etc.) satisfy this property. In the absence of pre-emption, it is
easy to show that any natural objective function is minimized by Constant.

We show that the Constant policy dominates any Zig-Zag policy even when
pre-emption is allowed so long as we minimize a natural objective function; we
state it as Theorem 2. We show that for any sequence of tasks scheduled using
a Zig-Zag policy, there exists a “similar” Constant policy that dominates it. We
say that two policies are similar if for all pre-empted jobs, the same fraction of
its work is completed before it is pre-empted. In Figure 2, job 1 is pre-empted
by job 2, and virtual job 1̄ denotes the part of job 1 completed at pre-emption.

Theorem 2. The Constant policy minimizes any natural objective function.

Zig−Zag

Constant

time

Ĉ1Ĉ2Ĉ1̄

C1̄ C2 C1

frac y

frac y

COOL HEAT

Fig. 2. Completion time: Pre-emption

3.2 Jobs with Arbitrary Release Dates

Earlier, we assumed that the Constant policy does not include any idle time; i.e.,
the processor would always have available work. In the absence of release dates,
this is a natural assumption to make. Consider the Zig-Zag policy in Figure 2.
If the release date of job 2 is the time at which it pre-empted job 1, then there
exists no similar Constant policy (with fraction 1 − y of job 1 completed before
pre-emption) that has no idle time. By scaling the speed prior to a job arrival,
one may be able to respond to it better, thus minimizing a variety of natural
objectives. Operating at temperature T0, if job 1 will be pre-empted by job 2
when it arrives at time t2 (see Figure 1), there are three main decisions:
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1. When to switch to a Zig-Zag policy? (Best choice of time t1?)
2. How much to scale during cooling? (Best choice of speed �b?)
3. How much to scale during heating? (Best choice of speed �a?)

4 Generating Optimal Zig-Zag Policies

In this section, we address all the issues discussed above. We present the best Zig-
Zag algorithm that minimizes any natural objective function. To develop the best
Zig-Zag policy, one needs to understand the trade-offs involved in alternating
between heating and cooling phases. We need to characterize (see Figure 1):

– the loss in work in the cooling phase (from time t1 to time t2) at speed �b,
to cool from temperature T0 to temperature Tm, and

– the gain in work in the heating phase (from time t2 to time t3) at speed �a,
to heat from temperature Tm back to temperature T0.

We show that this trade-off is related to the function F ; formalizing the result
as Proposition 1. To illustrate, we plot the function F(x, 0.75, 0.5, 3) in Figure 3.

Proposition 1. Consider a Zig-Zag policy that cools at speed �b until tempera-
ture Tm is reached and heats at speed �a until temperature T0 is reached. Com-
pared to the Constant policy, this Zig-Zag policy loses work in cooling equal to
F(�b, �0, �m, α) and gains work in heating equal to F(�a, �0, �m, α); where

F(x, p, q, α) = (x − p)log
xα − qα

xα − pα
(2)

Lemma 1 characterizes key properties of F as a function of x (p,q,α kept con-
stant). This result is a straightforward application of calculus, and will be used
to derive the best Zig-Zag policy.

Lemma 1. Given p, q, α such that p > q and α > 1, then for x > 0

1. F(x) has a maximizer x̄ for x > p, and a minimizer x̂ for x < q.
2. Furthermore, F(x1) > F(x2), for all x1 < q and x2 > p.
3. For x > p, x̄ is the only local maximum of function F , denoted by F(p, q, α)
4. For x < q, x̂ is the only local minimum of function F , denoted by F(p, q, α)

From Proposition 1 and Lemma 1.2, we can derive an alternate proof for Theo-
rem 1. From Lemma 1.3 and 1.4, we see that the slope of F changes monoton-
ically. As a consequence of Lemma 2, it is computationally easy to implement
scheduling decisions that optimize F .

Lemma 2. Given α > 1 > p > q, an ε-approximate maximizer (minimizer) of
F for x > p (0 < x < q) can be calculated in log(ε) time using bisection search.

In [5], we showed that if the current system temperature is T < Tmax, then the
optimal speed (for increasing the temperature to Tmax) can be calculated exactly.
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We proved that the amount of work done is maximized for a particular choice
of � = �̄, and showed how to calculate this value. Here, we derive a more general
result in Theorem 3 that characterizes the optimal speed (which maximizes work
done) for both cooling and heating phases of a Zig-Zag policy.

Theorem 3. Let the current temperature be T1. Assume that we operate the
system at a speed � such that the system reaches temperature T2 in no more than
t0 time units, and then operate the system such that the temperature is main-
tained at T2. Let �exact be the speed that reaches temperature T2 from temperature
T1 in exactly time t0. Let the net work done (until time infinity) be W (�), and
�i = �(Ti) for i = 1, 2.

– T2 > T1 (heating): Let �̄ maximize F(�, �2, �1, α) for � > �2. Then, W (�) has
a unique maximizer �∗, where �∗ = min{1, max{�exact, �̄}}.

– T2 < T1 (cooling): Let �̂ minimize F(�, �1, �2, α) for � < �2. Then, W (�) has
a unique maximizer �∗, where �∗ = min{�exact, �̂}.

4.1 Main Results

In Section 3.2, we argued that a carefully constructed Zig-Zag policy may outper-
form Constant if the Zig-Zag is carried out in conjunction with a pre-emption. If
job 1 is to be pre-empted by job 2 at time t2, Zig-Zag can outperform Constant if
we reduce the speed (cooling) prior to time t2, and increase the speed (heating)
after time t2. This allows us to trade-off the processing of the less important job
(job 1) for the faster processing of the more important job (job 2). Analyzing
the trade-offs involved, we develop and characterize the optimal Zig-Zag policy.
This result is very important, for two reasons. Firstly, by comparing against the
Constant policy, we describe the exact conditions for which Zig-Zag can domi-
nate Constant. Secondly, when the Constant policy can not be implemented, we
develop optimal speed-scaling algorithms.

To compare against Constant, we consider one iteration of a Zig-Zag policy
that drops the temperature to Tm, and back up to T0; see Figure 1. Let �0 = �(T0)
and �m = �(Tm). Let the speed during the cooling (heating) phase be �b (�a); we
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have �a > �0 > �m > �b. Proposition 2 characterizes the difference in completion
times (of jobs 1 and 2) between the Constant policy and the best Zig-Zag policy.

Proposition 2. Compared to Constant, the best Zig-Zag policy increases com-
pletion time of job 1 by (F(�0, �m, α)−F(�0, �m, α))/�0 and decreases completion
time of job 2 by F(�0, �m, α)/�0.

Since job 1 is pre-empted and gets completed after job 2, the increase in comple-
tion time (due to cooling) of job 1 is partially offset by the earlier completion of
job 2. This explains the two terms in the expression for the completion time of
job 1. Using Proposition 2, we can characterize exactly when it is advantageous
to Zig-Zag in conjunction with a pre-emption.

Observe that the completion time of all jobs completed after job 2 increases
(not just job 1). More precisely, the completion time of all jobs processed until
the next idle time increases as much as job 1. We refer to all such jobs by L. If
the gains in completion time (of job 2) offset the losses in completion time (of
jobs in L), then one should Zig-Zag in anticipation of the pre-emption of job 1.
This analysis naturally depends on the objective function.

Make-span and Maximum Response Time: Observe that the order in
which the jobs are processed does not affect the make-span. Since pre-emption
is not necessary, there are no performance improvements (over Constant) that
can be achieved by a Zig-Zag policy. In fact, this is true for any natural objec-
tive function where the optimal policy does not involve any pre-emption. For
instance, for minimizing the Maximum Response Time, it has been shown that
scheduling in increasing order of ri (release dates) is the optimal policy. We state
the general result as the following theorem.

Theorem 4. For any objective function where the optimal schedule (sequence
in which jobs are processed) does not involve pre-emption, the Constant policy
dominates any Zig-Zag policy.

Weighted Response time: Here, we consider the minimization of weighted
response time of tasks. Since the response time of a job is the difference be-
tween its completion time and its release date, any algorithm that minimizes the
weighted response time also minimizes the weighted completion time.

It is well known that the weighted response time is optimized by scheduling
the jobs in increasing order of their remaining processing time, scaled by their
weights. Thus, at any time, all available jobs are sorted in increasing order of
wi/γi and then processed in that sequence. Since γi/wi can be interpreted as
the density of job i (value of unit work), this algorithm is also referred to as
HDF (Highest Density First). Implementing HDF, the optimal schedule often
includes pre-emption. Suppose that job 1 is being processed (with remaining
work ŵ1) when job 2 is released. If w2/γ2 < ŵ1/γ1, then job 2 pre-empts job 1.
The following theorem characterizes whether we should Zig-Zag in anticipation
of a pre-emption, and is the main theoretical result in this work.
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Theorem 5. The best Zig-Zag policy should Zig-Zag in anticipation of the pre-
emption of job 1 by job 2 only if there exists a speed �m < �0 for which the
following condition holds: δ > 0, where

δ = F(�0, �m, α)(γ2 −
∑

i∈L

γi) − F(�0, �m, α)(
∑

i∈L

γi). (3)

If the condition is satisfied, we choose �m as the speed that maximizes δ, τ(�m)
as the temperature to which the processor should cool down prior to pre-emption;
the cooling and heating speeds are chosen as in Theorem 3.

From Lemma 1.2 and Theorem 5, we can prove that δ is no greater than 0 when
all weights are 1. This proves the following result for the case of homogeneous
tasks, and for the minimization of a large class of natural objective functions,
including the special case of average response time.

Theorem 6. If the tasks are of equal importance (weights γi = 1, ∀i), then the
Constant policy dominates any Zig-Zag policy.

Even though the condition in Theorem 5 may be satisfied for arbitrary weights,
it is more likely that it is not. The decrease in completion time of job 2 may
offset the increase in completion time of job 1, but this potential advantage is
often nullified by the fact that all jobs in L complete later in the Zig-Zag policy.
As a result, in practice, it does not pay to Zig-Zag unless there are idle times in
the system. In the presence of idle times, L is often small, and the condition in
Theorem 5 may be satisfied. Nevertheless, Theorem 5 is an exact characterization
of the conditions when a Zig-Zag policy outperforms a Constant policy, and is a
significant result.

5 Forced Zig-Zag

In the previous section, we showed that, in most cases, the Constant policy dom-
inates the best Zig-Zag policy. However, our analysis of the best Zig-Zag policy is
quite useful when one is forced to Zig-Zag. This often happens in practice since a
processor can operate only in one of a small discrete set of operating speeds. Let
this set of feasible speeds be S. If the processor can scale the speed continuously,
then it could alternate between increasingly small cooling and heating phases,
staying as close to �0 as possible. In practice, there is usually a cost associated
with changing the speed, and can (equivalently) be modeled using a time thresh-
old Δ between successive speed changes. We denote the largest permissible speed
less than �0 as �lb. Formally, �lb = max{� ∈ S : � ≤ �0}. System-throttling can
now be formalized as consisting of:

– Heating phase. Every Δ time units, set the speed to 1 (full speed).
– Cooling phase. If temperature hits Tmax, the processor operates at speed �lb.

We refer to this scheduling policy as Naive. To illustrate the preceding analysis
in a computational setting, we compare the Naive algorithm against the best
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possible Zig-Zag algorithm, which tries to minimize the work lost during the
cooling phase, and maximize the work done in the heating phase. Since we are
operating in a setting where a Constant policy dominates any Zig-Zag policy,
there is no incentive to start a cooling phase unless forced to do so. Hence,
the best Zig-Zag policy differs from Naive only in the choice of the speed during
heating. To summarize, our algorithm, which we call BestZig, operates as follows.

– Heating phase. Every Δ time units, let T be the current temperature. The
processor sets the speed to �opt, where �opt maximizes the work done in the
heating phase; calculated as:

�opt = arg max
x≥�0|x∈S

F(x, �0, �(T ), α) (4)

– Cooling phase. If temperature hits Tmax, the processor operates at speed �lb.

Observe that the choice of �opt follows directly from Theorem 3. Moreover, the
computational effort involved in calculating �opt is trivial (can be done in O(|S|)
time by evaluating F for all feasible values in S). To illustrate both algorithms,
we present them pictorially in Figure 4. The algorithms BestZig and Naive differ
in the choice of �heat, while both choose �cool = �lb. For BestZig, �heat = �opt,
and for Naive, �heat = 1.

Yes

No

No

Yes

Wait for next event

Choose �heat

time = Δ? T = Tmax?

Choose �cool

Fig. 4. Operation of system

6 Computations

Now, we present extensive computational results illustrating the performance of
BestZig. The data is taken from the STG (Standard Task Graph) dataset, avail-
able at http://www.kasahara.elec.waseda.ac.jp/schedule/index.html.
These include problems with 50, 100, 300, 500, 750, and 1000 tasks. We refer to
the number of jobs in the instance as the size of the problem. There are 180
random instances for each size. We assume that the processor can operate only
at speeds {0, G, 2G, . . . , 1}, and can change the speed every Δ units of time.
For the base runs of BestZig, we choose G = 0.1 and Δ = 2. For the heat

http://www.kasahara.elec.waseda.ac.jp/schedule/index.html
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model, we choose ρ = 0.1 and β = 12, resulting in the maximum equilibrium
speed �0 = 0.69. Initially, we assume that all jobs are available at time 0; i.e.,
rj = 0, ∀j.

6.1 Make-Span Minimization

For minimization of make-span on a single processor system, the sequence in
which the jobs are processed is irrelevant; pre-emption is not necessary in this
setting. To compare Naive and BestZig, we contrast against Constant, the theo-
retical best that any Zig-Zag policy can achieve. In Figure 5; we plot the percent-
age deviation in make-span when compared to the Constant policy in the y-axis.
We present the average over all instances for a particular run; our experiments
indicated that the standard deviation across instances was insignificant. We see
that BestZig outperforms Naive by about 50%, and that this improvement in
performance is robust to changes in data.
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Fig. 5. Summary of computational experiments

First, we present computations which illustrate the effectiveness of our al-
gorithm, and its robustness with respect to the number of jobs. We present a
summary of the results in Figure 5(a). On the x-axis, we present the number
of jobs in the instance. As we can see, both algorithms are highly insensitive to
problem size. However, BestZig outperforms Naive by 50% in all the instances.
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We also performed a series of experiments to understand the sensitivity of the
performance of BestZig to changes in other data; we present the results of prob-
lems of size 50 (the behavior is similar for the other instances). First, we analyze
the performance of the algorithm as a function of the possible operating states of
the processor. This is characterized by the parameter G; the processor operates
only at speeds {0, G, 2G, . . . , 1}. In Figure 5(b), we plot G on the x-axis. We see
that as G increases, the performance of both Naive and BestZig deteriorates,
since larger G implies that the processor can operate at fewer number of feasible
speeds. Nevertheless, the performance of BestZig is often 50% better than Naive,
and is much more robust. In fact, only when the number of operating speeds is
small (G ≥ 0.4) does BestZig perform more than 5% worse than Constant. On
the other hand, the performance of Naive is very sensitive to the value of G.

We also analyze the performance of the algorithm as a function of the time
between successive speed changes (Δ). In Figure 5(c), we plot Δ on the x-axis.
As Δ increases, the performance of both algorithms deteriorates, since increasing
Δ decreases the ability of any Zig-Zag algorithm to mimic a Constant policy.
Interestingly, both algorithms are robust to increases in Δ; a ten-fold increase
in Δ (from 1 to 10 seconds) worsens the performance of the algorithms only by
a few percentages. As before, BestZig outperforms Naive by about 50%.

Finally, we analyze the dependence of the algorithms on parameters of the
heat model. In Figure 5(d), we plot ρ on the x-axis; larger ρ implies better
cooling. Since any Zig-Zag policy is dominated by Constant in our setting, faster
cooling/heating (larger ρ) only worsens the performance of a Zig-Zag policy.
If it was advantageous to Zig-Zag, BestZig would have performed better with
increasing ρ. As before, BestZig continues to perform 50% better than Naive.

6.2 Response Time Minimization

To demonstrate the performance of BestZig (when compared to Naive and Con-
stant) for other objective functions, we consider the minimization of the average
response time of the tasks. In this scenario, we proved that Constant still domi-
nates any Zig-Zag policy (see Theorem 6). Since we are interested in minimizing
flow time, for each job, we choose its release date rj randomly from 0 to M × κ,
where M is the sum of all the processing times of the jobs, and κ is a constant.
By varying κ, we can control the spread of the release times of the jobs. κ can
also be thought of as an indicator of the amount of idle time in the system.

The results of this experiment are presented in Figure 6(a). In the x-axis, we
plot the value of κ. We see that the performance of the Zig-Zag policies depends
quite heavily on the value of κ; however, BestZig consistently outperforms Naive.
Furthermore, its performance is even stronger in the cases where Naive performs
poorly; BestZig performs 2% to 8% from Constant, whereas Naive is more than
20% off when κ = 1. The shape of the curve can be explained as follows. When
κ = 0, all jobs are released at time 0, and there is no idle time in the system.
When κ is large (≥ 2), there is a large amount of idle time in the system. In
both scenarios, there is no/minimal pre-emption involved in the processing. As a
result, maximizing the amount of work is a reasonable surrogate for minimizing



On Temperature-Aware Scheduling for Single-Processor Systems 353

 0

 5

 10

 15

 20

 0  0.5  1  1.5  2  2.5

D
ev

ia
tio

n 
fr

om
 C

on
st

an
t

Idle time in system

Response time

BestZig

Naive

(a) Response time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  100  200  300  400  500  600  700  800  900  1000

D
ev

ia
tio

n 
fr

om
 C

on
st

an
t

Problem size

Scalability of approach

BestZig

Naive

(b) Power dissipation

Fig. 6. Other objective functions

response time, and thus the Zig-Zag policies perform similar to the case of make-
span minimization (BestZig 3% and Naive 6% from optimal). For intermediate
κ, there is much more pre-emption, and thus both algorithms perform worse
(compared to Constant) since they are forced to Zig-Zag.

6.3 Power Minimization

In our analysis (and in the algorithm BestZig), we do not optimize the power
dissipated by the processor. However, we track the amount of heat dissipated
by the processor; we present this in Figure 6(b) for both Naive and BestZig. We
repeated the experiment for all problem sizes (x-axis), and plot the percentage
deviation (in power dissipated) from Constant in the y-axis. We see that both
Naive and BestZig dissipate more power than Constant, but the performance
is very robust. Furthermore, BestZig (only 0.5% from Constant) significantly
outperforms Naive (8%). These results are quite encouraging, since they indicate
that the optimal Zig-Zag policy (for minimizing a variety of natural objective
functions) does not increase the power dissipated (compared to Constant).

7 Conclusions

In this paper, we modeled the temperature of the system as a function of the
power dissipated by the processor and the cooling system, and described how
this information may be used by the scheduler to design efficient algorithms.
Our analysis, and the computational illustration of such an algorithm for a real
scenario are the key contributions of this paper.

We argued that simple system-throttling rules are effective scheduling policies
even when few assumptions apply. These assumptions are reasonably general, but
fail to accommodate two key features of real systems. Firstly, in the presence of
release dates for jobs, we show that an intelligently constructed Zig-Zag policy
can outperform a Constant policy (implementing system-throttling). However,
by characterizing the exact necessary conditions, we show that even in this case,
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Zig-Zag policies are often dominated by Constant. However, this analysis is quite
useful since it allows us to develop the best Zig-Zag policy.

Secondly, in many settings, the system design does not permit the implemen-
tation of a Constant policy. This is particularly true of processors which allow
only a discrete set of states of operation. As a result, the system is forced to Zig-
Zag between alternate phases of cooling and heating to ensure that the system
temperature does not exceed the threshold. Using our analysis on the trade-offs
of a Zig-Zag policy, we develop an algorithm that calculates and implements
the best Zig-Zag policy under any setting. This algorithm is quite general, and
determines what speed to scale to, based on the current state of the system.

In this work, we characterized the exact trade-offs of implementing a Zig-Zag
policy (with respect to Constant), and used this to derive the optimal Zig-Zag
policy. In the future, we would like to extend our analysis in two directions.
First, we would like to extend our analysis to real systems, by considering het-
erogeneous tasks (i.e., the amount of heat dissipated by the executions of a job
given a certain amount of processing is different for different jobs) and multipro-
cessor systems. Second, we would like to incorporate power considerations into
the decision making of our algorithms, thus minimizing power dissipation while
ensuring that the temperature threshold is not violated.
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Abstract. As feature size shrinks, the dominant component of power 
consumption will be leakage. As caches represent a considerable fraction of 
area for many platforms, from embedded to highly paralleled systems, cache 
leakage control continues to become a critical issue. Drowsy cache technique is 
a state-preserving technique which reduces leakage by pulling down the 
voltages on selected lines. To exploit the temporal locality present in the data 
stream, existing drowsy cache policies update drowsy/active mode after an 
execution window of fixed clock cycles, which lack the flexibility to adapt to 
program behavior. We introduce a tri-mode FSM control policy, which exploits 
global Reuse Distance information and tries to keep a small set of lines in active 
for future references, after each N distinct line references. This Reuse Distance 
based policy well adapts to the temporal locality, steadily delivers better energy 
savings with similar performance overhead, is simple to implement, and places 
an upper bound on leakage power. 

Keywords: Drowsy Cache Technique, Temporal Locality, Reuse Distance. 

1   Introduction 

Minimizing power has become a critical design issue in many platforms, from 
embedded to highly paralleled systems. Dynamic power is dissipated due to transistor 
switching activity, while leakage power continuously dissipates, even when 
transistors are idle. Leakage power increases exponentially as technology moves 
below 0.1 micron due to decreased threshold voltage, along with the improvements of 
transistor speed and density, and is forecasted to constitute up to 50% of overall chip 
power beyond 70nm processes from academic and industry data [1, 2, 3]. Leakage 
control at architecture and circuit level is attractive for the following reasons. First, 
future chips will integrate more transistors and architectural techniques can manage 
large groups of circuits, such as instruction windows, cache lines, banks, etc. Second, 
subthreshold leakage is dominant among the sources of leakage current and hard to 
avoid using existing technologies, although gate leakage current can be effectively 
reduced by using high-k dielectrics. Third, embedded and mobile systems have strict 
requirements in low package costs and energy efficiency. Because leakage power is 
dependent on the number of transistors, the majority of leakage power will come from 
the largest processor components. Cache sizes have grown steadily in an attempt to 
mask the widening gap between main memory latency and core clock frequency, 
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however, activities are centered on only a small set of lines are during a fixed period 
of time. Therefore cache leakage current is worth cutting down. 

Drowsy cache technique reduces leakage power by reducing voltages on selected 
cache lines while preserving the contents, therefore avoiding accessing the next level 
of memory. The goal of the architecture level policy is to put as many lines in drowsy 
mode as possible while minimizing the performance loss due to hitting drowsy lines 
with extra wakeup cycles. Unlike instruction streams which are highly predictable [4], 
future references for data streams are hard to predict early, and the control policy for 
data caches must be very selective. The most distinguished characteristics for cache 
structure is its exploitation of temporal locality, and most previous drowsy cache 
policies have exploited this by updating the drowsy/active mode after a pre-specified 
number of clock cycles. However, these policies still lack the flexibility to adapt to 
program behavior. 

In this paper, we find that the reuse distance can directly reflects the temporal 
locality on L1 data cache. A small distance indicates a strong likelihood of future 
reference, and a big distance indicates the reverse. Most cache hits are clustered to 
recent 5 to 10 distinct lines. We then present a tri-mode FSM control policy, which 
exploits the global reuse distance information and provides more fine-grained control. 
In this policy, mode downgrading occurs after an execution window specified by N 
distinct line references instead of fixed number of clock cycles. An analytical 
coverage model is established to measure how the window size impacts power and 
performance related metrics. Experimental show that the policy continuously and 
steadily delivers better energy savings than the best policies from the literature, 
suffers little performance loss, is simple to implement, and places an upper bound on 
leakage power consumption. 

The remainder of this paper is organized as follows. Section 2 describes recent 
research on cache leakage power reduction. Section 3 studies the reuse distance 
distribution, describes and analyses the tri-mode FSM control algorithm. Section 4 
evaluates our policy and state-of-the-art ones. Finally, section 5 concludes. 

2   Related Work 

This section reviews previous work on reducing leakage power for caches. The circuit 
level techniques provide an interface for architectural level control policies. Leakage 
power comes from transistors that are left on. Therefore the common technique to 
reduce leakage is to reduce the power supplied. The widely discussed techniques are 
classified into state-preserving and state-destroying techniques. 

The gated-Vdd [6] technique uses a transistor to gate the supply of the cache 
SRAM cells. This technique dramatically reduces the current leakage since selected 
lines are powered off. The main drawback of this technique is that when a cache line 
is needed again after it has been put to sleep, it must be re-fetched from lower levels 
of memory. This re-fetch is essentially an extra miss, and this process can take many 
cycles. For the circuits using gated-Vdd technique, decay based policies are widely 
studied, including fixed- and adaptive- interval decay [7], AMC (adaptive mode 
control) [8], and IATAC (inter-access time per access count) tailored for L2 caches 
[9]. The general rationale behind these policies is that cache lines typically experience 
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much shorter live time (the time between being brought in to the last access) than 
dead time (the time between the last access and next miss). 

Drowsy cache is an alternative technique by making use of multiple supply 
voltages. When the cache line is fully on, it will dissipate too much leakage power. A 
lower supply voltage is used when data is not needed for a while. This will reduce the 
leakage power without losing the data. The tradeoff is that, while data will be 
preserved at this low supply voltage, it cannot be accessed while in this state. Thus 
there is a small wakeup time associated with changing from the lower voltage up to 
Vdd. The advantage of this technique is that it achieves the same L1 hit ratio as 
conventional caches, and therefore no additional accesses to the L2 cache are needed. 
Although leakage is not zero in the drowsy mode, it provides more than a 10× 
reduction over the regular high leakage mode. The widely studied drowsy cache 
policies generally execution window based. The simple policy puts all lines to sleep 
indistinctively after a specified number of cycles [4]. The noaccess policy only turns 
off lines that have not been accessed during that window [4]. The RMRO policy is 
tailored for set-associative caches, where if a cache way has been accessed within the 
time window it remains awake, otherwise it’s turned off [5]. If more than two ways 
have been accessed, only the two MRU ways are kept awake. The simple policy has 
been shown to perform almost identically as noaccess policy. The RMRO is shown to 
improve the hit ratio for drowsy lines in some extent. The rationale behind these 
policies is that during a fixed interval, only limited lines are centered on. 

3   Reuse Distance Based Control Policy 

This section studies the reuse distance distribution for the L1 data cache. Based on 
this characterization, a hardware approach is proposed to capture this locality 
behavior. 

3.1   Reuse Distance Characterization 

The reuse distance of a memory access is formally defined as the number of distinct 
cache lines/blocks referenced since the last reference to the requested line/block. 
Because a new line that replaces the old one carries different data, an access that 
misses is assigned a reuse distance of infinity. Table 1 shows the reuse distance for an 
example access sequence. In this sequence, line B is continuously referenced for three 
times, but later A and C are still assigned small distances (1 and 2 instead of 3 and 4). 

Table 1. Reuse distance for an example access sequence 

address A B C A B B B A C 

distance ∞ ∞ ∞ 2 2 0 0 1 2 

 
To study the reuse distance distribution, we use a MRU algorithm similar to the 

LRU replacement algorithm in set-associative caches. This algorithm is only for the 
software simulator to study the cache behavior. Keeping N most recent distinct 
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references can be implemented with a MRU structure. Each entry of the MRU 
contains a line ID and a counter. For set-associative caches, the line ID is composed 
of the set index and the way ID of the address (by matching the tags). For each cache 
access, the address can be translated to a unique line ID. This line ID is looked up in 
the MRU table. If the line exists, the corresponding counter is reset to zero. 
Meanwhile, all other counters are incremented. Otherwise, the LRU line which has 
the largest counter is evicted from the MRU table and replaced by the new line with 
counter reset. In this way, the MRU can keep a precise record of N most recent 
distinct referenced lines. Therefore, the most recent accessed line has a counter of 0, 
and the farmost line has the biggest counter. The reuse distance can be calculated by 
making a total ordering of all counters from the smallest to the biggest. 

We apply this algorithm for L1 data cache by using a MRU table of 25 entries.  
Fig. 1 shows the percentages of cache hits with reuse distances from 0 to 24. We do 
not take missed access into account because drowsy policies do not incur additional 
misses, and they are out of our interests. Temporal locality drops significantly after 
most recent 5 distinct line references. After the latest 10 line references, the locality is 
very low for most benchmarks. We also find that if we keep a MRU table of recent 
accesses which may not be distinct ones, the distance distribution will not be well 
clustered in the lower end. This means that the reuse distance metric well matches the 
temporal locality behavior. 
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Fig. 1. Reuse distance distribution for integer (left) and floating point (right) benchmarks on L1 
data cache 

3.2   Tri-mode FSM Control Policy 

The reuse distance distribution is clustered on recent 5 to 10 distinct line references, 
which indicates that we can keep 5 to 10 MRU lines active and put others into drowsy 
from the power perspective. Although a centralized MRU structure can keep a precise 
record of focused lines, it is expensive to implement in hardware. The table is indeed 
a small fully-associative cache, and each access must update the table with address 
matching and counter comparing operations. Multiple concurrent accesses may put 
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more timing pressure on it. When the LRU line address is evicted from the MRU 
table, it must pass the data cache row decoder, and then select the line and put it into 
drowsy. This can not be performed when other cache lines are accessed. 

A

Active

NRU 
active but Not
Recently Used

D

Drowsy

line access

window ends

line access
window ends

 

Fig. 2. Tri-mode finite state machine diagram 

We introduce a tri-mode FSM based policy with a decentralized control on 
individual lines, which has very low cost and is simple to implement. The diagram in 
Fig. 2 shows the FSM. Besides the active and drowsy mode, we define a middle state 
called NRU (not recently used). Cache line is still in full voltage in this mode, but it is 
not most recently used and not likely to be referenced in the future. Recording the 
mode needs only two bits per line. Initially, all cache lines are in drowsy mode. On 
each line access, the mode is upgraded to active, marking the strong likelihood of 
future references. Note that only the transition from drowsy to active incurs additional 
wakeup delay. There is also a mode degradation which occurs when the execution 
window ends. This execution window is defined by N distinct references instead of 
pre-specified clock cycles. It can be implemented by using a 2log N width bit counter. 

On each access, only if the cache line is in NRU or drowsy mode or newly brought in, 
the counter is incremented. Otherwise, it can be stated that the cache line is already 
upgraded to active mode during the execution window, and we do nothing. Thus we 
record only distinct references in the execution window. After the counter reaches N, 
the execution window ends, the counter is cleared and it signals all cache lines. This 
quasi-periodic event informs each cache line to downgrade according to its current 
mode, i.e., an active line downgrades to NRU mode, and a NRU line downgrades to 
drowsy mode. Because most lines are drowsy, the mode transitions are centered on a 
small set of lines.  

As shown in Fig. 3, the tri-mode FSM policy can be implemented in a similar way 
as the simple policy, which only adds an extra bit in “mode” field to distinguish the 
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“NRU” and “Active” mode. For each cache access, the selected line is upgraded to 
active mode. When the global counter reaches N (execution window ends), a signal is 
sent to all cache lines to switch their respective mode according to current mode. For 
the reason of design simplicity, we assume that only data array has implemented the 
DVS circuit. If the tag array also implements DVS, then more leakage power can be 
saved but a hit on a drowsy line would incur more latencies and when the tag 
mismatches with the awakened line, it should be put back to drowsy again. 

IndexTag Line Offset

Row
Decoder

Row Select

Mode ControlMode

Tag  Array Data Array

Tag Match & Mode Check

Global Counter

Update Mechanism

Word Select MUX

Data Word

Hit/Miss

Mode
Row Select

Mode Control

 

Fig. 3. Hardware implementation of tri-mode FSM policy (direct mapped cache shown) 
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Fig. 4. Coverage model with an execution window of size N=5 

Choosing the window size presents a tradeoff between power and performance. To 
understand how the parameter N impacts performance, we present an analytical 
coverage model which estimates the ratio of drowsy hits (each of which incurs 
additional wakeup delay) in all cache hits. As shown in Fig. 4, we choose an 
execution window of size 5. Cache hits with a reuse distance within 5 (including 5) 
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will not be drowsy hits. Cache hits with a reuse distance beyond 10 are guaranteed to 
incur wakeup cycles because the accessed cache lines are in drowsy mode. Cache hits 
with a distance within 5 (not inclusive) and 10 may hit a drowsy line or a NRU line, 
as shown in Fig. 5. The dots in the figure represent distinct cache lines. In case I, line 
A experiences one mode transition from Active to NRU. In case II, line B experiences 
two mode transitions from Active to Drowsy. 

A(Active) A(NRU)

Window Ends Window Ends

Dist=6

B(Active) B(Drowsy)

Dist=6

Case I:

Case II:

 

Fig. 5. Two cases for accesses with reuse distance between N and 2N 

Therefore we reach the following equation: 

2 1 1

( )i i
i N i N

P DHR N P
∞ ∞

= + = +

≤ ≤∑ ∑  (1) 

DHR (Drowsy Hit Ratio) measures the potential IPC loss and dynamic power 
overhead in switching between active and drowsy modes. Pi is the ratio of accesses 
with a reuse distance of i. Table 2 shows the estimated upper and lower bound of 
DHR averaging all the evaluated benchmarks, using statistics in Fig. 1 and the above 
analytical equation. From the estimation, we see that DHR decreases with increased 
N. When the execution window size reaches 10, DHR is within 6.2% budget. Floating 
point applications show better temporal locality: with a window size of 5, DHR is no 
more than 6.8%. 

Table 2. Drowsy hit ratio estimation with an execution window of size N 

 N=5 N=8 N=10 
Min 6.2% 2.9% 1.4% 

Integer 
Max 12.7% 8.2% 6.2% 
Min 2.6% 2.3% 1.6% 

Floating Point 
Max 6.8% 3.4% 2.6% 

 
DR (drowsy ratio) is the average ratio of cache lines that are in drowsy mode. This 

metric is to gauge the saving on cache leakage power. The tri-mode FSM based policy 
also permits us to estimate a lower bound of DR for a given N, as shown in equation 2. 
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Here nLines denotes the total number of cache lines, and Ri is the percentage of clock 
cycles in which exactly i cache lines remain active. For a given execution window 
size N, there are at most 2N active lines in any cycle, which puts a hard limit on the 
maximum power consumption on cache leakage power. For example, our 64K data 
cache has 2048 lines, and choosing a window size of 10 has a lower bound estimation 
of DR to be 99%. Table 3 summarizes the lower bound estimation of drowsy ratios 
related to window size N. 

Table 3. Lower bound of drowsy ratio with an execution window of size N 

N=5 N=8 N=10 
99.5% 99.2% 99% 

4   Evaluation 

4.1   Experimental Setup 

In this section, we evaluate the power and performance characteristics of our reuse 
distance based policy, comparing it with state-of-the-art policies using our baseline 
architecture configuration. We evaluate our drowsy policy and state-of-the-art ones 
across 17 SPEC CPU 2000 benchmarks with reference inputs on the single interval of 
100 million instructions suggested by the SimPoint tool [10]. We use m-sim to model 
a four-issue Alpha architecture [11], and incorporated HotLeakage [12] and Wattch 
[13] model to evaluate leakage and dynamic power. Table 4 shows the base 
architecture parameters. We assume awake tag and drowsy data, and switching lines 
from high to low or low to high voltages incurs an extra 2-cycle transition penalty. 
We model the L1 cache with 2-cycle hit time, therefore the hits on drowsy lines will 
need 4 cycles: 2-cycle tag match and data wakeup plus 2-cycle line read/write. We 
model an operating temperature of 80℃, which is typical of a chip, and 70nm process 
technology. 

Table 5 presents the 64K L1 DCache leakage power (circuit and technology 
related) estimated with HotLeakage using default parameters. Drowsy cache 
consumes only 9% leakage power of cache with full Vdd assuming awake tags. 
Because drowsy cache still dissipates leakage power, the total leakage power grows as 
cache is enlarged. The dynamic mode switch power is comparable with or larger than 
the drowsy leakage power of a single line, therefore frequent unwise mode switches 
still have considerable negative impact on leakage savings, as can be reflected by 
DHR metric. 

We compare our policy (with a modest execution window size of 10) against 
simple and RMRO policy (with an optimized execution window of 2K cycles) across 
17 SPEC benchmarks. From Fig. 6, it is observed that our policy continuously 
achieves higher drowsy ratio, which is averaged to above 99.5%. Simple and RMRO  
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Table 4. Architecture parameters 

Technology 70nm
Frequency 1.5GHz
Temperature 80�
Voltage 1V
Issue/Commit Width 4

IQ/RF/LSQ/ROB Size 80/160/40/160

INT/FP ALU Units 4/2

L1 ICache 32KB 2-way associative
1-cycle access

32-byte line

L1 DCache 64KB 4-way associative
2-cycle access

32-byte line
L2 Unified Cache 1MB 4-way associative

8 cycles
32-byte line

Main Memory first chunk 100 cycles
inter chunk 2 cycles

Table 5. Leakage power (mW) estimated with HotLeakage 

Active Drowsy Line Mode Switch Power 
(low to high/high to low) 

283.2 27 0.03/0.01 

 
achieve averaged drowsy ratio from 95% to 97.5%. Meanwhile, they achieve much 
lower drowsy ratio on gcc and crafty (below 90%). Higher drowsy ratio directly leads 
to more leakage power savings due to the fact that low-voltage line can achieve more 
than 10× power reductions. On the other hand, our policy continuously achieves much 
lower drowsy hit ratio as shown in Fig. 7, which is averaged to below 4%. Simple and 
RMRO achieve averaged drowsy hit ratio from 8% to15%. They even incur above 
30% drowsy hit ratio for mcf and art. That means our policy has much less unwise 
mode switches. 

From Fig. 8, it is observed that our policy cuts down leakage power to only 11% of 
the baseline, while simple and RMRO have normalized leakage of 20% and 17% 
respectively. Due to the lower drowsy ratio, simple and RMRO dissipates much more 
power on gcc and crafty. That means our policy improves the other two by 45% and 
35% on average respectively. The results are close to the original drowsy paper which 
reports simple policy to achieve 26% normalized leakage on 32K cache. The 
improvements are mainly due to the high drowsy ratio, and partially due to the lower  
ratio of mode switches. We also tried different number of clock cycles for simple and 
RMRO, and found that not a single choice is optimal for all benchmarks. Some favor 
2K cycles while others favor 4K cycles. This also agrees with the original drowsy  
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Fig. 6. Drowsy ratio 
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Fig. 7. Drowsy hit ratio 
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Fig. 8. Normalized leakage power 
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Fig. 9. Normalized IPC 

paper. That means our policy is inherently more selective and better matches the 
program temporal locality behavior. Meanwhile, our policy can guarantee a hard limit 
of 30mW leakage power for 64K cache across different execution phase and different 
benchmarks, because from the reuse distance distribution shown in Fig. 1, the policy 
can give an upper bound on DHR and lower bound on DR. Simple and RMRO 
policies can not guarantee an upper bound on leakage power, because during any 
particular execution window they can not limit the number of active lines. For the 
reuse distance policy, a smaller window size (e.g. 5 or 8) leads to higher drowsy ratio, 
but the leakage saving may be offset by higher frequency of mode switches. From 
Fig.9, we observe that the three policies have similar IPC impacts across all 
benchmarks, which are averaged to 0.5% and are seldom larger than 1% (except for 
simple policy on crafty). Some benchmarks even have small performance 
improvements due to the fact that extra hit latency may stall speculative instructions 
from accessing cache which may incur additional misses. Anyway, with such a small 
range of performance loss, our policy makes no distinct advantage on performance. 
This indicates that the out-of-order execution core could very well tolerate some 
degree of extra hit latency. 

5   Conclusions 

Drowsy caches put selected lines into low leakage mode according to a drowsy 
policy. A wise policy should reduce the leakage power while maintaining cache 
performance. In order to achieve the goal, drowsy cache should maintain a small set 
of lines which will be accessed in near future. 

The main drawback of existing policies is their lack of flexibility to adapt to 
program behavior. In this paper we investigate the reuse distance distribution on L1 
data cache, which indicates that most cache hits are clustered on recent 5 to 10 lines. 
We introduce a tri-mode FSM leakage control policy which exploits this observation 
and is very simple to implement. We present an analytical coverage model on how the 
window size influences drowsy hit ratio and drowsy ratio. Experiments show that this 
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policy improves drowsy ratio while reducing drowsy hit ratio over state-of-the-art 
policies. It cuts down leakage of 64K L1 data cache to only 11% of the original. The 
performance loss is limited to under 0.5% comparing with a standard cache. 
Meanwhile, it can guarantee an upper bound on power consumption. 

We also find that reuse distances on unified L2 cache are not well clustered, due to 
the influences from the instruction streams. In future work we will cast deeper insight 
on better exploiting L2 cache behavior for leakage control considering existing circuit 
techniques. 
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Abstract. With the increased complexity of platforms coupled with data 
centers’ servers sprawl, power consumption is reaching unsustainable limits. 
Memory is an important target for platform-level energy efficiency, where most 
power management techniques use multiple power state DRAM devices to 
transition them to low-power states when they are “sufficiently” idle. However, 
fully-interleaved memory in high-performance servers presents a research 
challenge to the memory power management problem. Due to data striping 
across all memory modules, memory accesses are distributed in a manner that 
considerably reduces the idleness of memory modules to warrant transitions to 
low-power states. In this paper we introduce a novel technique for dynamic 
memory interleaving that is adaptive to incoming workload in a manner that 
reduces memory energy consumption while maintaining the performance at an 
acceptable level. We use optimization theory to formulate and solve the power-
performance management problem. We use dynamic cache line migration 
techniques to increase the idleness of memory modules by consolidating the 
application’s working-set on a minimal set of ranks. Our technique yields 
energy saving of about 48.8 % (26.7 kJ) compared to traditional techniques 
measured at 4.5%. It delivers the maximum performance-per-watt during all 
phases of the application execution with a maximum performance-per-watt 
improvement of 88.48%.  

1   Introduction 

With the increased computing demand coupled with server sprawl in data centers, 
power consumption is reaching unsustainable limits. Memory is a major consumer of 
the overall system energy [1]. Recently, researchers [1,4,5] have explored multi-
power state Rambus DRAM (RDRAM) [2] and Fully-Buffered DIMM (FB-DIMM) 
[3] that provide the ability to transition individual memory modules to low-power 
modes. Since memory is often configured to handle peak performance, it is possible 
to save power and simultaneously maintain performance by allocating the required 
memory to applications at runtime and moving the un-needed memory capacity to 
low power states. 

However, existing techniques fall short when applied to servers with interleaved 
memory sub-systems. Interleaving does not offer much opportunity for energy saving 
because memory accesses are symmetrically distributed across all memory modules 
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and thus providing less opportunity for idleness. For example, we ran SPECjbb2005 
[6] on our server with fully-interleaved (16-way) memory and observed that the 
memory was idle for less than 5% of the total runtime of SPECjbb2005. Applying 
existing power management techniques [1,4,5] to this memory sub-system would 
yield only 4.5% total saving. We also ran SPECjbb2005 with smaller degree of 
interleaving (12-way) and noticed little impact on performance but the idleness of few 
memory modules increased long enough to yield energy saving of 25% (14.7 kJ). This 
demonstrated an opportunity to reduce power and maintain performance by 
dynamically scaling the degree of interleaving to adapt to the application’s memory 
requirements. This requires us to detect the application’s memory requirements at 
runtime and appropriately reconfigure the degree of interleaving such that we can 
maximize the server’s performance-per-watt. 

In this paper, we propose a dynamic interleaving technique that intelligently 
interleaves data across selected memory modules and thereby increases the idle period 
for the remaining modules. Hence the other memory modules can transition to the 
really low-power states and can remain in that state for longer periods of time. This 
delivers more performance by expending the same amount of energy. We model the 
memory sub-system as a set of states and transitions. A state represents a specific 
memory configuration and is defined by a fixed base power consumption and a 
variable end-to-end memory access delay. Whenever, the application memory 
requirement changes and/or the delay exceeds a threshold value, a Data Migration 
Manager (DMM) within the Memory Controller (MC) determines a target state 
among all possible system states that consumes the minimum power and yet 
maintains the delay. It searches for this target state by solving an efficient 
performance-per-watt optimization problem. Inorder to reconfigure the interleaving to 
the desired degree as required by the target state, the DMM migrates the application’s 
working set to the memory configuration in the target state. It works in collaboration 
with a local Power Manager (PM) per memory module that can implement any fine-
grained power management technique to transition memory modules to low-power 
states based on their idleness. 

The rest of the paper is organized as follows. In Section 2, we present a 
motivational example for our research approach. Section 3 discusses related work. In 
Sections 4, we discuss the power and performance model for the memory sub-system. 
Section 5 discusses the MC model for performance-per-watt management. In Section 
6 we discuss some results and finally conclude in Section 7. 

2   Motivational Example 

Let us consider a memory sub-system with 8 memory modules as shown in Figure 1 
where each module is individually power-managed. Let us consider two time instants 

it  and 1+it  during the application execution such that the application requires in  

pages at it and 1+in  pages at 1+it  to achieve the maximum hit ratio.  If we consider a 

sequential page allocation scheme [1], pages are allocated to one memory module 

completely filling it up before going to the next module. Hence, if 1+in < in , we can 

save power by transitioning the modules, that contain the unused ( in - 1+in ) pages, 
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into a low-power state. However with full-interleaving, a single page would be striped 

across all memory modules. Consequently, the 1+in  pages would occupy all the 

modules. Hence there are no memory modules with unused pages that can be 
transitioned to a low-power state. We propose to create the opportunity for power 
saving in fully-interleaved memory by dynamically varying the degree of interleaving 
without hurting performance. For the example shown in Figure 1, we reduce the 
degree of interleaving from 8-way to 4-way by migrating the data from 8 to 4 
modules. In this manner we can transition the remaining 4 modules to a low-power 
state. However, reducing the degree of interleaving also reduces the parallelization in 
memory accesses which in turn may impact delay. In our scheme, before we 
reconfigure the interleaving we ensure that this impact on delay is within acceptable 
bounds. One way of reducing the impact on delay is to migrate the data in a manner 
that exploits any unique characteristics of the underlying memory architecture. For 
example in Figure 1 the memory modules in ‘block A’ can be accessed in parallel to 
those in ‘block B’ (similar to our experimental server unit). Figure 1 shows two 
different migration strategies. In strategy I, data is migrated onto memory modules A1 
and A2 in block A and B1 and B2 in block B. However in strategy II data is migrated 
onto memory modules A1, A2, A3, A4 all in the same memory block A. Naturally 
strategy II would have a higher impact on delay compared to strategy I because it did 
not exercise both the blocks. Since cache lines with very high spatial reference 
affinity would lie within the same block, they would experience sequential access 
pattern as compared to strategy I where they can be accessed in parallel. Since most 
programs demonstrate a high spatial locality of reference, this would lead to a 
significant reduction in the parallelism of accesses for strategy II and hence severely 
impact delay. We have experimentally verified this observation where we noticed a 
5.72% drop in SPECjbb2005 performance for migration strategy II. 

 
 
 

 
 

                              Fig. 1. Data migration strategies                Fig. 2. FB-DIMM power states  

3   Related Work 

Researchers have exploited hardware features such as multiple power states 
RDRAMs and FB-DIMMs for dynamic power management of the memory sub-
system. Delaluz et al. proposed various threshold predictors to determine the 
maximum amount of time that a memory module must remain idle before it is 
transitioned into a low power state [8]. Fan et al. investigated MC policies in cache-
based systems and concluded that the simple policy of immediately transitioning the 
DRAM chip to a lower power state as soon as it becomes idle is superior compared to 
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more sophisticated policies that try to predict the idle time [4]. Researchers have also 
looked at co-operative hardware-software schemes for memory power management. 
Lebeck et al. studied page allocation techniques to cluster the application’s pages onto 
a minimum number of memory modules thereby increasing the idleness for the other 
modules [1]. Zhou et al. used such page allocation schemes combined with the page 
Miss Ratio Curve metric to determine the optimal memory size that would give the 
maximum hit ratio for the application [5]. Delaluz et al. proposed a scheduler-based 
policy that used prior knowledge of memory modules used by a specific process to 
allocate the same memory modules the next time the process is scheduled [9]. Huang 
et al. built on this idea to develop Power-Aware Virtual Memory [PAVM] where the 
OS and the MC communicate to enhance memory energy savings through leveraging 
NUMA memory infrastructure to reduce energy consumption on a per-process basis 
[10]. Delaluz et al. [11] migrated arrays in multi-bank memory based on temporal 
locality to consolidate the arrays on a small set of banks. There has also been a 
plethora of work that addresses memory power management while maintaining 
performance. Li et al. [13] proposed a Performance-directed Dynamic (PD) algorithm 
that dynamically adjusts the thresholds for transitioning devices to low-power states, 
based on available slack and recent workload characteristics. A departure to this 
approach is provided by the work of Diniz et al. [14] that shows that limiting power is 
as effective an energy-conservation approach as techniques explicitly designed for 
performance-aware energy conservation. 

Our scheme differs from these techniques because we address power/performance 
management of interleaved memory sub-systems where current techniques cannot be 
applied. We use migration to dynamically reduce the size of the interleaving in order 
to reduce power while maintaining performance. Our scheme incorporates knowledge 
about the underlying memory architecture in performing migrations. Our scheme is 
application and OS agnostic because it is closer to the hardware. 

4   Memory Power and Performance Model 

We consider FB-DIMM as our memory model which is popular in high-performance 
servers because of its reliability, speed and density features. An FB-DIMM packages 
multiple DDR DRAM devices and an Active Memory Buffer (AMB) in a single 
module. The AMB is 
responsible for buffering 
and transferring data 
serially between DRAM 
devices on the FB-
DIMM and the MC.  

Figure 3 shows the 
model of our memory 
sub-system. It is based 
on the architecture found 
in Intel Xeon series 
servers. It consists of 
multiple branches where 
each branch consists of Fig. 3. Memory sub-system model 
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multiple channels, each channel contains multiple FB-DIMMs and each FB-DIMM 
contains multiple ranks.  Ranks on separate branches can be accessed in parallel. 
Ranks on separate channels can be accessed in lock-step. Ranks within the same 
channel can be accessed sequentially. The number of DRAM devices accessed 
simultaneously to service a single memory request defines a rank. In our model we 
consider a rank as the smallest unit for power management. 

An FB-DIMM includes four power states – active, standby, suspend and offline as 
shown in Figure 2. Memory requests are serviced only in the active power state. A 
state that consumes less power also has a high reactivation time. The AMB brings in 
another set of challenges for memory power management because it consumes power 
even when  the FB-DIMM is idle in order to maintain the data transfer link between 
the MC and neighboring FB-DIMMs on the channel.  

We model the performance of the memory sub-system in terms of end-to-end delay 
d . It is defined as the time from the instant the request arrives at the MC to the time 
when the data becomes available at the MC.  

5    Memory Controller Model for Performance-per-Watt 
Management 

In this Section we first discuss how we can track the dynamic memory requirements 
of the application. We then discuss the impact of a specific memory configuration on 
the delay. This information is used by the MC to search for a target memory 
configuration (state) that gives the maximum performance-per-watt among all 
possible memory configurations (state).  

5.1   Dynamic Tracking of Application Memory Requirement 

The DMM uses the MRC metric [5] to predict the dynamic memory requirements of 

the application. Let us consider that during epoch it , memory of size of n (pages) is in 

an active power state. Let us assume that we measured the number of hits going to 
each page and pages are maintained in a strict LRU [7] order where the most recently 
referenced page is moved to the head of the LRU list. Now, the contents of a memory 
of size n pages are a subset of the contents of a memory of size n + 1 pages or larger 
due to the inclusion property of LRU. Using this property we can calculate the MRC 
for any memory size of m pages where m <= n pages during time epoch ti as follows 
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 are memory hits to the n and m pages respectively and 

it
missp  is the measured page misses during ti. The numerator in Equation (1) is the 

number of misses for a memory of size m (pages), where m<n. As we increase the 
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memory size, the corresponding MRC reduces. However, it would stay the same for 
memory of size m (pages) or m+1 (pages) if the misses stay the same for both the 
cases. This would mean that the (m+1)th page was over-provisioned and the ideal 
memory size is m (pages). If however the MRC keeps reducing until we have covered 
all the n pages we increase the size of the memory by bufPages in anticipation that it 
would bring down the pages misses further. bufPages is determined at the end of each 
epoch ti based on the measured 

it
missp , the higher the 

it
missp the higher the bufPages.  

We denote the total memory size (pages) required to attain the maximum hit ratio 

by wsN (pages). In fully-interleaved memory, these wsN  pages are striped across all 

memory ranks, mainly to improve performance-efficiency. In non-interleaved 

memory, wsN  pages are consolidated on one memory rank completely filling it up 

before going to the next, mainly to improve power-efficiency. In what follows, we 

discuss how at runtime we determine a degree of interleaving that stripes the wsN  

pages on memory ranks to improve both power and performance efficiency.  

5.2   Interleaving of Working Set Pages for Performance-per-Watt Management 

In this Section we first discuss about data placement in a fully-interleaved memory. 
We then discuss how we vary the degree of interleaving to adapt to the incoming 
workload by using a temporal affinity prediction technique that effectively exploits 
the internal memory architecture.  

5.2.1   Data Placement in Fully-Interleaved Memory 
Let us revisit the memory architecture shown in Figure 3 that interleaves at the cache 
line granularity. Cache lines are allocated to ranks such that spatially adjacent cache 
lines reside on ranks that are furthest away from one another in order to increase the 
parallelization in accesses. For example, in Figure 3 cache line 0 is allocated to rank 
0 on branch 0 while cache line 1 is allocated to rank 0 on branch 1. 

Since temporal affinity in accesses is determined to a large extent by placement of 
cache lines on the underlying architecture that consists of branches, channels etc we 
abstract the notion of distance between cache line pairs based on their relative 
placement in the memory sub-system. We express this in the form of Spatial 
Reference Affinity (SRA) and Spatial Location Affinity (SLA) metrics and use these 
metrics to analyze the impact of a memory configuration on the end-to-end delay. 

5.2.2   Predicting Temporal Affinity 
We predict the temporal affinity between memory accesses with the aid of the SRA 
and SLA metrics. Let us consider cache lines that belong to a single page. Adjacent 
cache line pairs have a higher probability of temporal affinity in accesses compared to 
those that are further apart in the same page. We use the SRA Metric to capture the 
temporal affinity arising out of this closeness in space. The SRA between a cache line 
pair (i,j) is measured by the number of cache lines that separate them. Hence SRA is 
zero for adjacent cache line pair and ( / 1)P CLs s − for the first and last cache lines on 

the page where Ps denotes page size and CLs denotes cache line size. 



374 B. Khargharia, S. Hariri, and M.S. Yousif 

Temporal affinity in accesses may have very different impact on delay depending 
on the relative position of the cache line pairs within the memory hierarchy. For 
example with reference to Figure 3, adjacent cache line pairs (SRA = 0) with high 
temporal affinity may have negligible impact on the delay if they are placed on 
separate memory branches. This is because even when they are accessed immediately 
after one another each access is serviced by a separate branch which can be accessed 
in parallel. We use the SLA Metric to capture the temporal affinity that arises out of 
this closeness in physical location of cache line pairs. However, unlike SRA, there is 
no simple way of computing SLA. So we manually configured the memory 
architecture on a server unit to multiple different configurations (e.g – ranks on 
different branches, ranks on same branch different channels etc). We then ran 
SPECjbb2005 and recorded its performance on each of these configurations. From 
these results we derived the following empirical function to compute SLA. 

=],,][,,[ jjjiii RDBRDBSLA ( * | | * | | | | )B i j D i j R i j zw B B w D D w R R w− + − + − +            (2) 

where wB : weight of cache line pair across branches, wD : weight across FB-DIMMs, 
wR : weight across ranks and wZ : weight of cache line pair on the same rank. These 
are the empirically derived weights where wB > wD > wR > wZ, wB >(wD+wR) etc. 
Hence, a cache line pair across separate branches Bi and Bj gives a higher SLA 
compared to that across separate ranks (wB >wR).  

We now combine these two metrics in order to weigh the impact of one placement 
strategy over another in terms of their combined impact on the delay. We do this with 
the aid of the conflict metric ψΔ given by equation (3).  

                                        
min min

1
( )

( )* ( )
s

SLA s SRA s
ψΔ =                                              (3) 

Let us consider two placement strategies that use different memory sizes. We 
compute the minimum SRA given the minimum SLA for each placement strategy. 
From Equation (3) the strategy that has the smallest SLA and smallest SRA for that 
SLA has a higher ψΔ indicating a higher impact on delay. Similarly, for two 
placement strategies that use the same memory size (number of ranks) but different 
memory configuration (physical location of ranks) we compute minimum SLA for 
adjacent cache line pair (minimum SRA) for each strategy. Since the minimum SRA is 
fixed for both the strategies, in this case the strategy that gives the smaller SLA has a 
higher ψΔ  indicating a higher impact on delay. For example, each migration 
strategy of Figure 1 has the same memory size but different memory configuration. 
Now, for strategy II, SLA for minimum SRA is wD but for strategy I it is wB. Since wB 
> wD ψΔ  for strategy II is higher than that for I. This explains the drop in 
performance for SPECjbb2005 for strategy II. Hence we always favor the migration 
strategy that has the smallest value of ( )sψΔ . 

5.3   Formulating the Optimization Problem for Performance-per-Watt 
Management 

We formulate our adaptive interleaving technique as a performance-per-watt 
maximization problem.  
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( obska tnp ** ), :sN  total number of system states, :jkc  power consumed in state 

transition and :
jktransτ time taken for state transition, :],[ maxmin dd the threshold 

delay range, :jkx  decision variable for transition from state js to ks , rs : size per 

rank. The state sk represents a specific memory configuration given by the number 
and physical location of the ranks in the ‘active’ power state. It is defined by two 

tuple - fixed base power consumption kp and variable end-to-end delay kd .  

The first constraint in Equation 4 states that the target state should have enough 
memory to hold all the Nws pages. The second constraint states that in the target state, 
delay should stay within the threshold range. The third constraint states that the 
optimization problem leads to only one decision. The decision variable corresponding 
to that is 1 and the rest are 0. The fourth constraint states that the decision variable is a 
0-1 integer. 

Analysis of Transition Overhead: The transition overhead transc τ* is the energy 

spent during state transition. We factor this overhead into the objective function to 
identify state transitions that would give the smallest overhead among all possible 

transitions. We also account for the impact of the transition time transτ on delay. 

Owing to constraint 2 Equation 4, this prevents state transitions when transτ  is too 

high. Hence this reduces the frequency of state transitions and thereby maintains the 
algorithm sensitivity to workload changes, within acceptable bounds.   

The transition time is expressed as pmtrans τττ +=  where pτ denotes the rank 

power state transition time (see Figure 2) and mτ denotes the data migration time. 

Since ranks can transition in parallel pτ is essentially the rank reactivation time. mτ is 

a sum of the rank read time, data transfer time on the link(s), rank write time and the 
time taken to update a hardware indirection data structure that routes accesses to 
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migrated data blocks. Note that mτ is directly proportional to the amount of data being 

migrated. We call this the migration data Μ . In our case, Μ is the predicted 
application working set ( wsN ). Hence, maintaining the working set in memory not 

only reduces memory over-provisioning but also reduces migration overhead. 

Migration Energy: The energy consumed during migration trans*c τ  can be 

expressed as mmptk trans * p   +*p *n *c τττ = where tp is the transition power 

consumed by a rank and mp is the power consumed in the memory sub-system during 

data migration. mp  can be expressed as a sum of the buffer power, base FB-DIMM 

power, DRAM refresh power, read power, link power and write power. We assume a 
close-page policy which is energy-efficient for interleaved memory. Hence we do not 
account for the energy spent in accessing open pages during migration. 

6   Experimental Results 

Our test-bed consists of a server with Intel Xeon processors and 5000 series chipset. It 
has memory architecture similar to that shown in Figure 3. It consists of two 
branches, two channels per branch, two FB-DIMMs per channel and two ranks per 
FB-DIMM. The server can support a total of 8 FB-DIMMs or 16 ranks in total.  

We studied the performance-per-watt for the SPECjbb2005 on our server unit. 
SPECjbb2005 emulates a 3-tier client/server system with emphasis on the mid-tier 
business logic engine. It gives the performance of the system in a throughput measure 
called BOPS (business operations per second).  

Current server technology does not support dynamic memory interleaving. To get 
around this problem we emulated dynamic interleaving by manually reconfiguring the 
memory sub-system as required. Every reconfiguration required a system restart.  

6.1    Analysis of Performance-per-Watt Improvement for SPECjbb2005 

Our algorithm monitored the MRC for SPECjbb2005 as described in Section 5.2. It 
also monitored the average end-to-end delay by using chipset performance counters 
per rank. It used these parameters to trigger a search for an optimal state as discussed 
in section 5.3. We then manually reconfigured the memory sub-system to this optimal 
configuration and restarted the system. We repeated this process until the application 
execution was complete. At the end of each phase that required a memory 
reconfiguration, we recorded the BOPS and the power consumed by the system. 

Note that sometimes the algorithm returned a memory configuration that could not 
be configured in hardware without changing the configuration registers in the MC. 
For example, since the channels were configured to work in lock-step we always 
needed to populate FB-DIMMs as a pair, one on each channel. Hence we could only 
work with even-numbered FB-DIMMs. In such cases the algorithm returned a second 
sub-optimal solution that gave a smaller performance-per-watt compared to the 
optimal solution and we reconfigured the memory sub-system accordingly. Figure 4 
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shows the temporal variation of optimal and sub-optimal states given by our 
algorithm. 

In order to compare the performance-per-watt improvement given by our 
algorithm, at the end of each epoch that required a reconfiguration, we reconfigured 
the memory not only to that desired by our algorithm but also to all other possible 
memory configurations allowed by the hardware. We ran SPECjbb2005 on each of 
these configurations and recorded the BOPS as well as the power consumed. Figure 5 
shows the temporal variation of performance-per-watt (BOPS/Joules) for each such 
configuration. We observed that our algorithm always determined the memory 
configuration (configuration IV in Figure 5) that gave the maximum performance-
per-watt among all possible configurations with the maximum improvement in 
performance-per-watt recorded at 88.48%. 
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Fig. 4. Optimal and sub-optimal states Fig. 5. Performance-per-watt comparison 

On the same server we ran SPECjbb2005 and measured the idle durations between 
memory accesses to each rank by using chipset counters. With a threshold-based 
power management algorithm, where we transition the rank to a low-power suspend 
state when it is “sufficiently” idle to break-even, we got an energy saving of 4.47% 
(189.6 J). This compares to about 48.8% (26.7 kJ) energy saving with our technique.  

6.2   Algorithm Adaptivity to Workload  

SPECjbb2005 launches an additional warehouse at the end of each observation epoch 
that executes randomly selected business operations from an in-memory database of 
operations.  Instead of computing the MRC, our algorithm used the benchmark’s heap 
usage at the end of each warehouse to predict the memory requirements of 
SPECjbb2005. This is because it was not possible to measure the number of hits per 
page accurately from the OS to compute the MRC. However as can be seen from 
Figure 5, this approximate approach still gave the memory configurations with the 
maximum improvement in performance-per-watt among all possible configurations. 
We also instrumented the linux kernel to index the memory pages starting at the head 
of the LRU active list until it was equal in size to the heap used. This is the working 
set for SPECjbb2005 and comprises the migration data Μ that is to be dynamically 
interleaved on the memory configuration given by our algorithm.  Figure 8 plots these 
pages as a percentage of the total pages in the LRU active list.  As expected, this 
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graph varies inversely as the percentage of over-provisioned memory as plotted in 
Figure 6. 

Figure 7 plots the memory size (in ranks) that is predicted to be required by 
SPECjbb2005 as discussed in Section 5.2. The ‘actual ranks’ in Figure 7 is the ceiling 
value of the ‘calculated ranks’. By comparing Figures 6 and 7 we see that the memory 
size varies inversely with over-provisioned heap as expected. Also notice that the 
optimal and sub-optimal ranks computed by our algorithm (Figure 4]) are always 
higher than the ‘calculated ranks’ of Figure 7. This is because consolidating the 
working set on these ‘calculated ranks’ maintains the application memory 
requirements but significantly increases the delay. Hence it violates the delay 
constraint which makes these states infeasible. 
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Also note from Figure 6 that around 600 sec into the application execution, the 
over-provisioning reduces close to 30%. As can be seen from Figure 4, it is around 
this time that the algorithm increases the memory size from 4 to 6 ranks in 
anticipation of a heavy workload arrival phase. However when the over-provisioning 
increases around 800 sec the algorithm maintains the same memory size (6 ranks). At 
about 1000 sec, when the over-provisioning further increases, the algorithm reduces 
the memory size from 6 ranks back to 4 ranks. The algorithm has a tendency to latch 
on to previous memory configurations. It initiates reconfigurations only when 
significant over-provisioning is detected. It works conservatively because it accounts 
for the overhead involved in state transitions. This is discussed in the following 
section. 

6.3   Analysis of Migration Overhead 

Figure 8 plots the migration overhead (in milli seconds) associated with the migration 
data Μ for SPECjbb2005. This overhead has been computed for solution IV in Figure 
5 that gives the maximum performance-per-watt. Notice that the overhead is  
very small at the end of the first SPECjbb2005 warehouse because the migration  
data is small enough and the state transition decision being evaluated was to go  
from 16 to 8 ranks. Consequently, as we see from Figure 4, the algorithm allowed  
this state transition. However, at the other warehouses the transition overhead 
increased considerably as Μ  increased and the transition decision to be evaluated  
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was to migrate from 8 to 4 ranks. The algorithm did not allow this state transition and 
instead it paid the overhead one time and maintained the memory configuration at a 
steady state with 8 ranks distributed across two branches. 

6.4   Impact of Migration Strategies on SPECjbb2005 Performance 

Figure 5 shows the performance-per-watt obtained for two solutions (III-8 ranks, 1 
branch & IV-8 ranks, 2 branches). Note that these two solutions have the same 
number of ranks but different physical location in the memory hierarchy. However 
solution IV provides a higher performance-per-watt compared to solution III. Figure 
9 plots the BOPS measured at the end of each warehouse for both these solutions. 
Solution III gives a performance drop of 5.72% for SPECjbb2005 when compared to 
solution IV. Our algorithm is able to effectively identify this with the aid of the 
temporal affinity prediction technique discussed in Section 5.2.2 and chooses solution 
IV over solution III thus giving the maximum performance-per-watt. 

7   Conclusion 

In this paper, we presented a technique to optimize the performance-per-watt of a 
fully-interleaved memory sub-system. Our approach yielded an energy saving of 
about 48.8 % (26.7 kJ) compared to traditional techniques measured at 4.5%. It gave a 
transition overhead of about 18.6 ms leading to energy saving of 1.44kJ per ms of 
transition overhead time and a maximum performance-per-watt improvement of 
88.48%.  

We are currently validating our results on different memory traces and studying the 
algorithm scalability, adaptivity and sensitivity to threshold values. We are applying 
data mining and rule learning techniques to implement an efficient real-time version 
of our algorithm that significantly reduces the runtime complexity of the algorithm. 
We are also extending our technique to servers running multiple applications. 
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Abstract. We present a new set of distributed algorithms for scheduling sensors 
to enhance the total lifetime of a wireless sensor network. These algorithms are 
based on constructing minimal cover sets each consisting of one or more 
sensors which can collectively cover the local targets.  Some of the covers are 
heuristically better than others for a sensor trying to decide its own sense-sleep 
status.  This leads to various ways to assign priorities to the covers. The 
algorithms work by having each sensor transition through these possible 
prioritized cover sets, settling for the best cover it can negotiate with its 
neighbors.   A local lifetime dependency graph consisting of the cover sets as 
nodes with any two nodes connected if the corresponding covers intersect 
captures the interdependencies among the covers. We present several variations 
of the basic algorithmic framework.  The priority function of a cover is derived 
from its degree or connectedness in the dependency graph - usually lower the 
better.  Lifetime improvement is 10% to 20% over the existing algorithms, 
while maintaining comparable communication overheads.   We also show how 
previous algorithms can be formulated within our framework.  

1   Introduction 

Wireless sensor networks (WSNs) are emerging as a key enabling technology for 
applications domains such as military, homeland security, and environment [7]. For 
example, in typical security surveillance or environmental monitoring scenarios, tiny 
low-cost radio-enabled sensors can be deployed in large numbers over a difficult or 
hostile terrain. Then, they configure themselves into a network to collectively sense 
and route data to gateway nodes.  Interested readers are referred to [1] [7] for detailed 
background, applications and challenges of WSNs.  

The sensors, by design, have limited battery. Therefore, they must conserve power 
while communicating, sensing, and computing. One key challenge is to utilize the 
network effectively to maximize the duration of time while all the targets (or 
alternatively certain area [9]) can be continuously monitored.  This duration is called 
the lifetime of the network, which is the concern of this paper. Only a subset of 
sensors usually need to be in “sense” or “on” mode at any given time to cover all the 
targets (henceforth called “covers” – See Section 2 for a formal definition), while 
others can go into power conserving “sleep” or “off” mode. Therefore, an ideal sense-
sleep schedule would choose appropriate covers at various intervals to maximize the 
lifetime. Thus, at its heart, this is an NP-complete problem [6] [8].  
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Both centralized and distributed heuristics have been proposed for finding the 
longest lifetime schedule.  The premise of centralized algorithms, such a those based 
on linear programming [2] [5], is that, given the locations of sensors and targets, the 
lifetime scheduling algorithm can be executed offline at the gateway node or 
elsewhere and then the sense-sleep schedule can be communicated to the sensors. 
Thus, the premise of global network information is both an advantage yielding better 
lifetime and a liability due to the associated communication overheads and loss of 
distributed robustness. The existing distributed algorithms typically work iteratively 
in rounds of reshuffles of predetermined duration.  At the beginning of each reshuffle 
round, each sensor negotiates with its neighboring sensors to decide on its sense-sleep 
status such that all its neighboring targets are covered by the sensor itself or one of its 
neighbors. The limitations of existing algorithms are their simple greedy approaches, 
lacking enough insight into the problem structure. Section 5 compares and contrasts 
some of the distributed algorithms against ours, even showing how they can be 
formulated using our overall framework. 

 
Our contributions: Although globally there is exponential number of possible covers 
making the problem intractable, the number of local covers, those minimal subsets of 
neighboring sensors covering nearby targets, is usually small. This opens up the 
problem to individual sensors distributively constructing the local covers and 
employing them as possible local configurations to systematically transition through 
them to arrive at a good neighborhood sense-sleep decision for each reshuffle round.    
The concept of local covers captures the collective tension among the neighbors to a 
certain extent, as opposed to the simplistic sensor vs. its neighbors generally 
considered. It is assumed that the sensing range is one-half of the communication 
range. A sensor can construct its local covers by considering one-hop neighbors it can 
communicate to while trying to cover only those targets within its sensing range or 
also its neighbors’ targets. For a better decision, it can also consider all neighbors up 
to two hops and their targets at a slightly increased communication cost.    

The lifetime of a cover is bounded by its sensor with the weakest battery, the 
“bottleneck sensor.”  A sensor can certainly prioritize these covers based on simple 
heuristics using only the properties of individual covers.  For example, a sensor can 
prefer those covers not involving it or those with longer lifetimes, as the existing 
algorithms do (albeit indirectly, as they lack the concept of transitioning through the 
set of possible local covers). What is more interesting, however, is how these covers 
influence each other.  For example, if two covers share one or more sensors, their 
weakest common sensor is an upper bound on the lifetime of both covers collectively.  
This is because using (“burning”) either cover reduces the battery of the common 
sensors. To model such interactions, we define the local “lifetime dependency (LD) 
graph” wherein the minimal covers form the nodes and two such nodes are connected  
by an edge if there are common sensors between the corresponding two covers (an 
edge therefore represents the non-empty intersection of the two covers connected).  
Therefore, an isolated cover is most preferred while a cover which is more densely 
connected to others can be less desirable candidate as burning it may reduce the life of 
several other covers.   This new algorithmic framework based on the twin concepts of 
local minimal covers and the lifetime dependency graphs is the primary contribution 
of this paper. Section 2 describes this framework. 
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Although the LD graphs expose the dependencies among covers, how the covers 
be chosen to locally maximize the schedule length can depend on how the weights on 
edges and degrees of nodes are defined. For example, the edge weight can be its 
weakest common battery and degree of a node can be the conventional sum of all its 
adjoining edge weights. This results into a basic heuristic algorithm. However, some 
variations are also compelling.  For example, in the case when the weakest common 
battery in an edge is larger than the sum of the weakest batteries in the two covers it 
connects, the edge no longer upper bounds the two covers (the sum does) and, 
therefore, such an edge weight may be discounted. If two different covers share the 
same bottleneck sensor, their collective lifetime is bounded by that sensor. If such two 
covers are connected to a third cover, the latter may choose to ignore one of the two 
edges when calculating its degree. Thus various priority functions can be derived.  
Section 3 describes some of the resulting distributed algorithms. 

We simulate our algorithms over a range of sensor networks and compare the 
lifetime of their schedules with the current state-of-art algorithms. Our preliminary 
results in Section 4 show an improvement of 10-20% in network lifetimes over others, 
while maintaining the same communication complexity. In Section 5, we take up the 
key previous distributed algorithms to systematically compare and contrast against 
ours, even demonstrating how the existing algorithms can be formulated within our 
framework. Finally, Section 6 contains our conclusions and future work. 

2   The Basic Cover Based Algorithmic Framework 

Symbols and definitions: Let us begin with a few basic conventions and definitions 
for this paper.  We will use s1, s2, etc., for sensors, t1, t2, etc., for targets, and C, C’, 
etc., to denote covers.  Let us assume we have n sensors and m targets, both 
stationary.  Consider the sensor network in Figure 1 with n = 8, s ={s1, s2, …, s8} and 
m = 3 targets, t1, t2, and t3.   

 

Fig. 1. A Sensor Network 
 
We will employ the following definitions, illustrated using this network.   

• b(s): strength of a battery of sensor s; for example, b(s1) = 3 while b(s3) = 1. 
• T(s): set of targets that sensor s can sense; e.g., T(s1) = {t1, t2}; 
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• N(s, k): set of neighbors of sensor s at no more than k hops (that s can 
communicate with using ≤ k hops) - this contains s itself; thus, N(s1,1) = 
{s1,s2,s3,s4,s5}. 

• Cover: C is a cover for targets in set T if (i) for each target t ∈ T there is at 
least one sensor in C which can sense t and (ii) C is minimal.  For example, 
the possible (minimal) covers for the two targets of s1 are {s1}, {s2, s3}, {s2, 
s4} and {s2, s5}. There are other non-minimal covers as well such as {s1, s2} 
which need to be avoided.  Likewise, the possible covers for the only target 
of sensor s3 are {s1}, {s3}, {s4} and {s5}. 

• lt(C) = min s ∈ C b(s), the maximum lifetime of a cover.   The bottleneck 
sensor of the cover {s2, s3} is s3 with the weakest battery of 1.  Therefore, 
lt({s2,s3}) = 1. 

An optimal lifetime schedule of length 6 for this network is ({s1, s6}, 1), ({s1, s7}, 
1), ({s1, s8}, 1), ({s2, s3}, 1), ({s2, s4}, 1), ({s2, s5}, 1)) where each tuple has a cover for 
the entire network followed by its duration.   
 

Lifetime dependency (LD) graph:  Let the local lifetime dependency graph be G = 
(V, E) where nodes in V denote the local covers and edges in E exist between those 
pairs of nodes whose corresponding covers share one or more common sensors.  For 
simplicity of reference, we will not distinguish between a cover C and the node 
representing it, and an edge e between two intersecting covers C and C’ and the 
intersection set C∩C’.   Each sensor constructs its local LD graph considering its one- 
or two-hop neighbors and the corresponding targets. Figure 2 shows the local lifetime 
dependency graph of sensor s1 considering its one-hop neighbors N(s1,1) and its 
targets T(s1).   

In the LD graph, we will use the following two definitions: 

• w(e) = mins∈e b(s), the weight of an edge e (if e does not exist, i.e., if e is 
empty, then w(e) is zero).   

• d(C) = ∑ e∈E and incident to C  w(e), the degree of a cover C.   

 

Fig. 2. The local lifetime dependency graph of sensor s1 

In Figure 2, the two local covers {s2, s3} and {s2, s4} for the targets of sensor s1 have 
s2 in common, therefore the edge between the two covers is {s2} and w({s2}) = 3.  
Therefore, s2’s battery of 3 is an upper bound on the lifetime of the two covers 
collectively.   It just so happens that the individual lifetimes of these covers are 1 each 
due to their bottleneck sensors and, therefore, a tighter upper bound on their total life is  
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2.  In general, given two covers C and C’, a tight upper bound on the life of two covers 
is min (lt(C) + lt(C’), w(C∩C’)).  

 
The basic algorithm 
For the purpose of this explanation, without loss of generality, let us assume that the 
covers are constructed over one-hop neighbors. The algorithm consists of two phases.  
During the initial setup phase, each sensor calculates and prioritizes the covers.   
Then, for each reshuffle round of predetermined duration, each sensor decides its 
on/off status at the beginning, and then those chosen remain on for the rest of the 
duration.   

Initial setup: Each sensor s communicates with each of its neighbor s’∈N(s,1) 
exchanging mutual locations, battery levels b(s) and b(s’), and the targets covered 
T(s) and T(s’).  Then it finds all the local covers using the sensors in N(s,1) for the 
target set being considered.  The latter can be solely T(s) or could also include T(s’) 
for all s’∈N(s,1) (see Variant 3 in Section 3).   It then constructs the local LD graph G 
= (V, E) over those covers, and calculates the degree d(C) of each cover C∈V in the 
graph G.   

The “priority function” of a cover is based on its degree (lower the better).   Ties 
among covers with same degree are broken first by preferring (i) those with longer 
lifetimes, then (ii) those which have fewer remaining sensors to be turned on, and 
finally (iii) by choosing the cover containing the smaller sensor id.  A cover which 
has a sensor turned off becomes infeasible and falls out of contention.  Also, a cover 
whose lifetime falls below the duration of a round is taken out of contention, unless it 
is the only cover remaining. 

 

Fig. 3. The state transitions to decide on/off status of a sensor s for reshuffle rounds 

Reshuffle rounds:  The automaton in Figure 3 captures the algorithm for this phase.   
A sensor s starts with its highest priority cover C as its most desirable configuration 
for its neighborhood.  If successful, the end result would be switching on all the 
sensors in C, while others can sleep.  Else, it transitions to the next best priority cover 
C’, C’’, etc., until a cover gets satisfied.  
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The transitions are as follows.  

- Continue with the best cover C: Sensor s continues with its current best cover C 
if its neighbor s’∉C goes off (thus not impacting the chances of ultimately 
satisfying C) or if neighbor s’∈C becomes on (thus improving chances for C). 

- To on/sense status: If all the neighboring sensors in cover C except s become on, 
s switches itself on satisfying the cover C for its neighborhood, and sends its on-
status to its neighbors. 

- To off/sleep status: If all the neighboring sensors in cover C become on thus 
satisfying C, and s itself is not in cover C, s switches itself off, and sends its off-
status to its neighbors. 

- Transition to the next best cover C’:  Sensor s transitions to the next best priority 
cover C’, if (i) C becomes infeasible because a neighboring sensor s’∈ C has 
turned off, or (ii) priority of C is now lower because a sensor s’∉ C has turned on 
causing another cover C’, with same degree and lifetime as C, with fewer sensors 
remaining to be turned on.    

The transitions from C’ are analogous to that from C, with the possibility of even 
going back to C. 

 
Correctness: We sketch a proof here that this algorithm ensures that, in each 
reshuffle round, all the targets are covered and the algorithm itself terminates enabling 
each sensor to decide and reach on/off status.   

For contradiction, let us assume that in a given round a target t remains uncovered.  
This implies that either this target has no neighboring sensor within sensing range and 
thus network itself is dead, or else all the neighboring sensors which could have 
covered t have turned off.   In the latter case, each of the sensor s whose T(s) contains 
t has made the transition from its current best cover C to off status. However, s only 
does that if C covers all its targets in T(s) and s∉C. The last such sensor s to have 
turned off ensures that C is satisfied, which implies that all targets in T(s) including t 
are covered, a contradiction. 

Next, for contradiction, let us assume that the algorithm does not terminate.  This 
implies that there exists at least one sensor s which is unable to decide, i.e., make a 
transition to either on or off status.  There are three possibilities:  

(i) all the covers of s have become infeasible, or  
(ii) s is continually transitioning to the next best cover and none of them are getting 

satisfied, or  
(iii)s is stuck at a cover C.  

For case (i), for each cover C, at least one of its sensor s’∈ C has turned off.  But 
the set of targets considered by sensor s is no larger than T’ = ∪s’∈N(s,1) T(s’).  Since s 
itself can cover T(s), there exist a target t ∈ T’–T(s), from T(s’), that none of the cover 
sets at s are able to cover.  This implies that s’ is off, else {s,s’} would have formed 
part of a cover at s covering t (given that s constructs all possible covers). This leads 
to the contradiction, as before turning off, s’ ensures that t ∈T(s’) is covered.    

For case (ii), each transition implies that a neighbor sensor has decided its on/off 
status, thereby making some of the covers at s infeasible and increasingly satisfying 
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portions of some other covers, thus reducing the choices from the finite number of its 
covers.   Eventually, when the last neighbor decides, s will be able to decide as well 
becoming on if any target in T(s) is still uncovered, else going off. 

For case (iii), the possibility that all sensors are stuck at their best initial covers is 
conventionally broken by a sensor s∈C with least id in its current best cover C 
proactively becoming on, even though C may not be completely satisfied.  This is 
similar to the start-up problem faced by others distributed algorithms such as DEEPS 
with similar deadlock breaking solutions.  At a later stage, if s is stuck at C, it means 
that either all its neighbors have decided or one or more neighbors are all stuck.  In 
the former case, there exists a cover C at s which will be satisfied with s becoming on 
(case i).  The latter case is again resolved by the start-up deadlock breaking rule by 
either s or s’ proactively becoming on. 

 
Message and time complexities: Let us assume that each sensor s constructs the 
covers over its one-hop neighbors to cover its targets in T(s) only.  Let S={s1,s2,…,sn} 
Δ = max s∈S |N(s ,1)|, the maximum number of neighbors a sensor can communicate 
with.  The communication complexity of the initial setup phase is O(Δ), assuming that 
there are constant number of neighboring targets that each sensor can sense.  Also, for 
each reshuffle round, a sensor receives O(Δ) status messages and sends out one.  
Assuming Δ is a constant practically implies that message complexity is also a 
constant.   Let maximum number of targets a sensor considers is τ = max s∈S |T(s)|, a 
constant. The maximum number of covers constructed by sensor s during its setup 
phase is O(Δτ), as each sensor in N(s,1) can potentially cover all its targets considered.   
Hence the time complexity of setup phase is O((Δτ) 2) to construct the LD graph over 
all covers and calculate the priorities.  For example, if τ = 3, the time complexity of 
the setup phase would be O(Δ6).   The reshuffle rounds transition through potentially 
all the covers, hence their time complexity is O(Δτ).  

3   Variants of the Basic Algorithm 

We briefly discussed some of the properties of the LD graph earlier.    For example, 
an edge e connecting two covers C and C’ yields an upper bound on the cumulative 
lifetime of both the covers.  However, if w(e), which equals b(s) for weakest sensor 
s∈e,  is larger than the sum of the lifetimes of C and C’,  then the edge e no longer 
constrains the usage of C and C’.  Therefore, even though C and C’ are connected, 
they do not influence each other’s lifetimes.  This leads to our first variant algorithm. 

Variant 1:  Redefine the edge weight e as follows: 
If  min s∈e b(s) <  lt (C) + lt(C’),  then w(e) = min s∈e b(s), 

             else w(e) = 0. 

Thus, when calculating the degree of a cover, this edge would not be counted when  
not constraining, thus elevating the cover’s priority.   

Next, the basic framework is exploiting the degree of a cover to heuristically 
estimate how much it impacts other covers, and the overall intent is to minimize its 
impact.    Therefore, we sum the edge weights emanating from a cover for its degree.  
However, if a cover C is connected to two covers C’ and C” such that both C’ and C” 
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have the same bottleneck sensor s, s is depleted by burning either C’ or C”.  That is, 
in a sense, only one of C’ and C’’ can really be burned completely, and then the other 
is rendered unusable because s is completely depleted.    Therefore, for all practical 
purposes, C’ and C” can be collectively seen as one cover.  As such, the two edges 
connecting C to C’ and C” can be thought of as one as well.  This yields our second 
variant algorithm. 

Variant 2:  Redefine the degree of a cover C in the LD graph as follows.  Let a cover 
C be connected to a set of covers V’ = {C1, C2, …, Cq} in graph G.  If there are two 
covers Ci and Cj in V’ sharing a bottleneck sensor s, then if w(C,Ci) < w(C,Cj) then V’ 
= V’ – Cj else V’ = V’ – Ci.  With this reduced set of neighboring covers V’, the degree 
of cover C is 

d(C) = Σ C’∈V’  w(C,C’) 

In the basic algorithm, each sensors constructs cover sets using its one-hop 
neighbors to cover its direct targets T(s).   However, with the same message 
overheads and slightly increased time complexity, a sensor can also consider its 
neighbors’ targets.  This will enable it to explore the constraint space of its neighbors 
as well.    
 
Variant 3: In this variant, each sensor s constructs LD graph over one-hop neighbors 
N (s,1) and targets in ∪s’∈ N (s, 1) T(s’). 
 
Variant 4: In the basic two-hop algorithm,  each sensor s constructs LD graph over 
two-hop neighbors N(s, 2) and targets in ∪s’∈ N (s, 1) T(s’).  In this variant, each sensor s 
constructs LD graph over two-hop neighbors N(s, 2) and targets in ∪s’∈ N (s, 2) T(s’). 

4   Simulation Results  

In this section we first evaluate the performance of the one-hop and two-hop versions 
of the basic algorithm as compared to 1-hop algorithm LBP [2] and 2-hop algorithm 
DEEPS [4], respectively (see Section V for these algorithms). We also consider the 
performance of the different variations of the basic algorithm as outlined in Section III. 

For the simulation environment, a static wireless network of sensors and targets 
scattered randomly in 100m x 100m area is considered. We assume that the 
communication range of each sensor is two times the sensing range. Different 
variations of the number of targets, number of sensors and energy model are 
considered for the simulation.  The linear energy model is one where the power 
required to sense a target at distance d is a function of d.  In the quadratic energy 
model the power required to sense the target at distance d is a function of d2. 

One of the key things to note is that the LD graph requires all possible covers for 
the local targets being considered.  However, since the algorithm operates on either  
1-hop or 2-hop neighbors, the number of such covers is bounded, if not small. For the 
purpose of implementation we create a coverage matrix wherein each row represents 
a sensor and each column a target, and an entry i, j is set to 1 if sensor i covers target j 
and 0 otherwise. Note that the number of rows of this matrix is given by the size of 
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the 1- or 2-hop neighborhood depending on the version being considered. Iterating 
through every column of this matrix and adding every covering sensor to all existing 
covers allows us to construct all combinations of covers for the targets being 
considered. The covers obtained in this fashion form the nodes of the LD graph at that 
sensor. Associated with each cover is a lifetime given by the minimum energy sensor 
of that cover. This forms the node weight of the LD graph. To allow easy construction 
of edges for the LD graph we implement the covers as sets and their intersection 
represents the edges. 

In order to compare the algorithm against LBP and DEEPS, we use the same 
experimental setup as employed in [4].  We conduct the simulation with 25 targets 
randomly deployed, and vary the number of sensors between 40 and 120 with an 
increment of 20 and each sensor has a maximum sensing range (diameter) of 60m. 
The energy consumption model is linear. The results are shown in Figure 4. As can be 
seen from the figure, both the basic 1-hop and 2-hop algorithms outperform LBP. The 
1-hop algorithm is almost as good as the 2-hop DEEPS algorithm. 
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Fig. 4. Network Lifetime for 25 targets with linear energy model 

To study variations in targets and energy models, we simulate a network of 60 
sensors with 60 m sensing range for both 25 and 50 targets and linear and quadratic 
energy models. The results are presented in Figure 5. We see a trend consistent with 
the previous plot with LBP being outperformed by the 1-hop and 2-hop algorithms 
and DEEPS and the 1-hop version showing similar lifetimes.  
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Fig. 6. Performance of Variants of the Basic Algorithm: Network Lifetime for 60 sensors, 25 
targets, linear energy model 

Finally, we simulate the different variants of the basic algorithm as outlined in 
Section III for a network of 60 sensors, 25 targets and a linear energy model. The 
results are shown in Figure 6 below.  For the sake of comparison, we include the basic 
1-hop and 2-hop algorithms in this plot also.  We compare the 1-hop algorithm and its 
three variants against LBP. The percentage improvement for each algorithm against 
LBP is indicated on top of the bars. Similarly, we compare the 2-hop algorithm and 
Variant 4 against DEEPS. Overall improvements are in the 11-19% range. 

5   Comparison with Existing Algorithms  

In this section we look at the existing approaches to solving the target coverage 
problem in a distributed fashion.   In addition to the distributed algorithms, centralized 
approaches to the problem have also been considered in [2] [3].  An initial study of 
the coverage problem with disjoint cover sets was carried out in [10].  [2, 3] have a 
linear programming based solution that assigns a schedule that covers all targets while 
attempting to maximize the network lifetime.  

A related problem has been studied in [12] in which the authors present a power 
aware distributed algorithm to construct a connected dominating set. The work is an 
extension of [11] which presents simple localized rules to allow the distributed 
construction of a CDS. The CDS provides the network with connectivity in addition 
to coverage.  

We now focus on two existing approaches LBP[2] and DEEPS[4], show how they 
operate on an example topology and then present their equivalent representation in the 
lifetime dependency model.   

 
Load balancing protocol (LBP): LBP is a simple 1-hop protocol which works by 
attempting to balance the load between sensors. Sensors can be in one of three states 
sense/on, sleep/off or vulnerable/undecided. Initially all sensors are vulnerable and 
broadcast their battery levels along with information on which targets they cover. 
Based on this, a sensor decides to switch to off state if its targets are covered by a 
higher energy sensor in either on or vulnerable state. On the other hand, it remains on 
if it is the sole sensor covering a target. 
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Thus, LBP is simplistic and attempts to share the load evenly between sensors 
instead of balancing the energy for sensors covering a specific target. Hence, for the 
example shown in Figure 1, LBP picks the sensor s1 to be active since it is the largest 
sensor covering the bottom-left target T2. Similarly, it picks s2 for the bottom-right 
target T3. This results in a total lifetime of 3 units when compared to the optimal of 6 
units for the given example.  Its schedule is ({ s1, s2}, 3). 

Formulation using LD graph framework: LBP can be simulated as a special case in 
the lifetime dependency graph model as follows.   Given a sensor si, its local covers 
for its targets T(si) are the singleton sets {s}, for all s ∈ N(si,1).  These singleton sets 
are then assigned priorities in order to choose which one to use next.  There are two 
defaults: the priority is highest if si is the only one covering a target (so si must switch 
on).  On the other hand, the priority is lowest if all of si’s targets are covered, so that si 
can switch off.  Otherwise, the priority is assigned based on the battery level 
preferring to burn those sensors with higher battery, with preference for those covers 
not containing si. Thus, a key limitation of LBP is the lack of collective negotiation 
captured by non-singleton cover sets in our algorithms. 

 
DEEPS protocol: The maximum duration that a target can be covered, its ‘life,’ is 
the sum of the batteries of all its nearby sensors that can cover it. The main intuition 
behind DEEPS is to try to minimize the energy consumption rate around those targets 
with smaller lives.  A sensor thus has several targets with varying lives.  A target is 
defined as a ‘sink’ if it is the shortest-life target for at least one sensor covering that 
target. Otherwise, it is a ‘hill.’  To guard against leaving a target uncovered during a 
shuffle, each target is assigned an in-charge sensor. For each sink, its in-charge sensor 
is the one with the largest battery for which this is the shortest-life target. For a hill 
target, its in-charge is that neighboring sensor whose shortest-life target has the 
longest life. An in-charge sensor does not switch off unless its targets are covered by 
someone.  Apart from this, the rules are identical as those in LBP protocol. DEEPS 
relies on two-hop information to make these decisions. 

For the example shown in Figure 1, DEEPS achieves a lifetime of 5, assuming a 
shuffle round duration of 1 since initially both the sensors s1and s2 are switched on.  
Its schedule would be {{( s1, s2),1}, {( s1, s6),1}, {( s1, s7),1}, {( s2, s3), 1}, {( s2, 
s4),1}} for a total of 5 units. 

Formulation using LD graph framework: DEEPS can also be represented with our 
lifetime dependency graph model. The representation is just like LBP with singleton set 
covers from N(si ,1).  The priority function of LBP is now modified suitably to account 
for the concept of in-charge sensors. Specifically, the order of priority preference is if a 
sensor alone can cover a target, a sensor is in-charge of a target, and then higher battery 
level.  The default least priority is for a sensor if the target it is in-charge of is now 
covered. Again, singleton cover sets of DEEPS, as in LBP is its key limitation. 

6   Conclusion 

This paper takes a fundamental look into the problem structure of finding longest 
lifetime schedule for covering targets by an ad-hoc wireless sensor network.  The 
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existing approaches typically employ greedy approaches based on sensor vs. its 
neighbors in trying to decide which sensors should be sensing and which ones can be 
in energy-conserving sleep mode.  We consider the covers consisting of subsets of a 
sensor and its neighbors, which can cover all the nearby targets as a primary construct 
to decide the local on/off configuration of each neighborhood.  The dependencies 
among the covers are modeled using a graph structure over the covers.  The priority 
of a cover is a function of how minimally connected a cover is in this graph.   This 
yields a basic framework, leading to several variants, with superior performance as 
compared to the existing distributed algorithms.  The framework nature is further 
reinforced by demonstrating how other algorithms can be formulated. 

This work has opened up a new way to explore this problem.  Even though the 
number of covers that each sensor transitions through is a function of the number of 
local neighbors and targets, both expected to be small, a more computationally 
efficient technique would be desirable.   Several other variants of the basic framework 
are being explored. 
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Abstract. Asynchronous power efficient communication protocols are crucial
to the success of wireless sensor networks (WSNs) as a distributed computing
paradigm. This paper presents an improved asynchronous duty-cycled MAC pro-
tocol for WSN. It adopts a novel dual preamble sampling (DPS) approach by
combining low power listening (LPL) with short strobed preambles to signifi-
cantly reduce idle listening in existing protocols. In our ns-2 based experiments,
the performance of the proposed solution is compared with B-MAC and X-MAC,
two most recent and popular asynchronous MAC protocols for WSNs. Depending
on the traffic load and preamble length, the proposed DPS-MAC improves energy
consumption significantly compared to X-MAC without degrading other network
performances such as delivery ratio and latency. For example for the traffic rate
of 0.1 packets/s and preamble length of 0.1s, the average improvement in energy
consumption compared to X-MAC is about 154%.

Keywords: Energy efficiency, MAC protocol, Wireless sensor network, Duty cy-
cle, Low-power listening, Short strobed preamble, Dual preamble sampling.

1 Introduction

Energy consumption is critical to the lifetime of wireless sensor network (WSN) appli-
cations because of the energy constraint in sensor nodes. The low traffic load in WSN
applications makes it possible to explore low power designs for the communication pro-
tocols. In WSN, radio is the major source of energy consumption, which is used either
for regular network functions like data transmission or for implicit operations such as
idle listening and overhearing [4]. These implicit radio operations are generally em-
ployed by the medium access control (MAC) protocol to guarantee fair channel access
for each node, and hence MAC layer is undoubtedly one of the fundamental layers in
which low power protocol design is adopted to avoid unnecessary energy waste. Exist-
ing protocols are broadly classified into two categories: contention-based [4,5,6,7,8,9]
and contention-free protocols [13,14]. Contention-free protocols, while being highly
energy efficient, require tight synchronization among nodes and thus are less popular
and scalable fo dynamic traffic or mobile WSN applications. This paper deals with the
design of energy efficient contention-based asynchronous protocols for WSNs.

In designing such asynchronous MAC protocols the prevailing method to reduce en-
ergy consumption is duty cycling, in which nodes wake up for a short period in each
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cycle to listen the channel for any potential communication. If the channel is found
busy, nodes prepare to receive data otherwise they switch themselves off to sleep. This
mechanism reduces idle-listening significantly, which has been identified as the main
energy waste in WSNs. However, for accurate functioning of the communication among
nodes, duty-cycled MAC protocols must provide proper strategies for sender and re-
ceiver nodes to rendezvous. These strategies include: scheduling, lower power listening
(LPL), scheduled-LPL and short strobed preamble. For convenience, we refer to the
corresponding MAC protocols by the rendezvous techniques employed in them. For
relative merits of these protocols and a discussion on their shortcomings we refer to
section 4.

The newer generation of radio transceivers, such as Chipcon CC2420 [1], introduces
an additional radio mode named as IDLE except the popular modes such as transmit
(Tx), receive(Rx) and power down (SLEEP) modes. This new radio mode has signifi-
cantly low power consumption compared to Tx and Rx modes (shown in Table 1), and
more importantly radio mode transition from IDLE to Tx or Rx is extremely fast. These
transceivers have given rise to the opportunity of further reducing idle listening while
still being highly asynchronous.

In this paper, we propose a power efficient asynchronous MAC protocol based on a
novel dual preamble sampling (DPS) technique exploiting every opportunity to switch
the radio of nodes to idle or sleep mode. DPS combines the strengths of standard low
power listening (LPL) and short strobed preamble to realize the MAC protocol, referred
to as DPS-MAC. Compared with the most efficient protocols available to date, such as
X-MAC [9] and B-MAC [8], ns2 based simulation results show that our DPS-MAC
protocol improves energy efficiency of the network significantly, particularly for low
traffic applications in WSN. Design of such energy efficient asynchronous communi-
cation protocols is crucial to the success of sensor networks as distributed computing
paradigms, because any synchronous application of WSN is likely to have limited suc-
cess due to its synchronization requirement.

2 DPS-MAC Protocol Design

Most of the scheduling and standard LPL based duty-cycled MAC protocols have con-
trol overhead issues that emerge either from the schedule maintenance or due to the
long preamble. Short strobed preamble is an asynchronous approach adopted in some
of the recent MAC protocol proposals to overcome the disadvantages of a long pream-
ble length. To further reduce the idle-listening, we propose a dual preamble sampling
(DPS) technique that combines the best features of standard LPL and short strobed
preamble to achieve low power operation in MAC layer without any synchronization
requirement among nodes.

2.1 Dual Preamble Sampling Overview

In standard LPL (Figure 1a), nodes check the channel status within a short active pe-
riod P1 at the beginning of each cycle. If the channel is found busy, it implies that a
communication activity is in progress. Therefore all the non-sender nodes stay awake
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for an extra duration EP to determine the identity of the receiver. X-MAC [9] addresses
this overhearing issue by employing a stream of short preamble messages including the
target’s address which allows for receiver’s quick response(named as ACK) to cut down
the long preamble. This requires non-sender nodes to be periodically active for a period
P with duration long enough for them to capture one of the preamble messages sent
by the sender and determine whether to respond the sender. The duration of period P
logically ranges from Tpm to Tpm to 2Tpm + TACK , where Tpm and TACK represent
the lengths of a short preamble message and an ACK message respectively (Figure 1b).
In a low traffic application, this approach tends to waste much more energy due to the
idle listening when the duration of period P is closer to 2Tpm + TACK . On the other
hand, a smaller duration for P will decrease the probability of non-sender nodes to catch
a preamble message within one check interval.
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Fig. 1. Sender and Receiver Rendezvous Schemes in BMAC, X-MAC and Proposed DPSC-MAC
Protocols

In this paper a dual preamble sampling approach based on low power listening and
short strobed preamble is proposed to reduce the idle listening. Our protocol differs in
terms of the behavior of the non-sender nodes and exploits the energy efficient radio
features of the cutting edge transceivers. A sender in DPS-MAC sends out a series
of short preamble messages with the receiver information included in the preamble
message(named as RTS), and wait for the response (named as CTS) from the receiver
between two adjacent RTS messages. Non-sender nodes periodically check the channel
state by polling the channel in one to two separate periods P1 and P2 (Figure 1c) at the
beginning of each cycle. If the channel is found free in both periods, nodes return to
sleep immediately; otherwise nodes “nap” (IDLE mode in CC2420) for a period and
proceed to receive an RTS message to determine who is the intended receiver, which
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is similar to X-MAC (Figure 1b). The period P2 is needed only when the channel is
found free in P1. This is necessary because the receiver might happen to wake up at
the two ends of an RTS period or in a CTS period of the sender and hence miss the
last RTS message sent by the sender when performing the channel polling during P1.
Therefore, the receiver should perform another channel polling to be sure of the actual
channel status (busy or free, refer to Figure 1c). If period P2 is applied during a DPS
operation, non-sender nodes should also “nap” between P1 and P2 for energy efficiency.
By properly choosing the durations of P1 and P2 as well as the interval TP1P2 between
them, nodes can determine whether a sender is trying to talk to one of them based on
the sampled radio RSSI (received signal strength indicator) value within period P1 or
P2. Chipcon CC2420 [1] is the state of the art radio transceiver for sensor network
applications. The following new features provided by CC2420 makes DPS function
well in the following aspects:

– The CC2420 radio always generates RSSI value of radio averaged over 8 symbol
periods (128μs) when in “Rx” mode; this allows DPS to use short polling periods
P1 and P2.

– Different from traditional radio transceiver, CC2420 has four radio modes: SLEEP,
IDLE (also talked as “nap” in this paper), Tx, and Rx. The newly introduced IDLE
mode consumes extremely low energy compared to regular Tx and Rx modes (see
Table 1); it only takes 8 or 12 symbol periods for the radio to transit from mode
IDLE to Tx or Rx. This allows nodes in DPS to “nap” in the following two intervals
for energy saving: one between periods P1 and P2, the other one between periods
P1/P2 and P (Figure 1c).

Table 1. Current Consumption of Different Modes of Operations in CC2420

Power down mode (SLEEP) 20μA
Idle mode (IDLE) 426 μA

Receive mode (Rx) 19.7 mA
Transmit mode (Tx), 0dBm 17.4 mA

Next we discuss how to determine optimal values for the durations of P1, P2 and
interval TP1P2 between P1 and P2 to make DPS-MAC work under given sizes of the
RTS and CTS messages. The primary consideration to choose these values is to mini-
mize the energy cost used for a DPS operation and allow the sender to rendezvous with
the receiver quickly. For the convenience of the discussion, we define the following
notations:

– TRTS : the time duration of a RTS message
– TCTS : the time duration of a CTS message
– T0: minimum period during which the sampled RSSI (received signal strength in-

dication) value of channel indicates a valid channel state (busy or free). T0 depends
on the specific radio transceiver, in CC2420 it is equal to 128μs.

– TP1 : minimum duration of P1, we simply set TP1 to T0.
– TP2 : minimum duration of P2 which must be no less than T0.
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When channel polling period P1 occurs after time t1 and before t3 (Figure 2), channel
polling period P2 must be applied to check the channel activity. This is because in this
case the RSSI value sampled during P1 will indicate a free channel. The following two
cases need to be considered to determine the optimal values for TP1P2 :

– If P1 occurs just after t1, the remaning duration of RTS message is less than T0.
Therefore the channel cannot be sampled properly. In this case the minimum value
for TP1P2 is TCTS so that the channel state can be sampled at the beginning of the
next RTS message;

– If P1 occurs to the left of time t3, the maximum value for TP1P2 is TRTS-2T0 so
that the channel state can still be sampled within the current RTS message.

Combining these two cases, we choose TP2 and TP1P2 as follows:

TP1P2 = min(TCTS, TRTS − 2T0) (1)

and

TP2 = max(TCTS , TRTS − 2T0) − min(TCTS, TRTS − 2T0) + T0 (2)

In the RHS of equation 2, the first two items imply that the gap between the right
end of duration TP1P2 and time t2 should be covered by P2, if needed. In order to
minimize the duration of TP2 of the period P2, in our implementation, we set TRTS =
TCTS + 2T0, so TP2 and TP1P2 are simply stated as:

TP1P2 = TCTS (3)

and
TP2 = T0 (4)

T0T0T0

TRTS TCTS

t1 t2 t3 t4

Receiver

Time

Sender

Fig. 2. Possible Occurences of P1 and P2 Peroids Relative to RTS and CTS Messages

2.2 DPS-MAC Implementation Details

DPS-MAC is an asynchronous low power MAC protocol based on DPS approach. We
summarize it as follow:

1. Nodes in DPS-MAC periodically wake up to perform DPS operation if they have
no data to send, and sleep when there is no traffic in network;
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2. If a node has data to send, it initiates a preamble session containing a sequence of
alternate RTS/CTS message periods. The sender tries to wake up the receiver by
sending out RTS messages. The receiver replies the sender with a CTS message as
an acknowledgement. Each RTS or CTS message contains both the sender and re-
ceiver’s address. Before sending the first RTS message, the sender needs to perform
carrier sensing to reduce the collision between multiple senders.

3. When any non-sender node samples a busy channel during period P1 (Case 1 in
Figure 1c), or P2 (Case 2 in Figure 1c), it first “nap” for a duration TCTS , and then
prepares to receive an RTS message from the sender; if no RTS is received within
duration P with length TRTS+TCTS , the node goes to sleep.

4. Polling period P2 is needed only if the channel is found free in P1. This might
happen when the period P1 is not fully covered within the duration of an RTS
message. Under this situation, the node needs to “nap” till the beginning of P2 and
poll the channel again.

5. If an RTS message is received in step 3, a node checks the embedded target address
in the received RTS message, and the intended receiver responds the sender with a
CTS message for unicast data.

6. Upon receiving the CTS message, the sender stops sending the remaining RTS
messages and transmits the data packet to the intended receiver.

2.3 Broadcast Support in DPS-MAC

Broadcast is an important communication primitive in network protocols. X-MAC does
not elaborate this issue in its design. To support one-hop broadcast operation, the sender
in DPS-MAC is required to send out two consecutive RTS messages right before the
data packet to guarantee the acceptance of the broadcast packet by all its one-hop neigh-
bors. If a broadcast address is found in step 3 described in section B, the node sleeps till
the instance of data packet transmission. The sleeping time is calculated based on other
embedded information in RTS messages. This information includes the total number of
RTS messages for each preamble session and index of each RTS message in the current
preamble session.

3 Performance Evaluation

In this section, we evaluate the performance of DPS-MAC through simulations. We
implemented DPS-MAC in ns-2 [2] with CMU wireless extensions. The current imple-
mentation of ns-2 does not support preamble sampling. We modified the physical layer
implementation of ns-2 to provide preamble sampling. For comparison purpose, we
have also implemented B-MAC and X-MAC in ns-2. However in our implementations,
B-MAC excludes the configuration interfaces, and X-MAC does not contain the adap-
tive algorithm. These simplifications for both MAC protocols do not lose comparison
fairness because we are mainly concerned with how our rendezvous solution achieves
better energy performance. Note that DPS-MAC can also use the configuration inter-
faces proposed in B-MAC or the adaptive algorithm proposed for X-MAC to optimize
the performance.
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In this paper, we mainly focus on three metrics to evaluate and compare the per-
formance of these three protocols: average energy consumption per node, latency and
delivery ratio. All the statistics of the performance metrics are under unicast traffic
scenarios.

The simulation parameters have been chosen based on the characteristics of Chipcon
radio chip CC2420. The current consumption for different radio modes of CC2420 is
listed in Table 1. Other parameters are summarized in Table 2. The sizes of the data and
control packets include the control bytes needed for frame control in MAC layer and
physical layer. In CC2420, these control bytes can be at least 11 bytes long. Note that
the preamble length in the simulation is associated with the duration of check interval
for non-sender nodes.

Table 2. Other Simulation Parameters

Channel bandwidth 250 kbps
Simulation duration 1000 s

Data packet size 50 bytes
CTS, ACK, Short Preamble message 16 bytes

3.1 Average Energy Consumption

As in X-MAC, we build a 10-node star network to evaluate the energy efficiency of
DPS-MAC. All the nodes are within one hop transmission range of each other. One of
the nodes is assumed to be the sink. We change the traffic load by varying the number
of senders from 1 to 9. Each sender sends unicast CBR traffic to the sink. The traffic
interval is 10s. Figures 3 and 4 show that the average energy consumption per node
under two different preamble lengths. We observe that DPS-MAC achieves the best
energy performance among these three MAC protocols. This is because the combination
of the LPL and short strobed preamble approaches in DPS-MAC reduces the energy
cost in the sender compared to the long preamble in B-MAC. It further reduces the idle
listening in non-sender nodes in X-MAC during the active period of each cycle. When
there is no traffic in the network, nodes in X-MAC still listen to the channel for the
preamble message. In a light traffic network, this type of idle listening in X-MAC leads
significant energy consumption. In DPS-MAC, nodes only need to poll the channel for
two brief periods when there is no traffic in the network. Comparing Figures 3 and 4, we
find that the preamble length has significant impact on the energy performance. Figure
5 shows the average energy consumption per node with the increase of the preamble
length, assuming 5 transmitters sending unicast CBR traffic at rate 0.1 packets/sec.

3.2 Latency

To study the latency performance, we build a 10-hop chain network. A source and a
sink nodes are located at the two ends of the chain, and the source sends CBR traffic
to the sink. We measure the average per-hop latency and end-to-end delay. Figure 6
shows the average per-hop latency as the preamble length increases. Figure 7 shows the
end-to-end delay as the number of hops increases. From Figures 6 and 7, we can see



400 H. Wang et al.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 1  2  3  4  5  6  7  8  9

A
ve

ra
ge

 E
ne

rg
y 

C
on

su
m

pt
io

n 
Pe

r 
N

od
e 

(J
ou

le
s)

Total Number of Senders

B-MAC-100ms
X-MAC-100ms

DPS-MAC-100ms
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that DPS-MAC and XMAC achieve similar latency performance. In our experiments,
we notice that DPS-MAC induces a little bit increase of latency (less than 1 millisecond
at each hop) due to the extra one or two preamble polling periods.

3.3 Delivery Ratio

Delivery ratio corresponds to the number of packets received by a sink node divided by
the number of packets sent by all the senders. We use the star network described above
to evaluate the delivery ratio. The preamble length is set to 200ms. We also change
the traffic load in the network by varying the number of transmitter from 1 to 9. Each
transmitter sends CBR traffic with 1s intervals to a unique receiver. From Figure 8, once
again we observe very similar performances of DPS-MAC and X-MAC. In contrast, B-
MAC loses more packets with the increase in the traffic load. This is because longer
preamble in B-MAC leads to packet drop due to collision.
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4 Related Work

In literature, duty-cycling technique was adopted to design low power MAC protocols
for wireless sensor network. Existing duty-cycled MAC protocols differ from each other
in terms of rendezvous solutions provided to coordinate the communicating nodes and
reduce energy consumption because of idle listening and overhearing.

Inspired by IEEE 802.11 [3], S-MAC [4,5] and T-MAC [6] introduce scheduling
mechanism into contention-based RTS-CTS MAC protocols to exploit low power oper-
ation for WSNs. Nodes in network periodically listen and sleep. If the channel is found
busy during the listen period, nodes keep awake to receive the data in the sleep period,
otherwise return to sleep for energy saving. To reduce idle-listening, nodes negotiate
with each other to form a common schedule so that they can wake up concurrently and
then handshake with each other to perform data transmission. T-MAC further reduces
idle-listening in S-MAC by dynamically adjusting the duration of the listen period in
each listen/sleep cycle.

B-MAC [8] and WiseMAC [7] coordinate data transmission between nodes through
preamble sampling. Nodes periodically wake up to check the channel activity briefly
without receiving any actual packet. According to the received signal strength indication
(RSSI) of the channel, a node determines whether to stay awake to receive the data or
go back to sleep. In B-MAC, each node can choose an independent schedule, based on
which a node periodically wakes up and sleeps. A sender puts a long preamble before
each outgoing packet to wake up the intended receiver. During each data transmission,
this asynchronous rendezvous solution incurs much communication cost at the sender
and its neighbors due to the long preamble. An optimization in WiseMAC [7] reduced
this overhead by allowing senders to record each receiver’s next channel checking time
so that the sender sends the future packet can be sent right before the receiver’s channel
checking time with a short preamble.

SCP-MAC [10] replaces the long listen period of S-MAC with a short preamble and
proposes a new scheduled channel polling scheme that combines scheduling and LPL
together to allow ultra-low duty cycle operations for low traffic applications. The sender
eliminates long preambles in LPL by synchronizing the channel polling time of all
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neighbors. To do this, nodes need to periodically exchange synchronization beacons or
piggyback synchronization information on data transmission if each node has periodical
data traffic. Synchronization overhead and multiple schedules may also exist in SCP-
MAC that might affect its performance.

Similar to STEM [11], X-MAC [9]proposed a short strobed preamble technique
to reduce energy consumption associated with overhearing and idle-listening. Before
sending a data packet, a sender in X-MAC transmits a series of short preamble mes-
sages instead of a long preamble as did in LPL to wake up a receiver; each preamble
message contains the receiver’s address. Nodes other than the sender periodically wake
up for a period to listen to the channel for an incoming preamble message. Upon re-
ceiving a preamble message, the intended receiver responds the sender a short ACK
message to terminate the preamble sequence; and non-receiver nodes sleep immedi-
ately. By successfully doing this, the long preamble in LPL is cut down and the sender
transmits data right after the reception of the ACK message from the intended receiver.
So X-MAC further reduces energy consumption and latency in LPL. To optimize the en-
ergy consumption and latency, X-MAC uses an adaptive algorithm to dynamically tune
nodes’ check interval based on the estimated traffic load in the network. The differ-
ence between STEM and X-MAC is that STEM uses an extra radio to alert the receiver
while X-MAC uses only one radio for both preamble message and data transmission.
However, ilde-listening in non-sender nodes will be the potential overhead.

5 Conclusions

This paper describes DPS-MAC, a new asynchronous low power MAC protocol for
wireless sensor networks. In DPS-MAC, a novel rendezvous strategy was used to ef-
ficiently handle node coordination issue, which is very important for nodes to achieve
low power operation in low traffic applications of WSNs. By combining LPL and short
strobed preamble approaches together, DPS can significantly reduce the idle-listening
issue in X-MAC while keeping the advantages of X-MAC. We have implemented DPS-
MAC in ns2. Simulations show that DPS-MAC has better energy performance than
X-MAC. DPS-MAC also has similar delivery ratio and close latency performance com-
pared to X-MAC.

Our future work will focus on investigating a simpler optimization algorithm to adap-
tively adjust the preamble length according to the traffic load in the network. We also
plan to build DPS-MAC on a real testbed based on Chipcon transceiver CC2420 to
evaluate its practical performance.
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Abstract. Traditionally, an instruction decoder is designed as a mono-
lithic structure that inhibit the leakage energy optimization. In this pa-
per, we consider a split instruction decoder that enable the leakage en-
ergy optimization. We also propose a compiler scheduling algorithm that
exploits instruction slack to increase the simultaneous active and idle
duration in instruction decoder. The proposed compiler-assisted scheme
obtains a further 14.5% reduction of energy consumption of instruction
decoder over a hardware-only scheme for a VLIW architecture. The ben-
efits are 17.3% and 18.7% in the context of a 2-clustered and a 4-clustered
VLIW architecture respectively.

1 Introduction

The ongoing improvements in the semiconductor technology bring along vari-
ous challenges [5]. One such challenge is the rising level of the leakage energy
consumption in the logic. With the 65nm and smaller technologies currently in
fabrication, the leakage energy is on par with the dynamic energy consumption.
In future technologies the leakage energy will further dominate the overall energy
consumption [5].

A significant fraction of the total leakage energy consumption in VLIW ar-
chitectures is attributed to functional units and instruction decoder. Frequent
access to the instruction decoder raise the temperature level and make the leak-
age energy consumption even worse. A study in the context of Texas instruments’
VelociTI architecture [18] attributes more than 50% of energy consumption in
instruction fetch and decoding activity [7]. Though, the exact percentage may
depends upon the architecture and circuit details, earlier studies clearly indicate
that 20% to 25% of the static energy consumption in a VLIW architecture is
attributed to instruction decoder. Thus, optimizing leakage energy in instruc-
tion decoder is becoming more important by each process generation. Even if we
assume that the energy savings in instruction decoder does not translate to huge
overall energy savings, it is still desirable to save energy in instruction decoder
as it is one of the hot-spot in processor.

VLIW architectures are often designed targeting embedded domains where
the real-time performance is of utmost importance. Thus, the design is often
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optimized for the peak performance and as a result, functional units and the in-
struction decoder are underutilized due to the inherent variations in the ILP of
the programs. Clustered VLIW architectures improve over the VLIW architec-
tures by solving the scalability problem (in order to obtain a better clock rate) by
distributing functional units among different clusters [10]. However, contentions
for the limited number of slow inter-cluster communication channels introduce
many short idle cycles and makes the utilization of instruction decoder worse.
The underutilization of functional units and instruction decoder can be exploited
to reduce leakage energy consumption.

The traditional monolithic design of instruction decoder inhibit the leakage
energy management in instruction decoder. As a result, earlier work only focus on
leakage energy management for functional units mostly at a coarser granularity of
loop level or block level [13]. However, the rising level of leakage energy in current
and future process technologies requires aggressive leakage energy management
even for short idle periods. One such purely hardware based scheme for reducing
leakage energy in functional units in the context of a superscalar architecture
is due to Albonesi et al. [9]. Their scheme utilizes the unique characteristics of
dual-threshold domino logic with sleep mode that can transition between active
mode and sleep mode without any performance penalty [15]. However, such a
fast transition incurs moderate amount of energy penalty. Their scheme called
’MaxSleep’ puts any integer ALU into low leakage mode after one cycle of idle-
ness. Their results confirm the benefits of such an aggressive scheme. However,
being a purely hardware based scheme, the benefits are severely (on average,
by 30%) affected by frequent transitions from active mode to sleep mode and
vice-versa because of many short idle periods.

Fig. 1. % Savings for ’MaxSleep’ and ’NoOverhead’ Policies

In this paper, we consider a split instruction decoder design that enables the
use of a hardware based scheme such as [9] for leakage energy savings in instruc-
tion decoder. Figure 1 presents the energy savings obtained by ’MaxSleep’, en-
ergy savings obtained by a ’NoOverhead’ scheme which is a hypothetical scheme
(same as ’MaxSleep’) but does not incur any transition energy overheads and
% energy overhead of ’MaxSleep’ due to transitions as compared to that of
’NoOverhead’ scheme for a split instruction decoder design (that provides fa-
cility to decode up to six instructions in parallel) for a 2-cluster configuration.
These results clearly indicate that the ’NoOverhead’ scheme is able to achieve
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an average savings of 56.86% in total energy, whereas the average savings for
’MaxSleep’ is only 38.92%. ’MaxSleep’ has an average energy overhead of 29.37%
(due to transitions) as compared to the ’NoOverhead’ scheme. Thus, reducing
the number of transitions will increase the idleness duration for decoders and
improves the energy benefits of a hardware based scheme. Motivated by this,
we have developed a scheduling algorithm in the context of VLIW and clus-
tered VLIW architectures. Whereas the purely hardware based scheme suffers
from the problem of a limited program view, a compiler can analyze whole pro-
gram regions and is capable of adjusting the operations decoded every cycle
while maintaining the desired performance. The proposed scheme exploits the
scheduling slacks of the instructions to maximize the simultaneous idle time and
usage of decoders, thereby reducing the number of transitions drastically. This
reduction in the number of transitions leads to significant improvements in en-
ergy savings over those obtained by a purely hardware based scheme. Moreover,
since the proposed scheme keeps a limited number of decoder active and use
them as much as possible, it generates a more balanced schedule which helps to
reduce the peak power and the step power [19] in instruction decoder.

The rest of the paper is organized as follows. Section 2 describes the split
decoder design useful for leakage energy management in instruction decoder.
Section 3 describes our new instruction scheduling algorithm and presents an
example to show the benefits of the proposed scheme. Section 4 provides de-
tailed experimental results and analysis. Section 5 describes the related work
and section 6 concludes this paper with future directions for this work.

I11 I12

           Instruction Alignment and Decoding

Decoder Signals

I21 I23I22 NOP

Monolithic Decoder Design

D1 D2 D3 D5D4 D6

I11 I12 NOP;

Active Sleep

I21 I22 I23

Transition

     Execute Packet Extraction and Instruction Alignment 

Split Decoder Design

0 1 1 0 01

Fig. 2. (a)Traditional Monolithic Decoder Design (b) Split Decoder Design

2 Split Decoder Design

Decoding activity involves dividing a fetch packet into execute packets and then
decoding individual micro-instructions in each execute-packet to issue signals.
A parallel-bit is dedicated in a VLIW micro-instruction that specifies whether
the next micro-instruction is in the same execute-packet (i.e., executes in the
same cycle) or starts a new execute-packet. A traditional monolithic design of
instruction decoder as shown in Figure 2 (a) inhibits any fine grained control for
hibernating parts of the decoder circuit that are idle. A decoder circuit can be
easily pipelined and split as shown in Figure 2 (b). This provides the benefits of
ease of design and verification of circuit and performance benefits of pipelining
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[14] and also enables leakage energy savings at the granularity of individual
decoders. The performance benefits of pipelining the decode stage have already
been identified and such a design is in use in many high performance commercial
DSPs including the Texas Instruments’ VelociTI [18]. However, we capitalize on
the energy management capability of such a design as follows.

Due to variations in the ILP of the programs, the full issue width of the proces-
sor is rarely utilized continuously and hence several decoder will be idle most of
the time. The split decoder design can leverage the capabilities of dual-threshold
domino logic for fast transition from active mode to sleep mode and vice versa in
less than a cycle (as used in [9] for functional units) to save tremendous amount
of leakage energy in mostly idle decoder circuit. However, in order to avoid the
explicit penalty of activating a sleeping decoder, it is required to issue the ac-
tivating signal one cycle in advance. Fortunately, the parallel-bit that specifies
the parallel instructions in the current execute-packet can be used to drive the
activation signal. To avoid introducing any new hardware, in our machine model,
we always keep first decoder active, and use the parallel-bits in execute packet
to drive the active signal for the required number of decoders. It is important to
note that these signals are activated during the first stage of decoding when the
execute packet is being extracted and aligned from the fetch packet. Thus, by
the time the micro-instructions reach stage 2 for actual decoding, the required
number of decoders are in active state to perform the decoding. It is important
to note that a fast transition comes at the cost of a moderate energy penalty.

3 The Scheduling Algorithm

The Elcor backend of the Trimaran infrastructure has a cycle scheduling al-
gorithm designed and implemented for flat VLIW architectures [4]. We have
modified this algorithm to perform leakage energy optimization for VLIW as
well as clustered VLIW architectures. The scheduler controls the assignment of
instructions to clusters so as to maximize the usage of active decode units and
to keep the idle decode units idle as long as possible. The decode units in sleep
mode are explicitly activated only if not doing so impacts the performance. This
ensures that decoder energy consumption because of spurious transitions from
sleep mode to active mode and vice-versa is reduced. Our integrated schedul-
ing algorithm for leakage energy optimization consists of the three main steps
described as follows. Section 3.4 presents an example that illustrates the func-
tioning of the algorithm in detail.

3.1 Prioritizing the Ready Instructions

Instructions in the ReadyList are prioritized using a priority function that uses
the instruction slack and the number of consumers of the instruction. Schedul-
ing slack of an instruction is defined as the difference between the earliest start
time and the latest finish time of the instruction. Instructions with less slack
should be scheduled early and are given higher priority over instructions with
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more slack to avoid unnecessary stretching of the schedule. Instructions with
the same slack values are further ordered in the decreasing order of the num-
ber of consumers. An instruction with a large number of successors is more
constrained in the sense that its spatial and temporal placement affects schedul-
ing of more number of instructions and hence should be given higher priority.
Giving preference to an instruction with many dependent instructions also en-
ables better future scheduling decisions by uncovering a larger portion of the
graph.

Traditionally, slack is determined statically during dependence graph analy-
sis before the scheduling begins, assuming a machine with infinite resources of
each type. We quantify the slack of instructions while scheduling a region for
the specific target machine by taking resource constraints into account. We first
schedule the instruction using a simple cycle-by-cycle scheduler. The schedule
time of the instructions is stored during this phase. In the second phase, this
schedule time (Late cycle) is used to determine the slack of the instruction. In
our implementation, slack is dynamically updated for all the operations in the
ready list after every cycle. The earliest schedule time of an instruction is set
to the current cycle, before scheduling for the current cycle begins (Early cy-
cle). The slack is then determined as a difference of the Early cycle and the
Late cycle. The dynamic update of slack after each cycle ensures that any con-
sumed slack is taken into account while scheduling instructions in the future
cycles.

3.2 Cluster Assignment

Once an instruction has been selected for scheduling, we make a cluster assign-
ment decision. The primary constraints are :

– The chosen cluster should have at least one free resource of the type needed
to perform this operation

– Given the bandwidth of the channels among clusters and their usage, it
should be possible to satisfy the communication needs of the operands of
this instruction on the cluster by scheduling these communications in the
earlier cycles (so that operands are available at the right time).

Note that if we are scheduling for a plain VLIW architecture with no clustering,
we assume that there is only one cluster (numbered 0) that is holding all the re-
sources and the same algorithm is used. Selection of a cluster from the set of the
feasible clusters is done as follows. A cluster with an active decoder to schedule
the operation is given preference. If no such cluster is available or more than
one such cluster is available, the one which reduces the communication cost gets
preference. The communication cost is computed by determining the number
and type of communications needed by a binding in the earlier cycles as well as
the communication that will happen in the future. Future communications are
determined by considering the successors of this instruction which have one of
their parents bound on a cluster different from the cluster under consideration.
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This is due to the fact that if the instruction is bound to the cluster under con-
sideration, it will surely lead to communication(s) in the future while scheduling
the successors of the instructions. Although, we have experimented with many
other heuristics for cluster assignment, the above mentioned heuristic seems to
generate the best schedule in almost all cases [17].

3.3 Instruction Binding

A instruction binding scheme decides to bind or defer the chosen instruction
to the selected cluster. The algorithm maintains a decoder map that explicitly
keeps track of the status of each decode unit. A decode unit is marked to be
in sleep mode after one cycle of idleness and is marked as activated on next
use. If a decode unit is active in the target cluster, the instruction is bound to
that cluster. Otherwise, the available slack of the instruction is considered. If the
slack is below a threshold (we use the threshold value of 0 in our experiment),
the instruction is bound anyway and the extra decoder unit required by the
instruction is automatically woken up during execution. In case the instruction
possesses enough slack, its scheduling is deferred to a future cycle and it is put
back in the ReadyList. Note that the next time this instruction is picked up for
scheduling, its earliest scheduling time and hence the slack get updated. This
guarantees that the slack of an instruction reduces monotonically and eventually
goes below the threshold ensuring that it is scheduled. Hence the algorithm is
guaranteed to terminate.

3.4 An Example

We now present an example to illustrate how the proposed scheduling algo-
rithm gets energy benefits without hurting performance. Figure 3 shows a data
dependency graph and Figure 4 shows some schedules. Schedules 1 and 2 are
for a plain VLIW architecture having two adders, two multipliers, and 4 de-
coders. We assume that the latency of an add operation is one cycle and the
latency of a multiply operation is two cycles. Schedule 1 is generated by a tradi-
tional performance-oriented scheduler which schedules the instructions as early
as possible and uses the slack value of instructions to break any contentions for
resources and the total schedule length is 8 cycles. Total number of transition
for Scheduler 1 are 3 as decoder D4, D3 and D2 each incur one transition in
cycle 3, 4 and 5 respectively after idleness of 1 cycle.

Our energy efficient scheduler realizes the criticality of MPY operations and
available slack for ADD operations and schedules the same data dependence
graph as shown in schedule 2. Since deferring the execution of any MPY oper-
ation leads to stretching of schedules, they are scheduled in the same way as
in the performance-oriented schedule 1. However, scheduling of ADD operations
is delayed as well as serialized, exploiting the available slack of add operations.
Notably, the scheduler determines the slack value available in scheduling an oper-
ation by first doing a performance-oriented scheduling pass on data-dependence
graph and uses the estimate of schedule length from this pass to calculate the
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Fig. 3. An Example Data Dependency Graph

Fig. 4. (a) Schedule 1 (b) Schedule 2 (c) Schedule 3 (d) Schedule 4

exact slack value available in scheduling an instruction which is used to gen-
erate the schedule for energy efficiency. Schedule 2 uses only two decoders and
incurs only one transition for D2 in cycle 7. Schedule 2 is also more balanced as
compared to schedule 1 in terms of resource usage. The resource usage vector of
the first schedule is (4,3,2,0,1,0,1,0) and that of second is (2,2,2,2,2,0,1,0). Thus
cycle to cycle variation in resource usage is clearly reduced in schedule 2 as com-
pared to schedule 1, which in turn helps in reducing step power and peak power
dissipation [19]. Thus, it is clear that the proposed scheme is capable of reducing
leakage energy consumption, transition energy overheads, as well as peak power
and step power dissipation without affecting the performance.

Consider schedules 3 and 4 generated for a 2-clustered VLIW architecture
(equivalent to above mentioned VLIW architecture) having 1 adder and 1 mul-
tiplier in each cluster and a bidirectional bus between the two clusters with 1
cycle transfer latency. Schedule 3 is generated by a performance-oriented sched-
uler. The extra delay of inter-cluster communication stretches the schedule from
8 cycles to 9 cycles as compared to the schedule 1. Again the total number of
decoder transitions are 3.

Scheduling the same set of operations using our energy-efficient scheduler
generates schedule 4. The major point to note is that the scheduler leverages the
available slack due to inter-cluster communication to achieve the same 9-cycle
schedule with only two decoders and only one transition for D2 in cycle 5. Finally
schedule 4 is much more balanced : The resource usage vector of first schedule
is (4,2,1,2,0,1,0,1,0) and that of the schedule 4 is (2,2,2,1,1,1,1,1,0).
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4 Experimental Evaluation

4.1 Setup

We have modified the Trimaran suite [4] to generate and simulate code for a
variety of clustered VLIW configurations. Major modifications have been car-
ried out in the Trimaran scheduler and register allocator module (which was
originally written for a class of flat VLIW architectures) to faithfully account
for the conflicts due to limitations on issue width, the number of available func-
tional units and registers in a cluster as well as the limitations on the number
of available cross-paths between clusters. The scheduler has been modified to
implement the scheduling algorithm described in the last section. We have used
twelve benchmarks out of which nine are from mediabench [1] (viz. cjpeg, djpeg,
rawcaudio, rawdaudio, g721encode, g721decode, md5, des, and idea), two from
netbench [3] (viz. crc, and dh), and one (susan) is from MiBench [2].

We present results for an unclustered, a two-cluster machine and a four-cluster
VLIW machine each having an issue width of 6 instructions par cycle (implying 6
decoders). The unclustered VLIW configuration has 4 ALUs, 2 load-store units,
1 branch unit, and 64 registers. The 2-clustered configuration has 2 ALUs, 1-
load store units, 1 branch unit and 32 registers in each cluster, whereas the
4-clustered configuration has 1 ALU, 1-load store unit, 1 branch unit and 16
registers in each cluster. The issue width and number of functional units selected
for the VLIW configurations are such that the performance achieved using this
configuration is within 95% of the peak performance achieved by using many
more functional units. This moderate number of functional resources and decode
units guarantees that the benefits reported have not been obtained by trivially
putting the numerous idle decode units into low leakage mode.

4.2 Energy Model

We have used the same general analytical energy model proposed in [9] for
combinational circuits to directly compare the energy benefits of our compiler-
assisted scheme over the pure hardware based scheme proposed in [9]. However,
unlike [9] that target leakage energy in functional units, we target leakage energy
savings in instruction decoder. We briefly describe this model here. The reader
is referred to [9] for details. The total energy in a decode unit is determined as
follows:

E
′

total = DynamicEnergy + LeakageEnergy+
TransitionEnergy + SleepEnergy

E
′

total = nA(αEA + (1 − D)ES1) + (nAD + nUI) ∗ (αEs0 + (1 − α)Es1)+
Mz((1 − α)EA + ESleep) + nZEs0

Here nA is the number of active cycles, nUI is the number of uncontrolled idle
cycles, nZ is the number of sleep cycles and Mz is the number of transitions.
We have determined these values differently for each configuration by using the
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trimaran simulator. Es0 and Es1 are low leakage and high leakage energy and
are related by the following equations.

Es0 = s ∗ ES1 ,0.0001 ≤ s ≤ 0.01 and Es1 = p ∗ EA,0 ≤ p

Where p is the ratio of the maximum leakage energy expended to the max-
imum energy for evaluation per unit of time (1 cycle). After simplifying and
normalizing the equations with respect to active energy, the following model for
total energy consumption is obtained :

Etotal = nA(α + (1 − D)p) + (nAD + nUI) ∗ (αsp + (1 − α)p)
+Mz((1 − α) + ESleep/EA) + nZsp

The technology parameters that we have used (s=0.01 and ESleep/EA = 0.01)
are also the same as in [9]. Considering the current 65nm fabrication technology
where leakage energy is on par with dynamic energy, we set p to 0.5. α is the
activity factor and D is the duty cycle of the clock. We use a typical value of
0.5 for both of these parameters in our simulation.

4.3 Results

We have performed a detailed experimental evaluation of the proposed scheme
in terms of the reduction in the number of transitions and the associated energy
savings. We present results for the ’AlwaysActive’ scheme that doesn’t not ap-
ply any leakage energy management, the hardware-only scheme from [9] called
’MaxSleep’ used in the context of decode units that puts a decode unit into
low leakage mode after one cycle of idleness, and our scheduling scheme called
’Optimized’ that assists the hardware based scheme by reducing undesirable
transitions. The results are presented in comparison with a hypothetical scheme
called ’NoOverhead’ that is the same as ’MaxSleep’ but does not incur any of
the energy overheads of transitions. This scheme represents a theoretical ideal
against which a leakage energy management scheme can be compared for its
effectiveness.

Figure 5 (a) shows the percentage reduction in the number of transitions due
to our algorithm as compared to the hardware-only scheme. We observe that the
number of transitions reduce by 53%, 58.88%, and 62.74% for VLIW, 2-Clustered

Fig. 5. (a) % Reduction in Transitions with scheduling w.r.t. Hardware only Scheme
(b) % Increase in energy w.r.t Hypothetical No-overhead Scheme (VLIW)
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Fig. 6. % Increase in energy w.r.t No-overhead Scheme (a) 2 Cluster (b) 4 Cluster

VLIW, and 4-Clustered VLIW respectively. The reduction in the number of
transitions depends on the total available slack in scheduling instructions as
well as the distribution of idle cycles in the benchmark. Benchmarks like des,
dh, crc, and susan have many short idle cycles and our algorithm is able to
exploit the available slack in these applications to avoid many transitions. In
the case of g721encode and g721decode, the available slack is relatively less and
consequently the reduction is also less.

Figure 5 (b) shows the energy overhead of ’AlwaysActive’, ’MaxSleep’ and
’Optimized’ schemes as compared to the ’NoOverhead’ scheme. ’AlwaysActive’,
’MaxSleep’ and ’Optimized’ schemes show average energy overheads of 54.33%,
27.29%, and 14.99% respectively as compared to the ’NoOverhead’ scheme. The
proposed ’Optimized’ scheme reduces the total energy overhead by 14.46% over
the ’MaxSleep’ scheme which is significant taking into account that it is a purely
software based scheme and does not incur any hardware overhead.

The benefits of our scheme are even more pronounced in the context of
clustered architectures. In the context of 2-clustered architecture ’AlwaysAc-
tive’,’MaxSleep’ and ’Optimized’ have average energy overheads of 56.86%,
29.37% and 14.6% respectively as compared to the ’NoOverhead’ scheme (Re-
fer Figure 6 (a)). The energy benefits of ’Optimized’ over Maxsleep is 17.3% in
context of 2-clustered architecture. For a 4-clustered configuration, ’AlwaysAc-
tive’,’MaxSleep’, and ’Optimized’ incur 57.51%, 29.88%, and 13.7% overhead
as compared to ’NoOverhead’ scheme (Refer Figure 6 (b)). The ’Optimized’
scheme improves over the ’MaxSleep’ scheme on the average by 18.74% in the
context of 4-clustered architectures. The reasons for more savings in the con-
text of clustered architectures are as follows. Clustering brings along extra con-
tentions for a limited number of slow cross-paths (for inter-cluster communi-
cation). This leads to many short idle cycle for instruction decoders. A purely
hardware based scheme with traditional scheduling algorithm undergoes transi-
tions for such many short idle cycles and suffers the associated energy penalty.
In contrast to the performance-oriented scheduling algorithm which is designed
for utilizing the resources spread over different clusters to achieve a better per-
formance, our energy-aware scheduling algorithm sometime limits the spreading
of operations, if it can fetch some energy benefits without hurting performance.
Thus, some of the extra slack which is available while scheduling for clustered
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architectures due to contention for inter-cluster communication is utilized to
gain energy benefits in our algorithms.

5 Related Work

Earlier proposals for scheduling on clustered VLIW architectures can be clas-
sified into two main categories, viz., phase-decoupled approaches and phase-
coupled approaches. A phase-decoupled approach to scheduling works on a data
flow graph (DFG) and performs partitioning of instructions into clusters to re-
duce inter-cluster communication while approximately balancing the load among
clusters. The annotated DFG is then scheduled using a traditional list scheduler
while adhering to earlier spatial decisions [8] [6]. An integrated approach to
scheduling combats the phase-ordering problem by combining spatial and tem-
poral scheduling decisions in a single phase [12] [17] [16].

Study of leakage energy management at the architectural level has mostly
focused on storage structure such as cache [11]. Some of the earlier work has tar-
geted energy efficiency in functional units. [9] proposes an architectural policy for
aggressively controlling leakage energy in integer ALUs. However the overhead
of transitions from active mode into low-leakage mode and vice-versa are signif-
icant. Zhang et al. [20] have proposed a rescheduling scheme to reduce dynamic
and leakage energy in the functional units of a VLIW processor by exploiting the
remnant slack of a performance-oriented schedule. Kim et al. [13] have proposed
a leakage energy management scheme for VLIW processors.

To the best of our knowledge, the only work for energy optimization in the
context of instruction decoder is due to Kuo et al. [14]. Kuo et al. [14] consider
instruction decoding as in superscalar architectures and propose to split (hori-
zontally partition) instruction decoder circuitry into two or more sub-decoders
based on execution frequencies of different instructions. They also propose to
do pipelining (vertical partitioning) of the instruction decoder to achieve energy
and area benefits. The experimental results of Kuo et al., based on physical syn-
thesis clearly demonstrates that the horizontal and vertical partitioning of the
instruction decoder is in general useful in reducing the design complexity, power
consumption, area overhead and delay because of simplification of circuitry. In
contrast to the work of Kuo et al. [14], partitioning of instruction decoder in
our work is geared more toward VLIW and clustered VLIW architectures that
demands decoding of large number of instructions in parallel. Thus, compared
to functionally asymmetric partitioning of Kuo et al, we consider partitioning of
instruction decoder circuitry into functionally identical individual sub-decoders
each of which can be controlled independently. The pipelining of decoder as con-
sidered by us is more natural in VLIW context where a fetch packet needs to be
broken into execute packets and the current execute packet needs to be aligned
before actual decoding can begin.
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6 Conclusions and Future Directions

In this work, we consider a split instruction decoder design that enable energy
optimization in instruction decoder. We evaluate the purely hardware based
scheme to gain energy benefit for short idle cycle delimited by frequent transi-
tion. We also propose a new energy-aware instruction scheduling algorithm for
VLIW and clustered VLIW architectures that provides significant energy ben-
efits over purely hardware based scheme by reducing the number of transitions
using scheduling slack of instructions. In future, we would like to integrate the
proposed scheme for leakage energy management with the slack based approach
to dynamic and leakage energy management in functional units.
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Abstract. This paper presents our work in combining peer-to-peer dynamic tree 
management with hierarchical Operational Transformation (OT) over document 
trees to achieve low computational and communication costs.  We discuss our 
approach in storing the document tree in a peer-to-peer, distributed manner and 
maintaining convergence, causality preservation, and intention preservation 
(CCI) via a peer-to-peer caching system. Because changes are sent to other 
users within the system only as needed (and cached when possible), our 
approach minimizes communication costs among multiple readers and writers. 
Our algorithms balance the traffic and computational load among peers.  They 
ensure that users always have the most current/correct copy of the section(s) of 
the document which they are viewing.  Our approach outperforms existing OT 
techniques that broadcast messages and compute OT for each operation at all 
peers. This paper presents our algorithms and simulation results demonstrating 
the efficiencies and load balancing among peers within the system. 

Keywords: Concurrent P2P tree, Load Balancing, Lazy updates, 
Communication efficiency. 

1   Introduction 

The field of Computer Supported Collaborative Work (CSCW) and the subfield of 
Real-time Collaborative Editing Systems (RTCES) seek to achieve the goal of 
providing synchronous (real-time) access to a shared document. RTCES and 
consistency maintenance within distributed, synchronous RTCES are active research 
areas within the field of CSCW [18].  Most notable are algorithms [3][8] that work to 
achieve a high level of concurrent access through optimistic concurrency control and 
Operational Transformation (OT) to merge changes on other users’ copies while 
ensuring consistency, causality-preservation, and intention-preservation – the widely 
accepted CCI model [17][18].  There exists a significant opportunity to reduce the 
computation and communication costs associated with OT [13]. 

We revisit the idea that locking offers RTCES research opportunities.  Locking is 
one technique used to ensure consistency and data integrity in distributed systems, but 
locking has the disadvantage of reducing concurrent access. Consequently, the 
RTCES research community has adopted OT or similar approaches to maintain real-
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time, high responsiveness while striving to maintain the CCI model.  Unfortunately, 
adopting an existing OT approach is costly in that all changes/operations must be 
broadcast to all users, and each of these users must “replay” these incoming 
operations locally.  This is costly with respect to communication and computation 
(since OT algorithms employ history buffers of previous operations which must be 
maintained and potentially modified). 

Motivated by the idea that locking and OT serve complimentary roles [19], we 
incorporate both techniques such that users are able to make changes locally within 
locked sections of a document (and cache these changed) while adopting OT when 
many users make changes to a shared section of the document (multicasting these 
changes to only those users sharing the section).  Whether a section is locked or 
shared is a user-defined policy that can change depending upon the scenario and on a 
per-section basis.  By dynamically managing lock granularity, we maximize 
concurrent access among writers and avoid performing OT globally over the entire 
document.  OT can be applied locally to a subsection of the entire document to reduce 
communication and computation costs. 

Our approach employs a relaxed consistency model in which not all users within 
the CES have the most current copy of the entire document – rather, all users have the 
most current copy of the sections of the document they are viewing (i.e., the 
visible/focused portion of the document is always current on a user-by-user basis).  
By relaxing the consistency constraint heretofore enforced in OT-based systems, we 
are able to reduce communication and computation costs. 

This research extends our previous work on centralized document trees [10]-[13] 
by distributing the document management among all peers within the CES and 
allowing the cached changes (history buffers) to be applied at an arbitrary level in the 
hierarchical document tree.  These P2P algorithms for managing document sections 
and distributing existing OT algorithms are complimentary, superior to the current 
best practices of existing OT algorithms over linear document representations, and 
significantly reduce the computational and communication costs.   

The remainder of this paper is structured as follows.  We begin with a discussion of 
our hierarchical, tree-based view of the document, and then provide an overview of 
the data structures used to manage the document among the peers in Section 2.  Next, 
we discuss our peer-to-peer algorithms to manage ownership of the sections of the 
document in Section 3.  Section 4 presents a discussion of load balancing and fault 
tolerance, and Section 5 presents our simulation results validating our approach.  We 
present related work in Section 6 and conclusions in Section 7. 

2   Maintaining Exclusive Access 

To avoid blocking users from editing, we use a tree-based view of the document and 
allow for locking at various levels within the tree such that users manage/lock local 
portions of the document.  When a user desires a section for writing, we dynamically 
adjust lock granularity via demotion of the lock down in the document tree until the 
conflict among other users is resolved.   When a user leaves a section of the document 
and makes it available to other users, conflict among users is potentially reduced; as a 
result, our approach automatically promotes the lock to a higher level within the 
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document tree – maximizing the amount of the document owned for the remaining 
user [10]. 

2.1   Representing a Document Via a Tree 

By viewing the shared document as a hierarchical structure we are able to better 
achieve context-specific consistency preservation, and we can reduce communication 
and computational costs.  Based upon the semantic structure of the document, the 
document may be broken up into sections, subsections, etc.  The document tree 
consists of internal nodes that represent structure, and all document content resides at 
leaf nodes. 

Each portion of a document may consist of content and sub elements (sub 
sections).  Because any section of a document may contain any number of text 
elements (paragraphs, sentences, etc.), and may contain any number of subsections, 
we employ algorithms for inserting and removing locks from the collaborative space 
to work within an n-ary tree data structure that is representative of a shared document 
[10]. 

It is important to note that structure of the tree is defined within the document itself 
and does not depend upon any voting schemes or user involvement.  For example, the 
structure of this paper is defined by the sections, subsections, paragraphs, sentences, 
etc.; the structure of a CAD file is defined by layers, objects, etc.  Our approach does 
allow for users to establish at what granularity the leaf nodes should be defined, but 
this could also be defined automatically (defaults depending upon the type of 
document in use).  Once established, the tree is utilized to manage ownership of 
subsections within the document.  Rather than locking the entire document, lock 
granularity is adjustable, ranging from the entire document (ownership marked at the 
root of the tree) to an atomic level (ownership marked at a leaf node in the tree).  The 
size of a subsection is not specified within our algorithms, thus it is scalable to 
accommodate the semantic structure of the document being edited. 

2.2   Maintaining Node Coloring, Grey Count, and Black Siblings 

To enable efficient management of which user owns/manages each section within the 
document, we utilize a tree coloring scheme.  Each node in the document tree 
maintains a color (white, black, or grey) to denote whether it is available, currently 
being written to by another user, or if two or more users are editing sub-trees, 
respectively.    Ownership (black coloring) of a vertex v by user U implies that U 
owns/manages v and the sub-tree rooted at v.  We allow multiple users to concurrently 
write to the section denoted by a node and employ an OT consistency maintenance 
algorithm among the writers; thus a black node may have multiple owners/managers.  
Each node n in the tree maintains a numeric value that denotes how many users are 
managing nodes in the sub-trees of n.  This count is defined as the grey-count of the 
node n.  This grey count value is useful in efficiently determining if the node can be 
colored white or grey when a user leaves or moves and promotion is possible (as 
explained later). 

A grey node v maintains references to the node’s children (sub-trees); additionally, 
if there exists at least one black child node of v, then v also maintains a reference to 
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the first black child node.  The black child nodes of v (b1, b2, … bk, where k = number 
of black child nodes of v) are linked together using a doubly-linked list.  These sibling 
references and the reference to the first black child of a grey node are used for fast 
(O(1)) location of which node may be promoted when all but one user has left the 
sub-tree (as explained in Section 3.2). 

When we say that user U owns a node v, we claim that this user contains the most 
current cached copy of the document’s content represented by the node v.  When we 
say that a set of users {U1, U2, …, Un} own a node v, we claim that these users all 
maintain the most current cached copy of the document’s content represented by node 
v and are employing a localized OT algorithm to maintain consistency on the content 
of v.  Thus the total correct, up-to-date copy of the document is distributed among the 
peers and can be constructed as needed by requesting the cached sections from the 
peers. 

2.3   Lock Granularity, Localized OT, and Caching Local Changes 

It is advantageous to maintain a lock on the largest sub-tree that is permissible; by 
maximizing the sub-tree that any user owns, we minimize the communication costs of 
the system by utilizing caching.  For example, if a user Ui owns a section of the tree, 
then all changes to that section can be stored locally in the user’s cache and do not 
have to be transmitted to other users until they desire to enter (read or write) that 
section. 

Each node may employ a sharing policy to either allow or disallow multiple 
writers.  If exclusivity is adopted at a node n (such that we allow only one writer), a 
lock on a sub-tree rooted at node n is permissible for user Ui so long as no other user 
has a lock on any node within the tree rooted at node n.  If another user Uj enters the 
system and requests a section of the document, then the section of the tree owned by 
user Ui is reduced to accommodate the insertion of user Uj (assuming n is not an 
atomic/leaf node and demotion is possible). 

Alternatively, if a multiple-writer policy is adopted at a node n, then multiple users 
may write to n and maintain consistency via OT.  In this case, if n is owned by a 
single user Ui and another user Uj desires to enter n, then both Ui and Uj own n and 
OT is employed to maintain consistency.  Any changes made by Ui to n before Uj’s 
arrival are transmitted to Uj upon arrival. 

3   P2P Algorithms for Distributed Document Management 

We agree with Edwards [2] that conflicts are a “naturally-arising side effect of the 
collaborative process” and “will occur simply because of the semantics of multi-user 
applications.”  Further we agree with Handley and Crowcroft [4] that “temporary 
inconsistencies are necessary to achieve good performance” within collaborative 
editing systems.  Thus, at various points in time, the copies of the document are not 
consistent, but the distributed, managed copy of the document in its entirety is correct 
and preserves user intention.  We record ownership and change history sufficient to 
recreate the entire document as needed (i.e., when a user wishes to view any specific 
section).  These changes will be communicated and replayed among local copies as 
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the users move about and view new sections, and changes can also be sent among the 
users (moving changes up the tree – minimizing communication costs) at specified 
intervals if desired [14][15].  Selective multicast is employed to improve 
communication cost [7]. 

To minimize communication costs, locating which peer is currently managing a 
section of the document (currently managing a node in the document tree) may be 
done quickly via a peer location approach such as Chord [16].  Further, whenever a 
history buffer (Δx) for a node x is being transmitted, reduction of Δx to Δx’ can also 
decrease the communication cost. 

Given the structure of the document tree and the distributed nature of the tree 
management, when a user u manages a section denoted by node n, then all changes 
made to the content of the sections rooted at n are cached locally on u.  Thus any 
structural change to the document tree (such as combining two sections, splitting a 
section into two sections, or deleting a section) can also be cached locally on u.  If a 
set of users are sharing n and employing OT to maintain consistency of n, then any 
structural changes within the sub-tree rooted at n will be maintained via the OT 
algorithm on n among the users sharing n.   

As a result, the algorithms specific to handling the placement and management of 
users within the document tree are the focus of this research.  The two algorithms we 
have developed are USERENTER and USEREXIT.  We present each below with a 
detailed analysis of correctness and efficiency.  As in our previous, centralized 
algorithms [10]-[13], we avoid deadlock among peers by employing handshake locks 
on parent/child nodes and by always moving downward through the tree. 

3.1   User Entering a Section 

When a user desires to write to a section s of the shared document, the user must enter 
the section of the document tree that represents the desired section s.  This operation 
is performed by the USERENTER algorithm that works from top-to-bottom by 
examining nodes in the path from the root to the desired node.  The correct path is 
determined by first querying the peer who manages the root, and then descending 
further down by following peers’ references to other peers.  The coloring of the nodes 
along the path denote the availability of the sections (see Section 2.2).  If a white node 
is reached, then the node becomes managed by the user (and marked black denoting 
the ownership).  If a grey node is reached, the algorithm proceeds further down the 
path.  If a black node is reached, then the user’s entry to the section depends upon the 
sharing policy adopted at the black node.  If the sharing policy is set to exclusive 
write, then the entry fails (i.e., the user cannot enter the desired section of the 
document); if the sharing policy is to adopt OT (allowing multiple writers at this 
node), then the requesting user is added to the set of concurrent writers for the 
section; finally, we can adopt a demote policy.  Demotion works by moving the 
management of the existing user down the tree hierarchy until the conflict among the 
users is resolved. 

The most complicated case of the USERENTER algorithm is when demotion occurs.  
Figure 1 demonstrates the demotion of U1 from the section v down to the subsections 
denoted by {w1, …, wn} and the injection of U2 at the section denoted by x.  Any 
history buffer at U1 to x (denoted by Δx) must be passed to U2.  At this point, U1  
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vU1 vU1 vU2

w1 wn…

v

x

 

Fig. 1. Adding U2 by reducing and distributing U1’s management of v 

contains the most current copy of the sections {w1, …, wn}, and U2 contains the most 
current copy of section x.   

Correctness: As there are only three colorings for any node (white, black, and grey), 
the USERENTER algorithm handles all cases.  In the case where n is colored white (1), 
there are no other users in n, so u obtains n.  In the case where n is colored black (2), 
we have three cases on resolving the entry of u to n: (2.1) OT is adopted at n, so u is 
added to the user set of n; (2.2) n is not shareable in which case the entry of u to n 
fails and we must decrement the grey count of the nodes along the path from the root 
to n to keep the grey count correct (since the node n was not granted to u); and (2.3) 
when demotion occurs and n is colored grey.  In the more complicated case of 2.3, the 
current manager of n (v) is demoted along the path such that the original request of v 
(that led to v’s management of n) is still fulfilled.  This either resolves the conflict 
(2.3.4) or we repeat the invocation of the algorithm one level down in the tree closer 
to w (2.3.5).  In the case where n is colored grey (3), we increase the grey count 
(optimistically assuming u’s request for w will be successful) and repeat the 
invocation of the algorithm one level down in the tree closer to w. 

Performance Analysis: Since the USERENTER algorithm traverses from the root down 
to a leaf (or stops earlier if a white or black node is reached), this algorithm must 
traverse O(h) nodes, where h equals the height of the document tree.  The work 
involved at each node is O(1) since the work in processing an individual node 
involves updating references/pointers, coloring, and grey count (integer) values. It is 
possible upon a failure (step 2.2) that the USEREXIT function will be invoked, but this 
USEREXIT (as discussed below) runs in O(h), thus it is not asymptotically greater than 
the existing O(h) work for the USERENTER algorithm.  Thus the computation cost for 
the USERENTER algorithm is O(h).  As the algorithm traverses down the tree, peers 
that manage each of the nodes along the path must handle the request; thus as many as 
O(h) peers must be involved in resolving the request – and this incurs O(h) messages.  
Communication also occurs when the lock is granted and the history buffer is 
communicated to the requesting user for a cost of O(b) where b is the size of the 
single history buffer communicated.  In the case where we are adding u to the 
manager set of n (2.1), this requires O(n) messages where n is the number of users in 
the OT set of n (since all users in the set must be notified of the user entering the set).  
Thus the total communication cost for USERENTER is O(n + b + h). 
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3.2   User Leaving a Section 

When a user desires to exit to a section s of the shared document, the node in the 
document tree that represents the s must remove the user from its list of 
managers/writers.  This operation is performed by the USEREXIT algorithm that works 
from top-to-bottom by examining nodes in the path from the root to the node to 
release.  As in the USERENTER algorithm, the correct path is determined by first 
querying the peer who manages the root, and then descending further down by 
following peers’ references to other peers.  Again, the coloring of the nodes along the 
path indicate how to handle the request to leave.  If a black node is reached, then we 
remove the user from the set of users managing the node and inform all remaining 
users within the section that the user has left.  If a grey node is reached, there are three 
cases: the grey count is decremented and the algorithm proceeds down the tree to the 
node next in the path to the desired node; the grey count is decremented to 0 which 
means the exit is complete as all users have left the section represented by this sub-
tree; the third case is when promotion is possible because the grey count is going from 

USERENTER(n, w, u) 
Input: node n representing a section of the document tree, node w representing the 

desired node, and a user u that is the user/peer who wants to write to w. 
Output: a reference to the node x that u owns such that x is a root of a sub-tree that 

contains w as a leaf node (return null in the case where it is not possible to 
fulfill u’s request to enter w) 

Assertions: n is the root of a sub-tree that has w as a leaf node (such that n handles 
the request of user u to be able to write to w), v is the current manager of n 

 
1. if n.color = WHITE 

SetManager(n, u, w) // n.color  BLACK and n.originalRequest = w 
LinkToSiblings(n) 
Return n 

2. else if n.color = BLACK 
2.1. if n.policy = OT 

Communicate(∆n, u)  
AddToManagers(n, u, w)  
Return n 

2.2. else if n.policy = EXCLUSIVE or n.IsLeaf   // demotion not possible 
USEREXIT(root, w, u)   // correct artificially-inflated grey counts 

Return null                  // failed entry due to lack of sharing on n 
2.3. else // demotion must occur 
2.3.1. n.color = GREY 
2.3.2. n.greyCount = 2 
2.3.3. Demote v down to NextInPath(n, n.OriginalRequest) 
2.3.4. if NextInPath(n, n.OriginalRequest) != NextInPath(n, w) 

Communicate(∆n, u) 
Return NextInPath(n,w) 

2.3.5. else return USERENTER(NextInPath(n, w), w, u) 
3. else // color is GREY 

n.greyCount++ 
return USERENTER(NextInPath(n,w), w, u) 
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2 to 1 (denoting there will only be one user remaining after the exit).  Promotion 
works by finding the remaining user (the user not leaving) and moving their 
management up to the current node being examined. This remaining user can assume 
ownership of a larger portion of the document (and maximize the caching). 

The most complicated case of the USEREXIT algorithm is when promotion occurs.  
Figure 2 demonstrates the promotion of U2 to v when U1 leaves w.  As a result, Δw 
(the history buffer of w) is communicated from U1 to U2.  At U2, x is current since U2 
already managed it, and w is now current because Δw has been “replayed” at U2.  
Thus U2 contains a proper and complete, up-to-date version of v since v is defined by 
w and x (i.e., v is current because v = w + x and Δv = Δw + Δx).  When Δw is 
communicated to U2, U2 may elect to incorporate Δw into its copy of w, or U1’s 
changes to w may be rejected.  This acceptance or rejection of changes by other users 
could be done automatically by the system based upon embedded rules or done 
explicitly by users as prompted by the system. 

Correctness: The USEREXIT algorithm handles only two cases for a node’s coloring: 
black and grey.  The algorithm does not handle the case where the color is white 
because a white coloring denotes the node n is not managed by any user, thus no 
user can exit n.  In the case where n is colored black (1), the user u is removed from 
the user set managing n and removed from the sibling list.  Promotion is not 
possible or it would have occurred earlier in the path from the root to n (as 
discussed below).  In the case where n is colored grey (2), the grey count is 
decremented to denote u is leaving the sub-tree rooted at n (2.1).  We then have 
three cases on resolving the exit of u from n: (2.2) is the case when a promotion 
occurs since only one user remains in the sub-tree n, so we promote the only 
remaining user (other than u) to n and communicate the history buffer of the node u 
is managing to the remaining user; (2.3) n no longer has any users remaining in it, 
but this coloring to white was temporarily delayed due to a previous, concurrent 
invocation of USERENTER that failed; and (2.4) when we repeat the invocation of 
the algorithm one level down in the tree closer to w 

 

Fig. 2. Removing U1 by promoting U2 & communicating Δw to U2 

v  

U2  (Δv = Δw + Δx) 

v  

U1 

v 

U2  

w  

v  

x 

Δw  Δx  

Δv  



426 J.A. Preston and S.K. Prasad 

Performance Analysis: USEREXIT traverses from the root down to a leaf (or stops 
earlier if a grey or black node is reached), this algorithm must traverse O(h) nodes, 
where h equals the height of the document tree.  The work involved at each node is 
O(1) since the work in processing an individual node involves updating references, 
color, and grey count (integer) values.  Upon promotion, the FINDELIGIBLEPROMOTION 
function must be called, but it continues the traversal down the tree from the point 
where the promotion may occur, thus its work is O(h).  Thus the overall computation 
cost for the USEREXIT algorithm is O(h).  As the algorithm traverses down the tree, 
peers that manage each of the nodes along the path must handle the request; thus as 
many as O(h) peers must be involved in resolving the request – and this incurs O(h) 
messages.  Communication also occurs when the proper peer is located to fulfill the 
request; there are two cases when fulfilling the request: either promotion occurs or it 
does not.  In the case of promotion (Step 2.2), one history buffer is communicated to 
the user that is promoted, thus the communication cost is O(b) where b is the size of 
the history buffer.  In the case when promotion does not occur (Step 1), the requesting 
user must be removed from managing the node.  This requires O(n) messages  
where n is the number of users in the OT set of n (since all users in the set must be 
notified of the user leaving the set).  Thus the total communication cost in USEREXIT is  
O(n + b + h). 
 

 

4   Load Balancing and Fault Tolerance in the P2P Implementation 

One motivation in developing our P2P dynamic locking algorithms was to distribute 
the work of lock management among the peers.  Initially, it would seem that this work 
and communication is distributed uniformly among the peers, but the problem 

USEREXIT(n, w, u) 
Input: node n representing a section of the document tree, node w representing the 

node no longer desired, and a user u that wants to leave w. 
Output: none 
Assertions: n is the root of a sub-tree that has w as a leaf node (such that n is 

fulfilling the request of user u to be able to leave w) 
 

1. if n.color = BLACK 
 RemoveFromManagers(n, u) // possibly n.color WHITE (if no more 
  managers) 
UnlinkFromSiblings(n) 

2. else if n.color = GREY 
2.1. n.greyCount-- 
2.2. if n.greyCount = 1 
  a = FindEligiblePromotion(n, w) 
  SetManager(n, a.manager, a.originalRequest) // promote a 
  b = NextInPath(n,w) 
                               Communicate(∆b, a.manager)  
2.3. else if n.greyCount = 0 // previous failed UserEnter and two users have 

exited n 
       RemoveFromManagers(n, u) // n.color is now WHITE 
2.4. else UserExit(NextInPath(n, w), w, u) 
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remains that all messages must be processed from the root down as the grey counts 
must be modified from the root to the desired node to ensure proper promotion and 
demotion. Thus if a single peer is responsible for managing each node in the tree, 
some peer must maintain the root and will then become the bottleneck and have an 
increase in workload when processing the USERENTER and USEREXIT requests. 

We achieve workload balancing by adopting a rotating management of the nodes in 
the tree.  When an USERENTER operation is performed, the user begins management 
of the nodes along the path in the document tree visited in fulfilling the USERENTER 

operation. In this manner, we adopt a “most recently requested” policy in that all 
nodes ni will be managed by the user who’s USERENTER request was fulfilled by 
passing through ni (i.e., n1, n2, … nk is in the path from the root to nk, where nk is the 
desired node or the node at which the lock request is fulfilled).  We note that when a 
USEREXIT operation is performed, this implies that the user is leaving a section and 
thus it is not advantageous to have the user begin management of nodes.   

If such a “most recently requested” policy for lock management is adopted, then a 
single peer p must serve at most O(n) consecutive lock management operations, 
where n is the number of peers in the collaboration.  This is true because if a 
USERENTER request is handled, then the node acquires a new manager other than p.  
Only USEREXIT requests can be fulfilled and keep the same manager p, and there can 
be at most n consecutive USEREXIT request since any more would necessitate a lock 
request (i.e., a peer can’t release a lock it doesn’t have).  The workload for a peer is 
proportional to the number of lock requests for the peer – thus more active peers in 
the RTCES will be responsible for handling more of the work in maintaining the 
document tree.  And if the peers perform an equivalent number of lock requests, the 
workload of managing the nodes within the document tree is balanced since the 
amortized time a peer manages a node should be approximately equal to the 
amortized time the other peers manage the node. 

The time a peer manages a node is proportional to the depth of the node in the 
document tree (since there are fewer paths that travel through a node at a greater 
depth than a node at a more shallow depth).  Thus the root management should 
change more often than a near-leaf node.  This is good because the workload of more 
shallow nodes in the tree (closer to the root) is more than the workload of deeper 
nodes.  As a result, the workload in managing the distributed, P2P version of the 
document tree is balanced among the peers. 

Another important property of our P2P approach is increasing the reliability and 
fault tolerance so that if one peer is dropped from the RTCES, the others can continue 
without any problems.  We may increase the reliability and fault tolerance of the 
document tree by replicating the top portion of the tree among all peers (or a subset of 
peers).  For reliability, we can adopt an n-way replication of sections of the document 
and consistency maintained via an OT policy. While this increases the communication 
cost (since all peers must perform OT to maintain consistency regarding the lock 
states among the replicated portion of document tree), this approach does overcome 
the single point of failure of a single manager for a document section. If this n-way 
replication is adopted, then the sections of the document would implement a queue to 
store the managers of the section of the document – thus the peer who had managed 
the replica the longest would rotate out when a new peer’s request arrived down the 
document tree (a LIFO approach to achieve load balancing). 
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5   Simulation and Results 

To validate our P2P distributed document management approach, we implemented the 
model of the node and the USERENTER and USEREXIT algorithms.  We modeled three 
different document trees containing 14, 28, and 56 leaves, respectively.  We simulated 
concurrent users that were either in a reading or writing state; additionally, the users 
could move to a new section of the document (moving their cursor position), and this 
new section to which to move was randomly selected.  A total of 96 simulation 
configurations were performed, varying among the three documents and increasing 
the number of users from 1 to 32. 

The results of the 96 simulation runs are shown in Figure 3.  Each column denotes 
a set of peers varying from 1 peer (in simulation runs 1-3) to 32 peers (in simulation 
runs 94-96).  The workload is measured by how many USERENTER and USEREXIT 
requests were handled on a per-peer basis, thus each point plotted denotes how much 
work a single peer handled.  Note that the y-axis is logarithmic to enable the variance 
among the peers within the columns to be visible. 

 

Fig. 3. Balancing the Workload of Document Management among Peers 

If we adopt a first-come policy of node management, then as predicted, one (or a 
small few) peers are unfairly burdened with the bulk of the document management.  
Notice the high trend line showing the most burdened peer for each simulation run.  
When the “most-recent,” balanced approach is adopted (see Section 4), the work is 
more fairly distributed among all peers.  This is corroborated in that while the total 
work remains the same, the variance among the peers for any simulation run 
decreases when a balanced approach is adopted (note the increased clustering). We 
observe that the total workload decreases when the document size increases. This is  
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Fig. 4. Pure OT vs. Hierarchical OT Communication Costs 

intuitive in that if we increase the document size while retaining the same number of 
peers, then the opportunity for caching increases under our distributed document 
management model. 

Figure 4 shows how our hierarchical distributed document management approach 
can reduce the communication costs when compared to a pure OT approach.  The 
ability to cache changes locally and localize OT to a subset of users sharing the same 
space within the document dramatically decreases the communication costs of the 
RTCES. We note that as the collaboration density (the average number of peers per 
section of the document) increases, the communication also increases; this is as 
expected since more messages will be sent to maintain consistency when more than 
one peer shares a section of the document. 

It is important to note that the size of the document does not affect the workload in 
managing the collaboration – only the collaboration density affects the workload; thus 
our algorithms scale to large documents well. 

6   Related Work 

Traditionally, research within CES has viewed documents to be a linear sequence of 
data; consequently, OT and other techniques to ensure the CCI model [18] are 
designed to work on linear content.  More recently, others have proposed leveraging 
the semantic structure of the document and viewing it as a hierarchy [6][12].  
Operations to ensure CCI are more efficient when applied to sections of a hierarchical 
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document as opposed to the entire document, and the system is better able to handle 
context-specific consistency and intention preservation [6][19]. 

Others have examined utilizing varied-granularity locks within a shared document 
to achieve increased concurrent access and avoid the bottleneck traditionally 
associated with pessimistic, lock-based concurrency control [1].  [2] points out that 
requiring users to manage the maintenance of fine-grain locking is onerous and 
prohibitively costly, outweighing any benefit of such increased concurrency.  The 
POEM and MACE systems utilize hierarchical locks at a sub-file level, but the locks 
must be defined a priori and are fixed in size [8].  In contrast, our algorithms 
automatically obtain the largest lock permissible and automatically adjust the 
size/portion of the document locked.  

[6] incorporates the idea of varied-granularity into OT-based concurrency control 
algorithms by allowing the user to specify at what semantic level within the document 
OT merging should occur. This is similar to [1] and [5] that apply OT algorithms to 
SGML/HTML/XML. It is notable that our algorithms differ from [5] in that they do 
not block or require 2-phase locking. 

Communication costs may be improved by employing OT at a greater-than-
character level due to the fact that this approach would use more of the network 
packet size than a single character (thus avoiding wasteful single-character payload 
packets). As discussed in [10] and [20], it is not cost effective to immediately 
communicate individual key-stroke (character) level edit actions to other users within 
the CES; rather, such changes can be cached locally and sent as one edit to minimize 
the communication overhead of the network packets. 

7   Conclusion 

We have presented peer-to-peer algorithms that dynamically manage ownership of a 
distributed document among peers efficiently, minimizing computation and 
communication costs.  Additionally, we have presented a distributed version of OT 
algorithms that reduce computation and communication costs as compared to existing 
multicast-based OT algorithms.  Both of these techniques are complimentary and 
improve the field of CSCW and RTCES. 

Our empirical simulation results demonstrate that the work of managing the 
document and the document tree can be distributed fairly among the peers within the 
RTCES, and the “most-recent” rotating management policy removes the bottleneck of 
any single peer in managing the topmost nodes of the tree.  Additionally, we have 
shown that we can achieve fault tolerance by replicating the top portion of the tree 
among a set of peers and maintain consistency via existing OT algorithms. 
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Abstract. Flooding is a fundamental building block of unstructured
peer-to-peer (P2P) systems. In this paper, we investigate techniques to
improve the performance of flooding. In particular, we present Clus-
tella, a novel semi-structured P2P architecture with bounded peer de-
gree. Clustella decomposes the network into different clusters, allowing
peers to quickly find those neighbors which contribute much to their
routing efficiency. By its link selection strategy, Clustella achieves a good
performance in static and dynamic environments.

1 Introduction

While distributed hash tables (DHT) are well-studied in the research community,
most peer-to-peer (P2P) systems in today’s Internet are still unstructured. Un-
structured architectures are attractive because of their simplicity and their high
robustness.

In unstructured systems, there is neither a centralized directory nor any con-
trol over the network topology or resource placement. When a new peer joins the
P2P network, it forms connections with other peers freely, e.g., it selects arbitrary
peers as neighbors. In order to publish its resources, a peer usually just stores
them locally or places them on randomly chosen peers. Generally, unstructured
overlays have loose guarantees for resource discovery, and it is possible that a
file is not found although it exists in the network.

It is often believed that—due to the absence of topological constraints—such
unstructured systems have a better performance and require less maintenance
overhead in highly dynamic environments where peers join and leave frequently
and concurrently. Usually, these systems also support richer queries than just
search by identifier, for example keyword searches with regular expressions, range
queries, etc.

The main Achilles heel of unstructured P2P systems are the underdeveloped
routing mechanisms. Basically, there are two fundamental routing operations:
flooding and random walks. In flooding, a search packet with a limited time-
to-live (TTL)—maximally 10 hops in Gnutella for example—is repeatedly for-
warded to all neighbors, while in random walks, a packet is only forwarded to
one randomly chosen neighboring peer. While a random walk is usually the less
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costly alternative in terms of the number of messages sent per query, the flooding
approach is more robust and has better response times. This paper focuses on
the flooding mechanism. However, we believe that our techniques are also useful
in systems based on random walks.

The major concern about flooding is the total number of messages caused
per query. More severely, in practice many of these messages are of no use and
unnecessarily increase the load on the system. The main reason are redundant
retransmissions: If a peer’s neighbors are likely to be neighbors as well, the peer
receives the same packet multiple times.

In this paper, we introduce a measure to evaluate the efficiency of flooding on
a given topology. We believe that this criterion captures the essence of flooding
well, and also engenders many interesting theoretical questions. We then identify
means to structure the topology in order to improve the quality of floods with re-
spect to this criterion. In particular, we present Clustella, a novel semi-structured
P2P network.

Clustella is a fully decentralized (local) system with undirected connections
only and a limited peer degree. Beacons are used to decompose the network into
clusters. Peers can orient themselves using the beacon information, and quickly
find other peers which—if a link to them is established—significantly increase
the number of peers covered by floods. If the found peer already has full degree,
local link rotations are applied and—also in this case—the connection request
can be satisfied quickly with a good neighbor. Small cycles in the topology—and
hence redundant messages—are avoided. Moreover, Clustella is self-stabilizing
and maintains its routing performance also in dynamic environments.

The rest of this paper is organized as follows. After reviewing related work
in Section 2, the model in general and the flood coverage criterion in particular
are introduced in Section 3. The Clustella architecture is described in Section
4. Simulation results are presented in Section 5. After briefly discussing possible
extensions in Section 6, the paper is concluded in Section 7.

2 Related Work

Gnutella [17] is probably the most prominent unstructured P2P network. How-
ever, albeit its success, there have been concerns about its scalability from the
beginning [19,20]. Indeed, when Napster was unplugged in 2001, Gnutella broke
down soon afterwards due to the inrush of former Napster users. A lot of inter-
esting solutions have been proposed since then.

In spite of the large literature about structured distributed hash tables
[18,21,23,26] (some authors have even proposed to implement unstructured data
placement schemes on top of structured systems [2, 3]), many researchers have
aimed at improving the performance of unstructured systems, acknowledging
their simplicity and their predominance in today’s Internet. One active thread
of research concerns content movement or replication [5,6,16,27]. In particular,
Cohen and Shenker [5] have shown that search is most efficient if the number of
replicas is proportional to the square root of the object’s popularity.
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Another fruitful field—also for structured networks—is interest-based locality
[11, 12, 22]. The idea is that instead of (or additionally to) random neighbor
connections, peers should establish connections to peers with similar interests.
It has been shown that thereby queries can be satisfied with a much smaller
flooding radius.

Many recent solutions for unstructured systems use alternatives for the flood-
ing operations, for example random walks (e.g. [4]). But there have also been
proposals to improve flooding itself. In [15, 25], the flooding is executed in sev-
eral successive rounds with increasing TTL, until enough responses are received.
While this solution can effectively reduce the message complexity for finding
popular files, the response times are worse.

The work which is the closest related to ours is by Jiang et al. [9]. Their
scheme aims at minimizing the number of redundant messages by constructing a
tree-like sub-overlay on which the packets are propagated. However, in contrast
to our work, many connections have to be maintained which are of no use for
flooding. This also implies that—compared to the total number of connections
in the system—the amount of peers covered by a flooding is low. More severely,
the tree-like sub-overlay may result in disconnected components, especially in
dynamic environments, reducing the efficiency further. In contrast, in our system,
all links can be used for flooding, since they have actively been selected in
consideration of their quality. Hence, while redundant messages are also rare,
the flood coverage is much larger.

Note that our paper is related to literature on virtual coordinate systems [7,8].
These systems typically assign coordinates to the different peers in order to
estimate distances (in terms of latency, rather than number of hops) between a
node and its (potential) neighbors. However, in this paper, we do not make use
of these techniques.

Finally, the idea of structuring unstructured systems is also used by re-
searchers in order to avoid a mismatch of the overlay with the underlying, real
network [13].

3 Model

We model the P2P network as an undirected graph G = (V, E), where V is the
set of peers and E the set of connections between the peers. That is, for u, v ∈ V ,
{u, v} ∈ E denotes that peers u and v know the IP addresses of each other. The
r-neighborhood Γ r(v) of a peer v ∈ V is defined as the set of peers which are at
most r hops away from peer v ∈ V , excluding v itself. For v’s direct neighbors,
we use the short form Γ (v) instead of Γ 1(v). Moreover, let R be the TTL or
flooding radius of the system (e.g., R ≤ 10 in Gnutella). As will be discussed in
Section 4, and unlike some other unstructured systems, in Clustella, every peer
has at least δ but no more than Δ neighbors, i.e., for all v ∈ V , δ ≤ |Γ (v)| ≤ Δ.

In this paper, a pure flooding algorithm is considered where each peer forwards
a packet to all its neighbors as long as the packet has a non-zero TTL. In order
to maximize the probability of finding a data item or file, a flooding operation
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should reach—for a given radius or TTL—as many peers as possible. Therefore,
|Γ R(v)|—the size of the R-neighborhood of a peer v—is a natural criterion to
quantify the efficiency of a flooding operation. In the following, we will refer to
|Γ R(v)| as v’s flood coverage. The flood coverage of a network network G = (V, E)
is defined as the minimal flood coverage of all peers in the network (cf. Definition
3.1).

Definition 3.1. The flood coverage Ξ(G) of a topology G for a given flooding
radius R is defined as

Ξ(G) = min
v∈V

|Γ R(v)|.

Of course, not every network topology is equally suited for flooding. If a peer has
neighbors which are also neighboring, many redundant messages are sent which
do not increase the propagation scope. In an optimal topology G, the number
of peers reached grows exponentially per hop, and if all peers have degree Δ, it
holds that Ξ(G) = min

{∑i=R
i=1 Δ(Δ − 1)i−1, |V |

}
.

Observe that our definition of a network’s flood coverage is somehow related
to the important criterion of graph expansion [24]. However, there are two crucial
differences: First, we are not concerned with the expansion of all subsets of peers,
but of single peers only (subsets of size one). And second, for these peers the
entire R-neighborhood is considered (instead of just their immediate neighbors).

An ideal topology achieving maximal flood coverage must have a large girth,
i.e., large minimal cycles. While finding such graphs is an interesting research
area on its own (cf. [10] for an explicit construction), we do not follow these
theoretical considerations further but go on and describe our semi-structured
P2P system Clustella which strives—in a decentralized manner—for creating
topologies with large flood coverage.

4 Clustella

In this section, we introduce the basic techniques used in Clustella for creating
topologies with large flood coverage. As described in Section 3, a peer should
connect to peers of different areas of the network, such that the shortest path
between two neighbors π′, π′′ ∈ Γ (π) of a peer π—except for the one via π
itself—is long.

However, in unstructured P2P systems, if a peer π learns about another peer
π′, π has a priori no information about π′’s location in the network, and thus
also not about the hop distance between π and π′. Therefore, π can not decide
whether it is useful to connect to π′, or whether its flood coverage using the
existing neighbors is better.

4.1 Clustering Topology and Beacons

A natural way to get rough topological location information is to decompose the
network into clusters or zones. The idea is that if the neighbors are chosen from
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different clusters, then they are likely to be distant from each other. In order to
be applicable in realistic and dynamic environments, our system must fulfill three
properties: (1) The clustering mechanism should not require the peers to perform
global operations or gather large amounts of additional topological information.
(2) The clustering should be established quickly and in a decentralized manner.
(3) The solution should be fair in the sense that all peers incur more or less the
same amount of work.

Such a clustering can be achieved by having some peers assuming the role of
beacons. Concretely, in Clustella, if a peer has no beacon in its Rd-neighborhood,
it considers itself a beacon. Furthermore, a protocol ensures that each peer knows
the beacons in its Rb-neighborhood. Both Rd and Rb are system parameters
which are explained later in more detail. For now, assume that Rd < Rb and
Rb ≈ R. In order to find out whether it is worth establishing a connection to
each other, two peers π and π′ exchange the information about their beacons. If
their neighborhoods look very different, the distance between the peers must be
large and thus the connection {π, π′} of good quality.

In Clustella, a beacon peer appends its identifier (IP address) to the packets
passing through it, together with a TTL initialized to Rb. The other peers then
forward this packet as usual, decrementing the TTL in every step. Since the
packet may have travelled several hops before a beacon appends its identifier, and
since the beacon parameter Rb can be larger than the packet flooding radius, the
packet’s TTL can expire before the beacon information is propagated Rb hops
far. Therefore, if a peer receives a packet with TTL=0, it buffers the beacon
identifiers with non-zero hop count, and piggybacks them on future packets.
The propagation of the beacon information becomes independent of the packets’
TTLs, and beacons are indeed known in their Rb-neighborhoods. Moreover, note
that due to the piggybacking, Clustella itself does not require the transmission
of any messages at all.1 This solution also fulfills the fairness property (Property
(3)), as the work is equally divided between both beacon and non-beacon peers.
The basic ideas of the clustering topology are illustrated in Figure 1.

4.2 Neighbor Selection

In this section, we first present Clustella’s neighbor selection strategy. After-
wards, the issue of replacing existing connections by better ones is addressed.

New Neighbors. Consider a peer π which—for example during the joining
process—is given a set of candidate peers from which it has to choose the best
neighbor. For each such candidate π′, π knows—due to a preceding information
exchange—the identifer of π′’s closest beacon, and which beacons it has in com-
mon with π′. If π itself does not see the closest beacon of π′, the hop distance
between π and π′ must be larger than Rb −Rd. In addition to this deterministic
guarantee, the amount of beacons which are in both π’s and π′’s Rb-neighborhood

1 Of course, however, the size of the messages becomes larger as they include beacon
information.
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Fig. 1. When the query flooded by peer π arrives at the beacon π′, π′ appends its
identifier. The packet is forwarded until its TTL becomes zero at peer π′′. Peer π′′ ex-
tracts the beacon’s identifier and piggybacks it to other packets. Hence, the information
about π′ is propagated in the entire Rb-neighborhood of π′.

correlates roughly with the length of the shortest path between the two peers. In
Clustella, the following algorithm is applied to select the best candidate: From
all candidates of which π does not see the closest beacon (if possible), π chooses
the one with which it has the least beacons in common.2

In our system, connections are undirected, and there is an upper bound Δ on
the amount of links a peer can have. This poses an interesting problem: What
happens if a peer wants to connect to another peer which already has Δ neigh-
bors? To find alternative candidates can be time-consuming, or even impossible if
all existing peers have full degree. In the following, we describe Clustella’s joining
procedure which—in spite of this problem—quickly establishes new connections
of good quality (i.e., between formerly distant peers).

First recall that a peer is allowed to have between δ and Δ neighbors. When
a peer joins the Clustella network (or if some of its neighbors have crashed), it
only looks for new neighbors as long as its degree is smaller than δ. However,
a peer π always accepts a connection request from another peer π′ if it has less
than Δ neighbors. If π already has Δ neighbors when it receives the connection
request from π′, it checks whether there exists a neighbor π′′ ∈ Γ (π) with degree
smaller than Δ. If this is the case, the connection {π′, π′′} is built. Since π′′ is
adjacent to π, the quality of the link {π′, π′′} is similar to the one of {π′, π}. If
on the other hand the degrees of all neighbors are also Δ, π drops a connection
with an arbitrary existing neighbor π′′ and accepts π′’s joining request. While
this would already be a good solution, Clustella exploits the situation further
and additionally establishes a connection between π′ and π′′. Note that since
π′ had a degree of at most δ − 1 < Δ − 2 before issuing the join request, this
operation is legal. More importantly, the link {π′, π′′} must be of good quality
(similar to the one of {π, π′′} before it was broken). Finally, this trick also speeds
up the joining process. We have the following result.

Theorem 4.1 In Clustella, by choosing δ < Δ, a connection request at a peer
π can always be satisfied by π itself or by a neighboring peer π′ ∈ Γ (π).

2 Note that the distances to the beacons are not considered.
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Also observe that since the links established by Clustella are between distant
peers only, a new link does not degrade the quality of existing links.

Our system only requires that δ < Δ, and hence choosing δ = Δ − 1 is fine.
However, it may be beneficial to have a larger range of allowed degrees. With
this increased flexibility, small local link rotations could be performed in order to
increase the flood coverage further during joins. Such mechanisms are planned
for future versions of Clustella.

Neighbor Replacement. A peer can always try to replace its current neigh-
bors by better ones. However, the evaluation of existing neighbors of a peer π
poses a problem: Since they are already adjacent to π, they must as well have
almost the same set of beacons in their neighborhood.

One simple solution would be to ignore this issue and just change the neighbors
once in a while. As a slight improvement, the neighbors could be assigned a score
depending on the beacons they had before the link has been established; then,
depending on these scores, sporadically the worst neighbor is replaced.

In Clustella, a more sophisticated approach is used: Each beacon information
record also contains its flooding path, i.e., a peer adds its identifier (at most Rb

entries) before forwarding the packet. Thereby, the peers are able to compute
via which neighbors they know about a given beacon. In order to evaluate an
existing neighbor π′, a peer π asks for π′’s beacons without the ones known
through the link {π, π′}. If π′ and π still have one or more beacons in common,
then the connection has to be replaced.

4.3 Dynamic Failures

Most P2P systems currently in use are very transient and have a high peer
turnover rate. Therefore, it is important that Clustella can efficiently handle
peers which leave or crash. The creation of beacons—and the propagation of the
corresponding information—is a fully decentralized process and therefore our
system adapts quickly to changing environments on its own.

However, it is beneficial to employ additional mechanisms to cope with churn.
If a neighbor of a peer crashes, a good substitute has to be found—a costly
operation if done from scratch. Therefore, in Clustella, a peer stores for each
neighbor π some of π’s neighbors. When π crashes, a connection to one of π’s
former neighbors can be established immediately. The quality of this alternative
connection is similar to the one of the old connection.

5 Simulation

We have analyzed the flood coverage of the topologies created by Clustella by
simulation for up to 1 million peers. Our tests mainly focused on the parameter
space Δ ∈ {4, ..., 7} (each with δ = Δ − 1) and R ∈ {5, ..., 10}.

Although choosing Rd smaller than Rb gives a deterministic guarantee for the
minimal girth, this feature can not be exploited fully since it is very expensive:
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The amount of beacon information per peer grows quickly as longer shortest
paths are enforced this way. However, such a hard guarantee seems not to be
necessary, as already Rd = Rb − 2 yields very good results: Since Rd < Rb, a
peer has enough beacons in its neighborhood for orientation, but also not too
many even in case of a large beacon radius Rb. Generally, Rb should roughly
equal—or be slightly larger than—R, i.e., Rb ≈ R.

In our simulations, the following neighbor discovery algorithm has been used:
In order to find an additional neighbor, a peer π in the Clustella network sends
an exploration packet of only a small constant TTL (e.g. 10 hops). This packet
contains information about the beacons in the neighborhood of π, plus a section
where already visited peers on the path can be stored. A peer π′ which re-
ceives this packet forwards it to its neighbor π′′ which—without the connection
{π′, π′′}—shares the least beacons with π. Neighbors which are already con-
tained in the path are avoided, and if several neighbors are equally well-suited,
a random one is chosen.

We have compared Clustella to two other strategies: a Gnutella-like strategy
and a random walk strategy. In the Gnutella-like strategy, in order to find new
peers it can connect to, a peer asks its neighbors for their neighbors. This pro-
cedure is repeated recursively, until the peer reaches its desired degree. In the
random walk strategy, a peer sends a discovery packet with the same TTL as
Clustella. However, unlike in Clustella, this packet is always forwarded to a ran-
dom neighbor, and does not benefit from the beacon information for orientation.

In all our simulations, the performance of the Gnutella-like strategy was of
course poor: The flood coverage was up to one hundred times worse than the
coverage of the other two strategies. The resulting topologies were highly clus-
tered, and the neighbors’ neighbors were often adjacent. While the random walk
strategy had a much better flood coverage than the Gnutella-like strategy, it
was outperformed by Clustella where peers quickly reached much more distant
neighbors.

Finally, since existing P2P systems often use longer random walks in order
to find new neighbors, we have also studied a different scenario. Thereby, both
Clustella and the random walk strategy chose neighbor candidates uniformly and
at random from the entire network. Such a uniform sampling can be achieved
by sufficiently long random walks. Clustella outperformed this random graph,
albeit only by up to slightly more than 10%. (Of course, for very large graphs
where only a small fraction of peers can be reached by a flooding, the difference
of the coverage of the two graphs diminishes. Similarly, for very small graphs
where all peers can be reached, the flood coverage is the same.) However, we
believe that this uniform sampling scenario is not realistic in practice, as the
mixing times [14]—and thus the length—of the random walks are large and also
difficult—or even impossible in dynamic environments!—to compute. (Note that
this computation requires a good estimation of the total number of peers in the
system.) Furthermore, the probability that an exploration packet is lost is high
for long walks, and it is necessary to send several redundant packets in parallel.
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Therefore, Clustella does not apply this neighbor discovery strategy but only
sends packets with small TTLs, as described above.

In conclusion, our first in vitro evaluation results are promising both with
respect to the search efficiency and with respect to the messages’ sizes. Of course,
we are aware that many issues such as the dynamics of the system remain to
be analyzed in detail in future work. Moreover, there is a wide variety of other
alternative approaches to which have not compared Clustella. Although we plan
to perform such comparisons, our focus here is rather on the introduction of
novel ideas to improve flooding than on proposing a complete and ready-to-use
system; in fact, Clustella can be enhanced by adding many existing heuristics, for
example by introducing some form of replication, or by the extensions discussed
in the next section.

6 Extensions

The basic system as described in Section 4 can be extended in several ways. In
this section, we briefly discuss two possible enhancements.

The first enhancement concerns the clustering. So far, there is only one level of
beacons. It might be beneficial to organize the beacons in a hierarchy of several
levels with increasing radius of responsibility. If a peer looks for a distant peer to
connect to, it can choose the candidate with which it has only high-level beacons
in common. A small beacon hierarchy (three or four levels) might already do the
job: Since floods have a small constant radius, the optimal flood coverage can
also be achieved with peers which are not very far away.

There are several challenges. In particular, the hierarchy must be easily main-
tainable when peers (and thus also beacon peers) join and leave. Moreover, it
should be no disadvantage to be a high-level beacon (fairness property), and
information about all beacons must be propagated efficiently.

The second enhancement concerns the size of the transmitted messages. Be-
sides general compression mechanisms, the use of Bloom filters [1] is appealing:
Sending only the Bloom array instead of the entire beacon identifiers can re-
duce the burden on the system’s resources (memory and bandwidth) while still
yielding acceptable probabilistic guarantees.

7 Conclusion

This paper has embarked on identifying techniques to make flooding on un-
structured P2P topologies much more efficient. Unlike other systems which only
combat the symptoms, we strive for avoiding bad connections from the begin-
ning. Moreover, in contrast to many structured P2P systems, Clustella can be
started from arbitrary network topologies, i.e., from any connected graph, and
develops towards better network structures in a self-stabilizing manner. Our first
evaluations are promising. Moreover, many heuristics such as smart data replica-
tion are orthogonal to our approach and could be integrated to further improve
search performance.
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An interesting feature of our techniques is that they can co-exist in networks
with normal clients (e.g., Gnutella clients); it is not necessary for the existing
clients to know about our new clients. What is more, the entire network will
benefit from our neighbor selection of—possibly a small number of—new clients,
as many existing clients will experience a larger fan-out as well.

We plan to investigate efficient flooding topologies further, addressing for in-
stance Clustella’s dynamics: Does the system require measures in order to stabi-
lize quickly, and if yes, which mechanisms are best? The ultimate goal is to have
a running Clustella client which collaborates seamlessly with other unstructured
P2P clients. Finally, we believe that our clustering approach may be interesting
in other areas of distributed computing as well.
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Abstract. Peer-to-peer (P2P) topology has significant influence on the
performance, search efficiency and functionality, and scalability of the
application. In this paper, we present a Genetic Agorithm (GA) ap-
proach to the problem of multi-objective Neighbor Selection (NS) in
P2P Networks. The encoding representation is from the upper half of
the peer-connection matrix through the undirected graph, which reduces
the search space dimension. Experiment results indicate that GA usually
could obtain better results than Particle Swarm Optimization (PSO).

1 Introduction

Peer-to-peer computing has attracted great interest and attention of the comput-
ing industry and gained popularity among computer users and their networked
virtual communities [1]. It is no longer just used for sharing music files over
the Internet. Many P2P systems have already been built for some new purposes
and are being used. An increasing number of P2P systems are used in corporate
networks or for public welfare (e.g. providing processing power to fight cancer)
[2]. P2P comprises peers and the connections between these peers. These con-
nections may be directed, may have different weights and are comparable to a
graph with nodes and vertices connecting these nodes. Defining how these nodes
are connected affects many properties of an architecture that is based on a P2P
topology, which significantly influences the performance, search efficiency and
functionality, and scalability of a system. A common difficulty in the current
P2P systems is caused by the dynamic membership of peer hosts. This results
in a constant reorganization of the topology [3], [4], [5], [6].

The simplest neighbor selection strategy would be to select a node at ran-
dom from the candidate nodes. Kurmanowytsch et al. [7] developed the P2P
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middleware systems to provide an abstraction between the P2P topology and
the applications that are built on top of it. These middleware systems offer
higher-level services such as distributed P2P search and support for direct com-
munication among peers. The systems often provide a pre-defined topology that
is suitable for a certain task (e.g., for exchanging files).

Koulouris et al. [8] presented a framework and an implementation technique
for a flexible management of peer-to-peer overlays. The framework provides
means for self-organization to yield an enhanced flexibility in instantiating con-
trol architectures in dynamic environments, which is regarded as being essential
for P2P services to access, routing, topology forming, and application layer re-
source management. In these P2P applications, a central tracker decides about
which peer becomes a neighbor to which other peers.

Koo et al. [9] investigated the neighbor-selection process in the P2P networks,
and proposed an efficient single objective neighbor-selection strategy based on
Genetic Algorithm (GA). Sun et al. [10] proposed a PSO algorithm for neighbor
selection in P2P networks. In this paper, we explore the multi-objective neighbor-
selection problem based on GA for P2P Networks.

This paper is organized as follows. We formulate the problem in Section 2.
The proposed approach based on genetic algorithm is presented in Section 3. In
Section 4, experiment results and discussions are provided in detail, followed by
some conclusions in Section 5.

2 Neighbor-Selection Problem in P2P Networks

Kooa et al. modeled the neighborhood selection problem using an undirected
graph and attempted to determine the connections between the peers [9], [11].
Given a fixed number of N peers, we use a graph G = (V, E) to denote an
overlay network, where the set of vertices V = {v1, · · · , vN} represents the N
peers and the set of edges E = {eij ∈ {0, 1}, i, j = 1, · · · , N} represents their
connectivities : eij = 1 if peers i and j are connected, and eij = 0 otherwise.
For an undirected graph, it is required that eij = eji for all i �= j, and eij = 0
when i = j. Let C be the entire collection of content fragments, and we denote
{ci ⊆ C, i = 1, · · · , N} to be the collection of the content fragments each peer i
has. We further assume that each peer i will be connected to a maximum of di

neighbors, where di < N . The disjointness of contents from peer i to peer j is
denoted by ci \ cj , which can be calculated as:

ci \ cj = ci − (ci ∩ cj). (1)

where \ denotes the exclusion operator, and ∩ intersection operation on sets.
This disjointness can be interpreted as the collection of content fragments that
peer i has but peer j does not. In other words, it denotes the fragments that peer
i can upload to peer j. Moreover, the disjointness operation is not commutative,
i.e., ci \ cj �= cj \ ci. We also denote |ci \ cj | to be the cardinality of ci \ cj ,
which is the number of content fragments peer i can contribute to peer j. In
order to maximize the disjointness of content, we want to maximize the number
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of content fragments each peer can contribute to its neighbors by determining
the connections eij ’s. Define εij ’s to be sets such that εij = C if eij = 1, and
εij = ∅ (null set) otherwise. Therefore the neighbor selection can be formulated
as the following optimization problem:

max
E

N∑

j=1

∣
∣
∣

N⋃

i=1

(ci \ cj) ∩ εij

∣
∣
∣ (2)

It is desirable to select peers with the most mutually disjoint collection of
content fragments as neighbors. However, downloading the file fragments be-
tween each peer pair would consume away the bandwidth and connect cost, etc.
τij describes the cost coefficient between peer i and j. The performance of the
whole system would be emphasized. The neighbor selection strategy is expected
not only to assure maximum content availability but also to minimize the down-
loading cost to improve the overall throughput of the system. So the objectives
are summarized as follows:

f1(x) = max
E

N∑

j=1

∣
∣
∣

N⋃

i=1

(ci \ cj) ∩ εij

∣
∣
∣ (3)

f2(x) = min
E

N∑

j=1

N∑

i=1

τij |(ci \ cj)||εij | (4)

Subject to
N∑

j=1

eij ≤ di for all i (5)

3 Genetic Algorithm for Multi-objective Neighbor
Selection

Multi-objective genetic algoritm has been a very popular multiobjective tech-
nique, and it normally exhibits a very good overall performance. Many multi-
objective optimization techniques using evolutionary algorithms have been pro-
posed in recent years [12], [13], [14]. Given a P2P state S = (N, C, M, F ), in
which N is the number of peers, C is the entire collection of content fragments,
M is the maximum number of the peers which each peer can connect steadily in
the session, F is to goal the number of swap fragments, i.e. to maximize equation
(3) and minimize equation (4) with the constraint in equation (5). To apply the
genetic algorithm successfully for the NS problem, one of the key issues is the
mapping of the problem solution into the search space, which directly affects
its feasibility and performance. The neighbor topology in P2P networks is an
undirected graph, i.e. eij = eji for all i �= j. We set up a search space of D
dimension as N ∗ (N − 1)/2. Accordingly, each individual is represented as a
binary bit string of length D. Each dimension maps one undirected connection.
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Fig. 2. Performance for the NS (25, 300, 12)

The domain for each dimension is limited to 0 or 1. The binary string has a
priority levels according to the order of peers. The sequence of the peers will be
not changed during the iteration. It indicates the potential connection state. The
pseudo-code for our P2P neighbor selection method is illustrated in Algorithm 1.
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Fig. 3. Performance for the NS (25, 1400, 12)

4 Algorithm Performance Demonstration

To illustrate the effectiveness and performance of our algorithm, we demonstrate
an execution trace of the algorithm for the NS problem. A file of size 7 MB is
divided into 14 fragments (512 KB each) to distribute, 6 peers download from
the P2P networks, and the connecting maximum number of each peer is 3, which
is represented as (6, 14, 3) problem. In some session, the state of distributed file
fragments is as follows:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 4 0 6 7 8 0 10 0 12 0 14
0 0 0 4 5 0 7 0 9 0 11 0 13 0
0 2 0 0 0 6 0 0 0 0 11 12 0 14
0 2 3 4 0 6 0 0 0 0 11 0 0 0
0 2 0 0 0 0 7 8 0 10 0 12 0 14
1 2 0 0 5 0 0 0 9 10 11 0 13 14

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The cost matrix is as follows:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 5 2 4 1 0
5 0 3 0 2 2
2 3 0 0 0 0
4 0 0 0 5 2
1 2 0 5 0 10
0 2 0 2 10 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Algorithm 1. Neighbor Selection Algorithm Based on GA
01. Initialize the population, and other parameters.
02. While (the end criterion is not met) do
03. Evaluate();
04. for i = 1 to N
05. for j = 1 to N
06. if j == i, eij = 0;
07. else if j < i, a = j; b = i;
08. else if j > i, a = i; b = j;
09. eij = p[a∗N+b−(a+1)∗(a+2)/2];
10. If eij = 1, calculate ci \ cj ;
11. Calculate f2 = f2 + τij |(ci \ cj)|;
12. Next j

13. calculate f1 = f1 +
∣
∣
∣
⋃N

i=1(ci \ cj) ∩ εij

∣
∣
∣;

14. Next i
15. Rank();
16. If nondomCtr > Maxarchivesize, maintenance-archive();
17. Generate-new-pop();
18. Crossover();
19. Mutation();
20. t + +;
21. If rank == 1 output the fitness;
22. End While.
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Fig. 4. Performance for the NS (30, 300, 15)
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The performance output is illustrated in Figure 6 by the proposed algorithm.
We also tested other five representative instances (problem (6,60,3), problem
(25,300,12), problem (25,1400,12), problem (30,300,15), problem (30,1400,15))
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further. In our experiments, the algorithms used for comparison were GA (Ge-
netic Algorithm) and PSO (Particle Swarm Optimization). The GA and PSO
algorithms share many similarities [15], [16], [17].

In GA, a population of candidate solutions (for the optimization task to be
solved) is initialized. New solutions are created by applying reproduction op-
erators (mutation and crossover). The fitness (how good the solutions are) of
the resulting solutions are evaluated and suitable selection strategy is then ap-
plied to determine which solutions will be maintained to the next generation.
PSO algorithm is inspired by social behavior patterns of organisms that live
and interact within large groups. It incorporates swarming behaviors observed
in flocks of birds, schools of fish, or swarms of bees, and even human social be-
havior. The PSO/GA algorithms were repeated 3 times with different random
seeds. Each trial had a fixed number of 200 iterations. Other specific param-
eter settings of the algorithms are described in Table 1. The average fitness
values of the best (rank = 1) solutions throughout the optimization run were
recorded.

Figures 1, 2, 3, 4 and 5 illustrate the GA/PSO performance during the search
processes for the NS problem. As evident, GA usually obtained better results
than PSO.

Table 1. Parameter settings for the algorithms.

Algorithm Parameter name value

size of the population left even number(10 + 2sqrt(D))
GA Probability of crossover 0.8

Probability of mutation 0.08
Swarm size left even number(10 + 2sqrt(D))
Self coefficient c1 2

PSO Social coefficient c2 2
Inertia weight w 0.9
Clamping Coefficient ρ 0.5

5 Conclusions

In this paper, we investigated the problem of multi-objective neighbor selection
in peer-to-peer networks using genetic algorithm. In the proposed strategy, the
solution encoding was done from the upper half matrix of the peer connection
through the undirected graph, which reduces the dimension of the search space.
We evaluated the performance of the genetic algorithm with particle swarm
optimization algorithm. Empirical results indicate that GA usually obtain better
results than PSO. The proposed algorithm could be an ideal approach for solving
the multi-objective NS problem.

Our future work is targeted to test more complicated instances in an online
environment of P2P networks and involve more intelligent/heuristics approaches.
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Abstract. In this paper, we propose an analytical framework based on
percolation theory to assess the robustness of peer to peer networks in
face of user churns and/or attacks targeted towards important nodes. It
is observed in practice that in spite of churn of peers, superpeer networks
show exceptional robustness and do not disintegrate into disconnected
components. With the help of the analytical framework developed, we
formally measure its stability against user churn and validate the gen-
eral observation. The effect of intentional attacks upon the superpeer
networks is also investigated. Our analysis shows that fraction of super-
peers in the network and their connectivity have profound impact upon
the stability of the network. The results obtained from the theoretical
analysis are validated through simulation. The simulation results and
theoretical predictions match with high degree of precision.

Keywords: Superpeer networks, peer dynamics, complex network theory.

1 Introduction

Currently there has been much interest in peer-to-peer (p2p) network based
data sharing and content distribution applications. These applications are used
by millions of users and they represent a large fraction of the traffic in the Inter-
net [1,2]. Peers in p2p system are connected among themselves by some logical
links forming an overlay above the physical network. Superpeer topologies have
emerged as the most influencing structure among the overlay networks. Most of
the commercial systems like KaZaA have also adopted superpeers in their de-
sign [3]. In this system, superpeer nodes with higher bandwidth and connectivity
connect to each other forming the upper level in the network hierarchy. Each
superpeer works as a server on behalf of the set of client peers who form the
lower level of network hierarchy [4,5].

Peers in the superpeer system join and leave the network randomly without
any central coordination. This churn of nodes might partition the network into
smaller fragments and breakdown communication among peers. But in practice,
superpeer overlay networks exhibit stable behavior against churn. Consequently
the possible breakdown of the network is a rare event [6]. However the stability
of the overlay network can get severely affected through intended attacks tar-
geted towards the important peers [7]. A comprehensive study of stability of the
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superpeer networks against all these dynamics that take place in the network, is
the primary focus of this paper.

A survey of the literature reveals that most of the commercial peer to peer
networks can be modeled as complex graphs [4,8,9]. Some analysis of dynamics
of complex graphs have been done mainly by the physicists. These approaches
can be utilized to understand the various properties of peer to peer networks.
Effect of random failures and intentional attacks in various kinds of graphs are
discussed in [10,11,12]. In [13], Newman et al. introduced the concept of generat-
ing function formalism. Using it, Callaway [14] found the exact analytic solutions
for percolation on random graphs with arbitrary degree distribution. In this pa-
per, we utilize many of the aforesaid results of percolation theory and propose
a generalized equation to measure stability of any given p2p overlay structures
in face of churn of peers as well as attacks mounted on them.

The rest of the paper is organized as follows. Section 2 proposes an analytical
framework to find the amount of disturbances required to disrupt the giant com-
ponent [15] of the network. Section 3 models the superpeer topologies as mixed
poisson graph and also models the churns and attacks mounted on the network.
In section 4 we mathematically analyze the effect of churn in the superpeer
networks and validate the results with the help of simulation. In section 5 the
effect of targeted attack upon superpeer networks is discussed. Finally section 6
concludes the paper.

2 Developing Analytical Framework Using Generating
Function Formalism

In this section, we use generating function to derive the general formula for mea-
suring the stability of overlay structures undergoing any kind of disturbances in
the network. We explain the basic concept behind development of the frame-
work without going into mathematical details. Let pk be the probability that a
randomly chosen vertex in the graph has degree k. qk be the probability that a
vertex of degree k be present in the network after the removal of a fraction of
nodes. In our formalism fk (=1 − qk) and pk specifies the churn/attack model
and network topology respectively whose stability is subjected to examination.
The formalism helps us to locate the transition point where the giant compo-
nent [15] breaks down into smaller components. pk.qk specifies the probability of
a node having degree k to be present in the network after the process of removal
of some portion of nodes is completed. Hence

F0(x) =
∞∑

k=0

pk.qkxk

becomes the generating function for this distribution. Distribution of the outgoing
edges of the first neighbor of a randomly chosen node can be generated by

F1(x) =
∑

k kpkqkxk−1
∑

k kpk
= F ′

0(x)/z

where z is the average degree [14].
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Fig. 1. Schematic representation of the sum rule for the connected component of ver-
tices reached by following a randomly chosen edge [13]

Let H1(x) be the generating function for the distribution of the component
sizes that are reached by choosing a random edge and following it to one of its
ends. Except when we are precisely at the phase transition where giant compo-
nent appears, typical component size is finite. Moreover as chance of a component
containing a closed loop of edges goes down exponentially with size of the graph,
it becomes negligible for large graph [13]. Therefore the component may be con-
ceptualized as a treelike structure that contain zero node if the node at the other
end of the randomly selected edge is removed, which happens with probability
1−F1(1). The edge may otherwise lead to a node with k other edges leading out
of it other than the edge we came in along, distributed according to F1(x) (Fig.
1). That means H1(x) satisfies a self-consistency condition of the form [14]

H1(x) = 1 − F1(1) + xF1(H1(x)). (1)

The distribution for the component size to which a randomly selected node
belongs to is similarly generated by (Fig. 1) H0(x) where

H0(x) = 1 − F0(1) + xF0(H1(x)). (2)

Therefore the average size of the components becomes

H ′
0(1) = 〈s〉 = F0(1) +

F ′
0(1)F1(1)
1 − F ′

1(1)

which diverges when 1 − F ′
1(1) = 0, that is the size of the component becomes

infinite. Therefore

F ′
1(1) = 1 ⇒

∞∑

k=0

kpk(kqk − qk − 1) = 0 (3)

Significance of the Eq. (3) lies in the fact that it states the critical condition for
the stability of giant component with respect to any type of graphs (characterized
by pk) undergoing any type of failure and attack (characterized by qk). Using this
formalism, we investigate the stability of superpeer networks in face of various
dynamics of the nodes.

3 Environmental Definition

In this section, we formally model the superpeer networks and churn/attack to
utilize the analytical framework. Also we define the stability metric and explain
the simulations undertaken to verify the theoretical results.
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3.1 Topology of the Superpeer Overlay Networks

The different types of overlay networks can be modeled using the uniform frame-
work of probability distribution pk, where pk is the probability that a randomly
chosen node has degree k. So the degree distribution pk signifies the topology
of the overlay network. In this paper, we model the superpeer overlay networks
as mixed poisson network. In mixed poisson network, interconnection between
superpeers are selected to approximate a E-R graph [16] which follows Poisson
distribution. Similarly the degree distribution of peers follow Poisson distribu-
tion. The average degree of the superpeers are much higher than peers. Math-
ematically, if r be the fraction of peers in the network and rest are superpeers
then degree distribution of the network

pk = rpkpr + (1 − r)pkspr

where degree distribution of peers pkpr = 〈kp〉kpr e−〈kp〉

kpr ! and superpeers pkspr =
〈ksp〉kspr e−〈ksp〉

kspr! follow Poisson distribution with average degree 〈kp〉 and 〈ksp〉
respectively and 〈kp〉 << 〈ksp〉. The average degree of the mixed poisson network
becomes

〈k〉 = r〈kp〉 + (1 − r)〈ksp〉

3.2 Different Kinds of Churn and Attack Models

As defined in the previous section, let qk be the probability that a vertex of
degree k be present in the network after the removal of a fraction of nodes. In
our framework qk is used to specify the churn and attack models.

– In churn, the probability of removal of any randomly chosen node is degree
independent and equal (constant) for all other nodes in the graph. Therefore
the presence of any randomly chosen node having degree k after this kind of
failure is qk = q (independent of k).

– In targeted attack, the nodes having high degrees are progressively removed.
Formally qk = 1 when k < km but 0 ≤ qk < 1 otherwise. This removes a
fraction of nodes from the network with degree ≥ km. Formally

qk = 0 when k > km

0 ≤ qk < 1 when k = km

qk = 1 when k < km

This removes all the nodes from the network with degree greater than km

and a fraction of nodes having degree km.

3.3 Stability Metric

The stability of overlay networks are primarily measured in terms of certain
fraction of nodes (fc) called percolation threshold [14,15], removal of which dis-
integrates the network into large number of small, disconnected components.
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Fig. 2. The above plots represent the change in the component size distribution during
percolation process and indicate the percolation point

Below that threshold, there exists a connected component which spans the en-
tire network. This connected component is also termed as the giant component.
The value of percolation threshold fc theoretically signifies the stability of the
network, higher value indicates greater stability against churn and attack.

We take cue from condensation theory used by physicists to develop the met-
ric to measure the percolation threshold experimentally [17]. During experiment,
we remove a fraction of nodes ft from the network in step t and check whether
we reach the percolation point. After each step t, we find out the status of the
network in terms of component size distribution CSt(s) = sns/

∑
s sns where

s and ns respectively are the size of the component formed and the number of
components of size s. The component size distribution initially exhibits unimodal
characteristics confirming a single connected component (Fig. 2(a)) or bimodal
character (Fig. 2(b)) confirming a large component alongwith a set of small com-
ponents. Eventually at a particular step t = tn, CSt(s) becomes monotonically
decreasing function indicating tn as percolation point (Fig. 2(c)). Therefore tn
is considered as the time step where percolation occurs and the total fraction of
nodes removed at that step ftn specifies the percolation threshold.

3.4 Simulation Environment

The superpeer overlay structure is represented by a simple undirected graph
stored as an adjacency list. In order to generate the topology, every node is
assigned a degree according to the mixed poisson degree distribution. Thereafter
the edges are generated using the “matching method” [18]. Some of the edges
are then rewired using “switching method” to generate sufficient randomness in
the graph [19]. In our experiment, we simulate the overlay network by generating
graphs with 5000 nodes.

Churn or attack on a peer effectively means deletion of the node and its
corresponding edges. We implement this phenomena by removing a fraction of
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nodes in each step depending on the disrupting event in the network. In the
case of churn, nodes are randomly selected using a time-seeded pseudo-random
number generator and its edges are removed from the adjacency list. For targeted
attack, high degree nodes in the network are removed sequentially in each step
until the percolation point is reached. We perform each experiment for 500 times
and take the average of the percolation threshold.

4 Stability of Superpeer Networks Against Churn

The superpeer networks mostly suffer from the churn of peers which can be mod-
eled by the random failure of nodes in complex graph. In this section, we use our
equation to show that stability of the superpeer networks is quite unaffected due
to churn of peers. We validate the theoretical results with the help of simulation.
At first, we present the result for generalized random graph and then customize
it for superpeer networks.

Generalized random graph
In this section, we discuss the effect of random failure in a generalized random
graph. If q = qr is the critical fraction of nodes whose presence in the graph is
essential for the stability of the giant component after this kind of failure then
according to Eq. (3)

∞∑

k=0

kpk(kqr − qr − 1) = 0

⇒ qr =
1

∑ ∞
k=0 k2pk∑∞
k=0 kpk

− 1
⇒ qr =

1
〈k2〉
〈k〉 −1

where 〈k2〉 =
∑∞

k=0 k2pk and 〈k〉 =
∑∞

k=0 kpk are the second and the first
moment of the degree distribution respectively. Now if fr is the critical fraction of
nodes whose random removal disintegrates the giant component then fr = 1−qr.
Therefore percolation threshold

fr = 1 − 1
〈k2〉
〈k〉 −1

(4)

This is the well known condition [10] (derived differently) for the disappearance
of the giant component due to random failure. Note that, we have reproduced it
to show that it can also be derived from the proposed general formula (Eq. (3)).

Superpeer networks
In mixed poisson network, let r be the fraction of peers in the network and rest
be superpeers. Superpeer nodes are connected to each other to form an E-R net-
work [16] with average degree 〈ksp〉. Similarly peers connected with superpeers
forms another E-R graph with an average degree 〈kp〉 where 〈kp〉 << 〈ksp〉. Now
we examine the stability of this kind of superpeer network undergoing churn.
In mixed poisson network, first and second moment of the degree distribution
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Fig. 3. The above plot represents a comparative study of theoretical and simulation
results of stability for two mixed poisson networks undergoing churn

becomes 〈k〉 = r〈kp〉+(1−r)〈ksp〉 and 〈k2〉 = r〈k2
p〉+(1−r)〈k2

sp〉 respectively. If
k is a random variable following Poisson distribution then it can be shown that
〈k2〉 ≈ 〈k〉2 + 〈k〉. Hence according to Eq. (4), percolation threshold becomes

fr = 1 − r〈kp〉 + (1 − r)〈ksp〉
r〈kp〉2 + (1 − r)〈ksp〉2

Substituting for 〈kp〉, we get

fr = 1 − 〈k〉r
〈k〉2 − 2〈k〉(1 − r)〈ksp〉 + (1 − r)2〈ksp〉2 + r(1 − r)〈ksp〉2 (5)

Feasible fraction of peers: Since the mean peer degree 〈kp〉 needs to be > 0
to be connected in the network therefore

〈k〉 − (1 − rr)〈ksp〉
rr

> 0

⇒ rr > 1 − 〈k〉
〈ksp〉

That means we can form a connected superpeer network with prescribed peer
and superpeer degrees only if the fraction of peers in the network is greater than
the feasible peer fraction (rr). For 〈ksp〉 = 30, 50 this feasible fraction rr becomes
0.833, 0.90 respectively. Below that fraction, there does not exist any network,
therefore our theoretical analysis as well as simulations are performed with peer
fraction r above the feasible fraction rr.

Using Eq. (5), we study the variation of percolation threshold (fr) due to the
change in the fraction of peers (r). We validate the analytically derived result
with the help of simulation. We perform the simulation on two mixed poisson
networks with average superpeer degree 〈ksp〉 = 30 and 50, keeping the aver-
age degree 〈k〉 = 5. Comparative study reveals that networks having higher
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superpeer degree exhibit more robustness than with lower superpeer degree for
any peer-superpeer ratio. It can be observed from Fig. 3 that simulation results
match closely with theoretical predictions which shows the success of our theo-
retical framework.

Observations:
1. It is important to observe that for the entire range of peer fractions, the per-
colation threshold fr is greater than 0.7 which implies that superpeer networks
are quite robust against churn. During churn, removal of a significant number of
low degree peers alongwith a few high degree superpeers have less impact upon
the stability of the networks.
2. Another significant observation is, lower fraction of superpeers in the network
(specifically when it is below 5%) results in a sharp fall of fr, that is the vulner-
ability of the network increases drastically. When the fraction of superpeers in
the network is high, most of the peers are only connected to superpeers (and not
within themselves), hence stability of the network depends entirely upon super-
peers. As fraction of superpeer reduces below 5%, some peers are not connected
to the superpeers at all, but only connected to fellow peers. This produces an
avalanche effect during churn which results in a drastic reduction of stability of
the network in this region.

5 Stability of Superpeer Networks Against Targeted
Attack

Stability of the superpeer networks is challenged by various kinds of attacks on
prominent peers or superpeers. The attack model has been formally defined in
section 3. In this section, we analyze the effect of this kind of targeted attack
upon superpeer networks where r be the fraction of peers and rest are superpeers.
In the case of targeted attack two cases may arise

Case 1. Removal of a fraction of superpeers is sufficient to disintegrate the net-
work. This happens when the percentage of superpeers is relatively
higher than peers.

Case 2. Removal of all the superpeers is not sufficient to disintegrate the net-
work. Therefore we need to remove some of the peer nodes along with
the superpeers.

We analyze these two cases separately with the help of our analytical framework.
From Eq. (3) the critical condition for the stability of the giant component can
be rewritten as ∞∑

k=0

k(k − 1)pkqk = 〈k〉

The equation can be further expanded as below to differentiate between peers
and superpeers

kmax−1∑

k=0

k(k − 1)pkqk +
∞∑

k=kmax

k(k − 1)pkqk = 〈k〉 (6)
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Fig. 4. The above plot represents the behavior of the mixed poisson network in face
of targeted attack found experimentally and compares it with the proposed theoretical
model. Case 1 and case 2 of the theoretical model represent Eq. (7) and (8) respectively.

where all the nodes having degree less than kmax are peers and rest are
superpeers.

Case 1: In this case, removal of a fraction of superpeers is sufficient to disin-
tegrate the network. If fsp be the critical fraction of superpeer nodes, removal
of which disintegrates the giant component then qk = 1 for k < kmax and
qk = 1 − fsp for k ≥ kmax. Hence according to Eq. (6),

kmax−1∑

k=0

k(k − 1)pk +
∞∑

k=kmax

k(k − 1)pk(1 − fsp) = 〈k〉

⇒ fsp = 1 − 〈k〉 −
∑kmax−1

k=0 k(k − 1)pk∑∞
k=kmax

k(k − 1)pk

As the fraction of superpeer nodes in the network is (1 − r), then percolation
threshold for case 1 becomes ft = (1 − r) × fsp

⇒ ft = (1 − r)

(

1 − 〈k〉 −
∑kmax−1

k=0 k(k − 1)pk∑∞
k=kmax

k(k − 1)pk

)

= (1 − r)

⎛

⎝1 −
〈k〉 − r

∑〈kp〉+δ
k=0 k(k − 1) 〈kp〉ke−〈kp〉

k!

(1 − r)
∑∞

k=〈kp〉+δ+1 k(k − 1) 〈ksp〉ke−〈ksp〉

k!

⎞

⎠ (7)

where mean peer degree 〈kp〉 = 〈k〉−(1−r)〈ksp〉
r and we choose suitable value of δ

depending on the standard deviation of the Poisson distribution.

Case 2: Here we have to remove fp fraction of peer nodes alongwith all the
superpeers to breakdown the network. Therefore qk = 1 − fp for k < kmax and
qk = 0 for k ≥ kmax. Hence according to Eq. (6),
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Fig. 5. We plot percolation threshold fc for various peer fraction r. Two different mixed
poisson networks have been considered with average superpeer degree 〈ksp〉 = 25, 35
with fixed average degree 〈k〉 = 5. We compare theoretically the stability of these two
networks against pure churn and combination of churn (60%) and attack (40%).

kmax−1∑

k=0

k(k − 1)pk(1 − fp) = 〈k〉

⇒ fp = 1 − 〈k〉
∑kmax−1

k=0 k(k − 1)pk

Therefore the total fraction of nodes required to be removed to disintegrate the
network for case 2 becomes ft = rfp + (1 − r).

⇒ ft = r

(

1 − 〈k〉
∑kmax−1

k=0 k(k − 1)pk

)

+ (1 − r)

= r

(

1 − 〈k〉
r
∑〈kp〉+δ

k=0 k(k − 1) 〈kp〉ke−〈kp〉

k!

)

+ (1 − r) (8)

where mean peer degree 〈kp〉 = 〈k〉−(1−r)〈ksp〉
r .

Transition point: The transition from case 1 to case 2 can be easily marked by
observing the value of percolation threshold ft. While calculating using Eq. (7)
(case 1), if the percolation threshold ft exceeds the fraction of superpeers in the
network (1 − r), it indicates that removal of all the superpeers is not sufficient
to disrupt the network. Hence subsequently we enter into case 2 and start using
Eq. (8) to find percolation threshold.

We validate our theoretical model of attack on mixed poisson network with
the help of simulation. In simulation, we consider a mixed poisson network with
average degree 〈k〉 = 5 and mean superpeer degree 〈ksp〉 = 30. We increase the
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fraction of peers gradually keeping average degree 〈k〉 = 5 fixed and observe the
change in the percolation threshold ft (Fig. 4).

Observations:
In the networks with peer fraction r < 0.89 (i.e. mean peer degree 0 < 〈kp〉 ≤ 2),
the removal of only a fraction of superpeers causes breakdown hence makes these
networks vulnerable. The reason is in this zone, although peers have a larger
share in the network, yet it is not large enough to form effective connections
within themselves. Therefore the stability of the network is still entirely depen-
dent on the superpeers, hence attacking even a smaller fraction of them breaks
down the network.

However as peer fraction becomes ≥ 0.89, the mean peer degree increases to
3 and 4 and a fraction of peers is required to be removed even after removal of
all the superpeers to dissolve the network. Here the high degree peers strongly
connect among themselves which results in the increase of stability of the net-
work.

6 Conclusion

In this paper we have developed a common analytical framework to evaluate the
robustness of superpeer networks against various disturbances in the network.
We have modeled superpeer networks by mixed poisson degree distribution. We
have also modeled the churn of peers as random failure of nodes. It has been
observed from both theoretical and simulation results that superpeer networks
remain robust for user churn. Next we have analyzed the behavior of superpeer
networks in face of targeted attack. Unlike churn, in this case increase of peers
improves the stability of the network and the rate of improvement is almost
linear to the fraction of peers present in the network.

Our analysis has shown that presence of superpeers impart conflicting advan-
tages for churn and attack. Hence proper mix of fraction of superpeers with peers
is necessary to improve the robustness of the network in face of combination of
churn and attack. It appears from Fig. 5 that when percentage of attack is 40%,
the network having lower superpeer degrees (〈ksp〉 = 25) performs better than
network having higher superpeer degree (〈ksp〉 = 35). So to obtain optimized
performance, it is upto the design engineers to choose the correct superpeer to
peer ratio depending on the working environment. The theoretical framework
developed in this paper will help them to easily and accurately calculate the
ratio.
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Abstract. Ad hoc network is a dynamic multi-hop wireless network that is 
established by a group of mobile nodes on a shared wireless channel. The plain 
flooding algorithm provokes a high number of unnecessary packet rebroadcasts, 
causing contention, packet collisions and ultimately wasting precious limited 
bandwidth. Another barrier is that routing in ad hoc networks does not scale up 
as easily as in fixed network. Hierarchical techniques have long been known to 
afford scalability in networks.  By introducing hierarchical routing scheme to ad 
hoc networks, we can effectively address this problem. Clustering provides a 
method to build and maintain hierarchical routing scheme in ad hoc networks. 
By summarizing topology detail via a hierarchical map of the network 
topology, network nodes are able to conserve memory and link resources. This 
paper proposes a fully distributed cluster based routing algorithm for mobile ad 
hoc networks. Non-overlapping clusters are formed using the dynamic cluster 
creation algorithm. Packets are routed according to the routing information 
available with each gateway node. The mobility issues are also handled locally 
in this routing architecture.  The proposed cluster maintenance algorithm 
dynamically adapts to the changes and hence the efficiency is not degraded by 
node mobility. In addition, our analysis shows that building clustered 
hierarchies is affordable and that clustering algorithms can also be used to 
enhance network quality of service. 

Keywords: Ad hoc Networks, Clustering, Mobility, Multicast Routing and 
Quality of Service. 

1   Introduction 

In any complex distributed system of nodes, clustering of nodes into groups results in 
simplification of management and administration of the nodes and also gives up better 
performance since details about the remote nodes of the distributed system can be 
handled in a collective manner. Thus, obligation of a hierarchical organization is 
beneficial for the management of a complex system, and results in scalability of 
operations. The wired Internet, for example, cannot be managed without hierarchical 
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addressing and management. Essential services like routing are highly scalable owing 
to this hierarchical organization. 

In a dynamic mobile environment maintaining the accurate route information of all 
nodes in the network is impossible. Because the mobile nodes may leave the network 
boundary region or new mobile nodes may enter into the network boundary region 
over and over again. This requires O(ne) control messages to be sent, where n is the 
number of nodes and e is the number of links in the network. Recurrent route changes 
flood the network with routing information packet which reduces the overall 
performance of the system. The increase in number of nodes in the network increases 
the route table size in each node. In order to avoid the routing packet storm the 
network is divided into non-overlapping groups called clusters. Each cluster members 
maintains the route information of its cluster members. This greatly reduces control 
packet traffic and route table size.    

2   Related Works  

Generally, clustering can be used to reduce the amount of information used to 
represent the state of the network. By grouping together multiple nodes into a single 
cluster, one can reduce the state representation of those nodes to that of one cluster. 
Multicast communication is an important operation for many applications of ad hoc 
networks. Similar to multicast protocols for wired networks, one of the major goals in 
designing multicast protocols is to reduce unnecessary packet delivery to other nodes 
outside the group by having only a subset of nodes participating in multicast data 
forwarding. In [2] a new multicast routing protocol for ad hoc networks that is based 
on an adaptive dynamic backbone algorithm is proposed. 

A new distributed clustering algorithm based on sending beacons is given in [13]. 
In this algorithm, mobile nodes compete with each other to become cluster-head 
based on the number of neighbors. [14] presents the general architecture and the  
functional entities for location information management and exploitation of an 
advanced, open, flexible service provision platform for reconfigurable networks. A 
market-based mechanism for stimulating cooperation in wireless ad hoc networks, 
where each node can freely decide on the amount of traffic it relays and how much it 
charges other nodes for relaying their traffic is given in [12]. Wireless sensor 
networks represent a new frontier in the development of technology to be used in a 
variety of applications of our daily life in the future. As a new research area, there are 
several open problems that need to be investigated. One of them is management of 
those networks. The task of building and deploying management systems in 
environments where there will be tens of thousands of network elements with 
particular features and organization is very complex. [8] presents and discusses a 
management architecture for wireless sensor networks. 

Two techniques for modeling data for compression in wireless ad hoc networks are 
given in [11]. The first technique enables efficient and scalable shortest path routing.  
[9] proposes a weight based distributed clustering algorithm (WCA) which can 
dynamically adapt itself with the ever changing topology of ad hoc networks. This 
approach restricts the number of nodes to be catered by a cluster head so that it does 
not degrade the MAC functioning. 
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In mobile ad hoc networks nodes move even during the broadcast process. So it is 
difficult to maintain up-to-date and consistent local views. A formal framework is 
used to model inaccurate local views in MANETs, where full coverage is guaranteed 
if three sufficient conditions, connectivity, link availability, and consistency, are met. 
[6] proposes a mechanism called aggregated local view to ensure consistent local 
views. 

In most existing localized topology control protocols, it is assumed that the 
network is connected at all times under a normal transmission range. Each node 
selects a few logical neighbors from its 1-hop neighbors within the normal 
transmission range. The selection of logical neighbors is usually based on 1-hop 
information (i.e., location information of all 1-hop neighbors), although some 
protocols use only partial 1-hop information such as the direction or location 
information of nodes within a search region that is smaller than the normal 
transmission range.  

The local positioning system should work based on the coordination of the nodes 
inside the wireless network, without any assistance from other infrastructure. For a 
given node distribution the Euclidean distance between two nodes is estimated 
according to the length of the shortest path obtained by sending a control packet. [5] 
proposes a self-configurable positioning technique for multi-hop wireless networks. 

A fundamentally different approach in the differentiated services framework is the 
relative differentiated services. In this approach, the network traffic is grouped into 
classes of service which are ordered, such that Class i is better than Class i+1. In [3]  
a proportional delay differentiation model is proposed. Static IP address assignment 
for MANET nodes is difficult as it needs to be done manually with prior knowledge 
about the MANET’s current network configuration. Dynamic configuration protocols 
like Dynamic Host Configuration Protocol (DHCP) [1] require the presence of 
centralized servers. MANETs may not have such dedicated servers. Hence, 
centralized protocols cannot be used to configure nodes in MANETs. In [10] 
distributed protocol for dynamic IP address assignment is given. This guarantees 
unique IP address assignment under a variety of network conditions including 
message losses, network partitioning and merging. [7] presents a new transport 
protocol called ATP (ad hoc transport protocol) that is tailored toward the 
characteristics of ad hoc networks. ATP, by design, is an antithesis of TCP and 
consists of: rate-based transmissions, quick-start during connection initiation and 
route switching, network supported congestion detection and control, no 
retransmission timeouts, decoupled congestion control and reliability, and coarse-
grained receiver feedback. 

3   Clustering Scheme and Our Assumptions 

The ad hoc network is represented by means of an undirected graph G= (V, E), where 
V is the set of nodes in the graph and E is the set of edges in the graph. The number 
represents the degree of each node. Cluster-ID is declared by the node which initiates 
the cluster creation process and is denoted by Ci. Each cluster consists of two or more 
cluster members. Due to the topology changes caused by node insertion, removal, and 
motion, additional control messages are generated for cluster update. The question is 
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how the control overhead is quantified and reduced as much as possible, that is the 
major objective in our clustering scheme.  

It is assumed that each node is equipped with a single network interface card (NIC) 
having a transmission radius of RTX. If the distance separating a pair of nodes is less 
than RTX, then a bidirectional link connects them and they are considered to be 
neighbors. Otherwise, the nodes are not connected. Each NIC employs carrier sense 
multiple access with collision avoidance (CSMA/CA). 

4   The Clustering Architecture 

The key concept in our clustering scheme is to localize control messages to a small set 
of cluster nodes and minimize the frequency of network-wide flooding. This leads to 
reduction in control packet transmissions and average delay due to less contention in a 
network. The second objective of the proposed clustering algorithm is to find an 
interconnected set of clusters covering the entire node population. The network is 
divided into small partitions (clusters) with independent control. A good clustering 
scheme must preserve its structure when a few nodes move away and the topology 
changes slowly. Otherwise, high processing and communications overheads will have 
to be paid to reconstruct clusters. Within a cluster, it is easy to schedule packet 
transmissions and to allocate the bandwidth to real time traffic. We have developed a 
fully distributed hybrid clustering scheme which dynamically group the nodes into 
non-overlapping clusters. Each mobile node executes cluster creation module to 
become a cluster member and initialize the cluster member table. Before executing 
the clustering algorithms, each nodes first exchange hello messages within its 
neighbors to collect the neighborhood information. The communications between two 
clusters is accomplished by gateway nodes.  

 

Fig. 4.1. Dynamic Clustering Algorithm 

 
1.  Construct set S dynamically from the hello messages received from neighbors. 
2.  If no cluster topology message is received within the initial waiting time 
 cluster_id = New_Cluster_ID 
 forward to all nodes in S  send_cluster_info(N_ID,C_ID,Loc) 
3.  while (S != empty) 
     on receiving cluster info(N_ID,C_ID,Loc) 

if (cluster_id == UNKNOWN) 
       cluster_id = C_ID; 
       id=N_ID; 
       md = diff(cur_loc – Loc); 
else if (md > diff(cur_loc – Loc)  
        and cluster_id <> C_ID) 

                     cluster_id = C_ID; 
       md = diff(cur_loc – Loc); 
       call update_gateway_node( id) 
else if (md < diff(cur_loc – Loc)  
        and cluster_id <> C_ID) 
       call update_gateway_node( id) 
 S = S – {N_ID}; 
forward to all nodes in S send_cluster_info(N_ID,C_ID,Loc) 
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We can find from this algorithm that each node only broadcasts one cluster init 
message before the algorithm stops, and the time complexity is O(|C|) where C is the 
set of nodes grouped together. The clustering algorithm converges quickly. In the 
worst case, the convergence is linear in the total number of nodes.  

4.1   Analysis of Cluster Initialization and Maintenance Parameters  

During cluster initialization each node transmits a hello message and listens to the 
media for reply. All nodes which are within the transmission range of the transmitting 
node receive the hello message. The overhead involved in the cluster initialization 
depends on the average number of neighbors. Let An be the average number of 
neighbors. Two rounds of communication are performed in this phase. The second 
round message travels up to h hop neighbors and the value of h depends on the degree 
of each node. Let N be the total number of nodes and Nc be the number of clusters. 
Average number of nodes per cluster is denoted as Ca and Ca = N / Nc.  Therefore the 
number of messages exchanged during the cluster creation process per cluster is 2Anh 
and the average cluster initialization overhead CIOH is: 

CIOH = 2Anh Ca                    (4.1) 
= 2Anh (N / Nc)          

             
c

n

N

hNA2=                       (4.2) 

Above equation shows that an increase in number of nodes increases the cluster 
initialization overhead but the increase in number of clusters decreases the overhead. 
The other two terms are average number of neighbors and the number of hops 
separating two extreme nodes of a cluster. To keep the product of this term as 
constant in our scheme we decrease h when the average number of nodes increases. It 
shows that in the proposed scheme cluster initialization overhead remains almost 
constant as the number of nodes in the system increases.       

Another major factor that affects the performance of the system is node mobility. 
Increase in node mobility increases the link change and it initiates the cluster member 
table updation process. Let Ae be average number of route error messages generated 
due to link failure and Av be the average volume (in terms of number of bits) of route 
update message. During each link change the old cluster members should remove the 
corresponding entry from the cluster member table and the overhead involved in this 
is AvCa. Similarly when the mobile node becomes the member of a new cluster then 
the route update message is forwarded to all cluster members and the overhead is 
AvCa. Therefore the cluster maintenance overhead CMOH is 

CMOH = Ae + 2 AvCa 
= Ae + 2 Av (N/Nc) 
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v
e N
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Above equation shows that even though the cluster maintenance overhead 
increases as number of nodes increases it can be controlled by increasing the number 
of clusters.   
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In the proposed clustering technique, each node requires one or more neighborhood 
information to execute the cluster creation and maintenance algorithm. The scalability 
of a routing protocol is assessed in terms of a number of increasing node count (N) 
and increasing average node density (nodes per unit area). In order to isolate the 
performance of cluster based routing with respect to increasing node count and node 
density, we have divided the nodes into non-overlapping clusters and the cluster 
radius is adjusted according to node density.  The average number of node per cluster 
is almost maintained as constant with respect to increasing node count. The average 
hop count on the shortest path between an arbitrary pair of nodes in a two-
dimensional network consisting of N nodes is proportional to number of clusters. 

Here, N[v] is the neighborhood of node v, defined as 
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To determine the inter cluster call forwarding probability that node x member of 
cluster c1 forwards a call to node y member of cluster c2. We rely on our assumption 
that nodes are random and uniformly distributed in the network. Each node has a 
transmission radius r and non-overlapping clusters are formed with a cluster radius  
of rc.  

N: Node x member of cluster c1 must be the neighbor of node y member of cluster 
c2. 
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Let g be the average number of gateway nodes per cluster and P(F) is the 
probability that a gateway node forwards the packet. Nc is the average number of node 
per cluster. 
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P(E) be the probability that node x forwards the packet before node y’s timer 
expires. 
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The inter-cluster call forwarding probability for different number of gateway nodes 
can be calculated using the above equation.  

Each node proactively emits hm hello message and tm topology broadcast messages 
during cluster initialization.  

Let lt be the link life time (i.e. the average life time of an edge connecting two 
vertices). Link life time is inversely proportional to node mobility. The proactive 
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intra-cluster routing overhead is directly proportional to link life time and average 
number of emissions en.  

ntOH elR ∝         (4.8) 
ntcOH elNR =        (4.9) 

5   Multicast Communication  

We have proposed a new on-demand multicast routing protocol for ad hoc networks. 
The new routing scheme, CBMRP, is based on clustering technique and designed to 
minimize control overhead. CBMRP also attempts to improve the routing efficiency 
by giving preference to gateway nodes in establishing a route. After the network has 
been clustered, multicast routing algorithm constructs the multicast paths which 
connects other clusters that containing receivers. . By setting up the cluster 
forwarding through gateway nodes, the multicast path can be easily constructed and 
the data packets can be forwarded to the receivers efficiently.  

A new source initially sends a Join-Request packet. All other members who wish 
to join the multicast group must send a reply. Multicast group member belongs to the 
same cluster maintains the multicast membership information of all its cluster 
members. In our scheme multicast tree construction and maintenance process is fully 
distributed.  Optimum tree linking all intra-cluster multicast group members are 
constructed using the cluster member table data.  

Each gateway node maintains the fitness value of each link connecting other 
cluster members. The fitness value is proportional to the resource availability of each 
link. When a gateway node receives a multicast request to be forwarded, it waits for a 
small amount of time which is inversely proportional to the fitness parameter. This 
scheme provides fairness and it allows forwarding the request along the link having 
maximum free recourses (bandwidth).  

In the receiving side, if it is the first time to receive this packet, the received 
gateway node forwards request packet and the multicast-ID of the request is added to 
the gateway node table. The clusters that contain multicast receivers then send a reply 
to the corresponding gateway nodes and gateway nodes maintains the multicast 
membership information.  

As soon as the Route Reply packet reaches the cluster of the source s, it constructs 
the multicast tree connecting all multicast members.  The multicast receivers can send 
packet to other multicast members along the reverse path.   The new multicast sources 
should send a Route Request packet to append the previously constructed path. In our 
scheme Join-Request messages are forwarded only to gateway nodes. But in most of 
the conventional schemes request massages are flooded using broadcast schemes.   

1. Route discovery: Forwarding the route request message through the cluster    
     gateway nodes: 

o Node s starts by sending the message M to destination d through its 
cluster gateway using a short-way transmission. 

o Suppose Gs receives the message (d, M) from s at time t = 1. Node Gs 
forwards a route request message (RREQ) at time = 2, to all of its 
adjacent clusters through the gateway nodes. 
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o Each cluster gateway nodes receiving an RREQ for the first time 
checks whether x is d itself. Otherwise, if k > 1, then it forwards an 
RREQ with TTL equal to k - 1 and its own id, i.e., node z forwards the 
RREQ(d, i, k – 1,  x; s), to its adjacent clusters through the gateway 
nodes. 

o Node x keeps the just received RREQ for broadcast round i and 
discards the    stored RREQ from round i-1 , if any to the same 
destination. 

o Each cluster gateway that still has a stored RREQ (3*i) time steps after 
the receipt of the RREQ promptly discards the RREQ. 

2. Route discovery: Acknowledging receipt of RREQ and selecting (s, d) path: 
o Node d, upon receiving a RREQ(d, i, k, Gd, s) where Gd is the cluster 

gateway of node d, sends a path acknowledgment message via a short-
gateway transmission.  

o Node Gd, upon receiving a path acknowledgment notice from node d, 
sends a long-gateway transmission path acknowledgment message 
(ACK).  

o Each cluster gateway nodes Gx, upon receiving an ACK message 
checks if the request passes through it. If so, then x marks itself as 
ACTIVE(s, d) and sends an ACK message via long-gateway 
transmission. 

 
Lemma 1 
The Route discovery complexity of the CBMRP algorithm is O (dmin). Where dmin is 
the minimum hop distance between source s and destination d.  

Proof  
We first prove the complexity of the route discovery part of the CBMRP algorithm. 
Suppose the request reaches node d during the ith broadcast round originated at node 
Gs. Hence, the distance from Gs to Gd must be at most (3* i). The broadcast rounds out 
of node Gs will end as soon as an ACK is received by that node. The RREQ message 
that first reached node d must have been sent before the ith round was completed, 
since the ith broadcast commences at time step 3(i+1) and takes at most 3 time steps to 
complete. The ACK sent out of node Gd must have been sent at time t+1. Any ACK 
sent by the algorithm goes from a node reachable from Gs in h hops to a node 
reachable from Gs in h-1 hops. Thus, since Gd is reachable from Gs after t<3*i time 
steps of the ith round, it will take at most 3*i time steps for the ACK originating at Gd 
to reach Gs. Putting all these costs together, the route discovery takes at most 
3(i+1)+3i+2 time steps. (the constant additive term comes from the fact that there may 
be two additional communication steps between Gd and d). Since we know that d was 
not reached in the   (i-1) round, the distance between Gs and Gd must be at least 3*i 
hops, implying that the shortest distance between Gs and Gd must also be at 3*i hops. 
Since any (Gs , Gd ) gateway linking path from s,Gs … Gd ,d is a candidate path for 
being the path between Gs and Gd with the smallest possible number of short hops 
(which, as we have seen, must be longer than or equal to 3*i), the  shortest distance  
between s and d has to be at least (3*i)-2=O(i). Hence, the route discovery of the 
CBMRP algorithm takes time which is linearly proportional to dmin. 
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Message transmission: The message transmission phase only involves the nodes in 
the selected path from Gs to Gd and each node in this path takes one time step to 
forward each packet M to the next node in the path. We have seen that the selected 
path from Gs to Gd (and, hence, the extension of this path that goes from s to d) has 
O(dmin ) hops. Hence, the message and time complexity of the message transmission 
phase are in order of O(dmin | M). 
 
Route Maintenance: Route maintenance is the mechanism by which a node identifies 
that a link along an active path has broken such that it can no longer forward the 
packets to destination node d through that route. When route maintenance indicates a 
link is broken, the intermediate node finds an alternate path using local repairing 
scheme.  The local repairing scheme finds the path locally using the cluster member 
table. The proposed CBMRP discover multicast routes only in the presence of data 
packets to be delivered to a multicast destination.  

6   Simulation Model 

The simulator for evaluating the proposed cluster based protocol is implemented 
using the Network Simulator ns-2. NS-2 is a scalable simulation environment for 
wireless network systems.  The simulation models the network of 50 mobile 
hosts migrating within a 500 meter x 500 meter space with a transmission radius 
of five meters. Every node in the network moves in a random fashion. The 
cluster creation and multicast routing modules were implemented in C++ and it 
was linked with ns2 via TclClass object.  Source nodes and destination nodes 
were chosen randomly. Source initiates the multicast tree creation process and 
intermediate gateway nodes multicast table was updated according to the 
multicast membership information. Multicast source generates 512-byte data 
packets with constant bit rate.  

We have evaluated the performance of CBMRP via simulation. The simulation 
result shows that CBMRP effectively delivers around 95% of data packets and is 
robust against frequent topology changes. Moreover, data packet transmissions 
and control message exchanges are reduced by 25% compared to existing ad hoc 
multicast routing protocols. We also observed that CBMRP reduces the average 
packet delay by 15%. A number of movement scenario files were generated and 
used as inputs to the simulations. Each movement scenario file determines 
movements of 50 mobile nodes, and the mobile nodes are uniformly distributed.  
Each intermediate node along the path to the destinations is responsible for 
forwarding the data packet to the next intermediate node. The acknowledgement 
is not transmitted back to the source. A packet is dropped when no 
acknowledgment is received from the neighbor after retransmitting it ‘x’ times.  

The simulation was run for different scenarios and the results were compared 
with other multicast ad hoc routing protocols. For comparisons we have selected 
ODMRP and MAODV.  
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Parameters of interest are control overhead, end-to-end delay and packet delivery 
ratio. Figure 6.1 shows the packet delivery ratio of MAODV, ODMRP and CMRP for 
different mobility scenarios. As the node mobility increases the delivery ratio 
decreases for all three protocols. Even though the packet delivery ratio of proposed 
CBMRP is less than ODMRP, for higher mobility scenarios CBMRP packet delivery 
ratio is better than ODMRP.  

Figure 6.2 shows the control overhead incurred by MAODV, ODMRP and 
CBMRP. In all protocols control messages were generated and forwarded by 
intermediate nodes during multicast tree creation. If the nodes were less mobile 
then link failure was also less and number of control messages generated was less. 
We can observe form the graph increasing mobility makes CBMRP more efficient 
than MAODV and ODMRP.   

 

Fig. 6.1. Packet Delivery Ratio versus Mobility 

 

Fig. 6.2. Control Overhead versus Mobility 
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Fig. 6.3. End-to-End Delay versus Mobility 

Control overhead is calculated as the ratio of number of control messages 
forwarded per number of data packet forwarded. . In CBMRP the initial overhead is 
higher than MAODV and ODMRP. This overhead is incurred by cluster initialization 
packets and it almost remains constant as node mobility increases. 

The end-to-end delay of each protocol is reported in Figure 6.3. Schemes that 
utilize the local recovery technique have shorter delays. Protocols in which 
sources initiate route recovery have longer end-to-end delays because of longer 
route re-establishment latency. To recover a broken route, a RERR packet must 
first be delivered from the node upstream of the broken link to the source of the 
route. The RREQ must then be broadcast from the source to the destination, 
and a RREP consequently has to be transmitted back to the source. Among local 
recovery schemes, CBMRP has the minimum end-to-end delay. 

7   Conclusion 

A cluster-based multicast routing algorithm for mobile ad hoc networks is presented. 
This algorithm maintains the cluster member table at each node with which every 
node finds all the feasible paths to all other nodes in the network. Nodes 
autonomously form clusters by exchanging the bid-request packets. Cluster creation 
technique used in this paper is simple and self terminating. Cluster based routing 
protocol limits the amount of routing information stored and maintained at individual 
hosts, thus reducing the memory requirements. Node mobility related events are 
handled locally within the clusters. Hence, far-reaching effects of topological changes 
are minimal.  

Conventional cluster based algorithms use cluster head election algorithms to elect 
the cluster head. The cluster head maintains the route table. If the cluster head 
crashes, all routing information will be lost. Network traffic is also centered towards 
the cluster head. Such networks are susceptible to single point failures.  In the 
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proposed fully distributed architecture, all cluster members maintain the cluster 
member table, and is free from single point failure. Cluster maintenance is lightweight 
compared to cluster head election process. Traffic is regulated according to the 
network traffic conditions.  

Analysis shows that the performance of our algorithm is not adversely affected by 
the increase in network size. Future works includes the implementation and testing of 
the algorithm in real environments.  
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Abstract. This paper presents a theoretical study of the impact of noise
on the scaling of a cluster when the processors participate in “local”
collectives with their nearest neighbors. The model considered here is an
extension of that introduced in [9] for understanding the effect of noise
on the scaling of “global” collectives in large clusters. In this paper,
the scaling is studied with respect to three fundamental aspects: (1) the
distribution of noise: whether it is heavy or light tailed; (2) the temporal
independence of noise; (3) the topology of the cluster. When the noise
has a “light” tail and is temporally independent, it is shown that the
cluster scales well, i.e., the slowdown per phase is just proportional to
the (logarithm of the) maximum degree of the communication topology.
This implies that for popular topologies such as grids and toruses the
slowdown per phase is just a constant factor, which is independent of
the number of processors. In the light tailed case, assuming only a weak
temporal independence, a general upper bound is derived in terms of
an “expansion” parameter of the communication topology. For grid-like
graphs this establishes an exponential speedup compared to what was
shown for global collective operations in [9].

1 Introduction

Motivation. It has been observed by several researchers, see [1,2,3], that the
“throughput” of several high performance computing (HPC) clusters running
scientific applications drops as the number of processors in the cluster increases.
It has been suggested in [1,2] that one of the main causes of this is the “noise”
in the processors of the cluster in the form of overheads such as daemons and
interrupts. Given the exorbitant amount of resources invested in building such
systems, it becomes extremely important to understand the reasons for this loss
in efficiency and, if possible, rectify it. As a first formal step towards achieving
this, the impact of noise on the scaling of these clusters was explained via a
stochastic model in [9]. They abstracted a typical scientific parallel application
in which each node in the cluster repeatedly performs a “phase” which con-
sists of a computation stage followed by a “global” collective stage. A collective
involves all processors coming to a common state once they are through with
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their computation stage, from where on they resume the next phase. Hence, a
large amount of noise in one of the processor, which would result in an untimely
completion of the work assigned to it, may end up slowing down everyone. The
results of [9] showed, in particular, that even in the most favorable case when the
noise in each processor is distributed according to the exponential distribution,
the per phase throughput drops by a factor of Ω(ln N), where N denotes the
number of processors. Or, if each processor would do w work per phase when
there was no noise, it would end up doing only O(w/ ln N) work per phase.
Hence, as the number of processors tends to infinity, the throughput goes to
zero, somewhat defeating the purpose why such clusters are in place. The main
objective of such a study is to understand the problem of noise and the ways in
which it has the potential to degrade system performance. The end goal being to
reduce the impact of this necessary evil, and hence, to improve the performance
of HPC systems.

This Work. In this paper we study the impact of noise on the performance of a
cluster when the processors participate in “local” collectives, i.e., with their near-
est neighbors in the communication topology. We suitably extend the stochastic
model of [9] who did exactly this, albeit, for global collectives. Before we go on,
let us briefly (at the expense of being imprecise) outline the model.1 Consider a
parallel program with N threads running on a system with N processors. The
system is dedicated to running the same program repeatedly, each such run being
referred to here as a phase. Each phase consists of two stages (1) a computation
stage: In this stage each processor is supposed to do w amount of work. (2) A
communication stage: In this stage each processor communicates with a speci-
fied set of processors, referred to as its neighbors. This communication pattern is
referred to as the communication topology and is captured by a directed graph
on N processors: G. But, because of noise, each processor has to devote an over-
head time which in phase j for the i-th processor is δi,j and is assumed to be
distributed according to a random variable δ with mean wf, where f is a fixed
number in the interval [0, 1]. It can be safely assumed that the noise is indepen-
dent spatially, i.e., in the absence of coordinated OS policies, the noise across
different processors is uncorrelated. It sometimes may be difficult to argue, and
not true, that the noise is uncorrelated temporally, i.e., with j, although one
may expect noise to be uncorrelated in the short range and long range. In this
setup, we explore the scaling, or per phase work per processor with respect to
three fundamental aspects: (1) the tail of the distribution of noise: Pr[δ ≥ t];
(2) the temporal independence of noise: the correlation patterns of {δi,j} with
j; (3) the communication topology: G.

Our Results. Our results can be informally summarized in the following points.
To see the precise technical statement, the reader is referred to the corresponding
theorem.

1. For the case when the noise is temporally independent and light tailed, we
prove that time per phase is “sharply concentrated” around the quantity

1 A detailed description of the model appears in Section 2.
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w + wf(ln Δ) + τ, here Δ is exactly one more that the largest in-degree of
the communication topology G. (See Theorem 7.)

2. For the case when the noise is “weakly” temporally dependent, light tailed
and the growth rate of the topology is bounded, we prove that the time per
phase is upper bounded by the quantity w + wf(ln lnN) + τ. (See Theorem
8.)

3. For the case when the noise is heavy tailed and temporally independent,
we show that the topology has little effect and the time taken per phase is
almost the same as if the processors were involved in a global barrier. (See
Section 4.) This has been proved independently in [11].

4. We also prove sharp results when the communication patterns are multi-
round, such as a binary tree, or one that arises in the Fast Fourier Transform.
(See Theorems 9 and 10.)

Related Work. Our work is a natural follow-up to that of [9]. The work of [10]
takes an in-depth look into the theoretical model of the impact of noise on the
collectives studied in [9] by validating its accuracy against data collected from
production clusters. Recently, we came across the work of Lipman and Stout
[11] who have, independently of this work, considered a problem which reduces
to a similar stochastic problem considered in our paper. The main result of their
paper is a tight bound for the case when the noise is light tailed, temporally
independent and the topology is a directed cycle. This can be seen as a special
case of our first result.

The problem on how to alleviate the problem of noise has been looked by sev-
eral research teams [3,4,5,6,7,8]. Our theoretical understanding could potentially
be coupled with ideas from these works to alter the noise in the systems, as a
function of the communication topology, and help improve the performance of
these systems considerably.

Organization. In Section 2 we present a description of the model considered in
the paper. In Section 3 we analyze the model presented in Section 2. The re-
sults presented in Section 3 are general and rigorous. In Section 4 we describe
the results obtained in Section 3.2 for the light and heavy tailed distributions.
The canonical example of light tailed distribution we consider is the exponen-
tial distribution, while for the heavy tailed distribution, we consider the Pareto
distribution. In Section 5 we present the results pertaining to multiple commu-
nications per phase. For the lack of space, most of the proofs are deferred to the
full version of this paper.

2 The Setup

2.1 Modeling the Application

In this section we present the stochastic model considered in this paper. Since it
is an extension of the model presented in [9], we choose to keep the terminology
as similar as possible. The basic setup is a parallel program with N threads
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running on a system with N processors. Typically, the system is dedicated to
running the same program repeatedly, each such run being referred to here as a
phase, albeit on different inputs every time. Each phase is a composition of two
kinds of stages:

– Computation stage: In this stage the processor does computation without
any message exchange or I/O activity.

– Communication stage: Once the processor has finished its computation stage,
it enters the communication stage. In this stage each processor communicates
with a specified set of processors, referred to as its neighbors. In this stage
there is negligible computation except that associated to communication.

For the sake of simplicity, as has been done in the previous papers on this,
we assume that for every processor, each phase just consists of a computation
stage followed by a communication stage. Later, we will consider the case of
FFT where this is not the case, and each phase comprises of a number of alter-
nations of computation stages with communication stages. Thus, every phase is
characterized by the amount of work assigned to each processor and the pattern
of communication that occurs between them. Formally, in phase j ≥ 1, let Wi,j

be the work assigned to processor 1 ≤ i ≤ N, which would be completed by it
in (deterministic) time wi,j was there no noise. The communication in phase j
can be captured by a directed graph (possibly with loops) Gj([N ], Ej). Here, Ej

consists of the directed edges along which communication happens. We represent
an edge as (i1, i2), meaning that i1 communicates a message to i2. The time this
communication takes is ci1,i2,j . This completes the overview of a phase. Now we
proceed to a detailed quantitative description of a phase.

A Phase. Let tsi,j denote the time when the i-th thread begins phase j, and
let tfi,j denote the time when it ends the computation stage in the j-th phase.
Let Wi,j denote the amount of work carried out by thread i in the computation
stage of the j-th phase. If the system is noiseless, the time required by processor
i to finish work Wi,j in its j-th phase will be a deterministic quantity, which
we denote by wi,j . This quantity typically depends on several characteristics of
the processor such as its clock frequency, its architectural parameters, and the
state of the node (such as cache contents) just before the j-th phase is entered.
Therefore, tfi,j − tsi,j = wi,j . Due to the presence of noise, the time taken by
processor i to finish the work Wi,j is typically not a constant. There will be a
variable component that represents the time consumed to service the daemons
and other asynchronous events. This is captured by a random variable δi,j . More
precisely, tfi,j − tsi,j = wi,j + δi,j . Let fi,j ∈ [0, 1] be the fraction representing

the system overhead for the processor, i.e., let fi,j := E[δi,j ]
wi,j

. Thus, we may

think of the noise as a random variable ηi,j := δi,j

fi,jwi,j
with mean one. Thus,

we may write the wall-clock time taken by processor i for the j-th phase as
tfi,j − tsi,j = wi,j (1 + fi,jηi,j) .

For j ≥ 1, phase j + 1 starts for the i-th processor when it has completed
phase j. The first phase starts at time zero for all processors. The j +1-th phase
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ends for the i-th processor when it has completed its computation in the j+1-th
phase, as well as, all the processors i′ such that (i′, i) ∈ Ej+1 have ended the
computation in their j + 1-th phase. Define Nj(i) to be the set of processors
which have an edge directed towards i in Gj . With this notation, one can define
the time taken by the i-th processor to complete the j + 1-th phase, denoted by
Ti,j+1 as

max
{

Ti,j + wi,j(1 + fi,jηi,j), max
i′∈Nj+1(i)

{Ti′,j + wi′,j(1 + fi′,jηi′,j) + τi′,i}
}

(1)
Here, τi′,i denotes the communication time between processors i and i′. (We
assume this is symmetric and independent of j.) This completes a description of
a generic phase in the most general setting.

Performance Measure. Given this description of a phase, a natural measure
of performance is the amount of time taken by each processor to complete n
phases. More formally, given an ε > 0, to be thought of as very small, one
would be interested in ”eff”2 which is defined to be the smallest number such
that Pr

[
maxn

i=1{Ti,n}
n ≤ eff

]
≥ 1 − ε. Thus, with probability at-least 1 − ε, each

processor finishes n phases in time n · eff.

2.2 Simplifying Assumptions

Now we present some simplifications, which make the model amenable for the-
oretical analysis and, yet, not render it unrealistic. The justifications for these
assumptions are presented in detail in the paper [9], and we will only discuss
them here very briefly. Several assumptions have been verified for real systems
in [10]. Of course, one can make the model more and more real by removing
some of these assumptions, but then the theoretical analysis of the model also
becomes considerably difficult.
(1) Identical Communication. Gj = G are the same for all j ≥ 1. Also, as in [9],
we assume that each message transmission between a pair of processors takes
time τ, which is referred to as the one-way latency.
(2) Balanced Load. Wi,j = W for all i, j. This means that each thread is supposed
to do the same amount of work in its compute stage. For instance, each thread
is supposed to be multiplying two matrices of the same size.
(3) Identical Processors. wi,j = w for all i, j. This means that all the processors
are identical in their computational power. Hence, in the noiseless case, given
that Wi,j = W, wi,j = w for all processors.
(4) Stationary and Balanced Overheads. fij = f for all i, j. In a typical systems,
the processors are assigned an application for the lifetime of the application and
running any other application on the node is avoided. Thus, the only interference
is due to the background processes or daemons. The amount of daemon activity
is not expected to change over time. Thus, we may assume fi,j = fi,j′ , for all i, j

2 This quantity, to be thought of as the efficiency of the system with respect to the
application, will depend on the application and ε.



The Impact of Noise on the Scaling of Collectives 481

and j′. We further assume that fi,j = fi′,j , for all i, i′ and j. (See [9] for more
on this assumption.)
(5) Identical Noise. ηi,j ∼ η for all i, j. Recall that we have arranged η and f
such that E[η] = 1.
(6) Spatial Independence. {ηi,j : 1 ≤ i ≤ N} are independent for each j. This
assumption is crucial to our results. This can be justified as, in a typical system
under consideration, there is no coordinated scheduling policy to synchronize
processes across different processors.
(7) t-Temporal Independence. For the simplest of our results, we will assume that
the the random variables {ηi,j}, are independent, i.e., apart from spatial inde-
pendence, there is temporal independence as well. This may not be necessarily
true as some of the daemons could be somewhat periodic, and we do expect weak
correlation patterns between these random variables across different phases. In
general we may only assume limited independence. To this effect, we say that
the process is t temporal independent, if for all 1 ≤ i ≤ N and j ≥ 1, the set
of random variables {ηi,j′ : j ≤ j′ ≤ j + t} are independent. Typically, we will
assume that t � N.

3 Analysis

3.1 The Simplified Problem

In this section we present the problem at hand with the simplifications made in
the previous section. Applying assumptions (1)-(5) to Equation (1), we obtain
that for j ≥ 0,

Ti,j+1 := max
{

Ti,j + w(1 + fηi,j), max
i′∈Nj+1(i)

{Ti′,j + w(1 + fηi′,j) + τ}
}

, (2)

where Ti,0 = 0 for all 1 ≤ i ≤ N. The communication graph G(V, E), and the
parameters w, f and τ are fixed for the rest of the paper. This graph contains
loop edges of the form (i, i) for all 1 ≤ i ≤ N. The graph does not contain
multiple edges in the same direction between a pair of vertices. Given ε > 0,
recall that the goal is to give tight estimate of the quantity “eff” such that
Pr

[
maxn

i=1{Ti,n}
n ≤ eff

]
≥ 1 − ε. Since w, f and G are fixed, this quantity is just

a function of n, ε and η.

3.2 General Results

We proceed to give general bounds on this quantity as a function of the random
variable η. First we need a few definitions.

Definition 1. A walk W of length n in a directed graph G(V, E) consists of
a sequence of (possibly repeated) edges e1, e2, . . . , en such that, if ek = (ik, jk),
then for all 1 ≤ k < n, jk = ik+1. The starting vertex of a walk is i1 while
the ending vertex is jn. With abuse of notation, a walk W will be denoted by
i1, i2, . . . , in, in+1, where in+1 := jn.
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The maximum in-degree of G is denoted by Δ (this includes the self-loop at
each vertex). G is said to be Δ regular if all vertices have in-degree Δ. Let Wi,n

denote the number of walks in G of length n that end at i, or W = i1, . . . , in+1
such that in+1 = i. It follows from the definitions that |Wi,n| ≤ Δn, and if G is
Δ regular, then this is an equality.

Definition 2. For a vertex i in G, let B(i, d) denote the ball of radius d centered
at i. Formally, B(i, d) contains all vertices i′ such that there is a directed path
of length at-most d from i′ to i. For G(V, E), let BG(d) denote maxi∈V |B(i, d)|.

Definition 3. Let η be a random variable such that E[η] = 1, and let σ > 0
and n be given. Let {ηi}n

i=1 be n independent copies of η. Then η is said to be
p(η, n, σ)-tailed if Pr [

∑n
i=1 ηi ≥ σn] ≤ p(η, n, σ).

Let Md
η denote the the random variable which is distributed according to the

maximum of d independent copies of η.

Temporal Independence.Assuming that the random variables ηi,j are independent
for all i and j, we obtain the following results. The first follows from Equation
(2) via a direct application of union bound.

Theorem 4 (Upper Bound). For σ > 0 and n ≥ 1, let η be p(η, n, σ)-tailed,
and the maximum in-degree of a vertex in G be Δ. Then, with probability at-least
1 − p(η, n, σ)Δn,

maxN
i=1{Ti,n}

n ≤ wfσ + w + τ.

This theorem says that if for some σ, p(η, n, σ) goes to zero faster than 1/Δn,
then the per phase efficiency is at-most wfσ + w + τ with high probability.
Indeed, for light tailed distributions, such as exponential distribution, this is
true for σ = lnΔ. In fact for such distributions, one can show that this is the
best we can hope for. We present a lower bound technique which, when applied
to the exponential distribution shows that each phase will take time wfσ+w+τ
on an average. (See Theorem 7.)

Now we present a general lower bound which is more convenient to state for
regular graphs. This can be generalized to the case when the graph is not regular,
but we omit it here.

Theorem 5 (Lower Bound). Let G be a Δ regular graph, n ≥ 1 and for
1 ≤ j ≤ N, let Mj be i.i.d. MΔ

η random variable. Then, for all 1 ≤ i ≤ N,
Ti,n ≥ wf

∑n
j=1 Mj + wn.

It is possible to incorporate the dependency of the lower bound on τ via a slightly
more involved argument. We omit the easy proofs of these theorems from this
version of the paper and focus on what they imply in Section 4.

Limited Temporal Independence. Consider now the case when the noise random
variables ηi,j t-temporally independent. In this case, Theorem 4 can no longer
be expected to hold. Here we provide an upper bound by a stochastic embedding
technique which takes into account the topology of the communication graph.
The basic idea is to consider t phases at a time, which we refer to as a meta-
phase. If the graph G has the property that a large delay at a node does not end
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up affecting processors further than distance t from it, then the meta phase ends
much faster. Imagine the following stochastic process. Every processor draws
t samples from its noise distribution. Because of the spatial independence and
t-temporal independence, all these samples are i.i.d according to η. We denote
these noise distributions as ηi,j . The meta-phase ends when all processors have
finished t phases. Consider a node i, and recall that B(i, r) denotes the set
of processors from which i is reachable by a path of length at-most r. Recall
also that BG(r) denotes the size of the largest ball of radius r in G. Let ζj :=
maxi′∈B(i,r) ηi′,j , where ηi′,j are i.i.d. according to η. Let p(s) = Pr[

∑t
j=1 ζj ≥ s].

Hence, Pr[Ti,t ≥ wfs+wt+ tτ ] ≤ p(s). Thus, using a union bound, one obtains
the following theorem.

Theorem 6 (Limited Independence Upper Bound). Let σ ≥ 0 and t ≥
1, r ≥ 0 be integers. Let η be the distribution of noise which is t-temporally
independent. Further, let Y1, . . . , Yt be i.i.d. according to M

BG(r)
η , and Y :=

∑t
i=1 Yi. Then Pr

[
maxN

i=1{Ti,t}
t ≤ wfσ + w + τ

]
≥ 1 − NPr[Y ≥ σt].

This theorem says that even in the case of limited temporal independence, as
long as the noise has the property that the sum of a small number of them have
a light tail, one can still upper bound the per phase time by something much
better than what one would expect in the global collective case. Of course, this
requires that the communication graph is not expanding in the sense that the
number of neighbors in a radius r grow slowly as a function of r for all the
processors. This is indeed true for d-dimensional grids and toruses for fixed d.

4 Results for Representative Distributions

In this section we explain Theorems 4, 5 and 6 for the context of light tailed and
heavy tailed distributions for noise. We pick the canonical examples of these two
cases: the exponential and the Pareto respectively.

4.1 Distributions

Exponential. An exponential distribution Exp(1) has the following distribution:
∀x ≥ 0, Pr[Exp(1) ≤ x] = 1−exp(−x). First we note some important properties
of this distribution. Let X1, . . . , Xn be i.i.d. according to Exp(1), then

1. Y :=
∑n

i=1 Xi is distributed according to Γ (n, 1) which has the following
p.d.f. f(x; n, 1) := xn−1 exp(−1)

(n−1)! , for x > 0. The moment generating function
is (1 − t)−n for t < 1. It follows from Chernoff Bounds that for all Δ > 1,
for all 0 < δ ≤ δ0(Δ), and all n ≥ n0(δ), Pr[Y ≥ (1 + δ)n ln Δ] ≤ exp(−(1 +
δ/2)n lnΔ).

2. Let Y := maxΔ
i=1 Xi. Then Y is distributed according to the random vari-

able
∑Δ

i=1
1
i Xi. (Lemma 1 below). It follows that E[Y ] = Var[Y] = HΔ :=

∑Δ
i=1

1
i . Hence, it follows from Chebyshev’s Inequality that if Y1, . . . , Yn are
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distributed according to Y, are pairwise independent, then for any 0 < δ < 1,
Pr[

∑n
i=1 Yi ≥ (1 − δ)nHΔ] ≥ 1 − 1

δ2nHΔ
. It follows from the inequality

that 1
2Δ+2 ≤ |HΔ − ln Δ − γ| ≤ 1

2Δ (where γ > 0 is the Euler-Mascheroni
constant) that, for all 0 < δ ≤ δ0(Δ), and all n ≥ n0(δ), Pr[

∑n
i=1 Yi ≥

(1 − δ/2)n lnΔ] ≥ 1 − 1
δ2nHΔ

.

Lemma 1. Let X1, . . . , Xk be i.i.d. according to Exp(1). Then maxk
i=1 Xi has

the same distribution as
∑k

i=1
Xi

i .

Spatial and Temporal Independence. The fact (1) above implies that for all δ > 0
small enough, when η ∼ Exp(1), p(η, n, (1 + δ) ln Δ) ≤ 1

Δ(1+δ/2)n . Hence, by

Theorem 4, with probability at-least 1−Δ−nδ/2,
maxN

i=1{Ti,n}
n ≤ wf(1+δ) lnΔ+

w + τ. While the fact (2) above combined with Theorem 5 implies that for all
δ > 0 small enough, with high probability, every processor finishes n phases in
time at-least (1 − δ/2)n lnΔ. These together imply the following theorem.

Theorem 7. For all δ > 0 small enough, for η ∼ Exp(1), and when the com-
munication topology is given by a (regular) digraph G with in-degree Δ, with
high probability, the efficiency or the maximum average time per phase for each
processor lies between wf(1 − δ/2) lnΔ + w + τ and wf(1 + δ) ln Δ + w + τ.

Thus, for standard communication topologies such as toruses or meshes, this
result is optimal.

Limited Temporal Independence. Now we show that assuming O(ln N)-temporal
independence, and the fact that for r = O(ln N), the communication graph is
not expanding, i.e., BG(O(ln N)) = O((ln N)O(1)), ln N phases will finish in
time O(ln N ln lnN). Thus giving an efficiency of O(ln lnN) per phase with high
probability. Compare this to the case when each phase takes Θ(ln N) time in
the case of global collectives [9]. Formally, we have the following theorem.

Theorem 8. Let c1, c2 > 0 be large constants. Let the communication graph
G have the property that for all r ≤ c1 ln N, BG(r) ≤ (ln N)c2 . If the noise is
distributed according to Exp(1) and is ln N -temporally independent, then with
probability at-least 1 − 1/N100 each processor finishes ln N phases in time at-
most 100 lnN(wf ln lnN + w + τ). Thus, the average time per phase for each
processor is at-most 100wf ln lnN + w + τ with high probability.

The proof of this theorem relies on Theorem 6 and the measure concentration
inequality for the random variable distributed according to the maximum of
exponential distributions and we will include it in the full version of this paper.
This is a significant speed-up compared to ln N per phase and assumes that noise
is temporally independent for only about lnN phases. It would be interesting to
see if this is indeed observed for real systems.

Pareto. In this section we consider the case when the noise has a heavy tail.
This is unlike the exponential case and the noise looks more like the uniform
distribution. A natural and very popular way to model data which has heavy
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tail is the so-called Pareto distribution. The Pareto random variable Xa
par with

parameter a has the following distribution: ∀x ≥ 1, Pr[Xa
par ≤ x] = 1− 1

xa . The
Pareto distribution has mean a

a−1 . To make this random variable with unit mean,
we let η be a−1

a Xa
par. The reason why when the noise is distributed according to

Pareto the system will invariably slow down is very simple. After t ≤ N phases,
a processor i starts depending on processors which are connected to it by a
directed path of length t. Thus, the number of independent copies of η after t
phases on which i-th processor depends is P (i, t) :=

∑t
r=0 |BG(i, r)|. It follows

from the distribution of the maximum of Pareto distribution that, with high
probability, there is one of these which will be at-least Ω(P (i, t)1/a). Hence, the
i-th processor will take time at-least Ω(1

t P (i, t)1/a) on an average per phase. If
P (i, t) = Ω(tβ) for some β > a, then this quantity is at-least Ω(tβ/a−1). When
G is a ring, as noted in [11], β = 2, and hence, for 1 < a < 2, the slowdown is
Ω(N2/a−1). We do not discuss it further here as the main idea already appears
in the paper of Lipman and Stout [11].

5 Multiple Communications Per Phase

In this section we consider two cases of a complex communication pattern per
phase. The first is the complete binary tree and the second is Fast Fourier Trans-
form (FFT). Both are very natural. The binary tree will arise in any divide and
conquer type of application, e.g. Merge Sort, while FFT is a standard benchmark
for HPCC. For the sake of clarity we would consider the case when the communi-
cation delays are negligible. This is just to highlight the impact of noise, and all
results can be suitably modified to incorporate the communication component.

5.1 Binary Tree

Consider the case when N = 2k, where the processors are labeled {0, 1, . . . , 2k −
1}. Each phase consists of k rounds. In the i-th round (1 ≤ i ≤ k), processors j

and j+2i−1 communicate for j = 0 ·2i, 1 ·2i, 2 ·2i, . . . ,
⌊

2k−1
2i

⌋
·2i. An example of

such a communication pattern is given in Figure 1. We assume that the one way
latency τ ∼ 0, and hence, only focus on the delay due to synchronization. Let
ηi,j be the random variable denoting the noise incurred by processor i in the j-th
round. Assume {η}i,j are i.i.d. according to Exp(1), let w be the work by each
processor done per round, and the overhead factor per round is f. Thus, time
taken to complete one phase is the random variable wk+wf maxP

∑
(i;j)∈P ηi,j .

Here the maximization is over all paths that go from a leaf to the root of the
binary tree. There is a path corresponding to each leaf, which is just a processor,
and there are exactly 2k of them. Hence, the quantity that we need to estimate
is Bk := maxP

∑
(i;j)∈P ηi,j . We prove the following theorem which establishes

a remarkable threshold phenomena in the completion time of each phase.

Theorem 9. Let cL = 2.678 . . . be a solution to the equation ln 2+lnx−x+1 =
0. Then Bk/k → cL almost surely as k → ∞. (Here Bk is as defined above when
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Fig. 1. The communication pattern for a binary tree and a single node in FFT

ηi,j are i.i.d. according to Exp(1).) Thus, the time to complete each phase is
almost surely (1 + fcL)w log2(N + 1).

The upper bound proof involves a tight approximation to the distribution ob-
tained by summing k independent copies of the exponential random variable.
The lower bound proof is technically interesting as it uses a result from the
theory of branching processes on the behavior of a supercritical Galton-Watson
process. It is worth noting that the lower bound argument given earlier for the
general case (Theorem 5) does not give the optimal constant, and one needs to
appeal to theory of branching processes to obtain the optimal constant. Also, a
close look at the proof of Theorem 9 yields that a similar threshold result can
be obtained when ηi,j are i.i.d. according to any distribution for which there is
a large deviation inequality.

5.2 Fast Fourier Transform

In this section we consider the communication pattern for an application comput-
ing the FFT. Here, each phase consists of k rounds. In the i-th round, 1 ≤ i ≤ k,
processors j and 2i−1 + j communicate with each other, where 0 ≤ j < 2k. The
communication pattern for one processor is a binary tree, as depicted in Figure
1. A phase consists of a binary tree for each processor, except that these binary
trees share edges. For instance, the binary tree for processes j and 2k−1 + j are
the same for all j. Let Hk denote the time taken for a phase to complete when
each processor does w work per round, f is the noise overhead, and the noise
in each round is distributed according to Exp(1). Then we have the following
theorem on Hk.

Theorem 10. Let cL = 2.678 . . . be a solution to the equation ln 2 + lnx − x +
1 = 0, and cU = 3.692 . . . be a solution to 2 ln 2 + lnx − x + 1 = 0. Then the
following hold: (1) lim supk→∞ Hk/k ≤ cU almost surely. (2) lim infk→∞ Hk/k ≥
cL almost surely. Thus, the time to complete each phase is almost surely bounded
between (1 + fcL)w log2(N + 1) and (1 + fcU )w log2(N + 1).

This theorem establishes that in the case of FFT, inspite of the dependencies
among the binary trees of the processors, each phase finishes in time O(log N).
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Remark 1. We conjecture that Hk also has threshold behavior as Bk in Theorem
9. The current techniques do not seem powerful enough to resolve this question.
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Abstract. The Cell is a heterogeneous multi-core processor, which has eight co-
processors, called SPEs. The SPEs can access a common shared main memory 
through DMA, and each SPE can directly operate on a small distinct local store. 
An MPI implementation can use each SPE as if it were a node for an MPI proc-
ess. In this paper, we discuss the efficient implementation of collective commu-
nication operations for intra-Cell MPI, both for cores on a single chip, and for a 
Cell blade. While we have implemented all the collective operations, we de-
scribe in detail the following:  barrier, broadcast, and reduce. The main contri-
butions of this work are (i) describing our implementation, which achieves low 
latencies and high bandwidths using the unique features of the Cell, and 
(ii) comparing different algorithms, and evaluating the influence of the architec-
tural features of the Cell processor on their effectiveness. 

Keywords: Cell Processor, MPI, heterogeneous multicore processor. 

1   Introduction  

The Cell is a heterogeneous multi-core processor from Sony, Toshiba and IBM. There 
has been much interest in using it in High Performance Computing, due to the high 
flop rates it provides. However, applications need significant changes to fully exploit 
the novel architecture. A few different models of the use of MPI on the Cell have 
been proposed to deal with the programming difficulty, as explained later. In all these, 
it is necessary to implement collective communication operations efficiently within 
each Cell processor or blade. 

In this paper, we describe the efficient implementation of a variety of algorithms 
for a few important collective communication operations, and evaluate their perform-
ance. The outline of the rest of the paper is as follows. In §2, we describe the architec-
tural features of the Cell that are relevant to the MPI implementation, and MPI based 
programming models for the Cell. We explain common features of our implementa-
tions in §3.1. We then describe the implementations and evaluate the performance of 
MPI_Barrier, MPI_Broadcast, and MPI_Reduce in §3.2, §3.3, and §3.4 respectively. 
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We summarize our conclusions in §4. Further details on this work are available in a 
technical report [4]. 

2   Cell Architecture and MPI Based Programming Models 

Architecture. Figure 1 shows an overview of the Cell processor. It consists of a 
cache coherent PowerPC core (PPE), which controls eight SIMD cores called Syner-
gistic Processing Elements (SPEs). All cores run at 3.2 GHz and execute instructions 
in-order. The Cell has a 512 MB to 2 GB external main memory, and an XDR mem-
ory controller provides access to it at a rate of 25.6 GB/s. The PPE, SPE, DRAM and 
I/O controllers are all connected via four data rings, collectively known as the EIB. 
Up to 128 outstanding DMA requests between main storage and SPEs can be in proc-
ess concurrently on the EIB. The EIB’s maximum bandwidth is 204.8 GB/s.  The Cell 
Broadband Engine Interface (BEI) manages data transfers between the EIB and I/O 
devices. One of its channels can be used to connect to another Cell processor at 
25.6 GB/s, creating a Cell blade with a logical global shared memory. 

 

Fig. 1. Overview of the Cell processor 

Each SPE has its own 256 KB local store from which it fetches code and reads and 
writes data, with access latency of 6 cycles. All loads and stores issued from the SPE 
can only access the SPE’s local store. Any main memory data needed by the SPE 
must be moved into the local store explicitly through a DMA. An SPE can have up to 
sixteen pending requests in its DMA queue.  The maximum DMA size is 16 KB. 

The DMAs may execute out-of-order. Partial ordering can be ensured by fenced or 
barriered DMAs. The former executes only after all previous DMAs with the same 
tag on the same SPE have completed. The latter has the same guarantee, but also en-
sures that all subsequent DMAs issued on the same SPE with the same tag execute af-
ter it has completed. A DMA list can be used to scatter data to or gather data from 
multiple locations.  It occupies only one slot in the DMA queue. 

We observe the following regarding the performance of DMAs [4]: (i) SPE-SPE 
DMAs are much faster than SPE-main memory DMAs on the same chip, (ii) sending 
multiple small DMAs is slower than sending fewer long ones from the same SPE, 
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(iii) latency between SPEs on different chips are significantly higher than those on the 
same chip, (iv) maximum bandwidth between SPE and main memory is around 
7 GB/s, while between SPE and SPE it is around 25 GB/s, (v) latency is higher in the 
presence of congestion, when multiple SPEs are transferring data, and (vi) the vari-
ance of the latency is higher with congestion. 

 
MPI Based Cell Programming Models. The heterogeneous architecture and the 
small local stores of the SPEs make programming the Cell difficult. Some of the pro-
gramming models to deal with this challenge are based on MPI. In the MPI microtask 
model [6], the application is divided into several smaller tasks with small code and 
data size. A scheduler schedules the tasks on the SPEs. In another model [3], an exist-
ing application is ported to the Cell by treating each SPE as if it were a node for an 
MPI process, using the main memory to store the application data, and the local store 
as software controlled cache. Large code size can be dealt with by bringing in the 
code as needed through code overlaying. This is the model for which we target our 
MPI implementation, assuming that application data is in main memory, and that the 
MPI calls are provided the effective addresses of these locations. If the application 
data is in local store, then more efficient implementations can be developed. We also 
discuss only the case of contiguous data. Use of non-contiguous data will lead to 
higher latencies. Note that this implementation can also be helpful with clusters of 
Cell processors or blades – this implementation can be used for the portion of com-
munication that happens within a chip or blade, which is combined with MPI com-
munication connecting different Cell processors or blades. Similar strategies have 
been developed for SMP clusters on other hardware [5, 7, 9]. 

3   Algorithms for Collectives  

3.1   Common Features of Intra-cell Collectives  

Let P be the desired number of MPI processes. In our MPI implementation, a PPE 
process spawns P SPE threads, which perform the actual computation. We sometimes 
refer to an SPE thread as a process, and an SPE as a processor, for the sake of consis-
tency with usual usage in MPI. Each SPE runs one thread at most, and so P SPEs are 
involved in the computation. Each SPE maintains a metadata array of P elements in 
its local store. (This memory usage can be decreased for some algorithms.) Each entry 
is 16 Bytes; smaller space would suffice, but this size is forced by DMA alignment 
requirements. With the maximum of 16 SPEs on a blade, this requires 256 B, which is 
small. The barrier call has a separate metadata array to avoid interference with other 
calls. The implementation also allocates two buffers of 16 KB each on the local store 
to use as software controlled cache. Timing results [4] indicate that buffers of 4 KB 
each would yield comparable performance. The implementation tries to minimize data 
transfers involving the main memory, because of the larger latencies involved in such 
transfers, compared with that to local store on-chip. The bandwidth to main memory 
is also the bottleneck to most algorithms, and thus access to it should be minimized. 
The two buffers above are used instead; the use of multiple buffers helps reduce la-
tency by enabling double buffering – when one buffer has data being transferred out 
of it, another buffer is used to transfer data into the SPE.  
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SPE i typically transfers data to SPE j by DMAing data to metadata array location i 
on SPE j. SPE j polls this entry, and then DMAs data from a local store buffer on SPE 
i to one on SPE j. It then typically acknowledges receipt to SPE i by DMAing to 
metadata entry j on SPE i. Serial numbers are often used in the metadata entries to 
deal correctly with multiple transfers.  Writing to a metadata entry is atomic, because 
DMAs of size up to 128 B are atomic. However, the DMAs may be executed out of 
order, and the data sent may also differ from the data at the time the DMA was 
queued, if that location was updated in the meantime. We don’t discuss the implemen-
tation details to ensure correctness in the presence of these issues, in order to present a 
clearer high level view of the algorithms. In order to simplify some of the implemen-
tation, we made the collective calls synchronize at the end of each call, using a bar-
rier. We later show that the barrier implementation on the Cell is very efficient.  

The experimental platform was a Cell IBM QS20 revision 5.1 blade at Georgia 
Tech, running Linux. The xlc compiler for the Cell, with optimization flag –O5, was 
used. The timings were performed using the decrementer register on the Cell. This has 
a resolution of around 70 nano-seconds. The variances of the timing results for collec-
tive calls, other than the barrier, were fairly small. The variance for the barrier, how-
ever, was somewhat higher. 

3.2   Barrier 

This call blocks the calling process until all the other members of the group have also 
called it. It can return at any process only after all the group members have entered 
the call.  

 
Algorithms. We have implemented three classes of algorithms, with a few variants in 
one of them. 

Gather/Broadcast. In this class of algorithms, one special process, which we call the 
root, waits to be informed that all the processes have entered the barrier. It then 
broadcasts this information to all processes. On receiving the information broadcast, a 
process can exit the barrier. We have implemented the following three algorithms 
based on this idea. Along with an algorithm's name, we also give an abbreviation  
which will be used to refer to the algorithm later. 

(OTA) One-To-All. Here, an SPE informs the root about its arrival by setting a flag on 
a metadata entry in the root. The root waits for all its entries to have their flag set, un-
sets these flags, and  then sets a flag on a metadata entry of each SPE. These SPEs 
poll for this flag to be set, then unset it and exit. Note that polling is quite fast because 
the metadata entry is in the local store for each SPE performing the polling; the bot-
tlenecks are (i) DMA latency and (ii) processes arriving late. The broadcast phase of 
this algorithm, where the root sets flags, has two variants. In the first one, the root 
uses a DMA put to transfer data to each SPE. An SPE can have sixteen entries in its 
own DMA queue, and so the root can post the DMA commands without blocking. In 
the second variant, the root issues a single putl DMA List command.  
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(SIG) Use a Signal Register. The signal registers on each SPE support one-to-many 
semantics, whereby data DMAed by an SPE is ORed with the current value. The 
broadcast phase of this algorithm is as in OTA, but the gather phase differs; each SPE 
sets a different bit of a signal register in the root, and the root waits for all signals to 
be received. 

(TREE) Tree. This gathers and broadcasts data using the usual tree based algorithm 
[10]. In the broadcast phase of a binomial tree algorithm, the root starts by setting a 
metadata flag on another SPE. In each subsequent phase, each process that has its flag 
set in turn sets the flag of one other SPE. Thus, after i phases, 2i processes have their 
flags set. Therefore ⎡log2 P⎤ phases are executed for P SPEs. In a tree of degree k [1, 
10], in each phase SPEs, which have their flag set, set the flags of k - 1 other distinct 
SPEs, leading to ⎡logk P⎤  phases. The gather step is similar to the broadcast phase, 
but has the directions reversed. 

Pairwise-Exchange (PE). This is a commonly used algorithm for barriers [10]. If P is 
a power of 2, then we can conceptually think of the SPEs as organized as a hyper-
cube. In each phase, an SPE exchanges messages with its neighbor along a specific 
dimension. The barrier is complete in log2 P phases. If P is not a power of two, then a 
slight modification to this algorithm [10] takes 2 + ⎣log2 P⎦ steps. 

Dissemination (DIS). This is another commonly used algorithm for barriers [10]. In 
the i th phase here, SPE j sets a flag on SPE j+2i (mod P) and waits for its flag to be 
set by SPE P+j-2i (mod P). This algorithm takes ⎡log2 P⎤ steps, even if P is not a 
power of two. 

 
Performance Evaluation. We next evaluate the performance of the above algo-
rithms. We found that the use of DMA lists does not improve the performance of the 
barrier [4] – in fact, the performance is worse when P is greater than four. We also 
found that the use of the signal register in the gather phase does not improve perform-
ance compared with the use of plain DMAs, which are used in OTA.  

Figure 2 (left) evaluates the influence of tree degree in the TREE algorithm. We 
optimized the implementation when the tree degree is a power of 2, replacing modulo 
operations with bit-wise operations. This difference is not sufficient to explain the 
large difference in times seen for degree 2 and 4, compared with other degrees. We 
believe that the compiler is able to optimize a for loop involved in the computation 
better with power of two degrees. However, increasing the degree to eight lowers the 
performance. This can be explained as follows. As the tree degree increases, the num-
ber of phases decreases. However, the number of DMA issued by the root increases. 
Even though it can queue up to sixteen DMAs, and the message sizes are small 
enough that the bandwidth is not a limiting factor, each DMA in the queue has to wait 
for its turn. Consequently, having multiple DMAs in the queue can lower the per-
formance.  This trend is also shown by DMA timing results not presented here.  

The PE and DIS algorithms perform substantially better than the gather/broadcast 
type of algorithms, with PE being clearly better than DIS when P is greater than eight. 
Before explaining this, we first discuss a factor that sometimes influences the per-
formance of DIS. In contrast to PE, where pairs of processes exchange information, in 
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DIS, each process sends and receives messages to different processes. On some net-
works, exchange between processes is faster than sending and receiving between dif-
ferent processes, which can cause DIS to be slower than PE. This is not the case here. 
DMA tests show that exchanging data is no faster than communication between dif-
ferent SPEs. The reason for the difference in performance is that when the number of 
processes is greater than eight, some of the processes are on a different chip. The 
DMA latency between these is higher. In PE, all the inter-chip DMAs occur in the 
same phase. In DIS, this occurs in each phase. Thus each phase gets slower, whereas 
in PE, only one of the phases is slowed down due to this fact. This slower phase also 
explains the sudden jump in latency from eight to ten processes.  

Further details on alternate algorithms and related work are given in [4]. 

 

Fig. 2. Barrier latencies. Left: Comparison of TREE with different degrees. Right: Comparison 
of four barrier algorithms. 

3.3   Broadcast 

Algorithms. We discuss below five algorithms for broadcast.  

(TREEMM) Send/Receive. This algorithm is the usual tree based Send/Receive algo-
rithm [2, 8], with modifications given below. The tree structure is as in the broadcast 
phase of TREE for the barrier. However, instead of just setting a flag, a process that 
sends data also passes the main memory location of its application data. A receiving 
process copies this data to its own main memory location. This cannot be performed 
directly, because DMA is possible only between a local store address and an effective 
address. So, an SPE first copies a chunk of data from the source location to its local 
store, and then copies this back from the local store to the destination location in main 
memory. While this seems wasteful, a similar process occurs in regular cache-based 
processors, where copying a line can involve two or three cache misses. We amelio-
rate the DMA latency by double buffering. Performance tests on memory to memory 
copy shows [4] that double buffering yields a significant improvement in performance 
over single buffering. TREEMM's communication structure is similar to an imple-
mentation built on top of MPI_Send and MPI_Recv. However, it avoids the extra 
overheads of MPI calls by directly implementing the DMA calls in this routine.  
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Furthermore, it avoids extra copy overheads, and uses double buffering to reduce the 
memory access latency (the latter is, in some sense, like prefetching to cache). 

(OTA) Each SPU Copies its Data. In this implementation, the root broadcasts its 
metadata, as in the broadcast phase of barrier TREE. It sends the main memory loca-
tion of the source data, in addition to setting the flag. Once an SPU receives this in-
formation, it copies data from the root’s locations to its own location in main mem-
ory, using double buffering. On some systems, simultaneous access to the same 
memory location can degrade performance by making this a hotspot. We include a 
shift S to avoid this. That is, SPE i first copies with an offset of i×S, and then copies 
the initial portion. If i×S is greater than the data size, then this index wraps around. 

(G) Root Copies All Data. In this implementation, the root gathers metadata from all 
processes in a tree structured manner. The metadata contains the destination ad-
dresses, in addition to the flag. The root then copies its data to each of the destination 
addresses. This is, again, done through double buffering. Each time data is brought in 
to local store, it is DMAed to all destination locations. With the maximum of sixteen 
SPEs possible, we need at most fifteen puts and one get pending, and so the DMA re-
quests can be placed in the queue without blocking. 

(AG) Each Process Transfers a Piece of Data.  In this implementation, all processes 
perform an allgather on their metadata to get the destination addresses of each proc-
ess, and the source address of the root. Each process is then responsible for getting a 
different piece of data from the source and transferring it to the corresponding loca-
tion in each destination. This is done in a double buffered manner, as with broadcast 
G. We also specify a minimum size for the piece of data any process can handle, be-
cause it may be preferable for a few processes to send large DMAs, than for many 
processes to send small DMAs, when the total data size is not very large. Increasing 
the minimum size decreases parallelism in the data transfer, with the potential benefit 
of fewer DMAs, for small messages. 

(TREE) Local Store Based Tree. In this implementation, the root gets a piece of data 
from main memory to its local store, and broadcasts this piece in a tree structured 
manner to the local stores of all processes. Each piece can be assigned an index, and 
the broadcast is done by having an SPE with data sending its children (in the tree) 
metadata containing the index of the latest piece that is available. A child issues a 
DMA to actually get this data. After receiving the data, the child acknowledges to the 
parent that the data has been received. Once all children have acknowledged receiving 
a particular piece, the parent is free to reuse that local store buffer to get another piece 
of data. A child also DMAs received data to its main memory location, and sends 
metadata to its children in the tree. In this implementation too, we use double buffer-
ing, so that a process can receive a piece into one buffer, while another piece is wait-
ing to be transferred to its children. In this implementation, we denote pipelined 
communication between the local stores by a tree of degree 1. 
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Performance Evaluation. We first determined the optimal parameter for each algo-
rithm, such as the tree degree, shift size, or minimum piece size. We have also evalu-
ated the effect of other implementation choices, such as use of fenced DMAs and 
DMA lists, but do not discuss these. 

We found that on four processors, including some shift to avoid hotspots improves 
performance of OTA [4], though it is not very sensitive to the actual shift used. On 
larger numbers of processors, all shifts (including no shift) perform equally well. The 
likely reason for this is that with more processors, the time at which the DMA re-
quests are executed varies more, and so we don’t have a large number of requests ar-
riving at the same time. We also found that on sixteen processors, using a minimum 
piece size of 2K or 4K in AG yields better performance than larger minimum sizes. 
(Lower sizes – 1KB and 128 B – perform worse for intermediate data sizes.) At small 
data sizes, there is only one SPE performing one DMA for all these sizes, and so per-
formances are identical. For large data, all pieces are larger than the minimum, and so 
this size makes no difference. At intermediate sizes, the smaller number of DMAs 
does not compensate for the decrease in parallelism for minimum sizes larger than 
4 KB. The same trend is observed with smaller numbers of processes. 

We next compared the effect of different tree degrees on the performance of the 
tree-based algorithms [4]. In TREEMM, a tree degree of 3 yields either the best per-
formance, or close to the best, for all process counts. A tree of degree two yields the 
worst performance, or close to that. However, the relative performances do not differ 
as much as they do in TREE. Furthermore, the differences show primarily for small 
messages. Note that for small messages, a higher tree degree lowers the height of the 
tree, but increases the number of metadata messages certain nodes send (unlike in a 
Send/Receive implementation, a parent sends only metadata to its children, and not 
the actual data). It appears that the larger number of messages affects the time more 
than the benefits gained in decrease of tree heights, beyond tree degree 3. A similar 
trend is demonstrated in TREE too, though the differences there are greater. For large 
messages, performances of the different algorithms are similar, though the pipelined 
implementation is slightly better for very large data sizes. The latter observation is not 
surprising, because the time taken for the pipeline to fill is then negligible related to 
the total time, and the number of DMAs issued by any SPE subsequently is lowest for 
pipelining.  

Figure 3 compares the performance of the different algorithms. The trend for the 
different algorithms on eight processes (not shown here) is similar to that on sixteen 
processes. We can see that AG has the best, or close to the best, performance for large 
messages. TREE degree 3 is best for small messages with more than four processes. 
Up to four processes, broadcast G is best for small messages. Pipelining is also good 
at large message lengths, and a few other algorithms perform well under specific pa-
rameters. As a good choice of algorithms, we use broadcast AG for data of size 
8192 B or more, broadcast TR degree 3 for small data on more than four processes, 
and broadcast G from small data on four or fewer processes. The maximum band-
width that can be served by the main memory controller is 25.6 GB/s. We can see that 
with this choice of algorithms, we reach close to the peak total bandwidth (for P-1 
writes and one read) for all process counts of four or more, with data size 16 KB or 
more. The bandwidth per process can be obtained by dividing the total bandwidth by 
the number of processes.  
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Fig. 3. Broadcast performance. Left: Timing on sixteen processes. Right: Main memory band-
width with a "good" choice of algorithms. 

3.4   Reduce  

In this call, data from all the processes are combined using an associative operator, 
such as MPI_SUM for addition, and the result placed in the root. Two of the algo-
rithms also assume that the operation is commutative, which is true for all the built-in 
operators. 

 
Algorithms. The communication structure of this operation is similar to that of the 
broadcast, but with the directions reversed. In addition, each time a processor gets 
data, it also applies the operator to a current value and the new data. Since the  
communication structure is similar to the broadcast, we considered only the types of 
algorithms that worked well for the broadcast, namely, TREE and AG. In both these 
algorithms, the computation can also be parallelized efficiently, unlike with OTA. 

(TREE) Local Store Based Tree. In this implementation, the communication direction 
of the broadcast TREE is reversed. A process gets a piece of data from its memory lo-
cation to local store, gets data from a child's local store to its own local store when 
that data is available, and combines the two using the specified operator. It repeats 
this process for each child, except that it does not need to get its own data from main 
memory for subsequent children. Once it has dealt with all the children, it informs the 
parent about the availability of the data by DMAing a metadata entry, as in the broad-
cast. It repeats this for each piece of data in main memory. Double buffering is used 
to reduce the latency overhead by bringing data from main memory or the next child 
into a new buffer. Unlike with the broadcast, we need four buffers, two for each oper-
and of a reduce operation, and two more because of double buffering. Due to space 
constraints on the local store, we used the same buffers as in the broadcast, but con-
ceptually treated them as having half the size (four buffers of 8KB each instead of two 
buffer of 16K each with broadcast).  

(AG) Each Process Handles a Piece of Data. In this implementation, each process is 
responsible for reducing a different piece of the data, and then writing this to the  
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Fig. 4. Reduce timings for MPI_SUM on MPI_INT (four Bytes per int). Top left: Four  
processes. Top right: Eight processes. Bottom left: Twelve processes. Bottom right: Sixteen 
processes. 

destination location of the root. An initial all gather is used to get addresses of all 
SPEs, as in broadcast. 

(TREEMM) Send/Receive. We implemented the usual tree based reduction algorithm 
on top of our implementation of MPI_Send and MPI_Recv [3] for the Cell processor, 
just for comparison purposes. The MPI_Send and MPI_Recv operations themselves 
make effective use of the features of the Cell. However, the extra copying to memory 
makes the performance worse. 

Performance Evaluation. We give performance results in figure 4, for different 
numbers of processes. We can see that, for small data sizes, TREE degree 3 is either 
the best, or close to it, on greater than four processes. This is consistent with the be-
havior expected from the broadcast timings. On four processes, a tree of degree four, 
which has height 1, performs best. But, degrees 2, 3, and 4 are very close to each 
other in most cases. Reduce AG is worse for small messages, because of the overhead 
of all-gathering the metadata initially. TREE degree 1 is best for very large data, ex-
cept on four processes. Reduce AG is the best at intermediate data sizes, except on 
four processes, where it is the best even for large messages. This can be explained as 
follows. Reduce AG parallelizes the computations perfectly, but issues P+1 DMAs 
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for each piece of data (P gets and one put). As mentioned earlier, sending a large 
number of DMAs is less efficient. On four processes, this number is not very large, 
and so AG still performs well. The better performance of AG at intermediate data 
sizes can be explained as follows. The pipelined algorithm (TREE degree 1) requires 
communication of the order of the number of processes before results start coming 
out. If the data size is not very large, then this time plays a relatively large role. For 
large data, the initial time taken does not play as important a role, and so the pipelined 
algorithm is better. The reduction takes more time than the broadcast because of the 
extra overhead of the reduction operation. We have also evaluated the performance of 
the Send/Receive based reduce TREEMM. Its performance varies between 5 ms for 
128 B to around 2000 ms for 1 MB on eight processors, and is worse than the best al-
gorithm for each data size and processor count considered. 

4   Conclusions and Future Work  

We have described in detail implementation of three MPI collective operations: bar-
rier, bcast, and reduce. We have also implemented the following: gather, allreduce, 
scan, allgather, alltoall, and vector versions of these calls. Our results show good per-
formance, both within a chip and in blade consisting of two Cell processors. We have 
implemented a variety of algorithms. While we use the availability of the common 
shared memory and high bandwidths available, the main benefit are obtained through 
effective use of the local store, and hiding the cost of access to main memory through 
double buffering.  

Some of the future work is as follows. (i) Since the metadata size is sixteen bytes, 
we can consider using some of the extra space in it for small messages, thereby reduc-
ing the number of communication operations for small messages. (ii) We have per-
formed barrier synchronization at the end of each collective call, in order to prevent 
successive calls from interfering with each other. This can be avoided by using count-
ers, as some implementations have done, and may be beneficial when applications 
reach the collective call at much different times. (iii) It will be useful to consider the 
integration of this intra-Cell implementation with implementations that connect Cell 
blades using networks, such as Infiniband. (iv) If the application data is in local store, 
then our implementation can be made faster. This can be useful, for example, in the 
MPI microtask model for programming the Cell.  
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Abstract. Virtualization of computing resources is becoming increas-
ingly important both for high-end servers and multi-core CPUs. In a
virtualized system, the set of resources that constitute a virtual com-
pute entity should be spatially separated from each other. Dividing the
cores on a chip, or the CPUs in a high end server into disjoint sets for
each task is a trivial problem. Ensuring that they use disjoint parts of the
interconnection network is, however, complex, and in existing methods
the requirement of routing-containment of each virtual partition severely
degrades the utilization of the system. In this paper, we present an alloca-
tion strategy that is based on Up*/Down* routing. Through simulations,
we demonstrate increases (in some cases above 30%) in system utiliza-
tion relative to state-of-the-art in a Dimension Order routed mesh - a
topology that is assumed to be widely deployed in Networks on Chip.

1 Introduction

The allocation of subsets of compute resources to incoming tasks1 was studied
quite intensely in the nineties. At the time it was mainly an academic exer-
cise, since the work developed assumed a mode of operation that was hardly
found anywhere. This has now changed profoundly for two reasons. Chips with
multiple compute cores have emerged and become mainstream, and chips with
as many as 256 cores are expected in the not too distant future. This means
that operating systems will soon have to allocate parallel tasks to partitions of
the chip in an efficient way. The other development that has revitalized this
problem area is what we call Utility Computing Data Centers (UCDCs). These
are facilities that have large amounts of computing resources at their disposal,
and that partition these resources into multiple virtual servers based on the de-
mand of customers. Recently, vendors have introduced industrial solutions to
Utility Computing [1,2,3], and several Utility Computing services are now be-
ing offered [4,5]. Architectural challenges for an interconnection network [6] in a

1 A task may also be referred to as a job.
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UCDC environment are discussed in [7], where flexible partitioning is emphasized
as one of the main issues.

A significant number of processor allocation algorithms have been proposed
for traditional high performance computing multiprocessors. Although hybrid
methods such as [8] have been introduced, the majority of algorithms fall into one
of two categories: they may be contiguous [9,10,11,12,13,14,15,16,17,18,19,20] or
non-contiguous [21,22,23,24]. A contiguous algorithm designates a set of adjacent
processors to a task, whereas a non-contiguous algorithm may designate a set of
processors that are not adjacent. The choice between a contiguous and a non-
contiguous algorithm is a trade-off between the advantages and disadvantages
associated with each of the two categories.

External fragmentation is an inherent issue for contiguous algorithms that can
be completely avoided by non-contiguous algorithms. It occurs when a sufficient
number of processors is available, but the allocation attempt nevertheless fails
due to some restriction (many strategies require that a region of available pro-
cessors constitutes a sub-mesh). Internal fragmentation occurs if more processors
than requested must be allocated to a task (e.g. if the allocated area must be a
quadratic sub-mesh for which the side lengths are powers of 2 [25]).

For a non-contiguous algorithm, contention for the link capacity may be un-
avoidable, but modern interconnect technologies can use virtual channels to sep-
arate traffic. Some contiguous resource allocation algorithms have an attractive
quality that we refer to as routing-containment : the set of resources assigned to
a task is selected in accordance with the underlying routing function, such that
no links are shared between messages that belong to different tasks. Routing-
containment in resource allocation is important for a series of reasons. Most im-
portantly, each task should be guaranteed a fraction of the interconnect capacity
regardless of the properties of concurrent tasks. Thus, if one task introduces se-
vere congestion within the interconnection network, other tasks should not be
affected. In previous works the notion of routing-containment is often only hinted
at. Even so, many strategies, like those that allocate sub-meshes in meshes, will
be routing-contained whenever the predominant Dimension Order routing algo-
rithm (DOR) is used. Although not always explicitly stated, this is perhaps the
sole reason for restricting oneself to allocating sub-meshes in meshes.

We believe that the advent of topology agnostic routing algorithms that per-
form almost as well as topology specific routing algorithms (see e.g. [26,27,28])
may form the basis for resource allocation strategies that are more flexible than
the established contiguous strategies are. This paper introduces a novel routing-
contained resource allocation algorithm, UDFlex, that is based on the topology
agnostic Up*/Down* routing algorithm [29]. UDFlex may be used on any topol-
ogy, and the only restriction on a resource allocation is that the set of resources
must constitute a sub-graph of the overall Up*/Down* graph. This provides
increased flexibility and potentially reduced external fragmentation when com-
pared to the algorithms that restrict the allocated areas to specific shapes.

The traditional processor allocation algorithms assume a space sharing
environment where a task runs on the allocated set of processors without
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interruption until completion. Other common assumptions are that all resources
are equivalent and that compute nodes are the only type of resource eligible for
allocation. Although such a homogeneous system may be a simplification of a
real system, these assumptions are adopted here for the sake of comparison with
the established algorithms. Some of the processor allocation algorithms found in
the literature are summarized in Section 2. UDFlex, our novel allocation algo-
rithm, is described in detail in Section 3. In Sections 4 and 5 the performance
of the proposed method is evaluated before we conclude in Section 6.

2 Related Work

Several contiguous processor allocation algorithms have been proposed for mesh
and k-ary n-cube topologies. As opposed to UDFlex most of them restrict the
allocated regions to sub-meshes or sub-cubes. Most papers ([30] is an exception)
that propose allocation algorithms for k-ary n-cubes do not discuss the issue that
if DOR is used and sub-meshes are allocated in a topology that has wraparound
links the shortest path between two nodes may include intermediate nodes that
are not part of the allocated region. In such cases, messages that are routed
outside the allocated region risk interference with messages that belong to other
tasks, and the allocation algorithm is thus not routing-contained.

First Fit and Best Fit [15] were proposed for two-dimensional meshes to solve
problems related with the 2D Buddy [25] and Frame Sliding [31] strategies. The
applicability of 2D Buddy is restricted to square mesh systems and allocations
are restricted to square sub-meshes, where the side lengths of the squares are
powers of 2. As a result of the sliding of frames in fixed strides through the
mesh, Frame Sliding will not always recognize a free sub-mesh even if one is
available. First Fit and Best Fit keep track of free and busy processors, and for
each scheduled task they calculate which processors are the bottom left node in
a free sub-mesh of a requested size a × b. First Fit then allocates the first free
sub-mesh found, whereas Best Fit attempts to reduce external fragmentation by
selecting the smallest free region for allocation, and thereby leaving larger free
contiguous areas for future and possibly larger tasks.

For an incoming resource request a × b Adaptive Scan [10] may rotate the
original request by 90 degrees and also search for a free sub-mesh b×a. Adaptive
Scan does not scan through every node in the mesh, and achieves a complete
sub-mesh recognition capability as it does not fix the strides.

Flexfold [11] has complete sub-mesh recognition capability, and searches first
for a sub-mesh of size a × b or b × a, and may in addition (after consideration of
a possible communication overhead) fold the originally requested sub-mesh a× b
and search for a sub-mesh of size a

2 × 2b, 2a × b
2 , 2b × a

2 , or b
2 × 2a (if a or b are

odd numbers some of these alternatives are of no interest).
In [20] a strategy is proposed for two-dimensional mesh systems that places an

allocation in an available sub-mesh that has its left boundary towards another
allocated sub-mesh or towards the edge of the mesh. This principle is also used
by the Leapfrog method [14], that introduces a more efficient data structure for
faster recognition of free sub-meshes in a mesh topology. In [14] analytical models
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concerning the execution cost of the allocation process and the probabilities of
finding free sub-meshes under different load levels are presented. As opposed to
UDFlex, the focus of both [20] and [14] is more on allocation efficiency than on
the fragmentation issue, and the results presented in [20] and [14] do not indicate
a significant reduction of fragmentation when compared to e.g. Adaptive Scan.

In [16] multi-dimensional sub-meshes are allocated for three-dimensional tori.
The strategy has complete sub-mesh recognition capability, does not restrict
the orientation of sub-meshes, and may allocate sub-meshes across wraparound
links. Routing issues are not discussed in [16]. We observe, however, that the use
of DOR cannot ensure routing-containment since the shortest path between two
nodes may traverse nodes that are not part of the allocated sub-mesh.

The k-ary Partner strategy [30] uses a tree structure to represent sub-cubes,
and the tree is searched with an aim to localize free m-dimensional sub-cubes
(slices) of k-ary n-cubes. The strategy is routing-contained, but does not have
complete sub-cube recognition capability, and may be affected by internal frag-
mentation due to the requirement that the allocated sub-cubes have radix k.

The scan search scheme [19] allocates three-dimensional sub-meshes in tori
where the sub-meshes may be allocated across wraparound links, has complete
sub-mesh recognition capability, allows flexible orientation of the sub-meshes,
but is not routing-contained. A particular data structure is used to reduce the
three-dimensional information on a torus to two-dimensional information to im-
prove the average allocation time when compared to [16].

The Extended Tree-Collapsing strategy [17] addresses the internal fragmenta-
tion issue, and can allocate either cubic or non-cubic sub-cubes in a k-ary n-cube.
The scheme is affected by significant external fragmentation, and cannot ensure
routing-containment (e.g. for an allocated r-ary m-cube with r > k

2 ).
The main idea of the Isomorphic allocation strategy [12] is to partition a k-

ary n-cube recursively into 2n k
2i -ary n-cubes in the ith step of partitioning. The

strategy is, however, not restricted to k-ary n-cube systems nor to the allocation
of n-cubes (several n-cubes can be merged to accommodate a resource request
of a different topology). The strategy cannot always ensure routing-containment
if DOR is used. Consider e.g. an 8-ary 3-cube where the resource requests have
the form x × y × z where 1 ≤ x, y, z ≤ 8, then if either of x, y, z > 8

2 , messages
may be routed outside the allocated region due to the wraparound links.

The allocation of sub-tori in high-dimensional tori is the focus of [18] which
requires that the sizes of all but one dimension of the torus are powers of 2,
and that the tasks request a number of processors that is a power of 2. In
contrast, UDFlex, a topology agnostic allocation algorithm, can handle high-
dimensional systems without such requirements on the numbers of processors in
either systems or resource requests.

For faulty meshes and tori the strategies described above will not perform
satisfactory. Therefore particular methods have been proposed such as [13] that
identifies and allocates virtual sub-meshes in faulty meshes and [9] that uses a
distributed procedure to derive healthy sub-meshes from a faulty mesh or torus.
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For UDFlex no particular considerations are needed for faulty meshes and tori
due to the topology agnosticism of the method.

Although most strategies that allocate sub-meshes or sub-cubes in meshes or
tori do not cause as severe internal fragmentation as [25] does, these strategies are
nevertheless restricted to allocate a number of processors that can be expressed
as a product of numbers a×b×. . . . Consider e.g. a two-dimensional mesh or torus
of size w × h where internal fragmentation may occur if the required number of
processors cannot be expressed as a product a× b where a ≤ w and b ≤ h and as
a result a higher number of processors than required must be allocated. UDFlex,
on the other hand, can allocate any number of processors and thus eliminates
this source of internal fragmentation.

3 UDFlex

UDFlex is a topology agnostic resource allocation algorithm that can allocate
any number of resources. It is based on the Up*/Down* routing algorithm that
assigns up and down directions to all the links in the network to form a directed
graph rooted in one of the nodes, and that avoids deadlock by prohibiting the
turn from a down to an up direction link. Assume that an Up*/Down* graph
has been constructed for an interconnection network that connects a number of
resources. Then, the main idea behind UDFlex is to allocate resources that form
a separate Up*/Down* sub-graph to an incoming task. This ensures routing-
containment. UDFlex can recognize a free Up*/Down* sub-graph given that
one is available, and the allocation of Up*/Down* sub-graphs allows the allo-
cated regions to form irregular shapes. This increased flexibility can alleviate the
fragmentation problem inherent in contiguous resource allocation algorithms.

3.1 Description

We assume a traditional system model where tasks arrive in a queue, and each
task has requirements on such aspects as the number of resources, running time
etc. A scheduler decides the sequence in which the queued tasks are selected, and
an allocator attempts to locate and reserve a set of free resources that meets the
requirements of the selected task.

Assume that a task selected by the scheduler requests a number of resources
|R|, that the allocator uses the UDFlex allocation algorithm, and that the rout-
ing algorithm has calculated an Up*/Down* graph G on the topology. Given
that a sufficient number of resources are available to support the request, UD-
Flex first identifies the roots of all free Up*/Down* sub-graphs in the network.
Subsequently, the set of roots are searched to identify the smallest sub-graph,
g, that has a sufficient number of free resources (|g| ≥ |R|) to accommodate the
request. In case of a tie the sub-graph with the deepest root relative to the root
of G is selected as we aim to keep the area close to the root of G free and defrag-
mented to increase the probability of successful accommodation of subsequent
tasks with possible high resource requirements.
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If none of the free sub-graphs is of sufficient size, the task is returned to the
queue, awaiting a future allocation attempt following the termination of one of
the already running tasks. This is an example of external fragmentation (the
algorithm first checked that a sufficient number of resources were free).

Assume that a valid2, free, and sufficiently large sub-graph, g, of G has been
selected. If |g| = |R|, the entire sub-graph g is allocated to the task. If |g| > |R|,
then in order to avoid internal fragmentation, the redundant number of nodes,
r+, of g must not be included in the allocation. In order to identify a set of r+
redundant nodes, and with the objectives of keeping free resources defragmented
and maintaining valid Up*/Down* sub-graphs for future allocation attempts,
we identify the smallest valid Up*/Down* sub-graph g′ of g where |g′| ≥ r+.
In the case of a tie, since we aim to keep the region close to the root of G
free and defragmented, the sub-graph with the shallowest root relative to the
root of G is selected. If |g′| = r+, we simply allocate g − g′. If |g′| > r+, for
simplicity, although fragmentation of a region of free resources may result, we
apply a breadth-first search from the root of g′ to identify a valid Up*/Down*
sub-graph g′′ where |g′′| = |g′| − r+, and allocate g − g′ + g′′.

3.2 Complexity

UDFlex addresses the fragmentation issue inherent in contiguous strategies, and
does not address the complexity and running time cost of the allocation algo-
rithm. Although this cost is an important metric for any algorithm, there may
be a trade-off between allocation cost and the potentially higher resource uti-
lization of an advanced algorithm. We argue that for a UCDC, where allocated
tasks may run for several seconds, minutes or hours, the degree of fragmentation
may matter more than the algorithm complexity. The current version of UDFlex
includes some optimizations with respect to node-selection, of which the most
important are the placement of an allocation in the smallest possible free sub-
graph, and the preference of the deepest sub-graph in case of a tie. A ”first-fit”
approach, where the first possible set of nodes encountered are selected, may
decrease the running time at the expense of increased fragmentation.

Assume that the Up*/Down* graph can be expressed as G = (V, E) where
V is the set of vertices and E is the set of edges, and that |V | is the number
of vertices and |E| is the number of edges. For resource allocation the most
complex algorithm step is the search for the smallest free sub-graph that is large
enough to hold the resource request. The complexity of this step is formally
O(|V |×(|E|+ |V |)), but for two-dimensional tori and meshes where |E| = 2×|V |
and |E| < 2 × |V |, respectively, the complexity becomes O(|V |2). For practical
purposes we observe that in cases where few tasks are running, the number of
free sub-graphs is probably significantly less than |V | whereas the size of each
sub-graph may be relatively large. If, on the other hand, many tasks are running
there may be a higher number of free sub-graphs, but the size of each sub-graph
may be smaller. The complexity of the deallocation phase is O(|V |) and consists

2 A valid sub-graph is a correct Up*/Down* graph that has e.g. only one root node.
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of a traversal through the nodes currently allocated to the finishing task to
change their state from busy to free.

4 Experiment Setup

We developed a simulator model in the J-Sim [32] environment to compare
the performance of UDFlex with that of several traditional processor alloca-
tion strategies. Our model consists of the following main components: a queue of
infinite size where tasks with certain resource requirements arrive according to
an exponential distribution; a FCFS scheduler that upon task arrival or termi-
nation of a running task selects the first task in the queue as the next candidate
for allocation; and an allocation module that runs a specific allocation algo-
rithm and attempts to localize free resources to meet the demands of the task.
When successfully allocated, a task runs without interruption on the allocated
resources for an exponentially distributed time referred to as the service time,
ST . Time is measured in cycles - an abstract time unit.

In this study we have considered both meshes and tori of size 16×16, 32×16,
and 32 × 32. To evaluate the performance of the various allocation algorithms
we use the metrics system utilization and queuing time. Assume that a mesh or
torus has width w and height h, that the processor in position (i, j) has been busy
for the aggregated time busyi,j, and that data has been collected for a period

of time T . Then according to [15] the system utilization is
∑

1≤i≤w,1≤j≤h busyi,j

w×h×T ,
and the system fragmentation is 1−system utilization. The queuing time is the
average time that a task is held in the queue, from the time of the arrival of a
task until its requested resources have been allocated.

In the evaluation experiments, routing-contained allocation strategies are used
as our main points of reference. We do, however, include a Random allocation
strategy in our plots. This is an allocation strategy that fails only when the
next task to be served requires more resources than those that are currently
vacant (thus fragmentation is not an issue). The reason for including this strategy
is to visualize the upper performance benchmark with respect to our metrics
(as long as communication overhead is not considered). For practical purposes,
communication overhead may significantly reduce the attractiveness of Random.

In these experiments UDFlex uses an Up*/Down* graph that is based on a
tree identified by a breadth-first search (as proposed in [29]) and that has the
root in the upper left corner of the topology. For meshes we compare UDFlex
with the contiguous allocation algorithms First Fit, Best Fit, Adaptive Scan,
and Flexfold. For tori we compare UDFlex with a contiguous and recognition-
complete scheme that allocates sub-meshes (possibly across wraparound-links).
First, allocation of the originally requested sub-mesh a×b is attempted, and if no
such sub-mesh is available the 90 degrees rotation of the original request (b×a) is
attempted. We believe that for the metrics considered, this scheme is a reasonable
representative of algorithms that allocate sub-meshes in two-dimensional tori. As
with most of the allocation strategies for k-ary n-cubes that were presented in
Section 2 this scheme is not routing-contained when DOR is used. Nevertheless,
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for the evaluation of UDFlex with respect to e.g. system utilization we believe
that a comparison with this strategy may be more interesting than a comparison
with e.g. the k-ary Partner strategy [30] which is routing-contained, but does
not have complete sub-cube recognition capability and may also be affected by
internal fragmentation.

For a fair comparison between algorithms that allocate sub-meshes and those
that do not, the resource demand of tasks should be equal for either group: each
task requests a×b resource entities (which is considered a sub-mesh or a product
of numbers depending on the group of algorithm used). a and b are drawn from
separate uniform distributions with maximum sizes amax and bmax, respectively.
We conducted experiments to observe the effect of tasks with high, medium, and
low resource demands: for high resource demand amax is set to w and bmax is
set to h; for medium resource demand amax is set to w

2 and bmax is set to h
2 ;

and for low resource demand amax is set to w
4 and bmax is set to h

4 .
The input load for a mesh or torus of width w and height h is |R|mean×STmean

w×h×ITmean

(in accordance with [19]), where |R|mean is the mean number of resources re-
quested by the tasks, STmean is the mean service time of tasks, and ITmean is the
mean inter-arrival time of tasks. In the majority of our experiments STmean is
fixed at 1 000 cycles and the desired load levels result from variation of ITmean.

The experiments were run on a Condor [33] cluster, and each of the exper-
iments was stopped when 20 000 tasks had been allocated and completed. To
ensure representative results, both the initial and final 10% of the observations
were discarded. The presented values are the mean values that result from 16
repetitions of each experiment (each initialized by a different seed). For each
observed mean value a 95% confidence interval is plotted.

Although the fragmentation issue is the primary subject of this study, the
effect of possible communication overhead is also considered to verify that UD-
Flex is advantageous even for communication intensive applications. The effi-
ciency of Up*/Down* routing may be affected by congestion that may form
close to the root node and also by the fact that a legal path may not be the
shortest path between two nodes. For UDFlex the distance between nodes may
be altered compared to sub-mesh or sub-cube allocation (and the use of DOR)
due to the allocation of irregularly shaped regions and the routing restrictions
of the Up*/Down* algorithm. These issues may result in an increased service
time of tasks for UDFlex compared to the routing-contained methods that allo-
cate sub-meshes. However, for an interconnection network that uses cut-through
switching [34] a small increase in the number of hops between nodes will have
limited impact on message latency.

For tasks with high resource demands, we conducted a set of experiments
for meshes to study the level of increase in service time that can be tolerated
before the advantage of UDFlex, with respect to fragmentation, is outweighed.
In addition to communication overhead the increase in service time may also
represent a possible allocation overhead for each task due to the complexity of
UDFlex. We have compared the queuing time and throughput (system utilization
is barely affected by increased task service time) of UDFlex with the queuing time
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and throughput of three routing-contained methods that allocate sub-meshes
without manipulating the shape of requested sub-meshes - Adaptive Scan, Best
Fit and First Fit. This study does not include Flexfold that may alter the original
distance between nodes by folding the requested sub-mesh. A load level of 0.9
(with STmean of 1 000 cycles and ITmean of 314 cycles) was selected as basis
for the experiments. For tasks that request a number of resources |R| > 1 the
service time, ST , that is drawn from an exponential distribution, is modified for
UDFlex according to the formula ST ′ = ST + ST×x×|R|

100×w×h , where x is percentage
increase in task service time, w is the width, and h is the height of the mesh.

5 Results

The system utilization and queuing time versus input load for the 32 × 32
mesh and torus topologies are shown in Figures 1 and 2, respectively. Fig-
ures 1(a) and 1(b) show that for the 32 × 32 mesh the system utilization is
significantly higher for UDFlex compared to the other contiguous allocation al-
gorithms. As expected Flexfold has the best performance of the algorithms that
allocate sub-meshes. For tasks with high resource demand (Figure 1(a)) the uti-
lization for Flexfold for the highest load levels is 0.53, for UDFlex it is 0.68
(28.3% higher than Flexfold), whereas for Random, the theoretical upper bound
performance indicator, it is 0.73 (not more than 7.4% higher than UDFlex). For
tasks with low resource demand (Figure 1(b)) the utilization for Flexfold for the
highest load levels is 0.73, for UDFlex it is 0.86 (17.8% higher than Flexfold),
whereas for Random it is 0.98 (14.0% higher than UDFlex). For the 32 × 32
torus the system utilization for tasks with high and low resource demand are
shown in Figures 2(a) and 2(b), respectively. As for the mesh topologies UD-
Flex significantly improves the system utilization compared to the allocation
of sub-meshes (with 21.4% and 19.4% for high and low task resource demand,
respectively).

The higher system utilization of UDFlex compared to the strategies that al-
locate sub-meshes is even more pronounced for tasks with medium and high
resource demand than for tasks with low resource demand (and this is even
more apparent in meshes than in tori). Generally, the benefit of UDFlex over
the other contiguous algorithms is higher for larger topologies. We note a partic-
ular increase in performance (more than 30% higher system utilization) when we
compare the results of UDFlex with the results of Adaptive Scan and Flexfold
for tasks with high resource demand for the non-quadratic (32 × 16) mesh or
torus. Adaptive Scan and Flexfold perform relatively worse in this case since
a resource request for a sub-mesh a × b cannot be rotated by 90 degrees if
a > 16, and in addition several of the folded alternatives may not fit the
topology.

For both meshes and tori we observe that the knee-point where the maximum
system utilization is reached occurs under higher input load for UDFlex than
for the other contiguous algorithms. Figures 1(c), 1(d), 2(c), and 2(d) show that
as the load increases the queuing time for UDFlex stays significantly lower than



Routing-Contained Virtualization Based on Up*/Down* Forwarding 509

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2

S
ys

te
m

 u
til

iz
at

io
n

Load

System utilization, 32 x 32 mesh, max task size 1024

Adaptive Scan
Best Fit
First Fit
Flexfold

Random
UDFlex

(a) System utilization for tasks with high
resource demand.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2

S
ys

te
m

 u
til

iz
at

io
n

Load

System utilization, 32 x 32 mesh, max task size 64

Adaptive Scan
Best Fit
First Fit
Flexfold

Random
UDFlex

(b) System utilization for tasks with low
resource demand.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

Q
ue

ui
ng

 ti
m

e 
(c

yc
le

s)

Load

Queuing time, 32 x 32 mesh, max task size 1024

Adaptive Scan
Best Fit
First Fit
Flexfold
Random
UDFlex

(c) Queuing time for tasks with high re-
source demand.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

Q
ue

ui
ng

 ti
m

e 
(c

yc
le

s)

Load

Queuing time, 32 x 32 mesh, max task size 64

Adaptive Scan
Best Fit
First Fit
Flexfold
Random
UDFlex

(d) Queuing time for tasks with low re-
source demand.

Fig. 1. System utilization and queuing time for 32 × 32 mesh

for the algorithms that allocate sub-meshes, and confirm that due to reduced
fragmentation UDFlex sustains a significantly higher load before the system
saturates. With the exception of the already discussed issue of Adaptive Scan and
Flexfold for non-square topologies, the results for the 32×16 and 16×16 mesh and
torus are similar to those for the 32×32 mesh and torus, respectively. The system
utilization achieved by UDFlex is similar for the mesh and torus experiments
even though the Up*/Down* graphs are different for the two topologies.

In most of our experiments STmean was fixed and the different load levels
result from the variation of ITmean. For tasks with high resource demand we
also conducted a set of experiments where ITmean was fixed at 500 cycles and
STmean was varied to achieve the desired load levels. For all algorithms and both
in meshes and tori the variation of load has the same effect on system utilization
regardless of which of the two parameters that was fixed. The effect on queuing
time was not the same for the two sets of experiments, however. We observed
e.g. that for low load levels the queuing time was lower for the experiments with
fixed ITmean than for the experiments with fixed STmean.

In addition to system utilization and queuing time we also evaluated through-
put - the number of tasks terminated over a certain period of time - that is
16 000 tasks

T . These results support the conclusions that were drawn from the
considerations of system utilization and queuing time.
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Fig. 2. System utilization and queuing time for 32 × 32 torus

Section 4 provided motivation for the set of experiments where a prolonged
duration of tasks for UDFlex is used to represent possible communication and
allocation overhead of UDFlex when compared to methods that allocate sub-
meshes. For the meshes of size 16 × 16 and 32 × 16 Figure 3 shows the effect on
queuing time as the service time of tasks is increased for UDFlex (as previously
pointed out this increase in task service time is relative to task size). For the
16 × 16 mesh the task service time of UDFlex may be increased by around 60%
before the queuing time of UDFlex crosses that of Adaptive Scan (Figure 3(a)).
For the 32×32 mesh the crossing occurs around 70%. As previously discussed the
performance of Adaptive Scan deteriorates for a 32×16 mesh for tasks with high
resource demand since a resource request a×b cannot be rotated by 90 degrees if
a > 16. Figure 3(b) shows that for a 32 × 16 mesh UDFlex tolerates an increase
in task service time of around 90% before the queuing time of UDFlex crosses
the queuing time of Best Fit. Compared to First Fit that has the highest queuing
time of the methods that allocate sub-meshes, UDFlex tolerates an increase in
task service time of at least 100%. The consideration of throughput gives the
same conclusions as for queuing time.
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Fig. 3. Effect on queuing time of the increased running time of tasks for UDFlex used to
represent possible communication and allocation overhead of UDFlex when compared
to methods that allocate sub-meshes

6 Conclusion

In systems such as Networks on Chip and Utility Computing Data Centers vir-
tualization of computing resources is an important challenge, and for a resource
allocation algorithm two major issues are the minimization of fragmentation
and the prevention of any disturbance between messages that belong to differ-
ent tasks (routing-containment). Most of the traditional contiguous strategies
for meshes and tori allocate strict sub-meshes or sub-cubes and cannot prevent
a high level of fragmentation from occurring, in addition some of the methods
cannot ensure routing-containment.

We propose a novel contiguous resource allocation strategy, UDFlex, that can
be used on any topology - a particularly attractive property in the face of faults in
regular topologies. The strategy recognizes any available Up*/Down* sub-graph,
is not affected by internal fragmentation, and does ensure routing-containment
without the need for reconfiguration. UDFlex assumes that the interconnection
network uses Up*/Down* routing, and the allocation of Up*/Down* subgraphs
to tasks enables flexibility with respect to the shapes of the allocated regions. The
simulation results show that this flexibility significantly reduces fragmentation
and increases the utilization of system resources (in some cases by above 30%)
compared to traditional contiguous allocation strategies. In addition, the possible
drawbacks of UDFlex with respect to algorithm complexity and communication
overhead are shown not to outweigh the advantage of UDFlex until these issues
increase the aggregated task allocation and service time by at least 60%. Thus,
UDFlex should also be attractive for communication intensive applications.

Several issues concerning the UDFlex resource allocation strategy may be
further investigated. With respect to fragmentation, the current version (that
includes some optimizations) could be compared both with a simpler approach
where the first available Up*/Down* sub-graph is selected for allocation, and
with alternative advanced approaches. In our experiments the Up*/Down* graph
is based on a breadth-first search and the root of the graph is the node in
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the upper left corner of the topology. Improved routing efficiency was demon-
strated in [35] by using several heuristics and by basing the graph on a spanning
tree identified by a depth-first search. The effects of an Up*/Down* graph con-
structed according to [35] or with a different root node are still not explored.

We assumed a simple homogeneous system where all resources are single com-
pute nodes. In addition, real systems may consist of resources such as multi-core
chips, hardware accelerators, access nodes, and storage nodes, and UDFlex could
be extended for usability in a more complex heterogeneous system.
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Abstract. This paper proposes a fully distributed fault-tolerant routing
methodology for tori and meshes. A dynamic fault-model is supported,
enabling the network to remain fully operational at all times. Contrary
to most previous proposals that support a dynamic fault-model, the
methodology is able to tolerate concave fault regions, thereby avoiding
disabling healthy nodes in most practical scenarios. The methodology
provides high network performance through the use of adaptive routing
and provides graceful performance degradation in the presence of faults.

1 Introduction

Interconnection networks are used for a variety of purposes, from connecting the
various components of a single device (e.g., connecting the internal units of a
chip) to connecting the nodes of massively parallel computers covering hundreds
of square meters. Due to their large application area, interconnection networks
are found in systems with high requirements for reliability and continued opera-
tion. Faults in the interconnection network may potentially leave the remainder
of the system disconnected, thus, providing a reliable interconnection network is
essential for the overall reliability of the system.

In this paper we consider reliability in interconnection networks with mesh
and torus topologies. These two topologies are among the most commonly used in
interconnection networks. For instance, all top five spots on the current top 500
list of supercomputers [1] are held by machines using these topologies. Enduring
a fault-free network is very difficult in such large systems. Because of the high
number of components, there is an increased probability that some components
may fail. Thus, for massively parallel computers, fault tolerance is a critical
design issue [2][3] that will become increasingly important as systems continue
to scale.

Torus and mesh topologies are also found in more commercial architectures,
like the Alpha 21364 [4] (2D torus), that are targeted at application domains such
as database servers, web servers, and telecommunications. For such commercial
applications there are often strict requirements for uninterrupted service, and
failure to meet these requirements may have severe economic consequences. Two
dimensional mesh/torus topologies are also a popular choice for networks on-
chip [5]. In a recent tera-scale prototype from Intel, 80 cores are connected in a

S. Aluru et al. (Eds.): HiPC 2007, LNCS 4873, pp. 514–527, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Routing Methodology for Dynamic Fault Tolerance in Meshes and Tori 515

2D mesh on a single processor chip [6]. It is considered a requirement for such
future interconnects that they are robust in the face of failures [7].

Faults in an interconnection network can be dealt with statically or dynami-
cally. When a static fault-model is used, all the faults need to be known when the
system is started. Thus, when a fault occurs, the system has to be restarted. In
order to be effective, such a method may need to be combined with checkpoint-
ing. If restarting the system when faults occur is not desirable, either because of
the overhead imposed by relying on a checkpointing mechanism (i.e., maintaining
checkpoints and rolling back to the last checkpoint at system failure/restart) or
because continued operation is required, a dynamic fault model should be used.
When a dynamic fault model is used, the system remains operational while mea-
sures are taken to circumvent the faulty component(s).

By using fault-tolerant routing, fault-tolerance can be provided (without re-
quiring spare components) by utilizing the inherent redundancy of topologies
such as mesh and torus. One approach to provide fault-tolerant routing has been
to develop adaptive routing algorithms, where the adaptivity can be used to cir-
cumvent faulty components. Notice that adaptive routing algorithms are not
necessarily fault-tolerant though. A strictly minimal adaptive routing algorithm
is not able to handle a single fault, as the source-destination pairs connected by
a single minimal path are disconnected by any fault within this path.

Linder and Harden [8] proposed a method providing sufficient adaptivity to
tolerate at least one fault. However, the number of virtual channels required by
their method increases exponentially with the number of dimensions. Chien and
Kim [9] observed that the high number of virtual channels required by Linder
and Harden is due to the freedom to traverse dimensions in an arbitrary order.
They therefore proposed planar adaptive routing [9], where adaptivity is limited
to adaptive routing in two dimensions at a time. This method requires at most
three virtual channels for meshes of any dimension, but does not properly handle
faults on the edges of the network.

Glass and Ni [10] used the partial adaptivity provided by the turn model [11]
to develop a fault-tolerant routing algorithm for meshes. Their method does not
require any virtual channels, but tolerates only n − 1 faults in an n-dimensional
mesh and uses non-minimal paths in the fault-free case. The turn model is also
utilized by Cunningham and Avresky [12] who provide fault-tolerant routing
in two dimensional meshes using two virtual channels. Their method incurs a
significant performance loss by a single fault, however, as adaptive routing must
be disabled. It also requires healthy nodes to be disabled.

Boppana and Chalasani [13] use local information to create rectangular fault
regions in two-dimensional meshes with dimension order routing. The non-faulty
nodes and links on the border of a fault region create an f -ring or f -chain used
for rerouting packets around the fault(s). By combining this method with pla-
nar adaptive routing it can also be applied to higher dimensional meshes. An
improved version by Sui and Wang [14] is able to tolerate overlapping fault re-
gions in meshes using three virtual channels. Using rectangular fault regions
has the disadvantage of disabling an unnecessary high number of healthy nodes.
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Kim and Han [15] partly address this by extending the method to support over-
lapped nonconvex fault-regions in meshes, using four virtual channels. Recently,
Gu et al. [16] proposed extensions to also support concave fault-regions. This
latter method can be applied in combination with previous proposals for han-
dling nonconvex faults in meshes and tori. However, it requires ejecting and
reinserting packets when entering/leaving a concave section, thereby increas-
ing latency and occupying memory at the nodes. Park et al. [17] handle simple
concave, non-overlapping, fault-regions in meshes without ejecting/reinserting
packets, requiring three or four virtual channels depending on the provided fault
tolerance. However, this method does not handle faults on the edges of the mesh.

Chalasani and Boppana [18] also proposed a variation of their method for
torus, requiring a total of six virtual channels. Shih later improved on this by
proposing a method tolerating block faults in tori using three virtual channels [3]
and another proposal tolerating nonconvex fault-regions when using four virtual
channels [19]. Unless combined with the method of Gu et al., where packets
are absorbed and re-injected when entering a concave region, these methods
may require healthy nodes to be disabled though. Gómez et al. [2] proposed a
fault-tolerant routing methodology based on routing packets via intermediate
nodes. This methodology supports fully adaptive routing and is able to tolerate
any combination of five faults in three dimensional tori without disabling healthy
nodes. Three virtual channels are required in tori when used in combination with
the bubble flow control [20]. However, only a static fault-model is supported.

While generic routing algorithms for irregular networks can be used to provide
fault tolerance in regular topologies, such strategies generally provide poor net-
work performance compared to using topology specific routing protocols. This
disadvantage can be mitigated by using a topology specific routing protocol in
the fault-free case, and then switch to a generic routing algorithm once the net-
work becomes faulty. According to this strategy, Puente et al. [21] propose a
method providing good network performance in the fault-free case while at the
same time providing strong fault-tolerance. The performance in the presence of
faults, however, is degraded by non-minimal escape paths, especially in larger
networks. Also, the global reconfiguration requires that packet injection is tem-
porarily stopped.

In this paper we propose a routing methodology that is able to handle over-
lapping concave fault-regions. The methodology requires no virtual channels in
meshes, three virtual channels in two dimensional tori, and four virtual chan-
nels in three dimensional tori. For all the topologies, fully adaptive routing can
be supported by adding at least one additional virtual channel. Because fully
adaptive routing significantly improves the network performance, we will focus
on using the methodology with fully adaptive routing. The proposed method is
inspired by a method proposed for meshes by Skeie [22]. The main differences
between the proposal in this paper and the one in the previous paper is that
the methodology proposed in this paper is fully distributed, does not require
separate control lines, can be applied to both mesh and torus topologies, sup-
ports a dynamic fault-model, and provides a higher fault tolerance. Compared
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(a)
(b)

Fig. 1. (a) The solid arrows show the legal turns when positive-first routing is used.
No cycles can be created using the legal turns only. (b) Faults can be circumvented
using the adaptivity provided by positive-first routing.

to other previous proposals, the method proposed in this paper is able to com-
bine support for a dynamic fault-model and fully adaptive routing, while at the
same time not requiring global reconfiguration or stopping packet injection at
any time, in a fully distributed manner using a limited number of virtual chan-
nels. Furthermore, the method being proposed tolerates faults on the edges of
the network and is able to handle concave fault-regions without absorbing and
re-injecting packets.

We will now present the fault tolerant routing methodology. Thereafter, in
the third section, the network performance of the methodology is evaluated.

2 The Fault-Tolerant Routing Methodology

For simplicity we first assume a two dimensional mesh network, and then later
expand this to tori and higher dimensional networks. Because a node fault can
be modeled as the failure of all the links of a node, only link faults are considered
in this paper. It is assumed that all link faults are bidirectional.

The methodology is based on positive-first routing in order to provide
deadlock-freedom. Positive-first is a variation of the turn-model [11], which en-
sures deadlock freedom in meshes by prohibiting some turns. More specifically,
as shown in Figure 1a, the south to east and the west to north transitions
are forbidden. In addition, we also require that all paths are minimal in the
fault-free case.

In order to improve the network performance, the methodology also supports
fully adaptive routing. This is achieved by using positive-first routing as an
escape layer for one or more fully adaptive layers, where each layer uses separate
virtual channels. Thus, at each hop, a packet may take any minimal path using
a fully adaptive channel. If there is no fully adaptive channel free, a positive-first
escape channel is used. If wormhole routing is applied, a packet is not allowed
to use an adaptive channel after first having used an escape channel. Such a
routing function is deadlock-free in accordance with [23].

Because the deadlock freedom of the routing function is provided by the
positive-first escape layer, the focus of this section will be on the required
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measures in order for the positive-first escape layer to remain connected and
deadlock-free in the face of failures. Nevertheless, when faults are present, some
changes are also required in the fully adaptive layer(s). In the fault-free case, a
packet is allowed to take any minimal path using the adaptive channels. In the
presence of faults, a node N may still supply any (non-faulty) minimal adaptive
channel for a destination D, with the following restriction: If any of the directly
connected neighbours of N , that are on a minimal path from N to D, reroutes
packets for D through N , the routing function at N is restricted to return only
the adaptive channel(s) on the links provided by the positive first escape layer
for destination D. This way we avoid loops because of packets switching be-
tween the escape and adaptive layers. With this in mind, we will from now on
concentrate on the rerouting performed in the positive-first layer.

So, let us turn our attention to how faults are circumvented using the pro-
posed fault-tolerant routing methodology, starting with an example scenario.
Figure 1b shows a fault scenario where packets are rerouted around the faults
by using only the turns allowed by positive-first routing. As can be seen in the
figure, the nodes enclosing the faults form a chain of nodes on which packets
can be rerouted around the faults. We will refer to such a chain of nodes as an
f-chain. As illustrated, packets on the south side of the faults are routed around
the faults counterclockwise, while packets on the west side are routed around
the faults in clockwise direction. Packets on the north side are routed clockwise
if destined for a destination to the east or south of the faults, while they are
routed counterclockwise if destined for a node west (including southwest) of the
faults. Finally, packets on the east side of the faults are routed counterclockwise
if destined for a destination west or north of the faults, while they are routed
south if destined for a packet south (including southwest) of the faults. Special
care must be taken on the north and east sides of the faults, for destinations
that are rerouted east/north, in order to avoid the illegal turn. Specifically, as
illustrated by the dotted arrows in Figure 1b, nodes straight north of the fault(s)
must reroute packets eastward if they are to be rerouted around the faults clock-
wise, so that the illegal turn is not introduced. Similarly, nodes straight east of
the fault(s) must reroute packets, which are to be rerouted around the faults
counterclockwise, northward. We will refer to such rerouting that is performed
by nodes not on the f-chain as secondary reroutes, because these reroutes are
required as a result of rerouting performed on the f-chain. Anyway, when rerout-
ing is performed this way, all routing is according to positive-first and is thereby
deadlock free.

2.1 Distribution of Status Information

If our method were to be used with a static fault-model, the routing function
could simply be calculated based on the network status at system start-up and
uploaded to the nodes by a central manager. However, assuming that our method
is to be used with a dynamic fault-model in a fully distributed manner, things
are more complicated. Under these assumptions, status-information must be
distributed through control messages and rerouting decisions must then be taken
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locally at each node based on this information. This can either be done by
distributing the location of the faults and having each node compute its next
hops based on this information or by distributing route changes. We will assume
that fault information is distributed. If local or non-local faults cause a node to
no longer being able to provide one of its directly connected neighbours with a
route to a given destination, that neighbour is informed of this change through
an update message specifying the location of the faults. Specifically, if node A
starts rerouting packets for some destination(s) through node B, node A sends
node B an update message with the updated status information. Furthermore,
if the change causes node A to reroute some destinations north, the node to the
east, that is now to perform a secondary reroute in order to avoid the illegal
turn, is notified as well. Likewise, if A reroutes some destinations east, the node
to the north must be notified. If changes in the fault status result in A again
being able to provide its neighbours with routes to these destinations, the same
neighbours should receive this updated status information as well. Notice that
if the link connecting two nodes becomes faulty, there is no need to exchange
fault information between these two nodes and any status information previously
received through the failed link should be discarded.

The distribution of fault information is illustrated in the scenario in Figure 2a.
Let us consider the faulty vertical link. We will refer to the node connected to the
south end of this link as NS , and to the node connected to the north end of the
link as NN . Upon detecting that its north link has failed, NS reroutes packets
for destinations relying on this link eastward. Because NS is now rerouting these
destinations eastward, the node east of NS is notified of the fault through an
update message. Because the west-to-north transition is illegal, the node east
of NS does not have any positive-first paths using the failed link. Still, it must
restrict the adaptive layer from forwarding such packets westward. That is, for
the destinations rerouted east at NS , the node east of NS supplies only the
adaptive channels of the link provided by the positive-first layer, i.e., the north
link. Because these destinations were also forwarded on the north link in the
fault-free case, there is no need for further update messages.

The node north of the fault, NN , also detects that its south link has become
faulty and reroutes the destinations relying on this link eastward. NN must
therefore notify the node to the east of the fault through an update message.
The node east of NN had both positive-first and adaptive paths through the
failed link, and reroutes these paths south. Because all these destinations were
also routed south in the fault-free case, no update message is required to be sent
by the node east of NN . However, because NN has rerouted some destinations
east, it is no longer able to provide its neighbour to the north with paths to
these destinations as this would introduce the illegal turn. Thus, NN must also
send an update message to the node to the north, informing about the fault.
The node to the north of NN handles this in a similar manner as if its south
link had become faulty, that is, by rerouting the destinations relying on the
faulty link eastward and informing its east and north neighbours of the fault.
This way information about the fault propagates to all the nodes performing
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(a) (b)

Fig. 2. (a) Rerouting around separate vertical and horizontal link faults. (b) A complex
fault-scenario with concavities and hidden areas.

secondary reroutes, resulting in the new routing function using only the turns
allowed by positive-first routing. As shown in Figure 2a, the faulty horizontal
link is handled in a similar manner. Thus, connectivity is reestablished despite
of the faulty links.

2.2 The Dynamic Transition from the Old to the New Routing
Function

As shown in the previous sections, the secondary reroutes ensures that the illegal
turn is not required by the new routing function. However, because the transition
from the old to the new routing function is done dynamically, deadlock is still
a concern during the transition phase. The old routing function has become
disconnected due to the fault, and thus some packets being routed in the escape
layer may have ended up in a situation where they have no legal escape path
according to the new routing function. This is for instance the case, in Figure 2a,
for packets arriving on the escape channel of NN ’s north input link that are to
be rerouted on the east link. Forwarding such packets in the escape layer could
potentially create a deadlock because it would introduce the illegal turn. For this
reason we try to forward such packets using the fully adaptive layer(s). If there is
no free buffer space in the fully adaptive layer(s), the packet is dropped. Notice
that a packet may only be dropped during transition from the old to the new
routing function though, and only at a node that has altered its routing function
for the destination of that packet in such a way that an illegal turn would be
introduced. Considering that the packets being buffered at a failing node or
being transmitted on a failing link are generally lost, it would be unrealistic to
try to guarantee that there is no packet loss at all in the face of failures.

2.3 Concave and Nonconvex Fault-Regions and Faults on the Edges
of the Network

So far we have considered single link faults and simple collections of faults (i.e.,
block faults), and shown that these can be circumvented using only the turns
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allowed by positive-first routing. There are some cases that require additional
attention though. While faults on the west and south edges of the mesh are
covered by the rules presented in the previous sections, faults on the north and
east edges are not. Consider the vertical link failure in the eastmost column of
the network in Figure 2b. The nodes south of this fault in the same column,
marked H3 in the figure, are unreachable from all nodes north of the faulty
link, and vice versa, unless the illegal turn is used. Let us define such an area
that is unreachable, without using the illegal turn, as a hidden area. A hidden
area is enclosed by faulty links, or by one or more faulty links in combination
with the edge(s) of the mesh, and can only be entered using a positive (i.e.,
north/east) channel and only be left using a negative (i.e., west/south) channel.
Thus, a hidden area has an opening only on the south and/or west side. If being
entered from the west side, the nodes in a hidden area are unreachable from
nodes north of the northmost entry to the hidden area without using the illegal
turn. Similarly, if being entered from the south side, the nodes in the hidden
area are unreachable from nodes east of the eastmost entry to the area. Figure
2b shows some examples of hidden areas. The node labeled H2 constitutes a
hidden area with opening to the west. This hidden area is nested within another
hidden area, consisting of nodes H1 and F2 in addition to H2, with opening to
the south and west. The two nodes labeled H3, constitutes a hidden area with
opening to the west, enclosed by the faulty link and the edges of the mesh.

Let us denote a node that may introduce the illegal turn without risk of
deadlock as a free-node. The free-node itself is positioned outside the hidden
area, and hidden areas with entry from one side has one free-node while a hidden
area with entry from two sides has two free-nodes. When there are two free-nodes
for the same hidden area, only one of them may introduce the illegal turn and by
convention we chose to introduce the illegal turn on the west side in such cases.
When hidden areas are nested within each other, a hidden area may also contain
a free-node for entering another hidden area. In Figure 2b, F1, F2, and F3 are
free-nodes that may introduce the illegal turn. Because a cyclic dependency can
not be created by introducing the illegal turn at these nodes, there is no risk of
deadlock.

We define an entry node of a hidden area as a node within the hidden area
that is directly connected (by a non-faulty link) to a node outside the hidden
area. Based on this, let us more formally define a node F , connected to node
FN through its north link and to node FE through its east link, as a free-node
if one of the following conditions apply:

– FN is the eastmost entry node of a hidden area with entry from the south,
and there is no dependency in the positive-first layer from the north output
link of F to the north input link of F .

– FE is the northmost entry node of a hidden area with entry from the west,
and there is no dependency in the positive-first layer from the east output
link of F to the east input link of F .

Lemma 1. The illegal turn can be introduced at one free-node for each hidden
area without risk of deadlock.
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Proof. For the illegal turn at F to create a deadlock there needs to be a cyclic
dependency, in the positive-first layer, that includes the illegal turn at F . Thus,
this cycle must go through both FN and FE . Let us consider the case where
FE is the northmost entry node of a hidden area with entry from the west side.
Then FE is inside the hidden area and FN is outside the hidden area. Also, FN

is further north than FE and the hidden area can not be left/entered north of
FE . Thus, in order to complete a cycle going through both FN and FE , two
illegal transitions are required. This can be achieved in two ways, either the
cycle uses the illegal turn at F twice (once in each direction), or the cycle must
go through an illegal turn at another free-node. If the cycle uses the illegal turn
at F twice, there must be a dependency from the east output link of F to the
east input link of F . However, then F is by definition not a free-node. Another
free-node is therefore required to complete the cycle, meaning another hidden
area is required. However, because a hidden area can be entered only through
a positive channel and be left only on a negative channel, and there is no cycle
using the same free-node twice, there is no negative channel entering a hidden
area that depends on a positive channel leaving the hidden area, even when using
the illegal turn. Thus, another hidden area can not provide the illegal transition
required to complete the cycle. The case where FN is the eastmost entry node
of a hidden area can be proved in a similar manner.

By using the illegal turn according to Lemma 1, faults on both the north and
east edges are tolerated. This is illustrated in Figure 2b, where the hidden area
H3 remains connected through the illegal turn at free-node F3. Furthermore,
Lemma 1 can be used to handle concavities with entry from the south and/or
west sides. This is illustrated in the figure by free-node F1 connecting the hidden
area with opening to the west and south, and free-node F2 connecting the hid-
den area/node H2. When the illegal turn is introduced, this enables the nodes
connected to the north and east links of the free-node to provide routes to new
destinations. Therefore, fault status information is sent to the next node on the
f-chain which again may propagate the information further around the faulty
region. If the faulty links causing the illegal turn to be introduced are repaired,
the routing function should not be updated to use the repaired links until the
illegal turn has been removed.

As can be seen from the figure, a concavity with opening on the north or east
side (like N and E in Figure 2b) does not require the use of the illegal turn in
order to be connected. The same holds for regions with opening on the north
and west sides (like NW in the figure) and for regions with opening on the south
and east sides (like SE in the figure).

One special case may occur when there is a concavity on the west side of a
collection of faults on the north edge, or on the south side of a collection of faults
on the east edge. For instance, if the north and west links of F3 (marked with
stars in Figure 2b) were faulty, F3 and H3 would create such a concavity on the
south side. The illegal turn would now be required at node Z southwest of F3.
However, the illegal turn can not be introduced according to Lemma 1 in this
case, because there is a dependency from the east link of Z going through F3 and
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H3 and back to the east link of Z. Thus, in order to satisfy the requirements of
Lemma 1 so that the illegal turn can be introduced at Z, we must reroute packets
that would normally use the east/west links of the nodes within the concavity
(i.e., nodes F3 and H3) south. In fact, the link between these two nodes is used
only for direct communication between these two nodes. Traffic to/from other
nodes goes through the south links, introducing an additional illegal turn south
of F3. Because of the alteration of the routing function at F3, this turn can be
introduced according to Lemma 1. Similar scenarios can also be created away
from the edges of the network, but a high number of closely located faults are
then required to create these scenarios and the practical use of handling them
may therefore be limited. Anyway, such scenarios can be handled in a similar
manner but are considered an implementation issue.

2.4 Extension to Tori

Let us now consider what changes are necessary in order to be able to apply
the proposed methodology to torus topologies. First of all, positive-first rout-
ing alone ensures deadlock freedom only in meshes. Thus, in order to ensure
deadlock-free minimal routing in tori, additional virtual channels are required.
By always changing virtual layer when crossing a wraparound link, the additional
dependencies introduced by the wraparound links are broken and the network
remains deadlock free. When minimal routing is used in a two dimensional tori,
a packet may use at most two wraparound links. Thus, in order to be able to
change virtual layer each time a wraparound link is used, two additional virtual
layers are required, for a total of three virtual channels. In three dimensional tori,
a total of four virtual channels are required. As before, in order to improve the
network performance, one or more fully adaptive layers may be used in addition.

Rerouting packets over wraparound links could potentially result in packets
crossing wraparound links more than twice. For instance, if packets were rerouted
east to circumvent a faulty link on the east edge, they would cross a wraparound
link once when being rerouted east and then again when going back west after
having circumvented the faulty link. Now, if such a packet also was to use a
north/south wraparound link, there would not be enough virtual channels in
order to change virtual layer each time a wraparound link is used. To avoid
this problem, packets are generally rerouted the same way in tori as we have
previously described for meshes. Specifically, a packet is not rerouted across a
wraparound link, unless it would also use a wraparound link in that direction
in the fault-free case. This restriction not only ensures that we are always able
to change virtual layer when crossing a wraparound link, but also ensures that
a packet never encounters the same f-chain/fault(s) more than once.

This way of avoiding rerouting packets over wraparound links also has the
implication that a node S, that previously routed packets for a given destina-
tion D over a wraparound link, may have to avoid using this wraparound link.
This would be the case if some other node, T , that is not allowed to use the
wraparound link used by S for destination D, is rerouting packets for D through
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S. In this case, packets for D must be rerouted around the faulty region so that
a route using only wraparound links allowed by T (and S) can be provided.

Free-nodes and illegal turns are introduced in the same way as for meshes. In
fact, the illegal turns introduced in a mesh are introduced at the same places
in a torus topology. In addition, all the nodes on the north and east edges of
the torus can safely introduce the illegal turn, as these dependencies are broken
because of the change in virtual layer when using a wraparound link.

Let us now consider the secondary reroutes that are performed in order to
avoid the illegal turn. Because packets are routed minimally, it is not necessary
to update the entire row/column to the east/north in a torus. Given that k is
the number of nodes in the dimension, only the k/2 nodes east/north of the
faulty link have minimal paths through this link, thus, only these nodes need to
perform secondary reroutes. Furthermore, because packets change virtual layer
when crossing a wraparound link, thereby breaking the dependencies, it is not
necessary to perform secondary reroutes across wraparound borders. Thus, only
the nodes within distance k/2 to the east/north, and that are not across a
wraparound border, are required to perform secondary reroutes.

If multiple faults have partitioned the mesh, a mesh network would become
physically disconnected. A torus network could still be connected through its
wraparound link(s) however. Because such cases are relatively rare and requires
special handling, our implementation of the methodology does not handle such
cases. This is an implementation choice however. The ability to introduce the
illegal turn on the north and east edges, and according to Lemma 1, provides
sufficient flexibility in order to handle these cases. However, special care must
be taken on how the escape layers and wraparound links are used. E.g., if a
partition is connected to the remainder of the network through only one edge
of the network, the cyclic dependencies introduced by the wraparound links are
broken by the faults and it is therefore not required to change virtual layer when
using these wraparound links. Instead this saved layer change should be used for
packets that now have to cross the same edge of the network twice (once in each
direction) in order to enter/leave the partition. Also, the nodes along the edge
of the network, from which the partition can be entered, must reroute packets
destined for the partition so that they do not cross the wraparound border but
instead are routed towards the entry of the partition.

2.5 Three-Dimensional Networks

We will now briefly describe how the proposed methodology can be extended
to three-dimensional networks. When another dimension is added, we denote
the positive direction in the new dimension up and the new negative direction
down. In addition to the transitions already forbidden for two-dimensional net-
works, the west-to-up, south-to-up, down-to-north, and down-to-east transitions
are forbidden according to positive-first routing in order to preserve deadlock
freedom. Notice that all the additional forbidden transitions involves the new
dimension, thus, all previously used turns are still valid.
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A hidden area is still defined as an area that can be entered only through a
positive channel (up, east, north) and be left only on a negative channel (down,
west, south). The definition of a free-node F can be generalized to that F should
be connected to the positivemost entry node of the hidden area. E.g., if the
hidden area has opening on the south side, the free-node should be connected to
the east-up-most entry node. As before, there should be no dependency between
the outgoing positive-first channel, and the incoming positive-first channel, on
the link connecting the free-node with the entry node.

Based on this, rerouting can be performed in a similar way as described for
two-dimensional networks. In particular, in a three dimensional network, each
link is part of two two-dimensional planes. Thus, when a link fails, the previously
described rerouting must be performed in both planes.

3 Evaluation

A flit-level event-driven simulator has been used for evaluating the performance
of the proposed methodology. For all the simulations, a 16×16 torus topology
is used. Virtual cut through routing is applied. Each physical link is divided
into five virtual channels, where each virtual channel has enough buffer space to
store two packets. Each packet consists of 32 flits. Three virtual channels (i.e., the
escape channels) are used for routing packets according to positive-first routing,
while two virtual channels are used for fully adaptive routing. Furthermore, there
is a virtual channel used for control messages that is given priority above the
data channels. A processing delay of 40 cycles is added after receiving an update
message or detecting a faulty link. Each simulation has been performed 30 times,
thus, each value in the plots represents the average of 30 simulations. In each of
these 30 simulations the positions of the faults have been selected randomly, with
the restriction that they do not physically disconnect the network or partition
the mesh. In Figure 3a, each simulation has first been run for a stabilization
period, where a regression analysis is performed to determine if the network has
stabilized, thereafter the simulations have been run for 30 000 cycles.

Figure 3a shows the accepted throughput, depending on the number of faults
in the network, for two different traffic patterns. The top plot shows the through-
put degradation, in the presence of faults, under uniform traffic. With this traffic
pattern, the destination of each packet is selected randomly with equal proba-
bility for all destinations. The lower plot in the figure shows the throughput
under permutation traffic. With this traffic pattern, each source sends all its
packets to a single randomly selected destination so that each destination re-
ceives packets from exactly one source. As can be seen, the methodology pro-
vides graceful degradation under both traffic patterns. Specifically, with uniform
traffic, throughput is on average degraded 14.5% in the presence of seven faults.
For the permutation traffic pattern, the average performance degradation in the
presence of seven faults is 11.2%. The smaller degradation with the permuta-
tion traffic pattern may be explained by the fact that the network traffic is
already unbalanced in the fault-free case. With the uniform traffic pattern, the
traffic first becomes unbalanced when network is faulty. Nevertheless, the use of
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Fig. 3. (a) Throughput in a 16×16 torus network with uniform and permutation traffic.
The error bars show the 95% confidence intervals. (b) Latency in a 16×16 torus network
with uniform traffic. Three random link faults are introduced at the time signified by
the vertical line.

adaptive routing helps mitigate congestion around the faults, maintaining net-
work performance in the presence of faults.

In Figure 3b, three random link faults are injected at the time signified by
the vertical line. 30 random scenarios have been simulated under uniform traffic
with both 60% and 90% of the maximum accepted load in the fault-free case.
As can be seen, with 90% load there is a distinct increase in latency when the
faults are introduced and the network approaches saturation. At 60% load the
increase in latency is very small. As the network remains below saturation, there
is no significant change in throughput in either of the cases. Notice that at no
time is network traffic stopped. Packets are forwarded as normal. In the case
that a rerouting decision is not yet reached, and there is no non-faulty route,
the packet is dropped. Also, if a packet that has been forwarded on an escape
channel according to the routing function for the fault-free case can not be legally
forwarded according to the new routing function it is forwarded in the adaptive
layer if possible, otherwise the packet is dropped. Still, the total packet loss is
modest. Specifically, in each of the scenarios with three random link faults under
90% load, there was on average a total packet loss of 19.5 packets (including the
loss of the packets occupying the failing links). With 60% network load, only 8.7
packets were lost on average.

4 Conclusions

We have proposed a fault-tolerant routing methodology that tolerates concave
fault-regions and provides graceful performance degradation in the presence of
faults. The proposed methodology allows the network to remain fully operational
in the face of failures, without stopping network traffic at any time, and is there-
fore suitable for applications with high requirements for availability. Because the
network remains continuously operational, the proposed solution enables failures
in the interconnection network to be made transparent to the applications.
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Abstract. Adaptation is a desirable requirement in a distributed system. For
many problems, there exists more than one protocol such that one protocol per-
forms better in one environment while the other performs better in another. In
such cases, adaptive distributed systems can be designed by dynamically switch-
ing between the protocols as the environment changes. In this work, we present
distributed algorithms to switch from a BFS tree to a DFS tree and from a DFS
tree to a BFS tree. For low network load, a BFS tree is a better choice for broad-
cast since it also minimizes delay, whereas for higher network load, a DFS tree
may be more suitable to reduce the load on any one node. The proposed switching
algorithms can handle arbitrary crash failures. They ensure that switching even-
tually completes in spite of failures with the desired tree as the output. Also, all
messages are correctly broadcast in the absence of failures even in the presence
of switching.

Keywords: protocol switching, crash failure, BFS tree, DFS tree, broadcast.

1 Introduction

The performance of a distributed system depends on its environment. However, the en-
vironment may change with time. Therefore it is necessary for a distributed system to
be adaptive under changing environments. Adaptation is a desirable requirement in any
distributed system since it helps the system to perform gracefully under different sce-
narios. Adaptation can be achieved in various ways. One way is to change the runtime
parameters of the algorithm appropriately. For example, Jacobson [1] showed how con-
gestion can be controlled by suitably varying the flow window size in TCP. The ability
to adapt may also be in-built into a system. For example, Anderson et. al. [2] provided
an adaptive mutual exclusion algorithm where the arbitration time is proportional to
the contention for the shared resource. There are other adaptive algorithms for differ-
ent problems [3][4]. However these techniques are less general and often application
specific. In many distributed systems, it may happen that the same problem has mul-
tiple protocols, each of which performs differently under different environments. For
example, for routing protocols for ad-hoc networks, Das et. al. [5] showed that for high
mobility, AODV has lower delay than DSR whereas for low mobility, DSR has lower
delay than AODV. In such cases adaptation can be achieved by dynamically switching
between them as the environment changes.
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In this paper, we illustrate the idea of designing adaptive distributed system using
protocol switching by presenting an adaptive protocol that dynamically switches be-
tween two topologies. The protocol uses either a BFS tree or a DFS tree for broadcast
depending on the load of the system, both trees being rooted at the broadcast source.
The system load can be monitored by the root node using convergecast on an existing
spanning tree. At low load a BFS tree is used as it reduces the broadcast delay since the
distance of any node from the root is always minimum in a BFS tree. However at higher
load a DFS tree is used to reduce the load on any one node since the degree of a node in
a DFS tree is generally lower than that in a BFS tree. So the broadcast adapts to the net-
work load by dynamically switching between a BFS tree and a DFS tree. The message
complexity of the algorithm that switches to a DFS tree is O(|E|), where E is the num-
ber of links in the system. The algorithm that switches to a BFS tree needs O(|V ||E|)
messages. The switching is also crash fault-tolerant. More specifically the switching
from a BFS tree to a DFS tree can handle arbitrary crash failures and switching eventu-
ally completes with a DFS tree as the output. Similarly the switching from a DFS tree to
a BFS tree can handle arbitrary crash failures and switching eventually completes with
a BFS tree as the output. If a fault happens when no switching is in progress then the
original tree is restored using local repair actions. Also under no failure, the algorithms
guarantee that each broadcast message is eventually correctly delivered to all the nodes.

Switching between a BFS tree and a DFS tree can be done by computing both the
trees in advance and switching between them using distributed reset [6]. However if
any of the precomputed outputs becomes invalid due to failure of nodes or links, then
the switching fails to establish the correct output. So whenever a switch is needed, the
output must be recomputed to establish the correct output after the switching. In this
paper, none of the proposed algorithms assume the existence of a precomputed output
at any stage. They can switch from an arbitrary graph to a DFS tree or BFS tree. It
is to be noted that the recomputation of the desired tree can be done by pausing the
broadcast at the root, executing a standard distributed algorithm for the tree formation,
and resuming the broadcast after the desired tree is formed. This has the limitation
that the broadcast gets stalled in the whole network during switching. In the algorithms
proposed in this paper, the broadcast gets stalled only in a small part of the network,
thus reducing the delay in broadcasting a message.

Bar-Noy et. al. [7] proposed a method of dynamically changing between different
byzantine agreement protocols. Arora et. al. [6] proposed a method to switch from
one state to another in a distributed system without requiring a global freeze. Liu et.
al. [8] described a method to build a hybrid protocol which adapts by dynamically
mapping the state of a process in one protocol to the state in another. Chen et. al. [9]
described a software architecture for constructing adaptive software that can react to
changes in the execution environment or user requirements by switching algorithms at
runtime. Rutti et. al. [10] described an adaptive group communication middleware that
switches between different atomic broadcast protocols on the fly. Mocito and Rodrigues
[11] proposed another algorithm that dynamically switches between different total order
algorithms with negligible interference to the data flow. Our work is different from the
earlier works since none of them provided a distributed algorithm that switches from
one protocol to another while maintaining some desirable application layer property
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provided no failure occurs. Also to the best of our knowledge, this is the first work that
discusses the fault-tolerance aspect of distributed protocol switching.

The rest of the paper is organized as follows. Section 2 and Section 3 describe non-
fault-tolerant algorithms that switch to a DFS tree and BFS tree respectively. We then
modify these protocols to present the fault-tolerant switching protocols in Section 4.

2 Non-fault-Tolerant Switching to DFS Tree

We assume an asynchronous, message-passing distributed system represented by a con-
nected, undirected graph G = (V, E) with node set V representing the processes and
edge set E representing the links. The links are assumed to be reliable. For the time be-
ing, we assume that nodes do not fail. The algorithm switches from an arbitrary graph
G to a DFS tree. Let Child(v) denote the set of children of v and p(v) denote the parent
of v. For the root node vr, always p(vr) = vr. Let N(v) denote the set of neighbors
of v. Let Eu denote the set of edges incident on a node u. Let Gv = (V ′, E′) be some
subgraph of G where V ′ ⊆ {v} ∪ N(v) and E′ ⊆

⋃
u∈V ′ Eu. If Tv is a DFS spanning

tree of Gv rooted at v then we call Tv the local DFS subtree rooted at v.
The pseudocode of the algorithm is given in Figure 1. There is one node vr, the ini-

tiator, that starts the switching. Also it is the first node to get a TOKEN. Let TSet(v) ⊆
N(v) be the set of neighbors of v that have already received a TOKEN. Initially for
each v, TSet(v) = φ. On receiving a TOKEN, a node v takes the following action. If v
has already got a TOKEN earlier then it sends the TOKEN to some u ∈ Child(v) such
that u has not yet received any TOKEN message. If no such u exists then v sends the
TOKEN to p(v). However, if v gets a TOKEN for the first time then it constructs a local
DFS subtree, rooted at v itself, of the graph induced by the set of nodes CSet(v) ∪ {v}
where CSet(v) = N(v) − [TSet(v) ∪ {p(v)}]. If CSet(v) = φ then the local DFS
subtree to be built is trivial and hence v sends the TOKEN to some u as stated earlier.
However, if CSet(v) �= φ then v starts the local DFS subtree construction by sending
LDFS(v, CSet(v)) to some u ∈ CSet(v). Also if u /∈ Child(v) then v adds u to
Child(v) since u will later change its parent to v to become part of the DFS subtree.

On receiving LDFS(v, S) from w, a node u takes the following action. Suppose u
has not yet received a TOKEN. So u ∈ S. If u has already received an LDFS message
then it just forwards LDFS(v, S) to u′ where u′ = u′′ if ∃u′′ such that u′′ ∈ N(u) −
[TSet(u) ∪ {p(u)}] ∧ u′′ ∈ S, or u′ = p(u) if no such u′′ exists. On the contrary,
if u receives the LDFS message for the first time then u adds v to TSet(u) (since v
has got the TOKEN). Also u removes itself from S and creates S′ = S − {u}. If
p(u) = w′ �= w then u changes its parent from w′ to w and sends a REMOVE CHILD
message to its old parent w′ which in turn sends a REMOVE ACK message back to u as
soon as u is removed from Child(w′). In any case, u finally sends LDFS(v, S′) to an
appropriate node u′ as stated earlier. However, if u has already received a TOKEN and
now it receives LDFS(v, S) from w then u = v since v is the only node in the local
DFS subtree that has received a TOKEN. In this case, if S = φ then v has completed the
local DFS subtree construction and thus v passes the TOKEN to an appropriate node.
If S �= φ then v continues to construct the remaining part of the local DFS subtree
by sending LDFS(v, S) to some u′ ∈ S. This process continues and finally a DFS
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UPON RECEIVING TOKEN
if tokenV isited = false then

tokenV isited = true
CSet = N − [TSet ∪ {p}]
if CSet = φ then passTOKEN( )
else send LDFS(v, CSet) to u ∈ CSet

Child = Child ∪ {u}
else passTOKEN( )

UPON RECEIVING REMOVE CHILD FROM w
Child = Child − {w}
send REMOV E ACK to w

UPON RECEIVING REMOVE ACK
cpflag = false; passLDFS( )

FUNCTION passTOKEN()
CTRT = Child − V isited
if CTRT = φ then

if p �= v then send TOKEN to p
else send TOKEN to u ∈ CTRT

V isited = V isited ∪ {u}

UPON RECEIVING LDFS(w, S) FROM w′

ldfsSource = w; CSet = S
if tokenV isited = true then

if CSet = φ then passTOKEN( )
else send LDFS(ldfsSource, CSet) to u ∈ CSet

Child = Child ∪ {u}
else if ldfsV isited = false then

ldfsV isited = true; CSet = CSet − {v}
TSet = TSet ∪ {ldfsSource}
if p �= w′ then cpflag = true

send REMOV E CHILD to p; p = w′

if cpflag = false then passLDFS( )

FUNCTION passLDFS()
if ∃u : u ∈ N − [TSet ∪ {p}] ∧ u ∈ CSet then

send LDFS(ldfsSource, CSet) to u
Child = Child ∪ {u}

else ldfsV isited = false
send LDFS(ldfsSource, CSet) to p

Fig. 1. Algorithm for switching to a DFS tree for node v
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Fig. 2. An illustration of switching from a BFS tree to a DFS tree

tree results when the algorithm terminates. If some spanning tree T of G rooted at vr

exists (at the initial state or from some intermediate state) then the algorithm switches
from T to T ′, a DFS tree of G rooted at vr, while always maintaining some spanning
tree Ts of G rooted at vr during switching. Initially Ts = T and finally Ts = T ′.
This reduces the delay and the number of messages required for broadcast during the
switching. An example illustrating the switching from a BFS tree to a DFS tree is shown
in Figure 2. The arrows represent the tree edges and the dashed lines represent the non-
tree edges in the graph. Initially a BFS tree of the graph G exists as shown in Figure 2(i).
After the switching completes, a DFS tree of the graph G is formed as shown in Figure
2(iv). Figure 2(ii) and Figure 2(iii) show the intermediate states. The node holding the
TOKEN at any instant is circled with bold.

2.1 Correct Delivery of Broadcast Messages

Figure 2 shows that the underlying topology changes with time until the DFS tree is
formed. So using the topology for broadcast is difficult during the switching. We give
one approach to deal with the situation. Let each broadcast message from the root be
sequentially timestamped. When a node v decides that a protocol switch is needed (i.e.
TOKEN received and tokenV isited = false), it starts buffering all broadcast mes-
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sages having timestamp greater than T , when T is the timestamp of the last broadcast
message sent by v. Also v sends a special control message P to each u ∈ U = CSet(v).
When u gets P from v, it starts buffering all broadcast messages having timestamp
greater than T and sends a control message Q to v if all broadcast messages having
timestamp less than or equal to T have been received. After getting the control message
Q from each u ∈ U , v actually switches the protocol (for example, by local DFS sub-
tree formation). At the end of the switching v sends a control message R to each u ∈ U
and also stops buffering of any broadcast message. On receiving R, u stops buffering
of any broadcast message. From now on, each broadcast message from the root even-
tually reaches each node u ∈ V using the new topology that results at the end of the
protocol switching at v. Also v forwards the switching message (the TOKEN ) to an
appropriate node w ∈ N(v). So the broadcast can continue even during switching and
it gets stalled only in a small subset V ′ = {v} ∪ CSet(v) ⊆ V of nodes at a time. Also
it is proved below that each broadcast message from the root is eventually delivered to
each u ∈ V .

2.2 Outline of Proof of Correctness

Throughout the paper, we will use vr to represent the node that starts the switching.
Initially, at each v, V isited(v) = φ. Also, tokenV isited(v) = ldfsV isited(v) =
cpflag(v) = false. Let LDFS(v, Su) denote the LDFS message received by u,
from some node w. The following lemmas can be easily proved.

Lemma 1. A node v does not change its parent after it has received a TOKEN message.

Lemma 2. Each node v receives the TOKEN from a neighbor u exactly once.

Lemma 3. If a node v sends LDFS(v, Su) to some u ∈ Su then ∀w ∈ Su, w eventu-
ally receives LDFS(v, Sw) and v eventually receives LDFS(v, φ).

Lemma 4. If a node v receives a TOKEN message for the first time then each edge
incident on v eventually becomes either a tree edge or a back edge before it sends the
TOKEN to some other node.

Proof. Suppose v gets a TOKEN message for the first time. So tokenV isited(v) =
false. So v computes CSet(v) = N(v) − [TSet(v) ∪ {p(v)}]. Let p(v) = v′. So by
Lemma 1, v does not change p(v) anymore. So (v′, v) remains a tree edge. Again ∀v′′ ∈
TSet(v) where v′′ �= v′, (v, v′′) is a back edge since v′′ /∈ Child(v). Therefore ∀u ∈
TSet(v)∪{p(v)}, (v, u) is either a tree edge or a back edge. So ∀u ∈ CSet(v), (u, v) is
either a tree edge (u ∈ Child(v)) or non-tree edge (u /∈ Child(v)). We show that ∀u ∈
CSet(v), (u, v) eventually becomes either a tree edge or a back edge. Let CSet(v) =
S. If S �= φ then by Lemma 3, ∀u ∈ S, u eventually receives LDFS(v, Su). Node u
receives LDFS(v, Su) either directly from v or from some other node w ∈ S where
w �= v. Let x � y mean there exists a path from x to y. The following cases are
possible. (i) u ∈ Child(v) and u gets LDFS(v, Su) from w = v. So p(u) = v = w.
Hence u does not change p(u). So (u, v) remains a tree edge. (ii) u ∈ Child(v) and u
gets LDFS(v, Su) from w �= v. So p(u) = v �= w. Thus u changes p(u) from v to w
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and thus u � w holds. So (u, v) becomes a non-tree edge. Since u got LDFS(v, Su)
from w �= v, w � v exists. u � w ∧ w � v ⇒ u � v. (u, v) is a non-tree
edge and u � v implies that (u, v) is a back edge. (iii) u /∈ Child(v) and u gets
LDFS(v, Su) from w = v. So p(u) �= v = w. Therefore u changes p(u) from u′ (say)
to v. Hence (u, v) becomes a tree edge. (iv) u /∈ Child(v) and u gets an LDFS(v, Su)
from w �= v. So either p(u) = w or p(u) �= w. In either case p(u) becomes w and
therefore u � w holds. Again since u got LDFS(v, Su) from w �= v, w � v exists.
u � w ∧ w � v ⇒ u � v. Therefore (u, v) is a back edge. So ∀u ∈ CSet(v),
(u, v) eventually becomes a tree edge or a back edge. So ∀u ∈ N(v), (u, v) eventually
becomes either a tree edge or a back edge. 
�

Theorem 1. The switching algorithm eventually terminates with a DFS spanning tree.

Proof. By Lemma 2, v gets the TOKEN from a neighbor u exactly once. Each node
v has at most N(v) neighbors. So v can send or receive the TOKEN at most N(v)
times. Hence eventually the system will reach a state after which no TOKEN message
will be sent by any node and hence no other messages will be sent. Thus the switching
algorithm eventually terminates. Also by Lemma 4, each edge incident on v eventually
becomes a tree edge or a back edge before it sends the TOKEN to some other node u.
So when the switching algorithm terminates each edge e ∈ E is either a tree edge or
a back edge. Hence the switching algorithm terminates with a DFS spanning tree of G
rooted at vr. 
�

Theorem 2. The message complexity of the switching algorithm is O(|E|).

Proof. Let dv be the degree of a node v . So v sends dv number of TOKEN messages.
Hence total number of TOKEN messages sent is, MT =

∑
v∈V dv = 2|E|. If v

receives a TOKEN message for the first time then it creates a local DFS subtree.
During local DFS subtree formation at v, at most O(dv) number of messages are sent.
So by Lemma 2, the total number of messages sent by all the nodes in the worst case is
given by, M = MT +

∑
v∈V O(dv) = 2|E| + O(|E|) = O(|E|). 
�

Theorem 3. Each message broadcast during the switching is eventually delivered to
all the nodes.

Proof. If v gets the TOKEN and tokenV isited(v) = false then the set of nodes
{v} ∪ CSet(v) are involved in switching. For a node u, if the broadcast path from vr

to u does not pass through any one of {v} ∪ CSet(v) then it receives all broadcast
messages from vr despite switching. But if the broadcast path from vr to u has some
w ∈ {v} ∪ CSet(v) as the intermediate node then according to the control algorithm
proposed in Section 2.1, each messages having timestamp less than or equal to T is
received by u where T is the timestamp of the last broadcast message sent by v. But
each messages having timestamp greater than T is buffered at v until the switching is
over. At the end of the switching at v, each w ∈ {v}∪CSet(v) gets all the buffered and
current broadcast messages and therefore each u eventually gets all broadcast messages
having timestamp greater than T . 
�
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3 Non-fault-Tolerant Switching to BFS Tree

Let Gv = (V ′, E′) be a subgraph of G where V ′ ⊆ {v} ∪ N(v) and E′ ⊆
⋃

u∈V ′ Eu.
Eu is the set of edges incident on a node u. If Tv is a BFS spanning tree of Gv rooted
at v then we call Tv the local BFS subtree rooted at v. The pseudocode of the algorithm
is given in Figure 3. There is one node vr, the initiator, that starts the switching. Local
BFS subtree construction starts at v when it receives a TOKEN message. We assume
that vr is the first node to get a TOKEN. Let h(v) denote the height of v from vr. Initially
for each u ∈ V , h(u) = 0. As v gets a TOKEN it takes the following steps. If v has
already received a TOKEN then it simply forwards the TOKEN to some u ∈ Child(v)
where u has not yet received a TOKEN. If no such u exists then v sends the TOKEN
to p(v). Unlike the previous switching algorithm, even if v completes the local BFS
subtree construction, it may have to repeat the same. This is because v may reduce its
height further if it receives an LBFS message from some neighbor w where w �= p(v).
In that case, for each u ∈ Child(v), the height of u should be reduced. That is why,
after sending the TOKEN to p(v), v assumes that neither v nor any of its children has
received a TOKEN. On the other hand, if v gets a TOKEN for the first time then it
constructs a local BFS subtree, rooted at v, of the graph induced by the set of nodes
CSet(v) ∪ {v} where CSet(v) = N(v) − {p(v)}. If CSet(v) = φ then the local BFS
subtree to be formed is trivial and thus v sends the TOKEN to an appropriate node u as
stated earlier. On the other hand, if CSet(v) �= φ then v starts the local BFS subtree
formation by sending LBFS(v, h(v)) to each u ∈ CSet(v).

On receiving LBFS(v, h′), u joins v as a child only if it has received the LBFS mes-
sage for the first time (i.e. h(u) = 0) or joining v reduces h(u). If u joins v then u may
change its parent (in case p(u) �= v). In that case, u sends a REMOVE CHILD message
to its old parent u′ which in turn acknowledges the removal of u from Child(u′) by a
REMOVE ACK message. In any case, u sends an ACCEPT message to v if it joins v.
Otherwise u sends a REJECT message to v. When v receives an ACCEPT or REJECT
message corresponding to each LBFS message it sent, the local BFS subtree formation
at v is complete and thus v forwards the TOKEN to an appropriate node as stated ear-
lier. It can be proved that the algorithm terminates with a BFS tree rooted at vr, and the
worst case message complexity is O(|V ||E|). If some spanning tree of the graph ini-
tially exists then the algorithm always maintains some spanning tree during switching.
This reduces the delay and the number of messages required for broadcast during the
switching. The proof of the algorithm is omitted here due to lack of space. The scheme
as proposed in Section 2.1 should be used to ensure that every broadcast message is
correctly delivered to all the nodes even during switching.

4 Fault-Tolerant Distributed Protocol Switching

In this section we modify the earlier algorithms to propose crash-tolerant switching
algorithms. Faults can occur at any time irrespective of whether switching is in progress
or not. We first discuss local repair techniques for a BFS or DFS tree under arbitrary
crash faults. Using this we next propose switching algorithms that can tolerate arbitrary
crash faults. It is assumed that the root node r does not fail, and the graph always
remains connected even after the faults.
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UPON RECEIVING TOKEN
if tokenV isited = false then

tokenV isited = true; CSet = N − {p}
if CSet = φ then passTOKEN( )
else ∀u ∈ CSet, send LBFS(v, h) to u

else passTOKEN( )

UPON RECEIVING LBFS(u, h′)
if (h = 0) ∨ (h > h′ + 1) then

h = h′ + 1
if p = u then send ACCEPT to u
else send REMOV E CHILD to p; p = u

else send REJECT to u

UPON RECEIVING REMOVE CHILD FROM u
Child = Child − {u}
send REMOV E ACK to u

UPON RECEIVING REMOVE ACK
send ACCEPT to p

UPON RECEIVING ACCEPT FROM u
Child = Child ∪ {u}
msgCount = msgCount + 1
if msgCount = |CSet| then

msgCount = 0; passTOKEN( )

UPON RECEIVING REJECT FROM u
msgCount = msgCount + 1
if msgCount = |CSet| then

msgCount = 0; passTOKEN( )

FUNCTION passTOKEN()
CTRT = Child − V isited
if CTRT = φ then

if p �= v then
send TOKEN to p
tokenV isited = false
V isited = φ

else send TOKEN to u ∈ CTRT
V isited = V isited ∪ {u}

Fig. 3. Algorithm for switching to a BFS tree for node v

4.1 Local Repair of Faults in a BFS Tree

Let some node v in the BFS tree T crash. So ∀u ∈ N(v) : p(u) = v, there does not
exist a valid path from any node w in Tu, the subtree rooted at u, to the root node r.
So each node w in Tu must adjust p(w) properly so that there exists a valid path from
w to the root node r. Also this path must be the shortest path for the reconstructed
tree to be a BFS tree. The following distributed algorithm gives an outline to repair the
fault locally. Let each node x maintain a path Px�r = {x, u1, u2, . . . , um, r} where
p(x) = u1, p(u1) = u2, and so on and finally p(um) = r. This is created at each
node during the construction of the BFS tree. So whenever a node v crashes, each
node x in each Tu can know, by a reset wave generated at u, whether the crashed node
v ∈ Px�r. Each node x that receives the reset wave updates its level Lx only among
those neighbors (say y) whose current path Py�r do not contain the crashed node v.
Also a node x, on updating its Lx and p(x) values, corrects Px�r (by appending x to
Pp(x)�r or symbolically Px�r = Pp(x)�r � x ) so that Px�r does not contain the
faulty node v. Also x asks each neighbor z : z �= p(x) to update Lz , and p(z), and Pz�r

provided Lx gets changed due to an update. It is assumed that the crash of a node v can
be detected by each of its neighbors. Let Crash(v) denote the detection of the crash of
v by a neighbor u. On detecting crash of a neighbor v, a node u executes the function
BfsCrashAction(v) shown in Figure 4. Again execution of BfsCrashAction(v) may cause
the send of a ResetLevel(v) message. When a node u receives a ResetLevel(v) message,
it executes the function ResetLevelAction(v) shown in Figure 5. It can be easily proved
that the local repair algorithm eventually terminates with a BFS tree T ′ of the graph G.

4.2 Local Repair of Faults in a DFS Tree

Let some node v in the DFS tree T crash. So ∀u ∈ N(v) : p(u) = v, the subtree
Tu, rooted at u becomes orphan as there does not exist a valid path from any node w
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BFSCRASHACTION(V)
N(u) = N(u) − {v}
if p(u) = v then

ResetLevelAction(v)

DFSCRASHACTION(V)
N(u) = N(u) − {v}
if p(u) = v then

ChangePathAction(v)

Fig. 4. Actions invoked on detecting the crash of a node v by node u

in Tu to the root r. Also since its a DFS tree, the orphan subtrees are disjoint. Each
node w in each subtree Tu rooted at u must reassign p(w) so that there exists a path
from w to r. Also this should be done in such a way that eventually a DFS tree of the
graph results. The following distributed algorithm gives an outline to repair the fault
locally. Let each node x maintain a path Px�r as described earlier. This is created
at each node during the construction of the DFS tree. So whenever a node v crashes,
each node x in each Tu, subtree rooted at u : p(u) = v, can know, by a reset wave
generated at node u, whether the crashed node v is in the path from x to the root node
r. Each node x that receives the reset wave updates its p(x) such that eventually the
path Px�r does not contain the crashed node v. Also in that case, x asks each neighbor
y to update p(y) and Py�r so that eventually a DFS tree of the entire graph results.
On detecting the crash of v, node u executes the function DfsCrashAction(v) shown in
Figure 4. Again execution of DfsCrashAction(v) may cause the send of a ChangePath(v)
message. When a node u receives a ChangePath(v) message, it executes the function
ChangePathAction(v) shown in Figure 5.

Each node x orders the edges incident on it by some arbitrary ordering βx. For an
edge e incident on x and whose other end is y, the edge index is βx(y) from the point
of view of x. The same edge has a different edge index βy(x) from the point of view
of y. However node x can read βy(x). Each simple loopless path in the DFS tree is a
sequence of edge indices starting from the root node. Each node x with degree δx can
have δx paths from the root. Each node x has a path variable named pathx. We define
a lexicographic ordering (≺) among the paths and the minimum of the δx paths is the
path that x uses in its DFS path variable pathx. It can be shown [12] that following the
minimum path at each node as defined by the lexicographic order generates a DFS tree
of the graph. It can be easily proved that the local repair algorithm eventually terminates
with a DFS tree T ′ of the graph G.

4.3 Fault-Tolerant Switching from BFS to DFS

In this section we discuss fault-tolerant switching from a BFS tree to a DFS tree.
The algorithm is presented in the form of guarded statements shown in Figure 6. A
guarded statement consists of a guard and an action, and the action is executed only
if the corresponding guard is true. As per discussions in Section 2, at any instant,
the entire graph can be partitioned into two regions – a partial DFS tree, and a par-
tial BFS tree. Those nodes that have received the TOKEN at least once form a par-
tial DFS tree and tokenV isited(u) = true at each node u in the partial DFS tree.
Similarly the nodes that have not yet received the TOKEN form a partial BFS tree
and tokenV isited(u) = false at each node u in the partial BFS tree. For BFS to
DFS switching, initially the entire graph is a BFS tree and the partial DFS tree is
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RESETLEVELACTION(V)

if then
, send to

else
if then

endif
where

if then

, send to
endif
endif

CHANGEPATHACTION(V)

if then
, send to

else

if then

, send to
endif
endif

Fig. 5. Details of ResetLevelAction(v) and ChangePathAction(v) for node u

empty. Similarly when the switching completes, the entire graph is a DFS tree and
the partial BFS tree is empty. Each node has a variable called tokenHolder and it is
true only at the node which is presently holding the TOKEN . At all other nodes
tokenHolder = false.

There can be arbitrary number of node crashes in the graph. If any node v crashes
then ∀u ∈ N(v), u executes DfsCrashAction(v) if tokenV isited(u) = true. Again
if u receives a ChangePath(v) message and tokenV isited(u) = true then u ex-
ecutes ChangePathAction(v). Similarly if tokenV isited(u) = false then u exe-
cutes BfsCrashAction(v) or ResetLevelAction(v) depending on whether it detects
the crash of v or gets a ResetLevel(v) message respectively. However, if u receives
a ChangePath(v) message and tokenV isited(u) = false then it remembers the
receipt of the message. As tokenV isited(u) becomes true due to switching, it initi-
ates the action corresponding to the ChangePath(v) message received earlier. But if
tokenV isited(u) = true and u receives a ResetLevel(v) message then no action is
taken by u since the BFS to DFS switching will automatically take care of the failure
in the partial BFS tree.

The node currently holding the TOKEN may crash. In this case, a TOKEN must
be regenerated at an appropriate node such that switching can be reinitiated. To generate
a single TOKEN at a proper node, the following scheme is proposed. Let each node
u maintain a variable tdir that remembers the neighbor where the TOKEN has been
sent by u. Initially tdir = φ at each node u. Node u can send the TOKEN either to one
of its children or to its parent. Since u has sent the TOKEN , tokenV isited(u) = true
and tokenHolder(u) = false. On detecting that a neighbor v has crashed, u checks
whether tdir(u) = v and tdir(u) �= p(u). This indicates that u sent the TOKEN to v
and has not got it back from v. So even if the TOKEN was not at v during the crash
of v, it cannot return to u since v has crashed. So a new TOKEN must be generated at
u. In this case, u simulates the generation of a TOKEN by making tokenHolder =
true. Also u restarts the switching at u by setting tokenV isited = false.

Also, consider a node u which is holding the TOKEN and executing the switching
actions. So CSet(u) is the set of nodes other than u which are involved in switching.
If a node v ∈ CSet(u) crashes then the switching must be reinitiated. To do so each
node w ∈ CSet(u) − {v} must reset its local variables (ldfsV isited, cpflag etc) to
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(S1) tokenV isited ∧ Crash(v) → DfsCrashAction(v)
(S2) tokenV isited ∧ received ChangePath(v) → ChangePathAction(v)
(S3) ¬tokenV isited ∧ Crash(v) → BfsCrashAction(v)
(S4) ¬tokenV isited ∧ received ResetLevel(v) → ResetLevelAction(v)
(S5) ¬tokenV isited ∧ received ChangePath(v) → ChangePathF lag = 1; ID = v
(S6) tokenV isited ∧ ChangePathF lag = 1 → ChangePathF lag = 0

ChangePathAction(ID)
(S7) tokenV isited ∧ ¬tokenHolder ∧ Crash(v) ∧ tdir = v ∧ tdir �= p(u) →

tokenHolder = true
tokenV isited = false
∀w ∈ CSet, reset(w)

(S8) tokenV isited ∧ tokenHolder ∧ Crash(v) ∧ v ∈ CSet →
tokenV isited = false
∀w ∈ CSet, reset(w)

Fig. 6. Fault-tolerant actions for switching from BFS to DFS for node u

their default values. This is done by u by setting tokenV isited(u) to false and then
sending a reset message to each w ∈ CSet(u) − {v}, which then resets itself (shown
as an abstract function reset(w) executed at u). The outline of the proof of correctness
of the fault-tolerant actions is omitted in this paper due to lack of space. However the
following lemma can be easily proved.

Lemma 5. Under arbitrary crash failure, the algorithm eventually terminates with a
DFS tree of the graph.

4.4 Fault-Tolerant Switching from DFS to BFS

The fault-tolerant switching from a DFS tree to a BFS tree is similar to the algorithm
for fault-tolerant switching from a BFS tree to a DFS tree and is shown in Figure
7. As before, the entire graph can be partitioned into a partial BFS tree, and a par-
tial DFS tree. For a node u, tokenV isited(u) = true if u is in the partial BFS
tree and tokenV isited(u) = false if u is in the partial DFS tree. Each node has
a variable called tokenHolder and tokenHolder(u) = true if u is presently hold-
ing the TOKEN . If a node v crashes and u ∈ N(v) such that tokenV isited(u) =
true then u executes the BfsCrashAction(v) or ResetLevelAction(v) depending
on whether it detects the crash of v or receives a ResetLevel(v) message respec-
tively. Similarly if tokenV isited(u) = false then u executes DfsCrashAction(v)
or ChangePathAction(v) depending on whether it detects the crash of v or gets a
ChangePath(v) message respectively. If tokenV isited(u) = false and u receives
a ResetLevel(v) message then it waits until tokenV isited(u) becomes true due to
switching. Then u initiates the actions corresponding to the ResetLevel(v) message
received earlier. But if tokenV isited(u) = true and u receives a ChangePath(v)
message then no action is taken by u as the DFS to BFS switching will automatically
take care of the failure in the partial DFS tree. In case the node holding the TOKEN
crashes, a TOKEN is regenerated at a proper node in a similar manner as discussed in
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(S9) tokenV isited ∧ Crash(v) → BfsCrashAction(v)
(S10) tokenV isited ∧ received ResetLevel(v) → ResetLevelAction(v)
(S11) ¬tokenV isited ∧ Crash(v) → DfsCrashAction(v)
(S12) ¬tokenV isited ∧ received ChangePath(v) → ChangePathAction(v)
(S13) ¬tokenV isited ∧ received ResetLevel(v) → ResetLevelF lag = 1; ID = v
(S14) tokenV isited ∧ ResetLevelF lag = 1 → ResetLevelF lag = 0

ResetLevelAction(ID)
(S15) tokenV isited ∧ ¬tokenHolder ∧ Crash(v) ∧ tdir = v ∧ tdir �= p(u) →

tokenHolder = true
tokenV isited = false
∀w ∈ CSet, reset(w)

(S16) tokenV isited ∧ tokenHolder ∧ Crash(v) ∧ v ∈ CSet →
tokenV isited = false
∀w ∈ CSet, reset(w)

Fig. 7. Fault-tolerant actions for switching from DFS to BFS for node u

Section 4.3. Again a node u which is holding the TOKEN and executing the switching
actions may detect the crash of one of its neighbors. In this case, node u reinitiates the
switching in a similar way as discussed in Section 4.3. It can be proved that in spite of
arbitrary crash faults the algorithm eventually terminates with a BFS tree as the output.
The proof of correctness is omitted in this paper due to lack of space.
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Abstract. First Come First Served (FCFS) is a policy that is accepted
for implementing fairness in a number of application domains such as
scheduling in Operating Systems, scheduling web requests, and so on.
We also have orthogonal applications of FCFS policies in proving correct-
ness of search algorithms such as Breadth-First Search, the Bellman-Ford
FIFO implementation for finding single-source shortest paths, program
verification and static analysis. The data structure used to implement-
ing FCFS policies, the queue, suffers from two principal drawbacks, viz.,
non-trivial verifiability and lack of scalability. In case of large distributed
networks, maintaining an explicit queue to enforce FCFS is prohibitively
expensive. The question of interest then, is whether queues are required
to implement FCFS policies; this paper provides empirical evidence an-
swering this question in the negative. The principal contribution of this
paper is the design and analysis of a randomized protocol to implement
approximate FCFS policies without queues. From the Software Engineer-
ing perspective, the techniques that are developed find direct applications
in program verification, model checking, in the implementation of dis-
tributed queues and in the design of incremental algorithms for Shortest
path problems.

1 Introduction

FCFS is a policy used to ensure fairness in a number of application domains
such as scheduling [1] and Operating Systems [2]. The motivating factor under-
lying this form of fairness, especially in the servicing of requests, is to preserve
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order, i.e., if request A has a smaller time-stamp than request B, then request A
should be serviced before request B. The only known method of implementing
this policy is through the use of a “queue” data structure, in which elements
are inserted at the rear and removed from the front. In practice, queues are
realized through circular arrays or linked lists; the code for maintaining queues,
while conceptually simple, mandates the checking of a number of conditions and
is therefore non-trivial [3]. Additionally, queues do not scale well; in distributed
applications, maintaining a FCFS queue is prohibitively expensive. The question
of interest then, is whether FCFS fairness (or at least an approximation of FCFS)
can be implemented without queues; this paper is devoted towards answering
this question. We provide empirical evidence that conclusively demonstrates that
queue structures are not necessary to achieve FCFS fairness; indeed, even im-
plicit queues (See Section 2) need not be used. All that is needed is a source for
random bits; our algorithm exploits the existence of such a source to effectively
simulate a standard queue. Our work establishes that randomization can serve
as an effective substitute to order, insofar as establishing FCFS fairness is con-
cerned. We also point out that our algorithm is the first of its kind to explicitly
introduce randomization in reachability problems.

The main advantage of our approach is simplicity; as per the literature, main-
taining queues, especially in distributed applications is a non-trivial task. Ac-
cordingly, if it is possible to achieve the FCFS effect without queues then that
possibility must be explored.

2 Statement of Problem

The problem that we are interested in is as follows: P1 : Given a sequence of
requests, S = 〈s1, s2, . . . , sn〉, which are totally ordered by time, can we service
the requests in approximately the same order as their arrival, without using a
queue to store the requests?

Observe that if we are told that the requests must be served in exactly the
same order as their arrival, then a queue is necessary. It is the relaxation of this
requirement to “approximately, in the order of arrival” that permits us to use
randomization and eliminate queues.

2.1 Breadth-First Search

We now argue that the FCFS problem is simulated by performing the Breadth-
First Search on an arbitrary graph; note that we use the algorithm described in
[4].

Consider an arbitrary level-based labeling of the vertices in G; with vertices in
level i getting a lower label than the vertices in level (i+1). Vertices in the same
level are numbered arbitrarily. We can think of the queue Q as being populated
by requests, with the vertices representing the requests; we say that request vi

precedes request vj , if vi enters Q before vj . When a vertex is deleted from Q,
it is said to be serviced. Observe that Q implements FCFS fairness in that all
requests at a particular level are serviced before requests at higher levels.
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Function Trad-BFS(G =< V, E >, s)

1: {The output of the Algorithm is the Set of all vertices v ∈ V reachable from s, and
d[v], the shortest path from s to v, given all edges to be unit weight}

2: Construct an empty queue Q and initialize it to s.
3: d[s] = 0
4: color[s] = black
5: for ( v ∈ V , v �= s) do
6: d[v] = ∞
7: color[v] = white
8: end for
9: while |Q| �= ∅ do

10: Let v = head(Q)
11: Delete head(Q)
12: for (each vertex u adjacent to v) do
13: if (color[u] = white) then
14: Add vertex u to Q
15: color[u] = black
16: d[u] = d[v] + 1
17: end if
18: end for
19: end while

Algorithm 2.1. Traditional Breadth-First Search

As discussed above, there are other methods through which FCFS fairness
can be implemented. For an arbitrary protocol A, using storage structure R,
we define the wait time of a vertex as the number of times it is inserted in R.
Likewise, we define the wait time of the protocol as the maximum wait time of
any vertex.

In the traditional BFS protocol, R is a queue and each vertex is inserted
precisely once in R. Accordingly, the wait time of every vertex is 1 and the wait
time of traditional BFS is also 1. The wait time of an arbitrary protocol is a
measure of how accurately it implements FCFS, in that larger the wait time,
the more it deviates away from FCFS.

For a randomized protocol, the metrics of interested are the expected wait time
of a vertex and the expected wait time of the protocol respectively.

3 Motivation and Related Work

The motivation for our work arises from the following design domains, viz.,

(a) Program Testing - The implementation of a queue mandates the testing of
buffer overflow at each insertion and buffer underflow at each deletion, re-
gardless of how the queue is implemented. It has been frequently observed
that these bound checks are either ignored or incorrectly implemented (from
a logical perspective) leading to program crashes. Our protocol on the other
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hand, uses a simple “set” data structure with only membership queries per-
mitted. This structure can be implemented by using a counter and is hence
trivial to test. It is well-known that reasoning about heap-allocated struc-
tures is challenging; although tools exist for detecting errors in software [5],
they are known to be imprecise when dealing with heap-allocated structures.
It is to be noted that set semantics can be implemented statically, without
utilizing the memory heap at run-time.

(b) Program Verification - A typical program is represented as Control-Flow
graph (CFG); typical questions involving the reachability of unsafe states,
non-termination of loops and so on can be answered through BFS [6]. Reach-
ability analysis is also used in model-checking LTL formulae [7], understand-
ing secure information flow, and timed automata [8]. Likewise, reachability
analysis is used to test properties of Timed Automata [9]. Consequently, the
technique that we have proposed will find immediate applications in these
domains. We would like to point out that our algorithmic paradigm is not
part of the existing literature, to the best of our knowledge.

(c) Distributed Queues - Consider a web-server A, which is connected to a num-
ber of satellite servers A1, A2, . . . , An. Requests from the external world to
A are routed through the satellite servers. Each request comes with a time-
stamp and is stored locally at the satellite server. If we were required to serve
requests in strict order of time-stamps, we would have to poll all the servers
to determine the request with the smallest time-stamp. Our strategy here
demonstrates that it is sufficient to choose a satellite server at random and
a request at random from the requests in that server. Indeed, one of the fun-
damental strengths of our technique, is that it can be applied to distributed
computing applications.

(d) Incrementality - Incremental algorithms are concerned with maintaining
reachability information under edge insertions and deletions. Incremental
algorithms for BFS have been studied from both the theoretical [10] and the
practical perspectives. The exact complexity of this problem is unknown,
although there have been attempts to categorize it [11]. In program analy-
sis and verification, incremental algorithms for reachability analysis are of
paramount importance [12]. The Randomized BFS algorithm is incremental
in nature and exploits the fact that the BFS tree is itself constituted of BFS
subtrees.

(e) Constraint Solving - Constraint solving is an integral component of Program
Verification [13]. The approach described in this paper can be integrated into
program verification tools such as the ones described in [14]. It is to be noted
that our approach is easily and very efficiently parallelizable, which is the
necessary in modern day constraint solvers.

4 The Randomized Breadth-First Search Algorithm

Algorithm 4.1 describes the workings of the Randomized Breadth-First Search
algorithm.
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Function Random-BFS(G =< V, E >, s, d, Q)

1: {The output of the Algorithm is the Set of all vertices v ∈ V reachable from s, and
d[v], the shortest path from s to v, given all edges to be unit weight}

2: if |Q| = ∅ then
3: return
4: else
5: Pick a vertex v uniformly and at random from Q
6: for (each vertex u adjacent to v) do
7: if (d[u] > d[v] + 1) then
8: d[u] = d[v] + 1
9: if (u �∈ Q) then

10: Add vertex u to Q
11: end if
12: end if
13: end for
14: end if
15: Random-BFS(G =< V, E >, s, d, Q)

Algorithm 4.1. Randomized Breadth-First Search

The algorithm is initialized as d[s] = 0 and d[v] = ∞, ∀v �= s. Further,
Q = {s}.

We reiterate that the above algorithm is the first of its kind to explicitly in-
troduce randomization in the vertex selection process and therefore represents
a fundamentally distinct design paradigm (cf. the Shortest path algorithms dis-
cussed in [15].)

4.1 Worst-Case Analysis

Let the graph have m edges and n vertices. Let t(vi) denote the time spent
on processing vertex vi. We know that 1 ≤ d[vi] ≤ (n − 1) for all vi ∈ V and
hence vi can be inserted in Q at most n times. Each time vi is deleted from
Q, we spend degree(vi) time in processing its neighbors. Accordingly, t(vi) ≤
n · degree(vi) and hence the total time spent in processing all the vertices is
T (n) =

∑n
i=1 t(i) =

∑n
i=1 n · degree(i) = O(m · n). It must be noted that the

above analysis is extremely pessimistic and that our experiments show that T (n)
is a linear function of n.

We conjecture that E[T (n)] ≤ c1 ·(n+m), for some fixed constant c1; however,
a formal proof will require the development of new theoretical techniques.

Let δ(v) denote the true shortest path distance of vertex v from the source
s. As discussed above, Algorithm 4.1 terminates, since each vertex enters Q at
most n times.

The correctness of Algorithm (4.1) follows from the following lemma.

Lemma 1. If d[vi] > δ(vi), and vi �∈ Q, then vi will be inserted into Q.
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Proof. We use induction on the true distance δ(vi). If δ(vi) = 1, the lemma is
clearly true, since at the first call, the source s is extracted and all its neighbors
are inserted into Q. Assume that the lemma is true, whenever δ(vi) ≤ k, k > 1.
Now observe the sequence of events when δ(vi) = k+1. By the inductive hypoth-
esis, all vertices vj , such that δ(vj) ≤ k, will be inserted into Q, till d[vj ] = δ(vj).
One of these vertices is vr, the predecessor of vi in the BFS tree; observe that
δ(vr) = k. If it is the case that d[vi] �= δ(vi), then d[vi] > (k + 1) and hence
d[vi] > d[vr]+1. When vr is extracted from Q for the final time, Lines 7 through
12 of Algorithm 4.1, ensure that vi is inserted into Q, if it does not already be-
long there. �

Thus, as long as d[v] > δ(v) for some vertex v, Algorithm 4.1 will continue to
recurse; since no vertex can be inserted into Q, more than n times, it follows
that when |Q| = ∅, d[vi] = δ(vi), ∀i = 1, 2, . . . , n.

It is important to note that Algorithm 4.1 is a complete procedure in that it
can be used to detect the Single Source Shortest Paths in an arbitrarily weighted
graph (both positive and negative weights on the arcs). The only modification
is to lines 9 and 10, which should be replaced by: if (d[u] > d[v] + c(v, u)), then
d[u] = d[v] + c(v, u). The proof of this fact is similar to the above proof and will
be presented in an extended version of this paper [16].

Theorem 1. Algorithm 4.1 can be modified to solve the Single Source Shortest
Paths problem.

5 Experimental Study: Sequential Performance

This section presents the performance results of the sequential Random-BFS
algorithm.

Our reference platform for evaluating sequential performance is a 3.2 GHz
64-bit Intel Xeon machine with 6GB memory and 1MB L2 cache. For implemen-
tation details, please refer to the extended version of this paper [16].

We test our Random-BFS implementation on a variety of synthetic graph
families. These generators and graph instances are part of the DIMACS Shortest
Path Implementation Challenge network collection [17]:

– random graphs : Random graphs are generated by first constructing a Hamil-
tonian cycle, and then adding m − n edges to the graph at random. The
generator may produce parallel edges as well as self-loops. By varying the
parameters m and n, we can generate both sparse as well as dense random
graphs.

– mesh networks : This synthetic generator produces regular two-dimensional
square meshes, where m = 4n.

– scale-free graphs: we use the R-MAT graph model [18] to generate graphs
with power-law degree distributions and small-world characteristics.

The above graph families are frequently used for the experimental evaluation
of graph algorithms [19,20]. Random graphs have a Poisson degree distribution,
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low diameter, and low clustering co-efficients. BFS on sparse random graphs has
poor cache locality, and so this is a hard test instance for performance comparison
on cache-based architectures. Scale-free networks are sparse graphs characterized
by low average distance, high local density, and heavy-tailed power law degree
distributions. In contrast, the two-dimensional mesh network is a regular graph
with a high diameter. These three families differ in the number of BFS phases,
as well as the average number of vertices in each phase.

We report results averaged over ten runs, excluding the best and worst val-
ues and any outliers. Our first set of experiments estimate the randomization
overhead in Alg. 2.1. We do this by calculating the following metrics defined in
Sec. 2.1:

– Expected wait time of a vertex (EWT): the average number of times a vertex
in the graph is inserted into the queue.

– Expected wait time of protocol (WTP): the maximum number of times any
vertex in the graph is added to the queue.

Figure 1 plots EWT and WTP for various sparse and dense graph instances.

(a) Sparse random graphs (b) Dense random graphs

(c) Scale-free graphs (d) Regular mesh networks

Fig. 1. Random-BFS performance counts for various graph instances
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For performance comparison, we also implemented the traditional queue-based
BFS (Alg. 4.1). Figure 2 plots the execution time of Trad-BFS and Random-BFS
for synthetic graphs of different problem sizes.

5.1 Observations

FCFS policy metrics. For random graph instances in Figure 1, the expected
wait time value (EWT) varies from 1.13 to 1.56. Also note that EWT appears to
be independent of the problem size for the graphs we considered. The expected
wait time for the protocol (WTP) value varies from 3 to 6, with a slight increase
for large instances. We observe a similar behavior in case of the mesh and scale-
free networks (Figures 1(d) and 1(c) respectively) also. The EWT value for sparse
instances (about 1.35 on an average) is higher than the value for dense graphs
(averaging 1.15).

Execution Times. Figure 2 gives the running times of Trad-BFS and Random-
BFS on the reference sequential platform. While Trad-BFS is faster than

(a) Sparse random graphs (b) Dense random graphs

(c) Scale-free graphs (d) Regular mesh networks

Fig. 2. Trad-BFS and Random-BFS execution time comparison for various graph
instances
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Random-BFS in all cases, the running times only differ by a constant factor.
We observe that Trad-BFS is on an average six times faster than Random-BFS
for sparse graphs, and thrice as fast for dense graphs. The running times are also
directly correlated to the EWT and WTP values, which are both greater than
1. The execution time trends are similar for all three graph families.

6 Experimental Study: Parallel Performance

We also implement parallel shared-memory versions of Trad-BFS and Random-
BFS. In case of Trad-BFS, we employ a level-synchronized approach to paral-
lelization that exploits concurrency at two key steps:

1. All vertices at a given level (distance from source vertex) in the graph can
be processed simultaneously, instead of just picking the vertex at the head
of the queue.

2. Adjacencies of each vertex can be inspected in parallel.

In case of Random-BFS, we further assume that any vertex in the visited set
can be picked.

(a) Random graphs (b) Scale-free graphs

Fig. 3. Parallel Expected Waiting Time (EWT) performance counts for various sparse
and dense graph instances

We report performance results on the Sun Fire T2000 multi-core server, with
the Sun UltraSPARC T1 (Niagara) processor. This system has eight cores run-
ning at 1.0 GHz, each of which is four-way multithreaded. The cores share a 3
MB L2 cache, and the system has a main memory of 16 GB. We use the same
set of graph families discussed in the previous section.

As in the previous case, we first calculate EWT and WTP for different graph
instances. Fig. 3(a) depicts the value of EWT for parallel Random-BFS, as the
number of processors is varied from 1 to 8. Figure 4 compares execution times
of Trad-BFS and Random-BFS for various problem sizes, as the number of pro-
cessors is varied from 1 to 8.
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(a) Sparse Scale-free graph (1M vertices,
12M edges)

(b) Dense random graph (100K vertices,
10M edges

Fig. 4. Parallel Execution time and Speedup comparison

6.1 Observations

FCFS policy metrics. Figure 3 gives EWT for graph instances of different
sizes from the random and scale-free families. We again note that EWT is higher
for sparse graphs. But the key observation here is that there is no performance
drop for parallel Random-BFS. There is very little variation in the EWT value
across parallel runs.

Running Time. Figure 4 gives the execution time and speedup acheived for
multiprocessor runs. We observe that Trad-BFS is faster than Random-BFS up
to 8 threads. The speedup on random graphs is lower than that on dense graphs,
in case of both BFS and Random-BFS. The parallel performance on sparse ran-
dom graphs is similar to the scale-free graph performance reported here. An
important observation is that the relative speedup of Random-BFS is greater
than Trad-BFS in both the cases. This is expected, as there is more concurrency
in parallel Random-BFS than in parallel Trad-BFS. On larger multiprocessor
systems, we expect the performance of Random-BFS to match Trad-BFS perfor-
mance. From these results, we can also expect that Random-BFS would perform
favorably on distributed memory systems, as there is no overhead of maintaining
the FCFS queue.

7 Conclusion

The primary objective of this paper was to investigate whether FCFS fairness
can be accomplished without queues, for the reasons described in previous sec-
tions. This is a fundamental problem in Program Verification, inasmuch as veri-
fying the correctness of programs using queue structures is non-trivial. We have
succeeded in showing (empirically) that randomization does indeed achieve the
“queue” effect in that service requests are met on an almost First Come First
Served basis. Our Randomized BFS algorithm is the first of its kind, in that it ex-
plicitly introduces randomization in the selection of requests to be serviced. This
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approach finds direct application in the implementation of distributed queues,
as discussed in Section 3. It is important to reiterate that the goal of this study
is not to compare running times of different BFS algorithms, but to determine
whether membership queries can simulate order queries. Our implementation
results indicate that such is indeed the case, with a bearable loss in efficiency.
However, in distributed applications, order queries will be significantly more
expensive and therefore, our technique will have an immediate impact in that
domain. Even on the sequential front, it is important to note that sets and mem-
bership queries are easier to implement and test when contrasted with queues
and their associated operations.

A number of interesting research problems have arisen out of this work:

(a) As argued in Section 4, the RBFS algorithm is a complete procedure for
finding Single Source shortest paths on arbitrarily weighted graphs. It would
be instructive to study the performance profile of this algorithm for instances
of the Single Source Shortest path problem.

(b) We would like to implement this technique in actual program verification
tools, such as the ones discussed in [21].

(c) We are currently engaged in developing an expected case analysis of the
RBFS algorithm. Our goal is to analytically establish that the expected
number of times that an arbitrarily chosen vertex is inserted into the set S
is constant.

(d) We are also studying the performance of our algorithm in distributed ap-
plications, wherein the simplicity of our approach will lead to performance
gains over the more traditional algorithms for implementing FCFS fairness.
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Abstract. Evaluating the Force Matrix constitutes the most compu-
tationally intensive part of a Molecular Dynamics (MD) simulation. In
three-body MD simulations, the total energy of the system is determined
by the energy of every unique triple in the system and the force matrix
is three-dimensional. The execution time of a three-body MD algorithm
is thus proportional to the cube of the number of atoms in the system.
Fortunately, there exist symmetries in the Force Matrix that can be
exploited to improve the running time of the algorithm. While this opti-
mization is straight forward to implement in the case of sequential code,
it has proven to be nontrivial for parallel code even in a homogeneous
environment.

In this paper, we present a force matrix transformation that is capa-
ble of exploiting the symmetries in the force matrix in both a homoge-
neous and a heterogeneous environment while balancing the load among
all the participating processors. The proposed transformation distributes
the number of interactions to be computed uniformly among all the slices
of the force matrix along any of the axes. The transformed matrix can
be scheduled using any well known heterogeneous slice-level scheduling
technique. We also derive theoretical bounds for efficiency and load bal-
ance for prior work in the literature. We then prove some interesting and
useful properties of our transformation and evaluate its advantages and
disadvantages. A loop reordering optimization for the symmetric trans-
formation is described. The performance of an MPI implementation of
the transformation is studied in terms of the Step Time Variation Ratio
(STVR) in a homogeneous and heterogeneous environment.

1 Introduction

Molecular Dynamics (MD) is a powerful technique used to obtain static or dy-
namic properties of liquids and solids. It can be more formally defined as a
computer simulation technique where the time evolution of a set of interacting

S. Aluru et al. (Eds.): HiPC 2007, LNCS 4873, pp. 552–565, 2007.
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atoms is followed by integrating their equations of motion [1]. From the motion
of the ensemble of atoms, a variety of useful microscopic and macroscopic in-
formation can be extracted such as transport coefficients, phase diagrams, and
structural properties. The physics of the model is contained in a potential en-
ergy functional for the system from which the individual force equations for each
atom are derived. There are numerous applications for MD simulations in di-
verse fields of science and technology such as chemistry, astronomy, biophysics,
solid-state physics, material science and fluid dynamics, to mention a few.

MD simulations are not very memory intensive. Their space complexity grows
linearly with the number of atoms being simulated. However, their time com-
plexity grows cubically with the number of atoms being simulated (assuming a
3-body potential is being used). Being a very computationally intensive appli-
cation [8], various solutions to improve execution times have been investigated.
The most common methods for improving performance are parallelization[2] and
using custom-designed special purpose hardware [11] [10].

In this paper, we describe a force matrix transformation that allows for the
parallelization of a 3-body MD simulation and takes advantage of symmetries in
the force matrix in a heterogeneous cluster environment. We focus on the 3-body
component of the Webber-Stillinger potential. The load balancing properties of
our approach are mathematically analyzed. A detailed analysis of previous work
in this area by Li et al. [6] is performed and closed form efficiency upper bounds
for their approach is determined. However, their cyclic decomposition technique
targets a homogeneous cluster environment whereas our technique can also be
used in a heterogeneous environment. We then, discuss optimization techniques
that can be used to implement our technique. Performance is evaluated using
the Step Time Variation Ratio (STVR)[6]. In the homogeneous case, we compare
our technique to the cyclic distribution technique.

The rest of this paper is organized as follows: in Section 2, we give an overview
of the computational aspects of an MD simulation and describe various paral-
lelization techniques. In Section 3, we describe prior work in this area. Section 4
reviews an existing technique and derives theoretical efficiency bounds for it. In
Section 5, our symmetric transformation and its useful properties are described
and proved. Section 6 describes a loop optimization technique for the implemen-
tation of our transformation. We evaluate the performance of our technique and
discuss the pros and cons of our approach in Section 7 and conclude the paper
in Section 8.

2 Molecular Dynamics

2.1 Computational Aspects

The computational task in an MD simulation is to perform the time integration
of a set of coupled differential equations (Newton’s equations) given by

mi
∂2ri

∂t2
=

∑

j

F2(ri, rj) +
∑

j

∑

k

F3(ri, rj , rk) + . . .
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where, mi is the mass of atom i, ri is its position vector, F2 is a two-body force
function and F3 is a three-body force function. In this paper, we perform the
time-integration of Equation 2.1 using the velocity-verlet algorithm [13]. The
force functions F2 and F3 are computed as the negative gradients of potential
functions in which the energy of atom i is typically written as a function of the
positions of itself and other atoms.

For concreteness, for the 3-body form we use the popular Weber-Stillinger
potential. [9]. The total potential is expressed as two sums, one for unique pair
interactions, and another for unique triplet interactions.

U =
∑

i<j

v2(rij) +
∑

i<j<k

v3(ri, rj , rk)

When using a three-body potential, the three-dimensional force matrix is
symmetric since Fijk = Fikj , where Fijk is the (i, j, k)th element of the force
matrix F representing the force exerted on atom i by atoms j and k.

For a system with N particles, the total number of unique triples to be eval-
uated is N(N − 1)(N − 2)/6. A triple (i, j, k), where i �= j �= k is contained in 6
force elements. Each single particle can be involved in (N − 1)(N − 2)/2 triples,
therefore the evaluation of the total 3-body force acting on a particle requires
a sum over all the (N − 1)(N − 2)/2 triples. However, due to the symmetry
described above, only three independent force elements are actually evaluated
for each triple.

2.2 Classification

Many-body simulations can be characterized by the range of forces being mod-
eled. If the forces are long-range, like gravitational or Coulombic forces, then
each particle is affected by all others in the simulation. If the forces are short-
range like LJ and Webber-Stillinger, then each particle is only influenced at each
timestep by a limited number of neighboring particles.

Many-body simulations can also be classified by whether they use direct or
indirect methods. Simulations that compute each interaction of Equation 2.1
explicitly use what are known as direct methods. Conversely, if the simulation
approximates some interactions, it is known as an approximate method. Approx-
imate methods such as particle-mesh algorithms, hierarchical algorithms and fast
multipole methods are typically used with long-range forces. However, approxi-
mate methods are much harder to implement than direct methods, particularly
in parallel machines and systems [4]. Because of this complexity, approximate
methods are typically not faster than direct methods until the number of atoms
reaches a certain threshold value which can be quite large. In parallel implemen-
tations, the performance of approximate methods can suffer further from the fact
that the work load can be difficult to balance among processors when the particle
density is spatially and/or temporally non-uniform leading to underutilization
of available resources.



Molecular Dynamics 555

(a) Transformed force matrix when
using the cyclic distribution. The
dark triangular surfaces represent
the number of interactions in that
slice.
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Fig. 1. Cyclic Distribution Properties

2.3 Parallelization

The most common parallelization techniques of the direct methods are
atom-, force- and spatial-decomposition. Atom-decomposition involves assign-
ing the force computations of a subgroup of atoms to each processor. Force-
decomposition generalizes this approach by assigning a subset of the force loops
to each processor. Both of these decompositions are analogous to Lagrangian
gridding in a fluids simulation where the grid cells move with the fluid. Further,
in the above two techniques, the assignments of atoms to processors remain fixed
throughout the entire simulation. Atom-decomposition requires the entire posi-
tion array to be present at all the processors. Force-decomposition requires only
a subset of the position array to be present at each processor leading to better
scaling of the communication requirements.

On the other hand, spatial-decomposition works by assigning a portion of the
physical simulation domain to each processor. Processors exchange atoms as they
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move from one domain into the other. This is analogous to Eulerian gridding in
a fluids simulation where the grid remains fixed in space as fluid moves through
it. Spatial-decomposition performs best when used with a short-range potential,
a close-to-uniform spatial distribution of atoms and moderate to low densities.
Atom- and force-decomposition perform the same irrespective of the above con-
ditions. Plimpton [7] describes these methods in more detail and compares their
relative performance in the case of a 2-body potential function. The technique
developed in this paper applies to short-range and long-range potentials evaluated
using the atom-decomposition technique.

3 Related Work

Plimpton et al [7] [4] have determined a force matrix transformation that exploits
the symmetry in a 2-body force matrix. The two-body component of the Webber-
Stillinger potential can use this transformation to exploit symmetries in the 2D
force matrix. Our technique is to be used for the 3-body component of the
potential.

Li et al. [6] perform a cyclic decomposition of the force matrix when perform-
ing Atom-Decomposition. Li et al. refer to their technique as force decomposi-
tion, however they perform a slice level decomposition. In this paper, we use the
terminology used by Plimpton et al. [7], hence consider Li et al.’s work to be
an Atom-Decomposition technique instead of Force-Decomposition. We analyze
their transformation and determine closed form theoretical upper bounds for
efficiency and relative load imbalance when using their technique.

4 Cyclic Distribution

The cyclic distribution technique decomposes the 3D force matrix into slices
along one dimension. A triple (i, j, k) is evaluated only if i < j < k. This gives
rise to a force matrix that looks like Figure 1(a). The interactions to be computed
in the force matrix are in the shape of a tetrahedron. It is evident from the figure
that lower slices of the matrix evaluate a larger number of tuples than higher
slices. In a homogeneous cluster with P processors, the ith slice is computed by
the processor with rank mod(i, P ). This strategy attempts to balance the load
among the available processors in a homogeneous cluster environment.

It is obvious that the cyclic distribution technique assigns processors with
lower id’s a slightly larger load than processors with higher id’s. We quantify
this imbalance in section 4.1. This imbalance can be seen in Figure 1(b).

4.1 Analysis of the Cyclic Distribution

We now derive some interesting properties of the cyclic distribution. For the rest
of this paper, we assume that P divides N . Proofs and other details of our work
are available at [5].
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Lemma 1. For an ensemble of N atoms, if the cyclic distribution technique is
used on P homogeneous processors, IP , the number of interactions evaluated by
processor X, 0 ≤ X < P , is given by K(N, P ) − XN

2P (N + P − 3 − X), where
K(N, P ) = N

12·P (N(2N − 9) + P (P + 3N − 9) + 12).

Definition 1. The Absolute Load Imbalance (ALI) is defined as the difference
between the maximum number of interactions assigned to any processor and the
minimum number of interactions assigned to any processor.

Definition 2. The Relative Load Imbalance (RLI) is defined as the ALI divided
by the optimal load assignment. The optimal load assignment for a system with
N atoms executing on P processors using a 3-body potential is N(N−1)(N−2)

6P .

Theorem 1. For an ensemble of N atoms, if the cyclic distribution technique
is used on P homogeneous processors, the RLI is 3(P−1)

N−1 .

Figure 1(c) depicts the effect of varying N and P on the RLI. It can be seen
that for a fixed number of atoms, the RLI increases with an increase in number
of processors. On the other hand, for a fixed number of processors, an increase
in the number of atoms causes a decrease in the RLI.

Definition 3. Efficiency of a parallel homogeneous system is defined as

η =
tseq

P · tpar

where, tseq is the execution time of the entire simulation on a single processor
and tpar is the execution time of the entire simulation using P processors.

Theorem 2. For an ensemble of N atoms, if the cyclic distribution technique
is used on P homogeneous processors, the upper bound for efficiency (η′) due to
load imbalance is given by N(N−1)(N−2)

6·K(N,P ) , where
K(N, P ) = N

12·P (N(2N − 9) + P (P + 3N − 9) + 12).

It must be noted that the efficiency upper bound determined in Theorem 2 is
only due to load imbalance. In practice, the bound will be lower due to communi-
cation overhead. Figure 1(d) depicts the effect of varying N and P on the above
determined efficiency upper bound η′. It can be seen that for a fixed number of
processors, increasing the number of atoms improves η′. For a fixed number of
atoms, increasing the number of processors decreases the efficiency.

5 Symmetric Distribution

In this section, we propose a novel transformation that assigns an equal number
of interactions to each slice of the force matrix. The transformed matrix F ′ is
constructed as follows

F ′
ijk =

⎧
⎪⎪⎨

⎪⎪⎩

Fijk , (i > j > k) ∧ (i + j + k ≡ 1 mod 3)
Fijk , (j > k > i) ∧ (i + j + k ≡ 2 mod 3)
Fijk , (k > i > j) ∧ (i + j + k ≡ 0 mod 3)
0 , otherwise

(1)
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Fig. 2. The first two figures illustrate condition 1 of equation 1. The next two figures
illustrate condition 3 of equation 1.

Only the non-zero elements of the transformed force matrix are to be eval-
uated in the force evaluation routine. The correctness of this transformation is
proved in Theorem 3. The modulo component of the transformation acts like a
3D checkerboard pattern with three colors. Assume that a cell (i, j, k) is either
cyan(C), red(R) or yellow(Y) depending on whether i + j + k ≡ 0, 1, 2(mod 3)
respectively. Row 0 of Slice 0 of the board will be of the form CRYCRY..., Row
1 of Slice 0 will be of the form RYCRYC, Row 3 of Slice 0 will be of the form
YCRYCR..., Row 4 of Slice 0 will be of the form CRYCRY...., Row 0 of Slice 1
will be of the form RYCRYC.... and so on.

A cube can be packed with 6 suitably sized tetrahedrons. The inequalities in
each of the components of the transformation pick 3 of these tetrahedrons as
illustrated in Figure 3. The spacing in the cells constituting the tetrahedrons
is due to the modulo function. Figure 4 illustrates the interactions that are
computed in two slices (parallel to the jk plane) of the transformed force matrix.
The plane intersects two of the tetrahedrons such that the intersecting part of
the plane with each of the tetrahedrons forms a triangle (case 1 and 2 of Equation
1). The third tetrahedron (case 3 of Equation 1) is cut such that the intersecting
part of the plane forms a rectangle. The cutting of the tetrahedron to form a
rectangle and triangle is shown in Figure 2. As we move along the i axis, the
areas of the triangles and squares change but the sum of their areas remains
constant. This ensures that irrespective of where a slice is made, the number of
interactions in the slice is constant. This property is true even if the slicing is
performed along either of the other two axes. In Figure 4, the black, gray and
white elements of the slices correspond to the first, second and third cases in
Equation 1. From now on, we refer to the interactions as black, gray and white
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Fig. 3. Various views of the transformed force matrix when using the symmetric dis-
tribution

depending on whether they satisfy cases 1, 2 or 3 of Equation 1. The triangles
and the rectangles get closest to each other at the focal point i = j = k i.e (i, i)
on the jk plane. As the height of the slice increases, the focal point moves along
the jk diagonal toward the (N − 1, N − 1) point on the slice. We refer to the
intersection of the diagonal i = j = k of the cube with the slice as the focal
point.

5.1 Symmetric Distribution Properties

Proofs and other details of our work are available at [5].

Theorem 3. Evaluating the non-zero elements of a symmetrically transformed
N × N × N force matrix results in computing exactly all the required force com-
ponents of a 3-body potential.

Lemma 2. In an N ×N ×N symmetrically transformed force matrix, the num-
ber of black, gray and white interactions in slice m, 0 ≤ m < N along the i axis
are

⌊
m(m−1)

6

⌋
,
⌊

(N−1−m)(N−2−m)
6

⌋
and

⌊
m(N−1−m)

3

⌋
respectively.

Theorem 4. In an N × N × N symmetrically transformed force matrix, the
unique interactions to be computed are uniformly distributed among the slices
of the force matrix along any axis and nm, the number of interactions in slice
m, 0 ≤ m < N along the i−axis is
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nm =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(N−1)(N−2)
6 , N �≡ 0 mod 3

N(N−3)
6 , (N ≡ 0 mod 3)

∧(m �≡ 1 mod 3)
N(N−3)

6 + 1 , (N ≡ 0 mod 3)
∧(m ≡ 1 mod 3)

(2)

Fig. 4. Two slices of the transformed force matrix when using the symmetric distribu-
tion. The two cut planes depict the interactions that are computed in the corresponding
slices. Only the visible parts of the plane are computed. The elements of the matrix have
been made transcluscent to enable better visibility of the cut slices. The co-ordinates
of the force matrix are normalized.

Corollary 1. In an N × N × N symmetrically transformed force matrix, the
total number of black (Nb), gray (Ng) and white interactions (Nw) is given by

Nb = Ng =

⎧
⎪⎨

⎪⎩

N(N−2)2

18 , N ≡ 0 mod 3
(N−1)(N2−2N−2)

18 , N ≡ 1 mod 3
(N+1)(N−2)2

18 , N ≡ 2 mod 3

Nw =

⎧
⎪⎨

⎪⎩

N(N2−3N+6)
18 , N ≡ 0 mod 3

(N−1)(N2−2N+4)
18 , N ≡ 1 mod 3

(N−2)(N2−N+4)
18 , N ≡ 2 mod 3

5.2 Load Distribution

From Theorem 4, it is evident that when using a symmetrically transformed force
matrix, the computational load assigned to each processor is perfectly balanced
when using the atom-decomposition algorithm. This implies that when using a
symmetrically transformed force matrix, the primary factor affecting the parallel
efficiency is communication overhead.

The cyclic distribution assigns slices that are separated by a distance of P
slices to each processor, where P is the number of processors. This technique
assumes a homogeneous cluster environment. On the other hand, when using
the symmetric distribution with the Atom Decomposition algorithm, we can
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assign contiguous slices of the force matrix to the processors. This allows us to
arbitrarily slice up the force matrix when using the symmetric distribution. This
is an important property that allows us to use the symmetric distribution in a
heterogeneous environment where the number of slices assigned to each processor
is not always N/P .

6 Implementation

We implemented the atom-decomposition algorithm using both the cyclic distri-
bution and symmetric distribution techniques using the MPICH implementation
[3] of MPI.

Due to the symmetry in the force matrix, the if statement in the innner-most
loop is taken only 1

6
th of the time i.e. it is not taken 83.3% of the time if a naive

triple nested loop is used. To avoid this, we use loop unrolling and jamming
techniques to re-order the loops and eliminate the need for a conditional state-
ment in the inner-most loop. It is not possible for the compiler to perform this
optimization since this optimization involves modulo arithemetic to determine
the bounds of the loops.

The loop bounds are selected such that they satisfy the inequalities in Equa-
tion 1. Consider the implementation of Condition 1 of Equation 1. Determining
the loop bounds of the i and j loops are trivial. The initial value of the k loop
k0 can be either j − 1, j − 2 or j − 3 depending on the divisibility constraints.
We consider the three cases:

1. k0 = j−1: If k0 is supposed to be j−1, it means that i+j+(j−1) ≡ 1( mod 3).
Hence, if i + j + j ≡ 2(mod3), k0 = j − 1.

2. k0 = j−2: If k0 is supposed to be j−2, it means that i+j+(j−2) ≡ 1( mod 3).
Hence, if i + j + j ≡ 0(mod3), k0 = j − 2.

3. k0 = j − 3: Similarly, if i + j + j ≡ 1(mod3), k0 = j − 2.
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Fig. 5. Comparison of STVR for Cyclic Distribution and Symmetric Distribution in
a homogeneous cluster environment. A system with 8000 atoms was used for this
experiment.
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To combine the above three cases, we need to make the remainders in the
derived expressions increase monotonically. This can be done by adding one to
both sides of the equivalence equations. Hence, if i + j + j + 1 ≡ 0(mod3) then
k0 = j−1, if i+j+j+1 ≡ 1( mod 3) then k0 = j−2 and if i+j+j+1 ≡ 2( mod 3)
then k0 = j − 3. Thus, k0 = j − t, where t = (i + j + j + 1) mod 3. Similarly,
the loop bounds for the other conditions can be determined.

We have found that the optimized version of the symmetric distribution per-
forms on average 13.8% faster than the unoptimized version. Pseudo-code for
the optimized loops is shown in [5].

7 Results and Discussion

To evaluate the load balance properties of the transformations, we use the Step
Time Variation Ratio (STVR) [6]. The STVR for processor i, 0 ≤ i < P is given
by

STVRi =

∣
∣
∣
∣
∣

Ti − 1
P

∑P−1
j=0 Tj

1
P

∑P−1
j=0 Tj

∣
∣
∣
∣
∣

(3)

where, P processors are used to evaluate an N × N × N force matrix and Ti is
the average time to perform one time-step of the MD simulation on processor
i, 0 ≤ i < P . The average step time Ti corresponds to the execution time of
the parallelized force routine on each of the processors. It ignores the sequential
execution time since the O(N3) computational intensity of the force evaluation
is much greater than the linear time sequential portions of the code. The Ti

values do not consider the communication time. The obtained STVR is thus an
index of the imbalance in the force transformation algorithm.

To evaluate the performance of both the distributions in a homogeneous clus-
ter environment, the following tests were performed on an Opteron 275 cluster
with a Myrinet backplane. Figure 5 plots the STVR for the cyclic and symmetric
distributions. The STVR in the case of the cyclic distribution is in the shape
of a ’V’. The ’V’ shape is more pronounced as the number of processors used
increases. This is due to the load slightly decreasing with increasing processor
rank as proved in Lemma 1 and illustrated in figure 1(b). It can also be seen
that the STVR for the symmetric distribution is lower than that of the cyclic
distribution since it optimally distributes the load among the processors.

The typical execution time for the 3-body force calculation is so much greater
than the time required for the communication at the end of the time-step that
we observed efficiencies greater that 99% for both the distributions. For a system
with 8000 atoms running on 64 processors, the computation time was about 270
seconds. The size of the force vector to be communicated at the end of the time
step is only about 187 kilobytes when a system with 8000 atoms is simulated. It
takes only about 20 milliseconds to perform the required communication tasks at
the end of the time-step. For larger number of atoms, this difference between the
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Fig. 6. Performance of the Symmetric Distribution in a heterogeneous environment

computation and communication times reduces further since the communication
time scales as O(N) while the computation time scales as O(N3).

Since the cyclic distribution works only in a homogeneous environment, we
evaluate the STVR in a heterogeneous environment only for the symmetric dis-
tribution. For this test, we used a 4 node cluster comprising of two Athlon
XP 2000+’s, an Athlon XP 2400+ and a Pentium III 800 MHz. We used the
initial force calculation step as a benchmark for all the available processors and
used the initial step execution time of each processor ti, 0 ≤ i < P to
determine the number of slices to be assigned to processor i for the future time-
steps as

Ni =
N

ti
∑P−1

j=0
1
tj

(4)

where, N is the number of atoms in the simulation. Figure 6(a) illustrates that
the number of slices assigned to each of the processors is proportional to the
CPU performance. It can be seen from Figure 6(b) that the STVR is below
0.5% even in the case of a heterogeneous environment.

However, it must be noted that our symmetric distribution is more complex
in terms of computational intensity than the cyclic distribution. We have found
that when using the optimized versions of both the distributions described in
Section 6 the execution time of the cyclic distribution is 5.1% lower than that
of the symmetric distribution.

The bounds that we derived in sections 4.1 and 5.2 can help in determin-
ing which distribution to use for a given number of atoms N and number of
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processors P . If the efficiency bound for the cyclic distribution is less than 95%,
the symmetric distribution is a better choice since at this point, the overhead of
the symmetric distribution is compensated for by its better load balancing prop-
erties. However, in most typical scenarios, the cyclic distribution is preferable in
a homogeneous environment due to the disadvantage of poorer load balance be-
ing compensated for by the reduced computational overhead. In a heterogeneous
environment, the symmetric distribution is the only option. Since the symmetric
distribution distributes the number of interactions evenly among the slices of
the transformed force matrix, it can be used in conjunction with any slice-level
scheduling algorithm. It can also be used in a distributed environment using
scheduling techniques that we developed in [12].

8 Conclusion

In this paper, a symmetric transformation for a 3-dimensional force matrix is
described. A symmetrically transformed force matrix has the property that the
total number of unique interactions in the system is optimally distributed among
the slices of the force matrix along any dimension. This allows any heterogeneous
slice level scheduling algorithm to be used on the transformed force matrix. The-
oretical upper bounds for efficiency and relative load imbalance when using the
cyclic distribution have been established. We have also proved interesting prop-
erties about the cyclic and symmetric distributions. An efficient loop reordering
optimization for the force calculation routine in a 3-body potential when using
the symmetric transformation has been described. Unlike the cyclic transforma-
tion, the symmetric transformation can also be used in a heterogeneous envi-
ronment. We have also evaluated the performance of an MPI implementation of
both transformations in a homogeneous environment and the symmetric trans-
formation in a heterogeneous environment. When using the cyclic distribution,
the execution time is on average 5.1% lower than that of the symmetric dis-
tribution. In the case of a homogeneous system, the bounds described in this
paper can be used to determine which transformation technique is optimal for a
given number of processors and number of atoms. For a hetereogeneous system,
the symmetric distribution is the only option. Nonetheless, only the symmetric
distribution provides a viable option for the processing power found in hetero-
geneous systems such as the computational grid.

We are currently investigating how to incorporate our transformation into the
highly optimized and well known MD packages such as GROMACS, NAMD,
AMBER etc.
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Abstract. This article presents Grid’BnB, a parallel branch and bound
framework for grids. Branch and bound (B&B) algorithms find optimal
solutions of search problems and NP-hard optimization problems.

Grid’BnB is a Java framework that helps programmers to distribute
problems over grids by hiding distribution issues. It is built over a master-
worker approach and provides a transparent communication system
among tasks. This work also introduces a new mechanism to localize
computational nodes on the deployed grid. With this mechanism, we
can determine if two nodes are on the same cluster. This mechanism is
used in Grid’BnB to reduce inter-cluster communications. We run exper-
iments on a nationwide grid. With this test bed, we analyze the behavior
of a communicant application deployed on a large-scale grid that solves
the flow-shop problem.

1 Introduction

Branch and bound (B&B) algorithm is a technique for solving search problems
and NP-hard optimization problems. B&B aims to find the optimal solution
and to prove that no ones are better. The algorithm splits the original problem
into sub-problems of smaller size and then, for each sub-problem, the objective
function computes the lower/upper bounds.

Because of the large size of handled problems (enumerations size and/or NP-
hard class), finding an optimal solution for a problem can be impossible on a
single machine. However, it is relatively easy to provide parallel implementations
of B&B. Many previous work deal with parallel B&B as reported in [1].

Grids gather large amount of heterogeneous resources across geographically
distributed sites to a single virtual organization. Resources are usually orga-
nized in clusters, which are managed by different administrative domains (labs,
universities, etc.). Thanks to the huge number of resources grids provide, they
seem to be well adapted for solving very large problems with B&B. Neverthe-
less, grids introduce new challenges such as deployment, heterogeneity, fault-
tolerance, communication, and scalability.

We present Grid’BnB, a parallel B&B framework for grids. Grid’BnB aims
to hide grid difficulties to users, especially fault-tolerance, communication, and
scalability problems. The framework is built over a master-worker approach and
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provides a transparent communication system among tasks. Local communica-
tions between processes optimize the exploration of the problem. Grid’BnB is
implemented in Java within the ProActive [2] Grid middleware. Our second con-
tribution is an extension of the ProActive deployment mechanism to localize
computational resources on grids. We detect locality at runtime providing the
grid topology to applications in order to improve scalability and performance.

2 Grid’BnB : Branch and Bound Framework

2.1 Principles

Branch and bound is an algorithmic technique for solving optimization problems.
B&B aims to solve problems by finding the optimal solution and by proving
that no other ones are better. The original problem is split in sub-problems of
smaller sizes. Then, the objective function [3] computes the lower/upper bounds
for each sub-problem. Thus for an optimization problem the objective function
determines how good a solution is. The upper bound is the worst value for the
potential optimal solution, the lower bound is the best value. Therefore, if V is
the optimal solution for a given problem and f(x) the objective function, then
lower bound ≤ f(V ) ≤ upper bound. Problems aim to minimize or maximize
the objective function, in this paper we assume that problems minimize.

B&B organizes the problem as a tree, called search tree. The root node of this
tree is the original problem and the rest of the tree is dynamically constructed
by sequencing two operations: branching and bounding. Branching consists in
recursively splitting the original problem in sub-problems. Each node of the tree
is a sub-problem and has as ancestor a branched sub-problem. Thereby, the
original problem is the parent of all sub-problems: it is named the root node.
The second operation, bounding, computes for each tree node the lower/upper
bounds. The entire tree maintains a global upper bound (GUB): this is the best
upper bound of all nodes. Nodes with a lower bound higher than GUB are
eliminated from the tree because branching these sub-problems will not lead to
the optimal solution; this action is called pruning. Conceptually it is relatively
easy to provide parallel implementations of B&B. Many previous work use the
master-worker paradigm [4,5].

The optimization problem is represented as a dynamic set of tasks. A first task
(the root node of the search tree) is passed to the master and branched. The
result is a set of sub-tasks to branch and to bound. Even in parallel generating
and exploring the entire search tree leads to performance issues. Parallelism
allows to branch and to bound a large number of feasible regions at the same
time, but the pruning action seriously impacts the execution time. The efficiency
of the pruning operation depends on the GUB updates. The more GUB is close
to the optimal solution, the more sub-trees are pruned. The GUB’s updates are
determined by how the tree is generated and explored. Therefore, a framework
for grid B&B has to propose several exploration strategies such as breadth-first
search or depth-first search (more details in Section 2.2).
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Other issues related to pruning in grids are concurrency and scalability. All
workers must share the GUB as a common global data. GUB has multiple parallel
accesses in read (get the value) and write (set the value). A solution for sharing
GUB is to maintain a local copy on all workers and when a better upper bound
than GUB is found the worker broadcasts the new value to others.

In addition, for grid environments, which are composed of numerous hetero-
geneous machines and which are managed by different administrative domains,
the probability of having faulted nodes during an execution is not negligible.
Therefore, a B&B for grids has to manage fault-tolerance. A solution may for
instance be that the master handles worker failures and the state of the search
tree is frequently saved in a file.

2.2 Architecture

Grids lead to scalability issues owing to the large number of resources. Aida
and al. [6] show that running a parallel B&B application based on a hierarchical
master-worker architecture scales on grids. For that reason we choose to provide
Grid’BnB with a hierarchical master-worker. Our hierarchical master-worker is
composed of four kind of entities: master, sub-master, worker, and leader.

The master is the unique entry point: it receives the entire problem to solve as
a single task (it is the root task). At the end, once the optimal solution is found,
the master returns the solution to the user. Thus, the master is responsible
for branching the root task, managing task allocation to sub-masters and/or
workers, and handling failures. Sub-masters are intermediary entities whose role
is to ensure scalability. They are hierarchically organized and forward tasks from
the master to workers and vice versa by returning results to the master (or their
sub-master parent). The role of the workers is to execute tasks. They are also
the link between the tasks and the master. Indeed when a task does branching,
sub-tasks are created into the worker that sent them to the master for remote
allocation. Leader is specific role for workers. Leaders are in charge of forwarding
messages between clusters (more details further).

Users who want to solve problems have to implement the task interface pro-
vided by the Grid’BnB API. Figure 1 shows the task interface and the worker
interface implemented by the framework. The task interface contains two fields:
GUB is a local copy of the global upper bound; and worker is a reference on
the associated local process, handling the task execution. The objective func-
tion that users have to implement is explore. The result of this method must
be the optimal solution for the feasible region represented by the task. V is a
Java 1.5 generics: the user defines the real type. The branching operation is
implemented by the split method. In order to not always send to the master
all branched sub-problems, the Grid’BnB framework provides, via the worker
field, the method availableWorkers, which allows users to check how many
workers are currently available. Depending on the result of this method, users
can decide to do branching and to locally continue the exploration of the sub-
problem. To help users to structure their codes, we introduced two methods to
initialize bounds: initLowerBound and initUpperBound. These two methods
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public abstract class Task<V> {
protected V GUB;
protected Worker worker;
public abstract V explore(Object[] params);
public abstract ArrayList<?extends Task<V>> split();
public abstract void initLowerBound();
public abstract void initUpperBound();
public abstract V gather(V[] values) ; }

public interface Worker {
public int availableWorkers(); }

Fig. 1. The task and worker Java interfaces

are called for each task just before the objective function explore, and they are
not mandatory. The last method to implement is gather: the (sub-)master calls
this method when all its tasks are solved. The method returns the best results
from all tasks, i.e. the optimal solution.

The root task is passed to the master that performs the first branching. Then
when a task is allocated to a worker that starts to explore it. As soon as a worker
is available, a new task can be allocated. The worker starts by heuristic methods
to initialize lower/upper bounds for the current feasible region, then it calls the
objective function. Within the objective function, the user can decide whenever
to branch the current region with the help of the availableWorkers method,
which returns the current number of free workers.

The master and the search tree strategy handle task allocation; thereby the
master works as a queue for task scheduling. The exploration algorithm of the
search tree is important regarding performances. Therefore, Grid’BnB allows
users to choose adapted algorithms to solve their problems. We propose four
algorithms: breadth-first search explores the tree in larger, depth-first search ex-
plores all branches one by one, first-in-first-out (FIFO) explores the tree fol-
lowing the order tasks have been sent to the master, and priority explores in
priority branches that updated the GUB the most frequently. If none of those
algorithms satisfy the problem, users can implement their owns.

The tasks produce new GUB candidates while they are computed by workers.
The GUB must be available to all tasks to prune the maximum of none promising
branches of the search tree. The strategy for sharing GUB is to use a local copy
of GUB on all workers and to broadcast updated value. Figure 2 shows the
process of updating GUB when a worker finds a new better upper bound. To be
efficient, a B&B framework has to broadcast the GUB as fast as possible. With
a large number of workers, directly broadcasting GUB to every worker cannot
scale. For that reason Grid’BnB organizes workers in groups.

Groups are sets of workers, which can efficiently broadcast GUB between
them. The master is in charge of building groups. Thus, the main criterion to
put workers in the same group is their localization on the same cluster. Clusters
usually provide a high performance environment for communication. The master
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elects a worker as leader in each group. This leader has a reference to all other
group leaders. When a leader receives a communication from outside its group,
it broadcasts the communication to its group. Inversely when the leader receives
a communication from a member of its group, it broadcasts the communication
to the other leaders but only if the new upper bound is better than its own GUB
value. Figure 3 shows an example of broadcasting GUB between groups.
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Within the user code, errors can occurs, such as uncaught exceptions. Workers
handle user exceptions. When a worker catches an exception, it forwards it to
the master, and then the master stops the whole computation and returns the
exception to the user.

The last feature of Grid’BnB is the fault-tolerance. Fault-tolerance is a real
issue of grid environments; the large number of resources that are distributed
on different administration domains implies a high probability of faults, such as
hardware failures, networks down time, or maintenance.

Master and sub-masters hierarchically manage infrastructure failures, such as
host failures. The monitoring consists of frequently pinging entities. When the
ping call fails (communication timeout, network errors, etc.), the remote host is
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considered as unreachable and down. In that case, the master re-allocates the
task to an available worker. If for the same task several results are returned to
the master (worker considered down for network problem and come back), only
the first one is kept, others are flushed. Masters handle the fault of their sub-
masters: if a sub-master does not answer to a ping call, the master chooses a
free worker and re-instantiates it as a sub-master. Masters also handle the fault
of leaders; the master frequently pings leaders. When a leader is unreachable,
the master elects a new leader in the group.

The master must be deployed on a stable machine, because it is at the top of
the monitoring hierarchy. As opposed to sub-masters and workers, master host
failures cannot be dynamically handled by the framework but require users in-
tervention. The status of the current execution (GUB and all tasks) is frequently
saved on disk. Thus for long-running problem, if the master node faults the user
can restart the solving at a recent state of the execution.

Grid’BnB provides a high level-programming model for solving problems with
parallel B&B. From the users points of view, the framework handles all issues
related to distribution/parallelism and fault-tolerance.

2.3 Implementation

Grid’BnB is designed for grids and is implemented with Java, which allows to
use a large kinds of resources, operating systems, and machine architectures.
More of Java, Grid’BnB is implemented within the ProActive Grid middleware.

ProActive [2] is a Java library for concurrent, distributed and mobile com-
puting.ProActive features transparent remote active objects, asynchronous two-
way communications with transparent futures, high-level synchronization mech-
anisms, and migration of active objects with pending calls. As ProActive is built
on top of standard Java APIs, neither does it require any modification to the
standard Java execution environment, nor does it make use of a special compiler,
preprocessor or modified Java Virtual Machine (JVM). A distributed or concur-
rent application built using ProActive is composed of a number of medium-
grained entities called active objects. Method calls sent to active objects are
asynchronous with transparent future objects and synchronization is handled by
a mechanism known as wait-by-necessity.ProActive provides typed group com-
munication, an important feature for high-performance and grid computing. The
group communication [7] extends the ProActive elementary mechanism for asyn-
chronous remote method invocation and automatic futures.

In Grid’BnB, master, sub-masters, and workers are active objects. Each ac-
tive object serves remote calls in FIFO order. Master manages futures on cur-
rent executing tasks. Then, groups of workers are ProActive groups. Leaders
are also member of a ProActive group. Thereby, hierarchical ProActive groups
represent workers. A hierarchical group is indeed a group of groups. Finally, to
optimize communication between workers to solve more rapidly problems, the
management of workers in groups lay to the ProActive deployment framework.
ProActive features a system for the deployment of applications on grids. The
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next section explains the deployment mechanism and how we improved it to
manage organization of workers in groups of communications.

3 Grid Node Localization

The key principle of ProActive deployment [8] is to eliminate from the source
code the following elements: machine names, creation protocols, registry, and
lookup protocols. It allows to deploy any application anywhere without modifying
the source code. The deployment sites are called nodes and correspond to JVMs,
which host active objects. The deployment framework uses Virtual Nodes (VNs).
VNs are the deployment abstractions for the applications; they are defined in
the program source and after activation they are mapped to a set of nodes. The
deployment framework relies on XML descriptors. They are composed of two
parts: mapping and infrastructure. The VN, which is the deployment abstraction
for applications, is mapped to nodes in the deployment descriptors, and nodes
are mapped to physical resources, i.e. to the infrastructure. Nodes are created
using remote connection and creation protocols. Deployment descriptors allow
combining these protocols in order to seamlessly create remote JVMs.

In Section 2 we proposed to organize workers in groups for optimizing commu-
nication. The selection criterion for group acceptance for a worker is its physical
localization on a cluster. Therefore, the node localization on the grid is important
for an efficient implementation of our Grid’BnB framework. The ProActive de-
ployment framework provides a high-level abstraction of the underlying physical
infrastructure. Once deployed, the application cannot easily access to the topol-
ogy of the physical infrastructure. For instance, programmers have to compare
node addresses for determining if two nodes are deployed on the same cluster.
Nevertheless, two nodes may have the same sub-net address on different clusters,
with network of NATs. Hence, programmers may use metrics, such as latency,
to determine if nodes are “close”. Consequently, organizing workers in group
by clusters and optimizing communication between clusters is a very difficult
and complicated task. For that reason we introduced a new mechanism in the
ProActive deployment framework to identify nodes, which are deployed on the
same cluster or even on the same machine.

The creation of a node is the result of a deployment graph (a directed acyclic
graph: DAG) with connection protocols. This deployment graph is specified
within the XML deployment descriptor. Our deployment node tagging mech-
anism aims to tag nodes in regard of the deployment graph on which they are
mapped in the deployment descriptor. This tag will allow the application to or-
ganize groups in regard to the deployment process that created nodes. With this
mechanism, all deployed nodes are tagged with an identifier at deployment time.
Nodes that have the same tag value have been deployed by the same deployment
process. As a result, they have a high probability to be located in the same the
same local network.

Figure 4 shows the process of tagging nodes. The tag is built by a concatena-
tion of identifiers at each level of the deployment graph. At the beginning of the
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deployment, a new tag is instantiated for each virtual node. For leaf nodes of
the DAG, which are JVM creations, no identifier is added. Therefore, all nodes
deployed with the same path in the DAG have the same tag.

The tag is an abstraction of the physical infrastructure; it provides more in-
formation about how nodes have been deployed. It is now possible to know at
the application level that the same deployment graph has deployed two nodes.
The deployment tag can be used for instance by applications to optimize com-
munication between nodes or to do data localization. More especially Grid’BnB
uses the deployment tag to dynamically organize worker communications be-
tween clusters. Figure 3 shows the deployment result of a single virtual node on
three clusters. The deployment has returned nine nodes: four nodes on clusterA,
two on clusterB, and three on clusterC. The node tag mechanism has tagged the
nodes 0-0 on clusterA, 0-1 on clusterC, and 0-2 on clusterB. Tags are finally
used to organize workers in groups of communication to optimize communication
between clusters.

4 Experiments

4.1 The Flow-Shop Problem

Flow-shop is a NP-complete permutation optimization problem. The flow-shop
problem consists in finding the optimal schedule of n jobs on m machines. The
set of jobs is represented by J = {j1, j2, . . . jn}, each ji is a set of operations
ji = {oi1, oi2, . . . oim} where oim is the time taken on machine m and the set of
machines is represented by M = {m1, m2, . . . mm}.

The operation oij must be processed by the machine mj . The sequence of jobs
are the same on every machines, e.g. if j3 is treated in position 2 on the first
machine, j3 is also executed in position 2 on all machines.

We consider the mono-objective case, which aims to minimize the overall
completion time of all jobs, i.e. makespan. The makespan is the total execution
time of a complete sequence of jobs. Thus, the mono-objective goal is to find the
sequence of jobs that takes the shortest time to complete.
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4.2 Single Cluster Experiments

These experiments aim to choose the best search strategy and to determine the
impact on performances of dynamically sharing GUB with communications. We
use a 32 nodes cluster at INRIA Sophia lab, powered by dual-processors AMD
Opteron with a speed of 2 GHz and connected via Gigabit Ethernet.

Figure 5a shows results of applying different search strategies (described in
section 2.2) to flow-shop. The selected instance of flow-shop is 16 jobs / 20 ma-
chines. Results show that FIFO is the fastest for all those experiments; the
speedup between 20 CPUs and 60 CPUs is 4.63. This is a super linear speedup
owing to increase the total of CPUs allows a larger generation of the search
tree in parallel and thereby, improving the GUB faster to prune more branches.
Breadth-first search scales with a very good speedup, the speedup between 20
CPUs and 60 CPUs is 5.44, also super linear. The high speedup is normal because
more breadth-first search is deployed on nodes the more the tree is explored in
parallel. Depth-first search speedup is linear, 3.00, and for priority search the
speedup is 1.73. The speedup is particularly high with all these experiments,
because with 60 CPUs the chosen flow-shop instance can be widely explored in
parallel whatever the search strategy. The built search tree rapidly provides the
best solution as upper bound, thus each process can delete many branches.
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Fig. 5. Single cluster experiments: flow-shop n = 16, m = 20

With the same instance of flow-shop and with the FIFO strategy, we now
benchmark the impact of dynamically sharing GUB with communications. We
benchmark flow-shop with communications between workers for sharing GUB
and without dynamically sharing GUB between workers (no communication). In
the case of no communication, the master keeps the GUB up-to-date with all
results from computed tasks; and when a task is allocated to a worker by the
master, it sets the current GUB value to the task. Figure 5b shows the results.
Using communications to share GUB improves performance. But the speedup,
T No Communication

T Communications , is lower for 50 CPUs than 40 CPUs, this decrease comes
from the fact that since 40 CPUs this flow-shop instance has enough CPUs to
explore the whole tree in parallel, i.e. it is the optimal deployment.
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These experiments on a single cluster show that dynamically sharing GUB
with communications between workers improve execution time, and that choos-
ing the right search strategy considerably affects performances.

4.3 Large Scale Experiments

In order to experiment Grid’BnB on grids, we used a large-scale nationwide
infrastructure for grid research, Grid’5000 (G5K) [9]. The G5K project aims
at building a highly reconfigurable, controllable and monitorable experimental
grid platform gathering 9 sites geographically distributed in France currently
featuring a total of about 3000 CPUs. G5K is composed of a large number
of machines, which have different kinds of CPUs (dual-core architecture, AMD
Opteron 64 bits, PowerPC G5 64 bits, Intel Itanium 2 64 bits, Intel Xeon 64 bits),
of operating systems (Debian, Fedora Core 3 & 4, MacOs X, etc.), of supported
JVMs (Sun 1.5 64 bits and 32 bits, and Apple 1.4.2), and of network connection
(Gigabit Ethernet and Myrinet).

Grid experiments run with the same implementation of flow-shop, as previous
single cluster experiments. The instance of flow-shop is now a larger problem:
17 jobs / 17 machines. The search tree strategy is FIFO and communications
are used to dynamically share GUB. Results of experiments with G5K are sum-
marized in Figure 6a and Table 1.
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Fig. 6. Large scale experiments: flow-shop n = 17, m = 17

The broken line in Figure 6a shows that the execution time strongly decreases
until 272 CPUs, the speedup between 96 CPUs and 272 CPUs is 2.32. From 272
to 621 CPUs the execution time is almost constant, the speedup between 272 and
621 CPUs is 1.31. Then, the global speedup, between 96 and 621 CPUs, is 3.01.
Our Grid’BnB flow-shop scales well up to 272 (close to linear speedup). However,
for more than 272 CPUs, the execution time decreases slowly. Nevertheless, the
solid line shows the percentage of branches explored in the search tree, i.e. total
number of tested permutations, this line increases with the number of CPUs.
This line is indeed the total work done by the computation.
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Table 1. Large scale experiments results

CPUs Sites Execution time Tasks % of explored search tree Gathered time
100 1 104 m 1567 0.152% 167 h

200 1 60 m 2515 0.165% 181 h

300 2 44 m 3729 0.189% 196 h

492 4 40 m 5447 0.239% 251 h

621 5 35 m 6968 0.261% 267 h

Figure 6b shows the efficiency E, this value estimates how CPUs are utilized
for the computation. Values of E are between 0 and 1, a single-processor compu-
tation and linear speedup have E = 1. Here, we consider the execution time (T )
efficiency corrected with the work (W : total number of tested permutations) be-
cause Grid’BnB computes more work with increasing CPUs. Thus, the efficiency
for n CPUs: En = Tn/T96∗W96/Wn

96/n . The figure shows that between 96 and 300
CPUs, E is close to 1 (0.9), which is very good. However, for 422 and more, E
decreases to 0.8, it is still a good value. This decrease can be explain by the fact
that for experiments with less than 422 CPUs are done on 1 or 2 grid sites and
for 422 and more 3 up to 5 sites nationally-distributed. In addition, grid sites
are heterogeneous in regards of CPUs power and inter-site network connections.

Experiments on single cluster and large scale grid show that it is better to use
communications to dynamically share GUB, and that it is important for users
to choose the adapted search tree strategy to their problems to solve. Large
experiments also show that Grid’BnB can be used on grid environments, we
deploy flow-shop on a nationwide grid of five clusters gathering a 621 CPUs.

5 Related Work

Branch and Bound. Many work reported by the survey in [1] are based on
a centralized approach with a single manager, which maintains the whole tree
and hands out tasks to workers. This kind of approach clearly does not scale
for grid environments.Aida and al. [5] present a solution based on hierarchical
master-worker to solve scalability issues. Workers do branching, bounding, and
pruning on sub-problems, which are represented by tasks. The supervisor han-
dles the sharing of the best current upper bound. Supervisor and sub-masters
gather results from workers and are in charge to hierarchically update the best
upper bound on all workers. We show in section 4.2 that using dynamic com-
munications rather than using the master to share GUB allows to complete the
computation faster. In [6] Aida and Osumi propose a study of their hierarchi-
cal master-worker framework implemented using GridRPC middleware [10] and
Ninf-G [11]. The authors discuss the granularity of tasks, notably when tasks are
fine-grain the communication overhead is too high compared to the computation
of tasks. Thereby, Grid’BnB introduces a method to check how many workers
are available. This method helps users to program tasks and to dynamically
determine the most appropriate granularity of the tasks.
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Iamnitchi and Foster [12] proposes a solution to do B&B over grids that
differs from Grid’BnB and others because it does not base on master-worker
paradigm, but on a decentralized architecture that manages resources through a
membership protocol. Each process maintains a pool of problems to solve. When
the pool is empty, the process asks for work to other processes. The sharing of
the best upper bound is handled by circulating a message among processes. The
fault-tolerance issue is addressed by propagating all completed sub-problem to
all processes. This approach may result in significant overhead, in terms of both
duplicated work and messages.

ParadisEO [13] is an open source framework for flexible parallel and dis-
tributed design of hybrid meta-heuristics. Moreover, it supplies different natural
hybridization mechanisms mainly for meta-heuristics including evolutionary al-
gorithms and local search methods. All these mechanisms can be used for solving
optimization problem. Like Grid’BnB, the grid version of ParadisEO is based
on the master-worker paradigm. ParadisEO splits the optimization problem in
tasks. Then, the task allocation is handled by MW [4], a tool for scheduling
master-worker applications over Condor [14], which is a grid resource manager.
Unlike Grid’BnB, ParadisEO just provides mechanisms for searching algorithms.

Skeletons. The common architecture used for B&B on grids is “master-worker”.
For parallel programming, the master-worker pattern is called farm skeleton [15].
Muskel [16] is a Java skeleton framework for grids that provide farm. Skeleton
frameworks usually provide task allocation and fault-tolerance. Thus, skeletons
seem well adapted for implementing B&B for grids. Like Grid’BnB users just
have to focus on the implementation of the problem to solve all other issue related
to grid and tasks managing are handled by the framework. However in farm
skeletons tasks cannot share data, such as a global upper bound to prune more
promising branches of the search tree to find more rapidly the optimal solution.
In addition, another skeleton that fits B&B algorithm is the divide-and-conquer
skeleton. This skeleton allows to dynamically split task, i.e. branching, but like
farm it is not possible to share the global upper bound between task.

Divide-and-Conquer. Conceptually, B&B technique fits the divide-and-
conquer paradigm. The search tree can be divided into sub-trees, and each
sub-tree is then assigned to an available computational resource. This is done
recursively until the task is small enough to be solved directly.

Satin [17] is a system for divide-and-conquer programming on grid platforms.
Satin express divide-and-conquer parallelism entirely in the Java language it-
self, without requiring any new language constructs. Satin uses so-called marker
interfaces to indicate that certain method invocations need to be considered
for parallel execution, called spawned. A mechanism is also needed to synchro-
nize with spawned method invocations. Satin can be used directly to implement
B&B. Thus, users can mark branching methods to be executed in parallel. Like
Grid’BnB, Satin is in charge to distribute sub-problems through grids. But unlike
our framework, Satin does not provide any mechanisms for sharing global upper



578 D. Caromel et al.

bound and more generally no mechanism for communication between parallel
executed sub-problems.

6 Conclusion and Perspectives

We described Grid’BnB a parallel B&B framework for grids. Grid’BnB provides
a framework to help users to solve optimization problems hiding grids, paral-
lelism, and distribution related issues. It is based on a hierarchical master-worker
architecture enhanced with communications between processes to share the best
global upper bound thus exploring less parts of the search tree and decreasing
the execution time. Because grids provide a large-scale parallel environment, we
propose to organize workers in groups of communications. Groups reflect grid
topology. This feature aims to optimize inter-cluster communications and to up-
date more rapidly the global upper bound on all processes. Grid’BnB proposes
different search tree algorithms to help users to choose the most adapted one
for the problem to solve. Finally, the framework allows fault-tolerance for long-
running executions. In addition, we introduced a new mechanism, deployment
node tagging, to localize deployed nodes on grids. The deployment node tagging
allows Grid’BnB to identify nodes, which are on the same cluster, and to opti-
mize group communications between processes. This mechanism is integrated in
the deployment framework of the ProActive grid middleware.Experiments show
that Grid’BnB scales on a real nationwide grid, such as Grid’5000. We were able
to deploy a permutation optimization problem, flow-shop, on up to 621 CPUs
distributed on five sites.

In future work, we plan to improve our flow-shop implementation with a better
objective function, such as the technique proposed by Lageweg [18]. Likewise,
we want to run larger scale experiments on a worldwide grid, by mixing clusters
located in France and Japan. We believe that Grid’BnB can used for more than
B&B. Without modification of the framework it may be used to do divide-and-
conquer or as farm skeleton. Grid’BnB is framework for parallel programming
that targets all embarrassingly parallel problems.
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Abstract. The CMS experiment will produce several Pbytes of data every year,
to be distributed over many computing centers geographically distributed in dif-
ferent countries. Analysis of this data will be also performed in a distributed way,
using grid infrastructure. CRAB (CMS Remote Analysis Builder) is a specific
tool, designed and developed by the CMS collaboration, that allows a transparent
access to distributed data to end physicist. Very limited knowledge of underlying
technicalities are required to the user. CRAB interacts with the local user envi-
ronment, the CMS Data Management services and with the Grid middleware. It
is able to use WLCG, gLite and OSG middleware. CRAB has been in production
and in routine use by end-users since Spring 2004. It has been extensively used in
studies to prepare the Physics Technical Design Report (PTDR) and in the analy-
sis of reconstructed event samples generated during the Computing Software and
Analysis Challenge (CSA06). This involved generating thousands of jobs per day
at peak rates. In this paper we discuss the current implementation of CRAB, the
experience with using it in production and the plans to improve it in the immedi-
ate future.

1 Introduction

The CMS experiment (Compact Muon Solenoid) [1] is one of the four physics experi-
ments that will collect data at the Large Hadron Collider (LHC) [2] located at CERN.

The expected rate of event to disk will be about 150 Hz, so few PBytes of data per
year will be stored and processed. At the same time, the experiment needs also to use
the computational resources for the simulated data generation. The choice of CMS to
cover all these needs is a distributed architecture and the use of the grid middleware
components.

A hierarchy of computing regional centers, called Tiers, is defined in the CMS Com-
puting Model. The system is geographically distributed and includes a single Tier-0
center at CERN, a CMS Analysis Facility also at CERN, few Tier-1 centers and many
Tier-2 centers with different level of resources. In order to manage the data and opti-
mize the use of the distributed resources, a combination of generic Grid tools, provided
by the LCG (LHC Computing Grid) [3] and OSG (Open Science Grid) [4] projects, as
well as specialized CMS tools are used together.

CMS has also to provide a single interface to physicists, capable to operate with all
grid components and different back-ends in a transparent way. In this paper the CMS
analysis model and the tools used to perform it are discussed.

S. Aluru et al. (Eds.): HiPC 2007, LNCS 4873, pp. 580–586, 2007.
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2 CMS Data Model

The CMS computing model defines that the data collected by the CMS online data
acquisition system is sent to the Tier-0 center at CERN where raw data is archived.
A prompt reconstruction is performed and a first version of the Analysis Object Data
(AOD) is produced.

All the high-level physics objects are stored in the AOD together with the informa-
tion sufficient to support typical analysis. Raw and first pass reconstructed events are
distributed from the Tier-0 to a Tier-1 centers which takes custodial responsibility for
those while the AOD are also transferred to all Tier-1. The Tier-1 centers provide ser-
vices for data archiving, re-processing, calibration, skimming and other data-intensive
analysis tasks. All AOD and a fraction of the first pass reconstructed events and RAW
data are transferred to Tier-2 centers which provide resources for physics analysis.

The computing model foresees that all CMS users must use the Grid in order to
perform its own analysis.

3 User Analysis and CRAB

CRAB has been designed to allow physicists to access efficiently distributed data hid-
ing the complexity of Grid infrastructure. Following the analysis model, the user runs
interactively over small data samples in order to develop and test his code, using CMS
analysis framework (CMSSW). Once ready, the user uses CRAB from a User Interface,

Fig. 1. CRAB work flow and interaction with the Grid and Data Management
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where grid client middleware is available, to access to all data available on all remote
sites. The work flow covered by CRAB can be factorized on three main steps:

– The Data Discovery step, interacting with the CMS data management infrastruc-
ture, to know if required data are found and where are located;

– The interaction with CMSSW on local machine, so that the very same environment
can be reproduced on the remote resources;

– The Grid specific step, where all actions, from submission to output retrieval, are
performed;

A user interacts with CRAB through simple configuration file which is arranged
in several specific sections. Here all job specific parameters are defined, such as: the
dataset that the user wants to access, the name of CMSSW specific configuration file,
the job splitting parameters, how to manage the produced output, etc.

It is important to note that the very same CMSSW configuration, which the user has
used interactively can also be used for remote data access. CRAB will take care to apply
any changes needed to run on selected dataset on remote sites. The typical work flow
(figure 1) is the following:

– the input data discovery to determine the Storage Elements (SE) of sites storing
data. They are found interacting with CMS specific services, Data Bookkeeping
and Location Services (DBS and DLS);

– the packaging of user code, to create a tar archive with user code which contains
executable, library and user data files, as found on user local environment on User
Interface;

– the job preparation, which consists in creation of a wrapper script. It sets up the run-
ning environment, performs integrity check on remote resources (WN), launches
the executable and finally handles the output;

– the creation of grid job configuration (jdl), used by the Resource Broker (RB) the
requirements needed for resources matchmaking and job running;

– the job splitting according to user requests and data distribution;
– the job submission to the Grid performed via BOSS [6];
– the monitoring of the jobs, in order to check the status of jobs;
– the output retrieval and the handling of user output. Currently, CRAB supports the

copy of users output to an UI or to a generic Storage Element (SE) or to any host
with a gsiftp server (e.g. CASTOR).

Other useful functionalities are the job killing, the job resubmission and the postmortem
analysis, for debugging purpose, etc.

3.1 Experience Using CRAB

CRAB has been used with success for more than two years by CMS physicists, to
perform data analysis. The first intensive usage of the tool by a large number of users
from different places was during the Spring 2006 for the Physics TDR [7] preparation.

Moreover, CRAB has been used to access data during the CMS data challenges. The
last one was CSA06, in that case millions of simulated events were analyzed, reaching
peaks of 100’000 submitted jobs per month.
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Fig. 2. The top 20 users during the first four 2007 months

During the Magnet Test Cosmic Challenge (MTCC), CRAB was even successfully
used to access the real data distributed among several sites, the first real data for CMS.
There are about ∼ 300 CRAB users distributed around the world, that means a daily rate
of submitted jobs which reaches peaks of 10’000 jobs. In figure 2 the top twenty CRAB
users in the first part of 2007, sorted by number of submitted jobs, are shown. The
different color of the bars represents the different job status. In figure 3 the submission
rate is shown, referred to the same period. In this plots each color represents a different
site where the jobs run. The total efficiency is currently of order of 80%. The most
important causes of the failure rate are related to the input data and to the middleware
infrastructure. So the resulting infefficiency is not directly dependent on CRAB which
indeed doesn’t introduce a relevant fraction of jobs failures.

3.2 CRAB Improvements: Motivations and Implementation

The actual work flow of CRAB is based on a direct submission from the UI, where the
user is working, to LCG and OSG via RB. This standalone model has the advantage of
simplicity, but it lacks some features, which can be provided by a more advanced archi-
tecture client-server where a server is placed between the user and the Grid to perform
a set of actions for him. The main goals of the client-server architecture is to automate
as much as possible the whole analysis work flow and to improve the scalability of the
system. The aim of the project is also to create a tool which is easy to use for physicists
and easy to maintain for administrators.

The client-server implementation is transparent to the end users: the interface, the
installation, the configuration procedure and the usage remains exactly the same as for
standalone. The general CRAB client-server architecture is shown in figure 4.
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Fig. 3. The submission rate during the first four 2007 months. Each color represents a different
CMS site where the jobs run.

The server architecture is based on components implemented as independent agents
communicating through an asynchronous and persistent message service, plus a gridftp
server which allows all communication from client to server. The user proxy is shipped
using a WS-Delegation compliant service for proxy delegation.

The server core is a MySQL [8] DB of which the distinct components publish and
subscribe messages to communicate. This architecture is as similar as possible to the
CMS production system ProductionAgent [9] sharing components where possible, al-
lowing an easier maintenance of the WorkLoad Management tools.

The role of the client is to interact with DBL/DLS for the data discovery, to pre-
pare the jobs reading the local environment and finally to send the user proxy and the
prepared task to the server.

The server manages the project interacting with the Grid from the job submission to
the output retrieval on the name of the user. The actual server implementation provides
the following components:

DropBoxGuardian: to check the dropBox, which is the container where the client put
the user tasks, for new stuff to be managed. It also monitors the delegation service
to check new proxy arrivals;

ProxyTarAssociator: Associates the task to the right user proxy and localizes the task
configuration files w.r.t. the specific server instance;

CrabWorker: Submits jobs to the Grid in the CRAB style. It fully reuses the submitter
components of CRAB (which supports: EDG, glite, glite-bulk, condor g) It has
some task-level resubmission features;

TaskTracking: Keeps general informations about all tasks under execution (e.g. status
of the task, percentage of completed jobs in the task, etc);
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Fig. 4. CRAB server work flow and interaction with the Grid and Data Management

Notification: Notifies via e-mail the users when their tasks are ready/failed;
JobTracking: Tracks the status for every single job querying the grid and caching the

infos on the local DataBase;
ErrorHandler: Handles errors of jobs. Depending on the type of error (e.g. job run

error) it will initiate the appropriate error handler and update the job state;
JobSubmitter: Resubmits single jobs if needed;
RSSFeeder: Provides multiple RSS channels which can be used to forward important

informations to the server administrator.

4 Conclusions

CRAB has been used since summer 2005 by several hundreds of end users distributed
all over the world, it has reached more then 100’000 jobs/month with a daily record
of 10’000 jobs. CRAB was also extensively used by hundreds of physicists to access
data for the Physics TDR preparation, which was published during spring 2006. The
CRAB project is still under development in order to satisfy the users and the whole
CMS computing requirements for the data analysis.

At the moment the key effort of the development activity is devoted to the client-
server implementation. The first version is already released and it is now under
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commissioning to prepare the next CSA07 challenge (Computing, Software and Analy-
sis CMS challenge). Today the work flow implements the whole client interaction with
the server, the actual submission from the server to the Grid, Job and Task tracking,
simple error handling, retrieval of the produced output, and the user notification of the
task status.

The next development steps are dedicated to cover other use cases still missing, such
as job killing, disk space management and a web interface in order to show the status
of jobs submitted to the server.
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Abstract. Resource Allocation in Grid environments to date is generally carried 
out under the assumption that there is one primary scheduling system 
scheduling jobs. However, as environments tend towards larger open “utility” 
Grids it becomes increasingly likely that deployments will involve multiple 
independent schedulers allocating jobs over the same resources. 

In this paper we show that, if using current standard scheduling approaches, 
such multi-scheduler environments may well be prone to serious oscillation 
problems in resource allocation similar to those commonly found in IP network 
traffic. Further we demonstrate how common techniques from IP networks – in 
particularly approaches based on Random Early Detection (RED) buffer 
management and its subsequent extensions / variations – may provide an 
effective way to damp or eliminate such oscillations. The paper describes the 
analogy between multi-scheduler Grid resource allocation and IP network 
routing and explores the impact of oscillation and RED methods by simulation. 

1   Introduction 

Grid computing environments are a powerful model for virtualized resource sharing 
in wide-area network environments - making it possible for many users from different 
organisations to transparently access computing resources. However, the resulting 
resource allocation problem is highly challenging and becomes particularly so when: 
a) processors are widely distributed – leading to lengthy communication delays 
between sites and resource controllers having to work with outdated load information, 
and b) users are associated with multiple centres of authority and are also distributed 
– making it impractical to centralise resource scheduling for scalability, performance 
and administrative reasons.  

In such environments, resource scheduling involves multiple independent 
schedulers, each serving a subset of users and able to place jobs on resources without 
direct communication with other schedulers. Essentially the schedulers are multiple 
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actors working over the same resources in parallel with no central oversight. 
Furthermore, the information the schedulers have to work with is time delayed and 
potentially inaccurate. While great advances have been made in resource scheduling 
in recent years (from resource controllers [1, 2, 3] which now work very effectively in 
environments where the scheduler is the primary actor to approaches such as 
application based scheduling) it may be non-trivial to extend these techniques to 
larger, multi-scheduler environments. In this paper we argue that such problems are 
strongly analogous to certain types of control problems found in today's packet 
switched IP (Internet Protocol) networks and structurally very different to those in 
which a single actor can be assumed. In particular, in this paper: 

• We show that multiple scheduler Grid environments do indeed show potentially 
complex and pathological dynamics sometimes seen in IP networks. 

• That one way to tackle such problems may be to borrow techniques from IP 
networks themselves through the use of particular intelligent buffer management 
techniques such as Random Early Detection (RED) [4, 5] and (later) [6, 7].  

Results show that under certain conditions with multiple schedulers, oscillations 
clearly exist and heavily impact resource usage. Further, the work presents two RED 
based strategies (Static RED and dynamic RED) for resource scheduling which could 
be used to mitigate such effects, in particular when augmented to function with 
dynamic thresholds.  

2   Problem Definition 

In order to draw on techniques from network buffer management we define a generic 
multiple scheduler Grid resource allocation problem as follows: 

• A set of ns  schedulers si in S which do not communicate with each other and each 
of which emits a series of jobs  (ji1 .. jin) in J over time and aims to assign them to 
processors. 

• A set of nr processors pi in P, each of which has a processing queue with limited 
capacity pcap and is able to (on request) send out information on the status of its 
current processing queue (length in items or time) pinf. 

• Processors handle jobs in a FIFO (First In First Out) manner. Once they have 
accepted a job it is always eventually processed (processors are assumed not to 
fail). 

• Each scheduler regularly polls all processors to get the latest pinf information and 
caches this between updates. 1 

• For simplicity, the time delay t for a message to travel from any si to any rj and 
back again is the same and is non-zero. (Hence, if an si sends a request to an rj at 
time T1, the rj will receive the message at time T1+t and si the response at T1+2t.) 

• For a scheduler si to assign a job to a processor pj it sends a message to the 
processor placing the job. The resource then responds either with an acceptance of 
the job or a rejection. 

                                                           
1 More realistically the delays between each resource and scheduler would be determined by 

the network topology and would not always be the same. 
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• Once a job has been assigned to and accepted by a processor it cannot be re-
assigned. If the job is rejected by the processor the scheduler may try to assign it 
elsewhere. 

In this environment, it is therefore assumed that each scheduler uses the polling 
mechanism to produce a regularly updated snapshot of the current resource state of 
the network. The scheduler subsequently makes individual decisions on which 
processor to place its own incoming jobs. No direct communication is assumed 
between schedulers since such communication would take at least as long as 
interactions with processors and generate a strong synchronisation dependency on 
schedulers. 

3   Oscillations and RED in IP Networks 

In IP networks, flow control mechanisms such the TCP/IP protocol [8] provide 
signalling to communicate packet arrivals at the receiver to the sender. In the case of 
congestion (overloaded nodes at any point on the path between the sender and the 
receiver) packet losses occur, which induce a “backing-off” (reduction) of the sending 
rate at the sender. The sender then slowly increases its sending rate once more. Such 
mechanism (as well as adaptive protocols such as OSPF [9]) make it possible for all 
endpoints in the network to open and close TCP/IP packet flows to other endpoints 
without direct communication with each other. In other words, there is no central 
resource control. Furthermore, congestion is managed using feedback signals 
generated by the TCP/IP protocol (or similar mechanisms) which indicate to senders 
concerned when congestion occurs. These mechanisms provide for a baseline in 
congestion management. However, unfortunately they also exhibit pathological 
properties under certain (common) network conditions. In particular, the two most 
serious issues are: 

• TCP/IP Backoff synchronisation [4]: this phenomenon occurs when one or more 
nodes in a network become congested and the TCP protocol signals all senders 
with streams passing through the congested area to “slow down” sending within a 
short space of time. The result is a quick drop in all traffic through the node 
(creating a hole in resource use) followed by a gradual speed-up of sending by all 
sources (potentially creating a further congestion peak, another hole and so on). 

• Route Oscillation: in networks which use dynamic route allocation and adjust 
paths through the network based on round-trip times, congestion may cause routes 
to change to avoid a congested area. However, in general this means changing all 
traffic between two endpoints – hence, such route shifts may therefore create 
congestion elsewhere, a consequent shift back to the original route and so on.  

These phenomena are well documented in the communication networks literature 
(see [10] for example) and have been identified in many complex variations. While 
future Grid networks are unlikely to have as many independent schedulers as  
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communication networks have endpoints, as the number of independent schedulers 
grows, they may well exhibit similar potential oscillation problems since individual 
schedulers may naturally be programmed to “back-off” usage of congested processors 
and/or switch jobs to less loaded machines.  

3.1   RED for Oscillation Damping in Networks and Grids 

In the face of these oscillation problems, one of the main solutions developed in 
communications networks to improve performance is a family of mechanisms based 
on the idea of Random Early Detection (RED) policies. RED policies function by 
adopting the following underlying principle – begin sending congestion messages to 
some endpoints before maximum capacity is reached [5]. A basic RED approach is 
defined by two thresholds – MinQ and MaxQ as a %age of the maximum physical 
buffer. Subsequently, for each incoming packet, if the buffer contains less than MinQ 
packets, the incoming packet is always accepted, if the buffer contains more than 
MaxQ, the incoming packet is rejected. For buffer fullness value between MinQ and 
MaxQ, the system randomly rejects incoming packets with a probability determined 
by a linear interpolation between 0% (at MinQ) to 100% (at MaxQ).2 

Hence, the node begins to randomly send a small number of congestion signals to 
some sources well before the full capacity of the buffer is reached. Subsequently, a 
wide range of variations on RED were produced in order to optimise a variety of 
behavioural properties of the network. 

In Grid environments, As noted above, while multiple scheduler Grids may not 
have as many independent schedulers as IP networks have potential senders, there 
may still be strong analogies between the environments. In particular,  

 

• As soon as multiple independent schedulers are present they will receive feedback 
from the same environment and hence the potential for oscillation driving feedback 
mechanism exists. 

• Even if schedulers are not directly competitive, they have no strong incentive to 
cooperate with other schedulers as soon as they are not part of the same 
organisations, hence rational behaviour would lead each scheduler to be configured 
to gain maximum individual benefit from the Grid. 
 
In the remainder of the paper we therefore pursue a simple mapping of IP network 

structures and the RED approach to the generic Grid scheduling problems described 
in Section 2: 

 

• Processors P are analogous to IP network nodes. 
• Jobs (tasks) are analogous to data packets. 
• Job rejections are analogous to TCP/IP packet drop messages. 
• Processors implement buffer management policies including RED. 
• MinQ and MaxQ are set to fractions of the buffer length  (see varied parameters in 

the next section). 

                                                           
2 Note that, in practical implementations, RED uses an exponentially-weighted moving average 

on the buffer size rather does not work on the buffer directly to provide greater control, 
however for simplicity in this paper we consider the buffer directly. 
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4   Experimental Analysis 

In order to test these hypotheses, this section covers a set of simulations (using the 
SMPL simulation engine [11]) of the performance of the random and shortest queue 
scheduling policies with and without RED. Of interest are how RED strategies 
perform on average compared to simple standard scheduling policies, and their effect 
on the local queues of the available resources.  

4.1   Scheduling Strategies 

The set of scheduling strategies studied were the following: 
 

• Random without RED (R):  Jobs ready to be executed are assigned randomly to the 
machines, regardless of the local queue load. This strategy represents the case of a 
pure dynamic method that has no information on the processors or the application. 

• Shortest Queue without RED (SQ): Upon receiving a request for executing a job, 
each scheduler will use the information provided by a monitor system such as the 
EGEE Information Supermarket to select the processors with the shortest queue.  It 
should be noted that this monitoring information is accurate as sent by the 
processors to the schedulers, however there is a time delay before it arrives at each 
scheduler – the information is therefore gathered asynchronously, hence 
independent from the scheduling process and is updated every second.  

• Random with RED (R-RED): This strategy consists of applying RED to the jobs 
when scheduled using the random strategy. The thresholds of RED are kept 
constant throughout all simulation runs. 

• Shortest Queue with RED (SQ-RED):  This strategy consists of applying RED to 
the jobs when scheduled using the SQ strategy. Once the machine with the shortest 
queue has been chosen to execute a job, it may reject that job depending on its 
queue occupancy.  If the queue length is below MinQ of it capacity, the job will be 
accepted.  Otherwise it may be rejected with a probability proportional to the queue 
occupancy, i.e. the closer the queue is to MaxQ, the higher the probability of 
rejecting the job. 

• (All RED Schedulers) backoff mechanism: in addition to these behaviors, all 
schedulers working in RED environments implement a simple backoff policy in 
which, once rejected from a particular resource, they ignore this resource for a 
number of time steps before trying again (meanwhile they may send jobs, 
including the rejected job to other servers). 

4.2   Simulation Framework 

All described scheduling strategies are simulated in scenarios determined by the 
following parameters:  

 

• Number of Machines:  This represents the number of available processors on which 
the jobs are executed. We performed simulations using 20 homogeneous machines.  

• Number of Schedulers:  This represents the number of schedulers that receive 
requests for executing jobs, and the ones who schedule jobs using either the 
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random or the shortest queue policies. In our experiments the number of schedulers 
considered was 5. 

• Number of jobs: Our experiments considered three types of jobs with execution 
times of 10, 20 and 30 time units that were uniformly distributed in all simulation. 
Jobs are generated according to a exponential distribution with rate 5600 (resulting 
in approximately 5400 jobs). 

• Queue Length: Each processor has an associated queue.  In our experiments the 
maximum capacity of the queue was 30 jobs. 

• RED Thresholds: RED will always accept jobs if the queue occupancy is up to 5 
jobs.  If the queue occupancy is bigger than this, RED will drop jobs with a 
probability proportional to the queue occupancy.   

• Backoff time: the backoff time for all schedulers is set to 4x(Queue length minus 
MinQ). 
 
We assumed that communication among the schedulers and the processors takes a 

fixed amount of time (10 time units for a job to reach the executing machine queue, 
and 5 time units for a rejection notification to reach the submitting scheduler). 8 time 
units are added to allow for the time required to clean the job from the system. The 
results show total job total execution time (from arrival at the scheduler to 
completion) and processor queue behaviour for the strategies considered. 

4.3   Simulation Results – Oscillations and RED  

In each of the figures the x-axis shows execution time in simulation units. The y-axis 
represents the queue occupancy in number of tasks or jobs for each of the machines.  
Fig. 1(a) shows the evolution of 4 of the 20 processor queues for the random 
scheduling policy (R), while Fig. 1(b) shows the queue evolution for Random when 
RED is applied (R-RED).  We show only 4 queues for the sake of clarity (the 
behaviour of these queues being typical). 

 

Fig. 1. Comparing R scheduling with and without RED. The introduction of Static RED 
behavior (b) for the resources in the system hugely reduces the variable nature of resource 
usage in different systems queues – keeping average queue lengths much lower than without 
RED.  
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In the simulation runs shown, the striking feature is the high variability in queue 
length shown by the simple random strategy without RED as well as the clear 
mirroring behaviour of some queues of one another (Q3 decreasing and increasing in 
opposing oscillation to Q1 for example). The application of RED, by contrast, shows 
a radically different picture, with average queue occupancy more uniform across 
queues. The results shown are typical of many runs with variations of similar 
parameters and in terms of results that under R, a total (in the run shown) of 5332 
jobs, the average turnaround time was 223.75 time units with a standard deviation on 
turnaround time of 136.58. For R-RED, results for the run shown (with the same 
parameters) show for 5348 jobs and average turnaround time of 134.32 time units 
(almost half of the scenario with no RED) and a standard deviation of 45.74. 
 

Fig. 2. Comparing SQ scheduling with and without RED. As with random, the introduction 
of RED shows a radical change in system behavior. 

As with random scheduling policies, shortest path allocation also shows a major 
change in results from non-RED to RED environments. In terms of raw numbers, on 
its 5384 jobs, SQ showed an average turnaround time of 220.53 time units and a 
standard deviation of 106.90 – both marginally improved in comparison with the R 
strategy. With RED however, average turnaround times and standard deviations drop 
to 133.01 and 52.32 time units respectively, also in each case almost halving the times 
involved.   

While only one plot is shown, many experiments with different random number 
seeds and varied parameters were executed – all of these showed the same underlying 
dynamics (examples include significant variations in RED MinQ / MaxQ parameters, 
increases in job execution time to double their current value with reduction in arrival 
rate, as well as variations in the number of schedulers [10-100 and 15-300 
respectively]). 

In particular, for both sets of results shown here (and for all results more 
generally), key significant features include: 

 

• The average job turnaround time drops dramatically – to nearly half of the values 
seen without RED. On closer analysis, the longest waiting jobs under both R-RED 
and SQ-RED are processed much more quickly than under R and SQ, bringing a 
very large reduction in the standard deviation in job execution time.  
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• RED's effect is to smooth off the peaks of oscillations as they build and avoid jobs 
regularly forming unnecessarily long queues at resources which due to delayed 
load information appear to be attractive to all schedulers. 

• This positive result is seen despite the fact that results include extra costs incurred 
by some jobs as they are resubmitted.  

 
The results (the examples shown and more generally) also show that SQ performs 

only marginally better than R without RED and performance is essentially identical 
when using RED. While this appears to be counter-intuitive (since SQ would appear 
to be the “smarter” scheduling strategy), this effect reflects a cancelling out of the 
positive effects of queue selection by the negative impact of oscillations brought on 
by unintended synchronisation among job submissions by SQ. The synchronisations 
and peaks seen under R appear to be a clear indication of the presence of the types of 
dynamics typically predicted for balls and bins problems [12], in which random 
assignments in fact often cause large differences (clustering) in the resources items 
are assigned to. 

The conditions shown here are particularly susceptible to oscillations since 
processor usage information is somewhat time delayed (10 time units) meaning that 
the actions of other schedulers are hidden for a short amount of time to other 
schedulers and actions take time to have an effect (hence a job sent at time t, does not 
become visible in the queue until t+10).  While these are arguably not extreme 
parameters:  

 

• Schedulers all poll at the same rate – giving them the same processor picture at 
each decision step. 

• Schedulers all use the same assignment policy (shortest queue). 
 

To some extent these factors therefore accentuate the possibility of the emergence 
of oscillations. However, it is also clear that even if some conditions are softened 
oscillations would still be expected: 

 

• Modelling different polling rates for information updates for different schedulers 
mean less synchronized world models. However, these would still ultimately be 
(time-delayed) models of the same reality – hence ultimately such scenarios also 
show synchronisation. 

• While schedulers may use different heuristics for scheduling, shortest queue is the 
rational individual choice – making it unlikely that an individual scheduler would 
choose another policy. 

• The impact of RED on the random case is illustrative, since even here the extra 
early rejection factor manages to cut out the build up of long queues. 

4.4   Dynamic RED 

In order to address some of the limitations seen in static RED, further experiments 
were carried out in which the thresholds which govern RED behaviour were adapted 
dynamically to system load. In particular, Dynamic RED thresholds are calculated in 
the following way: 
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MaxQ = (Queue Length – Current Queue) · α 
MinQ = MaxQ · α (1) 

where, as before, MaxQ is the maximum threshold, MinQ is the minimum threshold, 
α is a value between 0 and 1, Queue Length the queue maximum capacity and Current 
Queue the current queue occupancy. Depending on system-load, the administrator can 
set the α value in order to adjust/tune system performance. However, in all 
experiments reported we set α to 0.2. The effect of the changes to RED is to create a 
mechanism which tightens and loosens control on a resource based on load. On the 
basis of this mechanism two more scheduling cases are studied: 

 

• Random with Dynamic RED (R-DRED): which consists of applying Dynamic RED 
to the jobs when scheduled using the random strategy.  

• Shortest Queue with Dynamic RED (SQ-DRED): applying Dynamic RED to the 
jobs when scheduled using the SQ strategy.  
 
Results for experiments using the same configurations as used in the previous 

section are shown in Fig. 3.  
 

Fig. 3. Showing scheduling cases random with dynamic RED (left) and shortest queue with 
Dynamic RED (right). Results show a further improvement on the static RED case – further 
reducing round trip times and standard deviations. 

Using Dynamic RED, results improve further (though not dramatically since the 
major step shown even with static RED is the cut through the majority of delays 
caused by oscillations):  

 

• For R-DRED, the run shown of 5338 jobs has an average turnaround time of 
105.71 time units and a standard deviation of 37.93 – a significant advance on R-
RED. 

• For SQ-DRED, the run shown of 5486 jobs has an average 112.99 time units and a 
standard deviation of 34.05, representing a small but significant improvement for 
SQ (which can be seen consistently over other runs with similar parameters). 
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5   Comparative Analysis of Results 

In order to illustrate the difference in operation between the techniques in question, 
Fig. 4 compares the average number of jobs per resource currently waiting in the 
system under gradually increasing job arrival rates. The graph for each scheduler type 
and resource policy (no RED, static RED and dynamic RED) hence shows the point at 
which a particular system becomes saturated by latent jobs in the system. Since jobs 
could be queued at a resource (the maximum buffer length at each is 30) and at the 
scheduler (if rejected by a resource), the graph sums both figures to create an average. 

Load is generated according to the same exponential distribution used in the 
previous experiments but the number of jobs per second is gradually increased from 
0.5 jobs per time unit (50% of system theoretical maximum throughput) through 1 job 
per time unit (100% of theoretical maximum throughput) at 10000 time units to 1.1 
jobs per time unit (110% of capacity) after 12000 time units. The results of this 
comparison show: 

 

• A clear difference between RED and non-RED strategies at high levels of 
throughput (from 5000 time units / job arrival rate at 75% of theoretical maximum) 
in the R case and even at low levels of throughput (50% of theoretical maximum) 
in the SQ case. 

• Dynamic RED performs marginally better than static RED throughout. 
• SQ also generally has slightly worse performance at lower levels of resource 

occupancy than R – highlighting the impact of local, small scale oscillations 
creating unnecessary, short lived synchronizations in the network. 

• At higher job arrival rates however, non-RED systems benefit from shortest queue 
which keeps static load in the system lower for longer than the Random scheduler. 
 

Fig. 4. Comparative behavior under increasing system load for Random (left) and Shortest 
Queue scheduling. With both R and SQ approaches, RED approaches keep residual jobs in 
the system significantly lower for longer – keeping more jobs flowing through the system. 

In terms of concrete figures for these simulation runs, random without RED 
showed an average turnaround time of 101.5092 time units,  with standard deviation 
of 80.8737. With static RED, this drooped to an average turnaround of 82.3545 time 
units and a standard deviation of 45.6551. With dynamic RED, figures drop to 
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72.1976 time units and 36.5258 respectively. Shortest Queue results follow the same 
pattern, with non-RED average turnaround time at 153.4731 time units (deviation 
88.1687), static RED dropping this to 109.7881 time units and 53.6473  and dynamic 
RED to average turnaround time of 90.2004 time units and standard deviation of 
48.0186. 

6   Conclusions  

Whilst production Grid environments with many multiple independent scheduling 
processes may still be way time off, they are likely to grow significantly in 
importance. In this paper, we argue that such environments may suffer from similar 
oscillation problems to IP network traffic management scenarios and that, further, 
approaches based on Random Early Detection policies may be a strong candidate for 
mitigating some of these pathologies. While results are preliminary, they arguably 
show promise:  

 

• The oscillations seen are potentially an underlying phenomenon which will have a 
significant impact on the design and use of multi-scheduler systems in large Grids. 

• RED shows significant promise for tackling such oscillations and further, if 
validated, has a number of attractive properties for deployment in Grids including 
no need for centralised management, deployment at individual processor sites only 
and a wide range of flexibility on the precise drop strategy. 

• IP network scheduling and routing techniques more generally may hence be a 
significant source of inspiration for scheduling challenges in next generation 
Grids. 

 
Future work includes testing additional simulation parameters in order to further 

validate results and exploring new directions that the link between Grid resource 
scheduling and TCP/IP network management opens up. A longer version of this paper 
is available in technical report form [13]. 
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Abstract. The vast computing potential of mobile computing systems is often 
hampered by their susceptibility to transient and independent failures. To add 
reliability and high availability to such systems, checkpoint based rollback re-
covery is one of the widely used ones for scientific computing, database, tele-
communication and mission critical applications. This paper presents a coordi-
nated nonblocking checkpointing and recovery technique for such systems that 
handles the constraints posed by the underlying wireless network, efficiently. 
Here an initiator (an MSS) sends checkpoint requests to all other MSSs and the 
MSSs send this request only to those MHs, which have communicated in the 
last checkpointing interval (relieving the wireless network from synchronization 
overhead). Also all acknowledged messages are logged at the home station of 
the receiver MH so that only the faulty MHs need to recover in case of failure 
and no other process is affected by this fault and subsequent recovery. 

Keywords: Mobile computing system, Checkpointing, Recovery, consistency, 
message logging. 

1   Introduction 

A mobile computing system consists of both Mobile Hosts (MH) and static Mobile 
Support Stations nodes (MSS). A set of dynamic and wireless communication links 
can be established between an MH and an MSS, and a set of high-speed communica-
tion link is assumed between the MSSs. An MSS may communicate with a number of 
MHs but an MH at a time communicates with only one MSS. An MH communicates 
with the rest of the system via the MSS it is connected to. The links in the static net-
work may support FIFO message communication [14]. Moreover, as long as an MH is 
connected to an MSS, the channel between them ensures FIFO communication in 
both directions. Message transmission through these links takes an unpredictable but 
finite amount of time. Reliable message delivery is assumed during normal operation 
that is there is no message loss or modification.  

Distributed computation in mobile computing environment is performed by a set of 
processes executing concurrently on MHs and MSSs in the network. The processes 
communicate asynchronously with each other. A process experiences a sequence of 
state transitions, called event, during its execution. The event having no interaction 
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with another process is called an internal event; the message sending and receipt are 
external events. Computation is a sequence of state transitions within a process and 
the messages generated by the running application are called computation message. 

2   Related Works 

Acharya et al. [1] were the first to present an asynchronous uncoordinated snapshot 
collection algorithm for distributed applications on mobile computing systems where 
an MH takes a local checkpoint depending on communication pattern. Prakash and 
Singhal’s algorithm [13] tried to combine the orthogonal views of nonintrusiveness 
and efficiency. This synchronous algorithm uses transitive dependency to determine 
the minimal set of nodes for checkpointing.  Sometimes this algorithm gives inconsis-
tent results. Cao and Singhal [7] removed inconsistency and proved that the two 
views of nonintrusiveness and efficiency can never be combined. But their algorithm 
may sometimes flood the network with messages and return messages because of the 
online dependency tracking. In [8] Cao and Singhal proposed a nonblocking algo-
rithm using mutable checkpoints to avoid storage overhead. Here weights are used as 
in [13] to indicate completion of the checkpointing task though there is discrepancy 
regarding initialization of the weight.  

Gass and Gupta [12] in their blocking algorithm take communication induced, lo-
cal and forced checkpoints to be stored in volatile storage but only one of them (glob-
ally consistent one) is made permanent. But longer algorithm invocation period may 
exhaust local memory with multiple inconsistent checkpoints. Recovery is slower as 
failure information may not reach all fault free processes within finite time. 

For fast recovery the checkpoints and logs of an MH are moved as the MH per-
forms handoff between cells in [5] increasing failure free communication overhead. 
This is improved in [3] by keeping recovery information in the home of that MH. But 
if the MH is far from its home, transfer cost increases. Park et. al in [15] proposed an 
algorithm for efficient recovery based on pessimistic message logging that keeps a 
distance vector or a handoff frequency counter to decide when to shift the checkpoint 
between MSSs such that the path to be traced during recovery remains manageable. 
But the MH may roam around a particular area causing to shift the checkpoint unnec-
essarily. Badrinath et al in [2] proposed an algorithm based on two-tier principle for 
cellular networks to reduce computation work on the MH and the overall message 
transfer. 

It is improved by Byun et al. in [9]. Here coordinated checkpointing is used be-
tween the MSSs which record the state of the MHs. The messages directed towards an 
MH are also logged in the MSS to which the MH is connected. The communication 
cost is higher when the number of MHs is small.  The algorithm does not clearly state 
the location management policy used to detect the foreign agent of an MH by a home 
agent.  

In [16] fixed stations take checkpoints synchronously but an MH takes (inconsis-
tent) checkpoint independent of the other MHs. Due to the inherent nature of commu-
nication, each message is broadcasted and hence the MSSs can easily get the message 
and log it so that during recovery a state beyond the latest checkpoint can be reached. 
But how the failure information is communicated to the checkpoint coordinator is not 
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clear from the protocol. To take advantages of both optimistic and pessimistic logging 
schemes, family based logging scheme has been introduced in [17]. Here the sender 
(parent) partially logs the message before sending. The message becomes relevant 
when the receiver (child) depending on the received message, sends a message to an-
other process (grand child) which logs the piggybacked receive sequence number of 
the message (the child received). Now if the child fails, during recovery, the parent 
and the grandchild cooperate to replay the received messages, making the perform-
ance of this protocol depend on the communication pattern. In [18] causal logging is 
used along with checkpointing to solve this problem. Here, each MH takes checkpoint 
independently and the entire state information is sent to the local mobility agent for 
storage deleting the previous checkpoint.  

3   System Model and Assumptions 

The MSSs are assumed to be fault-tolerant because it is quiet feasible to apply hard-
ware fault tolerance techniques like hotswap at the MSSs. An MH can communicate 
with the rest of the system via the MSS it is connected to, which may be referred to as 
the home station (HS) of that MH. If an MH moves to the cell of another base station, 
wireless channel to the old MSS is disconnected and a wireless channel in the new 
MSS is allocated. The state of the MH at the time of disconnection is available from 
the old MSS. 

There is no shared memory or common clock among the nodes and communication 
and synchronization between the nodes is via message-passing only. Mobile IP is 
used as the underlying protocol for message transmission. Hence an MH communi-
cates all messages via its HS.  During disconnection interval only local events take 
place at MH. However, it is assumed that checkpointing requests as well as computa-
tion messages from other MHs may be queued at the old MSS during this disconnec-
tion interval. All these issues are needed to be addressed during checkpointing [4]. 
The time interval between two consecutive checkpoints is checkpointing interval. 
Fail-stop model of communication is assumed.  

4   The Checkpointing-Recovery Scheme 

The scheme proposes that a checkpoint initiator (each MSS takes turn in acting as ini-
tiator) sends checkpointing requests from time to time to all MSSs only. After receiv-
ing checkpointing request, an MSS finds out whether the MHs to which it is the HS 
needs to take checkpoint or not. Each MSS also maintains an account of the commu-
nication activities in the current checkpointing interval of the concerned MHs. This 
helps in determining whether an MH would take a checkpoint or not in the present 
initiation. Hence an MSS forwards the checkpointing request only to those MHs (to 
which it is HS) if it finds that those particular MHs were active during the current 
checkpointing interval. Hence only a few selective MHs are able to take checkpoints 
after the checkpointing request reaches them. Moreover, all MSSs also take check-
points at every initiation. This decision by MSSs saves considerable amount of com-
putation at each MH and hence conserves energy. The checkpointing overhead in 
terms of request messages is also minimized thereby saving network bandwidth. 
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P2 

Messages received are logged in the stable storage of the corresponding HS such 
that during recovery only the failed process needs to restart its computation from its 
last saved checkpoint while other processes can execute computation without any in-
terruption. Only unacknowledged messages are saved in the HS of the sender MH. 
These two logs are sufficient for maintaining consistency during recovery. The recov-
ering once-faulty process informs other processes (only the MSSs via its HS) that it is 
recovering. This is required in case there is any message that had been sent to it but 
remained unacknowledged at the HS of the sender MH and hence logged in its buffer. 
Upon getting the recovery message the HS of the sender MH will resend the message 
from its log. The sender MH continues its execution and it also does not have to inter-
fere since it never receives any such recovery message. Thus overhead during recov-
ery is also kept at a minimum.  

4.1   Example Scenario 

Let us describe the situation with an example of five MHs. (figure 1). At the end of 
each checkpointing interval all MSSs receive checkpointing request from initiator 
MSS. Let us assume that MSS1 is acting as the HS for MHs P0, P3 and P4 and MSS2 
for the MHs P1 and P2. When MSS1 receives checkpointing request it first finds that 
MHs P0, P3 and P4 need to take their (k+1)th, (j+1)th and (x+1)th checkpoints respec-
tively since P0 has received m2 and sent m1, P3 has received m3 and m4 and P4 has sent 
m4 in their respective last checkpointing intervals. Hence MSS1 sends checkpointing 
requests to P0, P3 and P4, which upon receiving such request duly take their check-
points. Then MSS1 takes its own checkpoint. MSS2 after receiving checkpointing re-
quest finds that only P1 needs to take its (h+1) th checkpoint since it has sent m2 and 
m3 in its last checkpointing interval. But P2 does not need to take any checkpoint since 
it has not communicated since its last checkpoint CP2

i.  

 

 

 

           CP2
i. 

 

 

Fig. 1. A mobile computing system consisting of 5 MHs 

As in [14], the MHs and MSSs are not blocked during the checkpointing activity. 
Each MSS logs unacknowledged messages (of the sender MHs for whom it is the HS) 
in its checkpoint besides its own state. Also, positively acknowledged received mes-
sages of these MHs are saved for recovery. Thus unacknowledged messages are 
logged at the sender end and acknowledged messages are saved at the receiver end. 
During recovery the received messages may be replayed in order relieving sender 
MHs from any interruption. Moreover, unacknowledged messages may be replayed 
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from the log to prevent the occurrence of orphan messages.  Now if P3 fails and the 
HS of P3 detects that failure it sends the message logs to P3 and recovers from its last 
checkpoint CP3

(j+1) and no other processes need to recover unlike [14].  
For example, in figure 1 above, when CP0

k+1 is created, CP0
k is deleted and infor-

mation related to m1 and m2 are transferred to the old log. Logs related to the current 
interval (k+1, k+2) are then maintained. So, even if P1 fails at the “X” (as shown in 
the timeline of P1) it will resume from CP1

h and its HS (MSS2) will correctly replay 
m1 and m2 when necessary. P0 will discard m2 and P3 will discard m3 treating these as 
duplicate messages by looking into the old logs. In fact, m2 and m3 can be discarded at 
the respective HS.  

Thus it is evident that only the faulty process needs to recover to maintain consis-
tency since all information regarding the checkpointing interval in which the process 
failed is with the HS of that faulty process. Hence reconstruction of the scenario from 
the faulty process’ latest checkpoint will be based on locally available information. 

5   Checkpointing Algorithms 

5.1   Required Data Structures 

Mess_Record[]: This vector of dimension k is maintained by an MSS for k MHs to 
whom it is HS. It is initialized to zero at the beginning of a checkpointing interval. If 
MHj sends/receives computation messages then Mess_Record[j] is set to 1. 
Ack_Record[][]: This matrix has k as one of the dimensions and number of messages 
as the other dimension. It is initialized to zero at the beginning of a checkpointing in-
terval. If MHi sends m-th computation message to MHj , then Ack_Record[i][m] is set 
to 1 till the corresponding acknowledgement arrives.  

snt-mess-buff: A buffer that stores unacknowledged messages of the current  
checkpointing interval with sender id, destination id, sequence number and content.  
receive-mess-buff: Positively acknowledged received messages of the current check-
point interval are stored with sender id, destination id, sequence number and content. 
old_snt-mess-buff: A buffer that stores unacknowledged messages of the last  
checkpointing interval with sender id, destination id, sequence number and content.           
old_receive-mess-buff: Positively acknowledged received messages of the last check-
point interval are stored with sender id, destination id, sequence number and content.  
csnk: Contains the checkpoint sequence number of MHk that its HS expects. 

5.2   Algorithmic Details 

Algorithm 1.  //Algorithm for taking checkpoint in Mss 
1. Receive checkpoint request message from initiator 
//finds out whether each of the p MHs that are connected to it has communicated 
2. For all MHk (0 < k < p)     
   2.1 Checks entries of Mess_Recordk[]   
   2.2 If any Mess_Recordk[] is not zero 
      2.2.1Send checkpoint request to MHk , update checkpoint sequence number, csnk                                        
      2.2.2 While Ack_Record[k][] is not exhausted   //checks if ack has come  
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         2.2.2.1 If there is 1 in Ack_Record[k][] //writes unacknowledged message in log 
             2.2.2.1.1 MSS keeps a copy of the message in snt-mess-buff of MHk  
       2.2.3 Transfers contents of receive-mess-buff and snt_mess_buff of MHk respec-
tively to old_ receive-mess-buff and old_snt_mess_buff 
3. MSS takes a checkpoint 

 
Algorithm 2.  // Algorithm for Taking Checkpoint in Mh Pi  
1. Receive checkpoint request message from the HS  
2. Pi takes a checkpoint 

 
Algorithm 3.  // Algorithm for receiving computational messages in Mh 
1. Receive message from sender (via HS) 
2.  Send acknowledgement 

 
Algorithm 4.  // Algorithm for receiving computational messages in Mss                        
1. Receive message (on behalf of MH connected to this MSS) from sender 
2. If it is not duplicate (by checking the message sequence no with the sequence num-
bers of messages in the receive_mess_buff) 
    2.1 Forward it to appropriate MH 
    2.2 Save it in receive-mess-buff of the corresponding MH  
3. Else if it is duplicate  
    3.1 Discard 

 
Algorithm 5.  // Algorithm for recovery of Mhk after failure at Mhk 
1. Load latest checkpoint and send its sequence number to the HS 
2. Receive the logged computation messages from MSS and replay them in order. 

 
Algorithm 6. // Algorithm for recovery of Mhk after failure at Mss 
1. If the received csn matches with latest csnk then,  
    1.1 Transfer current content 
2. Else 
    2.1 Transfer old content 

6   Brief Proof of Correctness 

Theorem 1. The checkpointing protocol ensures a consistent recoverable state in the 
mobile environment. 
 
Proof: We prove this theorem by contradiction. Let the checkpointing protocol be in-
consistent. Then during recovery either of the following cases should occur: 

Case 1: There is a missing message m that is recorded ‘sent’ in sender’s checkpoint 
CPs

k but not recorded ‘received’ in the respective receiver’s checkpoint CPr
h or 

Case 2: There is an orphan message m as m is recorded ‘received’ in receiver‘s 
checkpoint CPr

k but not recorded ‘sent’ in the respective sender’s checkpoint CPs
h. 
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A brief outline of proof is given below. A message is drawn as an arrow from 
sender to the receiver of the message. The acknowledgement is shown as a dotted line 
with an arrow from receiver of the message to the sender as shown below (figure 2). 

 
 ts

s(m)       X2    ts
r(m) 

 

 tr
r(m)     X1 

Fig. 2. Message m recorded ‘sent’ (Case 1) 

Case 1: Let us consider message m in figure 2. Since m is recorded sent, therefore ac-
knowledgement of m has reached Ps before CPs

k. 

Assumptions: 1. Message m sent by Ps at ts
s(m) is acknowledged at ts

r(m), 
 2. Checkpoint CPs

k taken by Ps at ts
k where ts

k > ts
r(m)> ts

s(m), 
 3. Checkpoint CPr

h taken by Pr at tr
h where tr

h < tr
r(m), 

 4. Message m is recorded sent in CPs
k of Ps but not recorded received in CPr

h of Pr. 

Since acknowledgement is sent by step 2 of Algorithm 3, when Ps takes new 
checkpoint CPs

k, m is recorded sent and is logged in the receive_mess_buff of Pr.If 
failure occurs at X1, Pr resumes from CPr

h with m being replayed. If failure occurs at 
X2, Ps resumes from CPs

(k-1) with m being sent again but discarded at Pr by steps 3 and 
3.1 of Algorithm 4. So even if a message is recorded sent but not received in the cor-
responding pair of checkpoints, the system is in consistent state. 

Case 2: Let us consider message m1 in figure 3. Since m1 is not recorded sent, either 
of the following has occurred: a) Case 2.1: m1 is sent after CPs

h. 

Assumptions: 1. Message m1 sent by Ps at ts
s(m1) is acknowledged at ts

r(m1), 
2. Checkpoint CPs

h taken by Ps at ts
h where ts

h < ts
s (m1) < ts

r (m1),  
3. Checkpoint CPr

k taken by Pr at tr
k where ts

s (m1) < tr
r (m1) < tr

k, 
4. Message m1 is not recorded sent in CPs

h of Ps but recorded received in CPr
k of Pr. 

 
     ts

s(m1)                   X4               ts
r(m1) 

 
 tr

r(m1)            X3 

   

Fig. 3. Message m1 not recorded ‘sent’ (Case 2.1) 

m1 is recorded in the receive_mess_buff of Pr. If failure occurs at X3, Pr resumes from 
CPr

(k-1) with m1 being replayed from its receive_mess_buff. 

Pr 

CPs
k CPs

(k-1) 

CPr
h    m 
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Pr 

CPs
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CPr
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m1 

Ps 

CPr
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CPs
k CPr

h 

If failure occurs at X4, Ps resumes from CPs
h with m1 being sent once again but dis-

carded at Pr by steps 3 and 3.1 of Algorithm 4. 
Thus even though there is a message that is not recorded sent but recorded received 

in the corresponding pair of checkpoints, the system is in consistent state. 
b) Case 2.2: There is an unacknowledged message m2 at CPs

k as in figure 4. 

Assumptions: 1. Message m2 sent by Ps at ts
s(m2) is acknowledged at ts

r(m2), 
2. Checkpoint CPs

k taken by Ps at ts
k where ts

s (m2)< ts
k  < ts

r (m2),  
3. Checkpoint CPr

h taken by Pr at tr
h where tr

h  > tr
r (m2) > ts

s (m2), 
4. Message m2 is not recorded sent in CPs

k of Ps but recorded received in CPr
h of Pr. 

 
                                    ts

s(m2)                                                      ts
r(m2)                      

                                                   

 X          tr
r(m2)  

Fig. 4. Message m2 not recorded ‘sent’ (Case 2.2) 

Since acknowledgement of m2 is due at ts
k, by steps 2.2.2.1 - 2.2.2.1.1 of Algorithm 

1 the MSS keeps m2 in snt-mess-buff. If failure occurs at X in figure 4, during recov-
ery Pr resumes from CPr

(h-1). Pr will issue a message to all the MSSs via the HS that it 
is recovering. The MSSs thereby will check their own old_snt_mess_buff and 
snt_mess_buff and send if there is any unacknowledged message that was sent to this 
recovering process. There will be no problem with the messages received by Pr since 
these will be replayed from its own receive_mess_buff.  Since Ps will not recover it 
may not directly send m2 once again and that will be played from the log by its HS. It 
may be noted here that had Pr failed after tr

r(m2), m2 may have been replayed from its 
own receive_mess_buff and any duplicate m2 would have been discarded. 

Thus even though there is a message that is not recorded sent but recorded received 
in the corresponding pair of checkpoints, the system is in consistent state. 
 
Lemma 1. If a message is logged in stable storage before processing it, then during 
recovery only the process that has failed needs to recover. 
 
Assumption: A failure can occur after receiving any computation message.  

 
Proof: If messages are logged in stable storage before processing then the following 
condition always holds: 

 ∀e: ¬ Stable(e) ⇒ |Depend(e)|= 0 

This property stipulates that if an event has not been logged on stable storage, then 
no process can depend on it. 

Here, e: receipt of a message by process p. 
Depend(e): the set of processes that are affected by event e. This set consists of p, 

and any process whose state depends on the event e according to Lamport’s happened 
before relation [10]. 

Pr 
CPr

(h-1) 
m2 

Ps 
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A

C 

Log(e): the set of processes that have logged a copy of e’s determinant in their 
volatile memory. 

Stable(e): a predicate that is true if e’s determinant is logged on stable storage. 

Let us consider figure 5. During failure-free operation the logs of processes P0, P1 
and P2 contain the determinants needed to replay messages {m0, m4, m7}, {m1, m3, 
m6} and {m2, m5} respectively. Let us suppose processes P1 and P2 fail as shown, re-
start from checkpoints B and C, and roll forward using their determinant logs to de-
liver again the same sequence of messages as in the pre-failure execution. This guar-
antees that P1 and P2 will repeat exactly their pre-failure execution and re-send the 
same messages. Hence, once recovery is complete, both processes will be consistent 
with the state of P0 that includes the receipt of message m7 from P1. 

 
 
 
 
 

Fig. 5. Message logging scheme used in the protocol 

Hence the effects of a failure are confined only to the failed processes. Functioning 
processes continue to operate and never become orphans. 

 
Theorem 2. Upon failure only the failed process needs to restart from its most recent 
checkpoint in order to guarantee consistency. 

 
The protocol logs every message received, at the receiver’s HS by steps of 1-3 of Al-
gorithm 4. Thus this theorem directly follows from lemma 1. 

7   Salient Features of the Proposed Scheme 

The problem of concurrent initiation does not arise as the MSSs take turn to act as 
the initiator. Hence initiator never becomes a bottleneck. The coordinated checkpoint-
ing overhead is also minimized since the present scheme is not like the two-phase 
commit protocol. Hence bandwidth, power both is conserved. 

Only the faulty process needs to recover leaving the others unaffected. 
This scheme conserves energy and bandwidth since not all MHs need to take 

checkpoint. Also this decision is taken by the HS of the MHs thereby relieving the 
MHs from executing an algorithm saving the battery power. 

Memory constraint of mobile nodes is considered here and the entire message logs 
required by the protocol are kept at the stable storage of the HS. This does not incur 
any extra overhead since the underlying network protocol (mobile IP) ensures that all 
communication is usually done via the HS.  
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8   Comparison of Checkpointing Techniques 

Simulation experiments were carried out to study the behavior of checkpointing pro-
tocols described in [9], [12] and the technique proposed in this paper. We have chosen 
a very general application platform where a process can undergo any of the following 
three states: send, receive and compute. These states are uniformly distributed. In 
compute mode, a process can execute local computations. The computation time fol-
lows exponential distribution and is given by: –log (1-(random number between 1 to 
no of MH)/no of MH)/6. In the send mode a process sends computation messages to 
any other process in the system and in receive mode it receives messages (if any) 
from other processes. States are generated in such a way that for every send operation 
there is a corresponding blocking receive. That is the receiver waits until it has got a 
message from its sender. Hence at any moment an active MH is in one of 2*(no of 
MH-1) + 1 states (for example sending a message to MH2 can be a state in MH3). 

The simulation programs are written in C++ on Red Hat Linux 9 operating system. 
Here, two classes are used, one for MSS and one for MH. All MHs and MSSs are 
given unique identification numbers. After a certain time interval, an MH may choose 
to move to some other MSS with equal probability. The MSS also keeps track of the 
MHs, which are currently directly connected to this MSS. The simulation is run for N 
processes (running on MHs) where N is an integer.  

8.1   Basis of Comparison 

The algorithm presented here is compared with the two-tier approach [9] and the pro-
tocol by Gass and Gupta [12]. These two schemes are the representatives of two 
classes of checkpointing schemes - the first one ([9]) is based on the coordinated 
checkpointing approach and the next one ([12]) is based on communication induced 
checkpointing approach. 

Graph of Execution Time w ith No of Checkpoints
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Fig. 6. Graph showing checkpoint overhead 

The checkpoint overhead is calculated to be the difference between the execution 
times with checkpoints and without checkpoints. Hence figure 6 show that our algo-
rithm has very low checkpoint overhead. Now, the checkpoint overhead of our algo-
rithm is compared with the approaches presented in [9] and [12]. No of states of exe-
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cution is taken in the x-axis. Each of these states can be local computation, sending a 
message to some other MH or receiving a message from another MH. Results of the 
simulation are shown in Table 1. Figure 7 shows the plot of the results. 

Table 1. Results of simulation of techniques discussed in [9], [12] and in this paper 

Two  Tier[9] GasnGupta [12] Our Algorithm 
No of
states

No. of 
msgs

Checkpoint 
overhead

No. of 
msgs

Checkpoint 
overhead

No. of 
msgs

Checkpoint 
overhead

10 8 15 7 40 9 0

20 17 95 14 80 19 30

50 40 325 35 265 42 140
100 85 655 82 635 92 295
200 177 1385 173 1375 186 629.99
400 369 2569.99 357 2759.99 390 1230.02
600 561 3874.91 545 4174.97 596 1899.97
900 832 5770.03 813 6225.16 875 2770

1200 1112 7710.06 1083 8255.16 1198 3805
1500 1388 9640.07 1349 10310.24 1497 4700
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Fig. 7. Graph showing checkpoint overhead against no of states 

9   Conclusion 

In the proposed nonblocking protocol all synchronization activities are handled by the 
MSSs, which are connected by high speed cable links freeing the wireless network 
from such overheads. As all the MHs may not take checkpoints always, battery power 
is saved. It must be mentioned here that during disconnection interval of an MH, mes-
sages meant for it (computation, checkpoint-request message) are queued with the HS 
MSS till the new MSS is known. The location of MSSs and routing of messages in the 
network are assumed to follow standard algorithms in practice. 
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Since the simplicity of pessimistic logging makes it attractive for practical applica-
tions this concept is used here. The failure free performance overhead is negligible as 
the received message logs are kept at the MSSs which are assumed to have large sta-
ble storage and are connected by high speed cable links. The unacknowledged mes-
sage logs are maintained at respective MSSs and hence the MHs have to save only the 
process states thus taking care of the limited storage of the MHs.  

A detailed analysis of the possible case studies (section 6) shows that the proposed 
scheme always maintains a consistent global system state. The simulation results 
show that the performance is much better than the two other schemes. The present 
work also handles the challenges of mobile computing systems in an adept manner. 
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Abstract. Service discovery is an integral part of Mobile Ad Hoc Networks 
(MANETs). While several service discovery protocols such as Service Location 
Protocol [1] and Universal Plug and Play (UPnP)[2]  have been developed, 
most of them are designed for infrastructure based networks and thus not 
suitable to be used in MANETs. This paper proposes Mobile Agent Based 
Service Discovery (MASD) for Ad Hoc network. It is a policy driven agent 
based mechanism that facilitates cross platform service discovery in ad-hoc 
environments. The various agents are chosen in MASD which executes the 
predefined policies. Our approach achieves a high degree of flexibility in 
adapting itself to changes in ad-hoc environments and is aware of common 
problems associated with structured compound formation in mobile Ad Hoc 
environments. Mechanism consists of grouping mobile nodes into clusters 
while a gateway in each cluster is responsible for routing. We evaluated the 
performance of the scheme by running simulations on Glomosim simulator. 
Also the motion of agents is taken care of by PMADE (Platform for Mobile 
Agent Distribution and Execution).The results obtained shows that MASD is 
quite effective for successful service discovery in MANETs. 

Keywords: Service Discovery, Mobile Agent, Cluster, Gateway. 

1   Introduction 

Mobile Ad Hoc networks (MANETs) is a networks formed by a group of wireless 
nodes with limited power and transmission range. These networks do not need any 
existing infrastructure but can form the network on fly. As these networks begin to 
grow in size, an efficient mechanism is needed to locate the services distributed with 
them. A service may be a computation, storage, a communication channel to another 
user, a software, or hardware device needed by another user [3]. 

There are currently a number of existing protocols for service discovery [2, 4, 5, 6]. 
These protocols except [2] are centralized, registration oriented with the assumption 
that a centralized database of services can be maintained and accessed by every node. 
However these existing strategies do not work well for MANETs, because nodes can 
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join or leave the networks quickly. Also because of the dynamic nature of network, 
every time a service leaves or join the network it has to inform the centralized server 
about its presence and this raises scalability issues. Also agent platform used in e 
commerce [7] have been designed to facilitate flexible service/agent discovery with 
an agent community. In this type of platforms, an agent that belongs to a certain 
platform registers itself and its services to some service/agent management/ 
registration component like a Directory Facilitator (DF) and an Agent Management 
System (AMS).  

Current service discovery protocols designed for MANETs resolve issues of 
scalability by using directories. Directories manage service advertisements and 
respond to service queries. Protocols using directories are more scalable since they can 
easily accommodate an increase in user demand by establishing more directories.  

MANET environments present issues that challenge the use of directories. For 
instance, in most of the cases directories are statically assigned and made known to 
users beforehand. In other words, service discovery protocols that use directories 
were designed on the assumption of a static network topology and stable network 
functions such as multicasting and broadcasting. However, a MANET is a wireless 
and infrastructure less network that is characterized by dynamic topology changes and 
multi hop routing. Such infrastructure less networks contradicts the idea of using pre-
established directory services. In order to utilize directories in service discovery 
protocols in MANETs, Kozat et al. [8] pointed out the similarity between directory 
formation and maintenance, and the idea of clustering used in some MANET 
network routing protocols. In other words, service discovery protocols can 
implement directories by using a network layer protocol that already supports 
clustering and assigns routing responsibility to a node in each cluster called gateway 
node. Although clustering based routing protocols usually incur high overhead for 
maintaining the clusters, [8] argues that the efficiency of the whole system 
nevertheless improves by using directories in the service discovery protocol. 

The motivation of this work is that most current service discovery protocols 
concentrate only on discovering available services. More specifically, they do not 
solve the problem of how to select a service when several services are available, and 
they do not provide mechanisms for specifying and performing interaction. Service 
selection is an important aspect of service discovery especially in a heterogeneous 
environment containing duplicate services. Therefore, it is important to provide a 
service selection mechanism. We propose a solution that uses MAs to collect and 
evaluate information form neighboring nodes and forward this information to the 
other nodes with the help of other agents without much delay. Additionally, most of 
the currently developed service discovery protocols support only one method of 
interaction, whereas the solution in this paper allows service providers to specify 
interaction methods to access the desired services. Furthermore, this solution provides 
mechanisms that can utilize to interact with these services with XML file.   

Rest of the paper is organized as follows, Section 2 provides an overview of 
PMADE (Platform for Mobile Agent Distribution and Execution), Section 3 describes 
MASD architecture and components, Section 4 describes the step wise working of 
MASD, Section 5 provides the implementation and results obtained, Section 6 discuss 
the related work, and finally Section 7 concludes the article. 
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2   Overview of PMADE 

Figure 1 shows the basic block diagram of PMADE (Platform for Mobile Agent 
Distribution and Execution). Each node of the network has an Agent Host (AH), 
which is responsible for accepting and executing incoming autonomous Java agents 
and an Agent Submitter (AS) [9], which submits the MA on behalf of the user to the 
AH. A user, who wants to perform a task, submits the MA designed to perform that 
task, to the AS on the user system. The AS then tries to establish a connection with 
the specified AH, where the user already holds an account. If the connection is 
established, the AS submits the MA to it and then goes offline. The AH examines the 
nature of the received agent and executes it. On completion of execution, the agent 
submits its results to the AH, which in turn stores the results until the remote AS 
retrieves them for the user. 

The AH is the key component of PMADE. It consists of the manager modules and 
the Host Driver. The Host Driver lies at the base of the PMADE architecture and the 
manager modules reside above it. Details of the managers and their functions are 
provided in [9]. PMADE provides weak mobility to its agents and allows one-hop, 
two-hop and multi-hop agents [9]. PMADE has focused on Flexibility, Persistence, 
Security, Collaboration, and Reliability [10]. 

 

Mobile Agent’s Result

Mobile Agent with Task

User Agent 
Submitter 

Manager Modules 
Host Driver 

Agent Host 

 

Fig. 1. Block Architecture of PMADE 

3   MASD Architecture and Components 

The architecture of MASD along with its components is shown in Figure 2. We 
represent an ad hoc network as a undirected graph ),,( EVG = where V is the set of 

N nodes and E is the set of bidirectional links. We assume that network can be 
embedded in a two dimensional area A.  For two nodes i and j , ),( jidist is a 

function that returns the distance between two nodes and ),( jilink is a function that 

returns true if ),( jidist r≤ , where r is the transmission range of each node and false 

otherwise. )},({)( kilinkVkiN ε= is the set of one hop neighbors of node i . For a 

source node s to successfully broadcast a packet, all nodes in }{)( siN − must not 

transmit concurrently to prevent collision at i .  
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3.1   Policy Manager 

The Policy Manager is responsible for administration and enforcement of policies 
chosen for MASD. On initialization, policies are registered with the Policy Manager.  
 

Fig. 2. System Architecture of MASDLocal Connectivity Management
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Fig. 2. System Architecture of MASD 

The policy can also be modified during runtime and since it is referenced by agents, 
the changes in policy dynamically propagate to these agents. Agents running on the 
platform would coordinate all their activities through the Policy Manager. For sake of 
simplicity we have chosen three different types of policies for MASD namely 
multicasting, topology updation, broadcasting 

3.2   Agents 

The following agents are chosen as a part of architecture described above. 

3.2.1   Advertising Agent 
The Advertising Agent actively broadcasts service descriptions already registered. 
The Policy Manager controls the rate of advertisements. Various policies can be 
employed to adjust the rate of advertisement. For example, if the network is fairly 
static, the advertisement rate can be slowed down. Also policy could be event driven, 
events here being the arrival or departure of nodes in cluster. Advertisements can also 
be assigned different priorities. 

Figure 3 shows an example of a service advertisement. Service description is 
represented by Service Key Words that categorize the service that is offered. This 
description is used to match service queries to the advertisements. Service Range is the 
number of cells radiuses that allows a service provider to control how far its 
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advertisement reaches. Directories use the Cell ID and Service Range to determine if 
they are still within the service range. Directories drop the advertisement packet if it is 
outside the indicated service range.  

<ServiceAdvertisement>
<ServiceName></ServiceName>

<ServiceType> </ServiceType>
<ServiceNumber></ServiceNumber>

<NodeID></NodeID>
<CellID></CellID>

<Location></Location>
<ServiceRange></ServiceRange>

</ServiceAdvertisement>
 

Fig. 3. XML View of Service Advertisement used by Advertising Agent 

3.2.2   Forwarding Agent 
The Forwarding Agent receives Service Advertisements and Request for Service 
messages. It decides based on the policy whether to drop, or to propagate the 
advertisement. To prevent broadcast storms, this forwarding mechanism can use 
multicasting for selectively forward service advertisements. For example, this can be 
used to forward advertisements to more active or resource rich nodes in the network. 
To avoid a problem of duplicate messages flooding the network, the Forwarding Agent 
uses sequence number based mechanism 

3.2.3   Cache Agent 
The Cache Agent is responsible for handling remote advertisements, storing remote 
advertisements of services, handling requests to match services present in the cache. 
The Forwarding Agent, on receiving an advertisement might also decide to forward it to 
other nodes or broadcast the advertisement to all other nodes. Each advertisement 
contains a lifetime. When a new advertisement is received by a Cache Agent, the Cache 
Agent decides to either accept it or reject it. An advertisement is accepted only when 
there is sufficient space in the cache to hold this advertisement or when an old 
advertisement can be removed from the cache based on policy chosen. 

4   Working of MASD 

Once the components namely agents and policies are defined in the architecture, our 
goal is to make service registry, service advertisement, caching, discovery, service 
query and reply using above defined MAs. Our methodology consists of dividing the 
networks into cluster and gateway nodes. In clustering based approach, mobile nodes 
are grouped together and a node in each group is selected as the gateway to handle 
routing tasks. These gateways establish connection with each other to form a virtual 
backbone. All packets in a clustering based approach are routed by the gateways 
through the virtual backbone. There are three steps that are required to form clusters 
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and to establish the virtual backbone. In the first step, nodes are organized in groups, 
usually based on distance. Then a node in each group is assigned as the gateway by some 
election process. In the last step, the virtual backbone is formed by establishing 
communication between these gateways. The gateways are responsible for forwarding 
incoming packets to other gateways, if the packets are destined to other networks.  

The function of such a gateway is similar to directories used in service discovery 
protocols [7]. That means a node functioning as a gateway can also handle the task of a 
directory. Having gateways also function as directories imposes only a small amount of 
overhead. The proposed solution divides the whole networks into clusters and 
gateways, while performing routing through the gateway as shown in Figure 4. 

Gateway
Cluster

Virtual Backbone  

Fig. 4. Formation of Cluster and Gateway in MASD 

4.1   Service Registry 

Service registry is a structure that enables nodes to store their local services. It also 
allows them to maintain information about services that they might have discovered or 
received via advertisements. The MASD maintains a tree based structure as registry. It 
allows the tree paths to be directly used in service query and advertisement messages 
for service scoping or classification.  

The tree has a number of levels that represent service classification. As we move 
down the tree from root to the leaves, services become more specific. The service tree 
is useful to nodes when acting as client as well as server. This tree is used by a server 
to register local services that it wishes to offer, to advertise the registered services at 
any level, i.e., all, generic or specific, and to respond to client discovery requests. MA 
uses the tree to discover all, generic, or specific services, and manage these services. 
Use of inclusive or exclusive filtering options at different levels of the tree makes it 
easy for users to manage services of  interest Each service is associated with a lease 
time, that is, the time for which the service is expected to remain available. This time is 
specified as time to live (TTL), which is part of service registration or advertisement 
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information. Services should be refreshed before their TTL expires. Otherwise, they 
are removed from the registry. This scheme makes the discovery system robust 
against unexpected failures. 

4.2   Service Advertisement 

Service advertisement is a XML file and is advertised by advertising agent whose main 
responsibility is to describe a service’s capabilities. When a node inside a domain 
decides to provide a service, it forwards the service advertisement to advertising agent. 

Service

Shopping

EntertainmentOther

Information

Games Music
 

Fig. 5. Directory of Service Arrangement 

Service advertisements are XML files that have a structure similar to WSDL (Web 
Services Description Language) [11], but with a much reduced complexity. The goal is 
to keep the advertisement simple and short for fast and efficient distribution as well as 
easier processing. Again it is important to stress the importance of keeping the burden of 
directories low by using MA since this kind of node is also handling the task of 
gateways. 

4.3   Caching  

Each mobile node that is connected to other heterogeneous nodes in the network 
maintains a cache to store service descriptions of remote services. The cache is 
controlled by Cache Agent. Each Advertisement Agent in network, after a finite time 
interval broadcasts a list of its local services to other peer nodes around it. To do so, it 
uses the Forwarding Agent. The Forwarding Agent receives all messages from the 
network, then based on the local policy it decides whether to process the message or not. 
The Forwarding Agent passes the advertisement to the Cache Agent. A Cache Agent in 
a remote node on receiving the advertisement decides based on its policy whether to 
cache it or not.  

4.4   Service Discovery  

Each node upon receiving a request message can chose to drop the message or process 
it. The local policy is used to make this decision. If the node chooses to process the 
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request message, it checks its database to see if it is hosting the desired service. If the 
service is local then the service description is sent to the requesting node. If the node is 
not hosting the needed service, it could check the local cache. If the cache contains 
information about the service then the MA replies with hint. Otherwise, the request is 
sent to the Forwarding Agent. The Forwarding Agent decides to forward the request to 
other nodes, depending on the local policy. 

4.5   Service Query and Reply 

The service query message is packaged using XML file as shown in Figure 6.  The 
query message contains QueryID, ServiceDescriptionKeyword, QueryType, 
MinimumAdvertisement, ReplySize, QueryTimeout. QueryID identifies this Service 
Query message and is used to detect duplicate messages. QueryType tells the directory 
how to handle this query message. QueryTimeout tells a directory the time before which 
this type of query has to be replied. 

<ServiceQuery>
<QueryID>Identification of Query</QueryID>

<ServiceDescriptionKeywords>Description of Service
</ ServiceDescriptionKeywords >

<QueryType>Type of Query< /QueryType>
<QueryTimeout>Time To Live Query</QueryTimeout>

</ServiceQuery>
 

Fig. 6. XML View of Service Query and Reply 

Upon receiving a Service Query message from within its own domain, the directory 
first checks the Query Type to see how it should handle the query. 

The directory replies immediately with a Service Reply containing any 
advertisement the directory finds in its service directory tree. If there are no sufficient 
advertisements then the Service Query message is stored in the pending service list, 
and a timer is set according to the Query Timeout. The directory handling this message 
then broadcasts a Service Query message to surrounding neighbor directories 
requesting advertisements of the same category. This Service Query message is 
further forwarded to other directories for a system wide search using MAs. 

4.6   Inter Agent communication 

Agents in MASD communicate with different layers in architecture which are defined 
as follows: 

Communication and Coordination Layers:  Agents in the system communicate with 
each other or with users using mobile group approach for coordination of MAs. The 
request an agent receives from the communication layer should be explained and 
submitted to the coordination layer, which decides how the agent should act on the 
request according to its own knowledge. Agents communicate by exchanging 
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messages through reliable communications channels, i.e., transmitted messages are 
received uncorrupted and in the sequential sent order, as long as the message sender 
does not crash until the message is received [12]. Let L denote the set of all possible 
locations. Let P be the set of all possible agents. A mobile group is denoted by the set 
of agents g = },...,,,{ 321 npppp , g ⊂  P. On a mobile group, five operations are 

defined: 

• Join (g): issued by an agent, when it wants to join group g. 
• Leave (g): issued by an agent, when it wants to leave group g. 
• Move (g, l): issued when an agent wants to move from its current location-to 

location l. 
• Send (g, m): issued by an agent when it wants to multicast a message m to the 

members of group g. 
• Receive (g, m): issued by an agent to receive a message m multicast from the 

group g.  

4.7   Local Connectivity Manager and Data Management Layer 

This manager manages the local connectivity of nodes at the management layer.  
Nodes learn about their neighbors in one of two ways. Whenever a node receives a 
broadcast from a neighbor, it updates its local connectivity information in its 
Neighborhood table to ensure that it includes this neighbor. In the event that a node 
has not sent data packets to any of its active neighbors within a predefined timeout, it 
broadcasts a hello message to its neighbors, containing its identity and activity. This 
message is prevented from being rebroadcast outside the neighborhood of the node. 
Neighbors that receive this packet update their local connectivity information in their 
Neighborhood tables.  In this way local connectivity management is maintained by 
this local connectivity manager along with data management layer defined in the 
hierarchy. 

5   Implementation and Results Obtained 

We implemented MASD using Glomosim [13], which is a component-based simula-
tion environment. In our simulation, wireless IEEE 802.11 is used for the MAC layer 
of each node. The range of the wireless transmission is set to 250 meters and the 
bandwidth is 10 Mbits/second. The radius of the hexagon cells is set to 80 meters, so 
that any node inside of a cell can reach any node in its immediate neighbor cell. Each 
node is assumed to establish bidirectional communication with all nodes within its 
range. The size of the network is 1000 meters by 1000 meters, and there are 50 nodes 
in the network. We used random waypoint mobility pattern that was represent by P (S) 
where P is a period of time (in seconds) for which a node paused once it arrives to a 
new location and S is node’s speed (in m/s). The direction of the node’s movement and 
the destination is generated randomly. Service requests were generated at regular time 
intervals. 

Figure 7 shows the rate of successful service discovery over the maximum node 
speed for different numbers of combinations of service providers and users. A 
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successful service discovery involves discovering available services and finally 
selecting a service before timeout. Results show that the success ratio is higher in the 
case of a node moving at a slow speed. Furthermore, the ratio drops faster when the 
speed approaches 8 meters/second. This is because nodes are moving to different cells 
at a higher rate. 

The average delay of service discovery is shown in Figure 8. The Figure shows the 
major difference in delay between having less and more service providers than the 
minimum number required before performing service selection. In this simulation, 
when a directory receives a service request it passes that request to the corresponding 
agents and sets a timeout for gathering service advertisements. If the receiving 
directory could discover enough service advertisements, it replies to the requester and 
resets the timeout. Note that with more service providers in the whole system, on 
average MA has to visit more service providers before the selection process can 
determine the one with the highest rating. In addition, with the increase of node speed, 
routes are less dependable and the delay time increases considerably. Moreover, the 
rate of increase in average delay jumps considerably when there are more potential 
service providers to visit. 
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Fig. 7. Successful Service Discovery in MASD 
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Fig. 8. Delay of Service Discovery in MASD 
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Fig. 9. Average Latency for the Push, Pull, Adaptive, MASD 

0
50

100
150
200
250
300
350
400

50 100 150 200 250 300

Number of Clusters in the Network

O
ve

rh
ea

d(
pk

ts
/s

ec
.)

Push Pull Adaptive MASD

 

Fig. 10. Overhead for the Push, Pull, Adaptive, MASD 

Figures 9, 10 shows that MASD is better than Push, Pull[3], Adaptive method[4] with 
respect to parameters average latency and overhead generated. This is because MAs 
interacts only the objects on the site reducing the overhead and generate less latency 
compared to other three methods purposed earlier. 

6   Related Work 

There are a number of platforms, architectures, and protocols that provide service 
discovery and multi agent communication and collaboration. The Service Location 
Protocol (SLP) [1] is one such protocol. SLP is a protocol for automatic resource 
discovery on IP based networks.  

Another solution to service discovery is Universal Plug and Play (UPnP) [2], 
supported by Microsoft. One more in house architecture that investigated how service 
discovery can be taken beyond their simple syntax based service matching approaches is 
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XReggie [14]. XReggie adds the facilities to describe service functionalities and 
capabilities using Extended Markup Language (XML). Several concepts have been 
proposed to resolve the issue of resource discovery. For example, [15] has suggested 
using the virtual backbone to constantly probe and cache context information to 
provide a better performance. Belligemine [16] has suggested using a rating system 
that evaluates context information by placing different weights on different context 
information. This method has the advantage of allowing users to customize their own 
ranking system based on their individual requirements. A Service Discovery solution 
proposed by Cheng [3] uses push and pull methods for advertisement. Extension of 
Cheng  solution is the scalable service discovery solution is given in [4]. 

There are several FIPA compliant platforms that facilitate service discovery. One 
such platform is JADE [17]. Another platform is FIPA-OS [18]. The limitations of 
JADE and FIPA-OS were recognized and LEAP [19] and Micro FIPA OS [20] were 
developed to extend the functionality and allow mobile devices to participate.  

7   Conclusions and Future Work 

In this paper, we have presented a peer-to-peer caching based and policy-driven 
approach for Service discovery in Ad Hoc network.  Approach is agent driven and 
hence, facilitates agent-service discovery. We have proposed MASD which follows a 
policy-driven approach for advertisements, caching, and request forwarding thus, 
letting user preferences to be taken into consideration. We use MAs for 
advertisement, registry, caching, service discovery and query and reply purposes. 

We compared MASD performance with the performance of push and pull method 
and adaptive scalable solution. The implementation and the simulation results 
efficiently demonstrate the flexibility of MASD in Ad Hoc environments. In future, 
we also plan to carry out comprehensive experiments by changing other policy 
parameters like advertisement frequency, cache size and study the effect they have on 
the MASD. 
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Abstract. Wireless technology is becoming an attractive mode of com-
munication for real-time applications in typical settings such as in an
industrial setup because of the tremendous advantages it is capable of of-
fering. However, the high bit error rate characteristics of wireless channel
due to conditions like attenuation, noise, fading and interference seriously
impact the timeliness and guarantees that need to be provided for real-
time traffic. Existing wireless protocols either do not adapt well to the
erroneous channel conditions or do not provide real-time guarantees. The
goal of our work is to design and evaluate novel real-time MAC (Medium
Access Control) protocols for scheduling messages in a 2-level hierarchical
wireless industrial network taking into account the time-varying channel
condition. Our objective is to minimize the loss rate of messages using
the slot exchange protocol[9] that actively combats the erroneous chan-
nel conditions and maximize the channel utilization by enabling parallel
transmissions in a collision-free manner. Unfortunately, these two goals
have inherent conflicts in shared medium wireless networks. We propose
a distributed protocol, called the Adaptive protocol that arbitrates be-
tween these two design criteria in order to resolve the inherent conflict
between them. Through simulation studies, we show that the proposed
Adaptive protocol achieves significant improvement in deadline miss ra-
tio compared to the baseline protocols that exploit complete parallelism
and full exchange, for a wide range of channel conditions.

1 Introduction

The term industrial traffic refers to the transfer of messages in applications such
industrial automation, process control, communication systems in automobiles
etc. Such communication must be performed under stringent hard real-time and
reliability constraints since missing a deadline can be disastrous. For guaran-
teeing this low level of stringent real-time requirements, fieldbuses are able to
support time-critical communication between sensors, actuators, programmable
logic controllers and operator workstations. These networks are traditionally
based on wired technology and a deterministic medium access control. How-
ever, the current wired infrastructure is plagued by problems of limited mobility
and high deployment and maintenance costs that constrains the viability of any
smart real-time system.
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The wireless evolution offers numerous benefits for industrial applications,
where wired solutions have prohibitive problems in terms of cost and feasibility.
The growing popularity of wireless communication in different fields including
home and office environments has led to its increased dependability, performance
improvement and cost reduction. With its widespread standardization, it is very
likely in the near future, there will be a proliferation of wireless implementations
of factory communication systems. This has motivated the strong research into
the use of wireless medium for real-time industrial applications.

In spite of having such clear benefits, wireless technology has its own draw-
backs arising due to the unreliable characteristics of the wireless medium which
makes it, in its current state, unsuitable for supporting real-time communication
for industrial applications. Wireless links are more error prone than their wired
counterparts due to noisy channel conditions that vary with time. Occurrences
of outages lasting for several seconds, during which no packet transmission are
possible over a channel, is not uncommon and there exists a large variability in
the distributions of length of error bursts and error free periods[1] making the
channel behavior unpredictable. The high error rates over wireless links occur
due to different phenomena such as interference, multipath fading, path loss and
electromagnetic noise that cause bit errors and packet losses that tend to occur
in bursts[2]. Hence, measures to substantially improve transmission reliability
overcoming the above mentioned challenges need to be developed so that real-
time and reliability requirements demanded by the industrial applications can
be guaranteed.

2 Related Work

Providing real-time services over a wireless network requires addressing two dif-
ferent issues. First is to tackle the scheduling issues at the MAC layer to provide
real-time guarantees. Second is to combat the time varying and erroneous wire-
less channel conditions.

In the context of the first issue, several works in literature have explored
the applicability of existing standardized MAC protocols such as 802.11 and
Bluetooth(BT) or extended the wired real-time protocols such as PROFIBUS
for the wireless environment. Works in [3,2,4] propose and analyze the use of
master-slave based polling protocols over a wireless network. In [3], the authors
investigate the use of IEEE 802.11 for industrial communication by analyzing
the possibility of implementing protocols based on master-slave architecture of
traditional field buses on a IEEE 802.11 PHY. In [2], the adaptive-intervals MAC
protocol has been proposed that uses a polling-based approach combined with
group testing feature for improving the delay in low load conditions. However,
in [10], the authors show the serious stability issues due to the loss of token
frames leading to unsatisfying real-time performance arising from running the
existing PROFIBUS MAC and link-layer token-passing master-slave protocols
over an 802.11 DSSS PHY. In [11,14], several practical experiments for the per-
formance evaluation of BT have been performed and the authors conclude that
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channel adaptive error correction protocols will increase the applicability of BT.
Hence it follows that even with standardized wireless protocols, mechanisms that
address the time-varying channel conditions are necessary to provide real-time
guarantees for deadline constrained traffic.

Several channel-adaptive protocols are being proposed for improved reliability
over wireless links addressing the second issue. In [5,13], the authors propose
modifications to the ARQ protocol and in [1], the author introduce the concept
of antenna redundancy that uses multiple antennas for re-transmission. However,
the ARQ schemes proposed don’t work well at high error rates and Antenna
redundancy requires additional hardware in all communicating devices if any-to-
any communication needs to be implemented. In [6] and [7], the authors present
techniques that make use of the wireless channel conditions while making packet
dispatching decisions in a wireless LAN. However, the traffic considered in [6]
is best-effort and the protocol in [7] is based on accurate channel estimation
that is unfeasible. Most of the existing works on channel adaptive protocols
either require additional infrastructure or fail to provide real-time services in
the context of the network level scheduling problem.

To summarize, none of the existing works jointly address adapting to the er-
roneous wireless channel conditions and the real-time scheduling problem which
is the main focus of this paper. Specifically, we address the problem of schedul-
ing real-time messages in a 2-level hierarchical shared medium wireless network.
The objective is to minimize the deadline miss ratio of messages. We achieve this
objective by maximizing the channel utilization enabling parallel transmissions
and using techniques to overcome the bursty erroneous channel conditions while
ensuring that collision-free transmissions are maintained at all times.

3 System Model and Problem Statement

Network Model: We consider an industrial setup where all machines are grouped
into cells to form a 2-level hierarchical network based on their functionality and
communication range as shown in Figure 1 (a). Smaller machines such as sensors
and actuators with short communication range are called the intra-cell nodes
and form Level-1 of the network. These intra-cell nodes communicate with other
intra-cell nodes within their range using intra-cell messages indicated by ai. To
communicate with other devices out of their range, there exists a controller, also
called an inter-cell node, in each cell, which is a more powerful node with a
larger communication range than the intra-cell nodes. Message communication
between the inter-cell nodes occur by passing inter-cell messages indicated by mi.
Communication between cells only occur through inter-cell messages. The dashed
lines indicate periodic messages(mi and ai) whose periods are known apriori and
the dotted lines indicate aperiodic messages(api) which arrive dynamically at any
node. There is a deadline associated with each of these hard real-time messages.
Each message is transmitted with the minimum energy required to reach the
destination that determines the range of the message. Messages outside of this
range can go on in parallel. The source and destination of all messages as well
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Fig. 1. Network and Channel Model

as the location of the nodes are know beforehand. All messages are assumed to
be of the same size.

We consider transmissions to follow a superframe structure comprising of sev-
eral slots and that repeats itself. We work with slotted time and each message
occupies ms slots in the super-frame equal to its message size. Each slot repre-
sents the time in which the source can transmit the smallest atomic unit of a
message and receive an implicit acknowledgement(ACK).

Channel Model: Measurements in a wireless industrial environment indicate that
the channel causes errors that occur in bursts which can be captured by the
Gillbert Elliot model[1] that consists of the good and bad state as indicated in
Figure 1 (b). When the channel is in the good state, Pgg is the probability that
the channel continues to remain in the good state and Pgb is the probability with
which the channel moves in the bad state. Likewise, when the channel is in the
bad state, with a probability Pbb, the channel remains in the bad state and Pbg

is the probability of moving into the good state. We assume every message is
transmitted on a channel that that follows its own Gilbert Elliot model and the
channel condition changes at the end of every slot. All transmissions that occur
in a slot when a channel is in the bad state is considered to have failed that is
indicated by the lack of an ACK for that slot.

4 Background Information

4.1 Vertex Coloring

A parallel, conflict-free schedule for a set of messages in a wireless network that
maximizes the channel utilization can be obtained using a vertex coloring ap-
proach. The parallel schedule is formed by constructing a conflict graph G =
(V,E) as shown in Figure 2 (a). In this graph, each vertex represents a trans-
mission(both periodic and aperiodic) and an edge exists between two vertices
iff the two transmissions (vertices) cannot be scheduled simultaneously. In our
case since every data transmission unit is followed by an ACK, a conflict occurs
if either the data transmission from the source or the ACK from the destination
of any message conflicts with any other data transmission or ACK. By coloring
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Fig. 2. Conflict graph and parallel schedule with all messages in the system

the vertices of the graph with minimum colors such that no two adjacent nodes
connected by an edge have the same color and grouping similar colors together,
we can construct a parallel schedule that ensures that all the message complete
within the shortest time. Since the problem of finding a minimum coloring for a
graph is NP-hard[15], we use a heuristic[8] to construct the parallel collision-free
transmission schedule as shown in Figure 2 (b).

4.2 Exchange Protocol and Exchange Setup

The slot exchange protocol[9] aims to improve the success rate of messages meet-
ing their deadline in a wireless network. The main idea is that when a trans-
mission on a channel begins to fail because of erroneous channel conditions, the
message exchanges its currently scheduled time slots with another message that
uses a different transmission channel. The original message is scheduled dur-
ing the scheduled time slots of the exchanged message by which time its channel
would have moved to the good state. The protocol incurs some control overheads
to perform the exchange and these slots are recovered in a distributed conflict-
free manner. In this way, the slot exchange protocol dynamically adapts to the
channel conditions at run-time for improving the success rate of messages and
it preserves the schedulability guarantee given to the messages. In this work,
we restrict exchanges to each level i.e. inter-cell messages can exchange with
other inter-cell messages and intra-cell messages exchange with other intra-cell
messages in the same cell.

In this paper, we extend the exchange scheme to a 2-level heterogeneous hier-
archical wireless network as well as maximize the number of messages that can
be sent simultaneously in a collision-free manner.

5 Scheduling Algorithms

We propose three scheduling algorithms to schedule periodic and aperiodic mes-
sages in a two-level hierarchical wireless network as described in Section 3. Each
scheduling algorithm works in two stages. There exists an offline phase where
a collision-free schedule is constructed and distributed to all the nodes in the



630 K. Balasubramanian, G.S.A. Kumar, and G. Manimaran

network. During runtime, the offline schedule is either followed in its original
form or the wireless terminals adapt to the channel conditions in a distributed
fashion to improve the loss rate and maximize the schedulability of aperiodic
messages in such a way that the schedulability guarantees provided offline is re-
tained. The three scheduling algorithms differ on the basis by which the schedule
construction is done offline as well as the run-time policy followed for adapting
to the channel conditions.

5.1 Framework

The basic framework is shown in Figure 3. There exists a control phase, an of-
fline schedule construction phase, schedule transmission phase and a distributed
data transmission phase for each of the protocols. In the control phase, all the
messages in the system are sent to the central scheduler which performs an ad-
mission test that provides the set of messages that needs to be scheduled in every
super-frame. The admission test preserves message guarantees by allocating ex-
clusive collision-free time slots for each message. The scheduler then applies an
offline schedule construction algorithm to these set of messages based on the
protocol being used and produces an offline schedule that is broadcasted to all
the nodes in the system. During run-time(online), at each of the nodes, a dis-
tributed online-scheduling algorithm works on the offline schedule produced to
dynamically adapt to the channel conditions while transmitting the messages.
The offline schedule construction algorithm and the online scheduling algorithm
varies for each of the three protocols which we explain in detail.

Fig. 3. Framework

5.2 Parallel Protocol

Parallel Offline Schedule Construction Phase: A vertex coloring approach is ap-
plied on all the messages in the system to form a parallel schedule. If the super-
frame is not completely filled with this schedule, a parallel schedule for aperiodic
messages is followed for the remaining slots as shown in Figure 4 (a).

Parallel Online Scheduling Phase: During runtime, all the nodes transmit as per
the offline schedule. If an aperiodic message is not ready by its scheduled slots,
it is transmitted during its scheduled slots in the next superframe.

The above mechanism schedules both periodic and aperiodic messages allow-
ing as many parallel messages as possible to be transmitted simultaneously with
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Fig. 4. Parallel and Serial Offline Schedules

the messages completing in the shortest time. However, such a static completely
parallel schedule offers no potential for adapting to the channel conditions by
performing an exchange since there can be no exchanged message that can co-
exists with an existing parallel message transmission without any collissions.
Hence, this scheme is not entirely suitable for scheduling messages over a wire-
less network where the channel conditions vary with time.

5.3 Serial Protocol

Serial Offline Schedule Construction Phase: The offline schedule produces a com-
pletely serial schedule for all inter-cell messages that permit all possible combina-
tions exchanges between them as shown in the Figure 4 (b). Intra-cell messages
in each cell occur in parallel. The number of exchanges is fixed at 1 for each
message and as many slots are allocated at the end of the inter-cell and intra-
cell message schedules for each message to transmit data exclusively to make
up for the slots that were used as exchange slots for performing an exchange[9].
Since no parallelism between inter-cell message is exploited, the time taken for
completing the message transmissions is longer than both the other schemes and
hence the superframe length formed by the serial scheduling policy is uses as the
basis for the other schemes too.

Serial Online Scheduling Phase: Every node starts transmitting their message
in the scheduled time slots as per the offline schedule. However, when any mes-
sage transmission begins to fail because of erroneous channel conditions, they
request an exchange to be performed. A set of slots equal to the number of
exchanges, called exchange pool, is reserved at the end of each intra-cell and
inter-cell message schedules. Whenever an exchange is performed, an exchange
slot is consumed where a data transmission slot is used for initiating an exchange.
In order to preserve the schedulability guarantees, each node that performed the
exchange exclusively gets a slot for data transmission from the exchange pool[9].
To facilitate this, a transfer slot is needed at the end of each message for keep-
ing track of the number of exchanges that has been performed in the system.
A similar approach is followed for intra-cell messages with transmissions and
exchanges in each cell occurring in parallel.
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Hence the serial scheduling mechanism allows for maximum exchanges to be
performed thus combating the bursty channel error conditions. However, the
parallelism that can be exploited is minimized and the total time taken for
delivery of all the messages increases.

5.4 Adaptive Protocol

Adaptive Offline Schedule Construction Phase: The offline schedule is shown in
Figure 5 (a) with the inter-cell messages scheduled serially. However, two extra
slots are added to every message which are the control overheads incurred by
the protocol. These slots enable parallel transmission of inter-cell messages to
occur at run-time if the channel conditions are favorable and exchange is not
initiated. At the same time, it gives the capability to perform an exchange during
unfavorable channel conditions. In addition to this schedule, the parallel schedule
produced by the parallel protocol is also stored for reference which is followed if
exchange is not initiated.

Adaptive Online Scheduling Phase: During run-time, all the nodes adapt to the
channel conditions in a distributed fashion as shown in Figure 5 (b). The follow-
ing steps are followed by the nodes in the system during the online phase.

– In the first slot, the source of the scheduled inter-cell message as per the
offline schedule transmits an unit of data to the destination.

– In the second slot, the scheduled data transmission continues if the trans-
mission is successful in the first slot. If not, an exchange is initiated.

Fig. 5. Adaptive Offline and Online Schedules
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– In the third slot, the scheduled data transmission continues through all the
scheduled slots until the end of the message transmission as per the offline
schedule if no exchange was initiated and the channel was good in the first
slot or if an exchange was unsuccessful in the second slot. If an exchange was
successful in the second slot, the exchanged message transmits in the third
slot.

– Nodes that are scheduled to transmit in parallel with this inter-cell message
according to the parallel schedule listen to the channel in the third slot. If
they find that no transmission in the vicinity occurs, the start transmitting
in parallel with the inter-cell message. If any of the parallel messages observe
a different transmission going on within their transmission range, they back-
off from transmitting.

Consider the scheduled transmission of m1 as shown in Figure 5 (c). When the
channel is good in the first slot, no exchange is initiated and the parallel message
ap2 according to the schedule in Figure 4 (a) also transmits from the fourth slot.
When an exchange is initiated by m1 with m4 based on the bad channel state in
slot 1, the source of ap2 hears the transmission of m4 in the third slot and backs
off avoiding collisions. Collision-free transmissions are ensured by the source of
the parallel message hearing the exchanged message transmission in the vicinity
and backing off or the destination of the parallel message avoiding sending an
ACK when it hears the exchanged transmission in the third slot. For intra-cell
messages, a decision to exchange with other intra-cell messages in the same cell
is done based on the state of the channel in the first slot and transmissions in
each cell occur in parallel. If any message has completed its transmission early
by transmitting in parallel with other messages, its scheduled slots are used for
re-sending any of the failed slots or for sending aperiodic messages between the
same source-destination pair. In case of intra-cell messages, aperiodic message
to any destination in the cell can be accommodated.

The two control slots used by the protocol are equivalent to the serial protocol
that enables one exchange to be performed by each message using a transfer and
exchange slot. In the serial protocol, exchange can be initiated at any point in
time during the message transmission. Even though the allocation of exchange
slot is one for each message, one message can perform several exchanges. How-
ever, in the adaptive scheme, only one exchange can be performed by each mes-
sage and an exchange is performed based on the state of the channel in the first
slot. Thus the adaptive protocol removes the drawbacks of the serial protocol
that produces a trashing effect while performing multiple exchanges when all the
channel conditions are bad that is not fruitful. Also, observing the channel con-
dition in the first slot provides for a good estimation of the channel conditions
during the entire message transmission as can be seen from the Simulation stud-
ies. In addition, the adaptive protocol used parallel transmissions that increases
the number of messages meeting their deadline and provides for better channel
utilization.

Hence, the algorithm adopted for the offline schedule construction has an
impact on the run-time channel adaptation techniques that can be used. A
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completely parallel offline schedule yields no exchanges and hence no channel
adaptation at run-time and a completely serial schedule permitting exchanges
offers very little parallelism during run-time. The adaptive algorithm switches
between these two modes dynamically based on the channel conditions, start-
ing off with a pessimistic offline serial schedule and moving towards the parallel
schedule at run-time. We show the resultant performance gains by means of our
simulation studies.

6 Simulation Studies

We simulate the hierarchical network comprising of 48 nodes randomly dis-
tributed in a 100*100 sq.meter region following an uniform distribution. The
clustered communication network comprised of 16 cells with 8 periodic inter-cell
messages and 2 intra-cell messages per cell. The message size is 10 slots(1500
bits) and the total slots in the superframe is 156. The periodic messages are
ready at the beginning of the super-frame and the end of the super-frame is the
deadline for all messages. Our objective is to compare the relative performance of
the three protocols and observe the success rate of periodic messages for varying
channel conditions. Each of the protocol was simulated for 10,000 super-frame
runs.

Effect of channel conditions on the success rate of periodic messages:
As Pbb decreases, the success rate of periodic messages increases due to the

Fig. 6. Success rate of periodic messages with variation in Pbb and Pgg

decrease in the error burst size as shown in Figure 6 (a). The success rate is
greater than 1 for all the 3 schemes because of the parallel transmissions ca-
pability exploited by all the 3 schemes (Even in serial, the intra-cell messages
are transmitted in parallel). Throughout the range, the adaptive schemes per-
formance is significantly higher since it exploits both parallelism and exchange.
The performance gap narrows as Pbb approaches 0 since the channel conditions
are good and all the transmissions succeed for all the schemes. The success rate
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Fig. 7. Exchange rate of messages with variation in Pbb and Pgg

of periodic messages with variation in Pgg also confirms this trend as shown in
Figure 6 (b). The Adaptive scheme gives an average periodic success rate im-
provement of 24.77% over the Parallel scheme and 16.87% over the serial scheme.

Effect of channel conditions on the exchange rate of messages: As Pbb

decreases, the channel stays in the bad state for lesser time and since an exchange
is initiated only when the channel is in bad state, the exchange rate decreases as
shown in Figure 7 (a). No exchanges are performed in the parallel scheme and
its exchange rate is 0. When Pbb approaches 1, the exchange rate is the same
for both the serial and adaptive scheme since in the first few timeslots of every
message, an exchange is performed. The adaptive scheme performs exchanges
only if the first time slot of a message transmission is noisy while the serial scheme
can perform exchange at any point during the message schedule. Hence as Pbb

decreases, the probability that the first time slot of any message is unsuccessful
decreases and hence the exchange rate of the adaptive scheme is lesser than the
serial scheme. This is the trend that we want since we do not want too many
exchanges happening when the channel occasionally moves to the bad state while
for large periods, it remains in the good state (Pbb approaching 0). The serial
scheme does not cache on this and performs exchanges every time the channel
moves to the bad state increasing the overhead. The effect of varying Pgg on the
exchange rate of messages is shown in Figure 7 (b) which shows a similar trend.

7 Conclusions and Future Work

In this paper, we developed a framework for scheduling real-time messages over
a hierarchical industrial network and extended the slot exchange protocol of
our previous work to this network setup. We proposed the Adaptive protocol
that bridges the tradeoff between maximizing the channel utilization and using
the slot exchange protocol to combat the bursty channel error conditions. We
performed simulation studies comparing the Adaptive protocol with two other
baseline protocols and our results show that it delivers significant reduction in
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deadline miss ratio for a wide range of channel conditions compared to the other
schemes. As part of our future work, we plan to extend the protocol to a mobile
environment where the network topology changes with time and incorporate
techniques that provide guarantees for complete message transmissions through
multiple hops.
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Abstract. Mobile agents are very useful in low bandwidth ad hoc network envi-
ronments. But various attacks are possible against both agent and agent plat-
forms. In this paper we have modeled hierarchical scheme for protecting mobile 
agent environment which is applicable to both wired and wireless networks. 
Colored Petri Net is used as a modeling tool which effectively models platform 
behavior and agent mobility through the movement of tokens and timed firing 
of transitions. We have considered centralized security scheme for our model 
where Trusted-Third-Party plays a central role in the communication.  

Keywords: Mobile Agent, Security, Modeling, Colored Petri Net. 

1   Introduction 

Mobile agent security has been an area of research since mobile agents were intro-
duced. Though it is very useful and effective to send agents which can perform tasks 
on behalf of the user, attacks to such agents and agent platforms are very common and 
can cause many serious problems. Securing mobile agent communication is essential 
for its reliability and usefulness among naive end users. Attacks such as masquerade, 
eavesdropping, replay, repudiation, denial of service are possible against agent envi-
ronment [10]. 

In our earlier work [1], we proposed a security scheme for mobile agent environ-
ment. That scheme was based on single domain system, but this situation may not be 
feasible when number of MAPs is quite large. To solve this problem, we extended our 
work to provide hierarchical scheme. In this scheme multiple domains can exist scat-
tered across large geographical region. Each domain has a domain controller or Trust 
Server (TS). The TS is responsible for enforcing security within the domain. Each 
platform must register with the TS before initiating agent communication. A platform 
can only be registered to at most one domain at a time. The TS relies on public key 
crypto-system and message passing for agent security. Our present scheme relies on 
central Trusted-Third- Party (TTP) for inter-domain security. Also for the purpose  
of this paper, we have only considered passive mobility of agents. In our work, we 
modeled this security scheme using Colored Petri Nets [11] using CPN tool [5, 6]. We 
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divided the whole system into different levels, and each level has been modeled in 
separate page. Substitution transitions are then used to combine these pages together.  

Attacks on Mobile agent environment have been prime obstacles in its wide spread 
deployment. V. Hassler [10] outlines various attacks possible against agent infrastruc-
ture. L. Ma et. al [9] gives model of Trust Server based security system for mobile 
agents using EEOS. Our work extends their work by introducing hierarchical model. 
In their research they have modeled agents as object net. We omitted this part as our 
main focus was to obtain hierarchical system. D. Xu et. al [2] and M. Kohle et. al [4] 
gives another approach to model mobile agents and their mobility. L. M. Kristensen 
et. al [3] shows how to use CP Nets to model distributed systems.  

The rest of this paper is structures as follows. Section 3 describes the hierarchical 
security scheme. Section 4 gives detailed understanding of our model. Section 5 pre-
sents various analysis of the model. Section 6 presents our conclusions and describes 
future work. 

2   Design of a Centralized Security Scheme for Mobile Agents 

While designing hierarchical security scheme for mobile agents, two approaches are 
possible. One is a distributed approach, in which there is no central control. Mobile 
nodes/platforms are moving in an ad hoc manner and are registered to at most one 
domain at a time. Each domain has a domain controller (or Trust Server). Trust Server 
handles the activities within the domain. In distributed approach, different Trust Serv-
ers exchange registered hosts information at regular intervals and communicate with 
each other directly for inter-domain transfers. Another approach is a centralized ap-
proach, in which there is a central Trusted-Third-Party (TTP) which handles inter-
domain communication. Trust Servers communicate to TTP only. In this paper, we 
have designed and modeled this centralized scheme for agent security. 

2.1   Intra-Domain Communication 

Figure 1 depicts the overview of a typical domain. To start communication, a mobile 
agent platform (MAP) must register itself with the TS. The way MAP registers itself 
with TS resembles the working of Mobile IP [8]. Each TS continuously broadcasts its 
presence by sending broadcast messages periodically. The TS keeps a unique random 
number R and includes that number in each such a broadcast message. An MAP can 
register itself with TS by replying to this message from TS. In its reply message, 
MAP includes its public key that will be used to encrypt mobile agents later. MAP 
stores the ts_id in its Security Base and this ts_id will be used later to exchange 
agents/messages with TS.  

When TS receives Registration Request from MAP, it stores its Id and public key 
in its Security Base. Thus each TS maintains a registered_host_list which is dynami-
cally updated. Then it replies MAP to confirm its registration. Only registered MAPs 
can send agents to TS, agents arriving from other hosts are discarded by TS. Random 
number R is used to limit the registration period of each MAP. After some time, TS 
updates R and also clears the registered-host list. This requires MAPs to re-register 
themselves with the TS to continue communication. So those MAPs who have left the 
domain meanwhile will automatically be unregistered. 
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Fig. 1. Domain Overview 

 

When MAP sends an agent to TS, it appends R along with it. If TS receives an 
agent whose R value is older than the value currently held by the TS then TS will dis-
card the agent as it is from an unregistered host. Table 1 shows the messages ex-
changed between an MAP and a TS. 

Table 1. Messages exchanged between MAP and TS 

mtype Purpose of Message Data 
TS to MAP 

0 Announcement Random Number R 
11 Reply to Registration Request from MAP True/False 
21 ACK to AA/AI (2/3) from MAP Header 
4 Agent Arrival(AA) Header 

MAP to TS 
1 Registration Request 

Response to 0 
Public key 

2 Agent Arrival(AA) Header of Mobile Agent 
3 Agent Itinerary(AI) Storage(Header*ITNR) 

41 ACK to AA from TS Header 

2.2   Agent Transfer 

Before sending Mobile agent to TS, Security Base of MAP processes the outgoing 
mobile agent. Security Base sends Agent Arrival (AA) message to TS and waits for 
its ACK. If MA is created by this MAP then it sends Agent Itinerary (AI) message to 
TS. After receiving ACK from TS, MAP encrypts the agent with (prkey MAP, pubkey 
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TS) and sends it to TS. After receiving AA message from MAP, TS sends that infor-
mation to the Agent Arrival module. If itinerary is received then, it stores MA infor-
mation and uses it to route Agent. If next host in agent’s itinerary is also registered 
with the same TS, then TS first sends Agent Arrival (AA) message to MAP and waits 
for ACK. After receiving ACK, it encrypts the agent with (pubkeyMAP, prkey TS) and 
sends it to MAP. If the next host in the itinerary is not registered with the TS then TS 
sends (agent, dest) to TTP.  

Table 2. Messages exchanged between TTP and TS 

Mtype Purpose of Message Data 
TS to TTP 

60 Registration Requesy Public Key 
51 registered-agent-list registered_agent_list 

TTP to TS 
61 ACK to Reg. Request True/False 

2.3   Inter-domain Communication 

All Trust Severs (TS) are connected by a wired link to the central TTP. Thus the TTP 
is central to inter-domain communication. Initially, each TS registers itself with the 
TTP by sending its public key. After receiving public key from the TS, TTP stores 
that information along with the ts_id in its Security Base. Then it sends ACK message 
back to the TS. All registered TS periodically send their registered_host_list to TTP. 
TTP upon receiving this list updates its knowledge base. TTP always maintains a ta-
ble of (ts_id, registered_host_list) which is referred here as TS_host_list. 

 
 
 

 
 
 
 
 
 

 

Fig. 2. Inter-domain architecture 

As mentioned in the section 2.1, when destination host is not its regis-
tered_host_list, the TS encrypts the agent with (prkey TS, pubkey TTP) and sends 
(agent, dest) pair to TTP. TTP checks in its TS_host_list and finds whether there is 

Range of TS2 Range of TS1 

  TS1 

  1 

   2 

    3 

  4 

 TS2 5 

  6 

  7   8 

TTP 



 Modeling Hierarchical Mobile Agent Security Protocol Using CP Nets 641 

any domain to which given destination is registered. If it finds such a domain, then it 
encrypts the agent with (prkey TTP, pubkey TS) and sends (agent, dest) to the TS of that 
domain and waits for the agent to return. When agent returns after finishing its execu-
tion at specified destination host, TTP sends the agent back to its home domain. To 
distinguish agents received from the TTP, TS maintains rcvd_list. In a similar way, 
TS also maintain a sent_list of agents sent to TTP. 

2.4   Secure Mobile Agent Transfer 

This security work is a natural extension of our previous work [1] and also of the so-
lution suggested by [9]. Combination of TS and TTP help achieve secure mobile 
agent transfer. To lessen the burden on single TS, domain based system is considered. 
Each TS can limit the number of host registered in that domain. This way load on sin-
gle TS can be kept under sustainable limits. Also having multiple domains help 
achieve scalability. Adding new TS to the system is easy and can be dynamically con-
figured.  

Though this work does not ensure that the agent arrives at the destination host se-
curely, but it can detect whether the incoming agent has been tempered with or not. 
As the agent always passes through TS before reaching MAP, isolating malicious 
MAP is easy. This avoids other hosts from being directly affected by malicious host. 
But at the same time, this system does not prevent agents from being lost or modified.  

Outgoing agent is always encrypted with private key of sending host and public 
key of receiving host. If during agent authentication, MAP or TS finds violation of 
security then it puts the agent into a ‘Prison’[9]. To make agent transfer more secure 
and reliable, messages are exchanged between communication entities before actual 
transfer. Once an agreement or confirmation is received, then only actual agent trans-
fer can begin. If agent is received without prior confirmation then it is considered ma-
licious and put into ‘Prison’. The TS maintains a “malicious MAP list”. If a platform 
is found malicious, the TS will record it into this list. Any further requests by this 
platform will be discarded by the TS in future then. 

3   CPN Modeling 

Figure 3 shows the top-level page hierarchy of the CPN model. At the top-level, two 
domains are connected to TTP. Each node in the figure represents a page in CPN hi-
erarchy in which Top Level is the top-most page. To reduce the complexities, only 
two domains have been considered right now. Each domain houses four MAPs and 
TS. This system can easily be expanded to include more number of domains, but the 
complexity and memory requirements will increase significantly with each additional 
domain.  

There are actually separate communication links for agents and messages. Also 
there are separate links for inter-domain and intra-domain communication. This has 
been done to simplify the communication and also to facilitate collection of individual 
statistics and analysis. 
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Fig. 3. Top-level Page Hierarchy Fig. 4. Hierarchy page for a Domain 

3.1   Modeling Agent and Message 

The color sets BASEAG, AG and EAG are used to model the mobile agent during 
different phases of communication. Raw mobile agent is shown by BASEAG, which 
contains code and data regions. For convenience these regions are considered strings 
but it reality it can be anything. After creation, each agent is assigned a unique pair of 
identifier which consists of platform id and agent id. (platform_id, agent_id, code, 
data) makes a unique mobile agent which is modeled by Color set AG. During com-
munication, agent is always packed and encrypted. Color set EAG represents this 
packed and encrypted mobile agent. 

Message communication plays a very important role in this protocol. Different 
types of messages containing variety of data values are exchanged between TTP, TS 
and MAPs. MSG colour set represents the structure of the message. It consists of 
(dest, source, mtype, data). mtype signifies the purpose of the message. DATA color 
set is a union of all the colors that can be used as the data. For different mtypes differ-
ent color sets are used as data items.  

 
 

Hierarchy page for Mobile Agent Plat-
form(MAP) 

Hierarchy page for Trust Server(TS) 

Fig. 5. CPN model of MAP and TS 
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3.2   Modeling Domain 

Each domain consists of a TS and some number of MAPs. These MAPs are registered 
to the TS, which acts as a Domain controller. In the model that we created, each do-
main consists of a TS and four MAPs. Each MAP has a different start time and after 
some time they reset their settings. This feature effectively models dynamic nature of 
the MAPs. Figure 4 shows the hierarchy page of a typical Domain. 

3.3   Modeling MAP 

Figure 5 depicts the hierarchy page of the CPN model for Mobile agent platform. For 
each function, a separate page is created in CP Net. A separate page for Security and 
Knowledge base is also created which handles the data part of the platform. Figure 6 
shows working of the MAP. 

Agent arrival and Authentication page authenticates incoming agents. If the incom-
ing agent fails authentication, it is sent to ‘Prison’. The CPN model for Agent Arrival 
and Authentication executes decryption functions on the incoming agent to check its 
authenticity. Agent Dispatch page encrypts the outgoing agent using encryption func-
tion and values provided by Security Base. Agent Creation handles the creation and 
loading of mobile agents in the platform. Firing of transition reads agents from file 
and creates them. Timed firing is used to create different agents at different times. 
Once agent is created, its itinerary along with header (platform_id, agent_id) is sent to 
the Security Base.  

Security Base page handles the internal processing and database management for 
MAP. It has one ID place which contains unique identifier of that MAP. Common fu-
sion place is use to assign each MAP a unique identifier. This fusion place has a list 
of all Ids as initial marking and ensures single firing for each MAP. When it receives 
registration request message from TS, it stores the ts_id and sends it a registration re-
quest 

3.4   Modeling TS 

Figure 7 shows working of the TS. In case of TS, incoming agent can be either from 
an MAP or from the TTP. Separate colour sets are used to differentiate agents arriving 
from these two communication channel. Message handling is very much similar to 
that of MAP. Pages Message Arrival, Process Message, Message Creation and Dis-
patch Message handle the communication of messages. The major difference is hav-
ing separate channels for communication with registered MAPs and with the TTP. 

Security Base page plays an important role in the design of TS. It provides required 
information to other pages and also initiates message creation. At start, each TS ob-
tains a unique identifier using the similar fusion set mechanism used in MAP. After 
that it generates a random number R and broadcasts announcement messages periodi-
cally. When it receives the registration request from an MAP in response to its an-
nouncement, it updates its registered_host_list and sends ACK back. After sufficient 
number of announcements (in this case 20), it updates R and clears the regis-
tered_host_list. 
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(a) 

 
(b) 

Fig. 6. Flowcharts showing working of MAPs 

Once an MAP is registered with the TS, it can send an agent to it. For that TS must 
receive an agent itinerary message (mtype=3) from the home platform of the agent be-
fore the agent arrival message (mtype=2). While sending the agent out, TS checks the 
agent itinerary to find the next dest_id. If the dest_id is available in the regis-
tered_host_list then TS sends a message mtype=4 to that host and waits for its ACK  
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(a) 

 
(b) 

 
(c) 

Fig. 7. Flow Charts showing working of Trust-Server(TS) 

(mtype=41) before sending the agent. If the required dest_id is not found in the regis-
tered_host_list then TS sends the agent to TTP, adds an entry into SENTLIST and 
waits for the agent to come back. 

When an agent arrives at the TS from the TTP, it carries dest_id field along with it. 
If agent header is present in SENTLIST then dest_id indicates success (-1) or failure 
(-2) in finding require destination. In either case, TS checks the itinerary of the agent 
and starts the same procedure mentioned above. If the dest_id is neither -1 nor -2 then 
this agent belongs to another domain. Thus TS makes an entry in RCVDLIST and 
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sends the agent to dest_id if the dest_id is in the registered_host_list. Once this agent 
returns from dest_id to TS after finishing execution there, TS forwards it to the TTP 
with appropriate status and removes it from RCVDLIST. 

3.5   Modeling TTP (Trusted Third Party) 

As far as functionalities are concerned, the TTP is similar to the TS. So the model of 
the TTP also has similar pages. The major difference is in the working of the Security 
Base. It accepts registration requests from different TS and maintains their list. Peri-
odically each TS sends its registered_host_list to the TTP. Security Base of TTP 
maintains a table indicating (ts_id, registered_host_list).  It also maintains a record of 
agents received from each TS.  

3.6   Modeling Timeout 

The registered_host_list of the TS changes constantly because of dynamic nature of 
the model and also because different host being enabled at different times. When the 
Security Base of the TS checks this registered_host_list to find the dest_id, it waits 
for the specified period of time before giving up and sending agent to the TTP. This is 
done as the communication through TTP which is an additional overhead. To achieve 
this in CP Net, timed tokens are used. These timed tokens enable firing of transition at 
some time in future only. This property has been used here to model timeout behav-
ior. This feature has been used as experimental bases in TS and in TTP. In TS it has 
been used with minor modifications while checking the registered_host_list, while 
sending the agent arrival message (mtype=4) and waiting for its response and also 
while sending agent and waiting for its arrival. Similarly in TTP, it is used while 
checking the table entries and also while sending agent to the TS.  

4   Analysis and Results 

Once the model is constructed, we used several simulation runs to check the correct-
ness of the model. Initial simulation runs were using combinations of manual binding, 
play and fast-forward tool. Mainly the arrival and departure of agents at various nodes 
are considered to check the correctness. Also the proper timings of firing of timed-
transitions were carefully looked at. Once this procedure is followed for several runs, 
simulation using ML code is done to generate concise simulation reports. Various 
data collector monitors are used to gather statistics and to check certain properties of 
the CP Net. Figure 8 shows such a report generated during such a simulation run. 

Because of dynamic identifier assignment, each MAP is registered to different TS 
during different simulation runs. This changes the behavior of agent as the location of 
destination MAP changes. As figure 8 shows, on average 26 agents participate in in-
ter-domain communication i.e. they move from the TS to the TTP. Also TS receives 
on average 22-24 agents from intra-domain MAPs and 14 agents from the TTP. These 
figures are consistent with the agent itinerary and their bindings. Figure 9 shows GNU 
plot [5] of registered_host_list maintained by the TS 1. Similar list can be obtained 
for TS 2 also. Initially the list is empty. As the MAPs are enabled at different times,  
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Number of replications: 5 

Statistics 

Name Count Sum Avrg Min Max 

Marking_size_Agent__Arrival_and_Auth_TTPc'PT1_1 

count_iid 5 134 26.80 20 46 

Marking_size_Security_Base__TS'PT1_1 

count_iid 5 110 22.00 10 60 

Marking_size_Security_Base__TS'PT1_2 

count_iid 5 124 24.80 16 38 

Marking_size_Security_Base__TS'PT2_1 

count_iid 5 72 14.40 10 18 

Marking_size_Security_Base__TS'PT2_2 

count_iid 5 72 14.40 6 30 
 

Fig. 8. Performance Statistics obtained using Data Collector Monitors 

 

Fig. 9. GNUplot showing registered_host_list length at different times(TS 1) 

they register to the TS at different times. This is indicated by the gradual increase in 
the list length. At time 1000, list is cleared and new announcement starts. This is done 
to avoid stale registrations.  

Table 3 shows the number of agents arrived at and departed from TS 1 and TS 2 
during sample simulation runs. The values in the table are averaged over 3 simulation 
runs. It can be easily observed that almost 60% communication is intra-domain.  
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Table 3. Agent Movements during Test Run 

 Agents Arrived 
(Intra-Domain) 

Agents Arrived 
(Inter-Domain) 

Agents Dispatched 
(Intra-Domain) 

Agents Dispatched 
(Inter-Domain) 

TS 1 26 8 20 10 
TS 2 28 10 24 12 

5   Conclusion and Future Work 

This paper shows how CPN modeling can be used to model mobile agents. The criti-
cal part of mobile agent system is its dynamic behavior and agent mobility. The paper 
shows tokens can be used to model agents. Also Timed-CP Nets can be configured to 
achieve dynamic behavior by enabling firing of transitions at different point in time. 

We have modeled hierarchical security scheme for mobile agents. This scheme re-
lies on central control in the form of TTP. With careful choices of number of domains 
and number of MAPs registered to each domain, inter-domain activities can be mini-
mized. This will improve the performance significantly. 

Another approach for hierarchical system requires elimination of the central con-
trol. This approach requires direct message exchanges between neighboring domains. 
We leave this work as a future extension. Also we modeled agents as tokens in this 
model. To analyze internal working of an agent, this work can be extended to model 
them in a separate page and then integrate them with the main system.  
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Abstract. In a mobile computing environment, users can perform on-line 
transaction processing independent of their physical location. In a mobile 
environment, multiple mobile hosts may update the data simultaneously which 
may result in inconsistency of data. To solve such problems many concurrency 
control techniques have been proposed. The traditional two phase locking 
protocol has some inherent problems such as deadlocks & long unpredictable 
blocking. In this paper we propose a concurrency control mechanism with 
dynamic timer adjustment which helps in reducing the communication overhead 
and enhances the transaction throughput. The simulation results specify the 
performance trade off metrics. 

Keywords: Mobile Host, Fixed Host, Transaction, Timer, Commit, Rollback. 

1   Introduction 

Technological advances in wireless communication and satellite services have lead to 
the emergence of mobile computing environments. The possibility of accessing and 
processing information on move, everywhere and at any time has been one of the 
major reasons for huge acceptance and success [7]. Though this mechanism provides 
the utmost convenience in using various mobile applications, it suffers from various 
limitations such as unreliable communication, limited battery power, variable 
bandwidth, reduced storage capacity etc., 

Concurrency control is one of the most important features of transaction 
management. Research in concurrency control for mobile databases has led to the 
development of various concurrency control algorithms. Most of these proposals are 
based on three mechanisms viz., locking, timestamps and optimistic concurrency 
control. Though these schemes are well suited for traditional database applications, 
they don’t work efficiently in mobile environments. 

Due to various constraints in the mobile environment and nature of different online 
applications, traditional concurrency control mechanism may not work effectively. 
Transactions initiated by a mobile client that disconnects for longer time period may 
lead to an unacceptable long locking which may decrease the throughput [2]. 
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In this paper we propose a single lock manager approach for achieving 
concurrency control in Mobile Environments, which is based on timeout mechanism. 
Timer is dynamically adjusted which helps in maintaining application specific timers. 
The remaining part of this paper is organized as follows. Section 2 summarizes survey 
of existing techniques for concurrency control, section 3 gives an overview of the 
mobile database environment, section 4 specifies the drawbacks of concurrent access 
in mobile environments, section 5 specifies the proposed concurrency control strategy 
and the section 6 specifies the performance metrics. 

2   Related Work 

Concurrent execution of transactions by multiple mobile clients accessing the same 
data item may lead to inconsistency. Several valuable attempts have been made to 
efficiently implement concurrency control. However each attempt considers only a 
subset of the operational requirements.   

To achieve concurrency control, two phase locking protocol was used in the 
traditional environment. However this protocol requires clients to communicate 
continuously with the server to obtain locks and detect the conflicts. Hence it is not 
suitable for mobile environments [8]. An optimistic concurrency control technique 
detects and resolves data conflicts in the phase of transaction validation. In a mobile 
environment of the transaction validation is done on the server, it may lead to delayed 
response causing overhead at the server [9]. In [10], A Timeout based Mobile 
Transaction Commitment Protocol uses timeouts to provide non-blocking protocol 
with restrained communication. It faces the problem of the time lag between local and 
global commit.  In [6] the proposed Mobile 2PC protocol preserves the 2PC principle 
and minimizes the impact of unreliable wireless communication. This protocol 
assumes that all communicating partners are stationary hosts, equipped with sufficient 
computing resources and power supply with permanently available bandwidth.  

An Optimistic Concurrency Control with Dynamic Time stamp Adjustment 
Protocol requires client side write operations. However because of the delay in 
execution of a transaction, it may never be executed [3]. In [5, 1], the conventional 
optimistic concurrency control algorithm in enhanced with an early termination 
mechanism on conflicting transactions. However because of early termination a 
transaction need to be initiated again and again. In [4] Mobile speculative locking 
protocol is introduces to reduce the blocking of transaction if two phase locking is 
employed. This approach requires extra resources at the mobile host to carry out 
speculative execution.  

This paper proposes a single lock manager approach for achieving concurrency in 
the wireless environment using dynamic timer management. This technique helps in 
reducing the upward link as the request for locking of a particular data item is mostly 
managed by a fixed host. Further the server or a fixed host will not be overloaded as 
the non-conflicting data items are read by the mobile host and the execution is done 
by the mobile clients.  
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3   Mobile Database Environment 

The following figure shows the architectural view of the mobile computing 
environment.  

 

Fig. 1. Mobile Database Environment 

It consists of two major components i.e a Mobile Host (MH) and a Fixed Host 
(FH). Transactions are initiated at a mobile host may be executed at fixed host or 
mobile host.  A Mobile unit connects to a fixed host through a wireless link A Base 
station connects to a mobile unit and is equipped with a wireless interface. It is also 
known as a Mobile Support Station.  

Mobile Hosts (MH) may not always be connected to the fixed network. They may 
be disconnected for different reasons. Mobile host may differ with respect to the 
computing power and storage space; however MH can run a DBMS module. Mobile 
host may be disconnected to save battery consumption. Hence disconnections are 
handled as normal situations and not as failures [7]. 

Mobile Clients may vary from thin to full clients depending on their 
characteristics. In the thin client, request for a transaction is initiated by the MH and is 
executed on the fixed host whereas the full clients implement a part of server 
functionality without being strongly connected to the server  
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In this paper the transaction is initiated at the mobile host, the required data items 
are read and transaction is executed by the mobile host. Finally the results are updated 
on to the fixed host. 

4   Concurrent Access Anomalies in Mobile Environments 

The traditional database uses locking protocol to overcome the problems of 
concurrent access. These protocols are not suitable for preserving consistency in 
presence of concurrent access of mobile hosts. A transaction initiated at a mobile host 
locks the required data items. If another mobile host requires the same data item it 
needs to wait till the mobile that requested the data items first unlocks the data item. If 
the mobile host doesn’t commit the transaction, the second mobile host waiting in a 
queue has to wait for invariant time. 

In order to overcome this problem, timeout mechanism was introduced in mobile 
environments. A mobile host after acquiring the data items has to complete the 
transaction within the stipulated time. After the expiry of the timer the transaction is 
rolled back forcefully such that the data items are released and is used by the other 
mobile host waiting in a queue [8]. This mechanism may not be well suited for the 
wireless environments because this requires clients to communicate continuously with 
the server to obtain locks and detect the conflicts. Further the setting of a static timer 
value may result in many rollbacks because the transaction may never be executed 
within the stipulated time. Hence the throughput decreases.  In the next section 
dynamic timer adjustment mechanism is proposed which will increase the throughput. 

5   Concurrency Control in Mobile Environments 

5.1   Single Lock- Manager Approach 

In this approach, the mobile environment maintains a single lock manager which 
resides on the fixed host Fi. All lock and unlock requests are made at the fixed host Fi. 
When the transaction initiated, the mobile client needs to lock a data item, it sends a 
lock request to Fi. The lock manager informs the respective mobile client that has 
initiated the lock request. Otherwise the request is delayed until it can be granted. The 
transaction initiated by the mobile client reads the data items after locking it. In case 
of a write all the sites where a replica of data resides must be updated. This scheme 
reduces multiple messages being exchanged. As the lock and unlock request are made 
at only one site deadlock handling will be easy.  

5.2   Dynamic Adjustment of Time Quantum for Achieving Concurrency Control 

The data items needed by mobile clients for execution of a transaction are locked at 
fixed host and the execution of the transaction is done at the mobile host. Further a 
job queue is maintained based on first cum first serve mechanism. Once the data items 
are locked at the stationary/fixed host, the data needed for execution of the transaction 
is copied at the mobile host. This reduces the congestion at the mobile host. 
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For example, if A and B are joint account holders, they can’t perform the 
transaction at the same time. If A locks the data item belonging to his account then B 
has to wait till the data item is unlocked. But if some other user (say C) wants to lock 
its account for the transaction he can do so without affecting the first transaction.  

Table 1. List of user’s requests for data items 

Users Items 

A I1 

B I1 

C I2 

D I1 

E I3 

If A has locked the data item I1 and is not able to commit the transaction due to 
low bandwidth, delay in execution of a transaction, disconnections etc, then B and D 
have to wait. To overcome this problem a timer is set when the user A initiates the 
transaction.  

If A doesn’t commit the transaction before the expiry of timer, the transaction at A 
is rolled back and automatically the mobile client waiting in the FCFS job queue will 
lock the data item. If the transaction initiated by mobile host A is committed, then the 
database is updated and immediately the transaction at B is initiated. Row locking 
mechanism is used to simulate the locking of a particular tuple in the relation.  

Since the user C is not requesting for the data item I1, it can execute the transaction 
irrespective of the state of user A, B or D. Hence C locks the data item I2. Moreover 
E can also lock I3, irrespective of the execution of the existing transactions. Hence 
transactions initiated by three users are executed at a time. But as user C is only 
requesting for the data item I2 and after the expiry of timer it may be rolled back 
which could be a drawback i.e the transaction at C may not be executed at all as the 
transaction is rolled back unnecessarily. Hence there is a need of adjustment of 
dynamic timers.  

Multiple mobile hosts can connect to the fixed host and can execute the 
transactions in parallel when they are referring to different data items. As the 
transaction execution is distributed at the mobile and the fixed host respectively, there 
is a less possibility of delay in execution of a transaction.  

In the time out mechanism for execution of a transaction, a transaction may be 
rolled back because of various reasons. More time may be needed to execute the 
transaction as such the transaction may not at all be executed and is rolled back after 
the expiry of the timer. Hence a new request for the execution of the same transaction 
has to be initiated by the mobile client. 
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Fig. 2. Activity diagram depicting the dynamic adjustment time quantum for achieving 
concurrency control 

The Fixed host maintains a queue for the execution of the transactions initiated at 
the mobile host. As such those transactions which were not committed will be 
maintained in the queue in the round robin approach. This results in reducing the 
number of requests for the execution of the same transaction initiated by the mobile 
host.  

For any mobile application, a threshold value (T) need to be fixed. The transaction 
must be executed within this time which is a larger value. Initially the static timer (t),  
 



656 S.A. Moiz and L. Rajamani 

a random value is selected (t<T). This scheme will help in deciding the timer period 
based on the mobile applications. The mobile clients requesting for the same data 
items are placed in a job queue. 

Case (i): Transaction is executed within the timer period: 

Transaction initiated by the mobile host may commit within the allotted time period. 
The time taken to execute the transaction may be less than or equal to t. If the time for 
execution of a committed transaction is less than t, then immediately next transaction 
waiting in the queue starts its execution. 

Case (ii): Transaction is not executed within the time period: 

Transaction initiated by the mobile host may not commit within the allotted time 
period. In the earlier proposed timeout mechanisms [8, 10], the transaction may not be 
executed as every time the request for execution of the transaction is initiated it may 
be rolled back. 

In the proposed technique once the timer is executed, the transaction is rolled back 
and the timer is increased by certain quantity say α. The new timer will be updated to 
t + α. This may help in execution of the next transaction waiting in a queue whose 
time period is less than or equal to t+ α. This will increase the throughput as the 
transaction may not have to wait for its execution. Further the transactions rolled back 
by the fixed host will wait in the queue thereby reducing the overhead of mobile host 
to issue the same transaction request again and again.  

Case (iii): Maintenance of Threshold value for the timer: 

As the timer value is increased by α for every rollback operation, this may lead to a 
bigger value of timer after certain period. Further even in case of disconnections and 
delay α value may increase.  

Hence a larger value called threshold value (T) is set such that the transaction has 
to be executed within this time period. If the timer reaches the threshold value, 
transaction is aborted. This mechanism will help in setting the application specific 
timer values.  

This value is based on the application being executed on the mobile host. Each 
application which can be initiated by a mobile host takes some time for the execution. 
This can be set by the domain experts.  

5.3   Transaction States in Mobile Environments 

Based on the proposed concurrency control technique, transaction can be in any of the 
given states: New, Ready, Pending, Active, Commit or Abort.  

A transaction is said to be in a New state if the request is initiated by the mobile 
host but not yet received by the base station. A transaction is said to be in a Ready 
state if the request is received by the fixed host and is placed in a queue. A transaction 
is said to be in a Active state if it is under execution. If the transaction is rolled back 
after completion of the timer it is in Pending state, then the request is again placed in  
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Fig. 3. Transaction State Diagram for Mobile Environments 

the queue. An active transaction which is completed successfully is said to be in a 
Commit state. Incomplete transaction after reaching the threshold value will be in an 
Aborted state. 

5.4   Failure of the Fixed Host 

Since all lock and unlock requests are made at only one stationary host, deadlocks can 
be easily handled. However if the fixed host fails, then the concurrency control 
manager may fail. If the fixed host Fi fails then the processing must continue by 
another site. This is possible if a backup is maintained. We assume that a Primary 
copy replication is used.  Once the primary or master copy is updated all other nodes 
reflect the changes to the master. If the fixed host fails, another node which maintains 
the backup information will now act as the coordinator. 

 

Fig. 4. Primary Copy Replication 
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6   Performance Metrics 

Following requests are initiated by various mobile hosts. All these mobile clients need 
the same data items. The following results compare the throughput of the earlier 
mechanisms and the proposed technique. 

Request for accessing same data items is initiated by several mobile clients 
simultaneously. For the comparison of the performance consider the expected time for 
execution of a transaction initiated by mobile clients. Assume that the Threshold 
value of the timer, T=10sec i.e the transaction must be executed within 10 sec even in 
case of delay or failures. Let the timer t=3sec 

The time out mechanisms proposed earlier may produce the following result. In 
which the execution of a transaction is delayed for an invariant time.  

Table 2. Mobile Clients requesting for same data items and the expected time of completion of 
the transaction 

Mobile Client Expected time 
(in secs) 

M1 3 
M2 3 
M3 4 
M4 6 
M5 2 

Table 3. Performance of the mobile clients using Time out mechanism 

Mobile Client Status Waiting Time 
(Seconds) 

M1 Commit 3 
M2 Commit 6 
M3 Aborted (Timer expired) 9 
M4 Aborted (Timer expired) 12 
M5 Committed 15 

In this approach the transactions initiated by the mobile clients M3 and M4 are not 
executed. As the timer is set to 3 seconds all transactions whose time for execution is 
more that the timer may never get executed. Further the waiting time for those mobile 
requests whose time of execution is less than the timer needs to wait. In the above 
case M5 has to wait for 12secs.  

The single lock manager approach which is used for achieving concurrency may 
produce the following results. We assume that the timer value in case of rollback will 
be increased by a factor of 1 sec (α) 

In this case all the transactions are committed. Further the increase in timer value 
by a factor of α may result in successful completion of the transaction. Further if the 
dynamic timer value exceeds the threshold value i.e. the value in 3rd column exceeds 
10 seconds (Threshold value) then the transaction is aborted. 
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Table 4. Performance of the mobile clients using dynamic Time out mechanism 

 
Mobile 
Client 

Status Timer 
(Dynamic) 

Waiting Time 
(Seconds) 

M1 Commit 3 3 
M2 Commit 3 6 
M3 Rolled back 4 9 
M4 Rolled back 5 13 
M5 Committed 5 15 
M3 Committed 5 19 
M4 Rolled back 6 25 
M4 Committed 6 31 

7   Conclusion 

The Single lock manager approach for achieving concurrency control in mobile 
environments helps in reducing the messages being exchanged between the mobile 
clients and fixed hosts. It usually requires only two messages one for handling lock 
request and another for unlocking. Since the lock and unlock requests are handled at 
only one place handling deadlocks will be efficient. With the introduction of dynamic 
timer management, mobile clients may not request for the execution of the same 
transaction request again and again. This scheme also helps in setting of the 
application specific timer values. 
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