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Abstract. In Sensor Networks, the lack of topology information and the avail-
ability of only one communication channel has led research work to the use of
randomization to deal with collision of transmissions. However, the scarcest re-
source in this setting is the energy supply, and radio communication dominates
the sensor node energy consumption. Hence, redundant trials of transmission as
used in randomized protocols may be counter-effective. Additionally, most of the
research work in Sensor Networks is either heuristic or includes unreallistic as-
sumptions. Hence, provable results for many basic problems still remain to be
given. In this paper, we study upper and lower bounds for deterministic commu-
nication primitives under the harsh constraints of sensor nodes.

1 Introduction

The Sensor Network is a well-studied simplified abstraction of a radio-communication
network where nodes are deployed at random over a large area in order to monitor
some physical event. Sensor Networks is a very active research area, not only due to
the potential applications of such a technology, but also because well-known techniques
used in networks cannot be straightforwardly implemented in sensor nodes, due to harsh
resource limitations.

Sensor Networks are expected to be used in remote or hostile environments. Hence,
random deployment of nodes is frequently assumed. Although the density of nodes
must be big enough to achieve connectivity, precise location of specific nodes cannot
be guaranteed in such scenario. Consequently, the topology of the network is usually
assumed to be unknown, except perhaps for bounds on the total number of nodes and the
maximum number of neighbors of any node. In addition, given that in Sensor Networks
only one channel of communication is assumed to be available, protocols must deal
with collision of transmissions.

Most of the Sensor Network protocols use randomness to deal with collisions and
lack of topology information. Randomized protocols are fast and resilient to failures,
but frequently rely on redundant transmissions. Given that the most restrictive resource
in a Sensor Network is energy and that the dominating factor in energy consumption
is the radio communication, deterministic algorithms may yield energy-efficient solu-
tions. In this paper, deterministic communication primitives are studied under the harsh
restrictions of sensor nodes.

Model. We model the potential connectivity of nodes as a Geometric Graph where n
nodes are deployed in R

2, and a pair of nodes is connected by an undirected edge if and
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only if they are at an Euclidean distance of at most a parameter r. It is important to stress
that this topology models the potential connectivity of nodes. However, upon deploy-
ment, two neighboring nodes still have to establish a communication link in order to be
neighbors in terms of the communication network. The geometric graph model implies
a circular-range assumption, which in practice may not be true. However, whenever this
is the case, the minimum radius may be taken without extra asymptotic cost.

Although random, deployment is not the result of an uncontrolled experiment where
any outcome has a positive probability. Hence, we assume that the network is connected
and that the maximum degree, i.e., the maximum number of nodes located within a
radius of r of any node, is a known value k − 1 < n. Each node knows only the total
size of the network n, its unique identifier in {1, . . . , n} and the maximum degree k−1.

Regarding sensor node limitations, we use the comprehensive Weak Sensor
Model [12] unless otherwise stated. The following assumptions are included in this
model. Time is assumed to be slotted and all nodes have the same clock frequency,
but no global synchronizing mechanism is available. Furthermore, nodes are activated
adversarially. The communication among neighboring nodes is through broadcast on
a shared channel where a node receives a message only if exactly one of its neigh-
bors transmits in a time slot. If more than one message is sent in the same time slot, a
collision occurs and no collision detection mechanism is available. Sensor nodes can-
not receive and transmit in the same time slot. The channel is assumed to have only
two states: transmission and silence/collision. The memory size of each sensor node
is bounded by O(1) words of O(log n)1 bits. We assume that sensor nodes can adjust
their power of transmission but only to a constant number of levels. Other limitations
include: limited life cycle due to energy constraints, short transmission range, only one
channel of communication, no position information, and unreliability.

In a time slot, a node can be in one of three states, namely transmission, reception,
or inactive. A node that is in the transmission or reception state is active. We denote
a temporal sequence of states of a node as a schedule of transmissions, or simply a
schedule when the context is clear.

Problem Definition. An expected application of Sensor Networks is to continuously
monitor some physical phenomena. Hence, in this paper, the problem we address is
to guarantee that each active node can communicate with all of its neighboring active
nodes infinitely many times. The actual use of such a capability will depend of course
on the availability of messages to be delivered. Our goal is to give guarantees on the
energy cost and the time delay of the communication only, leaving aside the overhead
due to queuing or other factors.

In Radio Networks, messages are successfully delivered by means of non-colliding
transmissions. Non-colliding transmissions in single-hop Radio Networks are clearly
defined: the number of transmitters must be exactly one. However, in a multi-hop sce-
nario such as Sensor Networks the same transmission may be correctly received by
some nodes and collide with other transmissions at other nodes. Thus, a more precise
definition is necessary. If in a given time slot exactly one of the adjacent neighbors
of a node x transmits, and x itself is not transmitting, we say that there was a clear

1 Througout this paper, log means log2 unless otherwise stated.
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reception at x in that time slot. Whereas, in the case where a node transmits a message
in a given time slot, and no other node within two hops of the transmitter transmits in
the same time slot, we say that there was a clear transmission. Notice that when a clear
transmission is produced by a node, all its neighbors clearly receive at the same time.
Of course, in a single-hop network both problems are identical.

In this paper, our goal is to guarantee that each node communicates with all of its
at most k − 1 neighbors. Hence, a closely-related communication primitive known as
selection is relevant for our purposes. In the selection problem, each of k active nodes
of a single-hop Radio Network hold a different message that has to be delivered to all
the active nodes. Once its message is successfully transmitted, a node becomes inactive.
Given that we want to guarantee communication forever, in this paper, we give upper
and lower bounds for generalizations of the selection problem that we define as follows.

Definition 1. Given a single-hop Radio Network of n nodes where k of them are ac-
tivated possibly at different times, in order to solve the Recurring Selection problem
every active node must clearly transmit infinitely many times.

Definition 2. Given a Sensor Network of n nodes and maximum degree k − 1, where
upon activation, possibly at different times, nodes stay active forever, in order to solve
the Recurring Reception problem every active node must clearly receive from all of its
active neighboring nodes infinitely many times.

Definition 3. Given a Sensor Network of n nodes and maximum degree k − 1, where
upon activation, possibly at different times, nodes stay active forever, in order to solve
the Recurring Transmission problem every active node must clearly transmit to all of
its active neighboring nodes infinitely many times.

Given that protocols for such problems run forever, we need to establish a met-
ric to evaluate energy cost and time efficiency. Let Ri

u(v) be the number of trans-
missions of u between the (i − 1)th and the ith clear receptions from u at v, and
Ru(v) = maxi Ri

u(v). In order to measure time we denote ΔRi
u(v) the time (number

of time slots) that are between the (i−1)th and the ith clear receptions from u at v, and
ΔRu(v) = maxi ΔRi

u(v). Similarly, Let T i(u) be the number of transmissions from u
between the (i − 1)th and the ith clear transmissions from u, and T (u) = maxi T i(u);
and let ΔT i(u) be the time between the (i − 1)th and the ith clear transmission from
u, and ΔT (u) = maxi ΔT i(u).

We define the message complexity of a protocol for Recurring Reception as
max(u,v) Ru(v), over all pairs (u, v) of adjacent nodes; and for Recurring Transmis-
sion as maxu T (u) over all nodes u. We define the delay of a protocol for Recurring
Reception as max(u,v) ΔRu(v), over all pairs (u, v) of adjacent nodes; and for Recur-
ring Transmission as maxu ΔT (u) over all nodes u. Any of these definitions is valid
for the Recurring Selection problem since clear transmissions and clear receptions are
the same event in a single-hop network.

Unless otherwise stated, throughout the paper we assume the presence of an ad-
versary that gets to choose the time step of activation of each node. Additionally, for
Recurring Selection, the adversary gets to choose which are the active nodes; and for
Recurring Reception and Recurring Transmission, given a topology where each node
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has at most k − 1 adjacent nodes, the adversary gets to choose which is the identity
of each node. In other words, the adversary gets to choose which of the n schedules is
assigned to each node.

Constraints such as limited life cycle and unreliability imply that nodes may power
on and off many times. If such a behaviour were adversarial, the delay of any protocol
could be infinite. Therefore, we assume that active nodes that become inactive are not
activated back.

Related Work. In [1], Alon, Bar-Noy, Linial and Peleg gave a deterministic distributed
protocol to simulate the message passing model in radio networks. Using this technique,
each node receives a transmission of all its neighbors after O(k2 log2 n/ log(k log n))
steps. Unfortunately, simultaneous wake-up and ω(log n) memory size is required. In
the same paper, lower bounds for this problem are also proved by showing bipartite
graphs that require Ω(k log k) rounds. Bipartite graphs with maximum degree ω(1) are
not embeddable in geometric graphs therefore these bounds do not apply to our setting.

The question of how to diseminate information in Radio Networks has led to dif-
ferent well-studied important problems such as Broadcast [2, 20] or Gossiping [21, 4].
However, deterministic solutions for these problems [8, 6, 10, 5] include assumptions
such as simultaneous startup or the availability of a global clock, which are not feasible
in Sensor Networks.

The selection problem previously defined was studied [19] in static and dynamic
versions. In static selection all nodes are assumed to start simultaneously, although the
choice of which are the active nodes is adversarial. Instead, in the dynamic version,
the activation schedule is also adversarial. For static selection, Komlos and Green-
berg showed in [18] a non-constructive upper bound of O(k log(n/k)) to achieve one
successful transmission. More recently, Clementi, Monti, and Silvestri showed for this
problem in [9] a tight lower bound of Ω(k log(n/k)) using intersection-free families.
For k distinct successful transmissions, Kowalski presented in [19] an algorithm that
uses (2�−1, 2�, n)-selectors for each �. By combining this algorithm and the existence
upper bound of [3] a O(k log(n/k)) is obtained. Using Indyk’s constructive selector,
a O(k polylog n) is also proved. These results take advantage of the fact that in the
selection problem nodes turn off upon successful transmission. For dynamic selection,
Chrobak, Ga̧sieniec and Kowalski [7] proved the existence of O(k2 log n) for dynamic
1-selection. Kowalski [19] proved O(k2 log n) and claimed Ω(k2/ log k) both by using
the probabilistic method, and O(k2 polylog n) using Indyk’s selector.

A related line of work from combinatorics is (k, n)-selective families. Consider the
subset of nodes that transmit in each time slot. A family R of subsets of {1, . . . , n}
is (k, n)-selective, for a positive integer k, if for any subset Z of {1, . . . , n} such that
|Z| ≤ k there is a set S ∈ R such that |S ∩ Z| = 1. In terms of Radio Networks, a set
of n sequences of time slots where a node transmits or receives is (k, n)-selective if for
any subset Z of k nodes, there exists a time slot in which exactly one node in the subset
transmits. In [17] Indyk gave a constructive proof of the existence of (k, n)-selective
families of size O(k polylog n). A natural generalization of selective families follows.
Given integers m, k, n, with 1 ≤ m ≤ k ≤ n, we say that a boolean matrix M with t
rows and n columns is a (m, k, n)-selector if any submatrix of M obtained by choos-
ing arbitrarily k out of the n columns of M contains at least m distinct rows of the
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identity matrix Ik. The integer t is the size of the (m, k, n)-selector. In [11] Dyachkov
and Rykov showed that (m, k, n)-selectors must have a size Ω(min{n, k2 logk n})
when m = k. Recently in [3], De Bonis, Ga̧sieniec and Vaccaro showed that (k, k, n)-
selectors must have size t ≥ (k − 1)2 log n/(4 log(k − 1) + O(1)) using superim-
posed codes. In the same paper, it was shown the existence of (k, k, n)-selectors of size
O(k2 ln(n/k)).

Regarding randomized protocols, an optimal O(D + k)-algorithm for gossiping in a
Sensor Network of diameter D was presented in [14]. The algorithm includes a prepro-
cessing phase that allows to achieve global synchronism and to implement a collision
detection mechanism. After that, nodes transmit their message to all neighboring nodes
within O(k+log2 n log k) steps with high probabiliy. The expected message complexity
of such phase is O(log n+log2 k). A non-adaptive randomized algorithm that achieves
one clear transmission for each node w.h.p. in O(k log n) steps was shown in [13]. The
expected message complexity of such a protocol is O(log n). In the same paper it was
shown that such a running time is optimal for fair protocols, i.e., protocols where all
nodes are assumed to use the same probability of transmission in the same time slot.

Our Results. Our objective is to find deterministic algorithms that minimize the mes-
sage complexity and, among those, algorithms that attempt to minimize the delay. As
in [18], we say that a protocol is oblivious if the sequence of transmissions of a node
does not depend on the messages received. Otherwise, we call the protocol adaptive.
We study deterministic oblivious and adaptive protocols for Recurring Selection, Recur-
ring Reception and Recurring Transmission. These problems are particularly difficult
due to the arbitrary activation schedule of nodes. In fact, the study of oblivious protocols
is particularly relevant under adversarial wake-up, given their simplicity as compared
with adaptive protocols where usually different phases need to be synchronized. If we
were able to weaken the adversary assuming that all nodes are activated simultaneously,
as it is customary in the more general Radio Network model, the following well-known
oblivious algorithm would solve these problems optimally.

For each node i,
node i transmits in time slot t = i + jn, ∀j ∈ N ∪ {0}.

The message complexity for this algorithm is 1 which of course is optimal. To see why
the delay of n is optimal for a protocol with message complexity 1, assume that there
is an algorithm with smaller delay. Then, there are at least two nodes that transmit in
the same time slot. If these nodes are placed within one-hop their transmissions will
collide, hence increasing the message complexity.

We first study oblivious protocols. We show that the message complexity of any
oblivious deterministic protocol for these problems is at least k. Then, we present
a message-complexity optimal protocol, which we call Primed Selection, with delay
O(kn log n). We then evaluate the time efficiency of such a protocol studying lower
bounds for these problems. Since a lower bound for Recurring Selection is also a lower
bound for Recurring Reception and Recurring Transmission, we concentrate on the
first problem. By giving a mapping between (m, k, n)-selectors and Recurring Selec-
tion, we establish that Ω(k2 log n/ log k) is a lower bound for the delay of any protocol
that solves Recurring Selection. Maintaining the optimal message complexity may be a
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good approach to improve this bound. However, the memory size limitations motivates
the study of protocols with some form of periodicity. Using a simple argument we show
that the delay of any protocol that solves Recurring Selection is in Ω(kn), for the im-
portant class of equiperiodic protocols , i.e., protocols where each node transmits with
a fixed frequency. Finally, we show that choosing appropriately the periods that nodes
use, for k ≤ n1/6 log log n Primed Selection is also optimal delay wise for equiperiodic
protocols. Given that most of the research work in Sensor Networks assumes a logarith-
mic one-hop density of nodes, Primed Selection is optimal in general for most of the
values of k and the delay is only a logarithmic factor from optimal for arbitrary graphs.

Moving to adaptive protocols, we show how to implement a preprocessing phase
using Primed Selection so that the delay is reduced to O(k2 log k).

To the best of our knowledge, no message-complexity lower bounds for recurring
communication with randomized oblivious protocols have been proved. Nevertheless,
the best algorithm known to solve Recurring Selection w.h.p. is to repeatedly transmit
with probability 1/k which solves the problem with delay O(k log n) and expected
message complexity in O(log n). Therefore, deterministic protocols outperform this
randomized algorithm for k ∈ o(log n) and for settings where the task has to be solved
with probability 1.

Roadmap. Oblivious and adaptive protocols are studied in Sections 2 and 3 respec-
tively. Lower bounds are studied for message complexity in Section 2.1 and for the
delay in Section 2.3. The Primed Selection oblivious protocol is presented and ana-
lyzed in Section 2.2. An improvement of this algorithm for most of the values of k is
shown in Section 2.4 whereas an adaptive protocol that uses Primed Selection is given
in Section 3. We finish with some acknowledgements.

2 Oblivious Protocols

2.1 Message-Complexity Lower Bound

A lower bound on the message complexity of any protocol that solves Recurring Selec-
tion is also a lower bound for Recurring Reception and Recurring Transmission. To see
why, we map Recurring Selection into Recurring Reception and viceversa. A similar
argument can be given for Recurring Transmission.

Consider a single-hop Radio Network NS where Recurring Selection is solved and a
Sensor Network NR where Recurring Reception is solved. Consider the set of k active
nodes in NS . There is at least one node i with degree k−1 in NR. Map any of the active
nodes in NS to i and the remaining k − 1 active nodes in NS to the neighbors of i in
NR. The adversarial choice of which are the k active nodes in NS is equivalent to the
adversarial choice of which schedules of the protocol are assigned to i and its neighbors
in NR.

Now, for the sake of contradiction, assume that for any protocol that solves Recurring
Selection, the message complexity is at least s but there is a protocol P that solves
Recurring Reception with message complexity r < s. Then, we can use P to solve
Recurring Selection as follows. Consider a network NR that contains a clique of size k.
P must solve Recurring Reception in this network. Consider nodes u and i that belong
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to the clique in NR. By definition of Recurring Reception, it is guaranteed that i receives
from u every r transmissions of u. Hence, every r transmissions of u there is at least
one transmission of u that does not collide with any other node adjacent to i. Since
this is true for each of the nodes adjacent to i, Recurring Selection can be solved with
message complexity r which is a contradiction.

Theorem 1. Any oblivious deterministic algorithm that solves the Recurring Selection
problem, on an n-node single-hop Radio Network where k nodes are activated, perhaps
at different times, has a message complexity of at least k.

Proof. Assume for the sake of contradiction that there exists a protocol such that some
node i achieves a non-colliding transmission every t < k transmissions. But then, an
adversary can activate each of the other k − 1 nodes in such a way that at least one
transmission collides with each transmission of i within an interval of t transmissions,
which is a contradiction.

2.2 A Message-Complexity-Optimal Protocol: Primed Selection

In the following sections we present our Primed Selection protocol for deterministic
communication. Such a protocol solves Recurring Selection, Recurring Reception and
Recurring Transmission with the same asymptotic cost. For clarity, we first analyze the
protocol for Recurring Selection, then we extend the analysis to Recurring Reception and
finally we argue why Recurring Transmission is solved with the same asymptotic cost.

A static version of the Recurring Selection problem, where k nodes are activated
simultaneously, may also be of interest. For the case k = 2, a (k logk n)-delay protocol
can be given recursively applying the following approach. First, evenly split the nodes
in two subsets. Then, in the first step one subset transmits and the other receives and in
the next one the roles are reversed. Finally, recursively apply the same process to each
subset.

Recurring Selection. We assume that the choice of which are the active nodes and the
schedule of activations is adversarial. In principle, k different schedules might suffice to
solve the problem. However, if only s different schedules are used, for any s < n there
exists a pair of nodes with the same schedule. Then, since the protocols are oblivious,
if the adversary activates that pair at the same time the protocol would fail. Instead, we
define a set of schedules such that each node in the network is assigned a different one.

We assume that, for each node with ID i, a prime number p(i) has been stored in
advance in its memory so that p(1) = pj < p(2) = pj+1 . . . p(n) = pj+n−1. Where
p� denotes the �-th prime number and pj is the smallest prime number bigger than k.
Notice that the biggest prime used is p(n) < pn+k ∈ O(n log n) by the prime number
theorem [16]. Hence, its bit size is in O(log n). Thus, this protocol works in a small-
memory model. The algorithm, which we call Primed Selection is simple to describe.

For each node i with assigned prime number p(i),
node i transmits with period p(i).

Theorem 2. Given a one-hop Radio Network with n nodes, where k nodes are acti-
vated perhaps at different times, Primed Selection solves the Recurring Selection prob-
lem with delay in O(kn log n) and the message complexity per successful transmission
is k, which is optimal as shown in Theorem 1.
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Proof. If no transmission collides with any other transmission we are done, so let us
assume that there are some collisions. Consider a node i whose transmission collides
with the transmission of a node j �= i at time tc. Since p(i) and p(j) are coprimes,
the next collision among them occurs at tc + p(i)p(j). Since p(i)p(j) > p(i)k, j does
not collide with i within the next kp(i) steps. Node i transmits at least k times within
the interval (tc, tc + kp(i)]. There are at most k − 1 other active nodes that can collide
with i. But, due to the same reason, they can collide with i only once in the interval
[tc, tc + kp(i)]. Therefore, i transmits successfully at least once within this interval. In
the worst case, i = n and the delay is in O(kp(n)) ∈ O(kn log n). Since every node
transmits successfully at least once every k transmissions, the message complexity is k.

Recurring Reception. A protocol for Recurring Selection may be used to solve the
Recurring Reception problem. However, two additional issues appear: the restrictions
of sensor nodes and the interference among one-hop neighborhoods. As mentioned,
Primed Selection works under the constraints of the Weak Sensor Model. We show in
this section that interference is also handled.

Recall that in the Recurring Reception problem n nodes of a Sensor Network are
activated, possibly at different times, the maximum number of neighbors of any node is
bounded by some value k − 1 < n, and every active node must receive from all of its
active neighboring nodes periodically forever. The non-active nodes do not participate
in the protocol. We assume the choice of which are the active nodes and the schedule
of activations to be adversarial.

Theorem 3. Given a Sensor Network with n nodes, where the maximum number of
nodes adjacent to any node is k−1 < n, Primed Selection solves the Recurring Recep-
tion problem with delay in O(kn log n) and the message complexity per reception is k,
which is optimal as shown in Theorem 1.

Proof. Consider any node u and the set of its adjacent nodes N(u). If u receives the
transmissions of all its neighbors without collisions we are done. Otherwise, consider
a pair of nodes i, j ∈ N(u) that transmit –hence, collide at u– at time tc. Since p(i)
and p(j) are coprimes, the next collision among them at u occurs at time tc + p(i)p(j).
Since p(i)p(j) > p(i)k, j does not collide with i at u within the next kp(i) steps. Node
i transmits at least k times within this interval. There are at most k − 2 other nodes
adjacent to u that can collide with i at u, and of course u itself can collide with i at
u. But, due to the same reason, they can collide with i at u only once in the interval
[tc, tc + kp(i)]. Therefore, i transmits without collision at u at least once within this
interval and the claimed delay follows. The transmission of every node is received by
some neighboring node at least once every k transmissions.

Recurring Transmission. Observe that Primed Selection solves the Recurring Trans-
mission problem also, modulo an additional factor of 7 in the analysis, because any
two-hop neighborhood has at most 7k nodes, by a simple geometric argument based on
the optimality of an hexagonal packing [15].

2.3 Delay Lower Bounds

De Bonis, Ga̧sieniec and Vaccaro have shown [3] a lower bound of ((k −m+1)	(m−
1)/(k−m+1)
2/(4 log(	(m−1)/(k−m+1)
)+O(1))) log(n/(k−m+1)) on the
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size of (k, m, n)-selectors when 1 ≤ m ≤ k ≤ n, k < 2m − 2. When m = k > 2, this
lower bound gives a lower bound of Ω(k2 log n/ log k) for the delay of any protocol
that solves Recurring Selection. To see why, recall that a (k, m, n)-selector is defined
as follows

Definition 4. [3] Given integers k, m, and n, with 1 ≤ m ≤ k ≤ n, we say that a
boolean matrix M with t rows and n columns is a (k, m, n)-selector if any submatrix of
M obtained by choosing k out of n arbitrary columns of M contains at least m distinct
rows of the identity matrix Ik . The integer t is the size of the (k, m, n)-selector.

Now, assume that there exists a protocol P for Recurring Selection with delay in
o(k2 log n/ log k). Recall that a protocol for Recurring Selection is a set of schedules
of transmissions. Assuming that all nodes start simultaneously, consider such a set of
schedules. By definition of Recurring Selection, for each choice of k schedules of P ,
i.e., active nodes, there exists a positive integer t ∈ o(k2 log n/ log k) such that in ev-
ery time interval of length t each active node must achieve at least one non-colliding
transmission.

Representing a transmission with a 1 and a reception with a 0, the set of schedules
can be mapped to a matrix M where each time step is a row of M and each schedule is a
column of M . The arbitrary choice of k active nodes is equivalent to choose k arbitrary
columns of M . The time steps where each of the k active nodes achieve non-colliding
transmissions gives the m = k distinct rows of the identity matrix Ik in M . Therefore,
there exists a (k, k, n)-selector of size in o(k2 log n/ log k) which violates the afore-
mentioned lower bound. Thus, Ω(k2 log n/ log k) is a lower bound for the delay of any
protocol that solves Recurring Selection and, as shown before, a lower bound for Recur-
ring Selection is a lower bound for Recurring Reception and Recurring Transmission.

Recall that our main goal is to minimize the message complexity. Hence, this lower
bound might be improved if we maintain the constraint of k message complexity. Nev-
ertheless, in order to obtain a better lower bound, we will use the memory size constraint
present in the Weak Sensor Model (and any Radio Network for that matter) which leads
to protocols with some form of periodicity.

We define an equiperiodic protocol as a set of schedules of transmissions where, in
each schedule, every two consecutive transmissions are separated by the same number
of time slots. A simple lower bound of Ω(kn) steps for the delay of any equiperiodic
protocol that solves Recurring Selection can be observed as follows. n different periods
are necessary otherwise two nodes can collide forever. At least k transmissions are nec-
essary within the delay to achieve one reception successfully as proved in Theorem 1.
Therefore, there exist a node with delay at least kn, which we formalize in the following
theorem.

Theorem 4. Any oblivious equiperiodic protocol that solves Recurring Selection in a
one-hop Radio Network with n nodes, where k of them are activated possibly at different
times, has delay at least kn.

2.4 A Delay-Optimal Equiperiodic Protocol for k ≤ n1/6 log log n

In Primed Selection, the period of each node is a different prime number. However,
in order to achieve optimal message complexity as proved in Theorem 1, it is enough
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to use a set of n periods such that, for each pair of distinct periods u, v, it holds that
v/ gcd(u, v) ≥ k and u/ gcd(u, v) ≥ k. In this section, we define such a set of periods
so that, when used as periods in Primed Selection, gives optimal delay for equiperiodic
protocols when k ≤ n1/6 log log n.

The idea is to use a set of composite numbers each of them formed by log log n
prime factors taken from the smallest log n primes bigger than k. More precisely, we
define a compact set C as follows. Let p� denote the �-th prime number. Let pμ be a
prime number such that pμ = 2 if k ≤ 2, and pμ−1 < k ≤ pμ otherwise. Let P be
the set of prime numbers P = {pμ, pμ+1, . . . , pμ+log n−1}. Let F be a family of sets
such that F = {F |(F ⊂ P ) ∧ (|F | = log log n)}. Make C a set of composite numbers
such that C = {cF |cF = (

∏
i∈F i) ∧ (F ∈ F)}. The following lemma shows that the

aforementioned property holds in a compact set.

Lemma 1. Given a positive integer k ≤ n and a compact set C defined as above,
∀u, v ∈ C, u �= v it holds that v/ gcd(u, v) ≥ k and u/ gcd(u, v) ≥ k.

Proof. For the sake of contradiction, assume that there exists a pair u, v ∈ C, u �= v
such that either v/ gcd(u, v) < k or u/ gcd(u, v) < k. Let U = {u1, u2, . . . , ulog log n}
and V = {v1, v2, . . . , vlog log n} be the sets of prime factors of u and v respectively.
Given that the prime factorization of a number is unique and that |U | = |V |, there must
exist ui ∈ U and vj ∈ V such that ui /∈ V and vj /∈ U . But then u/ gcd(u, v) ≥ ui ≥ k
and v/ gcd(u, v) ≥ vi ≥ k.

We assume that, for each node with ID i, a number P (i) ∈ C has been stored in
advance in its memory so that no two nodes have the same number. It can be derived
that |C| =

( log n
log log n

)
≥ n for large enough values of n. Hence, C is big enough as to

assign a different number to each node.
In order to show the delay-optimality of this assignment it remains to be proved that

the biggest period is in O(n) when k ≤ n1/6 log log n, which we do in the following
lemma.

Lemma 2. Given a positive integer k ≤ n1/6 log log n and a compact set C defined as
above, maxc∈C{c} ∈ O(n).

Proof. Consider the prime number pk+log n. Using the prime number theorem, it can
be shown that the number of primes in the interval [k, pk+log n] is bigger than log n.
Hence, in order to prove the claim, it is enough to prove (pk+log n)log log n ∈ O(n).
Thus, using the prime number theorem, for some constants α, β we want to prove

(β(k + log n) log(k + log n))log log n ≤ αn.

Replacing k ≤ n1/6 log log n, the inequality is true for large enough values of n.

Now we are in conditions to state the main theorem for Recurring Selection which
can be proved using Lemmas 1 and 2 and Theorems 1 and 4, and can be extended to
Recurring Reception and Recurring Transmission.

Theorem 5. Given a one-hop Radio Network with n nodes, where k ≤ n1/6 log log n

nodes are activated perhaps at different times, using a compact set of periods Primed
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Selection solves the Recurring Selection problem with optimal message complexity k
and O(kn) delay, optimal for equiperiodic protocols.

The good news is that this value of k is actually very big for most of the applications of
Sensor Networks, where a logarithmic density of nodes in any one-hop neighborhood
is usually assumed.

3 Adaptive Protocols: Reduced Primed Selection

The same technique used in Primed Selection yields a reduced delay if we use only
O(k) coprime periods in the whole network as long as we guarantee that, for every
node u, every pair of nodes i, j ∈ N(u) ∪ {u} use different coprimes. However, given
that the topology is unknown, it is not possible to define an oblivious assignment that
works under our adversary.

We show now how to reduce the delay introducing a pre-processing phase in which
nodes self-assign those primes appropriately. Given that in this protocol it is necessary
to maintain two sets of k primes, we relax the Weak Sensor Model assuming that the
memory size of each node is bounded only by O(k + log n) bits. We further assume
that nodes are deployed densely enough so that if we reduce the radius of transmission
by a constant factor the network is still connected. This assumption introduces only
an additional constant factor in the total number of nodes to be deployed n and the
maximum degree k − 1.

The intuition of the protocol follows. As before, we use prime numbers bigger than
k but, additionally, the smallest k of them are left available. More precisely, each node
with ID i ∈ 1, . . . , n is assigned a big prime number p(i) so that p(1) = pj+k <
p(2) = pj+k+1 . . . p(n) = pj+k+n−1. Where p� is the �-th prime number and pj is the
first prime number bigger than k. Again, given that k ≤ n, the size in bits of the biggest
prime is still in O(log n).

Using their big prime as a period of transmission nodes first compete for one of
the k small primes left available. Once a node chooses one of these small primes, it
announces its choice with period its big prime and transmits its messages with period
its small prime. If at a given time slot these transmissions coincide, it is equivalent to the
event of a collision of the transmissions of two different nodes, hence, we do nothing.

In order to prevent two nodes from choosing the same small prime, each node main-
tains a counter. A node chooses an available small prime upon reaching a final count.
When a node reaches its final count and chooses, it is guaranteed that all neighboring
nodes lag behind enough so that they receive the announcement of its choice before
they can themselves choose a small prime.

In order to ensure the correctness of the algorithm, no two nodes within two hops
should choose the same small prime. Therefore, we use a radius of r/2 for message
communication2 and r for small-prime announcements.

We omit the details of the algorithm in this extended abstract for brevity. The analysis
follows. It was shown before that the delay of Primed Selection is in O(kn log n). For
clarity of the presentation, we denote this value as T .

2 The choice of small radius r/2 is arbitrary. Any radius in Θ(r) strictly smaller than r would
work with the same asymptotic cost.
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Let us call a node that has chosen a small prime a decided node and undecided
otherwise. In order to prove correctnes, we have to prove that every node becomes
decided and that no pair of neighboring nodes choose the same prime.

Lemma 3. Given any node u that becomes decided in the time slot t, the counter of
every undecided node v ∈ N(u) is at most T in the time slot t.

Proof. Consider a node u that becomes decided at time t. For the sake of contradiction,
assume there is an undecided node v ∈ N(u) whose counter is greater than T at t.
By the definition of the algorithm, v did not receive a bigger counter for more than
T steps before t, and u did not receive a bigger counter for 2T steps before t. In the
interval [t − T, t] the local counter of u is larger than the local counter of v. As shown
in Theorem 3, v must receive from u within T steps. But then, v must have been reset
in the interval [t − T, t].

Theorem 6. Given a Sensor Network with n nodes, where the maximum degree is k −
1 < n, if nodes run Reduced Primed Selection, no pair of neighboring nodes choose the
same small prime and every node becomes decided within O(Tn2) steps after starting
running the algorithm.

Proof. The first statement is a direct conclusion of Lemma 3 and Theorem 3. For the
second statement, if a node u is not reset within T steps no neighbor of u has a bigger
counter and u will become decided within 2T steps. Thus, it takes at most (n+1)T steps
for the first node in the network that becomes decided. By definition of the algorithm, a
decided node does not reset the counter of any other node. Applying the same argument
recursively the claim follows.

Theorem 7. Given a Sensor Network with n nodes, where the maximum degree is k −
1 < n, after the pre-processing, the delay of Reduced Primed Selection is O(k2 log k)
and the message complexity is k.

Proof. As in Theorem 3.
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