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Abstract. We developed a fast image completion system using the multi-
resolution approach to accelerate the convergence of the system. The down-
sampling approach is for the texture-eigenspace training process based on the 
multi-level background region information. The up-sampling approach is for 
the image completion process to synthesize the replaced foreground region. To 
avoid the discontinuous texture structure, we developed the directional and non-
directional image completions to reconstruct the global geometric structure and 
maintain local detailed features of the replaced foreground region in the lower- 
and higher-resolution levels, respectively. In addition, the Hessian matrix deci-
sion value (HMDV) is generated to decide the priority order and direction of the 
synthesized patch in the replaced region. To avoid the rim effect of the synthe-
sized result, the border of each patch defined as O-shaped pattern is selected for 
matching comparison instead of using entire patch. Finally, additional texture 
refinement process is guaranteed to have high-resolution result. 

Keywords: Texture Analysis, Texture Synthesis, Image Completion, Hessian 
Matrix, Eigenspace. 

1   Introduction 

Photographs sometimes include unwanted objects. After removing the unwanted 
foreground objects, holes will leave at that photograph. Although many existing im-
age completion techniques can fill those holes, there still exists the discontinuity prob-
lem of the texture structure between the new fill-in foreground regions and the origi-
nal background regions. 

One major factor caused this kind of texture discontinuity is the priority of the syn-
thesis (or fill-in) order for each hole. Since texture structure is the important clue to 
judge the completion performance in general appearance of a photo and edge is the 
most important component to construct the completion of the texture structure. Once 
the texture structure is damaged, the discontinuities of the edges become obvious. In 
order to synthesize (or reconstruct) complete texture structure, authors in [4], [5], 
[16], [19] proposed the texture synthesis approach starting along the damaged edges 
to fill the hole or the work in [3] divided image into structure components and texture 
components, and synthesized separately. Bertalmio et al. [2], [3] expand structure 
from boundary, so the structure continuity can be maintained particularly for the long 
and thinner removal region. The work in [13] segmented the image into several re-
gions and synthesized each region individually. Sun et al. [16] manually drew the 
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curve first, and then compared the matching patches along the curve. Moreover, the 
work in [5] is based on the inner product of the vertical direction of pixel gradient and 
normal vector of the border of the removal region, and then the result is multiplied by 
the proportion of the information that patch keeps in to find the priority. The purpose 
is to find the starting point of filling in the matching patch from searching exhaus-
tively. But this approach is easy to be influenced by high-frequency components, such 
as noises or complicated texture components, where these high-frequency compo-
nents easily cause higher synthesis order than the structure components. Therefore, it 
misleads the error of priority and destroys the integrality of structure. 

The other factor is the size of the synthesis patch whether it is pixel-based patch 
[1], [17], [18] or patch-based patch [8], [9], [11], [12], [14], [15] (or exemplar-based), 
which has been used mostly. The pixel-based approach is slower and the synthesis 
result trends to fuzzy result. The patch-based approach is faster but remains obvious 
discontinuous flaws between neighboring patches. Efros and Freeman [8] used dy-
namic programming (DP) to find the minimum error for cutting the overlaps between 
two discontinuous neighboring patches. Drori et al. [6] mixed different scaling 
patches according to different frequencies of texture complexity. The synthesis result 
is good but the computational time is very slow. 

To improve the computational time of the image completion process, Freeman et 
al. [11] and Liang et al. [14] modified the similarity measure between patches by 
comparing only the border pixels of the patches instead of comparing those of entire 
patches. In addition, comparing the pixels of the entire patch will result in not easy to 
connect between the patches It is because the number of pixels inside the patch are 
more than those at the border of the patch. 

According to above existing problems, we develop a novel image completion sys-
tem based on the patch-based multi-resolution approach. This approach can not only 
accelerate computational time and is capable of handling the large removed region, 
but also maintain both the texture structure and detailed features. We develop the 
directional and non-directional image completions to maintain the texture structure 
and detailed features of the replaced foreground region, respectively. Moreover, to 
solve the priority problem of the synthesis order and avoid affecting by noises and 
complicated texture components, Hessian matrix is employed to have the stable and 
correct priority of synthesis order. 

Section 2 describes we develop the texture analysis module for analyzing and train-
ing input image. At Section 3, we apply Hessian matrix to decide the synthesis order 
and image completion methods: either using the directional image completion to 
propagate the structure or using the non-directional image completion to synthesize 
detailed features. Subsequently, texture refinement is used to recover the lost feature 
at the training process. Section 4 presents the current experimental results by evaluat-
ing time complexity of the training process and image completion, and analyzing our 
developed approaches. Finally, Section 5 discusses the conclusion. 

2   Training Process Based on Background Region 

This training process is similar to our previous work in [10]. Here we just briefly 
describe as following: An input image is given and is annotated as I0, as show in  
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Fig. 1. Flowchart of the texture training (or analysis) process 

Fig.1. The mask image, which is manually labeled the replaced foreground region, is 
called the inverse matte, α0, as show in Fig. 1. This matte is a binary image having the 
same size as input image. The pixels in the white regions, which are the known re-
gions, are set to 1, while the pixels in the black regions, which are going to be re-
moved and then synthesized based on the background information, are set to 0. In 
addition, the replaced regions can comprise many sub-regions, but they must contain 
the removable objects; they can exceed the boundaries of the removable objects, and 
they can be any shapes. However, too many or too large replaced regions will cause 
the quality of the synthesis result to become worse. Moreover, the known background 
regions serve as the source of the replaced regions. 

For the training process, initially, we have input image I0 and corresponding in-
verse matte α0, and then we down-sample ↓ the original image I0 L times to obtain 
different lower resolution images Ii and corresponding inverse matte αi at level i, 
where i=1~L. The background regions corresponding to known regions having value 
1 at the inverse matte are extracted to several patches to be the training data. In order 
to reduce the computational time during the similarity measure at the synthesis proc-
ess, principal component analysis (PCA) is employed to reduce the dimensions of the 
training data, and vector quantization (VQ) is adopted for clustering the projection 
weight vectors in the eigenspace so as to reduce the comparison time. Fig. 1 illustrates 
the system flowchart of the training process extending from the input image to get the 
weight vector of each patch. 

2.1   Multi-resolution Preprocessing from Levels 0 to L 

We apply the multi-resolution approach [20] to our system for three purposes. The 
first purpose is to avoid the computational condition of being unable to converge and 
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the worse initial result of synthesized image. The second purpose is to have more 
training patches with various scales [7] and texture features. At different levels, the 
patches have various properties. The patches at the lower-resolution images (ex. IL-

1~IL) contain stronger structural information. The patches at the higher-resolution 
images (ex. I0~I1) have more detailed feature information. The third purpose is to 
reduce the computational time.  

The multi-resolution approach down-sample ↓ the input image I0 and correspond-
ing inverse matte α0 L times by factor 2 to have input image Ii and inverse matte αi for 
ith level, where i=1~L. The background known region is denoted as Bi as: 
 

LiIB iii ~0, == α  (1) 

 

and preserved for the training data. The foreground unknown region Fi is denoted as: 
 

LiIF iii ~0, == α  (2) 

 

and is going to be synthesized patch by patch by utilizing the information of the back-
ground Bi. In addition, the smallest image size at level L depends on the correlation 
between the patch size and the foreground region at level L. That is, the patch size 
needs to be big enough to cover most foreground region. More details will be dis-
cussed later. 

2.2   Create Eigenspace Ψ Based on O-shaped Patterns from Levels 1 to L 

During the training process, one WpxHp-pixel (width x height = 15x15-pixel) search 
window shifting pixel by pixel from the top-left corner to the right-bottom corner in 
the background regions for images from Il to IL to extract training patch data. There 
are M total WpxHp-pixel patches. The reason we do not include the image I0 at level 0 
is because of following reasons based on our empirical experiences: (1) It is unneces-
sary to use entire patches of image I0 at level 0, i.e., 100000~300000 patches per 
320x240-pixel, because it will include many unnecessary patches and require a large 
amount of template matching operations. In addition, the training time of the vector 
quantization (VQ) will increase exponentially following the increasing number of 
clusters. It also increases the probability of mismatching the incorrect patch. (2) Im-
age I0 at level 0 contains more noises, which affect the result of the PCA process, and 
will increase the mismatch probability. When we practically don’t include the image 
I0 during the training process, the computational time reduces from 15 seconds to 2 
seconds for 320x240-pixel image size. But this approach causes the synthesized result 
losing the detailed feature information and decreases the high-resolution quality of 
image completion result. So an additional process (Section 3.2) for the texture re-
finement at the 0th level is required in order to make the image completion result have 
the same high resolution as the input image. 

Furthermore, including whole patch elements to the training data for further match-
ing comparison may result in a discontinuous structure of the patch and will certainly 
increase the training time. In addition, during the synthesis process, the similarity 
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Fig. 2. Acquire the four borders with thickness ω (ω=2) pixels for each search patch. Wp 
(Wp=15) is the width of the patch, and Hp (Hp=15) is the height of the patch. There are K 
pixels in each O-shaped pattern, where K = 2ω(Wp+Hp) – 4ω2. 
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Fig. 3. Total M O-shaped patterns can be obtained from levels L-1 to 0. Each pattern vector has 
K elements (see Fig. 2). During training process, PCA is used to transform the original K×M 
matrix of all training pattern vectors to a N×K eigenvector matrix in the eigenspace, where the 
first N eigenvectors corresponding to 98% energy of total eigenvalues and N < K << M. 
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Fig. 4. (a) The first several eigenvectors of the O-shaped patterns control the global geometrical 
structure of the photographs. (b) The middle eigenvectors of the O-shaped patterns control the 
local detailed features. (c) The last few eigenvectors of the O-shaped patterns control some 
noises. 

 

measure by considering the whole contents of the patch will generally produce unsat-
isfactory results, and it may cause the rim effect to become distinct. Thus, this work 
adopts the O-shaped pattern instead of whole patch for the training data, as shown in 
Fig. 2. 
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PCA is applied to the entire O-shaped training patterns to obtain the eigenspace Ψ, as 
shown in Fig. 3. Two important properties of PCA are employed to have the best perform-
ance for the image completion result: (1) PCA process can reduce the dimensions of the 
data representation from K dimensions to N dimensions, where N < K, without losing the 
significant characteristics of the original data, as shown in Fig. 3. (2) Recombine the fea-
tures of the O-shaped pattern. because the PCA process and sorting the eigenvalues with 
corresponding eigenvectors, we found that the first several eigenvectors, as shown in Fig. 
4, control the global geometrical structure of the photographs, while the middle eigenvec-
tors control the local detailed features, and some noises are controlled by the last few 
eigenvectors. This study uses only the first N eigenvectors, whose corresponding eigen-
values occupy 98% of total eigenvalues, for comparison purpose to identify the suitable 
matching patch. 

2.3   Create Corresponding Weight Vectors by Projecting O-shaped Patterns 
onto Eigenspace Ψ 

Each K-dimensional O-shaped pattern vector P (P=[P1…PK]T) is projected onto the N-
dimensional eigenspace, which consists of N eigenvectors (E1i…ENi, where i=1~K) as:  
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 (3) 

 

So the corresponding N-dimensional weight vector W (W=[W1…WN]T) for each pat-
tern vector can be obtained to represent the original patch. Therefore, there are a total 
of M N-dimensional weight vectors in the training database. 

2.4   Cluster Weight Vectors Using Vector Quantization 

For the similarity measure during the synthesis process, it is extreme time consuming 
to compare the projection weight vector of each unknown pattern with those of all 
training patterns. To reduce the comparison time, the vector quantization (VQ) is 
applied to cluster entire training patterns into several clusters, ex. c (c=32) clusters. 
Thus, the comparison time is reduced from O(M) to O( M ). The tree-structured vec-
tor quantization (TSVQ) [17] has the potential to reduce computation costs further. 
However, there is a risk in applying this technique in the present cases. For example, 
any misclassification in the parent node will affect the final classification result. 
Therefore, in our work, initially the closest cluster is directly identified according to 
its mean vector, and this cluster is then searched exhaustively to locate the best 
matching vector. 
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3   Directional and Non-directional Image Completion 

For the synthesis process of the image completion, it starts from image IL at level L to 
image I0 at level 0, as shown in Fig. 5. Since the patches at the lower-resolution im-
ages contain more texture structure information, and the patches at the higher-
resolution images contain more detailed feature information, so different resolution 
images will apply different synthesis processes. In addition, the pixel gray values at 
the lower level i can serve as the initial pixel gray values at the higher level i-1 for the 
corresponding foreground region. 

 
Level L:

Initialize synthesis values. 
Level L-1: Directional and Non-Directional IC 

1. Starting from patch having larger Hessian 
matrix decision value (HMDV) 

2. If (HMDV) � Threshold: 
Then Search along the 1st eigenvector v1

direction of Hessian matrix 
                         (directional). 

Else Texture synthesis (non-directional). 

 IC: Image Completion 

Level 0: Texture Refinement 
1.  Starting from patch having larger HMDV. 
2. Texture synthesis. 
3. Find the best matching patch from image I0.

Levels L-2 to 1: Non-Directional IC 
1. Starting from patch having larger HMDV. 
2. Texture synthesis. 

(c)

Bi

Fi
v1

1

(a) (b) 

Decision
windowBi

Fi

I0

Ii , i = 1 ~ L
(d) 

 

Fig. 5. Flowchart of the image completion from level L to level 0. (a) Fi is the removal fore-
ground region and Bi is the background region at the level i. Each 2x2 Hessian matrix G is 
constructed based on a 7x7-pixel decision window. (b) The decision window goes along the 
boundary of the foreground region to decide the priority of the synthesis order. (c). Search 
along the direction of the 1st eigenvector v1. (d) The matching patch is found at the blue point, 
but it doesn’t contain high-resolution content. Therefore, the blue point is mapping to the green 
point at level 0, and then we search the best matching patch near the green point. 

3.1   Level L: Initialize Synthesis Values 

For image IL at level L, most pixels of the foreground region are located inside the O-
shape pattern. Then the search window (or patch) will scan from the top-left corner to 
the bottom-right corner at the foreground region. Usually the search window has only 
one for image IL. Considering the missing data problem for the PCA process, the O-
shape pattern of each search window won’t project on the eigenspace to produce the 
corresponding weight vector. Instead, the O-shaped pattern of each search window is 
directly compared with the pixels’ gray values of each O-shaped pattern over entire 
training patches. The similarity measure uses the Euclidean distance. Then the patch 
of the best matching pattern in the training patches is directly pasted onto the  
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corresponding location of the foreground region. Here, the computational time for the 
comparison process at level L is very fast because the number of search windows 
usually has only one. So the projection process of the PCA does not apply here. 

After synthesizing the foreground regions, the composite image Ci at level i is  
defined as: 
 

LiIIC iiiii ~0, =′+= αα  (4) 
 

where Ii is the original image and Ii
’ is the synthesized image. Subsequently, the up-

sampling ↑ process is applied to the composite image Ci from level i to level i-1. Then 
following process is applied to update the image Ii-1 at level i-1.  
 

1~0,)( 1111 −=↑+= −−−− LiCII iiiii αα  (5) 

 

That is, each pixel gray value of the foreground region at image Ii-1 can be assigned an 
initial value, which is obtained from the composite image Ci at level i. 

3.2   Levels L-1 to 0: Hessian Matrix Decision for Directional and Non-
Directional Image Completion 

Synthesizing the foreground regions is necessary to maintain the continuity of the 
texture structure extending from the background regions. Thus, the priority of synthe-
sis order becomes very important. We apply the gradient-directional property of the 
Hessian matrix to play the role of the priority decision maker. We designed that each 
2x2 Hessian matrix G is constructed by a 7x7-pixel decision window, W, as (also see 
Fig. 5(b)):  
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where I(x,y) is the gray value at location (x,y) belonging to the decision window W. 
The centroid of the decision window goes along the boundary of the foreground re-
gion and both eigenvalues of the Hessian matrix are used to decide the priority of the 
synthesis order, as shown in Fig. 5(a). That is, assuming the eigenvalues λ1 ≧ λ2, the 
Hessian matrix decision value (HMDV), V, is defined as: 

ελ
ελ

+
+=

2

1V  (7) 

where ε is a very small value (ε=0.001) to avoid the denominator term becoming zero. 
The HMDV will exist three conditions: (1) Higher HMDV value V (V >> 1.0) means 
that the decision window is directional and exists stronger edge. (2) If the HMDV 
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Fig. 6. Above two groups of images: Left image is the level L-1 image. Right image is the 
distribution of HMDV. The red peak is the starting point to fill in the matching patch. 

value V is close to or equal to 1, there exist two conditions: (2.1) If both λ1 and λ2 have 
higher values, then the decision window contains more detailed features or high-
frequency noises. (2.2) If both λ1 and λ2 have lower values, the patch of decision win-
dow is smooth. Therefore, when the HMDV value V of the decision window is bigger 
than or equal to the predefined threshold value, the search patch of the corresponding 
centroid has the higher priority of synthesis order and higher HMDV value has higher 
priority. Then the directional image completion is applied to this search patch as 
shown in Fig. 6. Conversely, if the HMDV value V of the decision window is smaller 
than the predefined threshold, it will be synthesized as non-directional image comple-
tion after directional image completion. 

Level L-1: Directional Image Completion for Texture Structure. 
To synthesize the foreground region at level L-1, initially the centroid of the decision 
window goes along the boundary of the foreground region and the HMDV value V of 
each decision window will be recorded. If the HMDV value V of the decision window 
is bigger than or equal to the threshold, it means that the corresponding search patch 
exists stronger edge components. After sorting the HMDV values, which are bigger 
than or equal to the threshold, the synthesis process will start from the search patch, 
whose corresponding decision window has the maximum HMDV value. Then the 
search patch will scan along the direction of the eigenvector v1 corresponding to ei-
genvalue λ1 or opposite direction depending on the location of background region, as 
shown in Fig. 5(c). The direction of eigenvector v1 is the tangent direction of edge. 
Subsequently, the patch of the best matching pattern in the background region will be 
directly pasted onto the location of the search patch. Again, the centroid of the deci-
sion window will go along the inner boundary of the replaced foreground patch to 
calculate the HMDV values. Thus, the same threshold, sorting (if necessary), match-
ing (or comparison), pasting and HMDV calculating processes compute iteratively 
until none of any HMDV values are bigger than or equal to the threshold or the 
patches of entire foreground region are updated. 

Since this kind of comparison process exists only few training patches for each 
search patch, so the computational time of the similarity measure won’t take too 
much. Thus, the similarity measure is based on the gray values instead of the projec-
tion weights. In addition, above procedure for structure synthesis can be defined as 
the directional image completion. For remaining decision windows having the smaller 
HMDV values than the threshold, the texture synthesis procedure [10], [14] will be 
defined as the non-directional image completion and will be described at next section. 
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Levels L-1 to 1: Non-Directional Image Completion for Detailed Features 
For image IL-1 at level L-1, after the directional image completion process, the remain-
ing search patch located at the foreground boundary will be synthesized following the 
order from higher HMDV in the foreground region. Initially, the O-shaped pattern of 
each search patch is projected onto the eigenspace Ψ to obtain the corresponding 
weight vector. Based on the similarity measure of Euclidean distance between the 
weight vector of this search pattern and those of the cluster centers, this search pattern 
will be classified to the nearest cluster. Then this search pattern will compare with all 
patterns within the same cluster to find the best matching pattern. The patch corre-
sponding to the best matching pattern will be directly pasted onto the location of the 
search patch. This texture synthesis process will iterative process until all remaining 
search patches are updated. 

Since the directional image completion is able to construct the texture structure for 
image IL-1 at level L-1, so we can concentrate on the enhancement of detailed features 
for remaining texture synthesis process from level L-2 to level 1. The similar proce-
dure to image IL-1 at level L-1 is applied except that the search patch does not need to 
scan along the eigenvector direction. The priority of synthesis order still relies on the 
HMDV value for each decision window. And the similarity measure is the same as 
the procedure of the non-directional image completion in the eigenspace. Thus, the 
images from level L-2 to 1 must use HMDV to determine the order of image comple-
tion and avoid destroying the already existing edges at level L-1. 

Level 0: Texture Refinement 
Because of above-mentioned considerations in the training and synthesis proc-
esses, the patches at the highest-resolution level 0 are not included in the training 
database, thus the most detailed texture information will lose for the final synthe-
sized result. Therefore, at the level 0, when the matching patch is found from the 
training database, we do not paste the matching patch directly. Instead, we search 
more detailed features of the patch neighboring the position, which is the position 
of the matching patch corresponding to the highest level, on the highest level, as 
shown in Fig. 5(d). This texture refinement process makes the removal region 
(foreground region) and the reserved region (background region) have the consis-
tent resolution. 

4   Experimental Results 

In acquiring the experimental statistics presented below, each process was performed 
ten times and then the average time was calculated. The experiments were performed 
on a personal computer having an Intel Core 2 Duo E6300 (1.86 GHz) processor. The 
computational times from the training process to the image completion in various 
kinds of images are as follows: Fig. 7 and Fig. 8. The information of Fig. 7 and Fig. 8 
in Table 1, and then it shows the processing time of other existing method. In addi-
tion, the result of exemplar-based image inpainting in [5] is unable to converge at the 
case of larger removal region. When the removal region is not narrow and long, the  
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C4 C3 C2 C1 C0 

(a) 
 

  
(b) (c) 

 

Fig. 7. The image size is 392 x 364 pixels. The ratio of removal region is 7.2%. (a) Show our 
reconstructed image Ci from the lowest level L to the original level 0, i=0~4. Ci does up-
sampling ↑, and then serves as initial value of Ii-1 for searching the matching patch to fill the 
removed (or replaced) region of Ci-1. (b) The result of exemplar-based image inpainting by [5]. 
(c) The result of image inpainting by [2]. 

Table 1. Show the information of image size and the ratio of removal region. Then compare the 
processing time of other existing method. Units of time in seconds (s). 

 Image Size 
(pixel) 

Ratio of 
removal 
region 

Our 
metho

d 

Exemplar-based 
image inpainting 

by [5] 

Image 
Inpainting 

by [2] 
Windmill Fig. 7 392 × 364 7.2% 11 104 2 
Slope Fig. 8(a) 213 × 284 8.7% 4 46 1 
Diving Fig. 8(b) 206 × 308 12.6% 2 38 1 
Mother Fig. 8(c) 538 × 403 25.5% 57 724 6 
Wall Fig. 8(d) 400 × 400 28.4% 35 420 4 
Mountain Fig. 8(e) 392 × 294 5.3% 7 60 1 

 
 

result of image inpainting in [2], which expands structure from boundary, tends to the 
blurred result without obvious structure and edge. 
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(a) 

    
(b) 

  
(c) 

    
(d) 

  
(e) 

Fig. 8. The images of first column are input images. The image of second column shows the 
results of our method. The images of third column are the results of exemplar-based image 
inpainting by [5]. The images of fourth column are the results of image inpainting by [2]. 
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5   Conclusions 

The multi-resolution approach is applied to image completion. The down-sampling 
approach is used for the analysis process, such as compiling the training data, and the 
up-sampling approach is used for the synthesis process, such as initial values of level 
i-1. Therefore, this approach enables the system to handle the large removed region 
and converge quickly. We only take the border of patch (O-shaped pattern) for train-
ing. In addition, the patches at the highest-resolution level are not included in the 
training data in order to speed up the computational time of the training process, and 
it reduces noise impact on PCA and improves the result of matching patch. Above 
training process reduces further the time of comparison and searching patch. 

Subsequently, Hessian matrix is used for the decision of the synthesis order, and it 
is more stable than the existing methods of using the differentiation [5] in the patch 
with more noise or detailed feature in patch. During the synthesis process, the devel-
oped HMDV is applied for the decision of synthesis order and direction in order to 
propagate the structure continuity from the background region. For the directional 
image complete, for each higher HMDV decision window, we search the matching 
patch along the direction of the eigenvector of Hessian matrix. This directional proc-
ess can decrease the time of exhaustive search and make a better structure continuity 
between background scene and foreground replaced region. Finally, we use texture 
refinement for resuming the lost detailed features of the training process. 
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