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Abstract. We propose a polynomial-time-delay polynomial-space algo-
rithm to enumerate all efficient extreme solutions of a multi-criteria
minimum-cost spanning tree problem, while only the bi-criteria case was
studied in the literature. The algorithm is based on the reverse search
framework due to Avis & Fukuda. We also show that the same technique
can be applied to the multi-criteria version of the minimum-cost basis
problem in a (possibly degenerated) submodular system. As an ultimate
generalization, we propose an algorithm to enumerate all efficient extreme
solutions of a multi-criteria linear program. When the given linear pro-
gram has no degeneracy, the algorithm runs in polynomial-time delay and
polynomial space. To best of our knowledge, they are the first polynomial-
time delay and polynomial-space algorithms for the problems.

1 Introduction

The multi-criteria optimization is a vast field in optimization theory, operations
research, and decision science. In a multi-criteria optimization problem, we usu-
ally need to enumerate the solutions which have a certain specified property, for
example, the Pareto optimality or the efficiency.1 See Ehrgott [3] for detail.

There have been two main streams in algorithm design for the multi-criteria
optimization: exact approach and approximate approach. In the exact approach,
the enumeration has to be exact, namely, all the solutions have to be output
(without any duplication). For example, in the multi-criteria linear program-
ming many exact algorithms have been proposed which enumerate all efficient
extreme solutions or enumerate all efficient faces (see Ehrgott [3] and refer-
ences therein). For bi-criteria combinatorial optimization problems, Ulungu &
Teghem [8] proposed the so-called two-phase method which first determines the

1 The word “efficient” is used differently in multi-criteria optimization and in algo-
rithm theory. In multi-criteria optimization (or economics) efficiency is just another
name for Pareto optimality. We hope that the reader is never confused.
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extreme efficient solutions then enumerate the rest of the efficient solutions. On
the other hand, in the approximate approach the enumeration is partial. See Zit-
zler, Laumanns & Bleuler [11] for example. A bit different approximate approach
was done by Papadimitriou & Yannakakis [7], which has a certain approximation
guarantee. See a recent short survey by Zaroliagis [10].

This work concentrates on the exact approach and we will exploit techniques
from enumeration algorithmics. Despite many algorithm have been reported for
multi-criteria optimization from the exact approach viewpoint, few of them have
a certain theoretical guarantee of complexity. Observe that enumeration of the
Pareto-optimal extreme solutions of a single-criteria linear program is equivalent
to enumeration of the vertices of a convex polyhedron, and a recent result by
Khachiyan, Boros, Borys, Elbassioni & Gurvich [5] shows that this problem
admits no polynomial total time algorithm unless P = NP. This looks one of
the obstructions for a theoretical investigation. So, we concentrate on a simpler
problem to reveal the difficulty for the development of an algorithmic theory of
multi-criteria enumeration problems.

As a sample problem, we study the multi-criteria minimum-cost spanning tree
problem: given a connected undirected graph and several edge-cost functions, we
have to find all spanning trees which minimize some convex combinations of the
cost functions. In the multi-criteria optimization terminology, the outputs are
exactly the solutions for all possible weighted sum scalarizations, and they cor-
respond to the extreme efficient solutions. The determination of the extreme
efficient solutions is a first step for complete enumeration of the efficient solu-
tions, for example in the two-phase method [8].

We will compare two main methods in enumeration algorithmics. One is the
binary partition method, and the other is the reverse search method. In the
binary partition method, we recursively divide the solution space until we get
trivial instances. In the reverse search method proposed by Avis & Fukuda [1], we
implicitly define a rooted tree on the solutions to be enumerated, and traverse it.

We try to apply the two enumeration methods above to the multi-criteria
minimum-cost spanning tree problem. For the binary partition method, we prove
that a subproblem arising from a natural binary partition approach is NP-
complete. This implies that an approach by the binary partition method seems
difficult. On the other hand, with the reverse search method we design an algo-
rithm which runs with polynomial-time delay and in polynomial space. This is
the first algorithm for this problem with such a complexity guarantee.

Our reverse-search algorithm can be extended to the multi-criteria version of
the minimum-cost base problem in matroids and submodular systems. Further-
more, a similar algorithm turns out to work for the multi-criteria linear program-
ming. Although there have been many algorithms proposed for the multi-criteria
linear programming, none of them has a performance guarantee as running with
polynomial-time delay and in polynomial space (see Ehrgott [3] and references
therein). Indeed, these algorithms store all the outputs as a list in the working
memory to get rid of duplication, which looks a bottleneck for the efficiency. We
may accomplish the polynomial-time delay by a small modification (for example,
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using a balanced binary search tree instead of a list). However, it appears diffi-
cult for these algorithms to achieve the polynomial space by a small modification;
namely, the essential improvement for memory usage is by far hard. On the other
hand, our reverse-search algorithm can achieve both of the goals. This exhibits the
power of the reverse search, and we hope that this work initiates a more fruitful
connection of the multi-criteria optimization with the algorithms community.

The paper is organized as follows. In the next section, we give an introduc-
tion to enumeration algorithmics terminology and a concise description of the
multi-criteria minimum-cost spanning tree problem. Section 3 discusses some
existing methods to enumerate the spanning trees and observe how natural ex-
tensions of these methods fail. This includes the NP-completeness result of a
natural subproblem arising from a binary partition method. Then in Section 4,
we consider how we can overcome this issue, and design an algorithm running
in polynomial-time delay and polynomial space with the reverse search method.
Section 5 discusses a possible generalization of our reverse search algorithm to
the multi-criteria linear programming. The final section concludes the paper with
some open questions.

2 Preliminaries

An enumeration problem asks to output all objects, called solutions, which sat-
isfy a given condition. To measure the efficiency of enumeration algorithms, we
have to take into account the size of output (i.e., the number of solutions) ex-
plicitly since it could be exponentially large in terms of the size of input. An
enumeration algorithm runs in polynomial-time delay if for any output object
the next output object can be obtained in polynomial time in the size of input;
it runs in polynomial-space if the working space it uses is bounded by a polyno-
mial of the size of input. Note that we only count the working space, excluding
the space for outputs. Intuitively speaking, the working space is a read/write
memory and the output space is a write-only disk.

A convex combination of k functions c1, c2, . . . , ck is a function
∑k

i=1 λici

for some non-negative real numbers λ1, λ2, . . . , λk summing up to one. We call
the vector (λ1, . . . , λk)� ∈ IRk of coefficients the barycentric coordinate of the
combination.

Given a connected undirected graph G = (V, E), a spanning tree of G is an
edge subset T ⊆ E of size |V | − 1 which embraces no cycle. For a non-negative
edge-cost function c : E → IR+, a minimum-cost spanning tree of G with respect
to c is a spanning tree T of G which minimizes the total cost c(T ) =

∑
e∈T c(e).

We study the following problem.

Problem: MC-MCST
Input: a connected undirected graph G = (V, E) and k distinct non-
negative edge-cost functions c1, . . . , ck : E → IR+
Enumerate: the spanning trees of G each of which is minimum-cost
with respect to some convex combination of c1, . . . , ck.
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We call a spanning tree of G feasible if it is minimum-cost with respect to some
convex combination of c1, . . . , ck (i.e., if it is to be output in MC-MCST).

3 Failed Attempts for Generalization by Straightforward
Approaches

In this section, we first describe two existing methods for enumeration of span-
ning trees in a given connected graph, and observe why the straightforward
generalizations of them to MC-MCST do not give efficient algorithms.

3.1 Binary Partition Method

Let us first look at a simple binary partition approach to enumerate all spanning
trees in a given connected undirected graph G = (V, E). First of all, we choose an
arbitrary edge e1 ∈ E and classify the spanning trees of G into two groups: those
containing e1 and those not containing e1. Then, we choose another arbitrary
edge e2 ∈ E\{e1}, and divide the groups similarly. This will give a recursion tree,
and we stop the recursive call when the obtained group is ensured to contain no
spanning tree. In this way, we can reduce redundant computation. The problem
to decide whether a group contains a spanning tree can be formulated as “for
disjoint subsets E1, E2 ⊆ E, does there exist a spanning tree of G which contains
the edges in E1 but does not contain any edges in E2?” This can be solved in
linear time.

To solve MC-MCST in the same way, we have to solve the following problem.

Problem: BinaryPartition
Input: a connected undirected graph G = (V, E), two disjoint sub-
sets E1, E2 ⊆ E and k distinct non-negative edge-cost functions
c1, . . . , ck : E → IR+
Question: Does there exist a spanning trees of G which contains the
edges in E1 but does not contain any edges in E2 and is minimum-cost
with respect to some convex combination of c1, . . . , ck.

If the problem BinaryPartition can be solved in polynomial time, then we
can use the same binary partition strategy as above to obtain an algorithm to
solve MC-MCST in polynomial-time delay and polynomial space. However, the
following theorem shows that it is quite unlikely for us to achieve this goal.

Theorem 1. The problem BinaryPartition is NP-complete.

Proof. We can easily see the membership of the problem in NP. We show NP-
hardness. To this end, we reduce the satisfiability problem (SAT) to BinaryPar-
tition. An instance of SAT is given as a set of boolean variables x1, . . . , xn and
a set of clauses C1, . . . , Cm each of which consists of (possibly several) literals.
Each literal is either a variable or its negation.
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Fig. 1. Reduction in the proof of Theorem 1. This is an example for the formula
C1 ∧ C2 ∧ C3, where C1 = x1 ∨ x2 ∨ x3, C2 = x2 ∨ x3. C3 = x1 ∨ x3 ∨ x4. A black
thin edge belongs to E \ (E1 ∪ E2); a blue thick edge belongs to E1; a red broken edge
belongs to E2.

Table 1. Summary of the costs
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i′} {vr
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i′ , r}
ci 0 1 1/n 1 0 0 1/n 1
ci 1 0 1/n 1 0 0 1/n 1
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j } {wr
j , r} {wq

j , u�
j} {wr

j , u�
j}

ci 2 − 1/(2n) 1 1 1 if � = xi, 2 otherwise
ci 2 − 1/(2n) 1 1 1 if � = xi, 2 otherwise

From the given instance of SAT, we construct a connected graph G = (V, E).
For each variable xi we set up three vertices vr

i , vt
i , v

f
i . For each clause Cj we set

up two vertices wr
j , wq

j , and for each literal � of Cj we set up one vertex u�
j . We

also use an extra vertex r. They are the vertices of G.
Next, we draw the edges of G. For each variable xi, we draw edges {vt

i , v
f
i } ∈

E1, {vr
i , vt

i} ∈ E \ (E1 ∪E2), {vr
i , v

f
i } ∈ E \ (E1 ∪E2), and {vr

i , r} ∈ E1. For each
clause Cj we draw an edge {wr

j , w
q
j} ∈ E2, {wr

j , r} ∈ E1, and for each literal �

of Cj we draw edges {wr
j , u

�
j} ∈ E \ (E1 ∪ E2), {wq

j , u
�
j} ∈ E1. This completes

the description of G. Fig. 1 shows an example.
Now, we set up 2n cost functions, each of which is identified with a variable or

its negation (i.e., a literal). Namely, for each positive literal xi, we define the cost
function ci and, Similarly, for a negative literal xi, we define the cost function ci.
The definition is as follows. They are summarized in Table 1: ci({vr

i , vt
i}) = 0,

ci({vr
i , vf

i }) = 1, ci({vt
i , v

f
i }) = 1/n, ci({vr

i , r}) = 1; for every i′ ∈ {1, . . . , n}\{i},
ci({vr

i′ , vt
i′}) = 0, ci({vr

i′ , v
f
i′}) = 0, ci({vt

i′ , v
f
i′}) = 1/n, ci({vr

i′ , r}) = 1; for every
j ∈ {1, . . . , m} and every literal � of the clause Cj , ci({wr

j , w
q
j }) = 2 − 1/(2n),

ci({wr
j , r}) = 1, ci({wq

j , u
�
j}) = 1, and
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ci({wr
j , u�

j}) =

{
1 if � = xi,

2 otherwise.

Similarly, ci({vr
i , vt

i}) = 1, ci({vr
i , vf

i }) = 0, ci({vt
i , v

f
i }) = 1/n, ci({vr

i , r}) = 1;
for every i′ ∈ {1, . . . , n} \ {i}, ci({vr

i′ , vt
i′}) = 0, ci({vr

i′ , v
f
i′}) = 0, ci({vt

i′ , v
f
i′}) =

1/n, ci({vr
i′ , r}) = 1; for every j ∈ {1, . . . , m} and every literal � of the clause

Cj , ci({wr
j , wq

j}) = 2 − 1/(2n), ci({wr
j , r}) = 1, ci({wq

j , u
�
j}) = 1, and

ci({wr
j , u�

j}) =

{
1 if � = xi,

2 otherwise.

Thus, we complete the construction of an instance of MC-MCST.
We may prove that there exists a spanning tree of G which is minimum-cost

with respect to some convex combination of the ci and the ci, i ∈ {1, . . . , n} if
and only if the given SAT instance is satisfiable. We omit the detail here due to
the page limitation in this proceedings version. ��

Hence, we give up adapting the binary partition method, and try another method.

3.2 Reverse Search Method

The reverse search method, proposed by Avis & Fukuda [1], is one of the most
powerful techniques in enumeration algorithmics. Let G = (V, E) be a given
undirected connected graph, and we want to enumerate the spanning trees in G.
To do this, we set up a rooted tree R on the spanning trees of G, namely, each
node of R is a spanning tree of G. The enumeration will be done by traversing R
in a depth-first-search manner, but we do not store the entire rooted tree itself;
we just specify a parent-child relation which implicitly defines R. In enumeration,
we recursively move to children by the depth first search. Therefore, to design
an efficient reverse-search algorithm it is enough for us to provide a parent-child
relation so that we can find a parent/child efficiently. Since we do not need to
store the entire family of spanning trees, but only a spanning tree under current
investigation, this enables us to obtain an algorithm which runs in polynomial
time delay and polynomial space. See Avis & Fukuda [1] and Nakano & Uno [6]
for detail.

First of all, we define an adjacency relation on the family of spanning trees
of G. Two distinct spanning trees T and T ′ of G are adjacent if the symmetric
difference of T and T ′ is of size two. Through this adjacency relation, we naturally
define the undirected graph G(G) which has the spanning trees of G as the node
set. We can easily see that the number of nodes adjacent to one node is O(|V ||E|),
and it is well-known [9, Exercise 2.1.62] that G(G) is connected.

On G(G) we define a rooted tree R. For this purpose, we assume that the edges
of G are labeled according to some fixed total order ≺ as e1 ≺ e2 ≺ · · · ≺ em.
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Then, the root of R is defined as a (unique) lexicographically maximum spanning
tree with respect to ≺, and a parent of a spanning tree T of G in the rooted tree
R is a (unique) lexicographically maximum neighbor of T in G(G). This parent-
child relation gives a well-defined rooted tree, and we can find a root, a parent of a
non-root spanning tree, and the children of a non-leaf spanning tree in polynomial
time. Therefore, this leads to an algorithm running in polynomial-time delay and
polynomial space for enumerating the spanning trees in an undirected connected
graph.

Let us try to generalize this approach to MC-MCST. We are given an undi-
rected connected graph G = (V, E) and k edge-cost functions c1, . . . , ck. In this
case, we consider the subgraph of G(G) induced by the feasible spanning trees
(i.e., to be enumerated in MC-MCST). Denote this induced subgraph by GM (G).
Although GM (G) depends on the edge-cost functions, we think them fixed thus
do not include in the notation for convenience. Ehrgott [2] showed that the graph
GM (G) is always connected. Therefore, we can define a rooted tree R on GM (G).
The most natural way is to use the same strategy as in enumeration of the span-
ning trees of a connected graph. Namely, we assume that the edges of G are
labeled according to some fixed total order ≺ as e1 ≺ e2 ≺ · · · ≺ em. Then, the
root of R is defined as a (unique) lexicographically maximum spanning tree with
respect to ≺, and a parent of a spanning tree T of G in the rooted tree R is a
(unique) lexicographically maximum neighbor of T in GM (G).

However, as opposed to the spanning trees enumeration case, for MC-MCST
we have (at least) two troubles here. The first problem is that we do not know
how to find a root in polynomial time. Actually, a greedy method fails since there
can be many ≺-maximal feasible spanning trees in GM (G). The second problem
is even worse: the graph R may not be connected. Therefore, the rooted tree is
not well-defined in general.

Hence, we need to devise another way to specify a rooted tree on GM (G) if
we wish to solve MC-MCST via reverse search.

4 The Proposed Algorithm

In our reverse-search algorithm for MC-MCST, we use GM (G) defined in the
previous section. Then, we have to define a promised rooted tree R. For this
purpose, we associate the following type of sequence to each feasible spanning
tree. We assume that the edges of G are labeled according to some fixed total
order ≺ as e1 ≺ e2 ≺ · · · ≺ em. This order ≺ will be used to break a possible
tie. For a feasible spanning tree T of G, let λT ∈ IRk be a lexicographically
maximum barycentric coordinate of a convex combination of c1, . . . , ck which T
minimizes. The following lemma shows that λT can be computed in polynomial
time.

Lemma 2. For every feasible spanning tree T of G, the vector λT can be found
in polynomial time.
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Proof. We can phrase the problem in the following form.

lex-max. λ

subj. to
∑

e∈T

k∑

i=1

λici(e) ≤
∑

e∈T ′

k∑

i=1

λici(e) for all feasible T ′ adjacent to T,

k∑

i=1

λi = 1,

λi ≥ 0 for all i ∈ {1, . . . , k}.

Note that in the first constraint we do not need to take into account all of the
spanning trees of G, but we only need the spanning trees adjacent to T . This
is due to the convexity (or matroid property) of the minimum-cost spanning
tree problem (we omit the detail). Since the number of spanning trees adjacent
to T is O(|V ||E|), the number of constraints is polynomial. This lexicographic
maximization problem can be solved by maximizing λi one by one in increasing
order of i ∈ {1, . . . , k}, and each maximization is reduced to a linear program.
Thus, using any polynomial-time algorithm for linear programming, we can solve
the problem in polynomial time. ��

The root of R is chosen as a feasible spanning tree R of G which has a lexi-
cographically maximum λT among all feasible spanning tree T . Namely, such
a barycentric coordinate λR should satisfy (λR)1 = 1 and (λR)i = 0 for all
i ∈ {2, . . . , k}. Thus, R is a minimum-cost spanning tree with respect to c1. If
there are several minimum-cost spanning trees with respect to c1, then we choose
a ≺-maximum one as a root. Such a tree R is unique, and can be found in poly-
nomial time by any polynomial-time minimum-cost spanning tree algorithm.

To specify the parent of a non-root feasible spanning tree T of G, we distin-
guish two cases. In the first case, we assume that λT = (1, 0, 0, . . . , 0)�. Then,
T and R both minimize c1. Therefore, as the following lemma certifies, we can
obtain another minimum-spanning tree with respect to c1 from T by deleting
one edge from T and adding one edge from R.

Lemma 3. Let G = (V, E) be a connected undirected graph, c : E → IR+ be a
non-negative edge-cost function, and T1, T2 ⊆ E be minimum-cost spanning trees
of G with respect to c. Then, there exist two edges e1 ∈ T1 \ T2 and e2 ∈ T2 \ T1
such that (T2 ∪ {e1}) \ {e2} is also a minimum-cost spanning tree of G with
respect to c.

Although this is a well-known fact as, for example, in [9, Exercise 2.3.13], we
give a proof here since we actually use the argument in the constructive proof
below for the construction of our rooted tree.

Proof. Let us choose a minimum-cost edge e1 ∈ T1 \ T2, namely c(e1) ≤ c(e)
for every e ∈ T1 \ T2. Then, we can see that T2 ∪ {e1} embraces a unique
cycle, say C. Note that C contains e1. Now, we choose a maximum-cost edge
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e2 ∈ C \ {e1} ⊆ T \ {e1}, namely, c(e2) ≥ c(e) for every edge e ∈ C \ {e1}. Then,
T = (T2 ∪ {e1}) \ {e2} is a spanning tree of G.

Now we look at the cost. If c(e1) < c(e2), then it follows that c(T ) = c(T2) +
c(e1) − c(e2) < c(T2). Hence it contradicts the minimality of T2. On the other
hand, suppose that c(e1) > c(e2). Then by the choice of e1 it follows that c(e) >
c(e2) for all e ∈ T1 \T2. We consider a (unique) cycle C′ in T1 ∪{e2} and pick an
arbitrary edge from e′ ∈ C′\{e2}. Then, T ′ = (T1∪{e2})\{e′} is a spanning tree
of G and the cost is c(T ′) = c(T1) + c(e2) − c(e′) < c(T1). Hence it contradicts
the minimality of T1. Thus, it must hold that c(e1) = c(e2) and hence T is also
a minimum-cost spanning tree of G with respect to c. ��

The parent of T is constructively defined as follows. First we choose a minimum-
cost edge eR ∈ R \ T (with respect to c1), and if there are several choices, we
choose a ≺-maximum one. This makes the choice of eR unique. Then, T ∪ {eR}
contains a cycle C and we choose a maximum-cost edge eT ∈ C \ {eR} (with
respect to c1), and if there are several choices, we choose a ≺-minimum one. From
these choices, define the parent of T as T ′ = (T∪{eR})\{eT }. From the discussion
above, we can see that T ′ is a feasible spanning tree and |R�T ′| < |R�T |. Note
that T ′ can be found in polynomial time from T .

In the next case, we assume that λT �= (1, 0, 0, . . . , 0)�. Then, we consider
the corresponding λT . Let j ∈ {2, . . . , k} be the minimum index such that
(λT )j �= 0. Then, we take μ ∈ IRk obtained from λT by increasing the first
component by a sufficiently small ε > 0 and decreasing the j-th component by
ε. By our assumption for the second case, we can see that such an ε exists which
keeps μT to be a barycentric coordinate. Let S be a minimum-cost spanning
tree of G with respect to

∑k
i=1 μici. If there are several minimum-cost spanning

trees, then we choose a ≺-maximum one. By the lexicographic maximality of
λT and the fact that μ is lexicographically larger than λT , we see that S is
different from T . Since ε is sufficiently small, S is also a minimum-cost spanning
tree with respect to c =

∑k
i=1(λT )ici. Hence, by Lemma 3 similarly to the first

case, we choose an edge eS ∈ S \ T such that c(eS) ≤ c(e) for all e ∈ S \ T (if
there are more than one such edges, then we choose the ≺-maximal one), and
for a (unique) cycle C of T ∪ {eS} we choose an edge eT ∈ C \ {eS} such that
c(eT ) ≤ c(e) for all e ∈ C \ {eS} (if there are more than one such edges, then we
choose the ≺-minimal one). Then, we can see (from the proof of Lemma 3) that
T ′ = (T ∪ {eS}) \ {eT } is a minimum-cost spanning tree with respect to c, and
|S�T ′| < |S�T | holds. We define the parent of T as T ′, and we can find T ′ in
polynomial time from T . In this way, the definition of a parent is completed. By
the construction, the parent of T is adjacent to T in GM (G), and it is unique.
Furthermore, the next lemma is important.

Lemma 4. Let G = (V, E) be a connected undirected graph and c1, . . . , ck : E →
IR+ be non-negative edge-cost functions. Then, the parent-child relation defined
above is well-defined. Namely, from a non-root feasible spanning tree T ⊆ E, by
moving to the parent step by step we can arrive at the root R.
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Proof. Let T be a non-root feasible spanning tree and T ′ its parent. The in-
vestigation is divided into two parts according to the case distinctions above.
Let us first consider when the first case is applied. In this case it holds that
λT ′ = λT = (1, 0, 0, . . . , 0)� and |R�T ′| < |R�T |. Therefore, we can arrive R
at some point.

Next let us consider when the second case is applied. Let T = T0, T
′ = T1, and

in general denote the parent of Tj by Tj+1. This construction can continue unless
λTj = (1, 0, 0, . . . , 0)�. Hence, it suffices to show that for every j there exists
some j′ > j such that λTj′ is lexicographically larger than λTj . If this is true, then
at some point (when the index is j, say) it must hold that λTj = (1, 0, 0, . . . , 0)�

and the case is reduced to the first one.
Fix an arbitrary j. We are done if λTj+1 is lexicographically larger than λTj .

Therefore, we assume λTj+1 = λTj . Let Sj be a spanning tree used to obtain Tj

as S was used to obtain T in the text above. Since Sj and Sj+1 are dependent
only on λTj and λTj+1 respectively, it holds that Sj = Sj+1. However, for any i
it holds that |Si�Ti+1| < |Si�Ti|. Therefore, there cannot be an infinitely long
sequence Si = Si+1 = Si+2 = · · · of identical spanning trees. Thus, there must
exist some j′ > j such that λTj′ is lexicographically larger than λTj . ��

From the discussion above, we finally obtain the following theorem.

Theorem 5. By the reverse search algorithm described above, we can solve MC-
MCST in polynomial-time delay and polynomial space.

5 Generalization

The reverse search algorithm in the previous section can be generalized in several
ways. A close inspection of the discussion shows that we only used the matroid
property of the minimum-cost spanning tree problem in the algorithm. Therefore,
we can conclude that the multi-criteria minimum-cost base problem in matroids
can be solved in polynomial-time delay and polynomial space, when a matroid
is given as the independent set oracle. More generally, we can solve the multi-
criteria minimum-cost base problem in submodular systems in polynomial-time
delay and polynomial space when a submodular function is given as a value-
giving oracle. To this end, we need to identify the adjacent bases of a given base
in a submodular system. This task is an instance of the submodular function
minimization problem, which can be solved in polynomial time [4].

As an extreme generalization, we can consider the multi-criteria linear pro-
gramming. In a linear program, we are given a system of inequalities Ax ≥ b, x ≥
0 where A ∈ IRm×n is a matrix, and b ∈ IRm is a vector. Then we want to find,
for a given c ∈ IRn, a solution x to the inequality system which minimizes c�x.

The inequality system above defines a convex polyhedron, called the feasible
region of the problem. Here we assume (without loss of generality) that it is
bounded and non-empty. With this assumption, a feasible region has at least
one extreme point, and furthermore there exists an optimal solution which is
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an extreme point of the polyhedron. We call such a solution an extreme opti-
mal solution. In a multi-criteria linear program, we are given a system of lin-
ear inequalities Ax ≥ b, x ≥ 0, and we want to enumerate the extreme opti-
mal solutions which minimize some convex combination of given k cost vectors
c1, . . . , ck ∈ IRn.

Problem: MC-LP
Input: a matrix A ∈ IRm×n, two vectors b ∈ IRm and c1, . . . , ck ∈ IRn

Enumerate: the extreme solutions x to the inequality system Ax ≥
b, x ≥ 0 which minimize some convex combination of c1, . . . , ck.

We call an instance of MC-LP non-degenerated if every extreme point of the
polyhedron determined by the given inequality system lies on n facets.

Theorem 6. The non-degenerated MC-LP can be solved in polynomial-time de-
lay and polynomial space.

Proof (sketch). In the feasible region every extreme solution is adjacent to other
extreme solutions through edges. This adjacency naturally defines an undirected
graph, and in the same way as we did for MC-MCST we can implicitly specify a
rooted tree in this graph. For a non-degenerated linear program, every extreme
solution is adjacent to at most n other extreme solutions, and the adjacent
extreme solutions can be found by pivot operations in polynomial time. The
connectedness of the analogue of GM (G) is known [3]. Furthermore, we can
obtain propositions similar to Lemmas 2, 3 and 4 (the proofs are similar), and
thus Theorem 6 is proven. ��

Note that MC-LP with possible degeneracy seems very difficult to tackle. It is
known that the vertex enumeration of a degenerated convex polyhedron, which
corresponds to the enumeration of the extreme solutions to a single-criterion
linear program, cannot be performed in polynomial total time (hence not in
polynomial-time delay and polynomial space) unless P = NP [5].

6 Concluding Remark

We have looked at some multi-criteria optimization problems from the view-
point of enumerative algorithmics. There seem many problems in multi-criteria
optimization to which the algorithm theory can potentially contribute.

A key fact in our reverse search algorithm for MC-MCST is that there are
at most polynomially many spanning trees adjacent to one spanning tree. This
is no longer the case if we consider the bipartite matching problem. So far,
we do not know how to obtain a polynomial-time delay and polynomial-space
algorithm for the multi-criteria assignment problem (i.e., maximum bipartite
matching problem). We can show that a natural binary partition approach does
not work in the same way as we did in Section 3. We leave this issue as an open
problem.
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Another problem is concerned with Lemma 2, where we saw that λT can
be obtained in polynomial time. However, it uses a polynomial-time linear pro-
gramming algorithm, hence not a strongly polynomial-time algorithm. We do
not know whether it can be computed in strongly polynomial time.
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