
Asynchronous Active Recommendation Systems
(Extended Abstract)

Baruch Awerbuch1,�, Aviv Nisgav2, and Boaz Patt-Shamir3,��

1 Dept. of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
baruch@cs.jhu.edu

2 School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
avivns@eng.tau.ac.il

3 School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
boaz@eng.tau.ac.il

Abstract. We consider the following abstraction of recommendation systems.
There are players and objects, and each player has an arbitrary binary prefer-
ence grade (“likes” or “dislikes”) for each object. The preferences are unknown
at start. A player can find his grade for an object by “probing” it, but each probe
incurs cost. The goal of a recommendation algorithm is to find the preferences
of the players while minimizing cost. To save on cost, players post the results of
their probes on a public “billboard” (writing and reading from the billboard is
free). In asynchronous systems, an adversary controls the order in which play-
ers probe. Active algorithms get to tell players which objects to probe when they
are scheduled. In this paper we present the first low-overhead algorithms that
can provably reconstruct the preferences of players under asynchronous schedul-
ing. “Low overhead” means that the probing cost is only a polylogarithmic fac-
tor over the best possible cost; and by “provably” we mean that the algorithm
works with high probability (over internal coin tosses) for all inputs, assuming
that each player gets some minimal number of probing opportunities. We present
algorithms in this model for exact and approximate preference reconstruction.

1 Introduction

Recommendation systems are an important ingredient of modern life, where people
must make decisions with partial information [7]. Everyday examples include buying
books, going to a movie, choosing an on-line store etc. Computer-related examples
include, among others, choosing peers in a potentially hostile peer-to-peer environment,
or choosing a route in an unreliable network. The basic idea underlying such systems
is that users can use the experience reported by others so as to improve their prediction
of their own opinions. However, users may differ in their opinions either because they
have different “tastes,” or because their objectives may be different (e.g., in a peer-
to-peer network some users may wish to destroy the system). Obviously, only users

� Partially supported by NSF grants CCF 0515080, ANIR-0240551, and CCR-0311795, and
CNS-0617883.

�� This research was supported in part by the Israel Science Foundation (grant 664/05) and by
Israel Ministry of Science and Technology.

E. Tovar, P. Tsigas, and H. Fouchal (Eds.): OPODIS 2007, LNCS 4878, pp. 48–61, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Asynchronous Active Recommendation Systems 49

whose preferences are similar to those of many others can enjoy the advantages of
recommendation systems.

Most recommendation systems in use rely on various heuristics, trying to match a
user with others of similar taste [6] or an item with similar items [8]. Recently, recom-
mendation systems were looked at from the algorithmic viewpoint, using the following
framework [5,4]. There are n users (also called “players”), and m products (a.k.a. “ob-
jects”), and each user has an unknown grade for each product. Each user can find his
grade for each product by means of “probing” that product, but each probe incurs a unit
cost (probing represents buying a book, or renting a movie etc.). The system provides
a public “billboard” on which users post the results of their probes for the benefit of
others.

Existing work. There are a few variants in the literature regarding the power of the
algorithm and its goal. In this paper, we assume that the role of the algorithm is to tell
the player which object to probe whenever the player gets a chance to probe. The goal
is to correctly output all (or most) of the player’s preferences, even though a player
may probe only a negligible fraction of the object space. This problem has been studied
before, and some previous solutions exist, each with its own drawback:

• Committee. Some algorithms (e.g., in [5,4]) require some players to probe all ob-
jects. This solution is problematic in practice both because it’s unfair, and because
it is vulnerable to malicious users, who may obstruct the selection of the committee,
or may gain control over some committee members.

• Separability assumptions. Some algorithms (e.g., in [5]) work only if the prefer-
ences of the players admit a “low rank approximation,” which translates to a severe
restriction on the solvable inputs. These restrictions do not appear to apply in many
cases.

• Synchrony. In [2,1], the algorithm is synchronous in the sense that time proceeds in
global rounds. Each player probes once in each round; results from previous rounds
are used to determine which objects to probe in the next round. Synchrony is hard
to implement in practice, even if we assume that players are willing to follow the
protocol: e.g., some players may wish to go much faster than others.

The first two disadvantages were removed recently [2,1].

Our contribution. In this paper, we take the next step by showing how to overcome the
latter difficulty: we present an asynchronous algorithm to reconstruct the full preference
vectors of players with similar tastes, regardless of the schedule in which they take
probing steps. The total probing cost to a set of players with the same taste is larger
than the best possible by only a polylogarithmic factor, provided that each player in the
set makes some minimal number of probes, or that the number of similar players is at
least a polylog fraction. We use a randomized scheduling methodology, which may be
interesting in its own right.

More precisely, we assume that there is an arbitrary schedule that specifies a sequence
of players so that at each step, the next player according to the schedule may take a
probing action. The algorithm can control only which object does that player probe,
based on the results posted on the billboard so far and random coin tosses. (We assume
that the schedule is oblivious, i.e., the schedule is fixed ahead of time and may not depend
on the outcome of coin tosses.) In this model the number of players that share a given

50 B. Awerbuch, A. Nisgav, and B. Patt-Shamir

taste is not very important: what counts is the total volume of probes done by players of
a given taste. Therefore, our primary complexity measure is the total work by a given
player set, i.e., the volume of probes performed by that set of users in a given schedule.

Clearly, the minimal amount of work that has to be done to find m grades is m
probes, because each object must be probed at least once. In this paper we show that
after the execution of Õ (m) probes by the members of a single taste group, the correct
vector appears as the output of one of the members, and thereafter it will propagate to
all other members of the taste group in Õ (n) additional probes (once they are given
sufficiently many probing opportunities). We note that our algorithms does not termi-
nate: rather, the output value is continuously updated, but once it has reached the correct
output the output remains correct.

Our main result for exact type reconstruction is as follows (Õ (·) and Ω̃ (·) ignore
polylogarithmic factors).

Theorem 1. Fix a schedule where Ω̃ (1) fraction of the first Õ (m) probes are by play-
ers with identical preferences. Then with high probability, after Õ (m) work by these
players, their output stabilizes on their true preferences.

A similar result holds for the approximate case.

Theorem 2. Fix a schedule where Ω̃ (1) fraction of the first Õ (m) probes are by play-
ers with preferences at distance D = Õ (1) from each other for some given D. Then
with high probability, after Õ (m) work by these players, their output is with distance
O(D) from their true preferences.

Our algorithms consider only players performing some minimal work, which is un-
avoidable. To see that, consider executions where there are k tastes, and each taste
group gets a 1/k fraction of the total number of probes. Symmetry considerations can
be used to prove that Ω(k) probes are needed for a user just to figure out to which group
he belongs (see [3] for a formal argument).

Organization. The remainder of this paper is organized as follows. We formally define
the model and some notation in Section 2. In Section 3 we describe and analyze the
algorithm for exact preference reconstruction. In Section 4 we present our algorithm for
approximate reconstruction of the preference vectors. The analysis of the approximate
algorithm is omitted from this extended abstract.

2 Preliminaries

Model. The input consists of n players and m objects. Each player p has an unknown bi-
nary grade for each object, and these grades are represented by a vector v(p) ∈ {0, 1}m

sometimes called the preference vector. An execution proceeds according to a schedule,
which is an arbitrary infinite sequence of player identifiers. In a single step of an execu-
tion, the player selected by the schedule may probe a single object, i.e., learn its grade
for that object. The identity of the object probed by the player is under the control of
the local algorithm run by the player. We assume that the results of all previous probes
by all players are available to everyone, and in particular they may be used by players
to determine which object to probe next. The algorithm maintains, at each player p,

Asynchronous Active Recommendation Systems 51

an output vector g(p), which is an estimate of the preference vector v(p). The output
vector changes over time. The goal of the algorithms in this work is to use similarity
between players in order to minimize the total number of probes they perform. We con-
sider two cases: in the exact reconstruction case, the goal is that g(p) will stabilize on
v(p) exactly. In the approximate case, we are satisfied if from some point on, g(p) dif-
fers from v(p) in no more than D grades, for some given parameter D. In the former
case, a player can rely only on other players with exactly the same preference vector,
while in the latter case, a player may also “collaborate” with players whose preference
vectors are close to his own.

Comments. First, for simplicity of presentation, we shall assume in the remainder of
this paper that m = n. The extension to arbitrary number of objects is straightforward.
Second, we note that it may be the case that some players do not report their true results.
For our purposes, such players are not considered to be similar to honest players with
the same preference vector.

Notation. Given a grade vector v and a set of coordinates (i.e., objects) O, let v|O denote
the projection of v on O, i.e., the vector resulting from v by picking only the coordinates
in O. For any two vectors u, v of the same length, we denote by dist(v, u) the Ham-
ming distance between u and v. For a set O of coordinates, we define distO(v, u) =
dist(v|O, u|O), i.e., the number of coordinates in O on which the two vectors differ.

Unless otherwise stated, all logarithms in this paper are to base 2. Õ (·) and Ω̃ (·)
ignore polylogarithmic factors.

2.1 Building Block: Algorithm SELECT

One of the basic building blocks we use extensively in our algorithms is the oper-
ation of selection, defined as follows. The input to a player p consists of a set V
of grade vectors for a set of objects O, and a distance bound D. It is assumed that
min {dist|O(v(p), v) : v ∈ V } ≤ D. The goal of the algorithm is to find the vector
from V which is closest to v(p) on O.

SELECT(V, D)
(1) Repeat

(1a) Let X(V) be set of coordinates on which some two vectors in V differ.
(1b) Execute Probe on the first coordinate in X that has not been probed yet.
(1c) Remove from V any vector with more than D disagreements with v(p).
Until all coordinates in X(V) are probed or X(V) is empty.

(2) Let Y be the set of coordinates probed by p throughout the algorithm. Find the
set of vectors U ⊆ V closest to v(p) on Y , i.e., U = {v ∈ V : ∀u ∈ V :
distY (u, v(p)) ≥ distY (v, v(p))} .

(3) Return a randomly selected vector from U .

The main property of SELECT is summarized in the following lemma.

Lemma 1 ([1]). If dist(v, v(p)) ≤ D for some v ∈ V , then the output of SELECT(V, D)
by player p is the closest vector to v(p) in V . The total number of probes executed in
SELECT(V, D) is less than (D + 1)|V |.

To aid readability, we write SELECT EXACT(V) for SELECT(V, 0).

52 B. Awerbuch, A. Nisgav, and B. Patt-Shamir

2.2 Randomized Multiplexing

In our algorithms, we use a simple methodology for running multiple sequential tasks in
parallel by a single player. In this extended abstract we only give an informal overview
of the general framework.

The setup is as follows. Without getting into the details of the local computational
model, let us assume that there is a well-defined notion of a sequential program, that
consists of a sequence of atomic steps. Given the notion of a sequential program, we
define the concept of a task recursively, as either an infinite-length sequential program,
or a tuple rmux(p1 : T1, . . . , pn : Tn), where n ≥ 1, and for all 1 ≤ i ≤ n, Ti is a task
and pi is a positive real number called the relative allocation of Ti. It is required that∑n

i=1 pi = 1.

Fig. 1. Example of a mul-
tiplexing tree

Graphically, a task can be visualized as a rooted tree, where
edges are labeled by real numbers between zero and one, and
leaves are labeled by sequential programs. For example, con-
sider the task

T0 = rmux(1
3 :T1,

1
2 :T2,

1
6 :T3) ,

where T1 = rmux(1
2 : T11,

1
2 : T12), and each of the tasks

T2, T3, T11 and T12 is a sequential program. This task is illus-
trated in Figure 1.

The semantics of executing a task is like that of a multitasking operating system:
each sequential program has its own state, called context. The sequential programs are
executed in parallel, one step at a time. A time slot is allocated to a program at leaf �
with probability which is the product of the labels on the path leading from the root
to �. (In the figure, for example, the allocations of T11, T12 and T3 is 1

6 each.). In each
system step, a random leaf is chosen according to its probability, and a single instruction
is executed in the context of that leaf’s program; as a result, the context is updated (and
possibly some global side effects take place). The contexts of all other leaf programs
remain unchanged.

Using standard large deviations bounds, we have the following result for a set of
players executing the same task asynchronously in parallel.

Theorem 3. Consider an asynchronous schedule of T steps, and suppose all players
execute the same task T . Let T0 be a sequential program whose probability in T is p.
Then for any δ > 0: if p · T ≥ 3 log 2/δ, then with probability at least 1 − δ, the total
number of steps of program T0 done by all players together is p · T · (1 + o(1)) as
T → ∞.

Intuitively, Theorem 3 says that if the expected number of steps that T should get is at
least logarithmic, then with high probability the absolute deviation from the expected
value is smaller than any positive constant factor.

The rmux construct is useful for stabilizing sequential programs, namely programs
whose output stops changing after sufficient work was done. Even without explicit in-
dication of stabilization, when programs with acyclic dependencies are run in parallel
using rmux, their output will stabilize in a bottom-up fashion.

Asynchronous Active Recommendation Systems 53

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1
1 . . . v2

n/2

...
. . .

... ?
v

n/2
1 . . . v

n/2
n/2

v
n/2+1
n/2+1 . . . v

n/2+1
n

?
...

. . .
...

vn
n/2+1 . . . vn

n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Fig. 2. Matrix representation of the synchronous algorithm. Rows represent players and columns
represent objects. After returning from the recursion, the entries in two quadrants are unknown.

3 Exact Preference Reconstruction

In this section we develop an algorithm for exact types. More formally, let P be any set
of players with the same preference vector vP . Each player p maintains an output vector
g(p). The goal of the algorithm is to minimize the total number of probes by players in
P until their output vector stabilizes on vP precisely. We start with some intuition and
outline the general structure of the algorithm. In Section 3.1 we specify the algorithm,
and in Section 3.2 we analyze it.

The synchronous algorithm. Our starting point is the synchronous algorithm D from
[2]. To gain some intuition, we briefly review the way the synchronous algorithm works.
First, it is assumed that a lower bound α on the relative frequency of players with
exactly the same taste is given. The algorithm proceeds as follows. Given a set of players
and a set of objects, the players and objects are split into two subsets each. Each half
of the players recursively determines the values of half of the objects, and then the
results are merged. Figure 2 gives a matrix representation of the situation after returning
from the recursive call. Merging (i.e., filling in the missing entries) is done by applying
SELECT EXACT to the preference vectors that are sufficiently popular in the other half,
where “sufficiently popular” means that the preference vector is supported by, say an
α/2 fraction of the players. This guarantees correctness, because with high probability,
at least an α/2 fraction of any large enough random player set are players of the given
type (whose global frequency is at least α).

Asynchronous algorithm: basic structure and main ideas. Algorithm D does not
work in the asynchronous case, because it is an adversarial schedule that controls which
player gets to probe and when. Hence the number of players of a specific type that exe-
cute the algorithm at a given recursion level may be arbitrary, and the crucial popularity
threshold becomes meaningless. If we try all possible vectors, the cost to a player in-
creases to the trivial Θ(n).

Our approach to solve this difficulty can be intuitively described as based on the
following ideas. Consider a specific type P . Clearly, the amount of work a single player
p ∈ P needs to do (on average) is inversely proportional to the amount of help he gets
from other players of P . In our case, let us first assume that the density (i.e., fraction)
of probes done by players of P in a given prefix of the execution is some known value

54 B. Awerbuch, A. Nisgav, and B. Patt-Shamir

α (provided by an oracle to be implemented later). Note that even when we are given
the density of the probes by players of P , we cannot readily apply the synchronous
algorithm, because, for example, it may be the case that all these probes are allocated
by the schedule to the same player, which, according to D, is supposed to probe only a
few objects. We cope with this problem using randomization as follows.

First, as a matter of convenience, we view the recursive partitioning of the object
set as a complete binary tree, with the root corresponds to all objects, each of its
two children to half of the objects etc. Each leaf corresponds to about 4/α objects.
In Algorithm D, the players are arranged in a parallel tree, and the execution proceeds
from the leafs toward the root level by level, where in each node each player executes
SELECT EXACT.

Here, we use spatial and temporal randomization to overcome the asynchronous
schedule. By spatial randomness we mean that when a player gets a chance to probe,
he effectively assumes the identity of a random player. This way the work is more-or-
less evenly divided over the objects. By temporal randomness we mean that instead of
going over the leaf-root path in an order, in our algorithm, after the player have cho-
sen a random identity (and thus a leaf), he chooses a random node along the path from
that leaf to the root. This ensures that all nodes will get their “right” amount of work—
but not necessarily in the right order. To prove correctness, we show that node outputs
stabilize to their correct values inductively, starting from the leaves and ending at the
root. We note that this randomization increases the required number of probes by an
O(log n) factor.

Two more ideas are used in the final algorithm. First, we eliminate the assumption
that the density α of the probes by players of P is known by running multiple in-
stances of the algorithm in parallel, using the rmux construct. Version i works under
the assumption that α ≥ 2−i. The player chooses among the various instances us-
ing SELECT EXACT. Second, consider the case where some players wake up after most
many players have already found the correct vector. To avoid duplicating the work, each
player continuously looks for a good complete recommendation, by trying all possible
output vectors generated by other players. We show that once the correct output appears
as g(p) for some player, it spreads quickly to all working players.

Finally, let us address the issue of the number of probes by a player. We note that
the number of probes by a player in the synchronous algorithm is O(log n

α). In the asyn-

chronous algorithm, only players doing Ω(log3 n
α) probes are useful for the algorithm.

Another way to guarantee that sufficient work is useful is to require that the total work
done by player of the given type is at least Ω(n log3 n/α).

We present the algorithm in a bottom up fashion: first, we describe an algorithm
that assume that the density of the probes by players of P is known, and then give the
top-level algorithm.

3.1 The Algorithm

Algorithm for a given α. The objects are recursively divided into a tree structure as
described above. Given a node v, obj(j) denotes the set of objects associated with v. If
v is not a leaf, then it has two children denoted c1(v) and c2(v). Each node v has a list
G(v) of possible grade vectors, posted by the players.

Asynchronous Active Recommendation Systems 55

The players work in elementary batches called jobs, where each job consists of 4/α
probes. Jobs are executed within the context of a single tree node. The goal of a job at
node v is to append another vector to G(v). The job algorithm at a node v is as follows.

JOB(v) // 0 < α ≤ 1 is a given parameter
(1) If v is a leaf, probe all objects in obj(v) and post the results in G(v).
(2) If v is an internal node:

(2a) Read the list G(c1(v)) and let B1 be the set of the 2/α most popular vectors in
it (break ties arbitrarily). Similarly, construct a set B2 of the 2/α most popular
vectors in G(c2(v)).

(2b) g ← concatenation of SELECT EXACT(B1) and SELECT EXACT(B2); append
g to G(v).

(2c) If v is the root, g(p) ← SELECT EXACT({g(p), g}).

Note that since the schedule is asynchronous, SELECT EXACT in Step 2b is not done
atomically (Step 2c consists of a single probe). Asynchrony has no effect on the output
if v is a leaf (Step 1), because the set of objects probed in this case is always obj(v). But
if v is an internal node, the situation is different: while the probing of Step 2b is carried
out, the contents of the lists G(c1(v)) and G(c2(v)) may change. In our algorithm these
lists are read once, at the beginning of the job (Step 2a) resulting in lists B1 and B2
whose contents is then frozen throughout the remainder of the execution of the job.

The algorithm for a given α is simply “execute jobs at random:”

Algorithm BASIC(α)
Repeat forever: pick a random node v and execute JOB(v).

Note that Algorithm BASIC(α) is a non-terminating sequential program. Its output is
the vector g(p) (written by a root job), which changes over time.

Algorithm for Unknown α. We now explain how to execute the algorithm without
knowledge of α. Let P be a set of players with the same preference vector vP . As we
show later, BASIC(α) guarantees that for some player p0 ∈ P , we will eventually have
g(p0) = vP , provided that α is the relative density of probes by players of P . Thus, we
need to solve two problems: how to choose the right value of α, and how to disseminate
vP to the other players of P , once vP is discovered. Our approach is to solve both
problems using the rmux construct. Choosing the right value of α is done by trying all
log n powers of 1/2 in parallel as possible values of α. To disseminate vP , each player
p repeatedly compares his own output g(p) (which is common to all his instances of
PULL and BASIC) with the output of a randomly chosen player. Formally, we define the
following simple task:

Algorithm PULL(V, D)
Repeat forever:

pick a random vector v ∈ V and execute g(p) ← SELECT({g(p), v} , D).

The main algorithm can now be specified as follows. Let αmin be the smallest value
of α for which the algorithm is designed, and define I = log(1/αmin) (note that I =
O(log n) if the schedule length is polynomial in n). We run I tasks in parallel, and the

56 B. Awerbuch, A. Nisgav, and B. Patt-Shamir

PULL task. We note that the set of vectors sent to PULL changes over time: if g(p′) is
chosen in PULL, its current value is copied over and sent to SELECT EXACT.

Main Algorithm for Exact Reconstruction

rmux(
1/2: rmux

(1
I :BASIC(1

2), 1
I :BASIC(1

4), . . . , 1
I :BASIC(1

2I)
)
,

1/2: PULL({g(p′) | p′ is a player} , 0) // the set sent to PULL is dynamic
)

3.2 Analysis

We now analyze the main algorithm. Fix a specific set of players P with identical pref-
erence vector vP . Below, we first do some straightforward accounting, and then analyze
the instance of the basic algorithm that runs with the “correct” α value. We show that
after Õ (n) work in that instance, at least one player in P holds vP in its output vector.
We show that after this point, only Õ (m) more work in total is needed until that output
reaches all other players in P .

We start with some necessary notation. Fix an arbitrary schedule S. Define TP =
32In log2 n = Õ (n), and let S0 be the shorest prefix of S that contains TP probes
by players in P . We denote T0 = |S0|. Let α0 = TP /T0. We assume that α0 ≥
2−I . Finally, define T1 = T0/2I . As immediate corollaries of Theorem 3, we have the
following.

Lemma 2. With high probability, each instance of the basic algorithm gets T1(1+o(1))
probes in S0, of which an α0(1 + o(1)) fraction are executed by players in P .

Lemma 3. Consider an instance A = BASIC(α) run by the main algorithm. The num-
ber of probes executed at a given node of A in S0 is, with high probability, 2T1

αn (1+o(1)),
of which an α0(1 + o(1)) fraction are done by players of P .

Define α1 = 4nI log n
TP

α0 = α0
8 log n , and let i0 =
log 1/α1�. Henceforth, we focus

on the specific task executing BASIC(2−i0). Let us call this task Ai0 . We will use the
following concept.

• A leaf � is said to be done at time t if at least log n jobs were completed by players
of P in � in the time interval (0, t].

• An internal node v at height h > 0 is said to be done at time t if there exists some
time t′ < t, such that both children of v are done by time t′, and at least log n jobs
of v were fully executed by players of P in the time interval (t′, t].

Note that done is a stable predicate: once a node is done, it is considered done through-
out the remainder of the prefix of S containing T0 probes. The significance of the notion
is made apparent in the following key lemma.

Lemma 4. Consider the execution of Ai0 . Suppose a node v is done at time t0. Then
at all times t0 ≤ t ≤ T0, at least α1/2 fraction of the vectors in G(v) are the correct
grade vectors of players in P for obj(v).

Asynchronous Active Recommendation Systems 57

Proof: By induction on the height of v. For the base case, suppose that v is a leaf. By
Lemma 3, the total number of probes at v at any given time is no more than 2T1

α1n (1 +
o(1)), and since each job contains 4

α1
probes, the total number of jobs in a leaf v (and

hence the size of G(v)) is at most T1
2n (1 + o(1)). Therefore, once the total number of

jobs by players of P in v exceeds α1T1
2n = 4nI log n

T0
· T0

2I · 1
2n = log n , the number of

vectors in G(v) that are correct for P is at least an α1/2 fraction, as required.
For the induction step, assume that the lemma holds for height h − 1 and consider a

node v at height h. Let u1 and u2 be the children of v. By definition and the induction
hypothesis, we have that starting at the time t′ when both u1 and u2 were done, all
jobs at v had the correct vectors of them among their B1 and B2 lists (Step 2a of the
job algorithm). By the correctness of SELECT EXACT, each of these jobs will write the
correct output in G(v). Next, by Lemma 3, we have that the total number of probes in v
is again at most 2T1

α1n (1+ o(1)), which means that |G(v)| ≤ T1
2n (1+ o(1)), because each

job at v consists of 4/α1 probes. As in the base case, once at least α1T1
2n = log n jobs are

completed at node v after its children are done, the correct vector for the players of P
will be in the most popular vectors of v.

The proof of Lemma 4 hints at the main argument of the theorem: we need to show
that the nodes in the computation tree become gradually done. The remaining difficulty
lies in the asynchrony: Lemma 3 talks about the total number of probes by players in
P throughout the execution, while Lemma 4 talks about jobs, and at specific times.
However, there is a logarithmic factor between α0 used in Lemma 3 and α1 used in
Lemma 4; as we show next, this additional freedom, together with a guarantee on the
minimum work done by each player, suffice to prove the result.

Lemma 5. If each player in P executes at least 256I log2 n
α0

probes, then with high prob-
ability, each player in P executes at least 2 log n jobs in instance Ai0 .

Proof: The size of each jobs is 4
α1

= 32 log n
α0

. The expected number of probes by each

player in P is at least 128 log2 n
α0

in instance Ai0 . By Chernoff inequality the probability

each player probes less than half of the expectation is at most exp(−Ω(log2 n
α0

)). Since

there are at most n players each of them probes, with high probability, at least 64 log2 n
α0

times, i.e., 2 logn jobs.

Lemma 6. If the number of probes in Ai0 by players in P is α0T1 ≥ 16n log2 n, then
at time T0 the root node is done w.h.p.

Proof: Consider only work done by players of P during the execution of Ai0 . Define
time intervals inductively as follows: t0 is the start of the schedule. Suppose that th
is defined, for 0 ≤ h < H , where H = log αn

4 is the tree height. Define th+1 to be
the first time in which we have α1n log n

2h completed jobs that were executed at nodes at
height h and started after th. Let us call these jobs “effective jobs.”

58 B. Awerbuch, A. Nisgav, and B. Patt-Shamir

To prove the lemma, it suffices to show that we can define these time points up to
tH+1, and that tH+1 ≤ T0: this implies that at time tH+1 ≤ T0, the root node is done.
First, note that a job that starts in the interval (th, th+1] may finish its execution outside
that interval. However, for any given h ≥ 0, a player may start at most one job in
[th, th+1] that doesn’t finish in that interval. Since by Lemma 5, each player executes
at least 2 logn jobs, and since H ≤ log n, at least half of the jobs are fully executed
within one time interval.

We now prove that tH+1 ≤ T0. Consider jobs executed within one time interval. In
the first interval, half of the jobs are in leaves, so w.h.p., t1 occurs before 2α1n log n(1+
o(1)) such jobs are executed. Since the number of effective jobs is halved from one time
interval to the next, and since the number of nodes in height h is half the number of
nodes in height h − 1, in each interval there are at most 2α1n log n(1 + o(1)) jobs, and
tH+1 is before 2α1Hn logn(1+o(1)) ≤ 2α1n log2 n jobs. Since by time T0 16n log2 n
probes are executed by players in P , the number of jobs executed within single interval
is at least 16n log2 nα1

4 · 1
2 ≥ 2α1n log2 n, and it follows that tH+1 ≤ T0.

For any h, the α1n log n
2h effective jobs are distributed over α1n

2h+2 nodes. By Chernoff
bound each node is associated with at least log n effective jobs with probability at least
1 − 1

n9/8.
. As there are α1n

2 = O(n/ log n) nodes then by time tH+1 all nodes in the
computational tree are done with high probability.

By Lemma 2, the schedule for Ai0 consists of 16n log2 n
α0

probes, of which an α0 fraction
are by players in P . Therefore, by Lemmas 6 and 4, by time T0, the root node of Ai0

is done, and at least one player in P has g(p) = vp. Next, we show that the PULL

task allows players in P learn this vector in “epidemic” style. The key is that once a
player p ∈ P tests vP in PULL, that player will eventually assign g(p) ← vP , and
furthermore, p will never change his g(p) value ever again, because it will never find
it to be inconsistent with his preferences. As more players assign vP to their output
vector, the probability of a player to choose it in PULL increases.

For the next lemma, call a probe by player p ∈ P non-stabilized if g(p) �= vP at the
time of the probe.

Lemma 7. Suppose that the root node of Ai0 is done at some point. Then after
O(n log n) additional non-stabilized probes, we have g(p) = vP for all p ∈ P .

Proof Sketch: Once Ai0 is done, at least one player p0 ∈ P executed JOB(root) when
c1(root) and c2(root) are already done, and after that job is done we have g(p0) = vP .
Let σl, for l > 0, be a random variable whose value is the number of non-stabilized
probes done starting at the time that the lth player in P assigns vP as its output, and
ending at the time that the (l + 1)st such player assigned vP as its output.

Consider σl: With probability 1/2, the algorithm chooses a random player and ex-
amines its opinion. As there are l players holding vP as their output, the probability
of each probe to produce the right vector is l

2n , and hence the expected value of σl is

2n/l. It follows that after expected
∑|P |−1

l=1
2n
l < 2n ln |P | non-stabilized probes, all

|P | players will have vP as their output. Using standard arguments, it can also be shown
that O(n log n) such probes are also sufficient w.h.p.

Asynchronous Active Recommendation Systems 59

We can now conclude with the following theorem, which combines the previous results
to show the full picture: if enough probes are done by players with the same preference
vector, their output stabilizes on their true preference vector.

Theorem 4. Let S be a schedule such that at least α fraction of the probes are by
players with exactly the same preference vector vP running the algorithm for exact
reconstruction. Then with high probability, after total work of (1 + 8

α)33nI log2 n, the
output of all these players has stabilized on the correct value, where I ≥ log(1/α).

Proof: Let P be the players with the same preference vector. Assume there are at least
(1 + 8

α)33nI log2 n probes by players in P in S.

Consider the prefix T of the schedule in which 32+264/α
33+264/αα|S| > (32 + 264

α)nI log2 n

probes are by players in P . The fraction of probes by players in P in this prefix is α′ >
32
33α. The number of players in P that don’t make at least 256I log2 n

α′ < 264I log2 n
α probes

is at most |P | ≤ n. Therefore, at least 32nI log2 n probes are made by players who

probe at least 256 log3 n
α′ times each. By Lemmas 6 and 4, the root node at Ai0 is done

and at least one player in P has its preference vector as its opinion at the end of the prefix
T . By Lemma 7, after at most n logn additional non-stabilized probes, all players in P
learn their preference vector.

Theorem 1 is an immediate corollary of Theorem 4.

4 Approximate Preference Reconstruction

In Section 3 we presented an algorithm for reconstructing the preference vectors without
any error (w.h.p.). One drawback of that algorithm was that collaboration took place
only among players with identical preferences. In many cases, however, the number of
players that share the exact same preferences may be small. In this section we extend
on the results of Section 3 and present an asynchronous algorithm that allows players
to use recommendations of any player whose preference vector differs from their own
in no more than D objects, for some given parameter D. The output of the algorithm,
at each player, may contain O(D) errors. The total work done by the players of the
similar preferences in our algorithm is Õ

(
nD5/2

)
. The analysis of the algorithm is

omitted from this extended abstract. For simplicity, we assume D = O(log n) here.

4.1 Algorithm

The asynchronous algorithm is based on the synchronous algorithm SMALL presented
in [1]. The algorithm works as follows. Let P be set of players and D ≥ 0 be such
that dist(v(p), v(p′)) ≤ D for any p, p′ ∈ P . As in the exact reconstruction case, we
first assume that the algorithm is given the density parameter α. Conceptually, the al-
gorithm consists of three phases. In the first phase, the object set O is partitioned into
s = O(D3/2) random parts denoted {Oj}s

j=1, and Algorithm BASIC(α) is run by all
players on each Oj . Algorithm BASIC is guaranteed to succeed only if there are suffi-
ciently many probes by players whose preferences on the objects of Oj are identical.

60 B. Awerbuch, A. Nisgav, and B. Patt-Shamir

Fortunately, it can be shown that with probability at least 1
2 , a random partition of O

will have, in each part, “many” players in P fully agreeing. Therefore, if K indepen-
dent random partitions of O are used, then one of them will succeed in all parts with
probability at least 1 − 2−K .

Typically, a player in P shares his exact preferences with sufficiently many other
players in P and have correct output for BASIC(α) in some of the Oj parts, but in other
parts, his result of BASIC(α) is unpredictable. To remedy this problem, in the second
phase of the Algorithm, players adopt as their output, for each object part Oj , the closest
of the most popular output vectors of Algorithm BASIC(α). In the full paper we show
that concatenating these s partial vectors by a player in P results in a preference vector
that contains no more than 5D errors.

Due to asynchrony, it may be the case that only a single player in P arrives at the
correct vector in the second phase. The third phase of the algorithm disseminates this
vector to other players using the PULL mechanism. This phase may introduce D more
errors, so that the final output may contain up to 6D errors.

Asynchrony also implies that sequential execution of the phases cannot be guaran-
teed. We solve this problem by running all sequential programs in parallel, using the
rmux construct. This ensures that at the price of polylogarithmic blowup in the number
of probes, once the output of one phase has stabilized, it can be used as input to the next
phase.

Finally, the assumption of a given parameter α is lifted by running a logarithmic
number of possible α values in parallel. See the complete algorithm below.

Let s = 100D3/2. The algorithm uses K = O(log n) random partitions of O: for
1 ≤ k ≤ K , the kth partition is O = Ok

1 ∪ Ok
2 ∪ . . . ∪ Ok

s . The top level algorithm
below uses the task PASTEi,k, which pastes together all s components of the output
corresponding to α = 2−i in the kth partition.

Algorithm APPROX(D)

rmux(
1/3: rmux(1

K·s·I : BASIC(2−i) on Ok
j , for randomly chosen 1 ≤ i ≤ I,

1 ≤ j ≤ s, 1 ≤ k ≤ K) ,
1/3: rmux(1

K·I : PASTEi,k for randomly chosen 1 ≤ i ≤ I, 1 ≤ k ≤ K) ,
1/3: rmux(PULL({g(p′) | p′ is a player} , 6D)
)

Let Ai,k
j be the k execution of the basic algorithm for α = 2−i on the object set Ok

j ,
let the output of each such execution at given time be the 2i+1 most popular vectors in
the root. Each player p maintains an output g(p) which changes over time. Note this
g(p) isn’t updated by the task JOB(root) as in the algorithm for exact reconstruction.

Operator PASTE : Algorithm PASTE, specified below, gets as input a partition index k,
an α value 2−i (repersented by i), and continuously updates the player’s output vector
for this case.

Asynchronous Active Recommendation Systems 61

PASTEi,k

Repeat forever:
(1) For each j ∈ {1, . . . , s}:

Let V be the 2i+1 most popular vectors in G(root) of Ai,k
j

ui,k
j ← SELECT(V, D)

(2) Let u be the concatenation of ui,k
j over all j.

Execute PULL({u, g(p)} , 5D).

As the output of Ai,k
j might change over time, it is read once at the start of the procedure

and frozen throughout the execution. Note that each execution of this operator takes
O(sD2i+1) probes.

The performance of the algorithm is summarized in the theorem below (proof
omitted). Theorem 2 is an immediate corollary of Theorem 5 below.

Theorem 5. Let P be a set of players such that dist(p, p′) ≤ D for any p, p′ ∈ P . Let S
be a schedule with a prefix of length T = Ω(nD5/2I log3 n

α2), of which at least fraction α
of the probes are by players of P executing Algorithm APPROX. By the end of the prefix,
with high probability, there exists a player p0 ∈ P with dist(g(p0), v(p0)) ≤ 5D. In
O(Dn log n) additional work by players in P with dist(g(p), v(p)) > 6D, all these
players will have, with high probability, dist(g(p), v(p)) ≤ 6D.

References

1. Alon, N., Awerbuch, B., Azar, Y., Patt-Shamir, B.: Tell me who I am: an interactive recom-
mendation system. In: Proc. 18th Ann. ACM Symp. on Parallelism in Algorithms and Archi-
tectures, pp. 1–10. ACM Press, New York (2006)

2. Awerbuch, B., Azar, Y., Lotker, Z., Patt-Shamir, B., Tuttle, M.: Collaborate with strangers to
find own preferences. In: SPAA 2005. Proc. 17th ACM Symp. on Parallelism in Algorithms
and Architectures, pp. 263–269. ACM Press, New York (2005)

3. Awerbuch, B., Patt-Shamir, B., Peleg, D., Tuttle, M.: Adaptive collaboration in synchronous
p2p systems. In: ICDCS 2005. Proc. 25th International Conf. on Distributed Computing Sys-
tems, pp. 71–80 (2005)

4. Awerbuch, B., Patt-Shamir, B., Peleg, D., Tuttle, M.: Improved recommendation systems. In:
Proc. 16th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 1174–1183. ACM Press,
New York (2005)

5. Drineas, P., Kerenidis, I., Raghavan, P.: Competitive recommendation systems. In: STOC
2002. Proc. 34th ACM Symp. on Theory of Computing, pp. 82–90. ACM Press, New York
(2002)

6. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architecture
for collaborative filtering of netnews. In: CSCW 1994. Proc. 1994 ACM Conf. on Computer
Supported Cooperative Work, pp. 175–186. ACM Press, New York (1994)

7. Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58 (1997)
8. Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recommenda-

tion algorithms. In: Proc. 10th International Conf. on World Wide Web (WWW), pp. 285–295
(2001)

	Asynchronous Active Recommendation Systems
	Introduction
	Preliminaries
	Building Block: Algorithm select
	Randomized Multiplexing

	Exact Preference Reconstruction
	The Algorithm
	Analysis

	Approximate Preference Reconstruction
	Algorithm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

