
D. Mery and L. Rueda (Eds.): PSIVT 2007, LNCS 4872, pp. 36 – 47, 2007.
© Springer-Verlag Berlin Heidelberg 2007

High Throughput Hardware Architecture for
Motion Estimation with 4:1 Pel Subsampling

Targeting Digital Television Applications

Marcelo Porto1, Luciano Agostini2, Leandro Rosa2,
Altamiro Susin1, and Sergio Bampi1

1 Microeletronics Groups (GME), UFRGS – Porto Alegre, RS, Brazil
{msporto,bampi}@inf.ufrgs.br br, altamiro.susin@ufrgs.br

2 Group of Architectures and Integrated Circuits (GACI),UFPel – Pelotas, RS, Brazil
{agostini, lrosa.ifm}@ufpel.edu.br

Abstract. Motion estimation is the most important and complex operation in
video coding. This paper presents an architecture for motion estimation using Full
Search algorithm with 4:1 Pel Subsampling, combined with SAD distortion crite-
rion. This work is part of the investigations to define the future Brazilian system
of digital television broadcast. The quality of the algorithm used was compared
with Full Search through software implementations. The quality of 4:1 Pel Sub-
sampling results was considered satisfactory, once it presents a SAD result with
an impact inferior to 4.5% when compared with Full Search results. The designed
hardware considered a search range of [-25, +24], with blocks of 16x16 pixels.
The architecture was described in VHDL and mapped to a Xilinx Virtex-II Pro
VP70 FPGA. Synthesis results indicate that it is able to run at 123,4MHz, reach-
ing a processing rate of 35 SDTV frames (720x480 pixels) per second.

Keywords: Motion estimation, hardware architecture, FPGA design.

1 Introduction

Nowadays, the compression of digital videos is a very important task. The industry
has a very high interest in digital video codecs because digital videos are present in
many current applications, such as: cell-phones, digital television, DVD players, digi-
tal cameras and a lot of other applications. This important position of video coding in
the current technology development has boosted the creation of various standards for
video coding. Without the use of video coding, processing digital videos is almost
impossible, due to the very high amount of resources which are necessary to store and
transmit these videos. Currently, the most used video coding standard is MPEG-2 [1]
and the latest and more efficient standard is H.264/AVC [2]. These standards reduce
drastically the amount of data necessary to represent digital videos.

A current video coder is composed by eight main operations, as shown in Fig. 1:
motion estimation, motion compensation, intra-frame prediction, forward and inverse
transforms (T and T-1), forward and inverse quantization (Q and Q-1) and entropy
coding. This work focuses on the motion estimation, which is highlighted in Fig. 1.

 High Throughput Hardware Architecture for Motion Estimation 37

Fig. 1. Block diagram of a modern video coder

Motion estimation (ME) operation tries to reduce the temporal redundancy be-
tween neighboring frames [3]. One or more frames that were already processed are
used as reference frames. The current frame and the reference frame are divided in
blocks to allow the motion estimation. The idea is to replace each block of the current
frame with one block of the reference frame, reducing the temporal redundancy. The
best similarity between each block of the current frame and the blocks of the refer-
ence frame is selected. This selection is done through a search algorithm and the simi-
larity is defined through some distortion criterion [3]. The search is restricted to a
specific area in the reference frame which is called search area. When the best simi-
larity is found, then a motion vector (MV) is generated to indicate the position of this
block inside the reference frame. These steps are repeated for every block of the
current frame.

Motion compensation operation reconstructs the current frame using the reference
frames and the motion vectors generated by the motion estimation. The difference
between the original and the reconstructed frame (called residue) is sent to the trans-
forms and quantization calculation.

Motion estimation is the video coder operation that provides the highest gain in
terms of compression rates. However, motion estimation has a very high degree of
computational complexity and software implementations could not reach real time
(24-30 frames per second) when high resolution videos are being processed.

This paper presents an FPGA based architecture dedicated to the motion estimation
operation. This architecture used the Full Search with 4:1 Pel Subsampling (also
called Pel Decimation) [3] as search algorithm, and the Sum of Absolute Differences
(SAD) [3] as distortion criterion. ME design considered a search area with 64x64
pixels and blocks with 16x16 pixels. This implies a search range of [-25, +24]. The
architecture was described in VHDL and mapped to Xilinx Virtex-II Pro FPGAs.

This work was developed within the framework in an effort to develop intellectual
property and to carry out an evaluation for the future Brazilian system of digital tele-
vision broadcast, the SBTVD [4]. The presented architecture was specifically de-
signed to reach real time when processing standard definition television frames
(720x480 pixels).

Section 2 of this paper presents the 4:1 Pel Subsampling search algorithm and the
SAD criterion. Section 3 presents a software evaluation of the search algorithms used.

38 M. Porto et al.

Section 4 presents the designed architecture, detailing its main modules. Section 5 pre-
sents the designed architecture for SAD calculation. Section 6 presents the synthesis
results and comparison with related works. Finally, section 8 presents the conclusions.

2 Description of the Used Algorithm

This section presents some details about the Full Search with 4:1 Pel Subsampling
search algorithm and about the SAD distortion criterion. The architectural design
presented in this paper was based in these two algorithms.

2.1 Full Search with 4:1 Pel Subsampling Algorithm

Full Search with 4:1 Pel Subsampling algorithm is based on the traditional Full
Search algorithm; however, the distortion criterion is not calculated for all samples. In
4:1 Pel Subsampling, for each pixels calculated, three pixels are discarded [3]. With
this algorithm only a quarter of the block samples are calculated, increasing the per-
formance and decreasing the complexity of the motion estimation operation. Fig. 2
shows the 4:1 Pel Subsampling relation for a block with 8x8 samples. In Fig. 2, the
black dots are the samples which are used in the SAD calculation and the white dots
are the samples which are discarded.

Fig. 2. 4:1 Pel Subsampling in an 8x8 block

2.2 SAD Criterion

Distortion criterion defines how the differences between the regions are evaluated.
Many distortion criteria were proposed [3]; however, the most used for hardware
design is the Sum of Absolute Differences (SAD). Equation (1) shows the SAD crite-
rion, were SAD(x, y) is the SAD value for (x, y) position, R is the reference sample,
P is the search area sample and N is the block size.

∑∑
−

=

−

=
++−=

1

0

1

0
,,),(

N

i

N

j
yjxiji PRyxSAD (1)

 High Throughput Hardware Architecture for Motion Estimation 39

3 Quality Evaluation

The search algorithm defines how the search for the best match will be done in the
search area. The search algorithm choice has a direct impact in the motion vector
quality and in the motion estimator performance.

There are lots of algorithms to define the search method; however, Full Search al-
gorithm [5] is the most used for hardware implementations. Full Search algorithm is
the only one that presents the optimal results in terms of best matching. All the others
are fast algorithms which were designed to reduce the computational complexity of
the motion estimation process. These algorithms produce sub-optimal results, because
many positions are not compared. A good strategy for ME hardware implementation
is to use Full Search algorithm with pixel subsampling (also called Pel Subsampling)
because this can reduce the number of pixel comparisons keeping good quality
results.

A software analysis was developed to evaluate and compare the quality of Full
Search and Full Search with 4:1 Pel Subsampling algorithms. The main results are
shown in Table 1. The search algorithms were developed in C and the results for
quality and computational cost were generated. The search area used was 64x64 pix-
els with 16x16 pixels block size. The algorithms were applied to 10 real video se-
quences with a resolution of 720x480 pixels and the average results are presented in
Table 1. The quality results were evaluated through the percentage of error reduction
and the PSNR [3]. The percentage of error reduction is measured comparing the re-
sults generated by the motion estimation process with the results generated by the
simple subtraction between the reference and current frame. Table 1 also presents the
number of SAD operations used by each algorithm.

Table 1. Software evaluation of Full Search and 4:1 Pel Subsampling

Search Algorithm
Error reduc-

tion (%)
PSNR (db)

of SAD
operations

(Goperations)

Full Search 54.66 28.48 82.98
Full Search with

4:1 Pel Subsampling
50.20 27.25 20.74

Full Search algorithm presents the optimal results for quality, generating the high-

est error reduction and the highest PSNR. However, it uses four times more SAD
operations than the Full Search with 4:1 Pel Subsampling. The quality losses gener-
ated with the use of 4:1 Pel Subsampling are small. These losses are of only 4.46% in
the error reduction and only 1.23dB in the PSNR.

It is important to notice that the Full Search with 4:1 Pel Subsampling algorithm
can reduce significantly the computational costs of the motion estimation process with
small losses in the quality results.

Full Search based algorithms (including its version with 4:1 Pel Subsampling) are
regular algorithms and they do not present data dependencies. These features are

40 M. Porto et al.

important when a hardware design is considered. The regularity is important to allow
a reuse of the basic modules designed and the absence of data dependencies allow a
free exploration of parallelism. Other important characteristic of Full Search based
algorithms is that this type of algorithm is deterministic in terms of the clock cycles
used to generate a new motion vector. This characteristic is important to allow an easy
integration and synchronization of this module with other encoder modules.

The parallelism exploration is important to generate a solution tuned with the ap-
plication requirements. Considering these features and the good results for quality, the
Full Search with 4:1 Pel Subsampling algorithm was chosen to be designed in hard-
ware. Using 4:1 Pel Subsampling it is possible to simplify the architecture, keeping
the desired high performance.

4 Designed Architecture

There are many hardware architectures proposed in the literature that are based in the
Full Search algorithm, such as [6] and [7]. These solutions are able to find the optimal
results in terms of blocks matching. However, this type of architecture uses a very
high amount of hardware resources. Full Search complexity can be reduced with little
losses in the results quality, using the subsampling technique. This complexity reduc-
tion implies an important reduction in the hardware resources cost.

The architecture designed in this paper used Full Search with 4:1 Pel Subsampling
algorithm with SAD distortion criterion. The block diagram of the proposed architec-
ture is presented in Fig. 3. This architecture was designed to operate considering
blocks with 16x16 samples and considering a search range of [-25, +24] samples.

The internal memory is organized in 5 different memories, as presented in Fig. 3.
One memory is used to store the current frame block and the other four memories are
used to store the search area.

The current block memory has 8 words and each word has 8 samples with 8 bits, in
a total of 64 bits per memory word. This memory stores 64 samples (8x8) instead of
256 samples (16x16) because of the 4:1 subsampling relation.

The four memories used to store the search area have 32 words and each word has
32 samples with 8 bits, in a total of 256 bits per memory word. The data from the
search area were divided in four memories, considering the frame as a bi-dimensional
matrix of samples: samples from even lines and even columns, samples from even
lines and odd columns, samples from odd lines and even columns and samples from
odd lines and odd columns. Each word of each search area memory stores half of a
line of the search area. Then, the memory that stores the samples from even lines and
even columns stores the samples (0, 2, 4, … , 62), while the memory that stores the
samples from even lines and odd columns stores the samples (1, 3, 5, … , 63). This
division was made to allow a more efficient 4:1 Pel Subsampling processing.

The architecture presented in Fig. 3 was designed to explore the parallelism and
to minimize the local memory access. The data read from memories are reused and
each stored sample is read only once from the memories. The search area was divided
in exactly four different memories to allow the data reuse and the minimization of the
number of local memory accesses. The data read from the search area memories are

 High Throughput Hardware Architecture for Motion Estimation 41

Fig. 3. Motion Estimation Architecture

sent to all SAD lines (see Fig. 3) which use this data when necessary. The data read
from the current block memory is shifted through the SAD lines (using BLR registers
in Fig. 3) and they are used to generate the SADs.

When ME architecture starts, the memory manager reads half of a line of the
search area (one word of one search area memory), and one line of the current block
(one word from the current block memory). With these data, half of the line of the
search area and one line of the current block are available to be processed. These lines
are stored in the search line register (SLR in Fig. 3) and in the block line register
(BLR in Fig. 3). The processing unit (PU in fig. 3) calculates the distortion between
two samples of the current block and two samples of a candidate block from the
search area. Five PUs are used to form a SAD line. A set of 25 SAD lines forms a
SAD matrix, as presented in Fig. 3. The control manages all these modules.

Four iterations over the 25 SAD lines are necessary to process a complete search
area. One iteration is used for each search area memory. The result memory register
(RMR in Fig. 3) stores the best match from each iteration. The final best match is

Current block
memory

 OO

Search area
memory

Memory manager

8 registers for
the block line

SLR

32 registers for the
search area line

Search area
selector

Control CBEE EO OE

SS SS SS SS SS

SAD Line 0

SAD Line 1

SAD Line 2

SAD Line 24

PU PU PU PU PU

Block
selector

BLR0

BS

BLR1

BS

BLR2

BS

BLR3

BS

Motion vector

Comp

Comp

Comp

Comp

Comp

RR

PU PU PU PU PU

PU PU PU PU PU

PU PU PPU PU

42 M. Porto et al.

Fig. 4. PU architecture

generated after the comparison between the four results stored in RMR and then the
motion vector is generated. All the operations necessary to generate one motion vec-
tor (MV) uses 2615 clock cycles.

5 SAD Calculation Architecture

SAD calculation architecture was hierarchically designed. The highest hierarchical
level instance is the SAD matrix which is formed by 25 SAD lines. Each SAD line is
formed by five processing units (PUs), as presented in Fig. 3. Fig. 4 shows the PU
architecture.

When the 4:1 Pel Subsampling algorithm is used, the number of SAD calculations
per line of the current block decreases to a half in comparison with Full Search algo-
rithm, once the block was sub-sampled. This reduction of the number of calculations
allows a reduction of the parallelism level of each PU without a reduction of the
global ME performance. The PU architecture designed in this work is able to process
a quarter of line of each candidate block (two samples) per cycle.

The subsampling reduces the size of the current block from 16x16 to 8x8 samples.
The search area division in four sub-areas (stored in four different memories) implies
in sub-areas with 32x32 samples, once the complete area has 64x64 samples. Then it
is possible to conclude that there are 25 candidate blocks starting in each line of the
search sub-area, because there are 32 samples per search line and 8 samples per block
line.

The partial SAD of the candidate block (a quarter of line) must be stored and added
to the SADs of the other parts of the same block to generate the total SAD for the
block. The total SAD is formed by 8 lines with 8 samples in each line (64 SADs must
be accumulated).

The SAD lines, presented in Fig. 5, groups five PUs and they make the accumula-
tion to generate the final value of the candidate block SAD. Each PU is responsible
for SAD calculation of five different candidate blocks, in distinct times. Then, a line
of SADs calculates the SAD of 25 different candidate blocks.

Fig. 5 presents the five PUs (highlighted in gray) of one SAD line and it also pre-
sents the accumulators used to keep the partial and final values of the SAD calcula-
tions for each block. As each PU processes in parallel the SAD calculation of two
samples, then each PU generates 32 partial results of SAD for each processed block.
These 32 partial results must be added to generate the final block SAD. A simple
structure of adder and accumulation is enough to generate this result.

abs

abs

R1

P1

R0

P0

 High Throughput Hardware Architecture for Motion Estimation 43

ACC0

ACC1

ACC2
PU0

PU1

PU2

ACC3

ACC4

C0

ACC5

ACC6

ACC7

ACC8

ACC9
ACC10

ACC11

ACC12

ACC13

ACC14

B

R0

C1B

R1

C2B

R2
ACC15

ACC16

ACC17
PU3

PU4

ACC18

ACC19

B C3

ACC20

ACC21

ACC22

ACC23

ACC24

R3

C4B

R4

Fig. 5. Block Diagram of a SAD Line

Each PU calculates the SAD of 25 blocks, then a register is used to store the SAD
of each block (ACC0 to ACC24 in Fig. 5) and a pair of demux/mux is necessary to
control the correct access to the registers. When a SAD line concludes its calculations,
the registers ACC0 to ACC24 will contain the final SADs of the 25 candidate blocks
from one specific line of the search sub-area.

Search area selector (SS in Fig. 3) and block selector (BS in Fig.3) choose the cor-
rect data for each PU in a SAD line. A new and valid data is available to the PUs at
each clock cycle.

Comparator (Comp modules in Fig. 3) receives the output from the SAD lines, and
it can make five comparisons of SADs in parallel, in a pipeline with five stages. This
module is responsible to compare 25 SADs from one SAD line (5 SADs per clock
cycle) and to compare the best SAD (lowest value) of this SAD line with the best
SAD of the previous SAD line, as shown in Fig. 3.

The result of each comparator consists of the best SAD among all SADs previously
processed and a motion vector indicating the position of the block which generates
this best SAD. This result is sent to the next comparator level (see Fig. 3).

The five SAD lines outputs (C0 the C4 in Fig. 5) generate five values of SAD in
each clock cycle. In five clock cycles, all the 25 values of SAD from the SAD line are
ready and these values are used in the comparator. The comparator architecture is
showed in Fig 6.

A motion vector generator is associated to each SAD line to generate de motion
vector for each candidate block. These motion vectors are sent to the comparator with
the corresponding SAD result.

44 M. Porto et al.

Fig. 6. Comparator Block Diagram

6 Synthesis Results

The synthesis results of the proposed architecture are summarized in Table 1. The
synthesis was targeted to a Xilinx Virtex-II Pro VP70 FPGA and the ISE synthesis
tool was used [8].

The synthesis results indicated that the designed architecture used 30,948 LUTs
(46% of total device resources), using 19,194 slices (58% of total device resources)
and 4 BRAMs (1% of device resources). This architecture is able to run at 123.4 MHz
and a new motion vector is generated at each 2615 clock cycles.

The synthesis results show that the designed architecture can reach a processing
rate of 35 SDTV frames (720x480 pixels) per second. This processing rate is enough
to process SDTV frames in real time. The performance could be better if the parallel-
ism level was increased or if a faster target device was used.

Some related works, using the Full Search algorithm with 4:1 Pel Subsampling, can be
found in the literature, such as [9], [10] and [11]. However, these works target a standard
cell technology and a comparison between our FPGA results is not easily made.

Other related works to Full Search algorithms targeting FPGA implementations as
[12], [13] and [14] were also found.

The published solutions consider a search range of [-16, +15] while our solution
considers a search range of [-25, +24]. The higher search range was defined to allow
better quality results when processing high resolution videos. We did not find any
published solution based on Full Search algorithm with a search range larger or equal
to [25, +24].

Selected SAD from
previous SAD line

C0

C1

vector 0

vector 1
MSB

0

1

C2

C3

vector 2

vector 3

MSB

0

1

0

1

MSB

0

1

0

1

MSB

0

1

0

1

1

0

1

0

Best SAD Motion vector of
the best SAD

Selected vector from
previous SAD line

Accumulator used to
store the best SAD

from current SAD line

0

1

0

1

vector 4

C4

MSB

 High Throughput Hardware Architecture for Motion Estimation 45

We calculated the number of cycles that our solution needs to generate a motion
vector considering the range [-16, +15], to allow a comparison of our architecture
with the published solutions. This calculation results in 634 clock cycles to generate a
motion vector. The operation frequency was estimated in the same 123.4MHz, once
the architecture would be reduced to work in the [-16, +15] range.

Table 2. Synthesis results for [-25, +24] search range

ME Module Frequency
(MHz)

CLB
Slices

LUTs

Global Control 269.2 91 164
Processing Unity 341.5 38 67

SAD line 341.5 489 918
Comparator 224.6 317 235

Vector Generator 552.7 6 10
Memory Manager 291.4 311 613

Search Area Selector 508.3 343 596
Block Selector 541.4 33 58
SAD Matrix 143.7 19,083 30,513

Motion Estimator 123.4 19,194 30,948
Device: Virtex-II Pro VP70

The comparison with these related works, including Full Search and Full Search

with 4:1 Pel Subsampling algorithms, is presented in Table 3. Table 3 presents the Pel
Subsampling rate, the used technology, the operation frequency and the throughput.
The throughput considers the number of HDTV 720p frames processed per second.

Our architecture presents the second higher operation frequency, just less than
[13]; however, our throughput is about 120% higher than [13]. This is the highest
throughput among the FPGA based architectures. The architecture presented in [11]
can reach a higher throughput than ours; however, this result was expected once this
architecture was designed in 0.18um standard cell technology.

Table 3. Comparative results for search range [-16, +15]

Solution Pel Subsam-
pling

Technology Freq.
(MHz)

HDTV
720p (fps)

[9] 4:1 0.35 um 50.0 8.75
[10] 4:1 0.35 um 50.0 22.56
[11] 4:1 0.18 um 83.3 63.58
[12] No Altera Stratix 103.8 5.15
[13] No Xilinx Virtex-II 191.0 13.75
[14] No Xilinx XCV3200e 76.1 20.98
Our 4:1 Xilinx Virtex-II Pro 123.4 54.10

46 M. Porto et al.

6 Conclusions

This paper presented a FPGA based hardware architecture for motion estimation us-
ing the Full Search algorithm with 4:1 Pel Subsampling and using SAD as distortion
criterion. This architecture considers blocks with 16x16 samples and it uses a search
area with 64x64 samples, or a search range of [-25, + 24]. This solution was specifi-
cally designed to meet the requirements of standard definition television (SDTV) with
720x480 pixels per frame and it was designed focusing the solutions for the future
Brazilian system of digital television broadcast.

The synthesis results indicated that the motion estimation architecture designed in
this paper used 30,948 LUTs of the target FPGA and that this solution is able to oper-
ate at a maximum operation frequency of 123.4 MHz. This operation frequency al-
lows the processing rate of 35 SDTV frames per second.

Comparisons with related works were also presented and our architecture had the
highest throughput among the FPGA based solutions and the second highest through-
put among all solutions.

References

1. International Telecommunication Union. ITU-T Recommendation H.262 (11/94): generic
coding of moving pictures and associated audio information - part 2: video. [S.l.] (1994)

2. Joint Video Team of ITU-T and ISO/IEC JTC 1. Draft ITU-T Recommendation and Final
Draft International Standard of Joint Video Specification (ITU-T Rec. H.264 or ISO/IEC
14496-10 AVC) (2003)

3. Kuhn, P.: Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4 Motion
Estimation. Kluwer Academic Publishers, Dordrecht (1999)

4. Brazilian Communication Ministry, Brazilian digital TV system (2006), Available at:
http://sbtvd.cpqd.com.br/

5. Lin, C., Leou, J.: An Adaptative Fast Full Search Motion Estimation Algorithm for H.264.
In: IEEE International Symposium Circuits and Systems, ISCAS 2005, Kobe, Japan, pp.
1493–1496 (2005)

6. Zandonai, D., Bampi, S., Bergerman, M.: ME64 - A highly scalable hardware parallel ar-
chitecture motion estimation in FPGA. In: 16th Symposium on Integrated Circuits and
Systems Design, São Paulo, Brazil, pp. 93–98 (2003)

7. Fanucci, L., et al.: High-throughput, low complexity, parametrizable VLSI architecture for
full search block matching algorithm for advanced multimedia applications. In: Interna-
tional Conference on Electronics, Circuits and Systems, ICECS 1999, Pafos, Cyprus,
vol. 3, pp. 1479–1482 (1999)

8. Xilinx INC. Xilinx: The Programmable Logic Company. Disponível em (2006),
www.xilinx.com

9. Huang, Y., et al.: An efficient and low power architecture design for motion estimation us-
ing global elimination algorithm. In: International Conference on Acoustics, Speech, and
Signal Processing, ICASSP 2002, Orlando, Florida, vol. 3, pp. 3120–3123 (2002)

10. Lee, K., et al.: QME: An efficient subsampling-based block matching algorithm for mo-
tion estimation. In: International Symposium on Circuits and Systems, ISCAS 2004, Van-
couver, Canada, vol. 2, pp. 305–308 (2004)

 High Throughput Hardware Architecture for Motion Estimation 47

11. Chin, H., et al.: A bandwidth efficient subsampling-based block matching architecture for
motion estimation. In: Asia and South Pacific Design Automation Conference, ASPDAC
2005, Shanghai, China, vol. 2, pp. D/7–D/8 (2005)

12. Loukil, H., et al.: Hardware implementation of block matching algorithm with FPGA
technology. In: 16th International Conference on Microelectronics, ICM 2004, Tunis, Tu-
nisia, pp. 542–546 (2004)

13. Mohammadzadeh, M., Eshghi, M., Azadfar, M.: Parameterizable implementation of full
search block matching algorithm using FPGA for real-time applications. In: Fifth Interna-
tional Caracas Conference on Devices, Circuits and Systems, ICCDCS 2004, Punta Cana,
Dominican Republic, pp. 200–203 (2004)

14. Roma, N., Dias, T., Sousa, L.: Customisable core-based architectures for real-time motion
estimation on FPGAs. In: Cheung, P.Y.K., Constantinides, G.A. (eds.) FPL 2003. LNCS,
vol. 2778, pp. 745–754. Springer, Heidelberg (2003)

	High Throughput Hardware Architecture for Motion Estimation with 4:1 Pel Subsampling Targeting Digital Television Applications
	Introduction
	Description of the Used Algorithm
	Full Search with 4:1 Pel Subsampling Algorithm
	SAD Criterion

	Quality Evaluation
	Designed Architecture
	SAD Calculation Architecture
	Synthesis Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

