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Abstract. Network congestion games with player-specific delay func-
tions do not necessarily possess pure Nash equilibria. We therefore ad-
dress the computational complexity of the corresponding decision prob-
lem, and show that it is NP-complete to decide whether such games
possess pure Nash equilibria. This negative result still holds in the case
of games with two players only. In contrast, we show that one can de-
cide in polynomial time whether an equilibrium exists if the number of
resources is constant.

In addition, we introduce a family of player-specific network conges-
tion games which are guaranteed to possess equilibria. In these games
players have identical delay functions, however, each player may only use
a certain subset of the edges. For this class of games we prove that find-
ing a pure Nash equilibrium is PLS-complete even in the case of three
players. Again, in the case of a constant number of edges an equilibrium
can be computed in polynomial time.

We conclude that the number of resources has a bigger impact on the
computation complexity of certain problems related to network conges-
tion games than the number of players.

1 Introduction

Network congestion games are a well-known and generally accepted approach
to model resource allocation among selfish agents in large-scale networks like
the internet. In these games agents share a network and each of them selects
a path with minimum delay (cost, payoff) that connects an individual pair of
nodes. The delay of a path equals the sum of delays of the edges in that path,
and the delay of an edge depends on the number of players currently using that
edge. In recent years network congestion games have been considered in various
occurrences and with respect to different questions like the price of anarchy, the
computational complexity of finding Nash equilibria1, or certain network design
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problems. For an introduction into many of these questions we refer the reader
to the forthcoming book of Nisan, Tardos, Roughgarden, and Vazirani [12].

In this paper we are interested in player-specific network congestion games.
In such games we consider a finite set of players and assume that each of them
is equipped with a set of player-specific delay functions. This is in contrast to
the previously mentioned games in which all players sharing an edge observe
the same delay. Player-specific network congestion games naturally arise when
different players have different preferences on the edges of the network. Some
players might prefer to use motor-ways, others might prefer to use scenic roads.
It is well known that player-specific network congestion games do not neces-
sarily possess Nash equilibria [11]. We therefore investigate the computational
complexity of deciding whether such a game possesses a Nash equilibrium. We
prove by a reduction from the problem Node-Disjoint Path that this problem
is NP-complete. We also consider games with constant number of players or re-
sources. In the first case the decision problem remains NP-complete even in the
case of two players, whereas in the second case we present a polynomial time
algorithm.

In order to bypass the limitations of general player-specific congestion games,
we introduce a family of games for which the existence of a Nash equilibrium
is guaranteed by Rosenthal’s potential function [13]. We assume that all players
sharing an edge observe the same delay, however, each player may only use a
certain subset of the edges. Such games naturally arise when drivers are prohib-
ited to use certain roads, e. g., trucks may be prohibited to use narrows roads,
slow vehicles may be prohibited to use motor-ways. These games – in the follow-
ing called restricted network congestion games – are closely related to standard
network congestion games in which players compute their delays with respect
to common delay functions and in which each player may use every edge. Fab-
rikant, Papadimitriou, and Talwar [6] introduce standard network congestion
games and show that computing an equilibrium is PLS-complete, that is, com-
puting a Nash equilibrium is “as hard to compute as any object whose existence
is guaranteed by a potential function” [6]. Ackermann, Röglin, and Vöcking [1]
present a simplified proof for this. Thus, computing a Nash equilibrium of a
restricted network congestion game is PLS-complete, too. However, the previ-
ously mentioned proofs require an arbitrary number of players and resources.
In this paper we consider games in which one of these two parameters is kept
constant. In the case of a constant number of player we prove that computing a
Nash equilibrium remains PLS-complete, whereas it is polynomial time solvable
in the case of constant number of resources. The later result follows easily by
a potential function argument and applies to every congestion game with com-
mon delay functions and with a constant number of resources. Unfortunately,
we failed to prove PLS-completeness for computing Nash equilibria in standard
network congestion games with a constant number of players. This question was
our primary motivation and remains a challenging open problem.

To the best of our knowledge, this is the first paper systematically comparing the
impact of the number of player and of the resources on the computational



On the Complexity of Pure Nash Equilibria 421

complexity of certainproblems related toplayer-specificnetworkcongestiongames.
From our results we conclude that the impact of the number of resources is much
bigger than the impact of the number of players.

Player-specific Network Congestion Games. A player-specific network congestion
game Γ consists of four components: (1) a network G = (V, E) with m directed
edges, (2) a set N = {1, . . . n} of n players, (3) for every player i a source-sink
pair (si, ti) ∈ V × V , and (4) for every player i and every edge e ∈ E a non-
decreasing delay function de

i : N → N. The strategy space of player i equals the
set of paths connecting source si with target ti. We denote by S = (P1, . . . , Pn)
a state of the game where player i chooses path Pi. Furthermore, we denote by
ne(S) = |{i ∈ N | e ∈ Pi}| the congestion on edge e in state S, that is, ne(S)
equals the number of players sharing edge e in state S. Players act selfishly and
choose paths with minimum delay given fixed choices of the other players. The
delay δi(S) of player i in state S equals

∑
e∈Pi

de
i (ne(S)). Finally, we call a state

S a Nash equilibrium if no player has an incentive to change her strategy.
It is well know that, in general, a pure Nash equilibrium is not guaranteed to

exist. However, if the network consists of parallel links only or if for every edge
e the player-specific delay functions de

i are identical, then a Nash equilibrium is
guaranteed to exist [10,13]. In the following, we consider also network congestion
games with common delay functions and assume that each player is restricted to
a certain subset of the edges. We call such a game a restricted network congestion
game. Such a game can easily be interpreted as a player-specific game by defining
player-specific delay functions in the following way. If a player is allowed to use
an edge, her delay functions equals the common one, if a player is not allowed
to use an edge, she observes delay ∞ for every congestion on that edge. By
Rosenthal’s potential function argument [13], every restricted network congestion
games possess a Nash equilibrium.

The Complexity Class PLS. A local search problem Π is given by its set of
instances IΠ . For every instance I ∈ IΠ , we are given a finite set of feasible
solutions F(I) ⊆ {0, 1}∗, an objective function c : F(I) → N, and for every
feasible solution S ∈ F(I) a neighborhood N (S, I) ⊆ F(I). Given an instance I
of a local search problem, we seek for a locally optimal solution S∗, i. e., a solution
which does not have a strictly better neighbor with respect to the objective
function c.

A local search problem Π belongs to PLS if the following polynomial time
algorithms exist: an algorithm A which computes for every instance I of Π an
initial feasible solution S0 ∈ F(I), an algorithm B which computes for every
instance I of Π and every feasible solution S ∈ F(I) the objective value c(S),
and an algorithm C which determines for every instance I of Π and every feasible
solution S ∈ F(I) whether S is locally optimal or not, and finds a better solution
in the neighborhood of S in the latter case.

Johnson et al. [8] introduce the notion of a PLS-reduction. A problem Π1 in
PLS is PLS-reducible to a problem Π2 in PLS if there exist polynomial-time
computable functions f and g such that f maps instances I of Π1 to instances
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f(I) of Π2, g maps pairs (S2, I) where S2 denotes a solution of f(I) to solutions
S1 of I, and for all instances I of Π1, if S2 is a local optimum of instance
f(I), then g(S2, I) is a local optimum of I. A local search problem Π in PLS is
PLS-complete if every problem in PLS is PLS-reducible to Π . PLS-completeness
results for various local search problems can be found in [8,14].

Related Work. Most closely related to our work is the work of Milchtaich [10,11]
and the work of Dunkel and Schulz [5]. Milchtaich [10] introduces player-specific
network congestion games on parallel links and proves that every such game pos-
sesses a Nash equilibrium if the player-specific delay functions are non-decreasing.
In [11] he presents some network topologies such that every player-specific net-
work congestion game on such a topology possesses an equilibrium without any
assumption on the delay functions except monotonicity. Dunkel and Schulz [5]
consider the computational complexity of deciding whether a weighted network
congestion games possesses a Nash equilibrium. In such games players sharing
an edge observe the same delay, however, the congestion on an edge depends on
the weighted number of players. They prove that this decision problem is NP-
complete. Ackermann, Röglin, and Vöcking [2] prove that every player-specific
matroid congestion game possesses a Nash equilibrium. In such games the play-
ers’ strategy spaces are the sets of bases of a matroid on the resources. Addition-
ally, they show that the matroid property is the maximal property on the strat-
egy spaces guaranteeing the existence of equilibria. Chakrabarty, Mehta, and
Nagarajan [4] consider player-specific network congestion games on (a constant
number of) parallel links from a global optimization perspective, and investigate
whether one can compute social optimal states of such games efficiently. An-
shelevich et al. [3] and Meyers [9] consider several problem involving congestion
games with a constant number of players.

2 General Player-Specific Network Games

In this section, we consider the complexity of deciding whether a general player-
specific network congestion game possesses a Nash equilibrium.

Theorem 1. It is NP-complete to decide whether a player-specific network con-
gestion game with two players possesses a Nash equilibrium.

Proof. Obviously, the decision problem belongs to NP as one can decide in poly-
nomial time whether a given state S of such a game is a Nash equilibrium.
In order to prove that the problem is complete, we present a polynomial time
reduction from the Node-Disjoint Path problem. An instance of the Node-

Disjoint Path problem consists of a directed graph G = (V, E) and two pair-
wise disjoint node pairs (s1, t1) and (s2, t2). Given such an instance, we like to
decide whether there exist node-disjoint paths from s1 to t1 and from s2 to t2.
It is well know that this problem is NP-complete [7].

Given an instance (G, (s1, t1), (s2, t2)) of the problem Node-Disjoint Path

we construct a player-specific network congestion game with two players as fol-
lows. Given G = (V, E) we substitute every node v ∈ V by the gadget Gv
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Fig. 1. The gadget Gv of a node v

presented in Figure 1 in order to obtain the network GΓ = (VΓ , EΓ ) on which
the game is played. Player i ∈ {1, 2} wants to allocate a path between the nodes
ss

i and tti in GΓ . Observe that this construction ensures a one-to-one corresponds
between the paths in G and in GΓ in the natural way if we ignore the precise
subpaths through every gadget. The player-specific delay functions are chosen as
follows. For every edge e = (vt

i , v
s
j ), i. e., for edges that represent edges from the

original graph G, we assume that for each player and every congestion the delay
on such an edge equals 0. In the following, let M be a sufficiently large number.
Then, the player-specific delay functions of edges ev,i, i ∈ {0, . . . , 6}, are defined
as presented in Figure 2. Observe that every gadget Gv implements a subgame
that is played by the players if both want to allocate a path connecting the nodes
vs and vt. If only one player wants to allocate such a path, then she allocates
a player-specific shortest path from vs to vt. If we choose M sufficiently large,
such that the second player will never allocate one of the edges ev,5 or ev,6, then
the cost of these shortest path are 56 and 62. Suppose now, that the two players
play such a subgame. In this case, it is not difficult to verify that the subgame
possesses no Nash equilibrium. Note that a game that is similar to the gadgets
presented here can be found in [11].

ev,0 ev,1 ev,2 ev,3 ev,4 ev,5 ev,6

congestion 1 2 1 2 1 2 1 2 1 2 1 2 1 2
player 1 0 M 20 28 45 45 48 48 20 30 16 16 65 65
player 2 0 M 14 18 45 45 48 48 20 30 M M M M

Fig. 2. The player-specific delay functions of the edges ev, i

Suppose now, that we are given two node-disjoint paths P1 and P2 in G
connecting s1 and t1, and s2 and t2. We map these paths to paths in GΓ in the
natural way, and choose player-specific shortest paths through every gadget. Let
n(Pi) be the number of nodes on the path Pi. Thus, player 1 has delay 56 ·n(P1),
and player 2 has delay 62 ·n(P2). If one of the players had an incentive to change
her strategy, then she will only choose a path in which she shares no gadget
with the other player, as otherwise her delay would increase to at least M . This
is true as in this case the players would share at least one edge ev,0. This also
implies that the delay of the other player does not increase due to the strategy
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change of the first player. Observe that this holds for any further best response.
Thus, the players converge to an equilibrium after O(n) best responses as the
delay of a player decreases by at least the cost of the shortest path through a
gadget.

Suppose now, that we are given a Nash equilibrium of Γ . In this case the
players do not share a gadget as otherwise the state is no Nash equilibrium. ��

Theorem 2. One can decide in polynomial time whether a player-specific net-
work congestion game Γ with a constant number of resources possesses a Nash
equilibrium.

In order to prove Theorem 2, we generalize an algorithm introduced by Chakra-
barty et al. [4] that computes a social optimal state of a player-specific network
congestion game with a constant number of parallel links. Details of this ap-
proach can be found in a full version of this paper.

3 Restricted Network Congestion Games

In this section, we analyze the complexity of computing Nash equilibria of re-
stricted network congestion games with a constant number of players or re-
sources.

Theorem 3. Computing a Nash equilibrium of a restricted network congestion
games with k players is PLS-complete for any k ≥ 3.

Proof. We prove the theorem by a reduction from the local search problem positive
not-all-equal 2-satisfiability PosNae2Satwhich is known to be PLS-complete [14].
Let x1, . . . , xn be boolean variables. An instance ϕ of PosNae2Sat consists of
a set of m weighted clauses Cj over the variables xi which contain two posi-
tive literals each. We denote by wj the (integer) weight of clause Cj . A clause
is satisfied if and only if the two variables it contains have different values.
By X̄ = (X1, . . . , Xn) ∈ {0, 1}n we denote a bit assignment to the variables
x1, . . . , xn. The weight w(X̄) of a bit assignment X̄ is defined as the sum of the
weights of all satisfied clauses. We denote the maximum weight by W =

∑m
j=1 wj .

By X̄Xi=b, we denote the bit vector (X1, . . . , Xi−1, b, Xi+1, . . . , Xn). A local op-
timum of ϕ is a bit assignment X̄ whose weight cannot be increased by flipping a
single variable xi, i.e., w(X̄) ≥ w(X̄xi=b) for all 1 ≤ i ≤ n and b ∈ {0, 1}. There-
fore, the neighborhood of an assignment is defined as the set of assignments with
Hamming distance one.

Given an instance ϕ, we construct a restricted network congestion game Γϕ

such that one can easily construct a local optimum of ϕ given a Nash equilibrium
of Γϕ. Γϕ simulates two copies of ϕ, which we call ϕA and ϕB, in parallel.
Furthermore, the game consists of three players, a bit player and two clause
players.

Every path the bit player can choose determines assignments X̄A and X̄B for
ϕA and ϕB, respectively. The set of paths the bit player can choose from can be
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divided into two disjoint sets P1 and P2. If she chooses a path from P1, X̄A is the
actual assignment for ϕ and X̄B is a (probably better) neighboring assignment.
For every path in P2 it is the other way round. The bit player switches between
paths in P1 and P2 as long as she can switch to a better neighboring assignment.

The paths of the clause players lead through 2m gadgets. For both copies of ϕ
there is one gadget for every clause. The two clause players simulate a clause by
choosing paths through the corresponding gadget. We ensure that they always
have an incentive to correctly simulate the clauses according to the assignments
determined by the bit player.

To implement this, we introduce four levels of delays: large, medium, small,
and tiny. If the bit player is on a path in P1 (P2) and the clause players do
not correctly simulate the clauses of ϕA (ϕB) according to the assignment X̄A

(X̄B), at least one of them has large delay. If the bit player is on a path in P1
(P2) and the clause players simulate ϕA (ϕB) correctly, she observes medium de-
lay proportional to the weight of the unsatisfied clauses according to the actual
assignment X̄A (X̄B). Furthermore, she has additionally small delay that is pro-
portional to the weight of the unsatisfied clauses of the neighboring assignment
X̄B (X̄A). If the bit player is on a path in P1 (P2) and the clause players do
not correctly simulate ϕB (ϕA), they additionally have tiny delays. This ensures
that the clause players have an incentive to correctly simulate the clauses and
that the bit player has an incentive to choose the best neighboring assignment.

As long as there is a better neighboring assignment, the bit player can change
from a path from P1 (P2) to a path from P2 (P1) by adopting the neighbor-
ing assignment as the actual assignment and by choosing a new neighboring
assignment.

We are now ready to describe our construction in detail. We present the network
of Γϕ as two subnetworks. One subnetwork contains the edges the bit player is
allowed to choose, the other subnetwork contains the edges the two clause players
are allowed to choose. The edges that are contained in both networks are called
connection edges. The connection edges are almost the only edges that cause delay
to the players. Almost all other edges have delay 0 regardless of the number of
players using it. To further simplify the presentation, we merge path segments
into sets of edges and use dashed edges to indicate these path segments in Figure 3
and 4. The precise network can be constructed by concatenating the edges from
a set in arbitrary order while adding an edge that is not contained in the other
subnetwork between every pair of consecutive edges with constant delay 0.

The subnetwork of the bit player is depicted in Figure 3. We now define the
corresponding sets of edges and the delays on the edges. Let M 
 αW 
 α 

βW 
 β ≥ 4m.

– PA
xi=b := {uA

j,xi=b, t
B
j,xi=b| for all clauses Cj with xi ∈ Cj}. Such a path seg-

ment corresponds to the fact that bit xi = b in the assignment X̄A. It also
corresponds to the fact that xi = b in the assignment X̄B, unless the bit
player chooses to flip this bit (see below). The u-edges have delay 0 for one
player and delay M for two or more players. They induce large delay to
clause players if they do not correctly simulate this bit assignment ϕA. The
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P B
x1=1 P B

x2=1 P B
xn=1

P B
x1=0

P A
x1=0

P B
x2=0

P A
x2=0

P B
xn=0
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xn=0
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x1=1 P A
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x1→1

P B
x1→0
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x1→0

P A
x1→1

P A
xn→0

P A
xn→1

s

W A

W B

. . .

t

. . .

...

...

(P1)

(P2)

Fig. 3. The subnetwork of the bit player. The dashed edges correspond to set of edges.

t-edges have delay 0 for one player and delay 1 for two or more players. They
induce tiny delay to the clause players if they do not correctly simulate the
bit assignment ϕB.

– WA := {wA
j,0, w

A
j,1| for all 1 ≤ j ≤ m}. If the clause players correctly simu-

late ϕA, this path segment induces medium delay proportional to the weight
of the unsatisfied clauses of X̄A to the bit player. The edges wA

j,0 and wA
j,1

have delay 0 for one or two players and delay αwj for three players.
– PA

xi→b := {wA
j,0,xi→b, w

A
j,1,xi→b| for all 1 ≤ j ≤ m with xi �∈ Cj} ∪ {tBj,xi→b,

wA
j,xi→b| for all 1 ≤ j ≤ m with xi ∈ Cj}. If the bit player chooses such a path

segment, then she determines the neighboring assignment X̄B to be obtained
from X̄A by flipping bit xi to b. If the clause players correctly simulate ϕA, this
path segment induces small delay proportional to the weight of the unsatisfied
clauses of that neighboring assignment. For each 1 ≤ j ≤ m with xi �∈ Cj , the
edges wA

j,0,xi→b and wA
j,1,xi→b have delay 0 for at most two players and delay

βwj for three. For each 1 ≤ j ≤ m with xi ∈ Cj , the edge wA
j,xi→b has delay 0

for one player and delay βwj for two or more players. The t-edges have delay
0 for one player and delay 2 for two or more players. They induce tiny delay
to the clause players if they do not simulate this bit flip in ϕB .

Additionally, there are sets PB
xi=b, WB, and PB

xi→b which are defined in the
same manner.

The two clause players are symmetric in the sense that they play on the same
subnetwork and have the same source and target node. Their subnetwork is a
concatenation of m A-gadgets and m B-gadgets. Figure 4 depicts such a pair of
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W B
j,0

W B
j,1

mutex

wB
j,xb→1

wB
j,xb→0

wB
j,xa→1

wB
j,xa→0

P B
Cj,xa=0

P B
Cj,xb=0

P B
Cj,xb=1

P B
Cj,xa=1

mutex

(B)

P A
Cj,xa=0

P A
Cj,xb=0

P A
Cj,xb=1

P A
Cj,xa=1 W A

j,1

W A
j,0

wA
j,xb→0

wA
j,xb→1

wA
j,xa→1

wA
j,xa→0

mutex

mutex

(A)

Fig. 4. This figure shows an A-gadget and a B-gadget for a clause Cj = {xa, xb}.
There are four paths through each gadget. From top to bottom, we denote the paths
with xa = 0, xb = 0, xa = 1, and xb = 1. The subnetwork of the two clause players is
a concatenations of the A- and B-gadgets for all clauses.

gadgets. Their source-sink paths lead through all 2m gadgets. The edges labeled
with mutex have delay 0 for one player and delay M2 for two or more players.
The dashed edges correspond to the following sets of connection edges:

– PA
Cj,xi=b := {uA

j,xi=1−b, t
A
j,xi=1−b, t

A
j,xi→1−b}. A clause player using such a

path segment simulates the assignment of b to xi of X̄A in the clause Cj of
ϕA. In the following, we say she sets xi = b in this gadget. If this is not a
correct simulation and the bit player is on a path from P1, then a u-edge
induces large delay. If this is not a correct simulation and the bit player is
on a path from P2, then a t-edge induces tiny delay.

– For each d ∈ {0, 1}, WA
j,d := {wA

j,d} ∪ {wA
j,d,xi→b| for all b ∈ {0, 1} and 1 ≤

i ≤ n with xi �∈ Cj}. If and only if both players use the same WA
j,d path

segment, they simulate an unsatisfying assignment for Cj . If, additionally,
the bit player chooses a path from P1, the edge wA

j,d has medium delay
proportional to wj . Furthermore, one of the edges wA

j,d,xi→b induces small
delay if xi is not in clause Cj . Note, that in the case that xi is in the clause
Cj , there are extra edges in the gadget.

The sets PB
Cj ,xi=b and WB

j,d are defined analogously.
We now prove that every Nash equilibrium of Γϕ corresponds to a locally

optimal assignment of ϕ. Consider a Nash equilibrium of Γϕ and assume that
the bit player chooses a path from the set P1. Let PA

x1=X1
, . . . , PA

xn=Xn
, WA, and

PA
xi∗→b be the path segments she chooses. Then the following properties hold.

Lemma 4.

a) In every A-gadget for every clause Cj = {xa, xb} one clause player sets
xa = Xa and the other player sets xb = Xb.
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b) In every B-gadget for every clause Cj = {xa, xb} with a, b �= i∗ one clause
player sets xa = Xa and the other player sets xb = Xb.

c) In every B-gadget for every clause Cj = {xi∗ , xc} one clause player sets
xc = Xc and the other player sets xi∗ = b.

Proof. Observe that in any gadget for any clause Cj = {xa, xb} one of the clause
players chooses xa = 0 or xa = 1 whereas the other player chooses xb = 0 or
xb = 1. Otherwise both have delay M2 and, thus an incentive to change.

a) Consider the A-gadget of a clause Cj = {xa, xb}. Due to our assumptions, all
edges of the path segment PA

Cj,xa=Xa
are not used by the bit player and there-

fore have delay 0 for a single clause player, whereas the edge uA
j,xa=Xa

that
is contained in the path segment PA

Cj,xa=(1−Xa) is used by the bit player and
therefore causes delay M to a clause player. The same is true for the path seg-
ments PA

Cj ,xb=Xb
and PA

Cj,xb=(1−Xb), respectively. The delay of all other edges
in the gadget sums up to less than M . Thus, in every Nash equilibrium, one of
the clause players chooses xa = Xa and the other player chooses xb = Xb.

b) In the B-gadgets all wB-edges and all edges in the WB-sets are not used by
the bit player and therefore have delay 0. Consider the B-gadget for a clause
Cj = {xa, xb} with a, b �= i∗. All edges of the path segment PB

Cj,xa=Xa
are

not used by the bit player and therefore have delay 0 for a single clause player,
whereas the edge tBj,xa=Xa

that is contained in the path segment PB
Cj,xa=(1−Xa)

is used by the bit player and therefore has delay 1 for a clause player. The same
is true for the path segments PB

Cj,xb=Xb
and PB

Cj ,xb=(1−Xb)
, respectively.

c) Let Cj = {xi∗ , xc} be a clause that contains xi∗ . In the B-gadgets of clause
Cj one clause player sets xc = Xc which has delay 0. The other clause player
sets xi∗ = b which has delay of at most 1. The path xi∗ = 1 − b has delay of
at least 2 due to the edge tBj,xi→b which is currently used by the bit player.

��

Note that an equivalent version of Lemma 4 holds for Nash equilibria in which
the bit player chooses a path from the set P2. The following corollary follows
directly from Lemma 4.

Corollary 5. In every Nash equilibrium the path segment WA has delay
α(W − w(X̄)) for the bit player. Furthermore, the delay on the path segment
PA

xi∗→b equals β(W − w(X̄xi∗=b)) plus an additive term of at most 2m for the
bit player.

Lemma 6. Every Nash equilibrium of Γϕ corresponds to a local optimum of ϕ.

Proof. For the purpose of contradiction, consider a Nash equilibrium that does
not correspond to a local optimum of ϕ. Let PA

x1=X1
, . . . , PA

xn=Xn
, WA, and

PA
xi∗→b be the path segments used by the bit player. By Corollary 5, we can

conclude that X̄Xi∗=b is the best neighboring assignment, otherwise the path
segment PA

xi∗→b has more delay then another path segment PA
xi∗∗→b∗∗ for the

bit player. We show that this implies that the bit player can improve her delay
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by choosing another path. The delays of all edges in the set WA sum up to
α(W − w(X̄)). Thus, the bit player has at least this amount of delay.

Now, observe that each path segment PB
xi=X1

with i �= i∗ has delay 0 for
the bit player since the clause players correctly simulate ϕB with the assignment
X̄Xi∗=b. The path segment PB

xi∗=b has delay of at most m. The delays of all edges
in the set WB sum up to α(W − w(X̄xi∗=b)). The delay of any path PB

xi′→b′ is
at most βW +2m. Note that βW +3m < α. Thus, the bit player could decrease
her delay by changing to such a path. This is a contradiction to the assumption
that this is a Nash equilibrium. ��

We conclude that every Nash equilibrium of Gϕ corresponds to a locally optimal
assignment of ϕ. Obviously, the construction of Gϕ and the mapping of an
equilibrium to a assignment of ϕ can be done in polynomial time. This conclude
the proof of Theorem 3 ��

It is an interesting open problem whether computing Nash equilibria for restricted
network congestion games with two players remains PLS-complete. Moreover, it
is an challenging open problem to prove any results in standard congestion games
with a constant number of players.

Theorem 7. One can compute a Nash equilibrium of a restricted network con-
gestion game Γ with a constant number of resources in polynomial time.

Theorem 7 is a consequence of the simple observation that there are only poly-
nomial many different possible values for Rosenthal’s potential functions. Again,
details can be found in a full version of this paper.
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