
A Note on Maximizing the Spread of Influence
in Social Networks

Eyal Even-Dar1 and Asaf Shapira2

1 Google Research
evendar@google.com
2 Microsoft Research

asafico@microsoft.com

Abstract. We consider the spread maximization problem that was de-
fined by Domingos and Richardson [6,15]. In this problem, we are given
a social network represented as a graph and are required to find the set
of the most “influential” individuals that by introducing them with a
new technology, we maximize the expected number of individuals in the
network, later in time, that adopt the new technology. This problem has
applications in viral marketing, where a company may wish to spread the
rumor of a new product via the most influential individuals in popular
social networks such as Myspace and Blogsphere.

The spread maximization problem was recently studied in several
models of social networks [10,11,13]. In this short paper we study this
problem in the context of the well studied probabilistic voter model. We
provide very simple and efficient algorithms for solving this problem. An
interesting special case of our result is that the most natural heuristic
solution, which picks the nodes in the network with the highest degree,
is indeed the optimal solution.

1 Introduction

With the emerging Web 2.0, the importance of social networks as a marketing
tool is growing rapidly and the use of social networks as a marketing tool spans
diverse areas, and has even been recently used by the campaigns of presidential
candidates in the United States. Social networks are networks (i.e. graphs) in
which the nodes represent individuals and the edges represent relations between
them. To illustrate the viral marketing channel (see [2,3,6]), consider a new
company that wishes to promote its new specialized search engine. A promis-
ing way these days would be through popular social network such as Myspace,
Blogsphere etc, rather than using classical advertising channels. By convincing
several key persons in each network to adopt (or even to try) the new search
engine, the company can obtain an effective marketing campaign and to enjoy
the diffusion effect over the network. If we assume that “convincing” each key
person to “spread” the rumor on the new product costs money, then a natural
problem is the following: given a social network, how can we detect the play-
ers through which we can spread, or “diffuse”, the new technology in the most
effective way.
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Diffusion processes in social network have been studied for a long time in
social sciences, see e.g. [5,8,3,16]. The algorithmic aspect of marketing in social
networks was introduced by Domingos and Richardson [6,15] and can be for-
mulated as follows. Given a social network structure and a diffusion dynamics
(i.e. how the individuals influence each other), find a set S of nodes of cost at
most K that by introducing them with a new technology/product, the spread
of the technology/product will be maximized. We refer to the problem of find-
ing such a maximizing set S as the Spread maximization set problem. The work
of Domingos and Richardson [6,15] studied this problem in a probabilistic set-
ting and mainly provided heuristics to compute a maximizing set. Following
[6,15], Kempe et al. [10,11] and Mossel and Roch [13] considered a threshold
network, in which users adopt a new technology only if a fixed fraction of their
neighbors have already adopted this new technology. Their results show that
finding the optimal subset of size K is NP-Hard to approximate within a fac-
tor smaller than 1 − 1/e and also show that a greedy algorithm achieves this
ratio.

Our contribution: In this paper we consider the Spread maximization set
problem, in the case where the underlying social network behaves like the voter
model. The voter model, which was introduced by Clifford and Sudbury [4] and
Holley and Liggett [9], is probably one of the most basic and natural probabilistic
models to represent the diffusion of opinions in a social network; it models the
diffusion of opinions in a network as follows: in each step, each person changes
his opinion by choosing one of his neighbors at random and adopting the neigh-
bor’s opinion. The model has been studied extensively in the field of interacting
particle systems [12,1].

While the voter model is different from the threshold models that were studied
in [10,11,13], it still has the same key property that a person is more likely
to change his opinion to the one held by most of his neighbors. In fact, the
threshold models of [10,11,13] are monotone in the sense that once a vertex
becomes “activated” it stays activated forever. This makes these models suitable
for studying phenomena such as infection processes. However, some process,
such as which product a user is currently using, are not monotone in this sense.
Therefore, the voter model, which allows to deactivate vertices, may be more
suitable for studying non monotone processes.

Our main contributions are an exact solution to the spread maximization set
problem in the voter model, when all nodes have the same cost (the cost of a
node is the cost of introducing the person with a new technology/product), and
providing an FPTAS 1 for the more general case in which different nodes may
have different costs. In contrast to most of the previous results, which considered
only the status of the network in the “limit”, that is, when the network converges
to a steady state, our algorithms easily adopt to the case of different target

1 An FPTAS, short for Fully Polynomial Time Approximation Scheme, is an algorithm
that for any ε approximates the optimal solution up to an error (1 + ε) in time
poly(n/ε).
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times.2 An interesting special case of our result is that the most natural heuristic
solution, which picks the nodes in the network with the highest degree, is indeed
the optimal solution, when all nodes have the same cost. We show that the
optimal set for the long term is the set that maximizes the chances of reaching
consensus with new technology/product.

2 The Voter Model

We start by providing a formal definition of the voter model (see [4,9] for more
details).

Definition 1. Let G = G(V, E) be an undirected graph with self loops. For a
node v ∈ V , we denote by N(v) the set of neighbors of v in G. Starting from an
arbitrary initial 0/1 assignment to the vertices of G, at each time t ≥ 1, each
node picks uniformly at random one of its neighbors and adopts its opinion. More
formally, starting from any assignment f0 : V → {0, 1}, we inductively define

ft+1(v) =

{
1, with probability |{u∈N(v):ft(u)=1}|

|N(v)|
0, with probability |{u∈N(v):ft(u)=0}|

|N(v)|

Note that the voter model is a random process whose behavior depends on the
initial assignment f0. If we think of ft(v) = 1 as indicating whether v is using
the product we wish to advertise, then a natural quantity we wish to study is the
expected number of nodes satisfying ft(v) = 1 at any given time t. Of course,
a simple way to maximize the number of such nodes is to start from an initial
assignment f0 in which f0(v) = 1 for all v. However, in reality we may not be
able to start from such an assignment as there is a cost cv for setting f0(v) = 1
and we have a limited budget B. For example, cv can be the cost of “convincing”
a website to use a certain application we want other websites to use as well. This
is the main motivation for the spread maximization set problem that is defined
below in the context of the voter model. As we have previous mentioned, this
(meta) problem was first defined by Domingos and Richardson [6,15] and was
studied by [15,10,11,13] in other models of social networks.

Definition 2 (The spread maximization set problem). Let G be a graph
representing a social network, c ∈ R

n a vector of costs indicating the cost cv

of setting f0(v) = 1, B a budget, and t a target time. The spread maximiza-
tion set problem is the problem of finding an assignment f0 : V → {0, 1} that
will maximize the expectation E

[∑
v∈V ft(v)

]
subject to the budget constraint∑

{v:f0(v)=1} cv ≤ B.

2 Kempe et al. [10] considered also finite horizon but under different objective function,
i.e. for every individual how many timesteps she held the desired opinion until the
target time. Furthermore, their approach required maintaining a graph whose size
is proportional to the original graph size times the target time.
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3 Solving the Spread Maximization Set Problem

Our algorithms for solving the spread maximization set problem all rely on the
well known fact that the voter model can be analyzed using graphical models
(see [7] for more details). Let us state a very simple yet crucial fact regarding
the voter model that follows from this perspective. Recall that in the voter
model, the probability that node v adopts the opinion of one of its neighbors u
is precisely 1/N(v). Stated equivalently, this is the probability that a random
walk of length 1 that starts at v ends up in u. Generalizing this observation to
more than one step, one can easily prove the following by induction on t.

Proposition 1. Let pt
u,v denote the probability that a random walk of length t

starting at node u stops at node v. Then the probability that after t iterations of
the voter model, node u will adopt the opinion that node v had at time t = 0 is
precisely pt

u,v.

We thus get the following corollary.

Corollary 1. Let S = {u : f0(u) = 1}. The probability that ft(v) = 1 is the
probability that a random walk of length t starting at v ends in S.

Equipped with the above facts we can now turn to describe the simple algorithms
for the spread maximization set problem.
The case of short term:
We start by showing how to solve the problem for the case of the short term,
that is when t is (any) polynomial in n. We note that studying the spread maxi-
mization problem for short time term is crucial to the early stages of introducing
a new technology into the market. As usual, let M be the normalized transition
matrix of G, i.e. M(v, u) = 1/|N(v)|. For a subset S ⊆ {1, . . . , n} we will denote
by 1S the 0/1 vector, whose ith entry is 1 iff i ∈ S. The following lemma gives
a characterization of the spread maximizing set.

Lemma 1. For any graph G with transition matrix M , the spread maximizing
set S is the set which maximizes 1SM t subject to

∑
v∈S cv ≤ B.

Proof. Recall the well known fact that pt
u,v, which is the probability that a

random walk of length t starting at u ends in v, is given by the (u, v) entry
of the matrix M t. The spread maximizing set problem asks for maximizing
E

[∑
v∈V ft(v)

]
subject to

∑
v∈S cv ≤ B. By linearity of expectation, we have

that E
[∑

v∈V ft(v)
]

=
∑

v∈V Prob[ft(v) = 1]. By Corollary 1 we have that if
we set f0(v) = 1 for any v ∈ S then Prob[ft(v) = 1] = 1SM t1T

{v} . Therefore,
E

[∑
v∈V ft(v)

]
=

∑
v∈V 1SM t1T

{v} = 1SM t , and we conclude that the optimal
set S is indeed the one maximizing 1SM t subject to

∑
v∈S cv ≤ B.

Using this formulation we can obtain the following theorems that shed light on
how well can be the maximizing spread set problem solved.
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Theorem 1. If the vector cost c is uniform, that is, if for all v we have cv = c,
then the spread maximization set problem can be solved exactly in polynomial
time for any t = poly(n).

Proof. First note the entries of M t can be computed efficiently for any t =
poly(n). For any t to compute M t we need to preform O(log t) matrix multipli-
cation which can be done efficiently. For every node v denote gv = 1{v}M t. By
Lemma 1 we have that the problem is equivalent to the problem of maximizing
1SM t subject to

∑
v∈S cv ≤ B. As 1SM t =

∑
v∈S gv and the cost of every node

is identical, we get that for every budget B, the optimal set is the first �B/c�
nodes when sorted according to gv.

Theorem 2. There exists an FPTAS to the spread maximization set problem
for any t = poly(n).

Observe that in general we can cannot expect to be able to solve the spread
maximization set problem exactly because when t = 0 this problem is equivalent
to the Knapsack problem, which is NP-hard.
The case of long term:
Let us consider now the case of large t, where by large we mean t ≥ n5. Recall
the well known fact that for any graph G with self loops, a random walk starting
from any node v, converges to the steady state distribution after O(n3) steps
(see [14]). Furthermore, if we set dv = |N(v)| then the (unique) steady state
distribution is that the probability of being at node u is du/2|E|. In other words,
if t 	 n3 then M t

u,v = (1 + o(1))du/2|E|. 3 Once again, using Lemma 1 we can
obtain the following theorem.

Theorem 3. There exists a linear time FPTAS to the spread maximization set
problem when t ≥ n5.

An interesting special case of Theorem 3 is when all nodes have the same cost c.
Observe that in this case we get that the optimal solution is simply to pick the
�B/c� vertices of G of highest degree. This gives a formal justification for the
“heuristic” approach of picking the nodes in the social network with the largest
number of acquaintances, e.g. [17,6,15].
Maximizing the probability of consensus:
It is a well known fact that after O(n3 log n) time the voter model reaches a
consensus with high probability, that is, when t ≥ n3 log n either ft(v) = 1 for
all v or ft(v) = 1 for all v.

Theorem 4. With probability 1 − o(1), the voter model converges to consensus
after O(n3 log n) steps .

By Theorems 3 and 4 we derive the following corollary,

Corollary 2. For any t ≥ n3 log n and ε > 0, there is a linear time algorithm
for maximizing, up to an additive error of ε, the probability that the voter model
reaches an all-ones consensus after t ≥ n3 log n steps.
3 More precisely, the smaller we want the o(1) term to be the larger we need t to be.
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