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Preface

The Workshop on Internet and Network Economics (WINE 2007), held Decem-
ber 12–14, 2007 at San Diego for its third edition, provided a forum for re-
searchers from different disciplines to communicate their research works in this
emerging field.

We had four plenary speakers: Kenneth Arrow, Herbert Scarf, Vijay Vazirani,
and Christos Papadimitriou, speaking on economic equilibrium and its history,
its solution methodologies (the simplicial structure method and the primal dual
method), as well as the computation of Nash equilibrium.

This final program included 61 peer-reviewed papers covering topics including
equilibrium, information market, sponsored auction, network economics, mecha-
nism design, social networks, advertisement pricing, computational general equi-
librium, network games, algorithms and complexity for games.

December 2007 Xiaotie Deng
Fan Chung Graham

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Organization

WINE’2007 was organized by the Department of Computer Science, Univeristy
of California at San Diego.

Program Committee

Conference Chair Ronald Graham (University of California, San
Diego)

Local Arrangement Chair Tara Javidi (University of California, San
Diego)

Program Committee Co-chair Xiaotie Deng (City University of Hong Kong)
Program Committee Co-chair Fan Chung Graham (University of California,

San Diego)
Plenary Speakers Kenneth J. Arrow (Stanford University)

Christos H. Papadimitriou (University of
California, Berkeley)

Herbert E. Scarf (Yale University)
Vijay V. Vazirani (Georgia Institute of

Technology)
Committee Members Sushil Bikhchandani (University of California,

Los Angeles)
Samuel R. Buss (University of California, San

Diego)
Felix Brandt (University of Munich)
Shuchi Chawla (University of

Wisconsin-Madison)
Xiaotie Deng (City University of Hong Kong)
Andrew Goldberg (Microsoft Research, Silicon

Valley)
Paul Goldberg (University of Liverpool)
Rica Gonen (Yahoo! Research)
Fan Chung Graham (University of California,

San Diego)
Kamal Jain (Microsoft Research)
Ehud Kalai (Northwestern University)
Ming-Yang Kao (Northwestern University)
Anna Karlin (University of Washington)
Vangelis Markakis (The National Research
Institute for Mathematics and Computer

Science in The Netherlands)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



VIII Organization

Burkhard Monien (University of Paderborn)
Abraham Neyman (Hebrew University of

Jerusalem)
Paul Spirakis (University of Patras, and
Research Academic Computer Technology

Institute)
David M. Pennock (Yahoo! Research)
Tim Roughgarden (Stanford University)
Amin Saberi (Stanford University)
Yoav Shoham (Stanford University)
Shanghua Teng (Boston University)
Vijay Vazirani (Georgia Institute of

Technology)
Yinyu Ye (Stanford University)
Makoto Yokoo (Kyushu University)

Referees

Andrew Gilpin
Arash Rahimabadi
Arpita Ghosh
Ashok Kumar

Ponnuswami
Atri Rudra
Atsushi Iwasaki
Bhaskar DasGupta
Chinmay Karande
Constantinos Daskalakis
Daniel Reeves
David Pennock
Deeparnab Chakrabarty
Dimitris Fotakis
Dominic Dumrauf
Edith Elkind
Enrico Gerding
Erik Vee
Eyal Even-Dar
Felix Fischer
Florian Schoppmann
Gagan Aggarwal
Gagan Goel
George Christodoulou

Hamid Nazerzadeh
Heiko Roeglin
Ian Kash
James Aspnes
Jaroslaw Byrka
Jenn Wortman
Kamal Jain
Karsten Tiemann
Konstantinos Daskalakis
Lance Fortnow
Liad Blumrosen
Mallesh Pai
Maria-Florina Balcan
Marios Mavronicolas
Markus Holzer
Martin Gairing
Ming-Yang Kao
Mira Gonen
Mohammad Mahdian
Moshe Babaioff
Moshe Tennenholtz
Mukund Sundararajan
Ning Chen
Panagiota Panagopoulou

Paul Harrenstein
Paul Spirakis
Petra Berenbrink
Qi Qi
Rainer Feldmann
Rakesh Vohra
Rica Gonen
Ron Lavi
Sam Buss
Seyed Omid Etesami
Shuchi Chawla
Spyros Kontogiannis
Susanne Albers
TianMing Bu
Uriel Feige
Vincent Conitzer
Xi Chen
Yan Chen
Yiling Chen
Yuko Sakurai
Yvonne Bleischwitz
Zoe Abrams

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Organization IX

Sponsoring Institutions

California Institute for Telecommunications and Information Technology
Google Inc.
Yahoo! Research
National Science Foundation
Springer Lecture Notes in Computer Science
University of California, San Diego

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Table of Contents

WINE 2007

Invited Talks

Getting to Economic Equilibrium: A Problem and Its History . . . . . . . . . 1
Kenneth J. Arrow

My Favorite Simplicial Complex and Some of Its Applications . . . . . . . . . 3
Herbert E. Scarf

Markets and the Primal-Dual Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Vijay V. Vazirani

The Computation of Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Christos H. Papadimitriou

Equilibrium

A Note on Equilibrium Pricing as Convex Optimization . . . . . . . . . . . . . . . 7
Lihua Chen, Yinyu Ye, and Jiawei Zhang

New Algorithms for Approximate Nash Equilibria in Bimatrix
Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Hartwig Bosse, Jaroslaw Byrka, and Evangelos Markakis

A Unified Approach to Congestion Games and Two-Sided Markets . . . . . 30
Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni,
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Zoë Abrams and Michael Schwarz

Personalized Ad Delivery When Ads Fatigue: An Approximation
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
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Getting to Economic Equilibrium:

A Problem and Its History

(Abstract)

Kenneth J. Arrow

Economics Department, Stanford University

The very concept of equilibrium, economic or otherwise, presupposes a dynamic
system which determines change as a function of state variables. An equilibrium
is a vector of state variables for which no change occurs. In economics, this is
interpreted as a set of quantities and prices for which there is no incentive on
anyone’s part to change. The dynamics runs in terms of profit opportunities or
incentives to outbid others for scarce commodities or for market opportunities.
The idea that traders will respond to profit opportunities by increasing their
activities and by, doing so, tend to wipe them out must have been recognized
whenever there was trade. A 12th century rabbinical commentary argues that if
someone charges ”too high a price”, others will offer the good at a lower price
and thereby bring it down. Somewhat more systematic discussions of economic
equilibrium are to be found in the founders of modern economic theory, Adam
Smith and David Ricardo. Smith’s principal emphasis was on the flow of cap-
ital from low-profit to high-opportunities, leading to a zero-profit equilibrium.
Ricardo added the adjustment of population to wages and the setting of rents
on scarce land.

The true complexity of the adjustment processes was not grasped until the
formulation of general equilibrium theory. This introduced a formal element, the
formulation of the market in terms of supply and demand, and an empirical
element, the influence of the price on one market on the supplies and demands
in other markets. Léon Walras recognized the need for an argument for stability
(convergence of the dynamic system to an equilibrium ([8], pp. 84-86, 90-91,
105-106, 169-172, 243-254 and 284-295). He assumed crucially that the price for
any given commodity increases proportionately to the difference between sup-
ply and demand on that market and used essentially a Gauss-Seidel argument,
implicitly imposing the condition of a dominant diagonal on the excess demand
functions. Walras introduced the term, ”tatonnement” for the dynamic system,
a term which has become standard. Despite casual references (e.g., Vilfredo
Pareto’s analogy between the market and the computer [5], pp. 233-234), the
stability question was not addressed again until the magisterial work of John
R. Hicks in 1939 [3]. In part by criticizing Hicks, Paul Samuelson (1941[6]) gave
perhaps the first explicit formulation of a dynamic system based on supply and
demand whose equilibrium was the competitive equilibrium. A subsequent lit-
erature (Metzler [4], Arrow, Block, and Hurwicz [2,1]) gave various sufficient
conditions for the Samuelson system to be stable. These results could be used,
when the conditions held, to actually calculate general equilibria. What started

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, pp. 1–2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 K.J. Arrow

as a description of the economy could also be regarded as a way of computing
its outcome. As computing power became available, this became a practicable
possibility. However, Scarf (1960)[7] showed by example that the tatonnement
process did not necessarily converge.

References
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My Favorite Simplicial Complex and Some of Its

Applications

Herbert E. Scarf

Yale University

I will discuss a specific class of simplicial complexes, K(Y ), whose vertices are
contained in a set Y ∈ Rn. The vertex set is finite or denumerable and satisfies
some genericity properties. The complex has been studied for many years under a
variety of different names: ordinal bases, primitive sets, the complex of maximal
lattice free bodies and most recently, Algebraic Geometers have used the name
the Scarf Complex.

The complex has been applied in a number of different areas including:
game theory: (In particular the core of a balanced game), integer programming

(including the Frobenius problem), fixed point computations, reliability theory,
the stable paths problem and interdomain routing, multi-commodity network
flows, graph theory (fractional kernels in digraphs) and resolutions of monomial
ideals.

(The speaker does not understand many of these applications.)
The major problem is to be able to compute the simplicies, and faces, of K(Y )

in an effective way. In this talk I will restrict my attention to the case in which

Y =
{
y = Ah : h ∈ Zn−1}

and A is an n × (n − 1) matrix with nice properties. I will discuss some features
of the complex which may be useful in computing the complex by homotopy
methods. A variety of other methods are known. There will be many examples
to smooth our way.

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, p. 3, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Markets and the Primal-Dual Paradigm

Vijay V. Vazirani

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332–0280
vazirani@cc.gatech.edu

Abstract. The primal-dual paradigm was given by Kuhn in 1955. In
the 1970’s and 1980’s, it yielded efficient exact algorithms for several
fundamental problems in P. In the 1990’s, this paradigm yielded algo-
rithms, with good approximation factors and good running times, for
several basic NP-hard optimization problems.

Interestingly enough, over the last five years, this paradigm has yielded
combinatorial algorithms for finding equilibria in several natural market
models. This has involved extending the paradigm from its original set-
ting of LP-duality to the enhanced setting of nonlinear convex programs
and KKT conditions. In this talk, I will survey this new and exciting
development and present some of its challenging open problems.

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, p. 4, 2007.
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The Computation of Equilibria

Christos H. Papadimitriou

UC Berkeley, California
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Ever since Nash’s existence theorem in 1951, the Nash equilibrium has been
the standard solution concept in Game Theory, yet the issue of its computa-
tional complexity was resolved only recently by the proof that the problem is
PPAD- complete [4], even in the two-player case [2]. In view of this result, re-
search turned to several alternatives — an effect reminiscent of the reaction
to NP-completeness in the 1970s: Approximation algorithms, special cases, and
alternative equilibrium concepts.

Is there a polynomial-time approximation scheme (PTAS) for Nash equilibria
in general games? (We know [3] that no fully PTAS is likely to exist, one whose
exponent is independent of ε.) Progress in this front has been slow; even getting
ε below 1

2 has taken some time and effort [5]. However, it turns out that there is a
PTAS for an important and broad class of games, anonymous games, as long as
the number of strategies is kept a constant [6] (this reference settles the case of
two strategies, but extension to any finite number of strategies seems plausible).
The algorithm considers mixed strategies whose probabilities take on discrete
values, and searches this space exhaustively, relying on a probabilistic lemma
to establish approximation. The same exhaustive approach yields a quasi-PTAS
(the exponent contains log log n, in addition to − log ε, where n is the length
of the input) for general games, again for a constant number of strategies [7].
Exploring the limits of this exhaustive approach is an important problem.

Complexity considerations have in fact challenged some well accepted game-
theoretic wisdom, regarding repeated games. Finding Nash equilibria in such
games had been thought easy, through a protocol involving agreed play-cum-
threat known as the Folk Theorem; this was indeed verified recently for two
players in [9]. However, it was recently shown [1] that, for three or more players,
finding a Nash equilibrium in a repeated game is as hard as doing so in a one-shot
game — that is to say, PPAD-complete. Implementing the Folk Theorem is even
more difficult, as finding the game’s threat point, as required by the theorem, is
NP-hard for three or more players.

Finally, the intractability results gave impetus to the search for alternative
notions of equilibrium, such as the sink equilibria or Nash dynamics of the game
(roughly, the best-response Markov chain). Another, related, refinement, called
unit recall equilibrium [8], yields an equilibrium concept that is conjectured to
be polynomially computable, and exists in almost all games.

� Research supported by an NSF grant, a MICRO grant, a France-Berkeley Fund
grant, and a gift from Yahoo! Research.

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, pp. 5–6, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



6 C.H. Papadimitriou

References

1. Borgs, C., Chayes, J., Immorlica, N., Kalai, A., Mirrokni, V., Papadimitriou, C.H.:
The Myth of the Folk Theorem. ECCC TR07-82

2. Chen, X., Deng, X.: Settling the Complexity of 2-Player Nash-Equilibrium. In: Pro-
ceedings of FOCS (2006)

3. Chen, X., Deng, X., Teng, S.: Computing Nash Equilibria: Approximation and
Smoothed Complexity. In: Proceedings of FOCS (2006)

4. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The Complexity of Computing
a Nash Equilibrium. In: Proceedings of STOC (2006)

5. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: Progress in Approximate Nash
equilibrium. In: 8th ACM Conference on Electronic Commerce (EC), ACM Press,
New York (2007)

6. Daskalakis, C., Papadimitriou, C.H.: Computing Equilibria in Anonymous Games.
In: proc. 2007 FOCS

7. Daskalakis, C., Papadimitriou, C.H.: In preparation
8. Fabrikant, A., Papadimitriou, C.H.: The Search for Equilibria: Sink Equilibria, Unit

Recall Games, and BGP Oscillations in, SODA 2008 (to appear)
9. Littman, M., Stone, P.: A polynomial-time algorithm for repeated games. Decision

Support Systems 31, 55–66 (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



A Note on Equilibrium Pricing as Convex

Optimization

Lihua Chen1, Yinyu Ye2,�, and Jiawei Zhang3

1 Guanghua School of Management, Peking University, Beijing 100871, P. R. China
chenlh@gsm.pku.edu.c

2 Department of Management Science and Engineering and, by courtesy, Electrical
Engineering, Stanford University, Stanford, CA 94305, USA

yinyu-ye@stanford.edu
3 Department of Information, Operations, and Management Sciences, Stern School of

Business, New York University, New York, NY 10012, USA
jzhang@stern.nyu.edu

Abstract. We study equilibrium computation for exchange markets. We
show that the market equilibrium of either of the following two markets:
1. The Fisher market with several classes of concave non-homogeneous

utility functions;
2. A mixed Fisher and Arrow-Debreu market with homogeneous and

log-concave utility functions
can be computed as convex programming and by interior-point algo-
rithms in polynomial time.

1 Introduction

The study of market equilibria occupies a central place in mathematical eco-
nomics. This study was formally started by Walras [12] over a hundred years
ago. In this problem everyone in a population of n players has an initial endow-
ment of divisible goods and a utility function for consuming all goods—their
own and others. Every player sells the entire initial endowment and then uses
the revenue to buy a bundle of goods such that his or her utility function is
maximized. Walras asked whether prices could be set for everyone’s good such
that this is possible. An answer was given by Arrow and Debreu in 1954 [1]
who showed that such an equilibrium would exist, under very mild conditions,
if the utility functions were concave. Their proof was non-constructive and did
not offer any algorithm to find such equilibrium prices.

Fisher was the first to consider an algorithm to compute equilibrium prices for
a related and different model where players are divided into two sets: producers
and consumers; see Brainard and Scarf [2,11]. Consumers spend money only to
buy goods and maximize their individual utility functions of goods; producers
sell their goods only for money. The price equilibrium is an assignment of prices
to goods so that when every consumer buys a maximal bundle of goods then the
� Research supported by NSF grant DMS-0604513.
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c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



8 L. Chen, Y. Ye, and J. Zhang

market clears, meaning that all the money is spent and all the goods are sold.
Fisher’s model is a special case of Walras’ model when money is also considered
a good so that Arrow and Debreu’s result applies.

In a remarkable piece of work, Eisenberg and Gale [6,9] give a convex pro-
gramming (or optimization) formulation whose solution yields equilibrium al-
locations for the Fisher market with linear utility functions, and Eisenberg [7]
extended this approach to derive a convex program for general concave and
homogeneous functions of degree 1. Their program consists of maximizing an
aggregate utility function of all consumers over a convex polyhedron defined
by supply-demand linear constraints. The Lagrange or dual multipliers of these
constraints yield equilibrium prices. Thus, finding a Fisher equilibrium becomes
solving a convex optimization problem, and it could be computed by the Ellip-
soid method or by efficient interior-point methods in polynomial time. Later,
Codenotti et al. [4] rediscovered the convex programming formulation, and Jain
et al. [10] generalized Eisenberg and Gale’s convex model to handling homo-
thetic and quasi-concave utilities introduced by Friedman [8]. Here, polynomial
time means that one can compute an ε approximate equilibrium in a number
of arithmetic operations bounded by polynomial in n and log 1

ε ; or, if there is a
rational equilibrium solution, one can compute an exact equilibrium in a num-
ber of arithmetic operations bounded by polynomial in n and L, where L is
the bit-length of the input data. When the utility functions are linear, the cur-
rent best arithmetic operations complexity bound is O(

√
mn(m + n)3L) given

by [13].
Little is known on the computational complexity for computing market equi-

libria with non-homogeneous utility functions and for markets other than the
Fisher and Arrow-Debreu settings. This note is to derive convex programs to
solve several more general exchange market equilibrium problems. We show that
the equilibrium of either of the following two markets:

1. The Fisher market with several classes of concave non-homogeneous utility
functions;

2. A mixed Fisher and Arrow-Debreu marketwith homogeneous and log-concave
utility functions

can be computed as convex programming and by interior-point algorithms in
polynomial time.

First, a few mathematical notations. Let R
n denote the n-dimensional Euclid-

ean space; R
n
+ denote the subset of R

n where each coordinate is non-negative. R

and R+ denote the set of real numbers and the set of non-negative real numbers,
respectively.

A function u : R
n
+ → R+ is said to be concave if for any x, y ∈ R

n
+ and any

0 ≤ α ≤ 1, we have u(αx + (1 − α)y) ≥ αu(x) + (1 − α)u(y). It is homothetic
if for any x, y ∈ R

n
+ and any α > 0, u(x) ≥ u(y) iff u(αx) ≥ u(αy). It is

monotone increasing if for any x, y ∈ R
n
+, x ≥ y implies that u(x) ≥ u(y). It is

homogeneous of degree d if for any x ∈ R
n
+ and any α > 0, u(αx) = αdu(x).
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A Note on Equilibrium Pricing as Convex Optimization 9

2 Convex Optimization for the Fisher Market with
Non-homogeneous Utilities

Without loss of generality, assume that there is one unit of good for each type
of good j ∈ P with |P | = n. Let consumer i ∈ C (with |C| = m) have an initial
money endowment wi > 0 to spend and buy goods to maximize his or her utility
function for a given price vector p ∈ R

n
+:

maximize ui(xi)

subject to pT xi ≤ wi

xi ≥ 0;
(1)

where variable xi = (xi1; ...; xin) is a column vector whose jth coordinates xij

represents the amount of goods bought from producer j by consumer i, j =
1, ..., n. Let ui(xi) be concave and monotonically increasing. We also assume
that every consumer is interested in buying at least one type of good and every
type of good is sought by at least one consumer. Then, a price vector p ≥ 0,
together with vectors xi, i = 1, ..., m is called a Fisher equilibrium if xi is optimal
for (1) for the given p, and

∑
i xi = e (the vector of all ones). The last condition

requires that all the goods of the producers are sold.

2.1 Homogeneous and Log-Concave Utilities

If ui(xi) is homogeneous of degree 1 (this is without loss of generality since any
homogeneous function with a positive degree can be monotonically transformed
to a homogeneous function with degree 1) and log(ui(xi)) is concave in xi ∈ R

n
+,

the Fisher equilibrium problem can be solved as an aggregate social convex
optimization problem (see Eisenberg and Gale [6,9,7]):

maximize
∑

i wi log(ui(xi))

subject to
∑

i xi = e, ∀j,
xi ≥ 0, ∀i;

(2)

where the objective function may be interpreted as a socially aggregated utility.
These homogeneous and log-concave functions include many classical utilities:

– All constant elasticity functions

ui(x) =

⎛

⎝
n∑

j=1

(ajxj)(σ−1)/σ

⎞

⎠

σ/(σ−1)

, aj ≥ 0, 0 < σ < ∞;

– Piece-wise concave linear function

ui(x) = min
k

{(ak)T x}, ak ≥ 0, k = 1, ..., K;
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10 L. Chen, Y. Ye, and J. Zhang

– The Cobb-Douglass utility function

ui(x) =
n∏

j=1

x
aj

j , aj ≥ 0.

Jain et al. [10] showed how to transform a homothetic utility function into an
equivalent homogeneous degree 1 and log-concave function. Thus, the Fisher
equilibrium problem with homothetic utilities can be also solved as a convex
optimization problem. A natural question arises: Does this approach apply to
more general non-homogeneous utility functions?

2.2 Necessary and Sufficient Condition for a Fisher Equilibrium

Consider the optimality conditions of (1). Besides feasibility, they are

(∇ui(xi)T xi) · p ≥ wi · ∇ui(xi),

pT xi = wi,
xi ≥ 0,

(3)

where ∇u(x) denotes any sub-gradient vector of u(x) at x.
Thus, the complete necessary and sufficient conditions for a Fisher equilibrium

are the following:

(∇ui(xi)T xi) · p ≥ wi · ∇ui(xi), ∀i

pT xi = wi,∑
i xi ≤ e,
pT e ≤

∑
i wi,

xi, p ≥ 0, ∀i.

(4)

Note here that the condition pT xi = wi should be implied by the rest of
conditions in (4): Multiplying xi ≥ 0 to both sides of the first inequality in (4),
we have pT xi ≥ wi for all i, which, together with other inequality conditions in
(4), imply

∑

i

wi ≥ pT e ≥ pT

(
∑

i

xi

)

=
∑

i

pT xi ≥
∑

i

wi,

that is, every inequality in the sequence must be tight which implies pT xi = wi

for all i. Thus, the reduced necessary and sufficient Fisher equilibrium conditions
become

(∇ui(xi)T xi) · p ≥ wi · ∇ui(xi), ∀i
∑

i xi ≤ e,
pT e ≤

∑
i wi,

xi, p ≥ 0, ∀i.

(5)
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The inequalities and equalities in (5) are all linear, except the first

(∇ui(xi)T xi) · p ≥ wi · ∇ui(xi).

An immediate observation is, if every consumer i is interested in exactly one
type of good, that is, ui(xi) is a univariate concave function ui(xij̄i

) for some
j̄i ∈ P , then the above condition becomes a single inequality:

(u′
i(xij̄i

) · xij̄i
) · pj̄i

≥ wi · u′
i(xij̄i

),

or simply
xij̄i

· pj̄i
≥ wi.

One can transfer this non-linear inequality to

log(xij̄i
) + log(pj̄i

) ≥ log(wi)

which is a convex inequality (meaning that the set of feasible solutions is convex).
Thus, the Fisher equilibrium set is convex and can be found by solving a convex
optimization problem. It turns out that this simple trick works for other utilities
as well, as we shall present in the next subsection.

2.3 Concave and Non-homogeneous Utilities

Consider ui(xi) in the following additive or separable form:

ui(xi) =
∑n

j=1 aij(xij + bij)dij ,

or
ui(xi) =

∑n
j=1 aij log(xij + bij),

(6)

where aij , bij ≥ 0, and 0 < dij ≤ 1, for all i and j, are given, and variable xij

represents the amount of goods bought from good j by consumer i, j = 1, ..., n.
One can see that ui(xi) is a concave and monotone increasing function in xi =
(xi1; ...; xin) ≥ 0.

This utility function (6) includes as special case several popular utilities:

– linear utility functions: dij = 1 for all j in the first form;
– certain constant elasticity functions: bij = 0 and dij = d, 0 ≤ d ≤ 1, for all

j in the first form;
– the Cobb-Douglass utility function: bij = 0 in the second form;
– a non-homogeneous Cobb-Douglass utility functions given by [3]: the second

form.

Note that ui(xi) (6),can be non-homothetic; see, for example, u(x, y) =
√

x+ y.
Chen at al. [3] developed approximation algorithm with running time polynomial
in n and 1

ε for the utility function in the second form of (6).

Lemma 1. Given ui(xi) in the forms of (6), (∇ui(xi)T xi) is concave, and
log(∇jui(xi)) is convex for every j, in xi ∈ R

n
+.
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12 L. Chen, Y. Ye, and J. Zhang

Proof. For simplicity, let us omit index i, so that

u(x) =
n∑

j=1

aj(xj + bj)dj

or

u(x) =
n∑

j=1

aj log(xj + bj).

Thus, for the first form

∇u(x) = (..., ajdj(xj + bj)dj−1, ...),

so that
∇u(x)T x =

∑

j

ajdj(xj + bj)dj−1xj .

It is easily see that each (xj + bj)dj−1xj is concave in xj ≥ 0 since 0 ≤ dj ≤ 1;
therefore, so is the sum:

∑
j ajdj(xj + bj)dj−1xj .

Furhtermore,

log(∇ju(x)) = (dj − 1) log(xj + bj) + log(ajdj)

which is convex in xj > 0 for every j.
Similarly, one can prove the lemma for the the second form. This completes

the proof. 
�
Thus, one can rewrite the nonlinear inequality in (5) as

log(∇ui(xi)T xi) + log(pj) ≥ log(wi) + log(∇jui(xi)), ∀j,

which is a convex inequality (the set of feasible solutions is convex) by Lemma
1. Thus,

Theorem 1. If utilities ui(xi) are given in the forms of (6), then the Fisher
equilibrium set of (5) is convex and can be computed as a convex optimization
problem; for example, by using polynomial-time interior-point methods.

3 Convex Optimization for the Fisher Market Where
Consumers May Retain Money

In the classical Fisher market, consumers spend money only to buy goods and
maximize their individual utility functions of goods; producers sell their goods
only for money. Now consider a market where each consumer can retain certain
amount of money from his or her own budget, that is, his or her utility includes
the amount of retained money:

maximize ui(xi, si)

subject to pT xi + si ≤ wi

xi, si ≥ 0,

(7)
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where again xi = (xi1; ...; xin) and its jth component xij represents the amount
of good j bought by consumer i, and si denotes the retained money (e.g., de-
posited in a bank for a short-time interest gain). We assume that ui(xi, si) is
a monotone increasing and concave function of (xi, si) ≥ 0. This mixed market
has a number of applications in managing supply chains and resource allocations.

3.1 The Mixed Market Equilibrium

In this mixed market, an equilibrium is defined as a non-negative price vector
p ∈ R

n
+ at which there exist a bundle of goods (xi ∈ R

n
+, si ≥ 0) for each

consumer i ∈ C such that the following conditions hold:

1. The vector (xi; si) optimizes retailer i’s utility (7) given her money budget
wi.

2. For each good j, the total amount available equals the total amount con-
sumed by the consumers, that is,

∑
i∈C xij = 1.

3. The sum of the spending and retaining money equals the sum of the money
possessed by all consumers, that is,

∑
j∈P pj +

∑
i∈C si =

∑
i∈C wi.

The existence of such an equilibrium is immediately implied by the existence
of an Arrow-Debreu equilibrium by treating money as an additional “good”.
One may attempt to prove the existence using the Fisher equilibrium model.
However, in such a Fisher equilibrium model the price for the money “good”
(si) has to be fixed to 1 (the same as wi), which is difficult to enforce. Thus,
we need to invoke the Arrow-Debreu model by assigning price pn+1 to a unit of
money. Then, each consumer’s problem becomes

maximize ui(xi, si)

subject to pT xi + pn+1si ≤ pn+1wi,
xi, si ≥ 0,

where the total supply of money is
∑

i wi. Therefore, the Arrow-Debreu theorem
implies that an equilibrium price vector (p; pn+1) ∈ R

n+1
+ exists. In particular,

pn+1 > 0 at every Arrow-Debreu equilibrium since money has a value at least
to every producer. By dividing (p; pn+1) by pn+1, we have an equilibrium price
for all goods, and the price for the money “good” equals 1:

Corollary 1. An equilibrium always exists for the Fisher market where con-
sumers may retain money.

However, it was unknown if the mixed market admits a convex program for com-
puting its equilibrium, or it has to use the more difficult Arrow-Debreu equilib-
rium framework to compute it, even the utility is homogeneous and log-concave.
The computational complexity issue of the mixed market equilibrium problem
is important, since there is a fundamental difference between the Fisher and
Arrow-Debreu models with respect to computational complexity. For example,
when the utility is Leontief

ui(x) = min
{

xj

aj
: aj > 0

}
,
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14 L. Chen, Y. Ye, and J. Zhang

a homogeneous of degree one and log-concave function, the Fisher market equi-
librium can be computed as a convex program in polynomial time while the
Arrow-Debreu market equilibrium is NP-hard to decide; see Ye [14] and Code-
notti et al. [5].

We settle the computational complexity issue of the mixed market equilib-
rium problem in the next subsection by showing that any optimal solution to
a convex program yields an equilibrium if the utility functions are log-concave
and homogeneous of degree one.

3.2 Convex Optimization for Computing an Equilibrium

From (4), the necessary and sufficient conditions for the mixed market equilib-
rium are

(p; 1) ≥ wi

∇ui(xi,si)T (xi;si)
· ∇ui(xi, si), ∀i

∑
i xi ≤ e,∑

j pj +
∑

i si ≤
∑

i wi,

xi, p ≥ 0, ∀i;

(8)

where one can see that the price for the money good is set to 1.
Let ui(xi, si) be homogeneous of degree one and log(ui(xi, si)) be concave in

(xi; s)i) ∈ R
n+1
+ . Recall that this function includes all constant elasticity, piece-

wise concave linear, the Cobb-Douglass utility, and the Leontief utility functions.
Now consider the convex optimization problem

maximize
∑

i wi log(ui(xi, si)) − s

subject to
∑

i xij ≤ 1, ∀j,∑
i si − s = 0,

(xi, si) ≥ 0, ∀i.

(9)

The first set of constraint inequalities indicates that the demand does not exceed
the supply; the second simply records the total amount of money retained by
all consumers as s. Then, the retained amount s is subtracted linearly from the
aggregate social utility function. This makes economical sense since this amount
has been withdrawn from the exchange market by the consumers so that one
should extract them from the aggregated social utility for the exchange market.

We have

Theorem 2. Let (x̄i, s̄i), i = 1, ..., m, be an optimal solution for convex program
(9), and let pj be an optimal Lagrange multiplier for each good j in the first
constraint set of (9). Then, these solutions form an equilibrium for the mixed
market (7).

Proof. First, the feasible set of the optimization problem (9) is linear, com-
pact and convex, the maximal solution exists and the maximum value is finite.
Moreover, the objective function to be maximized is concave. Thus, the first-
order optimality conditions are necessary and sufficient for an optimal solution
(x̄i, s̄i). These optimality conditions can be written (using the fact that the op-
timal Lagrange multiplier for the second constraint automatically equals 1) as:
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wi

ui(x̄i,s̄i)
∇xiui(x̄i, s̄i) ≤ p, ∀i

wi

ui(x̄i,s̄i)
∂siui(x̄i, s̄i) ≤ 1, ∀i

wi

ui(x̄i,s̄i)

(
∇xi

ui(x̄i, s̄i)T x̄i + ∂siui(x̄i, s̄i)s̄i

)
= pT x̄i + s̄i,

(10)

where p = (p1, ..., pn) and pj is the optimal Lagrange multiplier for each j
in the first constraint set of (9). The third equality of condition (10) is called
the complementarity condition, which, together with the fact that ui(xi, si) is
homogeneous of degree one, namely ui(x̄i, s̄i) = ∇ui(x̄i, s̄i)T (x̄i; s̄i), imply

pT x̄i + s̄i =
wi

ui(x̄i, s̄i)
(
∇xi

ui(x̄i, s̄i)T x̄i + ∂siui(x̄i, s̄i)s̄i

)

=
wi

ui(x̄i, s̄i)
(∇ui(x̄i, s̄i)T (x̄i; s̄i))

=
wi

ui(x̄i, s̄i)
· ui(x̄i, s̄i)

= wi,

so that ∑

i

(pT x̄i + s̄i) =
∑

i

wi.

Thus, (x̄i, s̄i), i = 1, ..., m, and p satisfy the equilibrium conditions of (8). 
�
It is well-known that one can use interior point methods to solve the linearly
constrained convex program (9) to yield both primal and dual optimal solutions
in polynomial time; see [13]. Therefore, an equilibrium for the mixed market (7)
can be found in polynomial time.
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Abstract. We consider the problem of computing additively approx-
imate Nash equilibria in non-cooperative two-player games. We pro-
vide a new polynomial time algorithm that achieves an approximation
guarantee of 0.36392. Our work improves the previously best known
(0.38197 + ε)-approximation algorithm of Daskalakis, Mehta and Pa-
padimitriou [6].

First, we provide a simpler algorithm, which also achieves 0.38197.
This algorithm is then tuned, improving the approximation error to
0.36392. Our method is relatively fast, as it requires solving only one
linear program and it is based on using the solution of an auxiliary zero-
sum game as a starting point.

1 Introduction

A Nash equilibrium of a bimatrix game is a pair of strategies, such that no
player has an incentive to deviate (unilaterally). In a series of works [8,4,2], it
was established that computing a Nash equilibrium is PPAD-complete even for
two-player games. The focus has since then been on algorithms for approximate
equilibria.

In this work we use the notion of additive approximation and consider the
problem of computing approximate Nash equilibria in bimatrix games. Under
the usual assumption that the payoff matrices are normalized to be in [0, 1]n×n,
we say that a pair of strategies is an ε-Nash equilibrium if no player can gain
more than ε by unilaterally deviating to another strategy. In [3] it was proved
that it is PPAD-complete to find an ε-Nash equilibrium when ε is of the or-
der 1

poly(n) . For constant ε however, the problem is still open. In [11], it was
shown that for any constant ε > 0, an ε-Nash equilibrium can be computed in
subexponential time (nO(log n/ε2)). As for polynomial time algorithms, it is fairly
simple to obtain a 3/4-approximation (see [9] for a slightly better result) and
even better a 1/2-approximation [5]. Recently, an improved approximation for

� The first author was supported by NWO. The second and third author were sup-
ported by the EU Marie Curie Research Training Network, contract numbers MRTN-
CT-2003-504438-ADONET and MRTN-CT-2004-504438-ADONET respectively.
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ε = 3−√
5

2 + ζ ≈ 0.38197 + ζ for any ζ > 0 was obtained by Daskalakis, Mehta
and Papadimitriou [6].

We provide two new algorithms for approximate Nash equilibria. The first one
achieves exactly the same factor as [6] but with a simpler and faster technique.
The second one, which is an extension of the first and has a more involved
analysis, achieves an improved approximation of 0.36392. Both algorithms are
based on solving a single linear program in contrast to [6], which may require to
solve up to n

O( 1
ζ2 ) linear programs for a (0.38197 + ζ)-approximation.

The main idea of our algorithms is as follows: we first find an equilibrium (say
x∗, y∗) in the zero-sum game R − C, where R and C are the payoff matrices of
the two players. If x∗, y∗ is not a good solution for the original game, then the
players take turns and switch to appropriate strategies. Roughly speaking, the
probabilities of switching are chosen such that the incentives to deviate become
the same for both players. As a result, these probabilities are particular functions
in the parameters of the underlying problem. The final part of the analysis then
is to choose among these functions so as to minimize the approximation error.
The intuition behind using the auxiliary zero-sum game R−C is that a unilateral
switch from x∗, y∗ that improves the payoff of one player cannot hurt the other,
as explained in the proof of Theorem 1. We should note that the use of certain
zero-sum games has also been considered in [10] for obtaining well-supported
approximate equilibria, which is a stronger notion of approximation.

In an independent work, Spirakis and Tsaknakis [13] have obtained another
algorithm achieving an improved approximation of 0.3393. Their technique is
also based on linear programming but seems unrelated to ours, and requires
solving a polynomial number of linear programs.

2 Notation and Definitions

Consider a two person game G, where for simplicity the number of available
(pure) strategies for each player is n. Our results still hold when the players do
not have the same number of available strategies. We will refer to the two players
as the row and the column player and we will denote their n×n payoff matrices
by R, C respectively. Hence, if the row player chooses strategy i and the column
player chooses strategy j, the payoffs are Rij and Cij respectively.

A mixed strategy for a player is a probability distribution over the set of his
pure strategies and will be represented by a vector x = (x1, x2, ..., xn)T , where
xi ≥ 0 and

∑
xi = 1. Here xi is the probability that the player will choose his

ith pure strategy. The ith pure strategy will be represented by the unit vector ei,
that has 1 in the ith coordinate and 0 elsewhere. For a mixed strategy pair x, y,
the payoff to the row player is the expected value of a random variable which
is equal to Rij with probability xiyj . Therefore the payoff to the row player is
xT Ry. Similarly the payoff to the column player is xT Cy.

A Nash equilibrium [12] is a pair of strategies x∗, y∗ such that no player has an
incentive to deviate unilaterally. Since mixed strategies are convex combinations
of pure strategies, it suffices to consider only deviations to pure strategies:
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Definition 1. A pair of strategies x∗, y∗ is a Nash equilibrium if:

(i) For every pure strategy ei of the row player, eT
i Ry∗ ≤ (x∗)T Ry∗, and

(ii) For every pure strategy ei of the column player, (x∗)T Cei ≤ (x∗)T Cy∗.

Assuming that we normalize the entries of the payoff matrices so that they all lie
in [0, 1], we can define the notion of an additive ε-approximate Nash equilibrium
(or simply ε-Nash equilibrium) as follows:

Definition 2. For any ε > 0, a pair of strategies x∗, y∗ is an ε-Nash equilibrium
iff:

(i) For every pure strategy ei of the row player, eT
i Ry∗ ≤ (x∗)T Ry∗ + ε, and

(ii) For every pure strategy ei of the column player, (x∗)T Cei ≤ (x∗)T Cy∗ + ε.

In other words, no player will gain more than ε by unilaterally deviating to an-
other strategy. A stronger notion of approximation was introduced in [4], namely
ε-well-supported equilibria. We do not consider this approximation concept here.
See [10] for new results on well-supported equilibria.

3 A (3−√
5

2 )-Approximation

In this section, we provide an algorithm that achieves exactly the same factor
as in [6], which is (3 −

√
5)/2, but by using a different and simpler method. In

the next section we show how to modify our algorithm in order to improve the
approximation.

Given a game G = (R, C), where the entries of R and C are in [0, 1], let
A = R − C. Our algorithm is based on solving the zero-sum game (A, −A) and
then modifying appropriately the solution, if it does not provide a good approx-
imation. It is well known that zero-sum games can be solved efficiently using
linear programming. The decision on when to modify the zero-sum solution de-
pends on a parameter of the algorithm α ∈ [0, 1]. We first describe the algorithm
parametrically and then show how to obtain the desired approximation.

Algorithm 1
Let α ∈ [0, 1] be a parameter of the algorithm.

1. Compute an equilibrium (x∗, y∗) for the zero-sum game defined by the matrix
A = R − C.

2. Let g1, g2 be the incentives to deviate for the row and column player respec-
tively if they play (x∗, y∗) in the game (R, C), i.e., g1 = maxi=1,...,n eT

i Ry∗−
(x∗)T Ry∗ and g2 = maxi=1,...,n (x∗)T Cei − (x∗)T Cy∗. WLOG, assume, that
g1 ≥ g2 (the statement of the algorithm would be completely symmetrical if
g1 < g2).

3. Let r1 ∈ argmaxei
eT

i Ry∗ be an optimal response of the row player to the
strategy y∗. Let b2 ∈ argmaxei

rT
1 Cei be an optimal response of the column

player to the strategy r1.
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4. Output the following pair of strategies, (x̂, ŷ), depending on the value of g1
with respect to the value of α:

(x̂, ŷ) =
{

(x∗, y∗), if g1 ≤ α
(r1, (1 − δ2) · y∗ + δ2 · b2), otherwise

where δ2 = 1−g1
2−g1

.

Theorem 1. Algorithm 1 outputs a max{α, 1−α
2−α}-approximate Nash equilibrium.

Proof. If g1 ≤ α (recall that we assumed g1 ≥ g2), then clearly (x∗, y∗) is an
α-approximate Nash equilibrium.

Suppose g1 > α. We will estimate the satisfaction of each player separately.
Suppose b1 is an optimal response for the row player to ŷ, i.e., b1 ∈ argmaxei

eT
i Rŷ.

The row player plays r1, which is a best response to y∗. Hence b1 can be better
than r1 only when the column player plays b2, which happens with probability δ2.
Formally, the amount that the row player can earn by switching is at most:

bT
1 Rŷ − rT

1 Rŷ = (1 − δ2)(bT
1 Ry∗ − rT

1 Ry∗) + δ2(bT
1 Rb2 − rT

1 Rb2)
≤ δ2 · bT

1 Rb2 ≤ δ2 = 1−g1
2−g1

The first inequality above comes from the fact that r1 is a best response to
y∗ and the second comes from our assumption that the entries of R and C are
in [0, 1].

Consider the column player. The critical observation is that the column player
also benefits (when he plays y∗) from the switch of the row player from x∗ to r1.
In particular, since (x∗, y∗) is an equilibrium for the zero-sum game (R−C, C −
R), the following inequalities hold:

(x∗)T Rej −(x∗)T Cej ≥ (x∗)T Ry∗−(x∗)T Cy∗ ≥ eT
i Ry∗−eT

i Cy∗, ∀ i, j = 1, ..., n
(1)

If ei = r1, we get from (1) that rT
1 Cy∗ ≥ rT

1 Ry∗ − (x∗)T Ry∗ +(x∗)T Cy∗. But
we know that rT

1 Ry∗ − (x∗)T Ry∗ = g1, which implies:

rT
1 Cy∗ ≥ g1 + (x∗)T Cy∗ ≥ g1 (2)

Inequality (2) shows that any deviation of the row player from x∗, y∗, that im-
proves his payoff, guarantees at least the same gain to the column player as well.
Now we can estimate the incentive of the column player to change his strategy.
He plays ŷ while he would prefer to play an optimal response to x̂ which is b2.
Since b2 is played with probability δ2, by switching he could earn:

x̂T Cb2 − x̂T Cŷ = rT
1 Cb2 − rT

1 Cŷ
= rT

1 Cb2 − ((1 − δ2)rT
1 Cy∗ − δ2 · rT

1 Cb2)
= (1 − δ2)(rT

1 Cb2 − rT
1 Cy∗)

≤ (1 − δ2)(1 − g1) = δ2 = 1−g1
2−g1

The last inequality above follows from (2). The probability δ2 was chosen so as
to equalize the incentives of the two players to deviate in the case that g1 > α.
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It is now easy to check that the function (1 − g1)/(2 − g1) is decreasing, hence
the incentive for both players to deviate is at most (1 − α)/(2 − α). Combined
with the case when g1 ≤ α, we get a max{α, 1−α

2−α}-approximate equilibrium.

In order to optimize the approximation factor of Algorithm 1, we only need to
equate the two terms, α and 1−α

2−α , which then gives:

α2 − 3α + 1 = 0 (3)

The solution to (3) in the interval [0, 1] is α = 3−√
5

2 ≈ 0.38197. Note that
α = 1 − 1/φ, where φ is the golden ratio. Since α is an irrational number, we
need to ensure that we can still do the comparison g1 ≤ α to be able to run
Algorithm 1 (note that this is the only point where the algorithm uses the value
of α). But to test g1 ≤ 3−

√
5/2, it suffices to test if (3−2g1)2 ≥ 5 and clearly g1

is a polynomially sized rational number. Concerning complexity, zero-sum games
can be solved in polynomial time by linear programming. All the other steps of
the algorithm require only polynomial time. Therefore, Theorem 1 implies:

Corollary 1. We can compute in polynomial time a 3−√
5

2 -approximate Nash
equilibrium for bimatrix games.

4 An Improved Approximation

In this section we obtain a better approximation of 1/2 − 1/(3
√

6) ≈ 0.36392
by essentially proposing a different solution in the cases where Algorithm 1 ap-
proaches its worst case guarantee. We first give some motivation for the new
algorithm. From the analysis of Algorithm 1, one can easily check that as long
as g1 belongs to [0, 1/3] ∪ [1/2, 1], we can have a 1/3-approximation if we run
the algorithm with any α ∈ [1/3, 1/2). Therefore, the bottleneck for getting a
better guarantee is when the maximum incentive to deviate is in [1/3, 1/2]. In
this case, we will change the algorithm so that the row player will play a mix of
r1 and x∗. Note that in Algorithm 1, the probability of playing r1 is either 0 or
1 depending on the value of g1. This probability will now be a more complicated
function of g1, derived from a certain optimization problem. As for the column
player, we again compute b2 which is now the best response to the mixture of
r1 and x∗- not only to r1. Then we compute an appropriate mixture of b2 and
y∗. Again, the probability of playing b2 is chosen so as to equate the incentives
of the two players to defect. Finally we should note that our modification will
be not on [1/3, 1/2] but instead on a subinterval of the form [1/3, β], where β is
derived from the optimization that we perform in our analysis.

Algorithm 2

1. Compute an equilibrium (x∗, y∗) for the zero-sum game defined by the matrix
A = R − C.
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2. As in Algorithm 1, let g1, g2 be the incentives to deviate for the row and
column player respectively if they play (x∗, y∗) in the original game, i.e., g1 =
maxi=1,...,n eT

i Ry∗ − (x∗)T Ry∗ and g2 = maxi=1,...,n (x∗)T Cei − (x∗)T Cy∗.
WLOG, assume, that g1 ≥ g2.

3. Let r1 ∈ argmaxei
eT

i Ry∗ be an optimal response of the row player to the
strategy y∗.

4. The row player will play a mixture of r1 and x∗, where the probability of
playing r1 is given by:

δ1 = δ1(g1) =

⎧
⎨

⎩

0, if g1 ∈ [0, 1/3]
Δ1(g1), if g1 ∈ (1/3, β]
1, otherwise

where Δ1(g1) = (1 − g1)
(
−1 +

√
1 + 1

1−2g1
− 1

g1

)
.

5. Let b2 be an optimal response of the column player to ((1−δ1)x∗+δ1r1), i.e.,
b2 ∈ argmaxei

((1 − δ1)x∗ + δ1r1)T Cei. Let also h2 = (x∗)T Cb2−(x∗)T Cy∗,
i.e., the gain from switching to b2 if the row player plays x∗.

6. The column player will play a mixture of b2 and y∗, where the probability
of playing b2 is given by:

δ2 = δ2(δ1, g1, h2) =

⎧
⎨

⎩

0, if g1 ∈ [0, 1/3]
max{0, Δ2(δ1, g1, h2)}, if g1 ∈ (1/3, β]
1−g1
2−g1

, otherwise

where Δ2(δ1, g1, h2) = δ1−g1+(1−δ1)h2
1+δ1−g1

.
7. Output (x̂, ŷ) = ((1 − δ1)x∗ + δ1r1, (1 − δ2)y∗ + δ2b2).

In our analysis, we will take β to be the solution to Δ1(g1) = 1 in [1/3, 1/2],
which coincides with the root of the polynomial x3 −x2 − 2x+1 in that interval
and it is:

β =
1
3

+
√

7
3

cos
(

1
3

tan−1
(
3
√

3
))

−
√

21
3

sin
(

1
3

tan−1
(
3
√

3
))

(4)

Calculations show 0.445041 ≤ β ≤ 0.445042. The emergence of β in our analysis
arises in the proof of Lemma 1.

Remark 1. The actual probabilities δ1 and δ2 as well as the number β can be
irrational numbers. However, for any constant ε > 0, we can take approxima-
tions of high enough accuracy of all the square roots that are involved in the
calculations so that the final loss in the approximation ratio will be at most ε.
From now on, for ease of exposition, we will carry out the analysis of Algorithm
2, as if we can compute exactly all the expressions involved.

Note that for g1 ∈ [13 , 1
2 ] and δ1 ∈ [0, 1] the denominators that appear in the

functions Δ1, Δ2 do not vanish. The following lemma ensures that x̂ is a valid
strategy.
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Lemma 1. For g1 ∈ (1/3, β] we have Δ1(g1) ∈ [0, 1].

The proof of Lemma 1 is based on showing that the function Δ1 is increasing
in [1/3, β] and that it maps [1/3, β] to [0, 1]. Due to lack of space we omit it in
this version.

Now we bound the incentives of players to deviate. Let F be the following
function:

F (δ1, g1, h2) :=
(δ1 (1 − g1 − h2) + h2) (1 − (1 − δ1)h2)

1 + δ1 − g1
(5)

Lemma 2. The pair of strategies (x̂, ŷ) is a λ-Nash equilibrium for game (R, C)
with

λ ≤

⎧
⎪⎪⎨

⎪⎪⎩

g1 if g1 ≤ 1/3

maxh2∈[0,g1]

{
F (δ1, g1, h2) if Δ2(δ1, g1, h2) ≥ 0
(1 − δ1)g1 if Δ2(δ1, g1, h2) < 0 if g1 ∈ (1/3, β]

1−g1
2−g1

if g1 > β

(6)

Proof. In the case that g1 ∈ [0, 1/3] ∪ [β, 1], the answer follows from the proof
of Theorem 1. The interesting case is when g1 ∈ [1/3, β].

Case 1: g1 ≤ 1/3
(x̂, ŷ) = (x∗, y∗) which is by definition a g1-approximate Nash equilibrium.

Case 2a: g1 ∈ (1/3, β] and Δ2(δ1, g1, h2) ≥ 0
Recall that Lemma 1 implies x̂ is a valid strategy in Case 2. Observe, that
δ2(g1, δ1, h2) = Δ2(g1, δ1, h2) = δ1−g1+(1−δ1)h2

1+δ1−g1
≤ 1 is a valid probability, and

therefore ŷ is a valid mixed strategy too.
We estimate the incentive for the row player to deviate from x̂. If b1 is an

optimal response to ŷ, then the gain from switching is at most:

bT
1 Rŷ − x̂T Rŷ = (b1 − x̂)T Rŷ =

= δ2(b1 − x̂)T Rb2 +(1 − δ2)(b1 − x̂)T Ry∗

≤ δ2(1 − x̂T Rb2) +(1 − δ2)(b1 − x̂)T Ry∗

= δ2(1 − δ1r
T
1 Rb2 − (1 − δ1)(x∗)T Rb2) +(1 − δ2)(b1 − δ1r1 − (1 − δ1)x∗)T Ry∗

By (1) we have (x∗)T Rb2 ≥ (x∗)T Cb2 − (x∗)T Cy∗ + (x∗)T Ry∗ ≥ h2. Also
r1 is a best response to y∗, hence (b1 − r1)T Ry∗ ≤ 0 and (b1 − x∗)T Ry∗ ≤ g1.
Therefore, the gain from deviating is at most:

bT
1 Rŷ − x̂T Rŷ ≤ δ2(1 − (1 − δ1)h2) + (1 − δ2)(1 − δ1)g1 = EST1.

We now estimate the incentive of the column player to switch. The best re-
sponse to x̂ for the column player is b2, which is played with probability δ2. Thus
the incentive to deviate from ŷ is:

x̂T Cb2 − x̂T Cŷ = (1 − δ2)(x̂T Cb2 − x̂T Cy∗)
= (1 − δ2)((1 − δ1)(x∗T Cb2 − x∗T Cy∗) + δ1(rT

1 Cb2 − rT
1 Cy∗))

≤ (1 − δ2)((1 − δ1)h2 + δ1(1 − g1)) = EST2
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The last inequality follows from the definitions of g1 and h2. It remains to
observe that our choice of δ2(δ1, g1, h2) = δ1−g1+(1−δ1)h2

1+δ1−g1
makes these estimates

both equal to F (δ1, g1, h2):

EST1 = EST2 =
(δ1 (1 − g1 − h2) + h2) (1 − (1 − δ1)h2)

δ1 + 1 − g1
= F (δ1, g1, h2).

Case 2b: g1 ∈ (1/3, β] and Δ2(δ1, g1, h2) < 0
Then ŷ = y∗ and the best response of the row player is r1. Hence he can improve
his payoff by at most

rT
1 Ry∗ − x̂T Ry∗ = rT

1 Ry∗ − (δ1 · rT
1 Ry∗ + (1 − δ1)((x∗)T Ry∗)) = (1 − δ1)g1

while the column player can improve by at most

x̂T Cb2 − x̂T Cy∗ = δ1(rT
1 Cb2 − rT

1 Cy∗) + (1 − δ1)((x∗)T Cb2 − (x∗)T Cy∗)

By (1) we can see that rT
1 Cy∗ ≥ g1. Hence

x̂T Cb2 − x̂T Cy∗ ≤ δ1(1 − g1) + (1 − δ1)h2

It is easy to check that Δ2(g1, δ1, h2) < 0 implies δ1(1 − g1) + (1 − δ1)h2 <
(1 − δ1)g1. Therefore the maximum incentive to deviate in this case is at most
(1 − δ1)g1. Combining Case 2a and Case 2b, and taking the worst possible case
over the range of h2 (recall that h2 ≤ g2 ≤ g1), we get precisely the expression
in the statement of Lemma 2.

Case 3: g1 > β
Notice that in this case, the players are playing the same strategies as in Algo-
rithm 1, when g1 ≥ α. By the analysis in the proof of Theorem 1, we see that
the maximum incentive is (1 − g1)/(2 − g1). This completes the proof.

We will now argue that our choice of Δ1(g1) is optimal for any g1 ∈ (1
3 , β]

and that the expression (6) from Lemma 2 achieves an improvement over Al-
gorithm 1. For this, we need to find the worst possible approximation in Case
2 of Lemma 2. In particular, we need to look at the maxima of the following
function:

P (g1) := min
δ1∈[0,1]

max
h2∈[0,g1]

{
F (δ1, g1, h2) if Δ2(δ1, g1, h2) ≥ 0
(1 − δ1)g1 if Δ2(δ1, g1, h2) < 0 (7)

Lemma 3. The tuple (δ1, h2) = (Δ1(g1), g1) is an optimal solution for the ex-
pression P (g1). Furthermore, the maximum of P (g1) over g1 is 1

2 − 1
3
√

6
, i.e.,

the following holds

P (g1) = F (Δ1(g1), g1, g1) ∀g1 ∈ [
1
3
,
1
2
] (8)

max
g1∈[ 13 ,β]

P (g1) =
1
2

− 1
3
√

6
≤ 0.36392. (9)
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β1/3 g1

3−√
5

2

1
2− 1

3
√

6

F (Δ(g1),g1,g1)
g1

1−g1
2−g1

� case 1 �� case 2 �� case 3 �

0.2 0.3 0.4 0.5

Fig. 1. How the approximation factor depends on g1

The lemma will be proved in Section 5. Given Remark 1, we are now ready to
conclude with the following:

Theorem 2. For any ε > 0, Algorithm 2 computes a (0.36392+ ε)-approximate
Nash equilibrium.

Proof. By Lemma 2 the output of Algorithm 2, (x̂, ŷ) is a pair of mixed strategies
for players, such that the incentive of players to deviate is bounded by (6).
By Lemma 3 we have that for g1 ∈ (1/3, β] the expression (6) is bounded by
1
2 − 1

3
√

6
≤ 0.36392. It is easy to observe, that for other values of g1 the

expression (6) takes only smaller values. In particular, it is at most 1/3 when
g1 ∈ [0, 1/3] and at most 1−β

2−β ≈ 0.3569 when g1 > β. The dependence of the
approximation on the variable g1 is presented in Figure 1.

5 Proof of Lemma 3

Fact 3. The square function is monotone increasing on the positive domain,
i.e.,

a − b ≥ 0 ⇔ a2 − b2 ≥ 0 holds for all a, b ∈ R, a, b ≥ 0 (10)

We solved the optimization problem of Lemma 3 in the classic manner, eventually
leading to the minimizer Δ1(g). This procedure is lengthy, so here we give an
uninspiring but short proof.

Proof of Lemma 3 : Combining (11) and (12) from Lemma 4 below, we
obtain:

F (Δ1(g1), g1, g1) = min
δ1∈[0,1]

max
h2∈[0,g1]

{
F (δ1, g1, h2) if Δ2(δ1, g1, h2) ≥ 0
(1 − δ1)g1 if Δ2(δ1, g1, h2) < 0
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For ease of exposition, we drop the subscripts of the variables from now on.
Hence we need to prove maxg∈[ 13 ,β] F (Δ1(g), g, g) = 1

2 − 1
3
√

6
≤ 0.36392 where

F (Δ1(g), g, g) =
1
4 − 1

4 (1 − 2g)(3 − 2g)(4g − 1) + 2(1 − g)
√

g(1 − 2g)(−1 + 4g − 2g2)

The fact that the radicand of the function Δ1 is nonnegative implies that the
radicand g(1−2g)(−1+4g−2g2) is nonnegative for all g ∈ [1/3, β]. We now prove
that the maximum of F (Δ(g), g, g) on [13 , β] is assumed in 1/

√
6. Straightforward

calculation leads to

F∗ := F
(
Δ(1/

√
6) , 1/

√
6 , 1/

√
6
)

=
1
2

− 1
3
√

6

Fixing g ∈ [1/3, β] (arbitrarily), one finds:

F∗ − F (Δ1(g), g, g) =

1
4

− 1
3
√

6
+

1
4
(1 − 2g)(3 − 2g)(4g − 1)

︸ ︷︷ ︸
− 2 (1 − g)

√
g(1 − 2g)(−1 + 4g − 2g2)

︸ ︷︷ ︸

≥ 0 (∗) ≥ 0 (∗∗)

Here (∗) and (∗∗) are implied by the choice of g, i.e., (3 − 2g) ≥ 2(1 − g) ≥
(1 − 2g) ≥ 0, and 4g − 1 ≥ 1/3 > 0 hold. Finally since

√
6 > 2 we have

1
4 − 1

3
√

6
> 1

12 > 0.
The inequalities in (∗) and (∗∗) together with (10) lead (after calculations

which we omit due to lack of space) to the equivalence:

F∗ − F (Δ1(g), g, g) ≥ 0 ⇔
(

11
18 + 2

3
√

6
(3 − g) + (1 − g)2

) (
g − 1√

6

)2
≥ 0

Here the second inequality trivially holds since (3 − g) > 0 for g ∈ [1/3, β].
Thus we showed F∗ = F (Δ1(1/

√
6), 1/

√
6, 1/

√
6) ≥ F (Δ1(g), g, g), proving

the lemma, since g ∈ [1/3, β] was chosen arbitrarily and 1/
√

6 ∈ [1/3, β] is
implied by 0.40 ≤ 1/

√
6 ≤ 0.41 < β. �

It now remains to prove the following Lemma:

Lemma 4. For every pair (g, δ) ∈ [1/3, β] × [0, 1] we find

F (δ, g, g) = max
h∈[0,g]

{
F (δ, g, h) if Δ2(δ, g, h) ≥ 0
(1 − δ)g if Δ2(δ, g, h) < 0 (11)

F (Δ1(g), g, g) = min
d∈[0,1]

F (d, g, g) (12)

Proof. Fix some pair (g, δ) ∈ [1/3, β] × [0, 1]. We rewrite (11) as

F (δ, g, g) ≤
(

max
h∈[0,g]

{
F (δ, g, h) if Δ2(δ, g, h) ≥ 0
(1 − δ)g if Δ2(δ, g, h) < 0

)
≤ max

h∈[0,g]
F (δ, g, g)

(13)
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and prove it as follows: Brief calculation together with (1 − g) > 0 lead to
Δ2(δ, g, g) = (1 − g)δ/(1 − g + δ) ≥ 0. So there is a h∗ ∈ [0, g], namely h∗ := g,
such that Δ2(δ, g, h∗) ≥ 0. This implies the first inequality in (13).

Observe that to prove the second inequality in (13), it suffices to show that

F (δ, g, g) ≥ (1 − δ)g and F (δ, g, g) ≥ F (δ, g, h) for all h ∈ [0, g] (14)

both hold – independently of the value of Δ2. Quick calculation proves the first
inequality of (14): Recall that the choice on (g, δ) implies (1 − g) ≥ 0, 2δg ≥ 0,
and (1 − 2g) ≥ 0, yielding

F (δ, g, g) − (1 − δ)g =
(1 − g) δ

(1 − g) + δ
(2δg + (1 − 2g) ) ≥ 0

To obtain the second inequality of (14), we show that for the chosen δ, g, the
function F (δ, g, h) is monotone non-decreasing on h ∈ [0, g]: Recalling h ≤ g ≤
1/2 we find (1 − 2h) ≥ 0, implying

dF (δ, g, h)
dh

=
(1 − 2h)(1 − δ)2 + gδ(1 − δ)

(1 − g) + δ
≥ 0

This finally proves (14), and thus the second inequality in (13), concluding the
proof of (11). To prove (12) fix some d ∈ [0, 1] arbitrarily and define p(g) :=
g(1 − 2g)(−1 + 4g − 2g2), which is the radicand appearing in F (Δ1(g), g, g).
Brief calculation leads to

(F (d, g, g) − F (Δ1(g), g, g)) (1 − g + d) =

(4g −1)(1 −g)3 + 2g(1 −2g)(1 −g)d + g(1 −2g)d2

︸ ︷︷ ︸
− 2(1 − g + d)(1 − g)

√
p(g)

︸ ︷︷ ︸
≥ 0 (
) ≥ 0 (

)

To obtain (
), recall 1/3 < β < 1/2 and observe that the restrictions on g, d
imply g, d ≥ 0 as well as (4g − 1) ≥ 0, (1 − g) ≥ 0, and (1 − 2g) ≥ 0. Moreover
we have (1 − g + d) > (1 − g) ≥ 0, showing (

). It can also be easily verified
that p(g) ≥ 0 for the chosen g. Hence exploiting (1 − g + d) > 0 and Fact 3 we
obtain that F (d, g, g) − F (Δ1(g), g, g) is nonnegative if and only if the following
quantity is nonnegative:

(
(4g −1)(1 −g)3 + 2g(1 −2g)(1 −g)d + g(1 −2g)d2)2 − 4(1 − g + d)2(1 − g)2p(g)

This turns out to be equivalent to:

(
(1 −3g)(1 −g)2 + 2g(1 −2g)(1 −g)d + g(1 −2g)d2)2 ≥ 0

The last inequality is trivially true, which finally proves (12) since (g, d) ∈
[1/3, β] × [0, 1] were chosen arbitrarily.
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6 Discussion

It is worth noticing that the analysis of both presented algorithms is tight.
Tracing all inequalities used, we constructed the following worst-case exam-
ple, on which the second algorithm yields a 0.36392-approximation of the
equilibrium:

R =

⎛

⎝
0 α α
α 0 1
α 1 0

⎞

⎠ C =

⎛

⎝
0 α α
α 1 1/2
α 1/2 1

⎞

⎠ where α = 1/
√

6.

In general, our algorithms produce solutions with large support. This is to no
surprise, as implied by negative results on the existence of approximate equilib-
rium strategies with small support [1,7].

The major open question remains whether a polynomial time algorithm for
any constant ε > 0 is possible. It would also be interesting to investigate if our
methods can be modified to yield better approximations.
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Abstract. Congestion games are a well-studied model for resource shar-
ing among uncoordinated selfish agents. Usually, one assumes that the
resources in a congestion game do not have any preferences over the
players that can allocate them. In typical load balancing applications,
however, different jobs can have different priorities, and jobs with higher
priorities get, for example, larger shares of the processor time. We intro-
duce a model in which each resource can assign priorities to the players
and players with higher priorities can displace players with lower priori-
ties. Our model does not only extend standard congestion games, but it
can also be seen as a model of two-sided markets with ties. We prove that
singleton congestion games with priorities are potential games, and we
show that every player-specific singleton congestion game with priorities
possesses a pure Nash equilibrium that can be found in polynomial time.
Finally, we extend our results to matroid congestion games, in which the
strategy space of each player consists of the bases of a matroid over the
resources.

1 Introduction

In a congestion game, there is a set of players who compete for a set of resources.
Each player has to select a subset of resources that she wishes to allocate. The
delay of a resource depends on the number of players allocating that resource,
and every player is interested in allocating a subset of resources with small to-
tal delay. Congestion games are a well-studied model for resource sharing among
uncoordinated selfish agents. They are widely used to model routing, network de-
sign, and load balancing [4,5,11,3]. One appealing property of congestion games
is that they are potential games [21]. In particular, this implies that every conges-
tion game possesses a pure Nash equilibrium and that myopic player eventually
reach a Nash equilibrium by iteratively playing better responses.
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One drawback of the standard model of congestion games is that resources do
not have any preferences over the players. In typical load balancing applications,
however, different jobs have different priorities, and depending on the policy,
jobs with a low priority are stopped or slowed down when jobs with higher
priorities are present. We introduce congestion games with priorities to model
the scenario in which a job can prevent jobs with lower priorities from being
processed. In our model, each resource can partition the set of players into classes
of different priorities. As long as a resource is only allocated by players with the
same priority, these players incur a delay depending on the congestion, as in
standard congestion games. But if players with different priorities allocate a
resource, only players with the highest priority incur a delay depending on the
number of players with this priority, and players with lower priorities incur an
infinite delay. Intuitively, they are displaced by the players with the highest
priority. This model is applicable if every player controls a stream of jobs rather
than only a single one. In the latter case, it might be more reasonable to assume
that jobs with lower priorities incur a large but finite delay.

Motivated by the application of congestion games to load balancing, we mainly
consider congestion games in which each player has to choose exactly one re-
source to allocate, namely one server on which her job is to be processed. Such
singleton congestion games or congestion games on parallel links have been stud-
ied extensively in the literature [4,8,9,14]. Moreover, we show that singleton con-
gestion games with priorities are potential games, implying that uncoordinated
players who iteratively play better responses eventually reach a pure Nash equi-
librium. If all resources have the same priorities, then we even obtain polynomial-
time convergence to a Nash equilibrium. Milchtaich [19] introduces player-specific
congestion games as an extended class of congestion games in which every player
can have her own delay function for every resource. Milchtaich shows that player-
specific singleton congestion games are not potential games anymore but that
they possess pure Nash equilibria that can be computed in polynomial time. We
show that also in player-specific singleton congestion games with priorities pure
Nash equilibria exist that can be computed efficiently.

Interestingly, our model of player-specific congestion games with priorities
does not only extend congestion games but also the well-known model of two-
sided markets. This model was introduced by Gale and Shapley [10] to model
markets on which different kinds of agents are matched to another, for example
men and women, students and colleges [10], interns and hospitals [22], and firms
and workers. Using the same terms as for congestion games, we say that the goal
of a two-sided market is to match players and resources (or markets). In contrast
to congestion games, each resource can only be matched to one player. With each
pair of player and resource a payoff is associated, and players are interested in
maximizing their payoffs. Hence, the payoffs implicitly define a preference list
over the resources for each player. Additionally, each resource has a preference
list over the players that is independent of the profits. Every player can propose to
one resource and if several players propose to a resource, only the most preferred
player is assigned to that resource and receives the corresponding payoff. This
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way, every set of proposals corresponds to a bipartite matching between players
and resources. A matching is stable if no player can be assigned to a resource
from which she receives a higher payoff than from her current resource given
the current proposals of the other players. Gale and Shapley [10] show that
stable matchings always exist and can be found in polynomial time. Since the
seminal work of Gale and Shapley there has been a significant amount of work in
studying two-sided markets. See for example, the book by Knuth [17], the book
by Gusfield and Irving [12], or the book by Roth and Sotomayor [23].

In the same way as it is in many situations not realistic to assume that in
congestion games the resources have no preferences over the players, it is in two-
sided markets often unrealistic to assume that the preference lists of the resources
are strict. Our model of player-specific congestion games with priorities can also
be seen as a model of two-sided markets with ties in which several players can be
assigned to one resource. If different players propose to a resource, only the most
preferred ones are assigned to that resource. If the most preferred player is not
unique, several players share the payoff of the market. Such two-sided markets
correspond to our model of congestion games with priorities, except that players
are now interested in maximizing their payoffs instead of minimizing their delays,
which does not affect our results for congestion games with priorities. Two-sided
markets with ties have been extensively studied in the literature [12,15]. In these
models, ties are somehow broken, i. e., despite ties in the preference lists, every
resource can be assigned to at most one player. Hence, these models differ sig-
nificantly from our model. One application of our model are markets into which
different companies can invest. As long as the investing companies are of com-
parable size, they share the payoff of the market, but large companies can utilize
their market power to eliminate smaller companies completely from the market.
Player-specific congestion games and two-sided markets are the special cases of
our model in which all players have the same priority or distinct priorities, re-
spectively. In the following, we use the terms two-sided markets with ties and
player-specific congestion games with priorities interchangeably.

We also consider a special case of correlated two-sided markets with ties in
which the payoffs of the players and the preference lists of the resources are
correlated. In this model, every resource prefers to be assigned to players who
receive the highest payoff when assigned to it. We show that this special case
is a potential game. Variants of correlated two-sided markets without ties have
been studied in the context of content distribution in networks and distributed
caching problems [7,11,20]. These markets have also been considered for dis-
covering stable geometric configurations with applications in VLSI design [13].
Our result implies that variants of the uniform distributed caching games with
bandwidth constraints (defined by Mirrokni et. al [20,7]) are potential games.

Additionally, we consider player-specific congestion games with priorities in
which the strategy space of each player consists of the bases of a matroid over
the resources. For this case, we show that pure Nash equilibria exist that can
be computed in polynomial time, extending a result for player-specific conges-
tion games without priorities [2]. These games can also be seen as many-to-one
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two-sided markets with ties. Many-to-one two-sided markets are well studied
in the economics literature [6,16,18]. Kelso and Crawford [16] show that if the
preference list of every player satisfies a certain substitutability property, then
stable matchings exist. Kojima and Ünver [18] prove that in this case, from
every matching there exists a polynomially long better response sequence to a
stable matching. This substitutability property is satisfied if the strategy spaces
of the players are matroids. The crucial difference between our model of many-
to-one markets with ties and the models considered in the economics literature
is that in those models, every player specifies a ranking on the power set of the
resources. This ranking is fixed and does not depend on the current matching.
In our model with ties, however, players do not have fixed rankings but rankings
that depend on the current matching.

2 Preliminaries

In this section, we define the problems and notations used throughout the paper.

Congestion Games. A congestion game Γ is a tuple (N , R, (Σi)i∈N , (dr)r∈R)
where N = {1, . . . , n} denotes the set of players, R the set of resources, Σi ⊆ 2R

the strategy space of player i, and dr : N → N a delay function associated with
resource r. By m we denote |R|, and we denote by S = (S1, . . . , Sn) the state
of the game where player i plays strategy Si ∈ Σi. For a state S, we define the
congestion nr(S) on resource r by nr(S) = |{i | r ∈ Si}|, that is, nr(S) is the
number of players sharing resource r in state S. Every player i acts selfishly and
wishes to play a strategy Si ∈ Σi that minimizes her individual delay, which is
defined as

∑
r∈Si

dr(nr(S)). We call a state S a Nash equilibrium if, given the
strategies of the others players, no player can decrease her delay by changing her
strategy. Rosenthal [21] shows that every congestion game possesses at least one
pure Nash equilibrium by considering the potential function φ : Σ1×· · ·×Σn → N

with φ(S) =
∑

r∈R
∑nr(S)

i=1 dr(i). A congestion game is called singleton if each
strategy space Σi consists only of sets with cardinality one. The current state S
of a singleton congestion game can be written as S = (r1, . . . , rn), meaning that
player i currently allocates resource ri.

Player-Specific Congestion Games. Player-specific congestion games are
congestion games in which every player i has her own delay function di

r : N → N

for each resource r. The delay of player i is then computed with respect to the
functions di

r.

Player-Specific Congestion Games with Priorities. We define this model
to be a generalization of player-specific congestion games in which each resource
r assigns a priority or rank rkr(i) to every player i. For a state S, let rkr(S) =
maxi:r∈Si rkr(i). We say that player i allocates resource r if r ∈ Si, and we
say that player i is assigned to resource r if r ∈ Si and rkr(i) = rkr(S). We
define n∗

r(S) to be the number of players that are assigned to resource r, that
is, the number of players i with r ∈ Si and rkr(i) = rkr(S). The delay that
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an assigned player i incurs on r is di
r(n

∗
r(S)). Players who allocate a resource

r but are not assigned to it incur an infinite delay on resource r. Congestion
games with priorities but without player-specific delay functions are defined in
the same way, except that instead of player-specific delay functions di

r there is
only one delay function dr for each resource r. We say that the priorities are
consistent if the priorities assigned to the players by different resources coincide.

Two-sided Markets. A two-sided market consists of two disjoint sets N =
{1, . . . , n} and R with |R| = m. We use the terms players and agents to denote
elements from N , and we use the terms resources and markets to denote elements
from R. In a two-sided market, every player can be matched to one resource,
and every resource can be matched to one player. We assume that with every
pair (i, r) ∈ N × R, a payoff pi,r is associated and that player i receives payoff
pi,r if she is matched to resource r. Hence, the payoffs describe implicitly for
each player a preference list over the resource. Additionally, we assume that
every resource has a strict preference list over the players, which is independent
of the payoffs. Each player i ∈ N can propose to a resource ri ∈ R. Given a
state S = (r1, . . . , rn), each resource r ∈ R is matched to the winner of r, which
is the player whom r ranks highest among all players i ∈ N with r = ri. If i
is the winner of r, she gets a payoff of pi,r. If a player proposes to a resource
won by another player, she receives no payoff at all. We say that S is a stable
matching if none of the players can unilaterally increase her payoff by changing
her proposal given the proposals of the other players. That is, for each player i
who is assigned to a resource ri, each resource r from which she receives a higher
payoff than from ri is matched to a player whom r prefers over i.

Two-sided Markets with Ties. We define a two-sided market with ties to
be a two-sided market in which the preference lists of the resources can have
ties. Given a vector of proposals S = (r1, . . . , rn), we say that a player i ∈ N is
matched to resource r ∈ R if r = ri and if there is no player j ∈ N such that
r = rj and j is strictly preferred to i by r. For a resource r, we denote by nr(S)
the number of players proposing to r and by n∗

r(S) the number of players that
are matched to r. We assume that every player i has a non-increasing payoff
function pi

r : N → N for every resource r. A player i who is matched to resource
r receives a payoff of pi

r(n
∗
r(S)). Also for two-sided markets with ties, we call a

state S a stable matching if none of the players can increase her payoff given the
proposals of the other players.

Correlated Two-sided Markets with Ties. In correlated two-sided markets
with ties, the preferences of players and resources are correlated. We assume
that also the preference lists of the resources are chosen according to the payoffs
that are associated with the pairs from N × R. That is, a player i ∈ N is
preferred over a player j ∈ N by resource r ∈ R if and only if pi,r > pj,r.
Due to this construction, if two players i and j are both matched to a resource
r, then the payoffs pi,r and pj,r must be the same. We denote this payoff by
pr(S), and we assume that it is split among the players that are matched to r.
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non player-specific correlated

consistent priorities

congestion games

two-sided markets
player-specific
congestion games

player-specific matroid congestion games with priorities

Fig. 1. For games on the upper level, equilibria can be computed in polynomial time,
games on the mid-level are potential games, and games on the lower level converge in
a polynomial number of rounds

The payoff that a player receives who is matched to r is specified by a function
qr(pr(S), n∗

r(S)) with qr(pr(S), 1) = pr(S) that is non-increasing in the number
of players matched to r.

Player-Specific Matroid Congestion Games with Priorities. In a player-
specific matroid congestion game with priorities, each strategy space Σi must
be the set of bases of a matroid over the set of resources. A set system (R, I)
with I ⊆ 2R is said to be a matroid if X ∈ I implies Y ∈ I for all Y ⊆ X and
if for every X, Y ∈ I with |Y | < |X | there exists an x ∈ X with Y ∪ {x} ∈ I. A
basis of a matroid (R, I) is a set X ∈ I with maximum cardinality. Every basis
of a matroid has the same cardinality which is called the rank of the matroid.
For a matroid congestion game Γ , we denote by rk(Γ ) the maximal rank of one
of the strategy spaces of the players. Examples of matroid congestion games are
singleton games and games in which the resources are the edges of a graph and
every player has to allocate a spanning tree. Again, these games can also be
seen as an extension of two-sided markets in which each player can propose to
a subset of resources instead of only one, so-called many-to-one markets, and in
which the preference lists of the resources can have ties.

Figure 1 shows a summary of our results and the models we consider.

3 Singleton Congestion Games with Priorities

In this section, we consider singleton congestion games with priorities but with-
out player-specific delay functions. For games with consistent priorities, we show
that the better response dynamics reaches a Nash equilibrium after a polynomial
number of rounds. We use the term round to denote a sequence of activations
of players in which every player gets at least once the chance to improve. For
example, our result implies that a polynomial (expected) number of better re-
sponses suffices if players are activated in a round-robin fashion or uniformly
at random. We also prove that games in which different resources can assign
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different priorities to the players are potential games. We leave open the ques-
tion whether they converge in a polynomial number of rounds.

Theorem 1. In singleton congestion games with consistent priorities, the bet-
ter response dynamics reaches a Nash equilibrium after a polynomial number of
rounds.

Proof. Ieong et al. [14] prove that in singleton congestion games every sequence
of better responses terminates in a Nash equilibrium after a polynomial number
of steps. Since the players with the highest priority are not affected by the other
players, the result by Ieong et al. shows that after a polynomial number of
rounds, none of them has an incentive to change her strategy anymore. From
that point on, the strategies of these players are fixed and we can again apply
the result by Ieong et al. to the players with the second highest priority. After
a polynomially number of rounds, also none of them has an incentive to change
her strategy anymore. After that, the argument can be applied to the players
with the third highest priority and so on. ��

Next we consider congestion games in which different resources can assign dif-
ferent priorities to the players.

Theorem 2. Singleton congestion games with priorities are potential games.

Proof. We set D = (N ∪ {∞}) × N and for elements x = (x1, x2) ∈ D and
y = (y1, y2) ∈ D we denote by “<” the lexicographic order on D in which the
first component is to be minimized and the second component is to be maxi-
mized, i. e., we define x < y if and only if x1 < y1 or if x1 = y1 and x2 > y2.
We construct a potential function Φ : Σ1 × · · · × Σn → Dn that maps every
state S = (r1, . . . , rn) to a vector of values from D. In state S, every resource
r ∈ R contributes nr(S) values to the vector Φ(S) and Φ(S) is obtained by
sorting all values contributed by the resources in non-decreasing order accord-
ing to the lexicographic order defined above. Resource r contributes the values
(dr(1), rkr(S)), . . . , (dr(n∗

r(S)), rkr(S)) to the vector Φ(S) and nr(S) − n∗
r(S)

times the value (∞, 0). We claim that if state S′ is obtained from S by letting
one player play a better response, then Φ(S′) is lexicographically smaller than
Φ(S), i. e., there is a k with Φj(S) = Φj(S′) for all j < k and Φk(S′) < Φk(S).

Assume that in state S player i plays a better response by changing her al-
location from resource ri to resource r′i. We compare the two vectors Φ(S) and
Φ(S′), and we show that the smallest element added to the potential vector
is smaller than the smallest element removed from the potential vector, show-
ing that the potential decreases lexicographically. Due to the strategy change
of player i, either the value (dri(n∗

ri
(S)), rkri(S)) or the value (∞, 0) is re-

placed by the value (dr′
i
(n∗

r′
i
(S′)), rkr′

i
(S′)). Since player i plays a better response,

dr′
i
(n∗

r′
i
(S′)) < dri(n∗

ri
(S)) or dr′

i
(n∗

r′
i
(S′)) < ∞, respectively, and hence the term

added to the potential is smaller than the term removed from the potential. In
the following we show that all values that are contained in Φ(S) but not in Φ(S′)
are larger than (dr′

i
(n∗

r′
i
(S′)), rkr′

i
(S′)). Clearly, only terms for the resources ri

and r′i change and we can restrict our considerations to these two resources.
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Let us consider resource ri first. If the rank of ri does not decrease by the
strategy change of player i or if no player allocates resource ri in state S′, then
only the term (dri(n∗

ri
(S)), rkri(S)) or (∞, 0) is not contained in the vector Φ(S′)

anymore. All other terms contributed by resource ri do not change. If the rank
of resource ri is decreased by the strategy change of player i, then additionally
some terms (∞, 0) in the potential are replaced by other terms. Obviously, the
removed terms (∞, 0) are larger than (dr′

i
(n∗

r′
i
(S′)), rkr′

i
(S′)).

Now we consider resource r′i. If the rank of r′i does not increase by the strat-
egy change of player i or if no player allocates r′i in state S, then only the term
(dr′

i
(n∗

r′
i
(S′)), rkr′

i
(S′)) is added to the potential. All other terms contributed by

r′i do not change. If the rank of r′i is increased by the strategy change of player
i, then additionally the terms (dr′

i
(1), rkr′

i
(S)), . . . , (dr′

i
(n∗

r′
i
(S)), rkr′

i
(S)) are re-

placed by n∗
r′

i
(S) terms (∞, 0). In this case, n∗

r′
i
(S′) = 1 and the smallest removed

term, (dr′
i
(1), rkr′

i
(S)), is larger than (dr′

i
(1), rkr′

i
(S′)) = (dr′

i
(n∗

r′
i
(S′)), rkr′

i
(S′))

because rkr′
i
(S′) > rkr′

i
(S). ��

4 Player-Specific Singleton Congestion Games with
Priorities

In this section, we consider singleton congestion games with priorities and player-
specific delay functions and we show that these games always possess Nash equi-
libria. Our proof also yields an efficient algorithm for finding an equilibrium.

Theorem 3. Every player-specific singleton congestion game with priorities
possesses a pure Nash equilibrium that can be computed in polynomial time by
O(m2 · n3) strategy changes.

Proof. In order to compute an equilibrium, we compute a sequence of states
S0, . . . , Sk such that S0 is the state in which no player allocates a resource and
Sk is a state in which every player allocates a resource. Remember that we dis-
tinguish between allocating a resource and being assigned to it. Our construction
ensures the invariant that in each state Sa in this sequence, every player who al-
locates a resource has no incentive to change her strategy. Clearly, this invariant
is true for S0 and it implies that Sk is a pure Nash equilibrium.

In state Sa we pick an arbitrary player i who is allocating no resource and we
let her play her best response. If in state Sa there is no resource to which i can be
assigned, then i can allocate an arbitrary resource without affecting the players
who are already allocating a resource and hence without affecting the invariant.
It remains to consider the case that after her best response, player i is assigned
to a resource r. If we leave the strategies of the other players unchanged, then
the invariant may not be true anymore after the strategy change of player i. The
invariant can, however, only be false for players who are assigned to resource
r in state Sa. We distinguish between two cases in order to describe how the
strategies of these players are modified in order to maintain the invariant.
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First we consider the case that the rank of resource r does not change by the
strategy change of player i. If there is a player j who is assigned to resource r
in Sa and who can improve her strategy after i is also assigned to r, then we
change the strategy of j to the empty set, i. e., in state Sa+1 player j belongs
to the set of players who do not allocate any resource. Besides this, no further
modifications of the strategies are necessary because all other players are not
affected by the replacement of j by i on resource r. In the case that the rank
of resource r increases by the strategy change of player i, all players who are
assigned to resource r in state Sa are set to their empty strategy in Sa+1.

It only remains to show that the described process terminates after a polyno-
mial number of strategy changes in a stable state. We prove this by a potential
function that is the lexicographic order of two components. The most important
component is the sum of the ranks of the resources, i. e.,

∑
r∈R rkr(Sa), which

is to be maximized. Observe that this sum does not decrease in any of the two
aforementioned cases, and that it increases strictly in the second case. Thus we
need to show that after a polynomial number of consecutive occurrences of the
first case, the second case must occur. Therefore, we need a second and less im-
portant component in our potential function. In order to define this component,
we associate with every pair (i, r) ∈ N × R for which i is assigned to r in Sa a
tolerance tola(i, r) that describes how many players (including i) can be assigned
to r without changing the property that r is an optimal strategy for i, i. e.,

min{max{b | in Sa, r is best resp. for i if i shares r with b − 1 players}, n} .

The second component of the potential function is the sum of the tolerances
of the assigned pairs in Sa, which is to be maximized. We denote the set of
assignments in state Sa by Ea ⊆ N × R and define the potential function as

Φ(Sa) =

⎛

⎝
∑

r∈R
rkr(Sa),

∑

(i,r)∈Ea

tola(i, r)

⎞

⎠ .

In every occurrence of the first case, the second component increases by at least
1. Since the values of the components are bounded from above by m · n and
m · n2 and bounded below from 0, the potential function implies that there can
be at most m2 · n3 strategy changes before an equilibrium is reached.

Let us remark that the potential function does not imply that the considered
games are potential games because it increases only if the strategy changes are
made according to the above described policy. ��

5 Correlated Two-Sided Markets with Ties

In this section, we analyze the better response dynamics for correlated two-sided
markets with ties and we show that these games are potential games.

Theorem 4. Correlated two-sided markets with ties are potential games.
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Proof. We define a potential function Φ : Σ1×· · ·×Σn → N
n that is similar to the

one used in the proof of Theorem 2, and we show that it increases strictly with
every better response that is played. Again each resource r contributes nr(S)
values to the potential, namely the values qr(pr(S), 1), . . . , qr(pr(S), n∗

r(S)) and
nr(S) − n∗

r(S) times the value 0. In the potential vector Φ(S), all these values
are sorted in non-increasing order. A state S′ has a higher potential than a state
S if Φ(S′) is lexicographically larger than Φ(S), i. e., if there exists an index k
such that Φj(S) = Φj(S′) for all j < k and Φk(S) < Φk(S′).

Let S denote the current state and assume that there exists one player i ∈ N
who plays a better response, leading to state S′. We show that Φ(S′) is lex-
icographically larger than Φ(S). Assume that i changes her proposal from ri

to r′i. Since i plays a better response, she must be assigned to r′i in state S′.
That is, the value qr′

i
(pi,r′

i
, n∗

r′
i
(S′)) is added to the potential. We show that only

smaller values are removed from the potential, implying that the potential must
lexicographically increase. If i is assigned to ri in state S, then only the value
qri(pri(S), n∗

ri
(S)) is removed from the vector and maybe, if n∗

ri
(S) = 1, some

0 values are replaced by larger values. Since player i plays a better response,
qri(pri(S), n∗

ri
(S)) < qr′

i
(pi,r′

i
, n∗

r′
i
(S′)). If n∗

r′
i
(S′) = 1 and there are players as-

signed to r′i in state S, then also the values qr′
i
(pr′

i
(S), 1), . . . , qr′

i
(pr′

i
(S), n∗

r′
i
(S))

are removed from the potential vector. In this case, player i displaces the pre-
viously assigned players from resource r′i, which implies qr′

i
(pi,r′

i
, n∗

r′
i
(S′)) =

qr′
i
(pi,r′

i
, 1) > qr′

i
(pr′

i
(S), 1), as desired. ��

6 Extensions to Matroid Strategy Spaces

In this section, we study player-specific congestion games with priorities in which
each strategy space Σi consists of the bases of a matroid over the resources. For
this setting, we generalize the results that we obtained for the singleton case.
Due to space limitations, the proofs are omitted.

Theorem 5. In matroid congestion games with consistent priorities, the best
response dynamics reaches a Nash equilibrium after a polynomial number of
rounds.

For matroid congestion games, it is known that every sequence of best responses
reaches a Nash equilibrium after a polynomial number of steps [1]. Using this
result yields the theorem analogously to the proof of Theorem 1.

Theorem 6. Matroid congestion games with priorities are potential games with
respect to lazy better responses.

Given a state S, we denote a better response of a player i ∈ N from Si to S′
i lazy

if it can be decomposed into a sequence of strategies Si = S0
i , S1

i , . . . , Sk
i = S′

i

such that |Sj+1
i \ Sj

i | = 1 and the delay of player i in state Sj+1
i is strictly

smaller than her delay in state Sj
i for all j ∈ {0, . . . , k−1}. That is, a lazy better

response can be decomposed into a sequence of exchanges of single resources such
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that each step strictly decreases the delay of the corresponding player. In [2],
it is observed that for matroid strategy spaces, there does always exist a best
response that is lazy. In particular, the best response that exchanges the least
number of resources is lazy, and in singleton games every better response is lazy.
Since lazy best responses can be decomposed into exchanges of single resources,
the same potential function as in the proof of Theorem 2 also works for the
matroid case. The restriction to lazy better responses in Theorem 6 is necessary.

Remark 7. The best response dynamics in matroid congestion games with pri-
orities can cycle.

Similar arguments as for Theorem 3 yield the following generalization.

Theorem 8. Every player-specific matroid congestion game Γ with priorities
possesses a pure Nash equilibrium that can be computed in polynomial time by
O(m2 · n3 · rk(Γ )) strategy changes.

Since lazy better responses can be decomposed into exchanges of single resources,
the potential function defined in the proof of Theorem 4 also works for matroid
strategy sets if players play only lazy better responses.

Theorem 9. Correlated two-sided matroid markets with ties are potential games
with respect to lazy better responses.

The restriction in Theorem 9 to lazy better responses is necessary.

Remark 10. The best response dynamics in correlated two-sided matroid mar-
kets with ties can cycle.
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Abstract. In this paper we propose a new methodology for determin-
ing approximate Nash equilibria of non-cooperative bimatrix games and,
based on that, we provide an efficient algorithm that computes 0.3393-
approximate equilibria, the best approximation till now. The methodol-
ogy is based on the formulation of an appropriate function of pairs of
mixed strategies reflecting the maximum deviation of the players’ pay-
offs from the best payoff each player could achieve given the strategy
chosen by the other. We then seek to minimize such a function using
descent procedures. As it is unlikely to be able to find global minima
in polynomial time, given the recently proven intractability of the prob-
lem, we concentrate on the computation of stationary points and prove
that they can be approximated arbitrarily close in polynomial time and
that they have the above mentioned approximation property. Our result
provides the best ε till now for polynomially computable ε-approximate
Nash equilibria of bimatrix games. Furthermore, our methodology for
computing approximate Nash equilibria has not been used by others.

1 Introduction

Ever since it was proved that the problem of finding exact Nash equilibria is
intractable in the sense that it is PPAD-complete even for 2-player games [2],
attention has been focused on finding ε-approximate such equilibria for ε > 0. In
this respect, simple algorithms have recently been provided for finding approxi-
mate equilibria for constant ε = 3

4 and ε = 1
2 ([4], [5]) for general bimatrix games

(and for positively normalized payoff matrices) based on examining small sup-
ports of 1 or 2 for either player. A well known result provides 0.38-approximate
Nash equilibria of normalized bimatrix games in polynomial time ( [3]). Concur-
rently with us , [1] gave an approach based on [7] that provides 0.36-approximate
Nash equilibria of normalized bimatrix games. Furthermore, it has been shown
( [6]) that the more general approximation problem of finding a fully polyno-
mial time approximation scheme for any ε > 0, has similar complexity with the
problem of finding exact Nash equilibria.

� This work has been partially supported by the IST 6th Framework Programme of
the European Union under contract 001907 DELIS.
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For a different, stronger, notion of approximation, i.e. the well supported ap-
proximateNashequilibria, thebest knownresult so far provides 0.658-approximate
well supported equilibria for normalized bimatrix games in polynomial time ([7]).

Most of the reported investigations of finding approximate equilibria for con-
stant ε are based on the examination of small supports of the strategy sets of
the players and the algorithms presented are based on brute force search over
all such supports.

In this work we adopt a different approach that does not rely on any pre-
specified small supports neither on an indiscriminate search over all small sup-
port strategies. We define an equivalent optimization problem in the strategy
spaces of both players and attempt to obtain a stationary point of a specific
function that measures the maximum deviation of the players’ payoffs from the
best payoff each player could achieve given the strategy chosen by the other. We
do so through a descent procedure along feasible directions in the strategy spaces
of both players simultaneously. Feasible descent directions are computed by solv-
ing linear programming problems. Also, by solving similar linear programs we
can determine whether or not there is a descent direction at any given point in
the strategy spaces. If a descent direction does not exist, then we have reached a
stationary point. We prove that at any stationary point of that function we ob-
tain strategy pairs such that at least one of them is an 0.3393-approximate Nash
equilibrium. We also prove that an almost stationary point of the function can
be reached in polynomial time with respect to the input data of the game, and
that point suffices to get arbitrarily close to 0.3393. Our work can be accessed
as a full technical report (revised) also in [10].

2 Definitions and Notation

Let R, C denote the m by n row and column players’ payoff matrices respec-
tively, for m, n any positive integers. We assume that both payoff matrices are
positively normalized, i.e. all their entries belong to [0, 1] (without loss of gener-
ality any game can be equivalently transformed to a positively normalized game
by appropriate shifting and scaling each one of the payoff matrices).

Let us denote by ek the k-dimensional column vector having all its entries
equal to 1 (for positive integer k). Let

Δk = {u : u ∈ Rk, u ≥ 0, eτ
ku = 1}

be the k-dimentional standard simplex (superscript τ denotes transpose).
Also, for any vector u ∈ Rk, we define the following :

supp(u) = {i ∈ (1, k) : ui �= 0}

being the support index subset of u ∈ Rk and also

suppmax(u) = {i ∈ (1, k) : ui ≥ uj ∀j ∈ (1, k)}

being the index subset where all entries are equal to the maximum entry of
u ∈ Rk.
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We also denote by
max(u) = {ui : ui ≥ uj , for all j}

the value of the maximum entry of the vector and by

maxS(u) = {ui, i ∈ S : ui ≥ uj, for all j ∈ S}

the value of the maximum entry of the vector within an index subset S ⊂ (1, k).
Finally, we denote by S the complement of an index set S, i.e. S = {i ∈

(1, k), i /∈ S}.
The problem of finding an ε-approximate Nash equilibrium in the game (R, C),

for some ε ≥ 0, is to compute a pair of strategies x in Δm and y in Δn such that
the following relationships hold :

xτRy ≤ xτRy + ε for all x ∈ Δm

and

xτCy ≤ xτCy + ε for all y ∈ Δn

3 Optimization Formulation

Key to our approach is the definition of the following continuous function map-
ping Δm × Δn into [0, 1] :

f(x, y) = max{max(Ry) − xτRy, max(Cτx) − xτCy} (1)

It is evident that f(x, y) ≥ 0 for all (x, y) ∈ Δm × Δn and that exact Nash
equilibria of (R, C) correspond to pairs of strategies such that f(x, y) = 0.
Furthermore, ε- approximate equilibria correspond to strategy pairs that satisfy
f(x, y) ≤ ε. This function represents the maximum deviation of the players’
payoffs from the best payoff each player could achieve given the strategy chosen
by the other.

An optimization formulation based on mixed integer programming methods
was suggested in [9]. However, no approximation results were obtained there.

The function f(x, y) is not jointly convex with respect to both x and y. How-
ever, it is convex in x alone, if y is kept fixed and vice versa.

Let us define the two ingredients of the function f(x, y) as follows :
fR(x, y) = max(Ry) − xτRy
and
fC(x, y) = max(Cτx) − xτCy
From any point in (x, y) ∈ Δm × Δn we consider variations of f(x, y) along

feasible directions in both players’ strategy spaces of the following form :

(1 − ε)
[
x
y

]
+ ε

[
x′

y′

]
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where, 0 ≤ ε ≤ 1, (x′, y′) ∈ Δm × Δn (the vectors in brackets are m + n -
dimensional column vectors).

The variation of the function along such a feasible direction is defined by the
following relationship:

Df(x, y, x′, y′, ε) = f(x + ε(x′ − x), y + ε(y′ − y)) − f(x, y)

We have derived an explicit formula for Df(x, y, x′, y′, ε) (see Appendix), which
is a piecewise quadratic function of ε and the number of switches of the linear terms
of the function is at most m + n. Therefore, for fixed (x′, y′) this function can be
minimized with respect to ε in polynomial time. Furthermore, there always exists
a positive number, say ε�, such that for any ε ≤ ε� the coefficient of the linear term
of this function of ε coincides with the gradient, as defined below. The number ε�

generally depends on both (x, y) and (x′, y′).(See Appendix A.3).
We define the gradient of f at the point (x, y) along an arbitrary feasible

direction specified by another point (x′, y′) as follows:

Df(x, y, x′, y′) = lim
ε→0

1
ε
Df(x, y, x′, y′, ε)

The gradient Df(x, y, x′, y′) of f at any point (x, y) ∈ Δm × Δn along a
feasible direction (determined by another point (x′, y′) ∈ Δm × Δn) provides
the rate of decrease (or increase) of the function along that direction. For fixed
(x, y), Df(x, y, x′, y′) is a convex polyhedral function in (x′, y′). In fact we have
derived the explicit form of Df(x, y, x′, y′) as the maximum of two linear forms
in the (x′, y′) space (see the derivations below and in the Appendix A.1). At any
point (x, y) we wish to minimize the gradient function with respect to (x′, y′) to
find the steepest possible descent direction, or to determine that no such descent
is possible.

Let us define the following index sets:

SR(y) = suppmax(Ry) and SC(x) = suppmax(Cτx)

By definition, SR(y) ⊂ (1, m) and SC(x) ⊂ (1, n).
From the Appendix A.1 we get :
(a) If fR(x, y) = fC(x, y) then

Df(x, y, x′, y′) = max(T1(x, y, x′, y′), T2(x, y, x′, y′)) − f(x, y)

where

m1(y′) = max(Ry′) over the subset SR(y)

and
m2(x′) = max(Cτx′) over the subset SC(x)

and

T1(x, y, x′, y′) = m1(y′) − xτRy′ − (x′)τRy + xτRy

and
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T2(x, y, x′, y′) = m2(x′) − xτCy′ − (x′)τCy + xτCy

(b) If fR(x, y) > fC(x, y) then
Df(x, y, x′, y′) = T1(x, y, x′, y′) − f(x, y)
and
(c) If fR(x, y) < fC(x, y) then
Df(x, y, x′, y′) = T2(x, y, x′, y′)−f(x, y). In the cases (b) and (c) the functions

T1 and T2 are as defined in case (a).
The problem of finding Df(x, y) as the minimum over all (x′, y′) ∈ Δm × Δn

of the function Df(x, y, x′, y′), is a linear programming problem.
This problem can be equivalently expressed as the following mini-max prob-

lem by introducing appropriate dual variables (we derive it for (x, y) such that
fR(x, y) = fC(x, y) since this is the most interestng case and the cases where
the two terms are different can be reduced to this by solving an LP, as we shall
see below) as follows :

Minimize (over x′, y′) the maximum (over w, z, ρ ) of the function

[ρwτ , (1 − ρ)zτ ]G(x, y)
[

y′

x′

]

where :
(a) the maximum is taken with respect to dual variables w, z, ρ such that :
w ∈ Δm, supp(w) ⊂ SR(y) and z ∈ Δn, supp(z) ⊂ SC(x) and ρ ∈ [0, 1].
(b) The minimum is taken with respect to (x′, y′) ∈ Δm × Δn, and
(c) the matrix G(x, y) is the following (m + n) by (m + n) matrix :

G(x, y) =
[

R − emxτR −emyτRτ + emem
τxτRy

−enxτC + enen
τxτCy Cτ − enyτCτ

]

The probability vectors w and z play the role of price vectors (or penalty
vectors) for penalizing deviations from the support sets SR(y) and SC(x), and
the parameter ρ plays the role of a trade-off parameter between the two parts of
the function f(x, y). In fact, the w, z and ρ are not independent variables but they
are taken all together to represent a single (m+n)-dimensional probability vector
on the left hand side (the maximizing term) of the linear mini-max problem.

Solving the above mini-max problem we obtain w, z, ρ, x′ and y′ that are
all functions of the point (x, y) and take values in their respective domains
of definition. Let us denote by V (x, y) the value of the solution of the mini-
max problem at the point (x, y). The solution of this problem yields a feasible
descent direction (as a matter of fact the steepest feasible descent direction)
for the function f(x, y) if Df(x, y) = V (x, y) − f(x, y) < 0. Following such a
descent direction we can perform an appropriate line search with respect to the
parameter ε and find a new point that gives a lower value of the function f(x, y).
Applying repeatedly such a descent procedure we will eventually reach a point
where no further reduction is possible. Such a point is a stationary point that
satisfies Df(x, y) ≥ 0.
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In the next section we examine the approximation properties of stationary
points. In fact, we prove that given any stationary point we can determine
pairs of strategies such that at least one of them is a 0.3393-approximate Nash
equilibrium.

4 Approximation Properties of Stationary Points

Let us assume that we have a stationary point (x�, y�) of the function f(x, y).
Then, based on the above analysis and notation, the following relationship should
be true :

Df(x�, y�) = V (x�, y�) − f(x�, y�) ≥ 0

Let (w�, z�) ∈ Δm × Δn, ρ� ∈ [0, 1] be a solution of the linear mini-max
problem (with matrix G(x�, y�)) with respect to the dual variables corresponding
to the pair (x�, y�). Such a solution should satisfy the relations supp(w�) ⊂
SR(y�) and supp(z�) ⊂ SC(x�).

Let us define the following quantities:

λ = min
y′:supp(y′)⊂SC(x�)

{(w� − x�)T Ry′}

and
μ = min

x′:supp(x′)⊂SR(y�)
{x′T C(z� − y�)}.

From the fact that R, C are positively normalized it follows that both λ and
μ are less than or equal to 1.

At any point (x�, y�) these quantities basically define the rates of decrease (or
increase) of the function f along directions of the form (1 − ε)(x�, y�)+ ε(x�, y′)
and (1−ε)(x�, y�)+ε(x′, y�), i.e. the rates of decrease that are obtained when we
keep one player’s strategy fixed and move probability mass of the other player
into his own maximum support, towards decreasing his own deviation from the
maximum payoff he can achieve.

From the stationarity property of the point (x�, y�) it follows that both λ
and μ are nonnegative. Indeed, in the opposite case there would be a descent
direction, which contradicts the stationarity condition.

Let us define a pair of strategies (x̂, ŷ) ∈ Δm × Δn as follows:

(x̂, ŷ) =
{

(x�, y�) ,if f(x�, y�) ≤ f(x̃, ỹ)
(x̃, ỹ) ,otherwise

where

(x̃, ỹ) =

⎧
⎨

⎩

(
1

1+λ−μw� + λ−μ
1+λ−μx�, z�

)
,if λ ≥ μ

(
w�, 1

1+μ−λz� + μ−λ
1+μ−λy�

)
,if λ < μ.

We now express the main result of this paper in the following theorem :
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Theorem 1. The pair of strategies (x̂, ŷ) defined above, is a 0.3393-approximate
Nash equilibrium.

Proof. From the definition of (x̂, ŷ) we have :

f(x̂, ŷ) ≤ min{f(x�, y�), f(x̃, ỹ)} (2)

Using the stationarity condition for (x�, y�) we obtain :

f(x�, y�) ≤ V (x�, y�)

But V (x�, y�) is less than or equal to

ρ�E1 + (1 − ρ�)E2

where

E1 = (w�τRy′ − x�τRy′ − x′τRy� + x�τRy�)

and

E2 = (z�τCτx′ − x�τCy′ − x′τCy� + x�τCy�)

and this holds ∀(x′, y′) ∈ Δm × Δn

Setting x′ = x� and y′ : supp(y′) ⊂ SC(x�) in the above inequality we get :

f(x�, y�) ≤ ρ�λ. (3)

Next, setting y′ = y� and x′ : supp(x′) ⊂ SR(y�) in the same inequality, we
get :

f(x�, y�) ≤ (1 − ρ�)μ. (4)

Now using the definition of the strategy pair (x̃, ỹ) above and exploiting the
inequalities

(w� − x�)T Rz� ≥ λ, since supp(z�) ⊂ SC(x�)
w∗T C(z� − y�) ≥ μ, since supp(w�) ⊂ SR(y�)

we obtain: (assume λ ≥ μ)

fR(x̃, ỹ) = max{Rỹ} − x̃T Rỹ = max{Rz�} −
�

1

1 + λ − μ
w� +

λ − μ

1 + λ − μ
x�

�T

Rz�

= max{Rz�} − 1

1 + λ − μ
w∗T Rz� − λ − μ

1 + λ − μ
x∗T Rz�

≤ max{Rz�} − x∗T Rz� − λ

1 + λ − μ
≤ 1 − μ

1 + λ − μ
.
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Similarly, setting D = CT ,

fC(x̃, ỹ) = max{Dx̃} − x̃T Cỹ

= max
{

1
1 + λ − μ

Dw� +
λ − μ

1 + λ − μ
Dx�

}
− 1

1 + λ − μ
w∗T Cz� − λ − μ

1 + λ − μ
x∗T Cz�

≤ 1
1 + λ − μ

max{Dw�} +
λ − μ

1 + λ − μ
max{Dx�} − 1

1 + λ − μ
w∗T Cz� −

− λ − μ

1 + λ − μ
max{Dx�}

=
1

1 + λ − μ
(max{Dw�} − w∗T Cy�) − 1

1 + λ − μ
(w∗T Cz� − w∗T Cy�)

≤ 1 − μ

1 + λ − μ
.

From the above relationships we obtain:

f(x̃, ỹ) ≤ 1 − μ

1 + λ − μ
for λ ≥ μ (5)

(A similar inequality can be obtained if λ < μ and we interchange λ and μ)
In all cases, combining inequalities (3), (4), (5) and using the definition of

(x̂, ŷ) above, we get the following:

f(x̂, ŷ) ≤ min
{

ρ�λ, (1 − ρ�)μ,
1 − min{λ, μ}

1 + max{λ, μ} − min{λ, μ}

}
. (6)

We can prove that the quantity in (6) cannot exceed the number 0.3393 for
any ρ�, λ, μ ∈ [0, 1]. For the proof see Appendix A.2.

This concludes the proof of our main Theorem.

5 Descent Procedure

A stationary point of any general Linear Complementarity problem can be ap-
proximated arbitrarily close in polynomial time via the method of Y. Ye [11].
We give here an alternative approach, directly applicable to our problem.

We present here an algorithm for finding a pair of stategies that achieve the
0.3393 approximation bound. The algorithm is based on a descent procedure of
the function f(x, y), (x, y) ∈ Δm × Δn, and consists of the following steps:
(set b = 0.3393)

1. Start with an arbitrary (x, y) = (x0, y0) in Δm × Δn (e.g. the uniform dis-
tribution). Produce another pair (x, y) with lower value of f(x, y) and for
which fR(x, y) = fC(x, y) as follows :
(a) If fR(x0, y0) > fC(x0, y0), keep y0 fixed and solve the LP :

minimize (over x ∈ Δm) the

max(Ry0) − xτRy0
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under the constraints :

max(Cτx) − xτCy0 ≤ max(Ry0) − xτRy0

(b) If fR(x0, y0) < fC(x0, y0), keep x0 fixed and solve the LP :
minimize (over y ∈ Δn) the

max(Cτx0) − x0
τCy

under the constraints :

max(Ry) − x0
τRy ≤ max(Cτ x0) − x0

τRy

2. Solve the linear minimax problem with the matrix G(x, y) as defined in
section 3. Compute the value of V (x, y), the pair of strategies (x′, y′), the
index sets SR(y) ⊂ (1, m), SC(x) ⊂ (1, n), the vectors w, z, the parameter
ρ, and the values of λ, μ as defined in sections 3 and 4 for the current point
(x, y). Also determine the pair of strategies (x̃, ỹ) as defined in section 4.

3. If at least one of the following conditions is true, stop and exit – a pair of
strategies achieving the approximation bound b has been found.
(i) V (x, y) − f(x, y) ≥ 0 (stationary condition: either f(x, y) or f(x̃, ỹ) is

≤ b)
(ii) f(x, y) ≤ b
(iii) f(x̃, ỹ) ≤ b
(iv) f(x′, y′) ≤ b
(v) f(x′, y) ≤ b
(vi) f(x, y′) ≤ b

4. If none of the conditions of step 3 is satisfied, compute the minimum with
respect to ε of the function f(x + ε(x′ − x), y + ε(y′ − y)) along the direction
specified by the pair (x′, y′) found in step 2, and set (x, y) = (x + ε(x′ −
x), y + ε(y′ − y)) (such a minimization with respect to ε can be performed in
polynomial time, as mentioned earlier, since the number of switches of the
linear terms of the piecewise quadratic function cannot exceed m + n).
Furthermore, if for the new pair (x, y) we have fR(x, y) �= fC(x, y), solve the
LP specified in Step 1 and compute the new (x, y) with lower value of the
function f(x, y) and for which fR(x, y) = fC(x, y).
Go to Step 2.
End of descent.

In regard to the number of steps that are required for convergence and exit, we
provide a convergence analysis in Appendix A.3 that shows that the algorithm
converges in a polynomial number of iterations.

6 The Complexity of Our Algorithm

Our algorithm is basically the procedure descent of the function f(x, y). The
number q of the descent steps for convergence, given any δ > 0, is O( 1

δ2 ) and
that suffices to get an 0.3393 + δ-approximate equilibrium.
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So, the total time complexity of our method is O( 1
δ2 )TLP (n) time (when

n ≥ m) where TLP (n) is the time to solve a linear program of size n. Thus,
our method is an FPTAS with respect to approximating a stationary point and
hence an approximate equilibrium of the stated quality.

An arbitrary point (x, y) ∈ Δm × Δn can be used to initialize the algorithm.

7 Discussion and Future Work

It is known from Bellare and Rogaway ([8]) that (even in a weaker sense) there
is no polynomial time μ - approximation of the optimal value of the problem
min{xτQx, s.t.Bx = b, 0 ≤ x ≤ e} for some μ ∈ (0, 1

3 ), unless P = NP . Of
course, here μ is a multiplicative relative accuracy and the reduction that they
use involves matrices that are different from the ones in our case. However,
this gives evidence that going below 1

3 in the approximation of equilibria will
probably require a radically different approach (if any), perhaps probabilistic.
We are currently working on this.
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A Appendix

A.1 Appendix A.1

Using the definitions for any (x, y) ∈ Δm × Δn i.e :

fR(x, y) = max(Ry) − xτRy

fC(x, y) = max(Cτx) − xτCy

f(x, y) = max{fR(x, y), fC(x, y)}

we have, for any (x′, y′) ∈ Δm × Δn and any ε ∈ [0, 1] that :

Df(x, y, x′, y′, ε) = f(x + ε(x′ − x), y + ε(y′ − y)) − f(x, y)

This can be written as (analytically)

max{fR(x+ε(x′−x), y+ε(y′−y)), fC(x+ε(x′−x), y+ε(y′−y))}−max{fR(x, y), fC(x, y)}

and this is actually max(K1, K2) where

K1 = εDfR + ΛfR − ε2HfR − (1 − ε)max{0, fC(x, y) − fR(x, y)}

and also

K2 = εDfC + ΛfC − ε2HfC − (1 − ε)max{0, fR(x, y) − fC(x, y)}

where now the functions DfR, ΛfR, HfR, DfC , ΛfC , HfC are defined below.

DfR(x, y, x′, y′) = {max(Ry′)overSR(y)} − xτRy′ − x′τRy + xτRy − f(x, y)
and

HfR(x, y, x′, y′) = (x′ − x)τR(y′ − y)
and

DfC(x, y, x′, y′) = {max(Cτx′)overSC(x)} − xτCy′ − x′τCy + xτCy − f(x, y)
and

HfC(x, y, x′, y′) = (x′ − x)τ C(y′ − y)

In order to define ΛfR, ΛfC we remind the reader that SR(y) = suppmax(Ry)
and that SC(x) = suppmax(Cτx) and we will also use their complements :

S̄R(y) being the complement of SR(y) in the index set {1, m} and
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S̄C(x) being the complement of SC(x) in the index set {1, n}
Let now

My be the maximum of Ry over SR(y)

My′ be the maximum of Ry′ over SR(y)

and

Mx be the maximum of Cτx over SC(x)

Mx′ be the maximum of Cτx′ over SC(x)

Finally ΛfR(x, y, x′, y′, ε) is the maximum of
(0, max over S̄R(y) of (I(y, y′) + J(y))) where

I(y, y′) = ε((Ry′ − emMy′) + (Myem − Ry)) and

J(y) = −(Myem − Ry)

Also finally ΛfC(x, y, x′, y′, ε) is also the maximum of
((0, max over S̄C(x) of (I(x, x′) + J(x))) where

I(x, x′) = ε((Cτx′ − enMx′) + (Mxen − Cτx)) and

J(x) = −(Mxen − Cτx)

From the above equations, the gradient at the point (x, y) ∈ Δm ×Δn along a
feasible direction specified by a (x′, y′) ∈ Δm ×Δn can be determined by letting
ε go to 0 and get finally :

Df(x, y, x′, y′) =

⎧
⎨

⎩

max(DfR, DfC) if fR(x, y) = fC(x, y)
DfR if fR(x, y) > fC(x, y)
DfC if fR(x, y) < fC(x, y)

⎫
⎬

⎭

A.2 Appendix A.2

We first notice that min{ρ�λ, (1 − ρ�)μ} ≤ λμ
λ+μ . Indeed, if we assume that

ρ�λ > λμ
λ+μ and (1 − ρ�)μ > λμ

λ+μ for some ρ�, λ, μ ∈ [0, 1], we would have
ρ� > μ

λ+μ and (1 − ρ�) > λ
λ+μ , a contradiction. So

f(x̂, ŷ) ≤ min
{

λμ

λ + μ
,

1 − min{λ, μ}
1 + max{λ, μ} − min{λ, μ}

}
.
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Set μ = min{λ, μ}. For μ ≤ 1
2 and since μ ≤ λ, we have λμ

λ+μ ≤ λ min{1/2,λ}
λ+min{1/2,λ} ≤

1
3 < 0.3393. Also, for μ ≥ 2

3 we have 1−μ ≤ 1
3 and 1−μ

1+λ−μ ≤ 1−μ ≤ 1
3 < 0.3393,

since λ ≥ μ ≥ 2
3 .

Consider now cases for which 1
2 < μ < 2

3 . If 1
2 < μ ≤ λ ≤ 2

3 , then λμ
λ+μ ≤ λ

2 ≤
1
3 < 0.3393.

For μ, λ such that 1
2 < μ < 2

3 < λ, let us define ξ = 1−μ
μ . Obviously, 1

2 < ξ < 1.
Set b = 0.3393.

Let us assume that there are μ and λ satisfying the above relationships and
also satisfy:

λμ

λ + μ
> b and

1 − μ

1 + λ − μ
> b.

Expressing these inequalities in terms of ξ and λ we get:

ξ(1 − b)
b(1 + ξ)

> λ >
b

1 − b(1 + ξ)
.

Since b < 1
2 , the above inequality is equivalent to:

ξ(1 − b)(1 − b(1 + ξ)) − b2(1 + ξ) > 0 ⇔ −ξ2b(1 − b) + ξ(1 − 2b) − b2 > 0.

It can be verified by direct calculation that the discriminant of the above

quadratic is 0 for b = 0.3393 and the inequality becomes −b(1−b)
(
ξ− 1−2b

2b(1−b)

)2
>

0, a contradiction.
Actually ,the constant b is the smallest real solution of the equation

4b(1 − b)(1 + b2) = 1.

The bound is attained at μ = 0.582523 and λ = 0.81281.

A.3 Appendix A.3

Let (x, y) be the current pair of strategies obtained during the descent procedure,
for which none of the conditions of step 3 of the algorithm is satisfied. Then, we
should have:

V (x, y) < b < f(x, y)

Indeed, since V (x, y) is always ≤ min{ρλ, (1 − ρ)μ}, if V (x, y) was ≥ b we
would also have f(x̃, ỹ) ≤ b, since f(x̃, ỹ) is always ≤ 1−min(λ,μ)

1+max(λ,μ)−min(λ,μ) and b is

the maximum value for min{ρλ, (1 − ρ)μ, 1−min(λ,μ)
1+max(λ,μ)−min(λ,μ)} as proven before.

We also have:

f(x+ε(x′−x), y+ε(y′−y))−f(x, y) = ε(V (x, y)−f(x, y))+max{ΛfR−ε2HfR, ΛfC−ε2HfC}

where HfR, HfC , ΛfR, ΛfC are as defined in appendix A.1.
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The quantitites ΛfR, ΛfC are both piecewise linear convex functions of ε and
are equal to 0 for ε ≤ ε�, where ε� is given by ε� = min{ε�

1, ε
�
2, 1} and ε�

1 is the
minimum over i ∈ SR(y) of:

max(Ry) − (Ry)i

max(Ry) − (Ry)i + (Ry′)i − maxSR(y)(Ry′)
, for some i ∈ SR(y)

and ε�
2 is the minimum over j ∈ SC(x) of :

max(CT x) − (CT x)j

max(CT x) − (CT x)j + (CT x′)j − maxSC(x)(CT x′)
, for some j ∈ SC(x)

It is pointed out that the terms max(Ry)−(Ry)i for i ∈ SR(y) are always posi-
tive and at least one of them is ≥ f(x, y), since f(x, y) =

∑
i∈SR(y) xi(max(Ry)−

(Ry)i). The same is true for the terms max(CT x) − (CT x)j for j ∈ SC(x). Fur-
thermore, the above expressions for ε� are active only for those indices i ∈ (1, m),
j ∈ (1, n), i ∈ SR(y), j ∈ SC(x) for which (Ry′)i − maxSR(y)(Ry′) ≥ 0 and
(CT x′)j − maxSC(x)(CT x′) ≥ 0. If no such indices exist for the (x′, y′) pair of
strategies, then the corresponding value of ε should be equal to 1.

The quantities HfR, HfC appearing in the quadratic terms of ε, are both
bounded (in absolute value) by 2. So, the minimum possible descent that can be
achieved is given by the following relationship :

f(x + ε(x′ − x), y + ε(y′ − y)) − f(x, y) = ε(V (x, y) − f(x, y))

−ε2 min(HfR, HfC) ≤ ε (V (x, y) − f(x, y)) + 2ε2, 0 ≤ ε ≤ ε�

Defining the new value of f as fnew and dropping the arguments (for simplic-
ity) we get

fnew − b ≤ (1 − ε)(f − b) + ε(V − b) + 2ε2

Minimizing with respect to ε, for ε ≤ ε�, we get:

fnew − b ≤ (f − b)
(

1 − b − V

4

)
− (f − b)2 + (b − V )2

8
, if ε� ≥ f − V

4

fnew − b ≤ (f − b)(1 − ε�) − (b − V )ε� + 2ε�2
, if ε� <

f − V

4
In the first case above, we obtain a significent reduction of fnew − b if ε� is

larger than f−V
4 . In the second case, the reduction depends on how small ε� is.

If the value of ε� is small , then there is an index i� ∈ SR(y) or an index
j� ∈ SC(x) such that the entry (Ry)i� or (CT x)j� , is close to the maximum
support of the vector Ry , or CT x. Such entries can be incorporated into the
sets SR(y), SC(x) by appropriately augmenting the supports of the vectors w, z
in the formulation of the linear minimax problem described in Section 3.

Furthermore , it is not possible to encounter more than m + n − 2 such steps
in a row without meeting one of the termination conditions of the algorithm ,
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particularly the condition f(x, y) ≤ b , since , if all the differences of the form
max(Ry) − (Ry)i, i ∈ SR(y) are small , then f(x, y) is also small.

From the above, we deduce that a termination condition of the algorithm can
be approached as closely as desired , in polynomial time.

In fact, a detailed analysis of the number q of the steps needed , for any δ > 0,
in order to approximate a stationary point sufficiently close and find an 0.3393+
δ-approximate equilibrium, can show that q is O( 1

δ2 ). A linear programming
problem has to be solved in each such step.
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Abstract. We present a computational approach to the saddle-point formulation
for the Nash equilibria of two-person, zero-sum sequential games of imperfect
information. The algorithm is a first-order gradient method based on modern
smoothing techniques for non-smooth convex optimization. The algorithm re-
quires O(1/ε) iterations to compute an ε-equilibrium, and the work per iteration
is extremely low. These features enable us to find approximate Nash equilibria
for sequential games with a tree representation of about 1010 nodes. This is three
orders of magnitude larger than what previous algorithms can handle. We present
two heuristic improvements to the basic algorithm and demonstrate their effi-
cacy on a range of real-world games. Furthermore, we demonstrate how the algo-
rithm can be customized to a specific class of problems with enormous memory
savings.

1 Introduction

Extensive form games model the interaction of multiple, self-interested agents in sto-
chastic environments with hidden information. The goal of each agent is to maximize its
own utility. Since the outcome for a particular agent depends on the actions of the other
agents, each agent must reason about the other agents’ behavior before acting. A fun-
damental solution concept for these games is the Nash equilibrium, i.e. a specification
of strategies for each agent such that no agent is better off by deviating from their pre-
scribed equilibrium strategy. Generally, Nash equilibrium strategies involve randomized
actions (called mixed strategies). For two-player zero-sum sequential games of imper-
fect information, the Nash equilibrium problem can be formulated using the sequence
form representation [1,2,3] as the following saddle-point problem:

max
x∈Q1

min
y∈Q2

〈Ay,x〉 = min
y∈Q2

max
x∈Q1

〈Ay,x〉. (1)

In this formulation, x is player 1’s strategy and y is player 2’s strategy. The bilinear
term 〈Ay,x〉 is the payoff that player 1 receives from player 2 when the players play
the strategies x and y. The strategy spaces are represented by Qi ⊆ R

Si , where Si

is the set of sequences of moves of player i, and Qi is the set of realization plans of
player i. Thus x (y) encodes probability distributions over actions at each point in the
game where player 1 (2) acts. The set Qi has an explicit linear description of the form

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, pp. 57–69, 2007.
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{z ≥ 0 : Ez = e}. Consequently, problem (1) can be modeled as a linear program
(see [3] for details).

The linear programs that result from this formulation have size linear in the size
of the game tree. Thus, in principle, these linear programs can be solved using any
algorithm for linear programming such as the simplex or interior-point methods. For
some smaller games, this approach is successful [4]. However, for many games the
size of the game tree and the corresponding linear program is enormous. For example,
the Nash equilibrium problem for Rhode Island Hold’em poker [5], after a substantial
reduction in size via the GameShrink lossless abstraction algorithm [6], leads to a linear
program with about 106 variables and constraints, whose solution using the state-of-the-
art CPLEX interior-point linear programming solver takes over one week on a 1.65 GHz
IBM eServer p5 570, and consumes 25 GB of memory [6]. Prior to the work presented
in this paper, this was the largest poker game instance solved to date. Recently there
has been substantial interest in two-player limit Texas Hold’em poker, whose game tree
has about 1018 variables and constraints. The latter problem is well beyond current
computational technology.

A recent and fruitful approach to finding strategies for sequential games is to employ
lossy abstractions [7,8,6,9,10] to approximate the Nash equilibrium. These abstrac-
tions yield smaller games that capture some of the main features of the full game. The
quality of the approximate Nash equilibrium solution depends on the coarseness of the
abstraction. The main current limitation on the degree of coarseness is the magnitude
of the abstracted game that standard linear programming solvers can handle. With the
current state-of-the art CPLEX solver the dimension is limited to games whose tree rep-
resentation has about 107 nodes (the interior-point method is unusable primarily due to
memory limitations and the simplex method is too slow [6]).

We propose a new approach to the approximation of Nash equilibria that directly
tackles the saddle-point formulation of Equation 1. In particular, we compute, in O(1/ε)
iterations, strategies x∗ ∈ Q1 and y∗ ∈ Q2 such that

max
x∈Q1

〈Ay∗,x〉 − min
y∈Q2

〈Ay,x∗〉 ≤ ε. (2)

Strategies that satisfy this inequality are called ε-equilibria. This class of game-theoretic
solution concepts encapsulates strategies in which either player can gain at most ε by
deviating to another strategy. For most applications this type of approximation is ac-
ceptable if ε is small.1 The algorithms of this paper are anytime algorithms and guaran-
tee that ε approaches zero, and quickly find solutions that have a very small ε. In this
respect, they are similar to other algorithms, such as fictitious play or multiplicative
weighting [16]. Our algorithm differs from fictitious play in that the convergence of the
algorithm is much faster, and it differs from the weighted-majority algorithm in that we
assume that all aspects of the game are already known.

Our approach is based on modern smoothing techniques for saddle-point
problems [17]. A particularly attractive feature of our approach is its simple work per

1 There has been work on finding ε-equilibria in two-player normal-form games [11,12]. Other
recent work has investigated the complexity of approximating Nash equilibria in non-zero-sum
games [13,14,15].
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iteration as well as the low cost per iteration: the most complicated operation is a matrix-
vector multiplication involving the payoff matrix A. In addition, we can take advantage
of the structure of the problem to improve the performance of this operation both in
terms of time and memory requirements. As a result, we are able to handle games that
are several orders of magnitude larger than games that can be solved using conventional
linear programming solvers. For example, we compute approximate solutions to an ab-
stracted version of Texas Hold’em poker whose LP formulation has 18,536,842 rows
and 18,536,852 columns, and has 61,450,990,224 non-zeros in the payoff matrix. This
is more than 1,200 times the number of non-zeros in the Rhode Island Hold’em prob-
lem mentioned above. Since conventional LP solvers require an explicit representation
of the problem (in addition to their internal data structures), this would require such a
solver to use more than 458 GB of memory simply to represent the problem. On the
other hand, our algorithm only requires 2.49 GB of memory.

The algorithm we present herein can be seen as a primal-dual first-order algorithm
applied to the pair of optimization problems

max
x∈Q1

f(x) = min
y∈Q2

φ(y)

where
f(x) = min

y∈Q2
〈Ay,x〉 and φ(y) = max

x∈Q1
〈Ay,x〉.

It is easy to see that f and φ are respectively concave and convex non-smooth (i.e. not
differentiable) functions. Our algorithm is based on a modern smoothing technique for
non-smooth convex minimization [17]. This smoothing technique provides first-order
algorithms whose theoretical iteration-complexity to find a feasible primal-dual solution
with gap ε > 0 is O(1/ε) iterations. We note that this is a substantial improvement to
the black-box generic complexity bound O(1/ε2) of general first-order methods for
non-smooth convex minimization (concave maximization) [18].

Some recent work has applied smoothing techniques to the solution of large-scale
semidefinite programming problems [19] and to large-scale linear programming prob-
lems [20]. However, our work appears to be the first application of smoothing tech-
niques to Nash equilibrium computation in sequential games.

2 Nesterov’s Excessive Gap Technique (EGT)

We next describe Nesterov’s excessive gap smoothing technique [17], specialized to
extensive form games. For i = 1, 2, assume that Si is the set of sequences of moves of
player i and Qi ⊆ R

Si is the set of realization plans of player i. For i = 1, 2, assume
that di is a strongly convex function on Qi, i.e. there exists ρi > 0 such that

di(αz + (1 − α)w) ≤ αdi(z) + (1 − α)di(w) − 1
2
ρα‖z − w‖2 (3)

for all α ∈ [0, 1] and z,w ∈ Qi. The largest ρi satisfying (3) is the strong convexity
parameter of di. For convenience, we assume that minz∈Qi di(z) = 0.
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The prox functions d1 and d2 can be used to smooth the non-smooth functions f and
φ as follows. For μ1, μ2 > 0 consider

fμ2(x) = min
y∈Q2

{〈Ay,x〉 + μ2d2(y)}

and
φμ1(y) = max

x∈Q1
{〈Ay,x〉 − μ1d1(x)} .

Because d1 and d2 are strongly convex, it follows [17] that fμ2 and φμ1 are smooth
(i.e. differentiable). Notice that f(x) ≤ φ(y) for all x ∈ Q1,y ∈ Q2. Consider the
following related excessive gap condition:

fμ2(x) ≥ φμ1(y). (4)

Let Di := maxz∈Qi di(z). If μ1, μ2 > 0, x ∈ Q1,y ∈ Q2 and (μ1, μ2,x,y) satisfies
(4), then [17, Lemma 3.1] yields

0 ≤ φ(y) − f(x) ≤ μ1D1 + μ2D2. (5)

This suggests the following strategy to find an approximate solution to (1): generate
a sequence (μk

1 , μk
2 ,x

k,yk), k = 0, 1, . . ., with μk
1 and μk

2 decreasing to zero as k
increases, while xk ∈ Q1, yk ∈ Q2 and while maintaining the loop invariant that
(μk

1 , μk
2 ,xk,yk) satisfies (4). This is the strategy underlying the EGT algorithms we

present in this paper.
The building blocks of our algorithms are the mapping sargmax and the procedures

initial and shrink. Let d be a strongly convex function with a convex, closed, and
bounded domain Q ⊆ R

n. Let sargmax(d, ·) : R
n → Q be defined as

sargmax(d,g) := argmax
x∈Q

{〈g,x〉 − d(x)}. (6)

By [17, Lemma 5.1], the following procedure initial yields an initial point that
satisfies the excessive gap condition (4). The notation ‖A‖ indicates an appropriate
operator norm (see [17] and Examples 1 and 2 for details), and ∇d2 (x̂) is the gradient
of d2 at x̂.

initial(A, d1, d2)

1. μ0
1 := μ0

2 := ‖A‖√
ρ1ρ2

2. ŷ := sargmax (d2,0)
3. x0 := sargmax

(
d1,

1
μ0

1
Aŷ

)

4. y0 := sargmax
(
d2, ∇d2 (x̂) + 1

μ0
2
ATx0

)

5. return (μ0
1, μ

0
2,x

0,y0)

The following procedure shrink enables us to reduce μ1 and μ2 while maintaining
(4).

shrink(A, μ1, μ2, τ,x,y, d1, d2)
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1. y̆ := sargmax
(
d2, − 1

μ2
ATx

)

2. ŷ := (1 − τ)y + τ y̆

3. x̂ := sargmax
(
d1,

1
μ1

Aŷ
)

4. ỹ := sargmax
(
d2, ∇d2 (y̆) + τ

(1−τ)μ2
ATx̂

)

5. x+ := (1 − τ)x + τ x̂
6. y+ := (1 − τ)y + τ ỹ
7. μ+

2 := (1 − τ)μ2

8. return (μ+
2 ,x+,y+)

By [17, Theorem 4.1], if the input (μ1, μ2,x,y) to shrink satisfies (4) then so does
(μ1, μ

+
2 ,x+,y+) as long as τ satisfies τ2/(1−τ) ≤ μ1μ2ρ1ρ2‖A‖2. Consequently, the

iterates generated by procedure EGT below satisfy (4). In particular, after N iterations,
Algorithm EGT yields points xN ∈ Q1 and yN ∈ Q2 with

0 ≤ max
x∈Q1

〈AyN ,x〉 − min
y∈Q2

〈Ay,xN 〉 ≤ 4 ‖A‖
N

√
D1D2

ρ1ρ2
.

EGT

1. (μ0
1, μ

0
2,x

0,y0) = initial(A, d1, d2)
2. For k = 0, 1, . . .:

(a) τ := 2
k+3

(b) If k is even: // shrink μ2

i. (μk+1
2 ,xk+1,yk+1) := shrink(A, μk

1 , μk
2 , τ,xk,yk, d1, d2)

ii. μk+1
1 := μk

1
(c) If k is odd: // shrink μ1

i. (μk+1
1 ,yk+1,xk+1) := shrink(AT, −μk

1 , −μk
2 , τ,yk,xk, d2, d1)

ii. μk+1
2 := μk

2

Notice that Algorithm EGT is a conceptual algorithm that finds an ε-solution to (1).
It is conceptual only because the algorithm requires that the mappings sargmax(di, ·)
be computed several times at each iteration. Consequently, a specific choice of the func-
tions d1 and d2 is a critical step to convert Algorithm EGT into an actual algorithm.

2.1 Nice Prox Functions

Assume Q is a convex, closed, and bounded set. We say that a function d : Q → R is a
nice prox function for Q if it satisfies the following three conditions:

1. d is strongly convex and continuous everywhere in Q and is differentiable in the
relative interior of Q;

2. min{d(z) : z ∈ Q} = 0;
3. The mapping sargmax(d, ·) : R

n → Q is easily computable, e.g., it has a closed-
form expression.
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We next provide two specific examples of nice prox functions for the simplex

Δn = {x ∈ R
n : x ≥ 0,

n∑

i=1

xi = 1}.

Example 1. Consider the entropy function d(x) = lnn +
∑n

i=1 xi ln xi. The function
d is strongly convex and continuous in Δn and minx∈Δn d(x) = 0. It is also differ-
entiable in the relative interior of Δn. It has strong convexity parameter ρ = 1 for the
1-norm in R

n, namely, ‖x‖ =
∑n

i=1 |xi|. The corresponding operator norm, ‖A‖, for
this setting is simply the value of the largest entry in A in absolute value. Finally, the
mapping sargmax(d,g) has the easily computable expression

sargmax(d,g)j =
egj

n∑

i=1
egi

.

Example 2. Consider the (squared) Euclidean distance to the center of Δn, that is,
d(x) = 1

2

∑n
i=1

(
xi − 1

n

)2
. This function is strongly convex, continuous and differ-

entiable in Δn, and minx∈Δn d(x) = 0. It has strong convexity parameter ρ = 1
for the Euclidean norm, namely, ‖x‖ =

(∑n
i=1 |xi|2

)1/2
. The corresponding operator

norm, ‖A‖, for this setting is the spectral norm of A, i.e. the square root of the largest
eigenvalue of AT A. Although the mapping sargmax(d,g) does not have a closed-form
expression, it can easily be computed in O(n log n) steps [20].

In order to apply Algorithm EGT to problem (1) for sequential games we need nice
prox-functions for the realization sets Q1 and Q2 (which are more complex than the
simplex discussed above in Examples 1 and 2). This problem was recently solved [21]:

Theorem 1. Any nice prox-function ψ for the simplex induces a nice prox-function for
a set of realization plans Q. The mapping sargmax(d, ·) can be computed by repeatedly
applying sargmax(ψ, ·).

Figure 1 displays the relative performance of the entropy and Euclidean prox functions,
described in Examples 1 and 2, respectively. (Heuristics 1 and 2 were enabled in this
experiment.) In all of the figures, the units of the vertical axis are small bet sizes in the
corresponding poker games.

The entropy prox function outperformed the Euclidean prox function on all four
instances. Therefore, in the remaining experiments we use the entropy prox function.

3 Heuristics for Improving Speed of Convergence

While Algorithm EGT has theoretical iteration-complexity O(1/ε), and (as our exper-
iments on EGT show later in this paper) EGT is already an improvement over the state
of the art (in particular, the simplex method and standard interior point methods for
solving the game modeled as a linear program), we introduce two heuristics for making
EGT drastically faster. The heuristics attempt to speed up the decrease in μ1 and μ2,
and thus the overall convergence time of the algorithm, while maintaining the excessive
gap condition (4) as well as the guaranteed convergence of O(1/ε).
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Fig. 1. Comparison of the entropy and Euclidean prox functions. The value axis is the gap ε
(Equation 2).

3.1 Heuristic 1: Aggressive μ Reduction

The first heuristic is based on the following observation: although the value τ = 2/(k+
3) computed in step 2(a) of EGT guarantees the excessive gap condition (4), computa-
tional experiments indicate that this is an overly conservative value, particularly during
the first few iterations. Instead we can use an adaptive procedure to choose a larger value
of τ . Since we now can no longer guarantee the excessive gap condition (4) a priori,
we are required to do a posterior verification which occasionally leads to adjustments
in the parameter τ . In order to check (4), we need to compute the values of fμ2 and φμ1 .
To that end, consider the following mapping smax, a variation of sargmax. Assume d
is a prox-function with domain Q ⊆ R

n. Let smax(d, ·) : R
n → R be defined as

smax(d,g) := max
x∈Q

{〈g,x〉 − d(x)}. (7)

It is immediate that smax(d, ·) is easily computable provided sargmax(d, ·) is. Notice
that φμ1(y) = smax(d1,

1
μ1

Ay) and fμ2(x) = − smax(d2, − 1
μ2

ATx). To incorporate
Heuristic 1 in Algorithm EGT we modify the procedure shrink as follows.

decrease(A, μ1, μ2, τ,x,y, d1, d2)

1. (μ+
2 ,x+,y+) := shrink(A, μ1, μ2, τ,x,y, d1, d2)

2. while smax(d1,
1

μ1
Ay+) > − smax(d2,

−1
μ+

2
ATx+)

// reduced too much, τ is too big
(a) τ := τ/2
(b) (μ+

2 ,x+,y+) := shrink(A, μ1, μ2, τ,x,y, d1, d2)
3. return (μ+

2 ,x+,y+)
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Fig. 2. Experimental evaluation of Heuristic 1

By [17, Theorem 4.1], when the input (μ1, μ2,x,y) to decrease satisfies (4), the
procedure decrease will halt.

Figure 2 demonstrates the impact of applying Heuristic 1 only. On all four instances,
Heuristic 1 reduced the gap significantly; on the larger instances, this reduction was an
order of magnitude.

3.2 Heuristic 2: Balancing and Reduction of μ1 and μ2

Our second heuristic is motivated by the observation that after several calls of the
decrease procedure, one of μ1 and μ2 may be much smaller than the other. This imbal-
ance is undesirable because the larger one dominates in the bound given by (5). Hence
after a certain number of iterations we perform a balancing step to bring these values
closer together. The balancing consists of repeatedly shrinking the larger one of μ1 and
μ2.

We also observed that after such balancing, the values of μ1 and μ2 can sometimes
be further reduced without violating the excessive gap condition (4). We thus include a
final reduction step in the balancing heuristic.

This balancing and reduction heuristic is incorporated via the following procedure.2

balance(μ1, μ2,x,y, A)

1. while μ2 > 1.5μ1 // shrink μ2
(μ2,x,y) := decrease(A, μ1, μ2, τ,x,y, d1, d2)

2. while μ1 > 1.5μ2 // shrink μ1
(μ1,y,x) := decrease(AT, −μ2, −μ1, τ,y,x, d2, d1)

3. while smax(d1,
1

0.9μ1
Ay) ≤ − smax(d2,

−1
0.9μ2

ATx)
// decrease μ1 and μ2 if possible

2 We set the parameters (0.9 and 1.5) based on some initial experimentation.
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μ1 := 0.9μ1

μ2 := 0.9μ2

We are now ready to describe the variant of EGT with Heuristics 1 and 2.

EGT-2

1. (μ0
1, μ

0
2,x

0,y0) = initial(A, Q1, Q2)
2. τ := 0.5
3. For k = 0, 1, . . .:

(a) If k is even: // Shrink μ2

i. (μk+1
1 ,xk+1,yk+1) := decrease(A, μk

1 , μk
2 , τ,xk,yk, d1, d2)

ii. μk+1
1 = μk

1

(b) If k is odd: // Shrink μ1

i. (μk+1
1 ,yk+1,xk+1) := decrease(−AT, μk

2 , μ
k
1 , τ,yk,xk, d2, d1)

ii. μk+1
2 = μk

2

(c) If k mod 10 = 0 // balance and reduce
balance(μk

1 , μk
2 ,xk,yk, A)

Because Heuristic 2 takes more time to compute, we experimented with how often
the algorithm should run it. (We did this by varying the constant in line 3(c) of Algo-
rithm EGT-2. In this experiment, Heuristic 1 was turned off.) Figure 3 shows that it is
better to run it than to not run it, and on most instances, it is better to run it every 100
iterations than every 10 iterations.
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Fig. 3. Heuristic 2 applied at different intervals
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4 Customizing the Algorithm for Poker Games

The bulk of the computational work at each iteration of Algorithms EGT and EGT-2
consists of matrix-vector multiplications x �→ ATx and y �→ Ay in addition to calls
to the mappings smax(di, ·) and sargmax(di, ·). Of these operations, the matrix-vector
multiplications are by far the most expensive, both in terms of memory (for storing A)
and time (for computing the product).

4.1 Addressing the Space Requirements

To address the memory requirements, we exploit the problem structure to obtain a con-
cise representation for the payoff matrix A. This representation relies on a uniform
structure that is present in poker games and many other games. For example, the bet-
ting sequences that can occur in most poker games are independent of the cards that
are dealt. This conceptual separation of betting sequences and card deals is used by au-
tomated abstraction algorithms [6]. Analogously, we can decompose the payoff matrix
based on these two aspects.

The basic operation we use in this decomposition is the Kronecker product, denoted
by ⊗. Given two matrices B ∈ R

m×n and C ∈ R
p×q , the Kronecker product is

B ⊗ C =

⎡

⎢
⎣

b11C · · · b1nC
...

. . .
...

bm1C · · · bmnC

⎤

⎥
⎦ ∈ R

mp×nq.

For ease of exposition, we explain the concise representation in the context of Rhode
Island Hold’em poker [5], although the general technique applies much more broadly.
The payoff matrix A can be written as

A =

⎡

⎣
A1

A2
A3

⎤

⎦

where A1 = F1 ⊗ B1, A2 = F2 ⊗ B2, and A3 = F3 ⊗ B3 + S ⊗ W for much smaller
matrices Fi, Bi, S, and W . The matrices Fi correspond to sequences of moves in round
i that end with a fold, and S corresponds to the sequences in round 3 that end in a
showdown. The matrices Bi encode the betting structures in round i, while W encodes
the win/lose/draw information determined by poker hand ranks.

Given this concise representation of A, computing x �→ ATx and y �→ Ay is
straightforward, and the space required is sublinear in the size of the game tree. For ex-
ample, in Rhode Island Hold’em, the dimensions of the Fi and S matrices are 10 × 10,
and the dimensions of B1, B2, and B3 are 13 × 13, 205 × 205, and 1,774 × 1,774,
respectively—in contrast to the A-matrix, which is 883,741 × 883,741. Furthermore,
the matrices Fi, Bi, S, and W are themselves sparse which allows us to use the Com-
pressed Row Storage (CRS) data structure (which stores only non-zero entries).

Table 1 provides the sizes of the four test instances; each models some variant of
poker, an important challenge problem in AI [22]. The first three instances, 10k, 160k,
and RI, are abstractions of Rhode Island Hold’em [5] computed using the GameShrink
automated abstraction algorithm [6]. The first two instances are lossy (non-equilibrium
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Table 1. Problem sizes (when formulated as an LP) for the instances used in our experiments

Name Rows Columns Non-zeros
10k 14,590 14,590 536,502
160k 226,074 226,074 9,238,993
RI 1,237,238 1,237,238 50,428,638
Texas 18,536,842 18,536,852 61,498,656,400

Table 2. Memory footprint in gigabytes of CPLEX interior-point method (IPM), CPLEX Sim-
plex, and EGT algorithms. CPLEX requires more than 458 GB for the Texas instance.

Name CPLEX IPM CPLEX Simplex EGT

10k 0.082 GB > 0.051 GB 0.012 GB
160k 2.25 GB > 0.664 GB 0.035 GB
RI 25.2 GB > 3.45 GB 0.15 GB
Texas > 458 GB > 458 GB 2.49 GB

preserving) abstractions, while the RI instance is a lossless abstraction. The last in-
stance, Texas, is a lossy abstraction of Texas Hold’em. A similar instance was used to
generate the player GS3, one of the most competitive poker-playing programs [10]. We
wanted to test the algorithms on problems of widely varying sizes, which is reflected
by the data in Table 1. We also chose these four problems because we wanted to eval-
uate the algorithms on real-world instances, rather than on randomly generated games
(which may not reflect any realistic setting).

Table 2 clearly demonstrates the extremely low memory requirements of the EGT al-
gorithms. Most notably, on the Texas instance, both of the CPLEX algorithms require
more than 458 GB simply to represent the problem. In contrast, using the decomposed
payoff matrix representation, the EGT algorithms require only 2.49 GB. Furthermore, in
order to solve the problem, both the simplex and interior-point algorithms would require
additional memory for their internal data structures.3 Therefore, the EGT family of algo-
rithms is already an improvement over the state-of-the-art (even without the heuristics).

4.2 Speedup from Parallelizing the Matrix-Vector Product

To address the time requirements of the matrix-vector product, we can effectively par-
allelize the operation by simply partitioning the work into n pieces when n CPUs are
available. The speedup we can achieve on parallel CPUs is demonstrated in Table 3. The
instance used for this test is theTexas instance described above. The matrix-vector prod-
uct operation scales linearly in the number of CPUs, and the time to perform one iteration
of the algorithm (using the entropy prox function and including the time for applying
Heuristic 1) scales nearly linearly, decreasing by a factor of 3.72 when using 4 CPUs.

3 The memory usage for the CPLEX simplex algorithm reported in Table 2 is the memory used
after 10 minutes of execution (except for the Texas instance which did not run at all as
described above). This algorithm’s memory requirements grow and shrink during the execution
depending on its internal data structures. Therefore, the number reported is a lower bound on
the maximum memory usage during execution.
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Table 3. Effect of parallelization for the Texas instance

CPUs matrix-vector product EGT iteration
time (s) speedup time (s) speedup

1 278.958 1.00x 1425.786 1.00x
2 140.579 1.98x 734.366 1.94x
3 92.851 3.00x 489.947 2.91x
4 68.831 4.05x 383.793 3.72x

5 Conclusions and Future Research

We applied Nesterov’s excessive gap technique to extensive form games. We introduced
two heuristics for improving convergence speed, and showed that each of them reduces
the gap by an order of magnitude. Best results were achieved by using Heuristic 2 only
every so often. It was best to use both heuristics together. We also observed that the
entropy prox function yielded faster convergence than the Euclidean prox function. For
poker games and similar games, we introduced a decomposed matrix representation
that reduces storage requirements drastically. We also showed near-perfect efficacy of
parallelization. Overall, our techniques enable one to solve orders of magnitude larger
games than the prior state of the art.

Although current general-purpose simplex and interior-point solvers cannot handle
problems of more than around 106 nodes [6], it is conceivable that specialized ver-
sions of these algorithms could be effective. However, taking advantage of the problem
structure in these linear programming methods appears to be quite challenging. For ex-
ample, a single interior-point iteration requires the solution of a symmetric non-definite
system of equations whose matrix has the payoff matrix A and its transpose AT in some
blocks. Such a step is inherently far more complex than the simple matrix-vector multi-
plications required in EGT-2. On the upside, overcoming this obstacle would enable us
to capitalize on the superb speed of convergence of interior-point methods. While first-
order methods require O(1/ε) iterations to find an ε-solution, interior-point methods
require only O(log(1/ε)) iterations. We leave the study of these alternative algorithms
for Nash equilibrium finding as future work.
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Abstract. We study the equilibrium behavior of informed traders in-
teracting with two types of automated market makers: market scoring
rules (MSR) and dynamic parimutuel markets (DPM). Although both
MSR and DPM subsidize trade to encourage information aggregation,
and MSR is myopically incentive compatible, neither mechanism is in-
centive compatible in general. That is, there exist circumstances when
traders can benefit by either hiding information (reticence) or lying about
information (bluffing). We examine what information structures lead to
straightforward play by traders, meaning that traders reveal all of their
information truthfully as soon as they are able. Specifically, we analyze
the behavior of risk-neutral traders with incomplete information playing
in a finite-period dynamic game. We employ two different information
structures for the logarithmic market scoring rule (LMSR): conditionally
independent signals and conditionally dependent signals. When signals
of traders are independent conditional on the state of the world, truth-
ful betting is a Perfect Bayesian Equilibrium (PBE) for LMSR. However,
when signals are conditionally dependent, there exist joint probability dis-
tributions on signals such that at a PBE in LMSR traders have an incen-
tive to bet against their own information—strategically misleading other
traders in order to later profit by correcting their errors. In DPM, we show
that when traders anticipate sufficiently better-informed traders entering
the market in the future, they have incentive to partially withhold their
information by moving the market probability only partway toward their
beliefs, or in some cases not participating in the market at all.

1 Introduction

The strongest form of the efficient markets hypothesis [1] posits that informa-
tion is incorporated into prices fully and immediately, as soon as it becomes
available to anyone. A prediction market is a financial market specifically de-
signed to take advantage of this property. For example, to forecast whether a
� An early version of this paper appeared at the Second Workshop on Prediction

Markets. This version is much improved thanks to the insightful comments by Stanko
Dimitrov, Paul J. Healy, Mohammad Mahdian, Rahul Sami, and the anonymous
reviewers.
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product will launch on time, a company might ask employees to trade a security
that pays $1 if and only if the product launches by the planned date. Everyone
from managers to developers to administrative assistants with different forms
and amounts of information can bet on the outcome. The resulting price con-
stitutes their collective probability estimate that the launch will occur on time.
Empirically, prediction markets like this outperform experts, group consensus,
and polls across a variety of settings [2,3,4,5,6,7,8,9,10].

Yet the double-sided auction at the heart of nearly every prediction market is
not incentive compatible. Information holders do not necessarily have incentive
to fully reveal all their information right away, as soon as they obtain it. The
extreme case of this is captured by the so-called no trade theorems [11]: When
rational, risk-neutral agents with common priors interact in an unsubsidized
(zero-sum) market, the agents will not trade at all, even if they have vastly
different information and posterier beliefs. The informal reason is that any offer
by one trader is a signal to a potential trading partner that results in belief
revision discouraging trade.

The classic market microstructure model of a financial market posits two types
of traders: rational traders and noise traders [12]. The existence of noise traders
turns the game among rational traders into a positive-sum game, thereby resolv-
ing the no-trade paradox. However, even in this setting, the mechanism is not in-
centive compatible. For example, monopolist information holders will not fully
reveal their information right away: instead, they will leak their information into
the market gradually over time and in doing so will obtain a greater profit [13].

Instead of assuming or subsidizing noise traders, a prediction market designer
might choose to directly subsidize the market by employing an automated market
maker that expects to lose some money on average. Hanson’s market scoring rule
market maker (MSR) is one example [14,15]. MSR requires a patron to subsidize
the market, but guarantees that the patron cannot lose more than a fixed amount
set in advance, regardless of how many shares are exchanged or what outcome
eventually occurs. The greater the subsidy, the greater the effective liquidity of
the market. Since traders face a positive-sum game, even rational risk-neutral
agents have incentive to participate. In fact, even a single trader can be induced
to reveal information, something impossible in a standard double auction with
no market maker. Hanson proves that myopic risk-neutral traders have incentive
to reveal all their information, however forward-looking traders may not.

Pennock’s dynamic parimutuel market (DPM) [16,17] is another subsidized
market game that functions much like a market maker. Players compete for
shares of the total money wagered by all players, where the payoff of each share
varies depending on the final state of the system. Whereas in a standard predic-
tion market for a binary outcome the payoff of every winning share is exactly
$1, the payoff in DPM is at least $1, but could be more.

Though subsidized market makers improve incentives for information reve-
lation, the mechanisms are still not incentive compatible. Much of the allure
of prediction markets is the promise to gather information from a distributed
group quickly and accurately. However, if traders have demonstrable incentives
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to either hide or falsify information, the accuracy of the resulting forecast may
be in question.

In this paper, we examine the strategic behavior of (non-myopic) risk-neutral
agents participating in prediction markets using two-outcome MSR and DPM
mechanisms. We model the market as a dynamic game and solve for equilibrium
trading strategies. We employ two different information structures for LMSR
with incomplete information: conditionally independent signals and conditionally
dependent signals. The equilibrium concept that we use is the Perfect Bayesian
Equilibrium (PBE) [18]. We prove that with conditionally independent signals,
a PBE of LMSR with finite players and finite periods consists of all players
truthfully revealing their private information at their first chance to bet. With
conditionally dependent information, we show that in LMSR there exist joint
probability distributions on signals such that traders have an incentive to bluff,
or bet against their own information, strategically misleading other traders in
order to later correct the price. DPM is shown, via a two-player, two-stage game,
to face another problem: traders may have incentives to completely withhold
their private information or only partially reveal their information when they
anticipate sufficiently better-informed agents trading after them. Due to lack of
space, we omit or abridge some proofs of lemmas and theorems in this paper;
full proofs can be obtained as an Appendix by request.

Related Work. Theoretical work on price manipulation in financial markets
[19,13,20] explains the logic of manipulation and indicates that double auctions
are not incentive compatible. There are some experimental and empirical studies
on price manipulation in prediction markets using double auction mechanisms;
the results of which are mixed, some giving evidence for the success of price ma-
nipulation [21] and some showing the robustness of prediction markets to price
manipulation [22,23,24,25]. The paper by Dimitrov and Sami [26], completed
independently and first published simultaneously with an early version of this
paper, is the most directly related work that we are aware of. Dimitro and Sami,
with the aid of a projection game, study non-myopic strategies in LMSR with
two players. By assuming signals of players are unconditionally independent and
the LMSR market has infinite periods, they show that truthful betting is not an
equilibrium strategy in general. Our study of LMSR with incomplete information
in Sections 3 and 4 complements their work. Dimitro and Sami examine infinite
periods of play, while we consider finite periods and finite players. On the one
hand, the conditionally independent signals case that we examine directly im-
plies that signals are unconditionally dependent unless they are not informative.
On the other hand, the conditional dependence of signals assumption overlaps
with Dimitro and Sami’s unconditional independence of signals.

2 Background

Consider a discrete random variable X that has n mutually exclusive and exhaus-
tive outcomes. Subsidizing a market to predict the likelihood of each outcome,
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two classes of mechanisms, MSR and DPM, are known to guarantee that the
market maker’s loss is bounded.

2.1 Marketing Scoring Rules

Hanson [14,15] shows how a proper scoring rule can be converted into a market
maker mechanism, called market scoring rules (MSR). The market maker uses a
proper scoring rule, S = {s1(r), . . . , sn(r)}, where r = 〈r1, . . . , rn〉 is a reported
probability estimate for the random variable X . Conceptually, every trader in the
market may change the current probability estimate to a new estimate of its choice
at any time as long as it agrees to pay the scoring rule payment associated with the
current probability estimate and receive the scoring rule payment associated with
the new estimate. If outcome i is realized, a trader that changes the probability
estimate from rold to rnew pays si(rold) and receives si(rnew).

Since a proper scoring rule is incentive compatible for a risk-neutral agents,
if a trader can only change the probability estimate once, this modified proper
scoring rule still incentivizes the trader to reveal its true probability estimate.
However, when traders can participate multiple times, they might have incentives
to manipulate information and mislead other traders.

Because traders change the probability estimate in sequence, MSR can be
thought of as a sequential shared version of the scoring rule. The market maker
pays the last trader and receives payment from the first trader. For a logarithmic
market scoring rule market maker (LMSR) with the scoring function si(r) =
b log(ri) and b > 0, the maximum amount the market maker can lose is b logn.

An MSR market can be equivalently implemented as a market maker offering
n securities, each corresponding to one outcome and paying $1 if the outcome
is realized [14,27]. Hence, changing the market probability of outcome i to some
value ri is the same as buying the security for outcome i until the market price
of the security reaches ri. Our analysis in this paper is facilitated by directly
dealing with probabilities.

2.2 Dynamic Parimutuel Market

A dynamic parimutuel market (DPM) [16,17] is a dynamic-cost variant of a
parimutuel market. There are n securities offered in the market, each corre-
sponding to an outcome of X . As in a parimutuel market, traders who wager on
the true outcome split the total pool of money at the end of the market. However,
the price of a single share varies dynamically according to a price function, thus
allowing traders to sell their shares prior to the determination of the outcome
for profits or losses.

From a trader’s perspective, DPM acts as a market maker. A particularly
natural way for the market maker to set security prices is to equate the ratio of
prices of any two securities by the ratio of number of shares outstanding for the
two securities. Let q = 〈q1, . . . , qn〉 be the vector of shares outstanding for all
securities. Then the total money wagered in the market is
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C(q) = κ

√√
√
√

n∑

j=1

q2
j , (1)

while the instantaneous price is

pi(q) =
κqi√∑n
j=1 q2

j

∀i, (2)

where κ is a free parameter. When a trader buys or sells one or more securities, it
changes the vector of outstanding shares from qold to qnew and pays the market
maker the amount C(qnew) − C(qold), which equals the integral of the price
functions from qold to qnew. If outcome i occurs and the quantity vector at the
end of the market is q f , the payoff for each share of the winning security is

oi =
C(q f )

qf
i

=
κ
√∑

j(q
f
j )2

qf
i

. (3)

Unlike LMSR where the market probability of an outcome is directly listed, the
market probability of outcome i in DPM with the above described cost, price,
and payoff functions is given by πi = pi(q)

C(q)/qi
or, in terms of the shares directly,

πi(q) =
q2
i∑n

j=1 q2
j

. (4)

For traders whose probabilities are the same as the market probabilities, they
can not expect to profit from buying or selling securities if the DPM market
liquidates in the current state.

A trader wagering on the correct outcome is guaranteed non-negative profit
in DPM, because pi is always less than or equal to κ and oi is always greater
than or equal to κ. Setting κ = 1 yields a natural version where prices are less
than or equal to 1 and payoffs are greater than or equal to 1. Because the price
functions are not well-defined when q = 0, the market maker needs to initialize
the market with a non-zero quantity vector q 0 (which may be arbitrarily small).
Hence, the market maker’s loss is at most C(q 0) whichever outcome is realized.

Compared with a parimutuel market, where traders are never worse off for
waiting until the last minute to put their money in, the advantage of DPM is
that it provides some incentive for informed traders to reveal their information
earlier, because the price of a security increases (decreases) when more people
buy (sell) the security. But it is not clear whether traders are better off by always
and completely revealing their information as soon as they can.

2.3 Terminology

Truthful betting (TB) for a player in MSR and DPM is the strategy of immedi-
ately changing market probabilities to the player’s probabilities. In other words,
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it is the strategy of always buying immediately when the price is too low and
selling when the price is too high according the the player’s information. Bluff-
ing is the strategy of betting contrary to one’s information in order to deceive
future traders, with the intent of capitalizing on their resultant misinformed
trading. Strategic reticence means withholding one’s information; that is, delay-
ing or abstaining from trading, or moving the market probabilities only partway
toward one’s actual beliefs. This paper investigates scenarios where traders with
incomplete information have an incentive to deviate from truthful betting.1

3 LMSR with Conditionally Independent Signals

In this part, we start with simple 2-player 3-stage games and move toward the
general finite-player finite-stage games to gradually capture the strategic behav-
ior in LMSR when players have conditionally independent signals.

3.1 General Settings

Ω = {Y, N} is the state space of the world. The true state, ω ∈ Ω, is picked
by nature according to a prior p0 = 〈p0

Y , p0
N〉 = 〈Pr(ω = Y ), Pr(ω = N)〉.

The prior is common knowledge to all players. A market, aiming at predicting
the true state ω, uses a LMSR market maker with initial probability estimate
r0 = 〈r0

Y , r0
N 〉.

Players are risk neutral. Each player gets a private signal, ci ∈ Ci, about
the state of the world at the beginning of the market. Ci is the signal space
of player i with |Ci| = ni. Players’ signals are independent conditional on the
state of the world. In other words, player i’s signal ci is independently drawn by
nature according to conditional probability distributions,

Pr(ci = Ci{1} | Y ), Pr(ci = Ci{2} | Y ), ... , Pr(ci = Ci{ni} | Y ) (5)

if the true state is Y , and analogously if the true state in N . Ci{1} to Ci{ni} are
elements of Ci. The signal distributions are common knowledge to all players.
Based on their private signals, players update their beliefs. Then players trade
in one or more rounds of LMSR.

3.2 Who Wants to Play First?

We first consider a simple 2-player sequence selection game. Suppose that Alice
and Bob are the only players in the market. Alice independently gets a signal
cA ∈ CA. Similarly, Bob independently gets a signal cB ∈ CB. Let |CA| = nA

and |CB| = nB.
In the first stage, Alice chooses who—herself or Bob—plays first. The se-

lected player then changes the market probabilities as they see fit in the second
stage. In the third stage, the other player gets the chance to change the market
probabilities. Then, the market closes and the true state is revealed.
1 With complete information, traders should reveal all information right away in both

MSR and DPM, because the market degenerates to a race to capitalize on the shared
information first.
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Lemma 1. In a LMSR market, if stage t is player i’s last chance to play
and μi is player i’s belief over actions of previous players, player i’s best re-
sponse at stage t is to play truthfully by changing the market probabilities to
rt = 〈Pr(Y |ci, r

t−1, μi), Pr(N |ci, r
t−1, μi)〉, where rt−1 is the market probabil-

ity vector before player i’s action.

Proof. When a player has its last chance to play in LMSR, it is the same as the
player interacting with a logarithmic scoring rule. Because the logarithmic scor-
ing rule is strictly proper, player i’s expected utility is maximized by truthfully
reporting its posterior probability estimate given the information it has. �

Lemma 2. When players have conditionally independent signals, if player i
knows player j’s posterior probabilities 〈Pr(Y |cj), Pr(N |cj)〉, player i can infer
the posterior probabilities conditionally on both signals. More specifically,

Pr(ω|ci, cj) =
Pr(ci|ω) Pr(ω|cj)

Pr(ci|Y ) Pr(Y |cj) + Pr(ci|N) Pr(N |cj)
,

where ω ∈ {Y, N}.

Lemma 2 is proved using Bayes rule. According to it, with conditionally inde-
pendent signals, a player can make use of another player’s information when
knowing its posteriors, even if not knowing its signal distribution.

Let r be the posteriors of player j that player i observes. For simplicity,
let Cj{r} be a fictitious signal that satisfies 〈Pr(Y |Cj{r}), Pr(N |Cj{r})〉 = r.
Cj{r} does not necessarily belong to player j’s signal space Cj. When r is the
true posteriors of player j, 〈Pr(Y |ci,Cj{r}), Pr(N |ci,Cj{r})〉 is the same as
〈Pr(Y |ci, cj), Pr(N |ci, cj)〉. The following theorem gives a PBE of the sequence
selection game.

Theorem 1. When Alice and Bob have conditionally independent signals in
LMSR, a PBE of the sequence selection game is a strategy-belief pair with strate-
gies of (σA, σB) and belief μB, where

– Alice’s strategy σA is (select herself to be the first player in the first stage,
change the market probability to 〈Pr(Y |cA), Pr(N |cA)〉 in the second stage);

– Bob’s strategy σB is (take current market prices r as Alice’s posteriors and
change the market probability to 〈Pr(Y |CA{r}, cB), Pr(N |CA{r}, cB)〉 when
it’s his turn to play);

– Bob’s belief μB is that Pr(in the second stage Alice changes market proba-
bilities to 〈Pr(Y |cA), Pr(N |cA)〉)=1.

Sketch of Proof: Let EU I
A be Alice’s expected utility conditional on her signal

when she selects herself as the first player and EU II
A be Alice’s expected utility

conditional on her signal when she selects Bob as the first player. The proof
reduces EU I

A − EU II
A to the Kullback-Leibler divergence (also called relative

entropy or information divergence) [28] of two distributions, which is always
non-negative.
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3.3 The Alice-Bob-Alice Game

We now consider a 3-stage Alice-Bob-Alice game, where Alice plays in the first
and third stages and Bob plays in the second stage. Alice may change the market
probabilities however she wants in the first stage. Observing Alice’s action, Bob
may change the probabilities in the second stage. Alice can take another action
in the third stage. Then, the market closes and the true state is revealed. We
study the PBE of the game when Alice and Bob have conditionally independent
signals.

Let r1 = 〈r1
Y , r1

N 〉 be the market probabilities that Alice changes to in the
first stage. Lemma 3 characterizes the equilibrium strategy of Alice in the third
stage. Theorem 2 describes a PBE of the Alice-Bob-Alice game.

Lemma 3. In a 3-stage Alice-Bob-Alice game in LMSR with conditionally inde-
pendent signals, at a PBE Alice changes the market probabilities to r3 = 〈r3

Y , r3
N 〉=

〈Pr(Y |CA{k},CB{l}), Pr(N |CA{k},CB{l})〉 in the third stage, when Alice has
signal CA{k} and Bob has signal CB{l}.

Theorem 2. When Alice and Bob have conditionally independent signals in
LMSR, a PBE of the 3-stage Alice-Bob-Alice game is a strategy-belief pair with
strategies (σA, σB) and beliefs (μA, μB) where

– Alice’s strategy σA is (change market probabilities to r1 = 〈Pr(Y |cA),
Pr(N |cA)〉 in the first stage, do nothing in the third stage);

– Bob’s strategy σB is (take r1 as Alice’s posteriors and change market proba-
bilities to r2 = 〈Pr(Y |CA{r1}, cB), Pr(N |CA{r1}, cB)〉 in the second stage);

– Bob’s belief of Alice’s action in the first stage, μB, is (Pr(Alice changes
market probabilities to r1 = 〈Pr(Y |cA), Pr(N |cA)〉 in the first stage) = 1);

– Alice’s belief of Bob’s action in the second stage, μA, is (Pr(Bob changes
market probabilities to r2 = 〈Pr(Y |CA{r1}, cB), Pr(N |CA{r1}, cB)〉 in the
second stage) = 1);

Theorem 2 states that at a PBE of the Alice-Bob-Alice game, Alice truthfully
reports her posterior probabilities in the first stage, Bob believes that Alice is
truthful and reports his posterior probabilities based on both Alice’s report and
his private signal in the second stage, and Alice believes that Bob is truthful
and does nothing in the third stage because all information has been revealed in
the second stage. It’s clear that Bob never wants to deviate from being truthful
by Lemma 1. To prove that Alice does not want to deviate from being truthful
either, we show that deviating is equivalent to selecting herself as the second
player in a sequence selection game, while being truthful is equivalent to selecting
herself as the first player in the sequence selection game. Alice is worse off by
deviating.

3.4 Finite-Player Finite-Stage Game

We extend our results for the Alice-Bob-Alice game to games with a finite num-
ber of players and finite stages in LMSR. Each player can change the market
probabilities multiple times and all changes happen in sequence.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



78 Y. Chen et al.

Theorem 3. In the finite-player, finite-stage game with LMSR, if players have
conditionally independent signals, a PBE of the game is a strategy-belief pair
where each player reports their posterior probabilities in their first stage of play
and all players believe that other players are truthful.

Proof. Given that every player believes that all players before it act truthfully,
we prove the theorem recursively. If it’s player i’s last chance to play, it will
truthfully report its posterior probabilities by Lemma 1. If it’s player i’s second
to last chance to play, there are other players standing in between its second to
last chance to play and its last chance to play. We can combine the signals of
those players standing in between as one signal and treat those players as one
composite player. Because signals are conditionally independent, the signal of the
composite player is conditionally independent of the signal of player i. The game
becomes an Alice-Bob-Alice game for player i and at the unique PBE player i
reports truthfully at its second to last chance to play according to Theorem 2.
Inferring recursively, any player should report truthfully at its first chance to
play. �

4 LMSR with Conditionally Dependent Signals

We now introduce a simple model of conditionally dependent signals and show
that bluffing can be an equilibrium. In our model, Alice and Bob each see an
independent coin flip and then participate in an LMSR prediction market with
outcomes corresponding to whether or not both coins came up heads. Thus
ω ∈ {HH, (HT|TH|TT)}. We again consider an Alice-Bob-Alice game structure.

Theorem 4. In the Alice-Bob-Alice LMSR coin-flipping game, where the prob-
ability of heads is p, truthful betting (TB) is not a PBE. Now restrict Alice’s first
round strategies to either play TB or as if her coin is heads (Ĥ). A PBE in this
game has Alice play TB with probability 1 + p

(1−(1−p)−1/p)(1−p)
, and otherwise

play Ĥ.

Proof. TB cannot be an equilibrium because if Bob trusted Alice’s move in the
first round then her best response would be to pretend to have heads when she
has tails. By doing so Bob would, when he has heads, move the probability of
HH to 1. Alice would then move the probability to 0 in the last round and collect
an infinite payout.

To show that bluffing is a PBE in the restricted game, we show that Bob’s
best response makes Alice indifferent between her pure strategies. Bob’s best
response is, if he has heads, to set the probability of HH to the probability that
Alice has heads given that she plays Ĥ, or Pr(HH | ĤH). If Bob has tails he sets
the probability of HH to zero. Assuming such a strategy for Bob, we can compute
Alice’s expected utility for playing TB and Ĥ. It turns out that Alice’s expected
utility is the same whether she plays TB or Ĥ. Thus in a PBE Alice should,
with probability p

(1−(1−p)−1/p)(1−p)
, pretend to have seen heads regardless of her

actual information. �
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Note that conditional dependence of signals is not a sufficient condition for
bluffing in LMSR. Taking an extreme example, suppose that Alice and Bob
again predict whether or not two coins both come up heads. Alice observes the
result of one coin flip, but Bob with probability 1/2 observes the same coin flip
as Alice and otherwise observes nothing. Then Alice will want to play truthfully
and completely reveal her information in the first stage.

5 Withholding Information in DPM

Suppose Alice has the opportunity to trade in a two-outcome DPM with initial
shares q0 = 〈1, 1〉 for outcomes {Y, N}. According to equation (2), the initial
market prices for the two outcomes are 〈p0

Y , p0
N 〉 = 〈κ/

√
2, κ/

√
2〉. The initial

market probabilities, according to equation (4), are 〈π0
Y , π0

N 〉 = 〈1/2, 1/2〉.
Let p be Alice’s posterior probability of outcome Y given her private infor-

mation. If there are no other participants and p > 1/2 then Alice should buy
shares in outcome Y until the market probability πY reaches p. Thus, Alice’s
best strategy is to change market probabilities to 〈p, 1 − p〉 when p > 1/2.

We now show that if Alice anticipates that a sufficiently better-informed player
will bet after her, then she will not fully reveal her information.

Theorem 5. Alice, believing that outcome Y will occur with probability p > 1/2,
plays in a two-outcome DPM seeded with initial quantities 〈1, 1〉. If a perfectly-
informed Oracle plays after her, Alice will move the market probability of out-
come Y to max(p2, 1/2).

Proof. Alice’s expected utility is:

κ

(

px

√
(1 + x + g)2 + 1

1 + x + g
−

(√
(1 + x)2 + 1 −

√
2
)
)

. (6)

where x and g are the quantities of shares of Y purchased by Alice and the
Oracle, respectively. Without loss of generality, suppose the true outcome is
Y . Since the Oracle knows the outcome with certainty, we take the limit of
(6) as g approaches infinity, yielding: κ(px −

√
(1 + x)2 + 1 +

√
2). We find

the maximum using the first-order condition. This yields a function of p giving
the optimal number of shares for Alice to purchase, x∗ = max(0, p√

1−p2
− 1),

which is greater than zero only when p > 1/
√

2 ≈ 0.707. The new numbers of
shares are q = 〈x∗ +1, 1〉,yielding the market probability of outcome Y equal to
max(p2, 1/2). �
By assuming that the second player is perfectly informed, we mimic the scenario
where a prediction market closes after the true outcome is revealed.

6 Conclusion

We have investigated the strategic behavior of traders in the MSR and DPM
prediction markets using dynamic games. Specifically, we examine different sce-
narios where traders at equilibrium bet truthfully, bluff, or strategically delay.
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Two different information structures, conditional independence and condi-
tional dependence of signals, are considered for LMSR with incomplete informa-
tion. We show that traders with conditionally independent signals may be worse
off by either delaying trading or bluffing in LMSR. Moreover, truthful betting is
a PBE strategy for all traders in LMSR with finite traders and finite periods. On
the other hand, when the signals of traders are conditionally dependent there
may exist probability distributions on signals such that truthful betting is not
an equilibrium strategy; traders have an incentive to strategically mislead other
traders with the intent of correcting the errors made by others in a later period;
such bluffing can be a PBE strategy. DPM with incomplete information is shown
to face another problem: traders may have an incentive to completely or partially
withhold their private information if they anticipate sufficiently better-informed
traders in later periods.
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Abstract. Recently, there has been an increase in the usage of centrally managed
markets which are run by some form of pari-mutuel mechanism. A pari-mutuel
mechanism is characterized by the ability to shield the market organizer from
financial risk by paying the winners from the stakes of the losers. The recent
introduction of new, modified pari-mutuel methods has spurred the growth of
prediction markets as well as new financial derivative markets. Coinciding with
this increased usage, there has been much work on the research front which has
produced several mechanisms and a slew of interesting results. We will introduce
a new pari-mutuel market-maker mechanism with many positive qualities includ-
ing convexity, truthfulness and strong performance. Additionally, we will provide
the first quantitative performance comparison of some of the existing pari-mutuel
market-maker mechanisms.

1 Introduction

While pari-mutuel systems have long been one of the most popular means of organiz-
ing markets, recent innovations have created more applications for pari-mutuel market-
making techniques. Lately, there has been a substantial increase in the number of mar-
kets being conducted by means of pari-mutuel techniques. It appears that this growth
has been driven by the introduction of novel, non-standard pari-mutuel mechanisms
that more easily facilitate the launch of a new market. While the mechanisms employed
vary from market to market, they share the common bond of utilizing the pari-mutuel
principle of paying the winners from the stakes collected from the losers.

The standard pari-mutuel market was developed in 1864 and is operated in a manner
where market traders purchase shares for a specific possible outcome. When the out-
come is determined, the money collected is paid out to the winners in proportion to the
number of winning shares that they hold. This technique protects the market organizer
from sustaining a loss under any circumstance. Some of the earliest work in the devel-
opment of modified pari-mutuel techniques was done by Bossaerts et al. [2] where the
authors study a continuous double auction where a thin market exists and the prices do
not reach an equilibrium. They solved a contingent claim call auction market with a
linear programming formulation that maintains the pari-mutuel property of paying the
winners with the stakes of the losers.

Prediction Markets. Prediction markets are defined as speculative markets whose pur-
pose is to create predictions for the outcome of a particular event. An important event
in the growth of prediction markets was the development of the Logarithmic Market
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Scoring Rule (LMSR) by Hanson [6]. We will describe the mechanics of the LMSR
in section 3 but one key point is that this mechanism serves as an automated market-
maker. The market-maker will calculate and post prices for all possible states. This
allows the market organizer to immediately post prices for all states - rather than wait-
ing for traders to post orders as in a continuous double auction. While this mechanism
is generally pari-mutuel (except for a controllable amount of seed money that the or-
ganizer must provide), it differs in an important manner from the standard pari-mutuel
market. The value of a winning order is fixed in Hanson’s mechanism.

In 2006, Pennock et al. [11] built upon some previous work to introduce another
mechanism called the share-ratio Dynamic Pari-mutuel Market-Maker (DPM). Their
mechanism also operates as an automated market-maker with controlled risk to the
market organizer. Powered by these research innovations, many new prediction markets
have been introduced in recent years. The Yahoo! Tech Buzz Game uses the DPM
mechanism to set prices. Hanson’s LMSR is being employed by many online prediction
markets including the TheWSX and InklingMarkets.

Financial Markets. In 2002, Goldman Sachs and Deutsche Bank teamed up to create
a market for their clients allowing them to trade claims over the potential values of eco-
nomic indicators which would be announced in the future (Cass [3]). The technology
for these markets is based on a call auction mechanism designed by a firm named Lon-
gitude (described in Baron and Lange [1] and Lange and Economides [7]). Since the
market is conducted as a call auction, the organizer will collect all orders then close the
market and determine which orders to accept and which to reject. The organizer has the
advantage of seeing all the orders before needing to make commitments to accept any
order. Therefore, the mechanism of Longitude is formulated as an optimization problem
which the market organizer must solve. Constraints are used to ensure that the mech-
anism remains pari-mutuel. Fortnow et al. [4] have a linear programming formulation
for this contingent claim call auction but it does not generate unique state prices. The
mechanism developed by Bossaerts et al. [2] also addresses this auction but needs to
be solved in multiple steps and also does not generate unique state prices. However,
the call auction mechanism has one key disadvantage: the traders are not sure about the
acceptance of their order until after the market is closed. Thus, if their order is rejected,
there is no market to resubmit a modified order.

Let’s pause to consider one key distinction between the mechanisms that we have
discussed above. While these mechanisms are designed to be implemented in one of
two different manners, we will show that it is possible to easily change the manner
of implementation of these mechanisms. The mechanisms developed by Hanson and
Pennock are designed to be implemented as posted price automated market-makers. On
the other hand, the mechanism of Longitude must be implemented as a call auction.
A fundamental difference in the posted price versus auction implementation is that the
onus is placed on the trader to reveal a price for his order in the auction setting. Despite
this difference, the posted price mechanisms can be implemented as an auction.

In Section 2, we will introduce a new mechanism which leverages the auction tech-
nology but is applied in a dynamic setting where the market organizer will make im-
mediate, binding decisions about orders. A truthfulness property of the optimal bidding
strategy in this auction setting will allow us to conduct a direct comparison with the
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posted price mechanisms. In Section 3, we will present an overview of the mechanisms
developed by Hanson and Pennock plus some simulation results where we compare
these mechanisms to the SCPM. We conclude with a discussion in Section 4.

2 The Sequential Convex Pari-Mutuel Mechanism (SCPM)

The development of the SCPM followed directly from earlier work of the authors (Pe-
ters et al. [12]). In this section, we will examine the predecessor of the SCPM and de-
scribe the modifications used to create the SCPM. Longitude had previously developed
a mechanism named the Pari-mutuel Derivative Call Auction (PDCA). See Lange and
Economides [7] for details of the PDCA. The PDCA has a number of desirable charac-
teristics but is formulated as a non–convex program. Thus, a special solver is required
to find global solutions. We have developed an alternative convex call auction mecha-
nism which maintains all the positive characteristics of the PDCA. First, let’s describe
in detail the format of the market before explaining the details of the market-making
mechanisms.

The primary motivation of these market-making mechanisms is to help generate liq-
uidity in small or new markets without needing to expose the market organizer to fi-
nancial risk. As shown by Bossaerts et al. [2], a call auction which receives limit orders
can avoid some of the thin market problems suffered by a continuous double auction
and help the market achieve substantially better liquidity. This approach allows the or-
ganizer to see the full set of orders before determining acceptances while the limit pro-
visions allow the traders to express the bounds of their willingness to pay for claims.

Table 1. Notations Used in this Paper

Variable Name Description
ai,j State Order Trader j’s order on state i
qj Limit Quantity Trader j’s maximum number of orders requested
πj Limit Price Trader j’s maximum price for order
pi Price Organizer’s price level for state i
xj Order Fill Number of trader j’s orders accepted

Now, consider a market with one organizer and n traders. There are S states of the
world in the future on which the market traders are submitting orders for contingent
claims. For each order that is accepted by the organizer and contains the realized future
state, the organizer will pay the trader some fixed amount of money w, which, without
loss of generality, equals 1 in this paper. One caveat here is that one of the models which
we will describe later in this paper, the Dynamic Pari-mutuel Market-Maker, does not
pay a fixed amount to winners. The traders will submit orders to the organizer which
specify the states which they want contingent claims over, the price at which they are
willing to pay for the order, and the number of identical orders that they will buy. After
all orders are submitted, the market is closed and the organizer will then decide whether
to accept or reject each order. If the order is accepted, the organizer also decides the
number of orders to accept and the price per order to be collected from the trader. As
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the reader might imagine, a wide range of markets from results of sporting events to
elections can be organized in this manner. The challenge is to develop a mechanism for
accepting and rejecting orders that doesn’t expose the organizer to risk.

Throughout the analysis, we will use the notations in Table 1. The traders will supply
the values of ai,j , qj and πj for all i, j, which are denoted by the matrix A and vectors q
and π. Thus, these data are considered given for the models. The market organizer will
need to determine the decision variables pi and xj for all i, j.

2.1 Convex Pari-Mutuel Call Auction Mechanism (CPCAM)

In previous work [12], we have developed an alternative formulation of the PDCA
which has similar constraints but is also a convex program. The primary constraints are
to ensure that the market is self–funding and that the quantities granted to each trader
are consistent based on the relationship of their limit price and the calculated state price
of the order. Furthermore, it is valuable that the model has a unique optimum. Below is
our alternative pari-mutuel formulation, again, with w = 1 where w is the value of the
fixed payoff:

maximize πT x − M +
∑

i θi log(si)
subject to

∑
j ai,jxj + si = M for 1 ≤ i ≤ S

0 ≤ x ≤ q, s ≥ 0

(1)

In this formulation, θ represents a starting order needed to guarantee uniqueness of the
state prices in the solution. The starting orders are not decision variables — in effect, the
market organizer is seeding the market with this order. In some outcomes, the market
organizer could actually lose some of this seed money. The objective function in this for-
mulation has the following interpretation. The term πT x−M is the profit to the market

organizer. On the other hand, the term
∑

i θi log(si) =
∑

i θi log
(
M −

∑
j ai,jxj

)

can be viewed as a disutility function (or weighted logarithmic penalty function) for
the market organizer that ensures she will find an allocation of accepted orders that is
pari-mutuel. In our model, prices (p) are derived from the solution to the KKT condi-
tions of the optimization model. They turn out to be the dual variables corresponding
to the self-funding constraints. The KKT conditions also include the requirement that∑

i pi = 1.

Previous Results. It turns out that the CPCAM can be shown to have many valuable
characteristics. In particular, our model yields the first fully polynomial–time approxi-
mation scheme (FPTAS) to the contingent claim call auction with unique prices prob-
lem. In prior work, we have established the following properties (see Peters et al. [12]
for proofs):

– The CPCAM is a convex program that can be solved (up to any prescribed accu-
racy) in polynomial time using standard techniques.

– The market will be self-funding (other than the required starting orders).
– The optimal solution (x∗, p∗) from the CPCAM model would also be optimal if we

replaced πj with (p∗)T aj in the objective function. Furthermore, the solution will
remain optimal if we replace πj with any cj where (p∗)T aj ≤ cj ≤ πj .
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– The state price vector p∗ for any optimal solution to the CPCAM model is unique.
– As μ ↘ 0, the solutions p(μθ) converge to the unique limit points p(0) = p∗θ .
– The set of feasible solutions of the PDCA model coincides with the set of optimal

solutions of the CPCAM model (1) and they produce the identical state price vector.
Furthermore, the PDCA model can be solved as a linear program after obtaining
the state price vector p∗.

2.2 Sequential Convex Pari-Mutuel Mechanism (SCPM)

While the CPCAM possesses many powerful properties, the fact that it must be imple-
mented in a call auction setting is limiting. Two fundamental drawbacks exist. First,
market traders do not know whether their order is accepted until the conclusion of the
auction. At this point, the market is closed and there is no longer a central platform with
which traders can submit a new order. In many situations, they would prefer to have an
immediate decision. Second, there is no ability for market traders to lock-in gains by
trading accepted orders while the market is still open. This trading is important as it
allows traders to hedge positions if there is a swing in the state prices.

Thus, we would like to utilize some of the powerful properties of the CPCAM but
change the format of order placement from a call auction setting. We have developed a
simple modification to the mechanism that allows us to run the mechanism each time a
new order is received by the market organizer. We call this new mechanism the Sequen-
tial Convex Pari-mutuel Mechanism (SCPM). Essentially, we run a slightly modified
version of the CPCAM where, after receiving each order, we add a constraint to the
model to lock in optimal order fills from the previous solution of the model. Thus,
when the first order is received, we just run the CPCAM as normal. Next, when the sec-
ond order is received, we run the CPCAM but we add the constraint that the first order
must be filled to the level dictated when we solved the model for only the first order.
This process continues with new constraints added after each new order is processed.

Thus, the market organizer can immediately tell the trader whether or not his order
was accepted. When the nth order is received, we can formulate the SCPM as follows:

maximize πT x − M +
∑

i θi log(si)
subject to

∑
j ai,jxj + si = M for 1 ≤ i ≤ S

xj = lj for 1 ≤ j ≤ n − 1
0 ≤ xn ≤ qn

s ≥ 0

(2)

This model will determine the amount of the nth order that should be filled. Here, lj
represents the order quantities found from previous solutions of the model. The SCPM
will produce state prices which can be used to charge the nth trader for his order.

Properties of the SCPM. Fortunately, the SCPM will preserve many of the positive
properties of the CPCAM. First, the market organizer’s risk will be bounded by the the
starting orders. The maximum possible loss by the market organizer will never exceed(
maxG

∑
i∈G θi

)
where G represents a set of S − 1 states. It may be necessary to

increase the magnitudes of each θi in comparison to the call auction setting since the
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dynamic setting will be more reliant on the seed money until a sufficient number of
orders have been accepted.

In the CPCAM, the state prices would satisfy price consistency constraints for all
orders whereby an order will only be accepted if its limit price is greater than or equal
to the sum of pi for all states included in the order. In the SCPM, we will find state
prices but they will only satisfy price consistency for the current order. Thus, the prices
are less useful in terms of providing information about all orders received previously.
However, the current trader can be sure that his order will be accepted or rejected ac-
cording to price consistency constraints based on the current price. The SCPM will also
provide traders a certain payoff amount if one of their states is realized. The market or-
ganizer will pay each winning order a fixed amount w. Furthermore, the SCPM is easy
to implement. As each order is received, we will be solving a slightly larger convex
problem.

Truthfulness
In the call auction context, it is difficult to determine the optimal bidding strategy for
the traders when the CPCAM is employed. However, the situation is different when we
move to a sequential setting where the SCPM is implemented.

Theorem 1. When the SCPM is operated in the purely pari-mutuel manner (in which
traders are charged the calculated state price of their accepted orders), the optimal
bidding strategy for traders in the SCPM is to bid their true valuations.

Proof. Let’s assume that trader j arrives at the market and seeks to submit an order.
The states covered by this order can be represented by the vector a. We will assume
that trader j seeks one order (so, his limit quantity is one). Finally, the trader j has a
private valuation for his order of vj . If the order is accepted, the trader will earn some
surplus (s = vj − p) where p is the charged price of the order. We will assume that the
trader has a utility function, u(s), which is monotone non-decreasing in surplus.

If the trader decides not to bid his true valuation, let’s inspect his possible alternative
bidding strategies and check for optimality. There are two cases that we must evaluate:
bidding less than his valuation and bidding more than his valuation. Remaining con-
sistent with previous notation, we will use πj = vj to represent the limit price of his
truthful bid. Whenever the SCPM is solved for the new order, the model will calculate
new state prices. From these prices p, we can obtain a calculated state price pT a. This
is the price that the trader will be charged if his order is accepted. Now, let’s examine
the two cases of bidding strategies.

Case 1 (Bidding less than his valuation): Let π′
j be the new limit price for the trader.

We know that π′
j < vj . When a truthful bid would be rejected since it is lower than

the calculated order price, then the bid of π′
j will obviously also be rejected since

π′
j < πj . This outcome is equivalent in terms of surplus to the outcome in the truthful

bidding strategy. Next, when the truthful bid would have been partially accepted when
pT a = vj , the bid of π′

j would be rejected since π′
j < vj . Finally, in the case where the

truthful bid was fully accepted, we have two outcomes. The bid of π′
j could also be fully

accepted. In that case, the trader will be charged pT a for his order and will have some
positive surplus for the accepted order since (vj − pT a) is positive. This is an identical
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outcome to the truthful bid case. However, there is a chance that π′
j < pT a < vj . In this

case, the order will be rejected and the trader will receive no positive surplus. If he had
bid truthfully, he would have had his order fully accepted and received positive surplus.

Thus, we can see that bidding truthfully weakly dominates bidding less than vj .
Case 2 (Bidding more than his valuation): Next assume that the bid is π′′

j where
π′′

j > vj . When a truthful bid would be rejected since it is lower than the calculated
order price, then we have two possibilities. The bid of π′′

j could also be rejected if
π′′

j < pT a. However, the bid could be accepted (partially or fully) if π′′
j ≥ pT a. This

is a bad outcome for the trader because there is a chance that pT a > vj . In this case,
he actually receives negative surplus since the net value of the accepted order will be
z(vj−pT a) where z is the order fill amount. This quantity will be negative. If he had bid
truthfully, the order would have been rejected. If vj > pT a, then he will earn positive
surplus of (vj − pT a) but he would have received this if he had bid truthfully. Thus,
the trader can only do worse by bidding more than his valuation in this instance. In the
case where the truthful bid is partially accepted, the bid of π′′

j will be fully accepted.
However, no positive surplus will be earned since vj = pT a. This is an equivalent
outcome to bidding truthfully. In the case where the truthful bid is fully accepted, the
bid of π′′

j will clearly be fully accepted. However, the utility earned will be equivalent
since in both cases, the trader will be charged pT a.

So, bidding truthfully also weakly dominates bidding more than vj . Therefore, we
have shown that truthful bidding is the dominant strategy when the purely pari-mutuel
version of the SCPM is implemented. Q.E.D.

Thus, the mechanism is truthful in a myopic sense since we are only considering the
optimal bid for the current order of the trader. It should be noted that it is easy to con-
struct an example where the the optimal bid is not truthful when the market organizer
charges the trader his limit price instead of the calculated pari-mutuel price.

3 Performance Comparison

As we mentioned earlier, the SCPM can actually be designed to operate as a posted price
market-maker. This involves some simple additional solves of the model by the market
organizer to calculate the required prices for orders to be accepted. This flexibility al-
lows us to apply the mechanism to any market which is operated by a market-maker who
posts prices. In this section, we will compare the performance of the SCPM against two
of the more interesting pari-mutuel posted price mechanisms: the Logarithmic Mar-
ket Scoring Rule (LMSR) of Hanson [6] and the Dynamic Pari-mutuel Market-Maker
(DPM) of Pennock et al. [11]. Two key properties that these mechanisms share are:
1) they allow the risk to the market organizer to be bounded and 2) they are based on
pricing functions which allow the market to be priced up immediately. Both of these
mechanisms are exceptionally easy to implement and are currently being used to oper-
ate various online prediction markets. We believe that our work is the first performance
comparison testing that has been conducted amongst these mechanisms. Our initial re-
sults indicate that the optimal choice of mechanism depends on the objectives of the
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market organizer. Before we discuss results, we will quickly describe how these pari-
mutuel mechanisms operate.

Logarithmic Market Scoring Rule (Hanson)
Hanson uses a market built on market scoring rules which avoid both thin and thick
market problems. In particular, Hanson introduces a logarithmic market scoring rule
in his work and we will focus on this rule. His market is organized as a market of
contingent claims where claims are of the form “Pays $ 1 if the state is i”. Pennock [10]
has computed cost and pricing functions for Hanson’s logarithmic market scoring rule
mechanism. These cost and pricing functions allow the mechanism to be implemented
as an automated market-maker where orders will be accepted or rejected based on these
functions. Let’s assume that there are S states over which contingent claims are traded.
We will use the vector q ∈ R

S to represent the number of claims on each state that
have already been accepted by the market organizer. The total cost of all the orders
already accepted is calculated via the cost function C(q). Now, let a new trader arrive
and submit an order characterized by the vector r ∈ R

S where ri reflects the number
of claims over state i that the trader desires. The market organizer will charge the new
trader C(q + r) − C(q) for his order. The pricing function is simply the derivative of
the cost function with respect to one of the states. It represents the instantaneous price
for an order over one state.

Here are the cost and pricing functions for the Logarithmic Market Scoring Rule.

C(q) = b log
(∑

j eqj/b
)

and pi(q) = eqi/b

�
j eqj /b

In this formulation, b is a parameter that must be chosen by the market organizer. It
represents the risk that the organizer is willing to accept. The greater the value of b, the
more orders the organizer is likely to accept. It turns out that the maximum possible
loss to the market organizer is (b log S).

Share-Ratio DPM (Pennock)
Pennock et al. [11] have introduced a new market mechanism which combines some
of the advantages of a traditional pari-mutuel market and a continuous double auction
run by a market-maker. In this market, each dollar buys a variable share of the eventual
payoff. The share is defined by a pricing function and the amount paid would be the
integral of the pricing function over the number of shares purchased. In Pennock [9], the
author explores several implementations of this market mechanism. Recently Pennock
and his coauthors have introduced a modification where a share-ratio pricing function
is used. We will now define Pi to be the current payoff to each holder of a share of
state i if i is the eventual outcome. The following two relationships are required in this
mechanism: pi

pk
= qi

qk
and Pi = M

qi
, where M is the total money collected so far. The

first ratio forces the states with more accepted shares to be more expensive. The second
ratio calculates the pari-mutuel payoff for each state. From these, they derive a cost
function which is the total cost of purchasing a vector q of shares. Additionally, pi will
be the instantaneous change in the cost function with respect to qi. Thus we have:

C(q) = κ
√∑

j q2
j and pi = κqi√�

j q2
j

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



90 M. Peters, A. Man-Cho So, and Y.Ye

Again, the market organizer must determine κ as well as an initial allocation of shares
q0. The market organizer will charge the new trader C(q + r) −C(q) for his order. The

maximum loss possible for the market organizer is κ
√∑

j(q
0
j )2

These two pari-mutuel mechanisms share many of the same characteristics with the
SCPM - the key difference from a trader’s standpoint being that the payoffs of the DPM
are uncertain (although they are bounded below by κ).

3.1 Sample Data Analysis

In order to compare the three mechanisms, we created some random orders and com-
pared how the mechanisms handled the orders. In this analysis, we generated 10 datasets
with 500 orders in each. These orders are constructed in the standard format for orders
to the SCPM. For the DPM and LMSR which are based on a posted price mechanism,
we will assume that the limit price and states indicated by the order dictate the rate of
payoff required by the trader. Thus, we will use the pricing functions from the DPM or
LMSR to determine the maximum order fill acceptable to the trader.

There are three possible states for these orders. For each order, the state which is
covered by the order is equally likely to be any one of the three states. If the order covers
the first or second state, the price limit is a random variable distributed uniformly over
the interval [0.2, 0.6]. Otherwise, the price limit will be a random variable distributed
uniformly over the interval [0.1, 0.3]. The quantity limit for all orders is 1.

In order to have a more fair comparison of these mechanisms, we would like to stan-
dardize the risk that each mechanism places on the market organizer. We have followed
the approach of standardizing the worst case outcome for the market organizer of each
mechanism. In Table 2, we describe the parameter settings used in our data analysis.

Table 2. Standardizing risk

Mechanism Maximum Loss Formula Parameter Values Maximum Loss
SCPM

�
maxG

�
i∈G θi

�
θi = 1 2

LMSR (b log S) b ≈ 1.82 2

DPM κ
��

j q2
j κ = 1 and q0

i = 2√
3

2

In the SCPM, the risk assumed by the market organizer is controlled by the values
of θi. These θi represent starting orders for the market or seed money inserted by the
market organizer. In the calculation of the maximum possible loss, G represents a set
of S − 1 states. In Pennock’s share-ratio DPM, the choice of κ = 1 will guarantee that
all orders will have an eventual payoff of at least 1.

3.2 Results

There are some challenges when implementing the DPM so that its results can be ap-
propriately compared to those of the SCPM and LMSR. The primary difference is that
the payoff for a winning order in the DPM is not guaranteed to be a fixed amount. In
our implementation, we assume that the eventual payoff of an order will be equivalent
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to its current payoff. This is a slightly aggressive assumption as the lower bound for an
order’s payoff will be κ which is 1 in our case. By making our slightly more aggressive
assumption, there is the possibility that the payoff will be lower than the current payoff.
We’ll see later that this doesn’t appear to be a serious problem for our datasets.

Another issue is that the shares in the DPM are not necessarily equivalent to shares
in the LMSR or SCPM since the current payoff for a DPM share will often be greater
than one. While a share in the LMSR or SCPM will pay 1 if the correct state is realized,
a share in the DPM will pay some amount greater than or equal to 1. Thus, shares in the
DPM are actually worth more. Our traders have limit quantities of 1 for all orders, so
we want to require that they are only allocated shares whose best case outcome would
be a payment of 1. To achieve this goal, we must do two things. First, we must only fill
DPM orders so that xP (x) ≤ 1 where x is the number of DPM shares allocated and
P (x) is the current payoff for those shares. Second, for our comparison purposes, we
must convert the number of shares allocated in the DPM into a number of shares which
would have a payoff of 1 per share. We will use these converted share numbers when
we compare the mechanisms below.

For our comparison, we have examined three situations with different profit implica-
tions for the market organizer.

1. Purely pari-mutuel - All monies collected are redistributed to winners. The market
organizer will earn no profit.

2. Full charge - Each trader is charged his full limit price. The pricing functions from
the DPM and LMSR will still determine if an order is to be accepted. However,
after the order fill quantity is determined, the trader will be charged his limit price
times the number of shares accepted.

3. Tax penalty - Each order is taxed at a certain percent which will guarantee the
organizer a profit percentage. In essence we will divide each share that is bought
by a trader into two portions. One portion of the share will be retained by the
trader. The other portion (equivalent in size to the required profit percentage) will
be retained by the market organizer. This profit percentage must be specified a
priori.

Table 3 displays the performance data from our simulations under these profit set-
tings. From the table, we see that the SCPM actually performs worse than the other
mechanisms in the purely parimutuel and full charge settings in terms of revenue col-
lected and orders accepted. However, it does outperform the LMSR in the tax penalty
setting (where the profit percentage is set to the profit percentage of the SCPM in the
full charge setting). Since they both offer certain payoffs to winners, the LMSR and
SCPM are the most comparable mechanisms. Adoption of the DPM requires the market
traders to accept uncertain payoffs. Thus, the market organizer will need to determine
the importance of certain payoffs and organizer profitability when selecting the most
appropriate mechanisms for his market.

It’s not clear why the LMSR outperforms the DPM in the purely pari-mutuel setting.
One hypothesis for the improved LMSR performance in comparison to the DPM is that
the LMSR has a less stable pricing function which may allow it to accept more orders.
Later, we will explore why the prices of the DPM demonstrate more stability.
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Table 3. Performance comparison under different profit settings

Mechanism Revenue Collected Orders Accepted Worst Case Profit Profit Percentage
Purely Parimutuel
SCPM 73.3 201 NA NA
LMSR 86.8 254 NA NA
DPM 81.6 240 NA NA

Full Charge
SCPM 84.5 201 15.9 18.9%
LMSR 99.3 254 14.0 14.1%
DPM 99.2 240 17.6 17.7%

Tax Penalty
SCPM 84.5 201 15.9 18.9%
LMSR 69.7 168 13.2 18.9%
DPM 92.7 221 17.4 18.9%

In the full charge setting, we can see that the DPM and LMSR both collect signif-
icantly more revenue and orders than the SCPM. The LMSR actually accepts more
orders than the DPM while still collecting similar amounts of revenue. Due to the fact
that the LMSR accepts so many orders, its gross profit and profit percentage are actually
the lowest of the three mechanisms. We believe that the volatility of the LMSR’s prices
is responsible for its acceptance of lower revenue orders.

In the tax penalty setting, the DPM continues to display strong performance. We
see that the SCPM outperforms the LMSR in terms of orders accepted and revenue
collected. This is not surprising since the SCPM is solving an optimization problem
with an objective function that is partially geared towards maximizing worst case prof-
itability. The LMSR is simply accepting orders in a manner consistent with its pricing
function. Again, we believe that the rapid change of the LMSR’s prices leads to lower
levels of order acceptance when the tax is imposed.

We have also tested these mechanisms with random bids generated from a normal
distribution. The results are very similar when the variance of the normal distribution
is equivalent to the variance of the uniform. However, changing the variance has a
substantial impact on the models’ performance. The DPM tends to be less effective
in the parimutuel and full charge settings when variance is reduced. In general, profits
drop quickly as variance is reduced. Due to space constraints, we have omitted more
details on this issue but we recognize this as an important consideration for mechanism
selection.

Price Stability
One interesting feature of the mechanisms is that they provide updated state prices after
each new order is accepted. In the DPM, the prices tend to stabilize to values close to
the expected values of the limit prices for each state. However, the LMSR and SCPM
both have prices that fluctuate greatly and don’t appear to stabilize. Figure 1 shows the
evolution of the state prices as orders were received in the first of our sample datasets.

The price of the SCPM is more volatile because it is only required to satisfy the
price consistency constraints for the current order. Thus, its value is not tethered to
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Fig. 1. State 1 Price Stability in the SCPM, LMSR and DPM

the previous orders. To gain a better estimate of overall demand for a state, the SCPM
organizer could choose to solve the CPCAM model for the current orders. The prices in
the CPCAM stabilize towards the mean order price. So, while the SCPM prices are not
stable, there is a way to gain some further insight into the actual demand for the states.
In contrast to the SCPM, the price of the LMSR is calculated by a formula that includes
previous orders. To better understand the lack of stability in the LMSR’s prices, we
need to observe the derivative of its pricing function with respect to a new order being
received in one state. From the LMSR pricing function, we have the following:

∂pi

∂qi
=

1
b eqi/b

∑
j eqj/b

−
1
b e2qi/b

(
∑

j eqj/b)2

Now, we can also calculate the derivative of the DPM pricing function. We have:

∂pi

∂qi
=

κ

(
∑

j eqj/b)
1
2

− κq2
i

(
∑

j eqj/b)
3
2

The value of the DPM price derivative will approach zero as the value of q, holding
all qj’s in the same proportion, increases. Thus, as more orders are accepted, the price
stabilizes. However, the derivative of the LMSR is actually independent of the number
of orders received. It will remain constant if q increases as long as the proportion of the
values of the qj’s is the same. This explains why the LMSR prices are so volatile. Given
that the LMSR is widely used in prediction markets, it is surprising to find the lack of
stability of its prices.

4 Discussion

We believe that the SCPM is a valuable and interesting new pari-mutuel mechanism
for contingent claim markets. Our analysis indicates that the best choice of mechanism
depends on the objectives of the market organizer. In prediction markets, the organizer is
typically not interested in generating a profit but instead wants to maximize the number
of orders accepted. Our results show that the LMSR will accept more orders and collect
more revenue than the SCPM or DPM. In financial markets, the organizer may actually
want to guarantee himself a certain profit level or even maximize his profit. The DPM
or SCPM would seem to be the better choice in these cases. A second question that the
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market organizer should consider is how important certain payoffs are to the traders.
If the traders exhibit risk averse preferences, then they may significantly discount the
value of shares with uncertain payoffs. If the market organizer believes that having a
certain payoff for a winning order is important for traders, then he will rule out the use of
the DPM. It’s important to remember that the posted price versus bid implementations
of the mechanisms can be interchanged and are broadly equivalent. While a bid format
allows the market organizer to charge the full limit price, the posted price mechanism
can be adapted to impose a tax on each share to guarantee the organizer a fixed profit
percentage.

One of the most interesting outputs from these market-makers are the state prices.
In prediction markets, the generation of these prices is the raison d’être for the market.
However, it is very interesting to discover that the LMSR actually doesn’t produce very
stable prices. The SCPM also suffers from less price stability when compared to the
DPM. As a means for generating prices that are more representative of the entire market,
one could take all the orders and solve the CPCAM. Since the limit prices on the orders
should be truthful, the prices calculated by solving the CPCAM would most likely give
a more accurate read of the demand for various states.

One assumption that we made when comparing the mechanisms was that traders
would assume that the DPM eventual payoffs will be equal to the current payoffs. This
might be an aggressive assumption since traders would probably want to discount the
payoffs since there is some uncertainty in them. As a quick test, we also implemented
the DPM in the conservative setting where the trader assumes that the actual payoff
will be 1. However, this mechanism performed very poorly against our sample datasets
- hardly any orders were accepted in this conservative setting. It would make sense
that most traders would prefer certain payoffs but it is not clear that the traders would
assume the worst case payoff when utilizing this mechanism. It would be interesting to
see how the DPM performs under various levels of discounting.
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Abstract. The paper investigates information sharing communities. The
environment is characterized by the anonymity of the contributors and
users, as on the Web. It is argued that a community may be worth
forming because it facilitates the interpretation and understanding of
the posted information. The admission criterion within a community is
examined.

1 Introduction

Group structures on the Web such as peer-to-peer (P2P) systems aim at sharing
various goods and disseminating information in a fully decentralized way. Quite
often, information is non rivalrous and returns to scale are not decreasing. Why
then do communities form with a free but restricted access? We provide an
explanation based on the anonymity and preferences diversity of the participants,
contributors and users. Consider individuals who regularly look for a piece of
advice on a particular topic, on movies for instance. A tremendous quantity of
information is posted on the Web. To be useful, Internet users must be able
to find pages that are relevant to their queries. A ranking provided by a search
engine may be of limited interest. Since the ranking results from the behaviors of
the users who have experienced items in the topic, it is useful to other users only
if they share similar tastes and know it. The diversity of preferences provides a
rationale for the formation of communities.

The value of information as defined by Blackwell (1953) is our basic tool
to investigate how communities form. The anonymity of contributors is shown
to play a crucial role. More specifically, pieces of information posted by peers
are valuable to other peers only if all share similar tastes. Furthermore, posted
information without control on the contributors may not only be useless but
also detrimental by introducing some noise in the information relevant to other
peers. The admission rule in a community is therefore essential in determining
the value that each peer derives from the information provided by the com-
munity’s members. This leads us to analyze preferences over admission rules.
Community’s members do not fully agree on admission criteria owing to their
differences in tastes, even if all of them benefit from the community. This di-
vergence is analyzed. Then, assuming that a leader/initiator of a community
chooses the admission rule, we perform comparative statics on the chosen com-
munity with respect the contribution rate, the cost and the probability of finding
an answer to a query, the sharing of ads revenues.

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, pp. 96–107, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Related works. Dwork et al (2001) consider a search engine as an aggregator
of preferences and study aggregation over different engines under a common
underlying ranking. In our model instead, not only is there no common ranking,
but also any anonymous aggregation of preferences over the whole population
yields a completely flat ranking, i.e., the society is indifferent between any two
objects. In such a situation, rankings provided by search engines can only be
attributed to chance or to bias.

Various algorithms have been proposed for detecting communities through a
link structure, as surveyed in Newman (2001). Here instead, we investigate in a
specific context why a community forms in the first place.

”Bad” behavior due to the public good aspect of Internet -free riding and
excessive overload of the platform on which peers operate- raises difficulties
that may call for the implementation of incentives schemes (see e.g. Feldman et
al. 2004 and Ng et al. 2005). Not surprisingly, the public good aspect is present
in our analysis through the contribution rate within a community.

As here, collaborative filtering has value under diverse preferences. It is a
system that aims at giving tailored recommendations to a user on the basis
of his past behaviors and a collection of ’similar’ user profiles (Hofmann and
Puzicha 1999). But the system is centralized. Here instead, a peer voluntarily
chooses a community and has access to the same recommendations, which allows
to keep anonymity and privacy.

The plan of the paper is the following. Section 2 sets up the model, and
Section 3 studies the design of a community. Proofs are gathered in the appendix.

2 The Model

Consider one category of ’objects’, such as movies, or books, or restaurants
for instance. Individuals widely differ in their tastes. The ’circle’ model due
to Salop (1979) is a stylized and parcimonious way to model these differences
(results could be extended to more complex settings).1 Individual’s preferences
over the objects are characterized by a single parameter, a point of a circle. An
object, a movie or a restaurant for instance, is also characterized by a point on
the same circle. An individual who buys an object derives a utility gain that is
non increasing in his distance to the object. More precisely, an individual located
at θ is called a θ-individual and similarly an object located at t is a t-object.The
utility gain for a θ-individual who buys a t-object is given by u(d(θ, t)) where
d(θ, t) is the distance on the circle between θ and t and u is non increasing,
identical for all individuals. To fix the idea, at most half of the objects are
valuable to an individual: There is a threshold value d∗, 0 < d∗ < π/2 for
which u(d) > 0 for d < d∗ and u(d) < 0 for d > d∗. Furthermore function u is
continuous and derivable except possibly at d∗.

The society is uniformly distributed on the circle. New objects to buy are a
priori uniformly distributed on the circle. If the characteristic of a particular
1 Apart from the modeling of preferences, Salop’s analysis widely differs since he

studies competition between firms with differentiated products.
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object is perfectly known, the set of individuals who benefit from buying it
is given by those located at a distance smaller than d∗. Thus, under perfect
information, whatever an object’s location, the same proportion p of the people
buy it, where p = d∗/π. Under imperfect information on objects’ characteristics,
an individual forms some assessment on the location and decides whether to buy
a particular object by comparing the expected utility gain from buying it with
0. We assume a weak form of risk aversion: faced with the lottery of buying two
objects with equal probability, a peer prefers not to buy if the sum of the distance
is 2d∗, i.e. u(d)+ u(2d∗ − d) < 0 for d < d∗. This implies that, under incomplete
information, no one buys because its expected utility gain is negative.

As a simple example, consider the situation in which individuals either enjoy
or not consuming the object. It is represented by a binary function2 u: for some
positive g and b, u(d) = g, d < d∗, u(d) = −b, d > d∗. Weak risk aversion is met
for b ≥ g.

Communities. Under incomplete information, there is some scope for infor-
mation sharing. Individuals who have bought an object may post their opinion
on it. Our aim is to study the value of a community in gathering and sharing
such opinions. In a community, the role of contributors and users can a priori be
distinguished. Contributors add to the content by providing information on the
objects they have tested while users have access to the posted information. Here
the set of contributors and users are identical. This is induced by the following
assumptions. First we assume that there is no intrinsic motive to contribute such
as altruism. Thus, for a community to be ’viable’ as defined in the next section,
contributors are also users so as to draw some benefit. Furthermore, even though
there may be no direct cost (nor benefit) in allowing users not to contribute, it
may be worth restricting access to contributors simply to encourage them to
contribute. In that case users and contributors coincide.

Anonymity and restricted access can be implemented by a fully decentralized
mechanism such as Gnutella and Freenet. These mechanisms propagate queries
through a P2P network without the need of a server. A query is sent to neighbors
who provide an answer if they have one or otherwise pass the query to their own
neighbors and so on until an answer is reached.3 The system can be anonymous
by recognizing members by an address only. Records, which are not public, can
keep track of peers’ behavior. Sanctions such as exclusion are based on these
records and automatic. Records on peers’ contributions for instance allow the
community to sustain some contribution level by excluding users who contribute
too little.

Here, a community is composed of the set of individuals with characteristics
in an arc. By convention, an arc [θ, θ′] designates the arc from θ to θ′ going
clockwise. The size of community [θ, θ′] is defined by (θ − θ′)/2. and its center

2 The utility level at d∗ does not matter because the probability of an object being
distant of d∗ to a person is null.

3 See for example Kleinberg and Raghavan (2005) for a description of decentralized
mechanisms and an analysis of the incentives to pass the information.
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is (θ + θ′)/2. The technology is characterized by two data: the probability of
success and an individual cost. In line with decentralized behavior, the size of
a community determines the probability of finding a recommendation for a par-
ticular object in reasonable time. denoted by P (α) for a community of size α. P
is assumed to be increasing and concave (as for a Poisson process as in the next
section). The individual cost includes the cost for searching and contributing.
Normalizing by the average number of requests, it is denoted by c. It is likely to
be small and does not play an essential role in the analysis. The probability P
and the cost c are assumed to be given except in Section 3.2.
Signals Opinions are described by signals. Stating a detailed judgment is dif-
ficult. To account for this, signals are assumed to be limited. A signal s on an
object takes two values, yes or no, which are interpreted as a recommendation
to buy or not to buy. Since there is no benefit from sending a false signal, signals
are assumed to be truthful: a θ-individual having bought a t-object sends yes if
u(d(θ, t)) ≥ 0 and no if the inequality is reversed.4

Let us consider a signal5 s̃ on an object from a member of community [θ, θ′].
As a result, the sender is considered as drawn at random from the community.
In the sequel s ∈ [θ, θ′] refers to a signal sent by a member of community [θ, θ′].
As defined by Blackwell (1953), signal s̃ is valuable to an individual if it enables
him to make ‘better’ decisions in the sense that his expected payoff is increased.
More precisely, the joint distribution of (t̃, s̃) for a signal s̃ sent by a member
of community [θ, θ′] can be computed. After learning the realized value s, peers
revise their prior on the characteristic t according to Bayes’ formula and decide
to buy or not. Clearly a signal that does not change the prior on the object’s
location is useless. The ignorance of the sender’s location in the community has
the following consequences.

- (i) A signal s̃ from the whole society is useless.
- (ii) A signal from a community smaller than the whole society may be useful:

it changes the prior.
- (iii) Two simultaneous signals may convey less information than each one.
Point (i) is straightforward. A signal sent by an individual chosen at random

in the whole group does not modify the prior, hence is not informative. Let us
illustrate Point (ii) by Figure 1 for d∗ = π/2. Each peer in community [−α, α]
sends no for an object located in [α+π/2, −α−π/2]. Thus the posterior density
conditional on the signal being yes is null on that arc: the posterior clearly differs
from the prior density. To show Point (iii), consider a signal from a community
reduced to a point, say 0, so that the sender’s preferences are known. The signal
is informative: Conditional on a yes for example and taking again d∗ = π/2, the
posterior density on [−π/2, π/2] is 1/π, which is the double of the prior, and null
elsewhere. Add a signal sent from [π]. The important point is that on the receipt
of the two signals, it is not known which peer has sent which signal. The two

4 Malicious individuals can be incorporated. Under some expectation on their distri-
bution, their presence introduces additional noise in the information inferred by a
signal. The same argument applies if individuals make error in their judgment.

5 A random variable is denoted by x̃, and its realization (when observed) by x.
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Fig. 1. d∗ = π/2

signals, which are always opposite to each other, give no information because
the prior is not changed. In this simple example, the new signal not only adds no
information but also destroys the information conveyed by the first signal. The
reason is that adding a signal introduces an additional source of randomness due
to the anonymity of the sender. In contrast, in the standard framework, adding
a signal is never harmful because it can simply be ignored.

The value of an informative signal to a person depends on his/her location
and on the size of the community. The next proposition analyzes this further.
Consider a community of size α and an individual whose distance to the center
is θ. Let U(θ, α) denote the expected utility per signal conditional on having
an answer to a query. The utility is drawn by following the recommendation,
that is from buying the object in the case of a positive signal and not buying
it in the opposite case. The a priori probability for a positive signal is equal to
p (which is d∗/2π), since, given an object at random, each individual says yes
with probability p. Using that there is no purchase on the reception of a negative
signal, this gives (since up to a rotation, we can consider arcs centered at zero):

U(θ, α) = pE[u(d(θ, t̃))|yes ∈ [−α, α])]. (1)

Proposition 1

– (i) Given α, α ≤ d∗, utility U(θ, α) decreases with the distance θ to the
center,6 θ ≤ d∗.

– (ii) Given θ, θ ≤ d∗, utility U(θ, α) decreases with α on [0, d∗].

Point (i) is natural given the symmetry. It says that the expected benefits derived
from following a signal decrease with the distance to the center. According to
point (ii), the expected value per signal is greater the smaller the community,
that is the less uncertain the sender. This is easy to understand for the center. As
α increases, the objects that he dislikes (distant of more than d∗) are more likely
to be recommended and those he likes get less recommended. For an individual
6 Note that properties hold for individuals outside the community, i.e., for θ > α.
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who is not at the center, the distribution of signals is ‘biased’ with respect
to his own preferences and as α increases some objects that he likes get more
recommended. Increasing α is however still harmful because the distribution
of the distance to a peer of the recommended objects becomes riskier in the
sense of first order stochastic dominance. An implication of property (ii) is the
superiority of an expert ’everything else being equal’. More precisely, a system
in which an expert sends as many signals as the communities’ members at the
same total cost makes every peer better off.

3 Community Choice

Our purpose is to analyze which community forms. A first requirement is that
all community members benefit from it, a property that we call viability. There
are however many viable communities, and members may have conflicting views
about its scope, i.e., about the membership rule. In contrast to a setup in which
a firm organizes the community, there is no unanimous criterion such as the
maximization of profit. We shall analyze the choice of a ’leader’.

Viable community. Anybody is free not to join a community. A community
is said to be viable if each of its members benefits from it, accounting for the
failure of search and the participation cost. Specifically, an individual distant of
θ from the center of a community of size α is indeed willing to participate if
P (α)U(θ, α) ≥ c. To cover the cost, the utility from receiving a signal, U , must
be positive. From point (i) of Proposition 1, the peers who achieve the lowest
benefit are located at the extreme points of the community. Letting V (α) be the
expected utility per signal for a peer located at an extreme point of a community
of size α, the viability condition can be written simply as

P (α)V (α) ≥ c where V (α) = U(α, α). (2)

Note that V is positive for α small enough. Hence, under a small enough cost,
the set of viable sizes is non empty. Also, viable communities are of size smaller
than d∗.7 Property (ii) points out a trade-off faced by peers: increasing the
size increases the probability of getting an answer but decreases the value of an
answer. To analyze this trade-off, we take the following assumptions throughout
the paper.

A0 (concavity assumption) For each θ, the functions logU(θ, α) and logV (α)
are concave with respect to α.

A1 (elasticity assumption)
−V ′

V
(α) ≥ −U ′

α

U
(0, α) ≥ −U ′

α

U
(θ, α). (3)

7 Given two individuals distant of 2d∗ or more, the sum of the distance of an object
to these is at least 2d∗, so that u(d) + u(2d∗ − d) < 0. If the two individuals follow
the same recommendations, taking expectation over objects, the sum of their utility
levels is negative, in contradiction with viability (even for a null cost c).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



102 G. Demange

Under A0, the set of viable sizes is a nonempty interval [α, α] for a low enough
cost c (because PV is log concave as a product of logconcave functions). Let us
interpret the elasticity assumption. The second inequality of (3) says that the
relative loss incurred by a peer due to an increase in the size is larger for the
center. The first inequality says that these relative losses are all smaller than
the relative decrease in the utility of an individual located at an extreme. Since
this decrease includes not only the variation due to the size but also that due to
the position (V ′(α) = [U ′

α + U ′
θ](α, α) and U ′

θ is negative because U decreases
with the distance to the center) inequalities (3) are compatible. For example,
assumptions A0 and A1 hold for a binary function.

3.1 Leaders’ Choice

In practice, a ‘leader’ initiates a community and possibly defines criteria for ac-
cepting peers. The leader’s optimal community size is given by the value α0 that
maximizes the payoff P (α)U(0, α). This will be the leader’s choice provided it is
viable. Similarly let αθ denote the value that maximizes the payoff P (α)U(θ, α),
that is the preferred size of a θ-peer in a community centered at zero.

Proposition 2. The leader’s optimal size is less than the peers’ optimal one:
α0 ≤ αθ. The leader’s choice is

1. either the leader’s optimum α0 if P (α0)V (α0) > c; in that case some out-
siders would achieve a positive payoff by joining but the community is closed
to them.

2. or the maximal viable size α.

The first point makes precise the direction of possible disagreements with the
leader: peers all prefer a larger size than the leader. Disagreement occurs in case
1 when the leader can choose his preferred size. By continuity of the payoffs,
close enough outsiders would achieve a positive payoff by joining, but they are
not allowed to do so: the community is closed. According to point 2 , it is never
the case that the leader’s optimum is not viable because it is too small. Instead
all peers, including the leader, would benefit from an increase in the community
size up to α0. However no outsiders want to join and peers at the extreme of the
community just cover their cost.

Comparative statics. Various policies can influence the probability of suc-
cessful search. The next section studies the enforcement of a minimal contri-
bution rate. Other factors, the efficiency of the technology or the number of
Internet users for instance, result in an exogenous change of the probability of
success. The impact of such a change is easily illustrated with a Poisson process
P (α) = 1 − e−λα. An increase in the population of Internet users other things
being equal is represented by an increase in the parameter λ. Figure 2 depicts
the maximal viable size α (the increasing line) and the leader’s optimum α0

(the decreasing line) as a function of λ for a binary function.8 Since the leader’s

8 Easy computation gives U(θ, α) = pg[1 − k(α + θ2/α)] with k = (1+b/g)
4d∗ .
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Fig. 2. c = 0.1, b/g = 1.5 Fig. 3. c = 0.1 and c = 0.07

choice is the minimum of these two values, increasing the population has differ-
ent effects on the leader’s choice depending on whether this choice is constrained
or not. The following configurations are obtained as λ increases: first there is no
viable community for λ low enough, second the leader’s choice is constrained
equal to the maximal viable size, and third the leader can choose his optimum
value.

This can be explained as follows. Increasing the population within a commu-
nity makes it more attractive to outsiders. When the community is constrained
by viability, for intermediate values of λ, these outsiders are welcome. As a re-
sult, the size is increased. Instead, when the community is closed, for a large
enough λ, increasing the population allows the leader to choose a community
restricted to peers whose tastes are more and more similar to his owns: the size
decreases. The impact of λ on the size directly translates into an impact on the
precision of information: as λ increases, information is first made less precise
(but the higher chance of getting some information compensates the loss) and
then more and more precise.

Advertising. Ads provide revenues that may change the leader’s choice criteria.
To simplify, assume that peers do not mind ads and that ads do not influence
their preferences on the object on which they are searching information. Let the
revenues generated by ads be proportional to the number of peers and consider
two alternative ways of distributing them.

First, the leader captures all ad revenues. In that case he sets up a community
that maximizes a combination of his own interests and the revenues. His choice
is unchanged if the viability constraint binds. Otherwise, instead of choosing his
own optimum, α0, he chooses a larger size (between α0 and α). The more he
cares about revenues, the closer his choice to the maximal viable size. As a result,
information is less precise. The effect can be substantial for large λ because the
maximal viable size α is large and α0 is small. Whereas a community could be
tailored to his specific tastes, the leader may choose a loose criterion so as to
capture ad revenues.

Second, revenues are distributed equally among peers, which amounts to di-
minish cost c. This results in an increase in the maximal viable size and leaves
the optimal leader’s size unchanged. Hence, the leader’s choice is closer and more
often equal to his optimal value. In Figure 2, the maximal viable size is drawn
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for two distinct values of the cost, c = 0.1 and c = 0.07, which give the two
increasing lines.

Voting. In a community with size α0, peers who are not located at the center
would all like to increase the community (since αθ > α0). This suggests some
instability. To investigate this, let some peers propose to accept newcomers who
are close to their own tastes, that is they propose to increase one boundary, say
to increase α to α + dα keeping −α fixed. (In view of the preceding discussion,
only an increase of the community may be worth considering.) Then peers vote
under the majority rule.

It is easy to see that the proposal is rejected if the community size is at
the upper bound α. Increasing the community on one side implies that some
individuals on the other side will leave: accepting the proposal can only result in
a rotation of the community which becomes [−α+dα, α+dα]. Peers in [−α, dα/4[
either leave or are further away from the center (with no change in size) and
hence are made worse off (from Point (i) of Proposition 1): A strict majority of
incumbents vote against the proposal.

If instead the community size is α0, accepting the proposal results in [−α0, α0+
dα] (assuming dα small enough). Not only the community is enlarged but also
the center is modified. Now the impact is unclear for individuals on the negative
side because there are two opposite effects: a possible benefit from an increase
in the size and a loss from being further away from the center. According to
the following Proposition, the loss outweighs the benefit under the following
assumption A2 (A2 is satisfied with a binary function for example).

A2 [Uα + Uθ](θ, α0) decreases with θ in [0, α0]

Proposition 3. Assume A2. At the leader’s choice, there is no strict majority
for changing only one side of the community.

3.2 Enticing Contribution

The success probability partly determines the viability and the choice of the
size of a community. Instead of taking P as exogenous, it is assumed here to
be influenced by the peers’ contribution rates. A minimum rate is asked for,
implemented through records on peers’ contributions. The leader now chooses
both the size and the minimal contribution rate.

We assume that the peer’s participation cost c is an increasing function of
his contributions. As a result, no peer will contribute more than the minimum
required rate: his cost would increase with a null benefit since the impact of a
single individual on the success probability is negligible. This is a standard effect
in public good provision. Given the minimum required rate λ, let P (λ, α) and
c(λ) denote respectively the probability of success when each peer contributes λ
and the incurred individual cost. P is non decreasing and concave in λ and c is
non decreasing and convex.

Without constraint on viability, the leader’s optimum is the value of (λ, α)
that maximizes P (λ, α)U(0, α) − c(λ). The maximal viable size now depends on
λ; it is denoted by α(λ).
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Proposition 4. The leader’s choice is

1. the leader’s optimum community if it is viable; the community is closed to
outsiders. Other peers would prefer a larger size and a lower participation.

2. a community with maximal viable size α(λ) for the chosen rate; the choice
of λ trades off the benefits from increasing contribution and the loss due to
a smaller community size (i.e. α(λ) decreases at the chosen value of λ.)

We find the two regimes in which, given the chosen contribution rate, the choice
of the size is dictated by the same considerations as in the previous section.
As for the contribution rate, note that the marginal benefit from increasing the
contribution rate, PλU(θ, α) − c′, is decreasing with the distance to the cen-
ter as U . Hence, surely, at the chosen contribution rate, the leader’s marginal
benefit is nonnegative: otherwise a Pareto improvement within the community
would be found by reducing the rate. Thus, in case 1, where the leader is not
constrained by viability, all peers would prefer to increase the size and to de-
crease the contribution rate. In case 2, the leader would benefit from an increase
in the contribution rate and from an increase in size. He faces a trade-off be-
cause increasing contribution incites some peers at the extreme to leave thereby
decreasing the size.

Concluding remarks. This paper considers a community as a cluster of in-
dividuals with similar preferences. The possible improvement in the value of
information determines the scope of a community. A natural development is to
allow signals to be aggregated in a community and to investigate how this would
affect the value of information. Another direction is to analyze the coexistence
of communities.
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4 Appendix: Proofs

Proof of Proposition 1. By viability, we restrict to α ≤ d∗. From (1), we
have U(θ, α) = p

∫ π

−π
fα(t)u(d(θ, t))dtwhere fα(t) is the density of an object

conditional on the receipt of a yes from [−α, α]. We can rewrite U as

U(θ, α) = p

∫ π

−π

u(δ)dF (θ, α; δ) where F (θ, α; δ) =
∫ π

−π

fα(t)1[θ−δ,θ+δ](t)dt (4)

that is, U(θ, α) is proportional to the expectation of u(d) under the distribution
F (θ, α; .) of the distance to θ of the objects that are recommended by community
[−α, α]. Since u is decreasing, the monotonicity properties of U (i) or (ii) follow
if these distributions are ordered by first order stochastic dominance as θ or α
varies. More specifically, U decreases with positive θ if for any δ, 0 ≤ δ ≤ π, any
θ′, θ with θ′ ≤ θ, then F (θ, α; δ) ≤ F (θ′, α; δ), that is if F decreases with respect
to α. Similarly, U(θ, α) decreases with respect to α if F decreases with respect
to α. These properties can be shown by computing the posterior density fα.

Proof of proposition 2. The size αθ preferred by a θ-individual maximizes
P (α)U(θ, α) with respect to α. Let αmax be the size for which V (αmax) = 0. We
may restrict to sizes smaller than αmax, and by symmetry, to positive θ, that is
0 ≤ θ ≤ α ≤ αmax. Since U is positive, we consider instead the maximization of
logPU . Under A0, the function is concave with respect to α, with a derivative
given by [Pα

P (α)+ Uα

U (θ, α)]. Thus, α0 ≤ αθ holds if this derivative is nonnegative
at α0. The derivative is null at (θ, α) = (0, α0). From A1, it is increasing with
respect to θ, which gives Pα

P (α0) + Uα

U (θ, α0) ≥ 0, the desired result.
The optimal choice of the leader is the value of α that maximizes P (α)U(0, α)

under the viability constraint P (α)V (α) ≥ c. Let μ be the multiplier associated
with the constraint. The first order condition is

PαU(0, α) + PUα(0, α) + μ[PαV + PV ′](α) = 0. (5)

If μ is null, the optimal choice is α0 as expected. If μ is positive, the constraint
binds: α0 is not viable, i.e. outside the interval [α, α]. Furthermore the solution
solves P (α)V (α) = c, hence is either α or α. Note that PV increases at α and
decreases at α. From (5), the derivatives of PU and PV are of opposite sign.
If the latter derivative is positive, PV increases: the solution is α. Since under
A1, PαV + PV ′ > 0 implies PαU(0, α) + PUα(0, α) > 0, it must be that the
derivative of PV is non positive: the solution is α.

Proof of proposition 3. The case where the community chosen by the leader
is of size α has been considered in the text. So let the optimal size be α0 and
assume that community [−α0, α0] be changed into [−α0−dα, α0]. A θ-individual
becomes distant of θ + dα/2 to the center; and the community size is increased
to α0 + dα/2. We show that all θ-peers with positive θ disapprove the change,
that is

P (α0 + dα/2)U(θ + dα/2, α0 + dα/2) < P (α0)U(θ, α0).

Let G : G(θ) = [PαU + PUα + PUθ](θ, α0). By logconcavity of PU , the above
inequality holds if G(θ) < 0 for any positive θ. We have G(0) = 0, since by
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definition [PαU + PUα](0, α0) = 0 and by symmetry of U , Uθ(0, α0) = 0. We
have G(α0) = (PV )′(α0). It is negative since by A1 it is smaller than [PαU +
PUα](0, α0), which is null. Hence G(θ) < 0 for each 0 < θ ≤ α0 if G decreases
with θ. This is true since U decreases with θ and A2 requires Uα +Uθ to decrease
as well.

Proof of proposition 4. The optimal choice of the leader is the value that
maximizes P (λ, α)U(0, α) − c(λ) over (λ, α) subject to P (λ, α)V (α) − c(λ) ≥ 0.
Let μ be the multiplier associated with the constraint. The first order conditions
are

PαU(0, α) + PUα(0, α) + μ[PαV + PV ′](α) = 0 (6)

PλU(0, α) − c′(λ) + μ[PλV (α) − c′(λ)] = 0 (7)

When μ is null, the viability constraint does not bind, and the leader can choose
its optimal value. The same argument as in proposition 2 yields that for the cho-
sen value of λ other peers would like the size to increase. As for the contribution
rate, since U(θ, α) ≤ U(0, α), (7) yields PλU(θ, α) − c′(λ) ≤ 0: a θ-peer would
prefer a smaller contribution rate.

When μ is positive, we know that (6) and A1 implies that α is set at the
maximal viable size associated to the chosen λ, α(λ). From the first order con-
dition on λ (7), PλU(0, α)− c′(λ) and PλV (α)− c′(λ) are of opposite sign. Since
U(0, α) > V (α) it must be that the former is positive: the leader would prefer
to increase the contribution rate.
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Abstract. We attempt to address the challenge of suggesting a useful bidding
strategy to an agent in the an ad auction setting. We explore the possibility of
using competitive safety strategies in that context; a C-competitive strategy guar-
antees a payoff which is no less than 1/C of the payoff obtained in a best Nash
equilibrium. We adopt the model of ad auctions suggested by Varian and provide
analysis of competitive safety strategies in that context. We first show that no
useful safety competitive strategies exist in a setting with complete information
about the agents’ valuations. Namely, in a setting with N bidders and exponen-
tial click-rate functions the ratio can be arbitrarily close to N . We also show that
N is a general upper bound for any click-rates and valuations, while

�N
t=1

1
t

is
a tight bound for linear click-rates. However, in our main results we show that,
surprisingly, useful C-competitive strategies do exist in the incomplete informa-
tion setting. More specifically, we show that under the assumption that agents’
valuations are uniformly distributed, an e-competitive strategy exists for the case
of exponential click-rate functions, and a 2-competitive safety strategy exists for
linear click-rate functions.

1 Introduction

One of the central challenges of game theory is to provide a decision maker with an
advice about how he should choose his action in a given multi-agent encounter. This
challenge, which falls under the so-called prescriptive agenda, has been left without a
real answer. For example, the celebrated Nash equilibrium (NE), which is the basis for
most game-theoretic analysis, suggests that a multi-agent behavior would be consid-
ered “rational” if no decision-maker would prefer to deviate from it, assuming the other
decision-makers stick to it. However, while this is a very useful concept from a descrip-
tive point of view, it does not address the question of how should a particular agent
choose his action in a given game. A NE strategy can only be justified by assuming that
the other agents are committed to a specific action profile, which is an unreasonably
strong assumption regarding their rationality.

Only very few suggestions have been made in order to address the above challenge.
One approach is to suggest to the agent a strategy which will be useful against an oppo-
nent taken from a particular class (see e.g. (Powers and Shoham2004)). A related idea
is to try and learn the opponent model in a repeated interaction in order to optimize be-
havior against it (Carmel and Markovitch1999). Recently, the use of machine learning
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in order to predict opponent behavior in a game given his behavior in other games, has
been shown to lead to significant success (Altman et al 2006). What is common to the
above approaches is that there are no guarantees to our agent, unless we severely re-
strict the class of opponents he may face. An alternative approach, which is referred to
as competitive safety analysis has been suggested in (Tennenholtz2002) motivated by an
observation made by Aumann in (Aumann1985). This approach deals with guarantees
the agent can be provided with, as discussed below.

It is well known that in a purely competitive setting, employing a safety level strategy,
one that maximizes the agent’s expected utility in the worst case, is the only reasonable
mode of behavior. For partially cooperative settings, (Tennenholtz2002) justified the
use of a safety-level strategy by introducing the notion of C-competitive safety strategy
– a strategy that guarantees a payoff which is not less than 1/C of what is obtained in
equilibrium. If there exists a C-competitive strategy for small C, then this strategy is a
reasonable suggestion for the decision maker. However, the main challenge is whether,
for interesting contexts, we do have such competitive safety strategies.

In this work we apply competitive safety analysis to the model of ad auctions, which
are mechanisms for assigning online advertisement space to agents according to their
(proclaimed) utility from using it. There has been only very limited study of bidding
in ad auctions (see e.g. (Borgs et al 2005; Asdemir2005)). Moreover, we are not famil-
iar with any work that deals with the challenging prescriptive problem of how should
an agent choose his bids in that setting. The formal model that we use is based on
(Varian2006), and will be described in the following section. Needless to say, if there
exist useful C-competitive safety strategies in the ad auction setting, then they can pro-
vide useful means for bidders in such auctions.

The basic model of positions auctions assumes that the bidders’ valuations for ad
slots are common knowledge. In a more realistic model, each agent knows only his
own valuation, while the valuations of all agents are assumed to be taken from some
known distribution. We provide an analysis of competitive safety strategies for both the
complete and the incomplete information settings. Interestingly, we obtain sharp differ-
ence between the usefulness of this approach in these settings. While in the complete
information setting, it turns out that no general useful competitive safety strategies ex-
ist, they do exist in the (more realistic) incomplete information setting! Namely, we
show that in the complete information setting with exponential click-rate functions, as-
suming N bidders, the competitive safety ratio can be arbitrarily close to N . We also
show that N is a general upper bound. If we assume that the click-rates are linear, the
ratio can not be greater than

∑N
t=1

1
t , and we show that this bound is tight. On the other

hand, we show highly positive results in the incomplete information setting. We con-
sider valuations which are taken from the uniform distribution, and two basic click-rate
functions: the exponential and the linear click-rate functions. We show the existence
of an e-competitive strategy for the case of exponential click-rate functions, and the
existence of a 2-competitive safety strategy for linear click-rate functions.

In section 2 we present and discuss the basic model. In section 3 we provide the
analysis of the complete information setting, and in section 4 we provide the analysis
of the incomplete information setting.
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All of our proofs appear in the full paper 1. We include the proof of Theorem 1 in
this version of the paper in order to illustrate our proof techniques. The proofs of our
main theorems, Theorem 3 and Theorem 4, are lengthy, and make use of the notation
presented in the proof of Theorem 1.

2 An Ad-Auction Setting

We now provide the model of ad auctions on which we will base our analysis. The
formal model that we use is based on (Varian2006), with minor changes. The model
has originally been presented for the complete information setting, but its adaptation to
an incomplete information setting is immediate. The exact assumptions we take when
computing safety-level strategies are discussed in sections 3 and 4, when we analyze
the complete information and incomplete information settings, respectively.

The ad-auction setting:

– There are N players that compete for S ad slots. It is assumed that N = S.
– We denote the clickthrough rate (CTR) of a slot by xi, i ∈ {1 . . .N}. The CTR is

a publicly known property of a slot, which does not depend on the player who is
using it. The slots are numbered in decreasing order of CTR: ∀i : xi ≥ xi+1. For
ease of presentation, we define xi = 0 for all i > N .

– The private value in this model is the utility that each agent derives from a single
unit of CTR, which is assumed to be the same regardless of the slot from which it
originates. We denote it by vi, i ∈ {1 . . .N}; naturally, ∀i ∈ {1 . . .N} : vi > 0.
For ease of presentation, we define vi = 0 for all i > N .

– The players’ bids are interpreted as the maximal price per unit of CTR they are
willing to pay to the CTR provider. We denote them by b̃i, i ∈ {1 . . .N}; w.l.o.g
we assume that b̃i ≥ b̃i+1; that is, the agents are ordered in decreasing order of
bids. Naturally, ∀i : b̃i ≥ 0 by the rules of the auction. For ease of presentation, we
define b̃i = 0 for all i > N .

– The mechanism discussed by (Varian2006) assigns slots to users according to de-
creasing order of bids (the highest bidder gets the slot with the highest CTR, the
second highest bidder – the second best slot, etc.). For ease of exposition, we as-
sume that ties are broken according to some predefined ordering of the agents –
it can be easily verified that our results hold for any other tie-breaking method as
well. The price an agent has to pay per unit of CTR is the bid of the agent immedi-
ately below him in this ordering. We denote the price paid by agent i by pi; since
the agents are ordered in decreasing order of bids, pi = b̃i+1.

– The utility of agent i, which has private value vi, when the agents’ bids are b̃1 ≥
b̃2 ≥ . . . b̃i ≥ b̃i+1 . . . ≥ b̃N is (vi − b̃i+1)xi.

A Nash equilibrium is a bidding profile in which each agent prefers his current slot
to any alternative slot. Formally:

Definition 1 (A (pure) Nash equilibrium). A Nash equilibrium (NE) is a set of bids
b̃1 > b̃2 . . . > b̃N such that:

1 Available at http://www.technion.ac.il/∼dannykv/csad-full.pdf.
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1. No agent strictly benefits by decreasing his bid and getting a lesser slot:

∀s, t > s : (vs − ps)xs ≥ (vs − pt)xt

2. No agent strictly benefits by increasing his bid and getting a better slot:

∀s, t < s : (vs − ps)xs ≥ (vs − pt−1)xt

where pi = b̃i+1.

(Varian2006) defined Symmetric Nash Equilibrium (SNE) as a bidding profile that sat-
isfies the following:

Definition 2 (SNE). A SNE is a set of bids b̃1 > b̃2 . . . > b̃N such that:

∀s, t : (vs − ps)xs ≥ (vs − pt)xt

where pi = b̃i+1.

Note that the above definitions assume fixed valuations and therefore the game is es-
sentially a complete information game.

As shown in (Varian2006), SNE has several nice properties:

1. In a SNE, ∀s : vs > vs+1 (i.e. agent i bids higher than agent k iff i’s true type is
indeed higher than that of k). This observation is important, since from now on we
will assume that agents are indexed in decreasing order of valuations and use this
property to assert that this order is also the order of their bids in a SNE.

2. If an ordered sequence of bids is a SNE, then it satisfies

b̃sxs−1 ≥ vs(xs−1 − xs) + b̃s+1xs

3. The latter implies that the bid of agent i in a SNE is bounded as follows:

b̃i ≥ 1
xi−1

N+1∑

t=i

vt(xt−1 − xt)

Note that a bidding profile in which all bids are equal to their respective lower bounds
shown above is a SNE; we will use the term the best SNE to refer to this bidding profile
(the term refers to the players’ utility; the “best” SNE actually yields the lowest revenue
for the auctioneer). Also, it is a simple observation that in the best SNE, agents never
overbid (but there may exist equilibria in which they do so). Finally, it is important to
note that the payoff of agent i in the best SNE is vixi −

∑N+1
t=i+1 vt(xt−1 − xt), which

equals to what his payoff would be in the dominant strategies equilibrium of a VCG
auction with the same valuations (his payment is exactly the externality that he imposes
on the other players).

Note that it can be helpful to rewrite the expressions (due to (Varian2006)) for the
bid of agent i (b̃i) and the utility of agent i (Ũi) in the best SNE as follows:

b̃i =
1

xi−1

N+1∑

t=i

vt(xt−1 − xt) =
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=
1

xi−1
[vixi−1 − vixi + vi+1xi − vi+1xi+1 + . . .

. . . + vNxN−1 − vNxN + vN+1xN − vN+1 · 0] =

=
1

xi−1

[

vixi−1 −
N∑

t=i

xt(vt − vt+1)

]

Ũi = (vi − b̃i+1)xi = vixi − vi+1xi +
N∑

t=i+1

xt(vt − vt+1) =
N∑

t=i

xt(vt − vt+1)

It is important to note that our model slightly differs from that of (Varian2006);
namely, while the previous work assumes N > S, we assume that N = S. This models
a situation in which the auctioneer has enough ad slots for all the agents, and the only
motivation for agents’ bidding is the desire to get a higher (better) slot. We think that
this is a reasonable model for the online ad auction setting – by the nature of online
advertisement, there is no practical limit on the number of ad slots, and therefore the
auctioneer has no real reason to deny agents’ requests for slots. For the sake of sim-
plicity, we also assume that there is no reserve price, and therefore the agent with the
lowest bid gets the N ’th slot for free. While this is definitely not the case in reality, the
results presented here are a good approximation as long as the reserve price is negligi-
ble compared to the agents’ valuations. Note that although the formulae for the bid and
the utility in the best equilibrium that are quoted above come from (Varian2006), they
are true in our model as well (by assuming vN+1 = 0). This is true since our model can
be reduced to that of (Varian2006) by adding a fictitious player with fixed valuation 0
– in the best equilibrium, this player always bids truthfully and therefore does not af-
fect slot allocation and expected utility. Note that the reduction does not work for other
equilibria, because then the fictitious agent may overbid.

3 Competitive Safety Analysis in the Complete Information Model

Let us consider now the safety level of an agent in the complete information game that
is induced by the ad-auction presented in the previous section. That is, we assume that
the agents’ valuations are fixed and are common knowledge, and we want to explore
what is the payoff that an agent can guarantee to himself regardless of the other agents’
behavior. Naturally, if we make no assumptions regarding the rationality of the other
agents, they can always force the agent to take the N ’th slot (by bidding higher than
the agent’s valuation). In this case, it can be easily seen that the payoff loss that the
agent suffers relative to his payoff in an equilibrium is unbounded. Even if we limit the
other agents not to bid above their valuation2, the agent’s payoff in best SNE can be
N − ε times bigger than his safety level (for any 0 < ε � 1), as can be seen from the
following example:

2 This seems a most natural requirement, although there exist Nash equilibria in which agents
overbid. It is useful to remember that the rules of ad auction effectively interpret the bid of an
agent as the maximal price he is willing to pay per unit of CTR, so by overbidding the agent
risks getting negative payoff. Agents do not overbid in the best SNE we compare to.
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Example 1. Let there be N agents and N slots, let 0 < q < 1, x1 > 0 be parameters
and let the valuations be

vi =
N∑

t=i

qN−t =
1 − qN−i+1

1 − q

and CTR’s be
xi = x1q

i−1

Then for any N and ε, there exists 0 < q < 1 so that the competitive safety ratio is at
least N − ε.

The analysis of the example can be found in the full paper. In fact, N is an upper bound
on the competitive safety ratio, as shown by the following theorem:

Theorem 1. In the complete information ad auction setting with N slots and N play-
ers, the competitive safety ratio (the ratio between an agent’s payoff in a best SNE and
the payoff guaranteed by a safety level strategy, under the assumption that the agents
do not overbid) is at most N .

Proof. When computing the (pure) safety level of an agent, it is assumed that the other
agents know the bid of the agent under consideration (from now on, we will simply
refer to him as the agent) and all the valuations, and they seek to minimize the utility of
the agent. We will us the following notation:

– vi is the i’th valuation in the ordered sequence of all agents’ valuations (including
the agent).

– b̂i is the i’th bid in the ordered sequence of all agents’ bids (including the agent).
– v′ is the valuation of the agent.
– b̂′ is the bid of the agent.
– v-index(x) : [0, 1] → {0 . . .N − 1} is the number of adversarial agents with valu-

ations that are strictly higher than x (for example, the valuation of the agent under
consideration is vv-index(v′)+1, the valuation of the adversarial agent immediately
below the agent under consideration in the ordering of valuations is vv-index(v′)+2,
etc.).

– b-index(x) : [0, 1] → {0 . . .N − 1} is the number of adversarial agents with bids
that are strictly higher than x (for example, the bid of the adversarial agent immedi-
ately below the agent under consideration in the ordering of bids is vb-index(b′)+2).

The utility of the agent is (v′ − b̂b-index(b̂′)+2)xb-index(b̂′)+1. Therefore, in order to
minimize our agent’s payoff, the other agents should choose their bids so that they max-
imize b̂b-index(b̂′)+2 and b-index(b̂′) + 1; those are conflicting goals, since the agents
cannot overbid and therefore in order to maximize the price that the agent pays some of
the agents with valuation higher than his bid might have to bid lower than him, letting
him to get a better slot. It can be easily seen that there is no need to let the agent go up
more than one slot and therefore the following is an optimal adversarial strategy:3

3 The strategy described here is not unique - we chose the strategy with the most concise
description.
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– All adversarial agents that have valuations smaller than the agent’s bid should bid
truthfully.

– All adversarial agents that have valuations higher than the agent’s bid, except one,
should bid truthfully.

– One of the players that have higher valuation has to choose whether to bid truthfully
or submit the same bid as the agent (which raises the agent’s position by one slot
but forces him to pay his bid, instead of the valuation of the player below him).
Note that we assume here, for ease of exposition, that in the case of a tie the agent
under consideration is given the higher slot.4

Therefore:

– The agent’s utility when all adversarial players bid truthfully is
xv-index(b̂′)+1(v

′ − vv-index(b̂′)+2).
– The agent’s utility when one of the adversarial players with higher valuation bids

the same as he is xv-index(b̂′)(v
′ − b̂′).

– Therefore, the utility of an agent given all valuations and his bid b̂ is

min{xv-index(b̂′)+1(v
′ − vv-index(b̂′)+2), xv-index(b̂′)(v

′ − b̂′)}

Given that the adversarial agents use the strategy described above and the fact that in the
complete information setting all the valuations are known to the agent, it can be easily
seen that between all the bids that guarantee slot k (i.e. all b̂′ so that v-index(b̂′) =
k − 1), the agent weakly prefers to submit the smallest bid possible. Recall that we
assume that ties are decided in favor of the agent5, in which case the above observation
means that the agent can, without loss of utility, consider only N − v-index(v′) + 1
strategies – the valuations {vi : i > v-index(v′) + 1} of the adversarial agents with
valuations smaller than his valuation (note that these strategies include 0 as a possible
bid which gives the agent the lowest possible slot). Therefore, his safety level payoff is:

Û = max
0≤b̂′

min{xv-index(b̂′)+1(v
′ − vv-index(b̂′)+2), xv-index(b̂′)(v

′ − b̂′)} =

= max
i:v-index(v′)+1<i≤N+1

min{xi−1(v′ − vi), xi−2(v′ − vi)} =

= max
i:v-index(v′)+1<i≤N+1

xi−1(v′ − vi) =

= max
i:v-index(v′)+1≤i≤N

xi(v′ − vi+1)

This implies that for any index j such that v-index(v′) + 1 ≤ j ≤ N :

xj

Û
≤ 1

v′ − vj+1

4 If that is not the case, an approximately equivalent strategy would be to submit a bid that is
ε-smaller than that of the agent and force him to pay a price that is ε-close to his bid.

5 Otherwise, we would have to consider the set of strategies {vi + ε : i > v-index(v′) + 1}
for some small ε. It would not affect the nature of the results, but would make the exposition
somewhat cumbersome.
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Therefore, the competitive safety ratio is:

Ũ

Û
=

∑N
t=v-index(v′)+1 xt(vt − vt+1)

Û
≤

N∑

t=v-index(v′)+1

vt − vt+1

v′ − vt+1
≤ N

The latter inequality is due to the fact that ∀t ≥ v-index(v′) + 1 : vt ≤ v′. �	
For the special case when the CTR’s are linear, the worst-case bound is given by the
following theorem:

Theorem 2. In the complete information ad auction setting with N slots and N play-
ers, when the CTR’s are given by xi = d(N − i + 1) for some d > 0, the competitive
safety ratio is at most

∑N
t=1

1
t < 1 + lnN .

The proof of the theorem, together with an example that demonstrates that this bound
is tight, can be found in the full paper.

4 Competitive Safety Strategies for the Incomplete Information
Setting

Now we want to consider the incomplete information setting. Specifically, we want to
consider the following decision problem of an agent in this auction:

– The agent under consideration has valuation v′ ∈ [0, 1] which is known to him.
– The agent assumes that the other agents’ valuations are distributed according to

some known distribution.
– The agent is risk-neutral.
– The agent has two possible courses of action:

1. To select to “play for the best SNE”. This may mean, for example, that the
auction is repeated with the same agents (and the same valuations), and the play
sequence is assumed to converge to the best SNE. Alternatively, there may exist
a central entity (a “mediator”) that offers a course of action that is guaranteed
to lead to the best SNE. In any case, the value that the agent assigns to this
action is his expected payoff in the best SNE that is induced by the realizations
of the players’ valuations, where expectation is taken w.r.t the distribution of
the other agents’ valuations. It is important to note that this is also his expected
payoff, given his valuation, in the corresponding Bayes-Nash equilibrium of
this auction.6

6 To see why, consider the following sequence of equalities. The allocation and payments are
the same, for any tuple of valuations, in the best SNE and in the corresponding VCG auction
(under complete information). However, assuming the incomplete information setup, the VCG
auction is truthful, and therefore for any given valuation, the expected payoff of the agent in the
incomplete information setting equals its expected payoff in the corresponding equilibrium of
the complete information setting, where the expectation is taken over all possible instantiations
of other agents’ valuations. This implies that the expected payoff of our agent in the best SNE,
computed according to the realizations of the agents’ valuations, equals its expected payoff
in the VCG ad auction with incomplete information. Finally, using the payoff equivalence
theorem (Krishna and Perry1998) we get that this payoff equals the agent’s payoff, for the
given valuation, in the corresponding Bayes-Nash equilibrium of Varian’s mechanism.
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2. To use a “safety level strategy”. This means that the agent selects an action that
guarantees him the best expected payoff in the auction, against any reasonable
action by the other players (where the expectation is taken w.r.t the distribution
of the other agents’ valuations). The value that the agent assigns to this action is
the guaranteed expected payoff. Specifically, the following model of interaction
is assumed:

• All agents are assigned with their private values. Those values are fixed.
• The agent under consideration selects his bid b̂′, based on his valuation

only (he does not know the realizations of other agents’ valuations - he
only knows their distribution).

• The other agents select their bids based on the bid b̂′ and the realizations
of all valuations (including the agent’s). It is assumed that they can com-
municate freely. They cannot overbid (i.e. each of them has to submit a bid
that is less or equal to his valuation). It is assumed that they select the joint
action that minimizes the agent’s utility.

It can be easily seen that in this model of interaction, agents can not gain by using
mixed strategies and therefore we can consider, w.l.o.g, only pure strategies.

– Intuitively, all things being equal, action 2 is preferred to action 1, since it does
not require elaborate and hard-to-justify assumptions about the rationality of other
agents, neither does it require any additional structure on top of the basic auction.

– Therefore, the agent would like to know how much utility he loses by selecting
action 2 instead of 1.

Naturally, the answer to the question formulated above depends on the distribution
of valuations and the CTR values of the ad slots. We consider uniformly distributed
valuations, and two central types of CTRs : exponentially decreasing CTRs, and linearly
decreasing CTRs.

4.1 Exponentially Decreasing CTRs

For the case of uniformly distributed valuations and exponentially decreasing CTR’s,
the answer is given by the following theorem:

Theorem 3. In the incomplete information ad auction setting with the following
parameters:

– the agents’ valuations are distributed independently and uniformly over [0, 1],
– the CTR’s are given by xk = x1q

k−1 for 0 < q < 1 and x1 > 0,

the ratio between

– the expected payoff in the best SNE that is induced by the valuations’ realizations
and

– the expected payoff guaranteed by the safety level strategy, under the assumption
that other agents do not overbid

is at most e.

The proof of this theorem can be found in the full paper.
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4.2 Linearly Decreasing CTRs

For the case of uniformly distributed valuations and linearly decreasing CTR’s, the
answer is given by the following theorem:

Theorem 4. In the incomplete information ad auction setting with the following
parameters:

– the agents’ valuations are distributed independently and uniformly over [0, 1],
– the CTR’s are given by xk = d(N − k + 1) for d > 0,

the ratio between

– the expected payoff in the best SNE that is induced by the valuations’ realizations
and

– the expected payoff guaranteed by the safety level strategy, under the assumption
that other agents do not overbid

is at most 2.

The proof of this theorem can be found in the full paper.

5 Conclusions and Future Work

In this work, we have investigated whether useful C-competitive strategies exist in the
setting of ad auctions, both in the complete and the incomplete information models. We
have focused in our work on a model in which the slot values are decreasing exponen-
tially or linearly, which we believe to be realistic assumptions. For these settings, we
have shown by examples that in the complete information model there is no hope of
achieving constant competitive safety ratio. On the other hand, in the incomplete in-
formation model with uniformly distributed valuations a competitive safety ratio of e
can be achieved for exponentially decreasing CTRs, and a competitive safety ratio of
2 can be achieved for linearly decreasing CTRs. The intuition behind the difference in
the results for the complete and incomplete information settings, is that while we can
show a specific profile of valuations that is arbitrarily bad for the agent, the probability
that “bad” profiles actually occur is negligible, and the profiles that do occur with high
probability exhibit constant competitive safety ratio.

We see two conceptually different directions for future work:

– Investigate the existence of C-competitive strategies in other models of ad auc-
tions. Those may include non-uniform distributions of valuations, other models of
slot values or refinement of auction rules (such as introducing the quality factor
parameter (Varian2006)).

– Investigating the existence of C-competitive strategies in other interesting sub-
classes of games, such as congestion games (Rosenthal1973), other non-VCG auc-
tions, etc.
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Abstract. We introduce an exploration scheme aimed at learning ad-
vertiser click-through rates in sponsored search auctions with minimal
effect on advertiser incentives. The scheme preserves both the current
ranking and pricing policies of the search engine and only introduces one
parameter which controls the rate of exploration. This parameter can be
set so as to allow enough exploration to learn advertiser click-through
rates over time, but also eliminate incentives for advertisers to alter their
currently submitted bids. When advertisers have much more information
than the search engine, we show that although this goal is not achievable,
incentives to deviate can be made arbitrarily small by appropriately set-
ting the exploration rate. Given that advertisers do not alter their bids,
we bound revenue loss due to exploration.

1 Introduction

Recent years have seen an explosion of interest in sponsored search auctions,
due in large part to the unique opportunity for targeted advertising and the
resulting billions of dollars in revenue. Most sponsored search auctions display
a list of advertisements on the sidebar or other sections of a search engine’s
results page, ranked by some function of advertisers’ revealed willingness-to-pay
for every click on their ad. The advertisers in turn pay the search engine for
every click their ad receives. While several pricing schemes have been circulated
in the literature [7], by far the most popular is a generalization of second-price
auctions, under which each advertiser pays the lowest bid that is sufficient to
ensure that the ad remain in its current slot. Typically the number of available
slots for advertisements on the first search page is fixed, and thus only high
ranking advertisements are displayed.
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An essential part of both designing sponsored search auction mechanisms and
bidding in them is the knowledge of the probability that a given ad is clicked
each time it is displayed in a particular slot for a particular search query or
keyword. This probability is known as the click-through rate or CTR of the
ad. Knowledge of these click-through rates helps advertisers determine optimal
bidding behavior. CTRs can also be an integral part of the ad ranking policy.
For example, it is common for policies to rank bidders by the product of their
bid and some function of their relevance, a slot-independent measure of CTR.
Throughout the paper, we assume that CTRs do not change over time.

Most of the existing literature on sponsored search auctions treats CTRs as
known. When advertisers first enter the system, however, their CTRs are not yet
known either by the search engine or even by the advertisers themselves, and can
only be estimated over time based on the observed clicks. Observations are inher-
ently limited to slots in which ads appear, and estimates are generally poor for
advertisers with low rank that do not usually appear at all. Furthermore, with-
out the assumption of factorable CTRs, little can be said about CTRs of an ad
in slots in which it has not previously appeared (or has appeared only a small
number of times). Thus there is a need for an exploration policy that periodically
perturbs the current slate of displayed ads, showing some in alternate slots and
occasionally displaying those ads that are ranked below the last slot. Ideally, this
exploration policy should not be difficult to incorporate into the current sponsored
search mechanisms. Additionally, if the advertisers’ bids have reached an equilib-
rium, the exploration policy should, when possible, eliminate the incentives for
bidders to change their bids, thereby destabilizing the auction. Such destabiliza-
tion can result in negative user and advertiser experience, as well as unnecessary
loss in revenue to the search engine, and can make exploration harder to control.

In this paper, we address the problem of learning the click-through rates
for each ad in every slot. Our primary goal is to maintain an equilibrium bid
configuration if the bidders did indeed play according to an equilibrium prior
to exploration. When this is not possible, we provide bounds on the amount
that any advertiser could gain by deviating. This incentive to deviate can be
minimized by reducing exploration, at the cost of slowing down the process of
learning the CTRs. Additionally, we bound the revenue loss that the search
engine incurs due to exploration, as compared to maintaining a policy based on
current estimates of CTRs.

A similar problem has been addressed by Pandey and Olston [9] and Gonen
and Pavlov [5]. The former work addresses the learning problem without con-
sidering advertiser incentives. The latter addresses both. Our model differs from
existing ones in three primary ways:

1. We avoid imposing a particular ranking policy or introducing a new pricing
scheme so that changes to existing systems are minimal.

2. The data gathered by our approach can be incorporated into general learning
algorithms using sample selection debiasing techniques.[6]

3. We avoid the standard but unrealistic assumption that click-through rates
can be factored into advertiser- and slot-specific components.
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2 Notation and Definitions

We consider an auction for a particular keyword in which there are N advertisers
(alternately called bidders or players) placing bids.1 We assume that the search
engine has K slots with non-negligible CTRs. Throughout the discussion on
incentives, we assume that the CTRs depend only on the ad being displayed and
the slot in which it is shown. Thus, we use cs

i to denote the true CTR of player i
in slot s. We assume that for each player i, cs

i > ct
i whenever 1 ≤ s < t ≤ K. For

convenience, we define cs
i = 0 for s > K and s < 1. In most of our analysis we

deal explicitly with estimated click-through rates; the search engine estimates
are denoted by ĉs

i , whereas the advertiser i’s estimates are denoted by c̃s
i . Finally,

we let vi denote the value of a click to player i.
For now we assume that throughout the exploration process, advertisers are

ranked according to their bid bi multiplied by a weight wi which is an increasing
function of their estimated relevance scores for the particular keyword. Setting
this weight equal to relevance recovers the standard rank-by-revenue model.
Without loss of generality, assume that advertisers are indexed in the order in
which they are ranked when playing equilibrium, i.e. advertiser i is in slot i
in the ranking. Each advertiser pays a price per click equal to the lowest bid
that maintains his current position; thus the price paid by bidder i in rank s is
ps

i = ws+1bs+1/wi.
The relevance score of an advertiser, which we denote by ei, can be thought

of as an average CTR over all slots for the given keyword. We might choose to
define this relevance as

∑K
s=1 cs

i or alternately as
∑K

s=1 cs
i/cs where cs is the

“average” CTR that any ad might expect to receive on slot s.2 We can fix the
weights for each advertiser prior to (each phase of) exploration and reveal the
new estimates of CTRs at the end of the exploration period only, allowing greater
control of exploration.

We assume that prior to exploration the advertisers converge to a symmetric
Nash equilibrium, a variant of Nash equilibrium introduced simultaneously by
Varian [10] and Edelman et al.[3]. We slightly alter the standard definition to
take into account CTR estimates as follows.

Definition 1. A symmetric Nash equilibrium (SNE) is an ordering and a set of
bids such that for every player i and for every slot s, c̃i

i

(
vi − pi

i

)
≥ c̃s

i (vi − ps
i ) ,

where c̃s
i denotes advertiser i’s CTR estimate at slot s.

Existence of at least one symmetric Nash Equilibrium was proved in a slightly
different setting than ours by Börgers et al. [1]. Their proof applies essentially
without change to our setting.

1 Since our analysis can be repeated for each keyword, the restriction to a single
keyword is without loss of generality. Indeed, the analysis can even be generalized
to incorporate arbitrary context information, as long as the number of contexts is
finite and advertisers may submit separate bids for each. [4]

2 Observe that when cs
i is factorable into the product eics, both of these relevance

scores are proportional to ei.
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3 An Algorithm for Exploration

We begin by describing a simple algorithm for learning click-through rates. Below
(in Section 4) we show that we can set parameters of this algorithm in such a
way as to minimize or entirely eliminate incentives for advertisers to deviate
from a pre-exploration SNE. Our key condition will be that throughout the
entire run of the algorithm the prices which the advertisers pay are fixed to their
pre-exploration equilibrium prices.

The algorithm, which we call k-swap (Algorithm 1), starts by ranking ads by
the product of bid and weight as usual, and repeatedly chooses pairs of ads to
swap in order to explore. In particular, each time the given keyword receives an
impression (i.e. each time a query is made on the keyword), a swapping distance
k ∈ {1, · · · , K} is chosen from some distribution (e.g. uniformly at random).
The algorithm calculates or looks up a swapping probability for each pair of
slots s and s + k that are a distance k apart. (The method for choosing these
probabilities will be discussed in Section 4.) Finally, the algorithm uses this set
of swapping probabilities to decide which (if any) pair of ads to swap.

We must be careful about how pairs of ads are chosen to be swapped so we
can avoid swapping the same ad more than once on a single query. Let Si denote
the event that the ads in slots i and i + k are swapped and let rk

i = Pr(Si) be
the probability that this event occurs. We have

Pr(Si) = Pr(Si|Si−k) Pr(Si−k) + Pr(Si|¬Si−k) Pr(¬Si−k).

To avoid conflicting swaps, we can set Pr(Si|Si−k) = 0, which implies that
Pr(Si|¬Si−k) = Pr(Si)/ Pr(¬Si−k) = rk

i /(1 − rk
i−k), which is no greater than

one as long as we enforce that rk
i−1 + rk

i ≤ 1.
For the sake of this algorithm, all ads with rank K +1, · · · , N can be thought

of as sharing slot K + 1. Thus whenever an ad in slot s ≤ K is chosen to swap
with slot K + 1, any ad with rank K + 1, · · · , N could be displayed in slot s.
Due to lack of space, we do not discuss how the algorithm might decide which
losing ad to display, but one could imagine giving preference to ads that have
not often been displayed in the past.

4 Maintaining Equilibrium During Pairwise Swapping

In this section, we consider the effect on advertiser incentives of implementing
an exploration policy that occasionally chooses pairs of ads that are k slots apart
to swap or moves an undisplayed ad into slot K −k+1 for some fixed value of k.
By ensuring that advertisers do not have incentives to deviate from equilibrium
bids for any fixed k, we ensure that the advertisers do not deviate throughout
the entire run of k-swap.

We assume that the search engine bases the weights wi on the CTR estimates
ĉs
i , and fix the prices paid by the advertisers through the entire run of k-swap.

The updated CTR estimates obtained during exploration are only reported to
advertisers after the algorithm completes. In practice, the algorithm may need
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Algorithm 1. The k-swap algorithm.
Calculate all swapping probabilities rk

i

for all queries on the given keyword do
Randomly select a k ∈ {1, · · · , K}
for i = 1 to min{k, K − k + 1} do

Set Si ← 1 with probability rk
i , Si ← 0 otherwise

end for
for i = k + 1 to K − k + 1 do {Note that this statement is null if 2k > K}

if Si−k = 1 then
Set Si ← 0

else
Set Si ← 1 with probability rk

i /(1 − rk
i−k), Si ← 0 otherwise

end if
end for
for i = 1 to K − k do

Swap the ads in slots i and i + k if Si = 1
end for
if SK−k+1 = 1 then

Choose an i ∈ {K + 1, · · · , N} to display in slot K − k + 1
end if

end for

to be run in multiple phases, interleaving exploration with updates of CTR
estimates, and allowing sufficient time for advertisers to reach a new equilibrium
after each phase.

Our assumptions raise a conceptual question: if the advertisers care about the
real CTRs, how can we maintain incentives given only estimates? We posit that
often advertisers do not know the CTRs any better than the search engine and
formulate their own optimization problem (at least approximately) in terms of
the estimates provided by the search engine; that is, we assume that c̃s

i = ĉs
i ∀i, s.

We consider the case in which advertisers have additional information about their
CTRs in Section 6.

For the analysis that follows, we assume that the search engine knows (or can
obtain good estimates of) each advertiser’s value per click. If we assume that a
SNE is played prior to exploration, we can derive bounds on advertiser values [10]
and base our estimates on these bounds. In practice, this assumption will not
be necessary; we do not actually advocate setting the swapping probabilities
separately for each individual auction, but rather fixing probabilities in such a
way that the guarantees will hold for most typical auctions.

Since all analysis in this section is for a fixed value of k, we drop the superscript
and use ri in place of rk

i to denote be the probability that ads i and i + k are
swapped. These probabilities can be represented as multiples of r1, i.e. ri = αir1.
Then, if αi are set exogenously (for example, αi = 1 for all 1 ≤ i ≤ K), k-swap
has only one tunable parameter, r1, for a fixed value of k. For convenience
of notation, we define αi = 0 for all i < 1 and i > K − k + 1. In order to
allow exploration of CTRs of all bidders, we let rK−k+1 designate the total
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probability that any losing bidder is swapped into slot K − k + 1. Let qs denote
the probability that a losing bidder with rank K + 1 ≤ s ≤ N is displayed
conditional on some losing ad being displayed.3 We have that

∑N
s=K+1 qs = 1.

Finally, define qmax = maxK+1≤s≤N qs.
Once we add exploration, the effective estimate of CTR for advertiser i in

slot s is no longer ĉs
i . Rather, now with some probability rs−k the ad in slot

s is moved to slot s − k, and with some probability rs the ad is moved to
slot s + k. Then the new effective estimate of CTR of player i for rank s is
ĉ

′s
i = (1 − rs−k − rs)ĉs

i + rs−k ĉs−k
i + rsĉ

s+k
i .4

Let Di,s = αs(ĉs
i − ĉs+k

i )−αs−k(ĉs−k
i − ĉs

i ). Observe that r1Di,s is the marginal
CTR loss of advertiser i in slot s when exploration is allowed. We now define
the quantities Ji,j and Zi which are used in Theorem 1:

Ji,j = (vi − pi
i)Di,i − (vi − pj

i )Di,j (1)
Zi = (vi − pi

i)Di,i + αK−k+1qmaxĉK−k+1
i vi. (2)

To get some intuition about what these mean, note that r1Ji,j is the differ-
ence between the marginal loss in expected payoff due to exploration that the
advertiser i receives in slot j and the marginal loss in expected payoff due to
exploration in slot i. Similarly, r1Zi is the difference between the marginal loss
in payoff due to exploration that the advertiser i receives by switching to rank
above K + 1 (and thereby not occupying any slot) and the marginal loss due to
exploration in slot i.

The following result gives the conditions under which exploration does not
incent advertisers to change their bids and characterizes the settings in which
this is not possible. The proof of this theorem and others can be found in the
appendix of the extended version of this paper.5

Theorem 1. Assume that each advertiser i ∈ {1, · · · , K} strictly prefers his
current slot to all others in equilibrium, i.e. the condition (vi−pi

i)ĉ
i
i > (vi −pj

i )ĉ
j
i

holds for all 1 ≤ i, j ≤ K, i �= j whenever Ji,j > 0 and vi − pi
i > 0 ∀i whenever

Zi > 0. Then for generic valuations and relevances there exists an r1 > 0 such
that no advertiser has incentive to deviate from the pre-exploration SNE bids
once exploration is added. In particular, any r1 satisfying the following set of
conditions is sufficient:

r1 ≤ min

{

min
2≤i≤K

1
αi + αi−k

, min
1≤i≤K;Zi>0

1
Zi

(vi − pi
i)ĉ

i
i,

min
1≤i,j≤K;i�=j;Ji,j >0

1
Ji,j

(
(vi − pi

i)ĉ
i
i − (vi − pj

i )ĉ
j
i

)
}

.

3 Thus, the probability that a particular losing bidder s gets selected is qsrK−k+1.
4 Recall that rs = 0 and ĉs

i = 0 for s < 1 and s > K − k + 1. We can replace CTR
with effective CTR because the prices paid by all advertisers remain fixed for the
duration of exploration.

5 The extended version is available on the authors’ websites.
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To get some intuition about how the theorem can be applied and about the
magnitude of r1, consider the following example.

Example 1. Suppose that there are 3 advertisers bidding on 2 slots. Let ĉj
i = ĉj

for all players i ∈ {1, 2, 3} and slots j ∈ {1, 2} where ĉ1 = 1 and ĉ2 = 0.5. Let
v1 = v2 = 3, and v3 = 1. Suppose that prior to exploration each advertiser bids
his value per click and pays the next highest bid. One can easily verify that this
configuration constitutes a SNE in which player 1 gets slot 1, player 2 gets slot
2, and player 3 gets no slot, and that in this equilibrium, player 1 is indifferent
between slots 1 and 2.

Let us fix α2 = 3/2. Now we can determine the setting of r1 that allows
us to swap neighboring ads (k = 1) without introducing incentives to deviate
during exploration. Applying the first constraint, we find the condition that
r1 ≤ 1/(1 + 3/2) = 2/5 must hold. By the second constraint, since Z1 = 11/4,
we must have r1 ≤ 4/11, and since Z2 = 7/4, we must have r1 ≤ 2/7. With our
setting of α2, J1,2 = 0 and J2,1 = −1/4 < 0. Consequently, the third constraint
on r1 has no effect. Combining the effects of these constraints, we see that we
can set the swapping probabilities as high as r1 = 2/7 and r2 = 3/7 without
giving any of the advertisers incentive to deviate during exploration.

Suppose we want to increase r1 to 2/7+ ε and thereby learn a little bit faster.
Consider the incentives of the second bidder to switch to rank 3 (i.e., receive no
slot). The utility from being ranked third is 3/7 + 3ε/2 > 3/7, while the utility
from remaining in slot two is 3/7− ε/4 < 3/7. Consequently, for any ε > 0 (and,
thus, for any r1 > 2/7) the second bidder wants to deviate from his equilibrium
bid.

A similar analysis of constraints and incentives shows that we cannot increase
α2 without decreasing r1 or altering advertiser incentives. Similarly, any attempt
to decrease α2 can destabilize the equilibrium.

As the example suggests, the bounds in Theorem 1 are close to tight. In fact,
the bounds can be made tight simply by replacing qmax with the conditional
probability with which ad i would be selected if it were not in one of the top K
ranks.

Note that we would not expect a search engine to calculate a distinct set of
swapping probabilities using Theorem 1 for each individual auction in practice.
Indeed it may not be possible for the search engine to estimate advertiser values
accurately in all cases. We instead advocate using the theorem to find a single
fixed set of swapping probabilities such that advertisers will not wish to deviate
when k-swap is run for most or all typical auctions.

5 Learning Bounds

In this section, we bound the error of our estimated click-through rates for each
advertiser in each slot after Q queries have been made on the given keyword.
Let ni,s denote the number of times we have observed advertiser i in slot s, and
let zi,s,j be the indicator random variable which is 1 if ad i is clicked the jth
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time it appears in slot s, and 0 otherwise. Finally, let πk
i,s be the probability that

ad i is displayed at slot s when we are swapping ads that are k slots apart, as
discussed in Section 4.

To simplify the presentation of results, we assume that the swapping dis-
tance k is drawn uniformly at random from {1, · · · , K} for each query, but the
extension to arbitrary distributions is straight-forward.

Theorem 2. Suppose the k-swap algorithm has been run for Q queries with a
fixed set of broadcasted CTR estimates. Let ĉs

i be our new estimate of CTR,
defined as ĉs

i = (1/ni,s)
∑ni,s

j=1 zi,s,j for all advertisers i and slots s such that
ni,s ≥ 1. Then for any δ ∈ (0, 1), with probability 1 − δ, the following holds for
all i and s for which we have made at least one observation:

|ĉs
i − cs

i | ≤
√

ln(2KN/δ)
2ni,s

.

Furthermore, with probability 1 − δ, for all i and s, we have that ni,s ≥
max{(Q/K)

∑K
k=1 πk

i,s −
√

Q ln(2KN/δ)/2, 0}.

Thus as the number of queries Q grows, our estimates of the CTR vectors for
each advertiser grow arbitrarily close to the true CTR vectors.

6 Bounds on the Incentives of “Omniscient” Advertisers

If players have much more information about the actual click-through rates than
the search engine, it is unlikely that we can entirely eliminate incentives of
advertisers to change their bids during exploration. However, if we can bound
the error in our estimates of the click-through rates, we can also bound how
much advertisers can gain by deviating. When incentives to deviate are small,
we may reasonably expect advertisers to maintain their equilibrium bids, since
computing the new optimal bids may be costly. The search engine may further
dull benefits from deviation by charging a small fee to advertisers when they
change their bids.

From this point on, we assume that the error in search engine estimates of
the CTRs is uniformly bounded by ε; that is, |cs

i − ĉs
i | ≤ ε for every i and s.

Assume that rk
1 were set such that the bidders have no incentive to change

their bids if they use ĉs
i as their CTR estimates. We now establish how much

incentive they have to deviate if they know their actual CTR cs
i , that is, c̃s

i = cs
i ;

we call such advertisers “omniscient”.

Theorem 3. The most that any omniscient advertiser can gain by deviating in
expectation per impression is max1≤i≤K 2ε(vi − pK

i ).

This bound has the intuitive property that as our CTR estimates improve, the
bound on incentives to deviate from equilibrium bids improves as well.6 It is also
6 Note that given rk

1 the actual payoffs to deviation are not affected as we learn unless
we also publicize the learned information.
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intuitive, however, that incentives diminish if the exploration probabilities fall.
This motivates the following alternate bound which shows that we can make
the incentives to deviate arbitrarily small even for omniscient advertisers by
appropriately setting rk

1 .

Theorem 4. The most that any omniscient advertiser can gain by deviating in
expectation per impression is

max
1≤i,j,k≤K

{
rk
1

(
αi(ĉi

i − ĉi+k
i ) + αj−k(ĉj−k

i − ĉj
i ) + 2ε(αi + αj−k)

) (
vi − pK

i

)}
.

7 Bounds on Revenue Loss Due to Exploration

We now assume that the advertisers play according to the symmetric Nash equi-
librium that was played prior to exploration and, as in the previous section,
assume that the errors of the search engine’s estimates of CTRs are uniformly
bounded by ε with high probability. Given these assumptions, the theorem that
follows bounds the loss in revenue due entirely to exploration.

Theorem 5. The maximum expected loss to the search engine revenue per im-
pression due to exploration is bounded by

max
1≤k≤K

{

rk
1

K∑

i=2

pi
i

(
αi(ĉi

i − ĉi+k
i ) − αi−k(ĉi−k

i − ĉi
i) + 2ε

)
}

.

8 Special Cases

In this section we study the problem of exploration while maintaining a pre-
exploration symmetric Nash equilibrium in two special cases. In both cases, it
is only necessary to swap adjacent pairs of ads in order to learn reasonable
estimates of advertiser CTRs.

8.1 Factorable Click-Through Rates

The first special case we consider is the commonly studied setting where cs
i =

eics; that is, CTRs are factored into a product of advertiser relevance and slot-
specific factors. Since there are far more data for estimating cs than ei, we assume
cs is known and ei is to be learned for all advertisers. Under these assumptions,
using k-swap may seem strange; after all, we can learn ei for all advertisers
i ≤ K just as well by leaving them in their current slots! The only problem to
be addressed then is to learn CTRs of losing bidders. Consequently, if we truly
believe that CTRs are factorable, we need only do adjacent-ad swapping (k = 1)
and can set r1 = · · · = rK−1 = 0 and only allow rK > 0. In this case, we need
not worry about deviations by advertisers in slots 1, . . . , K − 1 to alternative
slots 1, . . . , K − 1, since the effective CTRs for these deviations are unchanged.
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Additionally, no advertiser wants to deviate to slot K, since the CTR in this
slot is strictly lower than it was before exploration, and no advertiser ranked
K + 1, . . . , N wants a higher slot, since their effective CTRs increase. Thus we
need only consider the incentives of the advertiser in slot K. It is not difficult to
verify that the condition under which exploration does not affect advertiser K’s
incentives is

rK ≤ min
{

min
1≤j≤K−1

cK

(
vK − pK

K

)
− cj

(
vK − pj

K

)

cK(vK − pK
K)

,
vK − pK

K

vK(qmax + 1) − pK
K

}
,

and we can find an rK > 0 when cK(vK − pK
K) > cj(vK − pj

K) for j < K.
There is, however, another possible scenario in which exploration might be

useful under the factorable CTR assumption. Suppose that we initially posit the
factorable CTR model, but want to verify whether this is really the case. To
do so, we can use adjacent-ad swapping to form multiple estimates of ei using
data from multiple adjacent slots. By comparing these estimates, we can vet our
current model while also improving our CTR estimates for losing bidders.

Since CTR is factorable, our analysis need only consider the effective slot-
specific CTRs, which we assume are known, c′s = (1 − rs−1 − rs)cs + rs−1cs−1 +
rscs+1. Set αi =

∏i
j=2[(cj−1−cj)/(cj −cj+1)]. By setting the swapping probabil-

ities in this manner, the effective CTRs in slots 2, · · · , K−1 are unchanged when
exploration is added. We can now simplify the bounds and characterization of
Theorem 1. In particular, the precondition of the theorem and the second bound
on r1 need only to hold for i = 1. Furthermore, it can be shown that in the fac-
torable setting, the necessary precondition (v1 −p1

1)c1 > (v1 −pj
1)cj always holds

in the minimum revenue SNE [10,8,2] for generic valuations and relevances. For-
mal statements and proofs of these results are in the appendix of the extended
version.

As in the general setting, it is possible to derive learning bounds that show
that as the number of observed queries grow, our estimates of the advertiser
CTR vectors grow arbitrarily close to the true CTRs with high probability. Here
our estimates of CTR are simply ĉs

i = (cs/csini,si)
∑ni,si

j=1 zi,si,j for all i and s,
where si = arg maxs cs

√
ni,s. We once again defer the theorem statement and

proof to the appendix of the extended version due to lack of space.

8.2 Click-Through Rates with Constant Slot Ratios

In this section, we consider adjacent-ad swapping (k = 1) for the case in which
for each player i, the click-through rates have constant ratios for adjacent slots.
That is, for all i and all 1 ≤ s ≤ K−1, we assume that cs+1

i /cs
i = γi ≤ 1 where γi

is advertiser-dependent and unknown. Let γ̂i denote the search engine estimate
of γi and suppose as before that advertisers use these as their own estimates.
Let αj = 1 for every j ∈ {2, . . . , K − 1}, so r1 = r2 = · · · = rK−1. Additionally,
let αK = min{(γ̂i − 1)2/qmax, 1}.

As in the previous section, we can considerably simplify the bounds and char-
acterization of Theorem 1 in this special case. In particular, the first and second
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bounds on r1 must hold, but the third bound on r1 and the precondition need
only to hold for i = 1 and i = K.

We can also prove analogous learning bounds in this setting that show that
it is only necessary to explore via adjacent-ad swapping in order to obtain CTR
estimates for all advertisers at all slots. This can be accomplished by estimating
γi for each i as

γ̂i =
(1/ni,si+1)

∑ni,si+1

j=1 zi,si+1,j

(1/ni,si)
∑ni,si

j=1 zi,si,j

for a chosen slot si at which there is a sufficient amount of data available. The
CTR at each slot is then estimated using γ̂i and the estimate of the CTR at the
designated slot si.

Formal theorems describing the conditions on r1 necessary to maintain equi-
librium in this setting and the corresponding learning bounds can be found in
the appendix of the extended version, along with their proofs.

9 Conclusion

We have introduced an exploration scheme which allows search engines to learn
click-through rates for advertisements. We showed how, when possible, to set
the exploration parameters in order to eliminate the incentives for advertisers
to deviate from a pre-exploration symmetric Nash equilibrium. In situations
in which we cannot entirely eliminate incentives to change bids, we can make
returns to changing bids arbitrarily small. Particularly, we can make these small
enough to ensure that bid manipulation is hardly worth advertisers’ time. Finally,
we derived a bound on worst-case expected per-impression revenue loss due to
exploration. Since this loss is zero in the limit of no exploration, we can set
exploration parameters in order to make it arbitrarily small, while still ensuring
that we eventually learn click-through rates.
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Abstract. Internet search companies sell advertisement slots based on
users’ search queries via an auction. Advertisers have to determine how
to place bids on the keywords of their interest in order to maximize their
return for a given budget: this is the budget optimization problem. The
solution depends on the distribution of future queries. In this paper, we
formulate stochastic versions of the budget optimization problem based
on natural probabilistic models of distribution over future queries, and
address two questions that arise.

Evaluation. Given a solution, can we evaluate the expected value of
the objective function?

Optimization. Can we find a solution that maximizes the objective
function in expectation?

Our main results are approximation and complexity results for these two
problems in our three stochastic models. In particular, our algorithmic
results show that simple prefix strategies that bid on all cheap keywords
up to some level are either optimal or good approximations for many
cases; we show other cases to be NP-hard.

1 Introduction

Internet search companies use auctions to sell advertising slots in response to
users’ search queries. To participate in these auctions, an advertiser selects a
set of keywords that are relevant or descriptive of her business, and submits a
bid for each of them. Upon seeing a user’s query, the search company runs an
auction among the advertisers who have placed bids for keywords matching the
query and arranges the winners in slots. The advertiser pays only if a user clicks
on her ad. Advertiser’s bid affects the position of the ad, which in turn affects
the number of clicks received and the cost incurred. In addition to the bids, the
advertiser specifies a daily budget. When the cost charged for the clicks reaches
the budget, the advertiser’s ads stop participating in the auctions.
� A preliminary announcement of these results appears in the WWW Workshop on

Sponsored Search, 2007.
�� This work was done while visiting Google, Inc., New York, NY.

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, pp. 131–142, 2007.
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In what follows, we first model and abstract the budget optimization problem,
and then present our stochastic versions, before describing our results.

1.1 Advertiser’s Budget Optimization Problem

We adopt the viewpoint of an advertiser and study the optimization problem
she faces. The advertiser has to determine the daily budget, a good set of key-
words, and bids for these keywords so as to maximize the effectiveness of her
campaign. The daily budget and the choice of keywords are business-specific,
so they are assumed to be given in our problem formulation. Effectiveness of a
campaign is difficult to quantify since clicks resulting from some keywords may
be more desirable than others, and in some cases, just appearing on the results
page for a user’s query may have some utility. We adopt a common measure
of the effectiveness of a campaign, namely, the number of clicks1 obtained. Fur-
ther, seen from an individual advertiser’s point of view, the budgets and bids
of other advertisers are fixed for the day. We model a single-slot auction, and
disregard the possibility of other advertisers changing their bids or running out
of budget. Under these assumptions, each keyword i has a single threshold bid
amount, such that any bid below this amount loses the auction and does not get
any clicks. Any bid above the threshold wins the auction, and gets clicks with
cost per click equal to the threshold bid amount2. In this case the advertiser’s
decision for each keyword becomes binary: whether or not to bid on it above its
threshold. We use decision variables bi, which can be integral (bi ∈ {0, 1}) or
fractional (bi ∈ [0, 1]), to indicate whether or not there is a bid on keyword i. A
fractional bid represents bidding for bi fraction of the queries that correspond to
keyword i, or equivalently bids on each such query with probability bi. Integer
bid solutions are slightly simpler to implement and are more desirable when they
exist.

Finally, consider the effect of user behavior on the advertiser. We abstract it
using the function clicksi, which is the number of clicks the advertiser gets for
queries corresponding to keyword i. Each such click entails a cost cpci, which
is assumed to be known. Now, the advertiser is budget-constrained, and some
solutions may run out of budget, which decreases the total number of clicks
obtained. In particular, the advertiser has a global daily budget B, which is
used to get clicks for all of the keywords. When the budget is spent, the ads
stop being shown, and no more clicks can be bought. We model the limited
budget as follows. Consider a solution b that bids on some keywords. With
unlimited budget, bidding on those keywords would bring clicks(b) clicks, which
together would cost cost(b). But when the budget B is smaller than cost(b),
this solution runs out of money before the end of the day, and misses the clicks
that come after that point. If we assume that the queries and clicks for all
keywords are distributed uniformly throughout the day and are well-mixed, then
this solution reaches the budget after B/cost(b) fraction of the day passes,
1 An easy extension allows clicks for different keywords to have different values.
2 This assumes second price auctions, where the winner’s cost is the highest bid of

others. All results also apply to weighted second price auctions.
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missing (1 − B/cost(b)) fraction of the possible clicks for each keyword. As a

result, the number of clicks collected before the budget is exceeded is clicks(b)
cost(b)/B

in expectation.
Based on the discussion so far, we can now state the optimization problem an

advertiser faces.

Definition 1. Budget Optimization Problem (BO). An advertiser has a
set T of keywords, with |T | = n, and a budget B. For each keyword i ∈ T , we
are given clicksi, the number of clicks that correspond to i, and cpci, the cost
per click of these clicks. We define costi = cpci · clicksi. The objective is to
find a solution b = (b1, ..., bn) with a bid 0 ≤ bi ≤ 1 for each i ∈ T to maximize

value(b) =
∑

i∈T biclicksi

max
(
1,

∑
i∈T bicosti/B

) . (1)

The numerator of the objective function is the number of clicks available to b,
and the denominator scales it down in the case that the budget is exceeded. If
we define clicks(b) =

∑
i∈T biclicksi, cost(b) =

∑
i∈T bicosti, and the average

cost per click of solution b as cpc(b) = cost(b)
clicks(b)

, then

value(b) =

{
clicks(b) if cost(b) ≤ B

B/cpc(b) if cost(b) > B
(2)

So maximizing value(b) is equivalent to maximizing the number of clicks in case
that we are under budget, and minimizing the average cost per click if we are
over budget. We always assume that the keywords are numbered in the order of
non-decreasing cpci, i.e. cpc1 ≤ cpc2 ≤ · · · ≤ cpcn.

1.2 Stochastic Versions

Many variables affect the number of clicks that an advertiser receives in a day.
Besides the advertiser’s choice of her own budget and keywords which we take
to be given, and the choices of other advertisers which remain fixed, the main
variable in our problem is the number of queries of relevance that users issue on
that day, and the frequency with which the ads are clicked.3 These quantities are
not known precisely in advance. Our premise is that Internet search companies
can analyze past data and provide probability distributions for parameters of
interest. They currently do provide limited amount of information about the
range of values taken by these parameters.4 This motivates us to study the
problem in the stochastic setting where the goal is to maximize the expected
value of the objective under such probability distributions.
3 The nature and number of queries vary significantly. An example in Google Trends

shows the spikes in searches for shoes, flowers and chocolate:
http://www.google.com/trends?q=shoes,flowers,chocolate.

4 See for example the information provided to any AdWords advertiser. See also
https://adwords.google.com/support.
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In the stochastic versions of our problem, the set of keywords T , the budget
B, and the cost per click cpci for each keyword are fixed and given, just like in
the BO problem of Definition 1. What is different is that the numbers of clicks
clicksi corresponding to different keywords are random variables having some
joint probability distribution. But because general joint probability distributions
are difficult to represent and to work with, we formulate the following natural
stochastic models. (In contrast, the problem where clicksi are known precisely
for all i is called the fixed model from here on.)

Proportional Model. The relative proportions of clicks for different keywords
remain constant. This is modeled by one global random variable for the total
number of clicks in the day, and a fixed known multiplier for each keyword
that represents that keyword’s share of the clicks.

Independent Keywords Model. Each keyword comes with its own proba-
bility distribution for the number of clicks, and the samples are drawn from
these distributions independently.

Scenario Model. There is an explicit list of N scenarios. Each scenario speci-
fies the number of clicks for each keyword, and has a probability of occurring.
We think of N as reasonably small, and allow the running time of our algo-
rithms to depend (polynomially) on N .

The scenario model is important for two reasons. For one, market analysts often
thinkofuncertaintyby explicitly creating a set of a fewmodel scenarios, possibly at-
taching aweight to each scenario.The second reason is that the scenariomodel gives
us an important segue into understanding the fully general problem with arbitrary
joint distributions. Allowing the full generality of an arbitrary joint distribution
gives us significantmodeling power, but poses challenges to the algorithmdesigner.
Since a naive explicit representation of the joint distribution requires space expo-
nential in the number of random variables, one often represents the distribution
implicitly by a sampling oracle. A common technique, Sampled Average Approx-
imation (SAA), is to replace the true distribution D by a uniform or non-uniform
distribution D̂ over a set of samples drawn by some process from the sampling or-
acle, effectively reducing the problem to the scenario model. For some classes of
problems, see e.g. [13,7,20], it is known that SAA approximates the original distri-
bution towithin an arbitrarily small error using polynomiallymany samples.While
we are not aware of such bounds applicable to the budget optimization problem,
understanding the scenario model is still an important step in understanding the
general problem.

There are two issues that arise in each of the three stochastic models.

– Stochastic Evaluation Problem (SE). Given a solution b, can we eval-
uate E[value(b)] for the three models above? Even this is nontrivial as is
typical in stochastic optimization problems. It is also of interest in solving
the budget optimization problem below.

– Stochastic Budget Optimization Problem (SBO). This is the Budget
Optimization problem with one of the stochastic models above determining
clicksi for each i, with the objective to maximize
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E[value(b)] = E

[ ∑
i∈T biclicksi

max
(
1,

∑
i∈T bicosti/B

)

]

. (3)

The expectation is taken over the joint distribution of clicksi for all i ∈ T .

1.3 Our Results

Our results for SE and SBO problems are algorithmic and complexity-theoretic.
For SE problems, our results are as follows. The problem is straight-forward

to solve for the fixed and scenario models since the expression for the expected
value of the objective can be explicitly written in polynomial time. For the
proportional model, we give an exact algorithm to evaluate a solution, assuming
that some elementary quantities (such as probability of a range of values) can
be extracted from the given probability distribution in polynomial time. For
the independent model, the number of possibilities for different click quantities
may be exponential in the number of keywords, and the problem of evaluating a
solution is likely to be #P -hard. We give a PTAS for this case. These evaluation
results are used to derive algorithms for the SBO problem, though they may be
of independent interest.

Our main results are for the SBO problem. In fact, all our algorithms produce
a special kind of solutions called prefix solutions. A prefix solution bids on some
prefix of the list of keywords sorted in the increasing order of cost per click
(cpci), i.e., on the cheap ones. Formally, an integer prefix solution with bids bi

has the property that there exists some i∗ such that bi = 1 for all i ≤ i∗, and
bi = 0 for i > i∗. For a fractional prefix solution, there exists an i∗ such that
bi = 1 for i < i∗, bi = 0 for i > i∗, and bi∗ ∈ [0, 1]. We show:

– For the proportional model, we can find an optimal fractional solution in
polynomial time if the distribution of clicks can be described using polyno-
mial number of points; else, we obtain a PTAS. We get this result by showing
that the optimal fractional solution in this case is a prefix solution and giving
an algorithm to find the best prefix.

– Our main technical contribution is the result for the independent model,
where we prove that every integer solution can be transformed to a prefix
solution by removing a set of expensive keywords and adding a set of cheap
ones, while losing at most half of the value of the solution. Thus, some
integer prefix is always a 2-approximate integer solution. When combined
with our PTAS for the evaluation problem, this leads to a 2+ε approximation
algorithm. We also show that the best fractional prefix is not in general the
optimal fractional solution in this case.

– For the scenario model, we show a negative result that finding the optimum,
fractional or integer, is NP-hard. In this case, the best prefix solution is
arbitrarily far from the optimum.

1.4 Related Work

Together, our results represent a new theoretical study of stochastic versions
of budget optimization problems in search-related advertising. The budget
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optimization problem was studied recently [9] in the fixed model, when clicksi’s
are known. On one hand, our study is more general, with the emphasis on the
uncertainty in modeling clicksi’s and the stochastic models we have formulated.
We do not know of prior work in this area that formulates and uses our stochastic
models. On the other hand, our study is less general as it does not consider the
interaction between keywords that occurs when a user’s search query matches
two or more keywords, which is studied in [9].

Stochastic versions of many optimization problems have been considered, such
as facility location, Steiner trees, bin-packing and LP (see, for example, the sur-
vey [20]). Perhaps the most relevant to our setting is the work on the stochastic
knapsack problem, of which several versions have been studied. Dean et al. [8]
consider a version of the problem in which item values are fixed, and item sizes
are independent random variables. The realization of an item’s size becomes
known as soon as it is placed in the knapsack, so an algorithm has to select the
items one at a time, until the knapsack capacity is exceeded. In [12] and [10],
a version of the problem with fixed item values and random sizes is considered
as well, but there the goal is to choose a valuable set of items whose probabil-
ity of exceeding the knapsack capacity is small. Other authors [5,11,18,19] have
studied versions with fixed item sizes but random values. If viewed as a ver-
sion of stochastic knapsack, our problem is different from all of these in several
respects. First, there is no hard capacity constraint, but instead the objective
function decreases continuously if the cost of the keywords (which is analogous
to the size of the items) exceeds the budget (the analog of the knapsack capac-
ity). The second difference is that in our model, both the number of clicks and
the cost of the keywords (i.e. item values and sizes, respectively) are random,
but their ratio for each particular keyword (item) is fixed and known. Another
difference is that previous work on stochastic knapsack considers independent
distributions of item parameters, whereas two of our models (proportional and
scenario) have correlated variables. Furthermore, although the greedy algorithm
which takes items in the order of their value-to-size ratio is well-known and vari-
ations of it have been applied to knapsack-like problems, our analysis proving
the 2-approximation result is new.

Recently, Chakrabarty et al. [6] considered an online knapsack problem with
the assumption of small element sizes, and Babaioff et al. [2] considered an
online knapsack problem with a random order of element arrival, both motivated
by bidding in advertising auctions. The difference with our work is that these
authors consider the problem in the online algorithms framework, and analyze
the competitive ratios of the obtained algorithms. In contrast, our algorithms
make decisions offline, and we analyze the obtained approximation ratios for
the expected value of the objective. Also, our algorithms base their decisions on
the probability distributions of the clicks, whereas the authors of [2] and [6] do
not assume any advance knowledge of these distributions. The two approaches
are in some sense complementary: online algorithms have the disadvantage that
in practice it may not be possible to make new decisions about bidding every

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Stochastic Models for Budget Optimization 137

time that a query arrives, and stochastic optimization has the disadvantage of
requiring the knowledge of the probability distributions.

Also motivated by advertising in search-based auctions, Rusmevichientong
and Williamson [17] have studied the keyword selection problem, where the goal
is to select a subset of keywords from a large pool for the advertiser to choose
to bid. Their model is similar to our proportional model, but the proportions of
clicks for different keywords are unknown. An adaptive algorithm is developed
that learns the proportions by bidding on different prefix solutions, and eventu-
ally converges to near-optimal profits [17], assuming that various parameters are
concentrated around their means. The difference with our work is that we con-
sider algorithms that solve the problem in advance, and not by adaptive learning,
and work for any arbitrary (but pre-specified) probability distributions.

There has been a lot of other work on search-related auctions in the presence
of budgets, but it has primarily focused on the game-theoretic aspects [16,1],
strategy-proof mechanisms [4,3], and revenue maximization [15,14].

We discuss the fixed case first, and focus on the three stochastic models in
the following sections; in each case, we solve both evaluation and BO problems.

2 Fixed Model

For the BO problem in the fixed model, a certain fractional prefix, which is
easy to find, is the optimal solution. The algorithm is analogous to that for
the fractional knapsack problem. We find the maximum index i∗ such that∑

i≤i∗ costi ≤ B. If i∗ is the last index in T , we set bi = 1 for all keywords
i. Otherwise find a fraction α ∈ [0, 1) such that

∑
i≤i∗ costi + α · costi∗+1 = B,

and set bi = 1 for i ≤ i∗, bi∗+1 = α, and bi = 0 for i > i∗ + 1.

Theorem 1. In the fixed model, the optimal fractional solution for the BO prob-
lem is the maximal prefix whose cost does not exceed the budget, which can be
found in linear time.

The integer version of this problem is NP-hard by reduction from knapsack.

3 Proportional Model

In the proportional model of SBO, we are given qi, the click frequency for each
keyword i ∈ T , with

∑
i∈T qi = 1. The total number of clicks is denoted by a

random variable C, and has a known probability distribution p. The number of
clicks for a keyword i is then determined as clicksi = qi · C. For a specific value
c of C, let clicksc

i = qic and costc
i = cpciclicksc

i . The objective is to maximize
the expected number of clicks, given by expression (3).

Theorem 2. The optimal fractional solution for the SBO problem in the pro-
portional model is a fractional prefix solution.

The proof is by an interchange argument and is omitted. We now show how to
solve the SE problem efficiently in the proportional model, and then use it to
find the best prefix, which by Theorem 2 is the optimal fractional solution.
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3.1 Evaluating a Solution

Assuming that the distribution for C is given in such a way that it is easy to
evaluate Pr[C > c∗] and

∑
c≤c∗ c·p(c) for any c∗, we show how to find E[value(b)]

for any given solution b without explicitly going through all possible values of
C and evaluating the objective function for each one.

The solution b may be under or over budget depending on the value of C.
Define a threshold c∗ = B/

∑
i∈T biqicpci, so that for c ≤ c∗, costc(b) ≤ B,

and for c > c∗, costc(b) > B. Notice that in the proportional model, cpc(b) is
independent of C, as both clicks(b) and cost(b) are proportional to C. Then
using expression (2) for value(b), the objective becomes easy to evaluate:

E[value(b)] =
∑

i∈T

biqi

∑

c≤c∗

c p(c) +
B

cpc(b)
Pr[C > c∗]. (4)

3.2 Finding the Optimal Prefix

It is nontrivial to find the best fractional prefix solution for the proportional
case, and we mention two approaches that do not work. One of them is to set
the number of clicks for a keyword to its expectation. Another approach is some
greedy procedure that lengthens the prefix while the solution improves. This
does not work because the expected value of the solution as a function of the
length of the prefix can have multiple local maxima.

The best prefix can be found by producing a list of O(n + t) prefixes (out of
uncountably many possible ones) containing the optimum. Here t is the number
of possible values of C. If t is not polynomial in n, then the probability distribu-
tion for C can be partitioned into buckets, yielding a PTAS for the problem. The
list of prefixes to evaluate includes all the integer prefixes, as well as a threshold
prefix that exactly spends the budget for each possible value of C. This parti-
tions the space of possible prefixes into intervals, and the optimal prefix solution
inside each interval, which is also added to the list, can be found by writing an
expression for its value as a function of its length and taking a derivative.

Theorem 3. The optimal fractional solution to SBO problem in the propor-
tional model can be found exactly in time O(n + t), where t is the number of
possible values of C, or approximated by a PTAS.

4 Independent Model

In the independent model of SBO, the number of clicks for keyword i ∈ T ,
clicksi, has a probability distribution pi (which can be different for different
keywords). The key distinguishing feature of this model is that for i �= j, the
variables clicksi and clicksj are independent. This model is more complex than
the ones discussed so far. A three-keyword example shows the following.

Theorem 4. In the independent model of the SBO problem, the optimal frac-
tional solution may not be a prefix solution.
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However, in Section 4.1 we prove that some integer prefix solution is a 2-
approximate integer solution. But finding the best integer prefix requires the
ability to evaluate a given solution, which in this model is likely to be #P -
hard. We develop a PTAS, based on dynamic programming, for evaluating a
solution (the algorithm is omitted). Combined, these two results imply a (2+ε)-
approximation for the SBO problem in the independent model.

4.1 Prefix is a 2-Approximation

In this section we show that for any instance of the SBO problem in the inde-
pendent model, there exists an integer prefix solution whose expected value is at
least half that of the optimal integer solution. In particular, any integer solution
b can be transformed into a prefix solution bV without losing more than half of
its value. Let S = {i | bi = 1} be the set of keywords that b bids on.

We make some definitions that allow us to specify the prefix solution bV

precisely in Theorem 5. Let σ be the event that clicks for each keyword i ∈ T
come in quantity clicksσ(i). Then its probability is p(σ) =

∏
i∈T pi(clicksσ(i)).

Define the number of clicks available to solution b in the event σ as clicksσ(b) =∑
i∈S clicksσ(i), corresponding cost per keyword costσ(i) = cpci · clicksσ(i),

and total cost costσ(b) =
∑

i∈S costσ(i). The effective number of clicks (taking
budget into account) that solution b gets from keyword i in the event σ is

clicks
σ

S(i) =
clicksσ(i)

max(1, costσ(b)/B)
,

and the total effective number of clicks is clicks
σ
(b) =

∑
i∈S clicks

σ

S(i). Then
the objective becomes the sum of effective number of clicks in each scenario,
weighted by that scenario’s probability: E[value(b)] =

∑
σ p(σ)clicks

σ
(b).

Let i∗(b) be the minimum index i∗ such that keywords up to i∗ account for
half the clicks:

∑

σ

p(σ)
∑

i∈S,i≤i∗

clicks
σ

S(i) ≥ 1
2

E[value(b)].

Theorem 5. For any integer solution b to the SBO problem with independent
keywords, there exists an integer prefix solution bV such that E[value(bV )] ≥
1
2 E[value(b)]. In particular, the solution bV bidding on the set V = {i | i ≤
i∗(b)} has this property.

The idea of the proof is to think of the above prefix solution as obtained in
two steps from the original solution b. First, we truncate b by discarding all
keywords after i∗. Then we fill in the gaps in the resulting solution to make it
into a prefix. To analyze the result, we first show that all keywords up to i∗ are
relatively cheap, and that the truncated solution (called bU ) retains at least half
the value of the original one (Proposition 1). Then we show that filling in the
gaps preserves this guarantee. Intuitively, two good things may happen: either
clicks for new keywords don’t come, and we get all the clicks we had before; or
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many of them come, spending the budget, which is good because they are cheap.
Lemma 1 analyzes what happens if new clicks spend ασ fraction of the budget.

Let i∗ = i∗(b). To analyze our proposed prefix solution bV , we break the set V
into two disjoint sets U and N . U = V ∩S = {i ≤ i∗ | i ∈ S} is the set of cheapest
keywords that get half the clicks of b. The new set N = V \S = {i ≤ i∗ | i /∈ S}
fills in the gaps in U . Let bU and bN be the solutions that bid on keywords in
U and N respectively.

Define the average cost per click of solution b as

cpc∗ =
∑

σ p(σ)
∑

i∈S cpci clicks
σ

S(i)
∑

σ p(σ) clicks
σ
(b)

,

where the numerator is the average amount of money spent by b, and the denom-
inator is the average number of clicks obtained. Since the numerator of this ex-
pression never exceeds the budget, and the denominator is equal to E[value(b)],

E[value(b)] ≤ B

cpc∗
. (5)

We make two observations about bU and i∗, and then state the main lemma.

Proposition 1. E[value(bU )] ≥ 1
2E[value(b)] and cpci∗ ≤ 2cpc∗.

Lemma 1. For any σ, let ασ = min(B, costσ(bN ))/B. Then

clicks
σ
(bV ) ≥ ασ B

2cpc∗
+ (1 − ασ) clicks

σ
(bU ).

The idea here is that ασ is the fraction of the budget spent by the new keywords
(ones from set N) in the event σ. So (1−ασ) fraction of the budget can be used
to buy (1 − ασ) fraction of clicks that bU was getting, and ασ fraction is spent
on keywords (whether from U or N) that cost at most 2cpc∗.
Proof of Theorem 5. We now use the above results to prove the theorem. Let σU

be the event that clicks for each keyword i ∈ U come in quantity clicksσU (i),
whose probability is p(σU ) =

∏
i∈U pi(clicksσU (i)). Here the independence of

keywords becomes crucial. In particular, what we need is that the number of
clicks that come for keywords in U is independent of the number of clicks for
keywords in N . So the probability of σV is the product of p(σU ) and p(σN ),
where σV is the event that both σU and σN happen. Notice that ασ of Lemma
1 depends only on keywords in N , and is independent of what happens with
keywords in U . So here we call it ασN . We have E[value(bV )] =

�
σV

p(σV )clicks
σV (bV ) ≥

�
σN

�
σU

p(σN)p(σU )

�
ασN B

2cpc∗ + (1 − ασN )clicks
σV (bU )

�
=

�
σN

p(σN)

�
�ασN B

2cpc∗ + (1 − ασN )
�
σU

p(σU)clicks
σV (bU )

�
� ≥

�
σN

p(σN)
1

2
E[value(b)]
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= 1
2 E[value(b)], bounding both B

2cpc∗ and E[value(bU )] by 1
2E[value(b)] using

inequality (5) and Proposition 1. ��
Combining Theorem 5 with PTAS for the SE problem, we get

Theorem 6. There is a (2 + ε)-approximation algorithm for the SBO problem
in the independent model, which runs in time polynomial in n, 1

ε , and log M ,
where M is the maximum possible cost of all clicks.

5 Scenario Model

In the scenario model, we are given T , B and costs cpci as usual. The numbers
of clicks are determined by a set of scenarios Σ and a probability distribu-
tion p over it, so that a scenario σ ∈ Σ materializes with probability p(σ), in
which case each keyword i gets clicksσ

i clicks. The scenarios are disjoint and∑
σ∈Σ p(σ) = 1. The reason this model does not capture the full generality of

arbitrary distributions is that we assume that the number of scenarios, |Σ|, is
relatively small, in the sense that algorithms are allowed to run in time polyno-
mial in |Σ|. This is the most difficult model for SBO that we consider. We give
two negative results.

Theorem 7. The SBO problem is NP-hard in the scenario model.

Theorem 8. The gap between the optimal fractional prefix solution and the op-
timal (integer or fractional) solution to the SBO problem in the scenario model
can be arbitrarily large.

6 Concluding Remarks

We have initiated the study of stochastic version of budget optimization. We
obtained approximation results via prefix bids and showed hardness results for
other cases. A lot remains to be done, both technically and conceptually. Tech-
nically, we need to extend the results to the case when there are interactions
between keywords, that is, two or more of them apply to a user query and
some resolution is needed. Also, we need to study online algorithms, including
online budget optimization. Further, we would like to obtain some positive ap-
proximation results for the scenario model, which seems quite intriguing from
an application point of view. The conceptual challenge is one of modeling. Are
there other suitable stochastic models for search-related advertising, that are
both expressive, physically realistic and computationally feasible?
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Abstract. We consider the problem of designing auctions with worst case
revenue guarantees for sponsored search. In contrast with other settings,
ad dependent clickthrough rates lead to two natural posted-price bench-
marks. In one benchmark, winning advertisers are charged the same price
per click, and in the other, the product of the price per click and the adver-
tiser clickability (which can be thought of as the probability an advertise-
ment is clicked if it has been seen) is the same for all winning advertisers.
We adapt the random sampling auction from [9] to the sponsored search
setting and improve the analysis from [1], to show a high competitive ra-
tio for two truthful auctions, each with respect to one of the two described
benchmarks.However, the two posted price benchmarks (and therefore the
revenue guarantees from the corresponding random sampling auctions)
can each be larger than the other; further, which is the larger cannot be
determined without knowing the private values of the advertisers. We de-
sign a new auction, that incorporates these two random sampling auctions,
with the following property: the auction has a Nash equilibrium, and every
equilibrium has revenue at least the larger of the revenues raised by run-
ning each of the two auctions individually (assuming bidders bid truthfully
when doing so is a utility maximizing strategy). Finally, we perform simu-
lations which indicate that the revenue from our auction outperforms that
from the VCG auction in less competitive markets.

1 Introduction

We address the problem of designing auctions with revenue guarantees in the
sponsored search setting. This problem is crucial for search engines, most of
which rely heavily on sponsored search for revenue. The efficient auction in this
setting, namely VCG [21,5,10,6,15], and the current mechanism used for spon-
sored search, namely GSP [6,20] (of which the VCG outcome is an equilibrium
[6]), do not provide revenue guarantees. In fact, the revenue from VCG can be
arbitrarily bad compared to the optimal revenue with full knowledge of bidder
valuations, as the footnote shows1. Our simulations indicate that the revenue
1 This is shown by the following (extreme) example. Suppose there are k slots and

k + 1 bidders, where k of these bidders have value per click 1, and one bidder has a
value per click of ε. Each of these ads has a clickthrough rate of c in every slot. Under
VCG, the k bidders with the highest values are assigned slots, and every bidder pays
his negative externality, which in this case is εc. So the revenue extracted by VCG
is εck, which can be arbitrarily small compared to the optimal revenue which is ck.

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, pp. 143–154, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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from the VCG outcome can be particularly small in less competitive yet realistic
markets, where there are not many bidders with similar values for the keyword.

Can we ensure revenue guarantees even in markets with less competition?
The metric we use to gauge the performance of an auction is the revenue that
could be raised by an optimal omniscient posted price auction (the auction that
raises the optimal revenue if the auctioneer knows the true valuations of all
bidders and charges every winner the same price). The competitive ratio is the
worst case ratio, over all possible inputs, between the revenue of an optimal
omniscient posted price auction and the revenue of the proposed auction.

The main challenge in applying competitive analysis to our setting is to in-
corporate the existence of multiple posted price benchmarks arising from the
structure of clickthrough rates. As in [6,2], we model clickthrough rates as sepa-
rable, i.e., the probability that a particular ad in a particular slot is clicked can
be broken down into two probabilities. First is the slot-clickability, which can be
thought of as the probability that the user will look at the displayed advertise-
ment (the higher the slot placement, the more likely it is that the user will see
the ad). The second is the ad-clickability, which can be thought of as the bidder
dependent probability that the advertisement will be clicked, given that it has
been seen. While the basic component of our mechanism is a random sampling
auction as in [9], there are now two natural posted-price benchmarks depending
on whether or not advertisers are discounted for their clickabilities: the optimal
omniscient single-price revenue where all winning advertisers must be charged
the same price per click, and the optimal omniscient ’weighted-price’ revenue,
where all winning advertisers are charged the same price per sighting, i.e., the
product of price per click and ad-clickability is the same for all winning advertis-
ers. These two benchmarks are the natural posted-price analogs of two charging
schemes that have been used in practice: charge an advertiser the bid-per-click of
the bidder below him, or discount the bidder proportional to his ad-clickability,
i.e., divide the bid per click of the advertiser below by the ad-clickability of the
bidder being charged.

Although our work is motivated by sponsored search, it is also applicable in
other settings where the probability of a successful event is the product of the
probability of two separate events: one event based on factors that depend on the
allocation, and the other event based on bidder dependent factors. For example,
an airport manager may want to auction off a set of vendor sites. One event
is that a potential customer walks past a site, and this event depends on the
particular location of the site within the airport (i.e. the allocation). The other
event is that the potential customer walking past the site will actually enter the
site, and this event depends on factors related to the bidder occupying the site
such as attractiveness of the site and brand familiarity.

The main contribution of our paper is a mechanism with a Nash equilibrium
that raises revenue competitive against both the single price and weighted price
benchmarks. To do this, we first adapt the random sampling auction to obtain
two auctions, each with revenue guarantees against one of the two benchmarks.
The contribution here is improving an existing analysis of the random sampling
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auction by a factor 2, in addition to an analysis of the random sampling approach
in the sponsored setting, accounting for advertiser and slot clickabilities.

The two random sampling auctions are then used as building blocks for a single
auction with Nash equilibria that raises revenue at least as large as that raised by
each of the two random sampling auctions independently; further, if bidders bid
their true value whenever that belongs to the set of utility maximizing strategies,
every Nash equilibrium of the auction raises this high revenue. This is significant
for the following reason. As we show in Section 2, either of these two benchmarks
can be larger than the other: the optimal weighted price revenue can be as
small as a factor O(log k) of the optimal single price revenue, and the optimal
single price revenue can be as small as a factor 1/k of the optimal weighted
price revenue. In addition, which benchmark is larger cannot be determined
without knowing the private values of the bidders. One significant challenge in
designing an auction competitive against both benchmarks is that the same
bidders participate in both auctions and can have higher utility in one or the
other. Despite the presence of such bidders, we find that there is a way to always
raise revenue competitive with both benchmarks. While the auction is no longer
truthful, every Nash equilibrium of the auction has this competitive property.

We also perform numerical simulations to compare the performance of our auc-
tion against that of the VCG auction. In crowded markets with a large amount of
competition, both auctions achieve a large fraction of the optimal revenue, and
the VCG auction obtains more revenue than the competitive auction. However,
as the market becomes less competitive and both auctions achieve a smaller frac-
tion of the optimal revenue, the competitive auction overtakes the VCG auction.
Our findings that the competitive auction produces more revenue than the VCG
alternative in more challenging situations (i.e., less competitive markets) is in
keeping with our analytical framework, as competitive auctions are designed to
perform well in worst case settings.

Related work: The classical work of Myerson [17,15] discusses the design of
revenue-maximizing auctions in the Bayesian setting. Roughgarden and Sun-
dararajan [19] show that in the Bayesian setting, the VCG mechanism applied
to sponsored search auctions obtains higher revenue in more competitive mar-
kets. Edelman and Schwarz [7] explore setting reserve prices to increase revenues.
The authors in [13] study how to use ad-clickabilities in ranking and pricing
to improve revenue. In terms of competitive analysis for auctions, the random
sampling approach was first proposed in [9], and has since been used in several
problems and contexts, see for example [14,4,11]. Finally, there are several papers
that combine multiple auctions into a single auction [3,16,1]. In [3], the gener-
alized auction uses two successive auctions to create an auction that is truthful
while maintaining the competitive ratio; this composition does not apply in our
context.

1.1 Model

Our model is the following. There are n bidders competing for k slots. Each
bidder has a private valuation for a click, vi. We order bidders by value, i.e.,
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v1 ≥ . . . ≥ vn. Every slot-bidder pair has a clickthrough rate cij associated with
it, which is the probability that the advertisement of bidder i in slot j is clicked.
We assume that this clickthrough rate is separable, i.e., cij = μiθj , where we
refer to μi as the ad-clickability of bidder i, and θj as the slot-clickability of slot
j. The separability assumption is equivalent to saying that the events of clicking
on a particular ad (regardless of which slot it is displayed in) and a particular
slot (regardless of which ad is displayed in it) are independent. Although this
assumption is not always entirely accurate, analysis shows it is often reasonable
[22], and it has been widely adopted in the literature [2,6,18,12]. We assume
that the ad-clickabilities μi and slot-clickabilities θi are public knowledge (for
our results in §3, we only need μi and θi to be known to the seller). We assume
that the clickabilities of the slots decrease with position, i.e., θ1 ≥ θ2 ≥ . . . ≥ θk.
We define Θi to be the sum of the clickabilities of the top i slots. Precisely,
Θi =

∑i
j=1 θj . We denote by bi the bid of bidder i, and the price charged to

bidder i in an allocation by pi. The auction mechanism takes the bids bi, and
computes an allocation x and pricing p, where xi = j if bidder i is assigned to
slot j, and is 0 if bidder i is not assigned a slot; pi is the price that bidder i pays
for every click he receives in his slot. For a bidder i, we define wi = viμi, which
is the expected value to the bidder from a slot with clickability θj = 1. By the
separability assumption, the expected value to bidder i in a slot with clickability
θj is wiθj .

2 Optimum Pricing Solutions

The previous work on digital goods auctions uses as a benchmark the optimal
multi-price and optimal single price revenues [11,9,1]. In this section, we extend
these concepts to our problem, introducing a new benchmark, optimal weighted
price revenue, and bound these benchmarks against each other. While current
auctions do not sell clicks in different slots at the same price, a single price (or
single weighted price) per click is still meaningful when interpreted as a common
reserve price for all slots.

Definition 1. Multi-price optimal (OPTMP ): The multi-price optimal revenue,
OPTMP , is the maximum possible revenue that can be extracted with k slots,
when the true values of all bidders are known. Let wi(j) denote the jth largest
value in w, then

OPTMP =
min(n,k)∑

j=1

wi(j)θj . (1)

We denote by OM the set of bidders that are assigned slots in this allocation.

Definition 2. Single price optimal (OPTSP ): The single price optimal revenue
OPTSP is the maximum revenue that can be extracted with k slots, when the
true values of all bidders are known, and every bidder assigned to a slot must be
charged the same price per click. Here p ≤ k items are sold at a single price vp,
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where the single price is chosen to maximize revenue. Let μp
i(j) be the jth largest

μi of bidders with values vi ≥ vp. Then, OPTSP is computed as

OPTSP = max
p=1,...,min(n,k)

vp

p∑

j=1

μp
i(j)θj . (2)

We denote the set of bidders contributing positive revenue to OPTSP as OS.

Unlike in settings without ad-clickabilities, the optimal single price here is not
necessarily limited to one of the values v1, . . . , vk – the optimal single price can
be any of the values v1, . . . , vn. (If vi ≥ vj implies μi ≥ μj , however, vp is clearly
greater equal vk).

Definition 3. Weighted price optimal (OPTWP ): The weighted price optimal
revenue OPTWP is the maximum revenue that can be extracted with k slots,
when the true values of all bidders are known, and every bidder assigned to a
slot is charged a price inversely proportional to his clickability, i.e., such that
piμi is constant. OPTWP is computed as follows: sort the w in decreasing order,
and choose an index r ≤ k that maximizes the revenue when every bidder with
wi ≥ wr contributes wr to the revenue, i.e.,

OPTWP = wrΘr = max
j=1,...,min(k,n)

wi(j)Θj . (3)

Every bidder who is allocated a slot pays a price pi = wr

μi
≤ wi

μi
= vi. We

denote the set of bidders contributing positive revenue to OPTWP as OW .

Note that when all ad-clickabilities μi are equal, the weighted price and single
price revenues are exactly the same. We will sometimes use OPTWP (S) and
OPTSP (S) to denote the optimal weighted price and single price revenues for a
set of bidders S.

The OPTWP benchmark is attractive for several reasons. It seems natural to
give a discount to bidders that bring the auction most value; this is the prominent
framework in both theory (VCG, and GSP) and in practice (Google and Yahoo!
charge bidders proportional to ad-clickabilities). In addition, Theorems 4 and 5
show that OPTMP is at most Hk times as large as OPTWP , as opposed to k
times as large as OPTSP . We also point out that when |OS | = |OW |, then the
competitive ratio against OPTSP is worse than the competitive ratio against
OPTWP .

But a further examination of Theorem 2 below will indicate that, in fact,
weighted prices are not clearly superior to charging a single price. As we would
anticipate, in practice it is often the case that value and ad-clickability are corre-
lated, since the ultimate goal is to match the user with a relevant advertisement.
We can think of the ad-clickability and the value as both being increasing func-
tions of the quality of the user-advertisement match. Since in this case we always
have OPTSP ≥ OPTWP , it is quite common for single prices to provide better
revenue than weighted prices.
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The following example shows how OPTSP or OPTWP can be larger: suppose
θi = 1 for all slots, and ad-clickabilities are μ1 = 12, μ2 = 6, μ3 = 4, μ4 = 3. If
the bidders valuations are v = (1, 1, 1, 1), then OPTSP = 25, and OPTWP =
12. However if the values are v = (1/12, 1/6, 1/4, 1/3), then OPTSP = 13/6
which is less than OPTWP = 4. Notice that which of OPTSP and OPTWP has
larger revenue cannot be determined without knowing the true valuations of the
bidders. We now show some theoretical results about how OPTSP and OPTWP

are related.

Theorem 1. The optimal single price and weighted price revenue are related as
follows: 1

kOPTWP ≤ OPTSP ≤ HkOPTWP .

Theorem 2. Suppose clickabilities decrease with values, i.e., vi ≥ vj implies
μi ≥ μj. Then, the optimal single price revenue is greater equal the optimal
weighted price revenue.

Finally we show that OPTSP and OPTWP are close to each other when the
clickabilities of winning bidders are not very different.

Theorem 3. Let μmax and μmin be the largest and smallest clickabilities of
bidders in OS ∪ OW . Then μmin

μmax
OPTWP ≤ OPTSP ≤ μmax

μmin
OPTWP .

Bounding Against OPTMP : We now relate OPTWP and OPTSP to OPTMP .
Note that while the worst case bounds for both benchmarks are large, the results
in Theorem 3 and 4 show that when the top k bidders values for slots is not very
widely different, these benchmarks are quite close to OPTMP .

Theorem 4. OPTMP ≤ kOPTSP , and this bound is tight.

However, when clickthrough rates are bidder independent (i.e., μi = 1), the
optimal single-price revenue can be no smaller than a factor O(log k) of the
optimal multi-price revenue. This follows directly from the next result since in
this case OPTWP = OPTSP .

Theorem 5. OPTMP ≤ HkOPTWP , where Hk = 1 + 1
2 + . . . + 1

k . This bound
is tight.

While these theorems show that OPTSP and OPTWP can be quite small com-
pared to the multiprice optimal, when bidders’ valuations are more consistent,
OPTSP and OPTWP are quite close to OPTMP , as shown in the following
theorems.

Theorem 6. Let vmax be the largest, and vmin be the smallest value of the bid-
ders contributing to OPTMP . Then OPTMP ≤ (vmax/vmin) OPTSP .

Note here that vmax and vmin are values from OPTMP , and need not be the
largest and smallest values from the entire set of bidders (i.e., not necessarily v1
and vn). A nearly identical argument can be used to show

Theorem 7. Let wmax be the largest, and wmin be the smallest revenues of the
bidders contributing to OPTMP . Then OPTMP ≤ (wmax/wmin)OPTWP .
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3 Auctions Competitive Against a Single Benchmark

In this section we describe two truthful auctions that are competitive against the
optimal single price and weighted price revenues. The two competitive auctions
use versions of ProfitExtract from [9]. Given a set of bidders S and a revenue
R, ProfitExtractRWP is an incentive compatible auction that extracts revenue
R using weighted pricing, if OPTWP (S) ≥ R. Given a set of bidders S and a
revenue R, ProfitExtractRSP is an incentive compatible auction that extracts
revenue R using single pricing, when possible.

Mechanism competitive with OPTWP : An auction mechanism MWP which
has high competitive ratio with respect to OPTWP follows. We assume revenues
are calculated to some finite precision, and choose ε > 0 to be small compared
with this precision.

Mechanism MWP

1. Partition bidders independently and uniformly at random into subsets S1 and S2.
2. Compute R1 = OPTWP (S1) − ε, and R2 = OPTWP (S2) + ε.
3. Run ProfitExtractR1

WP on the bidders in S2, and ProfitExtractR2
WP with the

bidders in S1.

A straightforward application of the analysis from [9] provides at most a
guarantee of two, because the revenue extracted is the lesser of the random
division of contributions to the optimum. Our setting has a unique structure
which allows us to improve upon this guarantee: clickthrough rates are decreasing
with respect to rank. The performance of MWP depends on the bidder dominance
with respect to participants (i.e., the inverse of the number of participants), and
the drop-off rate of the slot-clickabilities. We show that the revenue from MWP is
at least a factor 1/4 of OPTWP , and approaches optimal as the bidder dominance
decreases and the drop-off in slot-clickabilities becomes steep:

Theorem 8. MWP is truthful, and has competitive ratio βWP = θ̄r

g(αW P )θ̄�r/2�

with respect to OPT 2
WP (the optimal weighted price auction selling at least two

items), where g(αWP ) ≥ 1/4, and g(αWP ) → 1/2 as αWP → 0.

Here θ̄m = Θm/m is the average clickability for the top m slots. (Since the θ
are decreasing, θ̄m decreases as m increases, i.e., as we average over more slots.)
The bidder dominance, αWP , is defined as αWP = 1/r where r = |OW | is the
number of slots sold in OPTWP . The function g(x) = x� 1

x�
(

1
2 −

(� 1
x�−1
� 1

2x �
)
2−� 1

x �
)
,

and lies between 1/4 and 1/2 for x ≤ 1/2. That is, the value of βWP is roughly
the product of two values: one value starts at 2 and tends to 1 as the number of
bidders in the optimum solution increases, the other value is the sum of all slot
clickabilities, divided by the sum of the largest half of the slot clickabilities, and
always lies between 1 and 2.

Mechanism competitive with OPTSP : Next we describe and analyze a mech-
anism which is competitive with respect to OPTSP . An application of previous
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results [1,9] gives an auction that approaches a competitive ratio of 4 as the
bidder dominance decreases. We give a new proof that tightens previous analy-
sis and allows us to achieve a competitive ratio of 2 (this also improves on the
results in [1]). We define bidder dominance in the context of single price, to be
the largest advertiser clickability in the optimum solution divided by the sum
of advertiser clickabilities in the optimum solution. Then, we provide an analy-
sis showing that as the CTRs become more steep, and the bidder dominance
approaches 0, the competitive ratio approaches 1.

Recall that OS is the set of bidders contributing positive revenue to OPTSP ,
p = |OS | and the optimal single price is vp. Define the average clickability of bid-
ders in OS as μ̄ =

∑
i∈OS

μi/p, and the bidder dominance αSP =μmax/
∑

i∈OS
μi

where μmax is the largest clickability of bidders in OS . The smallest value of
αSP with p bidders in the optimal single price solution is 1/p, when all bid-
ders have the same clickability. (Note that this bidder dominance depends both
on bidders’ values (which are implicitly present in αSP through p), and the
clickabilities of the bidders in OS .) Define a second bidder dominance para-
meter α′

SP = θ1μmax/
∑

i∈OS
θjμi(j). Observe that since the θ are decreasing,

αSP ≤ α′
SP , with equality when all the θi are equal.

We prove that the mechanism below achieves near optimal revenue as αSP →
0, and the slot clickabilities decrease steeply enough. The competitive ratio also
shows that the revenue is always greater than 1

4 when at least two items are
sold.

Mechanism MSP

1. Partition bidders independently and uniformly at random into subsets S1 and S2.

2. Compute R1 = OPTSP (S1) − ε and R2 = OPTSP (S2) + ε.

3. Run ProfitExtractR1
SP on the bidders in S2, and ProfitExtractR2

SP with the bid-
ders in S1.

Theorem 9. MSP is truthful, and has competitive ratio

βSP = max

(
pθ̄pαSP

g(αSP )θ̄p− 1
2αSP

,
1

g(α′
SP )

)

,

against OPTSP when αSP ≤ 1/2, where 1
2 ≤ 1

2αSP
≤ p

2 , and g(x) is as defined
earlier.

The first term in the max is the product of three values. The first is the largest
ad clickability divided by the average ad clickability. The second is the average
slot clickability, divided by the average slot clickability of a portion of the largest
slot clickabilities (at least the half largest). The last value is at least 1/4 and
approaches 1/2 as the bidder dominance decreases (here, bidder dominance is
measured by ad-clickabilities and is assumed to be at most 1/2).
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4 An Auction Competitive Against Multiple Benchmarks

In this section, we describe a mechanism with high revenue guarantees against
both the single price and weighted price benchmarks. To do this, we use the
two random-sampling auctions from §3 that have high competitive ratio against
OPTSP and OPTWP respectively. We combine these two auctions to derive a
single auction with a Nash equilibrium that raises revenue at least that raised
by each of the individual random-sampling auctions.

As we saw in §2, for a particular set of values and clickabilities (vi, μi), either
the optimum weighted price revenue OPTWP or optimum single price revenue
OPTSP could be larger. However, which of the two is actually larger cannot be
determined without knowing the true values of the bidders. Of course, we can
combine the two auctions using randomization into a single truthful auction that
raises expected revenue 1

2 (OPTSP /βSP + OPTWP /βWP ). To achieve a revenue
that is the better of the two auctions, we break from truthful mechanism design
and instead design an auction with equilibria (which we show always exist) such
that the revenue raised is at least the larger of the revenues that would be raised
by the auctions MWP and MSP . The resulting equilibrium analysis framework
for the random sampling approach is more robust and malleable. (We point
out that the revelation principle does not apply in our setting; also, bidding
truthfully is not necessarily an equilibrium strategy.)

Mechanism MC

1. Partition the bidders randomly into two sets A and B, announce the partition,
and collect bids from all bidders.

2. Compute RA = max(OPT A
SP , OPT A

WP ), and
RB = max(OPT B

SP , OPT B
WP ) using the reported bids.

3. Run ProfitExtractRB

SP on the bidders in A; if the auction fails to raise revenue

RB, run ProfitExtractRB

WP . Do the same for the bidders in B.
4. If RA = RB, then items are only assigned to bidders in partition A.

In what follows, we will use RA∗
to denote the value of RA when every bidder

bids his true value (similarly for RB, OPT A
SP , OPT A

WP , OPT B
SP , and OPT B

WP ).

Theorem 10. There always exists an equilibrium solution with revenue at least

R = min(max(OPT A∗

SP , OPT A∗

WP ), max(OPT B∗

SP , OPT B∗

WP )).

Further, if bidders bid their true value whenever bidding truthfully belongs to
the set of utility maximizing strategies, every Nash equilibrium of MC has this
property.

For a particular partition of the bidders into A and B, the revenue extracted
by MSP is RSP = min(OPT A∗

SP , OPT B∗

SP ), and the revenue extracted by MWP

is RWP = min(OPT A∗

WP , OPT B∗

WP ). From Theorem 10, the revenue extracted
by the auction MC is greater equal max(RWP , RSP ). Taking the expecta-
tion over random partitions, we see that the expected revenue from MC is
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max(βpOPTSP , βrOPTWP ). (Note that MC is actually stronger, since we obtain
the larger revenue of MWP and MSP for every partition, not just in expectation
over partitions.)

5 Simulation Results

In this section we discuss our simulation results. We draw bidder valuations
from a lognormal distribution with increasing variance and unit mean. This dis-
tribution has been used previously [7] and also fits the distribution observed
in practice. For our simulations, we used n = 50 bidders, k = 12 slots, and
ad-clickabilities μi proportional to vi. Each point plotted in a figure is obtained
by averaging over 800 draws of bidder valuations from a lognormal distribu-
tion of the corresponding variance and unit mean. We use two sets of vectors
for the slot clickabilities θ. We call slot clickabilities with θi = 0.7i Geometric
Slot-clickabilities. This distribution for slot clickabilites is in keeping with [8].
When several advertisements are shown at the top of the page and others shown
along the right hand side, the slot clickabilities tend to be significantly larger
for advertisements shown along the top. To model this situation, we use a set of
Sharp Geometric Slot-clickabilities, where the first four slots (presumably shown
along the top), decrease by a factor of .85, starting from .85, and the remaining
slots along the east, starting from .4, decrease by a factor of .4. We also point
out that because ad-clickabilities have the same ordering as the bid values, due
to Theorem 2, the revenue of a Nash equlibria using Mechanism MC equals the
revenue extracted using Mechanism MSP .

The general shape of the two graphs in Figure 1 follow a similar pattern. For
σ = 0, there is no variance in the bids and both algorithms achieve the revenue
of the optimal multi-price solution. Initially, the variance of the bids is small,
and the VCG auction outperforms the combined auction. As the variance in the
bid values begin to diverge more sharply, the combined mechanism outperforms
VCG. VCG revenue decreases dramatically as the bid values become more var-
ied and every individual’s bid value more distinctive, since the externalities a
bidder imposes on others decreases (externalities measure, to some degree, how
’replaceable’ a bidder is). We can also think of highly varied bid values as a less
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Fig. 1. Revenue versus Variance of Bidder Valuations Drawn from a Log-normal Dis-
tribution: Geometric (Left) and Sharp Geometric (Right) Clickabilities
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competitive market. If a single bidder’s value lies far away from others, it does
not have to fight other contenders off for his position: it is clear who the winners
should be and there is not much competition for the clicks.

It is often difficult to design incentive compatible auctions for markets with
little competition. Truthful auctions rely on bids other than bi to set values
for bidder i. When there is a lot of variance in the bids, choosing a reasonable
price is more challenging. This can be seen by observing Figure 2. The multiprice
optimum shoots up, relative to both algorithms, as the bidder variance increases.
This suggests that both algorithms have difficulty obtaining revenue in these
situations. The simulations corroborate the findings in Theorem 6, which prove
analytically that the tighter the range of bidder vales, the higher the performance
guarantee. Since the combined mechanism is designed to do well in a worst case
setting, it is not surprising that its performance improves relative to VCG exactly
when maintaining a minimal amount of revenue in the face of a challenging
situation (i.e., non-competitive market) is encountered.

Figure 1 highlights how the steepness of slot-clickabilities impacts the algo-
rithms’ revenues. There is very little difference in the curve for the VCG mech-
anism when the slot clickabilities are steeper. However, the improvement for
the combined mechanism is more noticeable, outperforming VCG earlier and by
a larger margin. This is consistent with our analysis, which indicates that the
auction will perform better as the steepness in slot clickabilities increases.

Acknowledgements. We are very grateful to Andrei Broder, Ravi Kumar, Ofer
Mendelevitch and Michael Schwarz for helpful discussions.
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Abstract. We analyze symmetric pure strategy equilibria in dynamic
sponsored search auction games using simulations by restricting the
strategies to several in a class introduced by Cary et al. [1]. We show
that a particular convergent strategy also exhibits high stability to de-
viations. On the other hand, a strategy which yields high payoffs to all
players is not sustainable in equilibrium play. Additionally, we analyze
a repeated game in which each stage is a static complete-information
sponsored search game. In this setting, we demonstrate a collusion strat-
egy which yields high payoffs to all players and empirically show it to be
sustainable over a range of settings.

1 Motivation

Much progress has been made in modeling sponsored search auctions as one-
shot games of complete information, in which the players’ values per click and
click-through-rates are common knowledge. A typical justification for such an
approach is the abundance of information in the system, since the advertisers
have ample opportunity to explore, submitting and resubmitting bids at will.
As the complexity of modeling the full dynamic game between advertisers that
is actually taking place is quite intractable, static models provide a good first
approximation. However, it ultimately pays to understand how relevant the dy-
namics really are to strategic choices of players.

One question which has been addressed in the dynamic setting is whether it
is reasonable to expect simple dynamic strategies to converge to Nash equilib-
ria. Cary et al. [1] explored several greedy bidding strategies, that is, strategies
under which players submit bids with the goal of obtaining the most profitable
slot given that other players bids are fixed. One of these strategies, balanced
bidding, was shown to provably converge to a minimum revenue symmetric Nash
equilibrium of the static game of complete information, which happens to be
particularly analytically tractable and has therefore received special attention

� This work was done while the author was at Yahoo! Research.
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in the literature [9,6,2]. Similar questions, particularly in the context of pools of
vindictive agents, have been studied by Liang and Qi [7].1

Convergence of dynamic bidding strategies is only one of many relevant ques-
tions that arise if we try to account for the dynamic nature of the sponsored
search game. Another significant aspect is whether we can identify Nash equilib-
rium strategies in the dynamic game. This problem in general is, of course, quite
hard, as there are many possible actions and ways to account for the changing
information structure. One approach, taken by Feng and Zhang [3], is to model
the dynamic process using Markovian framework. Our own approach focuses on
a set of greedy bidding strategies studied by Cary et al. [1]. In motivating greedy
bidding strategies, Cary et al. have argued that advertisers are unlikely to en-
gage in highly fine-grained strategic reasoning and will rather prefer to follow
relatively straightforward strategies. This motivation, however, only restricts at-
tention to a set of plausible candidates. To identify which are likely to be selected
by advertisers, we need to assess their relative stability to profitable deviations.
For example, while we would perhaps like advertisers to follow a convergent
strategy like balanced bidding, it is unclear whether the players would perhaps
find it more profitable to follow a non-convergent strategy.

Our goal is to provide some initial information about equilibrium stability of a
small set of greedy bidding strategies under incomplete information. Specifically,
we use simulations to estimate the gain any advertiser can accrue by deviating
from pure strategy symmetric equilibria in greedy bidding strategies. The results
are promising: the convergent balanced bidding is typically the most stable of the
set of strategies we study.

To complement the analysis above, we examine the incentives when joint
valuations are common knowledge, but the game is repeated indefinitely. Folk
theorems [8] suggest that players may be able to increase individual profits (and
decrease search engine revenue) by colluding. We demonstrate one such collusion
strategy and show it to be effective over a range of sponsored search auction
environments. Our analysis complements other approaches to study collusion in
auctions, in a dynamic context in sponsored search auctions [3], as well as in a
general one-shot context [4].

2 Game Theoretic Preliminaries

2.1 One-Shot Games of Incomplete Information

In much of this work we analyze one-shot games of incomplete information [8],
denoted by [I, {Ri}, {Ti}, F (·), {ui(r, t)}]2, where I refers to the set of players

1 Some of the motivation and questions raised and addressed in this work have con-
siderable similarity with our own work below.

2 Although strategies are dynamic in that players choose their actions as a function of
history, our model of the meta-level strategic interaction is one-shot in that players
choose the dynamic strategies (which dictate actions in specific states) once and
follow these throughout.
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and m = |I| is the number of players. Ri is the set of actions available to player
i ∈ I, and R1 × · · · × Rm is the joint action space. Ti is the set of types (private
information) of player i, with T = T1 × · · · × Tm representing the joint type
space. Since we presume that a player knows its type prior to taking an action,
but does not know types of others, we allow it to condition its action on own
type. Thus, we define a strategy of a player i to be a function si : Ti → R, and
use s(t) to denote the vector (s1(t1), . . . , sm(tm)). F (·) is the distribution over
the joint type space.

We use s−i to denote the joint strategy of all players other than player i. Simi-
larly, t−i designates the joint type of all players other than i. We define the payoff
(utility) function of each player i by ui : R × T → R, where ui(ri, r−i, ti, t−i)
indicates the payoff to player i with type ti for playing action ri ∈ Ri when the
remaining players with joint types t−i play r−i. Given a strategy profile s ∈ S,
the expected payoff of player i is ũi(s) = Et[ui(s(t), t)].

Given a known strategy profile of players other than i, we define the best
response of player i to s−i to be the strategy s∗i that maximizes expected
utility ũi(si, s−i). If we know the best response of every player to a strategy
profile s, we can evaluate the maximum amount that any player can gain by
deviating from s. Such an amount, which we also call regret, we denote by
ε(s) = maxi∈I [ũi(s∗i , s−i) − ũi(si, s−i)], where s∗i is the best response to s−i.
Henceforth, when we use the term “stability”, it is in the sense of low regret.
Faced with a one-shot game of incomplete information, an agent would ideally
play a strategy that is a best response to strategies of others. A joint strategy
s where all agents play best responses to each other constitutes a Nash equilib-
rium (ε(s) = 0); when applied to games of incomplete information, it is called a
Bayes-Nash equilibrium.

2.2 Complete Information Infinitely Repeated Games

The second model we use is an infinitely repeated game [8]. The model divides
time into an infinite number of discrete stages and presumes that at each stage
players interact strategically in a one-shot fashion (that is, no one agent can
observe actions of others until the next stage). Naturally, all players care not
just about the payoffs they receive in one stage, but all the payoffs in past
and subsequent stages of the dynamic interaction. We assume that their total
utility from playing the repeated game is a discounted sum of stage utilities.
Formally, it can be described by the tuple [I, {Ri}, ui(r), γi], where I, Ri and
ui(r) are as before, and γi is the amount by which each player discounts utility
at each stage. That is, if we let r̄ = {r1, r2, . . . , ri, . . .}, rj ∈ R be a sequence
of choices by players indexed by the chronological sequence of stages, Ui(r̄) =∑∞

t=1 γt−1
i ui(rt).

Define a stage-k subgame of a repeated game as a restricted repeated game
which begins at stage k rather than at stage 1. The solution concept that we
will use for infinitely repeated games is a subgame perfect Nash equilibrium [8],
which obtains when the players have no incentive to deviate from their sequence
of strategic choices in any stage of the interaction.
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3 Modeling Sponsored Search Auctions

A traditional model of sponsored search auctions specifies a ranking rule, which
ranks advertisers based on their bid and some information about their relevance
to the user query, click-through-rates for each player and slot, and players’ valu-
ations or distributions of valuations per click. Let a player i’s click-through-rate
in slot s be denoted by ci

s and its value per click by vi. Like many models in
the literature (e.g., [5,6]) we assume that click-through-rate can be factored into
eics for every player i and every slot s. If player i pays ps

i in slot s, then its
utility is ui = eics(vi − ps

i ). The parameter ei is often referred to as relevance
of the advertiser i, and cs is the slot-specific click-through-rate. We assume that
the search engine has the number of slots denoted by K with slot-specific click-
through-rates c1 > c2 > . . . > cK .

Lahaie and Pennock [6] discuss a family of ranking strategies which rank
bidders in order of the product of their bid bi and some weight function wi.
They study in some depth a particular weight function w(ei) = eq

i , where q is
a real number. In the analysis below, we consider two settings of q: 0 and 1.
The former corresponds to rank-by-bid, bi, whereas the latter is typically called
rank-by-revenue, eibi.

When players are ranked by their bids, two alternative pricing schemes have
been studied: first-price (set price equal to player’s bid) and generalized second-
price (set price equal to next highest bid). As is well-known, neither is incentive
compatible. However, stability issues have induced the major search engines to
use generalized second-price auctions. These have been generalized further to
ranking by weighted bid schemes by using the price rule ps

i = ws+1bs+1
wi

. The
interpretation is that the bidder i pays the amount of the lowest bid sufficient
to win slot s.

4 Dynamic Bidding Strategies

In much of this work we restrict the strategy space of players to four dynamic
strategies. While this is a dramatic restriction, it allows me to gain some insight
into the stability properties of the dynamic game and to identify particularly
interesting candidates for further analysis in the future. Additionally, it has been
argued as unlikely that players will engage in full-fledged strategic reasoning and
will rather follow relatively straightforward dynamic strategies [1], such as the
ones we consider. We now give the definition of a class of “simple” strategies.

Definition 1 (Greedy Bidding Strategies). A greedy bidding strategy [1]
for a player i is to choose a bid for the next round of a repeated keyword auction
that obtains a slot which maximizes its utility ui assuming the bids of all other
players remain fixed.

If the player bids so as to win slot s which it is selecting according to a greedy
bidding strategy, any bid in the interval (ps−1

i , ps
i ), will win that slot at the same

price. The particular rule which chooses a bid in this interval defines a member
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of a class of greedy bidding strategies. We analyze strategic behavior of agents
who can select from four greedy bidding strategies specified below. For all of
these, let s∗ designate the slot which myopically maximizes player i’s utility as
long as other players’ bids are fixed.

Definition 2 (Balanced Bidding). The Balanced Bidding [1] strategy BB
chooses the bid b which solves cs∗(vi − ps∗

i ) = cs∗−1(vi − b). If s∗ is the top slot,
choose b = (vi + p1

i )/2.

Definition 3 (Random Bidding). The Random strategy RAND selects the
bid b uniformly randomly in the interval (ps−1

i , ps
i ).

Definition 4 (Competitor Busting). The Competitor Busting [1] strategy
CB selects the bid b = min{vi, p

s∗−1
i − ε}.

Thus, the CB strategy tries to cause the player that receives slot immediately
above s∗ to pay as much as possible.

Definition 5 (Altruistic Bidding). The Altruistic Bidding [1] strategy AB
chooses the bid b = min{vi, p

s∗

i + ε}.

This strategy, ensures the highest payoff (lowest price) of the player receiving
the slot immediately above s∗.

5 Empirical Bayesian Meta-game Analysis

In this section we construct and analyze a Bayesian meta-game played between
advertisers (alternatively, bidders or players) who may choose one of four greedy
bidding strategies described above. As is typical in a one-shot game of incom-
plete information, the bidders are allowed to condition their strategic choices on
their own valuations, but not those of other players. However, we do not allow
conditioning based on relevances, as these are assumed to be a priori unknown
both to the search engine and to the bidders. The reason we refer to the model
as a meta-game is that we abstract away the dynamic nature of the game by
enforcing a one-shot choice of a dynamic strategy, that is, once the strategy is
chosen, the player must follow it forever after. While this is a strong assumption
given the restriction of the strategy space, it is without loss of generality when
no such restriction is imposed, since an optimal dynamic strategy is optimal in
any subgame along the played path.

In order to construct the meta-game, we need to define player payoffs for every
joint realization of values and relevances, as well as the corresponding choice of
dynamic strategies. As is common for dynamic interactions, we define the payoff
in the meta-game as the discounted sum of stage payoffs. In each stage, exactly
one bidder, selected uniformly randomly, is allowed to modify its bid according
to its choice of dynamic bidding strategy.3 The corresponding stage payoff is
an expected payoff given the ranking and payments of players as a function
3 This condition ensures the convergence of balanced bidding dynamics.
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of joint bids, as defined in Section 3. We model the entire dynamic process—
once relevances, values, and strategies are determined—using a simulator, which
outputs a sample payoff at the end of a run of 100 stages. The discount factor is
set to 0.95. With this discount factor, the total contribution from stage 101 to
infinity is 0.006, and we thus presume that the history thereafter is negligible.

Expected payoff to a particular player for a fixed value per click, relevance,
and strategy is estimated using a sample average of payoffs based on 1000 draws
from the distribution of valuations and relevances of other players. The metric
for quality with which a particular strategy profile s approximates a Bayes-
Nash equilibrium is the estimate of ε(s), which is the sample average gain from
playing a best response to s over 100 draws from the players value and relevance
distributions. For each of these 100 draws, the gain from playing a best response
to s is computed as the difference between the highest expected payoff for any
strategy in the restricted set and the expected payoff from si, estimated as
described above.

Since the meta-game is constructed numerically for every choice of values,
relevances, and strategies of all players, an in-depth analysis of all strategies
in the game is hopeless. Instead, we focus much of our attention on four pure
symmetric strategy profiles, in which each player chooses the same dynamic
strategy for any valuation. While this seems an enormous restriction, it turns
out to be sufficient for our purposes, as these happen to contain near-equilibria.

5.1 Equal Relevances

In this section we focus on the setting in which all players’ relevances are equal
and assume that values per click are distributed normally with mean 500 and
standard deviation 200.Three sponsored search auction games are considered:
in one, 5 advertisers compete for 2 slots; in the others, 20 and 50 advertisers
respectively compete for 8 slots.

Figure 1 presents average ε(s) and payoffs for all four pure symmetric profiles
in strategies which are constant functions of player values per click. The first
observation we can make is that BB has a very low ε(s) in every case, suggesting
that it has considerable strategic stability in the restricted strategy space. This
result can also be claimed with high statistical confidence, as 99% confidence
intervals are so small that they are not visible in the figure. In contrast, AB
manifests very high ε(s) in the plot and we can be reasonably certain that it is
not sustainable as an equilibrium. The picture that emerges is most appealing to
the search engine: AB, which is unlikely to be played, yields the greatest payoffs
to players (and least to the auctioneer), whereas BB yields the lowest player
payoffs in the restricted strategy space.

5.2 Independently Distributed Values and Relevances

We now consider the setting in which relevances of players are not identical, but
are rather identically distributed—and independently from values per click—
according to a uniform distribution on the interval [0,1]. Since now the particulars
of the bid ranking scheme come into play, we present results for the two schemes
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Fig. 1. (a) Experimental ε(s) and (b) symmetric payoff for every pure symmetric profile
in constant strategies with associated 99% confidence bounds
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Fig. 2. Experimental ε(s) (a) when q = 0 (b) when q = 1 for every pure symmetric
profile; experimental payoff (c) when q = 0 (d) when q = 1 for every pure symmetric
profile

that have received the most attention: rank-by-bid (q = 0) and rank-by-revenue
(q = 1).

Figures 2a and b present the results on stability of each symmetric pure strat-
egy profile to deviations for q = 0 and q = 1 respectively. We can see that there
are really no significant qualitative differences between the two settings, and
indeed between the setting of independently distributed values and relevances
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and the previous one in which relevances were set to a constant for all players.
Perhaps a slight difference is that RAND and CB strategies appear to have better
stability properties when q = 0. However, this could be misleading, since the
payoffs to players are also generally lower when q = 0. The most notable quality
we previously observed however, remains unchanged: BB is an equilibrium (or
nearly so) in all games for both advertiser ranking schemes, and AB is highly
unstable, whereas BB yields a considerably lower payoff to advertisers than AB
in all settings.

5.3 Correlated Values and Relevances

In the final set of experiments we draw values and relevances from a joint dis-
tribution with a correlation coefficient of 0.5. As may by now be expected, BB
remains a near-equilibrium both when we set q = 0 and q = 1 (Figures 3a and
b). However, when q = 0, RAND and CB are now also near-equilibria when
the number of players and slots is relatively large—and, indeed, more so as the
number of players grows from 20 to 50. As a designer, this fact may be somewhat
disconcerting, as BB remains the strategy with the lowest payoffs to players (and,
consequently, will likely yield the highest search engine payoffs) when q = 0; by
comparison, payoffs to players when RAND is played are considerably higher
than BB (Figure 3c). In all the cases, however, altruistic bidding remains highly
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Fig. 3. Experimental ε(s) (a) when q = 0 (b) when q = 1 for every pure symmetric
profile; experimental payoff (c) when q = 0 (d) when q = 1 for every pure symmetric
profile
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unstable, to the bidders’ great chagrin, as it is uniformly more advantageous in
terms of payoffs (Figures 3c and d).

6 Repeated Game with Common Knowledge of Values

It is common in the sponsored search auction literature to assume that the player
valuations and click-through-rates are common knowledge, suggesting that the
resulting equilibria are rest points of natural bidder adjustment dynamics. The
justification offered alludes to the repeated nature of the agent interactions. Yet,
the equilibrium concept used is a static one. If a game is infinitely repeated,
the space of Nash equilibrium strategies expands considerably [8]. Thus, if we
take the dynamic story seriously, it pays to seek subgame perfect equilibria in
the repeated game, particularly if they may offer considerably better payoffs to
players than the corresponding static Nash equilibria.

As typical analysis of repeated interactions goes, our subgame perfect equilib-
rium consists of two parts: the main path, and the deviation-punishment path.
The main path has players jointly follow an agreed-upon profitable strategy pro-
file, whereas the deviation path punishes any deviant. The trick, of course, is
that for the equilibrium to be subgame perfect, the punishment subgame must
itself be in equilibrium, yet must be sufficiently bad to discourage deviation.

A natural candidate for punishment is the worst (in terms of player payoffs)
Nash equilibrium in the static game. Clearly, such a path would be in equilib-
rium, and is likely to offer considerable discouragement to deviants. A desirable
main path would have players pay as little as possible, but needs to nevertheless
discourage bidders who receive no slots from outbidding those who do. Further-
more, all “slotless” bidders should remain slotless in the deviation subgame,
since it is then clear that no incentives to deviate exist among such bidders, and
we need only consider bidders who occupy some slot.

For the remainder of this section, we assume that the valuations are generic
and bidders are indexed by the number of the slot they obtain in a symmetric
Nash equilibrium.4 Define the dynamic strategy profile COLLUSION as follows:

– main path: ∀s > K, bs = vs. For all others, bs = wK+1
ws

vK+1 + (K − s + 1)ε,
where ε is some very small (negligible) number. Note that this yields the same
ordering of bidders who receive slots as any symmetric Nash equilibrium of
the game.

– deviation path: play the maximum revenue symmetric Nash equilibrium
strategies in every stage game. This yields the maximum revenue to the
auctioneer and the lowest utilities to the players of any Nash equilibrium in
the stage game [9].

Whether the delineated strategy constitutes a subgame perfect Nash equilib-
rium depends on the magnitude of the discount factor, γi, of every player i. The

4 Via a simple extension of the results by Varian [9] we can show that in a symmetric
Nash equilibrium, bidders are ranked by wsbs.
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Fig. 4. Lower bounds on the discount factor as the number of available slots varies
when (a) δ = 1.1, (b) δ = 1.3, (c) δ = 1.428, and (d) δ = 1.9

relevant question is then how large does γ need to be to enable enforcement of
COLLUSION. Clearly, γi = 0 will deter nothing, since there are no consequences
(and the game is effectively a one-stage game). Below, we give the general result
to this effect.

Theorem 1. The COLLUSION strategy profile is a subgame perfect Nash equi-
librium if, for all players i,

γi ≥ max
s≤K,t≤s

(ct − cs)(vs − wK+1vK+1
ws

) − (ct
wt

ws
(K − t + 1) − cs(K − s))ε

ct(vs − wK+1vK+1
ws

) − csvs − ct
wt

ws
(K − t + 1)ε + Vsum

, (1)

where Vsum =
∑K

t=s+1 wt−1vt−1(ct−1 − ct) + wKvKcK

The lower bound on the discount factor in Equation 1 depends on the particular
valuation vector, the relative merits of slots, and the total number of slots, and it
is not immediately clear whether there actually are reasonable discount factors
for which deviations can be discouraged. To get a sense of how sustainable such
an equilibrium could be, we study the effect of these parameters on the lower
bound of the discount factor. To do this, we let the relevances of all players be
constant, fix the number of players at 20 and take 100 draws of their valuations
from the normal distribution with mean 500 and standard deviation 200. We
vary the number of slots between 2 and 15, recording the average, minimum,
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and maximum values of the lower bound. Furthermore, we normalize c1 to 1 and
let cs

cs+1
= δ for all s ≤ K − 1. The results are displayed in Figure 4 for different

values of δ.
First, focus on Figure 4c which shows the results for δ = 1.428, an empirically

observed click-through-rate ratio. As the figure suggests, when the number of
slots is between 0 and 5, it seems likely that COLLUSION can obtain as a
subgame perfect equilibrium, as the requirements on the discount factor are not
too strong. When the number of slots grows, however, the incentives to deviate
increase, and when the number of slots is above 10, such a collusive equilibrium
no longer seems likely.

Figures 4a, b, and d display similar plots for other settings of δ. These suggest
that as δ rises, incentives to deviate rise, since when there is a greater dropoff
in slot quality for lower slots, players have more to gain by moving to a higher
slot even for a one-shot payoff.

7 Conclusion

This paper presents some initial results on equilibrium stability of dynamic bid-
ding strategies in sponsored search auctions. Many of the results are less favor-
able to players: a high-payoff strategy profile is not sustainable in equilibrium,
whereas a low-payoff profile is reasonably stable. On the other hand, when com-
plete information about valuations and click-through-rates is available, there are
possibilities for collusion that yield high payoffs to players which are sustainable
over a range of settings.
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Appendix

A Proof of Theorem 1

Take a player s (recall that players are indexed according to the slots they
occupy) and let the discount factor of that player be γ. First, note that if s ≥
K + 1, the player can only win a slot by paying more than vs, and thus has no
incentive to deviate.

Suppose that s ≤ K. If the player s never deviates, it will accrue the payoff of
us = cs(vs−(K−s)ε− wK+1vK+1

ws
at every stage. With γ as the discount factor, the

resulting total payoff would be
∑∞

i=0 γius = us

1−γ . For ε sufficiently small, there
will be no incentive to deviate to an inferior slot, since it offers a strictly lower
click-through-rate with negligible difference in payment. The one-shot payoff for
deviating to t ≤ s is u′

s = ct(vs − wt

ws
(K − t + 1)ε − wK+1vK+1

ws
). For all stages

thereafter, the utility will be up
s = cs(vs −

∑K+1
t=s+1 wt−1vt−1

ct−1−ct

cs
) = csvs −

∑K+1
t=s+1 wt−1vt−1(ct−1 − ct) = csvs −

∑K
t=s+1 wt−1vt−1(ct−1 − ct) − wKvKcK .

Since this utility will be played starting at the second stage, the total utility from
deviating is u′

s+ γup
s

1−γ . For deviations to be unprofitable, it must be that for every

s ≤ K and every t ≤ s, us

1−γ ≥ u′
s + γup

s

1−γ , or, alternatively, us ≥ (1 − γ)u′
s + γup

s.
Plugging in the expressions for utilities and rearranging gives us the result. �
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Abstract. We analyze the economic stability and dynamic manipula-
tion of vindictive strategies in conjunction with forward-looking coop-
erative bidders in Sponsored Search Auction. We investigate different
vindictive strategies of different rationalities : malicious, conservative
and selective. In a malicious vindictive strategy, the bidder forces his
competitors to pay more by bidding just one cent lower of his competi-
tor’s bid. We show that Nash Equilibrium is vulnerable even there is one
malicious vindictive bidder. However, on bidder’s perspective, he has not
much incentive to use a malicious vindictive strategy. A conservative vin-
dictive bidding strategy makes a bidder never sacrifices his own benefit to
take revenge on his competitor. Under this strategy, we prove that there
always exists an output truthful Nash Equilibrium. However, it may not
always be the unique equilibrium. Lastly, we investigate a selective vin-
dictive strategy that a bidder rationally chooses to bid cooperatively or
vindictively. The bidder takes a vindictive strategy only if the bidder who
gets one position higher has a larger private value. We prove that selective
vindictive strategy always results in a unique truthful Nash Equilibrium
in conjunction with forward looking cooperative bidders. Interestingly,
forward looking strategy gives the same payment as VCG mechanism
if all the bidders takes it. However, the bidder prefers selective vindic-
tive strategy while the auctioneer’s revenue reach maximum when all the
bidders takes the selective vindictive strategy.

1 Introduction

Sponsored Search Auction has been one of the most indispensable economic
mechanisms in the online advertising industry. Based on products, advertisers
choose a set of keywords and compete for advertising slots on the search results
pages to display their own advertisements. They are charged only if their adver-
tisements are shown to the users who click the advertisement, which is known as
”Pay-Per-Click”. Due to the limited budget of each advertiser, strategic bidding
behavior plays a crucial role in Sponsored Search Auction. In advertisers’ per-
spective, a good strategy not only prevents the advertiser from overbidding for
� The work described in this paper was supported by a grant from the Research Grants

Council of the Hong Kong Special Administrative Region, China [Project No. CityU
112707].
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his preferred position but also guarantees his favorite position beating his com-
petitors. In auctioneer’s point of view, strategic behaviors severely affect both
the stability of the auction and his own revenue. Thus, it raises many interesting
problems how advertisers compete for their advertising slots.

In a fair competitive mechanism, the bidder who has a higher private value
deserves to get a higher slot, which is referred as output truthful [4,3,9]. On the
other hand, a rational bidder intuitively wants to maximize his own benefits. Bu
et al.[3] proposes a forward looking response function which results in the same
allocation and payment as the the celebrated VCG mechanism[12] which justifies
the fairness of mechanism design of sponsored search auction. To achieve such
a result, everyone must follow the forward-looking response function - being
cooperative in the auction. We regard such kind of bidders as forward look-
ing cooperative bidders. However, in the competitive sponsored search market,
maximizing the benefit might not be enough. Bidder could play the game more
aggressively. In an aggressive strategy, beating competitors may be as important
as maximizing the benefits in the design of bidding strategy. A bidder would bid
higher than the bid in the cooperative case in order to force the bidders who
get higher slots to pay more and use up their budget faster. On the other hand,
they raise their bid rationally as long as his own benefit is preserved. We regard
such kind of aggressive strategy as vindictive bidding strategies.

In this paper, we investigate sponsored search auctions composed of arbitrary
potion of forward-looking rational bidders and different kinds of vindictive bid-
ders. First of all, we study a malicious vindictive bidding strategy [13]. Each
vindictive bidder picks his favorite position and bids one cent lower than the bid
which gets one slot higher than him. However, the occurrence of malicious vin-
dictive bidders would make the market extremely unstable. We show that there
may not always exist an equilibrium even if there is only one malicious vindic-
tive bidder. Besides, bidders mostly do not have incentive to take this strategy.
We give empirical evidence that a malicious vindictive bidder cannot preserve
its own benefit if he chooses to be forward looking cooperative in most of the
cases. Meanwhile, the auctioneer’s revenue increases with the growth of number
of malicious vindictive bidders. The instability of malicious vindictive strategy
is because it bids too much that will immediately force his competitors to choose
other slots. It neither effectively takes revenge on his competitors nor preserves
his own benefit. Secondly, we propose and study a conservative vindictive strat-
egy. It bids as high as possible that his competitors do not want to choose any
slot that is lower than his, thus he preserves his current benefit. We prove that
there always exists an output truthful [4,3,9] Nash Equilibrium regardless of the
number of such vindictive bidders. However, the output truthful equilibrium may
not always be the unique Nash equilibrium. A vindictive bidder may stuck in a
lower slot than a bidder whose private value is smaller than his. This is because
that the bidder bids vindictively all the time without considering the competi-
tive relation between his competitors. To avoid this phenomenon, we investigate
a more rational vindictive strategy: selective vindictive strategy, that a bidder
takes a conservative vindictive strategy only if his private value is larger than
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his. Otherwise, he will play the forward-looking strategy. We show that there
always exists a unique Nash Equilibrium which is output truthful for Sponsored
Search Auction. The bidder still preserves his preferred position and payment
while all his competitors pays more than the case he plays the forward look-
ing cooperative strategy. However, auctioneer’s revenue keeps increasing with
the growth of number of vindictive bidders. And the revenue reaches theoretical
maximum Nash Equilibrium yields. In a global view, the benefits the by taking
a forward looking cooperative strategies is much better than the benefits they
take vindictive strategies.

1.1 Related Work

Equilibrium solutions are interesting and widely studied of the auction model.
Edelman et al. [6] focused on locally envy-free equilibrium(LEFE) where any
bidder cannot improve his own benefit by switching position with the bidder
who is one position higher than him. Varian [11] studied a subset of Nash Equi-
librium: Symmetric Nash Equilibrium(SNE) which is well formulated with nice
properties. Indeed, it is public known that the two equilibria are the same with
different definitions. The maximum revenue of both equilibria yield are the same
as Nash Equilibrium’s maximum revenue.

In [3], the authors studied the strategic behaviors and dynamic manipulations
of the game. The strategy they proposed, named forward looking strategy, yields
a unique Nash Equilibrium whose revenue is the same as the one under VCG
mechanism ([12], [5] and [8]). Actually, it is the same as the lower bound of SNE
[11] and LEFE [6]. The authors also show that the strategy always converges
in finite steps with probability one. Interestingly, the conservative vindictive
strategy we studied in this paper is the same as the upper bound of SNE and
LEFE. But using it as a strategy does not always result in an output truthful
equilibrium, which does not belong to SNE or LEFE.

Brandt and Weiß [2] proposed the concept “antisocial behavior” which in-
vestigated the strategic behaviors of decreasing competitors’ benefits, namely
vindictive strategies. Feng and Zhang discussed interesting bidding wars in [7].
Zhou et al. [13] studied a vindictive strategies which bids one cent lower than the
bid one position higher than his. They showed the non-existence of Nash Equi-
librium with three consecutive players using this strategy. The strategy they
studied is referred as malicious vindictive strategy in this paper.

There are also other interesting studies of strategic behaviors concerning Spon-
sored Search Auction as dynamic systems. Borgs et al. [1] study a heuristic based
optimal strategy and its stability. Kitts et al. [10] make use a trading agent to
assist bidding in Sponsored Search Auction.

1.2 Organization

The rest of the paper is organized as follows. In section 2, we present the auction
model and other preliminaries. Section 3 elaborates the existence of Nash Equi-
librium and its properties in our model. We discuss different vindictive strategies
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and give both theoretical and empirical evidence of our result. Lastly, we sum-
maries and concludes in section 4.

2 Preliminaries

Considering a single auction for a specific keyword, there are N bidders com-
peting for K slots to display their advertisements. We denote the set b={b1, b2,
...bn}, to be the set of bids where the b is sorted in descending order, i.e.,
b1 > b2 > ... > bn. To display an advertisement, usually, the higher you get, more
clicks you would receive. We denote a set c={c1, c2, ...cK} representing the pop-
ularity of each slot which is also referred as click-through-rate (CTR). In set c, ci

represents CTR of the i-th slot in a descending order, thus, c1 > c2 > ... > cK .
Moreover, for each bidder i, there is a private value, vi, representing his own
return-on-investment (ROI) for each click of his advertisement. We also denote
vk as the private value of the bidder who gets the k-th slot. For simplicity, we
say each bidder can only bid for one value and each of the bidder has a unique
private value.

The winners of the auction are the bidders who bids for the highest K values,
namely, b1, b2, ...bK . Each winner is assigned a slot to display their advertisement.
The bidder who bids bi gets the i-th slot whose CTR is ci. The payment scheme
used is the generalized second price auction. The bidder assigned the i-th slot
pays for bi+1, which is the bid value that the winner of i + 1-th slot bids for
i + 1-th slot. For the bidder who gets K-th slot pays for the highest bid value
among all the losing bidders. Hence, for each bidder i, i ∈ N , who gets the k-th
slot, k ∈ K, his payoff (utility) function is represented as

ui
k = (vi − bk+1) · ck (1)

Definition 1. Nash Equilibrium of Sponsored Search Auction [11] For
each bidder i ∈ N who gets slot k, the following equation satisfies

(vi − bk+1)ck ≥ (vi − bt)ct, for ∀t < k

(vi − bk+1)ck ≥ (vi − bt+1)ct, for ∀t > k

In a Nash Equilibrium, no one can improve their payoff by choosing other posi-
tion in the game. All of them will prefer his current position.

In [3], the authors proposed a well defined response function: Forward Looking
Response Function that as long as everyone plays cooperatively, they will result
in a unique Nash Equilibrium and have a revenue which is the same as VCG
mechanism.

Definition 2. Output Truthful [4,3,9] For any instance of ad-words auction
and the corresponding equilibrium set E, if ∀e ∈ E and ∀i ∈ N , Oi(e) =
Oi(v1, . . . , vN ), then we say ad-words auction is output truthful on E.

where Oi(b) denotes the rank of bidder i’s bid in the descending bidding profile.
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Definition 3. Myopic Best Response Function [3] Given b−i, bidder i’s
myopic best-response function Mi(b−i) returns a set defined as

Mi(b−i) = arg max
bi∈[0,vi]

{
uiOi(bi,b−i)

}
(2)

Definition 4. Forward Looking Response Function [3] Given b−i, sup-
pose Oi(Mi(b−i),b−i) = k, then bidder i’s forward-looking response function
F i(b−i) is defined as

F i(b−i) =

{
vi − ck

ck−1
(vi − bk+1) 2 ≤ k ≤ K

vi k = 1 or k > K

Throughout the paper, we assume all the forward looking cooperative bidders
follows the forward looking response function.

3 Nash Equilibrium for Sponsored Search Auction with
Forward Looking Cooperative Bidders and Vindictive
Bidders

In this section, we discuss Nash Equilibrium and its properties of Sponsored
Search Auction with forward looking cooperative bidders and different kinds of
vindictive bidders. For a vindictive bidder, he takes a strategy that forces other
bidders paying more without sacrificing his myopic benefits. Formally, there
exists a vindictive bidder set Ψ = {i|i ∈ [1, N ]} where all the vindictive bidders
take a uniform vindictive strategy.

3.1 Malicious Vindictive Strategy

In a malicious vindictive strategy, a bidder tries to raise his competitors’ payment
as much as possible at the current step. First, he picks his favorite slot and bids
one cent lower than the bid one slot higher. Formally,

Definition 5. (Malicious Vindictive Response Function) If i ∈ Ψ given
b−i, Suppose Oi(M i(b−i),b−i) = k,

V i(b−i) =
{

vi, k = 1;
bk−1 − 0.01, otherwise

However, this strategy results in an unstable situation even if there is only one
such kind of bidder. Concerning an auction with three bidders competing for
two slots, the click-through-rates are 20 and 10 respectively. The private values
are 5, 2 and 1 and the initial bids are 5, 4.99, 1. Let the second bidder whose
private value is 2 be the malicious vindictive bidder. In this simple example, we
can see that after the vindictive bidder bids for 4.99, the first bidder will choose
the second slot and bids for 3. Since the vindictive bidder’s private value is less
than 3, he will never prefer the first slot. Then he changes his bid to be 2.99.
Then the first bidder again chooses the first slot and bids for 5. In the whole
process, the last bidder is not vindictive and never prefer a higher slot. So his
bid always remains 1. Thus we get a loop here.
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Theorem 1. There does not always exist a Nash Equilibrium for Sponsored
Search Auction with one malicious Vindictive Bidder

Besides the unstable result, in long term, the bidder mostly sacrifices his own
benefits to follow this malicious strategy in the dynamic process. On the other
hand, the auctioneer’s revenue increases with the number of malicious vindictive
bidders increases. However, there also exists exceptional cases that the a bidder
improves his benefits by taking the malicious strategy or the auctioneer’s revenue
decreases. To show this result, we design a simulation on different sets of data.
We take randomized adjustment scheme to simulate all the intermediate steps
and record every bidder’s payoff and the auctioneer’s revenue. According to the
number of bidders, we set the number of adjustment rounds larger than the
factorial of the number of bidders to ensure the accuracy of the simulation.
Due to the limit of the space, we illustrate a representative example to show
the irrationality of malicious vindictive strategy and the increasing trend of
the auctioneer’s revenue. We consider a sponsor auction game with 7 advertisers
competing for 6 slots. Both CTR and private value are chosen uniformly random
within a given range. The detail information about are shown in Table 1.

Table 1. Click-Through-Rates and Private Values of the sample auction

CTR 191.35 171.28 87.16 82.74 59.67 55.98

Private Value 89.41 71.98 67.09 75.40 59.49 58.97 73.02

(a) Bidder’s Payoff Ratio (b) Auctioneer’s Revenue Ratio

Fig. 1. Sample Example with 6 slots and 7 bidders

Figure 1(a) shows a payoff increasing ratio when there is only one malicious
vindictive bidder. Each bidder was set to be malicious vindictive in turn. The
horizontal axis shows the index of the vindictive bidder while the vertical axis
shows the payoff increasing ratio which is calculated as payoff when the bidder
takes the malicious vindictive strategy divided by the payoff he takes the Forward
Looking strategy. When the ratio is less than one, its payoff decreases. From the
figure, we could see that, most of the bidders reduce their payoff by taking the
vindictive strategy. However, there also exists one bidder who increases his payoff
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by taking the malicious vindictive strategy. This is because after he takes revenge
on his competitors, some of them prefer a lower position than the vindictive
bidders so that the vindictive bidder benefits from this period. However, this is
quite sensitive to the private values and click-through-rate. There is no certain
assertion whether a bidder will benefit or not if he migrates from Forward-
Looking strategy into a malicious vindictive strategy.

Figure 1(b), on the other hand, shows the revenue in the auctioneer’s point of
view. The revenue increasing ratio is the revenue when there are n malicious vin-
dictive bidders divides the revenue there is no vindictive bidders where n varies
from 1 to N . From the figure, the auctioneer will benefit when the number of
vindictive bidder increases. However, the ratio illustrates an increasing but not
monotone increasing function which means when given a constant number of ma-
licious vindictive bidders c participates in the auction, the auctioneer cannot tell
whether one more malicious vindictive bidder will give him more benefit or not.

3.2 Conservative Vindictive Strategy

In a conservative strategy, a bidder bids vindictively so that he never sacrifices
his own payoff. The amount he raises his bid will not affect the stability of the
whole auction. In other words, after he changes his bid, no bidder in the auction
will prefer other position other than his current position.

Definition 6. (Conservative Vindictive Response Function) If i ∈ Ψ ,
given b−i. Suppose Oi(M i(b−i),b−i) = k,

V i(b−i) =
{

vi, k ≥ K or k = 1;
vk−1 − ck

ck−1
(vk−1 − bk+1), 2 ≤ k < K

3.2.1 The Existence of Output Truthful Nash Equilibrium in Spon-
sored Search Auction with Conservative Vindictive Bids
To prove the existence of such equilibrium, we first give a specified bidding profile
construction, then we show that the construction is indeed the same equilibrium
as we claim. Here we assume v1, v2, ..., vN are sorted in descending order.

Construction 1. Construction(b, v1, v2, ..., vN , c1, c2, ..., cK , Ψ)
1: for i = N → 1
2: if (i > K) or (i = 1) then
3: bi = vi

4: else if (i ∈ Ψ) then
5: bi = vi−1 − ci

ci−1
(vi−1 − bi+1)

6: else
7: bi = vi − ci

ci−1
(vi − bi+1)

8: end if
9: end for
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Lemma 1. A bidder never prefers a slot whose private value is smaller than his
private value in Construction 1.

Proof. First, we prove that if a bidder prefers slot ck to slot ck+1 whose owner’s
private value is smaller than his. Supposing vi is the bidder’s private value.
His payoff is (vi − bk+1)ck. Since bk+1 follows either Forward-Looking Response
Function or conservative Vindictive Response function, we could rewrite it as
(vi − (vj − ck+1

ck
(vj − bk+2)))ck. From the construction, we could see that the

private values are sorted in descending order. If bk+1 is calculated by a Forward-
Looking Response function, then vi > vj , otherwise vi = vj . Thus vi is no less
than vj .

(vi − (vj − ck+1

ck
(vj − bk+2)))ck

= (vi − vj)ck + (vj − bk+2)ck+1

≥ (vi − vj)ck+1 + (vj − bk+2)ck+1

= (vi − bk+2)ck+1

We can see the payoff bidder i gets ck is no less than the payoff he gets ck+1.
Secondly, we show that there is a transition property hold for the claim above.
Namely, if a bidder prefers slot ck to ck+1, he also prefers slot ck+1 to ck+2 and
he prefers slot ck to ck+2. The mathematical prove is exactly the same as the
previous one. To space the limited space, we omit the proof here. Combining
two points above, the claim follows.

Lemma 2. A bidder never prefers a slot whose private value is bigger than his
private value in Construction 1.

Proof. We first prove that if a bidder prefers slot ck to slot ck−1 whose owner’s
private value is bigger than his. Supposing vi is the bidder’s private value. His
payoff of getting slot ck−1 is (vi − bk−1)ck−1 where bk−1 = vj − ck−1

ck−2
(vj − bk)

and bk = v̂ − ck

ck−1
(v̂ − bk+1). Since both bk−1 and bk follows either Forward-

Looking Response Function or conservative Vindictive Response function, we
have vj ≥ v̂ ≥ vi.

(vi − bk−1)ck−1

= (vi − (vj − ck−1

ck−2
(vj − bk)))ck−1

= (vi − vj)ck−1 +
c2
k−1

ck−2
(vj − bk)

= (vi − vj)ck−1 +
c2
k−1

ck−2
(vj − (v̂ − ck

ck−1
(v̂ − bk+1)))
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= (vi − vj)ck−1 −
c2
k−1

ck−2
(v̂ − vj) +

ckck−1

ck−2
(v̂ − bk+1)

= (vi − vj)ck−1 +
c2
k−1

ck−2
vi −

c2
k−1

ck−2
vi −

c2
k−1

ck−2
(v̂ − vj) +

ckck−1

ck−2
(v̂ − bk+1)

= (vi − vj)(ck−1 −
c2
k−1

ck−2
) +

c2
k−1

ck−2
(vi − v̂) +

ckck−1

ck−2
(v̂ − bk+1)

≤
c2
k−1

ck−2
(vi − v̂) +

ckck−1

ck−2
(v̂ − bk+1)

=
c2
k−1

ck−2
(vi − v̂) +

ckck−1

ck−2
vi − ckck−1

ck−2
vi +

ckck−1

ck−2
(v̂ − bk+1)

=
c2
k−1

ck−2
(vi − v̂) − ckck−1

ck−2
(vi − v̂) +

ckck−1

ck−2
(vi − bk+1)

= (
c2
k−1

ck−2
− ckck−1

ck−2
)(vi − v̂) +

ckck−1

ck−2
(vi − bk+1)

≤ (vi − bk+1)
ckck−1

ck−2

≤ (vi − bk+1)ck

We can see the payoff bidder i gets ck is no less than the payoff he gets ck−1.
For any slot which is higher, we could derive similar prove that the bidder would
prefer ck. To save the space, we omit it here. So we conclude that a bidder never
prefers a higher slot in Construction 1.

Theorem 2. There always exists an output truthful Nash Equilibrium for Spon-
sored Search Auction with Vindictive Bidders

Proof. Based on the construction we have, every bidder in the construction fol-
lows either Forward-Looking Response function or conservative Vindictive Re-
sponse function. For every bidder, all the bidders who get higher positions have
higher private values and those who get lower positions have lower values. From
Lemma 1 and 2, we could conclude for every bidder in the construction does
not prefer any slot higher or lower than his. Thus the resulting construction is
a Nash Equilibrium. Moreover, the position thats the bidders get are sorted in
descending order. Indeed, it is an output truthful Nash Equilibrium.

3.2.2 (Non)Uniqueness of Nash Equilibrium in Sponsored Search Auc-
tion with Conservative Vindictive Bidders
Even though there always exists an output truthful Forward-Looking Equilib-
rium in Sponsored Search Auction with conservative Vindictive Bidders, different
from previous results, there may also exist other Nash Equilibrium which is not
output truthful.

From Table 2, we can see that both the second and third bidder bids vin-
dictively and all the bidders prefer his current slot. However, the third bidder’s
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Table 2. Example of a non-output truthful Nash Equilibrium

(a) The click-through rate

slot 1 2 3

CTR 20 16 10

(b) The Nash Equilibrium

true value 5 4 4.1 1

vindictive No Yes Yes No

bids 5 2.7 2.125 1

private value is higher than the second bidder. This is because the third bidder’s
bid under vindictive strategy is smaller than his forward-looking cooperative
strategy. The competitor whose private value is lower than his will enjoy this
underestimated bid and result in non-truthful equilibrium.

Theorem 3. The output truthful Nash Equilibrium may not always be the unique
Nash Equilibrium of Sponsored Search Auction with conservative Vindictive
Bidders.

3.3 Selective Vindictive Bidding Strategy

In real world, bidder bids vindictively only if he cannot get that position to
improve his utility. Otherwise, he would compete for the position he deserves
to get. In a selective strategy, the bidder only bids vindictively on his potential
competitors whose private value is larger than his.

Definition 7. (Selective Vindictive Response Function) If i ∈ Ψ , given
b−i, Suppose Oi(M i(b−i),b−i) = k,

V i(b−i) =

⎧
⎨

⎩

vi, k ≥ K or k = 1;
vk−1 − ck

ck−1
(vk−1 − bk+1), 2 ≤ k < K and vi−1 > vi

vi − ck

ck−1
(vi − bk+1), 2 ≤ k < K and vi−1 < vi

(3)

3.3.1 The Existence of Nash Equilibrium in Sponsored Search Auction
with Selective Vindictive Bidders

Theorem 4. There always exists an output truthful Nash Equilibrium for Spon-
sored Search Auction with Selective Vindictive Bidders

Proof. To prove the existence, we first use the same construction algorithm as
Construction 1. All the bids in the bid profile is sorted in descending order ac-
cording to their private values. So in this construction, Sponsored Search Auc-
tion with Selective Vindictive Bidders is the same as the one with Conservative
Vindictive Bidders. From Lemma 1 and Lemma 2, the claim follows.
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Theorem 5. Sponsored Search Auction with Selective Vindictive Bidders has a
unique Nash Equilibrium

Proof. Suppose there exists another instance of Forward Looking Nash Equilib-
rium e which must not be an output truthful one. In such an Equilibrium e,
there must be a pair of adjacent slots k and k + 1, where bidder i gets slot k
and j gets slot k + 1 and vi < vj . The case is trivial when k > K since every
one bids their private value. When k < K, since vi < vj , bidder j must use the
Forward Looking Bidding strategy. Bidder i’s payoff on slot k is

(vi − bk+1)ck

= (vi − (vj − ck+1

ck
(vj − bk+2)))ck

= (vi − vj)ck + (vj − bk+2)ck+1

= (vi − vj)(ck − ck+1) + (vi − bk+2)ck+1

< (vi − bk+2)ck+1

So bidder i will prefer slot k + 1 to slot k which contradicts e is already a Nash
Equilibrium.

Selective vindictive strategy perfectly preserves bidders’ own utilities while all
his competitors have to pay more to get their position. Taking this strategy does
no harm to the bidder as well as all the bidders who gets lower positions but
increases his competitors budget. On the other hand, he does not increase his
utility by taking vindictive strategy, either. In a global view, the summation
of bidders’s utilities keeps deceasing and the revenue of the auctioneer keeps
increasing. Interestingly, when all the bidders becomes selective vindictive, the
revenue of the auctioneer becomes the maximum among all possible Nash Equi-
librium [11] and if all of them use forward looking strategy, their payment is the
same as VCG [3].

4 Conclusion

In this paper, we investigate the effectiveness of vindictive strategies in differ-
ent rationalities in conjunction with forward-looking cooperative strategies. We
gave both theoretical and empirical evidences to the intriguing decision whether
a bidder bids vindictively or cooperatively. A malicious vindictive strategy gave
an unstable situation which mostly hurt their own benefit. Conservative strategy
gives better result in terms of stability but may hurt his benefit by irrationally
take revenge on everyone. Selective vindictive strategy ensures both the stability
and the bidders’ utilities. The bidder may have more incentive to play vindic-
tively. However, comparing to forward looking strategy, this strategy results in
an internecine result in terms of revenue for all the bidders.
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Abstract. We investigate the existence of optimal tolls for atomic symmetric
network congestion games with unsplittable traffic and arbitrary non-negative and
non-decreasing latency functions. We focus on pure Nash equilibria and a natural
toll mechanism, which we call cost-balancing tolls. A set of cost-balancing tolls
turns every path with positive traffic on its edges into a minimum cost path. Hence
any given configuration is induced as a pure Nash equilibrium of the modified
game with the corresponding cost-balancing tolls. We show how to compute in
linear time a set of cost-balancing tolls for the optimal solution such that the total
amount of tolls paid by any player in any pure Nash equilibrium of the modified
game does not exceed the latency on the maximum latency path in the optimal
solution. Our main result is that for congestion games on series-parallel networks
with increasing latencies, the optimal solution is induced as the unique pure Nash
equilibrium of the game with the corresponding cost-balancing tolls. To the best
of our knowledge, only linear congestion games on parallel links were known to
admit optimal tolls prior to this work. To demonstrate the difficulty of computing
a better set of optimal tolls, we show that even for 2-player linear congestion
games on series-parallel networks, it is NP-hard to decide whether the optimal
solution is the unique pure Nash equilibrium or there is another equilibrium of
total cost at least 6/5 times the optimal cost.

1 Introduction

Congestion games provide a natural model for non-cooperative resource allocation in
large-scale communication networks and have been the subject of intensive research
in algorithmic game theory. In an (atomic) congestion game [19], a finite set of non-
cooperative players, each controlling an unsplittable unit of traffic, compete over a finite
set of resources. All players using a resource experience a latency given by a non-negative
and non-decreasing function of the resource’s traffic (or congestion). Among a given set
of resource subsets (or strategies), each player selects one selfishly trying to minimize
her individual cost, that is the sum of the latencies on the resources in the chosen strategy.
A natural solution concept is that of a pure Nash equilibrium, a configuration where no
player can decrease her individual cost by unilaterally changing her strategy.

� Partially supported by EU / 6th Framework Programme, contract 001907 (DELIS).

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, pp. 179–190, 2007.
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At the other end, the network manager seeks to minimize the social cost measured
by the total cost incurred by all players. It is well known that a Nash equilibrium does
not need to optimize the social cost. To mitigate the performance degradation due to
the players’ non-cooperative and selfish behaviour, the network manager can introduce
economic incentives that influence the players’ selfish choices and hopefully induce an
optimal network configuration.

Economic incentives can be naturally modelled by non-negative per-unit-of-traffic
tolls (aka taxes or prices) assigned to the resources. The tolls are levied by the network
manager and comprise an additional cost factor which the players should take into ac-
count. In the modified congestion game with tolls, a player’s cost for using a resource
is equal to the latency due to the resource’s congestion plus the toll for using the re-
source. The player’s individual cost for adopting a strategy is equal to the sum of the
latencies and the tolls for the resources in the chosen strategy. Although tolls increase
the players’ individual cost, they do not affect the social cost because they are payments
inside the system and can be feasibly refunded to the players. The goal is to find a set
of moderate and efficiently computable optimal tolls, which make the Nash equilibria
of the modified game coincide with the optimal solution.

Related Work. In the non-atomic setting, where there is an infinite number of players
each controlling an infinitesimal amount of traffic, the existence and the efficiency of
optimal tolls has been investigated extensively (see e.g. [7,6] and references therein). A
classical result is that the optimal solution is realized as the Nash equilibrium of a non-
atomic congestion game with marginal cost tolls [2]. In simple words, the performance
degradation due to the selfish and non-cooperative behaviour of non-atomic players can
be eliminated by an appropriate set of tolls. Unfortunately, marginal cost tolls fail to
induce the optimal solution even for simple congestion games with unsplittable traffic1.

Recent work on tolls for non-atomic congestion games was motivated by the limi-
tations of marginal cost tolls. Cole et al. [7] were the first to consider heterogeneous
players, who may have a different valuation of time (latency) in terms of money (toll),
and established the existence of optimal tolls for non-atomic symmetric network con-
gestion games. Their proof was based on Brouwer’s fixed point theorem and was non-
constructive. In addition, Cole et al. showed how to compute a set of optimal tolls
efficiently if the number of player types is finite and the latency functions are convex.
Fleischer [11] extended the results of [7] and proved that the optimal toll on each edge
need not exceed the latency of the maximum latency path in the optimal solution times
the maximum valuation of time. For series-parallel networks, Fleischer showed how to
compute a set of optimal tolls efficiently even if there are infinitely many player types.
Subsequently, Fleischer et al. [12] and Karakostas and Kolliopoulos [16] independently

1 Let de(x) be the (differentiable) latency function of a resource e, let d′
e(x) denote the first

derivative of de(x), and let oe be the traffic of e in the optimal solution. Then the marginal
cost toll of e is oed

′
e(oe). For a congestion game with unsplittable traffic where marginal cost

tolls fail to induce the optimal solution, consider two players and two parallel links with latency
functions d1(x) = x/2 and d2(x) = (1 + ε)x, ε > 0. In the optimal configuration, there is
one player on every link, while in the unique pure Nash equilibrium, both players choose the
first link. The latter configuration remains the unique pure Nash equilibrium of the modified
game with marginal cost tolls.
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proved that the existence of optimal tolls for non-atomic congestion games with het-
erogeneous players and arbitrary strategies follows from Linear Programming duality.
Therefore, optimal tolls can be computed efficiently by solving a Linear Program.

For non-atomic congestion games, the Nash equilibrium is essentially unique (under
mild assumptions on the latency functions, see e.g. [20]). Hence the tolls of [2,7,11,12,16]
induce the optimal solution as the unique equilibrium of the game with tolls2. On the other
hand, atomic congestion games (even with splittable traffic) may admit many different
Nash equilibria. Therefore, when considering atomic games, one has to distinguish be-
tween the case where a set of tolls weakly enforces the optimal solution, in the sense that
the optimal solution is realized as some equilibrium of the game with tolls, and the case
where a set of tolls strongly enforces the optimal solution, in the sense that the optimal
solution is realized as the unique equilibrium of the game with tolls.

For atomic congestion games with splittable traffic and heterogeneous players,
Swamy [21] proved that a set of tolls that weakly enforce the optimal solution can
be computed efficiently by solving a Convex Program. For homogeneous players with
splittable traffic, Cominetti et al. [8] presented a toll mechanism that reduces the price
of anarchy3 though it is not known whether it weakly enforces the optimal solution.

To the best of our knowledge, the only work prior to ours that investigates the effi-
ciency of toll mechanisms for atomic congestion games with unsplittable traffic is [4].
Caragiannis et al. considered games with linear latency functions and homogeneous
players, and investigated how much tolls can improve the price of anarchy. On the neg-
ative side, they presented a simple non-symmetric game for which the price of anarchy
remains at least 1.2 under any toll mechanism. Therefore, non-symmetric congestion
games do not necessarily admit tolls that strongly enforce the optimal solution. On the
positive side, Caragiannis et al. presented a set of tolls strongly enforcing the opti-
mal solution for linear congestion games on parallel links. In addition, they presented
two efficiently computable toll mechanisms that improve the price of anarchy of lin-
ear games with arbitrary strategies. The first mechanism [4, Theorem 3] is simple and
improves the pure price of anarchy to 2.155 (from 2.5 [1,5]). The second mechanism
[4, Theorem 5] applies to the more general setting of mixed equilibria and weighted
players, and improves the price of anarchy to 2 (from 2.618 [1,5]). However, the for-
mer mechanism may not weakly enforce the optimal solution even for linear games on
parallel links, while the latter mechanism may not strongly enforce the optimal solution
even for linear games on series-parallel networks4.

2 The uniqueness of Nash equilibrium in non-atomic games is also exploited by the algorithm
of [15], which computes the smallest fraction of coordinated players required by a Stackelberg
routing strategy to induce the optimal solution.

3 The price of anarchy [17] is a widely accepted measure of the performance degradation due to
the players’ non-cooperative and selfish behaviour. The (pure) price of anarchy is the worst-
case ratio of the total cost of a (pure) Nash equilibrium to the optimal total cost. For a survey
on the price of anarchy of congestion games, see e.g. [13].

4 For a game where the tolls of [4, Theorem 3] do not weakly enforce the optimal solution,
consider 2 players and two parallel links with latency functions d1(x) = x/2 and d2(x) = x.
For a game on a series-parallel network where the tolls of [4, Theorem 5] do not strongly
enforce the optimal solution, consider the instance of Fig. 1.b with k = 2, q1 = q2 = 2, and
latency function d(s,t)(x) = (3 + ε)x, ε ∈ (0, 1), for the direct (s, t) edge.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



182 D. Fotakis and P.G. Spirakis

Contribution. Despite the considerable interest in optimal toll mechanisms for atomic
and non-atomic congestion games, it is still unknown whether there is an optimal toll
mechanism for symmetric games with unsplittable traffic. This is true even for relatively
simple symmetric network congestion games, such as games on series-parallel networks
and games on parallel links with non-linear latencies.

In this work, we investigate the existence of optimal tolls for symmetric network
congestion games with unsplittable traffic, homogeneous players, and arbitrary non-
negative and non-decreasing latency functions. We focus on pure Nash equilibria and
consider a natural toll mechanism, which we call cost-balancing tolls. Cost balancing-
tolls are motivated by the optimal toll mechanisms for non-atomic games [7,11,12,16].
A set of cost-balancing tolls turns every path with positive traffic on its edges into
a minimum cost path (the optimal tolls for linear congestion games on parallel links
[4] are also based on the same principle). Hence any given configuration is induced
as a pure Nash equilibrium of the game with the corresponding cost-balancing tolls.
We show how to compute in linear time a set of cost-balancing tolls for the optimal
configuration such that the total amount of tolls paid by any player in any pure Nash
equilibrium of the modified game does not exceed the latency on the maximum latency
path in the optimal configuration. Roughly speaking, we prove that the optimal solution
is weakly enforceable by a set of moderate cost-balancing tolls computable in linear
time. Moreover, we give a simple example where the optimal solution cannot be weakly
enforced by tolls substantially smaller than the cost-balancing tolls.

Motivated by the recent interest in analyzing toll mechanisms (e.g. [11]) and Stackel-
berg routing strategies (e.g. [10,21]) for games on series-parallel networks, we study the
efficiency of cost-balancing tolls for such games. Our main result is that for congestion
games on series-parallel networks with strictly increasing latencies, the optimal solution
is strongly enforceable by the corresponding cost-balancing tolls. Therefore, congestion
games on series-parallel networks with increasing latencies admit a set of moderate op-
timal tolls computable in linear time. To the best of our knowledge, only linear con-
gestion games on parallel links were known to admit optimal tolls [4, Theorem 1] prior
to this work. Our result is considerably stronger, since it applies to arbitrary increasing
latency functions and to series-parallel networks, which are significantly more complex
than parallel-link networks. On the negative side, we show that if the network is not
series-parallel, the cost-balancing tolls may not strongly enforce the optimal solution
even for linear latency functions.

To highlight the difficulty of computing a better set of optimal tolls, we prove that
even for 2-player linear congestion games on series-parallel networks, it is NP-hard
to distinguish between the case where the optimal solution is the unique pure Nash
equilibrium (thus any positive tolls only serve to increase the players’ disutility) and the
case where there is another equilibrium of total cost at least 6/5 times the optimal cost
(and hence some positive tolls are required to strongly enforce the optimal solution).

2 Model, Definitions, and Notation

Congestion Games. A congestion game is a tuple Γ (N, E, (Σi)i∈N , (de)e∈E), where
N denotes the set of players, E denotes the set of resources, Σi ⊆ 2E denotes the
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strategy space of each player i, and de : IN �→ IR≥0 is a non-negative and non-
decreasing latency function associated with each resource e ∈ E. A congestion game
is symmetric if all players share the same strategy space. A congestion game is linear if
the latency function of each resource e is de(x) = aex + be, ae, be ≥ 0.

A configuration is a vector σ = (σ1, . . . , σn) consisting of a strategy σi ∈ Σi for
each player i ∈ N . For each resource e, σe = |{i ∈ N : e ∈ σi}| denotes the
congestion induced on e by σ. The individual cost of player i in the configuration σ is
ci(σ) =

∑
e∈σi

de(σe). A configuration σ is a pure Nash equilibrium if no player can
improve his individual cost by unilaterally changing his strategy. Formally, σ is a Nash
equilibrium if for every player i and every strategy si ∈ Σi, ci(σ) ≤ ci(σ−i, si) 5.

We say that a congestion game Γ admits a unique pure Nash equilibrium if all pure
Nash equilibria of Γ induce the same congestion on every resource. Rosenthal [19]
proved that the pure Nash equilibria of a congestion game correspond to the local op-
tima of a natural potential function. Therefore, every congestion game admits a pure
Nash equilibrium, which is not necessarily unique.

In the following, we let n denote the number of players and m denote the number of
resources. We restrict our attention to symmetric network congestion games, where the
players’ strategies are determined by a directed network G(V, E) with a distinguished
source s and destination t. The network edges play the role of the resources and the
common strategy space of all players is the set of simple s − t paths in G, denoted P .

Flows and Configurations. Let G(V, E) be a directed network with source s and desti-
nation t. An s − t flow f is a vector (fe)e∈E ∈ IRm

≥0 that satisfies the flow conservation
at all vertices other than s and t. The volume of an s − t flow is the total flow leaving
s. A flow is acyclic if there is no directed cycle in G with positive flow on all its edges.
For a flow f and a path p ∈ P , we let fmin

p = mine∈p{fe}.
Given a configuration σ for a symmetric network congestion game, we refer to the

congestion vector (σe)e∈E as the flow induced by σ. We say that a flow σ is feasible if
there is a configuration inducing congestion σe on every edge e. We slightly abuse the
notation by letting the same symbol denote both a configuration and the feasible flow
induced by it.

Social Cost. We evaluate configurations and the corresponding feasible flows using the
objective of total cost. The total cost C(σ) of a configuration σ is the sum of players’
costs in σ. Formally, C(σ) =

∑n
i=1 ci(σ) =

∑
e∈E σede(σe). The optimal configura-

tion, usually denoted o, minimizes the total cost C(o) among all configurations in Pn.
In the following, we let o denote both the optimal configuration and the optimal flow
induced by it.

Every s − t network with non-negative and non-decreasing latency functions admits
an integral acyclic min-cost flow of volume n computable in polynomial time if xde(x)
are convex. Therefore, if xde(x) are convex, an optimal configuration for a symmetric
network congestion game can be computed in polynomial time by a min-cost flow com-
putation followed by a flow decomposition in n s− t paths. For series-parallel networks
with arbitrary non-negative and non-decreasing latencies, an optimal configuration can
be computed in O(m + n logm) time by the greedy algorithm [3].

5 For a vector x = (x1, . . . , xn), (x−i, x
′
i) ≡ (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn).
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Tolls. We consider a scenario where the network manager levies tolls on the edges
of the network trying to influence the players’ selfish choices and induce an optimal
configuration. A set of tolls is a function τ : E �→ IR≥0 that assigns a non-negative
per-unit-of-traffic toll τe to each resource e. The modified congestion game induced by
τ is Γ̄τ (N, E, (Σi)i∈N , (de)e∈E), where de(x) = de(x) + τe for all e ∈ E. In Γ̄τ , the
players have the same strategy space as in the original game. The cost of each player
i in a configuration σ increases by the total amount of tolls on the resources in σi and
becomes:

ci(σ) =
∑

e∈σi

de(σe) =
∑

e∈σi

(de(σe) + τe) = ci(σ) +
∑

e∈σi

τe

The selfish players reach a pure Nash equilibrium of Γ̄τ . Since the tolls are payments
inside the network, a common assumption is that the tolls can be feasibly refunded to
the players and thus do not affect the social cost (see e.g. [7,12,16], and the case of
refundable tolls in [4]). Hence the social cost of a configuration σ remains C(σ) =∑

e∈E σede(σe) as in the original congestion game Γ .
The goal is to compute a set of tolls τ that motivate the selfish players to induce

a given feasible flow f (in particular, the optimal flow). A first natural requirement is
that every configuration corresponding to f should be a pure Nash equilibrium of Γ̄τ .
Namely if the players take the tolls into account and adopt an arbitrary configuration
inducing congestion fe on each edge e, they should not have an incentive to deviate.
Formally, a feasible flow f is weakly enforceable by tolls τ if every configuration in-
ducing congestion fe on each edge e is a Nash equilibrium of Γ̄τ . By definition, if a
feasible flow f is weakly enforceable, there is at least one pure Nash equilibrium of Γ̄τ

with congestion fe on all e ∈ E.
Since Γ̄τ does not need to admit a unique pure Nash equilibrium, some equilibria

of Γ̄τ may induce flows quite different from f . To exclude this possibility, we require
that f should be not only weakly enforceable by τ , but also the unique pure Nash
equilibrium of Γ̄τ . Formally, a feasible flow f is strongly enforceable by tolls τ when a
configuration σ is a Nash equilibrium of Γ̄τ if and only if σe = fe for all e ∈ E. A set
of tolls τ is optimal if the optimal flow is strongly enforceable by τ .

Series-Parallel Networks. A directed s−t network is series-parallel if it either consists
of a single edge (s, t) or can be obtained from two series-parallel graphs with terminals
(s1, t1) and (s2, t2) composed either in series or in parallel. In a series composition,
t1 is identified with s2, s1 becomes s, and t2 becomes t. In a parallel composition,
s1 is identified with s2 and becomes s, and t1 is identified with t2 and becomes t. A
maximal set of contiguous series compositions is a series component, and a maximal
set of parallel compositions is a parallel component.

A series-parallel network can be completely specified by its decomposition tree,
which is a rooted tree with a leaf for each edge. Each internal node of the decom-
position tree represents either a series or a parallel component obtained from series
(resp. parallel) compositions of the networks represented by its subtrees. The root of
the tree represents the entire network. The decomposition tree of a series-parallel net-
work G(V, E) can be computed in O(|V | + |E|) time (see e.g. [22] for more details).
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3 Cost-Balancing Tolls

A set of tolls τ is cost-balancing for a feasible flow f if for every path p ∈ P with
fmin

p > 0 and every path p′ ∈ P ,

∑

e∈p

de(fe) =
∑

e∈p

(de(fe) + τe) ≤
∑

e∈p′

(de(fe) + τe) =
∑

e∈p′

de(fe) (1)

Proposition 1. Let f be a feasible flow that admits a set of cost-balancing tolls τ . Then
f is weakly enforceable by τ .

Proof. We prove that any configuration σ with σe = fe on each edge e is a pure Nash
equilibrium of the congestion game Γ̄τ . In particular, for every player i and every path
p ∈ P , the individual cost of i (in Γ̄τ ) does not decrease if i switches from σi to p:

ci(σ) =
∑

e∈σi

de(fe) ≤
∑

e∈p

de(fe) ≤ ci(σ−i, p) ,

where the first inequality follows from the definition of cost-balancing tolls. �	

We present a simple linear-time algorithm, called BALANCE, that computes a set of
cost-balancing tolls for any acyclic s − t flow f . The input of BALANCE consists of a
s − t network G(V, E) and an acyclic s − t flow f . BALANCE works as follows:

1. Let Ef = {e ∈ E : fe > 0}, and let Gf (V, Ef ) be the spanning subgraph of G
consisting of the edges with positive flow in f .

2. BALANCE assigns a non-negative length de(fe) to each edge e ∈ Ef and computes
the longest path from s to any vertex in Gf reachable from s. Let �s = 0, and for
every vertex u ∈ V \ {s} reachable from s, let �u be the length of the longest s − u
path in Gf .

3. The toll of every edge e = (u, v) ∈ Ef is τe = �v − (�u + de(fe)). The toll of
every edge e 
∈ Ef is τe = τmax, where τmax = δ + maxp∈P

∑
e∈p de(n), with

δ > 0 chosen arbitrarily small.

If f is acyclic, Gf is a directed acyclic graph (DAG). Therefore, the longest paths
from s can be computed in O(|V | + |Ef |) time by negating the edge lengths and solv-
ing the corresponding single-source shortest path problem (see e.g. [9, Section 24.2]).
Hence BALANCE can be implemented in time linear in the size of the network.

Lemma 1. For any acyclic s − t flow f , the tolls τ computed by BALANCE are cost-
balancing for f .

Proof. We first show that τe ≥ 0 for all e ∈ E. The claim is trivial for the edges not in
Ef . For the edges in Ef , we recall that a longest path in a DAG becomes a shortest path
if we negate the edge lengths. Therefore, for every vertex v reachable from s, −�v is the
length of the shortest s − v path in Gf (V, Ef , (−de(fe))e∈Ef

). Hence, for every edge
e = (u, v) ∈ Ef , −�v ≤ −�u−de(fe), which implies that τe = �v −(�u+de(fe)) ≥ 0.
By the same reasoning, if an edge e ∈ Ef lies on some longest path, then τe = 0.
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We have also to show that for every s − t path p with fmin
p > 0, and every s − t path

p′,
∑

e∈p(de(fe) + τe) ≤
∑

e∈p′(de(fe) + τe). Let p = (s = u0, u1, . . . uk = t) be
an s − t path with positive flow on all edges. Since for every edge e = (ui, ui+1) ∈ p,
τe = �ui+1 − (�ui + de(fe)),

∑
e∈p(de(fe) + τe) = �t. On the other hand, the cost on

every s − t path p′ containing an edge e with fe = 0 is at least τmax ≥ �t. �	

In the following, we refer to the tolls computed by BALANCE for an acyclic flow f as
the cost-balancing tolls for f .

Theorem 1. For every symmetric network congestion game Γ , the optimal flow o
is weakly enforceable by the cost-balancing tolls τ for o, which have the following
properties:

(a) Given the optimal flow o, τ is computed in time linear in the size of the network.
(b) The maximum toll on any edge is at most τmax = δ + maxp∈P

∑
e∈p de(n), for

any δ > 0. No edge with toll τmax is used in any pure Nash equilibrium of Γ̄τ .
(c) The total amount of tolls paid by any player in any pure Nash equilibrium of Γ̄τ

does not exceed �t = maxp:omin
p >0

∑
e∈p de(oe).

Proof. (a). Every symmetric network congestion game with non-negative and non-
decreasing latency functions admits an optimal configuration that corresponds to a fea-
sible integral acyclic flow o. The linear-time algorithm BALANCE computes the cost-
balancing tolls τ for o (Lemma 1) and o is weakly enforceable by τ (Proposition 1).

(b). Let G(V, E) be the s − t network determining the strategy space of Γ . Since o
is an acyclic s − t flow, �v ≤ �t for all vertices v reachable from s in Go. Therefore,
every edge with positive flow in o is assigned a toll no greater than �t. The remaining
edges are assigned a toll equal to τmax.

We then prove that all edges with toll τmax remain unused in any pure Nash equilib-
rium of Γ̄τ . To reach a contradiction, we assume that there is a pure Nash equilibrium
σ of Γ̄τ in which some player i uses an edge e with oe = 0. Then, ci(σ) ≥ τmax. Let pt

be the longest s− t path in Go. In the proof of Lemma 1, we show that for every edge e
lying on some longest path in Go, τe = 0. Therefore, if player i switches to pt, her cost
becomes at most maxp:omin

p >0
∑

e∈p de(n) < τmax ≤ ci(σ), a contradiction.

(c). By (b), every Nash equilibrium σ of Γ̄τ induces congestion σe = 0 on every
edge e with oe = 0. Hence the strategy σi of each player i entirely consists of edges
with positive flow in o. In the proof of Lemma 1, we show that for every s − t path p
with omin

p > 0,
∑

e∈p(de(oe) + τe) = �t. Consequently, the total amount of tolls paid
by player i in σ is at most �t = maxp:omin

p >0
∑

e∈p de(oe). �	

Remark 1. There are symmetric network games for which the optimal solution cannot
be weakly enforced by tolls substantially smaller than the cost-balancing tolls. For in-
stance, let us consider the discrete version of Pigou’s example with an even number n
of players and two parallel links with latencies d1(x) = x/n and d2(x) = 1. In the op-
timal solution, there are n/2 players on each link. For this example, the cost balancing
tolls coincide with the marginal cost tolls and are τ1 = 1/2 and τ2 = 0. The optimal
solution is weakly enforced by τ (note that it is not strongly enforced by τ because the
latency of the second link is constant). On the other hand, for any set of tolls τ ′, either
1
2 − 1

n ≤ τ ′
1 − τ ′

2 ≤ 1
2 , or the optimal solution is not weakly enforced by τ ′.
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3.1 Optimality of Cost-Balancing Tolls for Series-Parallel Networks

It is not hard to prove that if the latency functions are increasing, the optimal solution is
strongly enforceable by the cost-balancing tolls for networks with linearly independent
routes (e.g. [18]), an interesting class of s−t networks including parallel-link networks.
Next we generalize this result to series-parallel networks, an important class of networks
considerably more complex than networks with linearly independent routes. This gen-
eralization is particularly interesting because in a series-parallel network, an s − t flow
may be realized by many different configurations (see e.g. the proof of Theorem 3).

Lemma 2. Let Γ be a symmetric congestion game on a series-parallel network
G(V, E) with increasing latency functions, and let f be any feasible acyclic flow that
admits a set of cost-balancing tolls τ . Then every pure Nash equilibrium σ of the con-
gestion game Γ̄τ induces congestion σe = fe on each edge e.

Proof. To reach a contradiction, we assume that there is a pure Nash equilibrium σ
of Γ̄τ that induces congestion σe 
= fe on some edge e. The corresponding flow σ is
acyclic because the network is series-parallel, the latency functions are non-negative
and increasing, and σ is a Nash equilibrium of Γ̄τ . Hence both f and σ are integral
acyclic s − t flows of volume n.

We refer to an edge e as a forward edge if σe > fe, and as a backward edge if
σe < fe. Since σe’s and fe’s are integral, σe ≥ fe + 1 for all forward edges e and
fe′ ≥ σe′ +1 for all backward edges e′. Since σ and f are different acyclic flows of the
same volume, there is at least one forward edge and at least one backward edge.

Let H be a component in the series-parallel decomposition of G (H is the in-
duced subgraph of G determined by the vertices in the corresponding component) such
that H contains both forward and backward edges and none of H’s subcomponents
H1, . . . , Hk has this property. In other words, H corresponds to the entire subtree of an
internal node uH in G’s decomposition tree, and H1, . . . , Hk correspond to the entire
subtrees of uH’s children (an Hi may consist of a single edge and correspond to a leaf
of the decomposition tree). H is a minimal component in the series-parallel decompo-
sition of G wrt the property that it contains both forward and backward edges. Such
a component exists and can be found by traversing G’s decomposition tree bottom-up
because every edge e with σe 
= fe is either a forward or a backward edge but not both.

Let H1 be a component of H that contains at least one forward edge and no backward
edges, and let H2 be a component of H that contains at least one backward edge and
no forward edges (their existence is guaranteed by the definition of H). Since σ is
acyclic and H1 does not contain any backward edges, by flow conservation, the number
of players going through H1 in σ is greater than the number of players going through
H1 in f . Similarly, since f is acyclic and H2 does not contain any forward edges, the
number of players going through H2 in σ is less than the number of players going
through H2 in f . Hence, by flow conservation, H1 and H2 are not connected in series.
Therefore, H is formed by a parallel composition of H1, . . . , Hk. Let sH and tH be the
common endpoints of H and its components H1, . . . , Hk.

Let e+ be a forward edge in H1, let i be any player with e+ ∈ σi (such a player
exists because e+ is a forward edge and thus σe+ ≥ 1), and let p+ denote the restriction
of σi to H1 (i.e. p+ is the part of σi between sH and tH ). Since H1 does not contain
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any backward edges, σe ≥ fe and de(σe) ≥ de(fe) for all e ∈ p+. Moreover, for the
forward edge e+, de+(σe) > de+(fe) because the latency functions de(x) (and thus the
functions de(x)) are increasing. Therefore, the individual cost of player i on p+ is:

∑

e∈p+

de(σe) >
∑

e∈p+

de(fe) (2)

On the other hand, since f is acyclic and H2 does not contain any forward edges,
H2 contains an sH − tH path p− entirely consisting of backward edges. Therefore
σe + 1 ≤ fe for all e ∈ p−, which implies that:

∑

e∈p−

de(σe + 1) ≤
∑

e∈p−

de(fe) ≤
∑

e∈p+

de(fe) (3)

For the last inequality, we observe that fmin
p− ≥ 1 and that (1) holds for p− and p+, since

they are segments of s − t paths with common endpoints sH and tH .
Combining (2) and (3), we conclude that

∑
e∈p+ de(σe) >

∑
e∈p− de(σe + 1).

Therefore player i can decrease her cost by changing her path between sH and tH
from p+ to p−. This contradicts the assumption that σ is a Nash equilibrium of Γ̄τ . �	

Theorem 1 and Lemma 2 immediately imply the following:

Theorem 2. Every symmetric congestion game on a series-parallel network with in-
creasing latency functions admits a set of optimal tolls with the properties (a), (b), and
(c) in Theorem 1.

Remark 2. If the network is not series parallel, the optimal flow may not be strongly
enforceable by the cost-balancing tolls even for linear latencies de(x) = aex, ae > 0.
For example, consider the 4-player game in Fig. 1.a. The set of s − t paths con-
sists of pu = (e1, e3, e7, e11) (upper path), pm

1 = (e1, e4, e8, e11) (upper middle
path), pm

2 = (e2, e5, e9, e12) (lower middle path), pl = (e2, e6, e10, e12) (lower path),
pc
1 = (e1, e4, e9, e12) (first cross path), and pc

2 = (e2, e5, e8, e11) (second cross path).
An optimal configuration is o = (pu, pm

1 , pm
2 , pl) and has cost 92. The longest s − t

path in o is pc
2 and has length 24. The cost-balancing tolls assign a toll of 1 to e4, e7,

and e12, and no tolls to the remaining edges. The configuration σ = (pc
1, p

c
1, p

c
2, p

c
2) has

cost 104 and is a pure Nash equilibrium of the modified game with cost-balancing tolls.

4 Hardness of Deciding the Necessity of Tolls

To highlight the difficulty of computing a better set of optimal tolls, we prove that even
for simple games on series-parallel networks, it is NP-hard to decide whether the use
of tolls is really necessary to strongly enforce the optimal flow.

Theorem 3. Given a 2-player linear congestion game Γ on a series-parallel network
for which the optimal configuration o is Nash equilibrium, it is NP-hard to distinguish
between the case where o is the unique pure Nash equilibrium of Γ , and the case where
Γ admits another pure Nash equilibrium of cost at least 6

5C(o).
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Fig. 1. (a). A symmetric network congestion game with (increasing) linear latency functions for
which the cost-balancing tolls do not strongly enforce the optimal flow. Each edge is labeled with
its latency function and its identifier. The edges with positive cost-balancing tolls are bold and the
tolls appear in parenthesis next to the original latency functions. (b). The series-parallel network
used in the proof of Theorem 3.

Proof. We use a reduction from Partition, which is weakly NP-complete [14, Prob-
lem SP12]. Let q1, . . . , qk be positive integers such that

∑k
i=1 qi = B, with B even.

Partition asks whether there is a set A∗ ⊆ [k] such that
∑

i∈A∗ qi =
∑

i�∈A∗ qi = B/2.
Given q1, . . . , qk, we construct a 2-player game Γ on the series-parallel network

in Fig. 1.b. The latency functions are dei,1(x) = qix, dei,2(x) = (qi/2)x, i ∈ [k],
and d(s,t)(x) = (3B/4)x. In the optimal configuration o, one player uses path p2 =
(ei,2)i∈[k] and has cost B/2 and the other player uses the direct edge from s to t and has
cost 3B/4. The optimal configuration has cost C(o) = 5B/4 and is a Nash equilibrium
of Γ (in fact, o is weakly enforceable by the trivial tolls τe = 0 for all e ∈ E).

We prove that Γ admits a pure Nash equilibrium of cost 3B/2 iff there exists a set
A∗ ⊆ [k] such that

∑
i∈A∗ qi = B/2. For every set A ⊆ [k], we define a configuration

σA = (pA, pĀ) consisting of a pair of complementary paths pA = (ei,ji)i∈[k], and
pĀ = (ei,3−ji)i∈[k], where ji = 1 if i ∈ A and ji = 2 otherwise. Let SA =

∑
i∈A qi.

The cost of the player on pA is (B+SA)/2 and the cost of the player on pĀ is B−SA/2.
The total cost of σA is C(σA) = 3B/2. We prove that σA is a Nash equilibrium iff
SA = B/2. If SA = B/2, the cost of both players is 3B/4 and none of them has
an incentive to deviate to the direct edge (s, t). Hence the configuration σA is Nash
equilibrium. If SA > B/2 (resp. SA < B/2), the player on pA (resp. pĀ) has cost
greater than 3B/4 and can decrease her cost by switching to the direct edge (s, t).

To conclude the proof, we show that Γ does not admit any pure Nash equilibrium
other than the optimal configuration and the configurations σA corresponding to sets
A ⊆ [k] with SA = B/2. First we observe that in any pure Nash equilibrium of Γ ,
at most one player uses the direct edge (s, t). If one player uses (s, t), the other player
uses p2, and we have the optimal configuration. If no player uses (s, t), there is one
player on every edge ei,j , i ∈ [k], j ∈ {1, 2}. If there are two players on some edge
ei,2, the total cost is greater than 3B/2. Hence, some player has cost greater than 3B/4
and can decrease her cost by switching to (s, t). If both players use some edge ei,1,
one of them can decrease her cost by switching to ei,2. Every configuration with one
player on every edge ei,j , i ∈ [k], j ∈ {1, 2}, corresponds to a configuration σA for an
appropriate A ⊆ [k]. �	
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Abstract. We consider a network formation game where a finite number of
nodes wish to send traffic to each other. Nodes contract bilaterally with each
other to form bidirectional communication links; once the network is formed,
traffic is routed along shortest paths (if possible). Cost is incurred to a node from
four sources: (1) routing traffic; (2) maintaining links to other nodes; (3) dis-
connection from destinations the node wishes to reach; and (4) payments made
to other nodes. We assume that a network is stable if no single node wishes to
unilaterally deviate, and no pair of nodes can profitably deviate together (a vari-
ation on the notion of pairwise stability). We study such a game under a form of
myopic best response dynamics. In choosing their best strategy, nodes optimize
their single period payoff only. We characterize a simple set of assumptions un-
der which these dynamics will converge to a pairwise stable network topology;
we also characterize an important special case, where the dynamics converge to
a star centered at a node with minimum cost for routing traffic. In this sense, our
dynamics naturally select an efficient equilibrium. Further, we show that these as-
sumptions are satisfied by a contractual model motivated by bilateral Rubinstein
bargaining with infinitely patient players.

1 Introduction

Given the reliance of modern society on data networks, it is remarkable that such net-
works — particularly the Internet — are in fact “networks of networks”. They are held
together through a federation of independently owned and operated service providers,
that compete and cooperate to provide service. If we wish to understand how the net-
work will evolve under decisions made by independent self-interested network oper-
ators, then we must turn our attention to the strategic analysis of network formation
games (NFGs).

NFGs describe the interaction between a collection of nodes that wish to form a
graph. Such models have been introduced and studied in the economics literature; see,
e.g., [1, 2, 3]. We consider a game theoretic model where each of the nodes in the net-
work is a different player, and a network is formed through interaction between the
players. We are interested in understanding and characterizing the networks that result
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when individuals interact to choose their connections. In particular, we will focus on the
role of bilateral contracting and the dynamic process of network formation in shaping
the eventual network structure. As a specific example, we are motivated by the interac-
tion between Internet service providers (ISPs) to form connections that yield the fabric
of the global Internet. Most contractual relationships between ISPs may be classified
into one of two types: transit, and peer. Provider A provides transit service to provider
B if B pays A to carry traffic originating within B and destined elsewhere in the In-
ternet (either inside or outside A’s network). In such an agreement, provider A accepts
the responsibility of carrying any traffic entering from B across their interconnection
link. In peering agreements, one or more bidirectional links are established between two
providers A and B. In contrast to transit service, where traffic is accepted regardless of
the destination, in a peering relationship provider B will only accept traffic from A that
is destined for points within B, and vice versa. (For details on Internet contracting, see
[4, 5, 6].)

We highlight several key points about the contracting between ISPs that motivates
the high level questions addressed in this paper. First, notice that although any given
end-to-end path in the Internet may involve multiple ISPs, the network is connected
only thanks to bilateral contracts between the different providers. Second, the ISPs use
(by and large) a relatively limited set of contracts in forming connections with each
other. At a high level, this motivates an important question: what contracting structures
are likely to lead to “good” network topologies?

In this paper, we study this high level question through a particular network for-
mation model. We assume that each node in the network represents a selfish agent.
Motivated by data networks where links are physically present, we assume that each
node participating in a link incurs a fixed maintenance cost per link. We further assume
that every node is interested in sending traffic to every other node. Thus we assume that
they incur a disconnectivity cost per unit of traffic they do not successfully transmit, and
that nodes’ experience a per-unit routing cost when forwarding or terminating traffic.

We assume that a link in the network is formed as the result of a contract the two
nodes participating in the link at some point agreed upon. It is natural to assume that
such contract induces a transfer of utility between the two nodes, and that the amount
transferred is a function of the topology of the network when the contract was formed.
We view contracting from a design perspective: what types of contracts lead to good
eventual outcomes? To abstract this notion, we define a contracting function. If two
nodes decide to form a link in a given network topology, the contracting function gives
the value of the contract: both direction and amount of payment between the nodes.
Given our cost structure and this notion of contracting, a given network topology to-
gether with the associated set of contracts defines the utility of an agent in the network.

Given the NFGs, we define pairwise stability of an outcome in the spirit of [3]. How-
ever, networks are not static objects; agents might negotiate a contract at a given time,
but that contract might become unattractive as the structure of the network evolves. We
consider dynamics that account for bilateral deviations of nodes that are assumed to be
selfish and myopic. The main questions our paper answers are the following: under what
conditions on the contracting function do the dynamics converge? When the dynamics
converge, are the limiting networks pairwise stable? Are they Pareto efficient? We will
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find a remarkably simple set of conditions under which a form of myopic best response
dynamics converge to efficient pairwise stable equilibria. Note that the dynamics we
consider differ significantly from that of [7, 8] in that they account separately for both
unilateral and bilateral deviations.

We also note that several other papers have also considered bilateral network for-
mation games with transfers among the agents, including [9, 10, 1, 11, 12]. Our work
differs from these earlier works by combining a network formation model where cost
is incurred due to routing of traffic as well as link formation and maintenance, with the
question of characterization of contracting functions that yield good limiting network
topologies dynamically.

The remainder of the paper is organized as follows. We first define the class of net-
work formation games considered in Section 2; in particular, we develop the notion
of contracting in such games. In Section 3, we define pairwise stable equilibrium, and
highlight the potential tension between pairwise stability and Pareto efficiency. In Sec-
tion 4 we define and discuss the dynamics studied. Section 5 specializes our model to
a particular case of interest: a network formation game with traffic routing. In Section
6 we establish the main convergence results for our myopic dynamics, in the network
formation game with traffic routing.

2 The Game and Contracting

In this section, we present a network formation game where agents are the set of nodes
of the network. Nodes receive value that depends on the network topology that arises.
We model a scenario where each link in the network is the result of bilateral “contract-
ing” between nodes. Each contract carries with it some utility transfer from the node
seeking the agreement, to the node accepting it; we assume that the value of the utility
transfers depends only on the network topology realized after agreement. We assume
this contracting function satisfies certain natural properties.

We use the notation G = (V, E) to denote a graph, or network topology, consisting of
a set of n nodes V and edges E; the nodes will be the players in our network formation
game. We assume throughout that all edges in G are undirected; we use ij to denote an
undirected edge between i and j. As all models in the paper address only a fixed set of
nodes V , we will typically use the shorthand ij ∈ G when the edge ij is present in E.
We use G + ij and G − ij to denote, respectively, adding and subtracting the link ij to
the graph G.

For a node i ∈ V , let vi(G) be the monetary value to node i of network topology G.
Let Pij denote a payment from i to j; we assume that if no undirected link ij exists, or
if i = j, then Pij = 0. We refer to P = (Pij , i, j ∈ V ) as the payment matrix. Given
a payment matrix P , the total transfer of utility to node i is TUi(P) =

∑
j Pji − Pij ;

the first term is the sum of payments received by i, while the second term is the sum
of payments made by i. Thus the total utility of node i in graph G is Ui(P, G) =
TUi(P) + vi(G).

We consider a network formation game in which each node selects nodes it wishes to
connect to, as well as nodes it is willing to accept connections from. Formally, each node
i simultaneously selects a subset Fi ⊆ V of nodes i is willing to accept connections
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from, and a subset Ti ⊆ V of nodes i wishes to connect to. We let T = (Ti, i ∈ V ) and
F = (Fi, i ∈ V ) denote the composite strategy vectors.

An undirected link is formed between two nodes i and j if i wishes to connect to j
(i.e., j ∈ Ti), and j is willing to accept a connection from i (i.e., i ∈ Fj). All edges that
are formed in this way define the network topology G(T,F) realized by the strategy
vectors T and F; i.e., j ∈ Ti, i ∈ Fj implies that ij ∈ G(T,F).

In our model of network formation, we also assume that if i ∈ Fj and j ∈ Ti, then
a binding contract is formed from i to j; we denote this contract by (i, j), and refer to
the directed graph Γ (T,F) as the contracting graph. The contracting graph captures
the inherent directionality of link formation: in our model a link is only formed if one
node asks for the link, and the target of the request accepts.

The contracting graph and the network topology together determine the transfers be-
tween the nodes. Formally, we assume the existence of a contracting function Q(i, j; G)
that gives the payment in a contract from i to j when the network topology is G; note
that if Q(i, j; G) is negative, then j pays i. Thus given the strategy vectors T and F, the
payment matrix P(T,F) at the outcome of the game is given by:

Pij(T,F) =
{

Q(i, j; G(T,F)), if (i, j) ∈ Γ (T,F);
0, otherwise.

(1)

Thus given strategy vectors T and F, the payoff to node i is Ui(G(T,F),P(T,F)).
By an abuse of notation, and where clear from context, we will often use the shorthand
G = G(T,F), Γ = Γ (T,F), and P = P(T,F) to represent specific instantiations of
the network topology, contracting graph, and payment matrix, respectively, arising from
strategy vectors T and F. We refer to a triple (G, Γ,P) arising from strategic decisions
of the nodes as a feasible outcome if there are strategy vectors T and F that give rise to
(G, Γ,P).

We believe two interpretations of the contracting function are reasonable. First, we
might imagine that an external regulator has dictated that contracts between nodes must
have pre-negotiated tariffs associated with them; these tariffs are encoded in the con-
tracting function. Note that the regulator in this case dictates changes in the value of the
contract as the surrounding network topology changes.

A second interpretation of the contracting function does not assume the existence
of the regulator; instead, we presume that the value of the contracting function is the
outcome of bilateral negotiation between the nodes in the contract. Note that the struc-
ture of our game assumes that this negotiation takes place holding the network topology
fixed; i.e., the negotiation is used to determine the value of the contract, given the topol-
ogy that is in place. One example is simply that Q(i, j; G) is the result of a Rubinstein
bargaining game of alternating offers between i and j, where i makes the first offer
[13]. We investigate this example in further detail in Appendix A.

We will be interested in contracting functions exhibiting two natural properties:
monotonicity and anti-symmetry. We start with some additional notation: given j �= i,
let the cost to node i in network topology G be defined as Ci(G) = −vi(G) . We define
the difference in cost to node i between graph G and graph G + ij as ΔCi(G, ij) =
Ci(G + ij) − Ci(G). (Note that if ij ∈ G, then ΔCi(G, ij) = 0.)

We first define monotonicity.
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Property 1 (Monotonicity). Let G be a graph such that ij /∈ G and ik /∈ G. We say
that the contracting function is monotone if ΔCj(G, ij) > ΔCk(G, ik) if and only if
Q(i, j; G + ij) > Q(i, k; G + ik).

(Note that since j and k are interchangeable, if the differences on the left hand side of
the previous definition are equal, then the contract values on the right hand side must be
equal as well.) Informally, monotonicity requires that the payment to form a link must
increase as the burden of forming that link increases on the accepting node.

Our second property is inspired by the observation that, in general, Q(i, j; G) is not
related to Q(j, i; G); anti-symmetry asserts these values must be equal.

Property 2 (Anti-symmetry). We say that the contracting function Q is anti-symmetric
if, for all nodes i and j, and for all graphs G, we have Q(i, j; G) = −Q(j, i; G).

Note that in the game we are considering, a contracting function that is anti-symmetric
has the property that at any feasible outcome of the game, the payment for a link ij
does not depend on which node asked for the connection.

3 Stability and Efficiency

We study our game through two complementary notions. First, because nodes act as
self-interested players, we define a reasonable game-theoretic notion of equilibrium for
our model, called pairwise stability (first introduced by Jackson and Wolinsky [3]). In-
formally, pairwise stability requires that no unilateral deviations by a single node are
profitable, and that no bilateral deviations by any pair of nodes are profitable. How-
ever, we are also interested in system-wide performance from a global perspective, and
for this purpose we must study the efficiency of the network as well; we measure the
efficiency of a network topology via the total value obtained by all nodes using that
topology.

We start by considering game theoretic notions of equilibrium for our model. The
simplest notion of equilibrium is Nash equilibrium. However, as is commonly observed,
Nash equilibrium lacks sufficient predictive power in many network formation games
due to the presence of trivial equilibria.

The problem with Nash equilibrium is that link formation is inherently bilateral: the
consent of two nodes is required to form a single link. For this reason we consider a
notion of stability that is robust to both unilateral and bilateral deviations. This notion
is known as pairwise stability. It follows that any pairwise stable outcome is a Nash
Equilibrium.

Formally, suppose that the current strategy vectors are T and F, and the current
network topology and contract graph are G = G(T,F) and Γ = Γ (T,F) respectively.
Suppose that two nodes i and j attempt to bilaterally deviate; this involves changing the
pair of strategies (Ti, Fi) and (Tj , Fj) together. Any deviation will of course change
both the network topology, as well as the contract graph.

However, we assume that any contracts present both before and after the deviation
retain the same payment. This is consistent with the notion of a contract: unless the de-
viation by i and j entails either breaking an existing contract or forming a new contract,
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there is no reason that the payment associated to a contract should change. With this
caveat in mind, we formalize our definition of pairwise stability as follows; note that it
is similar in spirit to the definition of Jackson and Wolinsky [3].

Definition 1. Assume Q is a contracting function. Given strategy vectors T and F, let
G = G(T,F), Γ = Γ (T,F), and P = P(T,F). Given strategy vectors T′ and F′,
define G′ = G(T′,F′) and Γ ′ = Γ (T′,F′). Define P′ according to:

P ′
k� =

⎧
⎨

⎩

Pk�, if (k, �) ∈ Γ ′ and (k, �) ∈ Γ ;
Q(k, �; G′), if (k, �) ∈ Γ ′ and (k, �) /∈ Γ ;
0, otherwise.

(2)

Then (T,F) is a pairwise stable equilibrium if: (1) No unilateral deviation is profitable,
i.e., for all i, and for all T′ and F′ that differ from T and F (respectively) only in the
i’th components,

Ui(P, G) ≥ Ui(P′, G′);

and (2) no bilateral deviation is profitable, i.e., for all pairs i and j, and for all T′ and
F′ that differ from T and F only in the i’th and j’th components,

Ui(P, G) < Ui(P′, G′) =⇒ Uj(P, G) > Uj(P′, G′).

Notice that (2) is a formalization of the discussion above.
When nodes i and j deviate to the strategy vectors T′ and F′, all payments associated

to preexisting contracts remain the same. If a contract is formed, the payment becomes
the value of the contracting function given the new graph. Finally, if a contract is broken,
the payment of course becomes zero. These conditions give rise to the new payment
matrix P′. Nodes then evaluate their payoffs before and after a deviation. The first
condition in the definition ensures no unilateral deviation is profitable, and the second
condition ensures that if node i benefits from a bilateral deviation with j, then node j
must be strictly worse off.

We will typically be interested in pairwise stability of the network topology and
contracting graph, rather than pairwise stability of strategy vectors. We will thus say
that a feasible outcome (G, Γ,P) is a pairwise stable outcome if there exists a pair of
strategy vectors T and F such that (1) (T,F) is a pairwise stable equilibrium; and (2)
(T,F) give rise to (G, Γ,P). Note that by our definition of the game, for all i and j
such that (i, j) ∈ Γ we must have Pij = Q(i, j; G) in a pairwise stable outcome.

The following lemma yields a useful property of pairwise stable outcomes; for the
proof, see [14].

Lemma 1. Let (G, Γ,P) be a pairwise stable outcome. Then for all nodes i and j, if
(i, j) ∈ Γ and (j, i) ∈ Γ , then Q(i, j; G) = 0 and Q(j, i; G) = 0.

We will investigate the efficiency of pairwise stable equilibria.
Let (G, Γ,P) and (G′, Γ ′,P′) be two feasible outcomes. We say that (G, Γ,P) Pareto

dominates (G′, Γ ′,P′) if all players are better off in (G, Γ,P) than in (G′, Γ ′,P′), and
at least one is strictly better off. A feasible outcome is Pareto efficient if it is not Pareto
dominated by any other feasible outcome. Since payoffs to nodes are quasilinear in our
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model, i.e., utility is measured in monetary units [15], it is not hard to show that a feasible
outcome (G, Γ,P) is Pareto efficient if and only if G ∈ arg minG′ S(G′), where S(G)
is the social cost function:

S(G) =
∑

i∈V

Ci(G).

(Note that, in particular, the preceding condition does not involve the contracting func-
tion; contracts induce zero-sum monetary transfers among nodes, and do not affect
global efficiency.)

Given a graph G, we define the efficiency of G as the ratio S(G)/S(Geff), where Geff

is the network topology in a Pareto efficient outcome.

4 Dynamics

This section proposes a myopic best response dynamic for our network formation game.
Myopic dynamics refer to the fact that at any given round, nodes update their strategic
decisions only to optimize their current payoff. We have two complementary objectives
in the dynamics we propose. First, we would like our dynamics to be consistent with
the potential for bilateral deviations by pairs of nodes. Ultimately, our goal is to ensure
that our dynamics always converge to a pairwise stable equilibrium. Our second objec-
tive involves efficiency: we aim to ensure that such dynamics lead to desirable pairwise
stable equilibria. Note that this is a significant departure from the usual approach in the
literature on learning in games (see, e.g., [16]), which is typically focused on ensuring
convergence to some equilibrium without regard to efficiency. The remainder of our pa-
per presents a simple set of conditions on the contracting function that ensure precisely
the desired convergence results on the dynamics, in the case of a network formation
game with routing.

Informally we consider a discrete-time myopic dynamic that includes two stages at
every round. At round k, both a node uk and an edge ukvk are activated. At the first
stage of the round, with probability pd ∈ [0, 1], node uk can choose to unilaterally break
the edge ukvk if it is profitable to do so; and, with probability 1− pd, the link (and thus
all contracts associated with) ukvk is broken, regardless of node uk’s preference. In
the second stage, uk selects a node w and proposes to form the contract (uk, w) to w,
with associated payment given by the contracting function. (Although the second stage
appears to be a restricted form of bilateral deviation, we will later see that in the cost
model we consider, it is sufficient to restrict to bilateral deviations this form.) Node w
then decides whether to accept or reject, and play then continues to the next round given
the new triple of network topology, contracting graph, and payment matrix. It is crucial
to note that uk’s strategic decisions are made so that its utility is maximized at the end
of the round. We contrast this with w’s strategic decision, which is made to maximize
its utility at the end of the second stage given its utility at the end of the first stage.

We consider two variations on our basic model of dynamics: either pd = 1, or pd <
1. When pd = 1, node uk can choose to break either or both of the contracts associated
with ukvk (if they exist). When pd < 1, provided all links are activated infinitely often,
all links are broken infinitely often regardless of the activated node’s best interest. For
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ease of exposition, unless otherwise stated, all the subsequent discussion will be made
assuming pd = 1.

This informal discussion leads to the following definitions. We call an activation
process any discrete-time stochastic process {(uk, vk)}k∈N where the pairs (uk, vk) are
i.i.d. random pairs of distinct nodes from V drawn with full support. A realization of
an activation process is called an activation sequence. (In fact, all results in this paper
can be proved under the following generalization of an activation process. Let u, v, w
and x be four nodes from V such that u �= v and w �= x. We can define an activation
process to be any sequence of pairs of nodes such that, almost surely, all two pairs of
nodes (u, v) and (w, x) are activated successively infinitely often.)

The next example considers a natural activation process.

Example 1 (Uniform Activation Process). The activation process is said to be uniform
if, for all k, u and v, u �= v, the probability that (uk, vk) = (u, v) is uniform over all
ordered pairs. Thus P [(uk, vk) = (u, v)] = 1/(n(n − 1)).

Let (uk, vk) be the pair selected at the beginning of round k. Let
(
G(k), Γ (k),P(k)

)
be

the state at the beginning of the round. In a single round k, our dynamics consist of two
sequential stages, as follows:

1. Stage 1: If ukvk ∈ G(k), then node uk decides whether to break the contract
(uk, vk) (if it exists), the contract (vk, uk) (if it exists), or both.

2. Stage 2: Node uk decides if it wishes to form a contract with another wk. If it
chooses to do so, then uk asks to form the contract (uk, wk), and wk can accept or
reject. The contract is added to the contracting graph if wk accepts the contract.

Node uk takes actions in stages 1 and 2 that maximize its utility in the state at the end
of the round; in the event no action can strictly improve node uk’s utility in a stage,
we assume that uk takes no action at that stage. Note, in particular, that at stage 1 node
uk only breaks (uk, vk) and/or (vk, uk) if a profitable deviation is anticipated to be
possible at stage 2. At stage 2, node wk accepts uk’s offer if this yields a higher utility
to wk than the state at the beginning of stage 2. (Tie-breaking is discussed at the end of
the section.)

The rules for updating the contracting graph Γ (k+1), at the end of round k, are sum-
marized in Table 1. The first three actions described in table 1 are the basic actions the
first node of the selected pair can do during a round. The last two actions are composi-
tions of two of the basic actions.

We define G(k+1) to be the associated network topology: i.e., ij ∈ G(k+1) if and
only if either (i, j) ∈ Γ (k+1) or (j, i) ∈ Γ (k+1) (or both). In all cases, the payment
vector P(k+1) is updated as in (2), first after stage 1, and then after stage 2.

It is critical to observe that the state of the dynamics at round k,
(
G(k), Γ (k),P(k)

)
,

need not be a feasible outcome. This follows because the payment matrix may not be
consistent with the current contracting graph: when contracts are updated, only pay-
ments associated to the added or deleted contracts are updated—all other payments
remain the same (cf. (2)). This motivates the following definition.

Definition 2 (Adaptedness). Let (G, Γ,P) be a triple consisting of a (undirected) net-
work topology, a (directed) contracting graph, and a payment matrix. We say that the
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Table 1. Updating the contracting graph

Action(s) selected by uk Γ (k+1)

Breaks (uk, vk) Γ (k) \ {(uk, vk)}
Breaks (vk, uk) Γ (k) \ {(vk, uk)}
Adds (uk, wk) Γ (k)�{(uk, wk)}

Breaks (uk, vk) and (vk, uk) Γ (k) \ {(uk, vk), (vk, uk)}
Breaks (uk, vk) and adds (uk, wk)

�
Γ (k) \ {(uk, vk)}

��
{(uk, wk)}

edge ij is adapted in (G, Γ,P) if (1) if (i, j) ∈ Γ , then Pij = Q(i, j; G); otherwise
Pij = 0; if (2) if (j, i) ∈ Γ , then Pji = Q(j, i; G); otherwise Pji = 0; and (3) ij ∈ G
if and only if (i, j) ∈ Γ or (j, i) ∈ Γ .

Note that if every edge ij is adapted to (G, Γ,P), then (G, Γ,P) must be a feasible
outcome. Further, note that if the initial state of our dynamics was a feasible outcome,
then condition 3 of the preceding definition is satisfied in every round.

The following definition captures convergence.

Definition 3 (Convergence). Given any initial feasible outcome
(
G(0), Γ (0),P(0)

)

and an activation process AP , we say the dynamics converge if, almost surely, there
exists K such that, for k > K ,

(
G(k+1), Γ (k+1),P(k+1)

)
=

(
G(k), Γ (k),P(k)

)
.

For a given activation sequence and initial feasible outcome, we call the limiting
state (G, Γ,P).

(We say that the network topology converges if the preceding condition is only satisfied
by G(k).) Note that in our definition of convergence, we do not require that the payments
between nodes in the limiting state have any relation to the contracting function; we will
establish such a connection in our convergence results.

As noted above, the active node at a round, say u, may not have a unique utility-
maximizing choice of a “partner” node at stage 2. To avoid oscillations induced by
the possibility of multiple optimal choices, we introduce the following assumption of
inertia. Let uk be the node activated at round k, and suppose that at the start of stage 2
in round k, uk has multiple utility-maximizing choices of nodes wk . Then we assume
that among such utility-maximizing nodes, uk chooses the node wk it was connected
to most recently, or at random if no such node exists; this assumption remains in force
throughout the paper. While we have chosen a specific notion of inertia, we emphasize
that many other assumptions can also lead to convergent dynamics. For instance, among
utility-maximizing choices of wk, if node uk always chooses the node wk with the
highest degree, our convergence results remain valid.

We emphasize that the dynamics we have defined here address an inherent tension.
On one hand, any dynamic process must allow sufficient exploration of bilateral devi-
ations to have any hope of converging to a pairwise stable equilibrium. On the other
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hand, if the dynamics are completely unconstrained—for example, if nodes can choose
any bilateral or unilateral deviation they wish—then we have little hope of converging
to an efficient pairwise stable equilibrium. Our dynamics are designed to allow suffi-
cient exploration without sacrificing efficiency, under reasonable assumptions on the
contracting function and the cost model.

The remainder of the paper formalizes the claim of the preceding paragraph, in a spe-
cific cost model motivated by network routing. We define our model in the next section,
and study stability and efficiency in the context of this model. We then show in Sec-
tion 6 that weak assumptions on the contracting function are sufficient to establish that
the dynamics presented in this section always converge to a desirable pairwise stable
equilibrium. In particular, when pd = 1, we show that anti-symmetry and monotonicity
of the contracting function suffice to establish convergence. If pd < 1, then we do not
need the assumption of anti-symmetry: monotonicity of the contracting function alone
suffices to establish convergence.

5 A Traffic Routing Utility Model

In this section we define a network formation game where nodes extract some utility per
unit of data they successfully send through the network, and study pairwise stability and
efficiency in the context of this model. However, nodes experience per-unit routing costs
when in the data network, as well as maintenance costs per adjacent link. Our motivation
is the formation of networks in data communication settings, such as wireless ad hoc
networks. Such networks are typically highly reconfigurable, with a tradeoff between
costs for both link maintenance and disconnectivity.

We start by describing our traffic routing model. Formally, we suppose that each
user i wants to send one unit of traffic to each node in the network; we refer to this
as a uniform all-to-all traffic matrix. We assume that given a network topology, traffic
is routed along shortest paths, where the length of a path is measured by the number
of hops. Further, we assume that in case of multiple shortest paths of equal length,
traffic is split equally among all available paths. We let fi(G) be the total traffic that
transits through i plus the total traffic received by i. We assume that node i experiences
a positive routing cost of ci per unit of traffic. Thus given a graph G, the total routing
cost experienced by node i is Ri(G) = cifi(G).

We next turn our attention to network maintenance costs. We assume that each node
experiences a maintenance cost π > 0 per link incident to it. Note that this maintenance
cost is incurred by both endpoints of a link, so that the effective cost of a single link
is 2π. Further, note that the link maintenance cost does not depend on the identities of
the endpoints of the link; this homogeneity assumption is made for technical simplicity.
Thus given a graph G = (V, E), the total link maintenance cost incurred by node i is
Mi(G) = πdi(G), where di(G) is the degree of node i in the graph G.

Finally, nodes’ experience a disconnection cost that is decreasing in the amount of
traffic successfully sent. An equivalent way to view this cost is to assume that links
receive an increasing utility in the amount traffic sent. Formally, we assume that each
node experiences a cost of λ > 0 per unit of traffic not sent. Note that λ is identical
for all nodes; again, this homogeneity assumption simplifies the technical development.
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Thus given a graph G, the cost to a node i from incomplete connectivity, or disconnec-
tion cost, is Di = λ(n − ni(G)), where ni(G) is the number of nodes i can reach in
the graph G.

Thus the total cost to a node i in a graph G is:

Ci(G) = Ri(G) + Mi(G) + Di(G). (3)

5.1 Pairwise Stability

We now characterize pairwise stable outcomes, given the cost model (3). We start with
the following structural characterization; the proof can be found in [14].

Proposition 1. Let (G, Γ,P) be a pairwise stable outcome. Then G is a forest (i.e., all
connected components of G are trees).

The preceding proposition shows the “minimality” of pairwise stable graphs: since our
payoff model does not include any value for redundant links, any pairwise stable equi-
libria must be forests. An interesting open direction for our model includes the addition
of a utility for redundancy (e.g., for robustness to failures).

Most of the pairwise stable equilibria we discuss are framed under the following
assumption on the disconnectivity cost λ.

Assumption 1 (Disconnection Cost). Given a contracting function Q, the disconnec-
tivity cost λ > 0 is such that for all disconnected graphs G and for all pairs i and
j that are disconnected in G, there holds ΔCi(G, ij) + Q(i, j; G + ij) < 0 and
ΔCi(G, ij) − Q(j, i; G + ij) < 0.

This implies that if nodes i and j are not connected in G, then both are better off by
forming the link ij using either the contract (i, j) or (j, i). (Note that if Q is anti-
symmetric the second condition is trivially satisfied.)

The preceding assumption is meant to ensure that we can restrict attention to con-
nected graphs in our analysis. From our utility structure, it is easy to see that only the
payments and disconnectivity costs act as incentives to nodes to build a connected net-
work topology. But payments alone are not enough to induce connectivity, since of
course the node paying for a link feels a negative incentive due to the payment. We em-
phasize that the preceding assumption is made assuming that the contracting function
and all other model parameters are given, so that the threshold value of λ necessary to
satisfy the preceding assumption may depend on these other parameters. Nevertheless,
as we will see this assumption has interesting implications for our model. It is clear from
our model that if all other model parameters are fixed, then a λ satisfying the preceding
assumption must exist. Examples where λ scales as O(n) can be found in [14].

If Assumption 1 holds, we have the following corollary about pairwise stable out-
comes; the proof is immediate.

Corollary 1. If Assumption 1 holds, all pairwise stable outcomes are trees.

From the preceding corollary, we can prove the following simple characterization of
pairwise stable outcomes; see [14] for the proof.
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Proposition 2. Suppose that Assumption 1 holds, and that Q is monotone. Let
(G, Γ,P) be a feasible outcome where G is a tree. Then (G, Γ,P) is pairwise stable if
and only if no pair of nodes can profitably deviate by simultaneously breaking one link
and forming another, i.e.: given nodes i and j and any link ik ∈ G, let G = G−ik+ij,
Γ ′ = (Γ \ {(i, k), (k, i)})

⋃
{(i, j)}, and define P′ as in (2). Then:

Ui(P, G) < Ui(P′, G′) =⇒ Uj(P, G) > Uj(P′, G′).

5.2 Efficiency of Equilibria

Pairwise stable equilibria will typically be inefficient (see [14] for explicit constructions
of an arbitrarily inefficient equilibrium). If we restrict our attention to minimally con-
nected pairwise stable equilibria, one can see that a star centered at umin would generate
lower social cost than any other minimally connected network topology.

As long as the contracting function is monotone, it is possible to show that any tree
where non-leaf nodes have minimum routing cost can be sustained as pairwise stable
equilibrium. This is the content of the next proposition.

Proposition 3. Suppose that Assumption 1 holds. Let (G, Γ,P) be a feasible outcome
such that G is a tree, and any non-leaf node i has ci = minj cj; i.e., all internal nodes
of G have minimum per-unit routing cost. Then (G, Γ,P) is pairwise stable.

The key result we require is the following.

Lemma 2. Suppose that G is a tree, and u, v, and w are distinct nodes such that G −
uv + uw is a tree. Then the cost to u is the same in both graphs.

The preceding proposition shows that although inefficient pairwise stable equilibria
may exist, any tree where only minimum routing cost nodes appear in the interior is also
sustainable as a pairwise stable equilibrium. This is of critical importance: in particular,
any star centered at a node u with cu ≤ cv for all v can thus be sustained as a pairwise
stable equilibrium. It is not difficult to establish that among all forests, such a star has
the lowest social cost, i.e., the highest efficiency. (See [14] for details.) In particular, we
obtain the important conclusion that the most efficient minimally connected topology
can be sustained as a pairwise stable equilibrium. We will establish in Section 6 that
our dynamics always converge to a topology of the form assumed in the preceding
proposition. Thus our dynamics select a “good” equilibrium from the set of pairwise
stable equilibria.

6 Convergence Results

In this section we prove that, under an anti-symmetric and monotone contracting func-
tion, the dynamics previously defined converge to a pairwise stable outcome where the
network topology is a tree, and where non-leaf nodes have minimum per-unit routing
cost. In the special case where there exists a unique minimum per-unit routing cost node
umin, our result implies that the dynamics always converge to a star centered at umin.
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Note that other, less efficient pairwise stable outcomes may exist; thus in this special
case, our dynamics converge to a feasible outcome that minimizes the price of stability.
Further, we prove that, if pd < 1 (i.e. if all links are broken exogenously infinitely of-
ten), then the results still hold even when the contracting function is only monotone. In
all that follows let Vmin = {i ∈ V : ci ≤ cj for all j ∈ V }. Thus Vmin is the set of all
nodes with minimum per-unit routing cost.

We begin by relating the cost model of (3) to the dynamics proposed in Section 4. We
consider a model where λ satisfies Assumption 1; as a result, as suggested by Corollary
1 and Proposition 2, we can expect two implications. First, nodes will break links until
the graph is minimally connected. Second, if the graph is minimally connected at the
beginning of a round, then it must remain so at the end of the round; thus, if uk’s
action breaks the link ukvk at the first stage of round k, then the bilateral deviation at
the second stage must involve formation of exactly one link. Note that this observation
serves as justification of the bilateral deviation considered at stage 2 of our dynamics
for, at the second stage, we need only to consider deviations where uk either identifies
a node wk with which to establish the contract (uk, wk), or does nothing.1

The following theorems are the central results of this paper. Our first result estab-
lishes convergence of our dynamics when the contracting function is anti-symmetric
and monotone, and pd = 1.

Theorem 2. Suppose Assumption 1 holds, and that the contracting function is
monotone and anti-symmetric. Let

(
G(0), Γ (0),P(0)

)
be a feasible outcome. Then for

any activation process, the dynamics initiated at
(
G(0), Γ (0),P(0)

)
converge. Further,

if the activation process is a uniform activation process, then the expected number of
rounds to convergence is O(n5).

For a given activation sequence, let the limiting state be (G, Γ,P). Then: (1) G is a
tree where any node that is not a leaf is in Vmin; and (2) (G, Γ,P) is a pairwise stable
outcome.

As the proof is somewhat lengthy, we only sketch it here. Details can be found in [14].

Proof sketch. The proof proceeds in three main steps.
(1) Convergence to a tree. We first show that the network topology converges to a

tree. More precisely we show that in expectation, after O(n4) rounds, G(k) is a tree;

and, if (u, v) and (v, u) are both in Γ (k), then P
(k)
uv = P

(k)
vu = 0. (2) Convergence of the

network topology. Next, we show that the network topology converges. In particular,
we show that in expectation, after an additional O(n5) rounds, the network topology
converges to a tree where all non-leaf nodes are in Vmin. (3) Convergence of the
contracting graph. The remainder of the proof establishes that the contracting graph
converges: in expectation, after an additional O(n3) rounds, the contracting graph
remains constant, and all edges are adapted (and remain so). �

1 In general, the directionality of the contract may affect the payment; however, in the case of
anti-symmetric contracting functions, whether (uk, wk) or (wk, uk) is formed will not impact
the payment made across the contract.
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When pd < 1, we get an even stronger result regarding dynamics: we can prove
that monotonicity of the contracting function suffices to establish convergence; anti-
symmetry is no longer required.

Theorem 3. Suppose Assumption 1 holds, and that the contracting function is
monotone. Further, assume that pd < 1. Let

(
G(0), Γ (0),P(0)

)
be a feasible out-

come. Then the dynamics initiated at
(
G(0), Γ (0),P(0)

)
are such that, for any activation

process, the network topology converges.
For a given activation sequence, let the limiting network topology be G. Also, let K

be such that, Gk = G for all k > K . Then, for k > K sufficiently large: (1) G is a tree
where any node that is not a leaf is in Vmin; and (2) (G, Γ k,Pk) is a pairwise stable
outcome.

The proof of this second theorem requires some mild modifications to the proof of Theo-
rem 2. It is important to note that, if the contracting function is not anti-symmetric, con-
vergence of the network topology does not imply convergence of the contracting graph.
Nevertheless, our result is very surprising as it states that, although the contracting graph
might not converge, the network topology always converges. Further, after a finite time,
all outcomes exhibited are pairwise stable. If pd is inversely polynomial in n, then the
expected time to convergence is polynomial as well. Details can be found in [14].

The following corollary addresses an important special case; it follows from Theo-
rems 2 and 3.

Corollary 4. Suppose Assumption 1 holds and the contracting function is monotone.
Suppose in addition that either: (1) pd = 1 and the contracting function is anti-
symmetric; or (2) that pd < 1. Suppose in addition that Vmin consists of only a single
node umin. Given

(
G(0), Γ (0),P(0)

)
and an activation sequence, let (G, Γ,P) be the

limiting pairwise stable outcome. Then G is the unique minimally connected efficient
network topology: a star centered at umin.

The preceding results demonstrate the power of the dynamics we have defined, as well
as the importance of the assumptions made on the contracting functions. Despite the fact
that our model may have many pairwise stable equilibria, our dynamics select “good”
network topologies as their limit points regardless of the initial state. At the very least,
only nodes with minimum per-unit routing cost are responsible for forwarding traffic
(cf. Theorems 2 and 3); and at best, when only a single node has minimum per-unit rout-
ing cost, our dynamics select the network topology that minimizes social cost among
all forests. This result suggests that from a regulatory or design perspective, monotone
anti-symmetric contracting functions have significant efficiency benefits.

7 Conclusion

There are several natural open directions suggested by this paper. The most obvious
one is to expand the strategy space considered by each node in our dynamics. More
precisely, it would be interesting to analyze the robustness of the results when the active
node can select which link to break during phase 1. Though our proofs rely on each link

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Network Formation: Bilateral Contracting and Myopic Dynamics 205

being broken infinitely often, it seems natural to believe that the results can be extended
to the case where such a property is not de-facto assumed.

Finally, while our model is entirely heterogeneous in the assumptions made about
the routing costs of nodes, we require the traffic matrix to be uniform all-to-all, and all
links to have the same formation cost π. We intend to study the extension of the model
defined here to such settings.
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A Rubinstein Bargaining and Contracting

In this appendix we derive the contracting functions associated to solutions of a two
player Rubinstein Bargaining game of alternating offers. We first derive the contracting
function when players are infinitely patient. This corresponds to the cost sharing case.
We then derive the contracting function for the general case.

We begin with the Cost Sharing Contracting Function. The cost sharing contracting
function is defined by:

Q(i, j; G) =

⎧
⎪⎨

⎪⎩

1
2

(ΔCj(G − ij, ij) − ΔCi(G − ij, ij)), if ij ∈ G;

0, otherwise.

The cost sharing contracting function has the property that if a link ij is added to
the network topology, the resulting total change in utility to i and j is equally shared
between them. Formally, suppose ij /∈ G, and that the contract (i, j) is formed. Then
the total change in the utility of node i is:

−ΔCi(G, ij) − Q(i, j; G + ij) = −1
2

(ΔCi(G, ij) + ΔCj(G, ij)) .

Similarly, the total change in the utility of node j is:

−ΔCj(G, ij) + Q(i, j; G + ij) = −1
2

(ΔCi(G, ij) + ΔCj(G, ij)) .

Thus both i and j experience the same change in utility; note that identical expressions
emerge if the contract (j, i) is formed instead. We conclude the net change in utility to
i and j is identical, and independent of the direction of the contract formed.

We now consider the general solution of the two player Rubinstein Bargaining game
of alternating offers. We call the corresponding contracting function the Bilateral Bar-
gaining contracting function.

Consider a graph G containing the link ij. The bilateral bargaining contracting func-
tion value Q(i, j; G) is based on the outcome of a Rubinstein bilateral bargaining game
of alternating offers (see [17] for more details), with the following properties:
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1. Node i (resp, j) has discount factor δi ∈ [0, 1) (resp., δj ∈ [0, 1));
2. Node i makes the first offer in the bargaining game; and
3. The players are bargaining to split a common “pie,” where the size of the pie is the

total difference in cost to both players between the graph G and the graph G − ij
G, i.e., ΔCi(G − ij, ij) + ΔCj(G − ij, ij).

Thus the players i and j are bargaining to split any increase or decrease in utility that
accrues to the pair as a result of the formation of the link ij. The directionality in the
contract corresponds to the fact that one players leads in the bargaining game. It is well
known that this game has a unique subgame perfect equilibrium, in which node i makes
the first offer and j immediately accepts.

The contracting function value Q(i, j; G) corresponds to the payment i must make
to j so that the total difference in the utilities of nodes i and j between the network
topologies G and G − ij matches the unique subgame perfect equilibrium of the game
of alternating offers described above. Thus we wish to ensure that:

−ΔCi(G − ij; ij) − Q(i, j; G) = −
�

1 − δj

1 − δiδj

�
(ΔCi(G − ij, ij) + ΔCj(G − ij, ij)) .

Rearranging terms yields:

Q(i, j; G) =
(

1 − δj

1 − δiδj

)
ΔCj(G − ij, ij) −

(
δj − δiδj

1 − δiδj

)
ΔCi(G − ij, ij).

Note that if δi → 1 and δj → 1, then the preceding expression converges to the cost
sharing contracting function described in the preceding example. Thus we can view
cost sharing as the outcome of a Rubinstein bilateral bargaining game where players
are infinitely patient.
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Abstract. We present a game theoretic study of hybrid communica-
tion networks in which mobile devices can connect in an ad hoc fashion
to a base station, possibly via a few hops using other mobile devices
as intermediate nodes. The maximal number of allowed hops might be
bounded with the motivation to guarantee small latency. We introduce
hybrid connectivity games to study the impact of selfishness on this kind
of infrastructure.

Mobile devices are represented by selfish players, each of which aims
at establishing an uplink path to the base station minimizing its indi-
vidual cost. Our model assumes that intermediate nodes on an uplink
path are reimbursed for transmitting the packets of other devices. The
reimbursements can be paid either by a benevolent network operator or
by the senders of the packets using micropayments via a clearing agency
that possibly collects a small percentage as commission. These different
ways to implement the payments lead to different variants of the hybrid
connectivity game. Our main findings are: (1) If there is no constraint
on the number of allowed hops on the path to the base station, then the
existence of equilibria is guaranteed regardless of whether the network
operator or the senders pay for forwarding packets. (2) If the network
operator pays, then the existence of equilibria is guaranteed only if at
most one intermediate node is allowed, i.e., for at most two hops on the
uplink path of a device, but not if the maximal number of allowed hops
is three or larger. (3) In contrast, if the senders pay for forwarding their
packets, then equilibria are guaranteed to exist given any bound on the
number of allowed hops.

The equilibrium analysis presented in this paper gives a first game
theoretical motivation for the implementation of micropayment schemes
in which senders pay for forwarding their packets. We further support
this evidence by giving an upper bound on the Price of Anarchy for this
kind of hybrid connectivity games that is independent of the number of
nodes, but only depends on the number of hops and the power gradient.

� This work was supported in part by the EU within the 6th Framework Programme
under contract 001907 (DELIS), by Ultra High-Speed Mobile Information and Com-
munication Research cluster (UMIC) established under the excellence initiative of
the German government, and by the DFG under grant Kr 2332/1-2 within the Emmy
Noether program.

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, pp. 208–219, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Who Should Pay for Forwarding Packets? 209

1 Introduction

Hybrid communication networks are a promising direction to combine the fea-
tures of wireless ad hoc networks with the advantages of wired networks guaran-
teeing flexible connectivity at low cost in combination with a high throughput
close to the standards as encountered in wired networks. In such an infrastructure
mobile devices connect in an ad hoc fashion to a base station, i.e., an access point
to the wired part of the network, possibly via a few hops using other mobile de-
vices as relay stations [11,15,16]. Since energy requirements increase super-linear
in the distance between two devices, the usage of intermediate nodes can signif-
icantly reduce the energy consumption in comparison to directly connecting to
the base station. This is of particular importance for up-link connections from
the mobile devices to the base stations as mobile devices have rather limited
energy resources. Using mobile devices as relay stations, on the one hand, might
also increase the Quality of Service (QoS) due to a reduction of interference. On
the other hand, however, the QoS suffers from an increase in latency if packages
need to be forwarded several times until they reach the wired part of the network.
For this reason only a relatively small number of hops seems to be acceptable.

Although the benefits of using multihop connections are convincing from a
global point of view, one might ask why participants in a commercially operated
network should forward packets of other participants, as this only drains the
battery of the forwarding node, thus, bringing a negative utility to that partici-
pant. The usual response to this objection is that the forwarding nodes should
receive a payment for forwarding packets. Let us simplify and assume that there
is perfect information about the cost of forwarding packets. More specifically,
we assume that the energy consumption for sending packets between any pair
of nodes is publicly known and there is a common valuation per unit energy
among the players, so that intermediate nodes can, in principle, get reimbursed
for forwarding packets. Additionally, we assume that payments exactly compen-
sate the cost players suffer in the case of forwarding packets. Thus, there exists
no overpayments which could give an incentive to forward as many packets as
possible.

In this paper we study the effects different payments have on the scenario that
arises when selfish players aim at connecting to an access point. We introduce
hybrid connectivity games as a game theoretic model for hybrid communication
networks and study the existence, structure, and complexity of Nash equilibria
in these games. Mobile devices are represented by players that aim at minimizing
their individual cost. We assume that nodes get reimbursed for forwarding pack-
ets either by the network operator or by the senders of the packet. In our study,
we focus on energy consumption while neglecting aspects of efficient frequency
assignment and interference. The aspect of keeping the latency at a reasonable
level is modeled by introducing hop constraints, which ensure that uplink paths
are not too long.

The games that we study are variants of the connectivity games introduced by
Eidenbenz et al. [9]. However, there are various technical differences between our
model and their models. For example, the networks considered in [9] are assumed
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to be completely wireless rather than hybrid and nodes want to be connected to
all other nodes or, alternatively, to a specified subset of the other nodes. Another
difference is that their analysis does not consider hop constraints. The main
conceptual difference, however, is that the study in [9] does not explicitly take
into account that somebody has to pay for reimbursing the intermediate nodes.
The justification that is given for neglecting this aspect is that the payments are
made on the network layer, whereas the decisions relevant for the topology are
made on the data link layer. It is pointed out in [9], however, that “the ultimate
goal of this line of research would be to combine the notion of selfishness such
that it stretches across all protocol stack layers”.

In this paper, we study the effects of payments on the equilibrium topolo-
gies in hybrid connectivity games depending on who is paying for reimburs-
ing the intermediate nodes for forwarding packets. Essentially, there are two
possibilities: either, the network operator pays for all reimbursements, or the
senders of the forwarded packets pay. One can imagine that the first variant can
be implemented internally within the accounting system of the network oper-
ator/provider. The second variant suggests itself for an implementation using
micropayments as elucidated, e.g., in [13]. A clearing agency realizing the mi-
cropayments possibly collects a small additional percentage as commission from
the senders. We will incorporate these different variants into our model in form
of a parameter α describing the fraction of payments made by the senders. Here,
α = 0 means that the network operator completely pays for the reimburse-
ments, whereas α ≥ 1 means that the senders reimburse the nodes forwarding
their packets and the additional payment, i.e., a fraction of α − 1, goes to the
clearing agency.

1.1 The Model

A hybrid connectivity game consists of a complete, edge-weighted graph G =
(V, E) with V = P ∪̇A and two parameters α ≥ 0 and h ∈ N. We denote by P
the set of players, and by A the set of access points. In the following, let n = |P |.
The edge weights are assumed to be positive, and weight w(i, j) of edge {i, j}
describes the cost of transmitting a unit of data from i to j or vice versa.

Each player aims to establish an uplink path to an access point. Towards this
end, player i chooses a gateway gi ∈ V . The idea is that i sends its own packets
and all other packets that it receives to gi. Then this node forwards these packets
to its gateway and so on until the packets reach an access point unless there is
a cycle. The path followed by the packets to the access point is called i’s uplink
path.

In the following, we call a vector s = (g1, . . . , gn) ∈ V n a state of the game and
assume that player i chooses gi as gateway. The cost ci(s) of player i in state s is
defined as follows. If i is connected via the uplink path i = p0, p1, . . . , pl−1, pl = a
to the access point a and this route has at most h hops, i.e., l ≤ h, then the cost
of i is
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ci(s) = w(p0, p1) + α ·
l−1∑

j=1

w(pj , pj+1) . (1)

Otherwise, the cost of i is assumed to be infinitely large. We assume that each
player selfishly aims at minimizing its cost. A state s is called a Nash equilibrium
if no player has an incentive to change its gateway.

In the following, we assume w. l. o. g. that there exists a single access point
only, that is |A| = 1. In the case of multiple access points we can always merge
them into a single one and choose for every player the weight of the edge between
the player and the new access point as the minimum over all weights between
the player and each access point from the set A.

1.2 Our Contribution

First, we consider the case that the network operator pays for reimbursing the
intermediate nodes, i.e., we assume α = 0. In this case nodes can forward packets
along intermediate nodes for free so that they solely aim at minimizing the energy
requirement for the first link on their path. Let us remark that this is the general
assumption in the work by Eidenbenz et al. [9].

We show that if there is no hop constraint (i.e., h = n), then hybrid con-
nectivity games with α = 0 always have pure equilibria. The situation changes,
however, when introducing hop constraints. We prove that the existence of equi-
libria is guaranteed only for h ∈ {1, 2}. For any h ≥ 3, there is an instance of the
hybrid connectivity game with α = 0 that does not have an equilibrium. Let us
remark that both existence proofs are constructive and yield algorithms comput-
ing equilibria efficiently. Second, we study the case that intermediate nodes are
reimbursed for forwarding packets by the senders of the packets via an agency
that might collect a small percentage as commission, that is, we assume α ≥ 1.
In this case, our analysis shows that these games always have pure equilibria.
Again our proof is constructive and yields an efficient algorithm computing an
equilibrium.

We view our result as the first game theoretical evidence that senders rather
than a benevolent network operator should pay for forwarding their packets.
This is true even if this causes some overhead for implementing the accounting
and payment, as our positive results about the existence of equilibria hold even
if there is a clearing agency taking some percentage as commission.

We complete our analysis by studying the Price of Anarchy (PoA) for hybrid
connectivity games. We start by presenting examples for different variants of
hybrid connectivity games showing that the PoA is unbounded for general cost
matrices. For this reason, we restrict ourselves to cost matrices generated by
power graphs with an underlying Euclidean embedding. Assuming that senders
pay for forwarding their packets – as suggested by our preceding equilibrium
analysis – we obtain an upper bound of hβ−1 for the PoA with h denoting the
hop constraint and β the power gradient. Thus, the PoA is independent of the
size of the network.
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1.3 Related Work

In recent years various papers have studied wireless networks from a game the-
oretic perspective. Among others, Altman and Altman [2], Krishnaswamy [14],
and Heikkinen [12] observe that due to the increased complexity of modern
wireless networks resource management tasks should be shifted from the wired
part of the infrastructure to the mobile devices. Such management tasks include
power assignments to and channel allocation of mobile devices. They propose to
study these problems in the framework of potential games, and present potential
functions showing that best response dynamics converge to stable assignments.

Most closely related to our work is the work of Eidenbenz et al. [9], who intro-
duce several topology control games. In such games selfish mobile devices aim to
be connected to specified sets of others devices at the lowest cost. Although they
suggest that senders should pay for forwarding their packets, they do not take
into account the effects of these payments on the preferences of the players. In
our notation, they assume α = 0. They show that the connectivity games they
consider do no not possess Nash equilibria in general. However, if each device
would like to be connected to every other device, then the existence of equilibria
is guaranteed. Hop constraints are not taken into account.

Different approaches encouraging mobile devices to forward packets are pre-
sented, e.g., in [3,8,13,17]. Jakobsson et al. [13] present a micro-payment scheme,
whereas others discuss incentive compatible payment schemes [3,8,17].

Another branches of research related to our work are network design and
network formation games [1,4,5,7,10]. Anshelevich et al. [4] consider a network
creation game in which players represent subsets of nodes of a graph and can
contribute towards the purchase of fixed price edges. Among other results they
show that if each player wants to connect a single node to some common source,
there exist socially optimal Nash equilibria, or, more formally, the price of sta-
bility in this game is 1.

Fabrikant et al. [10] introduce another basic model of network formation, in
which each node is represented by a selfish agent. Every player can create incident
links to other nodes and incurs a cost that equals α times the number of created
links plus the sum of distances to all other nodes. Fabrikant et al. [10] presented
first results on the Price of Anarchy in these games. Corbo and Parkes [6], Albers
et al. [1], and Demaine et al. [7] present several extentions and improvements on
these results.

2 Payments by the Network Operator

In this section, we consider hybrid connectivity games with α = 0, that is, we
consider games in which the network operator reimburses players forwarding
packets. First we consider games without hop constraint.

Theorem 1. Every hybrid connectivity game with α = 0 and without hop con-
straint possesses a Nash equilibrium which can be computed efficiently.
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Proof. The potential function φ(s) =
∑

i∈P ci(s), which maps a state s to the
sum of all players’ costs in this state. Suppose now that player i chooses a new
gateway in order to decrease its cost. In the following, we denote by s′ the state
obtained after its strategy change. It is not difficult to verify that φ(s′) < φ(s)
since only the cost of player i decreases, whereas the costs of all other players
remain unchanged.

In order to prove that an equilibrium can be computed efficiently, observe that
a player can choose at most n different gateways. Since a player’s best response
does not decrease any other players costs, each player chooses a gateway at most
once. Therefore, after at most n2 best responses an equilibrium is reached. ��
We now turn our attention to hybrid connectivity games with α = 0 and hop
constraint. Recall that in this case an uplink path is only feasible if the number
of hops on this path does not exceed the hop constraint h. First, note that we
cannot apply the potential function introduced in the previous proof to games
with hop constraints. This is essentially true since a best response of a single
player may violate the hop constraints of other players and, thus, the costs of
other players may increase to infinity.

In the following, we prove that every such game with hop constraint h ∈ {1, 2}
possesses a Nash equilibrium. In case of h=1 all players connect to the access
point which is obviously a Nash equilibrium. In case of h = 2 we present an
efficient algorithm. Additionally, we observe that for every hop constraint h ≥ 3
there exists a game which does not possess a Nash equilibrium.

Theorem 2. Every hybrid connectivity game with α = 0 and hop constraint
h = 2 possesses a Nash equilibrium, which can be computed efficiently.

Proof. In the following, we present an efficient algorithm computing a Nash
equilibrium of such a game. The algorithm proceeds in two phases. Without loss
of generality, assume that w(1, a) ≤ w(2, a) ≤ . . . ≤ w(n, a) holds.

Phase 1: Initially, all players are unconnected. The algorithm then processes
the players 1, . . . , n in that order and connects player i to the access point
if there exists no player j < i with the following properties. Player j has
already been connected to the access point, and w(i, j) < w(i, a). If such a
player j exists, player i remains unconnected.

Phase 2: All players who have not been connected in the first phase are con-
nected to their best response.

Obviously, all players who were connected in the second phase do not have an
incentive to change their gateways. Thus, it remains to show that none of the
players who were connected in the first phase have an incentive to change their
gateways. Towards a contradiction, assume that player i has an incentive to
choose a new gateway gi. Note, that gi was connected in the first phase, too.
Thus, gi > i since otherwise i would not have been connected in the first phase.
We conclude

w(i, a) ≤ w(gi, a) since i was connected before gi,
w(gi, a) ≤ w(i, gi) since gi connected to the access point, and
w(i, gi) < w(i, a) since i wants to connect to gi.
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Finally, we obtain a contradiction, since the inequalities imply that it holds that
w(i, gi) < w(i, gi). ��

Next, we show that, in general, the existence of Nash equilibria cannot be ex-
tended towards games with hop constraint h ≥ 3.

Observation 1. For every integer h ≥ 3, there exists a hybrid connectivity
game with α = 0 and hop constraint h that does not possess a Nash equilibrium.

Proof. First, we present such a game with hop constraint h = 3. In this game
there are 5 devices and a single access point. Edge weights are defined according
to Figure 1. Exhaustive search shows that this game does not possess a Nash
equilibrium.

a p1 p2 p3 p4 p5

a - 20 58 60 97 85

p1 20 - 65 46 33 82

p2 58 65 - 48 71 15

p3 60 46 48 - 34 72

p4 97 33 71 34 - 18

p5 85 82 15 72 18 -

Fig. 1. A counter-example with h = 3

In order to extend the example towards arbitrary hop constraints h > 3 one
simply replaces the former access point by a sequence of h − 3 players and
attaches a new access point to this sequence. The weights are chosen in such a
way that the new players always line up, and such that none of the old players
ever connect to a new one. ��

3 Payments by the Senders

In this section, we consider hybrid connectivity games with α ≥ 1 and prove
that every such game possesses a Nash equilibrium even in the presence of a hop
constraint. In the following, we assume that players have strict preferences in
the case of two or more alternatives with the same cost. One way to achieve this
is to assume that all paths have pairwise disjoint cost.

Theorem 3. Every hybrid connectivity game with α ≥ 1 and hop constraint h
possesses a Nash equilibrium, which can be computed efficiently. Moreover, this
equilibrium is unique.

Proof. First, we present an efficient iterative algorithm computing an equilib-
rium. We then show that the computed equilibrium is unique. The algorithm
works as follows. Initially, no player is connected. The algorithm then selects
player i, such that i = argminj∈P {w(j, a)} and connects it to the access point a.
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Without loss of generality, assume that i = 1. Obviously, this state corresponds
to an equilibrium if we ignore all unconnected players.

The algorithm then proceeds as follows. By induction hypothesis we may
assume that the algorithm already connected the players 1, . . . , i − 1 via paths
to the access point, such that none of them have an incentive to change their
gateways. For every unconnected player j, let Cj(i − 1) be the cost of a shortest
uplink path via players 1, . . . , i − 1 which does not violate the hop constraint.
Without loss of generality, let i be the player such that Ci(i−1) is minimal. The
algorithm then connects i to the first player on this path. In order to prove that
we obtain a Nash equilibrium with i players, we claim that Ci(i − 1) is larger
than the cost of every uplink path of one of the players 1, . . . , i − 1.

We first prove that the claim is true for player i− 1. Let Ck(i− 2) be the cost
of player k’s shortest uplink path via players 1, . . . , i − 2. Since the algorithm
connected player i − 1 before player i, Ci−1(i − 2) < Ci(i − 2) holds. Strict
inequality holds due to our assumption that all paths have pairwise disjoint
cost. Now, we distinguish between the following two cases. In the first case,
player i chooses i−1 as gateway. In the second case, it chooses one of the devices
1, . . . , i − 2 or the access point itself as gateway. In the first case, Ci−1(i − 1) <
Ci(i − 1) since i pays at least w(i, i − 1) + Ci−1(i − 1). This is true since α ≥ 1.
In the second case, Ci(i − 1) = Ci(i − 2) > Ci−1(i − 2) = Ci−1(i − 1). By the
same arguments the cost of player i−1’s uplink path is also larger than the cost
of the paths of the players 1, . . . , i − 2 our claim follows.

Thus, we conclude that no player j < i has an incentive to choose player i as
gateway, since in this case its cost would increase to at least w(j, i) + Ci(i − 1).
Again, this is true since α ≥ 1.

In order to prove uniqueness, suppose that there exists at least one additional
equilibrium s′ besides the previously computed one s∗. In the following, we
denote the gateway of player i in state s by gi(s). Without loss of generality
assume that

c1(s∗) ≤ c2(s∗) ≤ . . . ≤ cn(s∗) . (2)

Since s∗ �= s′ and due to our assumption that all paths have pairwise disjoint
cost, there exists at least one player i such that ci(s∗) �= ci(s′). Among all such
players let player k be the one with smallest index. Thus, due to our assumption
players 1, . . . , k − 1 are connected in the same manner in both equilibria. Now,
we distinguish between the following two cases both leading to a contradiction:

ck(s∗) < ck(s′) : If k is connected to the access point in s∗, then k could obvi-
ously decrease its cost in s′ by directly connecting to the access point. Thus,
assume that k is not directly connected to the access point in s∗. By Equa-
tion 2, gk(s∗) < k. We conclude that cgk(s∗)(s∗) = cgk(s∗)(s′) holds due to
our choice of k. Thus, k could decrease its cost in state s′ by choosing gk(s∗)
as gateway, since players 1, . . . , k − 1 are connected in the same manner in
both states. We conclude that s′ is not an equilibrium.

ck(s∗) > ck(s′) : If k is connected to the access point in s′, then k could obviously
decrease its cost in s∗ by directly connecting to the access point. Thus,
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assume that k is not directly connected to the access point in s′. In this
case, let k′ be the last player on the path from k to the access point in s′,
who does not belong to the set {1, . . . , k −1}. We observe that such a player
always exists. Assume towards a contradiction that such a player does not
exists. Since the players 1, . . . , k − 1 are connected in the same manner in
both equilibria, k could obviously decrease its cost in s∗ by connecting to
the same gateway as in s′. Now, observe that the following inequalities are
true:

ck′ (s′) < ck(s′) by the choice of k′ and since α ≥ 1,
ck(s′) < ck(s∗) by our assumption, and
ck(s∗) < ck′(s∗) by the choice of k and since k’ �∈ {1, . . . , k − 1} .

Thus, ck′ (s′) < ck′ (s∗). Finally, by the same arguments as in the previous
case k′ has an incentive to change its gateway in state s∗. We conclude that
s∗ is not an equilibrium.

It follows that the equilibrium is unique. ��

From a theoretical point of view, it would also be interesting to consider games
with α ∈ ]0, 1[. In this case reimbursements would be shared among the sender
and the network operator. However, we conjecture that for every α ∈ ]0, 1[, there
exists a hybrid connectivity game that does not have an equilibrium.

4 Price of Anarchy

In this section, we provide some results on the Price of Anarchy (PoA) in hybrid
connectivity games. As usually, the PoA upper bounds the increase of the sum
of the players’ cost due to their selfish behavior. First, we present examples for
α ∈ {0, 1} showing that, in general, the PoA cannot be bounded by any constant.
In the case of games with α = 0 this is already true without hop constraint.

Observation 2. The Price of Anarchy in hybrid connectivity games with α = 0
is unbounded.

Proof. Consider the example depicted in Figure 2(a). In the socially optimal
state player 1 connects to the access point, and player 2 connects to player 1. In
the worst Nash equilibrium player 2 connects to the access point, and player 1
connects to player 2. In this case, the Price of Anarchy equals (M + 1)/3. Since
M can be chosen arbitrarily, the observation follows. ��

Next, we consider hybrid connectivity games with α = 1. In the case of games
without hop constraint, the Price of Anarchy is trivially 1. This is true, since
each player is connected to the access point via a globally shortest path. Unfortu-
nately, this positive result does no hold any longer in games with hop constraint.

Observation 3. The Price of Anarchy in hybrid connectivity games with α = 1
and hop constraint is unbounded.
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1

2 M

access point

player 1 player 2

(a) The Price of Anarchy
is unbounded in hybrid con-
nectivity games with α = 0.

1 1 1

3

M
M + 1

access point

player 1 player 2 player 3

(b) The Price of Anarchy in hybrid connectivity
games with α = 1 and hop constraint is unbounded.

Fig. 2. Worst Case Instances

Proof. Consider the example depicted in Figure 2(b), and assume that the hop
constraint equals 2. Then, in the only equilibrium player 1 connects to the access
point, and player 2 and 3 to player 1. In contrast to this, in the socially optimal
state player 2 connects to the access point, and player 3 to player 2. In this case,
the Price of Anarchy equals (M + 4)/8. Since M can be chosen arbitrarily the
observation follows. ��

In the aforementioned examples we did not make any assumptions on the cost
function. However, in real world wireless networks devices are embedded into the
Euclidean space R

2 or R
3 and costs depend on the Euclidean distance and the

path-loss or distance power gradient β ≥ 1. To be precise, the cost for a successful
transmission of a data packet between two players p1 and p2 equals w(p1, p2)β ,
where w(p1, p2) denotes the Euclidean distance between the two players. The
distance power gradient usually ranges from 2 to 6.

Next, we consider the Price of Anarchy in hybrid connectivity games with
α = 1, which are embedded into the Euclidean space. Given the distance power
gradient β, we call these games β-embedded. We show that for such β-embedded
games the PoA is upper bounded by hβ−1. In real world wireless networks the
distance power gradient β and the hop constraint are expected to be small con-
stants. Thus, in real world networks the impact of selfish players is not too big
and especially does not depend on the number of players.

Theorem 4. The Price of Anarchy in β-embedded hybrid connectivity games
with α = 1 and hop constraint h is upper bounded by hβ−1.

Proof. In the Nash equilibrium s of a β-embedded hybrid connectivity game
with α = 1 and hop constraint the cost of player i is trivially upper bounded
by w(i, a)β . Additionally, in a socially optimal state s∗ the cost of i is lower
bounded by h · (w(i, a)/h)β . Thus, in every Nash equilibrium each player pays
at most

w(i, a)β

h · (w(i, a)/h)β
= hβ−1 (3)
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times more than in a socially optimal state. Therefore, the Price of Anarchy is
upper bounded by hβ−1. ��

Examples show that games exist where a single player actually pays O(hβ−1)
times more in the Nash equilibrium, than in the socially optimal state. This
shows that our analysis is essentially tight.

5 Conclusion

By taking into account different kinds of payments, our analysis is a first step
towards studying the impacts of selfishness stretching across the network and
the data link layer. The major simplifying assumption in our model is that, that
the energy consumption for sending packets between any pair of players is public
knowledge and that there is a common valuation per unit of energy. Because of
this assumption, reimbursements can be chosen in such a way that they precisely
cover the cost for forwarding a packet.

One way to get rid of the assumption of global knowledge about the cost
matrix, might be to simply set a fixed price for forwarding packets, regardless of
the required energy. In this case, only those nodes participate as relay stations,
that can forward packets along edges whose energy cost is not larger than the
fixed price per packet. An alternative approach could be to use mechanisms like
VCG to let the players truthfully report their cost values as described, e. g., in
[3,8].

Both approaches have the problem that players might have an incentive to
increase the number of packets they have to forward, because the payment that
they receive is larger than the cost for forwarding a packet. For example, they
might decrease the number of hops on their path to the base station in order to
get more attractive to serve as a gateway for other nodes. That is, overpayments
change the strategic behavior of the players and, hence, are not covered by our
analysis.

We think that it is an important step towards more practical models and a
challenging open problem to investigate the effects of different payment schemes
in a game theoretical study.
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Abstract. We introduce and study a congestion game having max sat

as an underlying structure and show that its price of anarchy is 1/2.
The main result is a redesign of the game leading to an improved price
of anarchy of 2/3 from which we derive a non oblivious local search
algorithm for max sat with locality gap 2/3. A similar congestion min

sat game is also studied.

Keywords: price of anarchy, non oblivious local search, approximation
algorithm, max sat.

1 Introduction

Starting from the seminal articles [12,14,15], a lot of attention is paid to the
performance of decentralized systems involving selfish users. Probably, the most
extensively studied ones are congestion games [13,16] because they model central
issues in networks. At the same time, the price of anarchy (PoA) and the price of
stability (PoS) are certainly the most employed tools to analyze the performance
of these games [3,12,14].

A congestion game is a tuple 〈N, M, (Ai)i∈N , (cj)j∈M 〉 where N is the set of
players, M is the set of facilities, Ai ⊆ 2M is the set of strategies of player i
and cj is a cost function associated to facility j. In congestion games, a player’s
cost for using a facility depends only on the total number of players using this
facility, and is independent of the player herself. A player’s total cost is defined
as the sum of the single costs over all facilities.

The PoA and the PoS are dominant tools to study the performance of decen-
tralized systems [3,12,14]. In minimization problems, the PoA (resp., the PoS) is
the maximum (resp., the minimum) value that the ratio of the overall optimum
to the cost of a Nash equilibrium (NE) can take over the set of all Nash equilib-
ria. A NE is a combination of strategies, one for each agent, in which no agent
has an incentive to unilaterally move away. Because Nash equilibria are known
to deviate from the optimum in many optimization situations, the PoA captures
the lack of coordination between independent agents while the PoS indicates
how good a solution from which no agent will defect is.

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, pp. 220–231, 2007.
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General congestion games make no particular assumption on the set of facil-
ities; however, an extensive part of the literature deals with congestion games
whose facilities sets are the edge sets of graphs (see for example [12,15] on selfish
routing in networks). In this paper, we introduce and study a congestion game as-
sociated to max sat. The importance of this underlying structure does not need
to be emphasized, since it is involved in numerous combinatorial optimization
problems. Each clause is a facility and the players are the variables with strategy
set {true, false} (playing true means selecting the clauses where her correspond-
ing variable occurs unnegated, playing false means selecting the clauses where
her corresponding variable occurs negated). Moreover, every clause/facility pays
the variables/players a fraction f(j) of its weight where j denotes the number of
players who satisfy it. Players rationally act in order to maximize their payments.

First, we discuss the question What is the price of anarchy and price of sta-
bility of the game? The next step is How can we reduce the price of anarchy?
To do so, we use a powerful technique known as non oblivious local search [1,11]
which consists in using a specific cost function (i.e. different from the weight of
all satisfied clauses which is the classical economic function) in a local search
algorithm.

Related Work
Articles on selfish routing in networks have mushroomed since the papers by
[12,15]. Interestingly, congestion games provide the following unifying framework
for such problems (often called network congestion games): we are given a graph
G = (V, E) where E is the set of facilities. Each player chooses a path between
a given source-destination pair of nodes in V . Each edge has a cost/latency
function which depends on the number of players who use it. Each player selfishly
selects her path in order to minimize her total cost/latency, i.e. the sum over
all edges. The performance of the system is often measured by the average or
maximum total cost/latency experimented by the players when they are at a
Nash equilibrium.

In [12,8], the network consists of m parallel links between a single source-
destination couple of nodes. Players are weighted and the latency function asso-
ciated to an edge is the sum of player’s weights using it. The performance of the
system is measured by the maximum total latency over all players. In [5,6], the
authors study linear general congestion games (not necessarily defined over a
graph) with cost function of the form ce = aek + be where k denotes the number
of players using e while ae and be are positive coefficients. The performance of
the system is both measured by the maximum and average total latency. In [3],
Anshelevich et al. study a network design game where each edge is assigned a
fixed cost. Each player buys/selects a path between her source and destination
nodes. The cost of an edge is distributed over the players who select it. The
social function is what the players collectively pay.

Bilò [4] independently introduced satisfiability games in an effort to classify
non-cooperative games according to three aspects: expressiveness, complexity of
computing their Nash equilibria and the quality of these equilibria. His definition
of the game differs on our since not only disjunctive clauses are considered, a
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player may control several variables and her payoff is the weight of the clauses she
satisfies. He mainly proves that satisifability games, according to his definition
are equivalent to congestion games.

Algorithmic game theory and local search theory have several common points
(see [9,10]). The locality gap (or approximation ratio) for a problem can be
viewed as the PoA of a specific associated game. The well known fact that every
congestion game admits a pure NE [13,16] can be interpreted in terms of local
search theory: players, though separately guided by their self-interest follow a
potential function and converge to a NE as a local search algorithm, following
an economic function, converges to a local optimum.

A survey on max sat, including local search algorithms, can be found in [2].
The most intuitive economic function, termed oblivious objective function, is the
number of satisifed clauses:

∑
i covi where covi denotes the number of clauses

satisfied by exactly i variables. Nevertheless, less intuitive (termed non oblivious)
functions can be used. In particular, we can cite Khanna et al. [11] who obtain a
(1− 1

2k )-approximate algorithm for max e k−sat (the restriction of max sat to
clauses with exactly k literals). They use a 1-neighborhood (at most one variable
is modified at a time) and the function

∑
i αicovi where αi’s are real constants.

Remark that it generalizes the oblivious function. When k = 2, this non oblivious
function is 3

2cov1 +2cov2. With the classical (oblivious) function cov1 +cov2, the
locality gap is 2/3 while the non oblivious function gives a 3/4-approximation
algorithm. Unfortunately, Khanna et al. crucially use the fact that all clauses
have exactly k literals. Up to our knowledge, no extension of this approach to
the max k−sat problem (the restriction of max sat to clauses with at most k
literals) is known.1

Changing the rule of a game in order to improve its PoA is not a new approach.
In [7], Christodoulou et al., introduce the notion of coordination mechanism
which attempts to redesign the system to reduce the PoA.

Contribution and Organization of the Paper
We introduce a congestion game (defined formally in Section 2) associated to the
weighted max sat problem where every clause/facility pays the variables/players
a fraction f(j) of its weight where j denotes the number of players who satisfy
it. We first analyze the natural, so called fair, payment scheme where f(j) = 1/j
(the weight of a clause is evenly distributed to the variables who satisfy it) in
Section 3. We undertake the same analysis in Section 4, using redesigned, in
fact non oblivious, payment schemes and prove that the system shows improved
performances. Our results on the PoA are summarized in the following table.

max e k−sat max k−sat

Fair k
k+1

k
2k−1

Non oblivious 1 − 1
2k 2/3

Note that the given ratios cannot be improved under the considered payment
scheme. Interestingly, we derive a 2/3-approximate non oblivious local search
1 It is not difficult to see that the locality gap of the max k−sat problem is 1/2 if we

use the 1-neighborhood and the classical economic function, even for k = 2.
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algorithm using the 1−neighborhood for the max k− sat problem. Some par-
ticular instances state in Section 5 that PoA=PoS. Finally, Section 6 is devoted
to a game associated to min k−sat. We prove that its PoA, under the fair pay-
ment scheme, is equal to k and that no non oblivious payment scheme can reduce
it. Nevertheless, the PoS is equal to the kth harmonic number H(k) (even for
min e k−sat).

As done in [3,5,6,7] we only consider pure strategy Nash equilibria (all players
deterministically choose between true or false). Thus, we restrict our analysis
to the pure PoA and pure PoS of the max sat and min sat games. Proofs are
sometimes omitted due to space limitation.

2 Definitions

2.1 max k− sat and min k− sat

Let X = {x1, . . . , xn} be a set of boolean variables. A literal in X is either a
boolean variable xi, or its negation xi, for some 1 ≤ i ≤ n. A clause on X is a
disjunction of literals in X . The size of a clause C, i.e., the number of literals
that C contains, is denoted by σ(C). An instance I = (X, C, w) of sat consists
of a set of variables X = {x1, . . . , xn}, a set of clauses C = {C1, . . . , Cm}, and
a non-negative weight w(C) ≥ 0 for each clause C ∈ C. A truth assignment
d is an assignment of the value true or false to each variable in X , that is
∀x ∈ X, d(x) ∈ {true, false}. The well known NP-hard max sat (resp., min

sat) problem is to find an assignment d∗ that maximizes (resp., minimizes) the
total weight of satisfied clauses W (d∗) where W (d) =

∑
{C|d satisfies C} w(C).

The max k−sat (resp., min k−sat) problem is the restriction to instances
where σ(C) ≤ k, ∀C ∈ C. The max e k−sat (resp., min e k−sat) problem is
the restriction to instances where σ(C) = k, ∀C ∈ C. In the unweighted version,
every clause C has a weight w(C) = 1. W.l.o.g., we assume that instances are
”simple”: a variable occurs at most once in a clause and no couple C = x, C′ = x
exists. We also note W (C′) =

∑
C∈C′ w(C) for any C′ ⊆ C.

2.2 A max k−sat Congestion Game

The system is given by an instance of the weighted max k−sat problem where
every clause C ∈ C is a facility and every variable xi ∈ {x1, . . . , xn} is controlled
by an independent and selfish player i ∈ {1, . . . , n}. Player i has strategy set

Ai = {{C ∈ C | xi occurs unnegated in C}, {C ∈ C | xi occurs negated in C}}

or equivalently, Ai = {true, false}. The system’s state (a strategy profile or
truth assignment) is denoted by d = (d1, d2, . . . , dn) ∈ {true, false}n, where di

is i’s strategy. As in the classical max sat problem, the quality is measured by
the total weight of the set of satisfied clauses. The above model is not yet a game
because the players have no preference between true and false. We suppose then

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



224 A. Giannakos et al.

that the system also guides the players in their choice by giving rewards. To do
so, it uses a payment scheme P : {true, false}n → Rn where Pi(d) is what i
receives when d is the strategy profile. Then, every player i rationally acts in
order to maximize Pi(d).

We focus on decentralized payment schemes where Pi(d) is defined as a sum
of atomic rewards over the set of facilities, i.e., Pi(d) =

∑
C∈C π(xi, C, d) with

π(xi, C, d), denoting what i receives from C when d is the system’s state, does
not depend on the other clauses C \ C. The motivation is that such a scheme
can be easily implemented in a distributed system since it does not require
communication between facilities.

2.3 Payments and Potential Functions

We consider general payment schemes such that π(xi, C, d) is proportional to
w(C): a player satisfying a clause C with j − 1 others receives f(j)w(C) from
C where f(j) ≥ 0; she receives nothing from C if she does not satisfy it. Here, f
is called the payment function. Since f() and cf() lead to equivalent payment
schemes if c is a positive constant, we fix f(1) = 1.

As it is defined, the max k−sat game is a congestion game. We know from
[13,16] that it always has a pure Nash equilibrium. Indeed, the game admits a
potential function

Φ(d) =
∑

C∈C

ν(d,C)∑

l=1

f(l)w(C)

where ν(d, C) denotes the number of players satisfying C when d is the strategy
profile.

A natural way to share the weight of a clause is to cut it evenly, i.e., f(j) = 1/j.
As in [3], we will call it the fair payment scheme. Every player i maximizes

Pi(d) =
∑

C∈C
π(xi, C, d) =

k∑

j=1

1
j
W (covj(i, d))

where covj(i, d) denotes the set of clauses satisfied by player i and exactly j − 1
other players. This payment has the following nice property:

∑n
i=1 Pi(d) = W (d).

In that case, the potential function is

Φ(d) =
∑

C∈C

ν(d,C)∑

l=1

w(C)
l

=
k∑

j=1

H(j)W (covj(d))

where H(j) = 1+ 1
2 + 1

3 +· · ·+ 1
j and covj(d) denotes the set of clauses satisfied by

exactly j variables. Hence, the Nash equilibria of the max sat game with the fair
payment function are different from the local optima of the local search algorithm
with the 1-neighborhood and the classical economic function

∑k
j=1 W (covj(d)).
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2.4 Generalities

W.l.o.g. we will assume along the paper that d = {true}n is the worst Nash
equilibrium2 and d∗ is an optimal truth assignment. Moreover, S (resp., S∗) will
be the set of clauses that d (resp., d∗) satisfies. Thus, PoA= W (S)/W (S∗) (resp.,
PoA= W (S)/W (S∗)) for the max k−sat game (resp., min k−sat game). We
can write π(xi, C) instead of π(xi, C, d) since d = {true}n.

Now, we define the notion of atomic gain which will be useful in the proofs.

Definition 1. Given a variable x ∈ X and a clause C ∈ C, the atomic gain of x
in C under the payment function f is denoted by γ(x, C) and defined as follows:

γ(x,C) =

����
���

0 when x does not occur in C
f(j) w(C) when C contains the unnegated variable x

and exactly j − 1 other unnegated variables
−f(j) w(C) when C contains x and exactly j − 1 unnegated variables

Actually, γ(x, C) is x’s reward when she satisfies C, otherwise this is the negative
of what she would get if she changed her strategy.

3 The PoA of the max k−sat Game

In this section, we consider the max k−sat game with the fair payment scheme.

Theorem 1. The PoA of the max e k−sat game is k/(k + 1), even in the
unweighted case.

Proof. Since d = {true}n is a NE we have
∑

C∈C γ(x, C) ≥ 0 for any x ∈ X .
Summing these inequalities over all variables, we get

∑
C∈C

∑
x∈X γ(x, C) ≥ 0

or equivalently,

∑

C∈S

∑

x∈X

γ(x, C) ≥ −
∑

C∈S∗\S

∑

x∈X

γ(x, C) −
∑

C∈C\(S∗∪S)

∑

x∈X

γ(x, C)

We remark that −
∑

C∈C\(S∗∪S)
∑

x∈X γ(x, C) ≥ 0 since each clause C /∈
S∗ ∪ S is only composed of negated variables. Thus, we get

∑

C∈S

∑

x∈X

γ(x, C) ≥ −
∑

C∈S∗\S

∑

x∈X

γ(x, C) (1)

Take any clause C ∈ S∗ \ S. We know that C is composed of k negated
variables. We have γ(x, C) = −w(C) if x ∈ C and γ(x, C) = 0 otherwise. Then,∑

x∈X γ(x, C) = −k w(C) and the following equality holds.

−
∑

C∈S∗\S

∑

x∈X

γ(x, C) =
∑

C∈S∗\S

k w(C) = k W (S∗ \ S) (2)

2 One can always replace x by x and x by x in the instance if d(x) = false.
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Now, take any clause C ∈ S. We know that C is composed of j unnegated
variables (1 ≤ j ≤ k) and k − j negated variables. We have γ(x, C) = 1

j w(C)
if x occurs unnegated in C, γ(x, C) = −1

j+1w(C) if x occurs negated in C and
γ(x, C) = 0 otherwise. Thus,

∑
x∈X γ(x, C) =

(
1 − k−j

j+1

)
w(C) ≤ w(C) and the

following inequality holds.

∑

C∈S

∑

x∈X

γ(x, C) ≤
∑

C∈S

w(C) = W (S) (3)

Using (1), (2) and (3) we get W (S) ≥ kW (S∗ \ S) and thus W (S)/W (S∗) ≥
k/(k + 1).

Theorem 2. The PoA of the max k−sat game is k/(2k − 1), even in the
unweighted case.

Proof. Before getting started, we modify the instance in order to characterize d∗.
More precisely, if X+ ⊆ X denotes the set of variables appearing only unnegated
in C, then we will prove that d∗(xi) = true if xi ∈ X+ and d∗(xi) = false
otherwise. Moreover, we can suppose that C = S ∪ S∗.

The transformation is the following: for all xi ∈ X such that d∗(xi) = true,
remove every occurrence of xi. It is not difficult to see that d = {true}n remains
a NE. Moreover W (S) and W (S∗) are unchanged. Actually, S∗ may not be
optimal anymore but the PoA can only be worse. Note that by this process we
will get C \ (S ∪S∗) = ∅. Finally, we always assume that a clause cannot be only
composed of unnegated variables of X+ (the PoA can only be worse if we delete
those clauses). Let κ be a function defined as follows.

κ(x, C) =
{

γ(x, C) − w(C)/k when x ∈ X+ and x occurs in C
γ(x, C) otherwise

We have
∀x ∈ X,

∑

C∈S∗∪S

κ(x, C) ≥ 0 (4)

Actually, it holds for any variable x ∈ X \ X+ because d is a NE. Now, every
x ∈ X+ rationally plays strategy true and her atomic gain is at least w(C)/k
in any clause C where she occurs. Summing inequalities (4) over all x ∈ X , we
obtain ∑

C∈S

∑

x∈X

κ(x, C) ≥ −
∑

C∈S∗\S

∑

x∈X

κ(x, C) (5)

Let C be a clause of S∗ \ S. We know that C is only composed of negated
variables belonging to X \ X+. For every variable x appearing in C, we have
κ(x, C) = γ(x, C) = −w(C). Hence, we have

∑
x∈X κ(x, C) = −σ(C)w(C) ≤

−w(C) from which we obtain

−
∑

C∈S∗\S

∑

x∈X

κ(x, C) ≥ W (S∗ \ S) (6)
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Now, we prove the following inequality.

∑

C∈S

∑

x∈X

κ(x, C) ≤ k − 1
k

W (S ∩ S∗) + W (S \ S∗) (7)

Let C be a clause of S. If C only contains unnegated variables, i.e., C =
x1 ∨ · · · ∨ xp for some p ≤ k, then we consider two cases:

– C ∈ S \ S∗. All variables in C are set to false by d∗. Then, they all belong
to X \ X+ and

∑
x∈X κ(x, C) =

∑
x∈X γ(x, C) = w(C).

– C ∈ S ∩ S∗. At least one variable in C, say x1 w.l.o.g., is set to true by
d∗. Then, x1 ∈ X+ and

∑
x∈X κ(x, C) ≤

∑
x∈X\{x1} γ(x, C) + κ(x1, C) ≤

∑
x∈X γ(x, C) − w(C)

k = k−1
k w(C).

If C contains both unnegated and negated variables, i.e., C = x1 ∨ · · · ∨ xj ∨
xj+1 ∨ · · · ∨ xp with 1 ≤ j ≤ p − 1 ≤ k − 1, then {xj+1, . . . , xp} ⊆ X \ X+. We
have C ∈ S ∩ S∗ and∑

x∈X κ(x, C) ≤
∑p

i=1 γ(xi, C) − p−j
j+1w(C) = w(C) − p−j

j+1w(C) ≤ k−1
k w(C).

Inequality (7) holds because
∑

x∈X κ(x, C) ≤ w(C) for all C ∈ S \ S∗ and∑
x∈X κ(x, C) ≤ k−1

k w(C) for all C ∈ S ∩S∗. Using inequalities (5), (6) and (7),
we get W (S∗\S) ≤ k−1

k W (S∩S∗)+W (S \S∗). Thus, k W (S∗) ≤ (2k−1)W (S).
The following instance of the unweighted case shows the tightness of the analysis:
Ci = yi ∨x1 ∨x2 ∨ . . .∨xk−1 for i = 1, . . . , k, and Ck+i = xi for i = 1, . . . , k − 1.

Corollary 1. The price of anarchy of the max sat game is 1/2 with the fair
payment scheme, even in the unweighted case.

4 The PoA with Non Oblivious Payment Functions

First, we analyze a parameterized payment function for the max e 2− sat game
where f(1) = 1 and f(2) = ε.3

Theorem 3. The PoA of the max e 2− sat game is 2
3−ε if ε ∈ [0; 1/3] and

1
1+ε if ε ∈ [1/3; 1]. Moreover, these ratios are tight even in the unweighted case.

Using Theorem 3, we deduce that ε = 1/3 gives the best payment scheme for the
max e 2− sat game and the corresponding PoA is 3/4. The potential function
of the game is Φ(d) = W (S1) + 4

3W (S2) where W (Si) is the weight of clauses
satisfied by i literals, i = 1, 2. The correspondence with non oblivious local search
is now clear since Khanna et al [11] use 3

2W (S1) + 2W (S2) = 3
2Φ(d) to guide

their local search procedure.
We can undertake the same analysis for the max e k− sat game but the

resulting expression is not simple. Thus, we directly propose the function leading
3 We restrict ourselves to 0 ≤ ε ≤ 1 because a simple instance shows that the PoA≤

1/2 if ε ≥ 1: x ∨ y and x ∨ y.
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to the best PoA: when exactly j variables satisfy a clause C, each of them
receives α

σ(C)
j w(C) where σ(C) is the size of C. Here, (αk

j )j=1..k is a sequence
defined by αk

j = k
j(2k−1) + (k−j)

j αk
j+1 which satisfies αk

k = 1
2k−1 and αk

1 = 1.

The atomic gain γ(x, C) is 0 when x does not appear in C, α
σ(C)
j w(C) when C

contains the unnegated variable x and exactly j − 1 other unnegated variables,
and −α

σ(C)
j w(C) when C contains x and exactly j − 1 unnegated variables.

Theorem 4. The PoA of the max e k− sat game with the non oblivious pay-
ment scheme is 1 − 1/2k, even in the unweighted case.

Interestingly, the proposed non oblivious payment scheme gives the best possible
PoA for the max e k− sat game since there exists a family of instances of the
(unweighted) max e k− sat game such that PoA= 1 − 1/2k.

We now propose a sequence α̃k
j leading to the best possible payment scheme

(according to the definition of Subsection 2.2) for the max k−sat game: α̃k
1 = 1

and α̃k
j = 1

2(σ(C)−1) for j = 2, . . . , k.

Theorem 5. The PoA of the max k− sat game with payment function f(j) =
α̃k

j is 2/3, even in the unweighted case.

Proof. We first modify the instance as done in the proof of Theorem 2 and use
a function κ defined as follows:

κ(x, C) =
{

γ(x, C) − 1
2(σ(C)−1) when x ∈ X+ and x occurs in C

γ(x, C) otherwise

We remark that inequalities (5) and (6) still hold. Now, we prove the following
inequality:

∑

C∈S

∑

x∈X

κ(x, C) ≤ 1
2
W (S ∩ S∗) + W (S \ S∗) (8)

Let C be a clause of S. If C only contains unnegated variables, i.e., C =
x1 ∨ · · · ∨ xp for some p ≤ k, then we consider two cases:

– C ∈ S \ S∗. All variables in C are set to false by d∗. Then, they all belong
to X \ X+ and

∑
x∈X κ(x, C) =

∑
x∈X γ(x, C) ≤ w(C).

– C ∈ S ∩ S∗. At least one variable in C, say x1 w.l.o.g., is set to true by d∗.
This means x1 ∈ X+. Moreover, we know that p ≥ 2 (otherwise, C will be
only composed of variables of X+). We have

∑
x∈X κ(x, C) ≤ p

2(p−1)w(C) −
1

2(p−1)w(C) = 1
2w(C).

If C contains both unnegated and negated variables, i.e., C = x1 ∨ · · · ∨ xj ∨
xj+1 ∨ · · · ∨xp with 1 ≤ j ≤ p− 1 ≤ k − 1, then {xj+1, . . . , xp} ⊆ X \X+. Thus,
we have C ∈ S ∩ S∗.
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If j = 1, then
∑

x∈X κ(x, C) = (1 − p−1
2(p−1) )w(C) = 1

2w(C). Otherwise,

j ≥ 2 and then p ≥ 3. We have
∑

x∈X κ(x, C) = ( j
2(p−1) − p−j

2(p−1) )w(C) ≤
p−2

2(p−1)w(C) ≤ 1
2w(C).

Inequality (8) holds because
∑

x∈X κ(x, C) ≤ w(C) whenever C ∈ S \ S∗ and∑
x∈X κ(x, C) ≤ 1

2 w(C) whenever C ∈ S ∩ S∗.
Using inequalities (5), (6) and (8), we get W (S∗\S) ≤ 1

2W (S∩S∗)+W (S\S∗)
which, with simple calculus, gives 2 W (S∗) ≤ 3 W (S).

Finally, consider the following instance of the unweighted max k− sat prob-
lem: C1 = x, C2 = x ∨ y and C3 = y ∨ z. When each variable plays true then
they are at a NE satisfying two clauses, whatever how f is defined. If x and y
play false while z plays true, three clauses are satisfied. Thus, the non oblivious
payment function given here is the best possible.

Corollary 2. The PoA of the max sat game is 2/3 with the non oblivious
payment scheme, even in the unweighted case.

Corollary 3. There exists a polynomial time local search algorithm with locality
gap 2/3 for the unweighted max −k sat problem.

Proof. Use the potential function w.r.t. the non oblivious payment α̃k
j as eco-

nomic function and the 1-neighborhood: Φ(τ) =
m∑

j=1

2k + j − 3
2k − 2

covj(τ).

5 The PoS of the max k−sat Game

We investigate the price of stability [3] of the max sat game. We were able to
present non trivial instances in which each player possesses a strictly dominant
strategy (a strategy strictly better than the others, whatever the other players
choose). In such instances, only one NE exists, hence PoA=PoS. We restrict
ourselves to the fair and non oblivious payment schemes; however there exists a
payment scheme with PoS= 1.4

Theorem 6. The PoS of the max e k− sat game with the fair payment scheme
is k/(k + 1) for large enough instances. It is 1 − 1/2k with the non oblivious
payment scheme using f(j) = αk

j .

One can remark that the PoS of the max k− sat game is 2/3 when k = 2 by
Theorem 6.

Theorem 7. The PoS of the max k− sat game with the fair payment scheme
is at most k+1

2k .

Since α̃k
j corresponds to the fair payment scheme when k = 2 and max e 2−

sat is a particular case of max k− sat, Theorem 6 gives the following result.
4 Set f(1) = 1 and f(i) = 0, for i �= 1. The potential function Φ(d) is

�m
j=1 W (covj(d)).

Hence, any NE – a local optimum w.r.t. Φ – is a global optimum.
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Corollary 4. The price of stability of the max k− sat game with the non obliv-
ious payment scheme using f(j) = α̃k

j is 2/3 for large enough instances.

6 On a min k− sat Game

We consider the minimization version of the sat game. Instead of giving rewards,
the system uses penalties proportionnal to the weight of the clauses. All variables
satisfying a clause evenly share its price/weight. Now, each variable xi tries to
minimize Pi(d) =

∑k
j=1

1
j W (covj(i, d)). We call it the fair penalty scheme.

Any instance with at most k literals per clause can be turned into a new one
with exactly k literals per clause such that a NE remains a NE and an optimum
remains optimal: just add k − j new negated variables to each clause with j
literals. These new variables only appear negated so they must be set to true
in any truth assignment at NE. Thus, the min k− sat and the min e k− sat

games have the same PoA and PoS.
Let I be the following (unweighted) instance of the min k− sat game: C0 =

x1 ∨ · · · ∨xk and Ci = xi for i = 1, . . . , k. The truth assignment {true}n is a NE
with total weight k while {false}n satisfies only one clause. It shows that the
PoA is a least k. In fact, PoA= k.

Theorem 8. The PoA of the min k− sat and the min e k− sat games with
the fair penalty scheme is k, even in the unweighted case.

Using I, it is not difficult to see that no penalty scheme, as defined in Subsection
2.2, can improve the PoA of the min k− sat game since when players are at NE
d = {true}k, we have ∀i Pi(d) = Pi(d−i, false) = f(1).

Let I ′ be the following weighted instance of the min k− sat game (an
equivalent unweighted instance exists) and consider the fair penalty scheme:
C0 = x1 ∨ · · · ∨ xk with w(C0) = 1 + ε and Ci = xi with w(Ci) = 1/i for
i = 1, . . . , k. If H(k) > ε > 0, it is not difficult to see that d∗ = {false}k is
optimal but not at NE. Indeed, if d = {false}k then xk will change her strategy
and improve her utility (from (1+ ε)/k to 1/k). After, xk−1 will also change her
strategy and improve her utility (from (1 + ε)/(k − 1) to 1/(k − 1)) and so on.
Actually, d = {true}k is the only NE; its total weight is 1 + 1/2 + · · · + 1/k. As
ε tends to 0, the PoS is at best H(k). In fact, PoS= H(k).

Theorem 9. The PoS of the min k− sat game with the fair penalty scheme is
H(k) = 1 + 1

2 + 1
3 + . . . + 1

k .

7 Concluding Remarks

We focused on pure strategies but it would be interesting to extend the results
to mixed Nash equilibria. Remark that we were not able to build an instance
where mixed strategies yield a worse PoA. It would also be interesting to state
if the PoA remains unchanged if some sets of agents (a coalition), controlling
their variable, could cooperate to improve their payoff.
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Abstract. We revisit the problem of incentive-compatible interdomain
routing, examining the, quite realistic, special case in which the au-
tonomous systems’ (ASes’) utilities are linear functions of the traffic
in the incident links, and the traffic leaving each AS. We show that
incentive-compatibility towards maximizing total welfare is achievable
efficiently, and, in the uncapacitated case, by an algorithm that can be
implemented by BGP, the standard protocol for interdomain routing.

1 Introduction

The Internet is in many ways a mysterious object, a complex wonder which
we must approach with the same puzzled humility with which neuroscientists
approach the brain and biologists the cell. Even at the most basic level of rout-
ing, for example, it is not clear at all how and why the approximately 20,000
independent, and presumably selfish, autonomous systems (ASes) cooperate to
provide connectivity between any two of them. The problem is quintessentially
economic. ASes are known to have confidential financial agreements on how traf-
fic between them is to be handled and paid for, and such agreements are reflected
in the ways in which each AS routes traffic. We can think of the ASes as nodes
of an undirected graph, with edges signifying the existence of such an agreement
between the two endpoints (equivalently, the possibility of traffic routed directly
between the two). In particular, ASes communicate in terms of the border gate-
way protocol (BGP), a flexible protocol allowing them to implement routing
decisions of arbitrary complexity, by “advertising” paths to adjacent ASes, and
selecting among the paths advertised by their neighbors. Hence, the Internet is
in its essence an economy, a game, an arena where agents act selfishly and are af-
fected by everybody’s decisions; consequently, one can ask of it the questions we
usually ask of such systems, for example the price of anarchy, or the possibility of
incentive-compatible maximization of social welfare (questions typically studied
by algorithmic mechanism design [18]); in this paper we address the latter.
� The authors were supported through: NSF grant CCF - 0635319, a gift from Yahoo!
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Indeed, starting with Feigenbaum et al. [10], BGP has been studied in the past
under the lens of algorithmic mechanism design, and in particular in terms of
the Vickrey-Clarke-Groves (VCG) mechanism (see, e.g., [17] for an introduction
to mechanism design). It was noticed [10] that social welfare can be optimized
in routing, if one assumes that each AS has a fixed per packet cost, via the VCG
mechanism with payments; and in fact, that this can be achieved in a way that is
very “BGP-friendly,” i.e., can be implemented by minimal disruption of BGP’s
ordinary operation. Furthermore, it was observed that in the real Internet VCG
would result in relatively very small overpayments.

In a subsequent paper [12], the problem of more realistic BGP routing was
addressed in the same spirit. Each AS was assumed to have a utility for each
path to the destination (assumed in this literature to be a fixed node 0), and
the goal is to maximize total utility. It was shown that the problem is too hard
to solve in general even with no consideration to incentive compatibility, while
a special case, in which the utility of a path only depends on the next hop, is
easy to solve in an incentive-compatible way, but hard to implement on BGP.
To show this latter negative result, the authors of [12] formalize what it means
for an algorithm to be “BGP-friendly”: roughly speaking, a local distributed al-
gorithm with quick convergence, small storage needs, and no rippling updates in
case of small parameter changes. All said, the message of Feigenbaum, Shenker
and Sami [12] was that, if one models BGP routing a little more realistically,
incentive compatibility becomes problematic. This negative message was ame-
liorated in [11], where it was pointed out that, if one further restricts the special
case of next-hop utilities so that paths are required to be of a particular kind
mandated by the kinds of inter-AS agreements seen in practice, called valley-free
in this paper, BGP-friendly incentive compatibility is restored.

There is an extensive literature on BGP (see, e.g., [9,14,16,20,21,22]). The
protocol has also been examined within other game-theoretic contexts, such as
with respect to network creation games, e.g., [2,7], cooperative game theory [19],
and BGP oscillation prediction [8].

In this paper we present an elementary model of BGP routing. The key fea-
ture of our model is that path preferences are based exclusively on per packet
costs and per packet agreed-upon compensation between adjacent nodes. In other
words, we look into the utilities of each path to each AS, taken as raw data in
previous literature, and postulate that they are linear functions of the traffic,
depending on two factors: Objective per packet costs to each AS for each incom-
ing or outgoing link, and agreed per packet payment, positive or negative, to the
AS for this link and direction. As a result, social welfare optimization becomes
a min-cost flow problem, and incentive-compatibility can always be achieved in
polynomial time. If there are no capacity constraints, we show (Theorem 1) that
the resulting algorithm is BGP-friendly, essentially because the BGP-friendly
version of the Bellman-Ford algorithm in [10] can be extended to cover this case.
When capacities are present, the algorithm becomes a more generic min-cost
flow computation (Theorem 2), and, as we show by a counterexample, does not
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adhere to the criteria of BGP-friendliness (it may not converge fast enough), even
though it is still a local, distributed algorithm with modest memory requirements
and no need for global data. If, on top of this, we also require that the paths be
of the “valley-free” kind suggested by the kinds of agreements between ASes one
sees in practice (that is, the kind of restriction which led to tractability in [11]),
the resulting algorithm solves a rather generic linear program (Theorem 3), and
so local, distributed computation appears to be impossible.

2 Basic Model and the VCG Mechanism

We model interdomain routing as a symmetric directed network with node set
V = {0, 1, ..., n} and edges E, where node 0 is the given destination, assumed
unique as is common in this literature. Note that we postulate that the network
is symmetric, in that if (i, j) ∈ E then also (j, i) ∈ E. There are no self-loops.
Each node i has a demand of ki packets it wants to send to the destination.
In addition, each node i has a per packet value vi,e (sometimes also denoted as
vi(e)) for each of its incident edges e, and a value πi for each of its packets that
gets delivered. The cost of an edge e = (i, j) ∈ E is the negative of the sum of
values of i and j for it, pe = −(vi,e + vj,e).

We denote by θi the type of node i, that is the collection of values for its
incident edges and its value per packet delivery. Denote by θ the vector of all
node types and by θ−i the vector of all node types except that of node i.

If F is an integer-valued flow through this network, with sink 0 and sources
at all other nodes with the given demands, then the utility of each node i �= 0
from this flow is vi(F, θi) =

∑
j vi(i, j)F (i, j) +

∑
j vi(j, i)F (j, i) + πiFi, where

by Fi =
∑

j F (i, j) −
∑

j F (j, i) we denote the flow out of i, assumed to be at
most ki. The total welfare of F is W (F ) =

∑
i∈V \{0} πiFi −

∑
e∈E peF (e). Let

F ∗(θ) be the optimum, with respect to W, flow for types θ; we denote W (F ∗(θ))
simply by W ∗(θ); W ∗(θ−i) is the welfare of the optimum flow when node i is
deleted from the network. We assume initially that all capacities are infinite,
which implies that the optimum flow is the union of n or fewer flow-weighted
source-to-sink shortest paths; this assumption is removed in Section 2.2.

2.1 VCG Mechanism

Notice that in order to compute the optimum flow we need to know the types
of all players; the difficulty is, of course, that the type of player i > 0 is known
only to player i, who is not inclined to publicize it in the absence of appropriate
incentives. The VCG mechanism for this problem incentivizes the players to re-
veal their true types, and thus participate in a socially optimum flow, by making
payments to them. Let |a|[b≥0] = a for b ≥ 0 and |a|[b≥0] = 0 otherwise. Consider
in particular the following transfers for each node (negative for payments made
by the node and positive for payments received by the node).
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ti(θ) =
[∑

j �=i

vj(F ∗(θ), θj)
]

−
[∑

j �=i

vj(F ∗(θ−i), θj)
]

=
∑

j �=i

kj ·
(
|πj − P−i

j |[πj−Pj≥0] − |πj − Pj,−i|[πj−Pj,−i≥0]
)
,

where Pj,−i is the cost of the cheapest path from j to 0 which does not go
through node i. P−i

j is the cost of the cheapest path pj from j to 0 without
taking costs potentially incurred by i into account: if i �∈ pj, P−i

j = Pj , otherwise
P−i

j = Pj + (vi,e1 + vi,e2) with e1, e2 ∈ pj denoting the edges incident to i.
The proof that these transfers lead to truthful reporting is the corresponding

proof about the Groves mechanism in [17] specialized to the current situation.
We repeat it here for completeness:

Proof. Suppose truth is not a dominant strategy for some node i, that is the node
gets higher utility by reporting a collection of values θ̂i different from his true
values θi when the other nodes report θ−i. The utility of the node is its welfare
plus the transfer imposed by the mechanism: vi(F ∗(θ̂i, θ−i), θi) + ti(θ̂i, θ−i) >
vi(F ∗(θ), θi) + ti(θi, θ−i).

Substituting the form of the transfer on both sides and canceling identical
terms, we get vi(F ∗(θ̂i, θ−i), θi) +

[∑
j �=i vj(F ∗(θ̂i, θ−i), θj)

]
> vi(F ∗(θ), θi) +

[∑
j �=i vj(F ∗(θ), θj)

]
⇔ W (F ∗(θ̂i, θ−i), θ) > W (F ∗(θ), θ). The last inequality

contradicts the fact that F ∗(θ) is the welfare maximizing choice of paths (i.e.,
the least cost paths) for node types θ. ��

2.2 The Model with Capacities

In this subsection we consider the same basic model, with the addition that
each edge e has a corresponding capacity ce. We would like to find a min-cost
(multicommodity) flow from all nodes to the sink 0, satisfying the demands of
the nodes. We can transform the problem to an equivalent one by adding a new
node—a supersource, which is connected to each node j via an edge of cost −πj

and capacity equal to the demand kj at node j.
Call the resulting min-cost flow with known types θ by F ∗(θ), and denote the

min-cost flow in the graph with node i removed as F ∗(θ−i). We can now get a
VCG mechanism similar to the one in the basic model above. As before, the total
welfare is W (F ∗(θ), θ) =

∑
i vi(F ∗(θ), θi), where vi(F ∗(θ), θi) is the value of the

flow from i (more precisely, from the supersource through i) to 0. Similarly, the
VCG mechanism is specified by the transfers

ti(θ) =
[∑

j �=i

vj(F ∗(θ), θj)
]

−
[∑

j �=i

vj(F ∗
−i(θ−i), θj)

]

and a proof of truthfulness of the mechanism follows as before.
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3 Economic Relationships

The economic relationships between individual ASes in the Internet severely
influence the paths which can be taken in the BGP graph. So far we assumed
that all paths which are present in the underlying undirected graph (there is an
edge between two ASes, if they are connected by a physical link) are valid. In
reality this is not the case. Routing policies which are based on the economic
relationships between ASes forbid many paths which theoretically exist. Inferring
these economic relationships and investigating the resulting consequences for the
connectivity of the BGP graph have attracted a large amount of scientific interest
recently, see, e.g., [1,3,4,6,14,15,22].

Below we will give a detailed description of the valley-free path model which
classifies the prohibited paths in the BGP graph.

The Valley-Free Path Model. In this model there are basically three different
types of relationships a pair of connected ASes can be in: either customer-
provider, in which the customer pays the provider to obtain access to the In-
ternet, or peer-peer, in which both peers agree on mutually routing traffic of
their customers for each other free of charge, or sibling, in which both siblings
agree on mutually routing any traffic for each other free of charge. Note that an
individual AS may take several roles—as customer, provider, sibling, or peer—
simultaneously; it can for instance be a customer of one AS and at the same
time a provider for another AS.

In the following for ease of exposition we will focus on customer-provider
relationships only. The other types of relationships (peer-peer, sibling) can be
incorporated easily, as we will note in Section 4.3.

We call a directed graph G = (V, E) a ToR graph, if it contains no self loops
and the edge directions describe the economic relationships. If the AS v is a
customer of a provider AS w, we direct the edge between v and w towards w.
This follows the terminology of [22].

In practice routing is done in the following way. If AS w is a provider of v (i.e.
(v, w) ∈ E) it announces all its routes to v, but AS v on the other hand only
announces its own routes and the routes of its customers to w. In other words,
the customer v essentially advertizes only its incomming links to the provider w.
The idea behind this is that v pays w for the connection and thus is not inclined
to take over “work” for w. This would happen if v also announced the routes it
has from other providers. Then it would potentially have to donate bandwidth
to packets that arrive from the provider w, only to proceed to another provider.

This leads to the model proposed in [22] that a path p is valid if and only if it
consists of a sequence of customer-provider edges ( ) followed by a sequence
of provider-customer edges ( ). The first part, containing only customer-
provider edges, is also called the forward part of p. The last part, containing only
provider-customer edges, is called the backward part of p. It is easy to see that
the following is an equivalent definition of the validity of a path:
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A path p = v1, e1, v2, e2, · · · , er−1, vr in the ToR graph G is a valid v1-
vr-path in G, if and only if there is no inner node vi of p for which ei−1
and ei are outgoing edges of vi.

If such an inner node—one which does have this property—exists, it is called a
valley. The intuition behind this name is that outgoing edges point “upwards”,
out of the valley. In the literature the situation that a path contains a valley is
also called an anomaly. A flow which only uses valley-free paths we call a valid
or valley-free flow.

The VCG mechanism. The transfers can be specified as in Section 2.2 for the
model with capacities. The only difference is that all flows (i.e., F ∗ and F ∗

−i for
all i) must be valley-free (and may be fractional).

4 Distributed Computation of VCG Payments

It is of great interest to determine to what extent the payments ti(θ) can be com-
puted not only efficiently, but in a distributed manner which is “BGP-friendly,”
that is, compatible with current usage of the BGP protocol. In [12] this concept
of “BGP-friendliness” was formalized as three requirements:

1. The algorithm should converge in a number of rounds that is proportional
to the diameter of the graph, and not its size.

2. Only local data should be needed.
3. No rippling updates should be needed as data changes.

Here we relax requirement (1) to a number of rounds that is proportional to
the diameter times R, where R is the ratio between the largest and smallest edge
cost. This is necessary (also in [12], where the stricter version is used by over-
sight) because the computed shortest path, whose length is the upper bound
on convergence time, may be longer than the diameter. We do not bother to
formalize here the second and third requirement (the reader is referred to [12])
because our algorithms either trivially satisfy any conceivable version, or fail to
satisfy (1). As it turns out, this important aspect of BGP-friendliness sets the
basic model apart from the model with capacities. In both cases the implemen-
tation is quite simple and makes only modest use of local resources. But only in
the former case the strict conditions on the convergence time are fulfilled.

4.1 Basic Model

For the basic model it is easy to adapt the approach presented by Feigenbaum
et al. [10]. BGP is a path-vector protocol which computes the lowest-cost paths
(LCPs) in a sequence of stages. In a stage each node in the network sends all
the LCPs it knows of to its neighbors. It also receives LCPs from its neighbors.
If these contain shorter paths than the ones it has currently stored, it updates
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the list of its own LCPs. This basically corresponds to a distributed computation
of all shortest paths via the Bellman-Ford algorithm. The computation termi-
nates after d stages and involves O(nd) communication on any edge, where d
denotes the maximum number of edges on an LCP.

Feigenbaum et al. give an interesting and easy to implement extension of the
path-vector protocol which computes not only the lowest cost paths, but at the
same time the lowest cost paths which do not traverse a given node i. These
two quantities are then used to compute the payments for node i. This increases
the number of stages and communication needed to d′ and O(nd′), respectively.
Here d′ denotes the maximum number of edges on an LCP avoiding node i, over
all nodes i for which G \ {i} is still connected. Feigenbaum et al. argue that this
is still an acceptable convergence time.

The only difference of the approach in [10] to ours is that the per packet values
in our model are given individually for each edge and node, i.e., as vi,e, and not
only as one total value per node.1 Hence, it is easy to adapt their method to
compute the values Pj and Pj,−i, for j, i ∈ {1, . . . , n}, which is all we need to
compute ti(θ) =

∑
j �=i (Pj,−i − P−i

j )kj . Note that the partial path cost P−i
j can

be easily derived from the cost Pj of the cheapest path from j to the sink.
Let diam′(G) denote the maximum diameter of G \ {i} (as d′, measured in

number of edges) over all nodes i for which G \ {i} is still connected. Since
d′ ≤ diam′(G) · R, where R is the ratio between the largest and smallest edge
cost, we obtain the following theorem.

Theorem 1. In the basic per packet utility model without capacity constraints
(described in Section 2) the Vickrey-Clarke-Groves allocation and payments can
be computed in a distributed, BGP-friendly manner. The computation converges
in O(diam′(G) · R) rounds of communication.

4.2 Model with Capacities

Instead of lowest cost paths and lowest cost paths avoiding node i, we now need
to know a min-cost flow F (θ) and a min-cost flow F−i(θ) avoiding node i for
each of the payments ti(θ), i ∈ {1, . . . , n}. In the following we will explain how
to compute F (θ) in a distributed fashion. The flow F−i(θ) can be computed cor-
respondingly by blocking node i. Therefore, altogether (n+1) flow computations
are performed, one for F (θ) and n for the F−i(θ), i ∈ V \ {0}.

We assume the sink 0 controls all the computations: it chooses which node is
blocked (in the F−i(θ) case), it selects paths to send flow along together with
the corresponding amounts, and it recognizes when a min-cost flow computa-
tion is finished. These all are computationally simple tasks. The only intensive
computations needed will be those to obtain the shortest paths with respect to
certain costs and where certain edges may be blocked. These will be done in a
distributed manner applying the standard distributed Bellman-Ford algorithm,
which is used by BGP as mentioned above.

1 This allows for more fine-granular and thus more realistic modeling.
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Distributed Computation of F (θ). We start with a description of a simple Ford-
Fulkerson approach [13] of computing a min-cost flow from the supersource to
the sink via augmenting shortest paths. Then we explain how to modify it to
use the Edmonds-Karp scaling technique [5].

A virtual residual graph is overlayed over the given network. The residual edge
capacities and costs are derived from the original graph. The residual capacities
depend on the flow present on the corresponding residual edges and thus may
change during the computation of the flow. Each node keeps track of flow values
on residual edges incident to it.

Consider an original pair of directed edges (i, j) and (j, i) with costs p(i,j)
and p(j,i). We assume the costs to be greater or equal to 0. Let f(i,j) and f(j,i)
denote the flow amounts on these edges, only one of which may be greater 0.
Otherwise, a circular flow of min(f(i,j), f(j,i)) is subtracted from both without
increasing the costs. The residual capacities are set to c′(i,j) = c(i,j) − f(i,j)

and c′(j,i) = c(j,i) − f(j,i). Additionally, we add the virtual edges (i, j) and (j, i)
with capacities c(i,j) = f(j,i) and c(j,i) = f(i,j) and costs p(i,j) = −p(i,j) and
p(j,i) = −p(j,i). Flow sent onto these edges is subtracted from the corresponding
flow on the edge in the opposite direction. Finally, for each i ∈ V \ {0} a virtual
edge is added from the supersource to node i with cost −πi.

The algorithm now proceeds as follows, steps 2-4 comprise a phase.

1. For each node i ∈ V initialize the flow values f(i,j) = f(j,i) = 0 of all incident
residual edges. Update the local capacities as described above.

2. Compute the shortest paths in the current residual graph only considering
edges with capacities greater than 0. Do this with the distributed Bellman-
Ford algorithm, adapting the BGP implementation. Modify the algorithm
to also forward the bottleneck capacity of each path.

3. The sink checks the min-cost path to the supersource. If the cost is ≥ 0,
we are done. Otherwise send a flow corresponding to the bottleneck ca-
pacity along the path. This is done by sending a message along the path,
which notifies the contained nodes to update their local flow values (and thus
capacities).

4. Continue at step 2 with the updated residual graph.

Time to Converge, Improvements. Each phase consists of a (re)computation of
the shortest paths in Step 2. Unfortunately, in the capacitated case the rounds
of communication for a shortest paths computation is not bounded by d or d′

anymore. It may actually take up to n rounds of communication, as the example
at the end of this subsection shows.

Let C = max{ce|e ∈ E} be the maximum capacity. The algorithm finishes
in O(|E| · C) phases. This can be improved to O(n · log C) by applying the
following well-known scaling technique. A variable Δ is introduced and initialized
to 2�log C	−1 in step 1. In step 2 only edges with capacity ≥ Δ are considered.
In step 3, Δ is updated to Δ/2, if no more negative cost paths are found (unless
Δ = 1, then we are done). The updated Δ is broadcast to all nodes.
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node 2

l nodes
node 1

cap: l + 1
node 0 (sink)

cost: 1

Fig. 1. All edges have capacity 1, except the top edge with capacity l + 1. The edge
costs are all 0, except the rightmost edge with cost 1. All nodes have a demand of 1 to
be sent to node 0.

As mentioned, with (n + 1) such flow computations we can compute all node
payments ti(θ). Altogether this yields the following theorem.

Theorem 2. In the per packet utility model with capacity constraints (described
in Section 2.2) the VCG allocation and payments can be computed in a distributed
manner. The computation converges in O(n3 · log C) rounds of communication.

Shortest Paths Computation. Unfortunately, the number of rounds of commu-
nication to compute the shortest path cannot be bound by d (or d′) anymore.
Figure 1 shows an example where the shortest path in the residual graph has
length n − 2, whereas the number of hops in the corresponding LCP in the
original graph is 2. Assume that all nodes have already (virtually) sent their
flow through the residual graph except node 1 which is selected last. Since the
nodes are indistinguishable, we may assume this. The only path remaining in
the residual graph is the one at the bottom of length n − 2, since the capacities
of all other edges (expect (1, 2)) are fully saturated by flow sent to the sink via
node 2. This compares to the LCP from node 1 over node 2 directly to node 0
with only two edges.

4.3 Model with Economic Relationships

In the following we will explain the two-layer graph, a helpful notion which was
originally suggested in [6]. With the help of the two-layer model it will be easy
to see that one can compute min-cost valley-free flows as needed in our model
with capacities introduced in Section 2.2.

The Two-Layer Model. From a ToR graph G = (V, E) and source, sink s, t ∈ V
we construct a two-layer model H , which is a directed graph, in the following
way (see Figure 2 for an example). Two copies of the graph G are made, called
the lower and the upper layer. In the upper layer all edge-directions are reversed.
Every node v in the lower layer is connected with an edge to the corresponding
copy of v, denoted v′, in the upper layer. The edge is directed from v to v′.
Finally, we obtain the two-layer model H by identifying the two s-nodes (of
lower and upper layer) and also the two t-nodes, and by removing the incoming
edges of s and the outgoing edges of t.
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s tt s

forward part

backward part

G′

G′

H

upper layer

lower layer

reverse(G′)

Fig. 2. A path in the ToR graph G and the corresponding path in the two-layer model
H . (G′ is G, excluding s and t.).

A valid path p = v1 · · · vr in G with v1 = s and vr = t is equivalent to a
directed path in H in the following way. The forward part of p, that is the part
containing all edges (vi, vi+1) ∈ p, is routed in the lower layer. Then there is a
possible switch to the upper layer with a (v, v′)-type edge (there can be at most
one such switch for each path). The backward part of p is routed in the upper
layer. In other words for each original edge (vi+1, vi) ∈ p the corresponding edge
(v′i, v

′
i+1) of the upper layer is traversed. If there is only a forward (respectively

backward) part of p, then the corresponding path in H is only in the lower
(respectively upper) layer.

This definition of the two-layer model can easily be extended to the case of
multiple sources. Note that a peer-peer relationship between two nodes v, u ∈ V
can be incorporated by adding the edges (v, u′) and (u, v′) from lower to upper
layer (reflecting that at most one peer-peer edge is allowed between the forward
and the backward part of a path). Similarly, a sibling relationship between two
nodes v, u ∈ V can be incorporated by adding the symmetric edges (v, u), (u, v),
(v′, u′), and (u′, v′) in both layers (reflecting that sibling edges are allowed at
arbitrary points in a path).

Min-Cost Valley-Free Flows. By simply computing a min-cost flow in the two-
layer graph it is easy to derive a valley-free flow which will have at most the cost
of an optimum min-cost valley-free flow. The edge capacities may be violated
by at most a factor of two though, since each edge may be used twice: once in
the upper and once in the lower layer. Note that such a min-cost flow could be
computed in a distributed fashion by slightly modifying the approach described
in Section 4.2.

This approximate solution cannot be used to compute the VCG allocation
and payments though. To this end, we need the optimal solution. The latter
can be computed with the help of a standard LP flow formulation with added
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constraints to bound the joint flow on the upper and lower layer edges. In other
words, for each edge (v, u) ∈ E in the original ToR graph, we add a joint capacity
constraint for (v, u) and (u′, v′) in the two-layer model.

Theorem 3. In the per packet utility model with capacity constraints and eco-
nomic relationships (described in Section 3) the VCG allocation and payments
can be computed in polynomial time with an LP based approach.

Note that the existence of an optimal algorithm based on augmenting paths
seems unlikely. Usually, for integral capacities such algorithms aim at computing
an optimal integral solution, i.e., for unit capacities a solution would consist of
edge disjoint paths. However, computing the maximum number of disjoint valley-
free paths between two nodes s, t is inapproximable within a factor of (2 − ε),
unless P = NP [6].

5 Conclusions and Open Problems

Despite the fact that incentive compatibility for BGP routing had been known to
be problematic in general, as well as for several apparently realistic special cases,
we have identified one important special case of practical importance, namely
the one in which path utilities depend on local per packet costs as well as delivery
values. In this case incentive compatibility is achievable through payments which
can be computed efficiently and in a BGP-compatible way; adding capacities and
the “valley-free” constraint for paths makes incentives harder to compute in a
BGP-compatible way, but still tractable.

Regarding the latter point, in this work we have simply pointed out that the
algorithms we devised for VCG incentive computation are not implementable
in a BGP-compatible way; it would be interesting to actually prove that this is
inherent to the problem, i.e., to prove a lower bound on the convergence time of
any algorithm for the min-cost flow problem and its valley-free constrained case.

Our model for path utilities is suggestive of a more general project for under-
standing BGP routing: We postulate that each directed edge in and out of every
node has a value for this node, depending on the cost to this node, as well as
agreed upon payments to or from its neighbors, for each packet sent or received
along this edge. Suppose that the graph, as well as the demand, and per packet
cost and delivery value of each node, are given. A game is thus defined in which
strategies are payment agreements between neighbors, and the utility to each
node is the one obtained by our model of BGP min-cost routing. This game
is thus a very realistic network creation game, with special emphasis on BGP
routing. The quality of equilibria compared to the social optimum (i.e., the price
of anarchy and its variants) for this game would be a most interesting research
direction. The social optimum is, of course, the min-cost flow with only costs
and delivery values taken into account. Further, such a model would allow one
to study how inter-AS agreements can depend on the underlying fundamentals
of each AS, such as costs, delivery value, demand, and position in the network.
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Abstract. We study the problem of hiring a team of selfish agents to
perform a task. Each agent is assumed to own one or more elements of
a set system, and the auctioneer is trying to purchase a feasible solution
by conducting an auction. Our goal is to design auctions that are truth-
ful and false-name-proof, meaning that it is in the agents’ best interest
to reveal ownership of all elements (which may not be known to the
auctioneer a priori) as well as their true incurred costs.We first propose
and analyze a false-name-proof mechanism for the special cases where
each agent owns only one element in reality. We prove that its frugality
ratio is bounded by n2n, which nearly matches a lower bound of Ω(2n)
for all false-name-proof mechanisms in this scenario. We then propose
a second mechanism. It requires the auctioneer to choose a reserve cost
a priori, and thus does not always purchase a solution. In return, it is
false-name-proof even when agents own multiple elements. We experi-
mentally evaluate the payment (as well as social surplus) of the second
mechanism through simulation.

1 Introduction

In the problem of hiring a team of agents [1,2,3], an auctioneer knows which
subsets of agents can perform a complex task together, and needs to hire such
a team (called a feasible set of agents). Since the auctioneer does not know the
true costs incurred by agents, we assume that the auctioneer will use an auction
to elicit bids. A particularly well-studied special case of this problem is that of a
path auction [1,4,5,6]: the agents own edges of a known graph, and the auctioneer
wants to purchase an s-t path.

Selfish agents will try to maximize their profit, even if it requires misrepre-
senting their incurred cost or their identity. Thus, the auctioneer should design
the auction to be truthful, i.e., making it in agents’ best interest to reveal actual
costs and ownership. The area of designing such auctions is known as mechanism
design [6,7,8]. Most recent results on truthful mechanism design have focused on
discouraging misrepresentation of costs. However, as recently pointed out by
Yokoo et al. in the context of combinatorial auctions [9,10], a second threat is
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that of false-name manipulations, in which agents owning multiple elements of
the underlying set system invent “pseudo-agents” in order to pretend that all
these agents must be paid, leading to higher total payments.

1.1 Our Contributions

We introduce a model of false-name manipulation in auctions for hiring a team,
such as s-t path auctions. In this model, the set system structure and element
ownership are not completely known to the auctioneer. Thus, in order to increase
profit, an agent who owns an element can pretend that the element is in fact a
set consisting of multiple elements owned by different agents. Similarly, an agent
owning multiple elements can submit bids for these elements under different
identities. We call a mechanism false-name-proof if it is truthful, and a dominant
strategy is for each agent to reveal ownership of all elements.

Our first main contribution is a false-name-proof mechanism MP for the spe-
cial case in which each agent owns exactly one element. This mechanism in-
troduces an exponential multiplicative penalty against sets in the number of
participating agents. We show that its frugality ratio (according to the defini-
tion of Karlin et al. [5]) is at most n2n for all set systems of n elements, which
nearly matches a worst-case lower bound of Ω(2n) we establish for every false-
name-proof mechanism.

When agents may own multiple elements, we present an alternative mecha-
nism AP, based on an a priori chosen reserve cost r and additive penalties. The
mechanism is false-name-proof in the general setting, but depends crucially on
the choice of r, as it will not purchase a solution unless there is one whose cost
(including the penalty) is at most r. We investigate the AP mechanism exper-
imentally for s-t path auctions on random graphs, observing that AP provides
social surplus not too far from a Pareto-efficient one at an appropriate reserve
cost.

1.2 Related Work

If false-name bids are not a concern, then it has long been known that the VCG
mechanism gives a truthful mechanism and identifies the Pareto optimal solution.
As the payments of VCG can be significantly higher than the cheapest alternative
solution, several papers [1,3,4,5] have investigated the frugality of mechanisms:
the overpayment compared to a natural lower bound. In particular, [5] presents
a mechanism called the √ mechanism achieving frugality ratio within a constant
factor of optimal for s-t path auctions in graphs.

The issue of false-name bids was recently studied in combinatorial auctions
and several special cases by Yokoo et al. [11,12,13,14,9], who developed false-
name-proof mechanisms in those scenarios, but also proved that no mechanism
can be both false-name-proof and Pareto efficient. Notice that the false-name-
proof mechanisms for combinatorial procurement auctions given in [12,13] cannot
be applied in our setting, as they assume additive valuations on the part of the
auctioneer, i.e., that the auctioneer derives partial utility from partial solutions.
A somewhat similar scenario arises in job scheduling, where users may split or
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merge jobs to obtain earlier assignments. Moulin [15] gives a mechanism that
is strategy-proof against both merges and splits and achieves efficiency within
a constant factor of optimum. However, when agents can exchange money, no
such mechanism is possible [15].

For the specific case of path auctions, the impact of false-name bids was re-
cently studied by Du et al. [16]. They showed that if agents can own multiple
edges, then there is no false-name-proof and efficient mechanism. Furthermore,
if bids are anonymous, i.e., agents do not report any identity for edge ownership,
then no mechanism can be strategy-proof. Notice that this does not preclude
false-name-proof and truthful mechanisms in which the auctioneer takes own-
ership of multiple edge by the same agent into account, and rewards the agent
accordingly.

2 Preliminaries

Our framework is based on that of [1,17,5,3]. A set system (E, F) is specified by
a set E of n elements and a collection F ⊆ 2E of feasible sets. For instance, in
the important special case of an s-t path auction, S ∈ F if and only if S is an
s-t path.

Agents can own multiple elements, and Ai denotes an element of a partition
A of E and the set of elements owned by agent i. An owned set system, i.e., a
set system with ownership structure, is specified by ((E, F), A). Each element
e has an associated cost ce, the true cost that its owner o(e) will incur if e is
selected by the mechanism.1 This cost is private, i.e., known only to o(e). An
auction consists of two steps:

1. Each agent i submits sealed bids (be, õ(e)) for elements e, where õ(e) denotes
the identifier of e’s purported owner (which need not be the actual owner).

2. Based on the bids, the auctioneer uses an algorithm that is common knowl-
edge among the agents in order to select a feasible set S∗ ∈ F as the winner
and compute a payment pi for each agent i with an element e such that
i = õ(e). We say that the elements e ∈ S∗ win, and all other elements lose.

The profit of an agent i is the sum of all payments she receives, minus the
incurred cost c(S∗ ∩ Ai). Each agent is only interested in maximizing her profit,
and might choose to misrepresent ownership or costs to this end. However, we
assume that agents do not collude. If agents report correct ownership for all
e ∈ Ai, then a mechanism is truthful by definition if for any fixed vector b−i of
bids by all agents other than i, it is in agents i’s best interest to bid be = ce

for all e ∈ Ai, i.e., agent e’s profit is maximized by bidding be = ce for all these
elements e.

In this paper, we extend the study of truthful mechanisms to take into account
false-name manipulation: agents claiming ownership of non-existent elements
1 For costs, bids, etc., we extend the notation by writing c(S) =

�
e∈S ce and b(S) =�

e∈S be, etc.
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(which we call self-division) or choosing not to disclose ownership of elements
(which we call identifier splitting).

Definition 1 (Identifier Splitting [9,10]). An agent i owning a set Ai may
choose to use different identifiers in her bid for some or all of the elements.
Formally, the owned set system ((E, F), A) is replaced by ((E, F), A′), where
A

′
= A \ {Ai} ∪ {Ai′} ∪ {Ai′′}, and Ai = Ai′ ∪ Ai′′

.

Definition 2 (Self-Division). An agent i owning element e is said to self-
divide e if e is replaced by two or more elements e1, . . . , ek, and different owners
are reported for the ei. Formally, the owned set system ((E, F), A) is replaced
by ((E′, F ′), A′), whose elements are E′ = E \ {e} ∪ {e1, . . . , ek}, such that
the feasible sets F ′ are exactly those sets S not containing e, as well as sets
S \ {e} ∪ {e1, . . . , ek} for all feasible sets S ∈ F containing e. The ownership
structure is Aij = {ej} for j = 1, . . . , k, where each ij is a new agent.

Intuitively, self-division allows an agent to pretend that multiple distinct agents
are involved in doing the work of element e, and that each of them must be paid
separately. For self-division to be a threat, there must be uncertainty on the part
of the auctioneer about the true set system (E, F). In particular, it is meaningless
to talk about a mechanism for an individual set system, as the auctioneer does
not know a priori what the set system is. Hence, we define classes of set systems
closed under subdivision, as the candidate classes on which mechanisms must
operate.

Definition 3. 1. For two set systems (E, F) and (E′, F ′), we say (E′, F ′) is
reachable from (E, F) by subdivisions if (E′, F ′) is obtained by (repeatedly)
replacing individual elements e ∈ E with {e1, . . . , ek}, such that the feasible
sets F ′ are exactly those sets S not containing e, as well as sets S \ {e} ∪
{e1, . . . , ek} for all feasible sets S ∈ F containing e.

2. A class C of set systems is closed under subdivisions iff with (E, F), all set
systems reachable from (E, F) by subdivisions are also in C.

For example, s-t path auction set systems are closed under subdivisions, whereas
minimum spanning tree set systems are not (because subdivisions would intro-
duce new nodes that must be spanned).

In both identifier splitting and self-division, we will sometimes refer to the
new agents i′ whose existence i invents as pseudo-agents. A mechanism is false-
name-proof if it is a dominant strategy for each agent i to simply report the
pair (ce, i) as a bid for each element e ∈ Ai. Thus, neither identifier splitting nor
self-division nor bids be �= ce can increase the agent’s profit. Among other things,
this allows us to use be and ce interchangeably when discussing false-name-proof
mechanisms. Notice that we explicitly define the concept of false-name-proof
mechanisms to imply that the mechanism is also truthful when each agent i
owns only one element.

Efficiency and Frugality

A mechanism is Pareto efficient if it always maximizes the sum of all participants’
utilities (including that of the auctioneer). While it is well known that the VCG
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mechanism is truthful and Pareto efficient, Du et al. [16] show that there is
no Pareto efficient and false-name-proof mechanism, even for s-t path auctions.
Yokoo et al. [10] showed the same for combinatorial auctions.

While Pareto efficient mechanisms maximize social welfare, they can signifi-
cantly overpay compared to other mechanisms [5]. In order to analyze the over-
payment, we use the definition of frugality ratio from [5].

Definition 4 ([5]). Let (E, F) be a set system, and S the cheapest feasible set
with respect to the true costs ce (where ties are broken lexicographically). For any
vector of costs c for elements, we define ν(c) to be the solution to the following
optimization problem.

Minimize
∑

e∈S be subject to

(1) be ≥ ce for all e

(2) b(S \ T ) ≤ c(T \ S) for all T ∈ F
(3) For every e∈S, there is a Te ∈F such that e /∈ Te and b(S \ Te)=c(Te \ S)

This definition essentially captures the payments in a “cheapest Nash Equi-
librium” of a first-price auction, and gives a natural lower bound generalizing
second-lowest cost for comparison purposes.

Definition 5. The frugality of a mechanism M for a set system (E, F) is

φM = supc
pM(c)
ν(c) ,

i.e., the worst case, over all cost vectors c, of the overpayment compared to
the “first-price” payments. Here, pM(c) denotes the total payments made by M
when the cost vector is c.

3 A Multiplicative Penalty Mechanism

We present a mechanism MP based on exponential multiplicative penalties. It is
false-name-proof for arbitrary classes of set systems closed under subdivisions,
so long as each agent only owns one element. We can therefore identify elements
e with agents. Since we assume each agent owns exactly one element, A is au-
tomatically determined by E, so we can focus on set systems instead of owned
set systems. After the agents submit bids be for elements, MP chooses the set
S∗ minimizing b(S) · 2|S|−1, among all feasible sets S ∈ F . Each agent e ∈ S∗ is
then paid her threshold bid 2|S

−e|−|S∗|b(S−e) − b(S∗ \ {e}), where S−e denote
the best solution (with respect to the objective function b(S) · 2|S|−1) among
feasible sets S not containing e. Notice that while this selection may be NP-hard
in general, it can be accomplished in polynomial time for path auctions, by using
the Bellman/Ford algorithm to compute the shortest path for each number of
hops, and then comparing among the at most n such shortest paths.

Theorem 1. For all classes of set systems closed under subdivision, MP is false-
name-proof, so long as each agent only owns one element. Furthermore, it has
frugality ratio O(n · 2n), where n = |E|.
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Proof. If an agent e = e0 self-divides into k+1 elements e0, . . . , ek, then either
all of the ei or none of them are included in any feasible set S. Thus, we can
always think of just one threshold τk(e) for the self-divided agent e: if the sum
of the bids of all the new elements ej exceeds τk(e), then e loses; otherwise, it is
paid at most (k + 1)τk(e). The original threshold of agent e is τ(e) = τ0(e).

The definition of the MP mechanism implies τk(e) ≤ 2−kτ(e). If e still wins
after self-division (otherwise, there clearly is no incentive to self-divide), the total
payment to e is at most (k +1)2−kτ(e). The alternative of not self-dividing, and
submitting a bid of 0, yields a payment of τ(e) ≥ (k+1)2−kτ(e). Thus, refraining
from self-division is a dominant strategy. Given that no agent will submit false-
name bids, the monotonicity of the selection rule implies that the mechanism is
incentive compatible, and we can assume that be = ce for all agents e.

To prove the upper bound on the frugality ratio, consider again any winning
agent e ∈ S∗. Her threshold bid is τ(e) = minT∈F :e/∈T 2|T |−|S∗|c(T )−c(S∗\{e}),
and the total payment is the sum of individual thresholds for S∗,

pMP(c) =
∑

e∈S∗ minT∈F :e/∈T 2|T |−|S∗|c(T ) − c(S∗ \ {e})
≤ 2n

∑
e∈S∗ minT∈F :e/∈T c(T ).

Let S be the cheapest solution with respect to the ce, i.e., without regard to
the sizes of the sets. By Definition 4, ν(c) =

∑
e∈S be, subject to the constraints

of the mathematical program given. Focusing on any fixed agent e′, we let Te′

denote the set from the third constraint of Definition 4, and can rewrite

ν(c) =
∑

e∈S−Te′ be +
∑

e∈S∩Te′ be =
∑

e∈Te′−S ce +
∑

e∈Te′∩S be ≥ c(Te′).

Since this inequality holds for all e′, we have proved that ν(c) ≥ maxe∈S c(Te).
On the other hand we can further bound the payments by

2n
∑

e∈S∗ minT∈F :e/∈T c(T ) ≤ n2n maxe∈S∗ minT∈F :e/∈T c(T )
≤ n2n maxe∈S minT∈F :e/∈T c(T )
≤ n2n maxe∈S c(Te).

Here, the second-to-last inequality followed because for all e ∈ S∗ \ S, the
minimizing set T is actually equal to S, and therefore cannot have larger cost
than c(Te) for any e ∈ S, by definition of S. Thus, the frugality ratio of MP is

φMP = supc
pMP(c)

ν(c) ≤ n2n maxe∈S c(Te)
maxe∈S c(Te) = n2n.

3.1 An Exponential Lower Bound

An exponentially large frugality ratio is not desirable. Unfortunately, any mech-
anism which is false-name-proof will have to incur such a penalty, as shown by
the following theorem.

Theorem 2. Let C be any class of monopoly free set systems closed under sub-
divisions, and M be any truthful and false-name-proof mechanism for C. Then,
the frugality ratio of M on C is Ω(2n) for set systems with |E| = n.
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Proof. Let (E0, F0) ∈ C be a set system minimizing |E0|. Let S∗ ∈ F0 be the
winning set under M winning when all agents e ∈ E0 bid 0, and let e ∈ S∗ be
arbitrary, but fixed. Because (E0, F0) is monopoly free, there must be a feasible
set T ∈ F0 with e /∈ T and T �⊆ S∗. Among all such sets T , let Te be the one
minimizing |S∗ ∪T |, and let ê in Te be arbitrary. Define Z = Te ∪S∗ \{e, ê} (the
“zero bidders”), and I = E0 \ (Te ∪ S∗) (the “infinity bidders”). Consider the
following bid vector: both e and ê bid 1, all agents e′ ∈ Z bid 0, and all agents
e′ ∈ I bid ∞ . Let W be the winning set. We claim that W must contain at least
one of e and ê (w.l.o.g., assume that e ∈ W ). For W cannot contain any of the
infinity bidders. And if it contained neither e nor ê, then W would have been a
candidate for Te with smaller |W ∪S∗|, which would contradict the choice of Te.

Now, let (Ek, Fk) be the set system resulting if agent e self-divides into new
agents e0, . . . , ek, for k ≥ 0. Define τ(j, k), for j = 0, . . . , k, to be the threshold
bid under M for agent ej in the set system (Ek, Fk), given that all e′ ∈ Z bid
0, all e′ ∈ I bid ∞, and all ei for i �= j also bid 0, while ê bids 1. Above, we
thus showed that 1 ≤ τ(0, 0) < ∞. We now show by induction on d that for all
d, there exists an h ≤ d such that

2−d
∑k

i=0 τ(i, k) ≥
∑k+h

i=h τ(i, k + d).

The base case d = 0 is trivial. For the inductive step, assume that we have
proved the statement for d. Because M is truthful, the payment of an agent is
exactly equal to the threshold bid, so each agent i is paid τ(i, k+d) in the auction
on the set system (Ek+d, Fk+d) with the bids as given above. If agent i were to
self-divide into two new agents, the new set system would be (Ek+d+1, Fk+d+1),
and the payment of agent i (who is now getting paid as two pseudo-agents i and
i + 1) would be τ(i, k + d + 1) + τ(i + 1, k + d + 1). Because M was assumed to
be false-name-proof, it is not in the agent’s best interest to self-divide in such a
way, i.e., τ(i, k+d) ≥ τ(i, k+d+1)+τ(i+1, k+d+1). Summing this inequality
over all agents i = h, . . . , h + k, we obtain

∑h+k
i=h τ(i, k + d) ≥

∑h+k
i=h (τ(i, k + d + 1) + τ(i + 1, k + d + 1))

=
∑h+k

i=h τ(i, k + d + 1) +
∑h+k+1

i=h+1 τ(i, k + d + 1).

Define � = 0 if
∑h+k

i=h τ(i, k + d + 1) ≤
∑h+k+1

i=h+1 τ(i, k + d + 1); otherwise, let
� = 1. Then, the above inequality implies that

∑h+k
i=h τ(i, k + d) ≥ 2

∑h+k+�
i=h+� τ(i, k + d + 1).

Finally, setting h′ := h + �, we can combine this inequality with the induction
hypothesis to obtain that

2−(d+1) ∑k
i=0 τ(i, k) ≥

∑k+h′

i=h′ τ(i, k + d + 1),

which completes the inductive proof.
Applying this equation with k = 0, we obtain that for each d ≥ 0, there exists

an h ≤ d such that τ(h, d) ≤ 2−d · τ(0, 0). Thus, in the set system (Ed, Fd), if all
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infinity bidders have cost ∞, agent h has cost just above 2−dτ(0, 0), and all other
agents have cost 0, then agent ê must be in the winning set, and must be paid at
least 1. But it is easy to see that in this case, ν(c) = 2−dτ(0, 0), and the frugality
ratio is thus at least 2d/τ(0, 0) = Ω(2d) (since τ(0, 0) is a constant independent
of d). Finally, |Ed| = |Z| + |I| + d + 1, and because Z and I are constant for our
class of examples, the frugality ratio is 2−(|Z|+|I|−1) · 2n/τ(0, 0) = Ω(2n).

4 An Additive Penalty Mechanism with Reserve Cost

We next propose and analyze a mechanism called AP, based on additive penalties
and a reserve cost. It will only purchase a solution when the total cost (including
penalties) does not exceed the a priori chosen reserve cost r, and thus requires
a judicious choice of r by the auctioneer. In return, AP is false-name-proof even
when agents own multiple elements.

For any set S ∈ F , let w(S) denote the number of (pseudo-)agents owning one
or more elements of S, called the width of the set S. The width-based penalty
for a set S of width w is Dr(w) = 2w−1−1

2w−1 · r. Based on the actual costs and the
penalty, we define the adjusted cost of a set S to be β(S) = b(S) + Dr(w(S)).

The AP mechanism first determines the set S∗ minimizing the adjusted cost
β(S), among all feasible sets S ∈ F . If its adjusted cost exceeds the reserve cost
r, then AP does not purchase any set, and does not pay any agents. Otherwise,
it chooses S∗, and pays each winning agent (i.e., each agent i with S∗ ∩ Ai �= ∅)
her threshold bid pi = min(r, β(S−i)) − (b(S∗ \ Ai) + Dr(w(S∗))) with respect
to β(S). Here, S−i denotes the best solution with respect to β(S) such that S−i

contains no elements from Ai.

4.1 Analysis of AP

In this section, we prove that simply submitting the pair (be, i) for each element
e ∈ Ai is a dominant strategy for each agent i under the mechanism AP. Fur-
thermore, we prove that the payments of the AP mechanism never exceed r.
As a first step, we prove that it never increases an agent’s profit to engage in
identifier splitting.

Lemma 1. Suppose that agent i owns elements Ai, and splits identifiers into
i′, i′′, with sets Ai′

, Ai′′
, such that Ai′ ∪Ai′′

= Ai. Then, the profit agent i obtains
after splitting is no larger than that obtained before splitting.

Proof. Let S∗ ∈ F be the winning set prior to agent i’s identifier split. We first
consider the case when the winning set does not change due to the identifier split.
If only one of the new pseudo-agents i′, i′′ wins (say, i′), then β(S−i′

) ≤ β(S−i),
because every feasible set not using elements from Ai also does not use elements
from Ai′

. Hence, the payment of i could only decrease, and we may henceforth
assume that both i′ and i′′ win, which means that the width of the winning set
S∗ increases from w to w + 1.
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For simplicity, we write B−i = min(r, β(S−i)), and similarly for i′ and i′′. The
payment to i before the split is B−i − (b(S∗ \ Ai) + Dr(w)), whereas the new
payment after the split is

B−i′ − (b(S∗ \ Ai′
) + Dr(w + 1)) + B−i′′ − (b(S∗ \ Ai′′

) + Dr(w + 1))
= B−i′

+ B−i′′ − 2b(S∗) + b(S∗ ∩ Ai) − 2Dr(w + 1).

As argued above, we have that B−i′′ ≤ B−i, and by definition of B−i′
, we also

know that B−i′ ≤ r. Thus, canceling out penalty terms, the increase in payment
to agent i is bounded from above by

B−i′
+ B−i′′ − B−i − b(S∗) − r ≤ r + B−i − B−i − b(S∗) − r = −b(S∗) ≤ 0.

Hence, identifier splitting can only lower the payment of agent i. Since the total
cost incurred by agent i stays the same, this proves that there is no benefit in
identifier splitting.

Next, suppose that the winning set after the split changes to S′∗ �= S∗. Clearly,
if i does not win at all after the split, i.e., S′∗ ∩ Ai = ∅, then i has no incentive
to split identifiers. Otherwise, if i does win after the split, then i must also win
before the split. For the split can only increase Dr(w(S)) for all sets S containing
any of i’s elements, while not affecting Dr(w(S)) for other sets. We can assume
w.l.o.g. that agent i bids ∞ on all elements e ∈ Ai \ S′∗. For the winning set
will stay the same, because β(S′∗) stays the same, and β(S) can only increase
for other sets S, and the payments can only increase.

But then, S′∗ will also be the winning set if i does not split identifiers (the
adjusted cost β(S′∗) decreases, while all other adjusted costs stay the same).
Now, we can apply the argument from above to show that the payments to
agent i do not increase as a result of splitting identifiers. Thus, so long as an
agent can submit bids of false cost instead, it is never a dominant strategy to
split identifiers.

Theorem 3. For all classes of set systems closed under subdivision, AP is false-
name-proof, even if agents can own multiple elements and split identifiers. Thus,
for each agent i, submitting bids (ce, i) for each element e ∈ Ai is a dominant
strategy.

Proof. First, notice that if an agent owns two elements in the winning solution,
AP does not treat the agent differently from if she only owned one element. Thus,
the proof of Lemma 1 also shows that self-division can never be beneficial for
an agent, and we can assume from now on that no agent will self-divide or split
identifiers. Thus, each agent i submits bids (be, i) for all elements e ∈ Ai. If the
set S∗ ∈ F wins under AP, agent i’s utility is

pi − c(S∗ ∩ Ai) = B−i − (b(S∗ \ Ai) + Dr(w(S∗)) + c(S∗ ∩ Ai)).

Since B−i is a constant independent of the bids b(e) by agent i, agent i’s utility
is maximized when (b(S∗ \Ai)+Dr(w(S∗))+ c(S∗ ∩Ai)) is minimized. But this
is exactly the quantity that AP will minimize when agent i submits truthful bids
for all her elements; hence, truthfulness is a dominant strategy.
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The next theorem proves that an auctioneer with a reserve cost of r faces no
loss.

Theorem 4. The sum of the payments made by AP to agents never exceeds r.

Proof. Because we already proved that AP is false-name-proof, we can without
loss of generality identify c(e) and b(e) for each element e. When w agents are
part of the winning set S∗, the payment to agent i is

pi = B−i − (c(S∗ \ Ai) + Dr(w)) ≤ r − (c(S∗ \ Ai) + r − r
2w−1 ) = r

2w−1

Thus, the sum of all payments to agents i is at most w · r
2w−1 ≤ r.

4.2 Experiments

Since the AP mechanism does not always purchase a feasible set, we cannot
analyze its frugality ratio in the sense of Definition 5. (The definition is based
on the assumption that the mechanism always purchases a set.) Instead, we
complement the analysis of the previous section with experiments for shortest
s-t path auctions on random graphs. Our simulation compares the payments of
the AP mechanism with VCG, under the assumption that there is in fact no
false-name manipulation and each agent owns one edge. Thus, we evaluate the
overpayment caused by preventing false-name manipulation.

Since some of our graphs have monopolies, we modify VCG by introducing a
reserve cost r. Thus, if S∗ is the cheapest solution with respect to the cost, the
reserve-cost VCG mechanism (RVCG) only purchases a path when c(S∗) ≤ r. In
that case, the payment to each edge e ∈ S∗ is pe = min(r, c(S−e)) − c(S∗ \ {e}),
where S−e is the cheapest solution not containing e.

Our generation process for random graphs is as follows: 40 nodes are placed
independently and uniformly at random in the unit square [0, 1]2. Then, 200 in-
dependent and uniformly random node pairs are connected with edges.2 The cost
of each edge e is its Euclidean length. We evaluate 100 random trials; in each,
we seek to buy a path between two randomly chosen nodes. While the number of
nodes is rather small compared to the real-world networks on which one would like
to run auctions, it is dictated by the computational complexity of the mechanisms
we study. Larger-scale experiments are a fruitful direction for future work.

Figure 1 shows the average social surplus (the difference between the reserve
cost and the true cost incurred by edges on the chosen path, r−

∑
e∈S∗ ce) in AP

and RVCG, as well as the ratio between the two, when varying the reserve cost
r ∈ [0, 3.5]. The social surplus for both increases roughly linearly under both
mechanisms. While the plot shows some efficiency loss by using AP, it is always
within a factor of about 60% for our instances, and on average around 80%.

Figure 2 illustrates the average payments of the auctioneer. Clearly, small
reserve costs lead to small payments, and when the reserve costs are less than
2 We also ran simulations on random small-world networks [18]. Our results for small-

world networks are qualitatively similar, and we therefore focus on the case of uni-
formly random networks here.
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1.8, the payment of AP is in fact smaller than that of RVCG. As the reserve cost r
increases, RVCG’s payments converge, while those of AP keep increasing almost
linearly. The reason is that the winning path in AP tends to have fewer edges
than other competing paths, and is thus paid an increased bonus as r increases.
We would expect such behavior to subside as there are more competing paths
with the same number of edges.

5 Open Questions

It remains open whether there is a mechanism which always purchases a solution,
and is false-name-proof even when each agent has multiple elements. This holds
even for such seemingly simple cases as s-t path auctions. It may be possible
that no such mechanism exists, which would be an interesting result in its own
right. The difficulty of designing false-name-proof mechanisms for hiring a team
is mainly due to a lack of useful characterization results for incentive-compatible
mechanisms when agents have multiple parameters. While a characterization of
truthful mechanisms has been given by Rochet [19], this condition is difficult to
apply in practice.

It would also be desirable to get the bounds in Section 3 to match asymp-
totically, i.e., to either remove the factor n from the upper bound, or tighten
the lower bound accordingly. The latter may be difficult, as it is likely at least
as difficult as designing a truthful mechanism for all set systems with frugality
ratio within a constant factor of optimum. Thus, even progress on this question
for specific classes of set systems would be desirable.

References

1. Archer, A., Tardos, E.: Frugal path mechanisms. In: Proc. 13th ACM Symp. on
Discrete Algorithms, ACM/SIAM, pp. 991–999. ACM Press, New York (2002)

2. Garg, R., Kumar, V., Rudra, A., Verma, A.: Coalitional games on graphs: core
structures, substitutes and frugality. Technical Report TR-02-60, UTCS (2002)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



256 A. Iwasaki et al.

3. Talwar, K.: The price of truth: Frugality in truthful mechanisms. In: Proc. 21st
Annual Symp. on Theoretical Aspects of Computer Science (2003)

4. Elkind, E., Sahai, A., Steiglitz, K.: Frugality in path auctions. In: Proc. 15th ACM
Symp. on Discrete Algorithms, ACM/SIAM (2004)

5. Karlin, A., Kempe, D., Tamir, T.: Beyond VCG: Frugality of truthful mechanisms.
In: Proc. 46th IEEE Symp. on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos (2005)

6. Nisan, N., Ronen, A.: Algorithmic mechanism design. In: Proc. 31st ACM Symp.
on Theory of Computing, pp. 129–140. ACM Press, New York (1999)

7. Mas-Collel, A., Whinston, W., Green, J.: Microeconomic Theory. Oxford University
Press, Oxford (1995)

8. Papadimitriou, C.: Algorithms, games and the internet. In: Proc. 33rd ACM Symp.
on Theory of Computing, pp. 749–752. ACM Press, New York (2001)

9. Yokoo, M., Sakurai, Y., Matsubara, S.: Robust Combinatorial Auction Protocol
against False-name Bids. Artificial Intelligence 130(2), 167–181 (2001)

10. Yokoo, M., Sakurai, Y., Matsubara, S.: The effect of false-name bids in combinator-
ial auctions: New fraud in Internet auctions. Games and Economic Behavior 46(1),
174–188 (2004)

11. Iwasaki, A., Yokoo, M., Terada, K.: A Robust Open Ascending-price Multi-unit
Auction Protocol against False-name bids. Decision Support Systems 39(1), 23–39
(2005)

12. Suyama, T., Yokoo, M.: Strategy/false-name proof protocols for combinatorial
multi-attribute procurement auction. Autonomous Agents and Multi-Agent Sys-
tems 11(1), 7–21 (2005)

13. Suyama, T., Yokoo, M.: Strategy/false-name proof protocols for combinatorial
multi-attribute procurement auction: Handling arbitrary utility of the buyer. In:
Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, Springer, Heidelberg (2005)

14. Yokoo, M.: The characterization of strategy/false-name proof combinatorial auc-
tion protocols: Price-oriented, rationing-free protocol. In: Proceedings of the 18th
International Joint Conference on Artificial Intelligence, pp. 733–739 (2003)

15. Moulin, H.: Proportional scheduling, split-proofness, and merge-proofness. Games
and Economic Behavior

16. Du, Y., Sami, R., Shi, Y.: Path Auction Games When an Agent Can Own Multiple
Edges. In: Proc. 1st Workshop on the Economics of Networked Systems (NetE-
con06), pp. 48–55 (2006)

17. Bikhchandani, S., de Vries, S., Schummer, J., Vohra, R.: Linear programming and
vickrey auctions. IMA Volume in Mathematics and its Applications, Mathematics
of the Internet: E-auction and Markets 127, 75–116 (2001)

18. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Na-
ture 393(6684), 440–442 (1998)

19. Rochet, J.C.: A necessary and sufficient condition for rationalizability in a quasi-
linear context. Journal of Mathematical Economics 16, 191–200 (1987)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Mechanism Design on Trust Networks

Arpita Ghosh1, Mohammad Mahdian1, Daniel M. Reeves1,
David M. Pennock1, and Ryan Fugger2

1 Yahoo! Research
{arpita,mahdian,dreeves,pennockd}@yahoo-inc.com

2 RipplePay.com
rfugger@gmail.com

Abstract. We introduce the concept of a trust network—a decentralized
payment infrastructure in which payments are routed as IOUs between
trusted entities. The trust network has directed links between pairs of
agents, with capacities that are related to the credit an agent is willing
to extend another; payments may be routed between any two agents
that are connected by a path in the network. The network structure
introduces group budget constraints on the payments from a subset of
agents to another on the trust network: this generalizes the notion of
individually budget constrained bidders.

We consider a multi-unit auction of identical items among bidders
with unit demand, when the auctioneer and bidders are all nodes on
a trust network. We define a generalized notion of social welfare for
such budget-constrained bidders, and show that the winner determina-
tion problem under this notion of social welfare is NP-hard; however the
flow structure in a trust network can be exploited to approximate the
solution with a factor of 1 − 1/e. We then present a pricing scheme that
leads to an incentive compatible, individually rational mechanism with
feasible payments that respect the trust network’s payment constraints
and that maximizes the modified social welfare to within a factor 1−1/e.

1 Introduction

Consider an auction where payments take the form of IOUs. That is, the winning
buyer(s) do not immediately pay with dollars or other standardized currency,
but instead commit to compensate the seller appropriately at some later date.
In this setting, the seller must consider not only the magnitude of a buyer’s bid,
but also the risk of the buyers defaulting on their commitments. Naturally the
seller may not wish to accept a large IOU from an unknown or untrustworthy
bidder.

Now suppose the seller will not accept an IOU from buyer Alice. Alice might
still be able to compete in the auction if someone that the seller does trust, say
Bob, in turn trusts Alice. Then Alice can pass an IOU to Bob who can pass an
IOU to the seller. The seller is paid with a commitment from Bob, someone the
seller trusts, and Bob receives a commitment from Alice, someone he trusts.

In Section 3, we formalize this notion of a payment infrastructure based on
a trust network. The trust network induces pairwise (directed) limits on how
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much compensation can flow from any one agent to another. In this way, trust
networks generalize the notion of budget constraints where, instead of a single
budget per agent denominated in a common currency, there may exist different
budgets for every subset of agents. Note that it is not enough to consider budget
limits on how much individual agents can pay the seller since there may be
multiple buyers whose payments Bob needs to vouch for. Thus, the amount that
a buyer can pay the seller depends on the degree to which other buyers have
exhausted the Bob link.

We examine the problem of mechanism design in trust networks, specifically,
a multi-item auction of identical items. The auctioneer is a node in the network,
and payments to the auctioneer are constrained by link capacities: The payments
from a subset of bidders cannot exceed the maximum flow from these nodes
to the auctioneer on the trust network. It is not possible to design incentive
compatible mechanisms to maximize social welfare in this setting so we define a
modified notion of social welfare based on budget-capped values. In Section 4, we
show that the winner determination problem—choosing the set of winners that
maximizes this modified notion of welfare—is NP-hard. We present an algorithm
for this problem in Section 4.2 that exploits the the flow structure in the trust
network to approximate the solution within a factor 1 − 1/e. Using this, in
Section 5, we present a pricing scheme that leads to an incentive compatible,
individually rational mechanism with feasible payments that respect the group
budgets and that approximately maximizes the modified social welfare to within
a factor 1 − 1/e.

The next section compares trust networks with more traditional payment
infrastructures and describes the existing trust network implementations that
motivate our research.

2 Payment as a Routing Problem

Currencies can in fact operate as abstract IOUs, or obligations. Modern cur-
rencies are issued in the form of abstract obligations to provide value of some
form, be it banks’ obligations to redeem account balances for government notes,
governments’ obligations to redeem those notes as credit toward taxes due, or e-
gold’s obligations to store gold in trust for account holders. A decision to accept
a certain currency1 is a decision to trust the issuer to fulfill its obligations. From
this perspective, a loan repayment agreement is currency issued by the borrower
and accepted by the lender.

Payment is the transfer of obligations from one entity, the payer, to another,
the recipient, in a form the recipient will accept. In other words, to make pay-
ment, the payer must present obligations from a currency issuer that is trusted
by the recipient. The payer is faced with the problem of how to route the pay-
ment: how to convert obligations that it holds or can readily obtain (for example,
via a line of credit) into obligations from an issuer that the recipient considers
1 Currency here is defined as obligations from a certain issuer, as considered separately

from the units of value in which those obligations are accounted.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Mechanism Design on Trust Networks 259

trustworthy. This routing takes place in a trust network. The most ubiquitous
routable financial trust network is the banking system. At the national level this
is essentially a tree, with the central bank at the root, regular banks as children
of the central bank, and bank customers as the leaves. This arrangement makes
it feasible to route payments manually, since there is only one path between any
two nodes in a tree.

Analogy to computer networks. Computer networks are built to route in-
formation from one computer to another. The evolution of computer networks
follows a similar course to that of currency networks. For a small network, com-
puters can be directly connected to each other as needed using wires. As the
number of computers grows, this soon becomes unwieldy, and it is easier to con-
nect all the computers to a special intermediary computer (a router), which re-
lays information between computers in the network. Routers accept and transmit
data like any other computer, but act as hubs for transferring messages between
computers because they are highly connected in the computer network, just as
banks act as hubs for transferring obligations between people because they are
highly connected in the financial trust network. Eventually, it is desirable to
send information between networks, and to accomplish this, several routers can
be connected to a super-router, and these in turn can be connected to an even
higher router, and so on in a hierarchical fashion as needed. Since there is only
a single route between any two points, routing messages in strictly hierarchical
networks is simple.

The designers of the Internet did not build it as a strict hierarchical network—
primarily because to withstand a nuclear attack, it could not have any single
points of failure. As a side effect, the Internet can operate as the most demo-
cratic forum for communication ever known, because it does not require, and
is in fact resistant to, control by special groups. A non-hierarchical financial
network can have similar advantages. Two systems recently implemented by
the authors—first Ripple [7] and then Yootles [12]—demonstrate this powerful
generalization of the usual financial trust tree. These systems route payments
through arbitrary financial trust networks much like the internet routes data
through arbitrary computer networks, demonstrating how advances in routing
enable the formation of decentralized routable payments. The Yootles system
allows its users to conduct auctions of a variety of types [12]. This paper for-
mally defines the concept of a trust network, and describes how auction design
is impacted by the payment constraints implied by the network.

3 The Model

We first define our proposed decentralized payment infrastructure. We denom-
inate the hypothetical currency in utils, representing an abstract measure of
utility [12], but this choice is orthogonal to our results.

Trust networks. A trust network, or decentralized ledger, consists of two
directed graphs defined on a set of vertices V = {0, . . . , m} representing entities,
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or agents. (Vertex 0 will be treated specially in the next section.) A set of edges
EO gives the pairwise account balances between nodes. The weight oij on an
edge (i, j) ∈ EO quantifies the obligations that i has to j, that is, i is committed
to increasing j’s utility by oij utils or, if oij < 0 then j owes −oij utils to i. By
definition, oij = −oji for all i, j and oii ≡ 0.

A set of edges ET gives pairwise credit limits between agents. The weights on
these edges quantify the trust in the trust network. An edge (i, j) ∈ ET with
weight tij specifies that i has extended j a credit line of tij utils. In practice these
edges may have concomitant interest rates and there may be multiple lines of
credit issued between agents at different interest rates. In this paper we ignore
interest and assume that every directed pair of agents has exactly one credit
limit, possibly zero.

21 3

t21 t32

o12 o23

Fig. 1. A trust network with three agents. Credit extended from 1 to 2 and from 2 to
3 are not shown.

The power of a trust network defined above is that arbitrary payments can
be made by passing obligations between agents that explicitly trust each other
if the network is sufficiently well-connected. For example, in Figure 1 agent 1
can make a payment of x utils to agent 3 by issuing an obligation of x utils
to agent 2 and agent 2 issuing an obligation for the same amount to agent 3,
increasing both o12 and o23 by x utils. (Note that agent 2’s net balance remains
unchanged.) The payment is feasible as long as both 1’s remaining credit with
2 (i.e., t21 − o12) and 2’s remaining credit with 3 (i.e., t32 − o23) are greater
than or equal to the payment amount of x utils. This generalizes to arbitrarily
long payment chains in the obvious way. The maximum x satisfying the credit
constraints along a path from i to j is the payment capacity of that path. The
overall payment capacity for (i, j) is the amount that could be paid from i to
j if each path from i to j was maxed out in sequence—that is, the maximum
flow [1] from i to j.2

Auctions on trust networks. We consider multi-unit auctions of k identical
items among n bidders on the trust network. We label the nodes V = {0, . . . , m}
so that auctioneer is node 0, and the bidders are A = {1, . . . , n}. (The remaining
nodes {n + 1, . . . , m} may be used for routing payments, but do not participate
in the auction.) Every bidder i has a private value vi for the item. Bidders have
unit demand—that is, they want no more than one unit of the item.
2 In practice, the system may limit routing, for example by only considering paths up

to a certain length or only considering a subset of all paths. If so, the system will be
computing lower bounds on the true payment capacities. Payment feasibility thus
degrades gracefully with computational restrictions on payment routing.
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To study this problem, we do not need to consider the account balances and
credit limits on the edges of the trust network separately—all that matters is
the remaining credit on a link. The trust network can therefore be defined by
a single graph G comprising the same set of vertices V and a set of edges E
representing the payment capacities of edges, where an edge (i, j) ∈ E has
capacity cij = tji−oij . We assume that the network structure and link capacities
cij are publicly known: bidders cannot strategically report link capacities to the
auctioneer.

The link capacities limit the maximum payment that can be made by any
subset of bidders S ⊆ A to the auctioneer. We denote by c(S) the maximum
flow that can be routed from S to 0 on the graph with link capacities cij ; c(S) is a
group budget, or combined budget, for the nodes in S. This generalizes the notion
of individually budget-constrained bidders [3]. (However, note that our setting
is a special case of combined budgets: not all values for combined budgets can
be derived from maximum flow constraints on a network with link capacities.)
We will refer to payments that can be routed along the trust network without
violating any link capacity constraints as feasible payments. Feasible payments
correspond exactly to those where the total payment from every subset of nodes
is less than or equal to the budget constraint for that subset.

Due to the budget constraints, it is not possible to design an incentive com-
patible mechanism to maximize social welfare, or the sum of private values of
winning bidders.3 Instead we define a modified notion of welfare. For any subset
of bidders S ⊆ A, let v(S) denote the budget-capped value of this set, defined
as the optimal value of the linear program with variables xi:

maximize
∑

i∈S

xi

s.t.
∑

i∈T

xi ≤ c(T ) ∀ T ⊆ S

0 ≤ xi ≤ vi.

(1)

In a regular auction, a bidder’s private value can be thought of as the maximum
individually rational payment the bidder is willing to make to the auctioneer;
here the budget-capped value of a set of bidders is the maximum individually
rational payment from this set of bidders that are feasible on the trust network.
When the group budgets, c(T ), are sufficiently large, that is, c(T ) ≥

∑
i∈T vi

for all T , then the modified welfare is exactly the sum of the valuations of the
bidders: v(S) =

∑
i∈S vi. We define v(S, b) as the value of (1) with vi replaced

by bi (i.e., with the constraint 0 ≤ xi ≤ bi). As usual, we will use b−i to denote
the vector b with the ith component removed.

3 To see why, consider a mechanism that tries to maximize welfare in the face of
budget-constrained bidders. The mechanism would have to base allocation decisions
on agents’ reported values—values that can be greater than what the agents could
pay. But then low valuation agents with the same ability to pay would report valu-
ations that made them appear identical to the high-valuation agents.
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4 Complexity of Winner Determination

In this section we study the winner determination problem in a k-unit auction
on a trust network, i.e., to select a set of at most k bidders on a trust network
to maximize the budget-capped social welfare defined in §3. This is essentially
equivalent to the problem of selecting k sources in a graph that can send the
maximum amount of flow to a given destination (the auctioneer). The problem
can be studied in two models: one where ex-post individual rationality is re-
quired (the ex-post IR model), and another where it is enough to satisfy ex-ante
individual rationality (the ex-ante IR model).

Problem Formulation. We start by formulating the problem in the ex-post
IR model as the mathematical program (2) below. The binary variable yi in the
program indicates whether the bidder i is selected as a winner. The variable xi is
the amount of “value” extracted from bidder i. The constraints (2c)–(2e) guar-
antee that these amounts are routable through the trust network. The variable
zu,w in these constraints corresponds to the amount of flow routed through the
directed edge (u, w) in the graph.

The ex-ante IR problem can be formulated similarly, except the constraint
(2g) is relaxed to 0 ≤ yi ≤ 1. The value of yi means that the bidder i receives a
unit of the good with probability yi. Note that the ex-ante IR property allows
us to charge a bidder, who (due to the outcome of the coin flip) does not receive
any item, as long as the expected value the bidder receives is not more than the
expected amount she pays. The winner determination problem in the ex-ante
IR case can thus be solved exactly by solving a linear program. For the rest of
this section, we will focus on the winner determination problem in the ex-post
IR model, and show tight hardness and approximability results.

maximize
∑

i∈A
xi (2a)

s.t. ∀i ∈ A : xi ≤ viyi (2b)

∀u ∈ {n + 1, . . . , m} :
∑

(u,w)∈E

zu,w =
∑

(w,u)∈E

zw,u (2c)

∀u ∈ A :
∑

(u,w)∈E

zu,w −
∑

(w,u)∈E

zw,u ≥ xi (2d)

∀(u, w) ∈ E : 0 ≤ zu,w ≤ cu,w (2e)
∑

i∈A
yi ≤ k (2f)

∀i ∈ A : yi ∈ {0, 1} (2g)

4.1 Hardness of the Ex-post Problem

The following theorem shows that the winner determination problem is hard to
approximate within any factor better than 1 − 1/e, even if all edges of the trust
network have capacity 1.
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Theorem 1. If the winner determination problem for ex-post IR multi-unit auc-
tions on trust networks can be approximated within a factor of 1 − 1/e + ε for
any ε > 0, then NP ⊆ TIME(nO(log log n)).

Proof. We reduce the problem of maximum k-coverage to this problem. An in-
stance of the max k-coverage problem consists of a number k and a collection
of subsets S1, S2, . . . , Sp of a universe U . The goal is to find a subcollection
Si1 , . . . , Sik

of size k whose union has the maximum size. Given such an instance,
we construct an instance of the winner determination problem as follows: the
parameter k corresponds to the number of items available for sale, each set Si

corresponds to a bidder i, and each element of U corresponds to a non-bidder
node in the trust network. The only other node in the trust network corresponds
to the auctioneer, which is denoted by 0. For every element j ∈ U , there is an
edge from j to 0, and for every i ∈ {1, . . . , p} and j ∈ Si, there is an edge from
the vertex i to the vertex j. The capacity of all edges are 1. The value of each
bidder i ∈ {1, . . . , p} is |Si|. It is easy to see that the budget-capped value of a
collection of bidders is equal to the size of the union of the corresponding sets.
Therefore the solution of the winner determination problem is precisely equal to
the solution of the max k-coverage problem. The hardness result follows from a
theorem of [6], who show that the max k-coverage problem is hard to approxi-
mate within any factor better than 1 − 1/e, unless NP ⊆ TIME(nO(log log n)).

4.2 Approximation Algorithm

The above theorem shows that the ex-post IR winner determination problem
is at least as hard as the max k-coverage problem. For the max k-coverage
problem, there is a well-known greedy algorithm that achieves an approximation
factor of 1− 1/e. Using this algorithm, and a lemma proved in [4] for a different
problem, we can show that the ex-post IR winner determination problem can be
approximated within a factor of 1 − 1/e.

The algorithm, which is a natural generalization of the greedy algorithm for
max k-coverage, is as follows. Start with S = ∅. In every iteration, select a bidder
that maximizes the marginal value v(S ∪ {i}) − v(S), and add this bidder to S.
Continue this for k iterations, until |S| = k. To prove the approximation factor of
this algorithm, we need the following lemma, which is an adaptation of Lemma
3 in [4].

Lemma 1. Let G be a directed graph with capacities on the edges, and S1 and
S2 be two subsets of vertices of G. Consider a maximum flow f from the vertices
in S1 to a special vertex 0 
∈ S1 ∪ S2, and let fi denote the amount of flow
originating from the vertex i ∈ S1 in this solution. Then there is a solution to
the maximum flow problem from vertices in S1 ∪S2 to the vertex 0, in which the
amount of flow originating from every vertex i ∈ S1 is precisely fi.

Proof (sketch). We use the Ford-Fulkerson [1] algorithm for solving the maximum
flow problem from S1 ∪ S2 to 0. In each iteration of the algorithm, an augmenting
path is found, with respect to the current feasible flow, to increase the total flow
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sent from S1 ∪ S2 to 0: the Ford-Fulkerson theorem guarantees that such an aug-
menting path can be found in any non-optimal flow. To prove the lemma, we apply
this algorithm starting from the flow f . If in each iteration we find the shortest aug-
menting path from S1∪S2 to 0, the path cannot contain any vertex of S1∪S2 as an
interior vertex, and therefore it will never change the amount of flow originating
from a vertex in S1. Hence, in the final maximum flow computed by this algorithm,
the amount of flow originating from every i ∈ S1 is fi.

Theorem 2. The greedy algorithm achieves an approximation ratio of 1 − 1/e
for the winner determination problem in ex-post IR multi-unit auctions on trust
networks.

Proof. Consider an instance of the problem, and let OPT denote the value of the
optimal solution on this instance, and S∗ denote the set of winners in this solution.
Let Ti denote the value of the solution found at the end of the i’th iteration of the
greedy algorithm, and set T0 = 0. The main ingredient of the proof is the following
inequality, which bounds the amount of marginal value in iteration r:

Tr − Tr−1 ≥ OPT − Tr−1

k
(3)

To prove this, we construct the graph G′ from the trust network by adding a
shadow vertex i′ for every bidder i, and connecting i′ to i with an edge of capac-
ity vi. Clearly, the budget-capped value of any set S of bidders is equal to the
maximum amount of flow that can be sent from the set of shadow vertices of bid-
ders in S to the vertex 0. Let S1 denote the set of shadow vertices corresponding
to the bidders selected in the first i − 1 iterations of the greedy algorithm, and
S2 denote the shadow vertices for bidders in S∗. Consider a solution to the max-
imum flow problem from the vertices in S1 to 0, and denote by fi the amount of
flow originating from i ∈ S1 in this solution. By Lemma 1, there is a maximum
flow f̃ from the vertices of S1 ∪ S2 to 0 in which the flow originating from any
vertex i ∈ S1 is precisely f1. On the other hand, since the amount of flow that
can be sent from S2 to 0 is OPT, the value of the flow f̃ is also at least OPT.
Therefore in f̃ , vertices in S2 \ S1 send at least OPT −

∑
i∈S1

fi = OPT− Tr−1.
Since there are at most k vertices in S2 \S1, there must be a vertex i′ in this set
(corresponding to the bidder i), which sends at least (OPT − Tr−1)/k units of
flow to 0. This implies that the marginal value resulting from adding the vertex
i in the r’th iteration of the algorithm is at least (OPT − Tr−1)/k. Since the al-
gorithm always adds a vertex with the highest marginal value, the inequality (3)
follows. Inequality (3) can be re-arranged as follows:

(
1 − 1

k

)−r

Tr ≥ OPT
k

(
1 − 1

k

)−r

+
(

1 − 1
k

)−(r−1)

Tr−1.

By adding these inequalities for r = 1, . . . , k and simplifying, we obtain

Tk ≥ OPT

(

1 −
(

1 − 1
k

)k
)

≥
(

1 − 1
e

)
OPT.
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This completes the proof of the theorem, as Tk is the value of the greedy solution.

The above proof heavily uses the combinatorial structure of the budgets imposed
by the trust network, and therefore does not generalize to the more abstract
model of collective budgets. In fact, the winner determination problem in the
abstract model cannot be approximated to within any factor better than n1−ε

even if all subsets that have a budget are of size two, as shown by the following
reduction from the maximum independent set problem. Each node of the given
graph G corresponds to a bidder of value 1, and the collective budget of any
pair of bidders connected by an edge in G is 1. No other subset of bidders
has a collective budget. It is clear that the solution of the winner determination
problem in this instance corresponds to a maximum independent set in G. By the
hardness of the maximum independent set problem [8], the winner determination
problem in this case is hard to approximate.

4.3 Algorithms for Special Cases

Despite the hardness result in Theorem 1, the winner determination problem
can be solved exactly in some special cases, most notably in the case that the
trust network is hierarchical, as for a national banking system.

Theorem 3. If the underlying undirected graph of the trust network G is a tree,
the winner determination problem for ex-post IR multi-unit auctions on G can
be solved in polynomial time.

Proof (sketch). First, we show that without changing the value of the solution,
we may transform the trust network into an (incomplete) binary tree T with
bidders as leaf nodes. Also, for every bidder i, add a shadow node i′, and add a
link from i′ to i with capacity vi. Let U denote the set of shadow nodes. Define
V [v, l] as the maximum flow that can be routed to an internal node v from at
most l nodes in U that are in the subtree rooted at v. Then

V [v, l] = max
l1+l2=l

(min(V [v1, l1], cv1,v) + min(V [v2, l2], cv2,v)),

where v1 and v2 are the children of v. It is not hard to see that values of V [v, l] can
be computed efficiently using dynamic programming given the above recursive
formula. The solution to the winner determination problem is V [0, k].

5 Mechanism Design

In this section, we discuss the question of designing an incentive compatible
mechanism that maximizes the modified welfare. The solution to the winner
determination problem specifies the allocation of items amongst bidders that
maximizes, or approximately maximizes, modified welfare; the pricing scheme
must be chosen to ensure incentive compatibility, as well as feasible payments.

We show that mechanisms M and M′, stated below, are incentive compati-
ble, individually rational mechanisms with feasible payments, that respectively
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maximize and approximately maximize modified welfare: M assumes that the
winner determination problem can be solved exactly, and allocates items accord-
ing to this solution, while M′ allocates items according to the greedy algorithm
in the previous section. (Although the mechanisms look very similar, the proofs
for feasibility of payments are different, so we present them separately.)

Mechanism M: Every bidder submits a bid bi to the auctioneer.

– Allocation: The winning set is the lexicographically first subset S∗ of bidders
that maximizes v(S, b) over all subsets with |S| ≤ k. Assign the k items to
bidders in the winning set S∗.

– Pricing: Charge bidder i ∈ S the smallest value pi ≤ bi such that i would
still belong to the winning set with bids (b−i, pi).4

Note that the winning set need not be S∗ with input bj for j 
= i and pi—we
only require that the winning set contains i.

Theorem 4. The mechanism M is incentive compatible, ex-post individually
rational, maximizes modified social welfare, and leads to payments that are fea-
sible on the trust network.

Proof. Incentive compability follows from the results in [2]; a direct proof can
also be found in the full version of this paper. The main component of the
proof is showing that these payments are feasible, i.e., they can be routed to the
auctioneer along the network. For this, we need to show that the payments pi

satisfy the first set of constraints in (1).
Let w∗ = v(S∗) denote the value of the winning set, when bj = vj for all

bidders j. Abusing notation slightly, let v(S, bi) denote the value of set S when
bidder i bids bi and all other bidders continue to bid vj . For i ∈ S∗, let v′i be
the smallest value such that v(S∗, v′i) is still w∗. In fact, v′i = x∗

i , where x∗
i is

the smallest value of xi amongst all optimal solution vectors x for the linear
program (1) (with the true values vi as input).

With bi = v′i, S∗ is still the winning set: v(S) is unchanged for sets not
containing i, and v(S, v′i) ≤ v(S, vi) for sets containing i, since v′i ≤ vi (the
feasible set in (1) with bi = v′i is a subset of the feasible set with bi = vi, so
the optimal value cannot increase). Since S∗ was the lexicographically first set
with bi = vi, and the value of no set increases when bi decreases to v′i, S∗ is
still the lexicographically first set with the highest value when bi = v′i. Thus the
bid at which i still belongs to the winning set is at least as small as v′i, i.e.,
pi ≤ v′i = x∗

i . Since x (the optimal solution to 1 with entry x∗
i for bidder i) is

feasible, we have
x∗

i +
∑

j �=i,j∈T

xj ≤ c(T ) ∀ T,

4 Note that this price pi need not be the same as the smallest report p′
i at which i still

belongs to some set with the highest value (i.e., not necessarily the lexicographically
first set): clearly pi ≥ p′

i; pi can in fact can be strictly larger.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Mechanism Design on Trust Networks 267

Using identical arguments for all other winners j, pj ≤ x∗
j ≤ xj , and substituting

above, we get ∑

i∈T

pi ≤
∑

i∈T

x∗
i ≤ c(T ) ∀ T,

i.e., the payments are feasible. Individual rationality follows from the fact that
pi ≤ v′i ≤ vi if the bidder wins an item, and is 0 otherwise.

The greedy algorithm in Section 4.2 can be used to design a mechanism M′

that approximates modified social welfare to a factor 1 − 1/e, when the winner
determination problem cannot be solved exactly:

– Allocation in M′: Choose the set of winning bidders according to the greedy
algorithm in Theorem 2, breaking all ties in favor of the bidder with the
lower index.

– Pricing in M′ : Charge bidder i ∈ S the smallest value pi ≤ bi, such that i
would still be chosen by the greedy algorithm when all bidders j 
= i report
bj , and bidder i reports pi.

Theorem 5. The mechanism M′ approximates modified social welfare by a fac-
tor 1 − 1/e, is incentive compatible, ex-post individually rational, and results in
feasible payments.

The proof of feasibility of payments relies on Lemma 1, and can be found in
the full version of this paper.

6 Discussion

There are myriad additional mechanism design problems that can be studied
in the context of trust networks. For instance, we might have multiple sellers,
heterogeneous goods, the auctioneer may prefer to maximize revenue instead
of welfare and so on [5]. However, the impossibility result in [3] shows that in
many of these cases achieving incentive compatibility in dominant strategies is
impossible. A natural extension to consider, particularly for the case of repeated
auctions, is interest rates on the credit links Interest causes positive balances
to become more positive over time and negative balances to become more nega-
tive. Not only does this complicate the payment routing problem (unless a single
universal interest rate is used) but it means link capacities decrease over time,
impacting the mechanism design problem. Other mechanisms besides auctions
are also affected by the constraints inherent in a trust network. For example,
betting games like poker become complicated when not every bet is honored by
every player and if the degree to which a bet is honored depends on how other
players—intermediate nodes in the trust network—fare in the game. Other mech-
anisms of interest to study in this setting include decision auctions, prediction
markets [13] (with and without automated market makers [9,10,11]), and various
incentive schemes for participation in the trust network itself.
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The continued growth and development of online services and protocols for
building decentralized financial trust networks will also pose questions and
challenges in areas such as routing, distributed transactions, online identity ver-
ification, reputation systems, and spam prevention. Both in terms of design and
analysis of trust networks and in terms of mechanism design problems on trust
networks, we hope that this paper opens a number of interesting research avenues.
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Abstract. We study the problem of welfare maximization in a novel set-
ting motivated by the standard stochastic two-stage optimization with
recourse model. We identify and address algorithmic and game-theoretic
challenges that arise from this framework. In contrast, prior work in algo-
rithmic mechanism design has focused almost exclusively on optimization
problems without uncertainty. We make two kinds of contributions.

First, we introduce a family of mechanisms that induce truth-telling
in general two-stage stochastic settings. These mechanisms are not sim-
ple extensions of VCG mechanisms, as the latter do not readily ad-
dress incentive issues in multi-stage settings. Our mechanisms implement
the welfare maximizer in sequential ex post equilibrium for risk-neutral
agents. We provide formal evidence that this is the strongest implemen-
tation one can expect.

Next, we investigate algorithmic issues by studying a novel combi-
natorial optimization problem called the Coverage Cost problem, which
includes the well-studied Fixed-Tree Multicast problem as a special case.
We note that even simple instances of the stochastic variant of this prob-
lem are #P -Hard. We propose an algorithm that approximates optimal
welfare with high probability, using a combination of sampling and su-
permodular set function maximization—the techniques may be of inde-
pendent interest. To the best of our knowledge, our work is the first to
address both game-theoretic and algorithmic challenges of mechanism
design in multi-stage settings with data uncertainty.

1 Introduction

Welfare maximization has been a central problem in both computer science and
economics research. Much work to-date, especially in algorithmic mechanism
design, has focused on welfare maximization in deterministic settings [11,14,15].
In this paper, we identify and address new challenges that arise in stochastic
optimization frameworks. In particular, we consider both algorithmic and in-
centive issues motivated by the two-stage stochastic optimization with recourse
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model, a model that has been studied extensively in both the operations research
community [5], and the computer science community [9,16,17].

Roughly speaking, two-stage optimization requires a decision maker (the cen-
ter) to make sequential decisions. In the first stage, given a probability distribu-
tion over possible problem instances (called scenarios), the center deploys some
resources and incurs some cost. Typically, such an initial deployment is not a
feasible solution to every possible scenario, but represents a hedge on the center’s
part. In the second stage, once a specific scenario is realized, the center may take
recourse actions to augment its initial solution to ensure feasibility, and incurs
an additional cost for doing so. The goal of the center is to minimize its expected
cost (or maximize its expected profit).

In this paper, we are interested in situations where the uncertainty is initially
unknown to the center, and it needs to learn this information from selfish agents
in order to maximize social welfare. However, an agent may lie about its pri-
vate information to improve its utility. To solve this informational problem, the
center has to interleave elicitation and optimization. In order to appreciate the
challenges that arise from the stochastic setting, let us first consider a stochastic
variant of the well-studied Fixed Tree Multicast (FTM) problem [1,6,13].

Recall that an FTM instance consists of a tree T with undirected edges and a
designated node called the root. A set of players, U = {1, 2, . . . , n}, are located
at the nodes of the tree. Each player i ∈ U is interested in a service provided
by the root and has a private value θi for being served. Serving a user involves
building the path from the root to the node at which the user is located. The
center serves a set S ⊆ U of users by building edges in the union of paths that
correspond to the serviced nodes, and pays the costs of the edges built.

In our stochastic two-stage formulation, there is initially some uncertainty
regarding the values of players being served. This uncertainty is modeled as a
distribution over values for each player, and is resolved in the second stage when
each learns of its value. Both the distribution and the value are private to the
player. Edges can be built in either the first or the second stage, with the costs
being higher in the second stage for the corresponding edge. Such an increase
in costs can be viewed as a premium for the extra information obtained in the
second stage. A precise formulation is given in Section 4.

Our objective is to maximize expected social welfare — the sum of the values
of the players served less the cost incurred. What are the challenges introduced
by the two-stage stochastic setting?

The first challenge is game-theoretic. While Vickrey-Clarke-Groves (VCG)
mechanisms can induce players to report their true information in single-shot
settings [8], they do not apply directly to the two-stage setting. We demon-
strate that it is possible to induce truth-telling behavior in sequential ex post
equilibrium via an explicit construction of a two-stage mechanism. This solution
concept is different from classical ex post implementation, and will be further
explained in Section 4. We also formally argue that this is the strongest im-
plementation one can expect, by showing that it is impossible to construct a
mechanism that implements the social objective in dominant strategies.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Stochastic Mechanism Design 271

The second challenge is algorithmic. We consider a novel combinatorial op-
timization problem called the Coverage Cost problem (see Section 5 for the
precise formulation) to investigate algorithmic issues that arise in such settings.
The Coverage Cost (CC) problem contains FTM as a special case. We find that
maximizing welfare can be difficult even when the deterministic version is easy
to solve. For instance, maximizing welfare in a deterministic, single-shot version
of FTM can be solved by a linear time algorithm [6]. On the other hand, maxi-
mizing welfare for a stochastic version of FTM is #P-hard (Theorem 5). We then
develop an algorithm for stochastic CC problems that yields an additive approx-
imation to the optimal expected welfare with high probability. Our solution is
based on a combination of sampling techniques (see, e.g., [12]) and supermodular
function maximization [10] (Theorem 6), and may be of independent interest.

Due to space constraints, most proofs have been omitted in this extended
abstract. Readers interested in more details can find the proofs in the full paper.

2 Related Work

A few recent papers have focused on dynamic mechanisms, under the setting of
Markov Decision Processes [2,3]. Our work differs from these in three respects.
First, to the best of our knowledge, this is the first time an algorithmic aspect
of a two-stage mechanism has been studied. The computational hardness leads
to the use of a sampling-based approximation algorithm, and we describe the
precise trade-off between incentive compatibility and computational efficiency
(Theorem 4). Second, by application of backward induction, we identify a family
of incentive compatible mechanisms, rather than a single mechanism. Finally,
we introduce the sequential generalization of classical solution concepts, and
formally argue why a stronger incentive guarantee — namely an implementation
in dominant strategies — is impossible to achieve (Theorem 3). We expect our
impossibility result to be applicable to the works mentioned above.

To the best of our knowledge, our algorithmic result, i.e. approximating maxi-
mum welfare for a stochastic coverage cost instance, is not obtainable via current
techniques. For instance, the technique in [4] requires the objective function to
be non-negative for all possible actions and scenarios. This condition does not
hold in our problem. The technique in [12] does not address how the underly-
ing problem is to be solved, and yields a different bound that depends on the
variance of a certain quantity.

3 Stochastic Welfare Maximization

In this section, we define stochastic welfare maximization in a general setting.
The terminology and the general definition introduced in this section are moti-
vated by mechanism design. We review two-stage stochastic optimization in the
appendix and refer the interested readers to the survey [17].

Informally, in a two-stage stochastic welfare maximization problem, the center
decides on the eventual social outcome in two stages. In the first stage, with

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



272 S. Ieong, A. Man-Cho So, and M. Sundararajan

less information available, the center commits some resources, at a cost. In the
second stage, with additional, precise information available, it augments initial
allocation by performing (typically more expensive) recourse actions.

Formally, in the first stage the center picks an outcome from the set of feasible
outcomes O1, incurring a first-stage cost c1 : O1 �→ R. In the second stage, the
center may augment the first stage allocation by picking an outcome from the set
O2, incurring an additional cost c2 : O1 × O2 �→ R. Note that the second-stage
cost depends on both the first and second-stage choices.

Next, we describe the relationship between agent types and their valuations.1

Let Θi be the (ground) type space of agent i, for i = 1, . . . , n. Let vi : Θi ×O1 ×
O2 �→ R denote i’s valuation. In other words, an agent’s valuation depends on
its realized type and the outcomes of both stages.

The ground type of an agent is revealed in two stages. In the first stage, an
agent i only learns of a probability distribution δi over its ground types. We call
this distribution the agent’s supertype, and denote the supertype space of agent
i by Δi. Its elements, δi ∈ Δi, are distributions on Θi. In the second stage,
agent i learns of its ground type (or type for short), realized according to the
distribution δi that is independent of other agents’ type realizations. We call the
collective realized types of all agents in the system a scenario, corresponding to
a scenario in two-stage stochastic optimization.

Most work on two-stage stochastic optimization focus on minimizing cost. In
contrast, we are interested in maximizing social welfare as defined below:

Definition 1. The social welfare of outcomes x1 ∈ O1 and x2 ∈ O2 in scenario
θ = (θ1, . . . , θn) is:

SW (θ, x1, x2) =
n∑

i=1

vi(θi, x
1, x2) − c1(x1) − c2(x1, x2) (1)

As first-stage outcomes are picked without precise information on agent types,
we focus on maximizing expected social welfare, i.e.

max Eθ∼δ

[
SW (θ, x1, x2)

]
(2)

where θ ∼ δ means that the scenario vector θ is distributed according to δ.

4 Mechanism Design Formulation

We now address the first challenge in stochastic welfare maximization, that of
eliciting the supertypes and the realized types from selfish agents. Our treatment
is fully general, and applies to any two-stage stochastic optimization problems.

First, let us define agents’ utility functions. We assume that agents have quasi-
linear utilities. If t is the transfer to agent i, then he has utility:

ui(θi, x
1, x2, t) = vi(θi, x

1, x2) + t (3)
1 For notation, when a type/supertype (space) is subscripted, it refers to that of a

particular agent; when it is not, it refers to the Cartesian product over the agents.
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We also assume that agents are risk-neutral in the first stage, i.e., they look
to maximize their expected utility over the distribution of scenarios.

The mechanism design framework is as follows:

Definition 2. A two-stage stochastic mechanism is parametrized by a pair of
mechanisms, (〈f1, {t1i }n

i=1〉, 〈f2, {t2i }n
i=1〉), where:

1. Initially, each agent i has a supertype δi ∈ Δi. The first-stage mechanism
accepts “supertype” bids from agents.

2. The mechanism applies the decision rule, f1 : Δ �→ O1 to pick a first-stage
outcome as a function of declared supertypes. It applies the transfer functions
t1i : Δ �→ R to determine first-stage transfers for each agent i.

3. Each agent i now realizes its type θi according to the distribution specified
by the supertype δi. The mechanism accepts “type” bids from each agent.

4. The second-stage mechanism applies the decision rule, f2 : Δ × O1 × Θ �→
O2 and picks a second-stage outcome as a function of the declared types,
the declared supertypes, and the first-stage outcome. It applies the transfer
functions t2i : Δ × O1 × Θ �→ R to determine second-stage transfers for each
agent i. At this stage the utility of each agent i, ui(θi, x

1, x2, t1i + t2i ), is
determined based on its true type, the two outcomes, and the two transfers.

We model the game induced by the two-stage stochastic mechanism among the
agents as a dynamic game of incomplete information. The strategy of each agent
specifies its actions for each of its information sets. Note that an agent’s second-
stage action may depend on the first stage outcome, the agent’s supertype and
the agent’s realized type. Thus, we define the strategy of agent i with supertype
δi and type θi to be si(δi, θi) = 〈s1

i (δi), s2
i (δi, x

1, θi)〉, where x1 is the (publicly
observable) first-stage decision made by the center, and s1

i and s2
i are the strategy

mappings of agent i in the two stages.

4.1 Sequential Solution Concepts

Before explaining our mechanism, let us first consider what solution concept
is appropriate for our setting. Classical solution concepts, including dominant-
strategy (DS), ex post (EP), and Bayes-Nash (BN) equilibrium, all focus on
whether an agent has incentive to deviate from truth-telling knowing its own
type. For example, in the classical BN equilibrium, an agent cannot deviate from
its strategy and improve its expected utility, where the expectation is taken over
the distribution of the other agent’s types. In contrast, in our two-stage setting,
an agent is also uncertain about its own realized type in the first stage. The un-
certainty about an agent’s own type makes these classical concepts inappropriate
for our setting. Formally,

Theorem 1. For general two-stage stochastic optimization problems, if the out-
comes picked by the mechanism depend on both the supertype and ground type
of an agent, then there exists a supertype space for which the agent may have
incentive to lie about its supertype if he foresees its realized type. This holds even
if the agent is the only participant in the mechanism.
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The impossibility result is based on a public-good problem where the center can
decide to serve the agent in either the first stage, the second stage, or not at all,
and the agents may have a high or low type realization.

In order to match the flow of the information in the execution of the mecha-
nism with the timing of agents’ reports, we introduce a sequential generalization
of the classical solution concepts. Informally, a sequential solution is one where
agents have no incentive to deviate from their equilibrium strategy given the
information available up to the time they take an action. Applied to our setting,
a set of strategies is in sequential EP equilibrium if an agent

– cannot improve its expected utility by lying in the first stage, where the
expectation is taken over the scenarios, even if he knows the other agents’
true supertype, provided the other agents are truthful; and

– cannot improve its utility by lying in the second stage2.

4.2 A Sequential Ex Post Implementation of Welfare Maximizer

Since we are interested in implementing the welfare maximizer, the decision
rules for both stages are fixed, and our goal is to find transfer functions such
that truth-telling by all agents constitutes a sequential EP equilibrium.

We start by noting that once first-stage decisions have been made, the situa-
tion resembles a standard one-shot VCG setting. Hence, we have:

Lemma 1. For any first-stage decisions x1 ∈ O1, first-stage payments t1, real-
ization of types θ, the family of Groves mechanism implements the social welfare
maximizer, conditional on the first-stage decisions, in dominant strategies.

Henceforth, we set the second-stage transfer function to be:

t2∗i (δ, x1, θ̂) =
∑

j �=i

v(θ̂j , x
1, x2∗) − c2(x1, x2∗) + g2

i (δ−i, θ−i) + h2
i (δ, θ̂−i)

where g2
i (·, ·) is an arbitrary function that does not dependent on either δi or θi,

and h2
i (·, ·) is an arbitrary function that does not depend on θi.

We next apply the technique of backward induction to analyze the first stage
of the dynamic game. Suppose that we fix our second-stage mechanism to be a
Groves mechanism 〈f2∗, {t2∗i }n

i=1〉. When we evaluate the expected utility of an
agent’s first-stage strategy, we can assume that all agents will truthfully report
their second-stage realized types. By propagating the expected transfers in the
second stage to the first stage, we find the following family of transfer functions
that helps to implement the first-stage decision rule truthfully. The proof can be
found in the full paper.

Theorem 2. Let x1∗ be the optimal first-stage decisions based on the declared
supertypes δ̂. Let the first-stage transfers be given by:

t1∗i (δ̂) = −c1(x1∗) + h1
i (δ̂−i) − Eθ−i∼δ−i [h

2
i (δ̂, θ−i)]

2 In fact, in our mechanism, truth-telling is weakly dominant in the second stage.
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where h1
i (·) is an arbitrary function that does not depend on the declaration δ̂i of

agent i. Then, together with any Groves mechanism in the second stage, the two-
stage mechanism implements the expected social welfare maximizer in sequential
ex post equilibrium.

For a concrete application of this theorem, we consider the problem of implement-
ing the social welfare maximizer for a class of problems known as the stochastic
two-stage coverage cost problems in Section 5, which includes (stochastic) public
goods and FTM problems as special cases.

Similar mechanisms have been proposed in [2,3]. Our results differ in that our
proof is based on an explicit backward induction analysis. As a result, we obtain
a family of incentive compatible mechanisms, of which the mechanisms in [2,3],
when specialized to a two-stage setting, are members of the family.

4.3 Impossibility of Sequential Dominant Strategy Implementation

A stronger form of incentive compatibility than sequential EP equilibrium is that
of sequential DS equilibrium. This asserts that truth-telling is a weakly dominant
strategy regardless of the other agents’ strategies, provided that an agent does
not know the future realization. We now show that under mild restrictions on
the transfer functions, no mechanism can achieve welfare maximization in DS.

Definition 3. A mechanism satisfies No Positive Transfers (NPT) if for all
players i, the first and second-stage payments t1i , t

2
i are non-positive.

Definition 4. A mechanism satisfies Voluntary Participation (VP) if all truth-
ful players are guaranteed non-negative expected utility and non-negative mar-
ginal second-stage utility.

The definition of NPT asserts that all payments flow from the players to the
mechanism. The VP condition requires that it is in the agents’ interest to par-
ticipate in the mechanism in both stages. We now state our main theorem.

Theorem 3. There exists an instance of the two-stage stochastic public goods
problem with two players for which no mechanism satisfying VP, NPT can im-
plement the expected welfare maximizer (WLF) in DS.

Thus, subject to the conditions of NPT and VP, we have shown that our imple-
mentation in the previous section is the strongest possible.

Informally, one cannot implement the socially efficient outcome in dominant
strategies because when certain agents in the mechanism lie inconsistently —
for example, by first declaring a “low” distribution in the first stage, followed
by a “high” valuation in the second stage — other agents may benefit from
misrepresenting their distributions. We now formalize this intuition.

Consider an instance of a two-stage stochastic public goods problem with two
players, A and B, with some distributions δA, δB on their respective values of
being served by a public good e. The cost of the public good is c1 	 0 in the first
stage and c2 = 2c1 in the second stage. Let h be some value > c2. We now define
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distributions that play a role in the proof. Let Ĥ be a degenerate distribution
localized at h, H denote a full-support distribution3 with most of its mass at h,
L denote a full-support distribution with most of its mass at 0, and M̂ denote
the degenerate distribution localized at c1/2.

For notation, let 〈D1, D2〉 denote the strategy of a player that reports D1

as its supertype and reports v ∼ D2 as its type. When we consider only the
first-stage strategy, we may write 〈D, ·〉 instead. A strategy is consistent if it is
of the form 〈D, D〉, and truthful if it is consistent and D = δi for agent i.

The following lemmas are simple consequences of VP, NPT, DS, and WLF.

Lemma 2. If player A and player B both play 〈L, ·〉, then t1B → 0.

Lemma 3. Suppose that player B plays 〈D, ·〉 and then reports b in the second
stage, where 0 < b ≤ h and D is a full-support distribution. If either one of the
following conditions holds, then player B is serviced and t2B = 0:

1. x1 = 1
2. Player A plays 〈D′, Ĥ〉, where D′ is a full-support distribution.

We now establish our main lemma: because of the possibility of inconsistent lies,
the mechanism cannot charge players with high supertypes. The proof of the
main theorem follows from this lemma and details are in the full paper.

Lemma 4. If player A plays 〈L, ·〉 and B plays 〈H, ·〉, then t1B → 0.

4.4 Incentive Compatibility and Sampling-Based Solutions

As we will see in Section 5, even for simple stochastic welfare maximization
problems, there may exist no efficient solutions. To algorithmically implement
the desired objective, one may have to approximate the optimal value via sam-
pling, a technique commonly employed in stochastic optimization. In this section,
we discuss the impact of such approximation on incentive compatibility.

Theorem 4. For a given two-stage stochastic optimization problem, suppose
that:

– there exists a sample average approximation algorithm that finds an ε-optimal
first-stage decision with prob. ≥ (1 − ξ) for any ε > 0 and ξ ∈ (0, 1) in
polynomial time;

– the exact second-stage optimal decision can be found in polynomial time; and
– the worst-case error can be bounded,

then an ε∗-approximate sequential ex post equilibrium can be algorithmically im-
plemented for any ε∗ ≡ ε∗(ε, ξ) > 0.
3 A distribution D is a full-support distribution if it has support (0, h] and a cumulative

density function that is strictly increasing at every point in its support. Full support
distributions play the following role in the proofs: When players report full-support
distributions in the first stage, reporting any bid in (0, h] in the second stage is
consistent with the behavior of a truthful player.
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The key idea in the proof is that sampling is required only in the first stage.
Hence, to the agents, this additional source of uncertainty only happens in the
first stage, when they are interested in maximizing expected utilities. Therefore,
the sampling required can be factored into the agents’ expected utilities.

Note that the above theorem applies to both multiplicative and additive ap-
proximation, with corresponding changes in the incentive guarantees. It demon-
strates a trade-off between stronger incentive guarantees and the running time
of the sampling-based algorithm. As stochastic welfare maximization involves a
mixed-sign objective, in our following result, we focus on additive approximation.

5 A Polynomial Time Implementation for a Class of
Stochastic Coverage Cost Problems

To better appreciate the algorithmic challenge posed by stochastic welfare maxi-
mization, we now examine the class of stochastic CC (Coverage Cost) problems.
This class of problems includes FTM as a special case.

Our approach is based on a combination of the Sample Average Approxima-
tion (SAA) method (see, e.g, [12,17]) and supermodular set function maximiza-
tion. However, our analysis differs from those found in recent work (e.g. [16,4]),
as we are faced with a mixed-sign objective. To begin, let us first define a single-
shot version of the coverage-cost problem.

Definition 5. A coverage cost problem (CC) consists of three components:

– a set of players U = {1, 2, . . . , n} and a universe of elements E;
– a cost function c : E �→ R

+ that assigns a non-negative cost to each element
e ∈ E; (we let c(S) =

∑
e∈S c(e) for S ⊆ E)

– a service set Ps ⊆ E for each player s that needs to be constructed in order
to serve s, and a value of θs of serving s.

The objective is to find P ⊆ E that maximizes welfare:
∑

s:Ps⊆P θs − c(P ).

Stochastic CC is defined by extending the CC problem to have two cost func-
tions, c1 and c2, for the respective stages. Also, instead of a precise value θs

of serving agent s ∈ U , in the first stage, only a distribution δs is known. The
objective is to maximize expected welfare.

By interpreting the universe of elements E as the set of edges in the fixed tree,
and the service sets Ps as the (unique) path connecting a node s to the root r
of the tree, we see that CC is a generalization of FTM. The following example
shows that the generalization is strict:

Example 1. Consider an instance with three players: U = {1, 2, 3} and three
elements E = {a, b, c}. Let P1 = {a, b}, P2 = {b, c}, P3 = {a, c}. The cyclic
structure entails that this cannot be a FTM instance.

It is formally hard to solve two-stage stochastic CC. The difficulty is not due
to a lack of combinatorial structure, as we will show that deterministic CC can
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indeed be solved in polynomial time. The difficulty is due to the uncertainty
in the optimization parameters. We show that it is difficult to solve optimally
a stochastic CC instance with only one element (a single-edge FTM instance),
even when the distributions are discrete and communicated explicitly as tables
of probabilities. The theorem is by reduction from Partition ([7]).

Theorem 5. Maximizing expected welfare for stochastic CC is #P-hard.

5.1 A Probabilistic Approximation

In view of the above hardness result, we propose a sampling-based solution that
approximates the expected welfare with high probability. Our algorithm achieves
an additive approximation, as multiplicative approximation is unachievable with
a polynomial number of samples (due to the mixed-sign objective; example in
full paper). The main theorem of this section is as follows:

Theorem 6. The two-stage stochastic CC problem can be approximated to within
an additive error of ε in time polynomial in M , |E|, and 1

ε , for all ε > 0, where
M = maxθ

∑
s∈U θs.

We now describe the framework for solving two-stage stochastic CC problems.
The key structure we will establish and exploit is that optimizations at both
stages involve supermodular functions. Recall that a set function f : 2N �→ R is
supermodular if for all S, T ⊆ N , f(S) + f(T ) ≤ f(S ∪ T ) + f(S ∩ T ). We will
show that the expected welfare is supermodular in the set of elements bought in
the first stage (see Corollary 1), and that the welfare in the second stage, given
the elements bought in the first stage, is also supermodular in the remaining
elements. Once these results are established, it is natural to consider the following
algorithm:

1. Use the algorithm for supermodular function maximization of [10] to find
the optimal first-stage elements to buy. Note that the algorithm needs a
value oracle that cannot be implemented in polynomial time. We instead
use sampling to approximate the solution value.

2. Given the realized values, use the algorithm of [10] to find the optimal second-
stage elements to buy. In this case, the exact value for the value oracle can
be found in polynomial time.

In Lemmas 5–8 and Corollary 1, we establish that both the first-stage opti-
mization problem, denoted by w̄(·), and the second-stage optimization problem,
denoted by fθ(·), involve supermodular functions.

Lemma 5. For any valuation θ, the function Vθ(·) defined via:

Vθ(E′) =
∑

s:Ps⊆E′

θs

is supermodular in E′.
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Lemma 6. For any valuation θ and any set E1 of elements bought in the first
stage, the second-stage objective fθ(·) given by:

fθ(E′) = Vθ(E1 ∪ E′) − c2(E′)

is supermodular in E′.

Lemma 7. Given any realization θ, the optimal value of the second-stage ob-
jective f∗

θ (·) given by:

f∗
θ (P ) = max

F⊆E\P
Vθ(F ∪ P ) − c2(F )

is supermodular in the set P of elements bought in the first stage.

Lemma 8. Given any realization θ, the welfare function wθ(·) defined via:

wθ(P ) = f∗
θ (P ) − c1(P )

is supermodular in the set P of elements bought in the first stage.

Corollary 1 The function w(·) = Eθ∼δ[wθ(·)] is supermodular.

Armed with Lemma 8 and Corollary 1, we now address the algorithmic issues
of the stochastic CC problem. In the proof of Theorem 5, we have shown that
evaluating w(·) exactly is #P-hard in general. Fortunately, we can approximate
its value in polynomial time, while preserving supermodularity.

Lemma 9. Let S be a size O(M2

ε2 |E|) set of scenarios drawn from the universe.
Let ŵ(·) be the sample average approximation of w(·) constructed using the sam-
ples in S. Then,

1. ŵ(·) is supermodular;
2. for all F ⊆ E, P

[∣
∣ŵ(F ) − w(F )

∣
∣ > ε

]
≤ o(e−|E|).

The proof of Lemma 9 is in the full paper. We now prove Theorem 6.

Proof (Theorem 6). For running time, by using the strongly polynomial-time
algorithm of Iwata et al. [10] to perform maximization of supermodular function,
the number of function evaluation is bounded by O(|E|5 log |E|). Each function
evaluation requires, for each of the O((M2

ε2 |E|)) samples, finding the second-stage
optimal solution given a first-stage solution. The second-stage optimal solution is
solved again using supermodular function maximization, and hence each function
evaluation takes O(|E|5 log |E| × (M2

ε2 |E|)) time.
For correctness, by Lemma 9, we can approximate the function w(·) by ŵ(·)

to within an additive error of ε′ with probability at least (1 − o(e−|E|)). As ŵ(·)
is supermodular by construction, the algorithm of [10] applies.

Given this algorithm, the fact that the second-stage optimization can be solved
efficiently using supermodular function maximization, and that the worst-case er-
ror of any stochasticCC problem is bounded by max{maxθ

∑
i∈U θi, c

1(E)}, we see
that Theorem 4 applies. Thus, the welfaremaximizer of stochastic CC problem can
be implemented in ε-approximate sequential EP equilibrium for any desired ε > 0.
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Abstract. We consider the spread maximization problem that was de-
fined by Domingos and Richardson [6,15]. In this problem, we are given
a social network represented as a graph and are required to find the set
of the most “influential” individuals that by introducing them with a
new technology, we maximize the expected number of individuals in the
network, later in time, that adopt the new technology. This problem has
applications in viral marketing, where a company may wish to spread the
rumor of a new product via the most influential individuals in popular
social networks such as Myspace and Blogsphere.

The spread maximization problem was recently studied in several
models of social networks [10,11,13]. In this short paper we study this
problem in the context of the well studied probabilistic voter model. We
provide very simple and efficient algorithms for solving this problem. An
interesting special case of our result is that the most natural heuristic
solution, which picks the nodes in the network with the highest degree,
is indeed the optimal solution.

1 Introduction

With the emerging Web 2.0, the importance of social networks as a marketing
tool is growing rapidly and the use of social networks as a marketing tool spans
diverse areas, and has even been recently used by the campaigns of presidential
candidates in the United States. Social networks are networks (i.e. graphs) in
which the nodes represent individuals and the edges represent relations between
them. To illustrate the viral marketing channel (see [2,3,6]), consider a new
company that wishes to promote its new specialized search engine. A promis-
ing way these days would be through popular social network such as Myspace,
Blogsphere etc, rather than using classical advertising channels. By convincing
several key persons in each network to adopt (or even to try) the new search
engine, the company can obtain an effective marketing campaign and to enjoy
the diffusion effect over the network. If we assume that “convincing” each key
person to “spread” the rumor on the new product costs money, then a natural
problem is the following: given a social network, how can we detect the play-
ers through which we can spread, or “diffuse”, the new technology in the most
effective way.
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Diffusion processes in social network have been studied for a long time in
social sciences, see e.g. [5,8,3,16]. The algorithmic aspect of marketing in social
networks was introduced by Domingos and Richardson [6,15] and can be for-
mulated as follows. Given a social network structure and a diffusion dynamics
(i.e. how the individuals influence each other), find a set S of nodes of cost at
most K that by introducing them with a new technology/product, the spread
of the technology/product will be maximized. We refer to the problem of find-
ing such a maximizing set S as the Spread maximization set problem. The work
of Domingos and Richardson [6,15] studied this problem in a probabilistic set-
ting and mainly provided heuristics to compute a maximizing set. Following
[6,15], Kempe et al. [10,11] and Mossel and Roch [13] considered a threshold
network, in which users adopt a new technology only if a fixed fraction of their
neighbors have already adopted this new technology. Their results show that
finding the optimal subset of size K is NP-Hard to approximate within a fac-
tor smaller than 1 − 1/e and also show that a greedy algorithm achieves this
ratio.

Our contribution: In this paper we consider the Spread maximization set
problem, in the case where the underlying social network behaves like the voter
model. The voter model, which was introduced by Clifford and Sudbury [4] and
Holley and Liggett [9], is probably one of the most basic and natural probabilistic
models to represent the diffusion of opinions in a social network; it models the
diffusion of opinions in a network as follows: in each step, each person changes
his opinion by choosing one of his neighbors at random and adopting the neigh-
bor’s opinion. The model has been studied extensively in the field of interacting
particle systems [12,1].

While the voter model is different from the threshold models that were studied
in [10,11,13], it still has the same key property that a person is more likely
to change his opinion to the one held by most of his neighbors. In fact, the
threshold models of [10,11,13] are monotone in the sense that once a vertex
becomes “activated” it stays activated forever. This makes these models suitable
for studying phenomena such as infection processes. However, some process,
such as which product a user is currently using, are not monotone in this sense.
Therefore, the voter model, which allows to deactivate vertices, may be more
suitable for studying non monotone processes.

Our main contributions are an exact solution to the spread maximization set
problem in the voter model, when all nodes have the same cost (the cost of a
node is the cost of introducing the person with a new technology/product), and
providing an FPTAS 1 for the more general case in which different nodes may
have different costs. In contrast to most of the previous results, which considered
only the status of the network in the “limit”, that is, when the network converges
to a steady state, our algorithms easily adopt to the case of different target

1 An FPTAS, short for Fully Polynomial Time Approximation Scheme, is an algorithm
that for any ε approximates the optimal solution up to an error (1 + ε) in time
poly(n/ε).
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times.2 An interesting special case of our result is that the most natural heuristic
solution, which picks the nodes in the network with the highest degree, is indeed
the optimal solution, when all nodes have the same cost. We show that the
optimal set for the long term is the set that maximizes the chances of reaching
consensus with new technology/product.

2 The Voter Model

We start by providing a formal definition of the voter model (see [4,9] for more
details).

Definition 1. Let G = G(V, E) be an undirected graph with self loops. For a
node v ∈ V , we denote by N(v) the set of neighbors of v in G. Starting from an
arbitrary initial 0/1 assignment to the vertices of G, at each time t ≥ 1, each
node picks uniformly at random one of its neighbors and adopts its opinion. More
formally, starting from any assignment f0 : V → {0, 1}, we inductively define

ft+1(v) =

{
1, with probability |{u∈N(v):ft(u)=1}|

|N(v)|
0, with probability |{u∈N(v):ft(u)=0}|

|N(v)|

Note that the voter model is a random process whose behavior depends on the
initial assignment f0. If we think of ft(v) = 1 as indicating whether v is using
the product we wish to advertise, then a natural quantity we wish to study is the
expected number of nodes satisfying ft(v) = 1 at any given time t. Of course,
a simple way to maximize the number of such nodes is to start from an initial
assignment f0 in which f0(v) = 1 for all v. However, in reality we may not be
able to start from such an assignment as there is a cost cv for setting f0(v) = 1
and we have a limited budget B. For example, cv can be the cost of “convincing”
a website to use a certain application we want other websites to use as well. This
is the main motivation for the spread maximization set problem that is defined
below in the context of the voter model. As we have previous mentioned, this
(meta) problem was first defined by Domingos and Richardson [6,15] and was
studied by [15,10,11,13] in other models of social networks.

Definition 2 (The spread maximization set problem). Let G be a graph
representing a social network, c ∈ R

n a vector of costs indicating the cost cv

of setting f0(v) = 1, B a budget, and t a target time. The spread maximiza-
tion set problem is the problem of finding an assignment f0 : V → {0, 1} that
will maximize the expectation E

[∑
v∈V ft(v)

]
subject to the budget constraint∑

{v:f0(v)=1} cv ≤ B.

2 Kempe et al. [10] considered also finite horizon but under different objective function,
i.e. for every individual how many timesteps she held the desired opinion until the
target time. Furthermore, their approach required maintaining a graph whose size
is proportional to the original graph size times the target time.
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3 Solving the Spread Maximization Set Problem

Our algorithms for solving the spread maximization set problem all rely on the
well known fact that the voter model can be analyzed using graphical models
(see [7] for more details). Let us state a very simple yet crucial fact regarding
the voter model that follows from this perspective. Recall that in the voter
model, the probability that node v adopts the opinion of one of its neighbors u
is precisely 1/N(v). Stated equivalently, this is the probability that a random
walk of length 1 that starts at v ends up in u. Generalizing this observation to
more than one step, one can easily prove the following by induction on t.

Proposition 1. Let pt
u,v denote the probability that a random walk of length t

starting at node u stops at node v. Then the probability that after t iterations of
the voter model, node u will adopt the opinion that node v had at time t = 0 is
precisely pt

u,v.

We thus get the following corollary.

Corollary 1. Let S = {u : f0(u) = 1}. The probability that ft(v) = 1 is the
probability that a random walk of length t starting at v ends in S.

Equipped with the above facts we can now turn to describe the simple algorithms
for the spread maximization set problem.
The case of short term:
We start by showing how to solve the problem for the case of the short term,
that is when t is (any) polynomial in n. We note that studying the spread maxi-
mization problem for short time term is crucial to the early stages of introducing
a new technology into the market. As usual, let M be the normalized transition
matrix of G, i.e. M(v, u) = 1/|N(v)|. For a subset S ⊆ {1, . . . , n} we will denote
by 1S the 0/1 vector, whose ith entry is 1 iff i ∈ S. The following lemma gives
a characterization of the spread maximizing set.

Lemma 1. For any graph G with transition matrix M , the spread maximizing
set S is the set which maximizes 1SM t subject to

∑
v∈S cv ≤ B.

Proof. Recall the well known fact that pt
u,v, which is the probability that a

random walk of length t starting at u ends in v, is given by the (u, v) entry
of the matrix M t. The spread maximizing set problem asks for maximizing
E

[∑
v∈V ft(v)

]
subject to

∑
v∈S cv ≤ B. By linearity of expectation, we have

that E
[∑

v∈V ft(v)
]

=
∑

v∈V Prob[ft(v) = 1]. By Corollary 1 we have that if
we set f0(v) = 1 for any v ∈ S then Prob[ft(v) = 1] = 1SM t1T

{v} . Therefore,
E

[∑
v∈V ft(v)

]
=

∑
v∈V 1SM t1T

{v} = 1SM t , and we conclude that the optimal
set S is indeed the one maximizing 1SM t subject to

∑
v∈S cv ≤ B.

Using this formulation we can obtain the following theorems that shed light on
how well can be the maximizing spread set problem solved.
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Theorem 1. If the vector cost c is uniform, that is, if for all v we have cv = c,
then the spread maximization set problem can be solved exactly in polynomial
time for any t = poly(n).

Proof. First note the entries of M t can be computed efficiently for any t =
poly(n). For any t to compute M t we need to preform O(log t) matrix multipli-
cation which can be done efficiently. For every node v denote gv = 1{v}M t. By
Lemma 1 we have that the problem is equivalent to the problem of maximizing
1SM t subject to

∑
v∈S cv ≤ B. As 1SM t =

∑
v∈S gv and the cost of every node

is identical, we get that for every budget B, the optimal set is the first �B/c�
nodes when sorted according to gv.

Theorem 2. There exists an FPTAS to the spread maximization set problem
for any t = poly(n).

Observe that in general we can cannot expect to be able to solve the spread
maximization set problem exactly because when t = 0 this problem is equivalent
to the Knapsack problem, which is NP-hard.
The case of long term:
Let us consider now the case of large t, where by large we mean t ≥ n5. Recall
the well known fact that for any graph G with self loops, a random walk starting
from any node v, converges to the steady state distribution after O(n3) steps
(see [14]). Furthermore, if we set dv = |N(v)| then the (unique) steady state
distribution is that the probability of being at node u is du/2|E|. In other words,
if t 	 n3 then M t

u,v = (1 + o(1))du/2|E|. 3 Once again, using Lemma 1 we can
obtain the following theorem.

Theorem 3. There exists a linear time FPTAS to the spread maximization set
problem when t ≥ n5.

An interesting special case of Theorem 3 is when all nodes have the same cost c.
Observe that in this case we get that the optimal solution is simply to pick the
�B/c� vertices of G of highest degree. This gives a formal justification for the
“heuristic” approach of picking the nodes in the social network with the largest
number of acquaintances, e.g. [17,6,15].
Maximizing the probability of consensus:
It is a well known fact that after O(n3 log n) time the voter model reaches a
consensus with high probability, that is, when t ≥ n3 log n either ft(v) = 1 for
all v or ft(v) = 1 for all v.

Theorem 4. With probability 1 − o(1), the voter model converges to consensus
after O(n3 log n) steps .

By Theorems 3 and 4 we derive the following corollary,

Corollary 2. For any t ≥ n3 log n and ε > 0, there is a linear time algorithm
for maximizing, up to an additive error of ε, the probability that the voter model
reaches an all-ones consensus after t ≥ n3 log n steps.
3 More precisely, the smaller we want the o(1) term to be the larger we need t to be.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



286 E. Even-Dar and A. Shapira

Acknowledgments. The authors would like to thank Michael Kearns and Yu-
val Peres for valuable discussions concerning the voter model.

References

1. Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs
(Draft). Draft (2007)

2. Bass, F.M.: A new product growth model for consumer durables. Management
Science 15, 215–227 (1969)

3. Brown, J.J., Reinegen, P.H.: Social ties and word-of-mouth referral behavior. Jour-
nal of Consumer Research

4. Clifford, P., Sudbury, A.: A model for spatial conflict. Biometrika 60(3), 581–588
(1973)

5. Coleman, J.S., Katz, E., Menzel, H.: Medical Innovations: A Diffusion Study. Bobbs
Merrill (1966)

6. Domingos, P., Richardson, M.: Miningthe network value of customers. In: KDD,
pp. 57–66 (2001)

7. Durrrett, R.: Lecture Notes on Particle Systems and Percolation. Wadsworth
(1988)

8. Granovetter, M.: Threshold models of collective behavior. American Journal of
Sociology 83(6), 1420–1443 (1978)

9. Holley, R.A., Liggett, T.M.: Ergodic theorems for weakly interacting infinite. sys-
tems and the voter model. Annals of Probability 3, 643–663 (1975)

10. Kempe, D., Kleinberg, J.M., Tardos, E.: Maximizing the spread of influence
through a social network. In: KDD, pp. 137–146 (2003)

11. Kempe, D., Kleinberg, J.M., Tardos, E.: Influential nodes in a diffusion model
for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg
(2005)

12. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion
Processes. Springer, Heidelberg (1999)

13. Mossel, E., Roch, S.: On the submodularity of influence in social networks. In:
STOC, pp. 128–134 (2007)

14. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1996)

15. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing.
In: KDD, pp. 61–70 (2002)

16. Valente, T.: Network Models of the Diffusion of Innovations. Hampton Press (1995)
17. Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press,

Cambridge (1994)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



A Network Creation Game with Nonuniform

Interests�

Yair Halevi and Yishay Mansour��

School of Computer Science, Tel Aviv University
{yairhale,mansour}@tau.ac.il

Abstract. In a network creation game, initially proposed by Fabrikant
et al. [11], selfish players build a network by buying links to each other.
Each player pays a fixed price per link α > 0, and suffers an additional
cost that is the sum of distances to all other players. We study an exten-
sion of this game where each player is only interested in its distances to
a certain subset of players, called its friends. We study the social optima
and Nash equilibria of our game, and prove upper and lower bounds for
the “Price of Anarchy”, the ratio between the social cost of the worst
Nash equilibria and the optimal social cost. Our upper bound on the
Price of Anarchy is

O

�
1 + min

�
α, d̄, log n +

�
nα/d̄,

�
nd̄/α

��
= O(

√
n),

where n is the number of players, α is the edge building price, and d̄ is
the average number of friends per player. We derive a lower bound of
Ω(log n/ log log n) on the Price of Anarchy.

1 Introduction

In many natural settings entities form connections to other entities, in a dis-
tributed and selfish manner, in order to increase their utility. A few examples
include social networks, trade networks and most importantly communication
networks such as the Internet. The structure of such networks, and in particu-
lar the Internet, has been recently of prime research interest. In this work we
will focus primarily on the loss of efficiency due to the distributed and selfish
behavior of the entities.

We model the network creation as a game between selfish players and focus
on networks that are in equilibrium (no player can benefit by unilaterally devi-
ating). Our measure of the “loss of efficiency” is the Price of Anarchy, which is
the worse ratio between the social cost of a Nash equilibrium and that of the
socially optimal solution. The concept of the Price of Anarchy was introduced
by Koutsoupias and Papadimitriou [15], and has been successfully studied for
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a wide range of settings including job scheduling, routing, facility location and
network design (see e.g. [6, 14, 10, 12, 16, 5, 4, 9]).

We study an extension of the network creation game proposed by Fabrikant et
al. [11], where n players form a network by building edges to other players, and
edges may be used by any player in either directions. The player’s cost models
both the “infrastructure cost” (of building the edges) and the “communication
cost” (of reaching the other players). Formally, each player pays a fixed price
α > 0 for each edge it builds, and suffers an additional distance cost, which
is the sum of distances to all other players in the resulting network. The social
cost is the sum of the players’ costs. This basic game and several extensions were
studied in [11, 8, 1, 3].

By focusing on the distance to all players for the distance cost, the model
implicitly assumes that the communication needs of every player are uniformly
distributed over all other players. This may be far from true in most real world
networks. For instance, Autonomous Systems in the Internet rarely communicate
equally with every other Autonomous System. Our model extends the original
game by specifying which pairs of players have non-negligible communication
needs. We call such pairs of players friends, and model this new information using
an undirected graph called the friendship graph, whose vertices are the players
and edges connect pairs of friends. We assume that friendship is symmetric,
hence our use of an undirected graph. Players, as before, build an edge to any
other player (friend or non-friend) at a cost of α, however, their distance cost
now includes only the distance to their friends (rather than the distance to all
the players). The social cost, as before, is the sum of the players’ costs. We call
our game a network creation game with nonuniform interests (NI-NCG), which
generalizes the network creation game of [11] (which we refer to as complete
interest network creation game).
Our contributions: We first prove the existence of pure Nash equilibria for
most values of α (specifically for α ≤ 1 and α ≥ 2). Our main result is an upper
bound of O

(
1 + min

(
α, d̄, log n +

√
nα/d̄,

√
nd̄/α

))
= O(

√
n) on the Price of

Anarchy of any NI-NCG, where n is the number of players and d̄ is the average
degree of the friendship graph H , i.e., the average number of friends per player.
For either α = O(1), d̄ = O(1), or α = Ω(nd̄), this upper bound is a constant.1

An important part of our proof is bounding the ratio of the edge building cost
and the social optimum cost to be at most O(log n).2

For a lower bound, based on cage graphs, we construct a family of games
for which the Price of Anarchy is Ω(log n/ log log n). The resulting games have
α = Θ(log n/ log log n) and d̄ = Ω(log n), and they have the special property
that some Nash equilibrium is achieved when players build exactly the friendship
graph, i.e., every pair of friends has an edge connecting them. Our lower bound
1 By comparison, Albers et al. [1] show that for the complete interest game, the

Price of Anarchy is a constant for α = O(
√

n) and α ≥ 12n log n, and is at most

O

�
1 +

�
min

�
α2

n
, n2

α

��1/3
�

= O(n1/3) for any α.

2 In contrast, [1] show that for the complete interest game this ratio is only a constant.
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construction also gives a lower bound of Ω(log n/ log log n) on the ratio of the
edge building cost to the social optimum. Hence, our upper and lower bounds
for this ratio are almost tight. We remark that no non-constant lower bound for
the Price of Anarchy in the complete interest game is known.

The full version of the paper [13] contains several additional results as well as
the proofs. Specifically, we provide bounds on the Price of Stability (the social
cost ratio between the best Nash equilibrium and the social optimum), and show
that it is at most 2. We analyze specific friendship structures such as a forest
and a cycle. We study a weighted extension of our game, where each player has a
non-negative friendship weight assigned to every other player, and the distance
cost for the player is the weighted sum of distances to all other players, and we
show an O(

√
n) upper bound on the Price of Anarchy.

2 The Model

A network creation game with nonuniform interests (NI-NCG), is a tuple N =
〈V, H, α〉 where V = {1 . . . n} is the set of players, H = (V, EH) is an undirected
graph whose vertices are V and edges are EH (H is called the friendship graph)
and α ∈ IR+ is an edge building price. We say that players v and u are friends
iff (v, u) ∈ EH , and player’s v neighborhood in H , denoted N(v) = {u : (v, u) ∈
EH}, is also called the friend set of v. A strategy sv for a player v is a subset of
the other players sv ⊆ V −{v} (these are the players to which v builds an edge).
A joint strategy s is an n-tuple of player strategies, i.e., s = (s1, s2, . . . , sn). We
define the network created by a joint strategy s, denoted G = G(s) = (V, E), as
the undirected graph of built links, i.e., E = {(v, u) : u ∈ sv ∨ v ∈ su}. We limit
our discussion to NI-NCGs for which H has no isolated vertices. The special
case H = Kn (the complete graph over n vertices) is called the complete interest
network creation game, and was extensively studied in [11, 1, 3].

The cost of a player v ∈ V in s is C(s, v) and it is the sum of two components:
(1) an edge building cost B(s, v) = α|sv|, which implies a cost of α per edge
bought, and (2) a distance cost which is Dist(s, v) =

∑
u∈N(v) δ(v, u), where

δ(v, u) is the distance between v and u in G = G(s) (if there is no path in G
between v and u then δ(v, u) = ∞). We define the social cost of a joint strategy
s as the sum of the player costs, i.e., C(s) =

∑
v∈V C(s, v), and the social edge

building cost and social distance cost are defined similarly. The minimal social
cost for an NI-NCG N is denoted by OPTN , and any joint strategy s that yields
this cost is a social optimum for N .

A joint strategy s is a Nash equilibrium (NE) for the game N if no player v
can benefit by unilaterally deviating. The Price of Anarchy of N , denoted PoAN ,
is the ratio between the maximal social cost of a NE and the cost of a social
optimum, i.e., PoAN = maxs∈ΦN C(s)/OPTN where ΦN is the set of Nash
equilibria of an NI-NCG. (If ΦN = ∅ then the Price of Anarchy is not defined.)
The Price of Anarchy for a nonempty set of games N ′ is PoA = maxN∈N ′ PoAN .

We denote by d(v) = |N(v)| the degree of v in H (the number of friends of v)
and by d̄ =

∑
v∈V d(v)/|V | the average vertex degree of H .
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3 Basic Results

We start by bounding the social optimum.

Theorem 1. Let N = 〈V, H, α〉 be an NI-NCG. Then n(α/2 + d̄) ≤ OPTN <
2n(α/2 + d̄), hence OPTN = Θ(n(α + d̄)).

The lower bound follows from the fact that any social optimum cannot have less
than n/2 edges, and has distance at least 1 between any two friends. The upper
bound follows from an analysis of the social cost of a star network.

Next we prove the existence of Nash equilibria.

Theorem 2. Let N = 〈V, H, α〉 be an NI-NCG. For any α ≥ 2 there exists a
NE for N whose cost is at most n(α + 2d̄), and for any α ≤ 1 there exists a NE
for N which achieves the social optimum.

Our proof constructs a specific NE for α ≥ 2, where the distance between any
two friends is at most 2 and the resulting network is a forest.

4 Upper Bounds on the Price of Anarchy

In this section we derive our main result, an upper bound of:

O

(
1 + min

(
α, d̄, log n +

√
nα/d̄,

√
nd̄/α

))
= O(

√
n).

We first show a simple upper bound. In any NE, the cost of no player can be
greater than its cost if it were to buy an edge to every friend. Therefore we must
have that C(s) ≤ (α + 1)nd̄. Using Theorem 1, we have,

Theorem 3. Let N = 〈V, H, α〉 be an NI-NCG, and assume that a NE exists.
Then PoAN = O(1 + min(α, d̄)).

This result already provides us with some basic insights. In particular, if either
α or d̄ are constant, then the Price of Anarchy is constant.

We proceed by showing an improved bound on the social edge building cost.
For the complete interest game, the contribution of the edge building cost to the
Price of Anarchy was shown to be at most a constant (see [1]). We show a similar
(but weaker) result for a general NI-NCG. Specifically we show an upper bound
of O

(
1 + min(1, d̄/α) log n

)
= O(log n). A proof sketch is as follows: for any edge

(v, u) built from v to u in a NE, we assign a weight w(v, u) that is the number
of friends x of v, for which removal of this edge would result in an increase in
distance between v and x (this weight is a measure of the “effectiveness” of the
edge). We then notice that for any threshold β > 0: (1) the number of edges
built, for which w(v, u) ≥ β, is at most 2|EH |/β, since the sum of all edge weights
is at most twice the number of friendship edges, and (2) the length of any cycle
C consisting only of edges with weights w(v, u) < β must be at least 2 + α/β.
We now use a bound (see [2]) on the average degree of a graph given its number
of vertices and girth (the girth of an undirected graph is the minimal length of
a cycle in it). By selecting an appropriate β, we derive,
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Theorem 4. Let N = 〈V, H, α〉 be an NI-NCG, and s a NE of N . Then:
B(s)/OPTN = O

(
1 + min

(
1, d̄/α

)
log n

)
= O(log n).

Next we show an upper bound of O
(
1 + min

(
1, d̄

α

)
min

(
n,

√
nα/d̄

))
= O(

√
n)

on the contribution of the distance cost to the Price of Anarchy. We use the
following lemma, due to the fact that in a NE, no player may benefit from
adding an edge:

Lemma 5. Let N = 〈V, H, α〉 be an NI-NCG, s a NE, G = G(s), and v ∈ V
a player. Let T be a shortest path tree of v in G. For any vertex u ∈ V (T ),
denote by ku the number of friends of v that are in u’s subtree in T . Then
α ≥ (δ(v, u) − 1)ku.

Using Lemma 5 we bound the distance cost for a single player as follows. Fix
a player v ∈ V , a shortest path tree T of v in G, and a parameter h ≥ 1.
We split the distance cost of v into two sums D1 and D2. Let the sum D1
be the distance cost “up to depth h”, consisting of the distances between v
and all its friends, taking a maximum of h of distance per friend, i.e., D1 =∑

x∈N(v) max(δ(v, x), h) ≤ d(v)h. The sum D2 is the distance cost “from depth
h”, containing, for all friends x of v of depth greater than h in T , the distance
from depth h to x in T , i.e., D2 =

∑
x∈N(v):δ(v,x)>h δ(v, x) − h. Lemma 5 yields

an upper bound of (n − 2)α/h on D2. Optimizing over h we derive,

Theorem 6. Let N = 〈V, H, α〉 be an NI-NCG and s a NE for N . Then:
Dist(s)/OPTN = O

(
1 + min

(
1, d̄/α

)
min

(
n,

√
nα/d̄

))
= O(

√
n)

Combining Theorem 3, 4 and 6, we obtain our main upper bound:

Theorem 7. Let N = 〈V, H, α〉 be an NI-NCG, and assume that a NE exists.
Then: PoAN = O

(
1 + min

(
α, d̄, log n +

√
nα/d̄,

√
nd̄/α

))
= O(

√
n).

As stated in the theorem, in all cases we have an upper bound of O (
√

n) on the
Price of Anarchy, however, for many combinations of n, α and d̄ we get a better
bound.

5 Lower Bound: NI-NCG with PoA = Ω(log n/ log log n)

In this section we show that there is an NI-NCG with n players for which the
Price of Anarchy is bounded from below by Ω(log n/ log log n). Our construction
is based on the observation that if the friendship graph of the game has large
enough girth, then it is a NE network itself.

Lemma 8. Let N = 〈V, H, α〉 be an NI-NCG, such that 0 < α < g(H)
2 −1. Then

H is a NE network.
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This implies that for the lower bound we need to construct a graph with both
large girth and large average degree. Using the well known constructions of cage
graphs - regular graphs of a given girth and degree with a minimal number of
vertices (see [7]), we derive,

Theorem 9. For any integer n ≥ 64 there is an NI-NCG N = 〈V, H, α〉 with
n players, α = Θ(log n/ log log n), and d̄ = Ω(log n), whose Price of Anarchy is
Ω(log n/ log log n).

Our proof also implicitly shows that the contribution of the edge building cost
to the Price of Anarchy for the construction is Ω(log n/ log log n). This is almost
tight to our upper bound from Theorem 4.
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Abstract. We consider the problem of assigning prices to goods of fixed
marginal cost in order to maximize revenue in the presence of single-
minded customers. We focus in particular on the question of how pricing
certain items below their marginal costs can lead to an improvement in
overall profit, even when customers behave in a fully rational manner. We
develop two frameworks for analyzing this issue that we call the discount
and the coupon models, and examine both fundamental “profitability
gaps” (to what extent can pricing below cost help to improve profit) as
well as algorithms for pricing in these models in a number of settings
considered previously in the literature.

1 Introduction

The notion of loss-leaders, namely pricing certain items below cost in a way
that increases profit overall from the sales of other items, is a common technique
in marketing. For example, a hamburger chain might price its burgers below
production cost but then have a large profit margin on sodas. Grocery stores
often give discounts that reduce the cost of certain items even to zero, making
money from other items the customers will buy while in the store.

Such “loss leaders” are often viewed as motivated by psychology: producing
extra profit from the emotional behavior of customers who are attracted by the
good deals and then do not fully account for their total spending. Alternatively,
they are also often discussed in the context of selling goods of decreasing marginal
cost (so the loss-leader of today will be a profit center tomorrow once sales
have risen). However, even for items of fixed marginal cost, with fully rational
customers who have valuations on different bundles of items and act to maximize
utility, pricing certain items below cost can produce an increase in profit. For
example, DeGraba [5] analyzes equilibria in a 2-firm, 2-good Hotelling market,
and argues that the power of loss leaders is that they provide a method for
focusing on high-profit customers: “a product could be priced as a loss leader if,
in a market in which some customers purchase bundles of products that are more
profitable than bundles purchased by others, the product is purchased primarily
by customers that purchase more profitable bundles.” Balcan and Blum [1] give
an example, in the context of pricing n items of fixed marginal cost to a set

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, pp. 293–299, 2007.
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of single-minded customers, where allowing items to be priced below cost can
produce an Ω(log n) factor more than the maximum possible profit obtained
by pricing all items above cost. However, the problem of developing algorithms
taking advantage of this idea was left as an open question.

In this paper we consider this problem more formally, introducing two theoret-
ical models which we call the coupon model and the discount model for analyzing
the profit that can be obtained by pricing below cost. These models are motivated
by two different types of settings in which such pricing schemes can naturally
arise. We then develop algorithms for several problems studied in the literature,
including the “highway problem” [8] and problems of pricing vertices in graphs,
as well as analyze fundamental gaps between the profit obtainable under the
different models. It is worth noting that the algorithmic problem becomes much
more difficult in these settings than in the setting where pricing below cost is
not allowed.

The two models we introduce are motivated by two types of scenarios. In the
discount model, we imagine a retailer (say a supermarket or a hamburger chain)
selling n different types of items, where each item i has some fixed marginal
(production) cost ci to the retailer. The retailer needs to assign a sales price si

to each item, which could potentially be less than ci. That is, the profit margin
pi = si − ci for item i could be positive or negative. The goal of the retailer is
to assign these prices so as make as much profit as possible from the customers.
We will be considering the case of single-minded customers, meaning that each
customer j has some set Sj of items he is interested in and will purchase the
entire set (one unit of each item i ∈ Sj) if its total cost is at most his valuation
vj , else nothing. As an example, suppose we have two items {1, 2}, each with
production cost ci = 10 and two customers, one interested in item 1 only and
willing to pay 20, and the other interested in both and willing to pay 25. In
this case, by setting s1 = 20 and s2 = 5 (which correspond to profit margins
p1 = 10 and p2 = −5, and hence the second item is priced below cost) the
retailer can make a total profit of 15. This is greater than the maximum profit
(10) obtainable from these customers if pricing below cost were not allowed.

One thing that makes the discount model especially challenging is that profit
is not necessarily monotone in the customers’ valuations. For instance, in the
above example, if we add a new customer with Sj = {2} and vj = 3 then the
solution above still yields profit 15 (because the new customer does not buy),
but if we increase vj to 10, then any solution will make profit at most 10.

The second model we introduce, the coupon model, is designed to at least
satisfy monotonicity. This model is motivated by the case of goods with zero
marginal cost (such as airport taxes or highway tolls). However, rather than
setting actual negative prices, we instead will allow the retailer to give credit
that can be used towards other purchases. Formally, each item i has marginal
cost ci = 0 and is assigned a sales price pi which can be positive or negative, and
the price of a bundle S is max(

∑
i∈S pi, 0), which is also the profit for selling this

bundle. We again consider single-minded customers. A customer j will purchase
his desired bundle Sj iff its price is at most his valuation vj . Note that in this
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model we are assuming no free disposal: the customer is only interested in a
particular set of items and will not purchase a superset even if cheaper (e.g.,
in the case of highway tolls, we assume a driver would either use the highway
to go from his source to his destination or not, but would not travel additional
stretches of highway just to save on tolls). As an example of the coupon model,
consider a highway with three toll portions (items) 1, 2, and 3. Assume there
are four drivers (customers) A, B, C, and D as follows: A, B, and C each only
use portions 1, 2, and 3 respectively, but D uses all three portions. Assume that
A, C, and D each are willing to pay 10 while B is wiling to pay only 1. In this
case, by setting p1 = p3 = 10 and p2 = −10, we have a solution with profit of 30
(driver B gets to travel for free, but is not actually paid for using the highway).
This is larger than the maximum profit possible (21) in the discount model or
if we are not allowed to assign negative prices. Note that unlike the discount
model, the coupon model does satisfy monotonicity.

We can make the discount model look syntactically more like the coupon
model by subtracting production costs from the valuations. In this view, wj :=
vj −

∑
i∈Sj

ci represents the amount above production cost that customer j is
willing to pay for Sj , and our goal is to assign positive or negative profit mar-
gins pi to each item i to maximize the total profit

∑
j:wj≥p(Sj) p(Sj) where

p(Sj) =
∑

i∈Sj
pi. It is interesting in this context to consider two versions: in the

unbounded discount model we allow the pi to be as large or as small as desired,
ignoring the implicit constraint that pi ≥ −ci, whereas in the bounded discount
model we impose those constraints. Note that in this view, the only difference
between the unbounded discount model and the coupon model is that in the
coupon model we redefine p(Sj) as max(

∑
i∈Sj

pi, 0).
We primarily focus on two well-studied problems first introduced formally by

Guruswami et al. [8]: the highway tollbooth problem and the graph vertex pricing
problem. In the highway tollbooth problem, we have n items (highway segments)
1, . . . , n, and each customer (driver) has a desired bundle that consists of some
interval [i, i′] of items (consecutive segments of the highway). The seller is the
owner of the highway system, and would like to choose tolls on the segments (and
possibly also coupons in the coupon model) so as to maximize profits. Even if all
customers have the same valuation for their desired bundles, we show that there
are log(n)-sized gaps between the profit obtainable in the different models. In
the graph vertex pricing problem, we instead have the constraint that all desired
bundles Sj have size at most 2. Thus, we can consider the input as a multi-
graph whose vertex set represent the set of items and whose edges represent
the costumers who want end-points of the edges. We show that if this graph is
planar then one can in fact achieve a PTAS for profit in each model.

It is worth mentioning we do not focus on incentive-compatibility aspects
in this paper since one can use the generic reductions in [3] to convert our
approximations algorithms into good truthful mechanisms. In this version, we
only state the results and the reader is referred to the full version [2] for the
proofs.
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2 Notation, Definitions, and Gaps Between the Models

We assume we have m customers and n items (or “products”). We are in an
unlimited supply setting, meaning that the seller is able to sell any number of
units of each item. We consider single-minded customers, which means that each
customer is interested in only a single bundle of items and has valuation 0 on all
other bundles. Therefore, valuations can be summarized by a set of pairs (e, ve)
indicating that a customer is interested in bundle (hyperedge) e and values it
at ve. Given the hyperedges e and valuations ve, we wish to compute a pricing
of the items that maximizes the seller’s profit. We assume that if the total price
of the items in e is at most ve, then the customer (e, ve) will purchase all of
the items in e, and otherwise the customer will purchase nothing. Given a price
vector p over the n items, it will be convenient to define p(e) =

∑
i∈e pi.

Let us denote by E the set of customers, and V the set of items, and let
h be maxe∈E ve. Let G = (V, E, v) be the induced hypergraph, whose vertices
represent the set of items, and whose hyperedges represent the customers. Notice
that G might contain self-loops (since a customer might be interested in only
a single item) and multi-edges (several customers might want the same subset
of items). The special case that all customers want at most two items, so G is
a graph, is known as the graph vertex pricing problem [1]. Another interesting
case considered in previous work [1,8] is the highway problem. In this problem
we think of the items as segments of a highway, and each desired subset e is
required to be an interval [i, j] of the highway.
Reduced Instance: In many of our algorithms, it is convenient to think about
the reduced instance G̃ = (V, E, w) of the problem which is defined as follows.
Let bi denote the marginal cost of item i. Suppose customer e has valuation ve.
Then, in the reduced instance, its valuation becomes we := ve −

∑
i∈e bi. Now,

if we give item i a price pi in the reduced instance, then its real selling price
would be si := pi + bi. In previous work [1,8,4], the focus was on pricing above
cost, which in our notation, corresponds to the case where pi ≥ 0, for every
item i. However, as mentioned in the introduction, in many natural cases, we
can potentially extract more profit by pricing certain items below cost (which
corresponds to the case where pi < 0).

From now on, we always think in terms of the reduced instance. We formally
define all the pricing models we consider as follows:
Positive Price Model: In this model, we require the selling price of an item to
be at or above its production cost. Hence, in the reduced instance, we want the
price vector p with positive components pi ≥ 0 that maximizes Profitpos(p) =∑

e:we≥p(e) p(e). Let p∗
pos be the price vector with the maximum profit under

positive prices and let OPTpos = Profitpos(p∗
pos).

Discount Model: In this model, the selling price of an item can be arbitrary.
In particular, the price can be below the cost, or even below zero. We want the
price vector p that maximizes Profitdisc(p) =

∑
e:we≥p(e) p(e). Let p∗

disc be the
price vector with the maximum profit and let OPTdisc = Profitdisc(p∗

disc).
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B-Bounded Discount Model: In this model, the selling price of an item i
can be below its production cost bi, but cannot be below zero. This corresponds
to a negative price in the reduced instance, but it is bounded below by −bi.
For simplicity, we assume that the production costs of all items are each B. We
want the price vector p with components pi ≥ −B that maximizes ProfitB(p) =∑

e:we≥p(e) p(e). Let p∗
B be the price vector with the maximum profit and let

OPTB = ProfitB(p∗
B). Observe that OPTpos ≤ OPTB ≤ OPTdisc.

Coupon Model: This model makes most sense in which the items have zero
marginal cost, such as airport taxes or highway tolls. In this model, the selling
price of an item can actually be negative. However, we impose the condition
that the seller not make a loss in any transaction with any customer. We want
the price vector p that maximizes Profitcoup(p) =

∑
e:we≥p(e) max(p(e), 0). Let

p∗
coup be the price vector with the maximum coupon profit and let OPTcoup =

Profitcoup(p∗
coup). From the definition, it is immediate that OPTpos ≤ OPTcoup.

Gaps between the Models. We state below a few fundamental gaps between
the profits obtainable in these models.

Theorem 1. For the highway problem, there exists an Ω(log n) gap between
the positive price model and the (B-bounded) discount model, even for B = 1.
Moreover, there exists an Ω(log n) gap between the coupon model and the (B-
bounded) discount model.

Theorem 2. For the graph vertex pricing problem1, there exists an Ω(log B)
gap between the positive price model and the B-bounded discount model, even for
a bipartite graph.

3 Main Tools and Main Results

We describe now the main tools used in the paper. These tools allow us to give
bounds on the prices of items in an optimal solution in each of the pricing models.
DAG Representation of the Highway Problem: We describe here an
alternative representation of the Highway Problem. This representation proves
to be extremely convenient both for the analysis and for the design of algorithms.

Suppose the n items are in the order l1, l2, . . . , ln, with corresponding prices
p1, p2, . . . , pn. Then, for each 0 ≤ i ≤ n, we have a node vi labelled with the
partial sum si :=

∑i
j=1 pi, where s0 = 0. A customer corresponds to a subset of

the form {li, . . . , lj}, which is represented by a directed arc from vi−1 to vj .

Lemma 1. Under all pricing models (positive price model, (bounded) discount
model, coupon model), there is always an optimal solution such that smax −
smin ≤ nh, where sM := max{si : 0 ≤ i ≤ n} and sm := min{si : 0 ≤ i ≤ n},
and h is the maximum valuation.
1 The graph vertex pricing problem is APX-hard under all our models. One can easily

extend the result in [8] to our setting too.
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Existence of Bounded Solution for Graph Vertex Pricing: Recall that
in the graph setting, we denote the set of items by V , and each customer is
interested in at most two items. We represent the set of customers interested
in exactly two items by the set of (multi) edges E, and the set of customers
interested in exactly one item by the (multi) set N , where for each e ∈ E ∪ N ,
we ∈ Z is customer e’s valuation.

Lemma 2. Under all the pricing models (the coupon model and (bounded) dis-
count model), there is an optimal price vector p∗ ∈ R

V that is half-integral if all
customers’ valuations are integral. Moreover, if all valuations are at most h, then
p∗ can be chosen to be bounded in the sense that for all v ∈ V , |p∗(v)| ≤ 2nh.

3.1 Coupon Model

The main feature of the coupon model is that even when the sum of the prices
for the items that a customer wants is negative, the net profit obtained from
that customer is zero.

A Constant Factor Approximation for the Highway Problem: We show
here a constant factor approximation algorithm for the highway problem under
the coupon model, in the case where all the customers’ valuations are identical.

Theorem 3. There is a 2.33-approximation algorithm under the coupon model
for the highway problem in the case when all all customers’ valuations are all 1.

Proof. First, we represent the problem as a DAG as described above: each node
corresponds to a partial sum and each customer is represented as a directed edge
from its left node to its right node. We then use the approximation algorithm
presented in [7] for the MAX DICUT problem to get a 1

0.859 -approximation for
OPT that uses no more than two levels, i.e., the partial sums are either 0 or 1.
Hence, in order to show the result, it suffices2 to show that there exists a solution
in which the partial sums are either 0 or 1 and has profit at least 1

2OPTcoup.
Consider the partial sums in an optimal solution. Observe that for each customer
from which we get a profit (of 1), we still obtain a profit for that customer after
modifying the solution in exactly one of the following ways: If a partial sum
is even, set it to 0, otherwise set it to 1. If a partial sum is even, set it to 1,
otherwise set it to 0. Hence, by choosing the modification that yields higher
profit, the claim follows. ��
Theorem 4. Under the coupon model we have a fully polynomial time approx-
imation scheme for the case that the desired subsets of different customers form
a hierarchy.

Planar and Minor-free Graph Vertex Pricing Problem: We give a PTAS
that uses negative prices to obtain (1 + ε)-approximation, using decomposition
techniques for H-minor-free graphs by Demaine et al. [6]
2 If all the valuations are integral, then there exists an optimal solution with all prices

integral, under all our models (positive, coupon, and (B-bounded) discount models).
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Theorem 5. There exists a PTAS for minor-free instances of the graph vertex
pricing problem under the coupon model.

3.2 B-Bounded Discount Model

The main feature is that the net profit we obtain from a customer is exactly the
sum of the prices of the items in the bundle of that customer, and hence can be
negative. As explained in the introduction, the extra condition that the price of
an item must be at least −B corresponds to the real life situation in which the
selling price of an item can be below its cost, but not negative.

Theorem 6. There exists an O(B) approximation algorithm for the vertex pric-
ing problem under the B-bounded discount model.

There exists an PTAS for minor-free instances of the graph vertex pricing
problem under the B-bounded discount model for fixed B under either one of
the following assumptions: (1) All customers have valuations at least 1, or (2)
There is no multi-edge in the graph.

Theorem 7. There exists an FPTAS for the case that the desired subsets of
different customers form a hierarchy under both the discount and the B-bounded
discount models.

References

1. Balcan, M.-F., Blum, A.: Approximation Algorithms and Online Mechanisms for
Item Pricing. In: ACM Conference on Electronic Commerce (2006)

2. Balcan, M.-F., Blum, A., Chan, T.-H.H., Hajiaghai, M.T.: A theory of loss-leaders:
Making money by pricing below cost. Technical Report, CMU-CS-07-142 (July 2007)

3. Balcan, M.-F., Blum, A., Hartline, J., Mansour, Y.: Mechanism Design via Machine
Learning. In: 46th Annual IEEE Symposium on Foundations of Computer Science,
pp. 605–614. IEEE Computer Society Press, Los Alamitos (2005)

4. Briest, P., Krysta, P.: Single-Minded Unlimited Supply Pricing on Sparse Instances.
In: Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms, ACM
Press, New York (2006)

5. DeGraba, P.: Volume discounts, loss leaders, and competition for more profitable
customers. Federal Trade Commission Bureau of Economics, Working Paper 260
(February 2003)

6. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.: Algorithmic Graph Minor The-
ory: Decomposition, Approximation, and Coloring. In: 46th Annual IEEE Sympo-
sium on Foundations of Computer Science, pp. 637–646. IEEE Computer Society
Press, Los Alamitos (2005)

7. Feige, U., Goemans, M.X.: Approximating the Value of Two Prover Proof Systems,
with Applications to MaxtwoSat and MaxDicut. In: Proceedings of the Third Israel
Symposium on Theory of Computing and Systems, pp. 182–189 (1995)

8. Guruswami, V., Hartline, J., Karlin, A., Kempe, D., Kenyon, C., McSherry, F.: On
Profit-Maximizing Envy-Free Pricing. In: Proceedings of the 16th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 1164–1173. ACM Press, New York
(2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



PageRank as a Weak Tournament Solution�

Felix Brandt and Felix Fischer

Institut für Informatik, Universität München
80538 München, Germany

{brandtf,fischerf}@tcs.ifi.lmu.de

Abstract. We observe that ranking systems—a theoretical frame-
work for web page ranking and collaborative filtering introduced
by Altman and Tennenholtz—and tournament solutions—a well-studied
area of social choice theory—are strongly related. This relationship per-
mits a mutual transfer of axioms and solution concepts. As a first step,
we formally analyze a tournament solution that is based on Google’s
PageRank algorithm and study its interrelationships with common tour-
nament solutions. It turns out that the PageRank set is always contained
in both the Schwartz set and the uncovered set, but may be disjoint from
most other tournament solutions. While PageRank does not satisfy var-
ious standard properties from the tournament literature, it can be much
more discriminatory than established tournament solutions.

1 Introduction

The central problem of the literature on tournament solutions is as appealing as
it is simple: Given an irreflexive, asymmetric, and complete binary relation over
a set, find the “maximal” elements of this set. As the standard notion of maxi-
mality is not well-defined in the presence of cycles, numerous alternative solution
concepts have been devised and axiomatized [see, e.g., 14, 12]. In social choice
theory, the base relation, which we call dominance relation, is usually defined
via pairwise majority voting, and many well-known tournament solutions yield
attractive social choice correspondences. Recently, a number of concepts have
been extended to the more general setting of incomplete dominance relations
[9, 17, 6, 5]. These generalized dominance relations are commonly referred to as
weak tournaments.

Motivated by the problem of ranking web pages based solely on the structure
of the underlying link graph, Altman and Tennenholtz [3] introduced the notion
of a ranking system, which maps each (strongly connected) directed graph to
a complete preorder on the set of vertices. Obviously, this notion is strongly
related to that of a tournament solution. In fact, Moulin [14] identifies “rank-
ing the participants of a given tournament” as an important open problem.
While little effort has been made so far to solve this problem, this is pre-
cisely what ranking systems achieve for strongly connected weak tournaments.
� This material is based upon work supported by the Deutsche Forschungsgemeinschaft

under grant BR 2312/3-1.
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Altman and Tennenholtz do not refer to the vast literature on tournament so-
lutions, and their recent work on ranking systems does not seem to be well
known in the tournament community. This is regrettable for two reasons. For
one, ranking systems address a problem that has long been neglected in social
choice theory. Secondly, both research areas could benefit from a mutual trans-
fer of concepts and axioms. We take a first step in this direction by formally
analyzing a tournament solution that is based on Google’s PageRank ranking
system.

2 The PageRank Set

Fix an infinite set A. A weak tournament is a pair G = (A, �) of a finite set A ⊆
A of alternatives and an irreflexive and asymmetric dominance relation �⊆ A×
A. Intuitively, a � b means that a “beats” b in a pairwise comparison. We write
T for the set of all weak tournaments, T (A) for the set of all weak tournaments
on A, and G|A′ = (A′, A′×A′ ∩ �) for the restriction of G ∈ T (A) to a subset
A′ ⊆ A of the alternatives. A weak tournament is also called a dominance graph,
and a weak tournament (A, �) is a tournament if � is complete. In the presence
of (directed) cycles in the dominance relation, the concept of “best” or maximal
elements is no longer well-defined, and various solution concepts that take over
the role of maximality have been suggested. Some of these will be considered
in Section 3. Formally, a weak tournament solution is a total function S : T →
2A\{∅} such that for all G ∈ T (A), S(G) ⊆ A. We further require S to commute
with any automorphism of A, and to select the maximum, i.e., an alternative
that dominates any other alternative, whenever it exists.

PageRank assigns scores to pages on the Web based on the frequency with
which they are visited by a “random surfer” [7, 15]. Pages are then ranked
in accordance with these scores. It is straightforward to apply a similar idea to
dominance graphs, starting at some alternative and then randomly moving to one
of the alternatives that dominate the current one. Intuitively, this corresponds to
a contestation process where the status quo is constantly being replaced by some
dominating alternative. Arguably, alternatives that are chosen more frequently
according to this process are more desirable than alternatives that are chosen
less frequently.1 A tournament solution based on PageRank should thus choose
the alternatives visited most often by an infinite random walk on the dominance
graph.2

More formally, let G = (A, �) ∈ T (A) be a dominance graph, and let
d(a, G) = { b ∈ A | a � b } denote the dominion and d(a, G) = { b ∈ A | b � a }
the dominators of alternative a ∈ A. Further let α ∈ [0, 1] be a parameter called
the damping factor. Applying the original definition of Page et al. [15] to domi-
nance graphs, the PageRank score prα(a, G) of alternative a in G is given by
1 The key idea of this procedure is much older than PageRank and goes back to work

by Daniels [8] and Moon and Pullman [13].
2 It should be noted that transitions take place in the reverse direction of the domi-

nance relation, from a dominated to a dominating alternative.
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prα(a, G) = α

⎛

⎝
∑

b∈d(a,G)

pr(b, G)
|d(b, G)|

⎞

⎠ +
(1 − α)

|A| .

That is, the score of a is determined by the scores of the alternatives it dominates,
normalized by the number of alternatives dominating these, plus a constant.

It is well known that a solution to this system of equations such that∑
a∈A prα(a, G) = 1 corresponds to a stationary distribution of a Markov chain,

and that a unique stationary distribution exists if the chain is irreducible, i.e.,
if the dominance graph is strongly connected [see, e.g., 11]. Undominated alter-
natives in the dominance graph lead to sinks in the Markov chain, thus making
it irreducible. This problem can be handled by attaching either a self-loop or
(uniform) transitions to all other states in the Markov chain to these sinks. The
latter method, being the one commonly used in web page ranking, is clearly
undesirable in the context of tournament solutions: For example, an undomi-
nated alternative that dominates some alternative inside a strongly connected
subgraph would no longer be selected. Instead, we obtain the transition matrix of
the Markov chain by transposing the adjacency matrix of the dominance graph,
changing the diagonal entry to 1 in every row with sum 0, and row-normalizing
the resulting matrix.

In the absence of sinks, prα is well-defined for every α < 1. In the context of
web page ranking, α has to be chosen carefully to accurately model the proba-
bility that a human user surfing the Web will stop following links and instead
move to a random page [see, e.g., 18]. Furthermore, the ability to differentiate
between elements with lower scores is lost as α increases. The situation is dif-
ferent when PageRank is to be used as a tournament solution. In this case we
want the solution to depend entirely on the dominance relation, and we are only
interested in the best alternatives rather than a complete ranking. We thus want
to compute prα for α as close to 1 as possible. It turns out that limα→1 prα(a, G)
is always well-defined [4], and we arrive at the following definition.

Definition 1. Let G ∈ T (A) be a weak tournament. The PageRank score
of an alternative a ∈ A is defined as pr (a, G) = limα→1 prα(a, G) where∑

a∈A prα(a, G) = 1. The PageRank set of G is given by PR(G) = { a ∈ A |
pr(a, G) = maxb∈A pr(b, G) }.3

Boldi et al. [4] further observe that limα→1 prα must equal one of the (possibly
infinitely many) solutions of the system of equations for pr 1. This can be used to
relate the PageRank set to a well-known tournament solution called the Schwartz
set. Given a weak tournament G ∈ T (A), a set X ⊆ A has the Schwartz property
if no alternative in X is dominated by some alternative not in X . The Schwartz
set T (G) is then defined as the union of all sets with the Schwartz property
that are minimal w.r.t. set inclusion. We further write T (G) for the set of weak
tournaments induced by the minimal subsets of A with the Schwartz property.
3 Another tournament solution based on random walks in tournaments, called the

Markov set, is described by Laslier [12]. While their definitions are similar, there
exists a tournament with five alternatives for which the two solutions are disjoint.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



PageRank as a Weak Tournament Solution 303

It is well known from the theory of Markov chains that every solution of the
system of equations for α = 1 must satisfy pr1(a, G) = 0 for all a /∈ T (G), and
pr1(a, H)/pr1(b, H) = pr1(a, G)/pr 1(b, G) if a, b ∈ A′ for some H = (A′, �′) ∈
T (G) [see, e.g., 11]. We thus have the following.

Fact 1. Let G ∈ T (A) be a weak tournament. Then, for all a ∈ A \
T (G), pr(a, G) = 0, and for all H = (A′, �′) ∈ T (G) and a, b ∈ A′,
pr(a, H)/pr(b, H) = pr(a, G)/pr (b, G).

In particular, PR(G) can be determined by directly computing pr1 for the
(strongly connected) graph G|T (G) if |T (G)| = 1, a property that always holds in
tournaments. If there is more than one minimal set with the Schwartz property,
relative scores of alternatives in different elements of T (G) may very well depend
on the dominance structure outside the Schwartz set, and it is not obvious that
scores can be computed directly in this case.

3 Set-Theoretic Relationships

It follows directly from Fact 1 that the PageRank set is always contained in the
Schwartz set. We will now investigate its relationship to various other tourna-
ment solutions considered in the literature [see, e.g., 12, 6, 5]. In particular, we
look at the uncovered set and three other solutions that are always contained in
the uncovered set. The uncovered set UC (G) of a weak tournament G ∈ T (A)
consists of all alternatives that are not covered, where a ∈ A is said to cover
b ∈ A if a � b, every alternative that dominates a also dominates b, and every
alternative dominated by b is also dominated by a. The Banks set B(G) consists
of those elements that are maximal in some complete and transitive subgraph
of G that is itself maximal w.r.t. set inclusion. The Slater set SL(G) consists
of the maximal alternatives of those acyclic relations that disagree with a min-
imal number of elements of the dominance relation. Finally, the Copeland set
C(G) is the set of alternatives for which the difference between the number of
alternatives it dominates and the number of alternatives it is dominated by is
maximal. We further write UC k(G) = UC k−1(G|UC (G)) for the kth iteration
of the uncovered set. It is known that the Banks set intersects with all of these
iterations, whereas SL(G) may have an empty intersection with UC2(G).

The main result of this section is stated next. We omit all proofs in this paper
due to space restrictions.

Theorem 1. PR(G) is always contained in UC (G). PR(G) may have an empty
intersection with UC 2(G), B(G), SL(G), and C(G).

4 Properties

In this section, we evaluate PageRank using standard properties. Definitions of
these properties can be found in texts on social choice theory and tournament
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solutions [see, e.g., 9, 12]. Although some of the properties were originally intro-
duced in the context of complete dominance relations, they naturally extend to
the incomplete case. We now state the main result of this section.

Theorem 2. PR satisfies monotonicity. PR does not satisfy SSP, idempotency,
Aı̈zerman, independence of the losers, weak composition-consistency, and γ∗.

Let us now consider a property of tournament solutions that is in some sense or-
thogonal to the ones considered so far, namely discriminatory power. Indeed, the
above properties describe which elements should be chosen given that some other
elements are chosen as well, or should still be chosen as the overall set of alter-
natives changes. As we have shown, the PageRank set is uniformly smaller than
both the Schwartz set and the uncovered set. We further establish that PageR-
ank can be arbitrarily more discriminatory than every composition-consistent
solution (e.g., UC, UC2, or B) in the sense that there exist instances where
PageRank yields a singleton and any composition-consistent solution does not
discriminate at all.

Theorem 3. For any composition-consistent solution concept S and any set A
of alternatives with |A| ≥ 5, there exists a dominance graph G ∈ T (A) such that
|PR(G)| = 1 and S(G) = A.

Similar properties, although less severe, can also be shown individually for solu-
tions that are not composition-consistent, like the Slater set. We leave it as an
open problem whether there exist dominance graphs in which PageRank yields
a significantly larger choice than any of these sets.

It should finally be noted that PageRank has the advantage of being efficiently
computable (if |T (G)| = 1), whereas determining the Banks or the Slater set is
NP-hard even in tournaments [20, 1].

5 Conclusion

The contribution of this paper is twofold. First, we identified a strong relation-
ship between ranking systems and tournament solutions. Secondly, we formally
analyzed PageRank using properties and solution concepts defined in the lit-
erature on tournament solutions. PageRank fails to satisfy a number of these
properties, but on the other hand is very discriminatory—a well-known issue of
most established tournament solutions [10]. It is open to debate whether these
results cast doubt upon the significance of PageRank as a tournament solution,
or the usefulness of some of the axiomatic properties used in the tournament
literature.

An interesting problem for future work is to unify axioms in the literature on
ranking systems [3, 2, 16, 19] and tournament solutions [e.g., 12]. Some of these
axioms are apparently based on very similar ideas.

Acknowledgements. We thank Markus Holzer for helpful discussions and Paul
Harrenstein for comments on a draft of this paper.
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Abstract. Social networks often serve as a medium for the diffusion of
ideas or innovations. An individual’s decision whether to adopt a prod-
uct or innovation will be highly dependent on the choices made by the
individual’s peers or neighbors in the social network. In this work, we
study the game of innovation diffusion with multiple competing innova-
tions such as when multiple companies market competing products using
viral marketing. Our first contribution is a natural and mathematically
tractable model for the diffusion of multiple innovations in a network. We
give a (1−1/e) approximation algorithm for computing the best response
to an opponent’s strategy, and prove that the “price of competition” of
this game is at most 2. We also discuss “first mover” strategies which
try to maximize the expected diffusion against perfect competition. Fi-
nally, we give an FPTAS for the problem of maximizing the influence of
a single player when the underlying graph is a tree.

1 Introduction

Social networks are graphs of individuals and their relationships, such as friend-
ships, collaborations, or advice seeking relationships. In deciding whether to
adopt an innovation (such as a political idea or product), individuals will fre-
quently be influenced, explicitly or implicitly, by their social contacts. In order
to effectively employ viral marketing [1,2], i.e., marketing via “word-of-mouth”
recommendations, it is thus essential for companies to identify “opinion lead-
ers” to target, in the hopes that influencing them will lead to a large cascade of
further recommendations. More formally, the influence maximization problem is
the following: Given a probabilistic model for influence, determine a set A of k
individuals yielding the largest expected cascade.1 The formalization of influence
maximization as an optimization problem is due to Domingos and Richardson
[1], who modeled influence by an arbitrary Markov random field, and gave heuris-
tics for maximization. The first provable approximation guarantees are given in
[3,4,5].

In this paper, we extend past work by focusing on the case when multiple
innovations are competing within a social network. This scenario will frequently
arise in the real world: multiple companies with comparable products will vie for
1 More realistic models considering different marketing actions which affect multiple

individuals can usually be reduced to the problem as described here (see [3]).
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sales with competing word-of-mouth cascades; similarly, many innovations face
active opposition also spreading by word of mouth. We propose a natural gener-
alization of the independent cascade model [2] to multiple competing influences.
Our model extends Hotelling’s model of competition [6], and is related to com-
petitive facility location and Voronoi games [7,8]. Similar models have also been
considered recently by Lotker et al. [9] (who study mixed Nash Equilibria of the
Voronoi game on the line), and Dubey et al. [10], who focus on Nash Equilib-
ria for the (simpler) case of quasi-linear influence. We first study second-mover
strategies and equilibria of the resulting activation game and show that:

Theorem 1. The last agent i to commit to a set Si for initial activation can
efficiently find a (1 − 1/e) approximation to the optimal Si.

Theorem 2. The price of competition of the game (resulting from lack of coor-
dination among the agents) is at most a factor of 2.

We give exact algorithms for first-mover strategies in the two-player game on
simple graph structures in Section 4. Finally, we give an FPTAS for maximiz-
ing the influence of a single player on bidirected trees, even when the edges in
opposite directions have different probabilities.

2 Models and Preliminaries

The social network is represented as a directed graph G = (V, E). Following the
independent cascade model [2,3], each edge e = (u, v) ∈ E has an activation
probability pe. Each node can be either inactive or active; in the latter case, it
has a color denoting the influence for which it is active (intuitively, the product
the node has adopted). We augment the model by a notion of activation time
for each activation attempt. When node u becomes active at time t, it attempts
to activate each currently inactive neighbor v. If the activation attempt from u
on v succeeds, v will become active, of the same color as u, at time t + Tuv. The
Tuv are independent and exponentially distributed continuous random variables.
Subsequently, v will try to activate inactive neighbors, and so forth. Thus, a node
always has the color of the first neighbor succeeding in activating it.

In the influence maximization game, each of b players selects a set Si of at
most ki nodes. A node selected by multiple players will take the color of one
of the players uniformly at random. Then, with Si being active for influence i,
the process unfolds as described above until no new activations occur. Letting
T1, . . . , Tb be the active sets at that point, the goal of each player i is to maximize
E [|Ti|]. Player i is indifferent between strategies Si and S′

i if their expected gain
is the same. Simple examples show that in general, this game has no pure strategy
Nash Equilibria; however, it does have mixed-strategy Nash Equilibria.

3 Best Response Strategies

In order to gain a better understanding of the influence maximization game, we
first focus on best response strategies for players.
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Lemma 1. Suppose that the strategies Sj , j �= i for other players are fixed.
Then, player i’s payoff E [|Ti| | S1, . . . , Sb] from the strategy Si is a monotone
and submodular function of Si.

Proof. We obtain a deterministic equivalent of the activation process by choos-
ing independently if each edge e = (u, v) will constitute a successful activation
attempt by u on v (a biased coin flip with probability pe), as well as the acti-
vation time Te, beforehand. Then, we consider running the (now deterministic)
activation process using these outcomes and delays.

If node u has color j, and activates node v successfully, we color the edge
(u, v) with color j. A path P is called a color-j path if all its edges have color
j. Then, a node u ends up colored with color j iff there is a color-j path from
some node in Sj to u.

Conditioned on any outcome of all random choices as well as all Sj , j �= i, the set
of nodes reachable along color-i paths from Si is the union of all nodes reachable
from any one node of Si. Thus, if Si ⊆ S′

i, the set of nodes reachable from Si + v,
but not from Si, is a superset of those reachable from S′

i + v, but not from S′
i (by

monotonicity). Thus, given fixed outcomes of all random choices and Sj , j �= i, the
number of nodes reachable from Si is a monotone and submodular function of Si.
Being a non-negative linear combinationof submodular functions (with coefficients
equal to the probabilities of the outcomes of the random choices), the objective
function of player i is thus also monotone and submodular.

The above lemma implies that for the last player to commit to a strategy, the
greedy algorithm of iteratively adding a node with largest marginal gain is within
a factor (1−1/e) of the best response (see [3]), thus proving Theorem 1. Second,
as the expected total number of active nodes at the end is also a monotone
submodular function of S :=

⋃
j Sj , the game meets the requirements of a valid

utility system as defined by Vetta [11]. We can apply Theorem 3.4 of [11] to obtain
that the expected total number of nodes activated in any Nash Equilibrium is
at least half the number activated by the best solution with a single player
controlling all of the

∑
i bi initial activations. This proves Theorem 2.

4 First Mover Strategies

We now consider first mover strategies in a duopoly, with 2 players called “red”
and “blue”. The following variant of the competitive influence maximization
problem is motivated by its similarity both to the case of multiple disjoint di-
rected lines (discussed briefly below) and to a fair division problem: Given n
lines of lengths �1, . . . , �n, the red player first gets to make any k cuts, creating
k +n pieces whose lengths sum up to the original lengths. The blue player picks
the k largest segments (“blue pieces”) and the red player gets the next-largest
min(n, k) segments (“red pieces”).

Assume for now that we know a “cutoff point” c such that all blue pieces have
size at least c, and all red pieces have size at most c. Let F (i, r, b, c) denote the
maximum total size of r red pieces in the ith line, subject to the constraint that
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it must be cut into b blue segments of size at least c and r red segments of size
at most c. Let G(i, r, b, c) be the maximum total size of r red pieces in the first
i lines combined, subject to having r red and b blue pieces, with a cutoff of c.
Then, we obtain the following recurrence relation, which turns into a dynamic
program in the standard way.

G(i, r, b, c) = max
r′=0...r

max
b′=0...b

F (i, r′, b′, c) + G(i − 1, r − r′, b − b′, c)

G(0, r, b, c) = −∞ (or 0) whenever b > 0 (or b = 0).

Notice that we do indeed take a maximum over values of b′, as the red player
can decide how many “large” pieces to make available on each line for the blue
player. The final answer we are interested in is then G(n, min(n, k), k, c). The
main issue is how to reduce the candidates for the cutoff point c to a strongly
polynomial number. The following lemma shows that we only need to try out nk
candidate values �i/j, i = 1, . . . , n, j = 1, . . . , k for c (retaining the best solution
found by the dynamic program), making the algorithm strongly polynomial.

Lemma 2. The optimal solution cuts each line segment into equal-sized pieces.

Proof. First, we can remove unused line segments from the problem instance.
Second, partially used line segments can be converted to completely used line
segments by adding the unused part to an existing blue segment (if it exists) or
to an existing red segment (if no blue piece exists). The latter may entice the
blue player to take a red piece. But this frees up a formerly blue piece (of size
at least c) to be picked up by the red player.

W.l.o.g., all pieces of the same color on a line segment are of the same size. If
the optimal solution contains an unevenly cut line with red and blue pieces, we
increase the sizes of all red pieces and decrease the sizes of all blue pieces until
the line is cut evenly. As before, the red player’s gain cannot be reduced by the
blue player switching to a different piece, because any new piece the red player
may obtain after the blue player switches will have size at least c.

The above algorithm can be extended to deal with directed lines and even out-
directed arborescences. In the former case, the slight difference is that the “left-
most” piece of any line is not available to the red player. These extensions are
deferred to the full version due to space constraints.

5 Influence Maximization on Bidirected Trees

While the single-player influence maximization problem is APX-hard in general
[3], special cases of graph structures are more amenable to approximation. Here,
we will give an FPTAS for the influence maximization problem for bi-directed
trees. (This FPTAS can be extended to bounded treewidth graphs with a signifi-
cant increase in complexity.) Given a target ε, we will give a 1−ε approximation
based on a combination of dynamic programming and rounding of probabilities.

For the subtree rooted at node v, let G(v, k, q+, q−) denote the expected
number of nodes that will be activated by an optimum strategy, provided that
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(1) v is activated by its parent with probability at most q−, and (2) v has to be
activated by its subtree with probability at least q+.

Let v be a node of degree d with children v1, . . . vd. Then, for the respective
subproblems, we can choose arbitrary k1, . . . , kd, q+

1 , . . . , q+
d , q−1 , . . . , q−d , such

that (1)
∑

i ki = k, q+ ≤ 1−
∏

i(1−q+
i pvi,v) and q−i ≤ pv,vi(1−(1−q−)

∏
j �=i(1−

q+
j pvj ,v)) if v is selected, or (2)

∑
i ki = k − 1, q+ ≤ 1 and q−i ≤ pv,vi if v is not

selected. If (1) or (2) is satisfied, we call the values consistent. For consistent
values, the optimum can be characterized as:

G(v, k, q+, q−) = max
(ki),(q+

i ),(q−
i )

m∑

i=1

G(vi, ki, q
+
i , q−i ) + 1 − (1 − q+)(1 − q−). (1)

As discussed above, the maximum is over both the case that v is selected, and
that it is not. It can be computed via a nested dynamic program over the values
of i. In this form, G(v, k, q+, q−) may have to be calculated for exponentially
many values of q+ and q−. To deal with this problem, we define δ = ε/n3,
and compute (and store) the values G(v, k, q+, q−) only for q+ and q− which
are multiples of δ between 0 and 1. The number of computed entries is then
polynomial in n and 1/ε. Let G′(v, k, q+, q−) denote the gain obtained by the
best consistent solution to the rounding version of the dynamic program, and
�q�δ the value of q rounded down to the nearest multiple of δ. Then, for the
rounding version, we have

Theorem 3. For all v, k, q+, q−, there exists a value r+ ≤ q+ with q+ − r+ ≤
δ|Tv|, such that G(v, k, q+, q−) − G′(v, k, r+, �q−�δ) ≤ δ|Tv|3, where |Tv| is the
number of nodes in the subtree rooted at v.

Applying the theorem at the root of the tree, we obtain that the rounding
dynamic program will find a solution differing from the optimum by at most
an additive δn3 ≤ ε ≤ ε · OPT, proving that the algorithm is an FPTAS.

Proof. We will prove the theorem by induction on the tree structure. It clearly
holds for all leaves, by choosing r+ = �q+�δ. Let v be an internal node of
degree d, with children v1, . . . , vd. Let (ki), (q+

i ), (q−i ) be the arguments for the
optimum subproblems of G(v, k, q+, q−). By induction hypothesis, applied to
each of the subtrees, there are values r+

i ≤ q+
i with q+

i − r+
i ≤ δ|Tvi |, such that

G(vi, ki, q
+
i , q−i ) − G′(vi, ki, r

+
i , �q−i �δ) ≤ δ|Tvi |3.

Define r+ := �1 −
∏

i(1 − r+
i pvi,v)�δ, (or r+ = 1, if the optimum solution

included node v). By definition, r+ is consistent with the r+
i . Using Lemma 4

below and the inductive guarantee on the r+
i values, we obtain directly that

q+ − r+ ≤ δ|Tv| (where we used the fact that
∑

i |Tvi | + 1 = |Tv|). Next, we
define r−i = �pv,vi(1 − (1 − �q−�δ)

∏
j �=i(1 − r+

j pvj ,v))�δ for all i. Again, the r−i
are consistent by definition, and by using the inductively guaranteed bounds on
q+
j − r+

j as well as Lemma 4, we obtain that q−i − r−i ≤ δ(|Tv| + 1) for all i.
Now, applying Lemma 3, we obtain that G′(vi, ki, r

+
i , q−i )−G′(vi, ki, r

+
i , r−i ) ≤

δ|Tvi |(|Tv| + 1), for all i. In other words, because the input values to the sub-
problems did not need to be perturbed significantly to make the r−i consistent,
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the value of the rounding dynamic program cannot have changed too much.
Combining these bounds with the inductive assumption for each subproblem,
we have:

G′(v, k, r+, �q−�δ) ≥
∑

i G′(vi, ki, r
+
i , r−i ) + 1 − (1 − r+)(1 − �q−�δ)

≥
∑

i(G
′(vi, ki, r

+
i , �q−i �δ) − δ|Tvi |(|Tv| + 1))

+1 − (1 − q+ + δ|Tv|)(1 − q− + δ)
IH
≥

∑
i(G(vi, ki, q

+
i , q−i ) − δ(|Tvi |3 + (|Tv| + 1)|Tvi |))

+1 − (1 − q+)(1 − q−) − δ(1 + |Tv|)
≥ G(v, k, q+, q−) − δ|Tv|3.

The following two lemmas are proved by induction; their proofs are deferred to
the full version due to space constraints.

Lemma 3. If r− ≤ q−, then G′(v, k, q+, q−) − G′(v, k, q+, r−) ≤ |Tv|(q− − r−).

Lemma 4. For any a1, . . . , an and b1, . . . , bn,
∏n

i=1 ai −
∏n

i=1 bi =
∑n

i=1(ai − bi) ·
∏i−1

j=1 aj ·
∏n

j=i+1 bj

Acknowledgments. We would like to thank Bobby Kleinberg and Ranjit
Raveendran for useful discussions, and anonymous reviewers for helpful feedback.

References

1. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proc.
7th KDD, pp. 57–66 (2001)

2. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems look
at the underlying process of word-of-mouth. Marketing Letters 12, 211–223 (2001)

3. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence in a social
network. In: Proc. 9th KDD, pp. 137–146 (2003)

4. Kempe, D., Kleinberg, J., Tardos, E.: Influential nodes in a diffusion model for
social networks. In: Proc. 32nd ICALP (2005)

5. Mossel, E., Roch, S.: On the submodularity of influence in social networks. In:
Proc. 38th ACM STOC (2007)

6. Hotelling, H.: Stability in competition. The Economic Journal 39, 41–57 (1929)
7. Ahn, H., Cheng, S., Cheong, O., Golin, M., van Oostrom, R.: Competitive facility

location along a highway. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp.
237–246. Springer, Heidelberg (2001)

8. Cheong, O., Har-Peled, S., Linial, N., Matoušek, J.: The one-round voronoi game.
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Abstract. We examine a formal model of sponsored search in which
advertisers can bid not only on search terms, but on search terms un-
der specific contexts. A context is any auxiliary information that might
accompany a search, and might include information that is factual, es-
timated or inferred. Natural examples of contexts include the zip code,
gender, or abstract “intentions” (such as researching a vacation) of the
searcher. After introducing a natural probabilistic model for context-
based auctions, we provide several theoretical results, including the fact
that under general circumstances, the overall social welfare of the ad-
vertisers and auctioneer together can only increase when moving from
standard to context-based mechanisms. In contrast, we provide and dis-
cuss specific examples in which only one party (advertisers or auctioneer)
benefits at the expense of the other in moving to context-based search.

1 Introduction

In the standard model of sponsored search, advertisers place bids on individual
terms or keywords. When a query is made on a given keyword, an auction is
held to determine which advertisers’ ads will appear on the search results page
presented to the user and in what order. Generally the auction mechanism used
is a generalized second-price (or next-price) mechanism [2] in which advertisers
are ranked either by bid alone (the so-called “Rank By Bid” allocation, or RBB)
or by the product of bid and a numerical measure of the quality of the ad (“Rank
By Revenue,” or RBR) [4]. An advertiser pays a fee to the auctioneer (in this
case, the search engine) only when the search results in a click on the ad.

In this paper we investigate the extension of this standard model to incorpo-
rate what we shall call contexts . A context is any piece of auxiliary information
that might modify the interpretation or expected value of a specific search query.
Contexts may be “factual” information, or may be based on (possibly noisy) in-
ferences. For example, it is often possible to infer a user’s zip code from their
IP address. Advertisers providing only local services (such as dentistry or child
care) might value searches originating from certain zip codes much more highly
than others. Similarly, an online retailer specializing in maternity clothing might
place a high value on clicks from women in their twenties and thirties, while a
� An extended version of this paper including a more detailed analysis and simulations

can be found at http://www.cis.upenn.edu/∼mkearns/papers/contexts.pdf.
�� This work was done while the author was a postdoctoral researcher at UPenn.
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website selling dorm room supplies might prefer clicks from teenagers of either
gender. Search engines are often able to collect such demographic information
about searchers directly via site accounts and could potentially use this infor-
mation to select more relevant ads. Additionally, it may be possible to estimate
a user’s abstract “intention” from recent web activity. We might infer a user’s
interest in planning a vacation from a series of searches for travel web sites. A
hotel in Istanbul would probably be willing to pay more per click for the keyword
“turkey” if it were more likely that the searcher was planning a vacation than a
home-cooked meal.

Search engines already include limited abilities for advertisers to modify bids
based on searcher context. Both Google’s AdWords program and Yahoo!’s Search
Marketing program allow advertisers to bid on searches limited to specified ge-
ographic areas. Microsoft’s adCenter allows bidders to target searchers by loca-
tion, age, or gender by specifying an additional bid amount for targeted searches
on top of a base keyword bid. Aside from these formal context-based mech-
anisms, advertisers may informally implement their own by bidding on more
specific search terms (e.g. “Philadelphia dentist” rather than “dentist” alone).

Despite these various existing forms of context-based bidding, no formal study
has been published showing that these additional bidding capabilities are ben-
eficial either to the advertisers or to the search engines themselves. The closest
existing work is the economic literature on bundling, the strategy of offering
multiple distinct goods for sale together as a single item. (In our setting, these
goods are clicks from searches on the same keyword in different contexts, and we
are interested in what happens when they are unbundled.) Palfrey first analyzed
the effects of bundling on bidder and auctioneer welfare in VCG auctions [5].
While these results do not carry over directly to the more complex multiple-slot
sponsored search auction setting, the underlying intuition is similar.

The idea of allowing increased expressiveness in sponsored search auctions,
including context-specific bidding, has also been suggested by Parkes and Sand-
holm in the context of efficient solutions for the winner determination prob-
lem [6]. However, their work does not address the effects of this increased ex-
pressiveness on revenue. Here we examine sponsored search auctions in which
advertisers may place explicit bids on pairs of keywords and contexts, and com-
pare the welfare of both the advertisers and the search engines in this setting to
the welfare when bids are restricted to words alone.

2 Preliminaries

Without loss of generality we will limit our analysis to auctions on a single fixed
keyword (or search term) w. We assume that there exists a fixed and known
distribution P over the set of user contexts C for searches on w, and that for
all c ∈ C, each advertiser a ∈ {1, · · · , A} has a known (expected) value va,c for
a click from a user with context c.

For each query, we assume there are S advertiser slots available. We make the
standard assumption [7,1] that the click-through rate (CTR) of an ad shown in
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slot s can be factored into two parts, a slot-specific base click-through rate xs that
is monotonically decreasing in the s, and a quality effect ea,c that can depend on
the advertiser a and context c in an arbitrary way. We can then write the click-
through rate of advertiser a in slot s for context c as the product ea,cxs, and the
expected click-through rate over all contexts as eaxs where ea =

∑
c∈C P (c)ea,c.

For convenience, we define xs = 0 for s > S.
In order to compute the expected value over all contexts of a click to an

advertiser, we must take into account the advertiser’s quality since the dis-
tribution of clicks that an advertiser receives will be affected by his quality
scores. We can compute the expected value of a click to advertiser a as va =∑

c∈C P (c)va,cea,c/ea. Note that if the quality of the advertiser is constant over
all contexts then va =

∑
c∈C P (c)va,c as expected.

We examine both the standard VCG mechanism (see, for example, Edelman
et al. [2]) and the generalized second-price auction mechanism using a rank by
revenue (RBR) allocation scheme [4]. Under RBR, advertisers are ranked by the
product of their quality effect (ea,c or ea) and their bid (ba,c or ba) rather than
bid alone. This approximately models the allocation methods currently used
by both Yahoo! and Google. In the RBR generalized second-price auction, the
payment of advertiser i for a click in slot s is calculated as bjej/ei (or bj,cej,c/ei,c

in a context-based model) where j is the advertiser in slot s+1. Notice that this
payment is the minimum amount that advertiser i must bid to remain in slot i,
i.e. the minimum value of bi for which biei ≥ bjej .

We will analyze three quantities of interest: advertiser profit, auctioneer rev-
enue, and social welfare. We define the advertiser profit as the sum over all
advertisers of the expected value received from clicks on a given user search mi-
nus the expected price paid. The social welfare is simply the advertiser profit
plus the expected revenue of a user search to the auctioneer, i.e. the social wel-
fare if we think of the search engine as a player. Intuitively, this can be thought
of as a measure of the economic efficiency of the auction. Note that since the
revenue of the auctioneer is by definition equal to the total amount paid by all
bidders, the social welfare is equivalent to the sum over all advertisers of the
expected value of a search.

We will examine sponsored search mechanisms under various equilibrium con-
cepts. For next-price auctions, it is appropriate to consider the concept of sym-
metric Nash equilibrium (SNE) introduced simultaneously by Edelman et al. [2]
and Varian [7]. While the SNE was originally defined in the RBB setting, it can
naturally be extended to the RBR setting. For example, letting vs and es denote
the value and quality of the bidder in slot s, we can express the bids under the
so-called low SNE as bs = 1

esxs−1

∑S+1
t=s (xt−1 − xt)etvt where bS+1 = vS+1. For

VCG, it is appropriate to examine the dominant-strategy truthful equilibrium.
Here we simply have bs = vs for all s.

Given a sponsored search mechanism and an equilibrium concept (such as
Nash, symmetric Nash, or dominant strategy equilibria), we will say that the
mechanism is efficient at equilibrium under the specified equilibrium concept if
the mechanism maximizes social welfare any time such an equilibrium is played.
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It is easy to see that an RBR generalized second-price auction is efficient under
symmetric Nash equilibria. (The proof, which is similar to Varian’s “monotone
values” proof for SNE of next-price auctions without quality scores [7], relies on
the fact that in sponsored search auctions, social welfare is always maximized
when ads are ranked in decreasing order by the product of value and quality.)
Additionally, VCG is efficient under the dominant-strategy equilibrium.

3 Social Welfare

We begin by examining the shift in social welfare that occurs when we move from
the standard keyword auction to a context-based auction. We show that under
a variety of conditions, the social welfare can only increase when context-based
bidding is introduced. This is not surprising given similar results from bundling
theory (see, for example, Theorem 4 of Palfrey [5]), but is nice in its generality;
our result generalizes Palfrey’s to the multiple-slot auction setting. We state the
conditions of the next theorem as generally as possible. The proof appears in
the extended version of this paper [3].

Theorem 1. Consider any sponsored search mechanism that is efficient at equi-
librium for a given equilibrium concept. For this mechanism, the social welfare
at equilibrium under context-based bidding is at least as high as the social welfare
at equilibrium under standard keyword bidding.

The following corollaries illustrate cases in which Theorem 1 applies.

Corollary 1. In a RBR generalized second-price auction, the social welfare at
any symmetric Nash equilibrium under context-based bidding is at least as high
as the social welfare at any SNE under keyword bidding.

Corollary 2. In a VCG auction, the social welfare at the dominant-strategy
truthful equilibrium under context-based bidding is at least as high as the social
welfare at the dominant-strategy truthful equilibrium under keyword bidding.

4 Trade-Offs in Revenue

In the previous section, we saw that under a wide variety of auction mechanisms
and bidding assumptions, it will always be more efficient in terms of social welfare
to allow context-based bidding. However, this does not necessarily imply that
context-based bidding always produces higher revenue for the auctioneer or that
it always increases the total revenue of the advertisers. Indeed there are situations
in which context-based auctions result in lower revenue for the auctioneer or for
the bidders as a whole. In this section we examine scenarios in which decreases
in revenue might occur and analyze why this is the case. The full details of the
examples can be found in a the long version [3].
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For simplicity, we consider next-price auctions over a single ad slot and assume
that all advertisers bid truthfully.1 Similar examples can be shown in multiple-
slot models. In each example, the word w will have two possible contexts, c1 and
c2, with P (c1) = P (c2) = 0.5, and all advertisers will have a uniform quality
effect of 1.

A Decrease in Auctioneer Revenue. It is possible to construct an example
with only two bidders in which auctioneer revenue decreases when context-based
bidding is allowed. Suppose the value of advertiser 1 for context 1 is 10 and for
context 2 is 1, while the value for advertiser 2 is 1 for context 1 and 10 for context
2. Clearly both value the word at 5.5 on expectation. Under standard word-
based bidding, the expected auctioneer revenue is 5.5x1 while under context-
based bidding, the expected auctioneer revenue is x1. The problem that arises in
this simple example is the general problem of splitting the competition. When
the advertisers are forced to bid on both contexts of w, they are placed in direct
competition with each other. Because of the nature of second-price auctions,
this competition is enough to drive up the price per click. However, when the
advertisers are free to bid separately for each context, they are not in direct
competition for the contexts they each prefer most and are thus able to pay less
per click, reducing the revenue to the auctioneer.

Such a situation might occur when advertisers are cable service providers and
zip code-based bidding is introduced. While all cable providers are likely to value
clicks from sponsored ads on keywords like “cable tv”, there is typically only one
cable provider available in a given zip code. It is likely that context-based bidding
would thus reduce competition between cable providers, lowering prices per click
which would in turn lower the revenue to the auctioneer. In this case, it would
be in the search engine’s best interest to stick with standard keyword bidding.

A Decrease in Advertiser Profit. Context-based bidding can also lead to a
concentration of competition, yielding higher revenue for the auctioneer at the
expense of the advertisers. Suppose there are three advertisers with values as
follows. Advertiser 1 has a constant value of 10. Advertiser 2 values context c1
at 9 and context c2 at 1, while advertiser 3 values context c1 as 1 and context c2
as 9. Advertiser 1 will be the high bidder for both the word- and context-based
auctions. Because advertisers 2 and 3 value only one context, advertiser 1 can
pay a low price in the word-based auction. Context-based bidding will increase
competition for each context, raising the price.

In the word-based auction, the advertiser profit can be calculated as

x1er(1)
(
vr(1) − (br(2)er(2)/er(1))

)
= x1(10 − 5) = 5x1,

while in the context-based auction, the advertiser profit will be
∑

c∈C

P (c)x1erc(1),c
(
vrc(1),c − (brc(2),cerc(2),c/erc(1),c)

)
= x1 .

1 With only one slot, the next-price auction mechanism is equivalent to VCG. Truthful
bidding is thus a dominant-strategy equilibrium that maximizes social welfare.
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This example is especially striking because the allocation of clicks is the same
under both models; only the payment scheme has changed. The introduction of
contexts has concentrated the competition forcing advertiser 1 to pay a higher
price per click.

Such phenomenon can occur when there is a mix of large corporations and
smaller local services in competition a keyword. Consider the market for the
term “pizza.” Most local pizzerias would not bother to place ads on this term in
a word-based setting as the majority of their clicks would have no value. This
would allow nationwide pizza chains to purchase these ads at moderate prices.
However, adding zip code-based bidding could motivate smaller chains to begin
placing ads to attract locals, driving up the prices of ads for the large chains and
increasing the revenue to the auctioneer.
Increased Revenue for Everyone. Finally, it is often the case that context-
based bidding will simultaneously allow advertisers to reach their target audi-
ence while still allowing enough competition for the auctioneer to benefit. In this
scenario, advertisers can focus ads on their target audiences, raising advertiser
profit, but without completely splitting up the competition, enabling the auc-
tioneer to profit as well. This could happen when contexts are again zip codes
and advertisers are competing local businesses. Consider a set of dentist offices
bidding on ads for the keyword “dentist.” Each dentist office would be interested
only in local clicks and would be happy to have the option to bid by context.
However, since there are multiple dentists servicing patients in any zip code,
there would still be enough competition that the search engine would profit. We
suspect that this scenario is likely to fit the bidding patterns of advertisers on
most common keywords.
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Abstract. One natural constraint in the sponsored search advertising framework
arises from the fact that there is a limit on the number of available slots, espe-
cially for the popular keywords, and as a result, a significant pool of advertisers
are left out. We study the emergence of diversification in the adword market trig-
gered by such capacity constraints in the sense that new market mechanisms, as
well as, new for-profit agents are likely to emerge to combat or to make profit
from the opportunities created by shortages in ad-space inventory. We propose a
model where the additional capacity is provided by for-profit agents (or, medi-
ators), who compete for slots in the original auction, draw traffic, and run their
own sub-auctions. The quality of the additional capacity provided by a mediator
is measured by its fitness factor. We compute revenues and payoffs for all the dif-
ferent parties at a symmetric Nash equilibrium (SNE) when the mediator-based
model is operated by a mechanism currently being used by Google and Yahoo!,
and then compare these numbers with those obtained at a corresponding SNE for
the same mechanism, but without any mediators involved in the auctions. Such
calculations allow us to determine the value of the additional capacity. Our results
show that the revenue of the auctioneer, as well as the social value (i.e. efficiency
), always increase when mediators are involved; moreover even the payoffs of
all the bidders will increase if the mediator has a high enough fitness. Thus, our
analysis indicates that there are significant opportunities for diversification in the
internet economy and we should expect it to continue to develop richer structure,
with room for different types of agents and mechanisms to coexist.

1 Introduction

Sponsored search advertising is a significant growth market and is witnessing rapid
growth and evolution. The analysis of the underlying models has so far primarily fo-
cused on the scenario, where advertisers/bidders interact directly with the auctioneers,
i.e., the Search Engines and publishers. However, the market is already witnessing the
spontaneous emergence of several categories of companies who are trying to mediate
or facilitate the auction process. For example, a number of different AdNetworks have
started proliferating, and so have companies who specialize in reselling ad inventories.

� This work was done while the author was working for Ilial Inc.. The financial support from
Ilial Inc. is highly acknowledged.
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Hence, there is a need for analyzing the impact of such incentive driven and for-profit
agents, especially as they become more sophisticated in playing the game. In the present
work, our focus is on the emergence of market mechanisms and for-profit agents moti-
vated by capacity constraint inherent to the present models.

For instance, one natural constraint comes from the fact that there is a limit on the
number of slots available for putting ads, especially for the popular keywords, and a
significant pool of advertisers are left out due to this capacity constraint. We ask whether
there are sustainable market constructs and mechanisms, where new players interact
with the existing auction mechanisms to increase the overall capacity. In particular,
lead-generation companies who bid for keywords, draw traffic from search pages and
then redirect such traffic to service/product providers, have spontaneously emerged.
However, the incentive and equilibria properties of paid-search auctions in the presence
of such profit-driven players have not been explored. We investigate key questions,
including what happens to the overall revenue of the auctioneer when such mediators
participate, what is the payoff of a mediator and how does it depend on her quality, how
are the payoffs of the bidders affected, and is there an overall value that is generated by
such mechanisms.

Formally, in the current models, there are K slots to be allocated among N (≥ K)
bidders (i.e. the advertisers). A bidder i has a true valuation vi (known only to the bidder
i) for the specific keyword and she bids bi. The expected click through rate (CTR) of
an ad put by bidder i when allocated slot j has the form γjei i.e. separable in to a
position effect and an advertiser effect. γj’s can be interpreted as the probability that
an ad will be noticed when put in slot j and it is assumed that γ1 > γ2 > · · · >
γK > γK+1 = γK+2 = . . . γN = 0. ei can be interpreted as the probability that an
ad put by bidder i will be clicked on if noticed and is referred to as the relevance of
bidder i. The payoff/utility of bidder i when given slot j at a price of p per click is
given by eiγj(vi − p) and they are assumed to be rational agents trying to maximize
their payoffs. As of now, Google as well as Yahoo! uses schemes closely modeled as
RBR(rank by revenue) with GSP(generalized second pricing). The bidders are ranked
according to eivi and the slots are allocated as per this ranks. For simplicity of notation,
assume that the ith bidder is the one allocated slot i according to this ranking rule, then
i is charged an amount equal to ei+1vi+1

ei
. Formal analysis of such sponsored search

advertising model has been done extensively in recent years, from algorithmic as well
as from game theoretic perspective[2,6,3,1,7,4,5].

In the following section, we propose and study a model wherein the additional ca-
pacity is provided by a for-profit agent who competes for a slot in the original auction,
draws traffic and runs its own sub-auction for the added slots. We discuss the cost or
the value of capacity by analyzing the change in the revenues due to added capacity as
compared to the ones without added capacity.

2 The Model

In this section, we discuss our model motivated by the capacity constraint, which can
be formally described as follows:
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– Primary Auction (p-auction) : Mediators participate in the original auction run by
the search engine (called p-auction) and compete with advertisers for slots (called
primary slots). For the ith agent (an advertiser or a mediator), let vp

i and bp
i denote

her true valuation and the bid for the p-auction respectively. Further, let us denote
vp

i ep
i by sp

i where ep
i is the relevance score of ith agent for p-auction. Let there are

κ mediators and there indices are M1, M2, . . . , Mκ respectively.

– Secondary auctions (s-auctions):
• Secondary slots: Suppose that in the primary auction, the slots assigned to the

mediators are l1, l2, . . . , lκ respectively, then effectively, the additional slots are
obtained by forking these primary slots in to L1, L2, . . . , Lκ additional slots
respectively, where Li ≤ K for all i = 1, 2, . . . , κ. By forking we mean the
following: on the associated landing page the mediator puts some information
relevant to the specific keyword associated with the p-auction along with the
space for additional slots. Let us call these additional slots as secondary slots.

• Properties of secondary slots and fitness of the mediators: For the ith medi-
ator, there will be a probability associated with her ad to be clicked if noticed,
which is actually her relevence score ep

Mi
and the position based CTRs might

actually improve say by a factor of αi. This means that the position based CTR
for the jth secondary slot of ith mediator is modeled as αiγj for 1 ≤ j ≤ Li

and 0 otherwise. Therefore, we can define a fitness fi for the ith mediator,
which is equal to ep

Mi
αi. Thus corresponding to the lith primary slot (the one

being forked by the ith mediator), the effective position based CTR for the jth
secondary slot obtained is γ̃i,j where

γ̃i,j =
{

γlifiγj for j = 1, 2, . . . , Li,
0 otherwise.

(1)

Note that fiγ1 < 1, however fi could be greater than 1.
• s-auctions: Mediators run their individual sub-auctions (called s-auctions) for

the secondary slots provided by them. For an advertiser there is another type of
valuations and bids, the ones associated with s-auctions. For the ith agent, let
vs

i,j and bs
i,j denote her true valuation and the bid for the s-auction of jth medi-

ator respectively. In general, the two types of valuations or bids corresponding
to p-auction and the s-auctions might differ a lot. We also assume that vs

i,j = 0
and bs

i,j = 0 whenever i is a mediator. Further, for the advertisers who do not
participate in one auction (p-auction or s-auction), the corresponding true val-
uation and the bid are assumed to be zero. Also, for notational convenience let
us denote vs

i,je
s
i,j by ss

i,j where es
i,j is the relevance score of ith agent for the

s-auction of jth mediator.
• Payment models for s-auctions: Mediators could sell their secondary slots by

impression (PPM), by pay-per-click (PPC) or pay-per-conversion(PPA). In the
following analysis, we consider PPC.

– Freedom of participation: Advertisers are free to bid for primary as well as sec-
ondary slots.
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– True valuations of the mediators: The true valuation of the mediators are derived
from the expected revenue (total payments from advertisers) they obtain from the
corresponding s-auctions1 ex ante.

3 Bid Profiles at SNE

For simplicity, let us assume participation of a single mediator and the analysis involv-
ing several mediators can be done in a similar fashion. For notational convenience let

f = f1, the fitness of the mediator

l = l1, the position of the primary slot assigned to the mediator

L = L1, the number of secondary slots provided by the mediator in her s-auction

M = M1, the index of the mediator i.e. M th agent is the mediator

γ̃j = γ̃1,j, is the effective position based CTR of the jth secondary slot provided by the mediator

vs
i,1 = vs

i , is the true valuation of the agent i for the s-auction

bs
i,1 = bs

i , is the bid of the agent i for the s-auction, and

ss
i,1 = ss

i = vs
i e

s
i , where es

i = es
i,1 is the relevance score of ith agent for the s-auction.

The p-auction as well as the s-auction is done via RBR with GSP, i.e. the mechanism
currently being used by Google and Yahoo!, and the solution concept we use is Symmet-
ric Nash Equilibria(SNE)[2,7]. Suppose the allocations for the p-auction and s-auction
are σ : {1, 2, . . . , N} −→ {1, 2, . . . , N} and τ : {1, 2, . . . , N} −→ {1, 2, . . . , N}
respectively. Then the payoff of the ith agent from the combined auction (p-auction and
s-auction together) is

ui = γσ−1(i)

(
sp

i − rp
σ−1(i)+1

)
+ γ̃τ−1(i)

(
ss

i − rs
τ−1(i)+1

)

where

rp
j = bp

σ(j)e
p
σ(j),

rs
j = bs

τ(j)e
s
τ(j).

From the mathematical structure of payoffs and strategies available to the bidders
wherein two different uncorrelated values can be reported as bids in the two types of
auctions independently of each other2, it is clear that the equilibrium of the combined
auction game is the one obtained from the equilibria of the p-auction game and the
s-auction game each played in isolation. In particular at SNE[2,7],

γir
p
i+1 =

K∑

j=i

(γj − γj+1)s
p
σ(j+1) for all i = 1, 2, . . . , K

and
1 This way of deriving the true valuation for the mediator is reasonable for the mediator can

participate in the p-auction several times and run her corresponding s-auction and can estimate
the revenue she is deriving from the s-auction.

2 This assumption was motivated by some empirical examples from Google Adword3.
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γ̃ir
s
i+1 =

L∑

j=i

(γ̃j − γ̃j+1)ss
τ(j+1) for all i = 1, 2, . . . , L

which implies that (see Eq. (1))

γir
s
i+1 =

L−1∑

j=i

(γj − γj+1)ss
τ(j+1) + γLss

τ(L+1) for all i = 1, 2, . . . , L

where

sp
σ(l) = sp

M = f

L∑

j=1

γjr
s
j+1 = f

⎛

⎝
L−1∑

j=1

(γj − γj+1)jss
τ(j+1) + γLLss

τ(L+1)

⎞

⎠

is the true valuation of the mediator multiplied by her relevance score as per our defini-
tion1, which is the expected revenue she derives from her s-auction ex ante given a slot
in the p-auction and therefore the mediator’s payoff at SNE is

uM = γlf

⎛

⎝
L−1∑

j=1

(γj − γj+1)jss
τ(j+1) + γLLss

τ(L+1)

⎞

⎠ −
K∑

j=l

(γj − γj+1)s
p
σ(j+1).

4 Revenue of the Auctioneer

In this section, we discuss the change in the revenue of the auctioneer due to the in-
volvement of the mediator. The revenue of the auctioneer with the participation of the
mediator is

R =
K∑

j=1

γjr
p
j+1 =

K∑

j=1

(γj − γj+1)js
p
σ(j+1)

and similarly, the revenue of the auctioneer without the participation of the mediator is

R0 =
�K

j=1(γj − γj+1)js
p
σ̃(j+1) where σ̃(j) = σ(j) for j < l and σ̃(j) = σ(j + 1) for j ≥ l

=
�l−2

j=1(γj − γj+1)js
p
σ(j+1) +

�K
j=l−1(γj − γj+1)js

p
σ(j+2).

Therefore,

R − R0 =
K∑

j=max{1,l−1}
(γj − γj+1)j(s

p
σ(j+1) − sp

σ(j+2))

≥ 0 as sp
σ(i) ≥ sp

σ(i+1)∀i = 1, 2, . . . , K + 1 at SNE.

Thus revenue of the auctioneer always increases by the involvement of the mediator.
As we can note from the above expression, smaller the l better the improvement in
the revenue of the auctioneer. To ensure a smaller value of l, the mediator’s valuation
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which is the expected payments that she obtains from the s-auction should be better,
therefore fitness factor f should be very good. There is another way to improve her
true valuation. The mediator could actually run many subauctions related to the specific
keyword in question. This can be done as follows: besides providing the additional
slots on the landing page, the information section of the page could contain links to
other pages wherein further additional slots associated with a related keyword could be
provided3. With this variation of the model, a better value of l could possibly be ensured
leading to a win-win situation for everyone.

Theorem 1. Increasing the capacity via mediator improves the revenue of auctioneer.

5 Efficiency

Now let us turn our attention to the change in the efficiency and as we will prove below,
the efficiency always improves by the participation of the mediator.

E0 =
K∑

j=1

γjs
p
σ̃(j) =

l−1∑

j=1

γjs
p
σ(j) +

K∑

j=l

γjs
p
σ(j+1) and

E =
l−1∑

j=1

γjs
p
σ(j) +

K∑

j=l+1

γjs
p
σ(j) + γlf

L∑

j=1

γjs
s
τ(j)

∴ E − E0 = γlf
L∑

j=1

γjs
s
τ(j) −

K∑

l

(γj − γj+1)s
p
σ(j+1)

= γlf

L∑

j=1

γjs
s
τ(j) − γlr

p
l+1

≥ 0

as γlf
L∑

j=1

γjs
s
τ(j) ≥ γlf

L∑

j=1

γjr
s
j+1 = γls

p
σ(l) ≥ γlr

p
l+1 at SNE .

Theorem 2. Increasing the capacity via mediator improves the efficiency.

6 Advertisers’ Payoffs

Clearly, for the newly accommodated advertisers, that is the ones who lost in the p-
auction but win a slot in s-auction, the payoffs increase from zero to a postitive number.

3 For example, the keyword “personal loans” or “easy loans” and the mediator “personal-
loans.com”.
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Now let us see where do these improvements in the revenue of the auctioneer, in payoffs
of newly accommodated advertisers, and in the efficiency come from? Only thing left
to look at is the change in the payoffs for the advertisers who originally won in the p-
auction, that is the winners when there was no mediator. The new payoff for jth ranked
advertiser in p-auction is

uσ(j) = γjs
p
σ(j) −

K∑

i=j

(γi − γi+1)s
p
σ(i+1) + us

σ(j)

where
us

σ(j) = γlfγτ−1(σ(j))

(
ss

σ(j) − rs
τ−1(σ(j))+1

)

is her payoff from the s-auction. Also, for j ≤ l − 1, her payoff when there was no
mediator is

u0
σ(j) = γjs

p
σ(j) −

∑K
i=j(γi − γi+1)s

p
σ̃(i+1)

= γjs
p
σ(j) −

∑l−2
i=j(γi − γi+1)s

p
σ(i+1) −

∑K
i=l−1(γi − γi+1)s

p
σ(i+2).

∴ uσ(j) − u0
σ(j) = us

σ(j) −
∑K

i=l−1(γi − γi+1)(s
p
σ(i+1) − sp

σ(i+2))

Similarly, for j ≥ l + 1, her payoff when there was no mediator is

u0
σ(j) = γj−1s

p
σ(j) −

∑K
i=j−1(γi − γi+1)s

p
σ(i+2)

∴ uσ(j) − u0
σ(j) = us

σ(j) −
∑K

i=j−1(γi − γi+1)(s
p
σ(i+1) − sp

σ(i+2))

Therefore, in general we have,

uσ(j) − u0
σ(j) = us

σ(j) −
K∑

i=max{l−1,j−1}
(γi − γi+1)(s

p
σ(i+1) − sp

σ(i+2)).

Thus, for the jth ranked winning advertiser from the auction without mediation,
the revenue from the p-auction decreases by

∑K
i=max{l−1,j−1}(γi − γi+1)(s

p
σ(i+1) −

sp
σ(i+2)) and she faces a loss unless compensated for by her payoffs in s-auction. Fur-

ther, this payoff loss will be visible only to the advertisers who joined the auction game
before the mediator and they are likely to participate in the s-auction so as to make up
for this loss. Thus, via the mediator, a part of the payoffs of the originally winning ad-
vertisers essentially gets distributed among the newly accommodated advertisers. How-
ever, when the mediator’s fitness factor f is very good, it might be a win-win situation
for everyone. Depending on how good the fitness factor f is, sometimes the payoff from
the s-auction might be enough to compensate for any loss by accommodating new ad-
vertisers. Let us consider an extreme situation when L = K and τ = σ̃. The gain in
payoff for the advertiser σ(j), j ≤ l − 1 is

γlf
K∑

i=j

(γi − γi+1)(ss
σ(j) − ss

τ(i+1)) −
K∑

i=l−1

(γi − γi+1)(s
p
σ(i+1) − sp

σ(i+2))
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Therefore as long as

f ≥
∑K

i=l−1(γi − γi+1)(s
p
σ(i+1) − sp

σ(i+2))

γl

∑K
i=j(γi − γi+1)(ss

σ(j) − ss
τ(i+1))

=

∑K
i=l−1(γi − γi+1)(s

p
σ(i+1) − sp

σ(i+2))

γl

(∑l−2
i=j(γi − γi+1)(ss

σ(j) − ss
σ(i+1)) +

∑K
i=l−1(γi − γi+1)(ss

σ(j) − ss
σ(i+2))

)

the advertiser σ(j) faces no net loss in payoff and might actually gain and similarly for
the advertisers σ(j) for j ≥ l + 1.

7 Concluding Remarks

In the present work, we have studied the emergence of diversification in the adword
market triggered by the inherent capacity constraint. We proposed and analyzed a model
where additional capacity is created by a for-profit agent who compete for a slot in the
original auction, draws traffic and runs its own sub-auction. Our study potentially indi-
cate a 3-fold diversification in the adword market in terms of (i) the emergence of new
market mechanisms, (ii) emergence of new for-profit agents, and (iii) involvement of a
wider pool of advertisers. Therefore, we should expect the internet economy to continue
to develop richer structure, with room for different types of agents and mechanisms to
coexist. In particular, the capacity constraint motivates the study of yet another model
where the additional capacity is created by the search engine itself, essentially acting as
a mediator itself and running a single combined auction. This study will be presented
in an extended version of the present work.
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Abstract. The generalized second price auction used in sponsored search
has been analyzed for models where bidders value clicks on ads. However,
advertisers do not derive value only from clicks, nor do they value clicks in
all slots equally. There is a need to understand sponsored search auctions
in a setting with more general bidder valuations, in order to encompass re-
alistic advertising objectives such as branding and conversions.

We investigate the practical scenario where bidders have a full spec-
trum of values for slots, which are not necessarily proportional to the
expected number of clicks received, and report a single scalar bid to the
generalized second price auction. We show that there always exists an
equilibrium corresponding to the VCG outcome using these full vector
values, under monotonicity conditions on the valuations of bidders and
clickthrough rates. Further, we discuss the problem of bidding strategies
leading to such efficient equilibria: contrary to the case when bidders have
one-dimensional types, bidding strategies with reasonable restrictions on
bid values do not exist.

1 Introduction and Related Work

Internet advertisers spend billions of dollars every year, and internet-search com-
panies run keyword auctions millions of times a day. Despite this, our under-
standing of these auctions is built on incredibly simple assumptions. One strik-
ing assumption is that advertisers derive their value solely from users clicking on
their ads. In reality, many advertisers care about conversions (that is, users actu-
ally completing some desired action such as buying items from their websites),
while others care about branding (that is, simply familiarizing users with the
name of the advertiser). Not all of these forms of deriving value from sponsored
search advertisements can be mapped to a value per click, or the same value-per-
click for all slots. Thus, while the value-per-click model is a reasonable first step,
it leaves open many questions. In this paper, we embark on the study of key-
word auctions in which the value-per-click assumption is removed. Rather than
modeling advertisers as having some fixed value per click, we allow them to have
a full spectrum of values for slots, which are not necessarily proportional to the
expected number of clicks received. This allows modeling, for example, advertis-
ers who value slots based on some combination of factors including conversions,
branding, and of course, clicks. Our main focus in this paper is to understand
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the implications of using a single-bid system when bidders actually have a full
spectrum of values for slots. While the VCG mechanism [7,2,4] applies to this
setting and has the advantage of being a truthful mechanism and maximizing
total efficiency (i.e. social welfare), it requires every advertiser to report a vector
of bids rather than just one single bid. In addition to placing an extra burden on
advertisers and the system infrastructure, reporting a vector of bids is a signifi-
cant departure from current bidding systems. And, how much would be gained?
In particular, when the bidding system is a generalized second price auction (es-
sentially the mechanism used in most sponsored search auctions), what can we
say about efficiency and equilibria?

If advertisers only derive value from clicks and value clicks in all slots equally,
and if the clickthrough rate of slots are advertiser-independent, the full spec-
trum of private values is the vector of clickthrough rates for the slots multi-
plied by the advertiser’s value per click. The authors in [3,6] show that under
these assumptions, the generalized second price auction (GSP) does have at least
one equilibrium corresponding to the VCG outcome. Although the techniques
used to prove these results can be generalized somewhat, e.g. to allow separa-
ble advertiser-dependent clickabilities, they cannot handle the more general case
when the value-per-click assumption is removed.More general in terms of mod-
eling bidder preferences, [1] considers a thresholded value-per-click assumption:
each advertiser has a threshold t such that she has value-per-click v for slots 1
through t, and value-per-click 0 for slots below t. In addition to capturing the
normal value-per-click model, this model also allows some notion of branding.
The authors propose a new auction mechanism which has the VCG outcome as
an equilibrium. However, this work is quite different from ours: an advertiser
is still assumed to derive positive value from clicks only, while our work allows
any ranking of slots (specifically, an advertiser’s value for an impression can be
higher for a slot with a lower clickthrough rate). Second, the authors do not
address the question of equilibria in the current GSP model; i.e., the question
of whether there are single bids corresponding to value vectors of this form that
lead to efficient equilibria under GSP.

To the best of our knowledge, our work is the first to consider such a general
form of advertiser valuations, and the effect of using a GSP auction with a single
report from each advertiser. We address the following question: Can the VCG
outcome with vector inputs be achieved as an equilibrium of the GSP auction
when bidders report a single value? In the full version of our paper, we show that
for any (reasonable) oblivious bidding strategy, there is always a set of valuations
that lead to 1

k of the optimal efficiency, where k is the number of slots, even
when all advertiser agree on the relative ranking of the slots. In §3, we show
the surprising result that when advertisers report a single bid per impression
and all agree on the ordering of the slots’ values, there exists a set of single
bids for the GSP auction that leads to the efficient VCG outcome. The same
result holds, when bids and prices are per-click (even though values need not be
per-click), and all bidders agree on the ordering of the slots’ values, in terms of
value-per-click, and this ordering agrees with the clickthrough rate ordering.
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Note that this result is more surprising than the corresponding results in
[3,6] where bidders have one-dimensional types and report a single scalar to the
system; a similar situation exists in [1] where bidders have two-dimensional types,
and are allowed to report two values to a modified GSP-like auction. In contrast,
bidders in our model have vector valuations and yet the VCG outcome can be
achieved with just a one-dimensional report to a GSP auction. In our proof of
this result, we additionally give a new, direct proof that the VCG outcome of
any auction in which every bidder wants at most one item must be envy-free.
Although this was shown in [5], we present a simpler, more accessible argument.

Our assumptions on bidders’ valuations for our equilibrium results, although
reasonable, may not always hold. In the full version of the paper, we give ex-
amples showing that without these assumptions, there exist scenarios where no
equilibrium solution exists. Finally, we address the question of whether there is
a natural bidding strategy that leads to the VCG outcome, and present some
negative results in §4.

2 Model and Problem Statement

We study a single instance of an auction for slots of a single keyword. There are n
bidders (advertisers) competing in this auction, and k slots being auctioned. Each
bidder has a vector of private values for the k slots, �vi = (v1

i , . . . , vk
i ), where vj

i is
bidder i’s value for being shown in the jth slot (vj

i is the value-per-impression in
slot j, not the value-per-click in slot j). We define �θ = (θ1, . . . , θk) as the vector
of (ad-independent) clickthrough rates in the k slots, and use these to define the
value-per-click for bidder i at slot j to be vj

i /θj . These values-per-click may be
meaningless quantities, such as for bidders who value impressions. This model
is the most general model of private bidder valuations for the sponsored search
setting. Specifically, it subsumes two important models used in prior work:

• vj
i = θjvii: This is the model used in [3,6], and says that bidder i has a

value-per-click vii, and her value (per impression) for slot j is the expected
clickthrough rate of slot j times her value-per-click. It is easy to see that
advertiser-dependent clickthrough rates, which we denote by μi, can be ac-
counted for by multiplying it by the value-per-click.

• vj
i = θjvii for j ≤ ti, and vj

i = 0 otherwise: This is the thresholded value
model studied in the work on position auctions in [1], and says that advertiser
i has a uniform value-per-click vii until position ti; his value for clicks in slots
beyond ti is 0.

There are two important kinds of bidder valuations not covered in previous
models: (1) Bidders may have different per-click values in different slots, (for
example, due to different conversion rates). (2) Bidders may have values not
based on the number of clicks received; for example, advertisers concerned only
with branding may not have a value proportional to the number of clicks received
at all, but rather simply to the position in which they are displayed. Our model
allows for both these kinds of bidder valuations.
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Advertisers’ private values are monotone if they all agree on the ordering of
the slots’ values. That is, there is an ordering of the slots 1, 2, . . . , k such that
every bidder values slot i at least as much as slot j for i ≤ j, i.e., vi

� ≥ vj
� for all

� = 1, . . . , n, 1 ≤ i ≤ j ≤ k. Private values are strictly monotone if in addition
to being monotone, for all � and i �= j, vi

� �= vj
� unless vj

� = 0. In other words,
each advertiser’s values for slots 1,2,...,k are strictly decreasing, until the value
becomes 0, at which point the values remain 0. Advertisers’ private values are
click-monotone if they all agree on the ordering of the slots’ values, in terms of
value-per-click, and this ordering agrees with the clickthrough rate. That is, there
is an ordering of the slots such that θ1 ≥ θ2 ≥ ... ≥ θk and for all i ≤ j and for
every bidder �, bidder �’s value-per-click for slot i is at least as high as her value-
per-click for slot j, i.e., vi

�/θi ≥ vj
�/θj . These values are strictly click-monotone

if in addition to being click-monotone, for all � and i �= j, vi
�/θi �= vj

�/θj unless
vj

�/θj = 0.

Auction Model: We consider two auction models. The first is based on bid-
ding and paying per impression. This is preferable for a few reasons: first, ad-
vertisers’ values need not be click-based at all; a per-impression bid simply says
how much the advertiser values winning a slot in that auction, without saying
that the value comes from clicks. The VCG mechanism computes allocations
based on per-impression values. Also, the per-impression bid model makes no
assumptions about the clickability of ads or slots. However, real internet auc-
tions require bidders to report a value-per-click, not a value per impression; the
value-per-impression is assumed to be the product of the value-per-click times
the clickthrough rate. Hence, we consider this auction as well, giving analogous
results for both auctions throughout. We now describe both models, which we
refer to as single-bid auctions to emphasize that they require bidders to use a
single bid to represent a full spectrum of private values.

We refer to the pay-per-impression auction as GSP�v, since it is the standard
generalized second price (GSP) auction in which bidders pay for impressions.
We assume that the auctioneer knows the ranking of the slots according to the
monotone bidder values, and we assume that slots are numbered 1, . . . , k, in
this order. In GSP�v, every bidder submits a single bid bi to the auctioneer,
despite having a vector of values that may not be possible to represent with a
single value (here, bi is a bid-per-impression). Bidders are assigned to slots in
decreasing order of bids bi, i.e., the bidder with the highest bi is assigned slot
1, and so on. Slots are priced according to the generalized second price auction
(GSP), i.e., a bidder in slot j pays b[j+1] (where b[j] denotes the jth largest bi),
which is the bid of the bidder in the slot below. In the case of ties, we assume
that the auctioneer is allowed to break ties in whatever way he chooses; generally,
this will be at random. If the number of bidders is not greater than the number
of slots, we will simply insert imaginary bidders, each bidding 0. So we may
assume that n > k. Any bidder not assigned to one of the first k slots is simply
not shown. For convenience, we allow bidders to be “assigned” to slots beyond
the k-th— this is equivalent to not being shown.
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We refer to the pay-per-click auction as GSP�c (see [3]). In GSP�c, each bidder
submits a bid per-click, which the auctioneer puts in order. The ith-place bidder
then pays a price equal to b[i+1] every time a user clicks on her ad. In line with
previous work, we assume that each slot has a fixed clickthrough rate, θj (for
slot j). We say the clickthrough rates are independent if any advertiser placed in
slot j will receive, in expectation, precisely θj clicks. Thus, if advertiser i is the
j-th place bidder, she will be placed in slot j and pay a total of θjb[j+1], netting
a utility of vj

i − θjb[j+1].

VCG allocation and pricing: When bidders are allowed to report their full
vector of valuations, the VCG mechanism can be applied to truthfully produce
an efficient allocation. Let G be a bipartite graph with advertisers on one side
and slots on the other. The weight of edge (i, j) between bidder i and slot j has
weight vj

i . The VCG allocation computes the maximum weight matching on this
graph, and assigns advertisers to slots according to this matching. We will use
M to denote the maximum matching on G, M to denote the weight of matching
M, and number advertisers so that bidder i is assigned to slot i. Let M−i denote
the weight of the maximum weight matching on G when all edges incident to
bidder i are removed. Then pi, the VCG price for bidder i, is pi = M−i +vi

i −M .

3 Equilibrium with Single Bids

We prove the following surprising result: the (full-spectrum) VCG outcome is also
an envy-free equilibrium of GSP�c [and of GSP�v] so long as the values are strictly
click-monotone [respectively, strictly monotone]. An envy-free outcome is an
outcome where for every bidder i, vi

i−pi ≥ 0, and for every slot j, vi
i−pi ≥ vj

i −pj ,
where pj is the (current) price for slot j. That is, bidder i (weakly) prefers slot
i at price pi to slot j at price pj, for all j �= i.

Our proof is comprised of two main parts. In the first part, we show that when
the values are strictly click-monotone [respectively, strictly monotone], any envy-
free outcome is a realizable equilibrium in GSP�c [resp., GSP�v]. The second part
gives a direct proof that the VCG outcome is always envy-free in auctions that
match bidders to at most one item each (this proof holds even when the spectrum
of values are not monotone).

Theorem 1. Any envy-free outcome on k slots and n > k bidders in which
prices are nonnegative and values are strictly click-monotone [resp., strictly
monotone] is a realizable equilibrium in GSP�c [resp., GSP�v].1

Proof. We give the proof for the GSP�c auction. The proof for the GSP�v follows
by setting θj = 1 for all slots j. As above, label bidders so that the envy-free
outcome we consider assigns bidder i to slot i, at price pi (pi is a price per-
impression, or simply the cost of slot i). We construct an equilibrium in GSP�c

1 For technical reasons, we say an envy-free outcome is a realizable equilibrium so long
as there is a set of bids leading to an equilibrium that agrees with the outcome for
every bidder having nonzero value for her slot.
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as follows: bidder j bids pj−1/θj−1 for all j (for convenience, we set p0 > p1,
θ0 > θ1, and for all j > k, pj = 0, θj = 1).

First, we show that the ranking according to the bids assigns bidders the same
position as in the envy-free outcome. Precisely, the jth largest bid is indeed bj .
; however, there may be ties. Hence, according to GSP�c, bidder j is assigned
slot j at a price bj+1θj = pj , for j = 1, . . . , k, assuming that the auctioneer
breaks ties in the “right” way. We now appeal to the fact that values are strictly
click-monotone to remove this assumption.

Further, recall that pi = bi+1θi. We first show that pi/θi ≥ pj/θj for all
i < j (which shows that bi+1 ≥ bj+1). Suppose i < j. By definition of an

envy-free outcome, vj
j −pj ≥ vi

j −pi, which implies θj

(
vj

j

θj
− pj

θj

)
≥ θi

(
vi

j

θi
− pi

θi

)

≥ θj

(
vi

j

θi
− pi

θi

)
≥ θj

(
vj

j

θj
− pi

θi

)
. This implies pi

θi
≥ pj

θj
. We see equality can occur

only if vj
j = 0.

We now show that bidding ties occur only when both bids are 0, and the
bidders have no value for the slots they are tied for. To see this, first note that if
vj

j = 0, then pj = 0, by the envy-free condition, hence pj/θj = 0. Hence, if i < j

and pi/θi = pj/θj, it must be the case that vj
j = 0, implying pi/θi = pj/θj = 0.

That is, bids are tied only when both bids are 0. Suppose bidder j bids 0. We
will show that vj

j = 0. To this end, notice that bidder j bids pj−1/θj−1 = 0,
which implies pj/θj = 0, from the above argument. So pj−1 = pj = 0. By the
envy-free condition, vj−1

j − pj−1 ≤ vj
j − pj, hence vj−1

j ≤ vj
j . But this violates

strict click-monotonicity, unless vj−1
j = vj

j = 0. Hence, bidder j has value 0 for
slot j. Putting this together, we see that the auctioneer only breaks ties between
bidders that bid 0, and have no value for any slot they are tied for. (Hence, these
ties may be broken arbitrarily and still satisfy our goal.)

We finish by showing that this envy-free outcome is indeed an equilibrium.
Suppose bidder i bids lower, so she gets slot j > i rather than i. She then pays
pj , and by definition of envy-free, does not increase her utility. On the other
hand, if bidder i bids higher, getting slot j < i, then she pays pj−1, with utility
vj

i − pj−1 ≤ vj
i − pj ≤ vi

i − pi, since prices decrease with slot rankings.

Next we show that the VCG outcome is envy-free in auctions that match each
bidder to at most one item, even when the values are not monotone. We do not
need clickthrough rates here at all, since the VCG price is simply a price per
slot, or per-impression.

Lemma 1. If advertiser j is assigned to slot j in a maximum matching, M−j ≥
M−i + vj

i − vj
j .

Proof. The proof of the lemma takes a maximum matching of G with i removed,
and uses it to produce a matching of G with only j removed. This new matching
will have weight at least M−i + vj

i − vj
j , showing that M−j must also be at least

this large.
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Fix a maximum matching of G with i removed, call it M−i. If there is more
than one such maximum matching, we will take M−i to be one in which adver-
tiser j is matched to slot j, if such a maximum matching exists. Either advertiser
j is matched to slot j in M−i or not. We consider each case in turn. Case I:
Bidder j is assigned to slot j in M−i. In this case, simply remove the edge from
advertiser j to slot j in M−i, and add the edge from advertiser i to slot j.
This is now a matching on G without j, and its total weight is M−i + vj

i − vj
j .

Hence, M−j ≥ M−j + vj
i − vj

j . Case II: Bidder j is not assigned to slot j in
M−i. Again, we will construct a matching for G without j, in a somewhat more
complicated way. We first observe that removing advertiser i from a maximum
matching on G creates a “chain of replacements.” More precisely, let i1 be the
advertiser that is matched to slot i in M−i. Notice that i1 �= i. If i1 ≤ k, then
let i2 be the advertiser matched to slot i1 in M−i. And in general, if i� ≤ k, let
i�+1 be the advertiser matched to slot i� in M−i. Let t be the smallest index
such that advertiser it > k. Clearly, for some s < t, j = is (otherwise we would
be in Case I).

So, j = is for some s < t. For convenience, let i0 = i. Change M−i as fol-
lows: for each � = 1, 2, ..., s, remove the edge from advertiser i� to slot i�−1,
and replace it with the edge from i�−1 to i�−1. Notice that in this new match-
ing, advertiser is = j is matched to no one. It is easy to see that its weight
is M−i +

∑s
�=1 v

i�−1
i�−1

−
∑s

�=1 v
i�−1
i�

. Since M is a maximum matching, we see
∑s

�=1 v
i�−1
i�−1

+ vis

is
≥

∑s
�=1 v

i�−1
i�

+ vis

i0
which implies

∑s
�=1 v

i�−1
i�−1

−
∑s

�=1 v
i�−1
i�

≥
vj

i − vj
j . Substituting, we have that M−j ≥ M−i + vj

i − vj
j . ��

Theorem 2. The VCG outcome is envy-free, even when bidder values are not
monotone.

Proof. As always, we assume without loss of generality that bidder i is assigned
to slot i in the VCG outcome, for i = 1, . . . , k. Recall that the price set in the
VCG outcome for bidder j is pj = M−j −M +vj

j . Hence, from our lemma above,
we have that for all i, j, vj

i − pj = vj
i − M−j + M − vj

j ≤ vj
i − (M−i + vj

i − vj
j )

+M − vj
j = M − M−i = vi

i − pi. Furthermore, vi
i − pi = M − M−i ≥ 0. That is,

the VCG outcome is envy-free. ��

Theorem 3. When bidder values are strictly click-monotone [resp., strictly
monotone], there exists an equilibrium of GSP�c [resp., GSP�v] that corresponds
to the welfare-maximizing outcome, i.e., the VCG outcome.

4 Bidding Strategies

We consider the following question: while the VCG outcome is indeed realiz-
able as an efficient equilibrium of single-bid auctions, is there a natural bidding
strategy for bidders, such that when all bidders bid according to this strategy in
repeated auctions for the same keyword, they converge to this efficient outcome?
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We define an history-independent bidding strategy, g, to be a set of functions
g1, ..., gn, one for each bidder i, where gi takes the bids �b from the previous
round of the auction, together with the vector of private values �vi, and outputs
a nonnegative real number, which is the bid of player i.2 We call the history-
independent strategy myopic if the value of gi does not depend on the bid of
player i from the last round. Finally, we say a vector of bids �b is a fixed point for
history-independent strategy g, if after bidding �b, the bidding strategy continues
to output that same vector of bids �b, i.e., gi(�b;�vi) = �b. Throughout this section,
we will focus primarily on GSP�v for clarity, although the results also hold for
GSP�c.

First, we show that for any bidding strategy that always has an envy-free fixed
point, there are value vectors where bidders must bid more than their maximum
value over all slots. This puts them at risk to lose money (i.e., have negative
utility) if other bidders change their bids, or new bidders join the auction. We
call a strategy safe if it never require bidders to bid beyond their maximum
value. Although it would not be surprising to see bidders occasionally bid values
that are not safe, it seems questionable whether they would continue to bid this
way repeatedly. The proof appears in the full version of this paper.

Theorem 4. There is no safe, history-independent bidding strategy that always
has an envy-free fixed point whenever the private values are strictly monotonic.

We further show that no bidding strategy has the VCG outcome as a fixed
point, under a few minor assumptions that stem from our need to stop bid-
ders from encoding information in their bids, artificially allowing the players to
calculate the fixed point and bid accordingly. Recall that when the values are
strictly monotone, all non-zero VCG bids are distinct and determined. Further,
the highest bidder is free to bid any value larger than some quantity (determined
by the VCG prices).

Theorem 5. There is no myopic bidding strategy that always attains the VCG
outcome as a fixed point, even if that VCG outcome does not require bidders to
bid above their maximum value over all slots.

5 Discussion

This work raises several questions. First, what are bidder values really like? How
much do they deviate from the one-dimensional assumption? And, do they satisfy
the conditions under which we show GSP�c to have an efficient equilibrium? Note
also that our conditions for existence of efficient equilibria are sufficient, but
not necessary: the question of necessary conditions for the existence of efficient
equilibria in GSP�c is open. Also, under what conditions on bidder values do there
exist simple bidding strategies that converge to the efficient outcome? There is
a tradeoff between expressiveness, and the overhead imposed on bidders and the
2 Notice that our definition actually allows a kind of collaboration between bidders,

despite the fact that in practice, we do not expect this to happen.
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mechanism: at one extreme, a full vector of bids can be accepted, but this imposes
a severe burden on both bidders, and the bidding system, which must compute
allocations and prices for millions of auctions everyday. At the other extreme is
the current system, which arguably is not expressive enough- bidders with widely
varying types might be forced to report a single number to the system, leading to
possible instability and inefficiency. The question of choosing the right tradeoff
is a problem ripe with opportunity for experimental and theoretical research.
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Abstract. The choice of a bidding language is crucial in auction design
in order to correctly capture bidder utilities. We propose a new bidding
model for the Adwords auctions of search engine advertisement – de-
creasing valuation bids. This provides a richer language than the current
model for advertisers to convey their preferences. Besides providing more
expressivity, our bidding model has two additional advantages: It is an
add-on to the standard model, and retains its simplicity of expression.
Furthermore, it allows efficient algorithms – we show that the greedy
(highest bid) algorithm retains its factor of 1/2 from the standard bid-
ding model, and also provide an optimal allocation algorithm with a
factor of 1-1/e (as is case in the standard bidding model).

We also show how these bidding languages achieve a good trade-off
between expressivity and complexity – we demonstrate a slight general-
ization of these models for which the greedy allocation algorithm has an
arbitrarily bad competitive ratio.

1 Introduction

One of the most important design parameters in auction design is the choice of
a bidding language. This is the interface provided to the bidders by the seller,
which allows them to express their preferences to the seller. There is always a
trade-off in this choice. The more complex a bidding language is, the better can
it capture bidder preferences, and indirectly, the better it is for the seller. But
at the same time, it is essential to have a simple bidding language, so that the
bidders will be able to translate their innate preferences into the language in the
first place. Simplicity of expression is not the only reason preventing us from
choosing highly complex bidding languages. A second reason is computational:
Even if the bidders express their preferences in a complex bidding language, it
may be impossible for the seller to process such complex preferences and decide
on an optimal (or even a good) outcome efficiently. Such a trade-off becomes
apparent in the design of complex auctions, and has been studied in detail, for
example, in the case of combinatorial auctions [4].

In this paper we are interested in the study of the Adwords auctions of search
engines such as Google, Yahoo! and MSN with respect to the issue of bidding
� Work done while the author was at IBM Almaden Research Center, San Jose, CA.
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languages. These auctions, which account for a large portion of the extremely
high revenues of these companies, sell keyword search queries to interested ad-
vertisers. These are online auctions, in which the bidders (advertisers) express
their preferences to the search engines in advance, and as users enter keyword
queries, the search engine decides whose ad to display with the search results.

The bidding languages currently provided by the search engines are of the
following form: A bidder i can bid, for each keyword q he is interested in, a
monetary bid biq, expressing the value he gets if his ad is displayed with search
results for queries of type q. Together with the bids, the bidder is also allowed
to report a daily global budget Bi, which means that over all the keywords, he is
not willing to spend more than Bi.

While this bidding model does capture the essential features of advertiser pref-
erences, namely, the individual bids and a global budget, it fails to express more
complex constraints that the advertisers may have. For example, the advertiser
may not want to be in a situation in which he wins many ad slots, but all of
them for queries of the same single keyword. He would prefer to have diversity,
in the sense of winning a reasonable amount of ad slots for several different key-
words of his choice. There are two reasons to expect real advertisers to have such
preferences: firstly, advertisers may wish to make their presence felt in several
different sub-markets at the same time, and sell different products at comparable
rates. Secondly, there are situations in which advertisers have decreasing mar-
ginal utility from subsequent advertisements, e.g., once the ad reaches a certain
fraction of the target audience.

It is important to find expressive, yet simple and practically implementable
bidding languages which would provide bidders with more control to express
such preferences. Note that it is not even possible to simulate such preferences
in the current bidding model, say by splitting into several different accounts. We
stress the following four properties of our model: Firstly, our bidding model
is an add-on to the current model, and hence can be gradually introduced on
top of the current model. Bidders may choose to continue bidding as they did in
the current model if they prefer. Secondly, as our results show, there may be no
need to change the allocation algorithms used by the search engine, even upon
introducing the new bidding model. Thirdly, the better expressivity will, in our
opinion, allow the bidders to bid with more control and less risk, and therefore
more aggressively, indirectly improving the revenue of the search engine. Finally,
we believe that this model may lead to less fluctuations in the bids, as opposed
to the current model in which bidders may dynamically change their bids as
they win certain number of queries.

We note that the importance of expressiveness to achieve efficiency and in-
creased revenue has been studied earlier in the context of Ad auctions [5]. A
notion of spending constraints was introduced in [1] in the context market equi-
librium. There the utility of a bidder for the next item of a good depended on
how much money he had already spent on that good. In the first price auc-
tion setting, spending constraints would translate to the constraints used in our
setting.
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2 A New Bidding Language: Decreasing Valuation Bids

In this paper we propose a new bidding language for the Adwords auctions,
designed to express the type of preferences outlined above. We state the model
in full generality, but also specify an important special case which is practical,
simple to use (e.g. via a simple GUI), and has low communication overhead.

In the decreasing valuations bid model, bidder i bids the following:

– A global daily budget Bi.
– For each keyword w he is interested in, a decreasing function fi,w : Z+ → R,

which is to be interpreted as follows: If bidder i has already been allocated x
number of queries of keyword w, then his bid for the next query of keyword
w is fiw(x).

Note that the current model only allows constant functions fiw(x) = biw, ∀x. A
simple and practical special case of our model is one which allows only functions
of the form

fiw(x) =

{
biw if x ≤ tiw

0 otherwise

This special case means that bidder i values each of the first tiw queries of
keyword w at biw each, but does not want more than tiw of w’s . We shall call
this special case the case of keyword-budgets.

3 Results in the New Models

Better expressivity is clearly better for the bidder (as long as the language re-
mains simple enough to understand). So with the introduction of this new models
of bidding languages, the question which arises naturally is: How does this affect
the search engine’s profits?

Intuitively, it is clear that the bidders will now be able to bid with more control
and therefore face less risk, and will bid more aggressively.This is clearly better for
the search engine, in terms of the optimal profit (OPT) derivable from the bidders.
Butwhat if the bidding language introduces computationally difficult problems for
the search engine? Then it will not be able to efficiently extract a good portion of
the OPT as profit. We show that our models do not introduce such computational
difficulties, by describing optimal algorithms in the first price setting, whose com-
petitive ratio (in an online competitive analysis model) is 1 − 1/e, as good as that
of the optimal algorithm [3] in the standard model. We also show that the natural
greedy algorithm retains its competitive ratio of 1/2.

We also show that our bidding language is at the correct trade-off point between
expressivity, simplicity and computational efficiency. Simple generalizations of our
bidding model (by adding more expressivity) result in computational problems for
which no algorithms can perform better than a factor of 1/2, and for which the
natural Greedy algorithm has an arbitrarily bad factor.
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3.1 Our Techniques

The algorithm we analyze in the new model is precisely the algorithm from [3]
for the standard bidding model. For each arriving query, this algorithm (which
we will call MSVV) determines the effective bid of each bidder as his bid for the
query scaled by a function ψ of the fraction of budget that the bidder has spent
so far (the function is ψ(x) = 1−e−(1−x)). Then the algorithm awards the query
to the bidder with maximum effective bid. It is shown in [3] that this algorithm
has a competitive ratio of 1 − 1/e in the standard bidding model, and that this
is optimal (even over randomized algorithms). We show that the same algorithm
has the same factor even in our generalized bidding models. Clearly it is optimal
since our models are more general than the standard model.

Our proof technique follows the proofs in [3]. In that proof, the main idea
was to show that for each query q, the algorithm gets some effective amount of
money (which is the real money scaled by some factor depending on ψ) which is
comparable to an effective amount that OPT gains for q. This kind of query-by-
query analysis is not possible here, since the bid of a bidder i for a query q itself
depends on how many other queries of that type have already been allocated
to him. Thus the bid depends on the context in which q arrives with respect to
the previous choices of the algorithm. We take care of this by a careful charging
argument: we demonstrate the existence of a map between the queries that OPT
assigns and the queries that ALG assigns (not necessarily to the same bidder).
This helps us show sufficient profit for ALG. The analysis in [3] can be thought
of as the special case when this map is the identity map.

4 Analysis of Greedy and MSVV

We show that the Greedy algorithm, which assigns a query to the bidder with
current highest bid retains its competitive ratio of 1/2 (Proof in the full version).

Theorem 1. The competitive ratio of Greedy algorithm in the decreasing val-
uation bid model is 1/2.

Now we will analyze the performance of the MSVV algorithm in the decreasing
bids model. Let us recall the algorithm in the standard model (without decreas-
ing bids). For clarification, we will use w to name a keyword, and q to name a
query – a query q can be of type w.

The Algorithm: For the next query q (of type w) compute the effective bid of
bidder i as: biwψ(y) where y is the fraction of budget spent by i, and ψ(y) =
1 − e−(1−y). Award q to the bidder with the highest effective bid.

In the decreasing bids model, the effective bid becomes: fiw(x)ψ(y). where x
is the number of queries of keyword w already allocated to i.

We will prove the following theorem:

Theorem 2. MSVV achieves a factor of 1 − 1/e.
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We will follow the proof structure as in [3]. The crucial difference in the proof is
in a careful charging via a well-chosen map between queries. We start with some
preliminary notation from [3].

Start by picking a large integer parameter k. Define the type of a bidder ac-
cording to the fraction of budget spent by that bidder at the end of the algorithm
MSVV: say that the bidder is of type j if the fraction of his budget spent at the
end of the algorithm lies in the range ((j − 1)/k, j/k]. Slab i of a bidder is the
portion of money spent in [(i − 1)/k, i/k] fraction of his budget.

As in [3], Wlog we can assume that budgets of all the bidders are same (say
N). Also, let αj denote the number of bidders of type j. Let βi denote the total
money spent by the bidders from slab i in the run of the algorithm. It is easy to
see that β1 = N/k, and

∀ 2 ≤ i ≤ k, βi = N/k − (α1 + . . . + αi−1)/k (1)

Let ALG(q) (OPT (q)) denote the revenue earned by the algorithm (OPT)
for query q. Say that a query q is of type i if OPT assigns it to a bidder of type
i, and say that q lies in slab i if the algorithm pays for it from slab i.

This concludes the notation from [3]. Fix a keyword w, and let Qw be the set
of all queries of keyword w, and let QOPT

w be the set of queries of keyword w
assigned by OPT to all the bidders of type strictly less than k (these are the
bidders who haven’t spent all their money). We will drop the subscript w when
it is clear by context. We will use subscript i to denote the restriction of any
variable to bidder i.

Lemma 1. For each keyword w, there exists a injective map σ : QOPT
w → Qw

s.t. ∀q ∈ QOPT
w : OPT (q)ψ(type(q)) ≤ ALG(σ(q))ψ(slab(σ(q)))

Proof. In the full version.

Now we will aggregate the above result to prove the following corollary(proof
given in the full version).

Corollary 1.
∑k−1

i=1 ψ(i)(αi − βi) ≤ 0

Now, the calculations follow as in [3]: Using Corollary 1, Equation 1 and the
definition of the trade-off function ψ, we get that the loss of the algorithm is at
most OPT/e, hence proving the theorem.

5 Discussions

5.1 The Difficulty with More Expressive Models

We show that providing even slightly more (non-trivial) expressiveness leads to
computational issues. Consider the case of Group Budgets: Instead of restricting
to local budget constraints on a single keyword, the bidders are allowed to set a
local budget on a group of keywords.
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Suppose that the set of keywords is {w0, w1, .., wk}. Let cw represent the
number of queries of keyword w. Consider the following instance: There is a
single bidder and his bid on all the keywords is one dollar. His budget is t ∗ k,
and has following k constraints on group of keywords:

∀i ∈ [1, k], cw0 + cwi ≤ t
Now consider the two sequence of queries (w0 t times) and (w0 t times, w1 t

times, .., wk t times). Its easy to see that: No randomized algorithm can do bet-
ter than 1/2 on both the sequences. Also Greedy has a factor 1/k on the second
sequence. Thus the extension to group budgets loses the computational possibil-
ities available in our decreasing bids model. We believe that our bidding model
achieves the correct trade-off between simplicity, expressivity and computational
complexity.

5.2 Beyond the Factor 1 − 1/e When Bids Are Strictly Decreasing

We now show how tightening Corollary 1 helps in getting bounds better than
1-1/e. Later we will try to see the conditions which tighten the Corollary 1.

Suppose we had that
∑k−1

i=1 ψ(i)(αi −βi) ≤ −x. This (−x) goes directly to the
objective function of the dual LP considered in the analysis of MSVV (see[3] for
details). Since the objective function of the dual represents the maximum loss
of the algorithm as compared to OPT, hence the total loss becomes OPT

e − x,
and the competive ratio of the algorithm will be (1 − 1

e + x
OPT ).

What are the cases when the x value is substantial? We believe that one case
is when the bid curves decrease rapidly. The intuition is that if for a bidder i
and keyword w, the seemingly bad case in which algorithm allocates less queries
of type w to i than OPT does, is actually a good case. This is so because OPT
derives much lesser profit for the extra queries (since they are farther in the bid-
curve), while ALG allocates these elsewhere, more profitably. Characterizing
this gain over 1−1/e in terms of input parameters (such as the derivative of the
bid-curves) remains an open question. Similarly, we expect the performance of
Greedy to be better than 1/2 in such cases.
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Abstract. This paper presents an online sponsored search auction that motivates
advertisers to report their true budget, arrival time, departure time, and value per
click. The auction is based on a modified Multi-Armed Bandit (MAB) mechanism
that allows for advertisers who arrive and depart in an online fashion, have a value
per click, and are budget constrained.

In tackling the problem of truthful budget, arrival and departure times, it turns
out that it is not possible to achieve truthfulness in the classical sense (which we
show in a companion paper). As such, we define a new concept called δ-gain.
δ-gain bounds the utility a player can gain by lying as opposed to his utility when
telling the truth. Building on the δ-gain concept we define another new concept
called relative ε-gain, which bounds the relative ratio of the gain a player can
achieve by lying with respect to his true utility. We argue that for many practical
applications if the δ-gain and or the relative ε-gain are small, then players will
not invest time and effort in making strategic choices but will truthtell as a default
strategy. These concepts capture the essence of dominant strategy mechanisms as
they lead the advertiser to choose truthtelling over other strategies.

In order to achieve δ-gain truthful mechanism this paper also presents a new
payment scheme, Time series Truthful Payment Scheme (TTPS), for an online
budget-constrained auction mechanism. The payment scheme is a generaliza-
tion of the VCG principles for an online scheduling environment with budgeted
players.

Using the concepts of δ-gain truthful we present the only known budget-
constrained sponsored search auction with truthful guarantees on budget, arrivals,
departures, and valuations. Previous works that deal with advertiser budgets only
deal with the non-strategic case.

1 Introduction

With the advent of advertising as a pillar [7] of Internet commerce, there is an acute
need for improved means of increasing the value achieved by advertising agencies. In
the increasingly competitive and high stakes duel between the main advertising search
engines (Google, Microsoft and Yahoo!) every bit of advantage is important.

In this competition mechanism design is an important part of optimizing the mon-
etization of search advertising. Mechanism design allows us to define allocations and
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payments that maximize the welfare of participants. In doing so search engines can at-
tract advertisers who have a strong interest (high valuation) in users interacting with
their ad placements.

1.1 Problem Setting Considerations

The main tool that a mechanism designer can bring to the table is preference elicita-
tion which essentially means finding incentives (via payment rules) that motivate the
participants to honestly report their valuations for any possible allocation.

Indeed, in assuming that advertisers have a known valuation per click as well as a
bounded budget, many authors have suggested algorithms that increase welfare for the
search engine e.g., [1]. Some authors have even suggested mechanisms which do not
assume the knowledge of CTRs but learn them while running the algorithm [17].

However we argue that the assumption of known valuations is unrealistic. In practice
advertisers’ values are private information and hence advertisers might be motivated
to act strategically to increase their utility. In [11] we suggest a truthful multi-armed
bandit (MAB) mechanism for the case where advertisers have no budget and are always
available to show an ad. Furthermore, [11] allows the different slots (possible places to
display an ad) to be of different quality (although the slot quality ratio is unrelated to
the advertiser).

In this paper we make the restricting assumption that the slots are of equal quality.
This assumption is not necessary other than to manage the complexity of the algo-
rithm’s presentation and allows us to express the essential elements of the model where
advertisers have budget constraints as well as time constraints. We believe that this sce-
nario captures the core nature of advertising. For example, advertisers commonly value
a click through more highly in the pre-Christmas gift season than during the rest of the
year.

Our follow-on paper [13] creates an auction that is truthful in budget, arrival, depar-
ture, and valuation while recognizing that slots are not of equal quality.

The budget constraint is harder to justify theoretically, inasmuch as what is important
is the marginal utility from additional clicks. However, budgets decrease advertiser risk
and are a standard assumption in the theory as well as a standard assumption in practice.
Advertiser budgets cause a theoretical difficulty in that it is well known [6] that it is
impossible to maximize welfare given the existence of budget constraints. Even when
advertisers are time constrained in addition to being budget constrained [10]. Hence, we
define our approximation relative to the optimal allocation under budget constraints.

Four parameters are assigned to each participant; arrival time, departure time, value
per click, and budget. These parameters are private information that must be reported
to the mechanism. Our results take another step toward capturing reality by allowing
advertisers multiple arrivals and departures to and from the system.

Some of these parameters pose special challenges. For instance the arrival and de-
parture times pose a challenge as [16] showed in a different context that it is impossible
to achieve a truthful scheduling mechanism. [16]’s scheduling problem can hint that in
our setting, there exists an impossibility of scheduling advertisers who desire a single
impression with a value per click that is identical to their budget.
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Fortunately, in our setting, it is quite sensible to assume, as in [15], that the budget is
much larger than the value for a single click. In [10] we extended [16]’s impossibility
to apply to budget-constrained sponsored search auctions and to apply even when the
above assumption is made. Nevertheless assuming that the budget is much larger than
the value per click allows us, together with the new payment scheme (TTPS), to bound
the number of ”free” clicks a player can receive by lying.

In order to formalize this intuition we define two new concepts which we call δ-gain
and relative ε-gain. δ-gain is a bound on the utility gain that a player can achieve by
lying independent of the lie’s size. In contrast to prior work which bounded the size of
a lie, δ-gain allows lies to be arbitrarily large. We argue that if the maximum utility gain
from a lie is small (in our case O(value)) then players will forgo this risky gain in favor
of the simplicity of truthtelling. Our mechanism has the additional property that this
gain can only be achieved at the risk of hazarding the entire budget. To express this we
define the relative ε-gain concept which not only ensures a small additive gain in utility
but also ensures that the relative gain is small with respect to the total utility achieved
when acting truthfully. We believe that the above definitions are of independent interest
and can be applied to a range of other mechanism design problems.

We assume throughout this paper that an advertiser has zero value if his ad is not
clicked on1. Under this assumption the value to the advertiser is the value per click ×
CTR.

1.2 Selection of Underlying Bandit Algorithm

Since the advertising search engine is assumed to be interested in maximizing welfare,
which depends on the CTR as well as on the private values of the advertisers, it is
natural to cast the problem as a multi armed bandit.

The multi-armed bandit is a well-studied problem [3] which deals with the balancing
of exploration and exploitation in online problems with multiple possible solutions. In
the simplest version of the MAB problem a user must choose at each stage (the number
of stages is known in advance) a single bandit/arm. This bandit will yield a reward
which depends on some hidden distribution. The user must then choose whether to
exploit the currently best known distribution or to attempt to gather more information
on a distribution that currently appears suboptimal. The MAB is known to be solvable
via the Gittins [9] index and there are solutions which approximate the optimal expected
payoff. We choose to generalize the MAB solution in [8] dues to its simplicity and
optimal sampling complexity. Our solution retains the sample complexity of [8] (what
we call the suboptimal exposure complexity) and hence is sample complexity optimal.

Since we want to elicit the private information of the advertisers we must design
a MAB which is truthful. Models of imperfect and symmetric information for prices
have been extensively studied recently, e.g., [4]. The MAB has been recently studied in
a more general setting by [5] but using a weaker notion of truthfulness.

Although the MAB has been extensively studied it has generally been studied in
the context of a single user choosing from non-strategic arms [14] even when studied
in the context of slot auctions [17]. In [11] we constructed a truthful MAB under the

1 In practice some advertisers are interested in rasing visibility.
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assumption that the only private valuation was the value of an advertiser (although
in contrast to the current work we allowed slots of different quality). The mechanism
was called the Multi-Armed truthFul bandIt Auction (MAFIA) and hence the current
mechanism is called Budgeted Multi-Armed truthFul bandIt Auction (B-MAFIA).

In the context of an online keyword auction the arms/advertisers will act as strategic
utility maximizing agents who will be the slots for the MAB. Our mechanism will also
achieve a good approximation of the optimal welfare (under budget constraints) and
hence improves over current methods of sampling and/or heuristic-based modeling.

2 The Model

In our model a set N of risk neutral, utility-maximizing advertisers bid for advertising
slots based on a keyword (|N | = n). This paper focuses on the bidding process for a
single keyword, as multiple keywords are analogous in current mechanisms. It is there-
fore supposed w.l.o.g. that the keyword appears at every time t. Whenever that keyword
appears in the search at time t, Kt

2 slots of advertisements appear in the results.
The advertisers arrive and depart the system in an online manner and may arrive and

depart several times. St denotes the set of advertisers present in the system at time t.
Each advertiser i has a private value for each click through (independent of the slot the
ad originally appeared in) which is denoted by vi. For every arrival and departure each
advertiser i also has a privately known arrival and departure times, denoted ai and li
respectively, and a privately known budget denoted bi.

The algorithm runs from time starting at t = 1 and ending at t = T . Each time
period is called a round. During each round, the algorithm allocates advertisers to the
Kt slots (or if there are too many slots to some portion of the slots). When advertiser
i appears in a slot during some time period t we say that i received an impression. We
denote the number of impressions (plus 1) that advertiser i receives from i’s first arrival
by ei. We also denote the number of clicks that advertiser i received during his current
stay in the system by ωi.

In this paper it is assumed that the ”quality” of each slot (which is essentially the
probability of a click though if an advertisement appears in that slot) is identical in all
Kt slots and is independent of the advertisers. In our paper [11] it is assumed that the
”quality” of each slot is monotonically decreasing and is independent of the advertisers.
In our working paper [13] we show that the common assumption of that the quality of
a slot is independent of the advertiser can be relaxed.

Each advertiser i has a click through rate αi which is the probability of a click on
the advertisement given that the advertiser was allotted an impression. The value αi is
unknown to i as well as to the mechanism. Since αi is unknown to i as well as to the
mechanism, we must estimate it at each time t and denote the observed probability at
time t by αt

i. We denote the payoff of advertiser i by xt
i = vi · αt

i

Finally, by vi we denote the bid for each click-through stated by advertiser i to the
mechanism. ai, li, and bi respectively denote the arrival time, the departure time, and

2 We assume for the ease of exposition that Kt = Kt+1 = K for all time period t. We also
assume without the loss of generality that K ≤ |N | = n, since superfluous slots can remain
blank.
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the budget stated by advertiser i to the mechanism when advertiser i enters the system.
(ai and li may be reported multiple times with multiple entries).

To achieve this paper’s main claim of a truthful report of budget, time, and value,
we make the natural assumption that advertiser i’s reported budget, bi is significantly
larger than his value, i.e., bi >> vi for every advertiser. In practice this is indeed the
case for the keywords auctions currently in use3. This assumption is commonly made
even in non-strategic settings (e.g., [15]).

For ease of exposition X i denotes the vector of parameters stated by advertiser i in
a single arrival, i.e., (ai, li, vi, bi). The mechanism charges advertiser i a price denoted
pli every time i departs. At every round we charge advertiser i an “interim price’ (This
price can decrease as time goes on as well as increase.) pt

i ≤ ωi · vi, where ωi is the
number of clicks i received during his current sojourn in the system, i.e., from ai to time
t. Since our advertisers are budget constrained we denote the budget i has remaining at
time t as Bt

i ≥ 0. It is assumed that advertisers have quasi-linear utility functions4 and
consequently at each departure time advertiser i obtains utility of αli

i · (ωi · vi − pli).

2.1 Illustration of the Protocol for the Single-Slot Case

We illustrate the main idea behind our protocol for the simple case where there is only a
single slot available at any given time. In this case for each time period t we can look at
the set of available advertisers St (note that since advertisers enter and depart the system
this set might increase or decrease). For each advertiser i ∈ St we have an estimation
of i’s click through rate αt

i as well as an estimate of how accurate our estimation is, i.e.,
a bound on |αt

i − αi| which depends on the number of impressions ei that advertiser i
received. We will denote this bound by γei (the definition of γei is elaborated on below).

Consider the set St. Naturally, this set has an i such that vi∗αt
i is maximal.(In practice

we have to ensure that there is sufficient remaining budget. Details appear in the techni-
cal part of the paper.) Suppose w.l.o.g. that the maximal element is the first element that
our bandit algorithm explores (i.e., allocates a slot to). If the algorithm merely chooses
to exploit then it could just allocate the slot to the first advertiser. However, there are
other possible advertisers that are worthy of consideration. These are the advertisers j
s.t. viα

t
i −γei < vjα

t
j +γej since the errors of i and j overlap. Therefore the algorithm

allocates the slot to a random advertiser whose slot overlaps with the maximal element.
This generalization of [8] works (in a PAC sense) if the advertisers are non-strategic

(but arrive in an online fashion). Of course, if the advertisers are strategic we have to
motivate them to give the correct values. If advertisers’ arrival and departure times are
public knowledge and advertisers are not budget constrained then one could set prices
of allocated advertisers to be defined as the critical values at each time to receive the
slot, (i.e., the minimum value advertiser i can report and still be allocated to the slot)
and extract true reported values from the advertisers. However, since we do not assume
that arrival and departure times are public knowledge and our advertisers are budgeted
the incentive solution has to take a more subtle approach.

3 Typical valuations for click through are several cents while the budgets for those click throughs
are on the order of hundreds of dollars.

4 As long as their budget constrained is maintained.
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An example of the incentive problem with the naive pricing scheme and our new
pricing scheme as well as all technical details of the theorems, claims, proofs and addi-
tional references can be found in the full version of the paper at [12].
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Extending Polynomial Time Computability to

Markets with Demand Correspondences

Benton McCune�

University of Iowa
bmccune@cs.uiowa.edu

Abstract. We present a polynomial time algorithm that computes an
approximate equilibrium for any exchange economy with a demand corre-
spondence satisfying gross substitutability. Such a result was previously
known only for the case where the demand is a function, that is, at any
price, there is only one demand vctor. The case of multi valued demands
that is dealt with here arises in many settings, notably when the traders
have linear utilities.

We also show that exchange markets in the spending constraint model
have demand correspodences satisfying gross substitutability and that
they always have an equilibrium price vector with rational numbers. As
a consequence, the framework considered here leads to the first exact
polynomial time algorithm for this model.

1 Introduction

The study of market equilibria is central to microeconomic theory . Though long
serving as a cornerstone in the foundation of microeconomic theory, in the past
few decades economists have increasingly come to rely on general equilibrium
models to model real world problems [22]. General equilibrium analysis has been
applied to areas such as income tax reform and international trade policy.

Efficient algorithms for computing market equilibria would be helpful when
analyzing models with many variables. The problem of finding efficient algo-
rithms for computing market equilibria has elicited a great deal of interest from
computer scientists in recent years. In a short span of time, there has been a
good deal of progress.

In order to outline the contributions of this article to this line of work, I will
begin by providing the necessary definitions and concepts needed to discuss the
market equilibrium problem.

Definitions We consider the exchange model in detail. We are given m eco-
nomic agents or traders who trade in n goods. Let Rn

+ be the subset of Rn

where each vector has only nonnegative components. Each trader will have a
concave, typically continuous, utility function ui : Rn

+ → R+ that induces a
preference ordering on bundles of goods which are represented by vectors in Rn

+.
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Traders enter the market with an initial endowment of goods represented by
wi = (wi1, . . . , win) ∈ Rn

+. All traders then sell all their goods at the market
price and buy the most favorable bundle of goods they can afford. If all traders
do this and demand does not exceed supply, we are at an equilibrium.

More formally, a price is represented by a vector π = (π1, . . . , πn) ∈ Rn
+ with

πj signifying the price of the jth good. The bundle of goods purchased by the ith
trader is given by xi = (xi1, . . . , xin) ∈ Rn

+. We have an equilibrium price and
allocation if each trader maximizes utility subject to their budget constraints
and aggregate demand does not exceed initial endowments.

For any price vector π, not necessarily an equilibrium price, we call an xi(π)
that maximizes utility subject to budjet constraints a demand of trader i at
price π. Market or Aggregate Demand of good j at price π is defined to be
Xj(π) =

∑m
i=1 xij . We call Zj(π) = Xj(π)−

∑m
i=1 wij the market excess demand

of good j at price π. The collections X (π) = {X(π)|X(π) = (X1(π), . . . , Xn(π))}
and Z(π) = {Z(π) = Z(π) = (Z1(π), . . . , Zn(π))} are simply called market
demand and market excess demand. Note that X and Z are both mappings from
Rn

+ to 2Rn
.

We can now simply express what it means for a price π to be an equilibrium
for a market with excess demand Z. π is an equilibrium if there exist z ∈ Z(π)
such that z ≤ 0.

The property of gross substitutability has an important effect on the structure
of price equilibria and the possibility of computing market equilibria. Roughly
speaking, a market possesses the gross substitutability property if when the
prices on one set of goods are raised, demand does not decrease for the other
goods. A formal definition is provided below.

Following Polterovich and Spivak [20], we define gross substitutability (GS)
correspondences. Let π1 and π2 be price vectors for a market with n goods. We
denote I(π1, π2) = {i|π1

i = π2
i }.

We say that gross substitutability prevails for Z, or Z is a GS correspondence,
if for all π1, π2 such that π1 ≤ π2 and I(π1, π2) �= ∅, and for any z ∈ Z(π1), y ∈
Z(π2), the following relation holds

mini∈I(π1,π2)(zi − yi) ≤ 0.

That is, at least one good that has its price unchanged does not have its
demand decreased. This is an extremely mild definition for gross subsitutabil-
ity. Other definitions that one might come across (typically in cases where the
demand is assumed to be a function) are stronger and imply this one.

When equilibrium prices are irrational, algorithms cannot compute exact equi-
libria. We therefore need precise definitions of approximate equilibria which can
be computed. Roughly speaking, weak approximate equilibria occur when traders
get bundles near their optimal utility whenever the traders come close to staying
within their budget constraints.

More precisely, we say that a bundle xi ∈ Rn
+ is a μ-approximate demand of

trader i at price π if for μ ≥ 1 (this restriction on μ holds in all definitions that
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follow), if ui(xi) ≥ 1
μu∗

i and π · xi ≤ μπ · wi where u∗
i is the trader’s optimal

utility subject to the budget constraint.
Prices π and allocations x form a weak μ-approximate equlibrium if xi is a

μ-approximate demand of trader i at prices π and
∑m

i=1 xij ≤ μ
∑m

i=1 wij for
each good j. A price π is considered a weak μ-approximate equlibrium price if
if there exists x such that π and x form a weak μ-approximate equlibrium.

We call an algorithm a polynomial time algorithm if it computes a (1 + ε)-
approximate equilibrium for any ε > 0 in time that is polynomial in the input
parameters and log(1

ε ).

1.1 Results

We show that when an excess demand correspondence satisfies gross subsitutabil-
ity, a weak approximate equiilibrium can be computed in polynomial time using
the ellipsoid method. Such a result had been previously established only when
the demand was single valued. The exchange market where traders have linear
utilities is the most prominent market where the demand need not be single-
valued. Previously, this linear utilities market had to be treated as a special
case [17], but in the framework provided by this paper it is solved naturally
as merely one case of a market with a demand correspondence satisfying gross
substitutability.

The previous result on the single valued case [5] was obtained by extending
an important separation lemma [2] due to Arrow, Block, and Hurwicz. The main
techinical contribution of our result is an extension of the separation lemma of
Polterovich and Spivak [20] for the case of correspondences. This then allows the
ellipsoid method to be used to compute approximate equilibria in polynomial
time.

We also consider the spending constraint model of Vazirani and Devanur [11]
and it is shown that the demand in this model is a GS correspondence. This gives
a prominent example of a market that did not naturally fit into any other general
framework. We also show that price equilibria for the spending constraint model
are rational and can be computed exactly in polynomial time.

1.2 Related Work

In 2001, Christos Papadimitriou gave a lecture that initiated the recent computer
science research on computing market equilibria [19]. It has recently been shown
that in general, the problem of computing an equilibrium is quite thorny. Code-
notti, Saberi, Varadarajan and Ye [8] show that it is NP-hard to decide whether
a Leontief exchange economy even has an equilibrium. (For some classes of ex-
change economies, such as CES markets, it can be determined whether or not
an equilibrium exists in polynomial time [4].) Chen and Deng [9] made a major
breakthrough in algorithmic game theory when they demonstrated that finding
a Nash equilibrium in a two player game is PPAD complete. When this result
is combined with the result from [8] that reduces two-player games to a special
type of Leontief Exchange economy, we see that it is PPAD-complete to compute
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an equilibrium for markets even when they are known to exist. Huang and Teng
[16] show that the polynomial time computation of an approximate equilibrium
is not possible unless PPAD ⊂ P .

Codenotti, Pemmaraju, and Varadarajan [5] were able to expand upon the
Separation Lemma of Arrow, Block, Hurwicz [2] to compute a polynomial time
algorithm for markets where the aggregate excess demand function satisfies weak
gross subsitutability and you have the ability to efficiently compute an approxi-
mate demand. This result thus includes many of the important special cases such
as the Cobb-Douglas, and CES functions with elasticity σ ≥ 1. The framework
can be used to generate polynomial time algorithms without assuming anything
about the precise form of the utility functions other than that the excess de-
mand function will satisfy weak gross substitutability (and a few other weak
assumptions).

For a more thorough review of the literature on market equilibirum compu-
tation, see [6].

2 Preliminaries

Some more extensive definitions and basic lemmas are needed in order to pro-
ceed to the main results of the paper. This is followed by an important market
transformation which leads to the main technical contribution of the paper, a
strong separation lemma for correspondences. With this lemma, the ellipsoid
method can be used to compute approximate equilibria in polynomial time. We
then introduce the spending constraint model and show that markets in this
model fit within the framework of this paper. The final section shows that equi-
libria for markets in the spending constraint model can be computed exactly in
polynomial time.

2.1 Polterovich-Spivak Separation Lemma

Following Polterovich and Spivak [20], there are some mild, elementary assump-
tions regarding the excess demand correspondences in this paper. They can be
seen in [18]. Polterovich and Spivak [20] prove a separation lemma for correspon-
dences (that satisfy the assumptions listed above) that generalizes the important
lemma from Arrow, Block and Hurwicz [2]. The lemma is as follows

Lemma 1. Let Z be a GS correspondence. If π̂ is an equilibrium, π a price,
and z ∈ Z(π), then π̂ · z ≥ 0. If, moreover, π is not an equilibrium price, then
π̂ · z > 0.

2.2 Demand Oracle

We say that an exchange market M is equipped with a demand oracle if there
is an algorithm that takes a rational price vector π and returns a vector Y ∈ Qn

such that there is a Z(π) ∈ Z(π), with |Yj − Zj(π)| ≤ σ for all j. The algorithm
is required to run in polynomial time in the input size and log(1/σ).
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2.3 A Market Transformation

Let M be an exchange market with m traders and n goods. We then transform
market M into market M̂ by adding a phantom trader that will give us an
equilibrium price vector with a reasonably bounded price ratio. Let 0 < η ≤ 1 be
a parameter. For each trader i, the new utility functions and initial endowments
are the same as in M ′ except that there is one additional trader m + 1. We
set ŵm+1 = (ηW1, . . . , ηWn) for the initial endowment while the trader’s utility
function is the Cobb-Douglas function ûm+1(x) =

∏n
j=1 x

1/n
j . This trader will

spend 1/n-th of her budget on each good. Notice that the total amount of each
good j in the market M̂ is now Ŵj =

∑m+1
i=1 ŵij = Wj(1 + η).

The following lemma contains various useful results:

Lemma 2. – The market M̂ has an equilibrium.
– Every equilibrium π of M̂ satisfies the condition maxjπj

minjπj
≤ 2L, where L is

bounded by a polynomial in the input size of M and log(1
ε ).

– For any μ ≥ 1, a weak μ-approx equilibrium for M̂ is a a weak μ(1+η)-approx
equilibrium for M .

– M̂ has a demand oracle if M does.
– Let π and π′ be two sets of prices in Rn

+ such that |πj −π′
j | ≤ ε ·min{πj, π

′
j}

for each j, where ε > 0. Let xi be a (1 + δ)-approximate demand for trader
i at prices π. Then xi is a (1 + ε)2(1 + δ)-approximate demand for trader i
at prices π′

The ratios of largest price to smallest price must be bounded and we define some
regions where this is the case. We define the region Δ = {π ∈ Rn

+|2−L ≤ πj ≤ 1}.
Here, L is given by the second item in lemma 2 and bounded by a polynomial in
the input size of M and log(1/ε). We note that a normalized equilibrium price
for M̂ lies in Δ. Also, Δ+ = {π ∈ Rn

+|2−L − 2−L

2 ≤ πj ≤ 1 + 2−L

2 }.

3 Strong Separation Lemma for Correspondences

In this section, we present the main technical contribution of the paper, a strong
separation lemma for correspondences. This lemma strengthens Theorem 3 from
[20] in a way that is similar to how the separation lemma 3.2 in [5] strengthens
the celebrated lemma from [2]. Once this strong separation lemma is established,
the ellipsoid method will be able to produce an approximate equilibrium in
polynomial time whenever the demand is a GS correspondence.

Lemma 3. Let M be an exchange market with an excess demand Z that is a
GS correspondence and let M̂ with excess demand Z ′ be the market M with the
special Cobb-Douglas trader added. If π̂ is an equilibrium for M̂ and π̂ ∈ Δ,
z′ ∈ Z ′(π), π ∈ Δ+, and π is not a (1 + ε)-approximate equilibrium price for
M̂ . then π̂ · z′ ≥ δ where δ ≥ 2−E and E is bounded by a polynomial in the input
size of M̂ and log(1

ε ).
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For a proof of this and other theorems, see [18].
The separation lemma allows us to use the ellipsoid method to construct a

polynomial time algorithm. As stated previously, this approach follows the work
of [5] and utilizes the central-cut ellipsoid method.

The following theorem is the algorithmic result of the strong separation lemma
for correspondences.

Theorem 4. Let M be an exchange market where the excess demand is a GS
correspondence. Assume that M is equipped with a demand oracle. A polynomial-
time algorithm that given any π ∈ Rn

+ and μ > 0, asserts that π is a weak
(1+ μ)-approximate equilibrium or that π is not a weak (1 + μ/2)-approximate
equilibrium is also assumed to exist. There then exists an algorithm that takes
M, a rational ε > 0 and returns a weak (1 + ε)-approximate equilibrium price
vector in time that is polynomial in the input size of M and in log( 1

ε ).

For a thorough discussion of the central-cut ellipsoid method, see [15].

4 The Spending Constraint Model

Nikhil Devanur and Vijay Vazirani have introduced a new market model which
they call the “Spending Constraint Model” [11,12]. Their purpose in introducing
their new model is to retain weak gross substitutability, but present an efficient
algorithm for a wide class of concave utility functions. We present the spending
constraint model for the Exchange or Arrow-Debreu Market and show that our
techniques can compute equilibria for these markets in polynomial time.

There are n goods and n′ traders. Each agent i has an endowment of ei ∈
[0, 1]n. The income of the trader will be represented by mi =

∑
1≤i≤n eijπj .

There is one unit of each good in the market. For i ∈ 1, 2, . . . n and j ∈ 1, 2, . . . n′,
let f i

j : [0, mi] → R+ be the rate function of trader i for good j; the rate at
which i derives utility per unit of j received as a function of the amount of her
budget spent on j. Define gi

j : [0, mi] → R+ to be:

gi
j =

∫ x

o

f i
j(y)
πj

dy.

This function give the utility derived by trader i spending x dollars on good
j at price πj . We let j = 0 represent money, thus f i

0 and gi
0 will be used to

determine the utility of unspent money. The price of money, πo, is assumed
to be 1. Devanur and Vazirani provide a further restriction that the f i

j ’s be
decreasing step functions. In this case, the gi

j ’s will then be piecewise-linear
concave functions.

Each step of f i
j is called a segment. The set of segments defined by function f i

j

is denoted by seg(f i
j). Suppose one of these segments, s has range [a, b] ⊆ [0, mi],

and f i
j = c, for x ∈ [a, b]. Then we define value(s) = b−a, rate(s) = c, and good(s)

= j (good(0) = money.) Let segments(i) be the union of all the segments of
buyer i.
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Devanur and Vazirani also add the two following assumptions. For each good,
there is a buyer who desires it. That is, For all j ∈ 1, 2, . . . n, there is i ∈1, 2,
. . . n’ such that there is s ∈ seg(f i

j) : rate(s) > 0. Also, each buyer i wishes to
use all of her money:

∑
s∈segments(i),rate(s)>0 value(s) ≥ mi. These assumptions

will ensure that an equilibrium exists and that all equilibrium prices are positive.
With all these assumptions in place, optimal baskets for traders are easily

characterized. Bang for the Buck relative to prices π for segment s ∈ seg(f i
j), is

defined as rate(s)/πj (or just rate(s) if j = 0). Sort all segments s ∈ segments(i)
by decreasing bang per buck, and partition by equality into classes: Q1, Q2, . . ..
For a class Ql, value(Ql) is defined to be the sum of the values of segments in
it. At prices p, goods corresponding to any segment in Ql make i equally happy,
and those in Ql are desired strictly more by i than those in Ql+1. There is k
such that

∑

1≤l≤k−1

value(Ql) < e(i) ≤
∑

1≤l≤k

value(Ql).

Clearly, i’s optimal allocation, that is i’s demand, must contain all goods
corresponding to segments in Q1, . . . , Qk−1, and a bundle of goods worth mi −
(
∑

1≤l≤k−1 value(Ql)) from segments in Qk. It is said that for buyer i, at prices p,
Q1, . . . , Qk−1 are forced partitions, Qk is the flexible partition, and Qk+1, . . .
are the undesirable partitions.

Note that the possibility of a flexible partition implies that the demand of
this market need not be single-valued, it is a correspondence. It is reasonably
straightforward to show spending constraint formulation provides us with a well
defined demand correspondence with the appropriate properties[18]. We can then
prove the following lemma.

Lemma 5. A Spending constraint model exchange market M has a demand Z
that is a GS correspondence.

The proof of this lemma is similar to Vazarani’s demonstration of weak gross
subsitutability for the Fisher market with spending constraint utilities [12].

4.1 Rationality of Prices in the Spending Constraint Model

This section demonstrates that when the Spending Constraint Model has rational
input parameters, equilibirum prices will also be rational. The existence of a
rational price equilibrium along with lemma 5, lemma 1 and an extension of
the ellipsoid method due to Jain [17] will allow the computation of an exact
equilibria in polynomial time.

Lemma 6. Let M be an Spending Constraint Exchange Market with rational
input parameters. There is a rational equilibrium price vector for M . The binary
represenation of the numerator and denominator of this vector is bounded by a
polynomial in the input size.
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Vazarani [12] has proven a similar lemma for the Spending Constraint Fisher
market.

Theorem 7. Exact equilibrium prices for Spending Constraint Markets can be
computed in polynomial time.

The theorem follows from lemma 6, lemma 5, lemma 1 and a straightforward
application of Theorem 12 in [17].

Acknowledgements. I would like to acknowledge valuable and extensive dis-
cussions with Kasturi Varadarajan.
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Abstract. In addition to useful Economic interpretation, auction based
algorithms are generally found to be efficient. In this note, we observe
that the auction-based mechanism can also be used to efficiently com-
pute market equilibrium for a large class of utility functions satisfying
gross substitutability, including a range of CES (constant elasticity of
substitution) and Cobb-Douglas functions.

1 Introduction

The Market Equilibrium model is a classical problem in micro-economics. In
the late nineteenth century two market models have been studied, termed the
Fisher model [2] and the more general Walrasian model [14]. Given a set of goods
and a set of buyers who have utility for the goods, the problem is to determine
prices and allocation of the goods such that no buyer is induced to switch his
allocation. An initial endowment is provided for the buyers. In the Fisher case it
is money and in the case of the Walrasian model it is a portfolio of goods (which
may include money as a special case).

The existence of such equilibrium prices has been shown by Arrow and De-
breau, under some mild assumptions. The proof is existential, however. Since
then, there has been considerable interest in the computation of market equilib-
ria in economic models. The utility of buyer i for the goods is given by ui(Xi)
where Xi is the vector of allocation {xi1, xi2 . . . xim}. A number of utility func-
tions have been used in this context, which include linear functions, the Cobb-
Douglas functions of the form ui(x) =

∏
j(xij)aij for constants aij such that∑

j aij = 1. Another class of functions which are useful is the CES function
which is ui(x) = (

∑
j(cijxij)ρ)1/ρ where −∞ ≤ ρ ≤ 1, ρ �= 0. cij are constants.

The market equilibrium problem has been solved for a number of special cases
using a variety of algorithmic techniques. The combinatorial techniques are : (a)
primal-dual techniques algorithms based on maximum flows [4, 5] and (b) the
auction based approaches [8] (c) Other classes of iterative procedures termed
tâtonnement processes. Non-linear or convex programming techniques, which
express the equilibrium problem as a convex programming problem, may be
found in a variety of works starting from the works of Eisenberg and Gale [7, 6]
in 1959 to the works (in Russian) of Primak et al. [11–13]. . Polynomial time ap-
proximation schemes which use a tâtonnement process was recently established
in exchange economies with weak gross substitutes (WGS) utilities [3].

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, pp. 356–361, 2007.
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Auction based approaches have been shown to efficiently find (approximate)
solutions to a wide class of problems [1]. In the context of the market equilib-
rium problem, auction based approaches are a subset of tâtonnement processes
suggested in the economics literature, in fact by Walras himself. Such techniques
may be very insightful in practice. It is very desirable to design markets where
interaction of self-motivated trading agents provably leads to a market equilib-
rium in a reasonable amount of time. Auction based approaches may indeed help
in designing such markets.

The auction based approach for the market equilibrium problem presented
in [8] found an approximate solution for a market with linear utilities. Using
price-rollback, the auction approach finds an exact solution to the problem [9].
Further, path auctions improve the complexity of the algorithm to the best
known bound [9]. Auction algorithms has also been extended to non-linear case
where the utilities are separable gross substitute [10]. In this paper we show that
the basic auction mechanism of [10], can also find (1 + ε) approximate market
equilibrium for a larger class of utility function which includes CES, in the range
that CES is WGS, and Cobb-Douglas utility functions. This is significant since
this class includes functions widely used in economic models. The algorithm has
a complexity which is a function of O(1/ε).

In Section 2 we define the market model and provide a characterization of
utility functions. In Section 3 we outline our algorithm. The proof of correctness
and complexity is similar to that in [10] and is skipped.

2 Market Model

Consider a market consisting of a set of n buyers and a set of m divisible goods.
Buyer i has, initially, an amount of money equal to ei. The amount of good j
available in the market is aj . Buyer i has a utility function, Ui : RM

+ → R+ which
is non-decreasing, concave and differentiable in the range 0 ≤ Xi ≤ A where A =
(a1, a2, . . . , am). Given prices P = {p1, p2, . . . , pm} of these m goods, a buyer uses
its money to purchase goods that maximize its total utility subject to its budget
constraint. Thus a buyer i will choose an allocation Xi ≡ (xi1, xi2, . . . , xim) that
solves the following buyer program Bi(P ):

Maximize : Ui(Xi) (1)

Subject to:
∑

1≤j≤m

xijpj ≤ ei (2)

and ∀j : xij ≥ 0.
We say that the pair (X, P ), X = (X1, X2 . . . Xn) forms a market equilibrium

if (a) the vector Xi ∈ Rn
+ solves the problem Bi(P ) for all users i and (b) there

is neither a surplus or a deficiency of any good i.e., ∀j :
∑

1≤i≤n xij = aj .
The prices P are called market clearing prices and the allocation X is called

an equilibrium allocation at price P . Let vij : Rm
+ → R+ be equal to ∂Ui(Xi)

∂xij
.

Since Ui is assumed to be differentiable for all i, vij is well defined for all i, j.
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Using the theory of duality it can be shown that the optimal solution Xi to
Bi(P ) will satisfy the following:

∀i :
∑

1≤j≤m

xijpj = ei (3)

∀j : αipj ≥ vij(Xi) (4)
∀j : xij > 0 ⇒ αipj = vij(Xi) (5)

and ∀i : αi ≥ 0, ∀i, j : xij ≥ 0. The equations (3) imply that all the buyers have
exhausted their budget. Equations (4) and (5) imply that (a) that every buyer
has the same marginal utility per unit price on the goods it gets and (b) every
good that a buyer is not allocated provides less marginal utility.

2.1 Uniformly Separable Utilities

We say that a utility function Ui is uniformly separable iff vij ≡ ∂Ui(Xi)
∂xij

can
be factored as: vij(Xi) = fij(xij)gi(Xi) such that fij is a strictly decreasing
function. The following utility functions can be verified to be uniformly separable
and gross substitute:

– CES (constant elasticity of substitution u(Xi) = (
∑

i(wijxij)ρ)1/ρ, where
0 < ρ < 1 ;

– Cobb-Douglas utility u(Xi) = Πj(xij)aij where aij ≥ 0 and
∑

j aij = 1.

A buyer is said to have gross substitute demand for goods iff increasing the
price of a good does not decrease the buyer’s demand for other goods. Similarly,
an economy is said to have gross substitutes demand iff increasing the price of a
good does not decrease the total demand of other goods. Clearly, if every buyer
has gross substitute demand then so does the economy. The following result
characterizes the class of uniformly separable concave gross substitute utility
functions.

Lemma 1. Let Ui be a concave, strictly monotone, uniformly separable function
(∂Ui(Xi)

∂xij
= fij(xij)gi(Xi)). Ui is gross substitute iff for all j, yfij(y) is a non-

decreasing function of the scalar y.

Proof. We first prove that if Ui is a gross substitute function then yfij(y) is
non-decreasing. Assume, for contradiction, that there are scalars y and y′ such
that y′ < y and y′fij(y′) > yfij(y). Choose a price P and an optimal solution
Xi of Bi(P ) such that xij = y (it is always possible to do so because of strict
monotonicity of Ui). Let αi be the optimal dual solution of Bi(P ). The optimality
conditions (4) and (5) for the dual of the program Bi(P ) can be rewritten as:

∀j : xij > 0 ⇒ fij(xij)gi(Xi) = αipj (6)
∀j : αipj ≥ fij(xij)gi(Xi) (7)
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Construct a corresponding (P ′, X ′
i, α

′
i) such that x′

ik = xik, p′k = pk for all k �= j,
x′

ij = y′, p′j = pjfij(x′
ij)/fij(xij) = pjfij(y′)/fij(y) and α′

i = αigi(X ′
i)/gi(Xi).

Note that the solution (X ′
i, α

′
i, P

′) satisfies (6) and (7). Now,

x′
ijp

′
j = y′p′j = pjy

′fij(y′)/fij(y) > pjyfij(y)/fij(y) = ypj = xijpj

Thus,
∑m

j=1 x′
ijp

′
j >

∑m
j=1 xijpj = ei, implying that the solution X ′

i violates
the optimality condition (3) of program Bi(P ′). Therefore, the optimal solution
(X ′′

i , α′′
i ) of Bi(P ′) must have x′′

ij < x′
ij for some j. Since (X ′

i, α
′
i) and (X ′′

i , α′′
i )

satisfy (6) and (7) for the same price P ′ and fij is strictly decreasing for all j,
we must also have x′′

ij < x′
ij for all j. From the definition of X ′

i, it is clear that
this violates the gross substitutability condition.

We next show that if yfij(y) is non-decreasing then the goods satisfy gross-
substitutability. Consider an optimal solution Xi of Bi(P ). If xij > 0, equation
(6) gives xijpj = xijfij(xij)gi(Xi)/αi. Consider P ′ > P . For this price vector
we construct a feasible solution X ′

i satisfying (6) and (7) as follows: If p′j = pj

then x′
ij = xij , ∀i. Alternately, if fij(0)gi(Xi) < αip

′
j then set x′

ij to zero, else
choose x′

ij such that fij(x′
ij)gi(Xi) = αip

′
j . Set α′

i = αi(gi(X ′
i)/gi(Xi)). By

definition, the solution X ′
i satisfies the complementary slackness conditions (6).

Since P ′ > P , X ′
i also satisfies (7). Also since fij is a strictly decreasing function

p′j > pj ⇒ x′
ij < xij . Now, if x′

ij > 0 then

x′
ijp

′
j = x′

ijfij(x′
ij)gi(X ′

i)/α′
i ≤ xijfij(xij)gi(Xi)/αi = xijpj

If x′
ij = 0 then also we have x′

ijp
′
j ≤ xijpj The above equations give

m∑

j=1

x′
ijp

′
j ≤

m∑

j=1

xijpj = ei

Therefore, any optimal solution (X ′′
i , α′′

i ) of the program Bi(P ′) should have
x′′

ij > x′
ij for some j. Since (X ′′

i , α′′
i ) and (X ′

i, α
′
i) both satisfy (6) and (7) for

the same price P ′ and fij is strictly decreasing, we must have x′′
ij ≥ x′

ij for all
j. Gross substitutability now follows from the definition of X ′

i.

3 An Auction Algorithm for Market Clearing

An auction algorithm similar to that in [10] solves the market equilibrium prob-
lem for the uniformly separable gross substitute utility functions. For the sake
of completeness we give a brief description of the algorithm.

The algorithm (formally presented in Figure 1) begins with assigning all the
goods to one buyer (say buyer 1) and adjusting the prices such that (a) all the
money of the buyer is exhausted and (b) the initial allocation is optimal for
the buyer. During the course of the algorithm, goods may be allocated at two
prices, pj and pj/(1 + ε). The allocation of good j to buyer i at price pj is
represented by hij and the allocation at price pij/(1 + ε) is represented by yij .
The total allocation of good j to buyer i is given by xij = hij + yij . Define
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algorithm main
initialize
while ∃i : ri > εei

while (ri > 0) and
(∃j : αijpj < fij(xij)gi(Xi))
if ∃k : ykj > 0 then

outbid(i, k, j, αij)
else raise price(j)

end while
j = arg maxl αil

if ∃k : ykj > 0
outbid(i, k, j, αij/(1 + ε))
αij = fij(xij)gi(Xi)/pj

else raise price(j)
end while

end algorithm main

procedure raise price(j)
∀i : yij = hij ; hij = 0;
pj = (1 + ε)pj

end procedure raise price

procedure initialize
∀i, ∀j : hij = 0
∀i �= 1, ∀j : yij = 0
∀j : y1j = aj ; a = (a1, . . . , an);
∀j : α1j = (

�
j ajf1j(aj)g1(a))/ei

∀j : pj = f1j(aj)g1(a)/α1

∀i �= 1 : αi = fij(0)gi(0̂)/pj; ri = ei

∀i �= 1, ∀j : αij = fij(xij)gi(Xi)/pj

r1 = 0
end procedure initialize

procedure outbid(i, k, j, α)
t1 = ykj

t2 = ri/pj

if (fij(aj)gi(Xi) ≥ αpj) then
t3 = aj (x′

ik = xik, k �= j; x′
ij = aj)

else
t3 = min δ : fij(xij + δ)gi(Xi) = αpj

t = min(t1, t2, t3)
hij = hij + t
ri = ri − tpj

ykj = ykj − t
rk = rk + tpj/(1 + ε)

end procedure outbid

Fig. 1. The auction algorithm

the surplus of a buyer i as ri =
∑m

j=1(hijpj + yijpj/(1 + ε)). Define the total
surplus in the system as r =

∑n
i=1 ri. The parameter ε is called the minimum

bid increment and determines the accuracy of the final solution obtained. Now
buyers with unspent money try to acquire items that give them the maximum
utility per unit money, by outbidding other buyers and raising the price of items.
The bidding is carried out till all the buyers have little unspent money.

Note this algorithm is very characteristic of a typical auction market. The
bidding is asynchronous, decentralized and local. The buyers do not have to
coordinate their actions. Any buyer with surplus money can place a bid on an
item that maximizes the value of the buyer, this outbidding other buyers. The
process stops when the unspent money with every buyer is sufficiently small.

To show convergence of the algorithm, the bidding may be organized in
rounds. In each round every buyer (i) is picked once and reduces his surplus
to 0, i.e. ri = 0. Now it can be shown that in every round of bidding, the total
unspent money decreases by a factor of (1 + ε). This gives the following bound
on the time complexity of the algorithm ( vmax = maxij vij(0)) (see [10]).

Theorem 1. The auction algorithm terminates in O((E/ε) log((evvmax)/
(εeminvmin)) log n) steps,
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4 Conclusions

Naive auction algorithms give approximate market equilibrium. The approxi-
mation is related to the minimum bid increment parameter ε used in the al-
gorithm. It was shown that for linear utility functions, auctions with suitable
price-rollbacks and modifications to ε lead to exact market equilibrium. It will
be interesting to see if any such approach may also work for the general class of
gross substitute utilities.
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Abstract. Continuity of the mapping from initial endowments and util-
ities to equilibria is an essential property for a desirable model of an econ-
omy – without continuity, small errors in the observation of parameters
of the economy may lead to entirely different predicted equilibria.

We show that for the linear case of Fisher’s market model, the (unique)
vector of equilibrium prices, p = p(m,U) is a continuous function of
the initial amounts of money held by the agents, m, and their utility
functions, U. Furthermore, the correspondence X(m,U), giving the set
of equilibrium allocations for any specified m and U, is upper hemi-
continuous, but not lower hemicontinuous. However, for a fixed U, this
correspondence is lower hemicontinuous in m.

1 Introduction

Mathematical economists have studied extensively three basic properties that a
desirable model of an economy should possess: existence, uniqueness, and con-
tinuity of equilibria.1 An equilibrium operating point ensures parity between
demand and supply, uniqueness of the equilibrium ensures stability, and conti-
nuity is essential for this theory to have predictive value – without continuity,
small errors in the observation of parameters of an economy may lead to entirely
different predicted equilibria.

The questions of existence and uniqueness (or its relaxation to local unique-
ness) were studied for several concrete and realistic models. However, to the best
of our knowledge, the question of continuity was studied only in an abstract set-
ting; for example, demand functions of agents were assumed to be continuously
differentiable and, using differential topology, the set of “bad” economies was
shown to be “negligible” (of Lebesgue measure zero if the set of economies is
finite-dimensional).2

In this paper, we study continuity of equilibrium prices and allocations for
perhaps the simplest market model – the linear case of Fisher’s model. It is

1 See [3], Chapter 15, “Smooth preferences”.
2 See [3], Chapter 19, “The application to economies of differential topology and global

analysis: regular differentiable economies”.

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, pp. 362–367, 2007.
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well known that equilibrium prices are unique for this case [5]. An instance of
this market is specified by m and U, the initial amounts of money held by the
agents and their utility functions, respectively. We denote by p = p(m,U) be
the corresponding (unique) vector of equilibrium prices. In Section 3 we prove
that the equilibrium utility values are continuous functions of the unit utility
values and the initial amounts of money. In Section 4 we prove that p(m,U) is
a continuous mapping.

Such linear markets can, however, have more than one equilibrium allocation
of goods; let X(m,U) denote the correspondence giving the set of equilibrium
allocations. In Section 5 we prove that this correspondence is upper hemicontin-
uous, but not lower hemicontinuous. For a fixed U, however, this correspondence
turns out to be lower hemicontinuous in m as well.

2 Fisher’s Linear Case and Some Basic Polyhedra

Fisher’s linear market model (see [2]) consists of N buyers and n divisible goods ;
without loss of generality, the amount of each good may be assumed to be unity.
Let uij denote the utility derived by i on obtaining a unit amount of good j.
Thus, the utility of buyer i from receiving xij units of good j, j = 1, . . . , n, is
equal to

∑n
j=1 uijxij . Let mi, i = 1, . . . , N , denote the initial amount of money

of buyer i. Unit prices, p1, . . . , pn, of the goods are said to be equilibrium prices
if there exists an allocation x = (xij) of all the goods to the buyers so that
each buyer receives a bundle of maximum utility value among all bundles that
the buyer can afford, given these prices; in this case x is called an equilibrium
allocation.

Denote by PX the polytope of feasible allocations, i.e.,

PX ≡ {x = (xij) ∈ R
Nn :

N∑

i=1

xij ≤ 1 (j = 1, . . . , n), x ≥ 0} .

Obviously, x is a vertex of PX if and only if for all i and j, xij ∈ {0, 1}, and for
each j, there is at most one i such that xij = 1. In other words, an allocation x is
a vertex of PX if and only if in x each good is given in its entirety to one agent.
Denote by U the (N × (Nn))-matrix that maps a vector x to the associated
vector y = (y1, . . . , yN ) of utilities, where yi =

∑n
j=1 uij xij , i.e., y = Ux.

Uniqueness of equilibrium prices implies uniqueness of y at equilibrium.
Denote by PY = PY (U) the polytope of feasible N -tuples of utility values,

i.e., PY = UPX . Obviously, y ≥ 0 for every y ∈ PY . It follows that for every
vertex y of PY , there exists a vertex x of PX such that y = Ux. Denote by Si

the set of goods that i receives under vertex allocation x. Then, yi =
∑

j∈Si
uij ,

i = 1, . . . , N .3

3 The converse is not true in general. In fact, in the case of N = n = 2, if uij = 1 for
all i and j, then the allocation (1, 0, 0, 1), where good 1 is allocated to agent 1 and
good 2 is allocated to agent 2, is a vertex of PX but the associated vector of utilities
(1, 1) is not a vertex because it is a convex combination of the feasible vectors of
utilities (2, 0) and (0, 2).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



364 N. Megiddo and V.V. Vazirani

3 Continuity of Equilibrium Utility Values

Denote G(y,U,x) ≡ ‖y − Ux‖2. Obviously,

(i) G is continuous,
(ii) G(y,U,x) ≥ 0 for all y, U, and x,
(iii) G(y,U,x) = 0 if and only if y = Ux, and
(iv) for every y and U, the function g(x) ≡ G(y,U,x) has a minimum over

PX .

Denote by F (y,U) the minimum of G(y,U,x) over x ∈ PX . It is easy to verify
the following:

(i) F is continuous, because G is continuous and PX is compact,
(ii) F (y,U) ≥ 0 for all y and U, and
(iii) F (y,U) = 0 if and only if y ∈ PY (U).

For y ≥ 0, m > 0 and U ≥ 0, denote

f(y;m,U) ≡
n∑

i=1

mi · log yi − M · F (y,U) , (1)

where M is a sufficiently large scalar. By definition, PY (U) �= ∅ for every U ≥ 0.
For m > 0, f is strictly concave in y over PY (U), and hence has a unique
maximizer over PY (U). For M sufficiently large, this is also a maximizer over
all y ≥ 0. Thus, for m > 0 and U ≥ 0, denote by y∗ = y∗(m,U) that unique
maximizer.

Theorem 1. The mapping y∗(m,U) is continuous.

Proof. Suppose {(mk,Uk)}∞k=1 is a sequence that converges to (m0,U0), where
for every k ≥ 0, mk > 0 and Uk ≥ 0. Denote yk = y∗(mk,Uk), k = 0, 1, . . .
By continuity of f as a function of (y;m,U), {f(y0;mk,Uk)} converges to
f(y0;m0,U0). Since yk ∈ PY (Uk) and {Uk} converges, there exists a bound
u such that ‖yk‖ ≤ u for every k. Thus, we may assume without loss of gen-
erality that y is restricted to a compact set. Let {ykj }∞j=1 be any convergent
subsequence, and denote its limit by y. By continuity of f , {f(ykj ;mkj ,Ukj )}
converges to f(y;m0,U0). Since f(ykj ;mkj ,Ukj ) ≥ f(y0;mkj ,Ukj ), it follows
that f(y;m0,U0) ≥ f(y0;m0,U0). Since y0 maximizes f(y;m0,U0) and the
maximum is unique, it follows that y = y0. This implies that {yk} converges
to y0.

4 Continuity of Equilibrium Prices

Denote by p = p(m,U) = (p1(m,U), . . . , pn(m,U)) the prices that are gen-
erated as dual variables in the Eisenberg-Gale convex program, whose optimal
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solutions give equilibrium allocations and dual variables give equilibrium prices
[4]:4

Maximize
n∑

i=1

mi · log
(∑n

j=1 uij xij

)

subject to x = (xij) ∈ PX ,

(2)

i.e., given an optimal solution x = (xij) of (2),

pj(m,U) = max
{

mi · uij∑n
k=1 uik xik

: i = 1, . . . , n

}
. (3)

The vector y = Ux of utilities is the same for all optimal solutions x, and hence
p is unique. The problem can alternately be formulated in terms of the vector
of utilities:

Maximize
n∑

i=1

mi · log yi

subject to y = (y1, . . . , yn) ∈ PY

(4)

and the prices can be represented as

pj(m,U) = max
{

mi · uij

yi
: i = 1, . . . , n

}
. (5)

The latter, together with Theorem 1 gives:

Theorem 2. The mapping p(m,U) is continuous.

5 Hemicontinuity of Equilibrium Allocations

5.1 Upper Hemicontinuity

For every m > 0 and U ≥ 0, denote

g(x) = g(x;m,U) ≡
n∑

i=1

mi · log
(∑n

j=1 uij xij

)
.

Denote by X(m,U) the set of optimal solutions of (2). Obviously, X(m,U) is
compact and nonempty for every m and U. Denote by v(m,U) the maximum
of g(x) over PX .

Theorem 3. The correspondence X(m,U) is upper hemicontinuous.

Proof. To prove that X is upper hemicontinuous at (m0,U0), one has to show
the following: for every sequence {mk,Uk}∞k=1 that converges to (m0,U0), and
every sequence {xk}∞k=1 such that xk ∈ X(mk,Uk), there exists a convergent
subsequence {xkj }∞j=1, whose limit x0 belongs to X(m0,U0).

4 We use the convention that log 0 = −∞.
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Suppose {mk,Uk}∞k=1 converges to (m0,U0), and {xk}∞k=1 is a sequence
such that xk ∈ X(mk,Uk). Since xk ∈ PX for every k, there exists a subse-
quence {xkj }∞j=1 that converges to a point x0. Since g is a continuous func-
tion of (x;m,U), it follows that the sequence {g(xkj ;mkj ,Ukj )} converges to
g(x0;m0,U0). On the other hand, g(xk;mk,Uk) = v(mk,Uk). By Theorem
1, {yk ≡ Ukxk} converges to an optimal y with respect to (m0,U0), so that
{v(mk,Uk)} converges to v(m0,U0). Thus, g(x0;m0,U0) = v(m0,U0), which
means x0 ∈ X(m0,U0).

5.2 Lower Hemicontinuity

Proposition 1. There exist m and U0 such that the correspondence Ξ(U) ≡
X(m,U) is not lower hemicontinuous at U0.

Proof. To prove that Ξ(U) is lower hemicontinuous at U0, one has to show the
following: for every sequence {Uk}∞k=1 that converges to U0, and every x0 ∈
X(U0), there exists a sequence {xk ∈ X(Uk)} that converges to x0.

Consider a linear Fisher market with two goods and two buyers, each hav-
ing one unit of money (m = (1, 1)), and the utilities per unit U are: u11 =
u12 = u21 = 1 and u22 = u, where 0 < u ≤ 1. Under these circumstances, the
equilibrium prices are (1, 1) for every u. If u < 1, there is only one equilibrium
allocation: Buyer 1 gets Good 2 and Buyer 2 gets Good 1. However, if u = 1,
there are infinitely many equilibrium allocations: Buyer 1 gets x units of Good 1
and 1−x units of Good 2, and Buyer 2 gets 1−x units of Good 1 and x units of
Good 2, for 0 ≤ x ≤ 1. This implies that the correspondence Ξ(U) is not lower
hemicontinuous at the point U0 where u = 1.

To prove that X is lower hemicontinuous in m we need the following lemmas:

Lemma 1. Let A ∈ R
m×n and let x0 ∈ R

n. For every y in the column space
of A, denote by x∗(y) the closest5 point to x0 among all points x such that
Ax = y. Under these conditions, the mapping x∗(y) is affine.

Proof. Since we consider only vectors y in the column space of A, we may
assume, without loss of generality, that the rows of A are linearly independent;
otherwise, we may drop dependent rows. Thus, AAT is nonsingular. Let y0 =
Ax0. Obviously, x0 = x∗(y0). Let y in the column space of A be fixed, and
consider the problem of minimizing 1

2‖x−x0‖2 subject to Ax = y. It follows that
there exists a vector of Lagrange multipliers z ∈ R

m such that x∗(y)−x0 = AT z.
Thus, Ax∗(y)−Ax0 = AAT z, and hence z = (AAT )−1(y−y0). It follows that
x∗(y) = x0 + AT z = x0 + AT (AAT )−1(y − y0).

Lemma 2. Let A ∈ R
m×n be a matrix whose columns are linearly independent.

Let x0 ∈ R
n and y0 ∈ R

m be such that Ax0 ≤ y0. For every y ∈ R
m such

that {x |Ax ≤ y} �= ∅, denote by x∗(y) the closest point to x0 among all points
x such that Ax ≤ y. Under these conditions, the mapping x∗(y) is continuous
at y0.
5 We use the Euclidean norm throughout; thus the, closest point is unique.
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Proof. For every S ⊆ M ≡ {1, . . . , m}, denote S ≡ M \ S. Denote by AS the
matrix consisting of the rows of A whose indices i belong to S. Similarly, let yS

denote the projection of y on the coordinates in S. Denote FS(y) = FS(yS) ≡
{x : AS x = yS}. Let x∗

S(y) be the point in FS(y) that is closest to x0. By
Lemma 1, x∗

S(y) is an affine transformation of yS . It follows that there exists an
α > 0 such that for every y, ‖x∗

S(y) − x∗
S(y0)‖ ≤ α · ‖y − y0‖. Let ε > 0 be any

number. Fix S ≡ {i : (Ax0)i = y0
i }. Obviously, x0 = x∗

S(y0) and AS x0 < y0
S

.
Let 0 < δ < ε/α be sufficiently small so that ‖y − y0‖ < δ implies AS x∗

S(y) <
yS . It follows that ‖y−y0‖ < δ implies ‖x∗(y) −x0‖ ≤ ‖x∗

S(y) −x0‖ < αδ < ε.

Theorem 4. For every fixed U, the correspondence Ξ(m) = X(m,U) is lower
hemicontinuous at every m0 > 0.

Proof. To prove that Ξ(m) is lower hemicontinuous at m0 > 0, one has to
show the following: for every sequence {mk}∞k=1 that converges to m0, and every
x0 ∈ Ξ(m0), there exists a sequence {xk ∈ Ξ(mk)} that converges to x0.

Suppose {mk}∞k=1 converges to m0, and let x0 ∈ Ξ(m0) be any point. Let
yk = y∗(mk), k = 0, 1, . . ., i.e., yk is the unique maximizer of f(y;mk,U) (see
(1)) or, equivalently, the optimal solution of (4). By Theorem 1, {yk} converges
to y0. Thus, Ξ(mk) is the set of all vectors x ∈ PX such that Ux = yk. In
particular, x0 ∈ PX and Ux0 = y0. Let xk denote the minimizer of ‖x − x0‖
subject to x ∈ PX and Ux = yk. Denote by x∗ = x∗(y) the optimal solution of
the following optimization problem:

Minimizex ‖x − x0‖
subject to Ux = y

∑

i

xij ≤ 1 (∀j)

xij ≥ 0 (∀i)(∀j) .

Thus, xk = x∗(yk). By Lemma 2, the mapping x∗(y) is continuous. Since {yk}
converges to y0, {xk} converges to x0.

Acknowledgements. We wish to thank Kenneth Arrow and Michel Goemans
for valuable discussions.
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Abstract. The property of Weak Gross Substitutibility (WGS) of goods
in a market has been found to be conducive to efficient algorithms for
finding equilibria. In this paper, we give a natural definition of a δ-
approximate WGS property, and show that the auction algorithm of
[GK04][GKV04] can be extended to give an (ε + δ)-approximate equilib-
rium for markets with this property.

1 Introduction

The computational complexity of finding a market equilibrium has recieved a lot
of interest lately [DPS02][DPSV02][Jai04][DV04][GK04][CSVY06][CMV05] (also
see [CPV04] for a survey). A key property that has been used in designing some
of these algorithms is that of Weak Gross Substitutibility (WGS). A market
satisfies WGS if an increase in price of one good does not lead to a decrease in
demand of any other good. Markets with WGS have been well studied in both
the economics and the algorithmic game theory literature. It has been shown,
for instance, [ABH59] that the tatonnement process converges for all markets
satisfying WGS.

In this paper we extend the definition of WGS to approximate WGS and
design algorithms for the same. We formulate the following alternate definition
of WGS: the monetary demand for any good, which is the demand for the good
times the price, is a decreasing function of its price, given that all the other prices
are fixed. Our definition of an approximate WGS now follows from bounding the
increase in the monetary demand for a good with an increase in its price.

2 Preliminaries

In this section, we define the Fisher market model which we refer to through-
out this paper. Consider a market with n buyers and m goods. The goods are
assumed to be perfectly divisible, and w.l.o.g. a unit amount of each good is
available as supply. Each buyer i has an intial endowment ei of money, and
utility functions uij : uij(xij) gives the utility gained by her for having bought
(consumed) xij units of good j. Given prices P = (p1, ..., pm), a buyer uses her
money to buy a bundle of goods Xi = (xi1, ..., xim), called the demand vector for
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buyer i, such that her total utility Ui(Xi) =
∑

j uij(xij) is maximized, subject
to the budget constaint:

∑
j xijpj ≤ ei. Equilibrium prices are such that the

market clears, that is, total demand for every good is equal to the supply: for
all goods j,

∑
i xij = 1.

Let vij be dUi

dxij
. We assume that for all i and j, Ui is non-negative, non-

decreasing, differentiable and concave. These constraints translate into vij being
non-negative, non-increasing and well defined. From the KKT conditions on the
buyers’ optimization program, it follows that vij(xij)/pj is equalized over all
goods for which xij > 0. So for any optimal bundle of goods Xi for buyer i,
there exists α such that xij > 0 ⇒ vij(xij)

pj
= α, and xij = 0 ⇒ vij(xij)

pj
≤ α.

Definition 1. For any ε > 0, a price vector P is an ε-approximate market
equilibrium if each buyer can be allocated a bundle Xi such that Ui(Xi) is at
least the optimal utility times (1 − ε) and the market clears exactly.

Definition 2. A market satisfies WGS if for two price vectors P and P ′, such
that pj = p′j for all goods j �= k and pk < p′k, the demand of good j at P ′ is at
least its demand at P .

[GKV04] gave the following equivalent condition for WGS, when the utilities are
separable.

Lemma 1. ([GKV04]) A market satsfies WGS if and only if the function
xijvij(xij) is non-decreasing for all i and j.

3 Extending WGS

3.1 An Alternate Definition of WGS

Let the monetary demand for a good be its demand times its price. We motivate
our alternate definition of WGS by analysing how the monetary demand for a
good changes as its price goes up.

Consider a buyer i who has an optimal bundle of goods (xi1, ..., xim). For any
good j such that xij > 0, vij(xij)

pj
= α. Now suppose price of good k is driven up

to p′k > pk, rest of the prices being unchanged. In this case, clearly the current
allocation no more represents an optimal bundle for the buyer. We now describe
a way for the buyer to adjust her allocation in order to attain the new optimum.
This is done in two stages.

In the first stage, she sells some of good k to equalize the marginal rate of
utility of good k with that of other goods. Let x′

ik be such that vik(x′
ik) = αp′k.

The difference between the values of the new and original holdings is x′
ikp′k −

xikpk. This is the amount of money she will have to pay as a result of the increase
in price. From Lemma 1,

x′
ijp

′
j − xijpj =

1
α

(x′
ijvij(x′

ij) − xijvij(xij))

≤ 0
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This means that she has some money left over at the end of the first stage. In
the second stage, she splits the left over money among all goods in such a way
that vij(xij)

pj
remains the same for all goods with xij > 0. Two things are worth

noting: the monetary demand for good k and the value of α both decrease as a
result. This leads us to an alternate formulation of WGS.

Lemma 2. A market satisfies WGS if and only if for two price vectors P and
P ′, such that pj = p′j for all goods j �= k and pk < p′k, the monetary demand for
good k at P ′ is smaller than that at P .

Proof. Suppose that the market is WGS. Let the demand at P and P ′ be X
and X ′ respectively. Then WGS implies that x′

j ≥ xj for all j �= k. Therefore
p′jx

′
j ≥ pjxj for all j �= k. Since

∑
j p′jx

′
j =

∑
j pjxj , it follows that p′kx′

k ≤ pkxk.
Now assume that p′kx′

k ≤ pkxk. We need to prove that x′
j ≥ xj . We can ignore

those j for which xj = 0. Again, since
∑

j p′jx
′
j =

∑
j pjxj , there exists some

j �= k such that p′jx
′
j ≥ pjxj , and in turn x′

j ≥ xj . Therefore α′ = vij(x′
j)

p′
j

≤
vij(xj)

pj
= α. Hence for all j �= k such that xj > 0, x′

j ≥ xj . ��

3.2 Approximate-WGS Utility Functions

We have seen how WGS can be interpreted from the demand perspective as well
as the revenue perspective. Extending the revenue interpretation from Lemma 2,
we say that a market satisfies δ-approximate WGS if increasing the price of a good
does not cause its monetary demand to increase by more than a factor of (1 + δ).

Definition 3. For any δ ≥ 0, a market satisfies δ-approximate WGS if for two
price vectors P and P ′, such that pj = p′j for all goods j �= k and pk < p′k, the
monetary demand for good k at P ′ is at most (1 + δ) times that at P .

In the next section, we will prove that this definition allows us to design effi-
cient approximation algorithms for these markets. Henceforth we will refer to
definition 3 as δ-approximate weak gross substitutability.

The above definition gives the following necessary condition on a δ-approximate
WGS market, which is proved in [KD07]:

Lemma 3. If a market satisfies δ-approximate WGS, then

∀i, j, ∀x > x′ ⇒ xvij(x) ≥ x′vij(x′)
(1 + δ)

4 Auction Algorithm

In this section we show that by slightly modifying the auction algorithm in
[GKV04], we can compute an (ε + δ)-approximate equilibrium for a market ex-
hibiting δ-approximate WGS property. This result shows that WGS is not a hard
threshold: Markets do not suddenly become intractable if they slightly violate
the WGS property.
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We will use the auction algorithm of [GKV04] as the starting point. This
algorithm computes ε-approximate equilibrium when the market satisfies WGS.
We only modify the buy-back step of this algorithm. An outline of the modified
auction algorithm is as follows: (For pseudocode, refer to [KD07])

– Ascending prices: Prices start out at suitably low values and are raised
in multiplicative steps. At any stage, some buyers may have an allocation of
good j at price pj, where as others may have bought the same good at price

pj

(1+ε) . Buyer i’s holding of good j at price pj is denoted by hij and that at
price pj/(1 + ε) is denoted by yij . Total allocation of good j to buyer i is
xij = hij + yij .

– Decreasing surplus: A buyer’s surplus is the money she hasn’t spent. It is
denoted by ri = ei −

∑
j hijpj −

∑
j yijpj/(1 + ε). Each buyer exhausts her

surplus by buying goods at price pj from others whose allocation of good j
is at price pj/(1+ ε). If no other buyer has the good at lower price, the price
is raised from pj to (1+ ε)pj. Finally due to rising prices, total surplus of all
buyers r =

∑
i ri approaches zero.

– Buy-back: We split the buy-back step into two rounds: (Let X ′
i and P ′

denote the allocation and price vectors at the begining of each round)
1. First round: For each good j such that

vij(x′
ij)

p′
j

> (1 + δ)αij , buyer i

buys it back to an amount x∗
ij such that (1+δ)αij =

vij(x∗
ij)

p∗
j

. (As opposed

to buy back until αij = vij(x∗
ij)

p∗
j

in the original algorithm). If buyer i has

to raise price of good j in this process, p∗j may be strictly higher than p′j .
As we shall see, this ensures that the buyer does not spend more on any
good than she originally had when the value of αij was set. Therefore,
the buy-back is possible for all goods.

2. Second round: For each good j such that
vij(x′

ij)
p′

j
> αij , buyer i buys

it back to an amount x∗
ij such that αij =

vij(x∗
ij)

p∗
j

, until she has surplus
money left. This round is identical to the buy-back step in the original
algorithm.

– Near-Optimality: ε-approximate optimality of the partial bundle of goods
is maintained for each buyer throughout the algorithm. Therefore, when the
total surplus tends to zero, the current price and allocation vectors represent
ε-approximate equilibrium.

Lemma 4. First buy-back round finishes with each good j considered having
αij = vij(x∗

ij)
(1+δ)p∗

j
.

Proof. Consider a situation when buyer i has x′
ij amount of good j when her

turn arrives to spend her surplus. Let p′j be the current price and αij <
vij(x′

ij)
(1+δ)p′

j
.

Let x∗
ij be the amount and p∗j be the price such that

x∗
ij ≤ x′

ij < xij AND p∗j ≥ p′j > pj AND αij =
vij(x∗

ij)
(1+δ)p∗

j
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where xij and pj is the endowment and price of good j respectively when αij

was set, i.e. αij = vij(xij)
pj

. Then using property of the market from lemma 3, we
get:

vij(x∗
ij)

(1 + δ)p∗j
= αij =

vij(xij)
pj

≥
x∗

ijvij(x∗
ij)

(1 + δ)xijpj

⇒ xijpj ≥ x∗
ijp

∗
j

The above equation certifies that the value of good j held by buyer i at the
end of the first buy-back round is at most the value of her holding at original
price pj . When competing buyers reduced xij to x′

ij , the value was returned to
buyer i in dollars. The above equation says that she can safely buy back upto
x∗

ij of good j, using up only the surplus value returned to her for good j. The
same is true for all such goods, hence buyer i can buy all goods considered in
the first buy-back round upto x∗

ij such that αij = vij(x∗
ij)

(1+δ)p∗
j
. ��

Correctness and convergence of the algorithm can be proved along the lines of
[GKV04], by showing that the algorithm maintains following invariants at the
start of each iteration of the outer while loop in procedure main (Refer to the
psudocode in [KD07]:

I1: ∀j,
∑

i xij = aj I4: ∀i, j, xij > 0 ⇒ (1+ε)vij(xij)
pj

≥ αij

I2: ∀i,
∑

j xijpj ≤ ei I5: ∀j, pj does not fall
I3: ∀i, j, ri = 0 ⇒ αij ≥ vij(xij)

(1+δ)pj
I6: r does not increase

Invariant I1 says that all goods are fully sold at any stage. Invariant I2 conveys
the fact the buyers never exceed their budget — the initial endowment. Invariants
I3 and I4 together guarantee the optimality of the bundle each buyer has after she
has exhausted her surplus. Only I3 is different from the earlier auction algorithm.
By invariants I3 and I4, as well as the manner in which αij ’s are modified in the
algorithm, we have the following at the termination for all buyers i and goods
j, k:

(1 + ε)vij(xij)
pj

≥ αij ≥ vij(xij)
(1 + δ)pj

αij ≤ (1 + ε)αik

Above constraints imply that all the bang-per-buck values for a buyer
(

vij(xij)
pj

)

are within a factor (1 + ε)2(1 + δ) of each other at termination. Therefore, the
modified algorithm terminates with (ε + δ)-approximate equilibrium, ignoring
the higher order terms. The analysis of the running time is similar to that in
[GKV04]:

Lemma 5. If bidding is organized in rounds, i.e. if each buyer is chosen once
in a round to exhaust his surplus in procedure main, the total unspent surplus
money r =

∑
i ri decreases by a factor of (1 + ε).
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5 Open Problems

Our result holds for separable utility functions. Clearly, definition 3 makes sense
in the non-separable setting as well. An important open problem therefore is to
devise an algorithm that finds approximate equilibrium for non-separable utility
markets. Alternatively, it will be interesting to see if other algorithms that solve
WGS markets extend to approximate-WGS markets.
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Abstract. In this paper, we study competitive markets - a market is
competitive if increasing the endowment of any one buyer does not in-
crease the equilibrium utility of any other buyer. In the Fisher setting,
competitive markets contain all markets with weak gross substitutability
(WGS), a property which enable efficient algorithms for equilibrium com-
putation. We show that every uniform utility allocation (UUA) market
which is competitive, is a submodular utility allocation (SUA) market.
Our result provides evidence for the existence of efficient algorithms for
the class of competitive markets.

1 Introduction

In the past few years, there has been a surge of activity to design efficient algo-
rithms for computation of market equilibrium. These include the linear utilities
case in the Fisher model [8,10] and the Arrow-Debreu model [12], the spending
constraint model [9], Leontief utility functions in the Fisher model [7] and so on.
Interestingly, almost all of these markets for which efficient equilibrium compu-
tation algorithms are known, satisfy the property of weak gross substitutability
(WGS). A market is WGS if raising the price of any good does not lead to
the decrease in the demand of some other good. This property has extensively
been studied in mathematical economics, [1,15,2] and recently Codenotti et.al.
[6] gave polytime algorithms to compute equilibriums in WGS markets, under
fairly general assumptions.

WGS relates how one good’s price influences the demands for other goods. Anal-
ogously, competitiveness relates how one person’s assets influence the returns to
others. A market is called competitive if increasing the money of one agent can-
not lead to increase in the equilibrium utility of some other agent. This notion
was introduced by Jain and Vazirani [13] 1, who showed that in the Fisher set-
ting any WGS market is competitive. In this paper, we provide a characterization
of competitive markets in a class of Eisenberg-Gale markets, introduced by [13].
Combined with results of [13], our result provides some evidence that competitive
markets, like WGS markets, might also be amenable to efficient algorithms. In par-
ticular, [11,13] gave combinatorial polynomial time algorithms for some markets
that were not WGS; our result shows that these markets are competitive.
� Work supported by NSF Grants 0311541, 0220343 and 0515186.
1 They used the term competition monotonicity instead.
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Recently, Jain and Vazirani [13] proposed a new class of markets called
Eisenberg-Gale markets or simply EG markets. In 1959, Eisenberg and Gale
[10] gave a convex program for obtaining the equilibrium in the linear utilities
case of the Fisher model. An EG market is any market whose equilibrium is cap-
tured by a similar convex program. Thus, the linear utilities case of Fisher is an
example of an EG market. [13] showed that this class captured many other inter-
esting markets including several variants of resource allocation markets defined
by Kelly [14] to model TCP congestion control.

The convex program capturing equilibria of EG markets maximizes the money
weighted geometric mean of the utilities of buyers over all feasible utilities, which
form a convex set. For instance, in the program of Eisenberg and Gale [10], the set
of feasible utilities are those implied by the condition that no good is over-sold.
Thus EG markets do awaywith the concept of goods and deal only with allocations
of utility and one can think of EG markets as utility allocation markets.

If the constraints on feasible utilities are just those which limit the total
utility obtainable by any set of agents, the EG market so obtained is called an
uniform utility allocation (UUA) market. The linear utilities case of Fisher with
the utility of each unit of good for each agent being either 0 or 1 is a UUA
market. UUA markets can be represented via a set-function called the valuation
function, where the value of any subset of agents denotes the maximum utility
obtainable by that set. If the valuation function is submodular, the market is
called a submodular utility allocation (SUA) market. In fact, the Fisher example
above turns out to be a SUA market.

[13] define the notion of competition monotonicity which we call competitive-
ness in this paper. In their paper, [13] prove that every SUA market is compet-
itive. They also give an algorithm for computing equilibrium in SUA markets.
The paper also asks if there exist competitive UUA markets which are not SUA.

Our results: Our main result, proved in Section 3, answers the question asked
in [13]. We show that any UUA market which is competitive must be an SUA
market. Our characterization of competitive markets in UUA markets shows that
the algorithm of [13] works for all competitive UUA markets. A natural question
is whether there are efficient algorithms for all competitive markets. [13] showed
that all WGS markets are competitive and [6] gave efficient algorithms for all
WGS markets; this probably gives evidence in favor of existence of algorithms
for competitive markets. Competitiveness seems to be a natural property for
markets, but a lot remains to understand it clearly. A first step might be in-
vestigating competitiveness in EG markets alone. We do not know of any EG
markets which are competitive and have irrational equilibria. Apart from SUA
markets, the other large class of competitive markets are EG[2] markets [5]: EG
markets with only two agents. [5] showed recently that these markets also have
rational equilibria. Are all competitive EG markets rational? Settling these ques-
tions seems to be an important avenue for research.

Our techniques: We prove all competitive UUA markets are SUA by proving
the contrapositive: For every UUA market which is not an SUA market, we
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construct money vectors such that on increasing the money of one particular
buyer, the equilibrium utility of some other buyer increases. The main difficulty
in constructing these money vectors is that the equilibrium utilities are obtained
via solving a convex program with the money as parameters. A change in the
money of even one buyer, in general, can change the utilities of all agents.

To argue about the equilibrium utilities, as we see in Section 2, we deal with
dual variables, the prices for various subsets of agents, which act as a certificates
to equilibrium utility allocations. We use the non-submodularity of the valuation
function to identify the precise set of agents having money, and the precise
amount of money to be given to them. As we see, this construction is delicate, and
in particular requires proving the following fact about non-submodular functions
which might be of independent interest.

Given an allocation, call a set of agents tight (w.r.t the allocation) if the
total utility of agents in that set equals the maximum allowed by the valuation
function. If a valuation function v is not submodular, then there exists a set of
agents T ,agents i, j /∈ T , and a feasible utility allocation so that

1. T, T ∪ i, T ∪ j are tight.
2. No set containing both i and j are tight.
3. All tight sets containing i or j also contain a common agent l.

The correctness of the algorithm of [13] for finding equilibria in SUA markets
and the proof that SUA markets are competitive use crucially the fact that if
v is submodular, tight sets formed are closed under taking unions or intersec-
tions. Note that this implies if v is submodular, conditions 1 and 2 cannot hold
simultaneously.

2 Preliminaries

Definition 1. An EG market M with agents [n] is one where the feasible util-
ities u ∈ Rn

+ of the agents can be captured by a polytope

P = {∀j ∈ J :
∑

i∈[n]

aiju(i) ≤ bj u(i) ≥ 0}

with the following free disposal property: If u is a feasible utility allocation, then
so is any u′ dominated by u.

An instance of an EG market M is given by the money of the agents m ∈ Rn
+.

The equilibrium utility allocation of an EG market is captured by the following
convex program similar to the one considered by Eisenberg and Gale [10] for the
Fisher market with linear utilities.

max
n∑

i=1

mi log u(i) s.t. u ∈ P

Since the objective function is strictly concave and P is non-empty, the equi-
librium always exists and is unique. Applying the Karash-Kuhn-Tucker (KKT)
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conditions (see e.g. [3]) characterizing optima of convex programs, for each con-
straint we have a Lagrangean variable pj which we think of as price of the con-
straint, and we have the following equivalent definition of equilibrium allocations
in EG markets.

Definition 2. Given a market instance m ∈ Rn
+ of an EG market M, a feasible

utility allocation u ∈ Rn
+ is an equilibrium allocation iff there exists prices p ∈

R|J|
+ satisfying

– For all agents i ∈ [n], mi = u(i) · rate(i) where rate(i) = (
∑

j∈J aijp(j)),
the money spent by agent i to get unit utility.

– ∀j ∈ J : p(j) > 0,
∑

i∈[n] aiju(i) = bj

Thus, in the equilibrium allocation, only those constraints are priced which are
satisfied with equality (these constraints are called tight constraints), and each
agent exhausts his or her money paying for the utility he obtains.

We now consider the case when each aij above is either 0 or 1.

Definition 3. An EG market M is a UUA market if the feasible region P of
utilities can be encoded via a valuation function v : 2[n] → R as follows

P = {∀S ⊆ [n]
∑

i∈S

u(i) ≤ v(S)}

Such an EG market will be denoted as M(v), as the market constraints is com-
pletely described by v.

Definition 4. If the valuation function v in Definition 3 is a submodular func-
tion, then the market is called a Submodular Utility Allocation (SUA) market.
To remind, a function v : 2[n] → R is submodular if for all sets S, T ⊆ [n],
v(S ∪ T ) + v(S ∩ T ) ≤ v(S) + v(T ).

For UUA (and SUA) markets, as in Definition 2 the following gives a character-
ization of the equilibrium allocation. Given a feasible utility allocation u, a set
S is called tight if u(S) ≡

∑
i∈S u(i) = v(S).

Definition 5. For a UUA market, an utility allocation u is the equilibrium al-
location iff there exists prices for each subset S ⊆ [n] such that

– ∀S ⊆ [n], p(S) > 0 ⇒ S is tight.
– For all i ∈ [n], mi = u(i) · rate(i) where rate(i) =

∑
i∈S p(S).

Given a UUA market, the following observation of [13] shows assumptions we
can make on the valuation function.

Lemma 1. The valuation function v of UUA markets can be assumed to have
the following properties

– Non degeneracy: v(∅) = 0
– Monotonicity: S ⊆ T ⇒ v(S) ≤ v(T )
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– Non redundancy of sets: For any subset of agents T ⊆ [n], there exists a
feasible utility allocation u such that

∑
i∈T u(i) = v(T ).

– Complement free: v(S ∪ T ) ≤ v(S) + v(T ).

Definition 6. ([13]) An EG market M is competitive (competition monotone
in [13]) if for any money vector m, any agent i ∈ [n] and all ε > 0, let u, u′ be
the equilibrium allocations with money m and m′, where m′(j) = m(j) for all
j �= i and m′(i) = m(i) + ε, we have u′(j) ≤ u(j) for all j �= i.

In Section 3, we prove the main result of this paper.

Theorem 1. If a UUA market is competitive, then it is an SUA market.

3 Competitive UUA Markets Are SUA Markets

In this section we prove Theorem 1. Let M be any UUA market which is not an
SUA market. We construct money vectors m1 and m2 along with the respective
equilibrium utility allocations u1 and u2, with the following properties:

– m2(i) ≥ m1(i) for all i ∈ [n]
– There exists j with m2(j) = m1(j) and u2(j) > u1(j)

We first show the above contradicts competitiveness. Since m2 is greater than
m1 in each coordinate, we can construct vectors m′

1, m
′
2, · · · , m′

k for some k,
such that m′

1 = m1, m′
k = m2 and each consecutive m′

i, m
′
i+1 differ in exactly

one coordinate j′ with m′
i+1(j

′) > m′
i(j

′). Note that m′
i(j) = m1(j) = m2(j).

Let u′
1, u

′
2, · · · , u′

k be the equilibrium allocations corresponding to the money
vectors. We have u1 = u′

1 and u2 = u′
k. u2(j) > u1(j) implies for some consecu-

tive i, i+1 also u′
i+1(j) > u′

i(j). Since m′
i+1(j) = m′

i(j), we get the contradiction.
To construct the vectors m1, m2, we need the following structural theorem

about set-valued functions.

Theorem 2. Given any valuation function v satisfying the conditions of Lemma
1 which is not submodular, there exists set T, i, j and a feasible utility allocation
u such that

1. T, T ∪ i, T ∪ j are tight.
2. No set containing both i and j is tight
3. All tight sets containing either i or j contain a common element l with

u(l) > 0.

The proof of the theorem is technical and we do not provide it in this abstract.
We refer the interested reader to the full version of this paper [4].

Let T, i, j, l, u be as in the theorem above. To construct both the instances,
we first construct feasible utilities and then derive the money vectors such that
the utilities are indeed equilibrium utility allocations.

Let u1 := u except u1(i) = 0. Define m1(k) = u1(k) for all k. By condition
1 in Theorem 2, we get T ∪ j is tight. Pricing p(T ∪ j) = 1 shows u1 is the
equilibrium allocation with respect to m1.
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Let u2 := u except u2(i) = u(i) + ε, u2(j) = u(j) + ε and u2(l) = u(l) −
ε for some ε > 0. ε is picked to satisfy two properties: (a)ε ≤ u(l)/2 and
(b)u2 is feasible. We show later how to pick ε. Construct m2 as follows. De-
fine p′ := u1(j)/u2(j). m2(j) = m1(j), m2(k) = (2 + p′)u2(k) for all k ∈ T , and
m2(i) = u2(i). Check that m2 dominates m1 in each coordinate and m2(j) =
m1(j).

To see u2 is an equilibrium allocation w.r.t m2, note that T ∪ i, T ∪ j remain
tight. Let p(T ∪ i) = 2, p(T ∪ j) = p′. Check all the conditions of Definition 5
are satisfied.

The proof is complete via the definition of ε. Note that in the allocation u2,
the sets which have more utility than in u are ones which contain i or j. By
conditions 2,3 of Theorem 2, one can choose ε small enough so that u2 doesn’t
make any new set tight and is smaller than u(l)/2. This completes the proof of
Theorem 1.
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Abstract. We provide a collection of new upper and lower bounds on
the price of anarchy for singleton congestion games. In our study, we
distinguish between restricted and unrestricted strategy sets, between
weighted and unweighted player weights, and between linear and poly-
nomial latency functions.

1 Introduction

Congestion games [19] and variants thereof [17] have long been used to model
non-cooperative resource sharing among selfish players. Examples include traffic
behavior in road or communication networks or competition among firms for
production processes. In this work, we study singleton congestion games where
each player’s strategy consists only of a single resource. A sample application for
these modified games is load balancing [3].

The focal point of our work is determining the price of anarchy [15], a mea-
sure of the extent to which competition approximates the global objective, e.g.,
the minimum total travel time (latency) in the case of road networks. Typi-
cally, the price of anarchy is the worst-case ratio between the value of an ob-
jective function in some state where no player can unilaterally improve its sit-
uation, and that of some optimum. As such, the price of anarchy represents a
rendezvous of Nash equilibrium [18], a concept fundamental to Game Theory,
with approximation, an omnipresent concept in Theoretical Computer Science
today.

1.1 Preliminaries and Model

Notation. For all d ∈ N, let [d] := {1, . . . , d} and [d]0 := [d] ∪ {0}. For a
vector v = (v1, . . . , vn), let (v−i, v

′
i) := (v1, . . . , vi−1, v

′
i, vi+1, . . . , vn). Moreover,

we denote by Bd the d-th Bell Number and by Φd a natural generalization of the
golden ratio such that Φd is the (only) positive real solution to (x + 1)d = xd+1.
� Work partially supported by the European Union within the Integrated Project IST-

15964 “Algorithmic Principles for Building Efficient Overlay Computers” (AEOLUS).
Research for this work was done while the first author was at the University of
Paderborn.
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Instance. A (weighted) singleton congestion game is a tuple Γ =
(
n, m, (wi)i∈[n],

(Si)i∈[n], (fe)e∈[m]
)
. Here, n is the number of players and m is the number of

resources. For every player i ∈ [n], wi ∈ R>0 is its weight (w.l.o.g., wi = 1 if
Γ is unweighted) and Si ⊆ [m] its pure strategy set. Denote by W :=

∑
i∈[n] wi

the total weight of the players. Strategy sets are unrestricted if Si = [m] for all
i ∈ [n] and restricted otherwise. Denote S := S1 × . . . × Sn. For every resource
e ∈ [m], the latency function fe : R≥0 → R≥0 defines the latency on resource
e. We consider polynomial latency functions with maximum degree d and non-
negative coefficients, i.e., for each e ∈ [m], the latency function is of the form
fe(x) =

∑d
j=0 ae,j · xj with ae,j ≥ 0 for all j ∈ [d]0. For the special case of affine

latency functions, we let ae := ae,1 and be := ae,0, i.e., for any e ∈ [m] we have
fe(x) = ae · x + be. Affine latency functions are linear if be = 0 for all e ∈ [m].

Strategies and Strategy Profiles. A mixed strategy Pi = (Pi,e)e∈Si of player
i ∈ [n] is a probability distribution over Si. For a pair of pure and mixed strategy
profiles s = (s1, . . . , sn) and P = (P1, . . . , Pn), we denote by P(s) :=

∏
i∈[n] Pi,si

the probability that the players choose s. Throughout the paper, we identify any
pure strategy (profile) with the respective degenerate mixed strategy (profile).

Load and Private Cost. Denote by δe(P) =
∑

i∈[n] Pi,e · wi the (expected)
load on resource e ∈ [m] under profile P. The private cost of a player i ∈ [n] is
PCi(P) :=

∑
s∈S P(s) · fsi (δsi(s)).

Nash Equilibria. A profile P is a Nash equilibrium if no player i ∈ [n] could
unilaterally improve its private cost; i.e., PCi(P) ≤ PCi(P−i, e) for all i ∈ [n] and
e ∈ Si. Depending on the profile, we distinguish pure and mixed Nash equilibria.
NE(Γ ) and NEpure(Γ ) are the sets of all mixed (resp. pure) Nash equilibria.

Social Cost. Social cost SC(Γ,P) is defined as the (expected) total latency [20],
i.e., SC(Γ,P) :=

∑
s∈S P(s)

∑
e∈[m] δe(s) · fe(δe(s)) =

∑
i∈[n] wi · PCi(P). The

optimum total latency is OPT(Γ ) := mins∈S SC(Γ, s).

Price of Anarchy. Let G be a class of weighted singleton congestion games.
The mixed price of anarchy is defined as PoA(G) := supΓ∈G,P∈NE(Γ )

SC(Γ,P)
OPT(Γ ) . For

the definition of the pure price of anarchy PoApure replace NE with NEpure.

1.2 Previous Work and Our Contribution

The price of anarchy was first introduced and studied by Koutsoupias and Pa-
padimitriou [15] for weighted singleton congestion games with unrestricted strat-
egy sets and linear latency functions, yet social cost defined as the expected
maximum latency on a resource. Their setting became known as the KP-model
and initiated a sequence of papers determining the price of anarchy both for the
KP-model and generalizations thereof; see, e.g., [14,9,12,10,13,6].

For general (weighted) congestion games and social cost defined as the total
latency, exact values for the price of anarchy have been given in [2,5,1]. In par-
ticular, Aland et al. [1] proved that for identical players the price of anarchy
for polynomial latency functions (of maximum degree d and with non-negative
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Table 1. Lower/upper bounds on the price of anarchy for singleton congestion games.
Terms o(1) are in m.

PoApure PoA
fe(x) = player LB UP LB UP

un
re

st
ri

ct
ed

st
ra

te
gi

es

x ident. 1 2 − 1
m

[16]

x arb. 9
8 [16] 2 − 1

m
[16,12]

aex ident. 4
3 [16] 2 − 1

m
(T.1)

aex arb. 2 − o(1) (T.2) 1 + Φ [2] 2.036 (T.3) 1 + Φ [2]

xd ident. 1 Bd+1 − o(1) [11] Bd+1 [11]
Pd

j=0 ae,jxj arb. Bd+1 − o(1) (T.2) Φd+1
d [1]

re
st

ri
ct

ed
st

ra
te

gi
es

x ident. 2.012 [21] 2.012 [3]

aex ident. 5
2 − o(1) [3] 5

2 [21] 5
2 − o(1) [3] 5

2 [4]
Pd

j=0 ae,jxj ident. Υ (d) − o(1) (T.5) Υ (d) [1] Υ (d) − o(1) (T.5) Υ (d) [1]

aex arb. 1 + Φ − o(1) [3] 1 + Φ [2] 1 + Φ − o(1) [3] 1 + Φ [2]
Pd

j=0 ae,jxj arb. Φd+1
d − o(1) (T.4) Φd+1

d [1] Φd+1
d − o(1) (T.4) Φd+1

d [1]

coefficients) is exactly Υ (d) := (λ+1)2d+1−λd+1(λ+2)d

(λ+1)d+1−(λ+2)d+(λ+1)d−λd+1 , where λ = �Φd	.
For weighted players the price of anarchy increases slightly to Φd+1

d [1].
Finally, singleton congestion games with social cost defined as the total latency

have been studied in [3,11,16,21]; see Table 1 for a comparison. Since such games
always possess a pure Nash equilibrium (if latency functions are non-decreasing
[8]), also the pure price of anarchy is of interest. In this work, we prove a collection
of new bounds on the price of anarchy for multiple interesting classes of singleton
congestion games, as shown (and highlighted by a gray background) in Table 1.
Surprisingly, the upper bounds from [1] – proved for general congestion games
with polynomial latency functions – are already exact for the case of singleton
strategy sets and pure Nash equilibria.

2 Unrestricted Strategy Sets

Proposition 1. Let Γ be a weighted singleton congestion game with unrestricted
strategy sets, affine latency functions and associated Nash equilibrium P. Then, for

all nonempty subsets M ⊆ [m], SC(Γ,P) ≤
∑

i∈[n] wi ·
W+(|M|−1)wi+

�
j∈M

bj
aj�

j∈M
1

aj

.

Proposition 2. Let Γ be a weighted singleton congestion game with unrestricted
strategy sets and affine latency functions. Let s be an associated pure strategy
profile with optimum total latency and let M = {e : δe(s) > 0}. Define X =
{x ∈ R

M
≥0 :

∑
j∈M xj = W} and let x∗ ∈ argminx∈X{

∑
j∈M xj ·fj(xj)}. Denote

M∗ = {j ∈ M : x∗
j > 0}. Then, OPT(Γ ) = SC(Γ, s) ≥

W 2+W
2 ·�j∈M∗

bj
aj�

j∈M∗ 1
aj

.

We are now equipped with all tools to prove the following upper bounds:
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Theorem 1. Let Ga be the class of unweighted singleton congestion games with
at most m resources, unrestricted strategy sets and affine latency functions and
Gb be the subset of Ga with linear latency functions. Then (a) PoA(Ga) < 2 and
(b) PoA(Gb) ≤ 2 − 1

m .

Theorem 2. Let G be the class of weighted singleton congestion games with
unrestricted strategy sets and polynomial latency functions of maximum degree
d. Then PoApure(G) ≥ Bd+1.

Proof. For some parameter k ∈ N define the following weighted singleton conges-
tion game Γ (k) with unrestricted strategy sets and polynomial latency functions:

– There are k + 1 disjoint sets M0, . . . , Mk of resources. Set Mj , j ∈ [k]0,
consists of |Mj | = 2k−j · k!

j! resources sharing the polynomial latency function
fe(x) = 2−jd · xd for all resources e ∈ Mj.

– There are k disjoint sets of players N1, . . . , Nk. Set Nj , j ∈ [k], consists of
|Nj | = |Mj−1| = 2k−(j−1) · k!

(j−1)! players with weight wi = 2j−1 for all
players i ∈ Nj .

Observe that |Mj| = 2k−j · k!
j! = 2k−(j+1) · k!

(j+1)! · 2(j + 1) = |Mj+1| · 2(j + 1).
Let s be a pure strategy profile that assigns exactly 2j players from Nj to

each resource in Mj for j ∈ [k]0. Then, for all resources e ∈ Mj , j ∈ [k], we have
δe(s) = 2j ·2j−1 = j ·2j and fe(δe(s)) = 2−jd ·(j ·2j)d = jd. It is now easy to check
that s is a Nash equilibrium for Γ (k) with SC(Γ (k), s) = 2k · k! ·

∑
j∈[k]0

jd+1

j! .
Now let s∗ be a strategy profile that assigns each player Nj to a separate resource
in Mj−1. Then, for all resources e ∈ Mj , j ∈ [k − 1]0, we have δe(s∗) = 2j and
fe(δe(s∗)) = 2−jd · (2j)d = 1. So SC(Γ (k), s∗) = 2k · k!

∑
j∈[k−1]0

1
j! . Hence,

PoApure(G) ≥ limk→∞
SC(Γ (k),s)
SC(Γ (k),s∗) =

�∞
j=1

jd+1

j!�∞
j=0

1
j!

= 1
e

∑∞
j=1

jd+1

j! = Bd+1. 
�

Theorem 3. Let G be the class of weighted singleton congestion games with
unrestricted strategy sets and linear latency functions. Then PoA(G) > 2.036.

Proof. For w ∈ R>0, define the singleton congestion game Γ (w) with 5 players
of weights w1 = w and wi = 1 for i ∈ {2, . . . , 5} and 5 resources with latency
functions f1(x) = w

w+4 · x and fe(x) = x for e ∈ {2, . . . , 5}.
Let s := (i)n

i=1 ∈ S and let P be the mixed strategy profile where P1,1 = p,
P1,e = 1−p

4 for e ∈ {2, . . . , 5}, and Pi,1 = 1 for i ∈ {2, . . . , 5}. It is easy to
check that P is a Nash equilibrium for p ≤ w2−8w+16

5w2+4w . Since SC(Γ (w),P) =

p 4w2

w+4 + 16w
w+4 +w2 is monotonically increasing in p, choose p = w2−8w+16

5w2+4w . Clearly,
PoA(G) ≥ SC(Γ (w),P)

SC(Γ (w),s) . Setting w = 3.258 yields the claimed lower bound. 
�

3 Restricted Strategy Sets

Theorem 4. Let G be the class of weighted singleton congestion games with
restricted strategy sets and polynomial latency functions of maximum degree d.
Then PoA(G) = PoApure(G) = Φd+1

d .
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Proof. Due to [1], we only need to show the lower bound. For n ∈ N, define
the singleton congestion game Γ (n) with n players and n + 1 resources. The
weight of player i ∈ [n] is wi = Φi

d and the latency functions are fn+1(x) =
Φ
−(d+1)·(n−1)
d · xd for resource n + 1 and fe(x) = Φ

−(d+1)·e
d · xd for resources

e ∈ [n]. Each player i ∈ [n] only has two available resources: Si = {i, i + 1}.
Let s := (i)n

i=1 ∈ S. One can verify that s is a Nash Equilibrium and
SC(Γ (n), s) = n. Now let s∗ := (i + 1)n

i=1 ∈ S. Then, SC(Γ (n), s∗) = (n −
1) · 1

Φd+1
d

+ 1, so supn∈N

{
SC(Γ (n),s)
SC(Γ (n),s∗)

}
= Φd+1

d . 
�

Theorem 5. Let G be the class of unweighted singleton congestion games with
restricted strategy sets and polynomial latency functions of maximum degree d.
Then PoA(G) = PoApure(G) = Υ (d).

Proof (Sketch). For k ∈ N, define an unweighted singleton congestion game
Γ (k). We borrow the representation introduced by [7] which makes use of an
“interaction graph” G = (N, A): Resources correspond to nodes and players cor-
respond to arcs. Every player has exactly two strategies, namely choosing one
or the other of its adjacent nodes.

Fig. 1. The game graph for d = k = 2

The interaction graph is a tree which
is constructed as follows: At the root
there is a complete (d+1)-ary tree with
k + 1 levels. Each leaf of this tree is
then the root of a complete d-ary tree
the leafs of which are again the root of
a complete (d − 1)-ary tree; and so on.
This recursive definition stops with the unary trees. For an example of this
construction, see Figure 1.

Altogether, the game graph consists of (d + 1) · k + 1 levels. We let level 0
denote the root level. Thus, clearly, the nodes on level i ·k, where i ∈ [d]0, are the
root of a complete (d + 1 − i)-ary subtree (as indicated by the hatched shapes).

For any resource on level (d+1−i)·k+j, where i ∈ [d+1] and j ∈ [k−1]0, let the

latency function be fi,j : R≥0 → R≥0, fi,j(x) :=
[∏d+1

l=i+1
l

l+1

]d·(k−1)
·
(

i
i+1

)dj

·xd.
The resources on level (d + 1) · k have the same latency function f0,0 := f1,k−1
as those on level (d + 1) · k − 1.

Let s denote the strategy profile in Γ (k) where each player uses the resource
which is closer to the root. Similarly, let s∗ be the profile where players us the
resources farther away from the root. One can verify that s is a Nash equilib-
rium and the quotient SC(Γ (k),s)

SC(Γ (k),s∗) can be written in the form
�d+1

i=0 βi·αk−1
i�d+1

i=0 γi·αk−1
i

where

βi, γi ∈ Q, α0 = 1, and αi =
∏d+1

l=i
ld+1

(l+1)d = id+1

(d+2)d ·
∏d+1

l=i+1 l for all i ∈ [d + 1].
Now let λ := �Φd	. Then, (λ + 1)d > λd+1 but (λ + 2)d < (λ + 1)d+1, so

λ ∈ [d]. It holds that αλ+1 > αi for all i ∈ [d + 1]0 \ {λ + 1} because, for
all i ∈ [d], αi+1 > αi if and only if (i + 1)d > id+1 and α1 = (d+1)!

(d+2)d < 1
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and αd+1 = (d+1)d+1

(d+2)d > 1. Using standard calculus we therefore get

limk→∞
SC(Γ (k),s)
SC(Γ (k),s∗) = βλ+1

γλ+1
= (λ+1)2d+1−λd+1·(λ+2)d

(λ+1)d+1−(λ+2)d+(λ+1)d−λd+1 . 
�
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Abstract. We consider a model of content contribution in peer-to-peer
networks with linear quadratic payoffs and very general interaction pat-
terns. We find that Nash equilibria of this game always exist; moreover,
they are computable by solving a linear complementarity problem. The
equilibrium is unique when goods are strategic complements or weak
substitutes and contributions are proportional to a network centrality
measure called the Bonacich index. In the case of public goods, the equi-
librium is non-unique and characterized by k-order maximal independent
sets. The structure of optimal networks is always star-like when the game
exhibits strict or weak complements. Under public good scenarios, while
star-like networks remain optimal in the best case, they also yield the
worst-performing equilibria. We also discuss a network-based policy for
improving the equilibrium performance of networks by the exclusion of
a single player.

1 Introduction

Peer effects, or the dependence of individual outcomes on group behaviour, is
a characterizing feature of peer-to-peer systems. File-sharing systems rely on
participants to provision the network with content. Participants can experience
a marginal increase or decrease in utility from the kind of content contributed
by others. We call such goods strategic complements and strategic substitutes,
respectively. Following Ballester et al. (2006), we adopt a simple model for a
contribution game in this paper. A player is modeled with a linear-quadratic
utility function, that allows for utility-dependence on the contribution by other
players. The utility structure provides for an individualized component, reflecting
decreasing marginal-returns for a player’s own contribution, in addition to a term
that reflects local interaction that varies across pairs of players, meaning pairs
of players can affect each other differently.

The model is appealing because Nash equilibria are always computable by
solving a linear complementarity problem. Moreover, a unique Nash equilibrium
of the contribution game can be readily computed as a metric of network cen-
trality when the network exhibits complementarities. When substitutabilities are
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strong, equilibria are non-unique and the only stable equilibria are characterized
by k-order maximal independent sets of optimally-contributing players, with the
rest of the population free-riding completely.

We consider the problems of designing networks that maximize aggregate con-
tribution and welfare, and find that the structure of optimal networks is star-like
when the game exhibits strict or weak complements. Under public good scenarios,
while star-like networks remain optimal in the best case, they also yield the worst-
performing equilibria. We discuss a network-based policy aimed at improving the
equilibrium performance of networks by the removal of a single key player.

This paper situates itself in a growing body of literature interested in games
where endogenous play is susceptible to externalities passed along or represented
by network links. Jackson (2008) and Kearns (2007) provide a good survey of the
area. Demange (2007) and Bramoulle and Kranton (2006) study equilibrium pro-
files in a game with public (substitutable) good provisioning. Johari and Tsitsiklis
(2005) and Roughgarden and Tardos (2004) investigate the effects of network
architecture on the worst-case efficiency (the price of anarchy) of equilibria in
routing games. Our model deals with a different payoff structure and allows for
externalities to be either complementary or substitutable. We provide a partial
characterization of equilibria in our game and relate a network’s efficiency, in
both the best and worst case, to its geometric properties.

2 The Model

Let G(v, e) denote the set of undirected and unweighted connected graphs with-
out loops with v vertices and e edges.

Players are connected by a network g ∈ G(v, e) with adjacency matrix G =
[gij ]. This is a zero diagonal and non-negative square matrix, with gij ∈ {0, 1}
for all i �= j.

Each player i = 1, ..., n selects a contribution xi ≥ 0, and gets a payoff
ui(x1, . . . , xn). Letting x = (x1, . . . , xn), we focus on bilinear utility functions of
the form:

ui(x,g) = xi − 1
2
x2

i + a

n∑

j=1

gijxixj , (1)

The external effect of another agent on the utility of agent i is captured by the
cross-derivatives ∂2ui

∂xixj
= agij , for i �= j. When a > 0, the effect on agent i

of agent j’s contribution is marginal-increasing if and only if i and j are con-
nected in g; when a < 0, the effect is marginal-decreasing. The network g reflects
the pattern of existing payoff complementarities when a is positive, and substi-
tutabilities, when a is negative, across all pairs of players. We use Σ to refer
to the n-player game with payoffs given by Equation 1 and strategy space, the
non-negative real line.

2.1 The Linear Complementarity Problem

We analyze the set of pure strategy Nash equilibria of the game introduced
above. We note that an equilibrium exists if and only if ∂ui

∂xi
(x∗) ≤ 0, ∀i ∈ N . In
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matrix notation, this necessary and sufficient condition for a Nash equilibrium
becomes:

x∗ >= 0, (2)

−a + Σx∗ >= 0,

−xt∗(−a + Σx∗) = 0.

The problem of finding a vector x∗ such that the above conditions hold is
known as the linear complementarity problem LCP (−a, −Σ). We can therefore
state the following:

Theorem 1. The set of pure strategy Nash equilibria of the contribution game
with parameters α and Σ are given by the set of solutions to LCP (−α, −Σ).

The linear complementarity problem is a well-studied problem and we borrow
from this literature to address existence of the Nash equilibrium in our game,
as well as in our empirical studies to characterize optimally-designed networks.
In the next sections we study the current model under strict complementarities,
when a > 0, and under substitutabilities, when a < 0. The local interaction
graph connecting agents becomes irrelevent when a = 0, as the contribution
levels of other agents does not impact an agent’s utility. In this case, the network-
independent optimal contribution level for each agent is 1.

3 Complementary Goods

We first study the game under local complementarities, i.e. a > 0. Before turn-
ing to the equilibrium analysis, we define a network centrality measure due to
Bonacich (1987) that proves useful for this analysis.

3.1 The Bonacich Network Centrality Measure

Given the network g ∈ G(v, e), denote by λ1(g) its largest eigenvalue, also called
the index of g. This index is always well-defined and λ1(g) > 0.

Definition 1. Let B(g, a) = [I−aG]−1, which is well-defined and non-negative
if and only if aλ1(G) < 1. The vector of Bonacich centralities of parameter a in
g is b(g, a) = B(g, a) · 1.

Since B(g, a) =
∑+∞

k=0 akGk, its coefficients bij(g, a) count the number of paths
in g starting at i and ending at j, where paths of length k are weighted by ak.

Theorem 2. For aλ1(G) < 1, the game Σ has a unique Nash equilibrium
x∗(Σ) given by x∗(Σ) = b(g, a), where the utility of player i at equilibrium
is ui(x∗,g) = 1

2x∗
i
2 = 1

2 bi(g, a)2.

The correspondence between the Bonacich centrality indices of a graph and its
equilibrium when a > 0 establishes the uniqueness and interiority of equilibria
when aλ1(G) < 1. When aλ1(G) > 1, an equilibrium fails to exist because the
positive feedback from other agents’ contributions is too high and contributions
increase without bound.
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4 Substitutable Goods

When a < 0 we have a substitutability effect between players’ contributions, i.e.
we have a public good game. Contrary to the case when a > 0, an equilibrium now
always exists. The best-response function is continuous from the compact convex
set {x ∈ Rn : ∀i, 0 ≤ xi ≤ x∗} to itself and so Brouwer’s Fixed Point Theorem
applies. We study the game under two separate conditions: when subtitutabilities
are weak and when they are strong, i.e. the case of pure public goods.

4.1 Weak Substitutes

We define the complement network G = J − I − G, where J is the all-ones
matrix, i.e., gij = 1 − gij , for all i �= j. In words, two vertices are linked in G if
and only if they are not linked in G. We write:

Σ = (1 + a) I + aG − aJ.

Suppose first that −1 < a < 0. Solving for the Nash equilibrium is then equiva-
lent to solving LCP (− 1

1+ae, I+ a
1+aG− a

1+aJ). The solution can be equivalently
written in terms of the Bonacich index of nodes on the complement network.

Theorem 3. Consider a game on G where a < 0 and let G = J − I − G as
before. There exists a unique equilibrium if and only if −aλ1

(
G

)
< 1+a. Then,

the equilibrium is unique, interior and proportional to Bonacich, that is,

x∗
i =

1

1 + a + a
∑n

j=1 bj

(
−a
1+a ,G

)bi

(
−a

1 + a
,G

)
, for all i = 1, ..., n

Recall that we are dealing with the case −1 < a < 0. Notice that −aλ1
(
G

)
<

1 + a is equivalent to − 1
1+λ1(G) < a. Therefore, the interior unique equilibrium

is obtained on − 1
1+λ1(G) < a < 0.

4.2 Pure Public Goods

When substitutabilities are large, i.e. when a < − 1
1+λ1(G) , the above trans-

formations fail to work. In these circumstances, agents’ free-riding on others’
contributions is severe enough that some agents do not contribute at all. Agents
whose equilibrium contribution levels are non-zero either contribute the optimum
(i.e. in this case 1) or some value less than optimum.

Partially Corner Equilibria. Precisely, a partially corner equilibrium profile
x∗ on the network G(v, e) is one such that there exists some i, j ∈ v such that
xi = 0 and 0 < xj < 1. We remark that equilibrium contributions of non-corner
agents, i.e. all agents j ∈ v such that 0 < xj < 1, are related to the Bonacich
centrality index on the subnetwork joining them.

Lemma 1. Let a < 0. Given a partially corner equilibrium profile x on the
network G(v, e), the contribution levels of all nodes i such that 0 < xi < 1 is
given by the expression in Theorem 3.
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Corner Equilibria. As mentioned earlier, when local substitutabilities are
large, corner equilibria, with agents either free-riding completely or contributing
optimally, also exist. For such a situation to be an equilibrium, both free-riders
and contributors must gain by doing so. Given the graph G = (v, e), let NG(v′)
designate the set of neighbors of node v′ ∈ v. We find that all corner equilibria
for a ≤ −1 are described by maximal independent sets of contributors.

Definition 2. A set S ⊆ v is called a k-order maximal independent set if and
only if it is a maximal independent set such that each node not in the set is
connected to at least k nodes in the set, i.e. ∀v′ �∈ S,

∣
∣NG(v′) ∩ S

∣
∣ ≥ k.

Theorem 4. Let 	1/a
 be the smallest integer greater than or equal to
∣∣1/a

∣∣.
For a ≤ − 1

1+λ1(G) , a corner profile is a Nash equilibrium if and only if the set of

contributing players, i.e.
{
i ∈ v : xi = 1

}
, is a 	1/a
-order maximal independent

set of the graph G.

Maximal independent sets correspond to maximal independent sets of order 1.
Every graph has a maximal independent set, therefore there always exists a cor-
ner equilibrium for a ≤ −1. However, for k ≥ 2, k-order maximal independent
sets need not always exist. Therefore, when −1 < a ≤ − 1

1+λ1(G) , we may not

have a corner equilibrium, though we may still have a partially corner equilib-
rium. Recall that an equilibrium is guaranteed to exist for all a ≤ 0.

Stable Equilibria. We use a simple notion of stability based on Nash tâtonne-
ment (e.g. Fudenberg 1991). We find that corner equilibria are the only stable
equilibria to this perturbed best-response procedure.

Theorem 5. For any network G, an equilibrium is stable if and only if it is a
corner equilibrium.

The result is convenient because it helps to mitigate the problem of multiple
equilibria when a ≤ − 1

1+λ1(G) , where G is given as the complement of the

network G, as before. The correspondence of corner equilibria to maximal inde-
pendent sets of order k also gives us insight into the computational complexity of
computing equilibria under substitutabilities. These results are discussed in the
full paper (Corbo et al. 2007) and are leveraged in this paper’s empirical stud-
ies to solve for a graph’s contribution-maximizing (best-case) and contribution-
minimizing (worst-case) equilibria, across all a when equilibria are non-unique.

5 Optimal Network Design

The problem of optimal network design consists of arranging a network’s v ver-
tices and e edges in such a way that some objective function is maximized. In
the first problem, the social planner wants to maximize aggregate activity (or
contribution) at equilibrium. In the second problem, the social planner wants
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Fig. 1. (a) shows that the first eigenvalue of aggregate contribution- and utility-
maximizing equilibrium graphs corresponds to the largest first eigenvalue possible for
v, e. When equilibria are non-unique, (a) includes the best case equilibrium performance
of the graph, while (b) plots the first eigenvalue of networks with best worst-case stable
equilibrium performance (against the smallest first eigenvalue possible for v, e). (a), (b)
refer to networks with varying number of edges while keeping v = 12 and −3 < a < 0.5.
(c) shows the difference in aggregate contribution for the best- and worst-case equilib-
ria, for graphs with the best best-case and best worst-case performance, fixing a = −1.
v = 15 (dash blue), 25 (dot-dash blue), 35 (solid red). (d) shows the best-case
and worst-case equilibrium performance of graphs with best worst-case performance
(dot-dash blue) compared to graphs with best best-case performance (solid red),
for v = 12, a = −1. The best best-case performing graphs have worse worst-case per-
formance. The dash black curve in (d) gives the worst-case performance of graphs
with the key player removed, starting from the best best-case performing graphs (solid
red).

to maximize aggregate equilibrium welfare. When equilibria are non-unique, we
consider both the best case and worst case, respectively contribution- or utility-
maximizing and contribution- or utility-minimizing, equilibria of networks. We
study the relationship between the best-case and worst-case equilibria of a given
network, and particularly how contribution- or utility-maximizing networks in
the best case perform in the worst case, as well as how contribution- or utility-
maximizing networks in the worst case perform in the best case.

5.1 Optimizing Under Complementarities

Let a > 0. We observe that contribution- and welfare-maximization corre-
spond to maximizing the L1 and L2 norms of the Bonacich index vector, i.e.
maxg{b(g, a) ·1 : g ∈ G(v, e)} and maxg{u(x∗(g, a)) : g ∈ G(v, e)}, respectively.
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The relationship suggests a way to characterize optimal equilibria using spectral
graph theory.

Lemma 2. Let g ∈ G(v, e), and λ1(G) its index. As a ↑ 1
λ1G

, the welfare- and
contribution-maximizing graphs problems are equivalent and reduce to
max{λ1(g) : g ∈ G(v, e)}.

These asymptotic results reveal a great deal about how the optimal networks
change with the level of externalities. Figure (a) illustrates precisely this across
a large range of a values, for graphs with varying numbers of edges. The graph
shows that the first eigenvalue of aggregate contribution- and utility-maximzing
graphs (L1- and L2-maximizing graphs in the case of a > 0) corresponds to the
largest first eigenvalue possible for graphs with given v, e. The largest eigenvalue
of a graph is a measure of its regularity. A higher eigenvalue corresponds to an
irregular star-like structure, whereas a lower eigenvalue refers to a more regular
network.

5.2 Optimizing Under Substitutabilities

While equilibria are interior, aggregate contribution- and utility-maximizing
graphs still coincide; these networks are maximal index graphs. When substi-
tutabilities are strong enough, we lose interiority and have both partially corner
and corner equilibria. Corner equilibria being the only stable equilibria, we only
consider these.

Figures (c), (d) illustrate the tension between optimal networks in the best
and worst cases. Networks that yield the highest contribution in the best case
also exhibit worse worst case performance. These networks are maximal index
graphs. Networks that yield the best worst case performance are minimal index
graphs, as shown in Figure (b). Minimal index graphs also exhibit the smallest
spread between best and worst case equilibrium performance, as illustrated in
Figure (d).

5.3 Excluding the Key Player: A Network-Based Policy

We investigate a policy aimed at mitigating the discrepancy between best- and
worst-case equilibrium performance. We denote by G−i (respectively Σ−i) the
new adjacency matrix (respectively the matrix of cross-effects), obtained from G
(respectively from Σ) by setting to zero all of its i-th row and column coefficients.
The resulting network is g−i. We want to solve maxi∈N{x∗(Σ−i) − x∗(Σ)}

This is a finite optimization problem, that admits at least one solution. A
good heuristic for the solution of this problem is the the removal of the highest
degree node, since a node with highest degree imposes the largest number of
constraints on the independent set construction. Figure (d) illustrates the pol-
icy’s effectiveness in reconciling best- and worst- case equilibrium performance.
Worst-case performance of graphs can be dramatically improved and even match
best-case performance when the network graph is sparse. Figure (d) also shows
that the policy becomes less effective as graphs grow dense.
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Abstract. We suggest a relative performance scheme that provides in-
centives for e.g. a manager to strive for the firm’s strategy. A number
of comparable firms submit private performance data to a trusted third
party and receive a single number reflecting the firm’s relative catch up
with the frontier evaluated with the shadow prices associated with a tai-
lored benchmark. The distributed information avoid signaling among the
firms by revealing no recognizable information about the other firms per-
formances. To enhance the applicability the computation of the required
linear programming problems is based on distributed cryptography. Pre-
liminary results on the computation time is provided.

1 Introduction

In this paper we consider the owner’s (Principal’s) classical problem of mo-
tivating the manager or employees (Agents) to put the optimal effort into the
realization of the firm’s strategy. The central issue is the asymmetric distribution
of information which makes it impossible for the owner to contract directly on
the manager’s or employees’ privately selected effort. One of the central results
in this field is that sufficient external statistics from comparable firms minimizes
the information rent, see e.g. (Holmstrom [5]).

We suggest a secure relative performance scheme that implement the desired
motivation based on secure coordination and benchmarking of possibly compet-
ing firms. The paper treats three central issues. First, we suggest a performance
scheme based on directional distance functions and Data Envelopment Analysis
(DEA). This approach makes it possible to direct the incentives towards the
firm’s strategy with respect to an unknown best practice. Second, we address
misuse of the suggested performance scheme for signaling between the firms.
Third, we discuss how the required trusted third party can be replaced by dis-
tributed cryptography, in particular Secure Multiparty Computation (SMC).
Preliminary results on the computation time for the required Linear Program-
ming (LP) problems is provided.

The outline of the paper is as follows. Section 2 provides a relative perfor-
mance scheme and discuss possible signaling. Section 3 discusses how distributed
cryptography may replace the trusted third party and concluding remarks are
provided in Sect. 4.

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, pp. 396–403, 2007.
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2 A Relative Performance Scheme

The crux is to design a performance scheme based on peer performance that pro-
vides the right incentives without revealing any sensitive peer information. The re-
lated problem of handling the submitted private information is discussed in Sect. 3.

A failure to address this problem may cause signaling of higher or lower perfor-
mance to be the optimal behavior in order to influence the behavior of competing
firms. E.g. to intimidate competitors in tenders for future contracts or location
of future stores. Also firms that are not engaged in direct competition (public ad-
ministrations, sub-branches within a large firm or small firms in large branches)
may also signal e.g. to show off.

2.1 The Individual Benchmark

Consider a group of N firms that in different ways use the same K inputs to
produce the same L outputs. All firms are assumed to belong to the same pro-
duction possibility set, which describes various relationships between the applied
inputs and the produced outputs. The production possibility set is estimated by
the non-parametric Data Envelopment Analysis (DEA), which provides a bench-
mark used for incentive provision within each firm.

Let xi = (xi
1, . . . , x

i
K) ∈ R

K
0 be the inputs consumed and yi = (yi

1, . . . , y
i
L) ∈

R
L
0 the outputs produced by firm i, i = 1, 2, . . . , N . The production possibility

set is given by:

T =
{
(x, y) ∈ R

K+L
0 | x can produce y

}
(1)

In the directional approach, the user expresses his preferences by specifying
a direction, d = (dx, dy) ∈ R

K+L, for the firm to move in. Here di is based on
the firms operational goal zi

g = (xi
g , yi

g) and the actual performance zi = (xi, yi)
by di = zi

g − zi. Firm i’s benchmark z̄i = (x̄i, ȳi) is given as zi,DEA(x, y) =
(xi, yi) + di · σ, where σ is:

σ = max
{
σ |

(
xi, yi

)
+ di · σ ∈ T

}
(2)

σ is computed by the following LP-problem:

σi = max
σ,λ

σ

s.t.
N∑

j=1

λjxj
k ≤ xi

k − σdx
k , k = 1, . . . , K

N∑

j=1

λjyj
l ≥ yi

l + σdy
l , l = 1, . . . , L

λj ∈ Λ, j = 1, . . . , N

(3)

where Λ defines the overall assumption about the envelopment i.e. the underlying
technology T. There is a large literature that discuss various restrictions on T, see
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e.g. (Cooper et al. [3]). We will limit our attention to cases where T is defined as
a convex hull. Figure 1 in Sect. 2.2 illustrates how the benchmark is constructed.

In terms of incentive provision Bogetoft ([1]) shows that DEA estimates may
provide sufficient statistics as defined in (Holmstrom [5]).

2.2 The Suggested Performance Scheme

We suggest a relative performance scheme that returns a relative deduction to
each firm which is minimized by striving directly for the individual firm’s oper-
ational strategy. The relative deduction is designed to avoid signaling.

The suggested relative performance scheme is based on each participant’s per-
formance and goal ex ante (period t = 0) and T is defined by the others’ production
ex post (period t = 1)1. This is illustrated in Fig. 1 and the LP problem in Sect. 2.1
compute the benchmark2. The performance pay (b) is defined on a predetermined
interval by a minimum and a maximum payment (Qlow, Qhigh) as:

bi(z, di) = max

⎧
⎨

⎩
Qlow, Qhigh + min{α[(zi,DEA(z−i, di) − zi) · p∗], 0}

︸ ︷︷ ︸
Relative deduction

⎫
⎬

⎭
(4)

The relative deduction is less than or equal to 0 and defined as a fraction of
the difference between the desired benchmark zi,DEA(z−i, di) and the actual per-
formance zi valued with the prices p∗ (with negative prices on inputs)3. p∗ is the
so-called shadow prices which is the solution to the dual of the LP problem given
in Sect. 2.1. The shadow prices are defined as the prices that makes any further
use of input and production of output unprofitable. The shadow prices4 is simply
the tangent of the frontier at the computed benchmark as illustrated in Fig. 1.

Clearly the performance scheme is individual rational by setting Qlow equal
to the agent minimum required salary. Also, the scheme is incentive compatible
since it is optimal for the agent to maximize the performance along the line σ ·di

from zi
t=0 towards zi

g. To see this note that an efficient point along this line will
be an allocative efficient point with certainty and that any other efficient points
will be allocative efficient with a probability less than 1 due to the unknown
but convex T. An allocative efficient point will result in the smallest relative
deduction (0) and thereby the largest payment.
1 To simplify we focus on the agent’s incentives to select the optimal effort by assuming

that the performance zi is observable ex post by both the agent and the principal.
2 The relative performance scheme is not applicable for firm i if the line σ ·di is outside

T.
3 Written out the relative deduction is: (x̄i

1 − xi
1) · −pi

x1 + . . . + (x̄i
K − xi

K) · −pi
xK

+
(ȳi

1 − yi
1) · pi

y1 + . . . + (ȳi
L − yi

L) · pi
yL

4 The linearity causes two problems: A risk of extreme shadow prices and corner so-
lutions with shadow prices associated with multiple adjacent hyperplans. Since the
shadow prices are computed on z−i the chance of reaching a corner solution is small.
In practice one may decide on a policy to handle these problems e.g. by predetermined
limits on the shadow prices and a selection mechanism in case of a corner solution.
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zi
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Fig. 1. The relative performance scheme

Signaling is addressed by lowering the expected value of a signal and increasing
the expected cost of sending a signal.

The value of a signal is essentially limited by limiting the information revealed.
The participants receive the number: min{α[zi,DEA(z−i, di) − zi) · p∗], 0} (the
relative deduction), which is constructed by two unknown vectors with K +
L elements each: The benchmark (zi,DEA(z−i, di)) and the associated shadow
prices (p∗). The received number indicates if zi is above or below the hyperplan
constructed by p∗ and zi,DEA(z−i, di). If a participant receives a 0 (above the
hyperplan) he only knows that no other firms dominates him. A negative number
does not have the same unambiguous interpretation. Furthermore the actual
number may be supported by an infinite number of hyperplans. It is therefore
impossible for a receiver to identify the peer information behind the received
number. Also, the sender of a possible manipulated performance can not identify
the receiver since the receiver’s performance and goal (the chosen direction di)
is private information.

The cost of sending the signal may come directly from a participation fee.
Since the value of a well received signal is private but most likely correlated with
the size of the firm, the participation fee should depend on the size of the firm.
Also, there is an indirect cost from not receiving useful benchmarks if deviating
from truth-telling. Since either the benchmark or the associated shadow prices
are known, the received number is useless if based on biased performances.

Therefore, since the received number (the relative deduction) does not iden-
tify either the benchmark, the shadow prices or peers, the value of signaling is
disappearing and even a small participation fee may avoid any signaling.

3 Secure Implementation

The system relies heavily on central coordination by a trusted third party. Paying
a third party (e.g. a consultancy house) to truthfully handle the data is not only
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expensive but also prone to human mistakes. Moreover, it may be impossible
to find a single entity that all firms are willing to entrust their data, which
may skew incentives to provide truthful information. However, cryptography
provides a solution to this through secure multiparty computation, which allows
a number of parties to jointly perform a computation on private inputs releasing
no other information than the final result. Assuming that sufficiently few collude,
no parties learn anything except the final result, allowing trust to be distributed
between multiple entities, potentially the firms themselves.

SMC often finds its basis in secret sharing: A dealer may distribute a secret
between many parties; this may only be reconstructed if sufficiently many agree,
fewer parties obtain no information at all. This allows the firms to distribute their
information among multiple entities, who then perform the desired computation.
The trusted third party is emulated by these, and each firm must only trust a
subset.

3.1 Solving Linear Programs Using SMC

Toft ([7]) describes a protocol for securely solving LP’s. Based on secret shared
constraints and objective function, a secret sharing of an optimal solution may
be determined using only secure arithmetic and a protocol for comparison. The
solution uses secure modulo computation to simulate integer arithmetic, the
modulus is simply chosen sufficiently large such that no reductions occur. Privacy
is not fully ensured, however, the amount of information disclosed is minor and
deemed acceptable in the present context.

The protocol is a variation of simplex based on SMC-primitives. Starting from
an initial (sub-optimal) solution, the optimal one is determined through repeated
refinement. Though simplex requires an exponential number of iterations in the
worst case, in practice very few are needed. It therefore forms a good basis, and
provides a complexity essentially equivalent to that of running the computation
on known data, though naturally computation is replaced by protocol executions.

Performing an iteration discloses no information at all, however, after each
iteration the termination condition is revealed. Overall, this leaks the number of
iterations performed, but no more. If this is not acceptable, a likely upper bound
may be chosen. Performing this many iterations (with dummy-computation once
the solution is found) hides the actual number of iterations. A second disclosure
comes from the solution itself. The values are rational, each represented by two
integers, numerator and denominator, and unless these fractions are reduced, a
minor amount of information on the final iteration is disclosed. While reducing
such fractions is possible5 this leak is disregarded, as it is not believed to provide
useful information on the initial values or distort incentives.

The focus of (Toft [7]) was theoretic in nature, for efficiency reasons a few
changes are made, these are described further in (Toft [8]). Sketching the main
differences, first, issues with simplex rarely encountered in practice – such as
cycling – are disregarded. This allows changes to the overall computation, which
5 Toft ([7]) computes the GCD and divides, however, this computation is comparable

to multiple iterations.
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generally result in fewer iterations. Second, theoretically efficient secure compu-
tations is not always the best choice in practice. Expensive tricks are employed
to obtain desirable properties, where a simpler solution may be better on “small”
inputs. An example is comparison: This work prefers a sub-protocol with round-
complexity logarithmic in the bit-length of the inputs rather than constant. For
the input-sizes considered, simplicity seems a better strategy than current state
of the art constant rounds comparison protocols.

One final comment is that this work requires not only the solution to the
LP, but also the solution to the dual, the shadow prices. This is immediately
obtainable from the final state of the computation, thus no additional secure
computation is needed. The concluding computation is easily performed.

3.2 A Performance Estimate

At present, the full secure computation has not been implemented, however,
initial timing results for arithmetic provide an estimate for solving LP’s – the
remaining computation is marginal and therefore disregarded. This timing data
is based on an implementation of Shamir sharings over Zp for prime p and the
protocols of Gennaro et al., (Shamir [6]; Gennaro et al. [4]).6 The basic mea-
sure of complexity is secure multiplication. Linear combinations do not require
interaction and are considered costless.

Initial timing data on multiplications suggest that the desired computation
is feasible, though more thorough tests need to be performed. The test setup
consists of three computers connected by a fast, low-latency LAN, the secret
sharing scheme is used with a threshold of one. Multiplying 2000 elements of a
1500 bit prime field (log-rounds solution) requires roughly three seconds. The
average time per multiplication is not affected by the number of terms, except
when quite few are considered. Decreasing the bit-length decreases average time
per multiplication, though no further than approximately 1 ms. For moduli less
than 5000 bits, the resulting increase appears linear.

Secure comparisons of values will be performed using a protocol to appear in
(Toft [8]), it is essentially a combination of ideas from multiple previous works.
The complexity of comparing �-bit values is comparable to multiplying 2� field
elements. Half of these multiplications are independent of the actual inputs and
may be performed in advance resulting in a better online running time.

The overall complexity depends on the complexity of an iteration and the
number of these performed. Letting M = K+L+1 be the number of constraints
of the LP, Chvátal ([2]) comments that the latter is generally between 3M/2 and
3M when the greatest coefficient rule is used. The dependency on N is lesser
(often stated as logarithmic), thus varying the number of firms does not affect
the number of iterations to a high degree.

Regarding the performance of a single iteration, approximately 3(N + M +
1)(M + 1) + 2N + 5M multiplications and N + 3M comparisons are needed to
improve the solution. The complexity of state of the art comparison protocols
6 Only passive adversaries are considered, i.e. it is assumed that parties do not deviate

from the protocol.
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depends on the bit-length of the inputs, which in turn depends on the LP. Toft
([7]) provides a broad upper bound on this:

(M · (2B + log(M)))/2 + 2B + M + N + 1 (5)

where B is the bit-length of the initial values.
An estimate using a concrete problem size demonstrates feasibility. Consider

a case of N = 200 firms with five inputs and outputs, i.e. M = 6. Assuming
that all initial values are 32 bits long, approximately 500 bits are needed to
represent intermediate and final values – for technical reasons the bit-length
of the modulus must be bigger, 1500 bits suffices. This implies 1.5 seconds per
comparisons, with an online requirement of half of that. Additional optimizations
suggest that the latter may be reduced to 1/2 second, though at the cost of
slightly more preprocessing.

Each iteration requires around 4800 multiplications and N + 3M = 218 com-
parisons. The latter is dominating, 1/2 second per comparison results in approx-
imately two minutes of processing time. With 3M = 18 iterations a result is
expected in about half an hour. Solving one LP per firm implies half a week of
computation time – this is of course in addition to the preprocessing required.

4 Concluding Remarks

We suggest a secure relative performance scheme that provides proper incen-
tives for the agent to strive for the principal’s strategy. The principal’s strategy
and the agent’s performance provides the direction in a non-parametric direc-
tional distance function based on the other participating firms’ performances.
The resulting benchmark and the associated shadow prices construct a relative
deduction that provides proper incentives and address potential signaling. The
computation is entirely based on secure multiparty computation allowing trust
to be distributed among multiple third parties, none of which learn any signif-
icant information. Though the time requirements are relatively large, they are
manageable – at least for the problem size suggested – and the technique def-
initely applicable. Future work will attempt to verify that timings of the full
protocol agree with the current extrapolated ones.
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Abstract. We consider non cooperative games in all-optical networks
where users share the cost of the used ADM switches for realizing
given communication patterns. We show that the two fundamental
cost sharing methods, Shapley and Egalitarian, induce polynomial
converging games with price of anarchy at most 5/3, regardless of the
network topology. Such a bound is tight even for rings. Then, we show
that if collusion of at most k players is allowed, the Egalitarian method
yields polynomially converging games with price of collusion between
3
2 and 3

2 + 1
k
. This result is very interesting and quite surprising, as

the best known approximation ratio, that is 3
2 + ε, can be achieved in

polynomial time by uncoordinated evolutions of collusion games with
coalitions of increasing size. Finally, the Shapley method does not induce
well defined collusion games, but can be exploited in the definition of
local search algorithms with local optima arbitrarily close to optimal
solutions. This would potentially generate PTAS, but unfortunately
the arising algorithm might not converge. The determination of new
cost sharing methods or local search algorithms reaching a compromise
between Shapley and Egalitarian is thus outlined as being a promising
and worth pursuing investigating direction.

Keywords: Optical Networks, Wavelength Division Multiplexing
(WDM), Add-Drop Multiplexer (ADM), Game Theory, Nash Equilib-
ria, Price of Anarchy, Price of Collusion.

1 Introduction

All-optical networks have been largely investigated in recent years due to the
promise of data transmission rates several orders of magnitudes higher than
� This research was partly supported by the EU Project “Graphs and Algorithms in

Communication Networks (GRAAL)” - COST Action TIST 293.
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current networks [2,3,15,17]. Major applications are in video conferencing, sci-
entific visualization and real-time medical imaging, high-speed supercomputing
and distributed computing [7,15].

A large portion of research concentrates with the total hardware cost. This
is modelled by considering the basic electronic switching units of the electronic
Add-Drop Multiplexer (ADM) and focusing on the total number of these hard-
ware components. Each lightpath uses two ADMs, one at each endpoint. If two
non-overlapping lightpaths are assigned the same wavelength and are incident to
the same node, then they can use the same ADM. Thus, an ADM may be shared
by at most two lightpaths. The problem of minimizing the number of ADMs was
introduced in [14] for ring networks. For such a topology it was shown to be NP-
complete in [9] and an approximation algorithm with approximation ratio 3/2
was presented in [5] and improved in [21,10] to 10/7 + ε and 10/7 respectively.
For general topologies [9] provided an algorithm with approximation ratio 8/5.
The same problem was studied in [4,12], where algorithms with approximation
ratio 3/2 + ε were presented.

In a distributed and decentralized environment characterizing an optical com-
munication network, besides the classical design of centralized algorithms opti-
mizing the resources utilization, the analysis of the uncooperative interaction
between the network users and the design of distributed algorithms call for more
research effort. On this respect, Game Theory and the associated concept of
Nash equilibria [19] have recently emerged as a powerful tool for modelling and
analyzing such a lack of coordination. In this setting, each communication re-
quest is handled by an agent (or player) selfishly performing moves, i.e. changing
her routing strategy in order to maximize her own benefit. A Nash equilibrium
is a solution of the game in which no agent gains by unilaterally changing her
routing strategy. Nash equilibria are known not to always optimize the overall
performance. Such a loss in [6,1] has been formalized by the so-called price of
anarchy (resp. optimistic price of anarchy), defined as the ratio between the cost
of the worst (resp. best) Nash equilibrium and the one of an optimal centralized
solution. There exists a vast literature on Nash Equilibria in communication
networks (see for instance [18,20]).

Even if in non-cooperative games players are usually considered to act self-
ishly and independently, an interesting investigated issue is the one of collusion.
Roughly speaking, collusion allows two or more players forming a coalition to
come to an agreement in order to obtain a gain by changing at the same time
their strategies. In this framework, a Nash equilibrium is a solution in which
there exists no coalition of players having convenience in changing their strate-
gies. The lack of performance with respect to the optimal solution has been
measured by the price of collusion introduced in [13] and [16], where the au-
thors focused on a particular class of games, the congestion games, assuming the
players partitioned into sets of coalitions.

Following the research direction outlined in [11], in this paper we are inter-
ested in analyzing the non-cooperative scenario in which the users of an opti-
cal network interact sharing the cost of the used hardware components. More
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precisely, we focus on ADM switches, considering the game in which their to-
tal cost is divided between the users according to two fundamental cost sharing
methods: the Shapley [22] method, in which the agents using an ADM pay for it
by equally splitting its cost, and the Egalitarian one, where the whole hardware
cost is equally split among all the players.

The paper is organized as follows. In the next section we give the basic no-
tation and definitions and show some preliminary results. In Section 3 we focus
on the ADM minimization, and we show the results concerning Nash equilibria
without and with collusion. Finally, in Section 4 we discuss the power of local
search algorithm, give some conclusive remarks and discuss some open questions.

2 Model and Preliminary Results

An instance of the ADMs minimization problem is a pair (G, P ), where G is an
undirected graph and P = {p1, . . . , pn} is a multi-set of n simple paths in G,
also called lightpaths or requests.

A coloring (or wavelength assignment) of (G, P ) is a function w : P �→ N
+ =

{1, 2, . . .} such that w(pi) �= w(pj) for any pair of paths pi, pj ∈ P sharing an
edge in G.

Given a coloring function w, a valid cycle (resp. chain) is a cycle (resp. chain)
formed by the concatenation of distinct paths in P of the same color.

A solution s of the problem consists of a set of valid chains and cycles parti-
tioning the paths in P , expressing the particular sharing of ADMs.

More precisely, we say that two paths are adjacent if they have a common
endpoint. Each path uses two ADMs, one at each endpoint; if two adjacent paths
are assigned the same wavelength, then they can use the same ADM. Thus, an
ADM may be shared by at most two lightpaths. In this way each valid cycle
of k paths in s uses k ADMs, because every ADM is shared by exactly two
paths. Similarly, each chain of k paths uses k + 1 ADMs, as the initial and final
ADMs in the chain are used only by the initial and the final path of the chain,
respectively.

We are interested in finding a solution s such that the total number of used
ADMs, denoted as ADM(s), is minimized.

We assume that every path pi ∈ P , i = 1, . . . , n, is issued and handled by a
player αi, that for the sake of simplicity in the sequel we will often identify with
pi. At every given step a single agent αi, by performing a selfish move, can decide
whether and with whom to share the cost of the ADMs at the endpoints of pi.
Hence, her strategy set is the collection of all the possible subsets of at most
two other adjacent (not overlapping) paths, one per endpoint. A given strategy
is feasible if and only if (i) the chosen paths are not already sharing the involved
ADMs with some other path and (ii) the new created chain or ring of requests
induces a valid coloring, that is no two paths have an edge in common.

Clearly, a strategy profile (s1, . . . , sn) defines a solution s ∈ S of the game.
A non-cooperative game G is defined by a tuple (G, P, f, k) where (G, P ) is an
optical network instance, f is a cost sharing method inducing a cost sharing
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function c : S × P → � distributing the whole hardware cost among the players
and k is the maximum size of a coalition of players that can collude (notice that
if k = 1 no collusion is allowed and thus G is a “classical” non-cooperative game).

We consider two fundamental cost sharing methods: the Shapley [22] (f =
Shapley) and the Egalitarian (f = Egalitarian) ones.

In the Shapley cost sharing method, the agents sharing an ADM pay for it
by equally splitting its cost. Thus, recalling that each requests needs exactly 2
ADMs, and that each ADM can be shared at most by 2 agents, the cost ci(s)
charged to player αi in the strategy profile s can be 1 (if she shares both her
ADMs with other requests), 3

2 (if she shares only an ADM with another request),
or 2 (if she does not share any ADM with other requests).

In the Egalitarian cost sharing method, the whole hardware cost correspond-
ing to a strategy profile s is divided between all the players in an egalitarian
way, i.e. ci(s) = ADM(s)

n for every i = 1, . . . , n.
Clearly in both cases, given a strategy profile s,

∑n
i=1 ci(s) = ADM(s).

If the parameter k of the game (G, P, f, k) is equal to 1, no coalition can
be constituted and each player acts independently. In such a setting, a Nash
equilibrium is a strategy profile such that no player can reduce her cost by
seceding in favor of a better strategy, given the strategies of the other players.
Denoting by N the set of all the possible Nash equilibria, the price of anarchy
(PoA) of a game G is defined as the worst case ratio among the Nash versus
optimal performance, i.e., PoA(G) = maxs∈N ADM(s)

ADM(s∗) , where s∗ is the strategy
profile corresponding to the optimal solution. Moreover, the optimistic price of
anarchy (OPoA) of G is defined as the best case ratio among the Nash versus
the optimal performance, i.e., OPoA(G) = mins∈N ADM(s)

ADM(s∗) .
If the parameter k of the game (G, P, f, k) is greater than 1, a Nash equilibrium

is a strategy profile such that no coalition of k player can reduce its whole cost
(sum of single costs) by seceding in favor of a better strategy, given the strategies
of the other n − k players. In such a setting, denoting by Nk the set of all the
possible Nash equilibria with coalitions of size at most k, the price of collusion
(PoC ) of a game G is defined as the worst case ratio among the Nash versus
optimal performance, i.e., PoCk(G) = maxs∈Nk

ADM(s)
ADM(s∗) , where s∗ is the strategy

profile corresponding to the optimal solution. Moreover, the optimistic price of
collusion (OPoC ) of G is defined as the best case ratio among the Nash versus
the optimal performance, i.e., OPoCk(G) = mins∈Nk

ADM(s)
ADM(s∗) . Notice that, since

the coalitions can dynamically change, in this case the Shapley cost sharing
method is not well defined. Thus, for k > 1 we will focus only on the games
induced by the egalitarian cost sharing method.

Let us now present some preliminary results about the existence and con-
vergence to Nash Equilibria. In particular, we show that every game always
converges to a Nash equilibrium in a linear number of moves.

Proposition 1. In every game G = (G, P, f, k), where f ∈
{Shapley,Egalitarian} and k = 1 or f = Egalitarian and k ≥ 2,
the social function ADM is a potential function, i.e. if s′ is the strategy profile
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resulting from the strategy profile s after the selfish moves of the colluding
players αi1 , . . . , αih

, with h ≤ k, ADM(s′) < ADM(s).

As a direct consequence of the previous propositions, since the social function,
that is a potential function for the game, can assume at most n + 1 different
values, it holds that every game always converges to a Nash equilibrium in at
most n selfish moves.

Moreover, since the optimal solution is a minimum of the defined potential
functions, it follows that the optimal solution is also an equilibrium. Therefore,
given any game G, the optimistic price of anarchy is the best possible one, i.e.
OPoA(G) = 1, and, for every integer k > 1, the same holds for the optimistic
price of collusion, i.e. OPoCk(G) = 1. Therefore, in the remaining part of the
paper we will focus on the price of anarchy (for k = 1) and price of collusion
(for k > 1).

3 Price of Anarchy and Price of Collusion

If no collusion between players is allowed, and thus each selfish player acts in-
dependently, we prove that the price of anarchy is at most 5

3 regardless of the
network topology. This result is very interesting, as it matches the performance
of three different algorithms presented in [9] and [4].

Theorem 1. For any game G = (G, P, f, 1), with f ∈ {Shapley,
Egalitarian}, PoA(G) ≤ 5

3 .

Now we provide a matching lower bound, holding for a network having ring
topology. The following theorem proves that the previous upper bound is tight
even for ring networks, and thus the price of anarchy is equal to 5

3 .

Theorem 2. For any ε > 0, there exists an instance of the ADM minimization
game G = (G, P, f, 1), where f ∈ {Shapley,Egalitarian} and G is a ring
network, such that PoA(G) ≥ 5

3 − ε.

Now we turn our attention on games in which coalitions of at most k players can
collude. We prove that the price of collusion is between 3

2 and 3
2 + 1

k , with 3
2 + ε

being the approximation guaranteed by the best know approximation algorithms
[4,12] for this problem on general network topologies.

Theorem 3. For every k = 2, 3, . . ., any game G = (G, P,Egalitarian, k) is
such that PoCk(G) ≤ 3

2 + 1
k .

The following theorem provides an almost matching lower bound.

Theorem 4. For every k = 2, 3, . . ., there exists an instance of the ADM min-
imization game G = (G, P,Egalitarian, k) such that PoCk(G) ≥ 3

2 .
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4 Local Search and Concluding Remarks

In this section we show some basic results emphasizing that local search is a
promising approach for possibly improving the achievable approximation ratio
of the ADMs minimization problem.

As already remarked, under the assumption of collusion of at most k players,
the Shapley method does not induce well defined games. This stems on the
fact that the payment of a player is not solely a function of the current strategy
profile, but is also affected by the history of the past coalitions. However, Shapley
naturally yields local search schema with the induced definition of neighborhood
of a current solution s. Namely, any solution s′ that can be obtained from s by
modifying the strategy of at most k players is a neighbor of s; such a solution is
an improving one with respect to s and the fixed coalition if it reduces the sum
of the Shapley costs of the involved players, that is it increases the sum of their
degrees in the saving graph.

The following proposition characterizes the performance of local optima ac-
cording to such a neighborhood definition.

Proposition 2. For every k = 2, 3, . . ., any local optimum solution s in the
schema induced by the above definition of neighborhood has total cost ADM(s) ≤(
1 + 2

k

)
ADM(s∗), where s∗ is an optimal solution.

Unfortunately, such a neighbor definition for increasing values of k does not
induce a PTAS, since the schema not only does not converge in a polynomial
number of steps, might not converge at all and local optima may even not exist.

Proposition 3. The local search schema induced by the above definition of
neighborhood may posses no local optimum.

The above results on local search emphasize that the determination of new cost
sharing methods reaching a compromise between the Shapley and Egalitarian
ones in terms of optimization and performance is a promising and worth investi-
gating issue. To this aim we observe that a linear combination of the two criteria
is affected by the same unconvergence behavior. In fact, in the instance shown
in the proof of Proposition 3, the solutions in which two requests connect can
be involved in a cycle of improving steps and have the same total cost: since
the Egalitarian contribution in the linear combination is fixed, the Shapley part
causes exactly the same behavior. Nevertheless, the determination of other in-
termediate methods combining both the Shapley and Egalitarian advantages is
an important left open question.

Besides the above mentioned results for general topologies, it would be also
nice to determine specific collusion results for ring networks, possibly improving
the related approximation ratios.

Finally, a last interesting issue is that of extending our results to the grooming
case in which up to a certain number of paths g of the same color can share the
same physical links and the same ADMs [8].
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Abstract. We propose an extensive-form game as a model for pric-
ing roaming charges in 802.11 wireless data networks. We specify utility
functions for the three agents involved in the game: the wireless user and
the visited and home operators. With realistic assumptions, we use the
model to find optimal roaming prices for delay insensitive users.

1 Introduction

In wireless telecommunications, roaming refers to the provision of service in a
location other than the home location of the service subscriber. The economic
aspects of roaming in cellular voice networks have been studied in the liter-
ature [1,2,3]. In such networks, supporting roaming is a static decision which
is enforced by a “roaming agreement” between the operators. However, new
wireless networks with different properties, such as 802.11, are growing in ubiq-
uity. In 802.11 wireless networks, user accounting and incentives of operators
for providing roaming are different from cellular voice networks. In addition to
geographical coverage, 802.11 network operators are interested in supporting
roaming for better quality of service and load balancing. In these networks, the
decision of whether to provide service to a roaming user or not should be made
dynamically, especially considering that 802.11 is an open system [4] and users
can easily switch between networks.

In this paper, we propose an extensive-form game as a model for users’ roam-
ing between multiple 802.11 wireless data networks. we specify the utility func-
tions of the agents involved in the game according to the network properties
of the 802.11 protocol. We then examine a specific version of the game to find
the behavior of the network operators when charging delay insensitive users for
roaming.

In the next section we present the model and specify the utility functions. We
will then outline a simplified version of the game in section 3 to gain insight into
the properties of the game equilibrium. Finally, section 4 concludes the paper
and presents some future work.

2 Modeling

Assume two operators, A and B, have installed infrastructure for wireless mesh
[5] networks in an urban area. In some areas their network coverage is exclusive
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and in other parts, such as heavily crowded malls, their coverage overlaps1. Two
extensive-form games for roaming users can be envisioned:

1. User initiated hand-off: A subscriber to A proposes to connect to an
access point belonging to B. B is called the visited operator and A is the
home operator. The visited operator has two choices: admit or reject. If B
decides to admit, the home operator may agree or disagree with the hand-
off2.

2. Operator initiated hand-off: As the home operator, A may instruct a
subscriber to switch to the other operator. If the subscriber decides to switch,
the visited operator may admit or reject the request. The open nature of
802.11 networks and the limited control of the operators over the users,
make the operator initiated hand-off scenario impractical.

Fig. 1. User-initiated roaming game

In this paper we will focus on the first scenario because the technical properties
of the 802.11 standard [4] suggest that user initiated hand-off is more realistic.
As demonstrated in Figure 1, the user initiated hand-off is a perfect information
extensive-form game G = (N, A, Z, u) where:

– The set of agents is N = {user, home, visited}.
– The set of actions available to agents is A = {Auser , Ahome, Avisited} where

Auser = {switch, stay}, Ahome = {admit, reject} and Avisited = {agree,
disagree}.

– The set of terminal choice nodes is Z = {X1, X2, X3, Y }.
– The utility function, u, of each agent in each terminal node is defined in

section 2.1.
1 Mesh network deployments are not planned, therefore each operator may suffer from

bad signal quality in some locations.
2 The home operator can enforce its decision, if it does not agree, by denying to pay

the charges to the visited operator.
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2.1 Utility Functions

In this section we introduce the utility functions of the agents participating in
the roaming game. Throughout this paper we use the v subscript for the visited
operator and the h subscript for the home operator.

Visited Operator Utility Function. The visited operator’s decision to admit
or reject a visitor connection request depends on the cost and benefit of providing
the service. The cost consists of the basic service cost (Cv) and the cost incurred
by the risk of potential congestion in the network (Ccongestion). The benefit to
the visited operator is the revenue from the home operator. This revenue may be
either fixed for every hand-off instance or dynamic. For simplicity, we consider
the fixed revenue and denote it by Rv.

In 802.11 data networks, as a result of contention, if the number of users
trying to use an access point crosses some threshold, none of them will be able to
utilize the access point effectively. We assume that the operator has decided the
maximum possible number of users for an access point, M . If the current number
of users of the access point, Nv, plus one exceeds Mv (the maximum possible
number of users in the visited access point), the congestion cost of admitting
the extra roaming user will be too high and admission is effectively impossible..
However, if Nv + 1 < Mv the visited operator will evaluate the congestion cost
based on the congestion risk of admitting the visitor to the network. This cost
evaluation is similar to congestion pricing [6]. Although the user will not be
charged based on the congestion cost (this has been proved to be impractical
[7]), she will not be admitted if her congestion cost for the visited network is too
high.

The congestion cost of the visitor can be modeled by the expected delay
incurred by the visitor. We assume adequate resources in the network core,
therefore, we only consider delay at an access point based on an M/M/1 queueing
model [8]:

Ccongestion = k × 1
Mv − Nv − 1

where k is the congestion cost coefficient that is determined by the operator. The
visited operator would evaluate the following utility function. If the outcome is
positive, it would admit the user and otherwise will reject it.

Uvisited =
{

Rv − Ccongestion − Cv if Nv + 1 < Mv and Rv > Ccongestion + Cv

0 otherwise

Home Operator Utility Function. If hand-off takes place, the home operator
charges the user an extra switching cost, S, (i.e. if the normal service charge is
R, the use is charged R + S). If hand-off does not take place, then the utility of
the home operator would be similar to the utility of the visited operator:

Uhome =
{

R + S − Rv if hand-off takes place
R − Ccongestion − Ch if hand-off does not take place

Where Ccongestion is evaluated similar to the visited operator.
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User Utility Function. The user utility depends on the bandwidth, B, and
delay, D, that she experiences [6], plus the service charge. We assume a linear
function to evaluate a user’s utility:

Uuser =
{

αBh − βDh − R if hand-off does not take place
αBv − βDv − R − S if hand-off takes place

where α and β determine the user’s sensitivity to bandwidth and delay.

Agent Utilities in Each Game State. In 3 of the 4 possible outcomes of the
game, no hand-off takes place and the utilities of the agents are as follows:

X1, X2, X3 :

⎧
⎨

⎩

Uuser = αBh − βDh − R
Uhome = R − Ccongestion − Ch

Uvisited = 0

If the hand-off takes place (Y ) the utility of the agents would be:

Y :

⎧
⎨

⎩

Uuser = αBv − βDv − R − S
Uhome = R + S − Rv

Uvisited = Rv − Ccongestion − Cv

3 Roaming Prices for Delay Insensitive Users

To find the optimal pricing strategies for roaming charges for delay insensitive
users (i.e. β = 0) we examine the conditions under which the sub-game perfect
equilibrium for these users is switching. We assume that congestion costs are
negligible ( Ccongestion ≈ 0). This is a valid assumption for any lightly loaded
network. With these assumptions the hand-off takes place if:

αBv − αBh > S

Rv − Ch < S

Rv − Cv > 0

In the absence of any congestion cost, the last inequality will always hold. That
is, the visited operator will always charge more than its cost of service. For
now, assume that Rv − Ch < S (we will re-consider this assumption later). The
hand-off will take place if:

αBv − αBh > S

The bandwidth available to a user would only be limited by other users in
the same access point. We assume that the bandwidth available to any user is a
linear function of the number of active users of the same access point, Nh and
Nv for the home and the visited operator respectively:

Bv(Nv) = (1 − Nv

Mv
)Bm

v

Bh(Nh) = (1 − Nh

Mh
)Bm

h
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Fig. 2. Expected roaming profit of operators vs. switching cost

where Bm
v and Bm

h are the maximum available bandwidth of the visited and
home access points respectively. Assuming a uniform distribution for users, the
probability of hand-off is:

Pr(Bv(Nv) − Bh(Nh) >
S

α
) =

∫ ∫

where (Bv(Nv)−Bh(Nh))> S
α

1
Mv × Mh

dNv dNh

=

⎧
⎪⎨

⎪⎩

2S/α+Bm
h

2Bm
v

if S/α < Bm
v − Bm

h

(Bm
v −S/α)2

2Bm
v Bm

h
if S/α > Bm

v − Bm
h and S/α < Bm

v

0 if S/α > Bm
v

Figure 2 illustrates the expected value of the roaming profit of each of the
operators versus the switching cost. In this figure, the values of S that satisfy
S > Rv − Ch are valid. If Rv < Ch, then the highest expected value of profit for
the visited operator is when S = 0. The expected value of profit for the home
operator is maximized for a non-zero value of S.

In practice, each operator will play both visited and home roles in the roaming
game. If the value of S is the same for both operators in the “roaming agree-
ment,” then the optimal pricing strategy depends on how often each operator
will play each of the two roles. In Figure 2, the profit of an operator that plays
each role 50% of the time is plotted. In such a scenario the operators can easily
agree on the switching cost. But if one operator has a priori knowledge that the
other operator will take home role more often, then, as illustrated in Figure 3,
the optimal value of S for them will be different. The extreme case of such asym-
metry in roles is a Mobile Virtual Network Operator (MVNO) [9]. An MVNO
always plays the role of a home operator and can never be visited, because it
does not own any infrastructure.

If the “roaming agreement” has distinct values for the switching cost between
operators then each operator would try to set its subscribers’ switching cost to
the optimal value of itself, as a home operator. At the same time it would try
to reduce the switching cost of the other operator’s subscribers to get higher
revenue as a visited operator.
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Fig. 3. Expected roaming profit of two operators vs. switching cost. Operator A is 20%
of the time visited while operator B is visited 80% of the time.

4 Conclusion and Future Work

In this paper we presented a model for the 802.11 roaming game and constructed
the generalized utility functions of the agents involved in the game. The proposed
model is rich enough to account for different network aspects of real-world Wi-Fi
roaming situations.

To find the optimal pricing strategies of the operators regarding delay insen-
sitive users, we studied the sub-game perfect equilibrium in a congestion-free
network and found the optimal value of the switching cost for each of the oper-
ators. The results suggest that arbitrarily increasing the roaming charges is not
the best strategy for either of the operators.

We believe that Wi-Fi network providers can use the proposed model along
with specific field and user behavior information to find optimal pricing strate-
gies. The impact of the relative size of the operators on roaming charges can
be studied through service costs. The economic model of mobile virtual network
operators (MVNO) [9] for Wi-Fi networks can be studied as a special case of a
home operator in the proposed roaming game.
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Abstract. Network congestion games with player-specific delay func-
tions do not necessarily possess pure Nash equilibria. We therefore ad-
dress the computational complexity of the corresponding decision prob-
lem, and show that it is NP-complete to decide whether such games
possess pure Nash equilibria. This negative result still holds in the case
of games with two players only. In contrast, we show that one can de-
cide in polynomial time whether an equilibrium exists if the number of
resources is constant.

In addition, we introduce a family of player-specific network conges-
tion games which are guaranteed to possess equilibria. In these games
players have identical delay functions, however, each player may only use
a certain subset of the edges. For this class of games we prove that find-
ing a pure Nash equilibrium is PLS-complete even in the case of three
players. Again, in the case of a constant number of edges an equilibrium
can be computed in polynomial time.

We conclude that the number of resources has a bigger impact on the
computation complexity of certain problems related to network conges-
tion games than the number of players.

1 Introduction

Network congestion games are a well-known and generally accepted approach
to model resource allocation among selfish agents in large-scale networks like
the internet. In these games agents share a network and each of them selects
a path with minimum delay (cost, payoff) that connects an individual pair of
nodes. The delay of a path equals the sum of delays of the edges in that path,
and the delay of an edge depends on the number of players currently using that
edge. In recent years network congestion games have been considered in various
occurrences and with respect to different questions like the price of anarchy, the
computational complexity of finding Nash equilibria1, or certain network design

� This work was supported in part by the EU within the 6th Framework Programme
under contract 001907 (DELIS) and the German Israeli Foundation (GIF) under
contract 877/05.

1 In this paper, the term Nash equilibrium always refers to a pure Nash equilibrium.

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, pp. 419–430, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



420 H. Ackermann and A. Skopalik

problems. For an introduction into many of these questions we refer the reader
to the forthcoming book of Nisan, Tardos, Roughgarden, and Vazirani [12].

In this paper we are interested in player-specific network congestion games.
In such games we consider a finite set of players and assume that each of them
is equipped with a set of player-specific delay functions. This is in contrast to
the previously mentioned games in which all players sharing an edge observe
the same delay. Player-specific network congestion games naturally arise when
different players have different preferences on the edges of the network. Some
players might prefer to use motor-ways, others might prefer to use scenic roads.
It is well known that player-specific network congestion games do not neces-
sarily possess Nash equilibria [11]. We therefore investigate the computational
complexity of deciding whether such a game possesses a Nash equilibrium. We
prove by a reduction from the problem Node-Disjoint Path that this problem
is NP-complete. We also consider games with constant number of players or re-
sources. In the first case the decision problem remains NP-complete even in the
case of two players, whereas in the second case we present a polynomial time
algorithm.

In order to bypass the limitations of general player-specific congestion games,
we introduce a family of games for which the existence of a Nash equilibrium
is guaranteed by Rosenthal’s potential function [13]. We assume that all players
sharing an edge observe the same delay, however, each player may only use a
certain subset of the edges. Such games naturally arise when drivers are prohib-
ited to use certain roads, e. g., trucks may be prohibited to use narrows roads,
slow vehicles may be prohibited to use motor-ways. These games – in the follow-
ing called restricted network congestion games – are closely related to standard
network congestion games in which players compute their delays with respect
to common delay functions and in which each player may use every edge. Fab-
rikant, Papadimitriou, and Talwar [6] introduce standard network congestion
games and show that computing an equilibrium is PLS-complete, that is, com-
puting a Nash equilibrium is “as hard to compute as any object whose existence
is guaranteed by a potential function” [6]. Ackermann, Röglin, and Vöcking [1]
present a simplified proof for this. Thus, computing a Nash equilibrium of a
restricted network congestion game is PLS-complete, too. However, the previ-
ously mentioned proofs require an arbitrary number of players and resources.
In this paper we consider games in which one of these two parameters is kept
constant. In the case of a constant number of player we prove that computing a
Nash equilibrium remains PLS-complete, whereas it is polynomial time solvable
in the case of constant number of resources. The later result follows easily by
a potential function argument and applies to every congestion game with com-
mon delay functions and with a constant number of resources. Unfortunately,
we failed to prove PLS-completeness for computing Nash equilibria in standard
network congestion games with a constant number of players. This question was
our primary motivation and remains a challenging open problem.

To the best of our knowledge, this is the first paper systematically comparing the
impact of the number of player and of the resources on the computational
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complexity of certainproblems related toplayer-specificnetworkcongestiongames.
From our results we conclude that the impact of the number of resources is much
bigger than the impact of the number of players.

Player-specific Network Congestion Games. A player-specific network congestion
game Γ consists of four components: (1) a network G = (V, E) with m directed
edges, (2) a set N = {1, . . . n} of n players, (3) for every player i a source-sink
pair (si, ti) ∈ V × V , and (4) for every player i and every edge e ∈ E a non-
decreasing delay function de

i : N → N. The strategy space of player i equals the
set of paths connecting source si with target ti. We denote by S = (P1, . . . , Pn)
a state of the game where player i chooses path Pi. Furthermore, we denote by
ne(S) = |{i ∈ N | e ∈ Pi}| the congestion on edge e in state S, that is, ne(S)
equals the number of players sharing edge e in state S. Players act selfishly and
choose paths with minimum delay given fixed choices of the other players. The
delay δi(S) of player i in state S equals

∑
e∈Pi

de
i (ne(S)). Finally, we call a state

S a Nash equilibrium if no player has an incentive to change her strategy.
It is well know that, in general, a pure Nash equilibrium is not guaranteed to

exist. However, if the network consists of parallel links only or if for every edge
e the player-specific delay functions de

i are identical, then a Nash equilibrium is
guaranteed to exist [10,13]. In the following, we consider also network congestion
games with common delay functions and assume that each player is restricted to
a certain subset of the edges. We call such a game a restricted network congestion
game. Such a game can easily be interpreted as a player-specific game by defining
player-specific delay functions in the following way. If a player is allowed to use
an edge, her delay functions equals the common one, if a player is not allowed
to use an edge, she observes delay ∞ for every congestion on that edge. By
Rosenthal’s potential function argument [13], every restricted network congestion
games possess a Nash equilibrium.

The Complexity Class PLS. A local search problem Π is given by its set of
instances IΠ . For every instance I ∈ IΠ , we are given a finite set of feasible
solutions F(I) ⊆ {0, 1}∗, an objective function c : F(I) → N, and for every
feasible solution S ∈ F(I) a neighborhood N (S, I) ⊆ F(I). Given an instance I
of a local search problem, we seek for a locally optimal solution S∗, i. e., a solution
which does not have a strictly better neighbor with respect to the objective
function c.

A local search problem Π belongs to PLS if the following polynomial time
algorithms exist: an algorithm A which computes for every instance I of Π an
initial feasible solution S0 ∈ F(I), an algorithm B which computes for every
instance I of Π and every feasible solution S ∈ F(I) the objective value c(S),
and an algorithm C which determines for every instance I of Π and every feasible
solution S ∈ F(I) whether S is locally optimal or not, and finds a better solution
in the neighborhood of S in the latter case.

Johnson et al. [8] introduce the notion of a PLS-reduction. A problem Π1 in
PLS is PLS-reducible to a problem Π2 in PLS if there exist polynomial-time
computable functions f and g such that f maps instances I of Π1 to instances
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f(I) of Π2, g maps pairs (S2, I) where S2 denotes a solution of f(I) to solutions
S1 of I, and for all instances I of Π1, if S2 is a local optimum of instance
f(I), then g(S2, I) is a local optimum of I. A local search problem Π in PLS is
PLS-complete if every problem in PLS is PLS-reducible to Π . PLS-completeness
results for various local search problems can be found in [8,14].

Related Work. Most closely related to our work is the work of Milchtaich [10,11]
and the work of Dunkel and Schulz [5]. Milchtaich [10] introduces player-specific
network congestion games on parallel links and proves that every such game pos-
sesses a Nash equilibrium if the player-specific delay functions are non-decreasing.
In [11] he presents some network topologies such that every player-specific net-
work congestion game on such a topology possesses an equilibrium without any
assumption on the delay functions except monotonicity. Dunkel and Schulz [5]
consider the computational complexity of deciding whether a weighted network
congestion games possesses a Nash equilibrium. In such games players sharing
an edge observe the same delay, however, the congestion on an edge depends on
the weighted number of players. They prove that this decision problem is NP-
complete. Ackermann, Röglin, and Vöcking [2] prove that every player-specific
matroid congestion game possesses a Nash equilibrium. In such games the play-
ers’ strategy spaces are the sets of bases of a matroid on the resources. Addition-
ally, they show that the matroid property is the maximal property on the strat-
egy spaces guaranteeing the existence of equilibria. Chakrabarty, Mehta, and
Nagarajan [4] consider player-specific network congestion games on (a constant
number of) parallel links from a global optimization perspective, and investigate
whether one can compute social optimal states of such games efficiently. An-
shelevich et al. [3] and Meyers [9] consider several problem involving congestion
games with a constant number of players.

2 General Player-Specific Network Games

In this section, we consider the complexity of deciding whether a general player-
specific network congestion game possesses a Nash equilibrium.

Theorem 1. It is NP-complete to decide whether a player-specific network con-
gestion game with two players possesses a Nash equilibrium.

Proof. Obviously, the decision problem belongs to NP as one can decide in poly-
nomial time whether a given state S of such a game is a Nash equilibrium.
In order to prove that the problem is complete, we present a polynomial time
reduction from the Node-Disjoint Path problem. An instance of the Node-

Disjoint Path problem consists of a directed graph G = (V, E) and two pair-
wise disjoint node pairs (s1, t1) and (s2, t2). Given such an instance, we like to
decide whether there exist node-disjoint paths from s1 to t1 and from s2 to t2.
It is well know that this problem is NP-complete [7].

Given an instance (G, (s1, t1), (s2, t2)) of the problem Node-Disjoint Path

we construct a player-specific network congestion game with two players as fol-
lows. Given G = (V, E) we substitute every node v ∈ V by the gadget Gv
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ev,0

ev,1

ev,2

ev,3

ev,4

ev,5

ev,6

v

vs vt⇒

Fig. 1. The gadget Gv of a node v

presented in Figure 1 in order to obtain the network GΓ = (VΓ , EΓ ) on which
the game is played. Player i ∈ {1, 2} wants to allocate a path between the nodes
ss

i and tti in GΓ . Observe that this construction ensures a one-to-one corresponds
between the paths in G and in GΓ in the natural way if we ignore the precise
subpaths through every gadget. The player-specific delay functions are chosen as
follows. For every edge e = (vt

i , v
s
j ), i. e., for edges that represent edges from the

original graph G, we assume that for each player and every congestion the delay
on such an edge equals 0. In the following, let M be a sufficiently large number.
Then, the player-specific delay functions of edges ev,i, i ∈ {0, . . . , 6}, are defined
as presented in Figure 2. Observe that every gadget Gv implements a subgame
that is played by the players if both want to allocate a path connecting the nodes
vs and vt. If only one player wants to allocate such a path, then she allocates
a player-specific shortest path from vs to vt. If we choose M sufficiently large,
such that the second player will never allocate one of the edges ev,5 or ev,6, then
the cost of these shortest path are 56 and 62. Suppose now, that the two players
play such a subgame. In this case, it is not difficult to verify that the subgame
possesses no Nash equilibrium. Note that a game that is similar to the gadgets
presented here can be found in [11].

ev,0 ev,1 ev,2 ev,3 ev,4 ev,5 ev,6

congestion 1 2 1 2 1 2 1 2 1 2 1 2 1 2

player 1 0 M 20 28 45 45 48 48 20 30 16 16 65 65
player 2 0 M 14 18 45 45 48 48 20 30 M M M M

Fig. 2. The player-specific delay functions of the edges ev, i

Suppose now, that we are given two node-disjoint paths P1 and P2 in G
connecting s1 and t1, and s2 and t2. We map these paths to paths in GΓ in the
natural way, and choose player-specific shortest paths through every gadget. Let
n(Pi) be the number of nodes on the path Pi. Thus, player 1 has delay 56 ·n(P1),
and player 2 has delay 62 ·n(P2). If one of the players had an incentive to change
her strategy, then she will only choose a path in which she shares no gadget
with the other player, as otherwise her delay would increase to at least M . This
is true as in this case the players would share at least one edge ev,0. This also
implies that the delay of the other player does not increase due to the strategy
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change of the first player. Observe that this holds for any further best response.
Thus, the players converge to an equilibrium after O(n) best responses as the
delay of a player decreases by at least the cost of the shortest path through a
gadget.

Suppose now, that we are given a Nash equilibrium of Γ . In this case the
players do not share a gadget as otherwise the state is no Nash equilibrium. ��

Theorem 2. One can decide in polynomial time whether a player-specific net-
work congestion game Γ with a constant number of resources possesses a Nash
equilibrium.

In order to prove Theorem 2, we generalize an algorithm introduced by Chakra-
barty et al. [4] that computes a social optimal state of a player-specific network
congestion game with a constant number of parallel links. Details of this ap-
proach can be found in a full version of this paper.

3 Restricted Network Congestion Games

In this section, we analyze the complexity of computing Nash equilibria of re-
stricted network congestion games with a constant number of players or re-
sources.

Theorem 3. Computing a Nash equilibrium of a restricted network congestion
games with k players is PLS-complete for any k ≥ 3.

Proof. We prove the theorem by a reduction from the local search problem positive
not-all-equal 2-satisfiability PosNae2Satwhich is known to be PLS-complete [14].
Let x1, . . . , xn be boolean variables. An instance ϕ of PosNae2Sat consists of
a set of m weighted clauses Cj over the variables xi which contain two posi-
tive literals each. We denote by wj the (integer) weight of clause Cj . A clause
is satisfied if and only if the two variables it contains have different values.
By X̄ = (X1, . . . , Xn) ∈ {0, 1}n we denote a bit assignment to the variables
x1, . . . , xn. The weight w(X̄) of a bit assignment X̄ is defined as the sum of the
weights of all satisfied clauses. We denote the maximum weight by W =

∑m
j=1 wj .

By X̄Xi=b, we denote the bit vector (X1, . . . , Xi−1, b, Xi+1, . . . , Xn). A local op-
timum of ϕ is a bit assignment X̄ whose weight cannot be increased by flipping a
single variable xi, i.e., w(X̄) ≥ w(X̄xi=b) for all 1 ≤ i ≤ n and b ∈ {0, 1}. There-
fore, the neighborhood of an assignment is defined as the set of assignments with
Hamming distance one.

Given an instance ϕ, we construct a restricted network congestion game Γϕ

such that one can easily construct a local optimum of ϕ given a Nash equilibrium
of Γϕ. Γϕ simulates two copies of ϕ, which we call ϕA and ϕB, in parallel.
Furthermore, the game consists of three players, a bit player and two clause
players.

Every path the bit player can choose determines assignments X̄A and X̄B for
ϕA and ϕB, respectively. The set of paths the bit player can choose from can be
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divided into two disjoint sets P1 and P2. If she chooses a path from P1, X̄A is the
actual assignment for ϕ and X̄B is a (probably better) neighboring assignment.
For every path in P2 it is the other way round. The bit player switches between
paths in P1 and P2 as long as she can switch to a better neighboring assignment.

The paths of the clause players lead through 2m gadgets. For both copies of ϕ
there is one gadget for every clause. The two clause players simulate a clause by
choosing paths through the corresponding gadget. We ensure that they always
have an incentive to correctly simulate the clauses according to the assignments
determined by the bit player.

To implement this, we introduce four levels of delays: large, medium, small,
and tiny. If the bit player is on a path in P1 (P2) and the clause players do
not correctly simulate the clauses of ϕA (ϕB) according to the assignment X̄A

(X̄B), at least one of them has large delay. If the bit player is on a path in P1
(P2) and the clause players simulate ϕA (ϕB) correctly, she observes medium de-
lay proportional to the weight of the unsatisfied clauses according to the actual
assignment X̄A (X̄B). Furthermore, she has additionally small delay that is pro-
portional to the weight of the unsatisfied clauses of the neighboring assignment
X̄B (X̄A). If the bit player is on a path in P1 (P2) and the clause players do
not correctly simulate ϕB (ϕA), they additionally have tiny delays. This ensures
that the clause players have an incentive to correctly simulate the clauses and
that the bit player has an incentive to choose the best neighboring assignment.

As long as there is a better neighboring assignment, the bit player can change
from a path from P1 (P2) to a path from P2 (P1) by adopting the neighbor-
ing assignment as the actual assignment and by choosing a new neighboring
assignment.

We are now ready to describe our construction in detail. We present the network
of Γϕ as two subnetworks. One subnetwork contains the edges the bit player is
allowed to choose, the other subnetwork contains the edges the two clause players
are allowed to choose. The edges that are contained in both networks are called
connection edges. The connection edges are almost the only edges that cause delay
to the players. Almost all other edges have delay 0 regardless of the number of
players using it. To further simplify the presentation, we merge path segments
into sets of edges and use dashed edges to indicate these path segments in Figure 3
and 4. The precise network can be constructed by concatenating the edges from
a set in arbitrary order while adding an edge that is not contained in the other
subnetwork between every pair of consecutive edges with constant delay 0.

The subnetwork of the bit player is depicted in Figure 3. We now define the
corresponding sets of edges and the delays on the edges. Let M 
 αW 
 α 

βW 
 β ≥ 4m.

– PA
xi=b := {uA

j,xi=b, t
B
j,xi=b| for all clauses Cj with xi ∈ Cj}. Such a path seg-

ment corresponds to the fact that bit xi = b in the assignment X̄A. It also
corresponds to the fact that xi = b in the assignment X̄B, unless the bit
player chooses to flip this bit (see below). The u-edges have delay 0 for one
player and delay M for two or more players. They induce large delay to
clause players if they do not correctly simulate this bit assignment ϕA. The
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P B
x1=1 P B

x2=1 P B
xn=1

P B
x1=0

P A
x1=0

P B
x2=0

P A
x2=0

P B
xn=0

P A
xn=0

P A
x1=1 P A

x2=1 P A
xn=1

P B
xn→1

P B
xn→0

P B
x1→1

P B
x1→0

P A
x1→0

P A
x1→1

P A
xn→0

P A
xn→1

s

W A

W B

. . .

t

. . .

...

...

(P1)

(P2)

Fig. 3. The subnetwork of the bit player. The dashed edges correspond to set of edges.

t-edges have delay 0 for one player and delay 1 for two or more players. They
induce tiny delay to the clause players if they do not correctly simulate the
bit assignment ϕB.

– WA := {wA
j,0, w

A
j,1| for all 1 ≤ j ≤ m}. If the clause players correctly simu-

late ϕA, this path segment induces medium delay proportional to the weight
of the unsatisfied clauses of X̄A to the bit player. The edges wA

j,0 and wA
j,1

have delay 0 for one or two players and delay αwj for three players.
– PA

xi→b := {wA
j,0,xi→b, w

A
j,1,xi→b| for all 1 ≤ j ≤ m with xi �∈ Cj} ∪ {tBj,xi→b,

wA
j,xi→b| for all 1 ≤ j ≤ m with xi ∈ Cj}. If the bit player chooses such a path

segment, then she determines the neighboring assignment X̄B to be obtained
from X̄A by flipping bit xi to b. If the clause players correctly simulate ϕA, this
path segment induces small delay proportional to the weight of the unsatisfied
clauses of that neighboring assignment. For each 1 ≤ j ≤ m with xi �∈ Cj , the
edges wA

j,0,xi→b and wA
j,1,xi→b have delay 0 for at most two players and delay

βwj for three. For each 1 ≤ j ≤ m with xi ∈ Cj , the edge wA
j,xi→b has delay 0

for one player and delay βwj for two or more players. The t-edges have delay
0 for one player and delay 2 for two or more players. They induce tiny delay
to the clause players if they do not simulate this bit flip in ϕB .

Additionally, there are sets PB
xi=b, WB, and PB

xi→b which are defined in the
same manner.

The two clause players are symmetric in the sense that they play on the same
subnetwork and have the same source and target node. Their subnetwork is a
concatenation of m A-gadgets and m B-gadgets. Figure 4 depicts such a pair of
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wA
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wA
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mutex

mutex

(A)

Fig. 4. This figure shows an A-gadget and a B-gadget for a clause Cj = {xa, xb}.
There are four paths through each gadget. From top to bottom, we denote the paths
with xa = 0, xb = 0, xa = 1, and xb = 1. The subnetwork of the two clause players is
a concatenations of the A- and B-gadgets for all clauses.

gadgets. Their source-sink paths lead through all 2m gadgets. The edges labeled
with mutex have delay 0 for one player and delay M2 for two or more players.
The dashed edges correspond to the following sets of connection edges:

– PA
Cj,xi=b := {uA

j,xi=1−b, t
A
j,xi=1−b, t

A
j,xi→1−b}. A clause player using such a

path segment simulates the assignment of b to xi of X̄A in the clause Cj of
ϕA. In the following, we say she sets xi = b in this gadget. If this is not a
correct simulation and the bit player is on a path from P1, then a u-edge
induces large delay. If this is not a correct simulation and the bit player is
on a path from P2, then a t-edge induces tiny delay.

– For each d ∈ {0, 1}, WA
j,d := {wA

j,d} ∪ {wA
j,d,xi→b| for all b ∈ {0, 1} and 1 ≤

i ≤ n with xi �∈ Cj}. If and only if both players use the same WA
j,d path

segment, they simulate an unsatisfying assignment for Cj . If, additionally,
the bit player chooses a path from P1, the edge wA

j,d has medium delay
proportional to wj . Furthermore, one of the edges wA

j,d,xi→b induces small
delay if xi is not in clause Cj . Note, that in the case that xi is in the clause
Cj , there are extra edges in the gadget.

The sets PB
Cj ,xi=b and WB

j,d are defined analogously.
We now prove that every Nash equilibrium of Γϕ corresponds to a locally

optimal assignment of ϕ. Consider a Nash equilibrium of Γϕ and assume that
the bit player chooses a path from the set P1. Let PA

x1=X1
, . . . , PA

xn=Xn
, WA, and

PA
xi∗→b be the path segments she chooses. Then the following properties hold.

Lemma 4.

a) In every A-gadget for every clause Cj = {xa, xb} one clause player sets
xa = Xa and the other player sets xb = Xb.
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b) In every B-gadget for every clause Cj = {xa, xb} with a, b �= i∗ one clause
player sets xa = Xa and the other player sets xb = Xb.

c) In every B-gadget for every clause Cj = {xi∗ , xc} one clause player sets
xc = Xc and the other player sets xi∗ = b.

Proof. Observe that in any gadget for any clause Cj = {xa, xb} one of the clause
players chooses xa = 0 or xa = 1 whereas the other player chooses xb = 0 or
xb = 1. Otherwise both have delay M2 and, thus an incentive to change.

a) Consider the A-gadget of a clause Cj = {xa, xb}. Due to our assumptions, all
edges of the path segment PA

Cj,xa=Xa
are not used by the bit player and there-

fore have delay 0 for a single clause player, whereas the edge uA
j,xa=Xa

that
is contained in the path segment PA

Cj,xa=(1−Xa) is used by the bit player and
therefore causes delay M to a clause player. The same is true for the path seg-
ments PA

Cj ,xb=Xb
and PA

Cj,xb=(1−Xb), respectively. The delay of all other edges
in the gadget sums up to less than M . Thus, in every Nash equilibrium, one of
the clause players chooses xa = Xa and the other player chooses xb = Xb.

b) In the B-gadgets all wB-edges and all edges in the WB-sets are not used by
the bit player and therefore have delay 0. Consider the B-gadget for a clause
Cj = {xa, xb} with a, b �= i∗. All edges of the path segment PB

Cj,xa=Xa
are

not used by the bit player and therefore have delay 0 for a single clause player,
whereas the edge tBj,xa=Xa

that is contained in the path segment PB
Cj,xa=(1−Xa)

is used by the bit player and therefore has delay 1 for a clause player. The same
is true for the path segments PB

Cj,xb=Xb
and PB

Cj ,xb=(1−Xb)
, respectively.

c) Let Cj = {xi∗ , xc} be a clause that contains xi∗ . In the B-gadgets of clause
Cj one clause player sets xc = Xc which has delay 0. The other clause player
sets xi∗ = b which has delay of at most 1. The path xi∗ = 1 − b has delay of
at least 2 due to the edge tBj,xi→b which is currently used by the bit player.

��

Note that an equivalent version of Lemma 4 holds for Nash equilibria in which
the bit player chooses a path from the set P2. The following corollary follows
directly from Lemma 4.

Corollary 5. In every Nash equilibrium the path segment WA has delay
α(W − w(X̄)) for the bit player. Furthermore, the delay on the path segment
PA

xi∗→b equals β(W − w(X̄xi∗=b)) plus an additive term of at most 2m for the
bit player.

Lemma 6. Every Nash equilibrium of Γϕ corresponds to a local optimum of ϕ.

Proof. For the purpose of contradiction, consider a Nash equilibrium that does
not correspond to a local optimum of ϕ. Let PA

x1=X1
, . . . , PA

xn=Xn
, WA, and

PA
xi∗→b be the path segments used by the bit player. By Corollary 5, we can

conclude that X̄Xi∗=b is the best neighboring assignment, otherwise the path
segment PA

xi∗→b has more delay then another path segment PA
xi∗∗→b∗∗ for the

bit player. We show that this implies that the bit player can improve her delay
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by choosing another path. The delays of all edges in the set WA sum up to
α(W − w(X̄)). Thus, the bit player has at least this amount of delay.

Now, observe that each path segment PB
xi=X1

with i �= i∗ has delay 0 for
the bit player since the clause players correctly simulate ϕB with the assignment
X̄Xi∗=b. The path segment PB

xi∗=b has delay of at most m. The delays of all edges
in the set WB sum up to α(W − w(X̄xi∗=b)). The delay of any path PB

xi′→b′ is
at most βW +2m. Note that βW +3m < α. Thus, the bit player could decrease
her delay by changing to such a path. This is a contradiction to the assumption
that this is a Nash equilibrium. ��

We conclude that every Nash equilibrium of Gϕ corresponds to a locally optimal
assignment of ϕ. Obviously, the construction of Gϕ and the mapping of an
equilibrium to a assignment of ϕ can be done in polynomial time. This conclude
the proof of Theorem 3 ��

It is an interesting open problem whether computing Nash equilibria for restricted
network congestion games with two players remains PLS-complete. Moreover, it
is an challenging open problem to prove any results in standard congestion games
with a constant number of players.

Theorem 7. One can compute a Nash equilibrium of a restricted network con-
gestion game Γ with a constant number of resources in polynomial time.

Theorem 7 is a consequence of the simple observation that there are only poly-
nomial many different possible values for Rosenthal’s potential functions. Again,
details can be found in a full version of this paper.
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2. Ackermann, H., Röglin, H., Vöcking, B.: Pure Nash equilibria in player-specific and
weighted congestion games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis,
S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 50–61. Springer, Heidelberg (2006)

3. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Rough-
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Abstract. We introduce a restriction of the stable roommates problem
in which roommate pairs are ranked globally. In contrast to the unre-
stricted problem, weakly stable matchings are guaranteed to exist, and
additionally, can be found in polynomial time. However, it is still the
case that strongly stable matchings may not exist, and so we consider
the complexity of finding weakly stable matchings with various desirable
properties. In particular, we present a polynomial-time algorithm to find
a rank-maximal (weakly stable) matching. This is the first generaliza-
tion of the algorithm due to Irving et al. [18] to a non-bipartite setting.
Also, we prove several hardness results in an even more restricted set-
ting for each of the problems of finding weakly stable matchings that are
of maximum size, are egalitarian, have minimum regret, and admit the
minimum number of weakly blocking pairs.

1 Introduction

The stable roommates problem (sr) [11,16,15,17] involves pairing-up a set
of agents, each of whom ranks the others in (not necessarily strict) order of
preference. Agents can declare each other unacceptable, in which case they cannot
be paired together. Our task is to find a pairing of mutually acceptable agents
such that no two agents would prefer to partner each other over those that we
prescribed for them.

We represent acceptable pairs by a graph G = (V, E), with one vertex u ∈ V
for each agent, and an edge {u, v} ∈ E whenever agents u and v are mutually
acceptable. A pairing is just a matching M of G, i.e. a subset of edges in E,
no two of which share a vertex. If {u, v} ∈ M , we say that u is matched in M
and M(u) denotes v, otherwise u is unmatched in M . An agent u prefers one
matching M ′ over another M if i) u is matched in M ′ and unmatched in M , or
ii) u prefers M ′(u) to M(u). Similarly, u is indifferent between M ′ and M if i)
u is unmatched in M ′ and M , or ii) u is indifferent between M ′(u) and M(u).
� Research supported in part by NSF grants IIS-0427858 and CCF-0514922IIS-

0427858. Part of this work completed while visiting Microsoft Research, Redmond.
�� Supported by EPSRC grant EP/E011993/1.
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A matching M is weakly stable if it admits no strongly blocking pair, which is
an edge {u, v} ∈ E\M such that u and v prefer {{u, v}} to M . A matching M is
strongly stable if it admits no weakly blocking pair, which is an edge {u, v} ∈ E\M
such that u prefers {{u, v}} to M , while v either prefers {{u, v}} to M , or is
indifferent between them.

In this paper, we introduce and study the stable roommates with glob-

ally-ranked pairs problem (sr-grp). An instance of sr-grp is a restriction of
sr in which preferences may be derived from a ranking function rank : E → N.
An agent u prefers v to w if e = {u, v}, e′ = {u, w} and rank(e) < rank(e′),
and u is indifferent between them if rank(e) = rank(e′).

Before giving our motivation for studying this restriction, we introduce some
notation. We define Ei to be the set of edges with rank i, and E≤i to be the set
E1 ∪E2 ∪ . . .∪Ei. Additionally, let n = |V | be the number of agents, m = |E| be
the number of mutually acceptable pairs. Without loss of generality, we assume
the maximum edge rank is at most m. Also, we make the standard assumption
in stable marriage problems that the adjacency list for a vertex is given in order
of preference/rank.

Motivation. In several real-world settings, agents have restricted preferences
that can be represented by the sr-grp model. A pairwise kidney exchange mar-
ket [26,25,1] is one such setting. Here, patients with terminal kidney-disease obtain
compatible donors by swapping their own willing but incompatible donors. We can
model the basic market by constructing one vertex for each patient, and an undi-
rected edge between any two patients where the incompatible donor for one pa-
tient is compatible with the other patient, and vice versa. Of course, patients may
have different preferences over donors. However, since the expected years of life
gained from a transplant is similar amongst all compatible kidneys, the medical
community has suggested that patient preferences should be binary/dichotomous
[14,7] – i.e., patients are indifferent between all compatible donors. Binary prefer-
ences are easily modelled in sr-grp by giving all edges the same rank.

A second example also comes from pairwise kidney exchange markets. When
two (patient,donor) pairs are matched with each other (in order to swap donors),
we are not certain if the swap can occur until expensive last-minute compatibility
tests are performed on the donors and patients. If either potential transplant in
the swap is incompatible, the swap is cancelled and the two patients must wait
for a future match run. Since doctors can rank potential swaps by their chance of
success, and patients prefer swaps with better chances of success, this generalizes
the binary preference model above, and can clearly still be modelled by sr-grp.

One final real-world setting is described in [4]. When colleges pair-up freshmen
roommates, it is not feasible for students to rank each other explicitly. Instead,
each student submits a form which describes him/herself in several different
dimensions (e.g. bedtime preference, cleanliness preference etc). Students can
then be represented as points in a multidimensional space, and preferences over
other students can be inferred by a distance function. Note that this model [4]
is a restriction of sr-grp in that it is not possible to declare another student
unacceptable.
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In order to highlight the generality of the sr-grp model, we introduce a
second restriction of sr called stable roommates with globally-acyclic

preferences (sr-gap). Instances of sr-gap satisfy the following characteri-
zation test: given an arbitrary instance I of sr with G = (V, E), construct a
digraph P (G), containing one vertex e for each edge in e ∈ E, and an arc from
e = {u, v} ∈ E to e′ = {u, w} ∈ E if u prefers w to v. Now, for each e = {u, v}
and e′ = {u, w} in E, if u is indifferent between v and w, merge vertices e and e′.
Note that a merged vertex may contain several original edge-vertices and have
self-loops. Instance I belongs to sr-gap iff P (G) is acyclic.

Instances of sr-grp satisfy the sr-gap test, since any directed path in P (G)
consists of arcs with monotonically improving ranks, and so no cycles are pos-
sible. In the reverse direction, given any instance of sr-gap, we can derive a
suitable rank function from a reverse topological sort on P (G), i.e. rank(e) <
rank(e′) iff e appears before e′. The following proposition is clear:

Proposition 1. Let I be an instance of sr. Then I is an instance of sr-grp if
and only if I is an instance of sr-gap.

As well as modelling real-world problems, sr-grp is an important theoretical
restriction of sr. It is well-known that sr has two key undesirable properties.
First, some instances of sr admit no weakly stable matchings (see, for example,
[15, page 164]). And second, the problem of finding a weakly stable matching,
or proving that no such matching exists, is NP-hard [24,17]. It turns out that
sr-grp has neither of these undesirable properties [4] 1.

Lemma 1. Let G = (V, E1 ∪ . . . ∪ Em) be an instance of sr-grp. Then M is
a weakly stable matching of G if and only if M ∩ E≤i is a maximal matching of
E≤i, for all i.

So we can construct a weakly stable matching in O(n + m) time by finding a
maximal matching on rank-1 edges, removing the matched vertices, finding a
maximal matching on rank-2 edges, and so on.

Strongly stable matchings are also easy to characterize in sr-grp [4].

Lemma 2. Let G = (V, E1 ∪ . . . ∪ Em) be an instance of sr-grp. Then M is
a strongly stable matching of G if and only if M ∩ Ei is a perfect matching of
{e ∈ Ei : e is not adjacent to any e′ ∈ E<i}, for all i.

Of course, even E1 may not admit a perfect matching, and so strongly stable
matchings may not exist. However, we can find a strongly stable matching, or
prove that no such matching exists in O(m

√
n) time by using the maximum

matching algorithm of Micali and Vazirani for non-bipartite graphs [23]. This
improves on the best known running time of O(m2) for general sr [27].

These observations show that sr-grp can be far simpler than sr. In this paper,
we are interested in which problems become more tractable in sr-grp, and which
problems maintain their hardness. Work along these lines has been done before
1 Lemmas 1 and 2 are proved by [4] in a restricted setting. However, their extensions

to sr-grp are straightforward.
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[5,28,6,4]. For example, Chung [6] shows that the “no odd ring” condition on
preferences is sufficient for the existence of a weakly stable matching. The sr-

gap acyclic condition is a restriction of the “no odd ring” condition, in that
neither odd nor even rings are permitted.

The possible non-existence of a strongly stable matching motivates the search
for weakly stable matchings with desirable properties. A rank-maximal matching
[18,29] includes the maximum possible number of rank-1 edges, and subject to
this, the maximum possible number of rank-2 edges, and so on. More formally,
define the signature of a matching M as 〈s1, s2, . . . , sm〉, where si is the number of
rank-i edges in M . Then a matching is rank-maximal iff it has the lexicographic-
maximal signature amongst all matchings.

Recall from Lemma 2 that a strongly stable matching is perfect on rank-1
edges, and subject to this, perfect on rank-2 edges, and so on. It is clear that
a rank-maximal matching is strongly stable, when strong stability is possible.
If no strongly stable matching exists, then a rank-maximal matching, which by
Lemma 1 is always weakly stable, seems a natural substitute. Irving et al. [18]
gave an O(min(n + R, R

√
n)m) algorithm for the problem of finding a rank-

maximal matching in a bipartite graph, where R is the rank of the worst-ranked
edge in the matching.

Other desirable types of weakly stable matchings may be those that have
maximum cardinality, are egalitarian, are of minimum regret, or admit the fewest
number of weakly blocking pairs. An egalitarian (respectively minimum regret)
weakly stable matching satisfies the property that the sum of the ranks (re-
spectively the maximum rank) of the edges is minimised, taken over all weakly
stable matchings. Given a general sr instance I, each of the problems of finding
an egalitarian and a minimum regret weakly stable matching is NP-hard [9,20]
(in the former case, even if the preference lists are complete and strictly-ordered,
and in the latter case, even if the underlying graph is bipartite). However the
complexity of the problem of finding a weakly stable matching with the minimum
number of weakly blocking pairs in I has, until now, been open.

Paper outline and summary of contribution. In Section 2, we consider rank-
maximal matchings, and present the first generalization of Irving et al.’s [18] al-
gorithm to a non-bipartite setting. In Section 3, we prove hardness results for for
each of the problems of finding weakly stable matchings that are of maximum size,
are egalitarian, have minimum regret, and admit the minimum number of weakly
blocking pairs. We also show that this last problem is inapproximable within a
factor of n1−ε, for any ε > 0, unless P = NP. These hardness results apply even in
a restricted version of sr-grp in which the graph G is bipartite, and (in the first
three cases) if an agent v is incident to an edge of rank k, then v is incident to an
edge of rank k′, for 1 ≤ k′ ≤ k. Finally, Section 4 contains concluding remarks.

2 Rank-Maximal Matching

One obvious way to construct a rank-maximal matching is to find a maximum-
weight matching using edge weights that increase exponentially with improving
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rank. However, with K distinct rank values, Gabow and Tarjan’s matching al-
gorithm [10] takes O(K2

√
nα(m, n) lg nm lg n) time2, where α is the inverse

Ackermann function. As in the bipartite restriction [18], our combinatorial al-
gorithm avoids the problem of exponential-sized edge weights, leading to an
improved runtime of O(min {n + R, R

√
n}m), where R ≤ K is the rank of the

worst-ranked edge in the matching.
Let Gi = (V, E≤i). Our algorithm begins by constructing a maximum match-

ing M1 on G1. Note that M1 is rank-maximal on G1 by definition. Then induc-
tively, given a rank-maximal matching Mi−1 on Gi−1, the algorithm exhaustively
augments Mi−1 with edges from Ei to construct a rank-maximal matching Mi

on Gi. In order to ensure rank-maximality, certain types of edges are deleted be-
fore augmenting. With these edges deleted, it becomes possible to augment Mi−1
arbitrarily, while still guaranteeing rank-maximality. Hence, we can perform the
augmentations using Micali and Vazirani’s fast maximum matching algorithm
[23]. In the non-bipartite setting, we perform one additional type of edge deletion
beyond the bipartite setting. Additionally, we shrink certain components into su-
pervertices. Note that this shrinking is separate from any blossom-shrinking [8]
that might occur in the maximum matching subroutine.

In order to understand the edge deletions and component shrinking, recall the
Gallai-Edmonds decomposition lemma [19]: Let G = (V, E) be an arbitrary undi-
rected graph. Then V can be partitioned into the following three sets, namely
ged-u[G], ged-o[G] and ged-p[G]. Vertices in ged-u[G] are underdemanded,
since they are unmatched in some maximum matching of G. All other vertices
that are adjacent to one in ged-u[G] are overdemanded and belong to ged-o[G].
Finally, all remaining vertices are perfectly demanded and belong to ged-p[G].
The decomposition lemma gives many useful structural properties of maximum
matchings. For example, in every maximum matching, vertices in ged-o[G] are
always matched, and their partner is in ged-u[G]. Similarly, vertices in ged-p[G]
are always matched, though their partners are also in ged-p[G]. We will use the
properties given in Lemma 3.

Lemma 3 (Gallai-Edmonds Decomposition). In any maximum matching
M of G,

1. For all u in ged-o[G], M(u) is in ged-u[G]
2. For all even (cardinality) components C of G \ ged-o[G], i) C ⊆ ged-p[G],

and ii) M(u) is in C, for all u in C
3. For all odd (cardinality) components C of G\ged-o[G], i) C ⊆ ged-u[G], ii)

M(u) is in C, for all u in C except one, say v, and iii) either v is unmatched
in M , or M(v) is in ged-o[G]

Consider the first inductive step of the algorithm, in which we are trying to
construct a rank-maximal matching M2 of G2 = (V, E≤2), given a maximum
matching M1 of G1 = (V, E1). We do not want to commit to edges in M1 at this
point, because perhaps no rank-maximal matching on G2 contains these edges.

2 See [22] for an explanation of the K2 factor.
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Fig. 1. Example of shrinking operation

However, according to the decomposition lemma, we can safely delete any edge
e = {u, v} such that:

(i) u ∈ ged-o[G1] and v ∈ ged-o[G1] ∪ ged-p[G1]
(ii) e ∈ E≥2, and u ∈ ged-o[G1] ∪ ged-p[G1]
(iii) e ∈ E≥2, and both u and v belong to the same odd component of G1

We delete all such edges to ensure they are not subsequently added to the
matching when we augment. Note that the third deletion type is required for non-
bipartite graphs, since only one vertex in each odd component C is unmatched
internally.

After deleting edges in G1, we shrink each odd component C into a superver-
tex. We define the root r of C as the one vertex in C that is unmatched within
C. Note that C’s supervertex is matched iff r is matched. Now, when we add
in undeleted edges from e = {u, v} ∈ E≥2 into the graph, if u ∈ C and v /∈ C,
we replace e with an edge between v and C’s supervertex. Note that during the
course of the algorithm, we will be dealing with graphs containing supervertices,
which themselves, recursively contain supervertices. In such graphs, we define
a legal matching to be any collection of independent edges such that in every
supervertex, all top-level vertices but the root are matched internally.

To give some intuition for why we shrink odd components, consider the graph
in Figure 1. The triangle of rank-1 edges is an odd component (with {u, v}
matched), and so neither rank-2 edges are deleted. One way to augment this
graph is to include the two rank-2 edges and take out the rank-1 {u, v} edge. This
destroys the rank-maximal matching on G1. If we shrink the triangle however,
the supervertex is unmatched, and so {x, u} and {y, v} are both valid augmenting
paths. Note how these augmenting paths can be expanded inside the supervertex
by removing and adding one rank-1 edge to end at the root r. This expansion
makes the augmenting path legal in the original graph, while not changing the
number of matching edges internal to the supervertex.

Figure 2 contains pseudocode for our non-bipartite rank-maximal matching
algorithm. One aspect that requires more explanation is how we augment Mi in
G′

i. The overall approach is to find an augmenting path P while regarding each
top-level supervertex in G′

i as a regular vertex. Then for each supervertex C in
P , we expand P through C in the following way. Let u be the vertex in C that
P enters along an unmatched edge. If u is the root r of C, then C is unmatched,
and we can replace C by u in P . Otherwise, u �= r, and either C is unmatched or
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Rank-Maximal-Matching(G = (V, E1 ∪ E2 ∪ . . . ∪ Em))
Set G′

1 to G1;
Let M1 be any maximum matching of G1;
For i = 2 to m:

Set G′
i to G′

i−1, and Mi to Mi−1;
Compute the GED of G′

i−1 using Mi−1;
Delete edges in G′

i between two vertices in ged-o[G′
i−1];

Delete edges in G′
i between vertices in ged-o[G′

i−1] and ged-p[G′
i−1];

Delete any edge e in E≥i where:
i) e is incident on a ged-o[G′

i−1] or ged-p[G′
i−1] vertex, or

ii) e is incident on two vertices in the same odd component of Gi−1;
Shrink each odd component of Gi−1 in the graph G′

i;
Add undeleted edges in Ei to G′

i;
Augment Mi in G′

i until it is a maximum matching;
End For
Return Mm;

Fig. 2. Non-bipartite rank-maximal matching algorithm

P leaves C via the matched edge incident on r. In the next lemma, we show that
there is an even-length alternating path from u to r, beginning with a matched
edge. We can expand P by replacing C with this even-length alternating path.

Lemma 4. Let M be a legal matching on some supervertex C with root r. Let
u be any other node in C. Then there is an even-length alternating path from u
to r beginning with a matched edge.

Proof. Let M ′ be a legal matching of C in which u is unmatched (such a matching
is guaranteed by the decomposition lemma). Consider the symmetric difference
of M and M ′. Since every vertex besides u and r is matched in both matchings,
there must be an even-length alternating path consisting of M and M ′ edges
from u to r. �

In all cases of P and C, note that C has the same number of internally matched
edges before and after augmentation by P , and so the matching remains legal.
Also, if r was matched prior to augmentation, then it is still matched afterwards.

The next three lemmas, which generalize those in [18], establish the correct-
ness of the algorithm. Lemma 5 proves that no rank-maximal matching contains
a deleted edge. Lemma 6 proves that augmenting a rank-maximal matching Mi−1
of Gi−1 does not change its signature up to rank (i − 1). And finally, Lemma 7
proves that the final matching is rank-maximal on the original graph G.

Lemma 5. Suppose that every rank-maximal matching of Gi−1 is a maximum
legal matching on G′

i−1. Then every rank-maximal matching of Gi is contained
in G′

i.

Proof. Let M be an arbitrary rank-maximal matching of Gi. Then M∩E≤i−1 is a
rank-maximal matching of Gi−1, and by assumption, a maximum legal matching
of G′

i−1. By Lemma 3, the edges we delete when constructing G′
i belong to no
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maximum matching of G′
i−1, in particular M ∩E≤i−1. So M ∩E≤i−1 is contained

in G′
i. Furthermore, since M is a matching and M ⊇ M ∩ E≤i−1, it follows that

M contains no deleted edges, and therefore must be contained in G′
i. �

Lemma 6. Let Mi and Mj be the matchings produced by the algorithm, where
i < j. Then Mi and Mj have the same number of edges with rank at most i.

Proof. Mi consists of edges contained within top-level supervertices of G′
i, and

edges between top-level (super)vertices of G′
i. We have already shown that aug-

menting through a supervertex does not change the number of matching edges
internal to the supervertex. Hence, Mj contains the same number of such edges
as Mi.

By Lemma 3, the remaining edges of Mi are all be incident on some ged-o[G′
i]

or ged-p[G′
i] (super)vertex. Since these vertices are matched in Mi, they are

also matched in Mj , as augmenting does not affect the matched status of a
vertex. Also, no edges of rank worse than i are incident on such vertices, due
to deletions, and so each must be matched along a rank-i edge or better in Mj .
Hence |Mi| ≤ |Mj ∩E≤i|. Of course, |Mj ∩E≤i| ≤ |Mi|, since all edges from E≤i

in G′
j are also in G′

i, and Mi is a maximum legal matching of G′
i. �

Lemma 7. For every i, the following statements hold: 1) Every rank-maximal
matching of Gi is a maximum legal matching of G′

i, and 2) Mi is a rank-maximal
matching of Gi.

Proof. For the base case, rank-maximal matchings are maximum matchings on
rank-1 edges, and so both statements hold for i = 1. Now, by Lemma 5 and the
inductive hypothesis, every rank-maximal matching of Gi is contained in G′

i. Let
〈s1, s2, .., si〉 be the signature of such a matching. By Lemma 6, Mi has the same
signature as Mi−1 up to rank-(i − 1). Hence, Mi’s signature is 〈s1, s2, .., ti〉 for
some ti ≤ si, since Mi−1 is a rank-maximal matching of Gi−1. However, Mi is a
maximum legal matching of G′

i, hence ti = si and Mi is rank-maximal matching
of Gi. This proves the second statement.

Now, for the first statement, let Ni be any rank-maximal matching of Gi. By
Lemma 5 and the inductive hypothesis, we know that Ni is contained in G′

i. Ni

has signature 〈s1, s2, ..., si〉, which is the same signature as Mi. Hence, Ni is also
a maximum legal matching of G′

i. �

We now comment on the runtime of the algorithm. In each iteration i, it is
clear that computing the decomposition (given a maximum matching), deleting
edges and shrinking components all take O(m) time. Constructing Mi from Mi−1
requires |Mi|− |Mi−1|+1 augmentations. At the top-level of augmenting (when
supervertices are regarded as vertices), we can use the Micali and Vazirani non-
bipartite matching algorithm, which runs in time O(min(

√
n, |Mi+1| − |Mi| +

1)m). Next, we have to expand each augmenting path P through its incident
supervertices. Let u be the first vertex of some supervertex C that P enters
along an unmatched edge. It is clear that we can do this expansion in time
linear in the size of C by appending a dummy unmatched vertex d to u, and
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then looking for an augmenting path from d to r in C. Since each supervertex
belongs to at most one augmenting path in each round of the Micali and Vazirani
algorithm, this does not affect the asymptotic runtime. It follows that after R
iterations, the running time is at most O(min(n+R, R

√
n)m). Using the idea in

[18], we can stop once R is the rank of the worst-ranked edge in a rank-maximal
matching, because we can test in O(m) time if MR is a maximum matching of
GR together with all undeleted edges of rank worse than R (in which case MR

is rank-maximal).

Theorem 1. Let R be the rank of the worst-ranked edge in a rank-maximal
matching of G = (V, E1 ∪ . . . ∪ Em). Then a rank-maximal matching of G can
be found in time O(min(n + R, R

√
n)m).

3 Hardness Results

In this section we establish several NP-hardness results for a special case of
sr-grp. We refer to this restriction as stable marriage with symmetric

preferences (sm-sym). An instance of sm-sym is an instance of sr in which
the underlying graph is bipartite (with men and women representing the two sets
of agents in the bipartition) subject to the restriction that a woman wj appears
in the kth tie in a man mi’s list if and only if mi appears in the kth tie in wj ’s
list. Clearly an instance of sm-sym is a bipartite instance of sr-grp in which
rank({mi, wj}) = k if and only if wj appears in the kth tie in mi’s preference list,
for any man mi and woman wj . Indeed it will be helpful to assume subsequently
that rank is defined implicitly in this way, given an instance of sm-sym.

Our first result demonstrates the NP-completeness of com-sm-sym, which
is the problem of deciding whether a complete weakly stable matching (i.e. a
weakly stable matching in which everyone is matched) exists, given an instance
of sm-sym. Our transformation begins from exact-mm, which is the problem
of deciding, given a graph G and an integer K, whether G admits a maximal
matching of size K.

Theorem 2. com-sm-sym is NP-complete.

Proof. Clearly com-sm-sym is in NP. To show NP-hardness, we reduce from
exact-mm in subdivision graphs, which is NP-complete [21]. Let G = (V, E),
a subdivision graph of some graph G′, and K, a positive integer, be an in-
stance of exact-mm. Suppose that V = U ∪ W is a bipartition of G, where
U = {m1, m2, . . . , mn1} and W = {w1, w2, . . . , wn2}. Then we denote the set of
vertices adjacent to a vertex mi ∈ U in G by Wi and similarly the set of vertices
adjacent to wj ∈ W in G by Uj .

We construct an instance I of com-sm-sym as follows: let U ∪ X ∪ A ∪ B
be the set of men and W ∪ Y ∪ A′ ∪ B′ be the set of women, where X =
{x1, x2, . . . , xn2−K}, Y = {y1, y2, . . . , yn1−K}, A = {a1, a2, . . . , aK}, B = {b1, b2,
. . . , bK}, A′ = {a′

1, a
′
2, . . . , a

′
K} and B′ = {b′1, b′2, . . . , b′K}. The preference lists of

I are shown in Figure 3 (entries in round brackets are tied). It may be verified
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Men’s preferences
mi : (Wi) (y1 y2 . . . yn1−K) (1 ≤ i ≤ n1)
xi : a′

i (W ) (1 ≤ i ≤ n2 − K)
ai : (yi b′

i) (1 ≤ i ≤ K)
bi : a′

i (1 ≤ i ≤ K)

Women’s preferences
wj : (Uj) (x1 x2 . . . xn2−K) (1 ≤ j ≤ n2)
yj : aj (U) (1 ≤ j ≤ n1 − K)
a′

j : (xj bj) (1 ≤ j ≤ K)
b′
j : aj (1 ≤ j ≤ K)

Fig. 3. Preference lists for the constructed instance of com-sm-sym

that I is an instance of sm-sym. We claim that G has an exact maximal matching
of size K if and only if I admits a complete weakly stable matching.

Suppose G has a maximal matching M , where |M | = K. We construct a
matching M ′ in I as follows. Initially let M ′ = M . There remain n1−K men in U
that are not assigned to women in W ; denote these men by mki (1 ≤ i ≤ n1−K)
and add (mki , yi) to M ′. Similarly there remain n2 − K women in W that are
not assigned to men in U ; denote these women by wlj (1 ≤ j ≤ n2 − K), and
add (xj , wlj ) to M ′. Finally we add (ai, b

′
i) and (bi, a

′
i) (1 ≤ i ≤ K) to M ′. It

may then be verified that M ′ is a complete weakly stable matching in I.
Conversely suppose that M ′ is a complete weakly stable matching in I. Let

M = M ′ ∩ E. We now show that |M | = K. First suppose that |M | < K. Then
since M ′ is a complete weakly stable matching, at least n1 − K + 1 men in U
must be assigned in M ′ to women in Y , which is impossible as there are only
n1 − K women in Y . Now suppose |M | > K. Hence at most n1 − K − 1 women
in Y are assigned in M ′ to men in U . Then since M ′ is complete, there exists
at least one women in Y assigned in M ′ to a man in A. Thus at most K − 1
men in A are assigned in M ′ to women in B′. Hence only K − 1 women in B′

are assigned in M ′, contradicting the fact that M ′ is a compete weakly stable
matching. Finally, it is straightforward to verify that M is maximal in G. �

The following corollary (see [3] for the proof) will be useful for establishing
subsequent results.

Corollary 1. com-sm-sym is NP-complete, even if each preference list com-
prises exactly two ties (where a tie can be of length 1).

We next consider minimum regret and egalitarian weakly stable matchings, given
an instance I of smc-sym, which is the restriction of sm-sym in which each
person finds all members of the opposite sex acceptable. Let U and W be the
set of men and women in I respectively, let M be a weakly stable matching in
I, and let p be some agent in I. Then we define the cost of p with respect to
M , denoted by costM (p), to be rank(p, M(p)). Furthermore we define the regret
of M , denoted by r(M) to be maxp∈U∪W costM (p). M has minimum regret if
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r(M) is minimised over all weakly stable matchings in I. Similarly we define the
cost of M , denoted by c(M), to be

∑
p∈U∪W costM (p). M is egalitarian if c(M)

is minimised over all weakly stable matchings in I.
We define regret-smc-sym (respectively egal-smc-sym) to be the problem

of deciding, given an instance I of smc-sym and a positive integer K, whether I
admits a weakly stable matching such that r(M) ≤ K (respectively c(M) ≤ K).
We now show that regret-smc-sym is NP-complete.

Theorem 3. regret-smc-sym is NP-complete.

Proof. Clearly the problem belongs to NP. To show NP-hardness, we reduce
from the restriction of com-sm-sym in which each person’s list has exactly two
ties, which is NP-complete by Corollary 1. Let I be such an instance of this
problem. We form an instance I ′ of regret-smc-sym as follows. Initially the
people and preference lists in I and I ′ are identical. Next, in I ′, each person
adds a third tie in their preference list containing all members of the opposite
sex that are not already contained in their first two ties. It is not difficult to
verify that I admits a complete weakly stable matching if and only if I ′ admits
a weakly stable matching M such that r(M) ≤ 2. �

We next prove that egal-smc-sym is NP-complete, using a result of Gergely
[13], shown in Theorem 4, relating to diagonalized Latin squares. A transversal
of an order-n Latin square is a set S of n distinct-valued cells, no two of which
are in the same row or column. A Latin square is said to be diagonalized if the
main diagonal is a transversal.

Theorem 4 (Gergely [13]). For any integer n ≥ 3, there exists a diagonalized
Latin square of order n having a transversal which has no common entry with
the main diagonal.

Theorem 5. egal-smc-sym is NP-complete.

Proof. Clearly egal-smc-sym is in NP. To show NP-hardness, we reduce from
the restriction of com-sm-sym in which each person’s list has exactly two ties,
which is NP-complete by Corollary 1. Let I be such an instance of this problem,
where U = {m1, m2, . . . , mn} is the set of men and W = {w1, w2, . . . , wn} is the
set of women. For each man mi ∈ U (1 ≤ i ≤ n) we denote the women in the
first and second ties on mi’s preference list in I by Wi,1 and Wi,2 respectively,
and let Wi = Wi,1 ∪ Wi,2. Similarly for each woman wj ∈ W (1 ≤ j ≤ n) we
denote the men in the first and second ties on wj ’s preference list in I by Uj,1
and Uj,2 respectively, and let Uj = Uj,1 ∪ Uj,2.

We construct an instance I ′ of egal-smc-sym as follows: let U∪X∪{p} be the
set of men and let W ∪Y ∪{q} be the set of women, where X = {x1, x2, . . . , xn}
and Y = {y1, y2, . . . , yn}. Then we construct the preference lists in I ′ by consid-
ering the diagonalized Latin square S = (si,j) of order n, as constructed using
Gergely’s method [13] (we note that Gergely’s method is polynomial-time com-
putable). Without loss of generality we may assume that the entries in the main
diagonal are in the order 1, 2, . . . , n (this can be achieved by simply permuting
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Men’s preferences
mi : Wi,1 Wi,2 (y1 q) y2 . . . yn (W \ Wi) (1 ≤ i ≤ n)
x1 : y1 q (W ) ys1,2 ys1,3 ys1,4 . . . ys1,n

x2 : y2 q ys2,1 (W ) ys2,3 ys2,4 . . . ys2,n

x3 : y3 q ys3,1 ys3,2 (W ) ys3,4 . . . ys3,n

...
xn : yn q ysn,1 ysn,2 ysn,3 ysn,4 . . . (W )
p : q (Y ) (W )

Women’s preferences
wj : Uj,1 Uj,2 (x1 p) x2 . . . xn (U \ Uj) (1 ≤ j ≤ n)
y1 : x1 p (U) xt1,2 xt1,3 xt1,4 . . . xt1,n

y2 : x2 p xt2,1 (U) xt2,3 xt2,4 . . . xt2,n

y3 : x3 p xt3,1 xt3,2 (U) xt3,4 . . . xt3,n

...
yn : xn p xtn,1 xtn,2 xtn,3 xtn,4 . . . (U)
q : p (X) (U)

Fig. 4. Preference lists for the constructed instance of egal-smc-sym

symbols in S if necessary). Next we construct a matrix T = (ti,j) from S as
follows: for each i and j (1 ≤ i, j ≤ n), if si,j = k then tk,j = i. We claim that
T is a Latin square.

For, suppose not. First suppose ti,j = ti,k = l, for some j �= k. Thus it follows
that sl,j = sl,k = i, contradicting the fact that S is a Latin square. Now suppose
ti,j = tk,j = l, for some i �= k. Therefore sl,j = i and sl,j = k, which is impossible.
Hence T is a Latin square. Moreover the elements 1, 2, . . . , n appear in order on
the main diagonal of T .

We then use S and T to constructed the preference lists as shown in Figure
4. By the construction of T from S and by inspection of the remaining prefer-
ence list entries, we observe that I ′ is an instance of egal-smc-sym. Let K =
2(3n+1). It may be verified (see [3] for the proof) that I has a complete weakly
stable matching M if and only if I ′ has a weakly stable matching M ′ such that
c(M ′) ≤ K.

�

Our final hardness result (whose proof appears in [3]) applies to sm-grp, which is
the restriction of sr-grp to bipartite graphs.Recall that a strongly stablematching
has no weakly blocking pairs. min-bp-sm-grp is the problem of finding a weakly
stable matching (which by definition has no strongly blocking pairs) with the min-
imum number of weakly blocking pairs, given an instance of sm-grp.

Theorem 6. min-bp-sm-grp is not approximate within a factor of n1−ε, for
any ε > 0, unless P=NP, where n is the number of men and women.
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4 Future Work

We conclude with an open problem. A matching M ′ is more popular than another
M if more agents prefer M ′ to M than M to M ′. A matching M is popular
if there is no matching M ′ that is more popular than it. Because the more
popular than relation is not acyclic, popular matchings may not exist. As with
rank-maximality, the problem of finding popular matchings (or proving no such
matching exists) has been solved in the bipartite setting [2]. This setting involves
allocating items to agents, when only agents have preferences. However, the
original popular matching problem, as proposed by Gärdenfors [12], applied to
the stable marriage setting (with preferences on both sides). We believe that
sr-grp, and its bipartite restriction, are promising models in which to begin to
solve Gärdenfors’ original problem.
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Abstract. We create a new two-player game on the Sperner Trian-
gle based on Sperner’s lemma. Our game has simple rules and several
desirable properties. First, the game is always certain to have a win-
ner. Second, like many other interesting games such as Hex and Ge-
ography, we prove that deciding whether one can win our game is a
PSPACE-complete problem. Third, there is an elegant balance in the
game such that neither the first nor the second player always has a de-
cisive advantage. We provide a web-based version of the game, playable
at: http://cs-people.bu.edu/paithan/spernerGame/. In addition we pro-
pose other games, also based on fixed-point theorems.

1 Introduction

The relationship between computational complexity and game strategies has
encouraged the development of both of these fields. Games, due to their enjoy-
able and competetive nature, create a breeding pool for analysis as strategies
are discussed and revised. The ability to express strategies using computational
complexity allows us to categorize them based on concrete classes of difficulty.
Inversely, the ability to express complexity classes in terms of finding game
strategies motivates the study of these classes.

Many two-player games can employ simple rules yet still resist simple methods
to efficiently produce winning strategies. Games such asGeography, Hex and Go all
requirePSPACE computational capability to alwaysdeduce thesewinning strate-
gies [9,10,7]. For these games, the simplicity of the rules often masks the mathemat-
ical intricacies of the underlying structure. In Hex, for instance, the existence of a
winner has been shown to be equivalent [6] to Brouwer’s fixed-point theorem [1].

Motivated by the equivalence of the fixed-point theorem to another result,
namely Sperner’s Lemma [11], we present a new two-player game, designed to
attain some hardness result. As Eppstein argues, games with polynomial strate-
gies lose their fun once players learn “the trick”[5]. This concern might be am-
plified in this day and age when we encourage the most talented human game
players to compete with highly optimized machines. If polynomial strategies
for a game exists, these machines can efficiently implement the strategies, and
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Fig. 1. A triangular array of size 5 (left) next to our Sperner Triangle gameboard, also
of size 5, with added functional boundaries (right)

the game play becomes trivial. Thus, we continue by proving that our game is
PSPACE-complete.

Luckily, the rules of the game are very simple, and a player does not require
any mathematical background to be a fierce contender1. Before we define the
rules of the game, we discuss the Sperner Triangle and the Lemma which ensures
that exactly one of the players has won at the end of the game.

2 The Sperner Triangle

Sperner’s Triangle is simply a triangular array of nodes (see the left half of Figure
1) each colored in one of three colors with a simple boundary condition: each
side of the outer triangle is assigned a different color, and nodes along that edge
may not be given that color [11]. Along each axis of the array, each node has
two natural neighbors, aside from the boundary nodes, which may not have a
second neighbor along some axes. Since the triangular array has three axes, each
interior node of the triangle has exactly six neighbors.

Fig. 2. From left to right: A barred node, a shaded node and a filled node

Here, in lieu of colors, we use three different symbols: bars, shading and filled-
in, as demonstrated in Figure 2. We will often use the verbs barring, shading
and filling to describe the action of assigning the relative symbol to a node.

Our games are inspired by the following brilliant result of Sperner [11]:

Lemma 1 (Sperner’s Lemma). On any sized Sperner Triangle, if all the nodes
are colored, there will exist a triangle of three neighboring nodes, each of which has
a different color. In fact, there will be an odd number of these triangles.
1 During a Thanksgiving break, the first author played against his mother, who is not

a mathematician, and was often beaten in a short span of games.
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3 Playing Games on the Sperner Triangle

Given the challenge of attempting to avoid tri-colored triangles, natural games
emerge in which players take turns coloring empty nodes on an initially-uncolored
Sperner Triangle. In these games, a player loses when their play creates a tri-
colored triangle. Because of this, we refer to triangles with three colors as “bad”
triangles. In addition, open circles at which any color played would result in a
bad triangle are called “doomed” circles. Although playing at one of them is
legal, it results immediatley in a loss, and thus we often refer to them with the
“unplayable” misnomer. Also, we often speak of playable circles as not including
those which are doomed. When we want to include doomed circles, we will use
the term “open”.

3.1 The Game Board

In order to elegantly enforce the border restrictions, we enhance the triangle by
adding an alternating series of the other two colors to each side, as shown in the
right-hand side of Figure 1. Thus, if a player plays the forbidden color along one
of those sides, they immediately create a bad triangle and lose the game.

Since it is often helpful to focus on one player whilst analyzing two-player
games, we will often refer to one player as the hero and their opponent as the
adversary.

3.2 Sperner Rules

1. On their turn, each player colors a circle on the triangle one of the three
colors.

2. The first player may choose any uncolored circle at which to play for the
first move.

3. If any circles adjacent to the last-colored circle are uncolored, the current
player must choose one of them to color. Otherwise, they may choose to play
at any uncolored circle on the board.

4. The first player to color a circle which creates a tri-colored triangle loses the
game.

We call this game Sperner. Atropos, the Java applet version, is playable at:

http://cs-people.bu.edu/paithan/spernerGame/

4 On the Complexity of Sperner

Our central complexity question concerns the following decision problem:

SPERNER: Given a legal Sperner state, determine whether the current
player has a winning strategy.
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Before analyzing the complexity of this problem, we must comment on the
phrase “legal Sperner state”. A legal state of the game is one which can be
realized from any legal sequence of plays from an initial game board. A game
state then consists of either:

1. An initial game board, or
2. A game board attainable from some legal sequence of moves on an initial

game board, with the last move identified.

As our main complexity result, we prove:

Theorem 1 (Main). SPERNER is PSPACE-complete.

4.1 SPERNER is in PSPACE

Lemma 2. SPERNER is in PSPACE.

Proof. Since the number of plays is at most the number of nodes in the game-
board, the depth of every branch of the game tree is linear in the size of the input.
Thus, in polynomial space we can determine the result of following one path of
the game tree. In order to search for a winning result, we can systematically
try each possible game branch. Thus, we require only space enough to evaluate
one branch at a time, as well as some bookkeeping to recall which branches we
have already visited. This bookkeeping will require at most only O(m2) space,
where m is the number of nodes on the board. Thus, in polynomial space, we
can evaluate all the possible outcomes of the game tree until we either find a
winning strategy or determine that none exists.

4.2 Outline of the Reduction

It remains to be shown that strategies for the Sperner Game are PSPACE-hard.
Classically, we show that problems are PSPACE-hard by reducing TQBF to

them [8]. In general, TQBF is the problem of determining whether a quantified
boolean formula—a formula of the form ∃x1 : ∀x2 : ∃x3 : ∀x4 : . . . : Qnxn :
φ(x1, x2, . . . , xn)—is true. In our notation here, φ(x1, . . . , xn) is a conjunctive
normal form formula using the literals x1 through xn, while Qn is a quantifier
(either ∀ or ∃).

Because of the inherent alternation in quantified boolean formulae, many
games with non-obvious strategies for two players have been shown to be
PSPACE-hard [8]. Indeed, we see that fulfilling a TQBF instance is much like
playing a game. The hero will choose a variable assignment for x1, then the
adversary will choose for x2. The hero responds by choosing x3, and so on.

Our reduction will model this behavior. We will create a legal Sperner game
state from a TQBF instance such that a winning strategy in the game exists for
the hero if and only if the formula is true. The game will proceed by letting the
appropriate players make moves corresponding to the assignment of values to the
variables xi. Each player will then make one further choice and one of the literals
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Fig. 3. Construction Sketch: End of the Game. Clause ci contains the literals xa, xb, xc.

in one of the clauses will be selected. We will “investigate” the literal through its
interpretation in the game state and force an end of the game with it.

In our resulting game boards, most of the moves players make will be very
restrictive. In our construction, there is a resulting “prescribed flow of play”
directing players to make choices in the order we described above. Our reduction
provides punishment strategies such that any player violating the prescribed flow
of play will lose in a constant number of turns. We describe these punishment
strategies, ensuring that players must follow the prescribed flow in order to have
a chance of winning the game.

Using our construction, each player’s last choice is easily described: the ad-
versary will choose a clause to investigate, and the hero will choose one of the
literals in that clause. That literal will be evaluated, according to the assignment
it received. If the literal is true, the hero should win, otherwise the adversary
should win.

We give the adversary the power to pick a clause because, in the case where
the formula is true, all the clauses must be true; the adversary will have no
power. However, if at least one of the clauses is false, the formula will be false,
and the adversary should be able to select one of these false clauses in order to
discredit the correctness. Conversely, inside each clause we will give the hero the
ability to choose between literals. Thus, if at least one of those literals is true,
the hero will be able to choose and identify it. Figure 3 illustrates the layout
style we desire.

Before the flow of play reaches this point, we must have already set all of the
variables. In order to accomplish this, the path of play must first pass by each
of the variable settings, as showing in Figure 4, forcing the appropriate player
to make a decision at each variable. Once the settings have been accomplished,
we can move to the investigation procedure, as portrayed back in Figure 3.
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Fig. 4. Construction Sketch: Setting the Variables. The Variable Investigation Scheme
is laid out in Figure 3.

Overall, this plan is very reminiscient of the reduction from GEOGRAPHY.
In addition, our topology meets some similar hurdles that must be overcome in
that construction. For instance, our plan has a non-planar design (paths must
often intersect between the selection of a clause and the selection of a literal
during investigation). Thus, we will need to produce widgets which allow for
these logical crossovers to occur, as we do in the following section.

Our blueprints also seem to defy the rigid structure of the gameboard we are op-
erating on. We require widgets which provide pathways for our prescribed flow of
play. GEOGRAPHY is played on a directed graph, so enforcing the flow of play is
somewhat more simple. We will need to be very careful that players cannot sub-
jugate design plans by moving in unexpected directions. Also, we need widgets
to handle variable assignment, path splitting, and other obstacles to realizing our
layout on a Sperner Board. We continue by exhaustively describing these widgets.

5 Reduction Widgets

Our reduction requires widgets to enforce various moves and allow for appropri-
ate decisions to be made through others. In addition, the widgets must be able
to connect, allowing us to build the overlying structure by fitting them together.
In this section, we describe each of the widgets and specify how they are used.

Many of the widgets are simple and are only pathways to guide the flow of play.
For more complex widgets, however, we need to be able to ensure that plays not
following this flow correspond to losing choices. This means that any player at-
tempting to go against the prescribed pathway will be vulnerable to an optimal
opposing winning strategy which is easily computable (here in constant time).

5.1 Paths

Paths are the most simple of the widgets in our construction, although we
have two different versions for different circumstances. Players should not make

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



A PSPACE-complete Sperner Triangle Game 451

Fig. 5. Left: a Single-Symbol Path. Right: a Two-Symbol Path.

non-trivial decisions along paths, thus we build them to strongly restrict playing
options.

The first of our two versions is a path in which on any move a player has the
option of playing exactly one symbol without immediately losing. On the left
side of Figure 5, assuming the flow of play comes in from the left, the leftmost
circle can and must be filled. Then, the next player is forced to fill the circle to
the right, and so on. This path pattern can be extended to any length. Turning
widgets for these paths also exist as we describe later.

The other type of path supports a chain of one of two different symbols. In this
type of path, shown on the right side of Figure 5, whichever symbol is initially
played between barred and filled forces the next plays to follow suit. If a space is
barred, the next play must also be bars. The same is true for filled (we assume
again that the flow of play is going from left to right).

This type of path is often the by-product of play leaving other widgets. Since
all our widgets use single-symbol paths leading in, it is vital to be able to force
the path to switch from a two-symbol path to a single-symbol path. Although
such a widget exists, we omit it here for brevity.

Fig. 6. Two 60 degree turns in a One-Symbol Path

We must also be able to turn our paths in order to have them line up with
other widgets. Figure 6 reveals 60-degree turning options. In order to turn further
than 60-degrees, we can just pair two or three of these together to attain 120 or
180 degree rotations. Note that in the second example there are two possibilities
for playing at the “elbow” of the turn. This does not affect the overall restriction;
further plays after the elbow must return to the original symbol.

Unfortunately for fans of two-symbol paths, we do not bother to create turning
widgets for them. Instead, whenever we are presented with a situation where a
two-symbol path occurs, we will immediately switch it to a one-symbol path. This
does not present a problem, as only one of our widgets results in an out-going
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two-symbol path: the variable widget. The out-going paths for these widgets will
be followed by the two-to-one symbol switch widget (not given here).

5.2 Variables

Having described these devices, we are prepared to reveal the widget for mod-
elling variables, presented in Figure 7.

Here the flow of play enters initially from the bottom left and exits through the
lower right path. During this time, the “playability” of the circle corresponding
to some boolean variable xi is determined. If that variable is investigated at the
end of the game, then the flow of play will enter through the entrance in the
upper right corner, and will terminate inside the widget.

The choice of symbol played in the space directly below xi determines the
playability of xi (and corresponds to the assignment of true or false). Since the
plays up to that point must all either be fills, or—in the case of the last space—
bars, the deciding play must also either be a fill or bars, and can be either,
independent of what the previous play was. Notice now that if a fill is made,
the location xi will be playable later, whereas a play of bars means that xi is
unplayable. Thus, we associate a play of fill as setting xi to true, while a play of
bars sets xi to false.

After this choice is made, the prescribed flow of play continues rightward,
which is clearly forced in the case that xi is made unplayable. We now must
describe a winning response strategy to a player deviating from the play flow,
which occurs when xi is played prematurely.

Fig. 7. An untouched Variable Widget (left) and a partly-played widget (right). Num-
bers on the right side are used to describe blocking premature plays at xi and explain
what happens at the end of the game.

Lemma 3. Prematurely playing at xi is suboptimal.

Proof. In order to prove this lemma, we must show a winning counter-strategy
to a premature play in xi. We use the numbers from Figure 7 to refer to play
locations in this strategy.
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Assume that an offending player played prematurely at xi. If they have not
already lost, then they must have either shaded or filled xi. In either case, the
winning punishment strategy begins by filling location 1. The offending player
will have to respond by either

a) Filling location 2. A winning response to this play consists of filling 3. Now,
the offending player must play at the unplayable location 4.

b) Filling or shading location 3. The winning response to this is to fill 2. Now,
the offending player can only play at 5, which is unplayable.

Thus, playing at xi prematurely is a losing strategy, and is suboptimal.

Now, assuming the players follow the prescribed flow, the parity of playable
spaces in the upper portion of the widget is defined by the playability of xi.
If xi is investigated, then the flow of play will enter at the upper right from a
single-symbol shading path. Notice that these incoming plays cause location 1
in Figure 7 to be unplayable. Thus, the following sequence of non-suicidal plays
is at locations 2, 3, then—if it is playable—xi.

Thus, if xi is playable, the play at 3 loses (a play at xi forces the loss at
1). Otherwise, the play at 3 wins, because all three neighboring spaces are un-
playable.

5.3 Splitting and Rejoining Paths

When determining which variable to investigate, players need to be able to make
choices to follow different paths. In turn, multiple paths must converge towards
the same variable, as multiple clauses can contain the same literal from our
instance of QSAT. Thus, we require widgets for splitting and rejoining paths.

In the course of any game, exactly one path through the variable investigation
process will be used. We will enforce this through the design of these splitting
and rejoining widgets.

Fig. 8. Left: This widget splits a path. Right: This widget joins two paths.

The splitter (Figure 8), with play flowing from left to right, gives the second
player the ability to choose between the two paths. (A One-Symbol path leads
into the widget; the first play must be a fill.)
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Joiner widgets (in Figure 8) have the additional responsibility of protecting
the flow of play (again, left to right) to prevent a player from “going” backwards.
The widget performs this automatically. Independent of which path is taken from
the left, the play at the intersection prevents plays through the other left path.

5.4 Path Crossing

The graph of paths in our model is not necessarily planar, meaning that we have
to be able to handle paths which cross. We use the crossover widget (Figure 9)
to accomplish this. Regardless of the flow of play, any series of plays entering this
widget must exit from the opposite side. For example, entering from the upper-left
path will result in play continuing out through the lower-right path (the careful
reader can verify this for all entrance options). Since any game will use exactly
one path to investigate a variable, each crossover will be used at most once.

Fig. 9. This widget crosses two paths

6 An Open Question and a Conjecture

The unrestricted Sperner game could be an interesting variation of Sperner for
beginners. It is an amusing game and can be useful to gain intuition about
the parity underlying the Sperner’s Lemma without a topology background.
Although its complexity is still open, we conjecture that this parity structure
will lead to a polynomial-time solution.

We would like conclude our discussion about Sperner by outlining a possible
approach to solve this open question. Recall that Sperner’s Lemma dictates that
there will be an odd number of triangles if the board is filled up. At the end of an
unrestricted game, just before the last player makes a losing play, only doomed
circles remain. Coloring any of these will create either an odd or even number
of bad triangles (regardless of which color is chosen).

It turns out that the structure required to force a doomed circle to represent
an even number of bad triangles is very fragile. As a piece of the game board
approaches such a circle, it is very simple for a player to break the pattern, and
ensure that only odd-weighted doomed circles will appear. Unfortunately, this
approach is not quite as simple when dealing with many connected and possibly
overlapping such structures.
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If one of the players can either influence or predict the number of doomed
circles representing an even number of bad triangles, then they can determine
the number of doomed circles at the end of the game. With this knowledge, the
number of non-losing plays is apparent, and it will be clear which player will be
the last to make a non-losing play. Although it is not yet fully understood, we
believe that correct predictions can be made in polynomial time.

7 Conclusion

With the recent amount of attention paid to the implications of Sperner’s Lemma
in the theoretical computer science community, the study of Sperner and other
similar fixed-point games might enhance our understanding of the complexity
of fixed-point computation. Indeed, with the newfound relationship between the
complexity class PPAD, fixed points and Nash equilibria [9,4,3,2], this is a
promising avenue for continuing study.

Assuming our conjecture for the unrestricted version of Sperner holds, we
would have already generated an environment which somehow contains the
boundary between P and PSPACE (should one exist). The solution of our
open question could lead immediately to another: How much distance do we
allow between plays before the game is no longer PSPACE-complete? For ex-
ample, what happens to the complexity if we allow one player to color in a
circle with distance two from the last-colored circle? What if we allow a non-
constant amount of space between plays? Answers to these questions may reveal
additional information about the divisive properties of complexity classes.

Aside from the ramifications of our conjecture, Sperner is a simple, PSPACE-
complete game rising from a mathematically-significant construct. It inherently
carries a fixed-point awareness (a loss in the game corresponds to the creation
of a fixed-point) and simultaneously avoids the first-player-wins dilemma faced
by similar games. Most exciting, perhaps, is that it accomplishes both these
benchmarks without sacrificing any elegance.
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Abstract. We introduce a new solution concept for complete information games,
which we call equilibrium in group dominant strategies. This concept is the
strongest of all known solution concepts so far, since it encompasses both the
ideas behind the concepts of dominant strategies and strong equilibrium. Because
of its strength, a solution in group dominant strategies does not exist in any inter-
esting game; however, as we show, such solutions can be achieved in various rich
settings with the use of mediators.

1 Introduction

A finite game in strategic form is a tuple Γ = 〈N, {Ai}i∈N , {ui}i∈N〉 where:

– N = {1, . . . , n} is a finite set of players.
– For each player i ∈ N , Ai is a finite non-empty set of actions (or strategies, we use

the terms interchangeably) available to player i.
– For S ⊆ N , AS denotes

∏
i∈S Ai, and A−S denotes

∏
i∈N\S Ai. AN is denoted

by A.
– For each player i ∈ N , ui : A → � is a utility function, which represents the

“contentment” of the player with each specific strategy profile.
– Let a ∈ A. We will sometimes write a as (ai, a−i) for i ∈ N and as (aS , a−S) for

S ⊆ N .

One of the most basic questions of game theory is: given a game in strategic form,
what is the solution of the game? Basically, by a “solution” we mean a stable strategy
profile which can be proposed to all agents, in a sense that no rational agent would
want to deviate from it. Many solution concepts for games have been studied, differing
mainly by the assumptions that a rational agent would have to make about the rationality
of other agents. For example, probably the most well known solution concept for games
is the Nash equilibrium:

A profile of actions a ∈ A is a Nash equilibrium (NE) if

∀i ∈ N ai ∈ bri(a−i)

Here, bri(a−i) for i ∈ N , a−i ∈ A−i denotes arg maxai∈Ai{ui(ai, a−i)} (the set of
best responses of i to a−i).

There are two basic problems with the Nash equilibrium as a solution concept for
games:
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Problem 1: A NE guarantees absence of profitable deviations to a player only in the
case that all the other players play according to the suggested profile; in the case where
even one of the other players deviates, we have no such guarantees. So, the assumption
that this concept requires about the rationality of other players is: all the other players
will stick to their prescribed strategies. But why should a rational player make that
assumption?

The following stability concept takes this problem into account: A profile of actions
a ∈ A is an equilibrium in weakly dominant strategies if

∀i ∈ N, b−i ∈ A−i ai ∈ bri(b−i)

The above definition strengthens the concept of NE by taking care of the aforemen-
tioned problem: no unilateral deviation can ever be beneficial, no matter what other play-
ers do; in other words, it requires no assumptions on the rationality of other players.

Problem 2: A NE does not take into account joint deviations by coalitions of players.
We usually assume that an individual will deviate from a profile if she has an avail-
able strategy that strictly increases her income. In some settings it would be natural to
assume also that a group of individuals will deviate if they have an available joint strat-
egy that strictly increases the income of each group member. For example, consider the
famous Prisoner’s Dilemma game:

C D
C 4,4 0,6
D 6,0 1,1

The strategy profile (D, D) is a NE and even an equilibrium in weakly dominant
strategies; however, it is not stable in the sense that if both players deviate to (C, C),
the income of each one of them will increase. The following stability concept by
(Aumann1959) deals with this problem:

A profile of actions a ∈ A is a strong equilibrium (SE) if

∀S ⊆ N aS ∈ brS(a−S)

Here, the concept of best response strategy is extended to multiple players as follows:
for S ⊆ N and a−S ∈ A−S , brS(a−S) denotes the set of best responses of S to a−S :

brS(a−S) = {aS ∈ AS |∀bS ∈ AS ∃i ∈ S ui(bS , a−S) ≤ ui(aS , a−S)}

The concept of strong equilibrium indeed takes care of Problem 2; however, it again
does not take Problem 1 into account. What we would ideally like to have is a solu-
tion concept that has neither of these problems: we would like to assume that players
are able to cooperate for mutual benefit, and on the other hand we would also like to
assume nothing about the actions of the other players. These requirements may seem
conflicting. Note that simply saying that we are interested in a profile a ∈ A that is both
a SE and an equilibrium in weakly dominant strategies is not enough: for games with
more than 2 players, we would have no guarantees about the absence of joint deviations
for players 1 and 2, in the case that player 3 deviated.
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This brings us to the stability concept that we wish to present: a profile of actions
a ∈ A is an equilibrium in group (weakly) dominant strategies (GDS) if

∀S ⊆ N, b−S ∈ A−S aS ∈ brS(b−S)

Existence of a GDS implies, for each player, that no matter what the other players
choose, and no matter with whom can she unite in making her decision, they will not
find a joint strategy that will be better to all of them than the proposed one. And thus,
if a GDS exists in a given game, we can safely declare it to be the solution of the game.
However, a GDS does not exist in any game that has ever been a subject of interest.
This is not surprising, since the concept is so strong that its mere existence renders any
game not interesting. For this reason, the concept was never a subject of exploration in
complete information games. In incomplete information games the concept is known
under the name of group strategy proofness and is widely studied, because in some
cases such solutions can be indeed implemented by mechanism design. However, the
whole approach of mechanism design is not applicable to complete information games
– although we would indeed want to assume the existence of an interested party, we
don’t want to give it the power to design the game.

An interested party who wishes to influence the behavior of agents in a (com-
plete information) game, which is not under his control, will be called a media-
tor. This concept is highly natural; in many systems there is some form of reli-
able party or administrator who is interested in a ”good” behavior of the system.
Many kinds of mediators have been studied in the literature, differing by their power
in influencing the game (see e.g.(Mas-Colell et al. 1995; Jackson2001; Aumann1974;
Myerson1986)). The less power we assume on the mediator, the more applicable the
positive results will be to the real world. For example, if we assume that a mediator
is able to observe the chosen strategies of the players and issue arbitrarily large fines
for deviating from a proposed strategy profile, then, on one hand, such mediator will
trivially be able to implement any profile as a very stable solution (e.g. GDS); on the
other hand, though, this model will not be applicable to almost any real life multi-agent
encounter. For this reason, as the focus of this paper is to study the power of mediators
in establishing equilibrium in group dominant strategies, we make some restricting as-
sumptions: the mediator cannot design a new game, cannot enforce agents’ behavior,
cannot enforce payments by the agents, and cannot prohibit strategies available to the
agents.

In the rich literature about mediators, two different kinds of mediators exist that
adhere to our restricting assumptions: routing mediators and k-implementation. K-
implementation was introduced by (Monderer and Tennenholtz2004). There, a medi-
ator is a reliable authority who can observe the strategies selected by the players and
commit to non-negative monetary payments based on the selected profile. Obviously,
by making sufficiently big payments one can implement any desirable outcome. The
question is: what is the cost of implementation? A major point in k-implementation is
that monetary offers need not necessarily materialize when following desired behaviors;
the promise itself might suffice. In particular, (Monderer and Tennenholtz2004) show
that any NE of a game can be implemented as an equilibrium in dominant strategies
with 0-cost.
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Routing mediators were introduced by (Rozenfeld and Tennenholtz2007), continu-
ing the work of (Monderer and Tennenholtz2006). A routing mediator is a reliable au-
thority which can play the game on behalf of players who give it such right. Such
mediator devises a conditional contract that he proposes to all players to sign: in this
contract, the mediator specifies exactly which actions he will take on behalf of the play-
ers who sign the contract, given every possible combination of actions by players who
do not sign it. If a player signs the contract, the mediator is then committed to play-
ing the game on behalf of that player by the contract specifications. So, in essence, the
mediator adds a new strategy that is available to each player – to sign the contract; the
payoffs of this new game are specified exactly by the contract he offers. Note that no
matter which players sign the contract, in the end a strategy profile from the original
game is played, and the payoffs are not altered. 1 For example, consider such a mediator
in the Prisoner’s Dilemma game. The mediator offers the agents the following protocol:
if both agents agree to use his services then he will play C on behalf of both agents.
However, if only one agent agrees to use his services then he will play D on behalf of
that agent. The mediator’s protocol generates a new game, where a new strategy M is
available for using the mediator services:

C D M
C 4,4 0,6 0,6
D 6,0 1,1 1,1
M 6,0 1,1 4,4

Note that the mediated game has a most desirable property: in this game jointly del-
egating the right of play to the mediator is an equilibrium in group dominant strategies!
We can also note that in this example the mediator did not, in fact, require to be informed
of the player’s chosen strategy – it sufficed for him to know which agents agreed to del-
egate him their right of play. However, as we will show (in the full paper), in general
such mediators will be too weak for implementing GDS; the Prisoner’s Dilemma is, in
a way, the only example. Therefore, in this paper we will concentrate on fully informed
mediators, i.e. ones who can observe the entire action profile selected by the agents and
condition their action on it.

Our results: In this paper we explore how different mediators can implement GDS.
Most proofs are omitted due to lack of space. Section 2 deals with routing mediators.
In subsection 2.2 we present a general sufficient condition for the existence of GDS.
We show two natural classes of games that satisfy this condition; both of them are
subclasses of ID-congestion games, defined in (Monderer2006). We show that simple
monotone increasing identity-dependent [MIID] congestion games satisfy our positive
criterion, and hence have a solution in GDS using a routing mediator; we show that this
also holds for quasi-symmetric MIID-congestion games. Our results also imply that
such implementation can be efficiently computed for these classes of games, even when
the input representation is succinct.

1 Similar ideas are explored in the extensive literature on commitments and conditional com-
mitments. In particular, (Kalai et al.2007) shows a folk theorem result for two-player games,
using a completely different model of interaction.
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In subsection 2.3 we aim to characterize the games which have a solution in GDS
using an informed routing mediator. Our goal is a polynomial algorithm that gets a
game in strategic form as input, and outputs a routing mediator which implements a
solution in GDS, if such exists. We present a polynomial algorithm for this problem for
games with 2 and 3 players.

Section 3 deals with k-implementation. Extending the results of
(Monderer and Tennenholtz2004), we show that a profile can be implemented
as GDS with 0 cost if and only if it is a strong equilibrium. In particular, this
result implies that we can implement GDS with 0 cost in all settings where
SE is known to always exist, such as job scheduling, network design and
certain forms of monotone congestion games (see e.g. (Andelman et al. 2007;
Holzman and Law-Yone1997)). We also observe that the minimal-cost implementation
of a given strategy profile can be computed in polynomial time, given an explicit rep-
resentation of the game, if we assume that either the number of players or the number
of distinct payoffs for each player are constant. Note that an explicit representation of
a game takes exponential space in the amount of players, therefore these simplifying
assumptions can be justified.

In section 4 we investigate what happens when our mediator has the power of both
routing mediators and of k-implementation; i.e. he can both play on behalf of players
who give him such right and commit to non-negative payments. There, we derive our
main result: the max-min fair outcome of any minimally fair game can be implemented
as GDS with 0 cost. Minimally fair games are a generalization of symmetric games:
a game is minimally fair if the agents have the same strategy space and, in addition,
in every strategy profile agents who chose the same strategy receive the same payoff.
This setting applies to many situations where the users are not identical, for example
job scheduling (where users may have tasks of different sizes) or certain forms of ID-
congestion games.

(Rozenfeld and Tennenholtz2007) showed that the max-min fair outcome of any
minimally fair game can be implemented as a strong equilibrium with the aid of an
informed routing mediator; therefore, our current result can be simply derived from the
combination of the result of (Rozenfeld and Tennenholtz2007) and our result in section
3. Nevertheless, we consider it to be the main positive result of the paper, because of its
importance: we show that a socially optimal profile of a very large class of games can
be implemented as an equilibrium in group dominant strategies with 0 cost.

2 Routing Mediators

2.1 Preliminaries

Recall our intuition on routing mediators: a mediator is a party who can offer agents to
play the game on their behalf, and whose behavior on behalf of the agents who agreed
to use his services is specified by a contract. This contract can be conditioned on the
choices of all other agents. Hence, in this setting, we assume that the original game can
be played, in a sense, only through the mediator – for example, the mediator sits on a
router that receives all messages about the actions chosen by the players. The mediator
cannot alter these messages, but he can observe them; this observability can serve him as
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a critical tool in establishing his chosen actions on behalf of the players who delegated
him their right of play.

First, we formally define routing mediators. We simplify the definitions given in
(Rozenfeld and Tennenholtz2007), for the following two reasons: first, in this work we
consider only pure strategies, and secondly, we restrict ourselves to fully informed me-
diators (in the notation of (Rozenfeld and Tennenholtz2007), we fix Ω = Ωfull).

Let Γ = 〈N, {Ai}i∈N , {ui}i∈N 〉 be a game in strategic form. A (fully informed)
routing mediator for Γ is a tuple M = 〈m, (cz)z∈Z〉, where the following holds:

– m /∈ Ai for all i ∈ N . m denotes the new strategy that is now available to each
player: to send a message to the mediator, indicating that the player agrees to give
the mediator the right of play for him.

– Zi = Ai∪{m}, and Z = ×i∈NZi. Given z ∈ Z , let T (z) denote {j ∈ N |zj = m}.
That is, T (z) denotes the players who agree to give the mediator the right of play
for them in z.

– For every z ∈ Z , cz ∈ AT (z). That is, c is the conditional contract that is offered by
the mediator: it specifies exactly which actions the mediator will perform on behalf
of the players who agree to use his services, as a function of the strategy profile
chosen by all agents.

Every mediator M for Γ induces a new game Γ (M) in strategic form in which the
strategy set of player i is Zi. The payoff function of i is defined for every z ∈ Z as
follows: uM

i (z) = ui(cz , z−T (z)). For S ⊆ N we denote by mS the strategy profile
(m, . . . , m) ∈ ZS. We say that a mediator M implements a profile a in GDS (resp.,
SE), if cmN = a and mN is a GDS (resp., SE) in Γ (M).

Note that when informed mediators are considered, the requirement on the imple-
mented profile to be a GDS (and not some weaker solution concept, such as SE) makes
even more sense: the mediator is able, indeed, to observe all the players’ actions, so a
group of players will want to sign the contract only if the mediator commits to always
play in their best interests, according to how the other players play.

Before we proceed with our results, we show an alternative definition of implement-
ing a profile in GDS with the use of a routing mediator; this version is easier to work
with and it will serve us in our proofs.

Let S ⊆ N , aS ∈ AS . We define a game Γ ′ = (Γ � aS) (the subgame of Γ
induced by aS) as follows: Γ ′ = 〈N ′, {Ai}i∈N ′ , {u′

i}i∈N ′〉 where N ′ = N \ S and
u′

i : AN ′ → � is defined as follows: for any aN\S ∈ AN ′ , u′
i(aN\S) = ui(aS , aN\S).

We say that Γ ′ is a subgame of Γ if there exist S ⊆ N , aS ∈ AS so that Γ ′ = (Γ �
aS). In particular, Γ is a subgame of itself (we call it the full subgame).

Let a, b ∈ A be two strategy profiles. We say that a strictly dominates b (or b is
strictly dominated by a) if ∀i ∈ N ui(a) > ui(b). We say that b ∈ A is strictly
dominated if there exists a ∈ A that strictly dominates b.

Note that for any S ⊆ N, aS ∈ AS , b−S ∈ A−S , aS is not strictly dominated in the
subgame (Γ � b−S) if and only if aS ∈ br(b−S).

Let Γ be a game and M = 〈m, (cz)z∈Z〉 a mediator for Γ . We say that M imple-
ments a profile a in GDS if and only if for any S ⊆ N , a−S ∈ A−S , mS is a SE in
(Γ (M) � a−S). Note the equivalence to the original definition; note also that when
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checking the requirements for SE it will be enough to check that no profile bT ∈ AT

for T ⊆ S strictly dominates mT in
(
Γ (M) � (a−S , mS\T )

)
.

2.2 Positive Results

Now we begin our exploration of the power of informed routing mediators in establish-
ing GDS. The following theorem presents a sufficient condition for existence of GDS
with the aid of a fully informed mediator:

Theorem 1. Let Γ be a game which satisfies the following property: in any subgame
Γ ′ of Γ there exists a non-empty S ⊆ N ′ and a profile aS ∈ AS , such that for each
i ∈ S and every b−S ∈ AN ′\S , c ∈ AN ′ u′

i(aS , b−S) ≥ u′
i(c). In words, the profile aS

guarantees each member of S the highest possible payoff for her in the subgame Γ ′, no
matter what the remaining players in N ′ \ S do. Then:

1. There exists a profile a∗ ∈ A that is a SE.
2. An informed routing mediator can implement a∗ as a GDS.

Proof. 1. Suppose that the game Γ satisfies the above property. Then, we iteratively
define the profile a∗ as follows: Γ is in particular a subgame of Γ , therefore there
exists a non-empty S0 ⊆ N and a profile aS0 ∈ AS0 that satisfies the requirements
of the theorem: aS0 guarantees all players in S0 the highest payoff in Γ . We take
a∗

S0 = aS0 , and consider the subgame Γ ′ = (Γ � a∗
S0). By the conditions of the

theorem, there exists a non-empty S1 ⊆ N \ S0 and a profile aS1 ∈ AS1 that
satisfies the requirements. We take a∗

S1 = aS1 . We continue in the same manner
until the profile a∗ is fully defined. Since in every step k the subset Sk is non empty,
we need at most |N | steps to define the profile.

Now we must show that a∗ is a strong equilibrium. We show by induction on k
that no i ∈ Sk can be a member of a deviating coalition. It is clear that no member
of S0 will want to deviate, since by playing a∗ they guarantee themselves the high-
est possible payoff in the game. From the definition of a∗ we see that the same logic
can be used for the induction step: no player in Sk+1 will want to deviate, since a∗

was chosen so that all players in Sk+1 guarantee themselves the best payoff in the
subgame where players in S0 ∪ . . . ∪ Sk play according to a∗.

2. We have to fully define the conditional contract that the mediator offers; in other
words, for every z ∈ Z we have to define the profile cz ∈ AT (z) that the mediator
commits to playing on behalf of T (z). We define this profile iteratively, in the
similar manner that we defined a∗: we start with the subgame of Γ induced by
z−T (z), and fix the action of the set S0 of players who can guarantee the highest
payoff in the subgame; then we fix the action of the set S1 of players who can
guarantee themselves the highest possible payoff in the resulting new subgame;
etc. Now the game Γ (M) is defined, it remains to verify that in every subgame
Γ (M) � a−S , playing mS is a SE. This can be proved in the same manner as
(1): by induction on k we can show that no member of Sk will participate in a
deviating coalition. We show the induction step: suppose in a profile z players in
S0 ∪ . . . ∪ Sk choose m; we must prove that no member of Sk+1 will want to
join a deviating coalition T and play according to some wT ∈ AT . Let us denote
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z′ = (wT , z−T ) (the profile after the deviation of T ). The important thing to notice
here is that (cz)i = (cz′)i for all i ∈ S0∪. . .∪Sk – this follows from our definition
of cz and the induction hypothesis. Then we can use the same logic as in the proof
of (1) to derive the result. �

The proof has certain computational implications that might be of interest: suppose
we have a game which satisfies the conditions of Thm. 1, and we want to implement a
solution in GDS efficiently. We can treat the mediator as a kind of oracle: given a profile
z, we want to be able to compute cz efficiently. It follows from the proof of Thm. 1 that
all that we need in order to achieve this goal is the ability to efficiently compute, for
any given subgame Γ ′, the S ⊆ N ′ and aS ∈ AS whose existence is guaranteed by
the theorem. As we will see, in some natural classes of games such computation can be
done efficiently, even when the game is given in a succinct representation.

Now we will show two classes of games which satisfy the condition of Thm. 1.
A monotone increasing identity-dependent [MIID]-congestion game is defined as

follows:

– A finite set of players, N = {1, . . . , n}.
– A finite non-empty set of facilities, M .
– For each player i ∈ N a non-empty set Ai ⊆ 2M , which is the set of actions

available to player i (an action is a subset of the facilities).
– With every facility m ∈ M and set of players S ⊆ N a real number vm(S) is

associated, having the following interpretation: vm(S) is the payoff to each user of
m when the set of users of m equals S.

– For each m ∈ M, S ⊆ N, T ⊆ S : vm(T ) ≤ vm(S), meaning that the payoff
from a resource is non-decreasing with its the users.

The utility function of player i, ui : A → �, is then defined as follows:

ui(a) =
∑

m∈ai

vm({i|m ∈ ai})

MIID-congestion games are not congestion games in the original sense of
(Rosenthal1973), since we allow the payoff from a resource to depend on the identity of
its users. It is a particular subclass of ID-congestion games, defined in (Monderer2006),
with the restrictions to non-player-specific version (users occupying the same resource
get the same payoff) and monotone-increasing payoffs. MIID-congestion games can be
used to model situations such as buyers clubs, where players choose providers and get
discounts based on the group of people they buy with; also they can be used in various
situations of non-symmetric sharing of the cost of a resource by the occupying players.

We say that a MIID-congestion game is simple if ∀i ∈ N, a ∈ Ai : |a| = 1.
We say that a MIID-congestion game is quasi symmetric if ∀i, j ∈ N, Ai = Aj = A.

Proposition 1. Let Γ be a MIID-congestion game. Then, Γ satisfies the conditions of
Thm. 1 if either one of the following holds:

1. Γ is quasi symmetric.
2. Γ is simple.
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Note that in both simple and quasi symmetric MIID-congestion games the S ⊆ N, aS ∈
AS of Thm. 1 can be efficiently computed, even if the games are given in a succinct
representation; this implies, as we showed, that a solution in GDS can be implemented
efficiently.

We have to remark that quasi-symmetric MIID-congestion games would usually be
considered trivial – the symmetric socially optimal outcome where each player gets the
highest possible payoff in the game is a SE, so where is the problem? The problem
is that SE is not GDS. The simplest example of such apparently ”trivial” game is the
coordination game:

A B
A 1,1 0,0
B 0,0 1,1

Obviously, (A, A) and (B, B) are both SE, but what would be a good advice to
play? A routing mediator will be able to solve this game by the following contract: if
both players cooperate, the mediator plays (A, A), and if one deviates, the mediator will
copy her action on behalf of the cooperating player. This solution is more than SE – it
is GDS, and it is non-achievable here without a mediator.

Note also that the condition of Thm. 1 is sufficient for being able to implement GDS
with an informed mediator, but it is not necessary: the Prisoner’s Dilemma game does
not satisfy this condition, however the profile (C, C) is implementable as GDS by an
informed mediator, as we saw in the introduction. In the next section we will attempt
to derive a necessary and sufficient condition for existence of GDS with an informed
mediator.

2.3 Characterization for n = 2 and n = 3

Our goal is to characterize all the games in which a GDS is implementable using an
informed mediator. We begin with the simple case n = 2:

Proposition 2. Let Γ be a 2 player game, and let a be a strategy profile. a is imple-
mentable as GDS using an informed mediator if and only if a is not strictly dominated
and

∀i ∈ N ui(a) ≥ max
bi∈Ai

{ min
b3−i∈br3−i(bi)

{ui(b)}} (∗)

Proposition 3. There exists a polynomial algorithm that accepts as input a 3 player
game Γ in explicit form and a strategy profile a, and if a is implementable in GDS by
an informed mediator, outputs such a mediator.

For non-constant number of players, the explicit representation of a game is infeasible;
so, in a sense, it would not help us much to find an algorithm for general n whose
running time is polynomial in the size of the input. We conjecture that even for n = 4,
the decision problem of whether a given profile can be implemented as GDS by an
informed mediator is NP-hard.
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3 K-Implementation

In this section we turn to a different kind of mediators, introduced by
(Monderer and Tennenholtz2004). We assume that the mediator is an interested party
who has the power to alter the game by committing to non-negative monetary trans-
fers to the players, conditioned on the outcome of the game. Formally, given a game
Γ = 〈N, A, U〉, such a mediator is defined by a payoff function vector V = {vi}i∈N ,
where each vi : A → � is non-negative. Given a mediator a game Γ and a mediator V ,
the mediated game Γ (V ) is simply 〈N, A, U + V 〉.

Note that the above definition implicitly makes two important assumptions:

– Output observability: The interested party can observe the actions chosen by the
players.

– Commitment power: The interested party is reliable in the sense that the players
believe that he will indeed pay the additional payoff defined by V .

Note also that unlike routing mediators discussed in the previous section, here the
mediator does not play the game on behalf of the agents. Similarly to routing mediators,
though, he observes players actions and offers a reliable contract conditioned on these
actions; he also does not restrict the players’ actions in any way, and does not enforce
behavior.

Given a game Γ and a profile a ∈ A, we say that a has a k-implementation in weakly
dominant strategies if there exists a V such that:

1. a is an equilibrium in weakly dominant strategies in Γ (V )
2.

∑
i∈N vi(a) ≤ k

Similarly, we define a k-implementation in group dominant strategies. It is easy to
see that a k-implementation of any profile always exists; in particular, if we denote
the maximal difference of payoffs in the game matrix by D, it is easy to see that an
D · n implementation of any profile always exists. Obviously, our goal is to find cheap
implementations; in particular, we are interested in 0-implementation.

Theorem 2. (Monderer and Tennenholtz2004) Let Γ be a game and a a strategy pro-
file. Then, a has a 0-implementation in weakly dominant strategies if and only if a is
a NE.

The above result can be extended into the following:

Theorem 3. Let Γ be a game and a a strategy profile. Then, a has a 0-implementation
in GDS if and only if a is a SE.

This result implies that we can implement GDS with 0 cost in all settings where SE
is known to always exist, e.g.: job scheduling, network design (Andelman et al. 2007)
and certain forms of monotone congestion games (Holzman and Law-Yone1997;
Rozenfeld and Tennenholtz2006).

Now we turn to the computational question of finding the optimal k-implementation.
(Monderer and Tennenholtz2004) showed a polynomial algorithm for finding the opti-
mal k-implementation in dominant strategies; now we would like to extend their results
to implementation in GDS.

It is easy to observe that:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Group Dominant Strategies 467

Proposition 4. Let Γ = 〈N, {Ai}i∈N , {ui}i∈N 〉 be a game, with |N | = n, |Ai| ≤ m,
and |{ui(a)|a ∈ A}| ≤ p for all i ∈ N . Then, an exhaustive brute-force algorithm
for finding an optimal k-implementation in GDS of a given profile a ∈ A runs in
O(pn · n · mn).

In general, p is bounded by mn; note that if the game is given explicitly, p is at most
polynomial in the size of the input, and n is at most logarithmic in the size of the input.
Therefore, in the case where either n or p are constant, the brute-force algorithm that
checks all the possibilities is polynomial in the size of the input2.

4 Combining Routing Mediators with K-Implementation

In this section we consider mediators who combine the power of routing mediators and
k-implementation. Our goal is to implement a good solution in GDS in an interesting
class of games. First, we formally define combined mediators:

Let Γ be a game in strategic form. A combined mediator for Γ is a tuple (M, V ),
where M is a routing mediator for Γ and V is a payoff function vector for Γ (M) (as
defined in the previous section).

We say that a combined mediator (M, V ), where M = 〈m, (cz)z∈Z〉, implements
a profile a in GDS with cost k, if:

– cmN = a
– V is a k-implementation in GDS of mN in the game Γ (M)

Let Γ be a game in strategic form. Γ is a minimally fair game
(Rozenfeld and Tennenholtz2007) if for all i, j ∈ N, Xi = Xj and for every ac-
tion profile x ∈ X , xi = xj implies that ui(x) = uj(x). That is, a game is minimally
fair if players who play the same strategy get the same payoff. The exact value of the
received payoff may depend on the identities of the players who chose the strategy, as
well as on the rest of the profile. In particular, every symmetric game is a minimally
fair game; however, minimally fair games capture a much wider class of settings. For
example, typical job-shop scheduling games are minimally fair games.

In order to define what solution is considered ”good”, we employ the standard model
of max-min fairness (Kleinberg et al.1999; Kumar and Kleinberg2000). We call an al-
location of strategies to players max-min fair if the utility of any player cannot be in-
creased without decreasing the utility of a player who was facing an already lower
utility. In many settings max-min fairness is a natural social optimality criterion.

Now we are ready to state our main result:

Theorem 4. Let Γ be a minimally fair game and let a be a max-min fair profile of the
game. Then, a can be implemented in GDS by combined routing mediator with 0 cost.

2 It is an interesting question to consider the computational complexity of finding the optimal k-
implementation for non-constant n and p, when the game is given explicitly. It is very unlikely
that the problem is NP-hard, since, as we saw, the size of the witness is O(tlog t) (where t
represents the input size). In fact, several complexity classes have been defined that are good
candidates for this problem (Papadimitriou and Yannakakis1996); we conjecture that finding
the optimal k-implementation in GDS is LOGSNP-complete.
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Abstract. We introduce a new class of succinct games, called weighted
boolean formula games. Here, each player has a set of boolean formulas
he wants to get satisfied. The boolean formulas of all players involve a
ground set of boolean variables, and every player controls some of these
variables. The payoff of a player is the weighted sum of the values of
his boolean formulas. We consider pure Nash equilibria [18] and their
well-studied refinement of payoff-dominant equilibria [12], where every
player is no-worse-off than in any other pure Nash equilibrium. We study
both structural and complexity properties for both decision and search
problems.

– We consider a subclass of weighted boolean formula games, called mu-
tual weighted boolean formula games, which make a natural mutual-
ity assumption. We present a very simple exact potential for mutual
weighted boolean formula games. We also prove that each weighted,
linear-affine (network) congestion game with player-specific constants
is polynomial, sound monomorphic to a mutual weighted boolean for-
mula game. In a general way, we prove that each weighted, linear-affine
(network) congestion game with player-specific coefficients and con-
stants is polynomial, sound monomorphic to a weighted boolean for-
mula game.

– We present a comprehensive collection of high intractability results.
These results show that the computational complexity of decision
(and search) problems for both payoff-dominant and pure Nash equi-
libria in weighted boolean formula games depends in a crucial way on
five parameters: (i) the number of players; (ii) the number of vari-
ables per player; (iii) the number of boolean formulas per player;
(iv) the weights in the payoff functions (whether identical or non-
identical), and (v) the syntax of the boolean formulas. These results
show that decision problems for payoff-dominant equilibria are con-
siderably harder than for pure Nash equilibria (unless the polynomial
hierarchy collapses).
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1 Introduction

Motivation and Framework. Deciding the existence of and finding Nash equi-
libria [18] for a strategic game are among the most important problems studied in
Algorithmic Game Theory today. When the players’ strategy spaces and payoffs
are presented explicitly, there is a straightforward polynomial time algorithm
to decide the existence of and compute a pure Nash equilibrium. More inter-
esting are the cases where the strategy spaces and the payoffs are presented
in a succinct way. Interesting examples of succinct games include (unweighted)
congestion games [20], where the payoffs are represented by payoff functions,
and their even more succinct subclass of network congestion games where, in
addition, strategy spaces are described succinctly by a graph. The complexity of
Nash equilibria for succinct games has been studied in [1,8,10,15,21].

We introduce weighted boolean formula games, abbreviated as WBFG, as an
adequate and very general form of succinct games. The idea is that each player
controls a set of boolean variables; different players control disjoint sets of vari-
ables. A strategy of a player is a truth assignment to his boolean variables. Each
player targets a set of constraints expressed by boolean formulas, which he wants
to get satisfied; naturally, his formulas depend also on variables of other players.1

For each formula, there is an (integer) weight, expressing the relative priority of
the constraint (for the player). The payoff for a player is the weighted sum of his
satisfied constraints. In an unweighted boolean formula game, all weights are 1.

We shall especially consider a subclass of WBFG, called mutual weighted
boolean formula games and abbreviated as MWBFG; these add a natural mu-
tuality assumption on the constraints targeted by different players: whenever
some formula of a player involves a boolean variable of a second player, then the
same formula is a constraint for the second player with the same weight.

In a (pure) Nash equilibrium [18], no player can increase his payoff by changing
the values of his variables. A payoff-dominant equilibrium [12] is a Nash equilib-
rium where every player is no-worse-off than in any other Nash equilibrium; so,
this is a stable outcome that payoff-dominates all other stable outcomes. Payoff-
dominance is a well-know refinement of Nash equilibrium that has been studied
extensively in Game Theory. Games admitting payoff-dominance have been in-
tuitively called games of common interests (cf. [2]); Colman and Bacharach [7,
Section 1] mention the abstract classes of unanimity games [13] and matching
games [3] as the simplest exemplars of them. We shall study the structure and
complexity of payoff-dominant and pure Nash equilibria in WBFG.

State-of-the-Art. Studied in the literature have been three formalisms of suc-
cinct games similar to (but different than) WBFGs:

– (Boolean) Circuit games: Those were introduced in [21]. In a circuit game,
players still control disjoint sets of variables, but each player’s payoff is given
by a single boolean circuit and there are no weights. Note that a WBFG can

1 A boolean formula is the special case of a (boolean) circuit where every boolean gate
has fan-out one; so, a boolean formula is a circuit whose underlying graph is a tree.
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be encoded as a circuit game since our utility functions can be evaluated by
a single boolean circuit. Hence, WBFG make a restricted subclass of circuit
games. Boolean circuit games are the special case where each player controls
a single boolean variable.
Recall that the best-known upper bound for the formula size L(f) of a
Boolean function f in terms of its (boolean) circuit size C(f) is L(f) =
O(2C(f)) [14,19]. So, there is no known polynomial time transformation of a
circuit game into a boolean formula game where each player has a single for-
mula. It is nevertheless possible to transform a boolean circuit into a polyno-
mial size set of boolean clauses; this requires introducing new (polynomially
many) boolean variables which express the correctness of the computations
by the gates. Hence, there is a polynomial time transformation of a circuit
game into a boolean formula game where each player has a polynomial num-
ber of clauses. Nevertheless, we aim at WBFG where the number of boolean
formulas (in particular, clauses) per player is a (small) constant.

– Turing machine games: Álvarez et al. [1] study three different levels (forms)
of succinct representations of strategic games. In the implicit form, payoff
functions are represented by a deterministic Turing Machine (dtm) com-
puting the payoffs, and strategies are described succinctly. In the general
form, payoff functions are represented by a dtm and strategy spaces are
listed explicitly. For each form, there are two cases: in the non-uniform case,
the payoff functions are represented by a tuple 〈M, 1t〉, where M is a dtm

and t is a natural number bounding its computation time; in the uniform
case, the payoff functions are represented by a (polynomial time) dtm M .
Álvarez et al. [1] present completeness results on the decision problem for
pure Nash equilibria. Their proofs are based on a simple construction of a
gadget game [1, Section 2]; the payoff functions of the gadget game may be
expressed as an instance of a WBFG with r = 5. Recall the folklore facts
that Turing machine computations with t steps can be encoded as a boolean
circuit of size O(t2), and that boolean circuits can be evaluated by Turing
machines in polynomial time. Hence, Turing machine games in implicit form
and circuit games are equivalent. It follows from our previous discussion on
the relation of WBFG to circuit games that there holds an identical relation
of WBFG to Turing machine games in implicit form. In the explicit form,
payoffs are explicitly listed and the decision problem for Nash equilibria is
P-complete [1, Theorem 3]. However, it is not possible to obtain from a
succinct WBFG such an explicit form in polynomial time.

– Boolean games: Those were introduced in [11] in the context of a logical
consequence relation defined in terms of Nash equilibrium; they were further
extended and studied in [5,6]. The formulation of boolean games in [6] is
very similar to WBFG: each player still wishes to satisfy a particular set of
boolean formulas, but the preferences of each player over his formulas were
not defined by means of weights attached to the formulas.

The problem of singling out some “best” Nash equilibrium is probably as old
as the concept of Nash equilibrium itself [18]. The corresponding stream of
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game-theoretic research is called equilibrium selection (cf. [12]). Besides payoff-
dominance, there are several, well-studied refinements of pure Nash equilibria,
such as dominating equilibrium, Pareto-optimality, and risk-dominance [12]. Due
to their strength, such refinements are usually unlikely to exist.

Concurrent Work. Independently and concurrently to our work, Biló [4] intro-
duced and studied satisfiability games; these are almost identical to our MWBFG,
except that associated with each player i is some integer li ≥ 1 such that his strat-
egy set is contained in {0, 1}li, while it is equal to {0, 1}li in WBFG; however, this
difference is not essential in general. Their restricted subclass of unconstrained
satisfiability problems [4] coincides with the class of MWBFG. Studied by Biló [4]
are also the so called satisfiability games with player-specific payoffs; these corre-
spond to WBFG with the additional semi-mutuality assumption: whenever some
function of a player involves a variable of another player, the same function is a
constraint for the other player as well, but with possibly different weight.

Summary of Results and Significance. We present two types of results.
First, we identify structural properties for both WBFG and its rich subclass of
MWBFG. Second, we present a collection of complexity results about payoff-
dominant and pure Nash equilibria. More specifically, we investigate how the
complexity of their decision and search problems depends on five natural para-
meters: (i) the number of players m; (ii) the (maximum) number of variables per
player k; (iii) the (maximum) number of boolean formulas r weight-summed into
each payoff function; (iv) the weights for the payoff functions (that is, whether
weighted or unweighted), and (v) the syntax of the boolean formulas. Each of the
parameters m, k, and r can be chosen to be fixed as a specific natural number or
can be chosen to be not fixed. We discover that the choice of these parameters
may have a crucial impact on complexity. In all cases, corresponding results for
the search problem follow from those for the decision problem.
Structural results: We prove that MWBFG is an exact potential game [17]; so, the
decision problem about pure Nash equilibria for these games is trivial and the
search problem is in PLS. We next consider the relation between (mutual) WBFG
and another class of succinct games, namely weighted, linear-affine congestion
games with player-specific (coefficients and) constants [15]. We prove that every
weighted, linear-affine congestion game with player-specific coefficients and con-
stants is polynomial, sound monomorphic to a WBFG. This implies that every
weighted, linear-affine congestion game with player-specific constants is polyno-
mial, sound monomorphic to a MWBFG. We also prove that the same hold for
weighted, linear-affine network congestion games with player-specific constants.
Since the search problem for Nash equilibria is PLS-complete for weighted,
asymmetric network congestion games (with player-specific constants) [15, The-
orem 5], it follows that the search problem for Nash equilibria in MWBFG is
PLS-complete.
Complexity results for payoff-dominant equilibria (Theorem 5:): We present the first
complexity results about payoff-dominant equilibria. We first consider the case
where m is not fixed and k ≥ 1 is fixed. For unweighted formulas with r ≥ 1 fixed

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Weighted Boolean Formula Games 473

or not fixed, the problem is ΘP
2 -complete (Case (2)); for weighted formulas with

r not fixed, the problem is ΔP
2 -complete (Case (1)). We next consider the case

where k is not fixed and m ≥ 4 is fixed or not fixed. For unweighted formulas with
r not fixed, the problem is ΘP

3 -complete (Case (4)); for weighted formulas with
r not fixed, the problem is ΔP

3 -complete (Case (3)). These complexity results
about payoff-dominant equilibria in WBFG indicate that allowing an arbitrary
number of variables per player has a stronger impact on their complexity than
allowing an arbitrary number of players.
Complexity results for pure Nash equilibria (Theorem 6): We first consider the case
where m is not fixed and k ≥ 1 is fixed. For (weighted) formulas with r ≥ 1 fixed
or not fixed, the problem is NP-complete (Case (1)); for (weighted) clauses with
r ≥ 2 fixed or not fixed, the problem is NP-complete (Case (2)); for (weighted)
clauses with r = 1, it is in P (Case (3)). We next consider the case that k is not
fixed and m ≥ 2 is fixed or not fixed. For (weighted) formulas with r ≥ 1 fixed
or not fixed, the problem is ΣP

2 -complete (Case (4)).

Related Work. Since WBFG have a restricted structure, our completeness
proofs have required more detailed arguments than the ones in [1,21].
– (Boolean) Circuit games: Recall that boolean formula games form a restricted

subclass of boolean circuit games. Observe that all upper bounds established
in this paper for boolean formula games are obviously also valid for circuit
games. It is shown [21, Theorem 6.1] that the decision problem in two-player
circuit games is ΣP

2 -complete; this follows from Theorem 6 (Case (4)). It is
shown [21, Theorem 6.2] that the decision problem in boolean circuit games
is NP-complete; this follows from Theorem 6 (Case (1)).

– Turing machine games: Álvarez et al. [1] prove that the problem is NP-
complete for strategic games in general form for both the non-uniform [1,
Theorem 2] and the uniform [1, Theorem 5] cases. It follows from either [1,
Theorem 2] or [1, Theorem 5] that if m is not fixed, then the problem for
(weighted) boolean formulas is NP-complete when k ≥ 1 is fixed and r ≥ 5
is fixed or not fixed. This implied result is weaker than Theorem 6. (Case
(1)). Furthermore, Álvarez et al. [1] prove that the problem is ΣP

2 -complete
for strategic games in implicit form for both the non-uniform [1, Theorem
1 and Corollary 1] and the uniform [1, Theorem 4] cases. It follows from [1,
Corollary 1] that if k is not fixed, then the problem for (weighted) boolean
formulas is ΣP

2 -complete when m ≥ 3 is fixed or not fixed and r ≥ 5 is fixed
or not fixed. This implied result is incomparable to Theorem 6 (Case (4)).

– Boolean games: Bonzon et al. [6, Proposition 5] had independently proved a
stronger version of Case (4) in Theorem 6 (which holds for m ≥ 3 fixed or
not fixed) with m ≥ 2 (fixed or not fixed); furthermore, their result applies
to zero-sum (two-player) games. Bonzon et al. [6, Proposition 6] prove that
in the case where k is not fixed, the decision problem for boolean formula
games with m ≥ 2 fixed or not fixed is NP-complete when all formulas are
in DNF. This is an interesting complement to Theorem 6 (Case (2)).

– Satisfiability games: Biló [4] considers restricted satisfiability games, where the
strategy set of each player is the set of strategies in which the player is allowed
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to set to 1 one and only one of his variables. It is proved [4, Theorem 3] that
the class of restricted satisfiability games with player specific payoffs where
all functions are conjunctive encompasses all strategic games. Furthermore,
Biló [4, Theorem 1] proves that every satisfiability game is an unweighted
congestion game. Since every unweighted congestion game is (isomorphic to)
an exact potential game and vice versa [17,20], this result is equivalent to
Theorem 1. However, Theorem 1 provides an exact potential for a MWBFG,
which is very simple and intuitive, and it may have further applications.

2 Background and Framework

Notation and Preliminaries. A strategic game (or game for short) is a
triple Γ = 〈m, (Si)i∈[m], (ui)i∈[m]〉, where m is the number of players, Si is the
strategy space of player i ∈ [m], and ui : S1 × . . . × Sm → R is the payoff
function of player i ∈ [m]. The game Γ is finite if all strategy spaces are finite;
all games considered in this paper will be assumed to be finite. For the game Γ ,
denote S = S1 × . . . × Sm. A profile is a tuple of strategies s = 〈s1, . . . , sm〉,
one for each player; denote as s−i the partial profile resulting from eliminating
the strategy of player i from s. Given a profile s, a player i ∈ [m] and a strategy
t ∈ Si, denote as (s−i, t) = 〈s1, . . . , si−1, t, si+1, . . . , sm〉; so, (s−i, t) results by
substituting in the profile s the strategy si of player i with t.

A profile s ∈ S is a (pure) Nash equilibrium [18] if for each player i ∈ [m],
for each strategy t ∈ Si, ui(s) ≥ ui(s−i, t). Denote as NE(Γ ) the set of Nash
equilibria of Γ . A Nash equilibrium s is called a payoff-dominant equilibrium
for Γ if for each (pure) Nash equilibrium s′, for each player i ∈ [m], ui(s) ≥ ui(s′).
Denote as PD(Γ ) the set of payoff-dominant equilibria for Γ .

Maps. Consider two strategic games Γ = 〈m, (Si)i∈[m], (ui)i∈[m]〉 and Γ ′ =
〈m, (S′

i)i∈[m], (u′
i)i∈[m]〉 with the same number of players. A player map (or player

bijection) π : [m] → [m] identifies player i ∈ [m] for Γ with player π(i) ∈ [m] for
Γ ′. An action map is an m-tuple of action bijections φ = (φi)i∈[m] such that each
φi is a bijection φi : Si → S′

π(i); so, the bijection φi identifies action si ∈ Si with
action φi(si) ∈ S′

π(i). A bijection pair from Γ to Γ ′ is a pair 〈π, φ〉 of a player
map and an action map. The map 〈π, φ〉 maps profiles from S to profiles in S′ in
the natural way; that is, for a profile s ∈ S, 〈π, φ〉(s) = s′ where for each i ∈ [m],
s′π(i) = φi(si). A Harsanyi-Selten isomorphism [12] (from Γ to Γ ′) is a map
〈π, φ〉 such that for each player i ∈ [m], there are constants γi > 0 and δi such
that for each profile s ∈ S, uπ(i)(〈π, φ〉(s)) = γi ui(s) + δi; then, say that Γ is
Harsanyi-Selten isomorphic to Γ ′. Defined earlier by Nash [18], a strong
isomorphism is the special case of a Harsanyi-Selten isomorphism where for
each player i ∈ [m], δi = 0. We shall use a relaxation of the Harsanyi-Selten
isomorphism which we call a Harsanyi-Selten monomorphism ; there, the
action map is relaxed to be an m-tuple of action injections (which need not be
surjective), and the bijection pair 〈π, φ〉 becomes a monomorphism.
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Consider two classes of strategic games C and C′. Say that the class C is
Harsanyi-Selten monomorphic to the class C′ if every game Γ ∈ C is
Harsanyi-Selten monomorphic to some game Γ ′ ∈ C′, which can be computed
from Γ via a map λ : C → C′. (For each particular game Γ ∈ C, λ and 〈π, φ〉
induce together a corresponding map, denoted as λ◦〈π, φ〉 by abuse of notation,
which maps each profile s ∈ S(Γ ) to the profile 〈π, φ〉(s) ∈ S(λ(Γ )); denote as
λ ◦ 〈π, φ〉(S(Γ )) the resulting set of images of profiles in S(Γ ).) Say that the
class C is polynomial Harsanyi-Selten monomorphic to the class C′ if (i)
C is Harsanyi-Selten monomorphic to C′, (ii) the map λ : C → C is polynomial
time, and (iii) for each pair of a game Γ ∈ C and its image λ(Γ ) ∈ C′, the map
〈π, φ〉 can be computed in polynomial time. Clearly, a Harsanyi-Selten isomor-
phism from Γ to Γ ′ induces a bijection from NE(Γ ) to NE(Γ ′); a Harsanyi-Selten
monomorphism from Γ to Γ ′ induces an injection from NE(Γ ) to NE(Γ ′).

Definition 1 (Polynomial Sound Monomorphism). A polynomial sound
monomorphism from C to C′ is a triple 〈λ, 〈π, φ〉, ψ〉 where:

(1) The class C is polynomial Harsanyi-Selten monomorphic to the class C′ via
the map λ : C → C′ and the (Harsanyi-Selten) monomorphism 〈π, φ〉.

(2) For each game Γ ∈ C, ψΓ is a function ψΓ : NE(λ((Γ ))) → NE(Γ ); that is,
ψΓ maps a Nash equilibrium for the game λ(Γ ) ∈ C′ to a Nash equilibrium
for Γ . Then, ψ :=

⋃
Γ∈C ψΓ , Furthermore, ψ is a polynomial time map.

(3) (Soundness Condition) For each game Γ ∈ C, NE(λ(Γ )) ⊆ λ ◦ 〈π, φ〉(S(Γ ));
that is, a Nash equilibrium for the image game λ(Γ ) is necessarily the image
(under λ ◦ 〈π, φ〉) of some profile of Γ .

Note that Condition (3) requires that that for any game Γ ∈ C, the Harsanyi-
Selten monomorphism 〈π, φ〉 from Γ to Γ ′ (from Condition (1)) induces indeed
a bijection from NE(Γ ) to NE(Γ ′).

Potential and Congestion Games. Fix a positive vector b = 〈b1, . . . , bn〉.
Then, a b-potential for the game Γ is a function Φ : S → R such that for each
profile s ∈ S, for each player i ∈ [m] and strategy s′i ∈ Si, ui(s−i, s

′
i) − ui(s) =

bi(Φ(s−i, s
′
i) − Φ(s)). A vector potential game is a game that admits a w-

potential for some (non-negative) vector w. A finite vector potential game has
a pure Nash equilibrium [17], which is a local maximizer of the vector potential.
An exact potential game (or potential game for short) is a b-potential game
for some constant vector b; such a b-potential is called an exact potential (or
potential for short).. Note that if a game Γ is Harsanyi-Selten monomorphic
to a (vector) potential game Γ ′, then Γ is a vector potential game; hence, to
prove that a game is vector potential, it suffices to provide a Harsanyi-Selten
monomorphism (from it) to a (vector) potential game.

A weighted, linear-affine congestion game with player-specific con-
stants [15] is a game Γ = 〈m, (Si)i∈[m], (ui)i∈[m]〉 such that: (1) There is an
integer k ≥ 2 such that for each player i ∈ [m], Si ⊆ P({1, 2, . . . , k}). (Equiv-
alently, Si ⊆ {0, 1}k.) (2) There exist families of integers (βe)e∈[k] with βe ≥ 0
(the coefficients), (γie)i∈[m],e∈[k] with γie ≥ 0 (the constants), and (wi)i∈[m] with
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wi ≥ 1 (the weights) such that for each profile s = 〈s1, . . . , sm〉, for each player
i ∈ [m], ui(s) = −

∑
e∈si

(
βe ·

∑
j∈[m]|e∈sj

wj + γie

)
. Denote as WLACGwPSC

the class of weighted, linear-affine congestion games with player-specific con-
stants. Clearly, WLACGwPSC contains the class of weighted, linear-affine conges-
tion games [9] where the constants (γe)e∈[k] are no more player-specific; it is also
contained in the class WLACGwPSC2 of weighted, linear-affine congestion games
with player-specific coefficients and constants [10], which, in turn, is contained in
the general class of weighted congestion games with player-specific payoff func-
tions [16]. It is known that WLACGwPSC admit a vector potential and a pure
Nash equilibrium [15, Theorem 6 and Corollary 7]; in contrast, WLACGwPSC2

do not necessarily admit a pure Nash equilibrium [10, Theorem 2].

Weighted Boolean Formula Games. We now provide our main definition.

Definition 2 (Weighted Boolean Formula Game). Fix a triple of integers
m ≥ 2, k ≥ 1 and r ≥ 1. A game Γ = 〈m, (Si)i∈[m], (ui)i∈[m]〉, is called a
weighted (m, k, r)-boolean formula game (or weighted boolean formula
game for short) if (1) for each player i ∈ [m], Si = {0, 1}k; (2) there is a set
Fi = {(f, α) | f is a (km)-ary boolean formula and α ∈ N} with |Fi| ≤ r such
that for each 〈s1, . . . , sm〉 ∈ S, ui(s1, . . . , sm) =

∑
(f,α)∈Fi

α · f(s1, . . . , sm).

We also write Γ = 〈m, k, r, (Fi)i∈[m]〉. Denote F =
⋃

i∈[m] Fi. We use WBFG
as an abbreviation for a weighted boolean formula game. An (m, k, r)-boolean
formula game is the special case of a weighted (m, k, r)-boolean formula game
Γ = 〈m, k, r, (Fi)i∈[m]〉 such that for each pair (f, α) ∈ F , α = 1. A (weighted)
(m, k, r)-boolean clause game is the special case of a (weighted) (m, k, r)-
boolean formula game Γ = 〈m, k, r, (Fi)i∈[m]〉 such that for each pair (f, α) ∈ F ,
f is a clause. We formulate a restricted class of WBFG, denoted as MWBFG.

Definition 3. A weighted boolean formula game Γ = 〈m, k, r, (Fi)i∈[m]〉, is
called mutual if the following holds: For each pair (f, α) ∈ F , if f depends
on a variable of player i ∈ [m], then (f, α) ∈ Fi.

Decision and Search Problems. Let m ∈ {2, 3, . . .}, k ∈ {1, 2, . . . } and
r ∈ {1, 2, . . .}. We formulate and study the following decision problems:

PROBLEM: PROBLEM: GIVEN a Γ which is:

WBF-PDd(m, k, r) WBF-NASHd(m, k, r) Weighted (m,k, r)-boolean formula game.

BF-PDd(m,k, r) BF-NASHd(m,k, r) (m, k, r)-boolean formula game.

WBC-PDd(m, k, r) WBC-NASHd(m, k, r) Weighted (m,k, r)-boolean clause game.

BC-PDd(m,k, r) BC-NASHd(m,k, r) (m, k, r)-boolean clause game.

QUESTION: QUESTION:

Is PD(Γ ) �= ∅? Is NASH(Γ ) �= ∅?

We shall often consider the case where some of the parameters m, k, and r are
not restricted to a fixed value. In this case, such a parameter gets the value ∗. For
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example, for k ∈ {1, 2, . . .} and r ∈ {1, 2, . . .}, we define BF-NASHd(∗, k, r) =⋃
m≥2 BF-NASHd(m, k, r). Denote as MWBF-NASHs(∗, ∗, ∗) the search problem

for pure Nash equilibria in MWBFG.

3 Structure

Theorem 1. Consider the MWBFG Γ = 〈m, k, r, (Fi)i∈[m]〉. Then, the function
Φ : ({0, 1}k)m → R with Φ(s) =

∑
〈f,α〉∈F α · f(s) is an exact potential for Γ .

Proof. Consider a profile s ∈ S and a strategy ti ∈ {0, 1}k of player i ∈ [m].
Then,

Φ(s−i, ti) − Φ(s)

=
�

〈f,α〉∈F

α · f(s−i, ti) −
�

〈f,α〉∈F

α · f(s)

=
�

〈f,α〉∈Fi

α · f(s−i, ti) +
�

〈f,α〉∈F \Fi

α · f(s−i, ti) −
�

〈f,α〉∈Fi

α · f(s) −
�

〈f,α〉∈F \Fi

α · f(s)

=
�

〈f,α〉∈Fi

α · f(s−i, ti) −
�

〈f,α〉∈Fi

α · f(s) +
�

〈f,α〉∈F \Fi

α · (f(s−i, ti) − f(s)) .

Since Γ is a MWBFG, it follows that for each pair 〈f, α〉 ∈ F \Fi, f(s1, . . . , sm)
does not depend on si; hence, for each pair 〈f, α〉 ∈ F \ Fi, f(s−i, ti) = f(s). It
follows that

Φ(s−i, ti) − Φ(s) =
�

〈f,α〉∈Fi

α · f(s−i, ti) −
�

〈f,α〉∈Fi

α · f(s) = ui(s−i, ti) − ui(s) ;

hence, Φ is an exact potential for Γ , as needed. ��

An inspection to the proof reveals that the assumption that player variables and
formulas are boolean is not essential: mutuality alone suffices for the existence
of an exact potential. Theorem 1 implies that every MWBFG has a pure Nash
equilibrium and MWBF-NASHd(∗, ∗, ∗) ∈ PLS. We now prove:

Theorem 2. The class of weighted, linear-affine congestion games with player-
specific coefficients and constants is polynomial, sound monomorphic to the class
of weighted boolean formula games.

We will identify a set t ⊆ {1, . . . , k} with the characteristic vector
〈χt(1), . . . , χt(k)〉, where χt is the characteristic function for t: for e ∈ [k],
χt(e) = 1 if e ∈ t and 0 otherwise. For a boolean x, set xχt(e) = x if χt(e) = 1
and x otherwise.

Proof. Here is a polynomial, sound monomorphism 〈λ, 〈π, φ〉, ψ〉 from
WLACGwPSC2 to WBFG. The action of λ on any WLACGwPSC2 Γ =
〈m, (Si)i∈[m], (ui)i∈[m]〉, with Si ⊆ {0, 1}k for each i ∈ [m], is defined as
follows:
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Eachplayer i ∈ [n] has variablesxi = 〈xi1, . . . , xik〉; so, S′
i = {0, 1}k. Fi consists of:

Boolean formula Weight
For e ∈ [k]: fie(x1, . . . , xm) = xie αie = δie · wi

For j ∈ [m] fije(x1, . . . , xm) = xie

∨
xje αije = βie · wi · wj

and e ∈ [k]:
For t ∈ Si: fit(x1, . . . , xm) =

∧
e∈[k] x

χt(e)
ie αit =wi ·

∑
e∈[k](βie ·

∑
j∈[m] wj +δie)+1

Set π and φ to be the identity maps, respectively. Furthermore, set ψΓ to be
the identity map; so, ψΓ maps a Nash equilibrium s′ (for Γ ′) to itself. We now
show Conditions (1), (2) and (3) in Definition 1. Clearly, both maps λ and 〈π, φ〉
are polynomial. Furthermore, since for each player i ∈ [m], Si ⊆ S′

i, the map
〈π, φ〉 is a homomorphism. For Condition (1), we proceed to show that 〈π, φ〉 is
Harsanyi-Selten. Fix any profile s′ = 〈s′1, . . . , s′m〉 (for Γ ′), where for each player
i ∈ [m], si = 〈s′i1, . . . , s′ik〉. (Note that it need not be the case that s′ is a profile
for Γ .) Note that for each player i ∈ [m],

uπ(i)(s
′) = u′

i(s
′)

=
�
e∈[k]

αie · (1 − fie(s′))

� �� �
Σ1(s′)

+
�

j∈[m]

�
e∈[k]

αije · (1 − fije(s′))

� �� �
Σ2(s′)

+
�
t∈Si

αit · fit(s′)

� �� �
Σ3(s′)

.

We establish that

Σ1(s′) + Σ2(s′) = wi

�
e∈[k]

�
�βie ·

�
j∈[m]

wj + δie

�
	− wi

�
e∈s′

i

�
�βie ·

�
j|e∈s′

j

wj + δie

�
	 .

Σ3(s′) =

�
�wi ·

�
e∈[k]

�
�βie ·

�
j∈[m]

wj + δie

�
	+ 1

�
	 · χSi(s

′
i) .

We next prove that 〈π, φ〉 is Harsanyi-Selten and sound. This completes the
proof for Condition (1) and Condition (3). To prove Condition (2), note that
the map 〈π, φ〉 induces a Harsanyi-Selten bijection from NE(Γ ) to NE(Γ ′). Since
both π and φ are identity, this bijection is also identity as well as its inverse. So,
the identity map is a bijection from NE(Γ ′) to NE(Γ ). Since ΨΓ is this identity
map, Condition (2) follows. ��
An inspection to the proof of Theorem 2 reveals that if we had player-independent
coefficients (βe)e∈[k] in the original game Γ , the resulting WBFG λ(Γ ) would be
mutual. Hence, Theorem 2 implies:

Corollary 1. The class of weighted, linear-affine congestion games with player-
specific constants is polynomial, sound monomorphic to the class of mutual
weighted boolean formula games.

We continue to prove in a similar way:

Theorem 3. The class of weighted, linear-affine network congestion games with
player-specific coefficients and constants is polynomial, sound monomorphic to
the class of weighted boolean formula games.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Weighted Boolean Formula Games 479

Similar to Corollary 1, we obtain:

Corollary 2. The class of weighted, linear-affine network congestion games with
player-specific constants is polynomial, sound monomorphic to the class of mu-
tual weighted boolean formula games.

Since the search problem for pure Nash equilibria in weighted, asymmetric net-
work congestion games with player-specific constants is PLS-complete [15, The-
orem 5], Corollary 1 and Corollary 2 immediately imply:

Corollary 3. MWBF-NASHs(∗, ∗, ∗) is PLS-complete.

4 Complexity

For payoff-dominant equilibria, we first show:

Theorem 4. Let m ∈ {2, 3, . . .}, k ∈ {1, 2, . . .} and r ∈ {1, 2, . . . , ∗}. Then: (1)
WBF-PDd(m, k, r) ∈ P. (2) BF-PDd(∗, k, r) ∈ ΘP

2 . (3) WBF-PDd(∗, k, r) ∈ ΔP
2 .

(4) BF-PDd(∗, ∗, r) ∈ ΘP
3 . (5) WBF-PDd(∗, ∗, r) ∈ ΔP

3 .

We finally show:

Theorem 5. We have:
(1) WBF-PDd(∗, k, ∗) is ΔP

2 -complete for k ∈ {1, 2, . . .}.
(2) BF-PDd(∗, k, r) is ΘP

2 -complete for k ∈ {1, 2, . . .} and r ∈ {1, 2, . . . , ∗}.
(3) WBF-PDd(m, ∗, ∗) is ΔP

3 -complete for m ∈ {4, 5, . . . , ∗}.
(4) BF-PDd(m, ∗, ∗) is ΘP

3 -complete for m ∈ {4, 5, . . . , ∗}.

For pure Nash equilibria, we first observe:

Proposition 1. Let m ∈ {2, 3, . . .}, k ∈ {1, 2, . . .} and r ∈ {1, 2, . . . , ∗}. Then:
(1) WBF-NASHd(m, k, r) ∈ P (and WBF-NASHs(m, k, r) ∈ FP).
(2) WBF-NASHd(∗, k, r) ∈ NP (and WBF-NASHs(∗, k, r) ∈ FNP).
(3) WBF-NASHd(m, ∗, r) ∈ ΣP

2 (and WBF-NASHs(m, ∗, r) ∈ FΣP
2 ).

(4) WBF-NASHd(∗, ∗, r) ∈ ΣP
2 (and WBF-NASHs(∗, ∗, r) ∈ FΣP

2 ).

We finally show:

Theorem 6. We have:
(1) For k ∈ {1, 2, . . .} and r ∈ {1, 2, . . . , ∗}, BF-NASHd(∗, k, r) is NP-complete.
(2) For k ∈ {1, 2, . . .} and r ∈ {2, 3, . . . , ∗},

BC-NASHd(∗, k, r) is NP-complete.
(3) For k ∈ {1, 2, . . . , ∗}, WBC-NASHd(∗, k, 1) ∈ P. In fact, every weighted

(∗, k, 1)-boolean clause game has a pure Nash equilibrium.
(4) For m ∈ {3, 4, . . . , ∗} and r ∈ {1, 2, . . . , ∗},

BF-NASHd(m, ∗, r) is ΣP
2 -complete
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4. Biló, V.: On Satisfiability Games and the Power of Congestion Games. In: Biló, V.
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Abstract. In this paper, we focus on the core stability of vertex cover
games, which arise from vertex cover problems on graphs. Based on du-
ality theory of linear programming, we first prove that a balanced vertex
cover game has the stable core if and only if every edge belongs to a
maximum matching in the corresponding graph. We also show that for
a totally balanced vertex cover game, the core largeness, extendability
and exactness are all equivalent, which imply the core stability.

Keywords: Vertex cover game, balanced, stable core, largeness, exact-
ness, extendability.

1 Introduction

A transferable cooperative game Γ = (N, γ) consists of a player set N =
{1, 2, · · · , n} and a characteristic function γ : 2N → R, where for each subset
S ⊆ N of players, γ(S) represents the revenue or cost achieved by the players
in S without assistance of other players. One of the scopes of cooperative game
theory is to study how to distribute the total revenue or cost γ(N) among the
participants in a fair way. Different philosophies result in different solution con-
cepts, e.g., the core, the Shapley value, the Nucleolus and the stable set. Von
Neumann and Morgenstern [11] first introduce the concept of the stable set and
claimed that it is very useful in the analysis of a lot of bargaining situations.
However, it seems difficult to investigate the properties of the stable set because
of the complexity of its definition. Moreover, Deng and Papadimitriou [4] pointed
out that determining the existence of the stable set for a given cooperative game
is not known to be computable, and it is still unsolved.

While the core and the stable set are different, Shapley [7] has shown that for
convex games, the core is the unique stable set. This result motivated researchers
to study the problem: when do the core and the stable set coincide, that is, when
is the core stable? As far as the core stability for concrete cooperative game model
is concerned, only a few results have been obtained. Solymosi and Raghavan [9]
studied the core stability for assignment games, Bietenhader and Okamoto [1]
studied it for minimum coloring games defined on perfect graphs, and Sun and
Fang [12] studied it for simple flow games.

� This work is supported by NCET (No.05-0598) and NSFC (No.10771200).
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In this paper, we focus on core stability of vertex cover games introduced by
Deng, Ibaraki and Nagamochi [2], which arise from the cost allocation problems
related to vertex covers on graphs. We show that a vertex cover game has the
stable core if and only if every edge belongs to a maximum matching in the
corresponding graph. We also consider the problems on the core largeness, the
extendability and the exactness of the game, which are closely related to core
stability. We prove that all the three properties are equivalent for vertex cover
games defined on bipartite graphs, and also equivalent to that every matching
is contained in a maximum matching. Finally, we conclude with extensions of
above results to general covering games.

2 Definitions and Preliminaries

Throughout this paper, all the games concerned are cost game, that is, the
characteristic function specifies the cost of every coalitions. Let Γ = (N, γ) be
a cooperative game. A vector x = (x1, x2, · · · , xn) is called an imputation if∑

i∈N xi = γ(N) and ∀ i ∈ N : xi ≤ γ({i}). The set of imputations is denoted
by I(Γ ). The core is defined as:

C(Γ ) = {x ∈ Rn : x(N) = γ(N) and x(S) ≤ γ(S), ∀S ⊆ N},

where x(S) =
∑

i∈S xi. The game Γ = (N, v) is balanced if C(Γ ) is nonempty;
and totally balanced, if every subgame (i.e., the game obtained by restricting the
player set to a coalition and the characteristic function to the power set of that
coalition) is balanced.

The concept of stability is due to von Neumann and Morgenstern [11]. Given
a game Γ = (N, γ) and x, y ∈ I(Γ ). We say that x dominates y if there is a
coalition S such that x(S) ≥ γ(S) and ∀ i ∈ S, xi < yi. A set F ⊆ I(Γ ) is stable
if any two imputations in F do not dominate each other and any imputation
not in F can be dominated by an imputation in F . Since the core allocations do
not dominate each other, the core is stable simply means that any imputation
not in the core can be dominated by a core imputation. Formally, the core of a
balanced game Γ is stable, if for every y ∈ I(Γ )\C(Γ ), there exists an x ∈ C(Γ )
and a nonempty coalition S ⊂ N such that x(S) = γ(S) and xi < yi for each
i ∈ S.

Now let us give the definition of a vertex cover game. Given an undirected
graph G = (V, E) with vertex set V and edge set E, the corresponding vertex
cover game ΓG = (E, γ) is defined by:

1. The player set is E = {e1, e2, · · · , en};
2. For each coalition S ⊆ E, γ(S) is the size of a minimum vertex cover in the

edge induced subgraph G[S] = (V, S).

The vertex cover game falls into the scope of the class of combinatorial coop-
erative games studied in Deng, Ibaraki and Nagamochi [2]. With the technique
of integer programming and duality theory of linear programming, Deng, Ibaraki

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



484 Q. Fang and L. Kong

and Nagamochi [2] presented a necessary and sufficient condition for a vertex
cover game being balanced.
Theorem 2.1 [2]. Give a graph G = (V, E), the vertex cover game defined on
G is balanced if and only if the size of a maximum matching is equal to the size
of a minimum vertex cover on G. In such case, an imputation is in the core
if and only if it is a convex combination of the indicator vectors of maximum
matchings of G.

3 Vertex Cover Game with Stable Core

In the rest of the paper, we assume that all the graphs concerned are undirected
graph with nonempty edge set. Let ΓG = (E, γ) be the vertex cover game defined
on graph G = (V, E). For v ∈ V , the set of edges incident to v is denoted by
E(v). A matching of G is called maximal if adding any other edge to it makes it
no longer a matching, called maximum if it has the maximum size among all the
matchings. Before discussing the core stability, we need the following lemmas.

Lemma 3.1 [2]. x ∈ C(ΓG) if and only if
1) x ≥ 0; 2) x(E) = γ(E) and 3) x(E(v)) ≤ 1 for each v ∈ V .

Lemma 3.2. Let the vertex cover game ΓG = (E, γ) be balanced. If ΓG has
the stable core, then for every e ∈ E, there exists a core allocation x such that
x(e) > 0.

Proof. Suppose that there exists an edge e0 ∈ E such that x(e0) = 0 for all
x ∈ C(ΓG). Since γ(E) > 0, there exists e1 ∈ E and x̂ ∈ C(ΓG) such that
x̂(e1) > 0. Construct a vector y : E → R+ based on x̂ as follows:

y(e) =

⎧
⎨

⎩

x̂(e) if e /∈ {e0, e1}
x̂(e1) if e = e0
0 if e = e1

Obviously, y ∈ I(ΓG) \ C(ΓG). Since C(ΓG) is stable, there exists x∗ ∈ C(ΓG)
and a nonempty set S ⊆ E such that x∗ dominates y on S.

Note that it must be the case e0 ∈ S. Otherwise, we can distinguish in two
cases:

(a) e1 ∈ S. Since y(e1) = 0, each core allocation can not dominate y on S;
(b) e1 /∈ S. Since x̂ ∈ C(ΓG) and y(e) = x̂(e) for each e ∈ S, x∗ can not

dominate y on S either.
Therefore, we have γ(S) = x∗(S) = x∗(S \{e0}) < y(S \{e0}) = x̂(S \{e0}) ≤

γ(S \ {e0}) ≤ γ(S), which is a contradiction.
The following theorem is the main result of this section.

Theorem 3.3. Let ΓG = (E, γ) be a balanced vertex cover game defined on
graph G = (V, E). Then ΓG has the stable core if and only if every edge e ∈ E
belongs to a maximum matching of G.

Proof. Necessity. Assume that ΓG = (E, γ) has the stable core. By Lemma
3.2, for every e ∈ E, there exists a core allocation x such that x(e) > 0. Also
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followed from Theorem 2.1, x is a convex combination of the indicator vectors of
the maximum matchings. Hence, e belongs to at least one maximum matching
of G.

Sufficiency. Given y ∈ I(ΓG) \ C(ΓG). According to Lemma 3.1, there exists
a vertex v ∈ V such that y(E(v)) > 1. Let S = E(v) \ {e ∈ E(v) : y(e) ≤ 0},
which is denoted as S = {e1, e2, · · · , ek}. It is easy to see that S 	= ∅, y(S) > 1
and y(ei) > 0 (i = 1, 2, · · · , k). By our assumption, each edge ei belongs to a
maximum matching of G, namely Mi (∀ i = 1, 2, · · · , k). Since S is a subset of
E(v) and Mi is a matching, Mi

⋂
S must contain the unique element ei in E(v),

(i = 1, 2, · · · , k).
Denoted by I1, I2, · · · , Ik the indicator vectors of M1, M2, · · · , Mk, respec-

tively. Define x ∈ R|E| as follows:

x = λ1I1 + λ2I2 + · · · + λkIk,

where λi = y(ei)
y(S) (i = 1, 2, · · · , k). Obviously, λi > 0 and

∑k
i=1 λi = 1. Following

from Theorem 2.1, we conclude that x ∈ C(ΓG), and

x(S) =
∑k

i=1 λiIi(S) =
∑k

i=1 λi|Mi ∩ S| = 1 = γ(S),
x(ei) = λi = y(ei)

y(S) < y(ei), ∀ei ∈ S.

That is, x dominates y on S. Therefore, C(ΓG) is stable.

Now we consider the algorithmic issue of checking whether a vertex cover game
possesses the stable core. The problem is stated as:

Problem A: Checking Core Stability of Vertex Cover Game
Instance: The vertex cover game ΓG defined on a graph G
Question: Does ΓG possess a stable core?

In Deng, Ibaraki and Nagamochi [2], it was shown that testing nonemptiness of
the core of a vertex cover game can be done in polynomial time. Again, Theorem
3.3 yields that Problem A is equivalent to the problem of checking whether every
edge belongs to a maximum matching of G. And this can be solved as follows:

Denote the size of a maximum matching by m0. For each e ∈ E, we define
an edge weight function βe : E → Z+ such that βe(e) = L and βe(e′) = 1 for
e′ ∈ E \ {e}, where L is an integer large enough. We compute the maximum
weighted matching in G with respect to βe, and denote the weight by m(e). It
is easy to see that if there exists an edge e∗ ∈ E such that m(e∗) − m0 < L − 1,
then e∗ is not contained in any maximum matching of G; otherwise, every edge
belongs to a maximum matching of G. Since both the problems of maximum
matching and maximum weighted matching can be solved in polynomial time,
we have

Theorem 3.4. The problem of Checking Core Stability of Vertex Cover Game
can be solved in polynomial time.
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4 Exactness, Extendability and Core Largeness

In this section, we discuss three properties closely related to the core stability:
the core largeness, the game exactness and extendability. Given a cooperative
game Γ = (N, γ) with |N | = n. Γ is said to have a large core if for every y ∈ Rn

satisfying that y(S) ≤ γ(S) (∀S ⊆ N), there exists x ∈ C(Γ ) such that x ≥ y. Γ
is called extendable if for every nonempty set S ⊂ N and every core allocation y
of the subgame (S, γS), there exists x ∈ C(Γ ) such that xi = yi for all i ∈ S. Γ
is called exact if for every S ⊂ N there exists x ∈ C(Γ ) such that x(S) = γ(S).

Kikuta and Shapley [6] showed that if a balanced game has a large core, then
it is extendable; and if a balanced game is extendable, then it has the stable
core. Sharkey [8] showed that if a totally balanced game has large core, then it
must be exact. We summarize these results in the following theorem.

Theorem 4.1 [6,8]. Let Γ = (N, γ) be a totally balanced game. Then
(1) Γ has a large core implies that Γ is extendable;
(2) Γ is extendable implies that Γ is exact and has the stable core.
Since for bipartite graphs, the size of a maximum matching equals the size of a

minimum vertex cover, it follows from Theorem 2.1 that the corresponding vertex
cover game is balanced. Furthermore, Deng, Ibaraki, Nagamochi and Zang [3]
presented a necessary and sufficient condition for a vertex cover game being
totally balanced.

Theorem 4.2 [3]. Let ΓG = (E, γ) be the vertex cover game defined on graph
G = (V, E). Then ΓG is totally balanced if and only if G is a bipartite graph.

Therefore, in the following we will focus on bipartite graphs. We will show that
the three properties: exactness, extendability and core largeness, are equivalent
for the vertex cover games defined on bipartite graphs.

Theorem 4.3. Let ΓH = (E, γ) be the vertex cover game defined on bipartite
graph H = (V1, V2; E). Then the following conditions are equivalent:

(1) C(ΓH) is large;
(2) ΓH is extendable;
(3) ΓH is exact;
(4) Every matching is contained in a maximum matching in graph H.
By Theorem 4.1, “(1) ⇒ (2) ⇒ (3)” is true. It remains to prove “(3) ⇒ (4)”

and “(4) ⇒ (1)”.

Proof of “(3) ⇒ (4)”. Suppose that ΓH = (E, γ) is exact. Let M∗ be a
matching of H . By the definition of the exactness, there exists x∗ ∈ C(ΓH)
such that x∗(M∗) = γ(M∗) = |M∗|. Let M = {M1, M2, · · · , Mk} be the set
of maximum matchings of H . Followed from Theorem 2.1, x∗ can be expressed
as x∗ =

∑k
i=1 λiIi, where Ii is the indicator vector of the matching Mi, λi ≥ 0

(i = 1, 2, · · · , k) and
∑k

i=1 λi = 1. Then we have

x∗(M∗) =
∑k

i=1 λiIi(M∗) =
∑k

i=1 λi|M∗ ∩ Mi| ≤
∑k

i=1 λi|M∗| = |M∗|.
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Therefore, “≤” holds for “=” in above formula, which implies that M∗∩Mi = M∗

for any Mi with λi > 0. That is, M∗ is contained in at least one maximum
matching of H .

To show “(4) ⇒ (1)”, we need some more facts. The first one is due to van
Gellekom, et al. [10]. For game Γ = (N, γ) with |N | = n, the set of lower vectors
is defined as:

L(Γ ) = {y ∈ Rn : y(S) ≤ γ(S), ∀S ⊆ N}.

Lemma 4.4 [10]. Let Γ = (N, γ) be a balanced game. Then Γ = (N, γ) has a
large core if and only if y(N) ≥ γ(N) for each extreme point y of L(Γ ).

In order to show the core largeness of ΓH , we need to characterize the extreme
points of L(ΓH). For this purpose, we give an alternative description of L(ΓH).
Let S = {T : T ⊆ E(v), v ∈ V1 ∪ V2}, and

L′(ΓH) = {y ∈ Rn : y(S) ≤ 1, ∀ S ∈ S}.

Lemma 4.5. Let ΓH = (E, γ) be the vertex cover game defined on bipartite
graph H = (V1, V2; E). Then

(1) L(ΓH) = L′(ΓH);
(2) each extreme point of L′(ΓH) is the indicator vector of a maximal matching

of H.

Proof. (1) It is easy to verify that L(ΓH) ⊆ L′(ΓH). Then we prove the other
direction. Given y ∈ L′(ΓH), we have to check that y(S) ≤ γ(S) for every
S ⊆ E. Assume that γ(S) = k. Then S can be divided into k disjoint sets,
namely, S1, S2, · · · , Sk, such that Si ∈ S (i = 1, 2, · · · , k). Since y ∈ L′(ΓH),
y(Si) ≤ 1 for each i = 1, 2, · · · , k. Therefore, y(S) =

∑k
i=1 y(Si) ≤ k = γ(S).

That is, y ∈ L(ΓH). Hence, L(ΓH) = L′(ΓH).
(2) First, we prove that the extreme points of L′(ΓH) are non-negative. Sup-

pose that y is an extreme point of L′(ΓH) with at least one negative component.
Then define two vectors y1 and y2 as follows:

y1
i =

{
yi if yi ≥ 0
0 if yi < 0 ; y2

i =
{

yi if yi ≥ 0
2yi if yi < 0

It is easy to see that y1, y2 ∈ L′(ΓH). Since y 	= y1, y 	= y2 and y = y1+y2

2 , y is
not an extreme point of L′(ΓH).

Secondly, we show the correctness of the statement (2) of this lemma. Consider
the following polyhedron:

L′′(ΓH) = {y ∈ Rn : y(S) ≤ 1, ∀S ∈ S; y ≥ 0}
= {y ∈ Rn : y(E(v)) ≤ 1, ∀v ∈ V ; y ≥ 0},

where the second equality follows from the definition of S. Since the extreme
points of L′(ΓH) are non-negative, each extreme point of L′(ΓH) is also an
extreme point of L′′(ΓH). Let y∗ be an extreme point of L′′(ΓH). Based on the
linear programming theory, there exists a non-negative function ω, such that y∗

is the unique optimal solution of the following linear program:
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LP∗ : max{ωty : y(E(v)) ≤ 1, ∀v ∈ V ; y ≥ 0}.

Since H is a bipartite graph, the coefficient matrix of the constraints in (LP∗) is
totally balanced. Hence, y∗ must be an integer vector, i.e., a {0, 1}-vector, which
is the indicator vector of a matching M of H .

Assume that M is not a maximal matching, then there exists a matching
M ′ with M ⊂ M ′. It follows that the indicator vector of M ′ is also an optimal
solution of (LP∗), contradicting to the fact that y∗ is the unique optimal solution.
Therefore, M is a maximal matching.
With Lemma 4.4 and 4.5, we are ready to show “(4) ⇒ (3)”.

Proof of “(4) ⇒ (3)”. Let H = (V1, V2; E) satisfy condition (4), and y be an
extreme point of L(ΓH). Followed from Lemma 4.5, y is the indicator vector of
a maximal matching M . By condition (4), M is certainly a maximum matching
of H . Hence, y(E) = |M | = γ(E). Followed by Lemma 4.4, ΓH has large core.

There are also algorithmic issues related to the core largeness, exactness and
extendability for vertex cover game:

Problem B: Checking Extendability, Exactness and Core
Largeness of Vertex Cover Game on Bipartite Graph
Instance: The vertex cover game ΓH defined on bipartite graph H
Question: Is ΓH extendable, exact and with large core?

Thanks to Theorem 4.3, these problems are equivalent to determining whether
every matching is contained in a maximum matching of H .

5 Further Discussions

The vertex cover game is an example of the class of covering games introduced
in Deng, Ibaraki and Nagamochi [2]. In fact, there are many game models can
be formulated as covering games, such as the minimum coloring game [1] and
dominating set game [13]. In this section, we show that some of the results given
in above sections can be generalized to general covering games.

Let U = {u1, u2, · · · , un} be the universe set and Φ = {S1, S2, · · · , Sm} be a
collection of subsets of U . A covering of U is a sub-collection of Φ′ of Φ such
that each element of U occurs in at least one subset in Φ′. A covering Φ′ is
called minimum if the number of subsets contained in Φ′ is minimum among
all the coverings. On the other hand, a packing of Φ is a subset U ′ ⊆ U such
that |Si ∩ U ′| ≤ 1 for each i = 1, 2, · · · , m. A packing is called maximum if it
has the maximum size among all the packings. The covering game Γ = (U, γ)
corresponding to (U, Φ) is defined as:

1. The player set is U ;
2. For each coalition S ⊆ U , γ(S) is the minimum size of a sub-collection of Φ

that covers all elements in S.
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Let A = [aij ]n×m be the universe-subset incident matrix, where aij = 1 if the
element ui is in the subset Sj ; aij = 0, otherwise. The covering problem related
to U can be formulated as a 0-1 program (P):

P : min{
∑m

i=1 xi : Ax ≥ 1, x ∈ {0, 1}m}.

Its linear program relaxation (LP) and the dual (DP) are as follows:

LP : min{
∑m

i=1 xi : Ax ≥ 1, x ≥ 0};
DP : max{

∑n
i=1 yi : ytA ≤ 1, y ≥ 0}.

Deng Ibaraki and Nagamochi [2] showed that the covering game Γ = (U, γ)
is balanced if and only if (LP) has an integer optimal solution. In such case,
x ∈ C(Γ ) if and only if it is an optimal solution to (DP). Based on their result,
we consider one kind of balanced covering games for which the universe-subset
incident matrix is balanced.

A {0, 1}-matrix M is called balanced if M has no square submatrix of odd
order, with in each row and in each column exactly two 1’s. It was shown in [5]
that if the universe-subset incident matrix A is balanced, then both polyhedrons
of feasible solutions of (LP) and (DP) are integral. That is, this kind of covering
games have nonempty cores. Also since the balanced matrices are closed un-
der taking sub-matrices, the corresponding covering games are totally balanced.
With similar techniques used in previous sections, the results on core stability
and other related properties for general covering games can be obtained.

Theorem 5.1 Let Γ = (U, γ) be the covering game corresponding to (U, Φ) and
the universe-subset incident matrix be balanced. Then Γ has the stable core if
and only if each element u ∈ U belongs to a maximum packing of (U, Φ).

Theorem 5.2 Let Γ = (U, γ) be the covering game corresponding to (U, Φ) and
the universe-subset incident matrix be balanced. Then the following conditions
are equivalent:

(1) C(Γ ) is large;
(2) Γ is extendable;
(3) Γ is exact;
(4) Every packing is contained in a maximum packing for (U, Φ).
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Abstract. We study sequential auctions for private value objects and unit-demand
bidders using second-price sealed-bid rules. We analyze this scenario from the
seller’s perspective and consider several approaches to increasing the total rev-
enue. We derive the equilibrium bidding strategies for each individual auction. We
then study the problem of selecting an optimal agenda, i.e., a revenue-maximizing
ordering of the auctions. We describe an efficient algorithm that finds an optimal
agenda in the important special case when the revenue of each auction is guaran-
teed to be strictly positive. We also show that the seller can increase his revenue by
canceling one or more auctions, even if the number of bidders exceeds the num-
ber of objects for sale, and analyze the bidders’ behavior and the seller’s profit for
different cancellation rules.

1 Introduction

Market-based mechanisms such as auctions are now being widely studied as a means of
allocating resources in multiagent systems. There are several reasons for their popular-
ity: auctions are simple to implement and can also have desirable economic properties,
probably the most important of which are their ability to generate high revenues to the
seller and also allocate resources efficiently [8,2,9]. In many practical applications, the
number of objects for sale is large, and the seller has to choose a suitable auction format,
such as a combinatorial [7], simultaneous, or sequential [5,1] auction. Each of these for-
mats has unique advantages, and selecting the best mechanism for a given setting can be
a challenging task. For example, while a combinatorial auction is a good choice when it
is imperative to allocate the objects efficiently, simultaneous or sequential auctions are
easier to implement, as one can use off-the-shelf systems for single-item auctions.

In this paper, we study sequential auctions, i.e., mechanisms in which objects are
sold consecutively one at a time. Even though at any given moment there is only one
item being auctioned, the bidders’ behavior in any individual auction strongly depends
on the auctions that are yet to be conducted [5,1]. In particular, even if the auctions are
run using second-price rules, the bidders are not likely to bid their true value for the
item if they expect to profit from subsequent auctions. Moreover, the bidding strategies
for an auction strongly depend on the agenda (i.e., the order in which the objects are
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auctioned); if we change the agenda, then the bidding strategies and consequently the
equilibrium outcome changes [5].

The model considered in this paper is motivated by the following scenario. Suppose
that we are selling advertising space in a recurring event, such as several episodes of
a TV show or all football games in a given season. Assume for simplicity that each
event is associated with a single advertising slot, and all bidders are ex ante symmetric
and have unit demand, i.e., each of them only needs one slot. Consequently, if a bidder
wins an auction, he does not participate in the future auctions. Clearly, some games
or episodes of the show will be more attractive to the advertisers than others: a game
between top teams will have a larger audience than a game between less successful
teams, some episodes of the show may include appearances by celebrities, etc. In the
beginning of the season, the seller and the advertisers have some estimates of the value
of advertising in each slot, which, as argued above, can be different for different slots.
One can associate such an estimate with a probability distribution over possible values.
In the symmetric setting, it is natural to assume that these distributions are publicly
known.

If the slots are to be auctioned off in the beginning of the season, the advertisers
will have to bid based on these imprecise value estimates. However, it is possible to
postpone selling each slot till the respective episode or game is about to be shown. At
this point the bidders are likely to have a better understanding of how much this slot is
worth to them, based on their current stock, existing orders, etc. Therefore, we can treat
their value for a slot just before the screening as their actual value for this slot, i.e., a
random variable drawn from the initial distribution associated with this slot.

In this situation, the seller may have (partial) control over the order of individual
auctions. Indeed, in many TV shows, the order in which some (or all) of the episodes
are shown is flexible. It is also possible to take into account revenue considerations when
scheduling football games. Therefore, it is natural to ask whether the seller can order the
individual auctions to optimize his revenue. An alternative approach to maximizing the
total revenue, which is also feasible in the above-described scenario, is canceling some
of the auctions. In this paper, we study both of these revenue maximization techniques.

We describe our formal model in Section 2. Note that we assume that the bidders
can commit to participating in the entire series of auctions, i.e., they take part in all
auctions until they win an object. We believe that in the above-described setting, this
assumption can be justified. Also, in most of the paper we restrict ourselves to the case
where all bidders are symmetric and the seller has full control over the ordering of
individual auctions. In the end of the paper, we briefly discuss relaxing some of these
assumptions.

We consider several approaches to increasing the total revenue. We assume that each
auction is run using second-price rules, and compute the participants’ equilibrium bids.
Using this result as a starting point, we study the problem of selecting the optimal
agenda, i.e., a revenue-maximizing ordering of the auctions. We describe an efficient
algorithm that finds the optimal agenda whenever the revenue of each auction is guar-
anteed to be strictly positive. While the latter condition does not always hold, it is likely
to be satisfied when the number of bidders is large; also, our approach may provide a
reasonable heuristic in the general case.
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We then study the complementary case when in some of the auctions there is at
most one bidder who submits a non-zero bid. The second-price auction rules allocates
the object to one of the highest bidders and charges him the second-highest bid. This
means that when all bids are zero, we will give the object to an arbitrary bidder (e.g.,
one chosen at random) for free. Similarly, if there is exactly one bidder with a non-
zero bid, he will get the item and pay nothing. Intuitively, in this situation we are better
off canceling the auction altogether: it brings in no revenue anyway, and by allocating
the object we eliminate one of the bidders who could otherwise submit a high bid in
a future auction. However, to formalize this intuition we have to take into account the
ripple effect of this decision, i.e., its influence on bidders’ behavior in other auctions.
We study the changes in the bidders’ strategies under the new rules. We also sketch
an efficient algorithm that chooses in advance which auctions to cancel based on the
respective value distributions rather than actual bids.

2 The Auction Setting

There are m private value objects for sale. Each object is sold in a separate auction
using the second-price sealed-bid rules, and the auctions are held sequentially. Initially,
there are n risk-neutral bidders. For each object j, j = 1, . . . , m, the bidders’ valua-
tions are drawn independently from a distribution with a cumulative density function
Vj : R+ → [0, 1]. Consequently, any bidder’s valuations for different objects are inde-
pendent random variables. However, each bidder only needs one object. Therefore, if
he wins an auction, he does not participate in subsequent auctions.

The number of objects m, the initial number of bidders n, and the functions Vj :
R+ → [0, 1] are common knowledge to all bidders. However, each bidder draws his
private value signal for auction j after the end of auction j − 1. This model was intro-
duced in [1] in the context of sequential auctions for two private value objects. Here,
we generalize the approach of [1] to m > 2 objects.

The sequential auctions are conducted as follows. The first object is sold in a second-
price sealed bid auction. There are n bidders for this auction. The winner is announced
at the end of the auction. He receives the object and leaves. All other bidders then
draw their values for the second object and take part in the second auction. The process
repeats until all objects are sold (if n > m) or until there are no more bidders (if
n ≤ m); without loss of generality we can assume n ≥ m. Note that there are n− j +1
bidders for auction j.

Note that in our model the private values are not correlated across the m objects.
While in general this may not be the case, the special case of uncorrelated values cap-
tures the real-life scenarios in which the objects are sufficiently dissimilar, and also
provides an interesting technical challenge.

3 Equilibrium Bids

In this section, we find the equilibrium bids for our setting. Since there is more than one
auction, a bidder’s behavior in an auction depends not only on that auction but also on
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the profit he expects to get from the future auctions. We first determine this profit and
then find the equilibrium bids.

For a series of m auctions with n bidders in the first one, let EP (j, m, n) denote
the winner’s expected profit for the jth auction, let ER(j, m, n) denote the expected
revenue of the jth auction, and let ES(j, m, n) = ER(j, m, n) + EP (j, m, n) be the
expected surplus from the jth auction, i.e., the total increase in social welfare that results
from allocating the jth object. In what follows, we express these quantities as certain
functions of the parameters of the problem and use them to derive an explicit expression
for each bidder’s bidding strategy.

Let E(fn
i ) and E(sn

i ) denote the expected first and second order statistics for n
draws from the distribution Vi, i.e., set Xn

i = {x1, . . . , xn | xj ∼ Vi} and let fn
i =

maxXn
i , sn

i = maxX \ {fn
i }.

For any 1 ≤ j ≤ y ≤ m, let β(y, j, m, n) denote a bidder’s ex-ante probability
of winning the yth auction in the series from the jth to the mth one before the jth
auction begins. For instance, β(1, 1, m, n) is the probability of winning the first auction
in the series of auctions from the first to the mth one. When the number of bidders and
objects is fixed, we sometimes write β(y, j) instead of β(y, j, m, n). As we assume that
all bidders are ex ante symmetric, we have

β(y, 1) =
1

n − y + 1

y−1∏

k=1

(1 − 1
n − k + 1

) =
1
n

.

In general, for j ≤ y ≤ m, β(y, j) is given by

β(y, j) =
1

n − y + 1

y−1∏

k=j

(1 − 1
n − k + 1

) =
1

n − j + 1
.

Note that β(y, j, m, n) does not depend on y. Intuitively, before the beginning of the
jth auction, all bidders are symmetric with respect to winning the yth auction, and there
are n − j + 1 bidders left at that point. Hence, each bidder’s probability of winning the
yth auction is 1/(n − j + 1).

Let α(j, m, n) denote a bidder’s ex-ante expected profit from winning any one auc-
tion in the series of auctions from the jth (for 1 ≤ j ≤ m) to the mth one. We have

α(j, m, n) =
m∑

y=j

β(y, j)EP (y, m, n) =
1

n − j + 1

m∑

y=j

EP (y, m, n). (1)

Note that by definition, α(m + 1, m, n) = 0 for any n > 0.

Theorem 1. If each auction in a series is conducted using the second price rules, then
the equilibrium bidding strategy for a bidder whose value in auction j is v is given by

Bj(v) = max{0, v − α(j + 1, m, n)}. (2)

Proof. In order to find the equilibrium strategies, we begin with the last auction and
then reason backwards. Recall that a bidder comes to know his valuation v just before
auction j begins (i.e., after the previous j − 1 auctions are over).
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Consider auction m. The number of bidders for this auction is n − m + 1. Since
this is the last auction, the bidding strategies for it are the same as those for a single
object auction [8], i.e., each bidder’s equilibrium strategy is to bid his true value v =
v − α(m + 1, m, n).

Now consider auction j (1 ≤ j < m). Consider bidder 1 whose value is v and set
x = v − α(j + 1, m, n). Let b∗ = maxj �=1bj be the highest competing bid. Assume
for simplicity that the draw resolution rule is lexicographic, i.e., bidder 1 wins as long
as x ≥ b∗; the analysis for other draw resolution rules is similar.

If x < 0, it means that the bidder’s expected profit from the future auctions exceeds
his valuation for the object that is being auctioned, so he prefers not to win the object.
Therefore, bidder 1’s equilibrium strategy is to make the lowest possible bid, i.e., 0.

Otherwise, if x ≥ b∗, then by bidding z = x bidder 1 wins and his profit from
the current auction is v − b∗. As x = v − α(j + 1, m, n) ≥ b∗, we have v − b∗ ≥
α(j + 1, m, n), i.e., the bidder weakly prefers winning this auction to participating in
the future auctions. Now, if bidder 1 bids any other amount z > b∗, he still wins and his
profit does not change, whereas if he bids z < b∗, he loses the auction, so his expected
profit is α(j + 1, m, n) ≤ v − b∗.

If x < b∗, then by bidding z = x or, in fact, any z < b∗, bidder 1 loses the auction,
so his total profit from the entire series is α(j + 1, m, n). If he bids z ≥ b∗, he wins,
but his total profit is v − b∗ < α(j + 1, m, n), i.e., this outcome is less preferable than
losing the current auction. In all cases, bidding z �= x may decrease the bidder’s profit,
but cannot increase it, i.e., bidding max{x, 0} is an equilibrium strategy. ��
To characterize the bidding strategies, it remains to show how to compute α(j, m, n).
For j = m we have

ES(m, m, n) = E(fn−m+1
m )

ER(m, m, n) = E(sn−m+1
m )

EP (m, m, n) = E(fn−m+1
m ) − E(sn−m+1

m ).

For j < m, the value of α(j, m, n) can be computed inductively: in what follows, we
describe how to compute α(j, m, n) given α(y, m, n) for y = j + 1, . . . , m.

Fix j < m and set f = fn−j+1
j , s = sn−j+1

j . We will consider three cases.

– All bidders bid 0.
This happens with probability P0 = (Vj(α(j + 1, m, n)))n−j+1. In this case, the
item gets allocated to a random bidder who pays nothing. Set

E0 = E(Vj |f < α(j + 1, m, n)).

We have

ES(j, m, n) = E0, ER(j, m, n) = 0, EP (j, m, n) = E0.

– Exactly one bidder makes a positive bid.
The probability of this event is P1 = (n − j + 1)(Vj(α(j + 1, m, n)))n−j(1 −
Vj(α(j+1, m, n))). In this case, the object is allocated to the bidder with a positive
bid and the winner pays nothing. Set

E1 = E(fn−j+1
j |s < α(j + 1, m, n) < f).
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We have

ES(j, m, n) = E1, ER(j, m, n) = 0, EP (j, m, n) = E1.

– Two or more bidders make a positive bid.
The probability of this event is P>1 = 1 − P0 − P1. Set

E>1,s = E(f |α(j + 1, m, n) < s)
E>1,r = E(s|α(j + 1, m, n) < s) − α(j + 1, m, n).

We have

ES(j, m, n) = E>1,s, ER(j, m,n) = E>1,r, EP (j, m, n) = E>1 = E>1,s − E>1,r.

By combining these three cases, we obtain

EP (j, m, n) = P0E0 + P1E1 + P>1E>1, (3)

i.e., given α(j + 1, m, n) we can compute EP (j, m, n). Hence, given α(y, m, n) for
y = j + 1, . . . , m, we can compute α(j, m, n) using formula (1).

Assuming that bidders’ valuations are such that in each auction at least two bidders
submit a strictly positive bid, i.e., the revenue of each auction is non-zero, this formula
can be simplified considerably. Namely, in this case we have

ES(j, m, n) = E(f)
ER(j, m, n) = E(s) − α(j + 1, m, n)
EP (j, m, n) = E(f) − E(s) + α(j + 1, m, n),

where f = fn−j+1
j , s = sn−j+1

j . The advantage of this expression is that is does not
use conditional expectations. In fact, the only information about the jth distribution
that is required is the expectations of the first and second order statistics for n − j + 1
bidders. Moreover, for large values of bidders, it is quite likely that each auction has
non-zero revenue. Indeed, as the number of bidders increases, the profits from future
auctions have to be divided among a higher number of potential winners, reducing α.

4 Choosing the Optimal Agenda

In this section, we consider the problem of choosing the agenda so as to maximize the
seller’s profit. Our focus here is on those cases where, for each auction, the two highest
bids are greater than zero – i.e., all auctions have non-zero profit. As argued above, for
a large value of n this scenario is quite likely.

To see how agenda can affect the revenue, consider first a simple example.

Example 1. Suppose that there are 2 items A and B and 3 bidders. The bidders valu-
ation for A are drawn from U [8, 20] and the bidders valuations for B are drawn from
U [3, 39]. Suppose we sell these items in the order A, B. Our expected revenue from the
second auction is s2

B = 15 and we have α(2, 2, 3) = (f2
B − s2

B)/2 = 6. Therefore, our
expected revenue from the first auction is s3

A − 6 = 8, and the total revenue is 23. If,
on the other hand, we sell these items in the order B, A, our expected revenue from the
second auction is s2

A = 12 and we have α(2, 2, 3) = (f2
A − s2

A)/2 = 2. Therefore, our
expected revenue from the first auction is s3

B − 2 = 19 and the total revenue is 31.
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One can see that selecting the wrong agenda can substantially decrease the revenues.
This motivates the following question: Given bidder’s value distributions for all items,
is it possible to select the optimal agenda in time polynomial in n and m? Clearly, if we
simply consider all possible agendas and compute the expected revenue for each one
using the formulas derived in the previous section, we will identify the optimal agenda,
but the running time of this procedure is exponential in m. In what follows, we show
how to solve this problem more efficiently.

We start by introducing additional notation. Assume that the objects are numbered
from 1 to m; the optimal agenda is then a permutation of 1, . . . , m. Let δ1(i, n) =
E(sn

i ) − E(sn−1
i ) and δ2(i, n) = E(fn

i ) − E(sn
i ). Also, as in this section the number

of bidders and objects is fixed, we will write β(y, j), EP (k), and ER(k) instead of
β(y, j, m, n), EP (k, m, n), and ER(k, m, n), respectively.

Proposition 1. Consider two agendas A(1) and A(2) for the same set of m objects such
that A(2) can be obtained from A(1) by changing the order of the first and second auc-
tion. Let i and j be the objects sold at the first and second auction in A(1), respectively.
Let R(k), k = 1, 2, be the seller’s expected total revenue from A(k). Then R(1) > R(2)

as long as

[δ1(i, n) − δ1(j, n)] − β(2, 2)[δ2(i, n − 1) − δ2(j, n − 1)] > 0.

Proof. Let α = α(3, m, n) be a bidder’s expected ex ante profit from the last m − 2
auctions; obviously, this number is the same for A(1) and A(2). Also, let β = β(2, 2) =
1/(n − 1); note that β does not depend on the agenda.

Under agenda A(1), the seller’s expected revenue from the second auction is R
(1)
2 =

E(sn−1
j ) − α, and the winner’s expected profit from the second auction is E(fn−1

j ) −
E(sn−1

j )+α = δ2(j, n− 1)+α. Therefore, in the first auction a bidder whose value is
v is going to bid v − (δ2(j, n−1)+α)β −

∑m
y=3 β(y, 2)EP (y); note that the last term

in this expression is independent of the agenda. Finally, the seller’s expected revenue
from the first auction is

R
(1)
1 = E(sn

i ) − (δ2(j, n − 1) + α)β −
m∑

y=3

β(y, 2)EP (y).

Similarly, under A(2), the seller’s expected revenue from the second auction is R
(2)
2 =

E(sn−1
i ) − α, and the winner’s expected profit from the second auction is E(fn−1

i ) −
E(sn−1

i ) + α = δ2(i, n − 1) + α. Therefore, in the first auction a bidder whose value
is v is going to bid v − (δ2(i, n − 1) + α)β −

∑m
y=3 β(y, 2)EP (y). Hence, the seller’s

expected revenue from the first auction is

R
(2)
1 = E(sn

j ) − (δ2(i, n − 1) + α)β −
m∑

y=3

β(y, 2)EP (y).

Under both agendas, the seller’s expected profit from the last m − 2 auctions is the
same. Hence, we have R(1) − R(2) = R

(1)
1 − R

(2)
1 + R

(1)
2 − R

(2)
2 . It is easy to see that

R
(1)
2 − R

(2)
2 = E(sn−1

j ) − E(sn−1
i ). Furthermore, we have

R
(1)
1 − R

(2)
1 = E(sn

i ) − βδ2(j, n − 1) − E(sn
j ) + βδ2(i, n − 1).
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Hence, we conclude that R(1) > R(2) if and only if

δ1(i, n) − δ1(j, n) + β(δ2(i, n − 1) − δ2(j, n − 1)) > 0.

��

Proposition 1 describes the change in the revenue that corresponds to switching the
order of the first two auctions on the agenda. If we change the relative order of the
(k − 1)st and kth auction, we can still use Proposition 1 to compare the revenue from
the last m − k + 2 auctions under the two agendas. However, to compare the total
revenues, we need additional techniques, as the choice of the agenda will influence the
bidders’ behavior in the first k − 2 auctions. Fortunately, it turns out that as long as
changing the order of the (k − 1)st and kth auction increases the revenue from the last
m − k + 2 auctions, it increases the total revenue as well.

Proposition 2. Consider two agendas A(1) and A(2) for the same set of m objects
such that A(2) can be obtained from A(1) by changing the order of the (k − 1)st and
kth auction. Let i and j be the objects sold at the (k − 1)st and kth auction in A(1),
respectively. Let R(i), i = 1, 2, be the seller’s expected total revenue from A(i), and let
R

(i)
k−1,k, i = 1, 2, be the seller’s expected revenue from the (k − 1)st and kth auction in

A(i). Then R(1) > R(2) whenever R
(1)
k−1,k > R

(2)
k−1,k.

Proof. For i = 1, 2, we have R(i) =
∑m

j=1 ER(i)(j), where ER(i)(j) is the ex-

pected seller’s revenue in the jth auction under agenda A(i). Clearly, for j > k we
have ER(1)(j) = ER(2)(j), and we assume

ER(1)(k − 1) + ER(1)(k) > ER(2)(k − 1) + ER(2)(k).

We will now prove that for any 0 < j < k − 1, if

m∑

t=j+1

ER(1)(t) >
m∑

t=j+1

ER(2)(t),

then
m∑

t=j

ER(1)(t) >

m∑

t=j

ER(2)(t).

Applying this result inductively to j = k − 2, k − 3, . . . , 1 completes the proof.
Fix some j < k − 1. Let α(1)(j) and α(2)(j) be a bidder’s expected ex ante profit

from the auctions j, . . . , m under A(1) and A(2), respectively. For i = 1, 2, we have

α(i)(j) =
1

n − j + 1

m∑

y=j

EP (1)(y).

Under both agendas, the expected total surplus from the last n − j auctions is the same,
namely,

∑m
t=j+1 E(fn−t+1

t ). Hence, we have

m∑

t=j+1

[ER(1)(t) + EP (1)(t)] =
m∑

t=j+1

[ER(2)(t) + EP (2)(t)].
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Therefore,
m∑

t=j+1

ER(1)(t) >

m∑

t=j+1

ER(2)(t)

implies
m∑

t=j+1

EP (1)(t) <
m∑

t=j+1

EP (2)(t),

and consequently α(1)(j + 1) < α(2)(j + 1). As ER(i)(j, m, n) = E(sn−j+1
j ) −

α(i)(j + 1), it follows that in this case ER(1)(j) > ER(2)(j). Hence,

m∑

t=j

ER(1)(t) >

m∑

t=j

ER(2)(t),

as required. ��

We summarize our results in the following theorem.

Theorem 2. For each object j = 1, . . . , m, define rj = δ1(j, n)−δ2(j, n−1)/(n−1).
Then an optimal agenda can be obtained by ordering the auctions in order of non-
increasing rj .

Clearly, this means that one can find an optimal agenda in polynomial time. Moreover,
the only information about the distributions that is required is their first and second
order statistics.

To illustrate Theorem 2, consider the case when the value distributions for two con-
secutive auctions i and j are U [a, a + x] and U [b, b + y], respectively, and x > y.
We have δ1(i, n) = xn−1

n+1 − xn−2
n = 2x

n(n+1) , δ1(j, n) = y n−1
n+1 − y n−2

n = 2y
n(n+1) ,

δ2(i, n) = x
n+1 , δ2(j, n) = y

n+1 . Consequently, δ1(i, n) − δ1(j, n) > 0 if and only
if x > y, and also δ2(i, n) − δ2(j, n) > 0 if and only if x > y. We conclude that if
all values are drawn from uniform distributions the auctions should be run in the order
of non-increasing distribution support size (or, equivalently, non-increasing variance),
whereas the expected value of each object has no effect on the optimal ordering. This
explains why in Example 1 the ordering B, A produced a higher revenue than A, B.

5 Selling a Subset of Items

We have seen that changing the agenda may considerably increase the revenue in a se-
quential auction. However, in some cases this approach is not feasible, since the objects
have to be sold in a fixed order (e.g., they become available one by one and expire
shortly after becoming available). In this case, we can try to increase the revenue by
selling a subset of all available items. This approach is based on the idea that reducing
supply may motivate the bidders to bid more aggressively. In this section, we assume
that the agenda is fixed and consider two ways of deciding which auctions to cancel.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



500 E. Elkind and S. Fatima

5.1 Dynamic Cancellations

As the bidders shade their bids since they expect to profit from the future auctions, it
may happen that in some auction in the series there is at most one strictly positive bid.
In this case, the seller may be tempted to cancel the auction: he receives no revenue
in the current auction anyway, and moreover, by doing so he increases the number of
bidders in subsequent auctions (and hence the expected revenue from these auctions).
In some cases, doing so may even increase the social welfare: when all bidders bid 0,
the object is assigned to a random bidder who may have very little value for it, and there
is a chance that if he is not eliminated now, in the future he will have a very high value
for another object. However, one has to take into account that changing the auction
rules will affect the bidders’ behavior. In particular, if canceling auction j increases the
bidders’ expected profit from the last m − j + 1 auctions, the bidders will shade their
bids more heavily in the first j−1 auctions, and the net impact on the auction revenue is
unclear. We illustrate the changes in the bidders’ strategies with the following example.

Example 2. Consider a sequential auction with 2 items and 3 bidders, where the bid-
ders’ values for each object are distributed as U [0, 1]. It is easy to see that if the second
auction has 2 participants, each bidder’s ex ante expected profit from this auction is 1/6,
whereas if it has 3 participants, the ex ante expected profit is 1/12. Hence, under the
original rules, in the first auction a bidder with value v will bid max{v − α1, 0}, where
α1 = 1/6 is his expected profit from the second auction.

If the seller is allowed to cancel the first auction as long as he gets no profit from it,
the bidder will bid max{v − α2, 0}, where α2 is his expected profit from the second
auction under the new rules. We have α2 = Pc/12 + (1 − Pc)/6, where Pc is the
probability that the first auction is canceled. The quantity Pc can be expressed as a
function of α2: a bidder bids 0 if his value is at most α2, so we have Pc = α3

2 + 3(1 −
α2)α2

2. Combining the expressions for α2 and Pc, we obtain 2α3
2−3α2

2−12α2+2 = 0.
Solving this numerically and taking into account that Pc = 2−12α2 ∈ [0, 1], we obtain
α2 ≈ 0.161 < 1/6. Hence, in this case, by allowing the seller to cancel the first auction,
we increase his expected revenue both in the second auction (since there is some chance
that it will have three bidders instead of two) and in the first auction (since the bidders
expect less profit from the second auction, so they shade less).

The method for computing the bidding strategies described in Example 2 can be gen-
eralized to more than two items and general distributions. However, the bidders’ com-
putational problem becomes quite complex. Moreover, it is not clear if the inequality
α1 > α2 holds in general. Therefore, it is not necessarily the case that the new format
increases the seller’s total revenue. Therefore, in practice, the seller may want to pre-
compute the expected revenue from both formats and pick the better one rather than
assume that canceling non-profitable auctions is always beneficial.

5.2 Static Cancellations

A related, but easier-to-analyze approach is to cancel some auctions in advance based on
their value distributions. For example, if the number of items m is equal to the number
of bidders n, then the last auction will only have one participant who will therefore get
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the item for free. Hence, it is clear that in this case the auctioneer should sell at most
n−1 items. Moreover, even when n > m, it may be profitable for the auctioneer to sell
less than m items.

Example 3. Consider a sequential auction with 3 bidders and 2 objects, where the val-
ues for auction i are drawn from a distribution Fi. Assume for now that in the first auc-
tion all bids are positive (the specific distributions we construct later satisfy this prop-
erty). If both auctions are executed, the seller’s expected revenue is E(s2

2) + E(s3
1) −

[E(f2
2 ) − E(s2

2)]/2. If the seller only sells one object, his expected revenue is E(s3
1).

Hence, it is more profitable to sell one object if 3E(s2
2) < E(f2

2 ).
Consider the probability distribution on [0, 1] whose cumulative density function

is given by Va(x) = xa. It is easy to check that E(f2) =
∫ 1
0 (2ax2a)dx = 2a

2a+1 ,

E(s2) =
∫ 1
0 (−2ax2a + 2axa)dx = 2a2

(a+1)(2a+1) .

We have E(f2)/E(s2) = (a + 1)/a, so for a < 1/2 we have 3E(s2
2) < E(f2

2 ).
Fix a = 1/3, and shift this probability distribution by 1 i.e., consider the distribution
on [1, 2] with probability density function W1/3(x) = V1/3(x − 1). If the probability
distribution for the first object is W1/3(x) and the probability distribution for the second
object is V1/3(x), then in the first auction all bids are positive as required, and canceling
the second auction increases the total revenue. Note also that in this setting canceling
the second auction is more profitable than canceling the first one.

Intuitively, under this distribution, the bidders expect to profit considerably in the sec-
ond auction, and therefore shade heavily in the first auction, while our own profit from
the second auction is relatively small. Therefore, one cannot assume that it is always
profitable to sell at least n − 1 items, where n is the number of bidders.

Consequently, the seller needs to identify the optimal subset of items to sell. Com-
puting the expected revenue for all possible subsets is not feasible, as there are exponen-
tially many of them. While we do not have an exact solution for this problem, in what
follows, we sketch an efficient algorithm that finds an approximately optimal subset
(i.e., one with almost optimal total revenue). Our algorithm is based on dynamic pro-
gramming. Set C = m maxi=1,...,m E(fn

i ). Clearly, C is an upper bound on all partic-
ipants’ profit from the entire series. Fix a parameter ε = 1/N , which corresponds to the
approximation error. For i = 1, . . . , n, j = 1, . . . , m, k = 0, . . . , NC, we fill in the ar-
ray TR(K, i, j). Intuitively, the values of TR(K, i, j) are approximations to the seller’s
maximal expected revenue from the last n−i+1 auctions, assuming that there are j bid-
ders before the start of the ith auction, and Kε ≤

∑m
y=i EP (y, m, n) < (K + 1)ε. The

values of TR(K, i, j) can be computed inductively starting with TR(K, n, j). In the
end, we pick the entry TR(K, 1, j) that corresponds to the maximal feasible revenue.
For reasonable probability distributions, we can bound the error caused by rounding the
winners’ profit to the nearest multiple of ε. We omit the details due to lack of space.

6 Conclusions and Open Problems

We have studied two methods for increasing the revenue of a sequential auction: choos-
ing an optimal agenda, and, for a fixed agenda, identifying an optimal subset of objects
to sell. It would be interesting to see if one can achieve further improvements in total
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revenue by combining these methods, i.e., choosing the subset of objects and then se-
lecting the optimal ordering in which to sell these objects. Another tool for increasing
revenue that should be studied in this context is reserve prices. Also, it would be useful
to identify a large class of distributions for which canceling zero revenue auctions is
guaranteed to increase the total revenue. An interesting special case of our problem is
when all objects have the same value distribution. In this case, the seller simply has to
decide how many objects to sell. Currently, we do not know if in this case it is always
profitable to sell exactly min{m, n−1} items, or there are value distributions for which
the seller may want to sell fewer items.

In many real-life scenarios, some of the assumptions made in this paper may fail to
hold. In particular, in the advertisement scheduling problem described in the introduc-
tion, the bidders are not necessarily symmetric, i.e., different bidders’ valuations for
the same slot can differ even ex ante. Also, the auctioneer may not have full control
over the ordering of the auctions. For example, in a typical TV show, some episodes
have to be screened in a certain order. Unfortunately, as we show in the full version of
this paper [4], in this more general setting the problem of selecting the optimal agenda
becomes NP-complete. This is the case even if we assume that we know each bidder’s
value for each item, all bidders are myopic, i.e., they bid truthfully in each auction, and
the only restriction on the agenda is that some of the items have expiration times. This
hardness result explains why in this paper we chose to focus on the simplified case.
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Abstract. Let G = (V, E) be a graph modeling a network where each
edge is owned by a selfish agent, which establishes the cost for traversing
her edge (i.e., assigns a weight to her edge) by pursuing only her per-
sonal utility. In such a setting, we aim at designing approximate truth-
ful mechanisms for several NP-hard traversal problems on G, like the
graphical traveling salesman problem, the rural postman problem, and
the mixed Chinese postman problem, either of which asks for using an
edge of G several times, in general. Thus, in game-theoretic terms, these
are one-parameter problems, but with a peculiarity: the work load of each
agent is a natural number. In this paper we refine the classic notion of
monotonicity of an algorithm so as to exactly capture this property, and
we then provide a general mechanism design technique that guarantees
this monotonicity and that allows to compute efficiently the correspond-
ing payments. In this way, we show that the former two problems and
the latter one admit a 3/2- and a 2-approximate truthful mechanism,
respectively. Thus, for the first two problems we match the best known
approximation ratios holding for their corresponding centralized versions,
while for the third one we are only a 4/3-factor away from it.

Keywords: Selfish Agents, Graph Traversal Problems, Algorithmic
Mechanism Design, Approximate Truthful Mechanisms.

1 Introduction

Nowadays, physical components of many large communication and transporta-
tion networks are often owned by different economic subjects, which, when asked
to provide a service, tend to act selfishly and to pursue only their personal goals.
On the other hand, from the users’ point of view, there is an increasing demand
for a rational usage of the network resources, meaning that one should know at
each instant – ideally – what is the real marginal contribution that a component
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can offer. Traditionally, when a system-wide goal has to be implemented on the
network, the problem of reconciling this conflict of interests between owners and
users has been exclusively addressed by the subfield of game theory known as
mechanism design. However, more recently, the consciousness that besides eco-
nomic factors, computational complexity and distributed computing issues must
be taken into proper consideration as well, has led up to an increasing involve-
ment in the playground of the computer science community. This resulted in the
emergence of an active research field which is known by today as computational
(or algorithmic) mechanism design [12].

Informally speaking, an algorithmic mechanism design problem can be
thought as a classic well-formulated optimization problem, but with the ad-
ditional complication that part of the input is retained by the selfish agents.
Hence, it turns out that one has to compute efficiently a feasible solution to the
given optimization problem, by incentivizing the agents, through suitable pay-
ments, to disclose to the system their secret data. More formally, a mechanism
is a pair made up of an algorithm for computing a solution, and a specification
of the payments (which is a function of the inputs disclosed by the agents and
of the corresponding computed solution) provided to the agents. A mechanism
is truthful if its payments guarantee that agents are not encouraged to lie.

Since the Internet appears as the ultimate platform where algorithmic mecha-
nism design optimization problems find application, not surprisingly most of the
efforts so far concentrated on designing efficient truthful mechanisms for solving
several communication network problems [8,9,12,14,16]. All these results are ei-
ther based on the classic VCG-mechanisms, which are applicable whenever the
underlying problem is utilitarian,1 or they are based on the results of Archer and
Tardos [1] for the so-called one-parameter problems, where the information held
by each agent can be expressed throughout a single value. In particular, in [1]
it is shown that the truthfulness of a one-parameter mechanism is related to a
property of the underlying algorithm known as monotonicity.2

1.1 Our Results

In this paper, we aim to extend the horizon to a different category of optimization
problems, namely that of graph traversal problems. From a purely optimization
perspective, such a class of problems has been addressed extensively by many
researchers, mainly because of the immediate transportation and logistic appli-
cations. Besides, since of the renewed interest in toll roads, either managed by
governments or private societies, in the last few years the literature devoted to
the so-called road pricing got considerably enriched, with contributions from
both economists and operation researchers (e.g., see [3] and the papers therein
cited).

1 Intuitively, a problem is said to be utilitarian whenever the measure of any feasible
solution coincides with the sum of all the agents’ contributions.

2 Intuitively, an algorithm is said to be monotone whenever it keeps on using an agent
which is part of a solution as soon as her announced cost decreases.
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Along this vein of research, in this paper we study, from an algorithmic mech-
anism design point of view, a set of graph traversal problems in an adversarial
setting in which each agent owns a single edge of the underlying graph. More
formally, let G denote a graph (either directed, undirected, or mixed), with pos-
itive real edge weights established by the agents’ declarations. A walk of length
h on G is a non-empty alternating sequence v0e0v1e1 . . . eh−1vh of vertices and
edges in G such that edge ei connects vertices vi, vi+1, for all i < h. The cost of
a walk is the sum of the weights of the edges belonging to it, as counted with
their multiplicity (notice that vertices and edges can be repeated). If v0 = vh

the walk is closed and is called a tour. A path is a walk where all vertices are
distinct. We will consider the following three classic graph traversal problems:

1. The Graphical Traveling Salesman Problem (GTSP): assuming G is undi-
rected, find a minimum-cost spanning tour of G;

2. The Rural Postman Problem (RPP): assuming G is undirected, and given a
subset R of edges of G, find a minimum-cost tour in G which traverses each
edge of R at least once;

3. The Mixed Chinese Postman Problem (MCPP): assuming G is mixed, find
a minimum-cost spanning tour of G traversing each edge of G at least once.

It is worth noticing that all the above problems can be considered as mean-
ingful variations of the prominent Traveling Salesman Problem (TSP), where the
input instance is a complete graph, and one has to find a minimum-cost Hamil-
tonian cycle of G (i.e., a minimum-cost spanning tour of G where all vertices are
distinct, apart from the initial and the ending vertex). Unlike the TSP, however,
our selected problems do not require the input graph to be complete, and this is
in full accordance with the motivating setting in which each network link must
be physically held by a subject – it would be quite unrealistic to assume the
existence of a link between each pair of vertices of the graph, indeed.

All the above problems are one-parameter, and they are easily seen to be
NP-hard [11,13]. Thus, approximate truthful mechanisms (i.e., approximate
monotone algorithms) need to be developed. To this aim, one generally starts
by looking at a corresponding approximate algorithm for the canonical central-
ized version of the problem, trying to check whether it happens to be (or it can
easily be transformed to become) monotone. Sometimes, this task is hard to be
accomplished, since no general technique is known to establish the monotonicity
of an algorithm, or to monotonize it. This is exactly what happens when deal-
ing with our problems. So, in order to devise a uniform approach to face this
issue, we focus our attention on a quite large class of one-parameter problems,
namely those in which the work load of an agent is an integral number. For these
problems, we first of all refine the classic notion of monotonicity used in [1] to
that of step-integral monotonicity (which conveys the fact that each edge can
be used several times). Then, we develop a general algorithm composition tech-
nique which is capable to preserve step-integral monotonicity whenever the two
composing algorithms satisfy certain easier-to-check monotonicity properties as
explained in more detail in Section 3. The usefulness of our technique is twofold:
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on one hand we simplify the question of designing monotone algorithms, and on
the other hand we provide a way to compute efficiently the payments returned
to the agents.

We regard at this as to the main contribution of the paper, since we foresee
the application of this general technique to other combinatorial optimization
problems whose solution can be constructed in stages. In particular, this tech-
nique can actually be used to address our problems, for which we are then able
to design efficient (in terms of time complexity and approximation ratio) approx-
imate truthful mechanisms. More precisely, as far as the approximation ratios
are concerned, we achieve a factor of 3/2 and 2 for the former two and the latter
of the above problems, respectively. Thus, for the first two problems we match
the best known approximation ratios holding for their corresponding canonical
centralized versions [7], while for the third one we are only a 4/3-factor away
from it [17].

This paper is organized as follows. Section 2 recalls some preliminaries from
mechanism design, while Section 3 describes the general composition technique
which will be used to efficiently solve our problems. Sections 4, 5, 6 describe our
mechanisms for GTSP, RPP, and MCPP, respectively. Due to space limitations,
some of the proof are postponed to the full version of the paper.

2 Preliminaries: Monotonicity and Truthfulness

Algorithmic mechanism design deals with algorithmic problems in a non-
cooperative setting, in which part of the input is owned by selfish agents. As
such agents may lie about their parts of input, they are capable of manipulating
the algorithm. The main task of mechanism design theory is the study of how to
incentivize the agents in order to behave honestly with the algorithm. We will
deal with the case in which each agent controls a single link of a network. We
provide a simplified formalization below, and we refer the interested reader to
[12] for a deeper insight into the topic.

Let G = (V, E) be a graph (either directed, undirected, or mixed). For an
edge e of G owned by a selfish agent ae, we denote by te the private information
held by ae. We call te the (private) type of the agent ae, and we assume that
te represents the real cost incurred by ae for using its link. Each agent has to
declare a (public) bid be > 0 to the mechanism. We denote by t the vector of
private types, and by b the bid profile, namely the vector of all bids. Let b−e

denote the vector of all bids besides be; the pair (b−e, be) will denote the bid
profile b (for the sake of simplifying the notation, we will omit the parenthesis
whenever (b−e, be) appears as the only argument of a function).

For a given optimization problem defined on G, let F denote the corresponding
set of feasible solutions. For each feasible solution x ∈ F , some measure function
μ(x, t) is defined, which depends on the true types. A mechanism is a pair
M = 〈A(I, b), p(b)〉, where A(I, b) is an algorithm that, given an instance I
defined on G and given the agents’ bids, returns a solution, and p(b) is a scheme
which describes the payments provided to the agents. Sometimes, we will simply
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write A(b) (resp., A) whenever I (resp. I and b) is clear from the context. The
time complexity of a mechanism corresponds to the time needed to compute A
and p. For each solution x, ae is supposed to incur in a cost for participating in
x, and this is expressed by a valuation function νe(te, x). The utility of an agent
is defined as the difference between the payment provided by the mechanism and
its cost w.r.t. the computed solution. Each agent tries to maximize its utility,
while an exact mechanism aims to compute a solution which extremizes (i.e.,
either minimize or maximize) μ(x, t) without knowing t directly. Similarly, if we
denote by ε(σ) a positive real function of the input size σ, an ε(σ)-approximation
mechanism returns a solution whose measure comes within a factor ε(σ) from
the optimum. In a truthful mechanism this tension between the agents and the
system is resolved, since each agent maximizes its utility when it declares its
type, regardless of what the other agents do.

A mechanism design problem is called utilitarian if its measure function sat-
isfies μ(x, t) =

∑
e∈E ν(te, x). For utilitarian problems, Vickrey, Clarke, and

Groves discovered a class of truthful mechanisms, i.e., the VCG-mechanisms.
Basically, VCG-mechanisms handle arbitrary valuation functions, but only util-
itarian problems. In [1], Archer and Tardos have shown how to design truthful
mechanisms for non-utilitarian problems under the assumption that the problem
is one-parameter. A problem is said one-parameter if (i) the type of each agent ae

can be expressed as a single parameter te ∈ R, and (ii) each agent’s valuation has
the form νe(te, x) = te we(x), where we(x) is called work load for agent ae in x,
i.e., some amount of work assigned by the mechanism’s algorithm that depends
on the computed solution x. A well-studied class of one-parameter problems is
that of the so called binary demand (BD) problems [10], in which for each agent
ae, its work load can be either 0 or 1. Given a solution x (resp., an algorithm
A), we will denote by w(x) (resp., w(A)) the work load vector associated with
x (resp., returned by A). Recall that an algorithm A is said to be monotone if,
for all ae, and any fixed b−e, we(A(b−e, be)) is a non-increasing function of be.
We sometimes use we(b−e, be) instead of we(A(b−e, be)), when the algorithm is
clear from the context. In [1], it is shown that a mechanism for a one-parameter
problem is truthful if and only if it makes use of a monotone algorithm, and the
payment provided to any agent ae is equal to

pe(b−e, be) = he(b−e) + be we(A(b)) −
∫ be

0
we(A(b−e, z)) dz, (1)

where he(b−e) is an arbitrary function independent of be.
Moreover, in [1] it is shown that if

∫ +∞
0 we(b−e, z) dz < +∞ for all ae and

all b−e, then we can use the following payment scheme to obtain a truthful
mechanism guaranteeing that the agents’ utilities are always non-negative:

pe(b−e, be) = be we(A(b)) +
∫ +∞

be

we(A(b−e, z)) dz. (2)
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3 The General Composition Scheme

All the algorithms presented in this paper can be naturally decomposed into
two simpler ones. In this section we state some general results which will allow
us to prove certain properties of a composed algorithm, descending from those
of the two composing algorithms. Quite naturally, for all the problems we are
going to deal with, we assume that F �= ∅. Moreover, we assume that no agent is
indispensable, namely that for each agent there always exists a feasible solution
not depending on it. These two assumptions will be reflected by the connectivity
properties that G needs to satisfy, depending on the specific problem. Finally, for
each of the proposed algorithms, we tacitly assume that at each step a suitable
tie-breaking rule is applied, if needed, in order to ensure the monotonicity.

Given a solution x, let us assume that the cost incurred by any agent ae in
x is equal to its type te times the number of occurrences of e in x. It is easy
to see that, under this assumption, our problems fall within the class of the
one-parameter problems, since the number of occurrences of e in x is exactly
the work load we(x), and we(x) = 0 if e is not part of x. In general, we say
that a solution x does not depend on e when we(x) = 0. However, notice that
in the MCPP, for every edge e and any feasible solution x, from the definition
of the problem, e must occurs in x at least once. The same happens for every
edge e ∈ R in the RPP. In these cases, we say that a solution x does not depend
on e if we(x) = 1. Moreover, when we compute the integral in (2) for e, to
avoid technicalities, we do not count the first occurrence in the work load we(·),
i.e., we take we(·) decremented by 1. This means that we implicity assume that
the mechanism does not care about the cost incurred by ae for the constrained
occurrence. Thus, we consider one-parameter, utilitarian problems where the
work load of each agent is a natural number.

Definition 1. An algorithm A of a one-parameter mechanism is said to be Step-
Integral Monotone (SIM) if A is monotone, and the work load of each agent
belongs to N.

For any SIM algorithm A, and any fixed b−e, we define the thresholds for ae w.r.t.
A to be the discontinuity points of the function fe(z) := we(A(b−e, z)), and
denote them, sorted in increasing order, by θ1, θ2, . . . , θh. Notice that computing
the integral in (1) and (2) essentially consists in determining the thresholds. Also
note that for a BD problem, a monotone algorithm defines a unique threshold,
and, for an agent ae, the payment pe(b) is exactly that threshold value if ae owns
a selected edge, and 0 otherwise. Basically this threshold defines the supremum
value that ae is allowed to declare to be part of a solution.

We say that A is a composition of algorithms A1 and A2 := A2(I(A1), b) (and
we will write A = A2 ◦ A1) if A adheres to the scheme listed in Algorithm 1.
Notice that CreateInstance is a generic procedure which uses the output of the
first algorithm to generate an instance of the second one. Finally, we say that A
is stable if, for any ae and for any fixed b−e, ∀ x, y ∈ R, we have

we(A(b−e, x)) = we(A(b−e, y)) ⇐⇒ A(b−e, x) = A(b−e, y).
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Algorithm 1. A = A2 ◦ A1

1: let x1 be the solution returned by A1;
2: I(A1) = CreateInstance(x1);
3: let x2 be the solution returned by A2(I(A1), b);
4: let x be a solution built from x1 and x2 such that we(x) = we(x

1) + we(x
2), ∀ae;

5: return x.

A first useful consequence of the proposed decomposition scheme, is that the
SIM property of the composed algorithm is guaranteed whenever the composing
algorithms satisfy suitable properties, as proved in the following theorem.

Theorem 1. Let A1 be a stable SIM algorithm for a one-parameter problem,
and let A2 be a monotone algorithm for a BD problem. Then A = A2 ◦ A1 is a
SIM algorithm.

Proof. It is clear that work loads assigned by A are natural numbers. It remains
to prove the monotonicity property. Let b−e be fixed, and let be and b′e be
such that b′e ≥ be. We have to prove that we(A(b−e, be)) ≥ we(A(b−e, b

′
e)). Let

then I := I(A1(b−e, be)) and I ′ := I(A1(b−e, b
′
e)). By definition of A, we have

we(A(b−e, be)) = we(A1(b−e, be)) + we(A2(I, (b−e, be))), with we(A1(b−e, be)) ≥
we(A1(b−e, b

′
e)) holding from the monotonicity of A1. We have 2 cases:

1. we(A1(b−e, be)) = we(A1(b−e, b
′
e)): Then, since A1 is stable, it is I = I ′,

and then from the monotonicity of A2 we have we(A2(I, (b−e, be))) ≥
we(A2(I ′, (b−e, b

′
e))), hence the claim follows.

2. we(A1(b−e, be)) > we(A1(b−e, b
′
e)): Then, since we(A2(I ′, (b−e, b

′
e))) ≤ 1,

the claim follows.
��

We now concentrate on the computation of payments, and we provide a general
method to compute in polynomial-time the thresholds for a certain class of
problems.

Theorem 2. Let A = A2 ◦ A1 be a polynomial-time algorithm of a one-
parameter mechanism, where A1 is a stable SIM algorithm for a one-parameter
problem, and A2 is a monotone algorithm for a BD problem. If there exist
polynomial-time algorithms for computing the thresholds w.r.t. A1 and A2, re-
spectively, then the thresholds for any agent ae w.r.t. A can be computed in
O(Tp1

e
+h(TCI +Tp2

e
)) time, where h is the number of thresholds for ae w.r.t. A1,

TCI is the time required by CreateInstance, and Tp1
e

and Tp2
e

is the time required
for computing the thresholds for ae w.r.t. A1 and A2, respectively.

Proof. We provide a polynomial-time procedure to compute thresholds w.r.t. A.
The proof of its correctness is quite simple and we omit it. Let b−e be fixed.
Let θ1, . . . , θh be the thresholds for ae w.r.t. A1, and let θ0 = 0, θh+1 = ∞.
For 1 ≤ i ≤ h, we denote by ωi the work load assigned by A1 to ae, when
θi−1 < be < θi.
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We now show how to compute thresholds of ae. A pre-threshold is a pair (θ, ω),
where θ is a threshold value and ω is the corresponding work load value. The
following procedure computes a list of pre-thresholds:

1. let L be the list of pairs (θi, ωi), ∀ 1 ≤ i ≤ h, ordered according to θi’s;
2. ∀ 1 ≤ i ≤ h + 1:

(a) let I(A1) be the instance computed by CreateInstance(A1(b−e, z)),
where θi−1 < z < θi (notice that since A1 is stable, the same instance
will be computed for any z in the interval between θi−1 and θi);

(b) let βi be the threshold for ae w.r.t. A2 on the instance I(A1);
(c) compare βi and (θi−1, θi):

i. case βi < θi−1: nothing happens;
ii. case θi−1 < βi < θi: insert (βi, ωi + 1) in L (respecting the order);
iii. case θi ≤ βi: update (θi, ωi) to (θi, ωi + 1).

Notice that L computed as above, is sorted in increasing order w.r.t. the pairs’
first value, and in non-increasing order w.r.t. the pairs’ second value. Thresholds
of A are then obtained by selecting the maximum threshold value in each set
of pre-thresholds having the same work load value. The bound on the running
time follows immediately. ��

The above result can be enhanced as soon as the algorithm A1 solves optimally a
one-parameter problem which is also utilitarian. Indeed, in this case the following
lemma can be proved (details will appear in the full version of the paper):

Lemma 1. Given a one-parameter and utilitarian problem, solvable in O(TA)
polynomial time by a given stable SIM algorithm A, the thresholds θ1, θ2, . . . , θh

w.r.t. A of any agent are computable in O(h TA) time.

Finally, combining results of Lemma 1 and Theorem 2, we obtain the following
main result:

Theorem 3. Let A = A2 ◦ A1 be an algorithm of a one-parameter mechanism
having O(TA) polynomial running time, where A1 is a stable SIM algorithm for
solving optimally a one-parameter utilitarian problem, and A2 is a monotone
algorithm for a BD problem running in O(TA2 ) time. If the threshold of any
agent ae w.r.t. A2 can be computed in O(TA2 ) time, then the thresholds for ae

w.r.t. A can be computed in O(h TA) time, where h is the number of thresholds
for ae w.r.t. A1.

4 An Approximate Mechanism for the GTSP

Given an undirected graph G = (V, E), with n = |V |, m = |E|, we consider
the problem of computing a minimum-cost spanning tour of G. This problem is
utilitarian and is equivalent to the classical TSP for the metric instances. Thus
we can use for our problem a modified version of Christofides’s algorithm [4],
where a path matching [2] instead of a matching takes place, and where we do not
shortcut repeated vertex occurrences. Such modifications allow to prove easily
algorithm’s monotonicity, and do not change its approximation ratio.
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1. Compute a minimum spanning tree (MST) T of G;
2. Let U ⊆ V be the set of odd-degree vertices in T , and let D be the complete

graph on U such that, ∀u, v ∈ U , edge {u, v} has weight equal to the cost
dG(u, v) of a shortest path in G between u and v;

3. Path matching (PM) algorithm: Compute a minimum-cost perfect matching
M of D, and let F be the expansion of M , i.e., the multiset composed
by taking, for each {u, v} ∈ M , the edges forming the shortest path in G
between u and v;

4. Form an Eulerian multigraph H = (V, E′) on G consisting of the edges of T
and the edges in F , and compute an Eulerian tour x of it;

5. Return x.

Notice that our algorithm is a composition (as defined in Section 3) of an
algorithm for the MST and the PM algorithm. It is easy to prove that it has
approximation ratio 3/2 and that its time complexity is dominated by the O(n3)
time required to compute a minimum-cost perfect matching on a complete graph.
It is easy to see that any classic MST algorithm is monotone, BD, and can be
made stable through suitable tie-breaking rules. Since the expansion of M forms
an edge-disjoint forest in G (see [2]), it is straightforward to see that the PM
algorithm is BD (notice that this implies that the work loads will be at most 2).
Then to prove the step-integral monotonicity of our algorithm, we use Theorem 1
after showing that PM is a monotone algorithm.

Lemma 2. The PM algorithm is monotone.

Proof. Let us fix a graph G and a set of vertices U ⊆ V as the input of the PM
algorithm. We denote the cost of a set S of edges of G when the bid profile is b
by c(b, S) =

∑
e∈S be. Let us consider a bid profile b given as input to PM, and

let F be the corresponding computed solution. Assume that e ∈ E \F is an edge
not selected as part of the output. For b′e > be, let F ′ be the solution computed
by PM when the input bid profile is b′ = (b−e, b

′
e). We have to show that e /∈ F ′.

For the sake of contradiction, assume that e ∈ F ′, which implies that
c(b, F ′) < c(b′, F ′). Since PM computes an optimal solution, c(b, F ) ≤ c(b, F ′),
and since e /∈ F , it is c(b′, F ) = c(b, F ). Then we have c(b′, F ) < c(b′, F ′), which
is a contradiction since F ′ is the output of PM when the bid profile is b′. ��

Now we show how to compute thresholds w.r.t. the PM algorithm. Given a bid
profile b, and U ⊆ V , let F be the solution computed by the PM algorithm in
b, and assume that e ∈ F is a selected edge. We denote by F¬e the solution
returned by the PM algorithm in G−e. It is easy to see that the threshold for ae

is c(b, F¬e)− c(b, F )+ be, which is clearly computable with the same asymptotic
time bound as PM. Similarly, the thresholds for ae w.r.t. the MST algorithm can
be computed by running the MST algorithm on G − e. Then, from Theorem 3,
and observing that there are at most O(n) agents in a feasible solution, we have
the following:

Theorem 4. There exists an O(n4) time 3/2-approximate truthful mechanism
for the GTSP in which each edge is owned by a distinct selfish agent.
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5 An Approximate Mechanism for the RPP

In the RPP, we are given an undirected graph G = (V, E), with n = |V |, m = |E|,
and a set R ⊆ E, with k = |R|. We are required to compute a minimum-cost
tour in G traversing each edge of R at least once.

As observed in [7] this problem has a 3/2-approximation algorithm which is a
minor modification of Christofides’s one. Similarly, our algorithm for the GTSP
can be adapted to this problem, still giving a 3/2-approximation in O(n3) time.
We observe that in this case edge work loads may be greater than 2.

1. Let G′ be the complete graph on the vertex set V ′ = {v ∈ V | ∃e ∈ R∧v ∈ e},
where edge e = {u, v} has weight equal to be if e ∈ R, and to dG(u, v)
otherwise, ∀u, v ∈ V ′. Compute a minimum-cost subgraph C = (V ′, R′) of
G′ such that C is connected and R ⊆ R′. Build the multiset of edges x1 as
the union of R and of the edges forming a shortest path in G between u and
v, for each {u, v} ∈ R′ \ R;

2. Let U ′ ⊆ V ′ be the set of odd-degree vertices in C, and let D be the complete
graph on U ′, where edge {u, v} has weight dG(u, v), ∀u, v ∈ U ′;

3. (PM algorithm): Compute a minimum-cost perfect matching M on D. Build
the multiset of edges x2 as the union, ∀{u, v} ∈ M , of the edges forming a
shortest path in G between u and v;

4. Form the Eulerian multigraph induced by edges in x1 and x2, and compute
an Eulerian tour x of it;

5. Return x.

To prove that the algorithm is SIM, it suffices to show the following:

Lemma 3. Step 1 of the above algorithm is a stable SIM algorithm.

Proof. To prove that Step 1 is a SIM algorithm, it suffices to show that is
monotone. We first observe that any agent holding an edge in R has work load
1. Let e be an edge of E \R. Then e belongs to some shortest paths in G between
pairs of vertices in V ′. If ae increases its bid, Step 1 computes a new solution x̂1

which retains all paths in x1 not containing e, but where some of the paths of
x1 containing e may be replaced by an equal number of shortest (with respect
to the new bid profile) paths. Such new paths do not contain e, otherwise they
would be cheaper than the previous ones also with respect to the old bid profile.
Then the work load of ae in x̂1 is not greater than the one in x1.

If ae’s load in x̂1 is the same as in x1, then x1 has the same cost as x̂1 w.r.t.
the new profile. Therefore the tie-breaking rules imply the stability of Step 1. ��
Then by Lemma 2 and Theorem 1 we have that our algorithm is SIM.

Since we are able to compute the thresholds w.r.t. the PM algorithm (see
Section 4), in view of Theorem 2 to compute payments for the complete algorithm
we only have to find the thresholds of the algorithm in Step 1. To this aim, we
use the method given in Lemma 1. Referring to such algorithm, we observe that
for each e ∈ R, the work load of ae is at least 1. We remind that, for such edges,
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we implicitly decrease by 1 the work load when computing the integral appearing
in the payment scheme (2), in order to guarantee that it has a finite value.

To analyze the time complexity of the mechanism, we first observe that the
time complexity of the algorithm is dominated by the PM algorithm on a com-
plete graph with 2k vertices, which requires O(k3) time, and by the compu-
tation of G′. The latter requires to compute the all-pairs shortest paths be-
tween 2k vertices of G, which – depending on k – can be either accomplished
in O(nm log α(m, n)) time by computing the all-pairs distances of G [15], or in
O(k(m + n log n)) time by k executions of Dijkstra’s algorithm. To determine
the time complexity of thresholds computation, we then use the result of Theo-
rem 3, by noticing that for each agent ae it is we(x1) ≤ k, and that there are at
most O(n+k) distinct agents in a feasible solution. Thus, the following theorem
summarizes the results of this section:

Theorem 5. There exists an O((n+k) k (min{nm log α(m, n), k(m+n log n)}+
k3)) time 3/2-approximate truthful mechanism for the RPP in which each edge
is owned by a distinct selfish agent.

6 An Approximate Mechanism for the MCPP

In the Chinese postman problem, we are given a graph G and we are required
to compute a minimum-cost spanning tour of G traversing each edge at least
once. The problem was shown to be efficiently solvable by Edmonds [5] and
by Edmonds and Johnson [6] in the case where the input graph is either undi-
rected or directed, respectively. On the other hand, when a mixed input graph
is permitted, we have the MCPP, whose decision version has been shown to be
NP-complete by Papadimitriou [13].

In search for an approximate truthful mechanism for the MCPP, we restrict
our attention to the algorithm Mixed2, which was originally developed in [7], and
for which we can prove its adherence to our scheme, and therefore its monotonic-
ity. This algorithm was shown to have an approximation ratio of 2. Notice that
algorithms achieving better approximation ratios are known in the literature
(see [7] and [17]), but unfortunately they are provably not monotone. Algorithm
Mixed2 takes as input a mixed graph G = (V, E, A), where E is the set of undi-
rected edges, and A is the set of directed edges, with n = |V |, m = |E| + |A|.
Following a common strategy to attack the MCPP, the algorithm starts by in-
serting in G a suitable multiset of additional directed edges, which are either
obtained by duplicating a directed edge of G, or by replacing an undirected edge
of G with a directed one. These additional edges can be efficiently found by solv-
ing a minimum-cost flow (MCF) problem on an auxiliary network of n vertices
and Θ(m) edges. The details on the correspondence of Mixed2 to our scheme
and the proof of the following result will appear in the full version of the paper:

Theorem 6. There exists an O(m|A|(TMCF + n3)) time 2-approximate truthful
mechanism for the MCPP in which each edge is owned by a distinct selfish agent,
where TMCF = O(m2 log n + mn log2 n) is the time required to compute a MCF
(see [18]) on the auxiliary network.
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Abstract. A common modeling assumption in the realm of cost sharing
is that players persuade each other to jointly submit false bids if none of
the members of such a coalition loses utility and at least one gains. In
order to counteract this kind of manipulation, the service provider could
employ group-strategyproof (GSP) mechanisms that elicit truthful bids.
The basically only general technique for the design of GSP mechanisms
is due to Moulin. Unfortunately, it has limitations with regard to budget-
balance (BB) and economic efficiency (EFF).

In this work, we introduce a slight modification of GSP that we call
CGSP, allowing us to achieve vastly better results concerning BB and
EFF. In particular, we give new CGSP mechanisms that we call “egalitar-
ian” due to being inspired by Dutta and Ray’s (1989) “egalitarian solu-
tion”. We achieve 1-BB for arbitrary costs and additionally 2Hn-EFF for
the very natural and large class of subadditive costs. Egalitarian mecha-
nisms are also acyclic mechanisms, as introduced by Mehta et al. (2007).
Thus far, acyclic was known only to imply weak GSP, yet we show that
it is already sufficient for the strictly stronger CGSP.

Finally, we present a framework and applications on how to cope with
computational complexity.

1 Introduction and Model

1.1 Motivation

We study cost-sharing problems where there is a set of players having (binary)
demand for some common service, and the task is to determine which subset S of
players to serve and how to distribute the incurred cost C(S). We follow the line
of studying this problem from the incentive-compatibility angle, where decisions
can solely be based on valuations that the players report for the service. This
problem is fundamental in economics and has a broad area of applications, e.g.,
sharing the cost of public infrastructure projects, distributing volume discounts,
or allocating development costs of low-volume built-to-order products.

In the standard model, a service provider takes the role of offering the common
service to the n players and hence has to solve the cost-sharing problem. While
� This work was partially supported by the IST Program of the European Union under

contract number IST-15964 (AEOLUS).
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the valuations reported by the players are binding, they cannot be assumed to
be truthful. We refer to them as bids in the following. The decision-making of
the service provider is governed by a (commonly known) cost-sharing mechanism
that specifies the set of served players and their respective payments for any com-
bination of bids. The main difficulty lies in achieving group-strategyproofness, i.e.,
designing the mechanism such that players communicate their true valuations
out of self-interest, even if they could form coalitions.

Apart from being group-strategyproof, there are many more desirable prop-
erties for a cost-sharing mechanism. Most naturally, it has to ensure recovery
of the provider’s cost as well as competitive prices in that the generated sur-
plus is always relatively small. This constraint is referred to as budget-balance.
Moreover, there should be a reasonable trade-off between the provider’s cost
and the valuations of the excluded players, meaning that the mechanism is eco-
nomically efficient. Finally, practical applications demand for polynomial-time
computability (in the size of the problem).

The essentially only known general technique for the design of group-strategy-
proof mechanisms is due to Moulin [15]. Unfortunately, it has severe limitations
with respect to the former objectives. The pivotal point of this paper is slightly
altering the group-strategyproof requirement to greatly improve performance.

1.2 The Model

Notation. For n ∈ N0, let [n] := {1, . . . , n} and [n]0 := [n] ∪ {0}. Given x, y ∈
Q

n and S ⊆ [n], let xS := (xi)i∈S ∈ Q
|S| and x−S := x[n]\S . Let (x−S , yS) ∈ Q

n

denote the vector where the components in x for S are replaced by the respective
ones from y. For k ∈ [|S|], we define MINk S as the set of k smallest elements in
S. Let Hn =

∑n
i=1

1
i be the n-th harmonic number. By convention, the vector

of the players’ true valuations is always v ∈ Q
n, whereas an actual bid vector is

denoted b ∈ Q
n.

A cost-sharing problem is specified by a cost function C : 2[n] → Q≥0 mapping
each subset of the n ∈ N players to the cost of serving them. In the following, we
first focus on incentive-compatibility. Afterwards, we relate cost-sharing mecha-
nisms to the cost of serving the selected players.

Definition 1. A cost-sharing mechanism M = (Q × x) : Q
n → 2[n] × Q

n is a
function where Q(b) ∈ 2[n] is the set of players to be served and x(b) ∈ Q

n is
the vector of cost shares.

All mechanisms are required to fulfill three standard properties. For all b ∈ Q
n:

– No positive transfers (NPT): Players never get paid, i.e., xi(b) ≥ 0.
– Voluntary participation (VP): Players never pay more than they bid and are

only charged when served, i.e., if i ∈ Q(b) then xi(b) ≤ bi, else xi(b) = 0.
– Consumer sovereignty (CS): For any player i ∈ [n] there is a threshold bid

b+
i ∈ Q≥0 such that i is served if bidding at least b+

i , regardless of the other
players’ bids; i.e., there is a b+

i ∈ Q≥0 such that if bi ≥ b+
i then i ∈ Q(b).

Note that VP and NPT imply that players may opt to not participate (by
submitting a negative bid). Together with CS this is referred to as strict CS.
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We assume players’ utilities ui : Q
n → Q to be quasi-linear, i.e., ui(b) := vi −

xi(b) if i ∈ Q(b) and 0 otherwise. Under this premise and with rational players,
mechanisms should elicit truthful bids (b = v) even if collusion is feasible:

Definition 2. A mechanism is group-strategyproof (GSP) if for all true valu-
ation vectors v ∈ Q

n and coalitions K ⊆ [n] there is no bid vector b ∈ Q
n with

b−K = v−K such that ui(b) ≥ ui(v) for all i ∈ K and ui(b) > ui(v) for at least
one i ∈ K.

A mechanism is weakly GSP (WGSP) if the inequalities in Definition 2 are
required to be strict for all i ∈ K.

Cost shares selected by a GSP mechanism only depend on the set of served
players and not on the bids [15]. This gives rise to the following definition:

Definition 3. A cost-sharing method is a function ξ : 2[n] → Q
n
≥0 that maps

each set of players to a vector of cost shares.

Clearly, every GSP mechanism (Q×x) induces a unique cost-sharing method ξ,
by setting ξ(S) := x(b) where bi < 0 if i /∈ S and bi = b+

i if i ∈ S. A cost-sharing
method ξ is cross-monotonic if ξi(S∪T ) ≤ ξi(S) for all S, T ⊆ [n] and all i ∈ [n].
In his seminal work [15], Moulin gave the straightforward mechanism Moulinξ

that is GSP for any cross-monotonic ξ. Moulinξ repeatedly rejects players whose
bids are below their current cost share until all remaining players can afford
their payments. For any GSP mechanism M with cross-monotonic cost shares ξ,
Moulinξ produces the same utility for each player as M . Thus, we call any GSP
mechanism with cross-monotonic cost shares a Moulin mechanism.

Avoiding coalitional cheating alone is clearly not sufficient, as it does not yet
relate to the cost of serving the selected players. Typically, costs stem from solu-
tions to a combinatorial optimization problem and are defined only implicitly. In
this work, C(S) is the value of a minimum-cost solution for the instance induced
by the player set S ⊆ [n]. There are two major obstacles to recover this cost
exactly: First, computing the optimal cost C(S) may take exponential time, and
the service provider therefore resorts to an approximate solution with actual
cost C′(S) ≥ C(S). Second, already the GSP requirement places restrictions
on the possible cost-shares. Nonetheless, the total charge of a mechanism (and,
analogously, of a cost-sharing method) should be reasonably bounded.

Definition 4. A mechanism M = (Q × x) is β-budget-balanced (β-BB, for
β ≥ 1) if for all b ∈ Q

n : C′(Q(b)) ≤
∑

i∈Q(b) xi(b) ≤ β · C(Q(b)).

As a quality measure for the choice of a set of served players, we use optimal
and actual social costs SC v,SC ′

v : 2[n] → Q≥0, respectively, where SC v(S) :=
C(S) +

∑
i∈[n]\S max{0, vi} and SC ′

v(S) := C′(S) +
∑

i∈[n]\S max{0, vi}. The
cost incurred by the served players and the valuations of the rejected players
should be traded off as good as possible:

Definition 5. A mechanism M = (Q × x) is γ-efficient (γ-EFF, for γ ≥ 1) if
for all true valuations v ∈ Q

n : SC ′
v(Q(v)) ≤ γ · minT⊆[n]{SCv(T )}.

Often, costs exhibit a special structure that can be exploited. In this work, we
focus on subadditive costs where for all S, T ⊆ [n] : C(S) + C(T ) ≥ C(S ∪ T ).
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1.3 Related Work

The essentially only general technique for the design of GSP mechanisms consists
of finding a cross-monotonic cost-sharing method ξ for use with Moulinξ [15].
Yet, already achieving good BB is challenging for many problems [13].

The notion of social cost is due to Roughgarden and Sundararajan [18], who
initiated a sequence of works in which Moulin mechanisms with not just good BB
but also reasonable EFF were given [19,3,5,11]. However, cross-monotonic cost
shares have limitations that hence no Moulin mechanism can overcome [13,3,18].
Thus, there is great need for alternatives. Acyclic mechanisms, as introduced by
Mehta et al. [14], are one alternative framework that performs better with respect
to BB and EFF. Yet, acyclic mechanisms are not necessarily GSP but only known
to be WGSP. Non-Moulin GSP mechanisms were given by Bleischwitz et al. [2];
yet only for a limited scenario with symmetric costs.

Besides optimizing BB and EFF, several works have put efforts into char-
acterization results that help understanding the fundamentals of cost sharing
[15,13,17]. On the negative side, long-standing results [10] imply that, in gen-
eral, mechanisms cannot fulfill GSP, 1-BB, and 1-EFF all at once. In fact, already
for symmetric cost functions, there are in general no GSP, 1-BB mechanisms [2].

For previous results on the makespan cost-sharing problem (costs stem from
a schedule for the selected players’ jobs) see Table 1.

1.4 Contribution

We introduce the new behavioral assumption that coalitions do not form if some
member would lose service. Yet, coalitions do already form if at least one player
wins the service. Being reminded of collectors, we call resistance against collective
collusion in the new sense group-strategyproof against collectors (CGSP).

– In Section 2, we give the formal definition of CGSP and show that it is strictly
stronger than WGSP but incomparable to GSP. Moreover, we prove that –
contrary to WGSP – any CGSP mechanism induces unique cost-shares.

– In Section 3, we give an algorithm for computing CGSP mechanisms that we
call “egalitarian” due to being inspired by Dutta and Ray’s [7] “egalitarian
solutions”. We achieve 1-BB for arbitrary costs and additionally 2Hn-EFF
for the very natural (and rather large) class of subadditive costs.

– In Section 4, we show that our egalitarian mechanisms are a subclass of
acyclic mechanisms and that all acyclic mechanisms are CGSP.

– In Section 5, we present a framework for coping with the computational
complexity of egalitarian mechanisms. Besides the use of approximation al-
gorithms, the key idea here are “monotonic” cost functions that must not
increase when replacing a player by another one with a smaller number.

– In Section 6, we give applications that underline the power of our new ap-
proach. For makespan cost-sharing problems, our results are given in Table 1.

Omitted proofs are given in the extended version of this paper.
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Table 1. BB and EFF guarantees of best known polynomial-time mecha-
nisms for makespan cost-sharing problems

GSP mechanisms CGSP mechanisms
Problem from BB EFF1 BB EFF

general [1] 2d Ω(log n) 2 4Hn

identical machines2 [1] 2m
m+1 Ω(n)

�
1 + ε 2(1 + ε)Hn

�
[3] 2m−1

m
Hn + 1 4

3 − 1
3m

2( 4
3 − 1

3m
)Hn

identical jobs [2]
√

17+1
4 Ω(log n) 1 2Hn

n, m, d: number of jobs, machines, and different processing times, respectively
1 Ω(n) is due to [3], Ω(log n) follows from the instance with n identical

jobs and machines where v = ( 1
i

− ε)
n

i=1.
2 CGSP Mechanisms: Upper result based on PTAS with running time ex-

ponential in 1
ε
, lower result achieved with practical algorithm

2 Collectors’ Behavior

In the demand for group-strategyproofness lies an implicit modeling assumption
that is common to most recent works on cost-sharing mechanisms: First, a player
is only willing to be untruthful and join a coalition of false-bidders if this does
not involve sacrificing her own utility. Second, a coalition always requires an
initiating player whose utility strictly increases.

Clearly, there are other reasonable behavioral assumptions on coalition forma-
tion. We introduce and study the following: First, besides not giving up utility,
a player would not sacrifice service, either. (Although her utility is zero both
when being served for her valuation and when not being served.) Second, it is
sufficient for coalition formation if the initiating player gains either utility or
service. While we consider this behavior very human, it especially reminds us of
collectors. We hence denote a mechanism’s resistance against coalitions in this
new sense as group-strategyproof against collectors.

Definition 6. A mechanism is group-strategyproof against collectors (CGSP)
if for all v ∈ Q

n and K ⊆ [n] there is no b ∈ Q
n with b−K = v−K such that

1. ui(b) ≥ ui(v) and i /∈ Q(v) \ Q(b) for all i ∈ K and
2. ui(b) > ui(v) or i ∈ Q(b) \ Q(v) for at least one i ∈ K.

We remark that CGSP in a model with quasi-linear utilities is equivalent to GSP
in a changed model where a preference of being served for the price of valuation
over not being served is internalized in the utilities. To illustrate the interrela-
tion between CGSP and GSP, we introduce a property which is a relaxation of
both, called weakly group-strategyproof against collectors (WCGSP). Here, (2.)
of Definition 6 is replaced by “ui(b) > ui(v) for at least one i ∈ K”.
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Lemma 1. The following implications hold.

GSP =⇒
WCGSP =⇒ WGSP

CGSP =⇒

We remark that Theorem 5 will imply that Moulinξ is both GSP and CGSP.
Interestingly, already WCGSP is sufficient for a mechanism to induce unique
cost shares:

Theorem 1. Let M = (Q × x) be a mechanism that satisfies WCGSP. Then,
for any two b, b′ ∈ Q with Q(b) = Q(b′), it holds that x(b) = x(b′). This result
holds even if we restrict our model to non-negative bids and only require CS.

The proof of Theorem 1 uses ideas from an analogous result in [15]. However,
Theorem 1 is stronger since GSP and strict CS are relaxed to WCGSP and
CS. Conversely, WGSP mechanisms do not always induce (unique) cost-sharing
methods, even if we demand 1-BB:

Lemma 2. For any non-decreasing cost function C : 2[3] → Q≥0, there is a
WGSP and 1-BB mechanism MC = (Q×x) such that there are bids b, b′ ∈ Q>0
with Q(b) = Q(b′), but x(b) 	= x(b′).

3 Egalitarian Mechanisms

Egalitarian mechanisms borrow an algorithmic idea proposed by Dutta and
Ray [7] for computing “egalitarian solutions”. Given a set of players Q ⊆ [n],
cost shares are computed iteratively: Find the most cost-efficient subset S of
the players that have not been assigned a cost share yet. That is, the quotient of
the marginal cost for including S divided by |S| is minimal. Then, assign each
player in S this quotient as her cost share. If players remain who have not been
assigned a cost share yet, start a new iteration.

Before getting back to most cost-efficient subsets in Section 3.2, we generalize
Dutta and Ray’s idea by making use of a more general set selection function σ
and price function ρ. Specifically, let Q ⊆ [n] be the set of players to be served.
For some fixed iteration, let N � Q be the subset of players already assigned a
cost-share. Then, σ(Q, N) selects the players S ⊆ Q \ N who are assigned the
cost share ρ(Q, N). We require σ and ρ to be valid :

Definition 7. Set selection and price functions σ and ρ are valid if, for all
N � Q, Q′ ⊆ [n]:

1. ∅ 	= σ(Q, N) ⊆ Q \ N ,
2. Q′ ⊆ Q and σ(Q, N) ⊆ Q′ =⇒ σ(Q, N) = σ(Q′, N) and ρ(Q, N) = ρ(Q′, N),
3. Q′ ⊆ Q =⇒ ρ(Q, N) ≤ ρ(Q′, N),
4. 0 ≤ ρ(Q, N) ≤ ρ(Q, N ∪ σ(Q, N)).

Based on valid σ and ρ, we define Egalσ,ρ : Q
n → 2[n] × Q

n
≥0:
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Algorithm 1 (Computing Egalitarian Mechanisms Egalσ,ρ(b)).
Input: valid set selection and price functions σ, ρ; bid vector b ∈ Q

n

Output: set of served players Q ∈ 2[n]; cost-share vector x ∈ Q
n
≥0

1: Q := [n]; N := ∅; x := 0
2: while N 	= Q do
3: S := σ(Q, N), a := ρ(Q, N)
4: Q := Q \ {i ∈ S | bi < a}
5: if S ⊆ Q then xi := a for all i ∈ S; N := N ∪ S

Theorem 2 (Corollary of Theorems 5, 6). Egalitarian mechanisms are CGSP.

3.1 Efficiency of Egalitarian Mechanisms

Definition 8. Let C : 2[n] → Q≥0 be a cost function, ρ be a price function,
and β > 0. Then, ρ is called β-average for C if for all N � Q ⊆ [n] and all
∅ 	= A ⊆ Q \ N , it holds that ρ(Q, N) ≤ β · C(A)

|A| .

Lemma 3. Let C : 2[n] → Q≥0 be a cost function and σ and ρ be valid set
selection and price functions such that ρ is β-average for C. Moreover, let A ⊆ [n]
and b ∈ Q

n be a bid vector with bi ≥ β · C(A)
|A| for all i ∈ A. Then, (Q × x) :=

Egalσ,ρ serves at least one player i ∈ A, i.e., A ∩ Q(b) 	= ∅.

Theorem 3. Let C : 2[n] → Q≥0 be a non-decreasing cost function and σ and ρ
be valid set selection and price functions such that ρ is β-average for C. Then,
if Egalσ,ρ always recovers at least the actual cost C′, it is (2β · Hn)-EFF.

Proof. Let (Q × x) := Egalσ,ρ and v ∈ Q
n be the true valuation vector. Denote

Q := Q(v), x := x(v). Moreover, let P ⊆ [n] be a set that minimizes optimal
social cost, i.e., P ∈ argminT⊆[n]{SCv(T )}. W.l.o.g., we may assume that vi ≥ 0
for all i ∈ [n] because C is non-decreasing. We have

SC ′
v(Q) ≤

∑

i∈Q∩P

xi +
∑

i∈Q\P

xi︸︷︷︸
≤vi

+
∑

i∈[n]\Q

vi ≤
∑

i∈Q∩P

xi +
∑

i∈P\Q

vi +
∑

i∈[n]\P

vi ,

SC ′
v(Q)

SC v(P )
≤

∑
i∈Q∩P xi +

∑
i∈P\Q vi +

∑
i∈[n]\P vi

C(P ) +
∑

i∈[n]\P vi
≤

∑
i∈Q∩P xi +

∑
i∈P\Q vi

C(P )
.

The last inequality holds since the left fraction is at least 1. Now, consider
the iteration k when for the first time Algorithm 1 decides to accept a player
i ∈ Q ∩ P (line 5). Fix all variables just after line 3 in that iteration k and
indicate them with a subscript k. We have xi = ak = ρ(Qk, Nk) ≤ β · C(Q∩P )

|Q∩P | ,
because Q ∩ P ⊆ Qk \ Nk. With the same arguments, for the second player
i ∈ Q ∩ P , we can bound her cost-share xi ≤ β · C(Q∩P )

|Q∩P |−1 , and so forth. Finally,
∑

i∈Q∩P xi ≤ β · H|Q∩P | · C(Q ∩ P ).
On the other hand, in P \Q, there is at least one player i with vi < β · C(P\Q)

|P\Q| .
Otherwise, due to Lemma 3, we would have (P \ Q) ∩ Q 	= ∅, a contradiction.
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Inductively and by the same lemma, for every j = 1, . . . , |P \ Q| − 1, there
has to be a player i ∈ P \ Q with vi < β · C(P\Q)

|P\Q|−j . Finally,
∑

i∈P\Q vi ≤
β · H|P\Q| · C(P \ Q). Since C is non-decreasing, we get

SC ′
v(Q)

SC v(P )
≤

β · Hmax{|Q∩P |,|P\Q|} · (C(Q ∩ P ) + C(P \ Q))
C(P )

≤ 2β · Hn . �

3.2 Most Cost-Efficient Set Selection

Definition 9. Let C : 2[n] → Q≥0 be a cost function. The most cost-efficient
set selection function σC and its corresponding price function ρC are defined as

σC(Q, N) := lexicographic max in arg min
∅
=T⊆Q\N

{
C(N ∪ T ) − C(N)

|T |

}
,

ρC(Q, N) := min
∅
=T⊆Q\N

{
C(N ∪ T ) − C(N)

|T |

}
.

Lemma 4. For any cost function C : 2[n] → Q≥0, σC and ρC are valid. If C is
subadditive then ρC is also 1-average for C.

Theorem 4 (Corollary of Theorem 3 and Lemma 4). For any costs C : 2[n] →
Q≥0, EgalσC ,ρC

is CGSP and 1-BB. If C is both non-decreasing and subadditive,
then EgalσC ,ρC

is also 2Hn-EFF.

We remark here that already “sequential stand-alone mechanisms” [15] achieve
CGSP and 1-BB for non-decreasing cost. Yet, they are only Ω(n)-EFF in general.

Clearly, evaluating σC can take exponentially many steps (in n). Furthermore,
evaluating C may be computationally hard. In Section 5 we thus study how to
pick “suitable” cost-efficient subsets in polynomial time. We conclude by showing
that our EFF bound is tight up to a factor of 2.

Lemma 5. For the cost function C : 2[n] → Q≥0 with C(T ) = 1 for all ∅ 	= T ⊆
[n], the mechanism EgalσC ,ρC

is no better than Hn-EFF.

Lemma 6. For any γ > 1, there is a non-decreasing cost function C : 2[4] →
Q≥0 for which the efficiency of mechanism EgalσC ,ρC

is no better than γ.

4 Acyclic Mechanisms and CGSP

By introducing acyclic mechanisms, Mehta et al. [14] gave a framework for con-
structing WGSP mechanisms. We prove that acyclic mechanisms are in fact
CGSP, and thus remarkably stronger. That egalitarian mechanisms are CGSP
will follow from the observation that they are acyclic.

An acyclic mechanism Acycξ,τ : Q
n → 2[n] × Q

n
≥0 makes use of a cost-sharing

method ξ and an offer function τ : 2[n] → Q
n
≥0 which specifies a non-negative

offer time τi(Q) for every subset Q ⊆ [n] and every player i ∈ Q. Mehta et al. [14]
showed that if ξ and ρ satisfy a certain validity requirement, Acycξ,τ is WGSP.
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Algorithm 2 (Computing Acyclic Mechanisms Acycξ,τ (b)).
Input: cost-sharing method ξ; valid offer function τ ; bid vector b ∈ Q

n

Output: set of players Q ∈ 2[n], vector of cost shares x ∈ Q
n
≥0

1: Q := [n]
2: while ∃i ∈ Q with bi < ξi(Q) do
3: Let j ∈ argmini∈Q{τi(Q) | bi < ξi(Q)} (use arbitrary tie breaking rule)
4: Q := Q \ {j}
5: x := ξ(Q)

Theorem 5. Acyclic mechanisms are CGSP.

Theorem 6. Egalitarian mechanisms are acyclic.

Theorem 6 is based on the fact that Algorithm 2 computes Egalσ,ρ when given
the cost-sharing method ξσ,ρ and offer function τσ,ρ as defined by Algorithm 3.

Algorithm 3 (Computing ξσ,ρ(Q) and τσ,ρ(Q)).
Input: valid set selection and price functions σ, ρ; set of players Q ⊆ [n]
Output: cost-sharing vector ξ ∈ Q

n
≥0; offer-time vector τ ∈ Q

n
≥0

1: N := ∅; ξ := 0; τ := 0
2: while N 	= Q do
3: S := σ(Q, N), a := ρ(Q, N)
4: ξi := a and τi := 1 + maxj∈Q{τj} for all i ∈ S; N := N ∪ S

We remark that the mechanisms given by Devanur et. al. [6] are not just
acyclic (see [14]) but also egalitarian. Using the terminology as in [6], they could
be computed by Algorithm 1 by letting σ(Q, N) be the next set that “goes tight”
after all players in N have been “frozen” and all in [n] \ Q have been dropped.

5 A Framework for Polynomial Time Computation

In this section, we show how to solve all of the service provider’s tasks in poly-
nomial time by using egalitarian mechanisms with a set selection function that
picks the most cost-efficient set w.r.t. costs of approximate solutions. Formally,
a (cost) minimization problem is a tuple Π = (D, S = (SI)I∈D, f = (fI)I∈D),
where D is the set of problem instances (domain) such that for any instance
I ∈ D, SI is the set of feasible solutions, and fI : SI → Q≥0 is a function
mapping any solution to its cost.

We write a cost-sharing problem as Φ = (Π, Inst), where Inst : 2[n] → D
denotes the function mapping a subset of the n players to the induced instance of
Π . In particular, Φ implicitly defines the optimal cost C : 2[n] → Q≥0 by C(T ) :=
minZ∈SInst(T ){f(Z)}. Moreover, for any algorithm alg that computes feasible
solutions for Π , we define Calg : 2[n] → Q≥0, Calg(T ) := f(alg(Inst(T ))).

Resorting to approximate solutions does, of course, not yet remedy the need
to iterate through all available subsets in order to pick the most cost-efficient
one. The basic idea therefore consists of using an (approximation) algorithm alg
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that is monotonic (see, e.g., [16]): Seemingly favorable changes to the input must
not worsen the algorithm’s performance. In the problems considered here, every
player is endowed with a size (e.g., processing time in the case of scheduling) and
reducing a player’s size must not increase the cost of the algorithm’s solution.
We can then simply number the players in the order of their size such that
Calg(min|U| T ) ≤ Calg(U) for all U ⊆ T ⊆ [n]. Finding the most cost-efficient
set then only requires iterating through all possible cardinalities.

We generalize this basic idea such that only a (polynomial-time computable)
monotonic bound Cmono on Calg is needed whereas alg itself does not need to
be monotonic any more.

Definition 10. Let Φ = (Π, Inst) be a cost-sharing problem. A tuple R :=
(alg, Cmono) is a β-relaxation for Φ if alg is an approximation algorithm for
Π and Cmono : 2[n] → Q≥0 is a cost function such that the following holds:

– For all T ⊆ [n]: Calg(T ) ≤ Cmono(T ) ≤ β · C(T ).
– For all U ⊆ T ⊆ [n] : Cmono(min|U| T ) ≤ Cmono(U).

Note that Cmono does not necessarily have to be subadditive (as required for
2Hn-EFF in Section 3), even if C is. Thus, some additional care is needed.

Given a β-relaxation R := (alg, Cmono), we define set selection and price
functions σR and ρR recursively as follows. For N � Q ⊆ [n], let ξσR,ρR(N) as
computed by Algorithm 3. Furthermore, let

k := max
{

arg min
i∈[|Q\N |]

{
Cmono(N ∪ MINi (Q \ N)) −

∑
i∈N ξσR,ρR

i (N)
i

,
Cmono(MINi (Q \ N))

i

}}
,

and S := MINk (Q \ N). Then, σR(Q,N) := S and

ρR(Q, N) := min
{

Cmono(N ∪ S) −
∑

i∈N ξσR,ρR

i (N)
k

,
Cmono(S)

k

}
.

Note that this recursion is well-defined. Computing σR(Q, N) and ρR(Q, N)
requires ξσR,ρR(N) for which only σR(N, ·) and ρR(N, ·) is needed (unless N =
∅). Yet, N � Q by assumption.

Lemma 7. Let R = (alg, Cmono) be a β-relaxation for some cost-sharing prob-
lem Φ. Then σR and ρR are valid, and ρR is β-average for C.

To also compute a solution for the instance induced by the players selected by
EgalσR,ρR

, we need:

Definition 11. Let Φ = (Π, Inst) with Π = (D, S, f) be a cost-sharing prob-
lem. Then, Φ is called mergable if for all disjoint T, U ⊆ [n], T ∩ U = ∅,
and for all X ∈ SInst(T ) and Y ∈ SInst(U), there is a Z ∈ SInst(T∪U) with
f(Z) ≤ f(X) + f(Y ). We denote this operation by Z = X ⊕ Y .

Based on σR and ρR, Algorithm 4 solves all of the service provider’s tasks,
including computing a feasible solution of the underlying optimization problem.
We address the running time afterwards.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



To Be or Not to Be (Served) 525

Algorithm 4 (Computing Egalitarian Mechanisms via β-Relaxations).
Input: β-relaxation R = (alg, Cmono); bid vector b ∈ Q

n

Output: player set Q ∈ 2[n], cost-share vector x ∈ Q
n
≥0, solution Z ∈ SInst(Q)

1: x := 0, Q := [n], N := ∅, Z := “empty solution”
2: while N 	= Q do
3: S := σR(Q, N); a := ρR(Q, N)
4: Q := Q \ {i ∈ S | bi < a}
5: if S ⊆ N then

6: Z :=

{
alg(Inst(N ∪ S)) if Cmono(N ∪ S) −

∑
i∈N xi ≤ Cmono(S)

Z ⊕ alg(Inst(S)) otherwise

7: N := N ∪ S; xi := a for all i ∈ S

Lemma 8. Let R = (alg, Cmono) be a β-relaxation for a mergable cost-sharing
problem Φ.

1. At the end of each iteration of Algorithm 4, it holds that x = ξσR,ρR(N).
2. Line 3 of Algorithm 4 needs at most 2n evaluations of Cmono.
3. The mechanism computed by Algorithm 4 is β-BB.

Theorem 7 (Corollary of Lemmata 7, 8). Let Φ be a mergable cost-sharing
problem having a β-relaxation (alg, Cmono). Then the mechanism computed by
Algorithm 4 is CGSP, β-BB, and (2β · Hn)-EFF. Moreover, Algorithm 4 evalu-
ates Cmono for no more than 2n2 subsets of [n], makes no more than n (direct)
calls to alg, and the number of merge operations is no more than n.

6 Applications

We use three approaches for obtaining β-relaxations that are polynomial-time
computable in the succinct representation of the cost-sharing problem plus the
bid vector: Monotonic approximation algorithms (e.g., Theorem 8), a non-mono-
tonic approximation algorithm with a monotonic bound Cmono (Theorem 9), and
optimal costs that are monotonic and polynomial-time computable (discussed at
the end of this section).

A makespan cost-sharing problem is succinctly represented by a tuple (p, ς)
where p ∈ N

n contains the processing times p1 ≤ · · · ≤ pn of the n jobs, and
ς ∈ N

m contains the speeds of the m machines. If p = 1 (ς = 1), jobs (machines)
are identical. Each player owns exactly one job. For any set of served players
S ⊆ [n], C(S) is the value of a minimum-makespan schedule for S.

A bin packing cost-sharing problem is succinctly represented by a vector of
object sizes s ∈ Q

n
>0 with s1 ≤ · · · ≤ sn ≤ 1. The capacity of a single bin is 1.

Each player owns exactly one object. For any set of players S ⊆ [n], C(S) is the
minimum number of bins needed to serve S.

Note here that we assume that each player is given a unique number ∈ [n] in
advance (outside the scope of Algorithm 4) and that players are sorted according
to the respective monotonicity criterion.
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Lemma 9. Any bin packing or makespan cost-sharing problem Φ = (Π, Inst)
is mergable in time O(n). Moreover, Inst is computable in linear time (in the
size of the succinct representation of Φ).

First, we consider identical-machine makespan cost-sharing problems. Their suc-
cinct representation is (p, m). The lpt (longest processing time first) heuristic
[8] is known to be a 4m−1

3m -approximation algorithm for this problem. It processes
the jobs in decreasing order and assigns each job to the machine on which its
completion time will be smallest. Its running time is O(n · log n) for the sort-
ing phase and O(n · log m) for the job assignment phase. We show that lpt is
monotonic w.r.t. processing times:

Lemma 10. Let p, p′ ∈ N
n, i ∈ [n], pi > p′i, and p−i = p′

−i. Then it holds that
f(lpt(p, m)) ≥ f(lpt(p′, m)).

Theorem 8 (Corollary of Lemma 10). For any identical-machine makespan
cost-sharing problem with succinct representation (p, m), where p1 ≤ · · · ≤ pn,
it holds that (lpt, Clpt) is a 4m−1

3m -relaxation and Algorithm 4 runs in time
O(n3 · log m).

Besides the previous result, we show how to adapt the PTAS (for identical ma-
chines) by Hochbaum and Shmoys [12]. The approach is different to before: Not
the PTAS itself is monotonic but a bound computed inside the algorithm.

The basic idea of the PTAS is a reduction to bin packing: Given processing
times p ∈ N

n, binary search is employed in order to find a makespan d such
that the bin packing instance p

d does not need more than m bins of size (1 + ε),
whereas the bin packing instance p

d−1 does need more than m bins. Specifically,
the PTAS makes use of an ε-dual approximation algorithm bpDualε for the
bin packing problem (see [12], pp.149–151). bpDualε outputs solutions that are
dual feasible; this means that bpDualε may use bins of size (1 + ε).

Now, for any bin packing instance s ∈ Q
n
>0, let S∗

s ⊇ Ss be the set of all
dual-feasible solutions and f∗

s : S∗
s → N be a function mapping each dual-

feasible solution to its cost, i.e., the number of used bins. We define g∗s : S∗
s →

N, g∗s(Z) := max{f∗
s (Z), �

∑
i∈[n] si�}. Hence, the crucial property of g∗ is to

guarantee that g∗s is never less than the number of bins needed for a feasible
optimal solution, i.e., when bins have capacity 1. We show that g∗ is monotonic.

Lemma 11. Let s, s′ ∈ Q
n
≥0 be two vectors of object sizes, i ∈ [n], si > s′i, and

s−i = s′
−i. Then b := g∗s(bpDualε(s)) ≥ g∗s′(bpDualε(s′)) =: b′.

Our crucial modification of the PTAS is as follows: Letting s := p
d , we use

the check g∗s(bpDualε(s)) ≤ m in the binary search (instead of testing f∗
s as

in the original PTAS). Moreover, we let lowerε(p) denote the minimum d for
which this check evaluates to true and let hsε denote the adapted PTAS. One
can easily verify that lowerε(p) is a lower bound on the optimal makespan and
(1 + ε) · lowerε(p) is an upper bound on the schedule found by hsε. Moreover,
lower ε(p) is computed within hsε in polynomial time because monotonicity of
g∗ ensures that indeed the minimum d is found by the binary search.
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Theorem 9 (Corollary of Lemma 11). For any identical-machine makespan
cost-sharing problem with succinct representation (p, m), where p1 ≤ · · · ≤ pn,
let Cmono(A) := (1 + ε) · lower ε(Inst(A)). Then, (hsε, Cmono) is a (1 + ε)-
relaxation and Algorithm 4 runs in time O(n2+ 1

ε2 · log
∑

i∈[n] pi).

Finally, we also obtain 2-relaxations for bin packing and general makespan cost-
sharing problems:

Lemma 12. For any bin packing cost-sharing problem with succinct represen-
tation s, there is a 2-relaxation for C and Algorithm 4 runs in time O(n3 · log n).

Theorem 10. For any makespan cost-sharing problem with succinct represen-
tation (p, ς), there is a 2-relaxation for C and Algorithm 4 runs in time O(n3 ·
log m · log

∑
i∈[n] pi).

There are several mergable scheduling problems for which optimal costs are
monotonic and computable in polynomial time. For instance, for any identical-
job makespan cost-sharing problem with succinct representation (n, ς), it holds
that (lpt, Clpt) is a 1-relaxation and Algorithm 4 runs in time O(n3 · log m).
In the following, we give a selection of further problems (taken from [4] and
using the classification scheme introduced by Graham et al. [9]). We restrict our
attention to the cases in which only one of the properties pi, wi (weight), and
ri (release date) is variable and let the others be fixed with pi = 1, wi = 1, and
ri = 0. We get that 1-relaxations exist for:

– Variable processing times: Q|pmtn|Cmax, Q||
∑

i Ci, Q|pmtn|
∑

i Ci

– Variable weights: P ||
∑

i wiCi, P |pmtn|
∑

i wiCi

– Variable release dates: Q|pmtn|Cmax

The result for Q||
∑

i Ci especially implies 1-BB for 1||
∑

i Ci. This is a drastic
improvement over Moulin mechanisms, since no cross-monotonic cost-sharing
method can be better than n+1

2 -BB [3].

7 Conclusion and Future Work

The pivotal point of this work is our new modeling assumption on coalition for-
mation. We believe that CGSP is a viable replacement for the often too limiting
GSP requirement. Besides this novel structural property, we consider the main
asset of our work to be threefold: i) Egalitarian mechanisms; showing existence
of CGSP, 1-BB, and 2Hn-EFF mechanisms for any non-decreasing subadditive
costs. ii) Our framework for polynomial-time computation that reduces con-
structing CGSP, O(1)-BB, and O(log n)-EFF mechanisms to finding monotonic
approximation algorithms. iii) Showing that acyclic mechanisms are CGSP and
thus remarkably stronger than was known before.

An immediate issue left often by our work is, of course, to find more appli-
cations of our polynomial-time framework. For instance, it is easy to see that
(rooted) Steiner tree cost-sharing problems are mergable and their costs non-
decreasing and subadditive; but do they allow for a β-relaxation?
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Abstract. When users click on poor quality advertisements, there is
a hidden cost to the search engine due to the user dissatisfaction (for
instance, users are less likely to click on ads in the future). We describe
how to incorporate hidden costs into the GSP auction for internet ads
such that it is in an advertiser’s self interest to create a user experience
that maximizes efficiency.

1 Introduction

In sponsored search, the behavior of users in the long run is endogenous: users
continue to click on advertisements only if on average the value that a user
derives from clicking on ads exceeds the cost of time required to click and to
evaluate the contents of the offer. Sometimes, the value of a click to a user may
be a large negative number (e.g. an unscrupulous advertiser may mislead an
unsuspecting user to infect his computer with spyware).

We consider that a user’s future propensity to click on ads is influenced by his
experience with past clicks. An ad with disappointing quality of landing page
imposes a negative externality on the search engine because the future stream of
revenue from a user is reduced by some amount (some of the future clicks are lost
since a disappointed user may learn to ignore ads). Of course, the externality
may also be positive. A good experience with an ad may train users to pay
more attention to other ads. We will refer to this externality as a hidden cost.
Obviously, if an ad’s hidden cost is greater than its bid, a search engine should
never show the ad. How should a search engine incorporate hidden costs into an
auction mechanism?

Our main contribution is the design of a mechanism that encourages adver-
tisers to create an experience for users that maximizes efficiency.

A classic method for encouraging or discouraging certain behavior towards
the social optimum is the Pigovian tax [12]. Pigovian taxes charge (or subsidize)
an agent its externality from the transaction (i.e. the effect on agents that occurs
outside of the transaction). A Pigovian tax causes an agent to internalize the
externality that he imposes by his actions on other agents, creating an incentive
for individual agents to take actions that maximize social welfare.

The concept of pricing externalities to encourage social welfare is one of the
key insights of economic theory [14,3,2]. For instance, the celebrated VCG mech-
anism [16,5,8] builds on this idea.
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A relevant example of Pigovian taxation is the market for renting space at a
shopping mall. That market has much in common with the virtual ”real estate”
allocated for ads on a search result page. The shopping mall owner, much like
a search engine, tends to allocate space to the stores that value space the most.
The auctions for sponsored search considered in the academic literature allocate
space based on the advertiser’s willingness to pay per click, sometimes adjusted
by ad clickabilty (the ads are ranked based on the product of the bid per click and
the probability the ad is clicked when it is seen). The current mechanism charges
higher prices for ads with low clickability but does not charge a higher price for
ads with high hidden cost. No model in the literature that we know of incor-
porates hidden costs: usually advertisement specific information is the expected
clickthrough rate [15,6,1,11,10,13,9]. In the case of shopping malls, reputable
stores draw in customer traffic to the shopping mall, thus imposing a long term
positive externality on other tenants in the mall. These externalities are huge,
as apparent from the contracts between stores and mall operators: the rent paid
by premium brand stores may be a few times lower than the rent paid by less
reputable tenants [7]. This is because the shopping mall uses pricing to attract
tenants that will impose a positive externality on other tenants by creating more
traffic. Exactly the same logic applies in sponsored search. To foster efficiency, a
search engine should encourage ads that give users a positive experience because
it makes users more likely to click on other ads, thus enhancing the value of the
virtual real estate. However, at this time, the auctions for sponsored search do
not explicitly take into account the hidden costs that are created by advertisers
and the literature on sponsored search does not address hidden costs. This causes
a large inefficiency if the role of hidden costs in sponsored search is comparable
to the role of externalities in an off line retail environment. The experience of
shopping malls is not fully transferable to the sponsored search environment,
because the rental agreements for shopping mall space are negotiated, while the
ad space has to be sold via auction due to fluidity and the high volume of small
transactions in this market. Also, the nature and volume of user traffic enables
search engines to effectively measure the hidden cost of an advertisement. We
show how to incorporate hidden costs in the standard pricing mechanism for ad
auctions in a manner that fosters efficiency.

2 Hidden Cost GSP

We begin by describing the environment and then proceed to describe an auction
mechanism that incorporate hidden costs into pricing. We assume that an adver-
tiser can make choices about his offerings that influence the value per click for
the advertiser and the user experience. For instance, an advertiser may choose
to make a misleading offer that leads to poor user experience but higher profit
or a more honest offer that may be somewhat less profitable. An advertiser may
also choose the price of the product that he sells. The lower the price, the better
the user experience. We denote the choice of the landing page for advertiser i by
qi (qi may belong to a finite set, for instance a binary choice of being explicit or
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not being explicit about the shipping charges, or it can be a continuous variable
such as the price of a good or the cost of shipping).

The search engine allocates positions on a search result page to advertisers.
We assume that the number of clicks that an ad receives depends only on its
position. The number of clicks in position j is αj . Ads in higher positions receive
more clicks so that αk ≥ αk+1. The value that an advertiser derives per click
is denoted by si. The value per click may depend on the advertiser’s choice of
q and can be viewed as a function si(qi). The private values per click for each
advertiser are denoted with the set s, indexed by value so that sk ≥ sk+1. Let ri

be the rank of advertiser i (not necessarily the same as their value index), and
K be the total number of positions on the screen, where ads can be displayed.
The payoff of an advertiser is the number of clicks that an advertiser receives
multiplied by the value per click minus the total cost that an advertiser pays for
clicks. That is, advertiser payoff = si(qi)αri − payment.

We assume that an advertiser’s choice of q imposes an externality on the search
engine’s long term health. The hidden cost per click is denoted by hi = h(qi).
The hidden cost can be thought of as a loss in future revenues due to the user’s
reduction in propensity to click caused by clicking on an ad of advertiser i. With
this interpretation, a search engine can statistically infer a hidden cost of an
ad without examining the contents of an advertiser’s offer. In light of this, our
model assumes that hidden costs are common knowledge for both the advertiser
and the search engine. The efficient advertisement quality, that is beneficial to
the search engine but gives equal weight to the cost for the advertiser i, is
q∗i = arg maxq si(q) − h(q). We design a mechanism that (i) for a given vector
of offers q orders ads efficiently (ii) incentivizes advertisers to make the efficient
choice of offerings q∗i . More formally,

Definition 1. Efficiency with hidden costs. For ranks and qualities
ri, qi, ∀i ∈ I, efficiency is

∑
i(si(qi) − h(qi))αri .

The generalized second price auction (GSP) is defined in [6,15]. We describe
it here for completeness. Given a set of bids bi and clickabilities ci, ∀i ∈ I,
advertisers are ranked according to their bid times clickability and charged the
smallest amount necessary to maintain their position. If all advertisers have
identical clickability, i.e. ci = c for every advertiser, then advertisers are ranked
according to their bids and charged the bid of the advertiser ranked immediately
below. Note that the GSP design does not penalize advertisers with high hidden
costs and thus does not lead to an efficient outcome in an environment with
hidden costs. Here we describe a modification of GSP that yields an efficient
outcome (in the sense of the above definition). To keep notation as simple as
possible we will assume the clickability values are all 1.

Definition 2. Hidden Cost GSP: Mechanism M′. Auction M′ on bids
and qualities bi, qi, ∀i ∈ I is as follows:

1. ∀i ∈ I, b′i = bi − hi.
2. Run the generalized second price (GSP) auction on b′i.
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3. ∀i ∈ I, add hi to the price per click of bidder i. Leave the ranking from GSP
in Step 2 unchanged.

Mechanism M′ differs from GSP. It subtracts and adds hidden costs before
and after (respectively), running GSP. Note that the environment described
here is different from the standard models for sponsored search environments
[13,10,15,6] because an advertiser controls two input values to the mechanism,
bi and qi. Despite these differences, M′ maintains many of the attractive prop-
erties of the GSP auction, namely there exists an equilibrium solution that has
maximum efficiency. Also like in GSP, the bid is a tight upper bound on an
advertiser’s payment per click in the mechanism M′.

Theorem 1. Mechanism M′ implements an efficient outcome.

To prove Theorem 1, we start out by defining VCG and proving some properties
of the VCG solution. We then draw conclusions about the GSP auction based
on previous work relating it to VCG. Finally, the properties of GSP are used to
prove properties of the mechanism M′.

2.1 VCG for Sponsored Search

We denote the total VCG payment for the advertiser ranked kth highest in s

with t
(s,α)
k . Let r be a ranking function such that r(u, s) is the rank of value u if

it were to be inserted into the set s. Similarly, r−1(r, s) is the value at rank r in
vector s. We prove the following property of the VCG outcome:

Lemma 1. For any set of values V , argmaxv∈V (v · αr(v,s) − t
(s+v,α)
r(v,s) ) =

maxv∈V v. In words, given a choice of values per click, an advertiser’s utility
in the VCG outcome is highest if they choose the highest value per click.

Proof. First, we show that for the VCG outcome, the higher an advertiser’s
value, the larger their utility. By definition, sk−sk+1 ≥ 0. Multiplying by αk and
adding sk+1αk+1 − ts,α

k+1 to both sides, we see that the utility of the advertiser
with the kth largest value is larger than the utility of the advertiser with the
k + 1th largest value.

Take two potential values, u > w for an advertiser i. Let x be the value of
the advertiser at rank r(w, s) in the set of values s + u (this is analogous to
taking the value of the advertiser ranked immediately above w in s + w). For
conciseness, Δαk

= αk − αk−1. Using value u gives utility

uαr(u,s) −
k=r(u,s)∑

k=P+1

Δαk
r−1(k−1, s+u) ≥ xαr(w,s) −

k=r(w,s)∑

k=P+1

Δαk
r−1(k−1, s+u).

Since both w and u are ranked higher than any value of k in the summation,

k=r(w,s)∑

k=P+1

Δαk
r−1(k − 1, s + u) =

k=r(w,s)∑

k=P+1

Δαk
r−1(k − 1, s + w).
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Because w is ranked lower than x in the set of values s + w,

xαr(w,s)−
k=r(w,s)∑

k=P+1

Δαk
r−1(k−1, s+u) ≥ wαr(w,s)−

k=r(w,s)∑

k=P+1

Δαk
r−1(k−1, s+w).

Combining the inequalities, we see that the larger value u brings higher utility
in VCG than the lower value w. �
We define b(s, α, u) to be

ts,α
r(u,s−u)

αr(u,s−u)
. The function b relies on the rankings and

pricing that VCG outputs (based on s and α).

2.2 Relating VCG to GSP

The following Lemma restates the results from [6], which we will use to prove
Theorem 1.

Lemma 2. All bidders i bidding b(s, α, si) is an envy-free bidder optimal equilib-
rium. Furthermore, the ranking and the price charged to each bidder is equivalent
to the ranking and price charged to each bidder in the VCG mechanism.

Corollary 1. Since in the bidder optimal equilibrium in GSP advertisers receive
the same utility as in VCG, an advertiser with a choice of values per click receives
highest utility in the bidder optimal equilibrium by bidding their highest choice
of value.

Although there exist other equilibria, it is reasonable to expect the auction
to converge to the bidder optimal equilibrium. The result in [6] describes a
generalized English auction that leads to the bidder optimal equilibrium. Also,
in [4], it is shown that there exists a simple greedy bidding strategy that leads
to the bidder optimal equilibrium. For simplicity, we assume there is only one
bidder optimal equilibrium solution, since ties can be broken according to a
predetermined ordering.

To show the efficiency of M′, we first prove the efficiency of M.

Definition 3. Mechanism M. Auction M on bids bi, ∀i ∈ I is as follows:

1. Run the generalized second price (GSP) auction on bi.
2. ∀i ∈ I, add hi to the ppc of bidder i. Leave the ranking from GSP unchanged.

Theorem 2. All bidders i ∈ I implementing websites with quality q∗i and sub-
mitting bids b(s(q∗i ) − h(q∗i ), α) is an equilibrium point for mechanism M. Fur-
thermore, this equilibrium point has maximum efficiency.

Proof. For a fixed quality qi, the utility of advertiser i in auction M is
(s(qi) − h(qi) − pi)αi, where pi and αi are the price and clicks allocated by
GSP. By Lemma 2 and the definition of function b, the bid b(s(qi) − h(qi), α)
must maximize (s(qi) − h(qi) − pi)αi in the bidder optimal GSP outcome. By
Lemmas 1 and 2, the value of qi that maximizes (s(qi) − h(qi) − pi)αi is q∗i .
The bidder optimal GSP outcome, since it ranks by s(q∗i ) − h(q

∗
i ), maximizes∑

i αi(s(q∗i ) − h(q
∗
i )). �
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Corollary 2. All bidders i ∈ I implementing websites with quality q∗i and sub-
mitting bids b(s(q∗i ) − h(q∗i ), α) + h(q∗i ) is an equilibrium point for mechanism
M′. Furthermore, this equilibrium point has maximum efficiency.

Since the addition of h(q∗i ) is immediately subtracted in the first step of M′,
and the utility of the bidder is unchanged from M, the maximizing behavior of
the bidder is unchanged from Theorem 2.
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Abstract. We consider a crucial aspect of displaying advertisements on
the internet: the individual user. In particular, we consider ad fatigue,
where a user tires of an advertisement as it is seen more often. We would
like to show advertisements such that, given the impact of ad fatigue, the
overall efficiency of the system is optimized. We design an approximation
algorithm, for the case that we study, that approaches the optimum as
the number of unique ads shown, if there is only one available position,
increases.

1 Introduction

Internet advertising is a booming business, and already provides a large por-
tion of search engine revenue. Placing ads strategically is key to optimizing the
efficiency of these advertising systems. The current measures used in most aca-
demic literature to determine the match between advertisement and user is the
estimated clickthrough rate, based on the advertisement, the keyword, and the
position on the web page [1,11,5,10,2,6,7]. In practice, landing page information
[12] and demographic targeting [9] have been used to better match advertise-
ments to users.

In this paper, we explore another crucial aspect in determining when and
where to place ads: the individual user. There are many ways that an individual
user’s experience may influence how an advertisement is received, including pre-
vious positive or negative experiences with advertisements and previous exposure
to a company name or logo. We concentrate in this study on how previous ex-
periences viewing an advertisement influence a user’s likelihood to click on that
advertisement. The setting used is one where ads are embedded in webpages,
such as AdSense at Google or Content Match at Yahoo!. An individual user
may view the particular site several times in a single day, if the site is a user’s
homepage or a frequently visited resource, and ads are less likely to be clicked
as they are shown more often. This phenomena is referred to as ad fatigue [4],
since the user tires of the ad after viewing it several times. We study the prob-
lem of determining which ads to display where and when in order to maximize
efficiency over several displays of the same page. Efficiency is considered to be
the expected number of clicks times the value of that click to the advertiser. We
design an algorithm that achieves close to optimum efficiency.

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, pp. 535–540, 2007.
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2 Model

Our model follows that of [8]. We assume the input to the algorithm is:

– The max number of times, T , a particular web page will be viewed by a
single user during the course of some time period.

– A vector f of fatigue rates that contains T values. We use ft to denote the
value corresponding to the tth element of the vector f , and ∀t, 0 ≤ ft ≤ 1.

– A vector CTR representing the decay in expected clicks due to position on
the page, sorted from most to least likely position to be clicked. We use CTRp

to denote the value corresponding to position p. There are p ∈ {1, ..., P}
positions total.

– A set of ads, each with a value vi, i ∈ {1, ..., I}. For an ad i, vi represents the
value to the advertiser showing the ad for receiving a click, times the ad de-
pendent component of the click through rate. Although in practice, values are
private and known only to the advertiser, there are options for estimating this
value based on information observable to the search engine [11].

We use the word slot to signify an opening for an advertisement at a particular
time and in a particular position. Our results, algorithm and model make the
following assumptions:

– Ad values are all a power of some base b.1

– Values in f are decreasing, and all of the form ft = 1
bt .

– The expected efficiency of ad i when shown for the kth time in position p is
CTRp · fk · vi.

– A slot can be left empty.

For every time slot t, position p, and bidder i, let xipt be an indicator variable
for whether bidder i is shown at time t in position p. We require a solution such
that, ∀it,

∑
p xipt ≤ 1 (in words, an ad can only be shown in one position for a

given time slot). Let ∀it, yit =
∑

k<t,p xipt. In words, yit is the number of times
bidder i has already been shown, at time t, in the solution so far. The problem
is to decide which advertisement to show in which position and at which time
such that we maximize

Total Efficiency =
∑

ipt

xipt · CTRp · fyit · vi.

Motivating Example. We show that the greedy approach of placing the best
ad in the best slot currently available is not optimal. Say advertisers A and
B have value 1 for placing their ads, C has value 1

2 , the fatigue vector f =
[1, 1

2 ], position clickthrough rates are CTR = [1, 1
2 ], and there are two time

periods T = 2. The greedy placement of ads is shown in Figure 1 (the top left

1 This assumption can be relaxed by rounding ad values down to the nearest number
with base b and multiplying the result in Theorem 1 by a factor of 1

b
.
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triangle is the advertiser and the bottom right the efficiency they contribute).
The total efficiency is 2.25. However, the optimal solution (seen in Figure 2), has
a total efficiency of 2.5. In the (extreme and impractical) worst case, the greedy
approach can lead to as much as T times less than the optimal efficiency.

t = 1 t = 2

Position 1
Ad: A Ad: A

Bid: 1 Bid: 1
2

Position 2
Ad: B Ad: B

Bid: 1
2 Bid: 1

4

Fig. 1. Greedy Solution

t = 1 t = 2

Position 1
Ad: A Ad: B

Bid: 1 Bid: 1

Position 2
Ad: C Ad: A

Bid: 1
4 Bid: 1

4

Fig. 2. Optimal Solution

3 An Approximation Algorithm

We now describe our algorithm and give an approximation guarantee for its
performance. The algorithm works in two stages. In the first stage, we generate
a “flattened tableau”: rather than showing a set of P different ads (placed in
positions 1,2,..., P ) during each of the T time steps, imagine that we show just
one ad during each of P · T time steps. For the first T time steps, we value
the ad as though it were shown in position 1. For the next T time steps, we
value the ad as though it were shown in position 2, and so on. Ad fatigue is
applied normally. We can produce an optimal flattened tableau in a greedy
fashion.

Consider “unflattening” the tableau. Take the first T ads and place them
all in position 1 (in their respective positions). Take the next T ads and place
them all in position 2, and so on. This causes two problems: the first is that
ads may appear more than once for a given time step. The second is that the
value that we ascribed to an ad in Stage I may no longer be accurate; an ad
that appears for the first time in, say, the 2nd position in the flattened tableau,
may appear for the first time in the 3rd position in the unflattened tableau.
In Stage II, we provide a method for rearranging (and removing) ads so that
these problems are resolved. Our rearrangement is provably close to the ef-
ficiency for the unflattened tableau, which is more efficient than the optimal
solution.

Stage I: Finding an optimal flattened tableau
As we outlined above, Stage I of our algorithm finds the optimal placement
of ads in the flattened tableau. Let ȳipt be the number of times that ad i has
appears in slots (p′, t′) such that either p′ < p or p′ = p, t′ ≤ t, assuming i is
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placed in slot (p, t). In symbols, ȳipt =
∑

p′<p

∑
t xip′t +

∑
t′<t xipt′ . We seek to

maximize
∑

ipt xipt · CTRp · fȳipt · vi. Note that this is the total efficiency, with
yipt replaced with ȳipt. We define fȳipt ·vi to be an advertiser’s “flattened value”.
The pseudocode is given below.

STAGE I of ALGORITHM A: FLATTENED TABLEAU
Initialize the “flattened value” of each ad i to be vi.
For p = 1 to P

For t = 1 to T :

1. Place the ad with the largest “flattened value” in slot (p, t). Ties are
broken lexicographically.

2. Update the “flattened value” of this ad by dividing by b.

We now show that the efficiency of the flattened tableau (using “flattened
values”) is better than the efficiency of the optimal solution of the original prob-
lem (using the actual values). Let xA

ipt and xOPT
ipt be the assignment variables

produced by the algorithm of Stage I, and the optimum solution, respectively.

Lemma 1.
∑

ipt xOPT
ipt · CTRp · fyipt · vi ≤

∑
ipt xOPT

ipt · CTRp · fȳipt · vi ≤
∑

ipt xA
ipt · CTRp · fȳipt · vi.

Proof. The first two equations differ only in the index for the ad fatigue factor.
Consider a single ad i. All variables multiplying the ad fatigue factor remain
unchanged. The ad fatigue indices are 1 through the number of occurrences of
the ad in both equations. The only thing that changes is the pairing of fatigue
values to the other variables. But, the way to pair fatigue values with the other
multipliers to maximize efficiency is exactly the pairing created by the ȳ vari-
ables2. It is not hard to verify that algorithm A produces the flattened tableau
with optimal efficiency. �

Stage II: Reconstructing the flattened tableau
We now use the flattened tableau to construct the final (real) tableau. Stage I
produced an assignment of ads to slots. In Stage II, we would like to guarantee
that, for each i, all occurrences of ad i in position p appear before any occurrences
of ad i in position p + 1. We accomplish this by arranging the ads within each
position, then shifting ads to the right until our guarantee is met. The algorithm
is given below. We show later how to bound the loss in efficiency due to shifting
ads to the right.

2 For any two vectors of positive real numbers, the maximum dot product is achieved
when both are sorted in ascending (or descending) order.
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STAGE II of ALGORITHM A: FEASIBLE TABLEAU
Given the assignment from Stage I, let Sp be the multiset of ads appearing
in position p.

1. For each p ∈ {1, ..., P}, sort the ads in Sp in ascending order of their v
values (breaking ties lexicographically). Place the first ad in slot (p, 1),
the second ad in slot (p, 2), and so on. (Note that Sp is a multiset, so the
same ad may appear multiple times, always in a contiguous sequence.)

2. For p = 2 to P , shift ads to the right until the last time ad i appears in
position p − 1 is before the first time ad i appears in position p, for all i.

We now prove the approximation ratio for algorithm A. Let last(j, p) and
first(j, p) be the last and first, respectively, time at which bidder j is shown in
position p. Let Qjp be the set of unique ads shown after ad j (including j) and
in position p. Let Qp be the set of unique ads shown in position p (Qp is the
set version of the multiset Sp). Observe that there could be ads with flattened
values in position p that are equal to flattened values in position p−1. We ignore
this complication and assume flattened values in position p are strictly less than
flattened values in position p−1. Eliminating this assumption requires Step 2 of
Stage II shift ads to the right at most an additional 2 slots. See the full version
of this paper for more details.

Lemma 2. Step 2 of Stage II shifts any row p over by at most an additional
T

|Qp−1| time periods after aligning with the row above it.

Proof. The average number of times an ad is shown in position p − 1 is T
|Qp−1| .

For any j, last(j, p − 1) is at most T − |Qj,p−1 − 1| T
|Qp−1| since every ad shown

afterwards is shown at least as often as the average (sorted in increasing order,
by number of times shown). first(j, p) is at least T − |Qj,p| T

|Qp−1| + 1 since
each ad from the previous position is shown (in position p) at most the average
number of showings from the previous position (p − 1). By definition and Step
I of Stage II, |Qj,p−1| = |Qj,p|. Clearly, shifting row p over by T

|Qp−1| time units
is sufficient to guarantee last(j, p − 1) ≤ first(j, p). �
Define Avg to be the average efficiency of a bidder in position 1, divided by
CTR1. Precisely, Avg =

�
i1t xi1t·fyit

·vi

|Q1| .

Theorem 1. Algorithm A has efficiency at least OPT − Avg ·
∑P

p=2(p − 1) ·
CTRp.

Proof. Algorithm A before step 3 of Stage II finds xipt that maximizes EA =∑
ipt xipt ·CTRp ·fȳipt ·vi. By Lemma 1, optimum efficiency ≤ EOPT ≤ EA. The

efficiency of A after Step 3 is the EA minus the efficiency in EA from ads that
are removed by the process of shifting over the rows. Since vifȳipt only decreases
as the position increases, by Lemma 2, the efficiency of units shifted off row p is
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at most
∑p−1

k=1
T

|Qk| · CTRp

�
i1t xi1t·fyit

·vi

T ≤ (p − 1) · CTRp · Avg. Summing over

all positions, at most Avg ·
∑P

p=2(p − 1) · CTRp is lost. �

Corollary 1. Algorithm A has efficiency at least OPT · (1 − P−1
|Q1| ).

4 Future Work

There are several possible avenues for future work on this problem. First, it
would be useful to generalize the result to handle fatigue rates that are not
geometrically decreasing. We observe that our algorithm places the most valuable
ads latest, so T must be a lower bound on the number of times the page will
be shown, to avoid eliminating the most valuable advertisements. There may
be other ways to model uncertainty about the number of page showings in the
future. There is also the possibility that the ideas presented here will work for
personalization in other contexts, such as creating a coordinated advertising
campaign targeted at an individual, across multiple domains (i.e. sites for mail,
search, etc.) and mediums (i.e. banner ads, studied in [3]). Finally, we do not
know the hardness of the problem we study.
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Abstract. We present a characterization of empirical price data from
sponsored search auctions. We show that simple models drawing bid val-
ues independently from a fixed distribution can be tuned to match em-
pirical data on average, but still fail to account for deviations observed
in individual auctions. Hypothesizing that these deviations are due to
strategic bidding, we define measures of “jamming” behavior and show
that actual auctions exhibit significantly more jamming than predicted
by such models. Correspondingly, removing the jamming bids from ob-
served auction data yields a much closer fit. We demonstrate that this
characterization is a revealing tool for analysis, using model parame-
ter values and measures of jamming to summarize the effects of query
modifers on a set of keyword auctions.

1 Introduction

Much of the academic literature on sponsored search to date has been theoretical
in nature [7,4,5,6], characterizing behavior or payoffs under strong assumptions
that may fail in practice—especially when the markets in question are young,
bidders are inexperienced, and relevant pieces of information (such as the exact
rules of the game) are frequently kept secret. To our knowledge there has been
no exploratory study of actual bidding data on a large scale to determine how
real-world auctions can best be analyzed and understood. This paper provides
a simple but needed first look at such questions. We utilize sponsored search
data drawn from a wide array of Overture/Yahoo! auctions and examine how
bids are distributed, what kinds of models of advertiser value can reasonably be
proposed, and the evidence for strategic behavior.

Our analysis serves two immediate purposes. First, a better understanding of
empricial bidding behavior improves the quality of data that can be syntheti-
cally generated for further study. We show that simple models used in practice
fail to account for significant strategic effects, and suggest improvements that
meaningfully enhance the “realism” of such models. Second, our characterization
of sponsored search auctions includes measurable quantities and model parame-
ters that can be used to summarize important features of an auction for further
analysis. To demonstrate the insight provided by such summaries, we show how
groups of query modifiers can influence bidding on a wide array of keyword
auctions. We find, for example, that adding modifiers like “cheap” or “deal” to
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automobile brand names tends to increase the amount of bid jamming at the
first slot of the corresponing sponsored search auctions.

2 Methodology

Our data was obtained from the Overture bidview tool from approximately
November 28 to December 2, 20061. We collected bid data for two sets of queries.
The first, smaller set includes the keywords used by Rusmevichientong et al [6]
and comprises 859 queries related to travel. It is used for aggregate analysis in
Section 2.1. The second set, used in the latter sections of the paper, comprises a
wide array of 36,900 queries. For the purposes of further analysis (such as that
carried out in Section 5), the second set is structured as a cross product of 450
base keywords—e.g., “lawyer”—intended to reflect basic searches that would
generate advertiser interest, and 81 modifiers—e.g., “Philadelphia”—intended
to capture the ways in which users might further specify searches. The base
keywords and modifiers are further structured by placement in groups; there are
nine groups of base keywords and six groups of modifiers. Table 1 and Table 2
give some summaries and examples for the groups of keywords in this data set.
A complete query in the second set pairs one base keyword with zero or one
modifiers (e.g., “lawyer” and “Philadelphia lawyer”).

Table 1. Summary of base keyword
groups

group # examples
cars 41 BMW, Toyota
drugs 62 Xenical, Prozac
electronics 36 laptop, cell phone, camcorder
local-service 55 carpet cleaning, hair dresser
medical 50 anxiety, plastic surgery
non-local-service 27 car insurance, mortgage
software 67 Microsoft Windows, MySQL
subscription 91 cable, magazine
travel 21 cruise, hotel, vacation
total 450

Table 2. Summary of modifier keyword
groups

group # examples
action 6 buy, purchase
info 11 information, review
location 40 New York, Ohio, Philadelphia
post 6 support, parts, repair
price 10 cheap, expensive, free, discount
quality 8 best, luxury, new, used
total 81

Due to resource constraints, we ran each query only once; our data provides
no information on dynamic bidding behavior. The data returned by the bidview
tool include up to 40 bids, ranked in order from highest to lowest. Advertiser
names and ad text are provided, but not used for our analysis. Furthermore, we
throw out the first bid in every auction. This is due to the method by which
prices are determined: an advertiser pays a price equal to the bid of the next
advertiser in bid order, so that the first bid is not relevant to money changing
hands except insofar as it is higher than all other bids. For the remainder of
the paper we use the term “price” assuming the convention that the kth price is
equal to the (k + 1)th bid.
1 http://www.overture.com/; the bidview tool was discontinued shortly after we col-

lected our data.
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2.1 Initial Look at the Data

Visualizing the bid books, it is apparent that the data are generally quite noisy.
Consequently, we begin by examining the data in aggregate using our smaller,
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travel domain query set. Figure 1 shows how
the price paid by the top bidder is correlated
with the total number of bidders in the auc-
tion. There is an almost linear relationship be-
tween the number of bidders and the mean
price of the first position. Figure 2 shows the
correspondence between bid position and mean
prices. Because prices increase as the number
of bidders increases, all the auctions used in
computing Figure 2 have at least 19 bids. We
normalize the prices so that the first price is
1.0. We find that an exponential decay fits the
means surprisingly well, and as a result an ex-
ponential model seems a natural choice for fitting individual auctions. We will
see, however, that individual auctions show significantly different behavior than
the aggregate. Figure 3 shows the differences between the first and second price,
the second and third price and the third and fourth price for auctions with at
least 19 bids. We will see in Section 4 that the peak in the small price difference
ranges may be due to “jamming” strategies.

3 Independent Bidding Models

Section 2.1 motivates a simple approach to modeling individual auctions under
the assumption of bidder independence. If bid averages follow an exponential
decay, independent bidders must be drawing from the unique distribution that
yields this curve. In particular, bids can be simulated by sampling prices p(u)
where continuous function p( k−1

N−1) is the expected price of a bidder who is at
position k out of N and u is drawn uniformly at random from [0, 1]. For example,
p(u) = ae−bu yields an exponential curve like that in Figure 2.
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Table 3. MSE (*100)

Model Real Gauss. Unif. Exp.

abi 3.8 1.9 3.7 1.7
abi + c 2.9 1.2 1.3 1.0
linear 14.2 3.2 1.5 7.8

2-linear 1.2 0.6 0.5 0.6

Table 4. Normalized MSE
(*100)

Model Real Gauss. Unif. Exp.

abi 9.5 5.7 8.0 7.4
abi + c 5.9 4.3 3.2 3.0
linear 36.8 15.2 4.2 34.1

2-linear 2.1 1.8 0.9 1.6

Table 5. MAE

Model Real Gauss. Unif. Exp.

abi 0.10 0.08 0.10 0.07
abi + c 0.06 0.06 0.06 0.05
linear 0.18 0.09 0.07 0.14

2-linear 0.05 0.04 0.04 0.04

While this method faithfully reproduces aggregate price curves, we show here
that it does not realistically generate individual bid books. We take measure-
ments using a variety of simple parametric auction models, comparing the quality
of each model’s best fit to real data and to synthetic data. If the synthetic data
are accurate, then the models should fit both data sets equally well. If there is
some consistent difference in the quality of fits, then we can conclude that the
generative prodecure above is not realistic.

We fit using both exponential and piecewise linear models. Our exponential
models have two and three parameters, taking the forms price[i] = abi and price[i]
= abi + c, where i is an index of the price positions. Note that the second version
allows prices to converge to a nonzero reserve price. We also fit piecewise linear
models using dynamic programming. We report only the results for 1 and 2-piece
models as MSE drops nearly to zero when 3 or more pieces are used. In all cases,
the fits are performed on a per-auction basis to minimize the mean squared error
(MSE) of the predicted prices relative to the observed prices. The mean is weighted
so that each auction receives equal weight regardless of the number of bids it at-
tracts. We also report normalized MSE (where the highest price in each auction is
normzalized to 1.0) and mean absolute error (MAE), computed by averaging the
absolute instead of squared differences between predicted and observed prices.

For each auction in our second query set we generated parallel synthetic price
data using the sampling technique described above, where p(·) was chosen to be
the best exponential fit to the real auction data. Note that the synthetic data
is independently sampled from the induced distribution, thus it is not artifi-
cially smooth or guaranteed a better fit. We also sampled synthetic bids from
Gaussians with mean and variance equal to the empirical prices and from a
uniform distribution over the range of empirical prices. These correspond to
methods commonly used in practice. Each of the four data sets was fit by each
of the four parametric models. The results are presented in Table 3, Table 4, and
Table 5.

It is apparent that none of the synthetic methods for generating data displays
fit error rates similar to those of real auction data. However, it seems clear that
the fits for exponential synthetic data are most similar to those of true auction
data, though in magnitude the error measures are much smaller. We conclude,
therefore, that the exponential model is the most accurate (as predicted by the
aggregate analysis), but that simple, independent-bidder models miss certain
key characteristics of sponsored search auctions.
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4 Jamming

Figure 4 expands the zero to ten cents region of Figure 3. It is clear that the
large number of bid differences below ten cents is due to a peak at differences of
one cent or less. We propose that the sharp peak around one cent in the price
differences, as well as the non-independence of real auction data, may be due
in part to the use of a bidding tactic known as “jamming.” Jamming involves
bidder A bidding just below bidder B in order to increase B’s price while leaving
A’s price unchanged. This may be an attempt to deplete B’s advertising budget
or to convince B to drop its bid. This tactic appears to be widely used and is
indeed implemented automatically by many bidding packages [3,2].

Of course, jamming is not the only possible explanation for the unusual num-
ber of one cent bid gaps. It is possible that bidders choose to play a strategy
in which bids are set to one cent above the next lowest bidder in an effort to
avoid being jammed, that other bidding strategies create the observed effects
indirectly, or that collusion is somehow encouraging clumped bidding. Going
forward we will continue to use the term “jamming,” but we will define it as a
purely statistical measure of bid closeness. Further experiments are necessary to
draw valid conclusions about bidder intentions.

Fig. 4. Bid differences in $0.01 incre-
ments. Bars marked “0.1” include all bid
differences of $0.10 or greater.
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Our definition of jamming is as follows: a bid is a jamming bid if it is one
cent or less below the next highest bid. We call a series of consecutive bids
each of which (except the first) jams the previous one a “jamming region.” To
reduce the influence of compression artifacts due to the reserve price, we do not
consider bids within two cents of the reserve. By comparing measurements of
jamming in real and independent-bidder synthetic data, we seek to tease apart
true jamming (jamming that results from dependencies between bidders) and
apparent jamming due merely to the chance clustering of bids, which may be
significant in a market with dozens of bids all less than a dollar.

Figure 5 shows the lengths of the jamming regions starting at the second bid.
Intuitively, this corresponds to the number of people jamming the first price
point. For real data, the length of the first jamming region is nearly exponentially
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distributed, and falls off far more slowly than for the simulated data.2 Figure 6
shows the frequency of jamming by position. There is a general upward trend
for all distributions, probably due to the increasing compression of the range of
possible bid values at lower positions creating more chance clusters. However,
across a range of price points that there is a strong and statistically significant
jamming effect in the real data over and above that seen in the independent-
bidder models. Figure 7 shows the jamming ratio, computed as the number of
jamming bids over the total number of bids in the auction, versus auction size.
As expected, jamming ratios increase gradually for all distributions, due again
to chance clustering as more bids are crammed into a small range. Although this
data is noisy due to the relatively small number of auctions with certain sizes,
the jamming ratio is again significantly higher for real data than exponential
data on all auction sizes less than 27 except size 20.

Table 6. MSE results (*100)

Model Real Unjam Exp
abi 3.8 2.8 1.7

abi + c 2.9 1.9 1.0
linear 14.2 13.1 7.8

2-linear 1.2 0.8 0.6

We recomputed our parametric model fits
after removing jamming bids from the real
auction data. The MSE results are presented
in Table 6. Though the gap between syn-
thetic and real data still exists, it has been
closed considerably. We hypothesize that fur-
ther improvements might be obtained by
considering other common strategies em-
ployed by advertisers. Using similar tech-
niques, it should be possible to formalize and measure the prevalence of such
strategies in real-world auction data.

5 Measuring the Effects of Modifiers

Since the queries in our second data set are structured as cross products of
keyword/modifier groups, we can visualize interesting trends using the charac-
terization we have developed. We pre-process the data by removing auctions

2 All differences between the real and simulated data here are significant at 95%
confidence.
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null act info loc post price quality
cars 0.97 1.09 0.88 1.19 1.55 0.9 0.88
drugs 1.31 1.22 1.11 - - 0.78 -
electr 1.04 0.85 0.39 1.9 0.7 0.78 0.8

local 1.45 0.94 0.99 3.05 1.36 1.18 1.32

med 1.93 - 2.03 3.66 2.19 0.65 -

n-loc 4.76 2.47 1.98 3.58 1.48 2.67 2.65
soft 0.86 0.48 0.42 - - - 0.48
subscr0.87 0.97 0.59 1.47 1.05 0.9 0.83

travel 0.92 0.54 0.53 0.92 - 0.95 1.3

Fig. 8. First price parameter of the expo-
nential model

null act info loc post price quality
cars 0.93 0.9 0.87 0.89 0.83 0.88 0.9
drugs 0.86 0.84 0.76 - - 0.8 -
electr 0.91 0.87 0.88 0.8 0.86 0.88 0.86
local 0.9 0.83 0.82 0.8 0.83 0.86 0.82
med 0.84 - 0.75 0.73 0.81 0.84 -
n-loc 0.9 0.83 0.83 0.89 0.77 0.84 0.86
soft 0.87 0.84 0.88 - - - 0.87
subscr0.88 0.85 0.85 0.8 0.81 0.86 0.86
travel 0.92 0.88 0.9 0.88 - 0.89 0.86

Fig. 9. Decay rate parameter of the ex-
ponential model

null act info loc post price quality

cars 0.19 0.25 0.2 0.26 0.08 0.23 0.2

drugs 0.16 0.16 0.09 - - 0.08 -
electr 0.11 0.06 0.01 0.09 0.04 0.06 0.05
local 0.15 0.05 0.06 0.11 0.06 0.09 0.07
med 0.09 - 0.07 0.08 0.08 0.07 -
n-loc 0.27 0.12 0.14 0.23 0.04 0.17 0.19
soft 0.03 0.05 0.02 - - - 0.0
subscr0.08 0.08 0.05 0.12 0.03 0.08 0.09

travel 0.11 0.02 0.05 0.12 - 0.11 0.13

Fig. 10. Fraction of jammed bids over 40
cents

null act info loc post price quality

cars 1.982.49 2.34 2.471.85 2.65 2.11
drugs 2.23 2.1 1.94 - - 2.04 -
electr 1.471.22 1.56 1.781.69 1.41 1.38
local 1.691.37 1.37 1.6 1.5 1.83 1.53
med 1.29 - 1.26 1.341.83 1.2 -
n-loc 1.521.39 1.57 1.61 1.0 1.35 1.43
soft 1.33 2.0 1.4 - - - 1.0
subscr1.65 1.3 1.79 1.681.17 1.63 1.64
travel 1.68 1.8 2.06 1.57 - 1.5 1.47

Fig. 11. Length of jamming region start-
ing at first price

with fewer than 11 bids in order to reduce noise, and display quantites of in-
terest in a series of tables. Each row in a table corresponds to a base group of
keywords, each column corresponds to a modifier group or an empty (“null”)
modifier group. (The groups are described in Section 2.) A cell shows the mean
of a particular quantity for queries formed from the cross product of the cor-
responding groups. If a cell is shaded, the mean is statistically different from
the “null” entry in the same row; red/bordered cells indicate an increase, and
green/unbordered cells indicate a decrease.

Figure 8 shows the effect of keyword modifiers on the first price parameter
for the exponential model (a). The table shows that modifiers from the group
“location” significantly increase the highest price paid for the four base groups of
“local service”, “medical”, “subscription,” and “cars.” This seems natural, as all
of these groups involve products that frequently depend on local providers. Con-
versely, “non-local service” keywords have their prices reduced by the addition
of a location, as expected. Figure 9 shows the decay rates for the exponential
model (b).

We can also visualize interesting trends using the understanding of jamming
developed in Section 4. Figure 10 shows that while adding modifiers in general
reduces jamming, adding a location or an action word like “buy” can significantly
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increase the amount of jamming. Figure 11 shows that adding modifiers such
as “cheap” to the name of an automobile manufacturer increases the expected
length of the jamming region beginning with the second bid.

6 Conclusion

We collected a large set of empirical sponsored search data and performed an ex-
ploratory analysis, attempting to characterize and understand real-world search
auction data. We found an aggregate exponential decay of prices across many
auctions, but showed that this model does not fully describe bidding behavior
on a per-auction basis. We showed that jamming is more prevalent in real data
than would be predicted by a model of independent bidders, and that removing
jamming from empirical data (or, convesely, adding jamming to synthetic data)
improves the similarity significantly. Future work will include studying effects
other than jamming that contribute to this disparity. Finally, we demonstrated
that our model parameters and measures of jamming provide useful summaries
of important auction features, revealing trends in the ways modifiers influence
the bids for search keywords.
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Pay-per-action Model for Online Advertising
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Abstract. The online advertising industry is currently based on two
dominant business models: the pay-per-impression model and the pay-
per-click model. With the growth of sponsored search during the last
few years, there has been a move toward the pay-per-click model as it
decreases the risk to small advertisers. An alternative model, discussed
but not widely used in the advertising industry, is pay-per-conversion,
or more generally, pay-per-action. In this paper, we discuss various chal-
lenges involved in designing mechanisms for the pay-per-action model,
and approaches to tackle some of them.

1 Introduction

Online advertising is one of the fastest growing segments in the marketing indus-
try [1]. Currently, there are two main commodities traded in the online adver-
tising market. These are impressions for brand awareness and clicks for traffic.
Generally, advertisers is willing to pay for impressions if the aim of the adver-
tising campaign is to increase brand awareness. However, they are more inclined
to pay for clicks if the goal is to generate traffic which in turn increases the
probability of a sale. In the former case, advertisers pay per impression (PPM)
while in the latter they pay per click (PPC). The PPC model currently is based
on a rank-by-revenue mechanism in which ads are sorted by their bid per click
times click-through-rate (CTR).

With the growth of sponsored search in companies such as Google, Yahoo!,
and MSN, the trend in the online advertising market has been to shift more and
more of the advertising budgets toward the PPC model. This is mainly due to
the fact that the PPC model reduces the risk to advertise to consumers not in
the target audience of an advertiser. If this risk is high, advertisers (in particular
small advertisers who are more risk averse) tend to choose the PPC model over
the PPM model.

As a next step in this direction, the pay per conversion/action (PPA) model
links payments to events such as sales, phone calls, or online order directly. An
advertiser states his/her willingness to pay for an “action,” which can encapsu-
late anything beyond a click. This includes pay-per-conversion, but also other
things. The important distinction is that an “action” needs to be reported by
the advertiser, whereas clicks are counted by the ad publisher. For many of the
same reasons the PPC model has taken the market over the PPM model, we
expect the online advertising market to evolve toward the PPA model in the

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, pp. 549–557, 2007.
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future. Early signs of such an evolution is evident in Google’s announcement of
the PPA model in their AdSense platform.

In this paper, we discuss the PPA model, the advantages it offers, and issues
that need to be resolved to successfully apply this model. Our focus is on the-
oretical questions regarding incentive issues facing the advertisers in reporting
the true action data. We show how the mechanisms proposed for the PPC model
can be adapted to cope with challenges specific to the PPA model.

2 The Pay-per-action Model

The interaction of a user with an ad publisher like Yahoo! or Google starts with
the user requesting a page from the publisher that contains ads. This results in
an ad impression for the ads displayed on the page. The user might then click on
an ad, resulting in a click-through. Beyond this point, the user leaves the domain
of the publisher and enters the advertiser’s web site. In her interaction with
this web site, the user might perform certain actions that are valuable to the
advertiser, such as filling out a form, signing up at the web site, calling a phone
number listed on the web site, or purchasing a merchandise. In the PPA model,
the advertiser can make payments contingent on not only impressions and click-
throughs, but also actions. For example, the advertiser can offer to pay 0.1 cents
for every impression of their ad, 10 cents every time their ad is clicked on, plus
$40 every time the user fills out a credit card application on their web site. The
auction mechanism extracts all such bids from the advertisers, decides which
ads to show, and how much each advertiser should be charged, depending on
whether the ad is clicked on, and whether the advertiser reports that the ad has
resulted in an action. A natural generalization of the common rank-by-revenue
mechanism for the PPC model is to rank the advertisers based on their bid per
impression, plus their bid per click times their click-through rate (CTR), plus
their bid per action times their action rate.1

The major factor that distinguishes the PPA model from the PPC or PPM
model is that an action takes place outside the scope of control of the publisher.
Therefore, the publisher needs to rely on the advertiser to report the actions
that take place (perhaps through an automatic software agent supplied by the
ad publisher), whereas click-throughs are counted by the ad publisher. In fact,
even the definition of an action can be different from one advertiser to another.

Another distinction between the PPA model and PPC or PPM models is in
the timing of events. An impression takes place instantaneously after the user
requests a page and the publisher decides which ads to display on the page. Also,
a click-through often happens shortly after (if at all). However, an action such as
buying a merchandise might take place days or even weeks after the user sees the
ad. This makes the job of linking a particular action to an ad difficult. There are
methods, such as using post-purchase surveys, or using the cookie technology to
1 To completely specify the mechanism, we need to specify a payment scheme as well.

The payment scheme we will consider is similar to the generalized second price
auction in expectation. The details of this issue will be discussed in later sections.
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link the two, but the data obtained this way is inherently more noisy than the
click-through or impression data.

To discuss the advantages of the PPA model, we need to understand what
generates value for an advertiser. In general, there are two factors that the ad-
vertisers value:

• Attention. Many advertisers, particularly brand advertisers, mainly seek
attention from the users. As attention is difficult to measure, various other
measures such as impressions, click-throughs, or other actions can be used
as proxies for attention.

• Conversion. A conversion is defined as any action that directly brings in
some revenue. This often means buying a product from the advertiser’s web
site. However, there can be many other types of conversion, depending on
the type of the advertiser. For example, for an ad portal, a click on one of
the ads listed on the page can be considered a conversion.

There is a spectrum of advertisers, from purely attention-seeking (such as
big brands, e.g., auto manufacturers) to purely conversion-seeking (e.g., small
online shops).
Advantages of the PPA model. In the following, we list several advantages the
PPA model offers over the more restrictive PPC and PPM models.
• Trust requirement. In the PPM model, as in traditional magazine advertise-

ments [2], the advertiser needs to trust the publisher to count the number of
impressions of their ad. The situation is better for the PPC model, but still var-
ious technical difficulties produce discrepancies between the click statistics on
the publisher side and on the advertiser side [4]. In the PPA model, this issue is
completely eliminated, as it is the advertiser who counts the number of actions.

• Expressiveness. Clearly, the PPA model is a more expressive bidding language
than the PPC model. It is not hard to construct examples to show that if an
advertiser cannot change her bid too frequently (which is often the case, either
because the burden of frequently updating bids is too high for the advertiser,
or because of the limits imposed by the publisher), this expressiveness can
result in a higher utility for the advertiser.

• Reducing risk. In addition to increasing the advertisers’ utility, the PPA model
can reduce the risk to (some) advertisers.

• Click fraud. Click fraud is a phenomenon that has plagued the pay-per-click
model for selling online advertisement [5,6]. By definition, a fraudulent click is
one that is done without the intention of buying a product. Therefore, an obvi-
ous remedy for the click fraud problem (for conversion-seeking advertisers) is
to ask the advertisers to report clicks that lead to a conversion, and charge the
advertiser only based on those clicks. Given the data about which clicks lead
to a conversion, publishers such as Google or Yahoo! can not only eliminate
click fraud for the involved advertisers, but also find partner web-sites that
are frequent targets of click fraud (perhaps because the fraud is committed by
their owners), and discount their value for other advertisers as well.
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Challenges of the pay-per-action model. The PPA model assumes that the ad-
vertisers voluntarily provide the action data to the publisher. However, there are
three main reasons for advertisers not to provide a truthful report of the action
data to the publisher:
• Strategic reasons: Advertisers might be able to increase their utility by misre-

porting the actions. For example, if the advertiser is charged a fixed amount
per action, she might benefit from not reporting some of the actions.

• Cost of gathering data: It might be costly to gather data about which clicks
lead to action, especially because an action has a different meaning for each
advertiser, many advertisers do not have the software means to track all the
actions of their users, and the data is inherently noisy.

• Cost of disclosing data: many big advertisers treat the conversion data as
confidential information that is valuable to them and their competitors, and
therefore might not be willing to share this data with a publisher like Yahoo!
or Google.
In the next section, we discuss the strategic factor, and show that in a simple

model based on the click-fraud-resistant learning algorithms introduced by Im-
morlica et al. [3] combined with a participation fee, advertisers cannot gain any
significant amount by misreporting the actions.

3 The Incentive Problem

In this section, we discuss the problem of mechanism design in the PPA model
with the aim of providing incentive for advertisers to reveal the action data
truthfully to the auctioneer (the publisher). A major step toward this goal was
taken in the paper of Immorlica et al. [3] on click fraud. We start by briefly
explaining their result and its implication for the PPA model, and then move on
to a few specific problems in the PPA model.

The model focuses on one advertiser and one ad slot. The advertiser is in-
terested in displaying an ad in the ad slot. In a PPM model with an auction
mechanism such as generalized second price, the advertiser wins the slot if his
bid per impression is more than a threshold p, and pays p per impression. The
value of p is often the bid of the next advertiser or the reserve price. The de-
tails of how the mechanism computes p is irrelevant to our discussion; all we
need to know is that p is independent of the bid or other characteristics of the
advertiser. Similarly, in a PPC model, if the advertiser has a bid bc per click,
and our estimate of the click-through-rate of the advertiser (the probability that
an impression of the ad leads to a click) is CTR, then the ad will be shown if
bc × CTR ≥ p, and the advertiser will be charged an amount equal to p/CTR if
a click occurs.2 Intuitively, this means that assuming that the estimate CTR is
accurate, the advertiser pays an expected amount of p per impression. If this is

2 This mechanism is called a rank-by-revenue mechanism since bc×CTR is the revenue
that auctioneer expects from the impression, and p is the opportunity cost of this
impression.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Pay-per-action Model for Online Advertising 553

the case, then fraudulent clicks should not be able to increase the average cost
per impression to the advertiser. This, however, assumes that the estimate CTR
is accurate, which is not a reasonable assumption, especially in a scenario where
an adversary injects fraudulent clicks. The main result of Immorlica et al. [3] is
that if the algorithm used to learn CTR is from a class of algorithms termed
click-based algorithms, then the conclusion is indeed true: fraudulent clicks can-
not increase the average cost per impression to the advertiser by more than a
negligible amount.

Immorlica et al. [3] also observe that their result applies to self-inflicted fraud
as well, i.e., if an advertiser creates fraudulent impressions that lead or not lead
to clicks, he cannot change his average cost per impression by any non-negligible
amount. This, taken in the context of a PPA model (replacing clicks in the
argument by actions), implies that in a PPA model with a payment rule similar
to the one for the PPC model and an action-rate learning algorithm from a
suitable class of algorithms, the advertiser cannot change his average cost per
impression by any non-negligible amount. There are, however, three issues that
are left unanswered by this result:

– The payment rule when payments are associated with more than one type of
event (impression, click, action): The model studied by Immorlica et al. [3]
assumes that the advertiser has a bid ba per action, AR is the estimated
action rate for this advertiser, and p is the price-per-impression of the ad
slot. In this setting, the mechanism displays the ad if ba × AR ≥ p, and
charges the advertiser an amount equal to p/AR per action. However, in
general the advertiser might want to specify a bid per impression bm, a
bid per click bc, and a bid per action ba (or perhaps even different bids for
different types of action). In this case, the mechanism must display the ad
if bm + bc × CTR + ba × AR ≥ p, but it is not clear that in the event of
a click or an action, how much the advertiser should be charged. There are
many ways this charging scheme can be designed to yield an expected price
per impression of p (for example, the bids per impression, click and actions
can be discounted by the same or by different factors to make the expected
payment equal to p). It is not clear for which, if any, of these rules the result
of Immorlica et al. [3] works.

– False-name bidding: The result of Immorlica et al. [3] is asymptotic, in the
sense that it shows that if an advertiser stays in the system for long enough
the per-impression gain he can derive from misreporting the actions tends
to zero. However, one plausible strategy for an advertiser is to stay in the
system for a short time and gain from misreporting the actions, and then
leave and re-enter the system with a different name.

– Timing of events: In the model studied in [3], the mechanism learns whether
an impression has led to an action or not immediately after the impres-
sion, and can use this information to update the estimate of the action-rate
that will be used for allocating and pricing the next impression. While this
is a reasonable model for the PPC model (since most clicks take place almost
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immediately after the impression), it is far from being realistic in the PPA
model, where an action can take place weeks after the impression.

In the following, we briefly sketch how the above issues can be resolved. The
details of the proofs are omitted.

The payment rule. We consider the problem in the case where the advertiser
can specify a bid bm for impressions and a bid ba for actions. In this case, the ad
slot is allocated to the advertiser if bm + AR × ba ≥ p, where AR is the current
estimate of the action rate. Consider the following charging scheme: we define

pm = min(bm, p) and pa = (p − pm)/AR. (1)

The advertiser is charged pm for every impression, and pa every time an action
occurs. We can show that with this payment scheme, the result of Immorlica
et al. [3] holds with a very similar proof. To explain the intuition, we show this
fact for the case that the learning algorithm simply estimates the action rate as
1 divided by the number of impressions since the last impression that lead to
an action (this simple algorithm is a canonical case of an action-based learning
algorithm).

Consider the sequence of impressions, and two consecutive impressions i1, i2
in this sequence that have lead to an action (i.e., these two impressions have
lead to an action, but none of the impressions between them has). Let k − 1
denote the number of impressions between impressions i1 and i2. Therefore, at
the time of impression i2, the estimate for AR is equal to 1/k. Therefore, the
advertiser pays a price of (p − pm)k for the action corresponding to impression
i2. We can re-assign this payment to impressions between i1 and i2 (including
i2) by assigning an amount equal to p − pm to each of those impressions. In
addition, each impression is charged an amount equal to pm. Therefore, with
this reassignment of charges, the cost corresponding to each impression will be
precisely p.

The above argument can be generalized to more general learning algorithm
that are action-based (defined analogously to the click-based algorithms of [3]).
It is worth noting that other payment rules such as the proportional rule

pm =
bmp

bm + AR × ba
and pa =

bap

bm + AR × ba

do not yield the same result. Therefore, for the purpose of designing a mechanism
that incentivizes the advertisers to reveal the correct action data, it is important
to use this particular payment scheme.

False-name bidding. Our approach for tackling this problem is to charge each
advertiser a fixed premium for entering the system, and stop displaying ads
whose action rate drops below a certain rate. Intuitively, the premium is set at
a level so that an advertiser cannot gain by entering the system and not report-
ing any action, until his action-rate drops below the threshold. The premium is a
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small one-time fee, so it does not affect honest advertisers who stay in the system
for long. Also, all or part of the premium can be refunded to the advertiser upon
leaving the system, depending on the advertiser’s action rate upon leaving.3

The exact value of the premium depends on the threshold for the minimum
allowable action rate, the action-rate learning algorithm, and how it initializes
the action rate when an advertising campaign starts. For example, in the case
where the action-rate learning algorithm estimates the action rate by the average
over the last k actions (i.e., AR is equal to k divided by the number of impressions
it took to get the last k actions), initializing the AR to 1 (i.e., prepending the
history by k impressions all leading to an action), the amount of premium can
be calculated to be

kp(
1
δ

− 1),

where δ is the threshold for minimum allowable action rate. Note that (not
surprisingly), the amount of premium increases if the threshold δ is decreased,
or if the value of k increases, which intuitively corresponds to increasing the
robustness of the learning algorithm.

Timing. A simple fix to the timing problem is to use any of the action-based
algorithms for learning the action rate using the data available at the moment
the estimate is needed, and re-adjust previous payments every time a new action
is reported (e.g., by refunding part of the charge for a previous action, if the
new information reduces the payment for that action). We explain this with the
following simple example: assume we use the learning algorithm that estimates
the action rate as 1 divided by the number of impressions since the last impres-
sion that lead to an action. Also, assume the advertiser has only specified a bid
on actions (i.e., no bid on impressions or clicks). With this learning algorithm,
every time an action corresponding to an impression i is reported, if i is the latest
impression for which an action is reported, then the advertiser will be charged
an amount equal to p/AR, where AR is the estimate of the action-rate at the
time of impression i. In other words, the charge corresponding to this action will
be equal to p × k, where k is the number of impressions before impression i and
after the last impression previously reported to lead to an action. If i is not the
latest impression for which an action is reported, then this impression should
be charged using a similar formula, but in addition, the charge corresponding to
the first impression after i for which an action is previously reported should be
adjusted. Doing the calculations, it is easy to see that for this particular learning
algorithm, this adjustment cancels out the charge for i; in other words, in this
case action i will not be charged, since all the charge corresponding to this action
are previously paid.

A potential problem with the learning algorithm used in the above example
is that it consistently under-estimates the action rate. Even though this is not a
problem for charging scheme, it can cause problems in the allocation step (i.e.,
3 In other words, the premium can be thought of as the fee for “buying” an initial

high action rate. Upon leaving the system, the advertiser can sell the value of their
current action rate back to the auctioneer.
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if the action rate gets too low, the advertiser might not even get the slot). To
resolve this problem, the learning algorithm should use some of the older data
for which most of the actions have already occurred (e.g., it is safe to assume
that if no action corresponding to a month-old impression has taken place, the
impression will not lead to an action). However, one must be careful not to
include the element of time in the formula used for learning, since doing so
renders the algorithm non-action-based, which causes the fraud-resistance result
of Immorlica et al. [3] to fail and opens the door for gaming the system by
strategically timing the reports.4

The above discussions can be summarized in the following result. The proof
of this result is based on the ideas mentioned above, but the details are omitted
here.

Theorem 1. Consider a rank-by-revenue system with a payment rule according
to (1) and a payment re-adjustment scheme as above that charges a large enough
premium at the sign up (where the value of premium is calculated as described
above) and does not show ads whose action rate has drops below a certain thresh-
old. In this system, an advertiser cannot gain more than o(1) per impression by
misreporting the actions and/or re-entering the system under other names.

4 Conclusion

The contribution of this paper is two-fold: to discuss important theoretical ques-
tions in the design of incentive-compatible pay-per-action mechanisms for sell-
ing online advertisements, and to provide an answer to some of these questions.
There are still many directions that remain unexplored. A few particular prob-
lems that we would like to emphasize are the following:

Cost of collecting action data. As mentioned earlier, one of the barriers in using
the PPA model for selling online advertisements is the difficulty of gathering
action (or conversion) data. It would be interesting to model this factor, and
design mechanisms where the auctioneer can provide incentive for the advertiser
to spend the cost for collecting the data. Notice that collecting the PPA data
benefits not only the advertiser, but also the auctioneer, as the auctioneer can
detect sources of fraud using this data, and avoid paying any commission to
partner web sites that commit fraud.

Cost of disclosing data. Larger advertisers usually have the tools to track and
collect the action data, but might not be willing to share this potentially valuable
information with the auctioneer. It would be interesting to explore the potential
of using privacy-enhancing technologies to reduce this disincentive to use the
PPA model.
4 Still, the element of time can be used to compute the initial estimate of the action-

rate, but the payments should eventually be adjusted according to an action-based
algorithm.
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Using action data to improve the PPC model. One of the main reasons click fraud
is an issue in online advertising is the obvious incentive of partner web-sites (i.e.,
web sites that are not owned by publishers like Google or Yahoo! but allow these
publishers to display ads in return for a commission) to commit click fraud to
increase their commission. For this reason, fraud is usually targeted at particular
partner web-sites, and not on particular advertisers. This means that even if some
percentage of the advertisers use the PPA model to buy ads, the publisher can
use the action data that they provide to detect partner web sites that are targets
of fraud, and alleviate the fraud problem by discounting the value of a click on
such web sites. However, this creates an obvious incentive problem, as the data
an advertiser provides is used to change not only his effective bid, but also the
effective bid of other advertisers. It would be interesting to explore this tradeoff
between incentive compatibility in reporting the action data, and the potential
use of the action data in calculating discount rates for partner web sites.

Robustness vs. adaptivity tradeoff. There is a tradeoff between how robust the
estimate of the learning algorithm is toward random noises in the data (affected
by the length of history the learning algorithm looks at) and how quickly can the
algorithm adapt to changes in the action rate caused by changes in the market.
The optimal point in this tradeoff should depend on parameters such as the
volatility of the market and the amount of noise. Furthermore, by the discussion
in the previous section, two other parameters, namely the action-rate threshold
below which the ad is dropped and the amount of premium that needs to be
charged, also enter this tradeoff. A theoretical analysis of this tradeoff remains
open.
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Abstract. Motivated by the growth of various networked systems as
potential market places, we study market models wherein, owing to the
size of the markets, transactions take place between largely unknown
agents. In such scenarios, intermediaries or brokers play a significant
role in a transaction.

We analyze market behavior in large networks wherein all sellers are
not known to the buyers and vice-versa and depend on intermediaries
to conduct any transactions. In such markets, we study a specific case
where buyers wish to purchase goods from trusted sources at minimal
prices. Sellers wish to maximize selling price. Brokers attempt to maxi-
mize profit by aiding in trade by acting as intermediaries; brokers have
an advertising budget. We show the existence of competitive equilibria
in such layered broker markets. We also describe efficient algorithms to
compute these equilibria. We give polynomial-time distributed mecha-
nisms to reach the equilibrium for two extreme cases of the brokers’
advertising budget constraints.

1 Introduction

The large size and complexity of many markets necessitates the existence of
intermediaries or brokers who mediate transactions between buyers and sellers.
The large size of a market often results in the development of varying degree
of personal relationships between all the players in the market. For example, a
buyer can prefer to deal with one broker over another when she chooses to buy
a certain commodity from the market. For example, in bilateral search markets
(e.g., employment agencies, real estate brokers), the middleman narrows the set
of buyers and sellers who search. In such markets, sellers with high selling prices
and buyers with small budgets drop out of the search market and instead trade
through the middleman [12].

With the growth of technology, in particular the Internet, markets have
changed drastically from their traditional bearings,especially in scale, and the
need for understanding the role of the middleman in these new settings gains
ever more significance. With easy access to information about commodities, sce-
narios arise wherein multiple brokers often compete to sell the same commodity
to the buyer. In such cases, they differentiate themselves not only using pricing
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discounts but also other value added services to cultivate a longer term relation-
ship with the buyer. Therefore, it is not only important what you get, but also
who you get from. All the factors above lead to a slew of interesting questions
like how to model a market, and best behavior strategies in certain models.

In this study, we model various agents being nodes of a directed network. This
network is defined for a specific good in the market as the trust network and
market behavior depends on the good. Inter-play between dependent goods is a
tangential albeit very interesting and important study, that we do not explore in
this paper. For any good, each node plays the role of either a buyer, a seller or a
broker. Loosely, they correspond to people who need the good and are willing to
pay, who have the good and wish to sell, and the intermediaries who make money
due to their important role of being a middleman. The model is motivated by
the following observations.

– A buyer wishes to maximize his happiness. The happiness not only depends
on the good she gets and the price she pays for it, but also depends crucially
on who she gets its from.

– A broker wishes to maximize her profit. Thus, it is important for her, given
her constraints, to decide what to buy, from whom to buy, and for how much,
and whom to sell it to.

– A seller wishes to sell at the maximum possible price. These prices depend
on the quality of the good and the reputation of the seller.

Our Results
In this paper, we look at networks where buyers and sellers form the extreme
layers, with brokers in between. We show that competitive equilibria exist in
these networks, and give polynomial time algorithms for computing them. In
certain restricted settings, we give efficient mechanisms to reach the equilibrium.

We should point out that our notion of equilibrium differs from the market
equilibrium concept of Arrow and Debreu [1]. We consider indivisible goods,
and not much is known in the Arrow-Debreu setting for indivisible goods, even
in the case with no brokers. Our equilibrium notion is that of a competitive
equilibrium: buyers get their best goods at the prices, sellers sell at optimum
prices, and brokers have no envy or regret in their dealings.

In the case of no brokers, the model above reduces to the market generated
by the assignment game of Shapley and Shubik [11], who show the existence
of competitive equilibria in these markets. Efficient algorithms for the same are
implied by various later works [3], etc.

Related Work. Motivated by the indirect interaction among agents, in their
paper, Graphical Economies, Kakade et.al [5] introduce a graph-theoretic gener-
alization of the classical Arrow-Debreu economics. They provide existence results
for market equilibria and give algorithms for the same. Rubenstein and Wolinsky
[9] study a market model which includes intermediaries and analyzes steady state
conditions in such markets. An excellent survey is due to Jackson [4]. Recently,
Kleinberg and Raghavan [6] considered query-incentive networks to theoretically
study the effect of incentive issues in networks.
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Our work was done independent of a recent paper by Blume et. al. [7]. They
study a very similar problem of the interaction of buyers and sellers through a
layer of intermediaries. In their model, the intermediaries set prices for both sell-
ers and buyers. On the contrary, in our case, sellers advertise prices that brokers
consume and in turn advertise prices for buyers. Further, the techniques used
in their results are LP based which is an alternate way of looking at the initial
assignment game of [11]. The techniques in our paper are more algorithmic. We
prove the existence of envy-free Nash equilibria in our setting, and for certain
restricted cases, provide efficient distributed mechanisms to reach the same.

Our model is more general than the ones considered by Babaioff, Walsh [2]
and Babaioff, Nisan, Pavlov [8]. The latter paper assumes that the products
of the sellers are indistinguishable for the buyers; in contrast our paper allows
buyers to have preferences over the sellers and the brokers.

2 Broker Market Games

We model the three kinds of players in our market: buyers, brokers and sellers,
as the three layers in a tri-partite network (A, B, C), respectively. Thus we allow
interaction between buyers and sellers only via brokers. We assume each seller
has one good to sell and each buyer desires only one unit of good. We also assume
the same number of buyers and sellers, i.e. |A| = |C| = n and |B| = m. Every
buyer i has a value ui associated on obtaining the good. Every seller j has a
global reputation rj . The buyer i to broker j trust weights are denoted by αij .

We consider the constrained advertisement model for the brokers, that is, we
allow each broker j a maximum of Nj advertisements which he can broadcast.
For simplicity we assume each Nj = N is the same, and we assume Nm ≥ n.

We now describe the strategies of the various players and the payoffs they get.

– Buyers: The strategy of the buyer is to decide which broker j to trade with,
to buy the item from which seller k, when the price the broker offers is pj .
The pay-off is a function fi(ui, αij , pj , rk) which is assumed to be continuous,
increasing in ui, αij and rk, and decreasing in pj . We will assume its is linear
in the price. The pay-off fi is called separable if there exist functions gi and
h such that

fi(ui, αij , pj, rk) = gi(ui, αij) + h(rk) − pj

– Brokers: The broker j need to decide which of the N sellers’ advertisements
should it broadcast and at what prices. The only profit broker makes is
Psell −Pbuy , where Psell is the total price he sells goods at and Pbuy the total
money he buys at. For this paper we assume brokers do not make distinctions
between which buyers he sells to.

– Sellers: The strategy of the seller is to just fix the price at which he sells the
good.

Under the assumptions stated above, this game has a Nash equilibrium in
pure strategies. We first elaborate what a PSNE looks like in this case.
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PSNE (Pure Strategy Nash Equilibrium) of Broker Market Games: A price
vector P for sellers, an allocation of some N advertisements for every broker
j, and a price vector Q for the mN advertisements by brokers form a Nash
equilibrium if the following hold.

– Buyers get the best possible product at the given prices, i.e., at the price
vector Q, every buyer i buys a good from seller k advertised by broker j at
price Qj such that it maximizes fi(ui, αij , Qj, rk).

– Every good is sold.
– Sellers have no incentive to raise advertised prices, i.e., increase in pk = P [k]

results in seller k’s good having zero demand.
– All m brokers have zero-regret about the advertisements they chose to broad-

cast, that is, no broker could have made more profit by broadcasting a dif-
ferent set of N advertisements at some other price.

We further define the following desirable envy-freeness property and then a
result on existence of PSNE in broker markets. We defer the proof to the full
version [10].

Definition 1. Envy-freeness of brokers: Broker s will not envy broker t only if
every buyer i broker t sold a good to with > 0 profit, is either happier buying
that good from t than from s, or s did not advertise that good.

Theorem 1. For every broker market game with separable pay-off functions for
buyers, there exists an envy-free PSNE.

Our model can be thought off as a generalization of the assignment game, defined
by Shapley and Shubik [11] which comprised of n buyers and n sellers with each
buyer i having a utility uij for the good sold by j. Their goal was to come up
with a price vector P for the goods, such that at this price, every buyer i gets the
good maximizing her “happiness” of uij − pj and the market clears. Demange
et.al. [3] came up with a mechanism to reach these equilibrium prices.

In the next section, we discuss cases where the PSNE can be reached in an
efficient fashion via distributed mechanisms.

2.1 Efficient Mechanisms

For certain special cases, we also design efficient mechanisms for computing
these envy-free Nash equilibria. Due to lack of space, we only describe one such
mechanism.

Theorem 2. For the extreme cases when N = n (unbounded advertising budget)
and N = 1 (one advertisement budget), there exist polynomial time distributed
mechanisms to compute the Nash equilibria.

Unbounded Advertising Budget. The mechanism can be thought of as a se-
quence of two mini-games played one after another until all goods are sold. Both
mini-games are similar to the assignment game. We now sketch a continuous
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version of the mechanism and we leave out the discretization and proof of poly-
nomial time in this abstract.

The Multiple Round Mechanism

Initialize P = 0 for all sellers.
Mini Game 1

– Sellers pass price-vector P to all brokers.
– Brokers pass P to all buyers they can reach.
– Buyers choose their best advertisement(s) from their options. Draw cor-

responding ≥ n edges.
– As long as there is a subset of buyers, S, such that N(S): the set of

brokers they choose as their best option, is smaller in size than S, brokers
in N(S) corresponding to a maximal such S increase their selling prices.

– If for all S ⊆ A, |N(S)| ≥ |S|, then by Hall’s theorem there is a matching
which matches all buyers. Choose such an arbitrary matching and call
the matched brokers active, and move on to Mini-game 2.

Mini Game 2

– Draw edges from active brokers to sellers that received demand from
buyers.

– Consider a maximal subset T of (active) brokers such that the size of
its neighborhood |N(T )| < |T |, if such a T exists. Repeat this and the
following step until no such T exists.

– Sellers in N(T ) corresponding to a maximal set T increase their price,
modifying P . As soon as some seller’s selling price reaches a neighboring
broker’s selling price, delete the broker-seller edge.

– Brokers advertise this new vector P and a second round of mini-games
takes place unless |N(T )| = |C|, that is all goods are sold.

3 Concluding Remarks

There are several interesting future directions. We prove the envy-freeness prop-
erty for the specific Nash equilibria we describe. A fundamental question is to
give a clean characterization of all possible Nash equilibria in our setting. It is
not clear whether one can extend the efficient distributed mechanisms to the
intermediate budget constraint cases.

The eventual goal of our study is to prove existence, determine efficient mech-
anisms, and characterize equilibria in general networks (not necessarily layered).
One question about the model that merits attention is that in our case we al-
low brokers to choose which sellers to advertise. An alternate model could allow
sellers to choose which brokers to advertise via; in such a setting, it may make
sense to attribute global (perhaps dynamic) reputations on brokers too.
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K-NCC: Stability Against Group Deviations in

Non-cooperative Computation
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Abstract. A function is non-cooperative computable [NCC] if honest
agents can compute it by reporting truthfully their private inputs, while
unilateral deviations by the players are not beneficial: if a deviation from
truth revelation can mislead other agents, then the deviator might end up
with a wrong result. Previous work provided full characterization of the
boolean functions which are non-cooperatively computable. Later work
have extended that study in various directions. This paper extends the
study of NCC functions to the context of group deviations. A function is
K-NCC if deviations by a group of at most K agents is not beneficial: in
order to mislead other agents, at least one group member might compute
the wrong outcome. A function which is K-NCC for every K is termed
strong-NCC. In this paper we provide a full characterization of the K-
NCC functions, for every K, and of strong-NCC functions in particular.
We show that the hierarchy of K-NCC functions is strict. Surprisingly,
we also show that an anonymous function is NCC iff it is strong-NCC;
that is, an anonymous function which is non-cooperatively computable is
stable against deviations by any coalition of the agents. In addition, we
show that group deviations are stable: if there exists a deviating coalition
of minimal size K, then there is no sub-coalition of it which will benefit
by further deviation from the original deviating strategy.

1 Introduction

Non-cooperative computing [NCC], introduced in [7], deals with the desire to
compute a function defined on agents’ private inputs where the agents might
have incentives not to report truthfully. This can be viewed as a task of in-
formational mechanism design. While in a classical mechanism design context
(see [5] Chapter 23) the essence of the problem is the lack of information about
the agents’ preferences, in NCC the agents’ preferences are known but other
information they possess which is needed for the joint activity is private. NCC
introduces a game-theoretic version of the problem of multi-party computation.1.

In order to see the basic idea behind NCC consider for example the situation
where each agent’s secret is a bit, and the function to be computed is the parity
function. If all agents report their bits honestly then the parity can be easily
1 Indeed, the work in [4,1] deals with NCC when there is no center in the system,

bridging the gap to the classical assumptions in the cryptographic and distributed
computing literature

X. Deng and F.C. Graham (Eds.): WINE 2007, LNCS 4858, pp. 564–569, 2007.
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computed. However, if an agent reports 1 (resp. 0) instead of 0 (resp. 1), while
all other agents report honestly, then this agent will be able to re-cover the true
result by reversing the reported outcome, while misleading the other agents.
Hence, the parity function is not non-cooperatively computable. On the other
hand, if the function is the majority function, then false report might make the
deviator unclear about the true result, given that the result of the majority func-
tion is computed and reported to the participants using a trusted center based
on the information provided by them; this makes this function non-cooperatively
computable.

The early results on NCC provided complete characterization of the functions
which are non-cooperatively computable. Additional work has been carried out
on extending this setting [6], as well as on considering the agents’ costs, which
lead to other forms of deviations [8].

In this paper we attack a major challenge: deviations by coalitions in the
NCC setting. Although it has been already acknowledged that knowing whether
a function is stable against deviations by groups of agents is central to the con-
text of non-cooperative computing and rational multi-party computation [1], no
analysis has been provided for the characterization of functions which are stable
against deviations by coalitions in that context. While NCC is associated with
honest computation being in equilibrium, group deviations in that context can
be associated with the concept of strong equilibrium as introduced by Aumann
[2]; therefore, we refer to a function as strong-NCC if no coalition can mislead
in some cases at least one member which is not part of the coalition, without
taking the risk this would cause at least one member of the coalition not to know
the function value. More generally, we wish to study K-NCC functions, in which
deviations of coalition of size at most K are considered. The case of NCC is then
associated with 1-NCC functions.

In the NCC model there are n agents, each of which wish to compute an
n-ary function w, with each of the agents holding one of the inputs to w. The
process of computation is mediated by a center as follows: Each agent declares
his input (truthfully or not) to the center, the center performs computation
based on those inputs, and reports back to the agents an output. In the setting
we deal with, the center applies w to the declared inputs and announces the
value to all the agents. Each agent has now to decide on the output he accepts
as a result of the computation.2 We concentrate on agents whose utility function
has two components. The main component, termed correctness, is the wish to
compute the function correctly. The secondary component, termed exclusivity, is
the wish that other agents do not compute the function correctly. The secondary
component - exclusivity - is affecting the agent only if the main component -
correctness - is not under risk. The definition of ”exclusivity” is rather loose,
and allows for many possible variants; for example, it can be more important
for an agent to mislead a particular agent than another agent. For the results
presented in this paper the exact meaning of exclusivity does not matter; the only

2 In fact, under the famous revelation principle, one can show that the restriction to
such mechanisms can be done without loss of generality.
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assumption is that the situation in which at least one other agent is mistaken is
better than the situation where all other agents are correct, as long as the agent
can compute the function correctly.

In the subsequent sections we present sound and complete conditions for a
function to be K-NCC, and in particular strong NCC. We prove that an n-ary
boolean function is Strong NCC (i.e. resilient to deviation of a coalition of any
size) iff it is not dominated and not k-reversible for any 1 ≤ k < n. Our result
implies that any anonymous function is strong NCC iff it is NCC. We also show
that the hierarchy generated by K-NCC functions is strict and that when a
function is not stable against deviation of a minimal coalition of size K, then
such a deviation will be stable against further deviations of sub-coalitions. In
game-theoretic terms, this result implies that the existence of a coalition-proof
equilibrium implies the existence of a strong equilibrium in the NCC setting.

2 Definitions

In this section we define the notion of K-NCC. Given a set of agents N =
{1, 2, . . . , n}, and a special agent termed ”the center”, we assume that there
exists a private secure communication line between every agent i ∈ N and the
center. The type vi of agent i is selected from some domain Bi. We concentrate
on a Boolean domain, where Bi = B = {0, 1}

Given a function w : Bn → B, we consider the following protocol:

1. For any instantiated type vector v ∈ Bn, each agent i declares his type v̂i to
the center (truthfully or not; v̂i = vi may or may not hold).

2. The center computes the value w(v̂) = w(v̂1, . . . , v̂n) and announces it to all
agents.

3. Each agent i computes w(v) based on w(v̂) and vi (his true input).

The protocol defines a strategy space for each agent. A pure strategy for
agent i is a pair of functions (fi, gi). fi : B → B, the declaration function,
determines the input declared to the center based on the agent’s true input. The
truthful declaration function is the identity function f t(v) = v. gi : B2 → B,
the interpretation function, is used by the agent to decide on the value of the
function based on the announcement by the center and his true input. The
trusting interpretation function is the projection function gt(v1, v2) = v1 in
which the agent simply accepts the value announced by the center. We will refer
to the strategy (f t, gt) as the straightforward strategy.

Note that the strategy profile consisting only of straightforward strategies
results in each agent computing w correctly for all input vectors. We are looking
for functions for which such a strategy profile forms an equilibrium, and more
generally a (k-)strong equilibrium which is stable against deviations of coalition
(of size at most k). We will use the following notations:

Definition 1. For a set of agents C = {i1, . . . , ik} ⊆ {1, . . . , n}, BC is defined
as

∏
j∈C Bj and B−C is defined as

∏
j /∈C Bj. In the same way, vC ∈ BC is a
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tuple of types of agents participating in the set C, and v−C ∈ B−C is a tuple of
types of agents not participating in the set C.

We can now define K-NCC:

Definition 2. A function w is called K-NCC if the following holds: For any set
of agents C = {i1, . . . , ik}, k ≤ K, every tuple of their strategies
((fi1 , gi1), . . . , (fik

, gik
)), and every corresponding agent types vij ∈ B, 1 ≤ j ≤

k, it is the case that:

– either ∃v−C ∈ B−C , ∃j, ij ∈ C, such that

gij (w(fi1 (vi1), . . . , fik
(vik

), v−C), vij ) �= w(vi1 , . . . , vik
, v−C)

– or ∀v−C ∈ B−C we have

w(fi1(vi1 ), . . . , fik
(vik

), v−C) = w(vi1 , . . . , vik
, v−C)

In words, each deviating coalition of up to K players will either be mistaken for
some types of the non-deviating players or will always produce the same result
as if they didn’t deviate

The following definition will play a key role in the characterization of functions
which are K-NCC:

Definition 3. A function w is called k-reversible if the following holds: ∃C =
{i1, . . . , ik} ⊆ {1, . . . , n} such that ∀v−C ∈ B−C , ∀j, 1 ≤ j ≤ k, ∀vij ∈ Bij ,

w(vi1 , . . . , vik
, v−C) = 1 − w(1 − vi1 , . . . , 1 − vik

, v−C)

Note that in this definition, the set C contains exactly k players.

It may worth to notice that the definition of reversible functions discussed in [7]
coincides with the definition of 1-reversible functions above.

Another definition, used in previous work on NCC is the following one:

Definition 4. A function w is called dominated if the following holds: ∃i ∈
{1, . . . , n}, vi ∈ B, such that ∀v−{i}, v′−{i} ∈ B−{i} , w(vi, v−{i}) = w(vi, v

′
−{i}),

and there is some v−{i} ∈ B−{i}, for which w(1−vi, v−{i}) = 1−w(1−vi, v−{i}).

If a function is dominated then, for a particular value of a particular agent’s
type, the agent knows the value of the function, while it can still influence the
outcome by his report.

3 A Full Characterization of the K-NCC Functions

Given the previous definitions, the characterization of NCC functions obtained
in [7] can now be stated as follows:

A boolean function is 1-NCC iff it is not dominated and is not 1-reversible.
The following theorem establishes the exact conditions under which a function

which is (K − 1)-NCC is also K-NCC. It will imply necessary and sufficient
conditions for a function to be K-NCC, and strong NCC.
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Theorem 1. For 2 ≤ K ≤ n − 1 a boolean function is K-NCC iff it is (K − 1)-
NCC and not k-reversible for k = K.

Theorem 1 does not deal with the case where K = n. As it turns out, this case
is immediate:

Theorem 2. A boolean function is n-NCC if it is (n-1)-NCC.

We can now state the following necessary and sufficient conditions for a function
to be K-NCC:

Corollary 1. A boolean function w is K-NCC iff it is not dominated and not
k-reversible for every 1 ≤ k ≤ K. Therefore, a boolean function is strong NCC
iff it is not dominated and not k-reversible for every 1 ≤ k < n.

3.1 Anonymous Functions

An interesting class of functions are the anonymous functions (aka symmetric
functions). The value of an anonymous Boolean function depends only on the
number of 1’s in the input. Many of the functions discussed in the computer
science literature, such as parity, majority, consensus, order statistics, etc., are
anonymous. As we now show for these functions any NCC function is also Strong
NCC. This powerful result is implied by our characterization and the following
theorem:

Theorem 3. Anonymous n-variable functions that are not 1-reversible, are not
k-reversible for any 1 < k < n.

It now follows:

Corollary 2. An anonymous n-variable Boolean function is Strong NCC iff it
is NCC.

This follows from Theorem 1 and Theorem 3 for coalitions smaller than n, and
from Theorem 2 for coalitions of size n.

4 The K-NCC Hierarchy

The previous section established the characterization of K-NCC functions. We
now show that the hierarchy implied by these functions is strict. To show this,
we prove the following:

Theorem 4. For n > 2, K ≤ n, there exists a function w that is K-reversible,
but not k-reversible for any k < K

Theorems 1, 2 and 4 imply the strictness of the K-NCC hierarchy:

Corollary 3. For n ≥ 2 we have: n-NCC = (n-1)-NCC ⊂ (n-2)-NCC ⊂ . . . ⊂
2-NCC ⊂ NCC
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5 Stability of Deviations

Stability against deviations by coalitions is typically considered as a very de-
manding requirement. Nevertheless, we have shown that for anonymous func-
tions a function is stable against deviations by coalitions iff it is stable against
unilateral deviations. This can be viewed as a highly positive result. When con-
sidering more general situations, it is natural to consider the question of whether
the deviations themselves are stable. Indeed, this has led to the introduction of
solution concepts, such as coalition-proof equilibrium [3], in which the stability
of the deviations is considered. In this section we show that our results remain
the same when considering only stable deviations. This will be proven in a very
general setup. Namely, we will show that if there exists a deviating coalition,
then there exists a stable deviating coalition. Formally, we will consider minimal
deviations, and show that any further deviation by a smaller sub-coalition is not
beneficial. This implies that in the NCC setting the existence of coalition proof
equilibrium [3] coincides with the existence of strong equilibrium [2] (which by
itself coincides with the existence of NCC for anonymous functions).

Theorem 5. Consider a minimal deviation from the straightforward strategy
profile, by a coalition C. Then, no further deviation by C′ ⊂ C can be beneficial
to C′.
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Incentive Compatible Auctions�

Aries Wei Sun

Department of Computer Science, City University of Hong Kong
sunwei@cs.cityu.edu.hk

Abstract. In this paper, we give the definition of randomized symmet-
ric incentive compatible auctions. Then we define three monotone prop-
erties of such auctions and study the implication relationships among
them. This paper extends our previous work [4] which was focused on
deterministic symmetric incentive compatible auctions.

1 Introduction

Originally, auctions were used to sell normal items that are in limited supply.
Largely because of digital goods of zero marginal cost, new variations of auc-
tions where the supply is unlimited are studied [5,2,1,3]. And several important
properties that has not been necessary for many previously well known auction
protocols are discovered. Thus a natural question arises: what are the basic prin-
ciples we have to stick to in economic transactions at the micro level? We are
motivated to study this fundamental question to understand the limitation and
the possibility in auction protocols.

This paper introduces the concept of randomzied symmetric incentive compat-
ible auctions, defines three monotone properties in such auctions, and studies
the implication relationships among them. It is an extension to our previous
works published in [4], which was focused on deterministic symmetric incentive
compatible auctions.

§2 introduces the preliminaries, including the model and notations (§2.1),
fundamental definitions (§2.2), the definition of symmetric incentive compatible
auction (§2.3), and the a discussion on the price function (§2.4).

§3 reviews the definition of deterministic symmetric incentive compatible auc-
tion (§3.1), and the implication relationships among them (§3.2). These results
have been achieved in our previous works[4].

In parallel, §4 introduces the definition of randomized symmetric incentive
compatible auction (§4.1), and studies the implication relationships among them
(§4.2). Analyses show that the relationships are similar to the deterministic case
studied before.

§5 concludes.
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2 Preliminaries

This section introduces the preliminaries. §2.1 introduces the auction model
we are studying and its notations. §2.2 reviews some fundamental definitions.
§2.3 defines the concepts of deterministic and randomized symmetric incentive
compatible auctions and studies their relationship. §2.4 provides a discussion on
the price function.

2.1 The Model and Notations

We restrict our attentions to auctions satisfying the following properties:

1. Every bidder wants at most one item.
2. The items sold by the auction are the same.
3. The auction is carried out in a one-round sealed-bid manner.
4. The bidders know the auction protocol.

We use the following notations and terminologies throughout the paper:

n the total number of bidders
a(i) the i-th agent (or bidder) in the auction
b(i) the bid submitted by a(i). b(i) ≥ 0.
v(i) the private valuation on the product of a(i). v(i) ≥ 0.
b = (b(1), b(2), . . . , b(n))
b(∼i) = (b(1), b(2), . . . , b(i−1), b(i+1), . . . , b(n))
w(i) The number of items agent a(i) has won from the auction.
p(i) The price agent a(i) should pay for each unit. p(i) ≥ 0. In our model w(i) is

either 0 or 1.
u(i) The utility of agent a(i). u(i) = (v(i) − p(i)) × w(i).
Revenue(b) =

∑n
i=1 w(i) × p(i). It is the auctioneer’s revenue.

The auctions we study in this paper can be viewed as algorithms that take
b as input, and gives w(i) and p(i), i = 1, 2, . . . , n, as output. a(i) is a winner if
w(i) > 0 and a loser otherwise. Notice that if a(i) is a loser, it pays $0, while p(i)

may be a positive number.
Deterministic auctions are those for which w(i) and p(i), i = 1, 2, . . . , n, are

completely determined as a function of b. Whereas randomized auctions are
those for which the computation processes of w(i) and p(i) are randomized. [5].

2.2 Fundamental Definitions

Definition 1. An auction is individual rational if b(i) < p(i) ⇒ w(i) = 0, ∀i.

Definition 2 ([6]). A deterministic auction is incentive compatible if, for each
a(i) and any b(∼i), u(i) is maximized by bidding b(i) = v(i).

Definition 3 ([5]). A randomized auction is incentive compatible if it can be
described as a probability distribution over deterministic incentive compatible
auctions.
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2.3 Deterministic and Randomized Symmetric Incentive
Compatible Auctions

Definition 4 ([4]). A deterministic auction is symmetric iff for any input:

1. b(i) = b(j) ⇒ p(i) = p(j).
2. p(i) remains unchanged if two other bidders exchange bids.

Definition 5. A randomized auction is symmetric iff for any input:

1. b(i) = b(j) ⇒ Pr
[
p(i) = p

]
= Pr

[
p(j) = p

]
, ∀p ∈ �.

2. Pr
[
p(j) = p

]
remains unchanged if two other bidders exchange bids, ∀p ∈ �.

Remarks: It is not hard to prove that if an auction satisfies Definition 2, then
it also satisfies Definition 3. This result is not used later and is omitted in this
short paper submission.

Definition 6 (SIC::D). An auction ad belongs to the set SIC::D, iff:

1. It is consistent with the model described in §2.1.
2. It is a deterministic symmetric auction.
3. It is individual rational and incentive compatibe.

Such ad is called a “deterministic symmetric incentive compatible auction”.

Definition 7 (SIC::R). An auction ar belongs to the set SIC::R, iff:

1. It is consistent with the model described in §2.1.
2. It is a randomized symmetric auction.
3. It is individual rational and incentive compatible.

Such ar is called a “randomized symmetric incentive compatible auction”.

Theorem 1
SIC::D ⊂ SIC::R

Proof. For any ad ∈ SIC::D, we can construct a set {ad} ⊂ SIC::D, and view
ad as a probability distribution over {ad}. It is easy to check that ad also satisfies
Definition 3 and Definition 5, by which we conclude ad ∈ SIC::R.

Hence for any ad ∈ SIC::D, we must also have ad ∈ SIC::R. �	

2.4 A Discusson on the Price Function

In this subsection, we restrict our attention to auctions in SIC::R. The descrip-
tion of allocation policies can be much simplified by a set of price functions,
fi(·), one each for the participating agents. a(i) wins the item if b(i) > fi(·), loses
if b(i) < fi(·). In the event b(i) = fi(·), a(i) is either a zero winner or a zero loser
depending on whether it is allocated with the item by the auction protocol.
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Lemma 1 (Bid Independent Pricing. Folklore, see e.g. [5]). In an auc-
tion, either deterministic or randomized, that is individual rational and incentive
compatible, the pricing function of a(i) does not depend on b(i). In other words,
a(i)’s price function does not take its bid b(i) as a variable. i.e. p(i) = fi(b(∼i)).
And for any bidder a(i), if b(i) > p(i), then a(i) is a winner.

Remarks: Given Lemma 1, a(i)’s price function can be expressed as fi(b(∼i)).

Lemma 2. In any auction ar ∈ SIC::R, every bidder a(i)’s price function is
independent of its index i.

Proof. Let b(i) = b(j). By Definition 5,

Pr
[
fi(b(∼i)) = p

]
= Pr

[
fj(b(∼j)) = p

]
, ∀p ∈ �

For symmetric auctions, if we sort b(∼i) in decreasing order into b′(∼i), the
distribution of the price function will not change. i.e.,

Pr
[
fi(b(∼i)) = p

]
= Pr

[
fi(b′(∼i)) = p

]
, ∀p ∈ �

Similarly, reorder b(∼j) into b′(∼j), we have

Pr
[
fj(b(∼j)) = p

]
= Pr

[
fj(b′(∼j)) = p

]
, ∀p ∈ �

b′(∼i) = b′(∼j) and Pr
[
fi(b′(∼i)) = p

]
= Pr

[
fj(b′(∼j)) = p

]
, ∀p ∈ �, thus

we complete the proof.

Remarks: Given Lemma 2, we can remove the subscript from every bidder a(i)’s
price function fi(·), and denote it by f(·). Thus, the output of the auction is
indepent of the order of the bidders. In the following parts, we always assume
the bid vector is sorted in decreasing order.

3 Deterministic Monotone Properties

This section reviews the results we have achieved in [4], including the defini-
tions of the there deterministic monotone properties (§3.1) and the implication
relationships among them (§3.2).

3.1 Definitions

For d ∈ SIC::D, we have defined 3 monotone properties in [4]. Namely, determin-
istic winner monotone (WMD), deterministic price function monotone (PFMD),
and deterministic revenue monotone (RMD), which are defined as follows:

1. WMD: b(i) > b(j) ≥ p(j) ⇒ b(i) ≥ p(i).
2. PFMD: b(∼i) > b(∼j) ⇒ f(b(∼i)) ≥ f(b(∼j)).
3. RMD: b > b′ ⇒ Revenue(b) ≥ Reveune(b′).
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3.2 Implication Relationships

Theorem 2 ([4]). For any auction ad ∈ SIC::D, the implication relationships
between any two of the three monotone properties are as follows:

PFMD ⇒ WMD, WMD � PFMD; RMD � WMD, WMD � RMD; PFMD
� RMD, RMD � PFMD.

Moreover, the implication relationships from any two to the other one of the
three monotone properties are as follows:

PFMD and RMD ⇒ WMD; WMD and RMD � PFMD; WMD and PFMD �

RMD.
Finally, it is possible that WMD, PFMD and RMD simutaneously exist.

4 Randomized Monotone Propoties

In §4.1 we define radomized monotone properties in parallel to §3.1. In §4.2, we
study the implication relationships among them.

4.1 Definitions

For any ar ∈ SIC::R, we define 3 monotone properties in parallel to §3.1.
Namely, randomized winner monotone (WMR), randomized price function mono-
tone (PFMR), and randomized revenue monotone (RMR), which are defined as
follows:

1. WMR: b(i) > b(j) ⇒ Pr
[
b(i) ≥ p(i)

]
≥ Pr

[
b(j) ≥ p(j)

]
.

2. PFMR: b(∼j) > b(∼i) ⇒ Pr
[
f(b(∼j)) > p

]
≥ Pr

[
f(b(∼i)) > p

]
, ∀p ∈ �.

3. RMR: b > b′ ⇒ Pr [Revenue(b) > y] ≥ Pr [Revenue(b′) > y] , ∀y ∈ �.

Remarks: It is obvious that the deterministic monotone properties are special
cases of their randomized counterparts. A rigor proof is omitted in this short
paper submission to save space and is available upon request.

4.2 Implication Relationships

Lemma 3. PFMR⇒WMR

Proof. Suppose b(i) > b(j), then b(∼i) < b(∼j).
By PFMR, Pr

[
f(b(∼j)) > b(i)

]
≥ Pr

[
f(b(∼i)) > b(i)

]
. i.e.

Pr
[
p(j) > b(i)

]
≥ Pr

[
p(i) > b(i)

]

And since Pr
[
p(j) > b(j)

]
≥ Pr

[
p(j) > b(i)

]
, we have:

Pr
[
b(j) ≥ p(j)

]
≤ Pr

[
b(i) ≥ p(i)

]

Thus we complete the proof. �	
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Theorem 3. For any auction ar ∈ SIC::R, the implication relationships be-
tween any two of the three monotone properties are as follows:

PFMR ⇒ WMR, WMR � PFMR; RMR � WMR, WMR � RMR; PFMR
� RMR, RMR � PFMR.

Moreover, the implication relationships from any two to the other one of the
three monotone properties are as follows:

PFMR and RMR ⇒ WMR; WMR and RMR � PFMR; WMR and PFMR �

RMR.
Finally, it is possible that WMR, PFMR and RMR simutaneously exist.

Proof. By Lemma 3, we have PFMR ⇒ WMR and PFMR and RMR ⇒ WMR.
By Theorem 1 and Theorem 2, we know that:

1. WMR � PFMR; RMR � WMR, WMR � RMR; PFMR � RMR, RMR �

PFMR.
2. WMR and RMR � PFMR; WMR and PFMR � RMR.
3. It is possible that WMR, PFMR and RMR simutaneously exist.

Thus we complete the proof. �	

5 Conclusions

In this short paper we have extend our previous works [4] on deterministic sym-
metric incentive compatible auctions to the randomized case. At the same time,
we have improved notations, presentation, and understandability.
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Abstract. A context in sponsored search is additional information about
a query, such as the user’s age, gender or location, that can change an ad-
vertisement’s relevance or an advertiser’s value for that query. Given a set
of contexts, advertiser welfare is maximized if the search engine runs a sep-
arate auction for each context; however, due to lack of competition within
contexts, this can lead to a significant loss in revenue. In general, neither
separate auctions nor pure bundling need maximize revenue.

With this motivation, we study the algorithmic question of comput-
ing the revenue-maximizing partition of a set of items under a second-
price mechanism and additive valuations for bundles. We show that the
problem is strongly NP-hard, and present an algorithm that yields a 1

2 -
approximation of the revenue from the optimal partition. The algorithm
simultaneously yields a 1

2 -approximation of the optimal welfare, thus en-
suring that the gain in revenue is not at the cost of welfare. Finally we
show that our algorithm can be applied to the sponsored search setting
with multiple slots, to obtain a constant factor approximation of the
revenue from the optimal partition.

1 Introduction

Sponsored search is a very effective medium for advertising as it allows precise
targeting of advertisements to users: a user can be presented with advertisements
that are directly related to her search query. However, further targeting is pos-
sible by using the context of a query and the user associated with the query. A
context in a sponsored search auction is additional information associated with a
particular instance of a query that can change an advertisement’s relevance or an
advertiser’s value for that keyword. For example, zip codes can often be inferred
from IP addresses, providing a user location context: for certain queries (say
pizza delivery, or dentist) local advertisements might be more relevant to the
user than non-local ones. Other examples of contexts are age or gender-related
demographic information, or ’search intent’ gleaned from other searches by the
same user.
� Work performed in part while visiting Yahoo! Research.
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The formal study of sponsored search with contexts was recently introduced by
Even-Dar et al [10], where the authors showed that splitting a keyword auction
into mutiple auctions, one for each context (for example, if the context is location,
then having one auction for each location), increases welfare. They also gave
examples demonstrating that there is a tradeoff: while welfare increases upon
splitting contexts, the search engine’s revenue may be larger when the keyword
is not split (i.e., all contexts stay combined). (To see why, consider the case
when the auction for each context has only one participating advertiser; since
the mechanism used is a a variant of second price auctions [16,8], such advertisers
face no competition and will generally pay a small reserve. So the revenue to
the search engine is very small compared to the situation when contexts are
not separated.) However, the search engine’s choice is not limited to the two
extreme partitions of the set of contexts, namely, keeping each context separate
(maximizing efficiency) or combining all contexts together (pure bundling): other
partitions of the set of contexts may give better points on the revenue-efficiency
trade-off curve (in fact, we will show that the revenue from the optimal partition
can be arbitrarily larger than the revenue from these two extreme partitions,
while losing no more than half the maximum efficiency.)

In this paper, we study the algorithmic problem of optimally partitioning a
set of contexts to maximize revenue under a second-price mechanism in the full
information setting, i.e., when the matrix of bidder valuations for each context
is known (for simplicity, we study the case of a single slot, and later generalize
the results to multiple slots). We show that this problem is strongly NP -hard,
and then provide a 1/2-approximation algorithm for it. This approximation al-
gorithm also loses no more than 1/2 the maximum possible efficiency (obtained
when all contexts are auctioned separately, possibly with great loss in revenue).
We emphasize that since the optimal revenue can be arbitrarily larger than the
revenue from either selling all contexts separately or combining them all together,
the revenue from this algorithm can also be arbitrarily larger than the natural
benchmark revenue; the factor 1/2 is with respect to the optimal revenue over all
partitions, not the larger revenue of the two extreme partitions. Finally we show
that our algorithm can be applied to the sponsored search setting with multiple
slots to obtain a factor (1−q)

2 of the optimal revenue, when slot clickthrough rates
decay geometrically [6] as qj .

We consider the full information setting for the following reason. A search en-
gine making the decision to split contexts might want to compute a partition of
contexts into auctions just once (or infrequently), rather than dynamically 1. In
this case the search engine will use observed historical data to compute these par-
titions. Specifically, consider keywords where the value-per-click remains almost
constant across contexts, with only click-through rates varying across context.
Search engines usually have reasonable estimates of click-through rates across
contexts, and also of valuations of advertisers who bid frequently on a keyword

1 In fact, it is not clear what it means to dynamically compute bundles of contexts
in the sponsored search setting, since queries corresponding to all contexts do not
appear simultaneously; also advertisers might change their bids asynchronously.
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(while the GSP auction is not truthful, techniques from [16] can be used to ob-
tain estimates of values). Further, advertisers’ actual valuations for keywords
do not vary significantly over time, as these values are typically based on the
estimated profit from future conversions. Thus it is reasonable and possible to
use a partitioning algorithm based on full information in this setting 2. A similar
reasoning applies to another situation where bundling may be valuable, which
is for related keywords with thin markets (for instance, bundling together mis-
spellings of a valuable keyword like insurance, where each misspelling might have
bids from only a few advertisers).

Related Work: The study of bundling in the economics literature was started
by Palfrey [15], and later extended to various settings [7,5,4]. Recently, Je-
hiel et. al. [11] proposed a novel framework to study mixed bundling auctions,
and proved that under certain distributional assumption over valuations, mixed
bundling generates more revenue than both bundling all items together, or sell-
ing all items separately. Another related paper in this context is [12], which
studies high revenue auctions from the class of virtual valuations combinatorial
auctions, and gives an auction which is within a logarithmic factor of the rev-
enue maximizing auction for additive valuations. Bundling has also been studied
in the setting of monopoly pricing [1,14,13,3]. Our work differs from all of this
literature in that we consider the algorithmic problem of computing the opti-
mal, revenue maximizing partition under a second price mechanism in the full
information setting; we give a constant factor approximation for this problem,
along with an efficiency guarantee.

A different solution for revenue maximization in thin markets is to set a
reserve price based on estimates of distributions of advertiser valuations [9].
Bundling is a more robust solution when bidders’ values (or distributions of
bidder values) change with time, but in a positively correlated fashion, such
as temporal or seasonal variations (prominent examples are keywords related
to travel, or occasions such as Valentine’s day (like flowers)). In such cases the
same bundling structure can be maintained as opposed to optimal reserve prices
which will need to be updated to maintain high revenues.

2 Model

There is a set I of items numbered 1 . . . k, and and a set U of agents, 1, . . . , n.
There is a single copy of each item (we discuss the multiple-slot case in §5). Let
vij be the value that agent i has for item j. We assume that agents valuations
for bundles are additive—the value that agent i has for a bundle B ⊆ I, viB , is∑

j∈B vij .
Items, or bundles of items, are sold according to a second-price auction: the

winner of a bundle B is the agent with max viB , and is charged the second highest
valuation for that bundle. An allocation partitions I across the bidders. Let Si

2 Note that once bundles have been computed, the usual equilibrium analysis of a
keyword auction can be applied to each bundle [16].
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denote the set of items allocated to bidder i. The welfare of the allocation is∑
i∈U viSi , and the revenue is the sum of the prices paid by each winning agent.
Our problem is the following: Given the matrix of valuations vij , we want

to compute the revenue maximizing partition of items into bundles, when each
bundle is awarded to the agent with the highest valuation at a price equal to the
second highest valuation for the bundle.

We briefly discuss how the sponsored search setting maps to the above model.
Suppose there are n bidders, where bidder i, 1 ≤ i ≤ n, has a value per click
vi. Assume that there is just one slot. Suppose there are k different contexts,
and the clickthrough rate (CTR) of bidder i for context j is cij—this is the
probability that the advertisement of bidder i will be clicked on when displayed
in context j. Further, let fj denote the number of impressions corresponding to
a specific context. The value that advertiser i has for context j is vij = vifjcij .
We assume that valuations are additive, i.e. the valuation for a set of contexts
I ′ is vi ·

∑
j∈I′ fjcij . We note that our model is quite general and can also be

applied to bundling different keywords together or the case that different context
has different values.

3 Characterizing Optimal Bundling

An optimal bundling is a partitioning of items into bundles that leads to the
largest revenue, when items are allocated to the agent with the highest valuation
for the bundle at a price equal to the second-highest valuation. In this section,
we characterize the structure of bundles in an optimal bundling, and show that
bundling to maximize revenue does not lose much efficiency.

Before we discuss optimal bundling, it is natural to ask whether it is sufficient
merely to consider two extreme partitions: sell all items separately, or bundle
them all together (in fact, much prior work on bundling restricts itself to these
two options). However, the larger of the revenues from these two extreme parti-
tions can be arbitrarily worse than the revenue of the optimal bundling, as the
following example shows. The same example shows that the efficiency loss can
also be arbitrarily large when we choose the revenue-maximizing bundle from
these two extreme partitions.

Example 1. Suppose there are k items and k agents. The valuation of bidder i
is 1 for item i, and 0 for all other items. If all items are sold separately, the
revenue is 0 (and welfare is k). Bundling them together gives a revenue of 1 (and
welfare 1). However, the revenue of optimal bundling is k

2 , which is obtained
by pairing items, i.e., partitioning into k

2 bundles; this also has welfare k
2 . Thus

choosing between these two options to maximize revenue can lead to revenue and
efficiency that are both arbitrarily worse than the optimal revenue and optimal
efficiency.

The following facts follow easily from the above example. (Note that maximum
efficiency is always obtained when selling all items separately.)
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– An efficiency-maximizing bundling with the highest revenue does not, in the
worst case, give a c-approximation of revenue for any constant c ≥ 0.

– A revenue-maximizing bundle with the highest efficiency does not, in the
worst case, yield better than a 1

2 -approximation of welfare.

(Note that the revenue maximizing bundle is not unique, and efficiency can
vary across optimal partitions: suppose there are 2 items, and 3 bidders with
valuations (10, 0), (5, 5), and (0, 10). Both partitions yield the maximum revenue
of 10; however one has welfare 20 and the other has welfare 10.)

We will now show, in Theorem 1, that the statement in the second fact is
tight. Let hj be the highest valuation for item j, i.e. hj = maxi{vij}, and let sj

be the second highest valuation for item j. We state the following fact without
proof. Consider a bundle B in an optimal bundling. If there is an item j that
can be removed from B with no decrease in revenue, the new bundling obtained
by selling j separately from B is an optimal bundling with weakly greater effi-
ciency. Note that this lemma implies that in any bundle B (in a revenue-optimal
bundling with highest efficiency) with two or more items, we can assume that
hj > sj for j ∈ B. We state the following lemma regarding the structure of the
optimal bundling (proof in full version):

Lemma 1. Consider a bundle B in an optimal bundling with highest efficiency.
If bidder i has the highest valuation for item j in bundle B, then i has either the
highest valuation or the second highest valuation for bundle B.

Theorem 1. An optimal bundling with the highest efficiency also gives a 1
2 -

approximation for efficiency.

Proof. Consider a bundle B in such an optimal bundling, and let i1 and i2 be the
bidders with the highest and the second highest valuation for the bundle. Since
B is allocated to i1, vi1B ≥ (1/2)(

∑
j∈B vi1j +

∑
j∈B vi2j). From Lemma 1, we

have
∑

j∈B vi1j +
∑

j∈B vi2j ≥
∑

j∈B hj . Therefore, summing over all bundles in
the optimal bundling, the efficiency of the allocation is at least 1

2

∑k
j=1 hj . The

proof follows since the maximum efficiency is
∑k

j=1 hj .

4 Computing the Optimal Bundling

We now turn to the question of computing a revenue-maximizing bundle.

Theorem 2. The problem of finding the optimal bundling is strongly NP -Hard.

Proof. The proof is by reduction from 3-partition, which is strongly NP -hard:
given a multiset S of 3n positive integers, can S = {x1, x2, . . . , x3n} be parti-
tioned into n subsets S1, S2, . . . , Sn such that the sum of the numbers in each
subset is equal.

Let w =
∑3n

i=1 xi. We reduce the problem by constructing an instance of the
bundling problem with n + 1 bidders and 4n items. The instance is given in the
table below. Each row corresponds to a bidder and each column represents an
item. All empty values are 0.
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w
n

w
n

. . .
w
n

x1 x2 · · · x3n

It is easy to see that the revenue of the optimal bundling for the instance above
is w if and only if there exists a 3-partition.

Approximation Algorithm: Next we present an approximation algorithm for
this problem which approximates the optimal revenue by a factor 1/2; in ad-
dition, the efficiency of the bundling is no smaller than 1/2 of the maximum
efficiency. Recall that hj and sj are defined as the highest and second highest
valuations for item j. Let Ai be the set of items for which agent i has the highest
valuation, i.e. Ai = {j | vij = hj}, and let wi =

∑
j∈Ai

hj . Number agents so
that w1 ≥ w2 ≥ . . . ≥ wn. Let An+1 = ∅, and wn+1 = 0.

Algorithm B :

r1 ←
∑

j∈A1
sj +

∑�n/2�
i=1 w2i+1;

r2 ←
∑�n/2�

i=1 w2i;
If (r1 ≥ r2):

Sell all items in A1 separately;
For i ← 1 to �n/2	

Bundle items in A2i and A2i+1;
else

For i ← 1 to �n/2	
Bundle items A2i−1 and A2i;

Theorem 3. Algorithm B obtains at least half the revenue from an optimal
bundling.

Proof. Let OPT be the optimal revenue. We prove the following inequality.

OPT ≤
∑

j∈A1

sj +
n∑

i=2

wi = r1 + r2. (1)

The claim then follows since the revenue of B is at least max{r1, r2}.
To prove (1), let B be a bundle in an optimal bundling, and let i and i′ be

the two agents with highest valuations for B. At least one of these two agents
is not agent 1; let i be this agent. Because the mechanism charges the second
highest price for each bundle, the revenue of the optimal bundling from B is at
most: ∑

j∈B

vij =
∑

j∈B∩A1

vij +
∑

j∈B−A1

vij ≤
∑

j∈B∩A1

sj +
∑

j∈B−A1

hj
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Summing over all bundles in the optimal bundling yields (1).

Proposition 1. The efficiency of algorithm B is at least half the maximum
efficiency.

Proof. The maximum efficiency is
∑

j hj =
∑n

i=1 wi. The efficiency of B is at
least

w1 + min(
�n/2�∑

i=1

w2i,

�n/2�∑

i=1

w2i+1) ≥ 1
2

n∑

i=1

wi,

since the algorithm always sells items in A1 to bidder 1; this gives us the result.

5 Multiple Slots

We finally discuss the case of multiple slots, and show that our algorithm gives
a constant factor of the optimal revenue when slot clickthrough rates decrease
geometrically, which is realistic for sponsored search auctions [9,6].

Suppose there are m slots numbered 1 . . .m. Following [2], assume that the
click-through-rate of ad i for context j in slot k is separable into cij · Θk (i.e.,
the clickthrough rate can be factored into a term specific to the advertiser-
keyword pair and another term specific to the slot). We will show that Algorithm
B continues to give us a constant factor approximation of revenue when the slot-
dependent CTR decreases geometrically, i.e. Θk+1 = q · Θk, for some q with
0 < q < 1.

Fix an instance of the full information, sponsored search problem, i.e., a value
per click vi for each advertiser i, the parameters cij for each advertiser-context
pair, and the slot specific CTRs Θj for the slots. Let fj be the number of im-
pressions from context j. Given any bundling of the keywords, we now define
revenue of the generalized second price auction (GSP) [8]. Unlike the second
price auction for one slot, this auction is not truthful. We assume that the equi-
libria of [16,8] are attained. The prices at such an equilibrium is precisely the
prices that VCG would charge in each bundle [8,2].

Denote revenue from the revenue maximizing bundling as R∗, and let P de-
note the partition of keywords in this bundling. Consider a bundle B ∈ P . Let
viB = vi ·

∑
j∈B fj · cij . Number bidders in non-increasing sequence of viBs. The

equilibrium from [8] predicts that the first m bidders appear in sequence from slot
1 to slot m, and the revenue from player k is (

∑m
k=i(Θk − Θk+1)vk+1,B). Thus

the total revenue from all m slots is R∗ =
∑

B∈P(
∑m

i=1
∑m

k=i(Θk−Θk+1)vk+1,B).
The contribution of the first slot to R∗, denoted R∗

f , is R∗
f =

∑
B∈P(

∑m
k=1(Θk −

Θk+1) · vk+1,B). Because the number of clicks to the top slot is a (1− q)-fraction
of all clicks, we can show:
Lemma 2. R∗

f ≥ (1 − q) · R∗.
This allows us to prove the following result (proof in full version):
Theorem 4. Algorithm B is 1−q

2 -competitive with the optimal bundling.
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On the Price of Truthfulness in Path Auctions
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Abstract. We study the frugality ratio of truthful mechanisms in path
auctions, which measures the extent to which truthful mechanisms “over-
pay” compared to non-truthful mechanisms. In particular we consider
the fundamental case that the graph is composed of two node-disjoint
s-t-paths of length s1 and s2 respectively, and prove an optimal

√
s1s2

lower bound (an improvement over
�

s1s2/2). This implies that the √ -
mechanism of Karlin et al. for path auctions is 2-competitive (an im-
provement over 2

√
2), and is optimal if the graph is a series-parallel net-

work. Moreover, our results extend to universally truthful randomized
mechanisms as well.

1 Introduction

Since the field of algorithmic mechanism design was introduced by Nisan and
Ronen [NR99], path auctions have been studied extensively. In a path auction,
the auctioneer tries to buy an s-t-path from a directed graph, where the edges
of the graph are owned by selfish agents, and the cost of an edge is known
only to its owner. Truthful mechanisms, the VCG mechanism [MCWG95] in
particular, have been applied to path auctions. In such mechanisms, it is of each
agent’s best interest to simply report their private cost. However, as observed
in [AT02, ESS04], every truthful mechanism can be forced to pay a high total
amount to the agents. In contrast, the total payment is relatively small in first
price non-truthful path auctions [IKNS05, CK07]. Such overpayment of truthful
mechanisms compared to non-truthful mechanisms is seen as the price of truth-
fulness [KKT05], which we measure by the notion of frugality ratio of Karlin et
al. [KKT05]. (The notion was actually proposed for all problems in the general
hire-a-team setting [AT01], and Talwar also proposed a notion of frugality ratio
with a different benchmark earlier in [Tal03].) Karlin et al. [KKT05] also pro-
posed the √ -mechanism for path auctions, which is 2

√
2-competitive, i.e., by a

factor of 2
√

2 from optimal w.r.t. frugality ratio.
Behind many results on frugality ratio lies the fundamental case that the in-

put graph G contains exactly two node-disjoint s-t-paths S1, S2 of length s1 and
s2 respectively1, which we call 1-out-of-2 (S1, S2)-auctions. The VCG mecha-
nism may overpay badly in this case, and has frugality ratio max{s1, s2}. In
� Part of this work was done while the author was at the BASICS Laboratory of

Shanghai Jiao Tong University.
1 We use symbols Si instead of Pi to be consistent with the notations in [KKT05].
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[AT02], a 2s1s2
s1+s2

lower bound was proved for the class of min-function (truthful)
mechanisms, and later in [ESS04], a weaker s1s2

s1+s2
bound was obtained for all

truthful mechanisms. Finally in [KKT05], a truthful mechanism with frugality
ratio

√
s1s2 was proposed, and an asymptotic

√
s1s2/2 lower bound was proved

as well, leaving a
√

2 gap open. But it is unlikely that this gap can be closed
by previous proof methods, and our understanding of the overpayment issue in
even this simple case is not complete.

Our Results. In this paper, we introduce the interesting technique of mech-
anism canonicalization, and close the abovementioned gap by proving the fol-
lowing result, which to our knowledge is the first nontrivial tight lower bound
known for frugality ratios. Moreover, this result can be extended to universally
truthful randomized mechanisms [NR99] as well.

Theorem 1. The frugality ratio of 1-out-of-2 (S1 , S2)-auctions isΦs1,s2 =
√

s1s2.

1-out-of-2 auctions are embedded in not only path auctions, but also many other
problems, including vertex cover [EGG07], minimum cost bipartite matching etc.
It follows that lower bounds about 1-out-of-2 auctions extend to those problems
by reductions. In particular, for path auctions:

Theorem 2. The √ -mechanism for path auctions is 2-competitive in general,
and is optimal if the input graph is a series-parallel network.

2 The Model

In the setting, G = (V, E) is a directed graph where V contains two fixed vertices
s and t. Each edge e in E represents a selfish agent, and has a privately known
nonnegative cost ce

2, which occurs if the agent is selected. A path auction consists
of two steps. First each agent e submits a sealed bid be to the auctioneer. Then
based on the bids, the auctioneer applies a selection rule to select an s-t-path P
as the winning path, and pays an amount pe ≥ be to each agent in P . We say that
the agents in P win, and the others lose. The selection rule and payment rule
together constitute a mechanism for G. We assume that each agent is rational,
fully knows about G and the mechanism, and aims at maximizing his own profit,
which is pe − ce if he wins, and 0 otherwise. As is standard, we assume that G
has no s-t cut edge, otherwise there would be a monopoly.

We say that a mechanism is truthful, if each agent e can maximize his profit
by bidding his true cost ce, i.e., be = ce, no matter what the others bid. There
are two characteristic properties about truthful mechanisms: [AT01, AT02]

The Monotonicity Property. If a mechanism is truthful, then the associated
selection rule is monotone, i.e., a winning agent still wins if he decreases his
bid, given fixed bids of the others.

2 For costs, bids, etc., we extend the notation by writing c(T ) for
�

e∈T ce, etc.
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The Threshold Property. Given a monotone selection rule, there is a unique
truthful mechanism associated with this selection rule. Moreover, this mech-
anism pays each agent the threshold bid, i.e., the supremum of the amounts
that the agent can still win by bidding, given fixed bids of the others.

Let M be a truthful mechanism for G. Given the cost vector c (or equivalently,
bid vector, since M is truthful) of the agents, let pM(c) denote the total payment
made by M to the agents. We use ν(c) to denote the benchmark for overpayment,
whose definition we omit here. But in 1-out-of-2 (S1, S2)-auctions, ν(c) simply
equals to the maximum of c(S1) and c(S2). The frugality ratio φM of a truthful
mechanism M is supc�=0 ρM(c), where ρM(c) = pM(c)/ν(c), and the frugality
ratio ΦG of a graph G, or the path auction on G, is the infimum of φM over all
truthful mechanisms for G.

3 1-out-of-2 Auctions

In this section, we show that the frugality ratio Φs1,s2 of 1-out-of-2 (S1, S2)-
auctions is exactly

√
s1s2. For brevity, every mechanism we mention here is a

truthful mechanism for 1-out-of-2 (S1, S2)-auctions. Consider the mechanism M
such that the Si with the least value of

√
si · c(Si) is selected from i = 1, 2

with ties broken arbitrarily. One can verify that ΦM ≤ √
s1s2. To see this, let

the costs of the agents be c, and w.l.o.g. let S1 wins. Then the threshold bid
of each agent e ∈ S1 is at most

√
s2 · c(S2)/

√
s1. So ρM(c) ≤ pM(c)/ν(c) ≤√

s1s2 · c(S2)/ν(c) ≤ √
s1s2, and hence Φs1,s2 ≤ √

s1s2. We devote the rest of
this section to lower bound.

To fix some conventions, we use R+ to denote the set of nonnegative reals.
If w is a vector in Rn

+, then wi denotes its ith component. A vector function t:
Rm

+ → Rn
+ is seen as an n-tuple of functions tj : Rm

+ → R+ for 1 ≤ j ≤ n. We
say that vector w ∈ Rn

+ is dominated by vector w′ ∈ Rn
+, or write w � w′, if

wi ≤ w′
i for all i. We let ei denote the unit vector with the ith component 1 and

others 0. Agents in Si are numbered from 1 to si for i = 1, 2. We say that Si

wins at (u,v) if Si is selected when the costs c of the agents are (u,v), where
each ui is the cost of agent i in S1, and each vj is the cost of agent j in S2.
We also assume w.l.o.g. that S2 wins at (u,0) if u �= 0 and S1 wins at (0,v) if
v �= 0.

3.1 The tM Function

For a mechanism M, function tM: Rs1
+ → Rs2

+ is defined as tMj (u) = sup{y: S2

wins at (u, yej)}, for all u ∈ Rs1
+ and 1 ≤ j ≤ s2.3 We find the following way of

visualization helpful. Let s2 = 2, and refer to Fig. 1. The solid curve indicates
the boundary between the area where S2 wins and the area where S1 wins. (If
s2 > 2, then the boundary is a surface instead.) By the monotonicity property,
loosely speaking, the boundary monotonically decreases. Also by the threshold
3 We may drop the superscript M when the context is clear.
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property, if S2 wins at (u,v), the payment to the agents in S2 is the total length
of the two segments crossing at v. With such intuition, it is easy to observe the
following properties.

v1

v2

(0, 0)

v

t(u)

S2 wins

S1 wins
boundary w.r.t. u

Fig. 1.

Lemma 1. (i) If S2 wins at (u,v), then v � t(u). In addition, agent j in S2
is paid at most tj(u) for all 1 ≤ j ≤ s2.

(ii) If u � u′ then t(u) � t(u′). I.e., t respects the dominance relation.
(iii) For a mechanism M, φM equals to the maximum of supu �=0 ρM(u,0) and

supv �=0 ρM(0,v). In addition, ρM(u,0) equals to
∑s2

j=1 tj(u)/
∑s1

i=1 ui and
ρM(0,v) equals to

∑s1
i=1 sup{x: S1 wins at (xei,v)}/

∑s2
j=1 vj .

3.2 Mechanism Canonicalization

For each mechanism M, in the following we canonicalize M into a type-1
mechanism M1, and then into a type-2 mechanism M2, and finally into a
type-3 mechanism M3 respectively. In the process, frugality is preserved, i.e.,
φM ≥ φM1 ≥ φM2 ≥ φM3 . It follows that Φs1,s2 can be determined by analyzing
the infimum of φM3 over all type-3 mechanism M3, while the special properties
of the class of type-3 mechanisms can be taken advantage of in the analysis. We
call such technique as mechanism canonicalization.

Type-1 Mechanisms. For a mechanism M, we first canonicalize it into the
mechanism M1 such that S2 wins at (u,v) in M1 iff v � tM(u). One can
verify that the selection rule of M1 is monotone, and such canonicalized mech-
anisms are called type-1 mechanisms. In particular, it is guaranteed that φM1 ≤
φM. To verify this via Lemma 1(iii), we need to show that sup{x: S1 wins at
(xei,v) in M1} ≤ sup{x : S1 wins at (xei,v) in M}. This is true because if
S2 wins at (xei,v) in M for some i, x,v, then v � tM(xei) by Lemma 1(i), and
then by the definition of M1, S2 wins at (xei,v) in M1 too.

The following follows directly from Lemma 1(iii).

Lemma 2. Let M1 be a type-1 mechanism. Then φM1 ≤ r if and only if con-
ditions (a) and (b) hold:
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(a) For all u �= 0, ρM1(u,0) =
∑

j tj(u)/
∑

i ui ≤ r.

(b) For all v �= 0, ρM1(0,v) =
∑

i sup{x : v � t(xei)}/
∑

j vj ≤ r.

Type-2 Mechanisms. Note that each type-1 mechanism M1 can be deter-
mined by its tM1 function (denoted by t for brevity) . Consider the t̂ function
such that for all u in the form of uiei for some i, t̂(uiei) = t(uiei), and for all
other u, t̂(u) =

∑
i t̂(uiei). We then canonicalize M1 into M2, which is the

type-1 mechanism determined by the t̂ function, i.e., tM2 = t̂. Each such M2 is
called a type-2 mechanism. One can verify that t̂ respects the dominance relation,
and therefore the selection rule of M2 is monotone. Clearly type-2 mechanisms
are determined by their t(uiei) functions, and it turns out that Lemma 2 can
be correspondingly refined to the following.

Lemma 3. Let M2 be a type-2 mechanism. Then φM2 ≤ r if and only if the
following conditions hold:
(a’) For all ui �= 0 and i, ρM2(uiei,0) =

∑
j tj(uiei)/ui ≤ r.

(b’) For all vj �= 0 and j, ρM2(0, vjej) =
∑

i sup{x : tj(xei) < vj}/vj ≤ r.

Note that tM2(uiei) = tM1(uiei) for all ui and i, and so by Lemma 3, we have
φM2 = φM1 .

Type-3 Mechanisms. In a type-2 mechanism M2, if each tM2(xei) function
(denoted by t(xei) for brevity) is a curve, i.e., a continuous mapping from R+
to Rs2

+ , we say that it is a type-3 mechanism.

Lemma 4. For each type-2 mechanism M2, there is a canonicalized type-3
mechanism M3 such that φM3 = φM2 .

3.3 Determining Φs1,s2

Based on the canonicalization process, Φs1,s2 ≤ r is equivalent to that there is a
type-3 mechanism M3 with φM3 ≤ r. Since a type-3 mechanism is determined
by its t(xei) functions, this equivalence can be rephrased as follows: (with each
t(xei) renamed to gi)

Theorem 3. Φs1,s2 ≤ r if and only if there exist curves g1, . . . ,gs1 : R+ → Rs2
+

such that the following conditions are satisfied:

(i) gi(x) � gi(x′) for all 1 ≤ i ≤ s1 and x ≤ x′.
(ii)

∑
j gi

j(x) ≤ xr for all 1 ≤ i ≤ s1 and x.
(iii)

∑
i sup{x : gi

j(x) ≤ y} ≤ yr for all 1 ≤ j ≤ s2 and y.

So the problem of determining Φs1,s2 is converted to an equivalent pure math
problem about curves, which can be solved by applying the Young’s Inequality.

Proof. (of Theorem 1) First note that one can prove that Φs1,s2 ≤ √
s1s2 via

Theorem 3 by setting r =
√

s1s2 and gi
j(x) =

√
s1/s2 · x for all i, j. To prove
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that Φs1,s2 ≥ √
s1s2, let g1, . . . ,gs1 and r satisfy the conditions in Theorem 3.

By (b) of Theorem 3,
∑

j′ gi
j′(gi

−j(y))/r ≤ gi
−j(y) for all i, j. Add a summa-

tion over i, and then by (c),
∑

i

∑
j′ gi

j′(gi
−j(y))/r ≤

∑
i gi

−j(y) ≤ yr, for all j.

Denote gi
j′ (gi

−j(y)) by hi
j→j′ (y), add another summation over j, and we have∑

i

∑
j

∑
j′ hi

j→j′ (y) ≤ s2r
2y. Note that each hi

j→j′ (y) is increasing, and hence
we can define its integral function: Hi

j→j′ (y) =
∫ y

0 hi
j→j′ (z)dz, for all i, j, j′.

Assume for simplicity that each hi
j→j′ is monotone. Then by applying the

Young’s Inequality, Hi
j→j′ (y) + Hi

j′→j(y) ≥ y2 for all i, j, j′. So 1
2s2r

2y2 ≥
∑

i

∑
j

∑
j′ Hi

j→j′ (y) ≥ 1
2s1s

2
2y

2, and thus r ≥ √
s1s2. It follows that Φs1,s2 ≥√

s1s2 by Theorem 3.
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Abstract. This paper characterizes the family of truthful double-sided auctions.
Despite the importance of double-sided auctions to market design, to date no
characterization of truthful double-sided auctions was made. This paper charac-
terizes truthful mechanisms for double-sided auctions by generalizing Roberts
classic result [18], to show that truthful double-sided auctions must ”almost” be
affine maximizers.

Our main result of characterizing double-sided auctions required the creation
of a new set of tools, reductions that preserve economic properties. This paper uti-
lizes two such reductions; a truth-preserving reduction and a non-affine preserv-
ing reduction. The truth-preserving reduction is used to reduce the double-sided
auction to a special case of a combinatorial auction to make use of the impossi-
bility result proved in [11]. Intuitively, our proof shows that truthful double-sided
auctions are as hard to design as truthful combinatorial auctions.

Two important concepts are developed in addition to the main result. First, the
form of reduction used in this paper is of independent interest as it provides a
means for comparing mechanism design problems by design difficulty. Second,
we define the notion of extension of payments; which given a set of payments for
some players finds payments for the remaining players. The extension payments
maintain the truthful and affine maximization properties.

Introduction. This paper characterizes the class of truthful double-sided auctions. In re-
cent years a large body of research has focused on designing algorithms for environments
where the input to the algorithm is distributed among players. Each player attempts to
maximize its output function (utility) without considering the environment as a whole.
Such environments are increasingly common e.g. the Internet and communication net-
works. One of the main approaches to designing such auctions is to design truthful mech-
anisms which motivate the players to reveal their true input to the algorithm.

In this paper we look at a double-sided auction which is a market that consists of
multiple buyers and sellers who wish to exchange goods. The market’s main objective
is to produce an allocation of sellers’ goods to buyers that maximizes the total gain from
trade (i.e., the total value associated with an allocation).

A commonly studied model of participant behavior is taken from the field of eco-
nomic mechanism design in such papers as e.g., [1,17,15]. In this model each player has
a private valuation function that assigns real (non-negative) values to each possible allo-
cation. The auction algorithm uses the payments to the mechanism in order to motivate
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players to truthfully reveal their functions. Each player is a utility maximizing rational
agent, i.e., the player maximizes the difference between his valuation of the algorithm’s
allocation and his payment. The couplet consisting of an algorithm and a payment is
called a mechanism. Mechanisms for which reporting the truth is a dominant strategy
for each player are called truthful. Although, truthful mechanisms are the central para-
digm of the literature most work has focused on the model consisting of a single seller
and multiple buyers1. Double-sided auctions remain an important open question.

In a double-sided auction mechanism, there are n sellers each offering a unique good.
Each seller si, 1 ≤ i ≤ n has a valuation function vi that assigns a real value vi(gi) for
his good gi and each buyer bj , 1 ≤ j ≤ m has a valuation function vj that assigns a
real value vj(gi) for every good gi, 1 ≤ i ≤ n. The goal is to find a match M between
buyers and sellers such that the total gain from trade

∑
i,j|(si,bj)∈M vj(gi) − vi(gi)

is maximized. The problem of a double-sided auctions where all sellers’ goods are
identical has been extensively studied in the literature (see e.g. [12]). Relatively little
work, e.g., [2] attempts to look at the more general case, where sellers may sell different
goods.

Our goal in this paper, is to characterize the set of truthful mechanisms for the
double-sided auction. Our proof is partially based on a truthful preserving reduction
to a special case of a combinatorial auction. In a combinatorial auction, n unique goods
are auctioned among m players. Players value bundles of goods in a way that may de-
pend on the combination they win, i.e., each player has a valuation function vi that
assigns a real value vi(λ) for each possible subset of goods. The goal is to find a parti-
tion λ1...λm of the goods that maximizes the total social welfare

∑
i vi(λi). The com-

binatorial auction problem is NP-complete and has been extensively studied as it is an
important instance of the interplay between computational difficulty and game theoretic
difficulty. A thorough study of combinatorial auctions can be found in e.g., [3,16,8,10].

To better explain the background to the problem of characterizing the class of truthful
double-sided auction mechanisms, we formalize the basic model slightly more. Let A
denote the range of all mechanism’s possible outcomes and let vi : A → R be player i’s
valuation function that specifies his value vi(a) for each possible outcome a ∈ A where
vi is chosen out of a valuations domain Vi. Given the valuations v = (v1, ..., vn) the
mechanism computes the function φ(v) that is referred to as the social choice function.
In the context of double-sided auction mechanisms A is all the possible matchings of
buyers and sellers and Vi depends only on ai (as we assume ”no externalities”2) The
mechanism computes φ(v) and payments p to the players. We say that a social choice
function φ is implementable if there exists payments supporting φ such that the pair
(φ, p) yields a truthful mechanism. So the basic question is what are the implementable
social choice functions?

The well known VCG payment scheme insures the truthfulness of a welfare maxi-
mizing social choice function φ(v) ∈ arg maxa∈A

∑
i vi(a) [20,4]3. The VCG pay-

1 Or equivalently a single buyer and multiple sellers
2 For simplicity of the analysis, we make throughout this paper the standard assumption of free

disposal, i.e., that the functions are monotone non decreasing.
3 It also insures truthfulness for the welfare maximizing extension for double-sided mechanisms,

i.e., the gain from trade social choice function φ(v) ∈ arg maxa∈A

�
j vj(a) −

�
i vi(a)
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ment scheme can be generalized in three ways: (1) The range can be restricted to
A′ ⊆ A; (2) Non-negative weights can be assigned to the players; (3) weights can be
added to different outcomes. When applying those generalizations to the VCG payment
scheme we obtain an implementation for any social choice function that is an affine
maximizer. The formal definition of an affine maximizer social choice function can be
found in the full version of the paper [7].

Are there other implementable social choice functions that are not affine maximiz-
ers? The answer to that question was given by Roberts [18] in his classic negative result
showing that if the players’ valuation domain is unrestricted and the outcome range is
non-trivial then there does not exist an implementable social choice function that is not
an affine maximizer.

Theorem (Roberts, 1979): If there are at least 3 possible outcomes, and players’ val-
uations are unrestricted (Vi = R|A|), then any implementable social choice function is
an affine maximizer.

The requirement for players’ valuations domain to be unrestricted is very strong as
it implies that players have a value for every possible outcome of the social choice
function. In most realistic and practical applications this is not the case. For example
for double-sided auctions, players’ valuations are restricted by the demand that there
are no externalities as mentioned above and for combinatorial auctions, players’ val-
uations are restricted in two ways: free disposal (i’s valuation is monotone by inclu-
sion in ai) and no externalities. On the other hand restrictions on the players’ valu-
ation domain sometimes simplify the problem in a way that does not capture prob-
lems of interest. For instance in single dimensional valuation spaces (single value),
implementable social choice functions do not imply affine maximization. Such is the
case with single minded bidders in combinatorial auctions where the valuation function
is given by a single positive value vi which is offered for a single set of items. For
instance, [10] present a computationally efficient truthful approximation that is not
affine maximizing. Additional mechanisms for the single-minded case were presented
e.g., in [14].

However, most interesting problems (computationally and practically) lie somewhere
between the two extremes of unrestricted domains and single dimensional domains. This
intermediate range includes double-sided auctions with heterogenous goods (which is
the model we focus on), a number of single sided auctions (multiple buyers, single
seller), non-single-minded combinatorial auctions, and multi-unit (homogeneous) auc-
tions. Little is known about the intermediate range. The only positive example of a non-
VCG mechanism for non-single-dimensional domains is for multi-unit combinatorial
auctions where each bidder is restricted to demand at most a fraction of the number of
units of each type [3]4. On the negative side [11] showed that for multi-minded bidders
a truthful combinatorial auction essentially implies affine maximization.

In all of the mechanisms discussed so far we assume players have quasi-linear util-
ity. Interestingly in the non-quasi-linear case the classic Gibbard-Satterthwaite result
[19] shows that no non-trivial social choice function over an unrestricted domain is

4 Other examples are known for relaxations of the deterministic dominant strategy model such
as random algorithms and implementations in undominated strategies [5]
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implementable. However, for restricted single peaked domains (which is a single di-
mension domain) [13] implement a non-trivial social choice function.

Our Results. In this paper we characterize the implementable social choice functions
of the double-sided auction mechanism over restricted domains in quasi-linear environ-
ments. The work follows the initiative of [11] to extend Roberts’s impossibility result to
multi dimensional but restricted domains. [11]’s work extends Roberts work for multi-
minded combinatorial auctions while our work extends Roberts work for double-sided
auctions. The double-sided auction is the principle mechanism for many real life mar-
kets (such as the stock market) and therefore is fundamental to mechanism design.

To prove their main theorem [11] characterize conditions over the domain in which
implementable social choice functions implies affine maximization. The basic condi-
tions require that the domain is an order based domain in which valuations over differ-
ent possible outcomes in the domain can be compared, and that the best outcome for one
player is the worst outcome for the other players, i.e. ”conflicting preferences”. Those
domain conditions capture combinatorial auctions and multi-unit auctions. However,
since matching problems do not have conflicting preferences [11] left open the ques-
tion of whether implementable social choice functions implies affine maximization for
matching. Our work answers that question positively by showing that the implementable
social choice double-sided auctions imply affine maximization.

Our work builds on Roberts results and the results achieved by [11] integrating a
classic tool of computer science theory: reductions. Although reduction is a widely
used tool in proving the hardness of problems by reducing them to other hard prob-
lems this tool has not been used before in the context of mechanism design. Moreover
the existing literature does not try to classify the difficulty of different mechanism de-
sign problems in terms of game theory but rather classifies difficulty in the context of
computational complexity. This work makes use of the negative result in [11] for com-
binatorial auctions to show the same negative result for double-sided auctions by the
means of a reduction. We believe that the use of reduction in the context of mechanism
design is of independent interest.

The task of building a reduction between the combinatorial auction and the double-
sided auction is not as straightforward as it may sound. Since our main theorem shows
that: a mechanism with the property of truthfulness implies affine maximization, we
need to construct a reduction that maintains the truthfulness property and the non affine
property. In order to use a reduction in the context of mechanism design we define the
new concepts of truth-preserving reduction and non-affine preserving reduction. These
new concepts are inspired by the well established concept of gap-preserving reductions
[6] which expand the concept of a reduction. The formal definitions can be found in the
full version of the paper [7].

Our proof that any implementable double-sided auction’s (DSA) social choice func-
tion is affine maximizing utilizes the main theorem of [11] for a special case of combi-
natorial auction which we call the combinatorial auction product space (CAPS)5. The
first stage in our proof is then:

5 Although CAPS is defined as a special case of single-minded combinatorial auction it is no
wonder that the following lemma holds as we show later on in the paper that the CAPS problem
is equivalent to a special case of multi-minded combinatorial auction.
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Lemma: The social choice function of any truthful CAPS mechanism is an almost
affine-maximizer.

We then utilize a reduction from a special case of DSA (where the sellers all have
value zero for their good) which we call double-sided auction cost 0 problem (DSAC0)
to CAPS. This reduction preserves the truthfulness and the non-affine properties. This
reduction will then yield the following theorem:

Lemma: The social choice function of any truthful DSAC0 mechanism is an almost
affine maximizer.

Once any implementable DSAC0 is shown to be affine maximizing a reduction from
DSA to DSAC0 is constructed which again preserves the truthfulness and non-affine
properties6. As the sellers’ values (and therefore the sellers’ prices) in the DSAC0 are
zero, the reduction DSA ≤ DSAC0 preserves the non-max affine property only for the
DSA buyers. To prove the max-affine maximizing property for the sellers as well, we
define and perform a price expansion of the induced buyers’ prices and define critical
value prices for sellers. The critical prices are shown to be truthful affine-maximizing
prices. To complete the structure we prove that the integration of two price vectors that
are truthful and affine maximizing is also truthful and affine maximizing.

This then yields our main result:

Main Theorem: The social choice function of any truthful DSA mechanism is an almost
affine maximizer.

The ”almost” in the above theorems is an artifact from the proof of [11]’s main theorem
and any improvement in the proof of [11] will benefit our theorem.

[11]’s theorem only shows that the social choice function must be an affine maxi-
mizer for large enough input valuations.

Definition ([11]): Almost Affine maximizer: A social choice function φ is an almost
affine maximizer if there exists a threshold H s.t. the function is an affine maximizer if
vz(a) ≥ H for all a and z.

[11] believe that this restriction is a technical artifact of their current proof.
Our proof differs significantly from both Roberts’ proof and from [11]’s proof. The

definitions that we need to get our main result naturally yields the question of whether it
is possible to classify mechanism design problems into classes of problems. Such clas-
sification can be either into equivalency classes or into a hierarchal relationship. This
classification is a refinement of the standard computational complexity classes. For in-
stance, our reduction shows that the double-sided auction is at least mechanism design
hard as a particular case of combinatorial auction. This despite the fact that from a com-
putational complexity point of view, double-sided auctions can be solved in polynomial
time (if the input is given truthfully). This observation emphasizes that the difficulty
of mechanism design does not necessarily require us to focus on computationally hard
problems but rather, a simple polynomial problem such as the double-sided auction can
already capture the essence of the mechanism’s design difficulty.

6 Although DSAC0 is a special case of DSA we show that all cases of DSA can be expressed as
an instance of DSAC0.
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All technical details of the theorems, claims, proofs, and additional references can
be found in the full version of the paper at [7].
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