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Abstract. Motion estimation is the most important and complex operation in 
video coding. This paper presents an architecture for motion estimation using Full 
Search algorithm with 4:1 Pel Subsampling, combined with SAD distortion crite-
rion. This work is part of the investigations to define the future Brazilian system 
of digital television broadcast. The quality of the algorithm used was compared 
with Full Search through software implementations. The quality of 4:1 Pel Sub-
sampling results was considered satisfactory, once it presents a SAD result with 
an impact inferior to 4.5% when compared with Full Search results. The designed 
hardware considered a search range of [-25, +24], with blocks of 16x16 pixels. 
The architecture was described in VHDL and mapped to a Xilinx Virtex-II Pro 
VP70 FPGA. Synthesis results indicate that it is able to run at 123,4MHz, reach-
ing a processing rate of 35 SDTV frames (720x480 pixels) per second.  

Keywords: Motion estimation, hardware architecture, FPGA design. 

1   Introduction 

Nowadays, the compression of digital videos is a very important task. The industry 
has a very high interest in digital video codecs because digital videos are present in 
many current applications, such as: cell-phones, digital television, DVD players, digi-
tal cameras and a lot of other applications. This important position of video coding in 
the current technology development has boosted the creation of various standards for 
video coding. Without the use of video coding, processing digital videos is almost 
impossible, due to the very high amount of resources which are necessary to store and 
transmit these videos. Currently, the most used video coding standard is MPEG-2 [1] 
and the latest and more efficient standard is H.264/AVC [2]. These standards reduce 
drastically the amount of data necessary to represent digital videos.  

A current video coder is composed by eight main operations, as shown in Fig. 1: 
motion estimation, motion compensation, intra-frame prediction, forward and inverse 
transforms (T and T-1), forward and inverse quantization (Q and Q-1) and entropy 
coding. This work focuses on the motion estimation, which is highlighted in Fig. 1. 
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Fig. 1. Block diagram of a modern video coder 

Motion estimation (ME) operation tries to reduce the temporal redundancy be-
tween neighboring frames [3]. One or more frames that were already processed are 
used as reference frames. The current frame and the reference frame are divided in 
blocks to allow the motion estimation. The idea is to replace each block of the current 
frame with one block of the reference frame, reducing the temporal redundancy. The 
best similarity between each block of the current frame and the blocks of the refer-
ence frame is selected. This selection is done through a search algorithm and the simi-
larity is defined through some distortion criterion [3]. The search is restricted to a 
specific area in the reference frame which is called search area. When the best simi-
larity is found, then a motion vector (MV) is generated to indicate the position of this 
block inside the reference frame. These steps are repeated for every block of the  
current frame. 

Motion compensation operation reconstructs the current frame using the reference 
frames and the motion vectors generated by the motion estimation. The difference 
between the original and the reconstructed frame (called residue) is sent to the trans-
forms and quantization calculation. 

Motion estimation is the video coder operation that provides the highest gain in 
terms of compression rates. However, motion estimation has a very high degree of 
computational complexity and software implementations could not reach real time 
(24-30 frames per second) when high resolution videos are being processed.  

This paper presents an FPGA based architecture dedicated to the motion estimation 
operation. This architecture used the Full Search with 4:1 Pel Subsampling (also 
called Pel Decimation) [3] as search algorithm, and the Sum of Absolute Differences 
(SAD) [3] as distortion criterion. ME design considered a search area with 64x64 
pixels and blocks with 16x16 pixels. This implies a search range of [-25, +24]. The 
architecture was described in VHDL and mapped to Xilinx Virtex-II Pro FPGAs. 

This work was developed within the framework in an effort to develop intellectual 
property and to carry out an evaluation for the future Brazilian system of digital tele-
vision broadcast, the SBTVD [4]. The presented architecture was specifically de-
signed to reach real time when processing standard definition television frames 
(720x480 pixels). 

Section 2 of this paper presents the 4:1 Pel Subsampling search algorithm and the 
SAD criterion. Section 3 presents a software evaluation of the search algorithms used.  
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Section 4 presents the designed architecture, detailing its main modules. Section 5 pre-
sents the designed architecture for SAD calculation. Section 6 presents the synthesis 
results and comparison with related works. Finally, section 8 presents the conclusions. 

2   Description of the Used Algorithm 

This section presents some details about the Full Search with 4:1 Pel Subsampling 
search algorithm and about the SAD distortion criterion. The architectural design 
presented in this paper was based in these two algorithms. 

2.1   Full Search with 4:1 Pel Subsampling Algorithm 

Full Search with 4:1 Pel Subsampling algorithm is based on the traditional Full 
Search algorithm; however, the distortion criterion is not calculated for all samples. In 
4:1 Pel Subsampling, for each pixels calculated, three pixels are discarded [3]. With 
this algorithm only a quarter of the block samples are calculated, increasing the per-
formance and decreasing the complexity of the motion estimation operation. Fig. 2 
shows the 4:1 Pel Subsampling relation for a block with 8x8 samples. In Fig. 2, the 
black dots are the samples which are used in the SAD calculation and the white dots 
are the samples which are discarded. 

 

 

Fig. 2. 4:1 Pel Subsampling in an 8x8 block 

2.2   SAD Criterion  

Distortion criterion defines how the differences between the regions are evaluated. 
Many distortion criteria were proposed [3]; however, the most used for hardware 
design is the Sum of Absolute Differences (SAD). Equation (1) shows the SAD crite-
rion, were SAD(x, y) is the SAD value for (x, y) position, R is the reference sample, 
P is the search area sample and N is the block size. 
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3   Quality Evaluation  

The search algorithm defines how the search for the best match will be done in the 
search area. The search algorithm choice has a direct impact in the motion vector 
quality and in the motion estimator performance. 

There are lots of algorithms to define the search method; however, Full Search al-
gorithm [5] is the most used for hardware implementations. Full Search algorithm is 
the only one that presents the optimal results in terms of best matching. All the others 
are fast algorithms which were designed to reduce the computational complexity of 
the motion estimation process. These algorithms produce sub-optimal results, because 
many positions are not compared. A good strategy for ME hardware implementation 
is to use Full Search algorithm with pixel subsampling (also called Pel Subsampling) 
because this can reduce the number of pixel comparisons keeping good quality  
results. 

A software analysis was developed to evaluate and compare the quality of Full 
Search and Full Search with 4:1 Pel Subsampling algorithms. The main results are 
shown in Table 1. The search algorithms were developed in C and the results for 
quality and computational cost were generated. The search area used was 64x64 pix-
els with 16x16 pixels block size. The algorithms were applied to 10 real video se-
quences with a resolution of 720x480 pixels and the average results are presented in 
Table 1. The quality results were evaluated through the percentage of error reduction 
and the PSNR [3]. The percentage of error reduction is measured comparing the re-
sults generated by the motion estimation process with the results generated by the 
simple subtraction between the reference and current frame. Table 1 also presents the 
number of SAD operations used by each algorithm. 

Table 1.  Software evaluation of Full Search and 4:1 Pel Subsampling 

Search Algorithm 
Error reduc-

tion (%) 
PSNR (db) 

# of SAD 
operations 

(Goperations) 

Full Search 54.66 28.48 82.98 
Full Search with  

4:1 Pel  Subsampling  
50.20 27.25 20.74 

 
Full Search algorithm presents the optimal results for quality, generating the high-

est error reduction and the highest PSNR. However, it uses four times more SAD 
operations than the Full Search with 4:1 Pel Subsampling. The quality losses gener-
ated with the use of 4:1 Pel Subsampling are small. These losses are of only 4.46% in 
the error reduction and only 1.23dB in the PSNR. 

It is important to notice that the Full Search with 4:1 Pel Subsampling algorithm 
can reduce significantly the computational costs of the motion estimation process with 
small losses in the quality results. 

Full Search based algorithms (including its version with 4:1 Pel Subsampling) are 
regular algorithms and they do not present data dependencies. These features are 
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important when a hardware design is considered. The regularity is important to allow 
a reuse of the basic modules designed and the absence of data dependencies allow a 
free exploration of parallelism. Other important characteristic of Full Search based 
algorithms is that this type of algorithm is deterministic in terms of the clock cycles 
used to generate a new motion vector. This characteristic is important to allow an easy 
integration and synchronization of this module with other encoder modules. 

The parallelism exploration is important to generate a solution tuned with the ap-
plication requirements. Considering these features and the good results for quality, the 
Full Search with 4:1 Pel Subsampling algorithm was chosen to be designed in hard-
ware. Using 4:1 Pel Subsampling it is possible to simplify the architecture, keeping 
the desired high performance.  

4   Designed Architecture 

There are many hardware architectures proposed in the literature that are based in the 
Full Search algorithm, such as [6] and [7]. These solutions are able to find the optimal 
results in terms of blocks matching. However, this type of architecture uses a very 
high amount of hardware resources. Full Search complexity can be reduced with little 
losses in the results quality, using the subsampling technique. This complexity reduc-
tion implies an important reduction in the hardware resources cost.  

The architecture designed in this paper used Full Search with 4:1 Pel Subsampling 
algorithm with SAD distortion criterion. The block diagram of the proposed architec-
ture is presented in Fig. 3. This architecture was designed to operate considering 
blocks with 16x16 samples and considering a search range of [-25, +24] samples.  

The internal memory is organized in 5 different memories, as presented in Fig. 3. 
One memory is used to store the current frame block and the other four memories are 
used to store the search area.  

The current block memory has 8 words and each word has 8 samples with 8 bits, in 
a total of 64 bits per memory word. This memory stores 64 samples (8x8) instead of 
256 samples (16x16) because of the 4:1 subsampling relation.  

The four memories used to store the search area have 32 words and each word has 
32 samples with 8 bits, in a total of 256 bits per memory word. The data from the 
search area were divided in four memories, considering the frame as a bi-dimensional 
matrix of samples: samples from even lines and even columns, samples from even 
lines and odd columns, samples from odd lines and even columns and samples from 
odd lines and odd columns. Each word of each search area memory stores half of a 
line of the search area. Then, the memory that stores the samples from even lines and 
even columns stores the samples (0, 2, 4, … , 62), while the memory that stores the 
samples from even lines and odd columns stores the samples (1, 3, 5, … , 63). This 
division was made to allow a more efficient 4:1 Pel Subsampling processing. 

The architecture presented in Fig. 3 was designed to explore the parallelism and 
to minimize the local memory access. The data read from memories are reused and 
each stored sample is read only once from the memories. The search area was divided 
in exactly four different memories to allow the data reuse and the minimization of the 
number of local memory accesses. The data read from the search area memories are  
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Fig. 3. Motion Estimation Architecture 

sent to all SAD lines (see Fig. 3) which use this data when necessary. The data read 
from the current block memory is shifted through the SAD lines (using BLR  registers 
in Fig. 3) and they are used to generate the SADs.  

When ME architecture starts, the memory manager reads half of a line of the 
search area (one word of one search area memory), and one line of the current block 
(one word from the current block memory). With these data, half of the line of the 
search area and one line of the current block are available to be processed. These lines 
are stored in the search line register (SLR in Fig. 3) and in the block line register 
(BLR in Fig. 3). The processing unit (PU in fig. 3) calculates the distortion between 
two samples of the current block and two samples of a candidate block from the 
search area. Five PUs are used to form a SAD line. A set of 25 SAD lines forms a 
SAD matrix, as presented in Fig. 3. The control manages all these modules. 

Four iterations over the 25 SAD lines are necessary to process a complete search 
area. One iteration is used for each search area memory. The result memory register 
(RMR in Fig. 3) stores the best match from each iteration. The final best match is  
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Fig. 4. PU architecture 

generated after the comparison between the four results stored in RMR and then the 
motion vector is generated. All the operations necessary to generate one motion vec-
tor (MV) uses 2615 clock cycles.  

5   SAD Calculation Architecture 

SAD calculation architecture was hierarchically designed. The highest hierarchical 
level instance is the SAD matrix which is formed by 25 SAD lines. Each SAD line is 
formed by five processing units (PUs), as presented in Fig. 3. Fig. 4 shows the PU 
architecture. 

When the 4:1 Pel Subsampling algorithm is used, the number of SAD calculations 
per line of the current block decreases to a half in comparison with Full Search algo-
rithm, once the block was sub-sampled. This reduction of the number of calculations 
allows a reduction of the parallelism level of each PU without a reduction of the 
global ME performance. The PU architecture designed in this work is able to process 
a quarter of line of each candidate block (two samples) per cycle.  

The subsampling reduces the size of the current block from 16x16 to 8x8 samples. 
The search area division in four sub-areas (stored in four different memories) implies 
in sub-areas with 32x32 samples, once the complete area has 64x64 samples. Then it 
is possible to conclude that there are 25 candidate blocks starting in each line of the 
search sub-area, because there are 32 samples per search line and 8 samples per block 
line.  

The partial SAD of the candidate block (a quarter of line) must be stored and added 
to the SADs of the other parts of the same block to generate the total SAD for the 
block. The total SAD is formed by 8 lines with 8 samples in each line (64 SADs must 
be accumulated). 

The SAD lines, presented in Fig. 5, groups five PUs and they make the accumula-
tion to generate the final value of the candidate block SAD. Each PU is responsible 
for SAD calculation of five different candidate blocks, in distinct times. Then, a line 
of SADs calculates the SAD of 25 different candidate blocks. 

Fig. 5 presents the five PUs (highlighted in gray) of one SAD line and it also pre-
sents the accumulators used to keep the partial and final values of the SAD calcula-
tions for each block. As each PU processes in parallel the SAD calculation of two 
samples, then each PU generates 32 partial results of SAD for each processed block. 
These 32 partial results must be added to generate the final block SAD. A simple 
structure of adder and accumulation is enough to generate this result. 
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Fig. 5. Block Diagram of a SAD Line 

Each PU calculates the SAD of 25 blocks, then a register is used to store the SAD 
of each block (ACC0 to ACC24 in Fig. 5) and a pair of demux/mux is necessary to 
control the correct access to the registers. When a SAD line concludes its calculations, 
the registers ACC0 to ACC24 will contain the final SADs of the 25 candidate blocks 
from one specific line of the search sub-area.  

Search area selector (SS in Fig. 3) and block selector (BS in Fig.3) choose the cor-
rect data for each PU in a SAD line. A new and valid data is available to the PUs at 
each clock cycle. 

Comparator (Comp modules in Fig. 3) receives the output from the SAD lines, and 
it can make five comparisons of SADs in parallel, in a pipeline with five stages. This 
module is responsible to compare 25 SADs from one SAD line (5 SADs per clock 
cycle) and to compare the best SAD (lowest value) of this SAD line with the best 
SAD of the previous SAD line, as shown in Fig. 3. 

The result of each comparator consists of the best SAD among all SADs previously 
processed and a motion vector indicating the position of the block which generates 
this best SAD. This result is sent to the next comparator level (see Fig. 3). 

The five SAD lines outputs (C0 the C4 in Fig. 5) generate five values of SAD in 
each clock cycle. In five clock cycles, all the 25 values of SAD from the SAD line are 
ready and these values are used in the comparator. The comparator architecture is 
showed in Fig 6. 

A motion vector generator is associated to each SAD line to generate de motion 
vector for each candidate block. These motion vectors are sent to the comparator with 
the corresponding SAD result. 
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Fig. 6. Comparator Block Diagram 

6   Synthesis Results 

The synthesis results of the proposed architecture are summarized in Table 1. The 
synthesis was targeted to a Xilinx Virtex-II Pro VP70 FPGA and the ISE synthesis 
tool was used [8]. 

The synthesis results indicated that the designed architecture used 30,948 LUTs 
(46% of total device resources), using 19,194 slices (58% of total device resources) 
and 4 BRAMs (1% of device resources). This architecture is able to run at 123.4 MHz 
and a new motion vector is generated at each 2615 clock cycles. 

The synthesis results show that the designed architecture can reach a processing 
rate of 35 SDTV frames (720x480 pixels) per second. This processing rate is enough 
to process SDTV frames in real time. The performance could be better if the parallel-
ism level was increased or if a faster target device was used. 

Some related works, using the Full Search algorithm with 4:1 Pel Subsampling, can be 
found in the literature, such as [9], [10] and [11]. However, these works target a standard 
cell technology and a comparison between our FPGA results is not easily made.  

Other related works to Full Search algorithms targeting FPGA implementations as 
[12], [13] and [14] were also found. 

The published solutions consider a search range of [-16, +15] while our solution 
considers a search range of [-25, +24]. The higher search range was defined to allow 
better quality results when processing high resolution videos. We did not find any 
published solution based on Full Search algorithm with a search range larger or equal 
to [25, +24].  
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We calculated the number of cycles that our solution needs to generate a motion 
vector considering the range [-16, +15], to allow a comparison of our architecture 
with the published solutions. This calculation results in 634 clock cycles to generate a 
motion vector. The operation frequency was estimated in the same 123.4MHz, once 
the architecture would be reduced to work in the [-16, +15] range.  

Table 2. Synthesis results for [-25, +24] search range  

ME Module Frequency 
(MHz) 

CLB 
Slices 

LUTs 

Global Control 269.2 91 164 
Processing Unity 341.5 38 67 

SAD line 341.5 489 918 
Comparator 224.6 317 235 

Vector Generator 552.7 6 10 
Memory Manager 291.4 311 613 

Search Area Selector 508.3 343 596 
Block Selector 541.4 33 58 
SAD Matrix  143.7 19,083 30,513 

Motion Estimator 123.4 19,194 30,948 
Device: Virtex-II Pro VP70

 
The comparison with these related works, including Full Search and Full Search 

with 4:1 Pel Subsampling algorithms, is presented in Table 3. Table 3 presents the Pel 
Subsampling rate, the used technology, the operation frequency and the throughput. 
The throughput considers the number of HDTV 720p frames processed per second.  

Our architecture presents the second higher operation frequency, just less than 
[13]; however, our throughput is about 120% higher than [13]. This is the highest 
throughput among the FPGA based architectures. The architecture presented in [11] 
can reach a higher throughput than ours; however, this result was expected once this 
architecture was designed in 0.18um standard cell technology.  

Table 3. Comparative results for search range [-16, +15] 

Solution Pel Subsam-
pling 

Technology Freq. 
(MHz) 

HDTV 
720p (fps) 

[9] 4:1 0.35 um 50.0 8.75 
[10] 4:1 0.35 um 50.0 22.56 
[11] 4:1 0.18 um 83.3 63.58 
[12] No Altera Stratix 103.8 5.15 
[13] No Xilinx Virtex-II 191.0 13.75 
[14] No Xilinx XCV3200e 76.1 20.98 
Our 4:1 Xilinx Virtex-II Pro 123.4 54.10 
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6   Conclusions 

This paper presented a FPGA based hardware architecture for motion estimation us-
ing the Full Search algorithm with 4:1 Pel Subsampling and using SAD as distortion 
criterion. This architecture considers blocks with 16x16 samples and it uses a search 
area with 64x64 samples, or a search range of [-25, + 24]. This solution was specifi-
cally designed to meet the requirements of standard definition television (SDTV) with 
720x480 pixels per frame and it was designed focusing the solutions for the future 
Brazilian system of digital television broadcast. 

The synthesis results indicated that the motion estimation architecture designed in 
this paper used 30,948 LUTs of the target FPGA and that this solution is able to oper-
ate at a maximum operation frequency of 123.4 MHz. This operation frequency al-
lows the processing rate of 35 SDTV frames per second.  

Comparisons with related works were also presented and our architecture had the 
highest throughput among the FPGA based solutions and the second highest through-
put among all solutions. 
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