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Abstract. In this paper we propose a new methodology for determin-
ing approximate Nash equilibria of non-cooperative bimatrix games and,
based on that, we provide an efficient algorithm that computes 0.3393-
approximate equilibria, the best approximation till now. The methodol-
ogy is based on the formulation of an appropriate function of pairs of
mixed strategies reflecting the maximum deviation of the players’ pay-
offs from the best payoff each player could achieve given the strategy
chosen by the other. We then seek to minimize such a function using
descent procedures. As it is unlikely to be able to find global minima
in polynomial time, given the recently proven intractability of the prob-
lem, we concentrate on the computation of stationary points and prove
that they can be approximated arbitrarily close in polynomial time and
that they have the above mentioned approximation property. Our result
provides the best € till now for polynomially computable e-approximate
Nash equilibria of bimatrix games. Furthermore, our methodology for
computing approximate Nash equilibria has not been used by others.

1 Introduction

Ever since it was proved that the problem of finding exact Nash equilibria is
intractable in the sense that it is PPAD-complete even for 2-player games [2],
attention has been focused on finding e-approximate such equilibria for e > 0. In
this respect, simple algorithms have recently been provided for finding approxi-
mate equilibria for constant e = Z and € = % ([4], [B]) for general bimatrix games
(and for positively normalized payoff matrices) based on examining small sup-
ports of 1 or 2 for either player. A well known result provides 0.38-approximate
Nash equilibria of normalized bimatrix games in polynomial time ( [3]). Concur-
rently with us , [I] gave an approach based on [7] that provides 0.36-approximate
Nash equilibria of normalized bimatrix games. Furthermore, it has been shown
( [6]) that the more general approximation problem of finding a fully polyno-
mial time approximation scheme for any € > 0, has similar complexity with the
problem of finding exact Nash equilibria.
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For a different, stronger, notion of approximation, i.e. the well supported ap-
proximate Nash equilibria, the best known result so far provides 0.658-approximate
well supported equilibria for normalized bimatrix games in polynomial time ([7]).

Most of the reported investigations of finding approximate equilibria for con-
stant € are based on the examination of small supports of the strategy sets of
the players and the algorithms presented are based on brute force search over
all such supports.

In this work we adopt a different approach that does not rely on any pre-
specified small supports neither on an indiscriminate search over all small sup-
port strategies. We define an equivalent optimization problem in the strategy
spaces of both players and attempt to obtain a stationary point of a specific
function that measures the maximum deviation of the players’ payoffs from the
best payoff each player could achieve given the strategy chosen by the other. We
do so through a descent procedure along feasible directions in the strategy spaces
of both players simultaneously. Feasible descent directions are computed by solv-
ing linear programming problems. Also, by solving similar linear programs we
can determine whether or not there is a descent direction at any given point in
the strategy spaces. If a descent direction does not exist, then we have reached a
stationary point. We prove that at any stationary point of that function we ob-
tain strategy pairs such that at least one of them is an 0.3393-approximate Nash
equilibrium. We also prove that an almost stationary point of the function can
be reached in polynomial time with respect to the input data of the game, and
that point suffices to get arbitrarily close to 0.3393. Our work can be accessed
as a full technical report (revised) also in [10].

2 Definitions and Notation

Let R,C denote the m by n row and column players’ payoff matrices respec-
tively, for m,n any positive integers. We assume that both payoff matrices are
positively normalized, i.e. all their entries belong to [0, 1] (without loss of gener-
ality any game can be equivalently transformed to a positively normalized game
by appropriate shifting and scaling each one of the payoff matrices).

Let us denote by e the k-dimensional column vector having all its entries
equal to 1 (for positive integer k). Let

Ak:{u:uERk,uzO,eZUZI}

be the k-dimentional standard simplex (superscript 7 denotes transpose).
Also, for any vector u € R, we define the following :

supp(u) = {i € (1,k) : u; # 0}
being the support index subset of v € RF and also
suppmazx(u) = {i € (1,k) : u; > u; V5 € (1,k)}

being the index subset where all entries are equal to the maximum entry of
u € R
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We also denote by
max(u) = {u; : u; > uy, for all j}

the value of the maximum entry of the vector and by
mazs(u) = {u;,i € S :u; > uy, for all j € S}

the value of the maximum entry of the vector within an index subset S C (1, k).
Finally, we denote by S the complement of an index set S, i.e. S = {i €
(1,k),i ¢ S}.
The problem of finding an e-approximate Nash equilibrium in the game (R, C),
for some € > 0, is to compute a pair of strategies z in 4A,, and y in 4A,, such that
the following relationships hold :

"Ry <x"Ry+e€forallx € A,
and

2’Cy <z"Cy+eforalyeA,

3 Optimization Formulation

Key to our approach is the definition of the following continuous function map-
ping A,, x A, into [0,1] :

f(z,y) = max{maz(Ry) — " Ry, max(C"z) — " Cy} (1)

It is evident that f(z,y) > 0 for all (z,y) € A,, x A, and that exact Nash
equilibria of (R,C) correspond to pairs of strategies such that f(xz,y) = 0.
Furthermore, e- approximate equilibria correspond to strategy pairs that satisfy
f(z,y) < e. This function represents the maximum deviation of the players’
payoffs from the best payoff each player could achieve given the strategy chosen
by the other.

An optimization formulation based on mixed integer programming methods
was suggested in [9]. However, no approximation results were obtained there.

The function f(x,y) is not jointly convex with respect to both = and y. How-
ever, it is convex in x alone, if y is kept fixed and vice versa.

Let us define the two ingredients of the function f(x,y) as follows :

fr(z,y) = maz(Ry) — 2" Ry

and

fo(@,y) =maz(C7x) — 27Cy

From any point in (z,y) € A,, x A, we consider variations of f(z,y) along
feasible directions in both players’ strategy spaces of the following form :

a=a 3]+ [3
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where, 0 < e < 1,(2',y') € A, x A, (the vectors in brackets are m + n -
dimensional column vectors).

The variation of the function along such a feasible direction is defined by the
following relationship:

Df(x,y,x’,y’,e) = f($—|-€(.73/ —.I‘),y—FG(y/ _y)) _f(x’y)

We have derived an explicit formula for D f (z,y, 2’, ', €) (see Appendix), which
is a piecewise quadratic function of € and the number of switches of the linear terms
of the function is at most m + n. Therefore, for fixed (2’,y’) this function can be
minimized with respect to € in polynomial time. Furthermore, there always exists
a positive number, say €*, such that for any € < €* the coeflicient of the linear term
of this function of € coincides with the gradient, as defined below. The number e*
generally depends on both (z,y) and (2/,3").(See Appendix A.3).

We define the gradient of f at the point (z,y) along an arbitrary feasible
direction specified by another point (2/,y’) as follows:

1
Df(z,y,«',y") = lim Df(z,y, 2",y €)
e—0 €

The gradient Df(x,y,2',y") of f at any point (z,y) € A,, x A, along a
feasible direction (determined by another point (2/,y’) € A,, x A,) provides
the rate of decrease (or increase) of the function along that direction. For fixed
(z,y), Df(z,y,2',y") is a convex polyhedral function in (z/,y’). In fact we have
derived the explicit form of Df(x,y,a’,y’) as the maximum of two linear forms
in the (2, ") space (see the derivations below and in the Appendix A.1). At any
point (z,y) we wish to minimize the gradient function with respect to (z/,y’) to
find the steepest possible descent direction, or to determine that no such descent
is possible.

Let us define the following index sets:

Sr(y) = suppmaz(Ry) and Sc(x) = suppmaz(C™x)

By definition, Sgr(y) C (1,m) and Sc(z) C (1,n).
From the Appendix [A.1] we get :
(a) If fR(mu y) = fC(mu y) then

Df(z,y,2',y") = max(Ti(z,y,2",y), To(z,y,2",y")) — f(z,y)

where

m1(y') = max(Ry') over the subset Sg(y)
and

ma(2') = maz(CTz") over the subset Sc(x)
and

Ti(z,y,2',y") =mi(y’) — 2" Ry’ — (z')"Ry + =" Ry

and
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Ty(x,y,2',y') = ma(a’) — a7 Cy' — (21)"Cy + 2" Cy

(b) If fr(z,y) > fo(z,y) then

Df(1'7 Y, ‘rlu y/) = Tl(ma Y, ‘Tlv y/) - f(mv y)

and

() If fr(,y) < fole,y) then

Df(z,y,x',y") = Ta(z,y, 2",y )— f(z,y). In the cases (b) and (c¢) the functions
T, and Ty are as defined in case (a).

The problem of finding D f(z,y) as the minimum over all (2/,y’) € A, x A,
of the function Df(x,y,a’,y’), is a linear programming problem.

This problem can be equivalently expressed as the following mini-max prob-
lem by introducing appropriate dual variables (we derive it for (x,y) such that
fr(z,y) = fo(x,y) since this is the most interestng case and the cases where
the two terms are different can be reduced to this by solving an LP, as we shall
see below) as follows :

Minimize (over z’,y’) the maximum (over w, z, p ) of the function

/
(1= 271G (a.9) |
where :
(a) the maximum is taken with respect to dual variables w, z, p such that :
w € Ay, supp(w) C Sr(y) and z € A,,, supp(z) C Sc(x) and p € [0, 1].
(b) The minimum is taken with respect to (z/,y') € A,, x 4,,, and
(c) the matrix G(x,y) is the following (m + n) by (m + n) matrix :

Gla,y) = R—enx™R —eny  RT + emen” T Ry
’ —epx"C'+epe, 27 Cy CT —ey"C™

The probability vectors w and z play the role of price vectors (or penalty
vectors) for penalizing deviations from the support sets Sg(y) and Sc(x), and
the parameter p plays the role of a trade-off parameter between the two parts of
the function f(z,y). In fact, the w, z and p are not independent variables but they
are taken all together to represent a single (m+n)-dimensional probability vector
on the left hand side (the maximizing term) of the linear mini-max problem.

Solving the above mini-max problem we obtain w,z,p,z’ and vy’ that are
all functions of the point (z,y) and take values in their respective domains
of definition. Let us denote by V(x,y) the value of the solution of the mini-
max problem at the point (x,y). The solution of this problem yields a feasible
descent direction (as a matter of fact the steepest feasible descent direction)
for the function f(z,y) if Df(z,y) = V(z,y) — f(z,y) < 0. Following such a
descent direction we can perform an appropriate line search with respect to the
parameter € and find a new point that gives a lower value of the function f(x,y).
Applying repeatedly such a descent procedure we will eventually reach a point
where no further reduction is possible. Such a point is a stationary point that
satisfies D f(x,y) > 0.
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In the next section we examine the approximation properties of stationary
points. In fact, we prove that given any stationary point we can determine
pairs of strategies such that at least one of them is a 0.3393-approximate Nash
equilibrium.

4 Approximation Properties of Stationary Points

Let us assume that we have a stationary point (z*,y*) of the function f(z,y).
Then, based on the above analysis and notation, the following relationship should
be true :

Df(z"y") = V(z",y") = f(@",y") 2 0

Let (w*,z*) € A, x A,,p* € [0,1] be a solution of the linear mini-max
problem (with matrix G(x*, y*)) with respect to the dual variables corresponding
to the pair (z*,y*). Such a solution should satisfy the relations supp(w*) C
Sr(y*) and supp(=*) C Sc(z*).

Let us define the following quantities:

A= min w* — )T Ry’
y/:supp(y’)CSc(I*){( ) By}

and

. T * *
vl 7 O YOk

From the fact that R, C are positively normalized it follows that both A and
w are less than or equal to 1.

At any point (z*, y*) these quantities basically define the rates of decrease (or
increase) of the function f along directions of the form (1 — €)(z*, y*) + e(z*,y')
and (1—¢)(a*,y*)+e(a’,y*), i.e. the rates of decrease that are obtained when we
keep one player’s strategy fixed and move probability mass of the other player
into his own maximum support, towards decreasing his own deviation from the
maximum payoff he can achieve.

From the stationarity property of the point (z*,y*) it follows that both A
and p are nonnegative. Indeed, in the opposite case there would be a descent
direction, which contradicts the stationarity condition.

Let us define a pair of strategies (&,7) € A,, x A, as follows:

Lo J @) f(aryT) < f(2,9)
(@9) = {(:%, y) ,otherwise

where

Lo+ ATe x*, 2% ) A >p

(j Zj) o 1+A—p 1+A—p
7)) =
Y .
w*, 1+i7)\z* + 1iu7>\y* A\ < p.

We now express the main result of this paper in the following theorem :
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Theorem 1. The pair of strategies (&,7) defined above, is a 0.3393-approzimate
Nash equilibrium.

Proof. From the definition of (z,¢) we have :
f(@,9) < man{f(z",y%), f(2,7)} (2)
Using the stationarity condition for (z*,y*) we obtain :
f@*,y") V(™ y7)
But V(z*,y*) is less than or equal to
P EL+ (1= p")E;
where
Ey = (w" Ry — 2" Ry — 2" Ry* + 2*" Ry*)
and
Ey= (27072 — 2" Cy’ — 2T Cy* + 2*7 Cy*)

and this holds V(z/,y') € A, x 4,
Setting &’ = * and ¢’ : supp(y’) C Sc(2*) in the above inequality we get :

f@®y™) < ptA. ®3)

Next, setting ' = y* and 2’ : supp(2’) C Sr(y*) in the same inequality, we
get :

f®y") < (1 —p")p. (4)

Now using the definition of the strategy pair (Z,¢) above and exploiting the
inequalities

(w* — 2*)TRz* > X, since supp(z*) C Sc(x*)
w'C(z* - y*) > p,since supp(w*) C Sr(y*)

we obtain: (assume A > p)

T
fr(Z,§) = max{Rj} — Z" Rj = max{Rz"} — ( ! w” + A= H x*) Rz~

1+A—p 1+A—p
_ * 1 *T * )\—,LL *T *
= max{Rz"} 1+>\_Mw Rz 1+>\_Mm Rz

A < 1—p
T+A—p = 1+A—pu

IN

max{Rz*} — 2" Rz* —
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Similarly, setting D = C7,

fe(z,9) = max{Dz} — 27Cj

_ 1 * )\_/1/ * 1 *T * )\_M T *
7max{1+)\7qu +1+/\7ND:L} 1+/\7Mw z 1+/\*N£ Cz
1 * A_N * 1 *T *
< m: =P ome - - _
_1+)\_Mde{D’UJ}+1+)\_Mde{DI} T Cz
7%max{Da¢*}
1
— . D *\ T *\ *T * o xT *
71+)\_M(mdx{ w*} —w* Cy*) 714-)\—#(10 Cz" —w* Cy*)
< 1-n
T 14+ A
From the above relationships we obtain:
- 1—p
1(,9) < for A > (5)

T 1l4+A—p

(A similar inequality can be obtained if A < p and we interchange A and p)
In all cases, combining inequalities (@), ), () and using the definition of
(z,9) above, we get the following:

1 — min{, 11} } -

5 ) < mi * %
f(2,9) < min {p A (L= p"), 1+ max{\, p} — min{\, p}

We can prove that the quantity in (@) cannot exceed the number 0.3393 for
any p*, A\, u € [0, 1]. For the proof see Appendix A.2.
This concludes the proof of our main Theorem.

5 Descent Procedure

A stationary point of any general Linear Complementarity problem can be ap-
proximated arbitrarily close in polynomial time via the method of Y. Ye [I1].
We give here an alternative approach, directly applicable to our problem.

We present here an algorithm for finding a pair of stategies that achieve the
0.3393 approximation bound. The algorithm is based on a descent procedure of
the function f(z,y), (z,y) € A, X A, and consists of the following steps:

(set b=0.3393)

1. Start with an arbitrary (z,y) = (2o, y0) in 4,, X 4,, (e.g. the uniform dis-
tribution). Produce another pair (x,y) with lower value of f(x,y) and for
which fr(z,y) = fo(x,y) as follows :

(a) If fr(zo,y0) > fo(zo,yo0), keep yo fixed and solve the LP :
minimize (over z € A,,) the

maz(Ryo) — " Ryo
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under the constraints :

T

max(C"z) — 2" Cyo < max(Ryo) — =" Ryo

)
(b) If fr(zo,y0) < fo(zo,yo0), keep xp fixed and solve the LP :
minimize (over y € A,,) the

maz(C"xy) —xo" Cy
under the constraints :
max(Ry) — xo” Ry < max(C"xg) — x0" Ry

2. Solve the linear minimax problem with the matrix G(z,y) as defined in
section 3. Compute the value of V(z,y), the pair of strategies (z’,%’), the
index sets Sg(y) C (1,m), Sc(x) C (1,n), the vectors w, z, the parameter
p, and the values of A\, u as defined in sections 3 and 4 for the current point
(z,y). Also determine the pair of strategies (&, ) as defined in section 4.

3. If at least one of the following conditions is true, stop and exit — a pair of
strategies achieving the approximation bound b has been found.

(i) V(z,y) — f(z,y) > 0 (stationary condition: either f(x,y) or f(&,7) is

<b)
(i) f(z,y) <b
(iii) f(z,9) <b
(iv) f(o',y') <b
(v) flz',y) <b
(vi) f(x,y') <D

4. If none of the conditions of step 3 is satisfied, compute the minimum with
respect to e of the function f(z +e(x’ — ),y +€(y’ —y)) along the direction
specified by the pair (2/,y’) found in step 2, and set (z,y) = (z + (2’ —
x),y+€e(y —y)) (such a minimization with respect to € can be performed in
polynomial time, as mentioned earlier, since the number of switches of the
linear terms of the piecewise quadratic function cannot exceed m + n).
Furthermore, if for the new pair (z,y) we have fr(z,y) # fo(z,y), solve the
LP specified in Step 1 and compute the new (z,y) with lower value of the
function f(z,y) and for which fr(z,y) = fo(z,y).

Go to Step 2.
End of descent.

In regard to the number of steps that are required for convergence and exit, we
provide a convergence analysis in Appendix [A3] that shows that the algorithm
converges in a polynomial number of iterations.

6 The Complexity of Our Algorithm

Our algorithm is basically the procedure descent of the function f(z,y). The
number ¢ of the descent steps for convergence, given any 6§ > 0, is O( 612) and
that suffices to get an 0.3393 + d-approximate equilibrium.
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So, the total time complexity of our method is O( )T P(n) time (when
n > m) where T, P(n) is the time to solve a linear program of size n. Thus,
our method is an FPTAS with respect to approximating a stationary point and
hence an approximate equilibrium of the stated quality.

An arbitrary point (z,y) € 4A,, x 4,, can be used to initialize the algorithm.

7 Discussion and Future Work

It is known from Bellare and Rogaway ([8]) that (even in a weaker sense) there
is no polynomial time p - approximation of the optimal value of the problem
min{z"Qz,s.t.Bx = b,0 < x < ¢} for some p € (0,}), unless P = NP. Of
course, here p is a multiplicative relative accuracy and the reduction that they
use involves matrices that are different from the ones in our case. However,
this gives evidence that going below }) in the approximation of equilibria will
probably require a radically different approach (if any), perhaps probabilistic.
We are currently working on this.
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A Appendix

A.1 Appendix A.1

Using the definitions for any (x,y) € A, X 4,, ie:

fr(z,y) = maz(Ry) — " Ry
fo(z,y) = max(CTx) — 2" Cy
f(mv y) = mam{fR(xa y)v fC(xu y)}

we have, for any (2/,y") € A, x A, and any € € [0, 1] that :
Df(z,y. 2"y e) = f(z + (@’ —z),y + ey —y)) = f(z,y)
This can be written as (analytically)

max{ fr(z+e(z' —x), y+e(y'—y)), fo(z+e(@’ —x), y+e(y' —y)) } —max{ fr(z, ), fo(z,y)}

and this is actually max (K1, K2) where

K1 =eDfg+ Afgp — €H fr — (1 — €)maz{0, fo(z,y) — fr(z,y)}
and also
Ky =eDfc+ Afc — H fo — (1 — e)max{0, fr(x,y) — fo(z,y)}

where now the functions D fg, Afg, H fr, Dfc, Afc, H fo are defined below.

Dfr(z,y,2',y") = {mazx(Ry )overSr(y)} — 2" Ry’ — 2" Ry + 2" Ry — f(=,y)

and

Hfp(z,y.2",y") = (' —2)"R(y' —y)

and

Dfc(z,y, 2, y") = {max(C" 2" YoverSc(x)} — 2™ Cy' — 2’ Cy + 2" Cy — f(z,y)
and

ch(xv y,x/,y/) = (xl - x)TC(y/ - y)

In order to define Afr, Afc we remind the reader that Sg(y) = suppmax(Ry)
and that S¢(z) = suppmaz(C™x) and we will also use their complements :

Skr(y) being the complement of Sg(y) in the index set {1,m} and
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Sc(x) being the complement of Sc(x) in the index set {1,n}
Let now

M, be the maximum of Ry over Sg(y)
M, be the maximum of Ry’ over Sg(y)
and

M, be the maximum of C"x over S¢(x)
M, be the maximum of C7z’ over S¢(z)

Finally Afg(z,y, 2,y €) is the maximum of

(0, max over Sr(y) of (I(y,y") + J(y))) where
I(:’Ja y/) = 6((Ry/ - emMy’) + (Myem - Ry)) and
J(y) = =(Myem — Ry)

Also finally Afc(z,y,2',y',€) is also the maximum of
((0, max over Sc¢(z) of (I(x,2") + J(x))) where

I(z,2") = e((CT2" — ey, Mys) + (Mye, — CTx)) and
J(z) = —(Mze, — Cx)
From the above equations, the gradient at the point (z,y) € A,, x A,, along a

feasible direction specified by a (2/,y’) € A,, X 4,, can be determined by letting
€ go to 0 and get finally :

maz(Dfr, Dfc)if fr(z,y) = fo(z,y)
.Df((E,y7l'/,y/): DfR lffR($7y)>fC($7y)
Dfc if fr(z,y) < fo(z,y)

A.2 Appendix A.2

We first notice that min{p*A, (1 — p*)u} < ;‘fﬂ. Indeed, if we assume that

PN > /\/Yu and (1 — p")pu > /\’YM for some p*, A\, € [0,1], we would have

p* > K, and (1—p*) > /\j\r#, a contradiction. So

o . A 1 —min{\, pu}
< .
f(xﬂy) mln{)\+u’ 1+max{A7/J,}—mln{A,/J:}
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. . " Amin{1/2,A

Set = min{\, u}. For p < ; and since p < A, we have ;1# < )\+I$;1n{{1//27>\}} <
},) < 0.3393. Also, for p > g we have 1 —p < },) and Hl_;f“ <1l—-p< },) < 0.3393,
since A > pu > 2.

Consider now cases for which é <p< g If ; <pu< A< g, then /\/Yu < /2\ <
3 < 0.3393.

For 1, A such that é <p< g < A, let us define £ = 1;“. Obviously, é <E<1.
Set b = 0.3393.

Let us assume that there are p and A satisfying the above relationships and
also satisfy:

A 1-—
H >b and H

> b.
A p 1+A—pu

Expressing these inequalities in terms of £ and A we get:

§(1-10) b
b(1+¢) ZA> 1-b(14¢)°

Since b < ; the above inequality is equivalent to:

EQ=b)1—b1+86)—b (146 >0 & —£2b(1—b)+£(1—2b) — b > 0.

It can be verified by direct calculation that the discriminant of the above

2
quadratic is 0 for b = 0.3393 and the inequality becomes —b(1—b) ( —2;(131717)) >

0, a contradiction.
Actually ,the constant b is the smallest real solution of the equation

4b(1 = b)(1 +b%) = 1.
The bound is attained at g = 0.582523 and A = 0.81281.

A.3 Appendix A.3

Let (x,y) be the current pair of strategies obtained during the descent procedure,
for which none of the conditions of step 3 of the algorithm is satisfied. Then, we
should have:

Vi(z,y) <b< f(z,y)

Indeed, since V(z,y) is always < min{pA, (1 — p)u}, if V(z,y) was > b we

would also have f(Z,7) < b, since f(Z, ) is always < 1+mai?;1:;(—/\ﬁqﬁ(,\ i

)} as proven before.

) and b is

1—min(\,p)

the maximum value for min{p\, (1 — p)u, Lt max Qo) —min(

We also have:

flate(a’ ), y+e(y'—y))—f(z,y) = e(V(z,y)~ f (2, y)) +max{Afr—e* H fr, Afc—€*H fc'}
where H fr, Hfc, Afr, Afc are as defined in appendix [A1]
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The quantitites Afgr, Afc are both piecewise linear convex functions of € and
are equal to 0 for e < €*, where €* is given by € = min{e}, €5, 1} and €} is the
minimum over i € Sg(y) of:

max(Ry) — (Ry)i

, for some i € Sg(y
max(Ry) — (Ry)i + (Ry): — maxs, ) (Ry) ~(v)

and €5 is the minimum over j € S¢(z) of :

max(CTx) — (CTx);

max(CTz) — (CTa); + (CTa'); — maxs, (o) (CTa’) for some j € So()

Tt is pointed out that the terms max(Ry)—(Ry); for i € Sg(y) are always posi-
tive and at least one of them is > f(z, y), since f(z,y) = 3_,c 5, () vi(max(Ry)—
(Ry);). The same is true for the terms max(C?x) — (CTz); for j € Sc(x). Fur-
thermore, the above expressions for €* are active only for those indices ¢ € (1,m),
j € (I,n), i € Sg(y), j € Sc(x) for which (Ry’); — maxg,,)(Ry’) > 0 and
(CTa'); — maxg,(;)(CTa’) > 0. If no such indices exist for the (z/,y) pair of
strategies, then the corresponding value of € should be equal to 1.

The quantities H fr, H fc appearing in the quadratic terms of €, are both
bounded (in absolute value) by 2. So, the minimum possible descent that can be
achieved is given by the following relationship :

fla+e@ —a)y+ey/ —y) - flz.y) =e(V(z,y) — f(2,y))
—min(H fr, Hfc) <e(V(z,y) — f(x,y)) + 262, 0 <e <€

Defining the new value of f as fpew and dropping the arguments (for simplic-
ity) we get

fnew_bg (1_6)(f_b)+€(v—b)+262

Minimizing with respect to €, for € < €*, we get:

b—V\ (f=b2+0b-V)?2 ., _ f-V
fnew—b<(f—b)(1— A )— < cifer>T

f=v

4

In the first case above, we obtain a significent reduction of fpe,, — b if €* is
larger than I ZV. In the second case, the reduction depends on how small €* is.

If the value of €* is small , then there is an index i* € Sgr(y) or an index
j* € Sc(z) such that the entry (Ry);« or (CTx);« , is close to the maximum
support of the vector Ry , or CTx. Such entries can be incorporated into the
sets Sr(y), Sc(z) by appropriately augmenting the supports of the vectors w, z
in the formulation of the linear minimax problem described in Section 3.

Furthermore , it is not possible to encounter more than m + n — 2 such steps
in a row without meeting one of the termination conditions of the algorithm ,

fnew -b< (f - b)(l _6*) - (b— V)G* —|—26*27 if " <
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particularly the condition f(z,y) < b, since , if all the differences of the form
maz(Ry) — (Ry):,i € Sr(y) are small , then f(z,y) is also small.

From the above, we deduce that a termination condition of the algorithm can
be approached as closely as desired , in polynomial time.

In fact, a detailed analysis of the number ¢ of the steps needed , for any 6 > 0,
in order to approximate a stationary point sufficiently close and find an 0.3393 +
b-approximate equilibrium, can show that ¢ is O( 512)' A linear programming
problem has to be solved in each such step.
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