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Abstract. We provide a collection of new upper and lower bounds on
the price of anarchy for singleton congestion games. In our study, we
distinguish between restricted and unrestricted strategy sets, between
weighted and unweighted player weights, and between linear and poly-
nomial latency functions.

1 Introduction

Congestion games [19] and variants thereof [17] have long been used to model
non-cooperative resource sharing among selfish players. Examples include traffic
behavior in road or communication networks or competition among firms for
production processes. In this work, we study singleton congestion games where
each player’s strategy consists only of a single resource. A sample application for
these modified games is load balancing [3].

The focal point of our work is determining the price of anarchy [15], a mea-
sure of the extent to which competition approximates the global objective, e.g.,
the minimum total travel time (latency) in the case of road networks. Typi-
cally, the price of anarchy is the worst-case ratio between the value of an ob-
jective function in some state where no player can unilaterally improve its sit-
uation, and that of some optimum. As such, the price of anarchy represents a
rendezvous of Nash equilibrium [18], a concept fundamental to Game Theory,
with approximation, an omnipresent concept in Theoretical Computer Science
today.

1.1 Preliminaries and Model

Notation. For all d ∈ N, let [d] := {1, . . . , d} and [d]0 := [d] ∪ {0}. For a
vector v = (v1, . . . , vn), let (v−i, v

′
i) := (v1, . . . , vi−1, v

′
i, vi+1, . . . , vn). Moreover,

we denote by Bd the d-th Bell Number and by Φd a natural generalization of the
golden ratio such that Φd is the (only) positive real solution to (x + 1)d = xd+1.
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Instance. A (weighted) singleton congestion game is a tuple Γ =
(
n, m, (wi)i∈[n],

(Si)i∈[n], (fe)e∈[m]
)
. Here, n is the number of players and m is the number of

resources. For every player i ∈ [n], wi ∈ R>0 is its weight (w.l.o.g., wi = 1 if
Γ is unweighted) and Si ⊆ [m] its pure strategy set. Denote by W :=

∑
i∈[n] wi

the total weight of the players. Strategy sets are unrestricted if Si = [m] for all
i ∈ [n] and restricted otherwise. Denote S := S1 × . . . × Sn. For every resource
e ∈ [m], the latency function fe : R≥0 → R≥0 defines the latency on resource
e. We consider polynomial latency functions with maximum degree d and non-
negative coefficients, i.e., for each e ∈ [m], the latency function is of the form
fe(x) =

∑d
j=0 ae,j · xj with ae,j ≥ 0 for all j ∈ [d]0. For the special case of affine

latency functions, we let ae := ae,1 and be := ae,0, i.e., for any e ∈ [m] we have
fe(x) = ae · x + be. Affine latency functions are linear if be = 0 for all e ∈ [m].

Strategies and Strategy Profiles. A mixed strategy Pi = (Pi,e)e∈Si of player
i ∈ [n] is a probability distribution over Si. For a pair of pure and mixed strategy
profiles s = (s1, . . . , sn) and P = (P1, . . . , Pn), we denote by P(s) :=

∏
i∈[n] Pi,si

the probability that the players choose s. Throughout the paper, we identify any
pure strategy (profile) with the respective degenerate mixed strategy (profile).

Load and Private Cost. Denote by δe(P) =
∑

i∈[n] Pi,e · wi the (expected)
load on resource e ∈ [m] under profile P. The private cost of a player i ∈ [n] is
PCi(P) :=

∑
s∈S P(s) · fsi (δsi(s)).

Nash Equilibria. A profile P is a Nash equilibrium if no player i ∈ [n] could
unilaterally improve its private cost; i.e., PCi(P) ≤ PCi(P−i, e) for all i ∈ [n] and
e ∈ Si. Depending on the profile, we distinguish pure and mixed Nash equilibria.
NE(Γ ) and NEpure(Γ ) are the sets of all mixed (resp. pure) Nash equilibria.

Social Cost. Social cost SC(Γ,P) is defined as the (expected) total latency [20],
i.e., SC(Γ,P) :=

∑
s∈S P(s)

∑
e∈[m] δe(s) · fe(δe(s)) =

∑
i∈[n] wi · PCi(P). The

optimum total latency is OPT(Γ ) := mins∈S SC(Γ, s).

Price of Anarchy. Let G be a class of weighted singleton congestion games.
The mixed price of anarchy is defined as PoA(G) := supΓ∈G,P∈NE(Γ )

SC(Γ,P)
OPT(Γ ) . For

the definition of the pure price of anarchy PoApure replace NE with NEpure.

1.2 Previous Work and Our Contribution

The price of anarchy was first introduced and studied by Koutsoupias and Pa-
padimitriou [15] for weighted singleton congestion games with unrestricted strat-
egy sets and linear latency functions, yet social cost defined as the expected
maximum latency on a resource. Their setting became known as the KP-model
and initiated a sequence of papers determining the price of anarchy both for the
KP-model and generalizations thereof; see, e.g., [14,9,12,10,13,6].

For general (weighted) congestion games and social cost defined as the total
latency, exact values for the price of anarchy have been given in [2,5,1]. In par-
ticular, Aland et al. [1] proved that for identical players the price of anarchy
for polynomial latency functions (of maximum degree d and with non-negative
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Table 1. Lower/upper bounds on the price of anarchy for singleton congestion games.
Terms o(1) are in m.

PoApure PoA
fe(x) = player LB UP LB UP
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x ident. 1 2 − 1
m

[16]

x arb. 9
8 [16] 2 − 1

m
[16,12]

aex ident. 4
3 [16] 2 − 1

m
(T.1)

aex arb. 2 − o(1) (T.2) 1 + Φ [2] 2.036 (T.3) 1 + Φ [2]

xd ident. 1 Bd+1 − o(1) [11] Bd+1 [11]
Pd

j=0 ae,jxj arb. Bd+1 − o(1) (T.2) Φd+1
d [1]

re
st

ri
ct

ed
st

ra
te

gi
es

x ident. 2.012 [21] 2.012 [3]

aex ident. 5
2 − o(1) [3] 5

2 [21] 5
2 − o(1) [3] 5

2 [4]
Pd

j=0 ae,jxj ident. Υ (d) − o(1) (T.5) Υ (d) [1] Υ (d) − o(1) (T.5) Υ (d) [1]

aex arb. 1 + Φ − o(1) [3] 1 + Φ [2] 1 + Φ − o(1) [3] 1 + Φ [2]
Pd

j=0 ae,jxj arb. Φd+1
d − o(1) (T.4) Φd+1

d [1] Φd+1
d − o(1) (T.4) Φd+1

d [1]

coefficients) is exactly Υ (d) := (λ+1)2d+1−λd+1(λ+2)d

(λ+1)d+1−(λ+2)d+(λ+1)d−λd+1 , where λ = �Φd	.
For weighted players the price of anarchy increases slightly to Φd+1

d [1].
Finally, singleton congestion games with social cost defined as the total latency

have been studied in [3,11,16,21]; see Table 1 for a comparison. Since such games
always possess a pure Nash equilibrium (if latency functions are non-decreasing
[8]), also the pure price of anarchy is of interest. In this work, we prove a collection
of new bounds on the price of anarchy for multiple interesting classes of singleton
congestion games, as shown (and highlighted by a gray background) in Table 1.
Surprisingly, the upper bounds from [1] – proved for general congestion games
with polynomial latency functions – are already exact for the case of singleton
strategy sets and pure Nash equilibria.

2 Unrestricted Strategy Sets

Proposition 1. Let Γ be a weighted singleton congestion game with unrestricted
strategy sets, affine latency functions and associated Nash equilibrium P. Then, for

all nonempty subsets M ⊆ [m], SC(Γ,P) ≤
∑

i∈[n] wi ·
W+(|M|−1)wi+

�
j∈M

bj
aj�

j∈M
1

aj

.

Proposition 2. Let Γ be a weighted singleton congestion game with unrestricted
strategy sets and affine latency functions. Let s be an associated pure strategy
profile with optimum total latency and let M = {e : δe(s) > 0}. Define X =
{x ∈ R

M
≥0 :

∑
j∈M xj = W} and let x∗ ∈ argminx∈X{

∑
j∈M xj ·fj(xj)}. Denote

M∗ = {j ∈ M : x∗
j > 0}. Then, OPT(Γ ) = SC(Γ, s) ≥

W 2+W
2 ·�j∈M∗

bj
aj�

j∈M∗ 1
aj

.

We are now equipped with all tools to prove the following upper bounds:
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Theorem 1. Let Ga be the class of unweighted singleton congestion games with
at most m resources, unrestricted strategy sets and affine latency functions and
Gb be the subset of Ga with linear latency functions. Then (a) PoA(Ga) < 2 and
(b) PoA(Gb) ≤ 2 − 1

m .

Theorem 2. Let G be the class of weighted singleton congestion games with
unrestricted strategy sets and polynomial latency functions of maximum degree
d. Then PoApure(G) ≥ Bd+1.

Proof. For some parameter k ∈ N define the following weighted singleton conges-
tion game Γ (k) with unrestricted strategy sets and polynomial latency functions:

– There are k + 1 disjoint sets M0, . . . , Mk of resources. Set Mj , j ∈ [k]0,
consists of |Mj | = 2k−j · k!

j! resources sharing the polynomial latency function
fe(x) = 2−jd · xd for all resources e ∈ Mj.

– There are k disjoint sets of players N1, . . . , Nk. Set Nj , j ∈ [k], consists of
|Nj | = |Mj−1| = 2k−(j−1) · k!

(j−1)! players with weight wi = 2j−1 for all
players i ∈ Nj .

Observe that |Mj| = 2k−j · k!
j! = 2k−(j+1) · k!

(j+1)! · 2(j + 1) = |Mj+1| · 2(j + 1).
Let s be a pure strategy profile that assigns exactly 2j players from Nj to

each resource in Mj for j ∈ [k]0. Then, for all resources e ∈ Mj , j ∈ [k], we have
δe(s) = 2j ·2j−1 = j ·2j and fe(δe(s)) = 2−jd ·(j ·2j)d = jd. It is now easy to check
that s is a Nash equilibrium for Γ (k) with SC(Γ (k), s) = 2k · k! ·

∑
j∈[k]0

jd+1

j! .
Now let s∗ be a strategy profile that assigns each player Nj to a separate resource
in Mj−1. Then, for all resources e ∈ Mj , j ∈ [k − 1]0, we have δe(s∗) = 2j and
fe(δe(s∗)) = 2−jd · (2j)d = 1. So SC(Γ (k), s∗) = 2k · k!

∑
j∈[k−1]0

1
j! . Hence,

PoApure(G) ≥ limk→∞
SC(Γ (k),s)
SC(Γ (k),s∗) =

�∞
j=1

jd+1

j!�∞
j=0

1
j!

= 1
e

∑∞
j=1

jd+1

j! = Bd+1. 
�

Theorem 3. Let G be the class of weighted singleton congestion games with
unrestricted strategy sets and linear latency functions. Then PoA(G) > 2.036.

Proof. For w ∈ R>0, define the singleton congestion game Γ (w) with 5 players
of weights w1 = w and wi = 1 for i ∈ {2, . . . , 5} and 5 resources with latency
functions f1(x) = w

w+4 · x and fe(x) = x for e ∈ {2, . . . , 5}.
Let s := (i)n

i=1 ∈ S and let P be the mixed strategy profile where P1,1 = p,
P1,e = 1−p

4 for e ∈ {2, . . . , 5}, and Pi,1 = 1 for i ∈ {2, . . . , 5}. It is easy to
check that P is a Nash equilibrium for p ≤ w2−8w+16

5w2+4w . Since SC(Γ (w),P) =

p 4w2

w+4 + 16w
w+4 +w2 is monotonically increasing in p, choose p = w2−8w+16

5w2+4w . Clearly,
PoA(G) ≥ SC(Γ (w),P)

SC(Γ (w),s) . Setting w = 3.258 yields the claimed lower bound. 
�

3 Restricted Strategy Sets

Theorem 4. Let G be the class of weighted singleton congestion games with
restricted strategy sets and polynomial latency functions of maximum degree d.
Then PoA(G) = PoApure(G) = Φd+1

d .
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Proof. Due to [1], we only need to show the lower bound. For n ∈ N, define
the singleton congestion game Γ (n) with n players and n + 1 resources. The
weight of player i ∈ [n] is wi = Φi

d and the latency functions are fn+1(x) =
Φ
−(d+1)·(n−1)
d · xd for resource n + 1 and fe(x) = Φ

−(d+1)·e
d · xd for resources

e ∈ [n]. Each player i ∈ [n] only has two available resources: Si = {i, i + 1}.
Let s := (i)n

i=1 ∈ S. One can verify that s is a Nash Equilibrium and
SC(Γ (n), s) = n. Now let s∗ := (i + 1)n

i=1 ∈ S. Then, SC(Γ (n), s∗) = (n −
1) · 1

Φd+1
d

+ 1, so supn∈N

{
SC(Γ (n),s)
SC(Γ (n),s∗)

}
= Φd+1

d . 
�

Theorem 5. Let G be the class of unweighted singleton congestion games with
restricted strategy sets and polynomial latency functions of maximum degree d.
Then PoA(G) = PoApure(G) = Υ (d).

Proof (Sketch). For k ∈ N, define an unweighted singleton congestion game
Γ (k). We borrow the representation introduced by [7] which makes use of an
“interaction graph” G = (N, A): Resources correspond to nodes and players cor-
respond to arcs. Every player has exactly two strategies, namely choosing one
or the other of its adjacent nodes.

Fig. 1. The game graph for d = k = 2

The interaction graph is a tree which
is constructed as follows: At the root
there is a complete (d+1)-ary tree with
k + 1 levels. Each leaf of this tree is
then the root of a complete d-ary tree
the leafs of which are again the root of
a complete (d − 1)-ary tree; and so on.
This recursive definition stops with the unary trees. For an example of this
construction, see Figure 1.

Altogether, the game graph consists of (d + 1) · k + 1 levels. We let level 0
denote the root level. Thus, clearly, the nodes on level i ·k, where i ∈ [d]0, are the
root of a complete (d + 1 − i)-ary subtree (as indicated by the hatched shapes).

For any resource on level (d+1−i)·k+j, where i ∈ [d+1] and j ∈ [k−1]0, let the

latency function be fi,j : R≥0 → R≥0, fi,j(x) :=
[∏d+1

l=i+1
l

l+1

]d·(k−1)
·
(

i
i+1

)dj

·xd.
The resources on level (d + 1) · k have the same latency function f0,0 := f1,k−1
as those on level (d + 1) · k − 1.

Let s denote the strategy profile in Γ (k) where each player uses the resource
which is closer to the root. Similarly, let s∗ be the profile where players us the
resources farther away from the root. One can verify that s is a Nash equilib-
rium and the quotient SC(Γ (k),s)

SC(Γ (k),s∗) can be written in the form
�d+1

i=0 βi·αk−1
i�d+1

i=0 γi·αk−1
i

where

βi, γi ∈ Q, α0 = 1, and αi =
∏d+1

l=i
ld+1

(l+1)d = id+1

(d+2)d ·
∏d+1

l=i+1 l for all i ∈ [d + 1].
Now let λ := �Φd	. Then, (λ + 1)d > λd+1 but (λ + 2)d < (λ + 1)d+1, so

λ ∈ [d]. It holds that αλ+1 > αi for all i ∈ [d + 1]0 \ {λ + 1} because, for
all i ∈ [d], αi+1 > αi if and only if (i + 1)d > id+1 and α1 = (d+1)!

(d+2)d < 1
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and αd+1 = (d+1)d+1

(d+2)d > 1. Using standard calculus we therefore get

limk→∞
SC(Γ (k),s)
SC(Γ (k),s∗) = βλ+1

γλ+1
= (λ+1)2d+1−λd+1·(λ+2)d

(λ+1)d+1−(λ+2)d+(λ+1)d−λd+1 . 
�
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