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Abstract. In classification tasks, shape descriptions, combined with
matching techniques, must be robust to noise and invariant to trans-
formations. Most of these distortions are relatively easy to handle, par-
ticularly if we represent contours by sequences. However, starting point
invariance seems to be difficult to achieve. The concept of cyclic se-
quence, a sequence that has no initial/final point, can be of great help.
We propose a new methodology to use HMMs to classify contours repre-
sented by cyclic sequences. Experimental results show that our proposal
significantly outperforms other methods in the literature.

Keywords: Cyclic Sequences, Hidden Markov Models, Shape Classifi-
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1 Introduction

Shape classification is a very important problem with applications in several
areas such as industry, medicine, biometrics and even entertainment.

The first step towards the design of a shape classifier is feature extraction.
Shapes can be represented by their contours or by their regions [1]. However,
contour based descriptors are widely used as they preserve the local information
which is important in the classification of complex shapes.

The next step is shape matching. Dynamic Time Warping (DTW) based
shape matching is being increasingly applied [2,3,4]. A DTW-based dissimi-
larity measure seems natural for optimally aligning contours, since it is able
to align parts instead of points and is robust to deformations. Hidden Markov
Models (HMMs) are also being used as a possible shape modelling and classi-
fication approach [5,6,7,8]. Hidden Markov Models are a general approach to
model sequences. They are stochastic generalizations of finite-state automata,
where transitions between states and generation of output symbols are modelled
by probability distributions. HMMs have the properties of DTW matching, but
also provide a probabilistic framework for training and classification.

Shape descriptors, combined with shape matching techniques, must be in-
variant to many distortions, including scale, rotation, noise, etc. Most of these
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distortions are relatively easy to deal with, particularly when we convert con-
tours in sequences and use DTW or HMMs to match them. However, no matter
what representation is used, starting point invariance seems to be difficult to
achieve. A contour can be transformed into a sequence by choosing an appropri-
ate starting symbol, but its election is always based on heuristics which seldom
work in unrestricted scopes. The most suitable solution to this problem is to
measure distances between every possible initial symbol of the sequences. The
concept of cyclic sequence arises here. Figure 1 depicts the coding of a character
contour as a cyclic sequence with an 8-direction code. A cyclic sequence is a
sequence of symbols or values that has neither beginning nor end, i.e., a cyclic
sequence models the set of every possible cyclic shift of a sequence, thus, to mea-
sure distances between two cyclic sequences is equivalent to measure distances
between every possible cyclic shift of both sequences.

Symbols

a

cd

e

hf

b

g

A = aaaahggeffhaheeeeedbbbabceeefecb

Fig. 1. A shape of a character “two” is coded as a cyclic sequence of directions along
the contour

So the question is now: how can we train HMMs for cyclic sequences? There is
a time order, but we do not know where the sequences begin. An immediate idea
is to use a cyclic topology as in [5], but this is not the best solution, as we will
see. To overcome this problem, in the following sections, we will propose a new
methodology to properly work with HMMs in order to classify cyclic sequences.

The paper is organised as follows: Section 2 and Section 3 give an overview
of Hidden Markov Models and Cyclic sequences. The proposed approach is dis-
cussed in Section 4 and Section 5. Experimental results are presented in Sec-
tion 6. Finally, the paper ends with conclusions in Section 7.

2 Hidden Markov Models

A Hidden Markov Model (HMM) [9] contains a set of states, each one with
an associated emission probability distribution. At any instant t, an observable
event is produced from a particular state and it only depends on the state. The
transition from one state to another is a random event only depending on the
departing state. Without loss of generality, in the following we will only consider
discrete HMMs, i.e., the set of observable events is finite.
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Fig. 2. (a) An HMM state that can emit any of four symbols according to the proba-
bility distribution depicted as a pie chart. (b) A complete HMM.

Given an alphabet Σ = {v1, v2, . . . , vw}, an HMM with n states is a triplet
(A, B, π) where (1) A = {aij}, for 1 ≤ i, j ≤ n, is the state transition probability
matrix (aij is the probability of being in state i at time t and being in state j
at time t + 1); (2) B = {bik}, for 1 ≤ i ≤ n and 1 ≤ k ≤ w, is the observation
probability matrix (bik is the probability of observing vk while being in state i);
and (3) π = {πi}, for 1 ≤ i ≤ n is an initial state probability distribution (πi is
the probability of being in state i when t = 1). The following conditions must
be satisfied: for all i,

∑
1≤j≤n aij = 1 and

∑
1≤k≤w bik = 1; and

∑
1≤i≤n πi = 1.

Figure 2 (a) depicts a state and Figure 2 (b) shows a complete HMM (transitions
with null probability are not shown).

Apart from this definition, there is another one that has been popularised by
the toolkit HTK [10]. This definition has two non-emitting states, the initial and
the final one. The initial state, that we will identify with the number 0, has no
input transitions (it eliminates the need for an explicit initial state distribution
π since a0i can be interpreted as πi) and the final state, that we will identify
with n+1, has no output transitions. These special non-emitting states simplify
some computations and eases HMM composition. In the following, we will use
this alternative definition.

There are efficient iterative algorithms for training the parameters of an
HMM [11,12]. Unfortunately, there are no effective methods for estimating the
number of states and the topology of the model. These are usually chosen heuris-
tically depending on the application features. For example, when the sequence
of symbols can be segmented, all the symbols in a segment are emitted by the
same state, and consecutive segments are associated to consecutive states, a so-
called Linear HMM (LHMM), i.e., a left-to-right topology like the ones shown
in Figure 3 (a) and (b), can be used.

For an HMM λ = (A, B) and a sequence of observed symbols, x = x1x2 . . . xm,
there are three basic problems that must be solved to be useful in applications:
(1) the evaluation problem, i.e., the probability of x, given λ; (2) the decoding
problem, i.e., obtaining the sequence of states that most likely produced x; and
(3) the learning problem, i.e., estimating λ to maximise the probability of gener-
ating x. There are well-known, efficient algorithms for the two first problems. The
Viterbi algorithm [13] solves the decoding problem by evaluating φn+1(m + 1),
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Fig. 3. (a) A Linear HMM. (b) A Linear HMM using the HTK definition. (c) Trellis
for a Linear HMM and a sequence of length 4. The optimal alignment is shown with
thicker arrows.

where

φj(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if t = 0 and j = 0;
0, if t = 0 and j �= 0;
max1≤i≤N (φi(t − 1) · aij) · bj(xt), if 1 ≤ t ≤ m and 1 ≤ j ≤ n;
max1≤i≤N (φi(m) · ai,n+1), if t = m + 1 and j = n + 1.

The Forward algorithm solves the evaluation problem by computing a similar
recursive expression with summations instead of maximizations. Both recursive
equations can be solved iteratively by Dynamic Programming in O(n2m) time
(O(nm) for LHMMs). The iterative version of the Viterbi algorithm computes
an intermediate value at each node of the trellis graph (see Figure 3 (c)). Each
node (j, t) corresponds to a state (j) and a time instant (t) and stores φj(t).
The value at (n + 1, m + 1) is the final result. The Viterbi algorithm solves the
decoding problem by recovering the optimal alignment (sequence of states) in
the trellis (see Figure 3 (c)).

There is no algorithm that optimally solves the training problem. The Baum-
Welch [11] and the segmental K-means [12] procedures are used to iteratively
improve the parameters estimation until a local maximum is found. In practice,
both methods offer a comparable performance regarding classification rates.

3 Hidden Markov Models for Cyclic Sequences

A cyclic sequence can be seen as the set of sequences obtained by cyclically
shifting a conventional sequence:

Definition 1 ([14]). Let x = x1 . . . xm be a sequence from an alphabet Σ. The
cyclic shift σ(x) of a sequence x is defined as σ(x1 . . . xm) = x2 . . . xmx1. Let
σs denote the composition of s cyclic shifts and let σ0 denote the identity. Two
sequences x and x′ are cyclically equivalent if x = σs(x′), for some s. The
equivalence class of x is [x] = {σs(x) : 0 ≤ s < m} and it is called a cyclic
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Fig. 4. (a) Cyclic HMM as proposed in [5]. (b) The contour of a shape is segmented
and each segment is associated to a state of the HMM. Ideally, each state is responsible
for a single segment.

sequence. Any of its members is a representative of the cyclic sequence. For
instance, the set {wzz, zzw, zwz} is a cyclic sequence and wzz (or any other
sequence in the set) can be taken as its representative.

Since cyclic sequences have no initial/final point, Linear HMMs seem inappro-
priate to model them. In [5], the authors proposed a circular HMM topology
to model cyclic sequences. Figure 4 (a) shows this topology (the initial and fi-
nal non-emitting states are not shown for the sake of clarity). This topology
can be seen as a modification of the left-to-right one where the “last” emitting
state is connected to the “first” emitting state. The proposed structure elimi-
nates the need to define a starting point: the cyclic sequence can be segmented
to associate consecutive states to consecutive segments in the cyclic sequences,
but no assumption is made on which is the first state/first segment (see Fig-
ure 4 (b)); therefore, there is an analogy with Linear HMMs. However, there
is a problem that breaks this analogy: the model is ergodic (all states can be
reached from any state) and the cyclic sequence symbols can “wrap” the model,
i.e., the optimal sequence of states can contain non-consecutive, repeated states
and, therefore, a single state can be responsible for the emission of several non-
consecutive segments in the cyclic sequence. Thus, the problem that we have is
the following:

Problem 1. To properly model cyclic sequences, HMMs should take into account
that any symbol of the sequence can be emitted by the first emitting state and
when such a symbol has been chosen as emitted by this state, its previous symbol
must be emitted by the last state.

4 Cyclic Linear HMMs

We can use Linear HMMs in a similar way than cyclic sequences. A cyclic Linear
HMM (CLHMM) can be seen as the set of LHMMs obtained by cyclically shifting
a conventional LHMM:
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Definition 2. Let λ = (A, B) be an LHMM. Given A, let σ(A) be the following
transformation:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . . . . . . . . . . . . . . . 0
0 a11 a12 0 . . . . . . . . . . 0
0 0 a22 a23 0 . . . 0

0 . . . 0
. . . . . . 0 0

0 . . . . . . . . . . ann ann+1 0
0 . . . . . . . . . . . . . . . 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, σ(A) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . . . . . . . . . . . . . . . 0
0 a22 a23 0 . . . . . . . . . 0

0 0
. . . . . . 0 . . . 0

0 . . . 0 ann ann+1 0 0
0 . . . . . . . . . . . a11 a12 0
0 . . . . . . . . . . . . . . . . . 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let σ(B) be σ(b1 . . . bn) = b2 . . . bnb1 (where bi are rows from matrix B). The
composition of r cyclic shifts of λ is defined as σr(λ) = (σr(A), σr(B)). Two
LHMMs λ and λ′ are cyclically equivalent if λ = σr(λ′), for some r. The equiv-
alence class of λ is [λ] = {σr(λ) : 0 ≤ r < n} and it is called a Cyclic LHMM.
Any of its members is a representative of the Cyclic LHMM (see Figure 5 (a)).

Then, to solve Problem 1:

Definition 3. The Viterbi score for a cyclic sequence [x1x2 . . . xm] and a
CLHMM [λ] is defined as P ([x]|[λ]) = max0≤r<n

(
max0≤s<m P (σs(x)|σr(λ))

)

and this score has associated an optimal alignment that is called optimal cyclic
alignment.

This is computationally expensive, but the following lemma shows that in order
to compute the Viterbi score for a cyclic sequence and a CLHMM, one can simply
choose a representative of the CLHMM and compute the Viterbi score between
this LHMM and the cyclic sequence.

Lemma 1. P ([x]|[λ]) = P ([x]|λ) = max0≤s<m P (σs(x)|λ)

Proof: Consider an optimal alignment ς1 that represents a maximum probability
between λ and σs1 (x), for some s1, then, there is an optimal alignment ς2 between
σ(λ) and σs2 (x), for some s2, such that ς2 represents exactly the same emitted
symbols for each state as ς1. �
Therefore, it can be computed by means of the conventional Viterbi score com-
puted on m conventional sequences in O(m2n) time. We propose a more efficient
algorithm to evaluate the Viterbi score. The method computes the optimal align-
ment that begins in any state, visits all the states and does not visit any state
once it has left it. The algorithm is inspired in the Maes’ algorithm for the Cyclic
Edit Distance (CED) [14] and computes the Viterbi score in O(mn log m) time.
The score is computed on an extended trellis where the original sequence ap-
pears concatenated with itself in the horizontal axis and alignments must begin
and end in nodes with the same colour (corresponding to the size of the string),
see Figure 5 (b). The efficiency of the algorithm is based on the “non-crossing
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Fig. 5. (a) A CLHMM represented by its set of LHMMs. (b) Extended trellis for a
Linear HMM and a cyclic sequence of length 4. The optimal alignments for each starting
point are shown with thicker arrows, one of them is the optimal cyclic alignment.

paths” property [14]: Let ςi be the optimal alignment beginning at node (i, 0)
and ending at node ((m + i + 1, n + 1) in the extended trellis and let j, k, and l
be three integers such that 0 ≤ j < k < l ≤ m; there is an optimal path starting
at node (k, 0) and arriving to (k + m + 1, n + 1) that lies between ςj and ςl.

This property leads to a Divide and Conquer, recursive procedure: when ςj
and ςl are known, ς(j+l)/2 is computed by only taking into account those nodes of
the extended trellis lying between ςj and ςl; then, optimal alignments bounded
by ςj and ς(j+l)/2 and optimal alignments bounded by ς(j+l)/2 and ςl can be
recursively computed. The recursive procedure starts after computing ς0 (by
means of a standard Viterbi computation) and ςm, which is ς0 shifted m positions
to the right. Each recursive call generates up to two more recursive calls and all
the calls at the same recursion depth amount to O(mn) time; therefore, the
algorithm runs in O(mn log m) time. This adaptation of Maes’ algorithm comes
naturally after defining the Viterbi score in lemma 1.

In principle, we could adopt a symmetric approach defining a cyclic shift on
the states of the Linear HMMs to obtain the same Viterbi score. This is appealing
because n < m and, therefore, “doubling” the HMM in the extended trellis
instead of the sequence would lead to an O(mn log n) algorithm. This would be
better than O(mn log m) since n < m (and, usually, n � m). However, it cannot
be directly done:

Lemma 2. P ([x]|[λ]) �= max0≤r<n P (x|σr(λ))

Proof: Let us use a counterexample. Let [x] = v1v2v1 be a cyclic sequence on the
alphabet Σ = {v1, v2}. Let [λ] be a CLHMM with 2 emitting states and a01 = 1,
a11 = 0.5, a12 = 0.5, a22 = 0.5, a23 = 0.5, b01 = 1, and b12 = 1. The defini-
tion of the Viterbi score in lemma 1 leads to a value of 0.125 (for the sequence
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Fig. 6. (a) A CLHMM [λ] represented by a representative (an LHMM). (b) The cor-
responding LHMMs for the ιr(λ) operation, for 0 ≤ r < n (where n = 3). From top to
bottom, ι(λ), ι2(λ) and ι3(λ).

σ2(v1v2v1) = v1v1v2). If we try to perform a cyclic shift in the Linear HMM, we
have two possible cyclic shifts both possibilities give us 0 as the Viterbi score.

�

Let [λ] = (A, B) be a CLHMM, let [x] be a cyclic sequence and let ι(λ) be
an operation that performs a cyclic shift (σ(λ)) and inserts a copy of the first
emitting state before the last state, but its transition to the next state has the
value of its self transition (see Figure 6). Then,

Theorem 1.

P ([x]|[λ]) = max
0≤r<n

(
max

(
P (x|σr(λ)), P (x|ιr(λ))

))
.

Proof (sketch): Each alignment induces a segmentation on x. All the symbols in
a segment are aligned with the same state of the CLHMM. There is a problem
when xm−pxm−p+1 . . . xm and x1x2 . . . xq, for some p, q ≥ 0, belong to the same
segment of x. In that case, the optimal alignment cannot be obtained by simply
cyclic shifting λ, since xm must be aligned with the state n and x1 must be
aligned with the state 1, i.e., they never fall in the same segment. The LHMM
ιr(λ), formed by inserting to σr(λ) the first emitting state after the last one, per-
mits to align xm−pxm−p+1 . . . xm and x1x2 . . . xq with the first state, since this
state also appears at the end of ιr(λ). On the other hand, there is another prob-
lem: let us suppose we have now the complete segment at the beginning of the
sequence, p+ q symbols, then the first self transition must be executed p+ q − 1
times, but if the segment is in the situation explained above, the first self transi-
tion will be executed just p+ q − 2 times, the transition to the last non-emitting
state provides this necessary extra transition. �

Fortunately, for each value of r, P (x|σr(λ)) can be obtained as a subproduct of
the computation of P (x|ιr(λ)). The trellis underlying P (x|σ0(λ)) is a subgraph
of the one underlying P (x|ι0(λ)).
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The value of P (x|σr(λ)) and P (x|ιr(λ)), for each r, can be obtained by com-
puting optimal alignments in an extended trellis similar to the one in Figure 5 (b),
but now “doubling” the LHMM. It should be taken into account that, unlike in
Maes’ algorithm, the optimal path starting at (r, 0) can finish either at node
(r + n − 1, m) or (r + n, m) and the recursive computation can be applied just
using the optimal alignments between σr(λ) and x as a new left or right border.

5 Segmental K-means for Cyclic Linear HMMs

The proposed algorithm to compute the Viterbi score for a CLHMM cannot be
extended to Forward-value computation because there is no optimal alignment
on the trellis on which the “non-crossing paths” property holds. Since the Baum-
Welch training procedure is based on the Forward (and Backward) values, we
cannot use it for cyclic strings without requiring n times more time, which is
too expensive. However, on this purpose, we can adapt the segmental K-means
algorithm [12].

In creating the CLHMM for each class, we should guarantee that the pa-
rameters we obtain are the optimum for a given set of training cyclic se-
quences. Since our decision rule is the state optimised likelihood function, it
requires that the estimated parameter ¯[λ] be such that P ([x]| ¯[λ]) is maximised
for the training set. Starting from an initial model [λ0] (the superscripts in-
dicate the iteration number), this procedure takes us from [λk] to [λk+1] such
that P ([x], ςk|[λk]) ≤ P ([x], ςk+1|[λk+1]), where ςk is the optimal cyclic align-
ment for [x] = [x1x2 . . . xm] and [λk]. According to lemma 1, this is equivalent
to P ([x], ςk|λk) ≤ P ([x], ςk+1|λk+1), i.e., to train a representative LHMM λ is
equivalent to train this CLHMM [λ] (we can adopt here as well a symmetric
approach, that is to say, we can apply the cyclic shift to λ instead of x, but we
use this one to make understanding easier).

Thus, in this procedure to train the LHMM λ (lemma 1) a number of (training)
cyclic sequences are required. Each cyclic sequence [x] = [x1x2 . . . xm] consists
of m observation symbols. The algorithm then consists in the following steps1:

1. The process is started by performing uniform cyclic alignments as optimal
ones (for all states) of any representative x for each training cyclic sequence
[x].

2. Compute the transition probability matrix Â, according to optimal cyclic
alignments, for 0 ≤ i ≤ n and 0 ≤ j ≤ n:

âij =
Number of occurrences of {xt ∈ i and x(t+1) mod m ∈ j} for all t

Number of occurrences of {xt ∈ i} for all t

3. Compute the observation probability matrix B̂, according to optimal cyclic
alignments, for 0 ≤ i ≤ n and 0 ≤ k ≤ w:

1 We only consider discrete models. These steps can be extended to the continuous
ones, refer to [12] for further details.
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b̂ik =
Number of occurrences of {xt ∈ i and xt = vk} for all t

Number of occurrences of {xt ∈ i} for all t

4. Compute P ([x]|λ̂) = max0≤s<m P (σs(x)|λ̂) (where λ̂ = (Â, B̂)) for each
training cyclic sequence [x]. This Viterbi score gives us an optimal cyclic
alignment ς̂ for each [x], ς̂ defines the sequence of states visited and which
symbols are emitted for each state (and it can be computed in O(mn log m)
time, Section 4).

5. If these optimal cyclic alignments are different to the previous iteration,
repeat step 2 through step 5; otherwise, stop.

Following the line of thought in [12]:

Theorem 2. The adapted segmental K-means for CLHMMs and cyclic se-
quences converges in Zangwill’s global convergence sense [15].

Proof (sketch): What needs to be shown is that the algorithm (that obtains λ̄
from λ) is closed and that P ([x]|λ) is an ascent function for the algorithm: (i) The
algorithm is closed because we assume that the function P ([x]|λ) is continuously
diferentiable in λ for almost all [x] in a totally finite measurable space; and (ii)
Let ς∗ and ς̄ be two optimal cyclic alignments such that, ς∗ = argmaxς P ([x], ς|λ)
and ς̄ = argmaxς P ([x], ς|λ̄), then:

max
ς

P ([x], ς|λ̄) ≥ P ([x], ς∗|λ̄)

= max
λ′

P ([x], ς∗|λ′) = max
λ′

(
max

ς

(
max

r
P (σr(x), ς|λ′)

))
(1)

≥ max
ς

P ([x], ς|λ).

The maximization over λ′ in (1) can be replaced by the adapted segmental K-
means method explained above. �
Finally, taking into account that this iterative training method obtains a lo-
cal maxima and for this reason, a good starting LHMM plays an important
role. Step 1 obtains this initial LHMM, but as you have probably noticed it is
an almost random procedure. We propose a different, automatic method for a
Step 0: finding an optimal starting point for all cyclic sequences through com-
parison with a reference cyclic sequence via the Cyclic Dynamic Time Warping
(CDTW) [2] algorithm. The starting point for all sequences is chosen in func-
tion of the optimal alignment in the extended CDTW graph. Thus, in step 1 the
chosen representatives of the cyclic strings will all have a relative order and the
uniform alignments will produce a better initial LHMM.

6 Experiments

In order to assess the behaviour of the algorithms presented, we performed
comparative experiments on the MPEG-7 Core Experiment CE-Shape-1 (part B)
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database. This database consists of 1400 images divided in 70 shape classes of
20 images for each class (see Figure 7).

All the images were clipped, scaled into a 32×32 and 50×50 pixels matrix and
binarized, and their outer contours were represented by 8-directional chain-codes
(the average length is 120 for the 32×32 images and 200 for the 50×50 images).
All the classification experiments (70 equiprobable classes) were cross-validated
(20 partitions, 70 samples for testing and 1330 samples for training).

Fig. 7. Some images in the MPEG-7 CE-Shape-1 (part B) database

First experiments try to show that the Cyclic Linear HMMs produces better
classification rates on cyclic sequences than those obtained with a conventional
LHMM or with a cyclic topology [5], and also that a good initial LHMM can
improve the training of the CLHMM. Then, we have four methods: (i) LHMM,
a conventional LHMM with a conventional Viterbi Score and Segmental K-
means2, (ii) Cyclic Topology, the method from [5], (iii) CLHMM, our approach,
and finally (iv) CLHMM(CDTW), our approach using a CDTW-based initiation.

Since we are interested in cyclic sequences, the contours were coded as conven-
tional sequences with a random starting point. All HMMs were trained (with the
HTK toolkit [10]) with randomly chosen starting points for all the sequences in
the training set. Since the results can depend on the number of states, we have per-
formed experiments varying this parameter. Figure 8 (a) shows the classification
rate for the four methods with random starting points as a function of the num-
ber of states for the 32 × 32 images. Figure 8 (b) shows equivalent experiments
for the 50 × 50 images. It can be seen that both methods proposed in this work
improve the other ones. CLHMMs provide better results than [5] because of the
2 Obviously, the results of this method are very poor, they are exposed to show how

important is the starting point invariance.
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Fig. 8. (a) Classification rate for random starting point sequences as a function of the
number of states for the 32 × 32 images. (b) Idem for the 50 × 50 images.

problems that a cyclic topology has (Section 3). The highest classification rate is
always obtained with CLHMM(CDTW), confirming that the adapted Segmental
K-means trains better from a good initial LHMM.

We also performed experiments of time in classification (for one partition on
the 50×50 images) on a 2.4Ghz Pentium 4 running Linux 2.4 (the algorithm was
implemented in C++). As explained in Section 4, cyclic shifting (or doubling in
the extended trellis) the LHMM instead of the sequence is advisable. In Figure 9,
this fact is shown empirically.
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Fig. 9. Time comparison (in seconds) on the 50 × 50 images between both extended
trellis, doubling the LHMM or doubling the sequence

7 Conclusions

In this work, we have presented a new methodology to use HMMs for dealing with
cyclic sequences, called Cyclic Linear HMMs. We have formulated a framework
to use these models for classification and training, adapting the Viterbi and the
Segmental K-means algorithms. Experiments performed on a shape classification
task show that our methods outperform other proposals from the literature.
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