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Abstract. The past few years have witnessed different scheduling al-
gorithms for a processor that can manage its energy usage by scaling
dynamically its speed. In this paper we attempt to extend such work
to the two-processor setting. Specifically, we focus on deadline schedul-
ing and study online algorithms for two processors with an objective
of maximizing the throughput, while using the smallest possible energy.
The motivation comes from the fact that dual-core processors are get-
ting common nowadays. Our first result is a new analysis of the energy
usage of the speed function OA [15,4,8] with respect to the optimal two-
processor schedule. This immediately implies a trivial two-processor al-
gorithm that is 16-competitive for throughput and O(1)-competitive for
energy. A more interesting result is a new online strategy for selecting
jobs for the two processors. Together with OA, it improves the compet-
itive ratio for throughput from 16 to 3, while increasing that for energy
by a factor of 2. Note that even if the energy usage is not a concern, no
algorithm can be better than 2-competitive with respect to throughput.

1 Introduction

Energy usage is an important concern in the design of modern processors. To be
more energy efficient, many modern processors adopt the technology of dynamic
speed scaling, where the processor can adjust its speed dynamically in some
range without any overhead. In general, running a processor at speed s would
consume energy at the rate sα, where α is a constant believed to be 2 or 3
(see, e.g., [7,9,13,14]). That is, a processor can save energy by running slower.
This energy saving capability has triggered a lot of work to revisit processor
scheduling; the concern is how to exploit this capability to reduce the energy
usage, while achieving as much as possible the original scheduling objectives
(such as throughput and flow time).

The pioneering work along this direction was due to Yao et al. [15]. They
considered the problem of deadline scheduling on a processor that can vary
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its speed between 0 and infinity. We call this the infinite speed model. In this
model, it is always feasible to complete all jobs by their deadlines; the concern
is how to adjust the processor speed and whether the total energy usage can be
O(1)-competitive. Yao et al. answered in the affirmative by showing an online
algorithm called AVR to be 2α−1αα-competitive, and they proposed another
algorithm called OA (Optimal Available), which is later proved by Bansal et
al. [4] to be αα-competitive. Bansal et al. also gave a new algorithm that is
2(α/(α − 1))αeα competitive. Note that all these algorithms only give a speed
function for the processor; all jobs are scheduled in an EDF (Earliest Deadline
First) manner. Recently several interesting results on flow time scheduling have
also been revealed under the infinite speed model (see [1,5,10]).

The infinite speed model is a convenient model for studying different speed
functions and their energy usage. Yet in reality, the speed of a processor is
bounded. Chan et al. [8] recently initiated the study of the bounded speed model,
where a processor can vary its speed between 0 and a fixed maximum speed T . In
this model, deadline scheduling becomes more complicated and even the optimal
offline algorithm may not be able to complete all jobs. A natural objective is to
maximize the throughput (i.e., the total work of jobs that can be completed by
their deadlines), while using the smallest possible energy. They showed that the
energy demanded by the speed function OAT, which is simply OA capped at T ,
is at most αα + 4αα2 times of the energy of any offline algorithm that produces
the maximum throughput. They further showed that OAT can support a job
selection strategy called FSA to be 14-competitive for throughput. More recently,
Bansal et al. [3] showed that OAT is indeed “fast” enough to support a more
aggressive job selection strategy called Slow-D, thus improving the competitive
ratio from 14 to 4. Note that even if the energy issue is ignored, no algorithm
can be better than 4-competitive with respect to throughput [6].

Many modern processors are indeed dual-core (or even quad-core) processors.
It is natural to extend the study of energy efficient scheduling to the multi-
processor setting. In this paper we take the first step to investigate the case of
two processors, and we would like to derive an online algorithm with a through-
put that can match or is close to the known lower bound, while being O(1)-
competitive on energy. In the infinite speed model, it is relatively trivial to
derive a two-processor algorithm that can complete all jobs (1-competitive for
throughput) and is O(1)-competitive for energy (see explanation below). It is
the bounded speed model that needs attention. In this model, if energy is not
a concern, it has been known that the two-processor algorithm Safe-Risky is
2-competitive for throughput [11], and no online algorithm can be better than
2-competitive [12]. Thus, it is natural to ask for an online algorithm for two pro-
cessors that is 2 or close to 2 competitive for throughput and O(1)-competitive
for energy.

To ease our discussion, we let Opt1 to denote the optimal offline algorithm
for a single processor that maximizes the throughput, while using the smallest
energy, and similarly Opt2 for the case of two processors. Furthermore, let EOpti
and WOpti denote respectively the energy usage and throughput of Opti, where
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i = 1 or 2. First of all, let us explain why scheduling two processors is relatively
trivial in the infinite speed model. When the processor speed is unbounded, all
jobs can be completed on time even using one single processor. Furthermore,
we can use a single processor, which runs sufficiently fast, to simulate any two-
processor schedule that completes all jobs; the energy usage increases by at most
2α−1 times. Thus, EOpt1 ≤ 2α−1EOpt2. Given two processors, a trivial algorithm
is to use OA for one processor and let the other idle. This would give an algorithm
that is 1-competitive for throughput and 2α−1αα-competitive for energy.

The rest of this paper is devoted to the bounded speed model. First of all,
let us look at the performance of the trivial algorithm that uses Slow-D and
OAT on one processor, leaving the other idle. The simulation argument above
is no longer valid in the bounded speed model, yet it is probably still true that
EOpt1 ≤ 2α−1EOpt2, implying that the energy usage of OAT (and Slow-D) is at
most (2α−1αα +23α−1α2)EOpt2. In this paper we give a better analysis of OAT,
showing that the energy usage of OAT is at most

(2α−1αα + 22α−1α2)EOpt2.

For the throughput, we can easily argue that WOpt1 ≥ WOpt2/4 (using the
notion of minimally infeasible job set given in [8]). Thus, the trivial two-processor
algorithm is 16-competitive for throughput and O(1)-competitive for energy.

The above competitive ratio for throughput is far from the lower bound of 2.
This motivates us to develop a non-trivial strategy to schedule jobs with both
processors. We develop a new job selection strategy called Slow-SR, with one
processor following a schedule similar to Slow-D and the other working like the
Risky processor of the Safe-Risky algorithm. The competitive ratio of throughput
is reduced from 16 to 3. Both processors are running at a speed not exceeding
that of OAT and the competitive ratio for energy becomes 2ααα + 4αα2.

In conclusion, we have devised a two-processor algorithm for the bounded
speed model, which is 3-competitive for throughput and 2ααα+4αα2-competitive
for energy. As to be explained, our algorithm requires job migration from the
Risky processor to the Slow-D processor. It is interesting to find a non-migratory
algorithm with similar performance (though in a dual-core processor, the two
CPUs share the same memory, so the overhead of migration is not as expensive
as the typical distributed model). We believe that for m ≥ 2 processors, it is
possible to have an algorithm that is O(1)-competitive for both throughput and
energy usage. Yet it is hard to generalize the algorithm given in this paper. On
the other hand, Albers et al. [2] have recently obtained some interesting results
on multiprocessor deadline scheduling for the infinite speed model. They focused
on the special case where jobs have agreeable deadlines (i.e., the deadlines of the
jobs follow the order of their release times), and they showed a non-migratory
multiprocessor algorithm that is αα16α-competitive for energy (recall that in
the infinite speed model, the competitive ratio of throughput is always one).

Organization of the paper. In Section 2, we describe the algorithm Slow-SR.
In Section 3, we establish a couple of key properties of the algorithm. Using
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these properties, we analyze the throughput of Slow-SR in Section 4. Finally, we
analyze the energy competitiveness of OAT in Section 5.

Definitions and Assumptions. Before we give the details of Slow-SR, let us
define the scheduling problem formally. There are two processors, the speed of
each can be independently scaled from 0 to a maximum speed T . A processor
running at speed s can process s units of work per unit of time, consuming
energy at the rate sα. Jobs are released in an online fashion. Each job j is
characterized by a release time rj , a deadline dj , and required work (or size) pj .
At any time, a job can be executed in only one of the two processors. Preemption
and migration is allowed with no penalty. A job j is said to be completed if pj

units of work has been processed by its deadline. Note that there may be too
many jobs to be completed. The objective of a scheduler is to maximize the
throughput, while minimizing the energy. An online algorithm is said to be c-
competitive for throughput and c′-competitive for energy if, for any job sequence,
its throughput is at least 1

cWOpt2 and its energy usage is at most c′EOpt2. To
simplify our discussion, we assume that some suitable scaling has been done to
the processor speed and job size so that T = 1.1

2 The Slow-SR Algorithm

The algorithm Slow-SR makes reference to the schedule of OA. Before describing
the algorithm Slow-SR, we need a review of OA.

OA works for one processor only. We characterize OA by the schedule it plans
to use at any time t, assuming no more jobs are released after t. Let I(t) be
the subset of jobs that has arrived up to time t. We use ρ(t1, t2) to denote the
remaining work of the jobs in I(t) with deadlines in the interval (t1, t2]. The speed
function that OA plans to use looks like a staircase, with speed reduced at certain
“critical” times c0, c1, . . . defined as follows. Let c0 = t. For any i, the speed
that OA plans to use immediately after ci is ρi+1 = maxt′>ci ρ(ci, t

′)/(t′ − ci);
OA maintains this speed until ci+1, defined as the earliest time after ci such
that ρ(ci, ci+1)/(ci+1 − ci) = ρi+1. The intervals [ci, ci+1] are called the critical
intervals. Within each critical interval, jobs with deadlines in this interval are
executed in an EDF order. Intuitively, OA is very lazy; within each critical
interval, OA just uses the minimum speed that would not cause any job to miss
a deadline. Note that if no more jobs are released, OA never changes the speed
planned as above.

Consider any time t. With respect to the speed function planned by OA at
time t, we define tslow ≥ t to be the first time when OA plans to use speed 1 or
less. Furthermore, we say that t is a “slow time” if OA actually runs at speed 1

1 Given a job set I to be scheduled on a processor with maximum speed T > 1,
we define another job set I ′ by scaling the work of each job j in I to pj/T . Then
any schedule for I ′ with maximum speed 1 can be transformed to a schedule for I
with maximum speed T (by increasing the speed by a factor of T ), and vice versa.
Therefore, the competitive ratios for throughput and energy both preserve.
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Data Structures:
Qslow, initially ∅
Qfast, initially ∅
Juc, initially nil

Scheduling framework:
At fast time, SP runs earliest deadline job in Qfast at speed 1
At slow time, SP runs earliest deadline job in Qslow at the same speed as OA
If Juc �= nil, RP runs Juc at speed 1

Event: Release of job j
1: Update the simulated OA schedule by adding j
2: Move jobs in Qslow with deadline at or before tslow to Qfast
3: if dj > tslow then
4: Add j to Qslow
5: else if {j} ∪ Qfast is feasible then
6: Add j to Qfast

Event: LST interrupt of job j
7: if Juc = nil or p(j) > p(Juc) then
8: Juc ← j

Event: Job completion in SP
9: Remove the completed job from Qslow or Qfast

10: if Juc �= nil and Qfast = ∅ then
11: Qfast ← {Juc}
12: Juc ← nil

Algorithm 1. Slow-SR

or less at t, and a “fast time” otherwise. By definition, OA plans to change speed
at tslow, and tslow is a critical time. That means, OA plans to execute only jobs
with deadlines at or before tslow until tslow.

Slow-SR is defined in Algorithm 1.The two processors are labeled as SP (Slow-
D Processor) and RP (Risky Processor), respectively. The algorithm keeps two
queues (sets), both on jobs committed to run on SP. The queue Qslow contains
jobs that OA plans to run “slowly” (at speed 1 or less), and the queue Qfast for
jobs that OA plans to run “quickly” (at speed over 1). The algorithm also keeps
a job Juc committed to run on RP. For each job j not in Qfast or Qslow, an LST
(latest-start-time) interrupt will occur at time dj − pj , which attempts to retain
job j as Juc for execution.

3 Relations of the Job Queues

We establish two main characteristics of Slow-SR in this section, namely that
SP completes all jobs that have ever entered Qfast and Qslow, and that RP is
busy only during fast time. For any time t, let tslow(t) denotes tslow at t, before
events at t (if any) are taken into account. A job j is said to be active at time t
if t < dj and j has not yet been completed by t. Before we begin, it is essential
for us to understand the following implications of slow time.



Energy Efficient Deadline Scheduling in Two Processor Systems 481

Lemma 1. At any slow time, all active jobs are in Qslow.

Proof. Let t be a slow time. So tslow(t) = t. For any active job j, dj > t =
tslow(t) ≥ tslow(t′) for any t′ ∈ [rj , t], where the last inequality follows from the
nature of OA that tslow(t) increases monotonically with t. Thus j entered Qslow at
release, and is not moved to Qfast at or before t. So all active jobs are in Qslow. ��

Lemma 2. The schedules of OA and Slow-SR during slow time are exactly the
same (assuming they break ties of deadlines in the same way).

Proof. Since Slow-SR uses the speed of OA during slow time, we only need to
consider the choices of jobs of the two schedulers. Note that during slow time,
both schedulers always choose the earliest deadline active job (for Slow-SR this is
because Lemma 1 guarantees that Qslow contains all active jobs). So it suffices to
show that they have the same set of active jobs. Let t be the first slow time that
OA and Slow-SR have different set of active jobs, and thus can have different
scheduling. Let j be any job active at t in either scheduler, we will show that
it is active in both schedulers, meaning the active job sets are the same, i.e.,
contradiction. We just need to observe that neither scheduler runs j during fast
time before t, for OA it is because dj > t = tslow(t) ≥ tslow(t′) for any t′ < t, so
it has too late deadline; and for Slow-SR it is because the above implies that j
has never been in Qfast. In other words, scheduling of j before t must be exactly
the same in the two schedulers, so it must be active in both. ��

We now prove the two main properties of Slow-SR.

Property 1. SP completes all jobs that have ever entered Qfast or Qslow.

Proof. For jobs that are added to Qslow at release and are never moved to Qfast,
Lemma 2 guarantees that their scheduling is the same as OA and will be com-
pleted. We now show that Qfast remains feasible (using a speed 1 processor) at
any time, which implies that each job in Qfast is feasible at their deadlines, i.e.,
already completed at their deadlines. We first check that Qfast does not become
infeasible without jobs being added to it: if Qfast is non-empty but feasible at t,
there must be active jobs in Qfast, and Lemma 1 implies that it is fast time.
SP thus runs the earliest deadline job in Qfast using speed 1, so Qfast is feasible
immediately after t.

Now we turn to the cases when jobs enter Qfast. For cases where there is a
feasibility check, the feasibility after the job entering Qfast is trivial. The only
remaining case is when jobs are moved from Qslow to Qfast. If Qfast is feasible
before such a move, then Qfast ∪ Qslow must also be feasible before such a move
since their time of execution do not conflict: jobs in Qfast have deadlines at
or before tslow(t) and thus can only be processed at or before tslow(t), while
scheduling of Qslow is always the same as OA (Lemma 1) which plans to use
time after tslow(t) to work on Qslow. It is then obvious that the move does not
cause infeasibility. ��

Property 2. If Juc �= nil at t, then (1) Qfast �= ∅, and (2) t must be a fast time.
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Proof. Suppose at time t, Juc = j and Qfast = ∅. So j must have caused an LST
interrupt at some time tl < t, and remains as Juc since then. If Qfast is non-empty
at tl, there must be a time in (tl, t) at which Qfast changes from non-empty to
empty, when j would be moved to Qfast, contradicting that Juc = j at t. But
if Qfast is empty at tl, it means j can be completed with all jobs completed in
Qfast by tl, so j should enter Qfast at rj , contradicting that J caused an LST
interrupt. Therefore, Qfast �= ∅. This also implies that some active job is in Qfast
(Property 1), so by Lemma 1, the current time is a fast time. ��

4 Throughput Competitiveness

We analyze the throughput of Slow-SR in this section. This is done by parti-
tioning the set of jobs into two categories: Ls includes those that enter Qslow
on release, and Lf includes all other jobs. The jobs in Ls are all completed by
Slow-SR (Property 1), while Slow-SR can miss the deadlines of some jobs in Lf .
Note that the spans (i.e., time interval between release time and deadline) of
jobs in Lf are completely in fast time, putting a bound on the amount of work
that the optimal algorithm can complete for Lf . Let f denote the total length
of periods of fast time. The core of the proof is Lemma 5, allowing us to show
that Slow-SR completes f units of work, resulting into the following theorem.

Theorem 1. Slow-SR is 3-competitive on throughput.

Proof. The optimal offline schedule can at most complete all jobs in Ls and 2f
units of work in Lf , leading to a total throughput of WOpt ≤ p(Ls) + 2f . Slow-
SR completes all jobs in Ls, so its throughput WSlow-SR ≥ p(Ls). We will show
in Lemma 3 that for jobs with deadlines in each maximal period of fast time F ,
Slow-SR completes an amount of work no less than the length of F . Summing over
all such maximal periods, it means for jobs with deadlines in fast time, Slow-SR
completes no less than f units of work, leading to WSlow-SR ≥ f . In conclusion,
WOpt ≤ WSlow-SR + 2WSlow-SR ≤ 3WSlow-SR, completing the proof. ��

It is tricky to show that Slow-SR completes enough work during each maximal
period of fast time F . Although all jobs in SP meet deadlines (Property 1), and
SP always works at speed 1 during fast time, Slow-SR can be idle in some fast
time. So we consider each busy period within each maximal period of fast time.
Let t0, t1, . . . , tl be the list of times in F from earliest to latest when one of
the following happens: (1) F begins, (2) F ends, or (3) SP switches from idle
to busy. So F = [t0, tl]. Note that some job runs in SP at t0, since some jobs
with deadlines no later than tslow must be released at the beginning of any fast
time period, so if Qfast is not occupied by some previously released jobs, it must
accept one of those newly released jobs.

Lemma 3. For jobs with deadlines in a maximal period of fast time F , Slow-SR
completes an amount of work no less than the length of F .
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Proof. In Lemma 5, we will show that the amount of work completed before tn for
jobs with deadlines in (tslow(tn−1), tslow(tn)], plus the amount of work completed
during [tn−1, tn] for jobs with deadlines in (tn−1, tslow(tn−1)], is at least tslow(tn)−
tslow(tn−1). Now sum over all n from 1 to l. We can check that no work completed
bySlow-SR is being countedmore than once, and all of themare jobswithdeadlines
in F . So the work completed for jobs with deadlines inF is at least

∑l
n=1 tslow(tn)−

tslow(tn−1) = tslow(tl) − tslow(t0) = tl − t0, i.e., the length of F . ��

To establish Lemma 5, we depend on two facts. The first is that whenever a
job j cannot enter either Qfast or Qslow because a job j′ in Qfast ∪ {j} would
miss deadline, SP and RP of Slow-SR must be able to process an amount of useful
work no less than dj′ − rj . We say j′ repudiates j in such cases. The second is a
property of OA concerning tslow(t): the amount of work in jobs already released
at t with deadlines between t′ ≥ t and tslow(t) cannot be small.

Lemma 4. Let t be a fast time. For any t′ ∈ [t, tslow(t)), the amount of work in
jobs with deadlines in (t′, tslow(t)] released before t is more than tslow(t) − t′.

Proof. Immediately before t, consider the jobs that OA may plan to run during
[t′, tslow(t)]. It cannot run jobs with deadlines at or before t′, because these jobs
have deadlines passed. By the nature of OA, it does not plan to run jobs with
deadlines after tslow(t) until tslow(t). So it can only plan to run jobs with deadlines
[t′, tslow(t)]. Yet it plans to use faster than speed 1 during that whole period (so
that the period is fast). The lemma arrives immediately. ��

Lemma 5. Consider any n ∈ {1, . . . , l}. The amount of work completed be-
fore tn for jobs with deadlines in (tslow(tn−1), tslow(tn)], plus the amount of work
completed during [tn−1, tn] for jobs with deadlines in (tn−1, tslow(tn−1)], is at
least tslow(tn) − tslow(tn−1).

Proof. For t ∈ [tn−1, tn], let P (t) be the following proposition: If all jobs with
release time at or after t are not released, the amount of work completed by Slow-
SR before tslow(t) for jobs with deadlines in (tslow(tn−1), tslow(t)], plus the amount
of work completed by Slow-SR during [tn−1, tslow(t)] for jobs with deadlines in
(tn−1, tslow(tn−1)], is no less than tslow(t) − tslow(tn−1).

When t is set to be the last busy time tb in [tn−1, tn], this is exactly Lemma 5:
First, the work that would be done before tslow(tb) if no more jobs are released at
or after tb is exactly the same as the amount of work actually completed before tb
(since Slow-SR idles afterwards). Second, tslow(tb) is the same as tslow(tn) since it
cannot change between tb and tn, without causing a job to be accepted into Qfast
and extending the current busy period or starting a new one.

The base case t = tn−1 is trivial. Suppose P (t) is true for all t ∈ [tn−1, u).
We now establish P (u). It only uses release times less than t, so the transfinite
induction works (i.e., it always terminates after a finite number of steps).

Let S be the set of jobs with deadlines in (tslow(tn−1), tslow(u)] already released
before u. By Lemma 4, the amount of work in S must be more than tslow(u) −
tslow(tn−1). If all jobs in S enter Qfast or Qslow on release, P (u) is satisfied
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by just these jobs. We thus assume that some jobs in S are not accepted into
Qfast or Qslow on release, i.e., some repudiation occurred during [tn−1, u). Let jr

be the latest deadline repudiating job during these repudiations, which occurred
at tr < t. The set of jobs Γ with deadlines in (djr , tslow(u)] released before u
must all be accepted into Qfast or Qslow on release, since no job can repudiate
them. This also shows that djr must be larger than tslow(tn−1), otherwise all jobs
with deadlines in (tslow(tn−1), tslow(tn)] must be admitted into Qfast or Qslow,
contradicting our assumption.

If no job in Γ is run at any fast time before rjr , we can check that the total
completed work counted in P (u) is at least tslow(u)−tn−1 > tslow(u)−tslow(tn−1),
so P (u) is satisfied. The amount of work tslow(u)−tn−1 comes from three disjoint
parts of useful work processed by SP and RP: (1) Those processed before tslow(u)
with deadlines in (djr , tslow(u)]—at least tslow(u) − djr by Lemma 4; (2) Those
processed by SP during [tn−1, tr]—exactly tr−tn−1; and (3) Those with deadlines
at or before djr that are planned to be processed by SP at the repudiation time tr,
plus the job that is being repudiated or the replacement job that eventually get
completed by RP (with or without the help of SP)—the repudiation implies this
to be at least djr − tr.

Finally, we consider the case if some job je ∈ Γ runs at some fast time be-
fore rjr . Let te be a time immediately after such execution. Note that te ≥ tn−1:
otherwise je must be in Qfast and partially executed immediately before tn−1,
contradicting that SP is slow or idle by then. By P (te) (induction hypothesis),
the amount of work counted by P (te) is no less than tslow(te) − tslow(tn−1). To
see P (u) is satisfied, we note that P (u) includes the work completed for jobs
with deadlines in (tslow(te), tslow(u)], which is not counted in P (te). This is more
than tslow(u) − tslow(te) by Lemma 4, so the amount of work counted by P (u) is
more than tslow(te)− tslow(tn−1)+ tslow(u)− tslow(te) = tslow(u)− tslow(tn−1). ��

5 Energy Competitiveness

We analyze the energy consumption of the single processor schedule OA capped
at a maximum speed of 1 (OAT) in this section, showing that it is (2α−1αα +
22α−1α2)-competitive in energy against the minimum energy 2-processor offline
schedule that achieves the maximum throughput. By Property 2, the speeds of
both processors of Slow-SR never exceed that of OAT, so this implies that Slow-
SR is (2ααα + 22αα2)-competitive in energy against this offline schedule. The
competitive ratio of OAT also implies that Slow-D [3] is (2α−1αα + 22α−1α2)-
competitive in energy in the same setting.

The analysis of OAT against optimal 2-processor schedule is a modification of
the proof presented in [8]. Let’s review the notations used. At any time t, we use
EOAT(t) and EOpt(t) to denote the amount of energy already spent by OAT and
OPT respectively. We overload the speed function OAT with an actual schedule
that always executes the same job as OA, using the OAT speed function (i.e.,
capped at speed 1). This way, OAT always processes a job whenever its speed is
non-zero, but may not process enough work to complete some jobs. In contrast,
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OPT never processes a job without eventually completing it. We call work that
is done for a job completed by OPT to be type-1 work, and other work to be
type-0 work.

Consider OA at any time t. We use two functions φ(t) and β(t) (as in [8]).
The function φ(t) is 0 at the beginning and the end of the schedule, and changes
continuously except when jobs are released. The function β(t) is α2 times the
amount of type-0 work that would be completed by OAT if no more jobs are
released after t. Our main theorem and the outline of its proof is as follows.

Theorem 2. EOAT ≤ (2α−1αα + 22α−1α2)EOpt.

Proof. We will show that EOAT(t)+φ(t)−β(t) ≤ 2α−1ααEOpt(t). Before showing
how to prove the inequality, let’s consider its consequence. Consider a time te
after all job deadlines. At that time, EOAT(te) = EOAT, EOpt(te) = EOpt, and
φ(te) = 0. So EOAT − β(te) ≤ 2α−1ααEOpt. Lemma 6 will show that β(te) ≤
22α−1α2EOpt. The theorem arrives immediately.

We now prove that EOAT(t) + φ(t) − β(t) ≤ 2α−1ααEOpt(t). Before any job
is released, the inequality holds trivially, since all the terms are 0. Lemma 7 will
show that when no job is being released, the rate of changes of the terms in the
inequality satisfies EOAT(t)′+φ(t)′−β(t)′ ≤ 2α−1ααEOpt(t)′. Lemma 8 will show
that when a job is released, the change of the terms in the inequality satisfies
Δφ(t) − Δβ(t) ≤ 0. EOAT(t) and EOpt(t) obviously remain unchanged. Thus no
event invalidates the inequality since the time before any job is released. ��

Now we bound the amount of type-0 work that OAT eventually completes.

Lemma 6. If te is a time after the deadlines of all jobs, β(te) ≤ 22α−1α2EOpt.

Proof. We first bound EOpt. Let S be a subset of I, the input job set. We say S
is minimally infeasible if S is infeasible, but any proper subset of S is feasible,
using a speed-1 processor. The union of spans of jobs in a minimally infeasible
job set, span(S), forms a continuous time interval (otherwise one of the sub-
intervals alone must be infeasible). Let M be the set of all minimally infeasible
subsets of I. Let span(M) be the union of all spans of those subsets within M. A
job j is “overloaded” if its span is in span(M) completely, and “underloaded” if
otherwise. So all jobs in M are overloaded. In [8], it is shown that (1) all type-0
jobs are overloaded, and (2) underloaded jobs do not affect the feasibility of job
sets. Because of the latter, OPT must maximize the amount of work completed
in overloaded jobs.

Let M0 be a minimal subset of M with span(M0) = span(M). The spans
of minimally infeasible subsets in M0 must all have different start times in their
spans, otherwise one of them can be removed from M0, so M0 is not minimal.
So let M0 = {S1, S2, . . .}, where the start time of span of S1 is earlier than
that of S2, etc. The span of Si cannot overlap with the span of Si+2 or any
later subsets, since otherwise Si+1 can be removed from M0. It is thus feasible
to complete using one processor all jobs in S1, S3, . . . except the smallest job
in each subset; and to complete using the other processor all jobs in S2, S4,
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. . . except the smallest job in each subset, leading to an amount of work no less
than half of the total length of span(M) (which we will denote by |span(M)|).
The minimum energy schedule for OPT to complete this amount of work within
a time period of |span(M)| is to spread it over all the time in two processors.
This results in speed 1/4 throughout the span, so EOpt ≥ 2|span(M)|/4α. Recall
that β(te) is α2 times the amount of type-0 work completed by OAT. Since all
type-0 work are overloaded, they must be executed in span(M), resulting in
β(te) ≤ α2|span(M)| ≤ 22α−1α2EOpt as claimed. ��

To continue with the proof we need the definition of φ(t). Recall that the plan
of OA defines critical times c0, c1, . . . ; and during each critical interval [ci, ci+1],
OA plans to use constant speed ρi+1. Let wOAT (i) be the amount of unfinished
work under OAT in jobs with deadlines in (ci−1, ci], according to the schedule if
no more jobs are to be released after t. Let wOPT (i) be the amount of unfinished
type-1 work under OPT in jobs with deadlines in (ci−1, ci]. Then

φ(t) =
∑

i≥1

(min{ρi, 1})α−1(α wOAT (i) − α2wOPT (i)) .

We analyze the rate of change in terms of the inequality EOAT(t)+φ(t)−β(t) ≤
2α−1ααEOpt(t), when no job is released.

Lemma 7. When no job arrives, EOAT(t)′+φ(t)′−β(t)′−2α−1ααEOpt(t)′ ≤ 0.

Proof. Without new jobs, the expected schedule used by OAT is not changed,
so β(t)′ = 0. OAT runs at speed s = min{ρ1, 1}, so EOAT(t)′ = sα. For OPT,
assume its two processors run at speed s1 and s2, so EOpt(t)′ = sα

1 + sα
2 .

We need to bound φ(t)′ from above. The function φ(t) consists of two sets
of components, one for wOAT (i) and the other for wOPT (i). For wOAT (i), only
wOAT (1) is changing, at a rate of −s. For wOPT (i), we do not know which
i corresponds to the running jobs in the two processors, but i = 1 has the
largest scaling factor, which results in the largest change of φ(t). So we have
φ(t)′ ≤ sα−1(−αs + α2(s1 + s2)) = −αsα + α2sα−1(s1 + s2). Therefore,

EOAT(t)′ + φ(t)′ − β(t)′ − 2α−1ααEOpt(t)′

≤ sα − αsα + α2sα−1(s1 + s2) − 2α−1αα(sα
1 + sα

2 )

=
(1 − α)sα + 2α2sα−1s1 − 2αααsα

1

2
+

(1 − α)sα + 2α2sα−1s2 − 2αααsα
2

2
= (sα

1 f(s/s1) + sα
2 f(s/s2))/2 ,

where f(z) = (1 − α)zα + 2α2zα−1 − 2ααα. We note that f(0) = −2ααα <
0, and when z → ∞, f(z) → (1 − α)zα < 0. For maximum value, we set
f ′(z) = (1 − α)αzα−1 + 2α2(α − 1)zα−2 = 0, which implies that z = 2α, and
f(z) = (1 − α)(2α)α + 2α2(2α)α−1 − (2α)α = 0. So f(z) is non-positive for
any z ≥ 0, concluding our proof. ��
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Finally, we note that the proof in [8] can be used directly to show the following
lemma, which concerns with how the release of jobs (rather than the running of
jobs) affects φ(t) and β(t).

Lemma 8. At the time when a job is released, Δφ(t) − Δβ(t) ≤ 0.
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