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Abstract. The deferred update technique is a widely used approach for building
replicated database systems. Its fame stems from the fact that read-only transac-
tions can execute locally to any single database replica, providing good perfor-
mance for workloads where transactions are mostly of this type. In this paper,
we analyze the deferred update technique and show a number of characteristics
and limitations common to any replication protocol based on it. Previous works
on this replication method usually start from a protocol and then argue separately
that it is based on the deferred update technique and satisfies serializability. Dif-
ferently, ours starts from the abstract definition of a serializable database and
gradually changes it into an abstract deferred update protocol. In doing that, we
can formally characterize the deferred update technique and rigorously prove its
properties. Moreover, our specification can be extended to create new protocols
or used to prove existing ones correct.

1 Introduction

In the deferred update technique, a number of database replicas are used to implement
a single serializable database interface. Its main idea consists in executing all opera-
tions of a transaction initially on a single replica. Transactions that do not change the
database state can commit locally to the replica they executed, but other transactions
must be globally certified and, if committed, have their update operations (those that
change the database state) submitted to all database replicas. This technique is adopted
by a number of database replication protocols in different contexts (e.g., [1,2,3,4,5]) for
its good performance in general scenarios. The class of deferred update protocols is very
heterogeneous, including algorithms that can optimistically apply updates of uncertified
transactions [2], certify transactions locally to the database that executed them [1], ex-
ecute all concurrent update transactions at the same database [3], reorder transactions
during certification [4], and even cope with partial database replication [5]. However,
all of them share the same basic structure, giving them some common characteristics
and constraints.

Despite its wide use, we are not aware of any work that explored the inherent limita-
tions and characteristics of deferred update database replication. Ours seems to be the
first attempt in this direction. We specify a general abstract deferred update algorithm
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that embraces all the protocols we know of. This general specification allows us to iso-
late the properties of the termination protocol necessary to certify update transactions
and propagate them to all database replicas. We show, for example, that the termination
protocol must totally order globally committed transactions, a rather counter-intuitive
result given that serializability itself allows transactions that operate on different parts
of the database state to execute in any order. For example, according to serializability, if
two transactions t1 and t2 update data items x and y , respectively, and have no other op-
erations, it is correct to execute either t1 before t2 or t2 before t1. Therefore, one could
expect that some databases would be allowed to execute t1 followed by t2 while others
would execute t2 followed by t1. In deferred update protocols, however, all databases
are obliged to execute t1 and t2 in exactly the same order, limiting concurrency.

Moreover, previous works considered that databases should satisfy a property called
order-preserving serializability, which says that the commit order corresponds to a
correct serialization of the committed transactions. This bears the question: Is order-
preserving serializability necessary for deferred update replication? We show that
databases can satisfy a weaker property, namely active order-preserving serializability,
which we introduce. According to this property, found in some multiversion databases,
the internal database serialization must satisfy the commit order only for transactions
that change the database state, without further constraining read-only transactions.

In our approach, we start with a general serializable database and refine it to our
abstract deferred update algorithm. Similarly, one can use our specification to ease de-
signing and proving specific protocols. One can simply prove a protocol correct by
showing that it implements ours through a refinement mapping [6]. Our specifications
use atomic actions to define safety properties [7,8]. Due to the space limitations, we
present only high-level specifications. Complete TLA+ [9] specifications, which have
been model checked for a finite subset of the possible execution scenarios, are given in
our technical report [10].

2 A General Serializable Database

The consistency criterion for transactional systems in general is Serializability, which
is defined in terms of the equivalence between the system’s actual execution and a se-
rial execution of the submitted transactions [11]. Traditional definitions of equivalence
between two executions of transactions referred to the internal scheduling performed
by the algorithms and their ordering of conflicting operations. This approach has led
to different notions of equivalence and, therefore, different subclasses of Serializabil-
ity [12]. In a distributed scenario, however, defining equivalence in terms of the internal
execution of the scheduler is not straightforward since there is usually no central sched-
uler responsible for ordering transaction operations. To compare a serial centralized
schedule with a general distributed one (e.g., in a replicated database), one has to create
mappings between the operations performed in both schedules and extend the notion
of conflicting operations to deal with sets of operations, since a single operation in the
serial centralized schedule may be mapped to a set of operations executed on different
sites in the distributed one [11]. This approach is highly dependent on the implemented
protocol and, as explained in [13], does not generalize well.
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Differently, we specify a general serializable database system, which responds to re-
quests according to some internal serial execution of the submitted transactions.
A database protocol satisfies serializability if it implements the general serializable
database specification, that is, if its interface changes could be generated by the gen-
eral serializable database. This sort of analysis is very common in distributed systems
for its compromise between abstraction and rigorousness [8,9,13].

In our specification of serializability, we first define all valid state transitions for nor-
mal interactions between the clients and the database, without caring about the values
returned as responses to issued operations, but rather storing them internally as part of
the transaction state. The database is free to abort a transaction at any time during the
execution of its operations. However, a transaction t can only be committed if its com-
mit request was issued and there exists a sequential execution order for all committed
transactions and t that corresponds to the results these transactions provided. We say
the transaction is decided if the database has aborted or committed it. Operations issued
for decided transactions get the final decision as its result.

We assume each transaction has a unique identifier and let Tid be the set of all
identifiers. We call Op the set of all possible transaction operations, which execute over
a database state in set DBState and generate a result in set Result and a new database
state. We abstract the correct execution of an operation by the predicate CorrectOp(op,
res , dbst ,newdbst), which is true iff operation op, when executed over database state
dbst , may generate res as the operation result and newdbst as the new database state. In
this way, our specification is completely independent of the allowed operations, coping
with operations based on predicates and even nondeterministic operations. As a simple
example, one could define a database with two integer variables x and y with read and
write operations for each variable. In this case, DBstate corresponds to all possible
combinations of values for x and y , Op is the combination of an identifier for x or
y with a read tag or an integer (in case of a write), and Result is the set of integers.
CorrectOp(op, res , dbst ,newdbst) is satisfied iff newdbst and res correspond to the
results for the read or write operation op applied to dbst .

Two special requests, Commit and Abort , both not present in Op, are used to ter-
minate a transaction, that is, to force a decision to be taken. Two special responses,
Committed and Aborted , not present in Result , are used to tell the database user if
the transaction has been committed or aborted. We also define Decided to equal the
set {Committed ,Aborted}, Request to equal Op ∪ {Commit ,Abort}, and Reply to
equal Result ∪ Decided .

During a transaction execution, operations are issued and responses are given un-
til the client issues a Commit or Abort request or the transaction is aborted by the
database for some internal reason. We represent the history of a transaction execution
by a sequence of elements in Op ×Result , corresponding to the sequence of operations
executed on the transaction’s behalf and their respective results. We say that a transac-
tion history h is atomically correct with respect to initial database state initst and final
database state finalst iff it satisfies the recursive predicate defined below, where THist
is the set of all possible transaction histories and Head and Tail are the usual operators
for sequences. Moreover, for notation simplicity, we identify the first and second ele-
ments of a tuple t in Op × Result by t .op and t .res respectively.
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CorrectAtomicHist(h ∈ THist, initst , finalst ∈ DBState) Δ=
if h = 〈〉 then initst = finalst

else ∃ist ∈ DBState : CorrectOp(Head(h).op, Head(h).res, initst , ist) ∧
CorrectAtomicHist(Tail(h), ist , finalst)

Intuitively, a transaction history is atomically correct with respect to initst and finalst
iff there are intermediate database states so that all operations in the history can be
executed in their correct order and generate their correct results.

During the system’s execution, many transactions are started and terminated (possi-
bly concurrently). We represent the current history of all transactions by a data structure
called history vector (set THistVector ) that maps each transaction to its current history.
We say that a sequence seq of transactions and a history vector thist correspond to a
correct serialization with respect to initial state initst and final state finalst iff the recur-
sive predicate below is satisfied, where Seq(S ) represents the set of all finite sequences
of elements in set S .

CorrectSerialization(seq ∈ Seq(Tid), thist ∈ THistVector , initst , finalst ∈ DBState) Δ=
if seq = 〈〉 then initst = finalst

else ∃ist ∈ DBState : CorrectAtomicHist(thist(Head(seq)), initst , ist) ∧
CorrectSerialization(Tail(seq), thist , ist ,finalst)

Intuitively, this predicate is satisfied iff there are intermediate database states so that
all transactions in the sequence can be atomically executed in their correct order gen-
erating the correct results for their operations. We can now easily define a predicate
IsSerializable(S , thist , initst) for a finite set of transaction id’s S , history vector thist ,
and database state initst , satisfied iff there is a sequence seq containing exactly one
copy of each element in S and a final database state finalst such that Correct
Serialization(seq, thist , initst ,finalst) is satisfied. Predicate IsSerializable indicates
when a set of transactions can be serialized in some order, according to their execution
history, so that every operation returns its correct result when the execution is started in
a given database state.

We abstract the interface of our specification by the primitives DBRequest(t , req),
which represents the reception of a request req on behalf of transaction t , and
DBResponse(t , rep), which represents the database response to the last request on
behalf of t with reply rep. The only restriction we make with respect to the database
interface is that an operation cannot be submitted on behalf of transaction t if the last
operation submitted for t has not been replied yet, which releases us from the burden of
using unique identifiers for operations in order to match them with their results. Notice
that the system still allows a high degree of concurrency since operations from different
transactions can be submitted concurrently.

Our specification is based on the following internal variables:

thist : A history vector, initially mapping each transaction to an empty history.
tdec: A mapping from each transaction to its current decision status: Unknown ,

Committed , or Aborted . Initially, it maps each transaction to Unknown .
q: A mapping from each transaction to its current request or NoReq if no request is

being executed on behalf of that transaction. Initially, it maps each transaction to
NoReq .
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ReceiveReq(t ∈ Tid, req ∈ Request)
Enabled iff:

– DBRequest(t, req)
– q[t] = NoReq

Effect:
– q[t]← req

ReplyReq(t ∈ Tid, rep ∈ Reply)
Enabled iff:

– q[t] ∈ Request
– if tdec[t] ∈ Decided

then rep = tdec[t]
else q[t] ∈ Op ∧ rep ∈ Result

Effect:
– DBResponse(t, rep)
– q[t]← NoReq
– if tdec[t] /∈ Decided then

thist[t] ← thist[t] ◦ 〈q[t], rep〉

DoAbort(t ∈ Tid)
Enabled iff:

– tdec[t] /∈ Decided
Effect:

– tdec[t]← Aborted

DoCommit(t ∈ Tid)
Enabled iff:

– tdec[t] /∈ Decided
– q[t] = Commit
– IsSerializable(committedSet ∪ {t},

thist, InitialDBState)
Effect:

– tdec[t]← Committed

Fig. 1. The atomic actions allowed in our specification of a serializable database

Figure 1 presents the atomic actions of our specification. Action ReceiveReq(t , req)
is responsible for receiving a request on behalf of transaction t . Action
ReplyRep(t , rep) replies to a received request. It is enabled only if the transaction
has been decided and the reply is the final decision or the transaction has not been de-
cided but the current request is an operation (neither Commit nor Abort ) and the reply
is in Result . This means that responses given after the transaction has been decided
carry the final decision and requests to commit or abort a transaction are only replied
after the transaction has been decided. Action ReplyReq is responsible for updating the
transaction history if the transaction has not been decided. It does that by appending the
pair 〈q[t ], rep〉 to thist [t ] (we use ◦ to represent the standard append operation for se-
quences). Action DoAbort(t) simply aborts a transaction if it has not been decided yet.
Action DoCommit(t) commits t only if a t ’s commit request was issued and the set of
all committed transactions (represented by committedSet ) together with t is serializ-
able with respect to the initial database state, denoted by the constant InitialDBState.

3 The Deferred Update Technique

3.1 Preliminaries

As mentioned before, deferred update algorithms initially execute transactions on a sin-
gle replica. Transactions that do not change the database state (hereinafter called pas-
sive) may commit locally only, but active transactions (as opposed to passive ones) must
be globally certified and, if committed, have their updates propagated to all replicas (i.e.,
operations that make them active). In order to correctly characterize the technique, we
need to formalize the concepts of active and passive operations and transactions. An
operation op is passive iff its execution never changes the database state, that is, iff the
following condition is satisfied.

∀st1, st2 ∈ DBState, rep ∈ Result : CorrectOp(op, rep, st1, st2) ⇒ st1 = st2 (1)
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An operation that is not passive is called active. Similarly, we define a transaction his-
tory h to be passive iff the condition below is satisfied.

∀st1, st2 ∈ DBState : CorrectAtomicHist(h, st1, st2) ⇒ st1 = st2 (2)

Notice that a transaction history composed of passive operations is obviously passive,
but the converse is not true. A transaction that adds and subtracts 1 to a variable is
passive even though its operations are active.

The deferred update technique requires some extra assumptions about the system.
Operations, for example, cannot generate new database states nondeterministically for
this could lead different replicas to inconsistent states. The following assumption makes
sure that operations do not change the database state nondeterministically but still al-
lows nondeterministic results to be provided to the database user.

Assumption 1 (State-deterministic operations). For every operation op, and data-
base states st and st1, if there is a result res1 such that CorrectOp(op, res1, st , st1),
then there is no result res2 and database state st2 such that st1 	= st2 ∧ CorrectOp
(op, res2, st , st2).

As for the database replicas, one may wrongly think that simply assuming that they
are serializable is enough to ensure global serializability. However, two replicas might
serialize their transactions (local and global) differently, making the distributed execu-
tion non-serializable. Previous works on deferred update protocols assumed the notion
of order-preserving serializability, originally introduced by Beeri et al. in the context
of nested transactions [14]. In our model, order-preserving serializability ensures that
the transactions’ commit order represents a correct execution sequence, a condition
satisfied by two-phase locking, for example. We show that this assumption can be re-
laxed since deferred update protocols can work with the weaker notion of active order-
preserving serializability we introduce. Active order-preserving serializability ensures
that there is an execution sequence of the committed transactions that generates their
correct outputs and respects the commit order of all active transactions only. This no-
tion is weaker than strict order-preserving serializability in that passive transactions
do not have to provide results based on the latest committed state. Some multiversion
concurrency control mechanisms [11] are active order-preserving but not strict order-
preserving. Specifications of order-preserving and active order-preserving serializabil-
ity can be derived from our specification in Figure 1 by just adding a variable serialSeq ,
initially equal to the empty sequence, and changing the DoCommit action. We show
the required changes in Figure 2. The strict case (a) is simple and only requires that
serialSeq ◦ t be a correct sequential execution of all committed transactions. The action
automatically extends serialSeq with t . The active case (b) is a little more complicated
to explain and requires some extra notation. Let Perm(S ) be the set of all permuta-
tions of elements in finite set S (all the possible orderings of elements in S ), and let
ActiveExtension(seq, t) be seq if thist [t ] is a passive history or seq ◦ t otherwise. The
action is enabled only if there exists a sequence containing all committed transactions
such that it represents a correct sequential execution and ActiveExtension(seq, t) is
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DoCommit(t ∈ Tid)
Enabled iff:

– tdec[t] /∈ Decided
– q[t] = Commit
– ∃st ∈ DBState :

CorrectSerialization(serialSeq ◦ t, thist, InitialDBState, st)
Effect:

– tdec[t]← Committed
– serialSeq ← serialSeq ◦ t

(a)

DoCommit(t ∈ Tid)
Enabled iff:

– tdec[t] /∈ Decided
– q[t] = Commit
– ∃seq ∈ Perm(committedSet ∪ {t}), st ∈ DBState :

CorrectSerialization(seq, thist, InitialDBState, st) ∧
ActiveExtension(serialSeq, t) is a subsequence of seq

Effect:
– tdec[t]← Committed
– serialSeq ← ActiveExtension(serialSeq, t)

(b)

Fig. 2. DoCommit action for (a) strict and (b) active order-preserving serializability

a subsequence of it.1 In this action, serialSeq is extended with t only if t is an active
transaction.

3.2 Abstract Algorithm

We now present the specification of our abstract deferred update algorithm. It gener-
alizes the ideas of a handful of deferred update protocols and makes it easy to think
about sufficient and necessary requirements for them to work correctly. Our specifica-
tion assumes a set Database of active order-preserving serializable databases, and we
use the notation DB(d)!Primitive( ) to represent the execution of interface primitive
Primitive (either DBRequest or DBResponse) of database d . Since transactions must
initially execute on a single replica only, we let DBof (t) represent the database re-
sponsible for the initial execution of transaction t . One important remark is that these
internal databases receive transactions whose id set is Tid × N, where N is the set
of natural numbers. This is done so because a single transaction in the system might
have to be submitted multiple times to a database replica in order to ensure that it com-
mits locally. Recall that our definition of active order-preserving serializability does
not force transactions to commit. Therefore, transactions that have been committed by
the algorithm and submitted to the database replicas are not guaranteed to commit un-
less further assumptions are made. The only way around this is to submit these trans-
actions multiple times (with different versions) until they commit. Besides the set of
databases, we assume a concurrent termination protocol, fully explained in the next

1 sequence subseq is a subsequence of sequence seq iff it can be obtained by removing zero or
more elements of seq .
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section, responsible for committing active transactions and propagating their active op-
erations to all databases.

The algorithm we present in the following orchestrates the interactions between the
global database interface and the individual internal databases. It is mainly based on the
following internal variables:

thist , q: Essentially the same variables as in the specification of a serializable database.
dreq: A mapping from each transaction t to the operation that is currently being sub-

mitted for execution on DBof (t), or NoReq if no operation is being submitted. This
variable is used to implement the asynchronous communication that tells DBof (t)
to execute an operation of t . Initially all transactions are mapped to NoReq .

dreply: Similar to dreq , but mapping each transaction t to the last response given by
DBof (t).

dcnt : A mapping from each database d and transaction t to an integer representing
the number of operations that executed on d for t . It counts the number of opera-
tions DBof (t) has executed for t during t ’s initial execution and, if t is active, the
number of active operations the other databases (or DBof (t) if it does not manage
to commit t directly after it is globally committed) have executed for t after it is
globally committed. It is initially 0 for all databases and transactions.

pdec: A mapping like tdec in the specification of a serializable database, used to tell
whether the transaction was decided without being proposed for global termination
either because it was prematurely aborted during its initial execution or because it
was a passive transaction that committed on its execution database.

vers: A mapping from each database d and transaction t to an integer representing
the current version of t being submitted to d . It is initially 0 for all databases and
transactions.

dcom: A mapping from each database d and transaction t to a boolean telling whether
t has been committed on d . It is initially false for all databases and transactions.

When a Commit request is issued for a transaction whose history has been active, a
decision must be taken on whether to commit or abort this transaction with respect
to active transactions executed on other databases. In our specification, this is done
separately by a termination protocol. The reason why we isolated this part of the spec-
ification is twofold. First, the nature of the rest of the algorithm is essentially local to
the database that is executing a given transaction and it seems interesting to separate it
from the part of the specification responsible for synchronizing active transactions ex-
ecuted on different databases. Second, the properties of the termination protocol, when
isolated, can be related to properties of other agreement problems in distributed com-
puting, which helps understand and solve it. The interface variables of the termination
protocol used in our general specification are the following:

proposed : This is an input variable that keeps the set of all proposed transactions. It is
initially empty.

gdec: An output variable that keeps a mapping like pdec above, but managed by the
termination protocol only. It tells whether a proposed transaction has already been
decided or not.



24 R. Schmidt and F. Pedone

learnedSeq: Another output variable mapping each database d to a sequence of glob-
ally committed active transactions. This sequence tells database d the order in
which these active transactions must be committed to make the whole execution
serializable. Initially, it maps each database to the empty sequence.

Our specification implements a serializable database, which can be proved by a refine-
ment mapping from its internal variables to those of a general serializable database.
Actually, the only internal variable of our specification of a serializable database not
directly implemented in our abstract algorithm is tdec, given by joining the values of
pdec and gdec in the following way:

tdec[t ] Δ= if t ∈ proposed then gdec[t ] else pdec[t ] (3)

For simplicity, we use this definition of tdec in some parts of our specification. Another
extra definition used in our algorithm is the ActHist(t) operator that returns the subse-
quence of thist [t ] containing all its active operations. The atomic actions of our abstract
algorithm, without the internal actions of the individual databases and the termination
protocol, are shown in Figure 3.

Action ReceiveReq treats the receipt of a transaction request. If the transaction re-
sponsible for the operation has been decided (either for pdec or gdec according to the
definition of tdec given above), then it only changes q[t ]. Otherwise, it either proposes
t for the termination protocol or sends the request to DBof (t) through variable dreq[t ].
Our complete specification allows passive transactions to be submitted for the termi-
nation protocol too and this is why we wrote “is active” between quotation marks. We
allow that because sometimes it might not be possible to identify all passive transac-
tions. Therefore, our specification also embraces algorithms that identify only a subset
of the passive transactions as passive and conservatively propose the others for global
termination.

Action ReplyReq replies a transaction request. It is very similar to the original
ReplyReq action of our serializable database specification. The small differences only
make sure that the value replied for a normal operation comes from DBof (t) and, in this
case, dreq[t ] is set back to NoReq to wait for the next operation. Actions Premature
Abort and PassiveCommit abort or commit a transaction that has not been proposed
for global termination. It can only be committed if a commit request was correctly
replied by DBof (t), which can only happen if t has a passive history.

Action DBReq submits a request to a database. There are three conditions that en-
able this action. The first one represents a normal request during the transaction’s initial
execution or a commit request for a passive transaction. The second one represents an
operation request for an active transaction that has been proposed to the termination
protocol. Notice that operations of proposed transactions can be optimistically submit-
ted to the database before they commit or appear in some learnedSeq . Some algorithms
do that to save processing time after the transaction is committed, reducing the latency
for propagating transactions to the replicas. The third condition that enables this action
represents a commit request for a transaction that has been committed by the termi-
nation protocol. For that to happen, the transaction must be present in learnedSeq[d ]
and all transactions previous to it in the sequence must have been committed on that
database. Moreover, all active operations of that transaction must have been applied to
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ReceiveReq(t ∈ Tid, req ∈ Request)
Enabled iff:

– DBRequest(t, req)
– q[t] = NoReq

Effect:
– q[t]← req
– if tdec[t] /∈ Decided then

if req = Commit ∧ thist[t] “is active”
then proposed ← proposed ∪ {t}
else dreq[t]← req

ReplyReq(t ∈ Tid, rep ∈ Reply)
Enabled iff:

– q[t] ∈ Request
– if tdec[t] ∈ Decided then

rep = tdec[t]
else
q[t] ∈ Op ∧ rep ∈ Result ∧
dcnt[DBof (t)][t] > Len(thist[t]) ∧
rep = dreply[t]

Effect:
– DBResponse(t, rep)
– q[t]← NoReq
– if tdec[t] /∈ Decided then

• thist[t] ← thist[t] ◦ 〈q[t], rep〉
• dreq[t]← NoReq

PrematureAbort(t ∈ Tid)
Enabled iff:

– t /∈ proposed
– pdec[t] /∈ Decided

Effect:
– pdec[t]← Aborted

PassiveCommit(t ∈ Tid)
Enabled iff:

– t /∈ proposed
– pdec[t] /∈ Decided
– dreply[t] = Committed

Effect:
– pdec[t]← Committed

DBReq(d ∈ Database, t ∈ Tid, req ∈ Request)
Enabled iff any of the conditions below hold.

Condition 1: (external operation request)
– d = DBof (t)
– dreq[t] = req
– dcnt[d][t] = Len(thist[t])

Condition 2: (operation after termination)
– t ∈ proposed
– dcnt[d][t] < Len(ActHist(t))
– req = ActHist(t)[dcnt[d][t] + 1].op

Condition 3: (commit after termination)
– req = Commit
– ∃i ∈ 1..Len(learnedSeq[d]) :

learnedSeq[d][i] = t ∧
∀j ∈ 1..i : dcom[d][learnedSeq[d][j ]]

– either d = DBof (t) ∧ vers[d][t] = 0
or dcnt[d][t] = Len(ActHist(t))

Effect:
– DB(d)!DBRequest(〈t,vers[d][t]〉, req)

DBRep(d ∈ Database, t ∈ Tid, rep ∈ Reply)
Enabled iff:

– DB(d)!DBResponse(〈t, vers[d][t]〉, rep)
Effect:

– if d = DBof (t) then dreply[t]← rep
– if rep = Aborted ∧ t ∈ proposed then

• vers[d][t]← vers[d][t] + 1
• dcnt[d][t] ← 0

else
• dcnt[d][t] ← dcnt[d][t] + 1
• dcom[d][t]← rep = Committed

Fig. 3. The atomic actions allowed in our specification of a serializable database

the database already, which is true if the database is the one originally responsible for
the transaction and it has not changed the transaction version or the operations counter
dcnt [d ][t ] equals the number of active operations in the transaction history. Recall that,
by the definition of a serializable database, a request can only be submitted if there is
no pending request for the same transaction. This is actually an implicit pre-condition
for DBReq given by the specification of a serializable database.

Action DBRep treats the receipt of a response coming from a database. If the
database is the one responsible for initially executing the transaction, it sets drepy[t ]
to the value returned. If the transaction is aborted but it has been proposed for global
termination, it changes the version of that transaction on that database and sets the oper-
ation counter to zero so that the transaction’s operations can be resubmitted for its new
version; otherwise, it just increments the operation counter and sets dcom accordingly.
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3.3 Termination Protocol

The termination protocol gives a final decision to proposed transactions and, if they are
committed, forwards them to the database replicas. It “reads” from variables proposed
and thist (it relies on the transaction history to decide on whether to commit or abort it),
and changes variables gdec and learnedSeq . As explained before, variable gdec simply
assigns the final decision to a transaction; learnedSeq , however, represents the order in
which each database should submit the active transactions committed by the termination
protocol. These are the three safety properties the termination protocol must satisfy in
order to ensure serializability:

Nontriviality. For any transaction t , t is decided (gdec[t ] ∈ Decided ) only if it was
proposed.

Stability. For any transaction t , if t is decided at any time, then its decision does not
change at any later time; and, for any database d , the value of learnedSeq[d ] at any
time is a prefix of its value at all later times.

Consistency. There exists a sequence seq containing exactly one copy of every com-
mitted transaction (according to gdec) and a database state st such that Correct
Serialization(seq, thist , InitialDBState, st) is true and, for every database d ,
learnedSeq[d ] is a prefix of seq .

The following theorem asserts that our complete abstract specification of a deferred
update protocol is serializable. This result shows that every protocol that implements
our specification automatically satisfies serializability. The proofs of our theorems can
be found in [10].

Theorem 1. Our abstract deferred update algorithm implements the specification of a
serializable database given in Section 2.

This theorem results in an interesting corollary, stated below. It shows that indeed
databases are not required to be strict order-preserving serializable, an assumption that
can be relaxed to our weaker definition of active order-preserving serializability.

Corollary 1. Serializability is guaranteed by our specification if databases are active
order-preserving serializable instead of strict order-preserving serializable.

The three aforementioned safety properties are not strictly necessary to ensure serializ-
ability. Nontriviality can be relaxed so that non-proposed transactions may be aborted
before they are proposed and Serializability is still guaranteed. However, we see no
practical use of this since our algorithm already allows a transaction to be aborted at any
point of the execution before it is proposed. Committing a transaction before proposing
depends on making sure that the history of the transaction will not change and, in case
it is active, on whether there are alternative sequences that ensure the Consistency prop-
erties if the transaction is committed or not, a rather complicated condition to be used in
practice. Stability can be relaxed by allowing changes on suffixes of learnedSeq[d ] that
have not been submitted to the database yet. However, keeping knowledge of what part
of the sequence has already been submitted to the database and possibly changing the
rest of it is equivalent to implementing our abstract algorithm with learnedSeq[d ] being
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the exact sequence locally submitted to the database. As a result, we see no practical
advantage in relaxing Stability.

Consistency can be relaxed in a more complicated way. In fact, the different se-
quences learnedSeq[d ] can differ, as long as the set of intermediate states they gen-
erate (states in between transactions) are a subset of the intermediate states generated
by some sequence seq containing all globally committed transactions and satisfying
CorrrectSerialization(seq, thist , InitialDBState, st) for some state st . Ensuring this
property without forcing the learnedSeq sequences to prefix a common sequence is
hard and may lead to situations in which committed transactions cannot be added to
a sequence learnedSeq[d ] for they would generate states that are not present in any
sequence that could satisfy our consistency criterion.

One might think, for example, that the consistency property can be relaxed to al-
low commuting transactions that are not related (i.e., operate on disjunct parts of the
database state) in the sequences learnedSeq[d ]. For that, however, we have to make
some assumptions about the database state in order to define what we mean by disjunct
parts of the database state. For simplicity, let us assume our database state is a mapping
from objects in a set Object to values in a set Value and operations can read or write
a single object value. We define the objects of a transaction history h, represented by
Obj (h), to be the set of objects the operations in h read or write. A consistency property
based on the commutativity of transactions that have no intersecting object sets can be
intuitively defined as follows:

Alternative Consistency. There exists a sequence seq containing exactly one copy
of every committed transaction (according to gdec) and a database state st such
that CorrectSerialization(seq, thist , InitialDBState, st) is true and, for every
database d , learnedSeq[d ] contains exactly one copy of some committed trans-
actions (according to gdec) and, for every transaction t in learnedSeq[d ], the fol-
lowing conditions are satisfied:

– Every transaction t ′ that precedes t in seq and shares some objects with t also
precedes t in learnedSeq[d ], and

– Every transaction t ′ that precedes t in learnedSeq[d ] either precedes t in seq
or shares no objects with t .

Although this new consistency condition seems a little complicated, it is weaker than
our original property for it allows the sequences learnedSeq[d ] differ in their order for
transactions that operate on different objects. The following theorem shows that this
property is not enough to ensure Serializability in our abstract algorithm.

Theorem 2. Our abstract deferred update algorithm with the Consistency property for
termination changed for the Alternative Consistency property defined above does not
implement the specification of a serializable database given in Section 2.

This result basically means that one cannot profit much from using Generic Broad-
cast [15] algorithms to propagate committed transactions. Our properties as originally
defined seem to be the weakest practical conditions for ensuring Serializability in de-
ferred update protocols. In fact, we are not aware of any deferred update replication
algorithm whose termination protocol does not satisfy the three properties above.
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So far, we have not defined any liveness property for the termination protocol.
Although we do not want to force protocols to commit transactions in any situation
(since this might rule out some deferred update algorithms that conservatively abort
transactions), we think that a termination protocol that does not update the sequences
learnedSeq[d ] eventually, after having committed a transaction, is completely useless.
Therefore, we add the following liveness property to our specification of the termination
protocol:

Liveness. If t is committed at a given time, then learnedSeq[d ] eventually contains t .

As it happens with agreement problems like Consensus, this property must be revisited
in failure-prone scenarios, since it cannot be guaranteed for databases that have crashed.
Independently of that, one can easily spot some similarities between the properties we
have defined and those of Sequence Agreement as explained in [16]. Briefly, in the
sequence agreement problem, a set of processes agree on an ever-growing sequence of
commands, built out of proposed ones. The problem is specified in terms of proposer
processes that propose commands to be learned by learner processes, where learned [l ]
represents the sequence of commands learned by learner l . Sequence Agreement is
defined by the following properties:

Nontriviality. For any learner l , the value of learned [l ] is always a sequence of pro-
posed commands.

Stability. For any learner l , the value of learned [l ] at any time is a prefix of its value
at any later time.

Consistency. For any learners l1 and l2, it is always the case that one of the sequences
learned [l1] and learned [l2] is a prefix of the other.

Liveness. If command V has been proposed, then eventually the sequence learned [l ]
will contain V as an element.

This problem is a sequence-based specification of the celebrated atomic broadcast prob-
lem [17]. The exact relation between the termination protocol and Sequence Agreement
is given by the following theorem.

Theorem 3. The four properties Nontriviality, Stability, Consistency, and Liveness
above satisfy the safety and liveness properties of Sequence Agreement for transactions
that commit.

One possible way of reading this theorem is that any implementation of the termination
protocol is free to abort transactions, but it must implement Sequence Agreement for
the transactions it commits. As a consequence, any lower bound or impossibility result
for atomic broadcast and consensus applies to the termination protocol.

4 Conclusion

In this paper, we have formalized the deferred update technique for database replication
and stated some intrinsic characteristics and limitations of it. Previous works have only
considered new algorithms, with independent specifications, analysis, and correctness
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proofs. To the best of our knowledge, our work is first effort to formally characterize
this family of algorithms and establish its requirements. Our general abstraction can
be used to derive other general limitation results as well as to create new algorithms
and prove existing ones correct. Some algorithms can be easily proved correct by a
refinement mapping to ours. Others may require an additional effort due to the extra
assumptions they make, but the task seems still easier than with previous formalisms. In
our personal experience, we have successfully used our abstraction to obtain interesting
protocols and correctness proofs, which will appear elsewhere.

Finally, to increase the confidence in our results, we have model checked our specifi-
cations using the TLA+ model checker (TLC). Our specifications have been extensively
checked for consistency problems besides type safety and deadlocks. For that we used
a database containing a small vector of integers with operations that could read and
write the vector’s elements. Our model considered a limited number of transactions (up
to 10), each one containing a few operations. The automatic checking confirmed our
results and allowed us to find a number of small mistakes in the TLA+ translation of
our ideas. We strongly believe these specifications can be extended or directly used in
future works in this area.
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