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Abstract. This paper recounts some lessons that we learned from the
deployment of host-to-host IPsec in a large corporate network. Several se-
curity issues arise from mismatches between the different identifier spaces
used by applications, by the IPsec security policy database, and by the
security infrastructure (X.509 certificates or Kerberos). Mobile hosts en-
counter additional problems because private IP addresses are not globally
unique, and because they rely on an untrusted DNS server at the visited
network. We also discuss a feature interaction in an enhanced IPsec fire-
wall mechanism. The potential solutions are to relax the transparency of
IPsec protection, to put applications directly in charge of their security
and, in the long term, to redesign the security protocols not to use IP
addresses as host identifiers.

1 Introduction

IPsec is a network-layer security protocol for the Internet that is intended to
provide authentication and encryption of IP packets in a way that is transparent
to applications. IPsec can be used between two hosts, between two security
gateways, or between a host and a security gateway. IPsec was primarily specified
with the security gateways and virtual private networks (VPN) in mind, but the
expectation was that it could also be used end-to-end between two hosts.

This paper explains some of the difficulties that arise when IPsec is used in
a host-to-host setting. The paper is based on security analysis and experiments
that were done during the deployment of host-to-host IPsec on a large production
network (tens of thousands of Windows hosts). We believe that the problems
discovered are not unique to one network or one vendor’s implementation, and
that they explain why there are few examples of successful host-to-host IPsec
deployments in large or medium-size networks.

The problems identified in this paper arise mainly from mismatches between
the identifier spaces used in applications, in the IP layer, and in the security
infrastructure. For example, IPsec security policies are typically defined in terms
of IP addresses but the addresses mean little to the application and they do not
appear in authentication credentials. Another reason for the problems is the
fundamental design principle in IPsec that it should be a transparent layer that
has no interaction with applications, apart from the configuration of a static
security policy at the time of setting up the applications. We show that, in order
for IPsec to meet the real application security requirements, the transparency
needs to be relaxed and applications need to become security aware.
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Most literature on security protocols concentrates on cryptographic algo-
rithms and key-exchange protocols. We now know how to engineer a security
protocol for authentication and encryption between abstract entities like Initia-
tor and Respondent, or Alice and Bob. The latest IPsec specifications benefit
from this work and represent the state of art in the field. The focus of this paper
is on architectural issues, such as who defines the security policies and who has
the authority over the various identifier spaces. We assume that the algorithms
and protocols themselves are sound.

Arguments can be made that the vulnerabilities described in this paper are
caused by flaws in the IPsec architecture. Equally well, it can be argued that we
are using IPsec in the wrong way or that it has been implemented incorrectly.
Either way, end-to-end encryption and authentication between hosts belonging to
the same organization is clearly a reasonable security mechanism to ask for, and
IPsec is a reasonable candidate to consider for the task. If IPsec in its currently
implemented form fails, as we demonstrate it does, it then makes sense to ask
what changes are needed to make the architecture meet our requirements.

The rest of the paper is structured as follows. We start with an overview
of related work in section 2. Sections 3-4 provide an introduction to the IPsec
architecture and to a well-known class of DNS-spoofing attacks. Section 5 shows
how similar attacks are possible against host-to-host IPsec even if the name
service is assumed to be secure. In section 6, we present a class of attacks that
affects mobile hosts. Section 7 discusses an attack that was made possible by a
non-standard extension to IPsec, and section 8 concludes the paper.

2 Related Work

IPsec is defined by the Internet Engineering Task Force (IETF). The earlier
IPsec architecture specification [11] was based on early implementation experi-
ences. The latest revised version [12] has a well-defined security model. There are
also two versions of the Internet key exchange protocol, IKEv1 [10] and IKEv2
[7]. Where it matters, we use the latest specifications. All observations and ex-
periments, however, were conducted with implementations that follow the older
specifications.

The research community has paid a lot of attention to the cryptography
and the key-exchange protocol in IPsec [3,8,13,19]. There is also some work
on security-policy specification in large systems [9]. The architecture itself has
received surprisingly little attention outside the IETF. The closest precedent
to our work is by Ferguson and Schneier [8] who, in addition to evaluating the
cryptography, make some radical recommendations for changes to the overall
architecture, such as elimination of the transport mode. While the focus of this
paper is on transport mode, all our observations apply equally well to tunnel
mode when it is used host-to-host. Ferguson and Schneier also suggest that us-
ing IPsec for anything other than VPN will lead to problems but they do not
elaborate on the topic. Meadows [16] pointed out that there might be prob-
lems with IKE if the authenticated identifiers are not based on IP addresses. A
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yet-unpublished article by Trostle and Grossman [23] also discusses identifier-
space issues in IPsec that are similar to the ones we raise in section 5.

Recently, much attention has been paid to “weak” security mechanisms, such
as cookie exchanges, which reduce the number of potential attackers or make
the attacks more expensive [2,17,22]. While these solutions are suitable for many
applications and, in particular, for denial-of-service (DoS) prevention, they do
not provide the kind of strong encryption and authentication that are the goal
of IPsec. Thus, we have to assume a Dolev-Yao-type attacker [5] and cannot
argue that a vulnerability in IPsec does not matter because it is unlikely that
the attacker will be in the right place at the right time to exploit it. We do,
however, compare the consequences of having a secure (e.g., DNSSec [6]) and
an insecure name service. The conclusions are valid regardless of how the name-
service security is implemented.

One high-level explanation for some of the problems discussed in this paper is
that IP addresses are both host identifiers and location addresses [4]. There have
been several attempts to separate these two functions, including the host identity
protocol (HIP) [18], and Cryptographically Generated Addresses (CGA) [1]. In
HIP, routable IP addresses are used only for routing and hosts are identified by
the hash of a public key. Cryptographically generated addresses (CGA) [1], on
the other hand, are routable IPv6 addresses that have the hash of a public key
embedded in the address bits. This makes them work better as host identifiers.
Mismatches between the identifiers used to specify the security policy and the
identifiers provided by the authentication protocol have been studied in other
protocol layers, for example middleware [14]. While we believe that many of
these approaches have merit, we have chosen to work with standard DNS names
and IP addresses in this paper.

3 How IPsec Works

In this section, we give a simplified overview of the IPsec architecture with em-
phasis on the features that are needed in the rest of the paper. The architecture
comprises protocols, security associations, and security policies.

IPsec, like most network security protocols, has a session protocol for the
protection of data, and an authenticated key exchange protocol for establishing
a shared session key. The session protocol is called the Encapsulating Security
Payload (ESP). It takes care of the encryption and/or authentication of indi-
vidual IP packets. There is another session protocol, the Authentication Header
(AH), but its use is no longer recommended. The session keys are negotiated
with the Internet Key Exchange (IKE), of which there are two versions (IKEv1
and IKEv2). The differences between the versions are largely unimportant to
this paper.

The shared session state between two IPsec nodes is called a security asso-
ciation (SA). An SA determines the session protocol mode, the cryptographic
algorithms, and the session keys used between the nodes. The SAs come in pairs,
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one for each direction. Security associations are typically created by IKE, but
they can also be configured manually by the system administrator.

In addition to the protocols and associations, an important part of the IPsec
architecture is the security policy. Each host has a security policy database (SPD)
that determines an action for each packet: whether the packet should be pro-
tected, discarded, or allowed to bypass IPsec processing. The SPD maps the
protected packets to the right SAs, and triggers IKE to create an SA pair if
no suitable one exists. The policy applies to both outbound and inbound pack-
ets. For outbound packets, an SA is used to add the encryption and message
authentication code as required by the policy. For inbound packets, the policy
determines what kind of protection the packet must have. Inbound packets that
do not have the right protection, i.e., ones that were not received via the right
SA, are discarded by IPsec.

The SPD is an ordered list of rules, each one of which consists of selectors and
an action. The packet headers are compared against the selectors and the first
rule with matching selectors determines the action to be taken on the packet.
The exact packet-matching algorithm has changed over versions of the IPsec
specification and varies from implementation to implementation; we stick to what
is common between many implementations. The selectors are typically ranges of
packet-header values, e.g., source and destination IP addresses and port numbers.
For example, the SPD of figure 1 mandates ESP protection for communication
with peers in the subnet 1.2.*.* and a BYPASS policy for other peers. In theory,
the selectors are not limited to IP and transport-layer header fields but can take
into account other context, such as the hostname, process and user at the source
or destination. In practice, such selectors are rarely implemented because they
can cause layer violations and are, therefore, hard to implement. (We will return
to names as selectors in section 6.4.)

In this paper, we are interested in the difference between two types of IPsec ap-
plications. The first application is a VPN, in which encrypted and authenticated
tunnels connect geographically separate parts of a private network. Originally,
IPsec tunnels over the Internet were used to replace leased telephone lines and
the goal was to provide security equivalent to a leased line. The tunnel in that
case is an IPsec SA between two security gateways. Increasingly, VPN technol-
ogy is used to connect individual remote hosts to private networks. In that case,
an IPsec SA between a remote host and a security gateway replaces a dialup
connection. In both situations, the SA is set up in tunnel mode. When establish-
ing a tunnel-mode SA, authentication in IKE is typically based on a pre-shared
long-term key or X.509 certificates [24] issued by an organizational certification
authority.

The second IPsec application is host-to-host communication. In that case, the
IPsec SAs are established between end hosts and encryption and authentication
are performed by the end hosts themselves. This kind of SA is usually set up in
transport mode, although tunnel mode can also be used. The modes have subtle
differences in packet headers and in policy lookup, but we need not consider them
here. The host-to-host communication differs from VPNs in that one uniform
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policy cannot cover all traffic. Instead, hosts must support heterogeneous policies
that allow them to talk simultaneously with peers that support IPsec and ones
that do not. It may also be desirable to allow different authentication methods
and certification authorities for different peers. The key exchange for transport-
mode SAs is typically authenticated with certificates or Kerberos tickets [20],
except for very small networks where pre-shared keys can be used. The lack of a
global public-key infrastructure (PKI) for managing the certificates is often cited
as the reason why host-to-host IPsec has not gained popularity in the Internet.
However, we believe that there are other reasons (see section 5.1).

4 Classic DNS Vulnerability

This section explains how IPsec interacts with name resolution, and how an
attacker can exploit the insecurity of a name service to circumvent IPsec. While
we assume that the name service is DNS, the same conclusions apply to other
name resolution mechanism like NetBIOS.

4.1 IPsec and Name Resolution

When IPsec is used for host-to-host protection of application data, the appli-
cation usually starts with a DNS name of the peer host to which it wants to
connect. For example, the application may have obtained the host name from
user input. The following actions then typically take place:

1. The application asks the operating system (OS) to resolve the host name
(e.g., “server-b.example.org”) into an IP address. The OS consults the name
service and obtains an IP address (e.g., “1.2.3.4”), which it returns to the
application.

2. The application asks the OS to open a TCP connection to the IP address.
The TCP protocol layer initiates a TCP handshake by trying to send a SYN
packet to the given peer IP address.

3. Before the packet is sent to the network, its header fields are compared
against the SPD. If a matching policy is found and it requires the packet
to be protected, IPsec checks whether a suitable SA already exists. If one
does not exist, IKE is invoked to establish a pair of SA’s with the peer.
The sending of the TCP SYN packet is postponed until the key exchange
completes.

4. Finally, when the SA exists, the TCP SYN packet is sent encrypted and/or
authenticated with the session key. The following data packets are similarly
protected.

4.2 DNS Spoofing

In the well-known DNS spoofing attack [3], the attacker substitutes its own IP
address (e.g., “3.4.5.6”), or someone else’s address, for the DNS response. As
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2. Key Exchange (IKE)

Honest host
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Fig. 1. DNS Spoofing Attack

a consequence, the application at the honest host connects to the wrong peer.
This attack is shown in figure 1.

If the attacker is located at an IP address for which the honest host requires
IPsec protection, then the attacker needs to authenticate itself to the honest host.
This is usually called an insider attack. We will return to the insider attacks in
section 5.1 where we show that they do not require DNS spoofing.

A more interesting DNS-spoofing scenario is one where the attacker is lo-
cated at an IP address for which the honest host has a BYPASS policy (as in
figure 1). In that case, the honest host will mistakenly skip authentication and
send the packets unprotected. In practice, the honest host will always have a
BYPASS policy for some peer addresses. First, there are hosts in almost every
local network that do not support IPsec, such as network printers. The attacker
may hijack the address of one such host. Second, most hosts will want to open
unauthenticated connections to the public Internet. Thus, all IP addresses that
are outside the honest host’s own domain usually have a BYPASS policy.

Problem 1a: It is possible to bypass an IPsec policy with DNS spoofing.

Middle boxes, e.g., NATs, complicate the scenario but do not necessarily pre-
vent the attacks. As long as the attacker manages to spoof the DNS response or
is able to manipulate the DNS servers, the attack will succeed equally well from
outside the NAT.

In the DNS-spoofing attack of figure 1, the wrong policy is applied to the
packets because the attacker controls the binding of DNS names, which are the
identifiers used by the application, to IP addresses, which are the identifiers used
in the security policy. It is therefore tempting to blame the insecure name reso-
lution mechanism for the attacks. This logically leads to the idea of introducing
a secure name service. In the following section, however, we will argue that the
current IPsec architecture makes the security of the name service irrelevant.
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5 Identifier Mismatch

In this section, we assume that DNS spoofing is not possible. This allows us to
focus on other design issues in IPsec. Indeed, we discover in section 5.1 that,
regardless of whether the name service is secure or not, there still is a discon-
nection between host names and IP addresses in IPsec. In sections 5.2-5.5, we
discuss potential solutions.

5.1 Attack Without DNS Spoofing

Recall that the security association between the honest host and its peer is cre-
ated by the authenticated key exchange, IKE. A critical part of the key exchange
is a step in which the peer host sends to the honest host a credential that proves
its identity. The credential is usually an X.509 public-key certificate issued by
a certification authority (CA) [24]. Equivalently, the credential could be a Ker-
beros ticket (in IKEv1 with GSS-API authentication [15,20]), in which case it
is issued by a Kerberos KDC. We will use the word certificate below but the
discussion applies to the other credential types as well.

The purpose of the certificate in IKE is to bind together the peer host’s iden-
tity and its public signature verification key, which is then used for cryptographic
authentication. The identifier in the certificate is typically a host name. While
certificates can, in theory, contain IP addresses, they rarely do. Thus, while the
SPD is typically specified in terms of IP addresses, the certificate that is used
to authenticate the peer host only contains the peer’s host name.

In figure 2, we trace the data flow when an application at an honest host
tries to connect to a peer. The application starts with a host name (“server-
b.example.org”). It uses the name service to resolve the host name into an IP
address (“1.2.3.4”). This time, the answer is correct because we assume no DNS
spoofing. The application then asks the OS to connect to the IP address, which
triggers IKE. Within the IKE protocol, the honest host receives the peer’s certifi-
cate. After the necessary cryptographic computations, it would be crucial for the
honest host to compare the identifier in the certificate against the identifier that
the application started with. But the only identifier in the certificate is a host
name (“pc-c.example.org”) and the only identifier known to the TCP/IP stack
at this point is the peer IP address. Thus, the stack is unable to authenticate
the peer, or to detect the use of a wrong certificate.

The next question is, of course, what do real IPsec implementations do when
they encounter this impossible decision. One answer is that IPsec is not com-
monly deployed in host-to-host scenarios. It is used between VPN gateways that
have static IP addresses and pre-shared keys, so that certificates are unneces-
sary. IPsec is also used in host-to-gateway VPNs, where the necessary checks
can be made in a non-standard way by special VPN management software. (A
mechanism for these checks is being standardized. See section 5.3.)

But there is an increasing demand to secure private networks from intruders
with host-to-host IPsec. The only solution that we have seen in actual IPsec
deployments is to skip the impossible check between the host name in the
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certificate and the IP address in the SPD and to continue as if everything were
ok! (Appendix A contains instructions for a simple experiment to test this.)

The consequence of the failure to check the name in the certificate is to enable
insider attacks. An attacker only needs to have a certificate issued by a CA that
the honest host trusts. This means that, in an intranet, such as the large network
we observed, any authorized host can impersonate all other authorized hosts. On
the other hand, an intruder that plugs into the network or a host that is on a
revocation or quarantine list cannot. Spoofed packets that manage to enter the
intranet, e.g., via an unauthorized ingress route are also detected and discarded.
In the network that we observed, these were the main security goals and spoofing
attacks by authorized hosts were a secondary concern.

Another way to explain the situation is to say that host-to-host IPsec pro-
vides group authentication but not authentication of individual hosts. This is
sometimes acceptable but not always. It is of paramount importance that those
who rely on the authentication understand the limitations of the technology.
Unfortunately, one is easily misled by IPsec literature on this point.

Problem 1b: Host-to-host IPsec currently provides only group authenti-
cation. Hosts certified by the same CA can impersonate each other.

At present, host-to-host IPsec is not commonly used between Internet hosts
that belong to different organizations. The reason for this is usually thought to
be the lack of a global PKI. But even if a global PKI existed, host-to-host IPsec
with certificate authentication on the Internet would be insecure because anyone
with a certificate from the global PKI would be able to impersonate everyone
else. The above facts are important to keep in mind because, with IKEv2, there
will be the possibility of using TLS certificates for server authentication and
passwords for client authentication (IKEv2 with EAP-PEAP authentication).
While this could partially solve the PKI availability issue, it would not prevent
the certified servers from mounting impersonation attacks against each other.

5.2 Secure Name Service

The honest host in figure 2 is faced with comparing a name (“PC-C”) and an IP
address (“1.2.3.4”). One’s first thought, especially if one happens to be staring
at that part of the code and not thinking of the high-level architecture, is to use
secure DNS for this purpose. There are practical problems, however, in addition
to the fact that secure DNS is not widely deployed.

If secure DNS is used to prevent the attacks, then we need both a secure
forward lookup (find the address based on a name) and a secure reverse lookup
(find the name based on an address). The forward lookup is required in the first
phase where the application resolves the original name into an IP address. The
reverse lookup is needed during the key exchange for comparing the IP address
and the name in the certificate. Note that the OS was asked to connect to a
specific IP address and, therefore, has to map from the address to the name and
not the other way. Otherwise, the attacker could easily set its own DNS records to
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Fig. 2. Interaction of DNS and IKE

map its host name (“pc-c.example.org”) to any address, including the authentic
peer address (“1.2.3.4”). In other words, the secure forward lookup verifies that
the owner of the name wants to associate it with a specific IP address, and the
secure reverse lookup verifies that the owner of the IP address wants to associate
it with the DNS name. For this reason, the reverse DNS records form a hierarchy
that is isomorphic with the way IP addresses are allocated.

There are several practical issues with the secure reverse DNS lookup. Firstly,
secure DNS is not any more widely available for reverse lookups than for forward
lookups. Secondly, many hosts have dynamic addresses (DHCP or IPv6 autocon-
figuration) and reverse DNS records are generally not updated for them. While
reverse DNS is supposed to work for all Internet hosts, the response is often
a generic name assigned by an ISP rather than the name actually used by the
host. Thirdly, if an IP address has multiple names associated with it, the reverse
lookup usually returns only one of them, and not necessarily the one used in the
certificate. Hosts behind a NAT have the same problem because they share a
single IP address, which means that there is no one unique owner for the address.
Yet, they may still use IPsec with NAT traversal support. Fourthly, there are
many ways in which the application may learn the IP address corresponding to
the peer host name. IPsec does not require the use of one specific technology,
such as DNS. In many cases, the IP address is obtained by an application-specific
mechanism (e.g., in a SIP INVITE message) or from a proprietary name resolu-
tion mechanism (e.g., NetBIOS). It is therefore difficult to ensure comprehensive
protection for name resolution.

These obstacles can sometimes be overcome within an intranet. For example,
some DHCP servers automatically update the reverse DNS records when ad-
dress allocation changes and IPsec can be used to protect the DNS queries and
responses with an authoritative server. Nevertheless, it is clear that reverse DNS
is not a generic solution to the identifier mismatch problem.
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5.3 Peer Authorization Database

The latest version of the IPsec architecture specification [12] proposes the addi-
tion of a peer authorization database (PAD) to each IPsec host. The purpose of
this database is to indicate the range of SPD identities (IP addresses) that each
authenticated identity (name in the certificate) is authorized to use. The seman-
tics of such a database is essentially the same as what we wanted to achieve with
reverse DNS above: it determines which authenticated names may be associated
with an IP address. The difference is that the PAD is implemented as a local
database rather than as a lookup from a server.

For a VPN, the PAD solves the reverse mapping problem elegantly. For
gateway-to-gateway VPN, it removes the need to distribute pre-shared keys.
Instead, the gateways can be configured with a static table of peer gateway
names and their IP addresses, and certificates can be used for authentication
in IKE. In host-to-gateway VPN, the gateway typically allocates an intranet IP
address for the remote host. IKEv2 even provides a standard mechanism to do
so. In that case, the ownership of the IP address is immediately known to the
gateway and the mapping can be added into the PAD. In both VPN scenarios,
the PAD is a standard way to implement the checks that well-designed VPN
software previously had to do in some ad-hoc manner. For host-to-host IPsec,
however, the PAD is not so much a solution as a rephrasing of the problem. The
question becomes how to implement the PAD, which is an equivalent task to
that of implementing the secure reverse DNS.

5.4 Giving Up Statelessness

It is possible that all the attention given to secure DNS technology has lead
us to look for the solution in the wrong place. The security property really
required by the application is not a correspondence between a host name and
an IP address. What the application cares about is that the host name in the
certificate (“pc-c.example.org”) is the same as the host name that it started with
(“server-b.example.org”). If this can be ensured, the application does not care
what the IP address is.

The problem is twofold. First, by the time the application calls connect, it
simply passes to the OS an IP address without any indication of how the address
was obtained. Second, the IPsec policy is stated in terms of IP addresses.

The first problem stems from the fact that the IP layer has been designed
to be as stateless as possible. That is, the IP layer is not aware of higher-layer
connections or sessions and does not maintain a state for them. This design
principle has usually served protocol designers well. In this case, however, it
would be beneficial for the OS to remember that it has previously performed
the name resolution and to check that the name in the certificate is the one that
it previously resolved to the same IP address. Care needs to be taken, however,
when implementing this check. For example, it is not sufficient to look up the
certified name in the local DNS cache. This is because the DNS cache stores the
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forward lookup result and, as we explained in section 5.2, a reverse lookup is
needed.

In order to create a strong link between the resolved name that the application
passed to the OS and the IP address that is compared against the name in the
certificate, we can use the following trick: Instead of returning the IP address to
the application, the name resolution returns a 32-bit or 128-bit handle, which
is an index to a table that stores the actual IP address. When the application
calls connect, the OS looks up the name and IP address from the table. During
peer authentication, the name from the table is compared against the name in
the certificate. This ensures that the peer is authenticated with the exact same
name that the application started with. The idea comes from the HIP local-
scope identifiers [18]. The disadvantage of this solution is that applications that
do not treat IP addresses as opaque numbers will break. The same is true for
applications that connect to an IP address obtained by some other means than
a DNS lookup.

The second problem listed above is that the IPsec security policy is typically
stated in terms of IP addresses. This means that authentication requirements
can be different for different peer IP addresses. An attacker can exploit this by
hijacking an address that corresponds to a BYPASS policy. As we explained in
section 4.2, host-to-host IPsec policies always allow some peers, such as printers
or non-intranet hosts, to bypass the protection. Thus, even if the authentication
is always done with the right identifier, it does not prevent the attacker from
turning authentication off, and IP spoofing allows them to do exactly that.

5.5 Giving Up Transparency

IPsec is designed to be transparent to the higher protocol layers. The security
policy is specified by an administrator and enforced by the IP layer without
any involvement by the applications. Yet, the purpose of IPsec is to protect
application data. This conflict may be the best explanation for the identifier
mismatch problem. The application cannot pass to the OS its security require-
ments such as the CA and peer name to be used in the authentication. Neither
can it check these parameters after the handshake. In many IPsec implementa-
tions, an application can call setsockopt and getsockopt to switch on encryption
or authentication and to query their state but it has no access to the certificate.

The solution we suggest is to compromise the transparency principle and
to provide the application with the means to check what kind of protection is
provided for its data. In the specific problem that we have discussed here, it is
sufficient to provide an API for checking whether packets sent and received via
a given socket are authenticated and/or encrypted, and to check the identifier
that was authenticated in the key exchange. A more radical change to the IPsec
architecture would be to replace the SPD with a per-socket policy. The system
administrator may, however, still want to enforce some policies independent of
the applications. This leads to problems of policy reconciliation, which is beyond
the scope of this paper.
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Solution 1: Allow applications to specify the IPsec policy for their data and to
check that the right kind of security is in place, including the authenticated peer
identifier and the issuer of the peer credentials.

6 Attacks Against Mobile Hosts

Next, we will consider what effect host mobility, such as a laptop being moved to
a different local network, has on IPsec. We first highlight, in section 6.1, reasons
why DNS spoofing is much more serious a threat than is usually thought. In
section 6.2, we show that confusion between different private address spaces can
lead to attacks even without DNS spoofing.

6.1 Trusting Local Name Servers

It is quite clear from section 4.2 that a secure name service is required before
IPsec can provide strong host-to-host security. Nevertheless, it is tempting to
ignore the problems and to assume that DNS spoofing is sufficiently cumbersome
to deter most attackers. For example, it is difficult for an attacker on the Internet
to interfere with name resolution in the intranet. The goal of this section is
to present a common scenario where the spoofing is trivial to implement. We
assume, for a moment, that secure DNS is not in use.

When a mobile host, such as a laptop computer, connects to the Internet
at a new access network, it usually configures its network connection based on
information provided by a local DHCP server at that network. One of the config-
uration parameters provided by DHCP is the IP address of a local DNS server.
Thus, a mobile host depends on the local DNS server to define the binding be-
tween host names and IP addresses. As a consequence, malicious administrators
at the access network can provide false DNS responses and, therefore, circum-
vent the mobile’s IPsec policy. Furthermore, all they need to do this is standard
DNS server software.

Figure 3 shows an example of this attack. The mobile host unwisely trusts the
DNS server at the access network to map a peer name (“server-b.example.org”)
into an IP address. By selecting an address for which the host has a BYPASS
policy, the DNS server can both turn off IPsec protection and redirect the con-
nection to the wrong destination. Since IPsec is usually bypassed for the public
Internet, the attacker may be able to use its real IP address.

Problem 2: The mobile host relies on a name server at an untrusted access
network to define the mapping from names to IP addresses. Therefore, the
access network can circumvent the mobile host’s IPsec policy.

Another way to express the problem is to say that the physical location of
the mobile host determines the authority in whose name space the DNS name
resolution happens. However, the problem is not completely solved by the mobile
connecting to an authoritative DNS server at its home network. This is because
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server-b.
example.org

1.2.3.4

Attacker
5.6.7.8

IPsec
Policy:
1.2.*.*  ESP
*           BYPASS

Foreign
DHCP/DNS

Server

1. DHCP
to discover 
DNS server

2. DNS
Query:
“server-b.example.com”,
Response: “5.6.7.8”

3. Server access

Honest
mobile Internet

Fig. 3. Mobile host using a foreign DNS server

there are commonly available tools for intercepting the requests transparently
and for redirecting them to a local server at the access network.

Secure DNS with signed resource records would prevent the attack as it is
based on signature chains and provides the same level of security regardless of
which DNS server a host uses. A less secure solution is to protect access to
an authoritative, or just friendly, DNS server with a DNS transaction security
mechanism or with IPsec.

Solution 2: Never rely on insecure DNS at an untrusted access network.
If secure DNS is not available, use IPsec to protect access to a more trust-
worthy name server.

The following section will, however, show that some attacks against the mobile
host do not depend on DNS spoofing.

6.2 Ambiguity of Private Address Spaces

Some IP address ranges have been allocated for private use [21]. Anyone can
use these addresses in their private network but packets with a private source
or destination address must never be routed to the Internet. Examples of this
kind of addresses are the ranges 10.*.*.* and 192.168.*.* in IPv4 and site-local
addresses in IPv6. The most common use for private addresses is behind a NAT.

It is usually thought that private addresses provide a level of security because
packets containing these addresses cannot cross network boundaries. If a host has
only an address allocated from a private address space, then it will be impossible
to route any packets from the Internet to the host, or from the host to the
Internet, except when the communication is specifically enabled by a NAT. For
this reason, it is common to place critical intranet resources, such as important
file servers, into subnets with private addresses. It is also tempting to give this
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kind of protection to other hosts that should not be accessible from the Internet,
e.g., printers.

The problem with the private addresses is that mobile hosts can move between
two networks that both use the same private address range. The traditional
wisdom that packets with private addresses cannot cross network boundaries is
no longer true because the sender (or receiver) itself crosses the boundary.

For example, the mobile host in figure 4 uses an authoritative name server at
its home network in order to avoid the attack of section 6.1. The name server
maps a name (“printer-b.example.org”) to a private address (“192.168.0.10”).
But when the mobile host connects to this address, the packets are routed to an
untrusted host at the access network. Even worse, the mobile host has a BYPASS
policy for the address. Connecting to the wrong printer or server can cause the
mobile host to reveal confidential information to the attacker. Sometimes, it can
compromise the mobile host’s integrity if the server, for example, distributes
configuration information.

Problem 3: When a mobile host moves between physical networks, it can
become confused about which private address space it is currently at. As a
consequence, it may apply the wrong IPsec policy to packets destined to a
private IP address.

This kind of situation can arise, for example, when most of the mobile host’s
communication, including DNS queries, is routed to its home network via a VPN
connection but some addresses are excluded from the tunneling to allow the
mobile to access resources (e.g., printers) local to the access network. Another
situation that occurs commonly is one where the private address is statically
configured (in a hosts file) or it is in the mobile’s DNS cache at the time it
attaches to the untrusted access network.

Internet

printer-b.
example.org

192.168.0.10

Attacker
192.168.0.10

IPsec 
Policy:

192.168..0.10   BYPASS
192.168.*.*       ESP
 *                       BYPASS

Honest 
mobile

Trusted 
DNS Server

1. DNS 
Query: “printer-b.example.org”,
Response: “192.168.0.10”

2. Printer access

Fig. 4. Mobile host moving between private address spaces
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The problem is similar to multihomed hosts and scoped IPv6 addresses. Mul-
tihomed hosts, however, have the benefit of being able to differentiate addresses
by the interface on which they appear. Given that the scoping of IPv4 addresses
has never been completely solved for multihomed hosts, we do not expect there
to be any magic bullet for the mobile-host scenario either.

Solution 3: When configuring the IPsec policy in a mobile host, one should
not assume any degree of protection from physical or logical network bound-
aries. In particular, BYPASS policies for private and site-local addresses are
dangerous.

6.3 Communication Failures in Private Address Spaces

There is another consequence of the confusion between private address spaces. If
a host requires protection for a private peer address, communication with that
address will fail unless the peer is able to authenticate itself. For example, the
policy in figure 4 prevents the mobile host from communicating with any hosts
in the access network that it is visiting (except with the attacker).

Problem 4: A mobile host that requires protection for private or site-local
peer addresses cannot communicate with hosts that use the same addresses
in other administrative domains.

Stationary hosts do not experience the problem because they always reside
in one administrative domain. Mobile hosts, on the other hand, move between
networks. Configuring IPsec protection for a private address range in a mobile
host effectively monopolizes that address range for use in only one domain.

We will not offer any immediate solution to this problem. In the light of the
previous section, we feel that the communication failure is preferable to a secu-
rity failure. It seems that private address spaces are fundamentally irreconcilable
with an authentication mechanism that requires unique identifiers. System ad-
ministrators have tried to solve the problem by guessing which sub-ranges of
the private address space are not used by anyone else, a solution that is hardly
sustainable if everyone adopts it.

6.4 Names in Security Policies

It is clear from the above that IP addresses are not the ideal identifiers for
specifying a security policy for host-to-host communication, and we might want
to replace them with host names or some other unique identifiers. This approach
works in principle but is has a major limitation that we will explain below.

The IPsec specification allows policy selectors in the SPD to be specified in
terms of host and user names but the semantics is not quite what one might,
naively, expect it to be. The problem is that it is not possible to use the peer
host name or user name as a selector in a BYPASS policy. While other types of
selectors are matched directly against header fields of an inbound or outbound
packet, the name selectors must be matched against the authenticated peer name
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from the peer’s credential. Thus, any policy specified in terms of such selectors
requires authentication of the peer. This means that name selectors can prevent
insider attacks where there is confusion between two authenticated identities, but
they cannot prevent the attacker from exploiting a BYPASS policy to get around
IPsec. In this respect, the name selectors are similar to the peer authorization
database. The following solution comes, therefore, with a major caveat:

Solution 4: Redesign IPsec so that IP addresses are not used as selectors.
However, this only helps if all peers are authenticated.

It is generally the case for all network security mechanism that, if some peers
are allowed to bypass authentication, then the attacker can pretend to be one
of them and, thus, bypass the security. The damage can be limited, as network
administrators know, by making BYPASS policies as specific as possible, for
example, by restricting them to specific port numbers.

Again, it appears that the ultimate solution is the one we already stated
in section 5.5: putting the applications in charge of their own security. When
authentication is provided by a transparent layer, the applications cannot know
whether a specific packet has been authenticated or bypassed protection. On
the other hand, if the applications are allowed to specify and enforce their own
security policies, they can decide which data needs authentication and which
does not.

7 IPsec as a Firewall

In this section, we will discuss an unexpected feature interaction in IPsec when
it is used as a firewall. Although the attacks depend on a non-standard IPsec
feature, they are interesting because they are an example of two security mech-
anisms, each of which is sensible and useful on its own, that together result in
security failure.

The DISCARD policies in IPsec can be used to implement an elementary
firewall policy. That is, IPsec can filter packets by any criteria that are expressible
with the selectors in the SPD. Typically this means blocking port numbers or
ranges of IP addresses. With standard IPsec, the firewall is necessarily stateless:
each packet is processed individually and without regard to any packets sent
or received previously. Nobody would expect to be able to implement complex
application-layer policies with IPsec but it seems a pity that one cannot express
the kind of simple stateful policies that even end users can configure in personal
firewalls and home NATs. In particular, one would want to differentiate between
packets that belong to a connection initiated by the local host and packets that
arrive unsolicited.

Some IPsec implementations provide this kind of functionality, even though
it is not a part of the standard IPsec architecture. One way to implement this
is a policy that, upon sending an outbound packet to an IP address, creates a
state (“soft SA”) to allow further packets from that peer to bypass IPsec. This



Experiences with Host-to-Host IPsec 19

kind of policy is used, for example, to enable access to printers and embedded
devices that do not support IPsec.

Another, seemingly unrelated, issue with the current IPsec specifications and
implementations is that they lack full support for broadcast and multicast com-
munication. There are two ways a system administrator can deal with the un-
supported traffic: it can be discarded or allowed to bypass IPsec. In any system
that depends on broadcast or multicast protocols for its operation, the choice
is obviously to configure a BYPASS policy for these types of traffic. Encryption
is usually unnecessary because these types of communication are accessible to
large groups of hosts anyway. The lack of authentication is a bigger issue but it
can be addressed with application-specific security mechanisms where necessary.

Unfortunately, the two features described above combine to create a vulner-
ability, as shown in figure 5. The honest host in the figure has been configured
with a stateful policy because it needs to access printers that do not support
IPsec and, in a large network, managing the BYPASS policies individually would
be too tedious. In order to circumvent the stateful policy, the attacker needs to
get the honest host to send an outbound unicast packet. If the honest host re-
quired authentication for all inbound communication, the attacker would not be
able to manipulate it into sending such a packet. But when the policy at the
honest host allows inbound broadcast and multicast packets to bypass IPsec,
the attacker can use these to trigger the outbound packet. Indeed, there are sev-
eral broadcast-based protocols that can be exploited for this. For example, the
BOOTP, DHCP, and NetBIOS protocols send unicast responses to broadcast
requests. In general, it is extremely difficult to determine at the IP layer which
end host is the real initiator of the communication. Therefore, security policies
that differentiate between the initiator and respondent tend to be fragile.

Problem 5a: Stateful firewall extensions to IPsec can be exploited by trig-
gering outbound packets with inbound traffic for which there is a BYPASS
policy, such as broadcast and multicast packets.

Honest host
1.2.7.8

1. Broadcast 
request

3. Unicast 
response

Attacker
1.2.3.4

2. Stateful 
policy

IPsec 
Policy:

1.2.*.*  BYPASS
            OUTBOUND
*           ESP

Honest printer
1.2.5.6

Fig. 5. Circumventing a stateful policy with broadcast
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The difference between IPsec and dedicated firewall software is that the typical
configuration for IPsec allows inbound packets to bypass protection if they belong
to a traffic type for which there is no suitable protection mechanism. Otherwise,
one would have to delay host-to-host IPsec deployment until the technology is
in place to protect all possible types of communication. Firewalls, on the other
hand, tend to discard packets by default. Thus, the above problem is, in part,
explained by the different motivation for the administrator in configuring IPsec
and firewall policies.

It seems that there will always be some IP packets for which no protection is
available and which the honest host nevertheless wants to receive. For example,
IPv6 is increasingly enabled on Internet hosts for experimentation, yet many
IPv6 implementations still lack IPsec functionality or administrative support.
This means that IPsec policies for IPv6 are often more relaxed than for IPv4.
There is clearly a trade-off between security and availability of new services.

Problem 5b: New protocols often lack full IPsec support. The attacker
can often use them to circumvent IPsec protection of existing protocols.

Solution 5: Care must be taken in reconciling strong security policies
and availability of network communications during the deployment of new
protocols.

8 Conclusion

This paper documents several vulnerabilities in host-to-host IPsec. There is no
doubt that, over the years, administrators and developers have encountered all
of these issues and either found solutions similar to the ones proposed here or
moved to using other security protocols like TLS. Yet, it is a widely held belief
that, if one implements and configures IPsec correctly, it can meet all of one’s
network security requirements. We aim to show that this is only possible with
major changes to the philosophy that underlies IPsec. In particular, security
should not be implemented as a transparent layer. Instead, applications should
be allowed to manage their own security policies. Also, IP addresses are not
meaningful identifiers for specifying security policies for application data.

We have observed all of the vulnerabilities described in this paper in actual
IPsec implementations or configurations. One could claim that little is achieved
by deploying host-to-host IPsec in its current form. There are, however, some
mitigating factors. Firstly, some of the weaknesses result from compromises made
for deployment reasons. For example, the need to have exemptions for multicast
traffic and for non-IPsec-capable hosts may slowly disappear, perhaps with the
transition to IPv6. Secondly, we found that attacks tested in laboratory con-
ditions rarely work on production networks because modern applications and
middleware (e.g., RPC mechanisms) implement their own security. Indeed, they
have been designed with the assumption that the network layer is insecure. This
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leads us to the question whether there remains any role for host-to-host IPsec,
but that discussion is beyond the scope this paper.
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A A Simple Experiment

The following simple experiment demonstrates that the OS is unable to check the
correctness of the name in the certificate (as explained in section 5.1): First, set
up the IPsec policy to use a transport mode SA and certificate authentication.
Then, act yourself as the application of figure 2. In a shell window, use nslookup
or a similar utility to resolve the peer host’s IP address. Finally, invoke telnet to
connect to the IP address. By the time you enter the telnet command, the only
place where the host name is remembered is your head. Surely, the OS cannot
have compared the host name in your mind with the one in the certificate.
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