
Clock Synchronization in the Byzantine-Recovery
Failure Model

Emmanuelle Anceaume1, Carole Delporte-Gallet2, Hugues Fauconnier2,
Michel Hurfin1, and Josef Widder3,4,�

1 IRISA, Campus de Beaulieu, Rennes (France)
2 LIAFA / Paris VII, Paris (France)

3 Technische Universität Wien, Vienna (Austria)
4 École Polytechnique, Palaiseau (France)

Abstract. We consider the problem of synchronizing clocks in synchronous sys-
tems prone to transient and dynamic process failures, i.e., we consider systems
where all processes may alternate correct and Byzantine behaviors. We propose
a clock synchronization algorithm based on periodical resynchronizations which
is based on the assumption that no more than f < n/3 processes (with n the
number of processors in the system) are simultaneously faulty. Both, accuracy
(clocks being within a linear envelope of real-time) and precision (maximum de-
viation between clocks) perpetually hold for processes which sufficiently long
follow their algorithm. We provide expressions for both the recovery time and
the failure turn-over rates. Both expressions are independent of f , and are less
than the time needed to execute 3 resynchronizations.

1 Introduction

Tightly synchronized and accurate clocks among the members of a distributed system is
a fundamental service as it allows, e.g., to perform synchronized actions or estimate the
behavior of the environment in a control system. One way to ensure reliable and tight
synchronization among local clocks is the use of a clock synchronization algorithm.
Essentially such an algorithm overcomes clock drift, variations of transmission delays
and failures. It guarantees that the maximum deviation between (correct) local clocks
is bounded (precision) and that these clocks are within a linear envelope of real-time
(accuracy).

There is considerable literature devoted to the design and implementation of clock
synchronization algorithms; see [1,2,3,4,5] for an overview. Some algorithms are spec-
ified for environments in which processes may crash [6], may suffer timing failures [7],
or may execute arbitrarily bad operations [1,8,9,10]. The last type of behavior, called
Byzantine, is the most severe type of process failures. It captures all causes of failures,
ranging from accidental memory bit flips to malicious attacks on a system. Therefore
this model seems appropriate for a large range of distributed applications.

Another kind of fault tolerance is self-stabilization. Here it is assumed that the system
behaves arbitrarily (including, e.g., that the assumed threshold of faults is temporarily

� Partially supported by the Austrian FWF project Theta (proj. no. P17757).

E. Tovar, P. Tsigas, and H. Fouchal (Eds.): OPODIS 2007, LNCS 4878, pp. 90–104, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Clock Synchronization in the Byzantine-Recovery Failure Model 91

violated) but if eventually all processes behave according to the algorithm the system
stabilizes to a good state (where in our case the clock synchronization properties hold).
A highly interesting work is with respect to joining the two approaches: Self-stabilizing
clock synchronization algorithms that work in the presence of permanent Byzantine
faults are given in [11,12]. However, these solutions share some properties which seem
inherent to the problem of fault-tolerant self-stabilization: First, even processes that al-
ways follow their algorithm are not guaranteed to remain synchronized to each other
(this is clearly due to well known bounds on resilience [1] which are violated dur-
ing unstable periods) and second, resynchronization of recovered processes takes O(f)
time.

This paper is based on the idea, that permanent failures are too optimistic for cer-
tain applications, while fault-tolerant self-stabilization might be too pessimistic, or the
provided properties too weak. We therefore explore under which conditions clock prop-
erties can be provided permanently in the presence of transient and dynamic Byzantine
faults, where processes recover from “bad periods” with an arbitrary state and just start
following their algorithm. We, however, limit the number of components which may
suffer from faults simultaneously.

This Byzantine-recovery failure model has been previously investigated in [13,14]
(both work will be discussed in Section 6). In [14], the work is motivated by secu-
rity schemes for which a clock synchronization algorithm under this failure model is
more robust than others. However, our motivation for this failure model comes from
long-lived applications in the space domain. There, transient and repeated bit-flips phe-
nomena, caused by single event upsets (SEU), may impact processors of the computing
system. In addition, mission times can be extremely long, rendering unrealistic the hy-
pothesis that there is a limitation on the number of faults that may occur during the
application life, and that only a subset of the processors can be affected by these faults.
To deal with such strong requirements, complex checking procedures are designed,
and reconfiguration and/or correcting mechanisms are applied on the altered compo-
nents. Such mechanisms ensure that altered processors recover some operational state,
mainly they recover a correct execution code. Clearly, recovering an operational state
does not mean recovering a safe state, i.e., having the clock synchronized, for example.
To summarize, the notion of faulty and correct processors does not make sense in the
Byzantine-recovery failure model, “correct” in the sense that a processor is correct for
the whole mission. Rather, processors alternate between periods of time during which
they are faulty, and periods of time during which they follow their prescribed protocol.

Contribution. We propose a clock synchronization algorithm tolerant to moving Byzan-
tine failures. In particular our algorithm guarantees that in presence of up to f “mov-
ing” and concurrent Byzantine failures, correctly behaving processes (that is at least
n − f processes, with n ≥ 3f + 1, and n the number of processors in the system)
have synchronized logical clocks. Our algorithm is a variation of Srikanth and Toueg’s
clock synchronization algorithm [9], in which the classic notion of “correct process”
is assumed. The challenge of the present work is the guarantee that correctly behaving
processes are never corrupted by recovering processes, and that clocks of recovering
processes get quickly tightly synchronized with those of correctly behaving processes.
We provide an expression for the recovery time (i.e., the period of time after which a

92 E. Anceaume et al.

recovered process is synchronized with the other processes). This bound is independent
of f , and is roughly equal to the time needed to execute two resynchronizations. We de-
rive an expression for the failure turn-over rate, i.e., the maximal allowable frequency
at which processes may enter (and leave) faulty periods. This rate is also independent
of f , and is roughly equal to the time needed to execute three resynchronizations.

2 System Model and Problem Statement

Network and Clock Model. The system consists of a finite set of n ≥ 3f +1 processes,
where f is a parameter which is used below for our failure assumption. Processes com-
municate and synchronize with each other by sending and receiving messages over a
(logically) fully connected reliable point-to-point network. The system is synchronous,
as that there exists known upper and lower bounds on processing speeds; every process
has access to a hardware clock with bounded drift with respect to Newtonian real-time;
and there is a known upper bound on messages transmission delays. More precisely, we
assume the following:

1. The rate of drift of physical clocks from real-time is bounded by a known constant
� > 0. That is, if Hp(t) is the reading of the hardware clock of process p at real-time
t, then for all t2 ≥ t1:

t2 − t1
1 + �

≤ Hp(t2) − Hp(t1) ≤ (1 + �)(t2 − t1)

The rate of drift between clocks is consequently bounded by dr = � · 2+�
1+� .

2. There is an upper bound δ on the time required for a message to be prepared by a
process, sent to a process and processed by the recipient of the message.

Failure Model. As written above, we want to model transient and dynamic process fail-
ures, i.e., processes may temporarily (permanent process failures are just a special case)
deviate from the specified behavior. For example, such a process may arbitrarily change
its local state, omit to send messages, may change the content of its messages or may
even generate spurious messages. Note however, that we exclude masquerading by our
logical point-to-point assumption. Further we want to model recovery such that process
p reaches an operational state whenever p recovers a correct code, and makes steady
progress in its computation, i.e., follows its algorithm. Note that p’s execution context
may be still altered (similar to self-stabilization), and thus p may still be perceived as
faulty as long as it has not reached a safe state, i.e., an internal state that satisfies prob-
lem specific invariants (e.g., having its logical clock synchronized). The time needed to
reach a safe state from an operational one is called the recovery time, and is denoted in
the following by j.

Definition 1 (Obedient Processes). We denote by Obedient(t1, t2) the set of processes
that follow their algorithm during the whole real-time interval [t1, t2], and by PΔ(t)
the set in Obedient(max{0, t − Δ}, t), with Δ being some constant real-time interval.

Clock Synchronization in the Byzantine-Recovery Failure Model 93

Definition 2 (Fault Model). For every real-time t > 0 it holds that

|Pm(t)| ≥ n − f (1)

with m being some constant real-time (the fault turn-over interval), and n ≥ 3f + 1.
Initially, at time t = 0, all processes are in an initial (i.e., correct) state.

This definition states that in a sliding window of length m, the number of processes
that can concurrently exhibit faulty behavior is no more than f , with n ≥ 3f + 1. With
m = ∞ there are at least n − f “correct” processes, while at most f may fail during an
execution: We get similar restrictions as in the classic Byzantine fault model [15,16].

Problem Statement. As previously said, a clock synchronization algorithm allows
processes to update their local clocks to overcome drifts and failures. Process p’s lo-
cal clock (also called in the literature p’s logical clock) at real-time t, denoted Cp(t),
follows its hardware clock Hp(t) with periodic re-adjustment. A Δ-Clock Synchroniza-
tion algorithm has to satisfy the following two properties:

(π) Precision. At any real-time t ≥ 0 and for any two processes p, q ∈ PΔ(t) it holds
for some constant Dmax that

|Cp(t) − Cq(t)| ≤ Dmax

(α) Accuracy. For any process p and for any two real-times s and e with p ∈ Obedient
(s, e)∧ (e− s) > Δ it must hold for any two real-times t1, t2 ∈ [s+Δ, e], t1 < t2,
for some constants a, b, c, and d that

t2 − t1
a

− b ≤ Cp(t2) − Cp(t1) ≤ (t2 − t1) c + d

Precision ensures that the maximum deviation between logical clocks of any two pro-
cesses that are obedient for at least Δ real-time units is bounded. Accuracy guarantees
that the logical clock of a process obedient for at least Δ real-time units remains in the
linear envelope of real-time.

3 The Algorithm

Algorithm 1 is a variant of the non-authentication clock synchronization algorithm by
Srikanth and Toueg [9]. Its rules (starting with “on”) are executed atomically. There
are several data structures, namely Buffer and timestamps, where Bufferp[q] contains
the last resynchronization message sent by q that p received, and timestampsp[q], p’s
local time at which p received that resynchronization message. The algorithm relies on
several parameters. The (local) interval P between two executions of the resynchroniza-
tion protocol, the delete interval parameter R which is the time interval during which
resynchronization messages are locally kept within Buffer, and the adjustment param-
eter A guaranteeing that logical clocks of processes which are obedient for sufficiently

94 E. Anceaume et al.

long are not set back. All these parameters are computed from the estimation of sys-
tem parameters δ and �. They have to satisfy the following solvable set of constraints,
constraints that will be discussed in the remainder:1

A ≥ r · (1 + �) P > (3 · δ) · (1 + �) + A + R · (1 + �)
R = r · (1 + �) r = (P − A) · dr + 3 · δ

After discussing the general principles of our algorithm, we will show that it solves
Δ-Clock Synchronization under the failure assumption of Definition 2 for Δ = j and
m as follows (with an infinitesimally small ε):

j ≥ 2 · r + P · (1 + �) m ≥ j + R · (1 + �) + δ + ε

Srikanth and Toueg’s Algorithm [9]. We briefly discuss the principles of their algo-
rithm. It is based on processes which are either “correct” or “faulty” permanently.
The resynchronization proceeds in rounds, a period of time during which processes
exchange messages and update their logical clocks: When the logical clock of some
correct process shows time k · P , with k ≥ 1, this process sends a message to all, in-
dicating that it is ready to resynchronize. When a correct process receives f + 1 such
messages, it knows that at least one was sent by a correct process, and thus that at least
one correct process is ready to resynchronize. Therefore it also sends such a message
to all. Upon receipt of a resynchronization message from n − f ≥ 2f + 1 processes,
process p knows that all correct processes will receive at least n − 2f ≥ f + 1 of these
messages within bounded time, and will therefore send their resynchronization mes-
sages to all, such that in turn every correct process receives n− f such messages within
bounded time. Thus, p “accepts” this message and resynchronizes its logical clock to
k · P + A.

Our Algorithm. Intuitively, the main problem in the dynamic fault model is that a pro-
cess has to get rid of messages which it receives from a, then faulty, process for “future”
rounds, i.e., for too large values of k. In the static failure model this is simpler to over-
come since such messages are sent just by the at most f faulty processes during the
whole execution, while in the dynamic model such messages may be sent by every
process at times it does not follow its algorithm.

The structure of our algorithm is similar to [9]. Resynchronizations are triggered
periodically (line 7), and if properly relayed, and agreed by sufficiently many processes
resynchronization is applied by all the processes in Pj(t) (line 25). To prevent too much
bad information from being present in Buffer, invalid messages are deleted from Buffer
(line 11). A message is invalid if it belongs to Buffer for more than R logical time units,
or if its reception time is in the future; R corresponds to the maximal time needed to
properly complete a resynchronization phase. To prevent incorrect resynchronizations,

1 The constraints are given here as required for the proofs. At first sight there seem to be cyclic
dependencies. However, by simple arithmetical manipulation one can derive that A does in
fact only depend on δ and � while P must be greater than A plus a term depending again on
δ and �. The system is sound if � < 0.32, which is in practice given as hardware clocks have
drift rates between 10−6 and 10−4.

Clock Synchronization in the Byzantine-Recovery Failure Model 95

Algorithm 1. Clock Synchronization Algorithm
1: variables
2: k← 1 // round number
3: vector of integers: Buffer[1 . . . n]← ⊥
4: vector of real: timestamps[1 . . . n]← 0
5: real: C(t)← 0
6: sent ∈ {TRUE, FALSE} ← FALSE

7: on C(t) = k · P do
8: if sent = FALSE then
9: send (TICK, k) to all
10: sent← TRUE

11: on ((timestamps[q] < C(t)− R) ∨ (C(t) < timestamps[q])) ∧ (Buffer[q] �= ⊥) do
12: Buffer[q]← ⊥

13: on receipt of message (TICK, �) sent by process q do
14: Buffer[q]← �
15: timestamps[q] = C(t)
16: if |{r : Buffer[r] = �}| ≥ f + 1 ∧ � = k then
17: if sent = FALSE then
18: send (TICK, �) to all
19: sent← TRUE

20: if |{r : Buffer[r] = �}| ≥ n − f then
21: for all r ∈ Π do
22: timestamps[r]← timestamps[r] + (� · P + A− C(t))
23: if Buffer[r] = � then
24: Buffer[r]← ⊥
25: C(t)← � · P + A
26: k← � + 1 // set round number
27: sent← FALSE

process p relays a (TICK, k) message only if it makes sense for itself, i.e., (1) p is sure
that at least one process with a “good” internal state wants to resynchronize, (2) both
q and p agree on the resynchronization round (line 16), and (3) p has not already sent
(TICK, k).

The presence of n−f (TICK, k) messages in p’s buffer is sufficient to resynchronize
its clock, i.e., to set it to k ·P +A. This also allows a recovering process p to resynchro-
nize its clock. Note that this resynchronization need not be based on “real” messages,
as p may still have bad information in its buffer that is due to the time when it did not
follow its algorithm, and thus it may synchronize to a wrong clock. However, the algo-
rithm guarantees that at the end of the next resynchronization, p will have cleaned its
buffer, and will be able to resynchronize its clock with all the other correct processes.
We did not explicitly handle overruns of the round number k or the clock variables.
With assumptions on the mission duration, variables can be dimensioned sufficiently
large, such that overruns only happen due to local faults such that variables can be reset
safely.

4 Properties of the Algorithm

In this section we give the main lines of the correctness proofs. (See [17] for the com-
plete proofs.) We begin by defining some intensively used notations.

If some process p ∈ Pj(t) takes some step s at real-time t then we say that p properly
executes s and if some process p ∈ Pj(t) sends some message m at real-time t we

96 E. Anceaume et al.

say that p properly sends m. If p properly executes line 26, then p terminates round
�. Moreover, we will heavily use tdel which is defined to be 2δ. We now give some
preliminary definitions, the first of which are similar to [9].

Definition 3. For each round k, the instant the first process properly sends (TICK, k)
is denoted by readyk. The time the f + 1st process properly sends (TICK, k) is denoted
gok. The time the n − f th process properly sends (TICK, k) is called fast-gok. Finally,
the time the first (or last) process properly terminates round k and sets its clock to
kP + A is denoted begk (or endk, resp.). Further, based on these times we define:

Ok = Obedient(readyk, fast-gok + δ)
Ck = Obedient(readyk − r, fast-gok + δ)
Sk = Obedient(readyk − j, fast-gok + δ)

The following properties form a central part of the analysis. Essentially these properties
impose constraints on local structures at the start of a resynchronization period. In this
section, we assume initial synchronization, i.e., we assume that the properties hold for
k = 1. A large part of the analysis is then devoted to prove that the properties are in
fact invariants of the algorithm. On these invariants we later build our proofs for (π) and
(α). We discuss in Section 5 how and under which assumptions initial synchronization
can be achieved.

Invariant 1. With respect to round k ≥ 1, we define:

(S) Synchronized Start. fast-gok − readyk ≤ tdel + (P − A) · dr.
(N) Consistent round numbers. At readyk−ε (for an infinitesimally small ε) all processes

in Pj(readyk) have a round number equal to k and sent = FALSE.
(B) Clean buffer. At real-time readyk−ε all processes in Pj(readyk) have Buffer[p] = ⊥

and there are no messages in transit on outgoing links of processes p ∈ Pj(readyk).
(C) |Sk| ≥ n − f .
(T) No process has properly sent a message (TICK, �) for � ≥ k before readyk.

In the case of classic, i.e., static Byzantine faults, a consequence of the model is, that
at no time, a correct process has received messages by more than f faulty processes.
In our case, we neither have the notion of a correct nor of a faulty process. In order to
achieve clock synchronization — and thus to circumvent the lower bound in [1] — we
have to ensure that not too much bad information is present at processes which should
ensure properties (π) and (α).

Recall that the fault turn-over interval m (see Definition 2) satisfies the following
relation: m ≥ j + R · (1 + �) + δ + ε, with an infinitesimally small ε, and the recovery
time j is such that j = 2 · r + P · (1 + �). Intuitively, m must be greater than the
recovery time j (otherwise the adversary could corrupt all the processes in the system
by moving fast enough from one to another one), and must face situations in which
some process p that recovered a safe state at time t (i.e., p enters Pj(t)) may have
sent “wrong” messages right before t. Thus buffers have to be cleaned (which takes
δ + R · (1 + �) + ε real time units) before the adversary is allowed to break into new
processes. Then we have:

Clock Synchronization in the Byzantine-Recovery Failure Model 97

Lemma 1 (Clean State). At all times t, any process p ∈ Pj(t) has less than or equal
to f values different from ⊥ in the vector Buffer which were not received via properly
sent messages.

Proof. Suppose by way of contradiction that p has more than f values in his vector
Buffer which it wrote in line 14 due to a message sent by some process q at some time
t′ ≤ t such that q �∈ Pj(t′). By line 11, no values which are older than R are kept in p’s
vector Buffer. Thus messages by more than f distinct processes must have been sent at
some times t′ such that these processes where not in Pj(t′) and t − R · (1 + �) − δ ≤
t′ ≤ t.

As |Pm(t)| ≥ n−f and m ≥ j +R · (1+�)+ δ +ε it follows that Pj(t′) ⊇ Pm(t).
Consequently, |

⋃
t′ p �∈ Pj(t′)| ≤ f which provides the required contradiction to p

having received messages by more than f distinct processes.
�

We now investigate properties of the round structure. We show two basic properties of
our algorithm, which are named after similar properties of the broadcasting primitive in
[9,18], i.e., unforgeability and correctness.

Lemma 2 (Unforgeability). If a process properly terminates round k at time t, then at
least one process properly has sent (TICK, k) at some time t′ ∈ [t − R · (1 + �) − δ, t].

Proof. Assume by contradiction that q ∈ Pj(t′) terminates round k at time t′, although
no message (TICK, k) was properly sent in the given interval. Due to line 20, it does so
because it has at least n−f ≥ f +1 entries in Buffer for round k. By Lemma 1 no more
than f of these are due to processes not in Pj(t′′) when they send (TICK, k) at time t′′,
with t′′ ≤ t′. Thus at least one process must have properly sent (TICK, k) within the
interval (otherwise it would have been deleted by time t in line 11) which provides the
required contradiction.
�

Lemma 3. The first process that properly sends (TICK, k) does so in line 9.

Lemma 4. No process properly terminates round k at some time t′ < gok.

Lemma 5. For every k, if (S) then (C).

Proof. By Definition 2, |Pm(t)| ≥ n − f , for all t. Consequently, it suffices to show
that m ≥ fast-gok + δ − readyk + j. By (S), fast-gok + δ − readyk + j ≤ δ + (P −
A) dr + tdel + j = r + j. Further, m = j + R(1 + �) + δ + ε such that it follows that
m > fast-gok + tdel − readyk + j which concludes the proof.
�

We now present some lemmas which are all built upon properties (S), (N), (B), (C), and
(T) . These lemmas are used in the induction proof of Theorem 2.

Lemma 6. Suppose (S), (N), (B), (C), and (T) hold for round k. Then process p ∈ Ok

does not remove any messages that are sent within [readyk, fast-gok + δ] within this
interval via line 11.

Proof. Only messages older than R on p’s logical clock are removed (in line 11). The
minimum real-time duration for R is R

1+� which is r. Consequently only messages sent

before fast-gok +δ−r are removed. By (S), fast-gok +δ−r < readyk which concludes
the proof.
�

98 E. Anceaume et al.

Lemma 7. Suppose (S), (N), (B), and (C), and (T) hold for round k. Then no process
in Sk sends a (TICK, �), with � �= k, message within [readyk, fast-gok + δ].

Lemma 8. Suppose (S), (N), (B), (C), and (T) hold for round k. Then let some process
p ∈ Ok receive (TICK, k) messages by at least n − f distinct processes in Sk within
[readyk, t], with readyk ≤ t ≤ fast-gok + δ.

1. p terminates round k within [readyk, t].
2. After terminating round k within [readyk, t], p does not terminate round � for some

� �= k by gok + tdel.

Lemma 9 (Correctness). Suppose (S), (N), (B), (C), and (T) hold for round k. Then
every process in Ok terminates round k within [readyk, gok + tdel].

Proof. By gok, f + 1 processes properly send (TICK, k). These messages are received
by all processes in Sk (which have a clean Buffer due to Lemma 1) such that by time
gok + δ at least f + 1 messages are in their buffer. These processes send (TICK, k) by
time fast-gok ≤ gok + δ due to line 18. Thus the messages by these at least n − f
distinct processes are received by all processes in Ok within [readyk, fast-gok + δ]. By
Lemma 8, our lemma follows.
�

Lemma 10. Suppose (S), (N), (B), (C), and (T) hold for round k. Then:

1. Every p ∈ Ck terminates round k exactly once within [gok, gok + tdel].
2. At time gok + tdel, p has at most f messages for round k sent by processes in Sk

and at most f messages which where not sent properly in Buffer.

Proof. As processes in Ck follow their algorithm at least r before readyk, they have
deleted all messages they had in their Buffer that were due to a time where they possibly
did not follow their algorithm in line 11.

Due to Lemma 9 and by similar reasoning with which one can show Lemma 4, every
process p ∈ Ck terminates round k at some time t ∈ [gok, gok + tdel] at least once.
To prove (1), let p do so such that it removes all messages from Buffer for round k in
line 24. It does so based on n − f received messages, i.e., at least n − 2f messages by
processes in Sk. Only one2 (TICK, k) message sent by each process in Sk is received
such that no more than f messages from processes in Sk can be received after t. Con-
sequently, p cannot reach the n − f > 2f threshold necessary to execute line 26 (and
terminate round k) within [t, gok + tdel].

The first part of (2) is a consequence of the proof of (1), while the second part of the
proof is identical to the proof of Lemma 1.
�

Let in the remainder of this section ek be the time the last process in Ck terminates
round k within [gok, gok + tdel] and also fix the real-time τ = ek + (P − A)(1 + �).

Lemma 11. For every process p ∈ Pj(τ) it holds that p ∈ Ck.

2 Processes follow their algorithm, i.e., cannot terminate a round other than k within the time
window, consequently they cannot set their round number to k (and set sent to FALSE) which
would be required to re-send a message.

Clock Synchronization in the Byzantine-Recovery Failure Model 99

Proof. First we have to show that τ − j ≤ readyk − r. According to its definition,
j = 2 · r + P · (1 + �). We have to show that τ − readyk ≤ r + P · (1 + �), i.e.,

ek − readyk ≤ (P − A) · dr + δ + tdel + A(1 + �) (2)

By property (S), fast-gok − readyk ≤ tdel + (P − A) · dr and by Lemma 8, ek ≤
fast-gok + δ. Consequently, we know that ek − readyk ≤ 3δ + (P − A) · dr which —
by the size of A — proves Equation (2).

Second we have to show that fast-gok + δ ≤ τ , i.e., that

fast-gok + δ ≤ ek + (P − A)(1 + �). (3)

Since by definition of P , P −A > (3 ·δ) ·(1+�)+R(1+�), we can prove Equation (3)
by showing that fast-gok ≤ ek + 2δ.

By Lemma 4, gok ≤ begk. Since by time gok + δ all processes in Sk receive f + 1
(TICK, k) messages and therefore send (TICK, k) it follows that fast-gok ≤ gok + δ
since |Sk| ≥ n − f . As gok ≤ begk ≤ ek it follows that fast-gok ≤ ek + δ and thus our
lemma follows.
�

Lemma 12. If (S), (N), (B), (C), and (T) hold for round k, then no messages are prop-
erly sent within [begk + tdel, readyk+1], for any k > 0.

Proof. Lemma 11 in conjunction with Lemma 10 shows that all processes p ∈ Pj(τ)
update their round number once to k + 1 within tdel. By Lemma 10(2), there are not
sufficiently many messages in transit such that p can execute line 18 before the first
process in Ck has properly sent (TICK, k + 1), while there are also not sufficiently many
messages (i.e., less than n−f) to execute line 25 before the first process in Ck has sent a
message. Thus processes properly execute no rule (except line 11) before the first clock
of a process in Ck properly reaches (k + 1) · P which is not before begk + P−A

1+� which

thus is a lower bound for readyk+1.
�

Lemma 13 (Monotony). Suppose (S), (N), (B), (C), and (T) hold for round k. If p ∈
Pj(τ) terminates round k within [readyk, begk + tdel], then at no time t, begk + tdel <
t ≤ τ , p terminates round k.

Proof. Suppose p ∈ Pj(τ) terminates round k within [readyk, begk + tdel]. By Lemma
12, from begk + tdel on, no process properly sends (TICK, k). Within [readyk, begk +
tdel], no process properly sends (TICK, �), with � < k (Lemma 7). By an argument
similar to the one used for Lemma 2, the lemma follows.
�

After all these preliminary lemmas, we finally arrive at our major theorem. If initial
synchronization is given one may set σ = 0. For our initialization algorithm, however,
σ will be 2.

Theorem 2. Algorithm 1 ensures that for all k ≥ σ the properties (S), (N), (B), (C),
and (T) as well as ek − begk ≤ tdel are satisfied given that the properties (S), (N), (B),
(C), and (T) hold for some round σ ≥ 0.

100 E. Anceaume et al.

Proof. The proof is by induction on k. For k = σ, (S), (N), (B), (C), and (T) hold since
the properties of initial synchronization are assumed to hold. By Lemma 10 the base
case follows.

Now assume that (S), (N), (B), (C), and (T) hold for all �, with σ ≤ � < k + 1 and
e� − beg� ≤ tdel. We have to show that they hold for round k + 1. Relation ek+1 −
begk+1 ≤ tdel then follows directly from Lemma 10.
(S) All processes p ∈ Pj(τ) send (TICK, k + 1) at the latest by ek + (P − A)(1 + �)
which constitutes an upper bound for fast-gok+1. From the induction assumptions and
Lemma 10 it follows that ek − begk ≤ tdel. Thus fast-gok+1 − readyk+1 ≤ tdel +(P −
A) dr which proves (S) for k + 1.
(N) Since no rules (except line 11) are executed after processes in Pj(τ) have set their
round number to k + 1, their round number remains unchanged and sent = FALSE as it
is set to this value when the round number is updated.
(B) As no rules (except line 11) are properly executed by processes in Ck between
ek and readyk+1, no messages are sent by processes in Pj(readyk+1) in this interval,
and all messages they have sent before are received by ek + δ. Thus between time
begk + tdel + δ and time readyk+1, no properly sent message from p can be received
in q’s buffer, with q ∈ Pj(readyk+1). By time begk + tdel + δ + R(1 + �), q’s buffer
is empty (line 11). We have to show that (1) begk + tdel + δ + R(1 + �) < readyk+1.
The lower bound for readyk+1 is obtained as follows. Let p be the first process that
properly terminates round k and let it be the process with the fastest clock. It will send
(TICK, k + 1) when its clock reads (k +1)P . Consequently, readyk+1 ≥ begk + P−A

1+� .

From (1), we have to show that tdel + δ + r < P−A
1+� . From constraints on P , and A it

follows that we have to show that tdel + δ + r < (tdel+δ)·(1+�)+R(1+�)
1+� = tdel + δ + R

which is obvious from the definition of R.
(C) Straightforward from Lemma 5
(T) As no rules (except line 11) are properly executed by processes in Ck between ek

and readyk+1, no messages are sent by processes in Pj(readyk+1) within this interval.
By Lemma 7, no process properly sends a (TICK, �) message, with � �= k + 1, within
[readyk, fast-gok + δ]. Finally by the induction assumptions, no process has properly
sent a message (TICK, �) for � ≥ k before readyk.
�

Lemma 14. For every round k it holds that ek+1 − readyk ≤ j.

Theorem 3. For every round k it holds that endk − begk ≤ tdel.

Proof. From Lemma 14 it follows that if p ∈ Pj(t) it holds that p ∈ Ok for the latest
resynchronization period with ek ≤ t. Process p’s round number is thus greater than k
at time t and if it follows its algorithm until e� for some � > k it sets its round number
to � + 1 by then (Lemma 10) and thus, after ek has a round number greater than k as
long it remains obedient. Thus, it never again properly sends (TICK, k) after ek, such
that by Lemma 2 and Lemma 13 no process properly terminates round k after ek; by
the definition of endk the theorem follows.
�

We have seen that the collective update of the round numbers is ensured which is funda-
mental for round based clock synchronization algorithms. Based upon it one can show
the following properties of the local bounded drift clocks.

Clock Synchronization in the Byzantine-Recovery Failure Model 101

Algorithm 2. Initialization Algorithm
1: variables
2: Buffer0[n]← FALSE

3: sent0 ∈ {TRUE, FALSE} ← FALSE

4: on external start event do
5: if sent0 = FALSE then
6: send (START) to all
7: sent0 ← TRUE

8: on receipt of message (START) sent by process q do
9: Buffer0[q]← TRUE

10: if
∣
∣
{

r : Buffer0[r]
}∣
∣ ≥ f + 1 then

11: if sent0 = FALSE then
12: send (START) to all
13: sent0 ← TRUE

14: if
∣
∣
{

r : Buffer0[r]
}∣
∣ ≥ n− f then

15: C(t)← A
16: k← 1 // start clock

Theorem 4 (Precision). For all real-times t and for any two processes p, q ∈ Pj(t) it
holds that
|Cp(t) − Cq(t)| ≤ Dmax, with Dmax

Δ= P
1+� · dr + A

(1+�)2 + tdel (1+� (2+�))
1+�

Theorem 5 (Accuracy). For any process p and for any two real-times s and e with
p ∈ Obedient(s, e) ∧ (e − s) > j it must hold for any two real-times t1, t2 ∈ [s + j, e],
0 ≤ t1 < t2, that

t2 − t1
a

− b ≤ Cp(t2) − Cp(t1) ≤ (t2 − t1) c + d

with
a =1 + � b =0
c = P (1+�)

P−A−tdel (1+�) d =P − P−A−tdel (1+�)
(1+�)2

5 Initialization

For initial synchronization, it is usually assumed that all processes of the system are
up and listening to the network when the algorithm is started [9,10]. In systems where
processes boot at unpredictable times, it was shown in [19] that this assumption can be
dropped. In this paper, we consider the classic case and propose an initialization pro-
tocol which requires that there are sufficiently many processes following their protocol
during the initialization phase.

Definition 4 (Failure Model for Initialization). Let t be the maximum real-time at
which a process p ∈ Obedient(0, t), properly starts initialization. Then it holds that
|Obedient(0, tb)| ≥ n − f with tb = t + 2δ + 2 · (P − A)(1 + �), and ∀t′ > tb :
|Pm(t′)| > n − f .

Algorithm 2 presents a protocol which established initial synchronization, i.e., ensures
Invariant 1 when used in conjunction with Algorithm 1 for k = 2: All processes in

102 E. Anceaume et al.

Pj(tb) properly terminate round 0 within tdel of each other. However, since these pro-
cesses may start synchronization whenever they want, the initial synchronization period
is is not bounded in size. This is only given for the first resynchronization such that start-
ing with the second resynchronization (which can be shown to terminate before tb) our
properties (S), (N), (B), (C), and (T) hold. (More detailed analysis is given in [17].)

6 Related work

From the failure model perspective, the problem we solve is different from the Byzantine-
tolerant self-stabilization version of clock synchronization [11,12]. There, all the
processes start with a possibly corrupted state, and eventually converge toward a safe
state in which all processes have a synchronized clock. From the properties our algo-
rithm achieves, we provide precise expressions on how many faults may occur in the
system such that still perpetual clock synchronization is possible, which is in sharp con-
trast with self-stabilization.

The closest work to ours is the one of Barak et al. [14]. Their synchronization algo-
rithm assumes that processes alternate between correct behaviors and faulty ones, and
that no more than f processes can fail during sliding window of length θ. Differently
from our solution, their resynchronization algorithm uses a convergence function simi-
lar to the differential fault-tolerant midpoint function of Fetzer and Cristian [20]. Max-
imal drift of logical clocks, �, is very close to the one of hardware clocks, which shows
the adequacy of that convergence function for maximizing logical clock accuracy. How-
ever, the weakness of their algorithm lies in the way clock synchronization is achieved.
Whenever some process p decides to start a resynchronization phase, p asks all the pro-
cesses to send their current clock values, which enables p to estimate the “system time”.
It is not hard to see that in case of Byzantine failures, resynchronizations can be invoked
infinitely often with the main consequence of overloading processors and communica-
tion links which makes it difficult to guarantee some upper-bound on communication
delays, as well as on the maximal error reading estimates, which has clearly a dramatic
impact of convergence functions, and thus on the clock synchronization algorithm as
the achievable precision depends on the timing uncertainty of the system [21]. Mod-
ifying their algorithm to prevent such behavior does not seem trivial. An idea would
be to reject/ignore too early clock synchronization messages, but this would postpone
recovery, and probably would have severe impact on the correctness proof. In contrast
to their solution, ours does not compute a new clock based on the clock values of other
processes but based on the receipt of a minimum number of synchronization messages;
some of which must have been sent by “correct” processes, preventing thus abusive re-
lease clock resynchronizations. Finally, regarding fault turn-over rate, we improve the
results by Barak et al. [14] by a factor of approximately 3.

Anceaume et al. [13] present an ad-hoc solution to the clock synchronization prob-
lem for the particular case where f = 1 and n ≥ 4. The present work is a generalization
of that result by considering an unvalued variable f .

Open Problems. We proposed (simple) mechanisms to transform a clock synchroniza-
tion algorithm tolerant to permanent Byzantine failures into an algorithm in which all

Clock Synchronization in the Byzantine-Recovery Failure Model 103

processes may recover after Byzantine failures. This transformation takes advantage of
the inherent properties of the problem we address, namely, data have a limited dura-
tion of validity, or can be refreshed periodically. We conjecture that it is possible to
design automatic transformations for all distributed algorithms that manipulate evanes-
cent variables.

References

1. Dolev, D., Halpern, J.Y., Strong, H.R.: On the possibility and impossibility of achieving clock
synchronization. Journal of Computer and System Sciences 32, 230–250 (1986)

2. Simons, B., Welch, J., Lynch, N.: An overview of clock synchronization. In: Simons,
B., Spector, A. (eds.) Fault-Tolerant Distributed Computing. LNCS, vol. 448, pp. 84–96.
Springer, Heidelberg (1990)

3. Schneider, F.B.: Understanding protocols for Byzantine clock synchronization. Technical
Report 87-859, Cornell University, Dept. of Computer Science (1987)

4. Anceaume, E., Puaut, I.: Performance evaluation of clock synchronisation algorithms. Tech-
nical Report 3526, INRIA (1998)

5. Schmid, U.(ed.): Special Issue on The Challenge of Global Time in Large-Scale Distributed
Real-Time Systems. J. Real-Time Systems 12(1–3) (1997)

6. Guzella, R., Zatti, S.: The accuracy of clock synchronization achieved by Tempo in Berkeley
Unix 4.3BSD. IEEE Transactions on Software Engineering 15(7), 847–853 (1989)

7. Cristian, F., Aghili, H., Strong, R.: Clock synchronization in the presence of omission and
performance failures, and joins. In: Proc. of the 15th Int’l Symposium on Fault Tolerant
Computing, IEEE Computer Society Press, Los Alamitos (1986)

8. Halpern, J., Simons, B., Strong, R., Dolev, D.: Fault-tolerant clcok synchronization. In: Pro-
ceedings of the 3rd ACM Symposium on Principles of Distributed Computing, pp. 89–102.
ACM Press, New York (1984)

9. Srikanth, T.K., Toueg, S.: Optimal clock synchronization. Journal of the ACM 34(3), 626–
645 (1987)

10. Welch, J.L., Lynch, N.: A new fault tolerant algorithm for clock synchronization. Information
and Computation 77(1), 1–36 (1988)

11. Daliot, A., Dolev, D., Parnas, H.: Linear time byzantine self-stabilizing clock synchroniza-
tion. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 7–19.
Springer, Heidelberg (2004)

12. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of byzantine
faults. Journal of the ACM 51(5), 780–799 (2004)

13. Anceaume, E., Delporte-Gallet, C., Fauconnier, H., Hurfin, M., Lann, G.L.: Designing mod-
ular services in the scattered byzantine failure model. In: 3rd International Symposium on
Parallel and Distributed Computing, pp. 262–269 (2004)

14. Barak, B., Halevi, S., Herzberg, A., Naor, D.: Clock synchronization with faults and re-
coveries (extended abstract). In: Proceedings of the nineteenth annual ACM symposium on
Principles of distributed computing, pp. 133–142. ACM Press, New York (2000)

15. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Transactions on
Programming Languages and Systems 4(3), 382–401 (1982)

16. Lamport, L., Melliar-Smith, P.M.: Synchronizing clocks in the presence of faults. Journal of
the ACM 32(1), 52–78 (1985)

104 E. Anceaume et al.

17. Anceaume, E., Delporte-Gallet, C., Fauconnier, H., Hurfin, M., Widder, J.: Clock synchro-
nization in the Byzantine-recovery failure model. Technical Report 59/2007, Technische Uni-
versität Wien, Institut für Technische Informatik (2007)

18. Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-tolerant
algorithms. Distributed Computing 2, 80–94 (1987)

19. Widder, J., Schmid, U.: Booting clock synchronization in partially synchronous systems with
hybrid process and link failures. Distributed Computing 20(2), 115–140 (2007)

20. Fetzer, C., Cristian, F.: An optimal internal clock synchronization algorithm. In: Proceedings
of the 10th Annual Conference on Computer Assurance, pp. 187–196 (1995)

21. Lundelius, J., Lynch, N.: An upper and lower bound for clock synchronization. Information
and Control 62, 190–240 (1984)

	Clock Synchronization in the Byzantine-Recovery Failure Model
	Introduction
	System Model and Problem Statement
	The Algorithm
	Properties of the Algorithm
	Initialization
	Related work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

