
LFTHREADS: A Lock-Free Thread Library

Anders Gidenstam1 and Marina Papatriantafilou2

1 Algorithms and Complexity, Max-Planck-Institut für Informatik,
66123 Saarbrcken, Germany

andersg@mpi-inf.mpg.de
2 Computer Science and Engineering, Chalmers University of Technology,

SE-412 96 Göteborg, Sweden
ptrianta@cs.chalmers.se

Abstract. LFTHREADS is a thread library entirely based on lock-free methods,
i.e. no spin-locks or similar synchronization mechanisms are employed in the
implementation of the multithreading. Since lock-freedom is highly desirable in
multiprocessors/multicores due to its advantages in parallelism, fault-tolerance,
convoy-avoidance and more, there is an increased demand in lock-free meth-
ods in parallel applications, hence also in multiprocessor/multicore system ser-
vices. This is why a lock-free multithreading library is important. To the best of
our knowledge LFTHREADS is the first thread library that provides a lock-free
implementation of blocking synchronization primitives for application threads.
Lock-free implementation of objects with blocking semantics may sound like a
contradicting goal. However, such objects have benefits: e.g. library operations
that block and unblock threads on the same synchronization object can make
progress in parallel while maintaining the desired thread-level semantics and
without having to wait for any “slow” operations among them. Besides, as no
spin-locks or similar synchronization mechanisms are employed, processors are
always able to do useful work. As a consequence, applications, too, can enjoy
enhanced parallelism and fault-tolerance. The synchronization in LFTHREADS is
achieved by a new method, which we call responsibility hand-off (RHO), that
does not need any special kernel support.

Keywords: lock-free, multithreading, multiprocessors, multicores, synchroniza-
tion, shared memory.

1 Introduction

Multiprogramming and threading allow the processor(s) to be shared efficiently by sev-
eral sequential threads of control. This paper studies synchronization algorithms for re-
alizing standard thread-library operations and objects (create, exit, yield and mutexes)
based entirely on lock-free methods. Lock-freedom implies that no spin-locks or simi-
lar locking synchronization is used in the implementation of the operations/objects and
guarantees that in a set of concurrent operations at least one of them makes progress
when there is interference and thus operations eventually completes.

The rationale in LFTHREADS is that processors should always be able to do useful
work when there are runnable threads available, regardless of what other processors do;

E. Tovar, P. Tsigas, and H. Fouchal (Eds.): OPODIS 2007, LNCS 4878, pp. 217–231, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

218 A. Gidenstam and M. Papatriantafilou

i.e. despite other processors simultaneously accessing shared objects related with the
implementation of the LFTHREADS-library operations and/or suffering stop failures or
delays (e.g. from I/O or page-fault interrupts).

Even a lock-free thread library needs to provide blocking synchronization objects,
e.g. for mutual exclusion in legacy applications and for other applications where threads
might need to be blocked, e.g. to interact with some external device. Our new synchro-
nization method in LFTHREADS implements a mutual exclusion object with the stan-
dard blocking semantics for application threads but without enforcing mutual exclusion
among the processors executing the threads.We consider this an important part of the
contribution in this paper. It enables library operations blocking and unblocking threads
on the same synchronization object to make progress in parallel, while maintaining the
desired thread-level semantics, without having to wait for any “slow” operation among
them to complete. This is achieved via a new synchronization method, which we call
responsibility hand-off (RHO), which may also be useful in lock-free synchronization
constructions in general. Roughly speaking, the RHO method handles cases where pro-
cessors need to perform sequences of atomic actions on a shared object in a consistent
and lock-free manner, for example a combination of (i) checking the state of a mutex,
(ii) blocking if needed by saving the current thread state and (iii) enqueuing the blocked
thread on the waiting queue of the mutex; or a combination of (i) changing the state
of the mutex to unlocked and (ii) activating a blocked process if there is any. “Tradi-
tional” ways to do the same use locks and are therefore vulnerable to processors failing
or being delayed, which the RHO method is not. The method is lock-free and manages
thread execution contexts without needing special kernel or scheduler support.
Related and motivating work. A special kernel-level mechanism, called scheduler ac-
tivations, has been proposed and studied [1,2], to enable user-level threads to offer the
functionality of kernel-level threads with respect to blocking and also leave no processor
idle in the presence of ready threads, which is also LFTHREADS’s goal. It was observed
that application-controlled blocking and interprocess communication can be resolved at
user-level without modifications to the kernel while achieving the same goals as above,
but multiprogramming demands and general blocking, such as for page-faults, seem
to need scheduler activations. The RHO method and LFTHREADS complement these
results, as they provide thread synchronization operation implementations that do not
block each other unless the application blocks within the same level (i.e. user- or kernel-
level). LFTHREADS can be combined with scheduler activations for a hybrid thread
implementation with minimal blocking.

To make the implementation of blocking mutual exclusion more efficient, operating
systems that implement threads at the kernel level may split the implementation of
the mutual exclusion primitives between the kernel and user-level. This is done in e.g.
Linux [3] and Sun Solaris [4]. This division allows the cases where threads do not need
to be blocked or unblocked, to be handled at the user-level without invoking a system
call and often in a non-blocking way by using hardware synchronization primitives.
However, when the calling thread should block or when it needs to unblock some other
thread, an expensive system call must be performed. Such system calls contain, in all
cases we are aware of, critical sections protected by spin locks.

LFTHREADS: A Lock-Free Thread Library 219

Although our present implementation of LFTHREADS is entirely at the user-level,
its algorithms are also suited for use in a kernel - user-level divided setting. With our
method a significant benefit would be that there is no need for spin locks and/or dis-
abling interrupts in either the user-level or the kernel-level part.

Further research motivated by the goal to keep processors busy doing useful work
and to deal with preemptions in this context includes: mechanisms to provide some form
of control on the kernel/scheduler to avoid unwanted preemption (cf. e.g. [5,6]) or the
use of some application-related information (e.g. from real-time systems) to recover
from it [7]; [8] and subsequent results inspired by it focus on scheduling with work-
stealing, as a method to keep processors busy by providing fast and concurrent access
to the set of ready threads; [9] aims at a similar direction, proposing thread scheduling
that does not require locking (essentially using lock-free queuing) in a multithreading
library called Lesser Bear; [10] studied methods of scheduling to reduce the amount of
spinning in multithreaded mutual exclusion; [11] focuses on demands in real-time and
embedded systems and studies methods for efficient, low-overhead semaphores; [12]
gives an insightful overview of recent methods for mutual exclusion.

There has been other work at the operating system kernel level [13,14,15,16], where
basic kernel data structures have been replaced with lock-free ones with both perfor-
mance and quality benefits. There are also extensive interest and results on lock-free
methods for memory management (garbage collection and memory allocation, e.g.
[17,18,19,20,21,22]).

The goal of LFTHREADS is to implement a common thread library interface,
including operations with blocking semantics, in a lock-free manner. It is possible
to combine LFTHREADS with lock-free and other non-blocking implementations of
shared objects, such as the NOBLE library [23] or software transactional memory
constructions (cf. e.g. [24,25]).

2 Preliminaries

System model. The system consists of a set of processors, each having its own local
memory as well as being connected to a shared memory through an interconnect net-
work. Each processor executes instructions sequentially at an arbitrary rate. The shared
memory might not be uniform, that is, for each processor the latency to access some
part of the memory is not necessarily the same as the latency for any other processor to
access that part. The shared memory supports atomic read and write operations of any
single memory word, and also stronger single-word synchronization primitives, such as
Compare-And-Swap (CAS) and Fetch-And-Add (FAA) used in the algorithms in this
paper. These primitives are either available or can easily be derived from other available
primitives [26,27] on contemporary microprocessor architectures.

Lock-free synchronization. Lock-freedom [28] is a type of non-blocking synchro-
nization that guarantees that in a set of concurrent operations at least one of them makes
progress each time operations interfere and thus some eventually completes. Other types
of non-blocking synchronization are wait-freedom and obstruction-freedom. The cor-
rectness condition for atomic non-blocking operations is linearizability [29]. An exe-
cution is linearizable if it guarantees that even when operations overlap in time, each

220 A. Gidenstam and M. Papatriantafilou

of them appears to take effect at an atomic time instant that lies within its respective
time duration, such that the effect of each operation is consistent with the effect of its
corresponding operation in a sequential execution in which the operations appear in the
same order.

Non-blocking synchronization is attractive as it offers advantages over lock-based
synchronization, w.r.t. priority inversion, deadlocks, lock convoys and fault tolerance.
It has also been shown, using well-known parallel applications, that lock-free methods
imply at least as good performance as lock-based ones in several applications, and of-
ten significantly better [30,31]. Wait-free algorithms, as they provide stronger progress
guarantees, are inherently more complex and more expensive than lock-free ones. Ob-
struction freedom implies weak progress guarantees and can be used e.g. for reference
purposes, for studying parallelization.

In LFTHREADS the focus is on lock-free synchronization due to its combined benefits
in progress, fault-tolerance and efficiency potential.

The problem and LFTHREADS’s API. The LFTHREADS library defines the following
procedures for thread handling1:
create(thread,main): creates a new thread which starts in the procedure main; exit:
terminates the calling thread and if this was the last thread of the application/process
the latter is terminated as well;
yield : causes the calling thread to be put on the ready queue and the (virtual) processor
that running it to pick a new thread to run from the ready queue.

For blocking mutual exclusion-based synchronization between threads
LFTHREADS provides a mutex object supporting the operations:
lock (mutex): attempts to lock the mutex. If it is locked already the calling thread is
blocked and enqueued on the waiting queue of the mutex;
unlock (mutex): unlocks the mutex if there are no waiting threads in the waiting queue,
otherwise the first of the waiting threads is made runnable and becomes the owner of
the mutex (only the thread owning the mutex may call unlock);
trylock (mutex): tries to lock the mutex. Returns true on success, otherwise false.

3 Detailed Description of the LFTHREADS Library

3.1 Data Structures and Fundamental Operations

We assume a data type, context t, that can store the CPU context of an execution (i.e.
thread) and some operations to manipulate such contexts (cf. Fig. 1). These operations,
available in many operating systems2, are:
(i) save(ctx) stores the state of the current CPU context in the supplied variable and
switches the processor to a special system context. There is one such context for each
processor. The return value from save is true when the context is stored and false when
the context is restored.

1 The interface we present here was chosen for brevity and simplicity. Our actual implementation
aims to provide a POSIX threads compliant (IEEE POSIX 1003.1c) interface.

2 In systems supporting the Single Unix Specification v2 (SUSv2), e.g. GNU/Linux,
getcontext(2), setcontext(2) and makecontext(3) can be used; in other Unix
systems setjump(3) and longjmp(3) or similar.

LFTHREADS: A Lock-Free Thread Library 221

type context t is record 〈implementation defined〉;
function save(ctx : out context t): boolean;
/* Saves the current CPU context and switches to a
* system context. The call returns true when
* the context is saved; false when it is restored. */

procedure restore(ctx : in context t);
/* Replaces the current CPU context with a
* previously stored CPU context.
* The current context is destroyed. */

procedure make context(ctx : out context t;
main : in pointer to procedure);

/* Creates a new CPU context which will wakeup
* in a call to the procedure main when restored. */

type thread t is record
uc : context t;

type lf queue t is record 〈implementation defined〉;
procedure enqueue(q : in out lf queue t;

thread : in pointer to thread t);
/* Appends the TCB thread to q. */
function dequeue(q : in out lf queue t;

thread : out pointer to thread t): boolean;
/* If the queue is not empty the first thread t pointer
* in the queue is dequeued and true is returned.
* Returns false if the queue is empty. */

function is empty(q : in out lf queue t): boolean;
/* Returns true if q is empty, false otherwise. */

function get cpu id(): cpu id t
/* Returns the ID of the current CPU (an int). */

/* Global shared variables. */
Ready Queue : lf queue t;

/* Private per-processor persistent
* variables. */

Currentp : pointer to thread t;

/* Local temporary variables. */
next : pointer to thread t;
old count : integer;
old : cpu id t;

procedure create(thread : out thread t;
main : in pointer to procedure)

C1 make context(thread.uc, main);
C2 enqueue(Ready Queue, thread);

procedure yield()
Y1 if not is empty(Ready Queue) then
Y2 if save(Currentp.uc) then
Y3 enqueue(Ready Queue, Currentp);
Y4 cpu schedule();

procedure exit()
E1 cpu schedule();

procedure cpu schedule()
CI1 loop
CI2 if dequeue(Ready Queue, Currentp)

then
CI3 restore(Currentp .uc);

Fig. 1. The basic thread operations and shared data in LFTHREADS

(ii) restore(ctx) loads the supplied stored CPU context onto the processor. The restored
context resumes execution in the (old) call to save, returning false. The CPU context
that made the call to restore is lost (unless it was saved before).
(iii) make context(ctx,main) creates a new CPU context. The new context starts in a
call to the procedure main when it is loaded onto a processor with restore.

Each thread in the system will be represented by a thread control block (TCB) of
type thread t, containing a context t field for storing the thread’s state when it is not
being executed on one of the processors.

Further, we assume we have a lock-free queue data structure (like e.g. [32]) for
pointers to thread control blocks; the queue supports three lock-free and linearizable
operations: enqueue, dequeue and is empty (each with its intuitive semantics). The
lock-free queue data structure is used as a building block in the implementation of
LFTHREADS. However, as we will see in detail below, additional synchronization meth-
ods are needed to make operations involving more than one queue instance lock-free
and linearizable.

3.2 Thread Operations in LFTHREADS

The general thread operations and variables used are shown in Fig. 1. The variables
consist of the global shared Ready Queue3, which contains all runnable threads not

3 The Ready Queue here is a lock-free queue, but e.g. work-stealing [8] could be used.

222 A. Gidenstam and M. Papatriantafilou

currently being executed by any processor, and the per-processor persistent variable
Current, which contains a pointer to the TCB of the thread currently being executed on
that processor.

In addition to the public thread operations create, exit and yield , introduced above,
there is an internal operation, cpu schedule, used for selecting the next thread to load
onto the processor. If there are no threads available in the Ready Queue, the processor
is idle and waits for a runnable thread to appear.

3.3 Blocking Thread Synchronization and the RHO Method

To facilitate blocking synchronization among application threads, LFTHREADS pro-
vides a mutex primitive, mutex t. While the operations on a mutex, lock , trylock and
unlock have their usual semantics for application threads, they are lock-free with re-
spect to the processors in the system. This implies improved fault-tolerance properties
against stop and timing faults in the system compared to traditional spin-lock-based
implementations, since even if a processor is stopped or delayed in the middle of a
mutex operation all other processors are still able to continue performing operations,
even on the same mutex. However, note that an application thread trying to lock a mu-
tex is blocked if the mutex is locked by another thread. A faulty application can also
dead-lock its threads. It is the responsibility of the application developer to prevent such
situations.4

Mutex operations in LFTHREADS. The mutex t structure (cf. Fig. 2) consists of three
fields: (i) an integer counter, which counts the number of threads that are in or want to
enter the critical section protected by the mutex; (ii) a lock-free queue, where the TCBs
of blocked threads that want to lock the mutex is stored; and (iii) a hand-off flag, whose
role and use will be described in detail below.

The operations on the mutex t structure are shown in Fig. 2. In rough terms, the lock
operation locks the mutex and makes the calling thread its owner. If the mutex is already
locked the calling thread is blocked and the processor switches to another thread. The
blocked thread’s context will be activated and executed later when the mutex is released
by its previous owner.

In the ordinary case a blocked thread is activated by the thread releasing the mu-
tex by invoking unlock , but due to fine-grained synchronization, it may also happen in
other ways. In particular, note that checking whether the mutex is locked and entering
the mutex waiting queue are distinct atomic operations. Therefore, the interleaving of
thread-steps can e.g. cause a thread A to find the mutex locked, but later by the time it
has entered the mutex queue the mutex has been released, hence A should not remain
blocked in the waiting queue. The “traditional” way to avoid this problem is to ensure
that at most one processor modifies the mutex state at a time by enforcing mutual exclu-
sion among the processors, e.g. by using a spin-lock. In the lock-free solution proposed
here, the synchronization required for such cases is managed with a new method, which

4 I.e. here lock-free synchronization guarantees deadlock-avoidance among the operations im-
plemented in lock-free manner, but an application that uses objects with blocking semantics
(e.g. mutex) of course needs to take care to avoid deadlocks due to inappropriate use of the
blocking operations by its threads.

LFTHREADS: A Lock-Free Thread Library 223

we call the responsibility hand-off (RHO) method. In particular, the thread/processor
releasing the mutex is able, using appropriate fine-grained synchronization steps, to
detect whether such a situation may have occurred and, in response, “hand-off” the
ownership (or responsibility) for the mutex to some other processor.

By performing a responsibility hand-off, the processor executing the unlock can
finish this operation and continue executing threads without waiting for the concur-
rent lock operation to finish (and vice versa). As a result, the mutex primitive in
LFTHREADS tolerates arbitrary delays and even stop failures inside mutex operations
without affecting the other processors’ ability to do useful work, including operations
on the same mutex. The details of the responsibility hand-off method are given in the
description of the operations, below:

The lock operation: Line L1 atomically increases the count of threads that want to
access the mutex using Fetch-And-Add. If the old value was 0 the mutex was free and
is now locked by the thread. Otherwise the mutex is likely to be locked and the current
thread has to block. Line L3 stores the context of the current thread in its TCB and
line L4 enqueues the TCB on the mutex’s waiting queue. From now on, this invocation
of lock is not associated with any thread.

However, the processor cannot just leave and do something else yet, because the
thread that owned the mutex might have unlocked it (since line L1); this is checked by
line L6 to L8. If the token read from m.hand-off is not null then an unlock has tried
to unlock the mutex but found (line U2) that although there is a thread waiting to lock
the mutex, it has not yet appeared in the waiting queue (line H2). Therefore, the unlock
has set the hand-off flag (line H5). However, it is possible that the hand-off flag was
set after the thread enqueued by this lock (at line L4) had been serviced. Therefore, this
processor should only attempt to take responsibility of the mutex if there is a thread
available in the waiting queue. This is ensured by the is empty test at line L7 and the
CAS at line L8 which only succeeds if no other processor has taken responsibility of
the mutex since line L6. If the CAS at line L8 succeeds, lock is now responsible for the
mutex again and must find the thread wanting to lock the mutex. That thread (it might
not be the same as the one enqueued by this lock) is dequeued from the waiting queue
and this processor will proceed to execute it (line L9-L10). If the conditions at line L7
are not met or the CAS at line L8 is unsuccessful, the mutex is busy and the processor
can safely leave to do other work (line L11).

To avoid ABA-problems (i.e. cases where CAS succeeds because the variable has
been modified from its old value A to some value B and back to A) m.hand-off should,
in addition to the processor id, include a per-processor sequence number. This is a well-
known method in the literature, easy to implement and has been excluded from the
presented code to make the presentation clearer.

The trylock operation: The operation will lock the mutex and return true if the mutex
was unlocked. Otherwise it does nothing and returns false. The operation tries to lock
the mutex by increasing the waiting count on line TL1. This will only succeed if the
mutex was unlocked and there were no ongoing lock operations. If there are ongoing
lock operations or some thread has locked the mutex, trylock will attempt to acquire
the hand-off flag. If the trylock operation succeeds in acquiring the hand-off flag it

224 A. Gidenstam and M. Papatriantafilou

becomes the owner of the mutex and increases the waiting count at line TL3 before
returning true. Otherwise trylock returns false.

The unlock operation: If there are no waiting threads unlock unlocks the mutex. Oth-
erwise one of the waiting threads is made owner of the mutex and enqueued on the
Ready Queue. The operation begins by decreasing the waiting count at line U1, which
was increased by this thread’s call to lock or trylock . If the count becomes 0, there
are no waiting threads and the unlock operation is done. Otherwise, there are at least
one thread wanting to acquire the mutex and the do hand-off procedure is used to ei-
ther find the thread or hand-off the responsibility for the mutex. If the waiting thread
has been enqueued in the waiting queue, it is dequeued (line H2) and moved to the
Ready Queue (line H3) which completes the unlock operation. Otherwise, a respon-
sibility hand-off is initiated to get rid of the responsibility for the mutex (line H5):

• The responsibility hand-off is successful and terminates if: (i) the waiting queue
is still empty at line H6; in that case either the offending thread has not yet been
enqueued there (in which case, it has not yet checked for hand-offs) or it has in fact
already been dequeued (in which case, some other processor took responsibility
for the mutex); or if (ii) the attempt to retake the hand-off flag at line H8 fails, in
which case, some other processor has taken responsibility for the mutex. After a
successful hand-off the processor leaves the unlock procedure (line H7 and H9).

• If the hand-off is unsuccessful, i.e. the CAS at line H8 succeeds, the processor is
again responsible for the mutex and must repeat the hand-off procedure. Note that
when a hand-off is unsuccessful, at least one other concurrent lock operation made
progress, namely by completing an enqueue on the waiting queue (otherwise this
unlock would have completed at lines H6-H7). Note further that since the CAS
at line H8 succeeded, none of the concurrent lock operations have executed line
L6-L8 since the hand-off began.

Fault-tolerance. Regarding processor failures, the procedures enable the highest
achievable level of fault-tolerance for a mutex. Note that even though a processor failure
while the unlock is moving a thread from the m.waiting queue to the Ready Queue
(between line H2 and H3) could cause the loss of two threads (i.e. the current one and
the one being moved), the system behaviour in this case is indistinguishable from the
case when the processor fails before line H2. In both cases the thread owning the mutex
has failed before releasing ownership. At all other points a processor failure can cause
the loss of at most one thread.

4 Correctness of the Synchronization in LFTHREADS

To prove the correctness of the thread library we need to show that the mutex primitive
has the desired semantics. We will first show that the mutex operations are lock-free
and linearizable with respect to the processors and then that the lock-free mutex imple-
mentation satisfies the conditions for mutual exclusion with respect to the application
threads. First we (i) define some notation that will facilitate the presentation of the
arguments and (ii) establish some lemmas that will be used later to prove the safety,

LFTHREADS: A Lock-Free Thread Library 225

type mutex t is record
waiting : lf queue t;
count : integer := 0;
hand-off : cpu id t := null;

procedure lock(m : in out mutex t)
L1 old count := FAA(&m.count, 1);
L2 if old count �= 0 then

/* The mutex was locked.
* Help or run another thread. */

L3 if save(Currentp.uc) then
L4 enqueue(m.waiting, Currentp);
L5 Currentp := null;

/* The thread is now blocked. */
L6 old := m.hand-off;
L7 if old �= null and

not is empty(m.waiting) then
L8 if CAS(&m.hand-off, old, null)

then /* We now own m; */
/* ... run a blocked thread */

L9 dequeue(m.waiting, Currentp);
L10 restore(Currentp); /* Done. */
L11 cpu schedule(); /* Done. */

function trylock(m : in out mutex t): boolean
TL1 if CAS(&m.count, 0, 1) then return true;
TL2 else if GrabToken(&m.hand-off) then
TL3 FAA(&m.count, 1);
TL4 return true;
TL5 return false;

procedure unlock(m : in out mutex t)
U1 old count := FAA(&m.count, −1);
U2 if old count �= 1 then

/* There is a waiting thread. */
U3 do hand-off(m);

procedure do hand-off(m : in out mutex t)
H1 loop /* We own the mutex. */
H2 if dequeue(m.waiting, next) then
H3 enqueue(Ready Queue, next);
H4 return; /* Done. */

else
/* The waiting thread isn’t ready! */

H5 m.hand-off := get cpu id();
H6 if is empty(m.waiting) then

/* Some concurrent operation will
* see/or has seen the hand-off. */

H7 return; /* Done. */
H8 if not CAS(&m.hand-off,

get cpu id(), null) then
/* Some concurrent operation
* acquired the mutex. */

H9 return; /* Done. */

function GrabToken(loc : pointer to cpu id t)
: boolean

GT1 old := *loc;
GT2 if old = null then return false;
GT3 return CAS(loc, old, null);

Fig. 2. The lock-free mutex protocol in LFTHREADS

liveness, fairness and atomicity properties of the algorithm. Due to space constraints
the full proofs can be found in [33].

Definition 1. A thread’s call to a blocking operation Op is said to be completed when
the processor executing the call leaves the blocked thread and goes on to do something
else (e.g. executing another thread). The call is said to have returned when the thread
(after becoming unblocked) continues its execution from the point of the call to Op.

Definition 2. A mutex m is locked when m.count > 0 and m.hand-off = null. Other-
wise it is unlocked.

Definition 3. When a thread τ ’s call to lock on a mutex m returns we say that thread
τ has locked or acquired the mutex m. Similarly, we say that thread τ has locked or
acquired the mutex m when the thread’s call to trylock on the mutex m returns True.
Further, when a thread τ has acquired a mutex m by a lock or successful trylock oper-
ation and not yet released it by calling unlock we say that the thread τ is the owner of
the mutex m (or that τ owns m).

Lock-freedom. The lock-free property of the thread library operations will be estab-
lished with respect to the processors. An operation is lock-free if it is guaranteed to
complete in a bounded number of steps unless it is interfered with an unbounded num-
ber of times by other operations and every time operations interfere, at least one of them
is guaranteed to make progress towards completion.

226 A. Gidenstam and M. Papatriantafilou

Theorem 1. The mutex operations lock, trylock and unlock are all lock-free.

The lock-freedom of trylock and unlock with respect to application threads follows
from their lock-freedom with respect to the processors, as they do not contain con-
text switches. The operation lock is neither non-blocking nor lock-free for application
threads, since a call to lock on a locked mutex should block.

Linearizability. Linearizability guarantees that the result of any concurrent execution
of operations is identical to a sequential execution where each operation takes effect
atomically at a single point in time (its linearization point) within its duration in the
original concurrent execution.

Theorem 2. The mutex operations lock, trylock and unlock are linearizable.

Mutual exclusion properties. The mutual exclusion properties of the new mutex pro-
tocol are established with respect to application threads.

Theorem 3 (Safety). For any mutex m and at any time t there is at most one thread τ
such that τ is the owner of m at time t.

Theorem 4 (Liveness I). A thread τ waiting to acquire a mutex m eventually acquires
the mutex once its lock operation has enqueued τ on the m.waiting queue.

Theorem 5 (Liveness II). A thread τ wanting to acquire a mutex m can only be starved
if there is an unbounded number of lock operations on m performed by threads on other
processors.

Theorem 6 (Fairness). A thread τ wanting to acquire a mutex m only has to wait for
the threads enqueued on the m.waiting queue before τ was enqueued.

5 Experimental Study

The primary contribution of this work is to enhance qualitative properties of thread li-
brary operations, such as the tolerance to delays and processor failures. However, since
lock-freedom may also imply performance/scalability benefits with increasing number
of processors, we also wanted to observe this aspect. We made an implementation of
the mutex object and the thread operations on the GNU/Linux operating system. The
implementation is written in the C programming language and was done entirely at
the user-level using “cloned”5 processes as virtual processors for running the threads.
The implementation uses the lock-free queue in [32] for the mutex waiting queue and
the Ready Queue. To ensure sufficient memory consistency for synchronization vari-
ables, memory barriers surround all CAS and FAA instructions and the writes at lines
L6 and H5. The lock-based mutex implementation uses a test and test-and-set spin-lock

5 “Cloned” processes share the same address space, file descriptor table and signal handlers etc
and are also the basis of Linux’s native pthread implementation.

LFTHREADS: A Lock-Free Thread Library 227

10 20 30 40 50 60
10

5

10
6

10
7

Number of threads

C
rit

ic
al

 s
ec

tio
ns

 p
er

 s
ec

on
d

Lock−based vs lock−free mutex (2x2 IA32 CPUs, high contention).

spin−lock based (1 CPU)
lock−free (1 CPU)
spin−lock based (2 CPUs)
lock−free (2 CPUs)
spin−lock based (4 CPUs)
lock−free (4 CPUs)
spin−lock based (8 CPUs)
lock−free (8 CPUs)
pthread mutex

Fig. 3. Mutex performance in LFTHREADS and pthreads at high contention

to protect the mutex state. Unlike the use of spin-locks in an OS kernel, where usu-
ally neither preemptions nor interrupts are allowed while holding a spin-lock, our vir-
tual processors can be interrupted by the OS kernel due to such events. This behaviour
matches the asynchronous processors in our system model.

The experiments were run on a PC with two Intel Xeon 2.80GHz processors (acting
as 4 due to hyper-threading) using the GNU/Linux operating system with kernel version
2.6.9. The microbenchmark used for the experimental evaluation consists of a single
critical section protected by a mutex and a set of threads that each try to enter the critical
section a fixed number of times. The contention level on the mutex was controlled
by changing the amount of work done outside the critical section. We evaluated the
following configurations experimentally:

• The lock-free mutex using the protocol presented in this paper, using 1, 2, 4 and 8
virtual processors to run the threads.

• The spin-lock based mutex, using 1, 2, 4 and 8 virtual processors.
• The platform’s standard pthreads library and a standard pthread mutex. The

pthreads library on GNU/Linux use kernel-level “cloned” processes as threads,
which are scheduled on all available processors, i.e. the pthreads are at the same
level as the virtual processors in LFTHREADS. The difference in scheduling makes
it difficult to interpret the pthreads results with respect to the others; i.e. the pthreads
results are primarily for reference.

Each configuration was run 10 times; the diagrams present the mean.

High contention. Fig. 3 shows the results when no work is done outside the critical sec-
tion, i.e. the contention on the mutex is high. The desired result here is that throughput

228 A. Gidenstam and M. Papatriantafilou

for an implementation stays the same regardless of the number of threads or (virtual)
processors. This would imply that the synchronization scales well. However, in reality
the throughput decreases with increasing number of virtual processors, mainly due to
preemptions inside the critical section (but for spin-locks also inside mutex operations)
and synchronization overhead. The results indicate that the lock-free mutex has less
overhead than the lock-based.

Low contention. Fig. 4 shows the results when the threads perform 1000 times more
work outside the critical section than inside, making the contention on the mutex low.
With the majority of the work outside the critical section, the expected behaviour is
a linear throughput increase over threads until all (physical) processors are in use by
threads, thereafter constant throughput as the processors are saturated with threads run-
ning outside the critical section. The results agrees with the expected behaviour; we see
that from one to two virtual processors the throughput doubles in both the lock-free and
spin-lock based cases. (Recall that the latter is a test-and-test-and-set-based implemen-
tation, which is favoured under low contention). Note that the step to 4 virtual proces-
sors does not double the throughput — this is due to hyper-threading, there are not 4
physical processors available. Similar behaviour can also be seen in the pthread-based
case. The lock-free mutex shows similar or higher throughput than the spin-lock-based
for the same number of virtual processors; it also shows comparable and even better
performance than the pthread-based when the number of threads is large and there are
more virtual processors than physical.

Summarizing, we observe that LFTHREADS’s lock-free mutex protocol implies com-
parable or better throughput than the lock-(test-and-test-and-set-)based implementation,
both in high- and in low-contention scenaria for the same number of virtual processors,

10 20 30 40 50 60

10
3.5

10
3.6

10
3.7

10
3.8

Number of threads

C
rit

ic
al

 s
ec

tio
ns

 p
er

 s
ec

on
d

Lock−based vs lock−free mutex (2x2 IA32 CPUs, low contention).

spin−lock based (1 CPU)
lock−free (1 CPU)
spin−lock based (2 CPUs)
lock−free (2 CPUs)
spin−lock based (4 CPUs)
lock−free (4 CPUs)
spin−lock based (8 CPUs)
lock−free (8 CPUs)
pthread mutex

Fig. 4. Mutex performance in LFTHREADS and pthreads at low contention

LFTHREADS: A Lock-Free Thread Library 229

besides offering the qualitative advantages in tolerance against slow, delayed or crashed
threads, as discussed earlier in the paper.

6 Conclusion

This paper presented the LFTHREADS library and the responsibility hand-off (RHO)
method. Besides supporting a thread-library interface with lock-free implementation of
a blocking synchronization primitive and fault-tolerance properties, the RHO method
can be regarded as a conceptual contribution, which can be useful in lock-free synchro-
nization in general.

The present implementation of LFTHREADS is done entirely at the user-level, but
the algorithms are well suited for use also in a kernel - user-level divided setting. A
significant benefit of the new method there is that neither modifications to the operating
system kernel nor spin-locks and/or disabling of interrupts are needed in the user-level
or the kernel-level part. LFTHREADS constitutes a proof-of-concept of lock-free im-
plementation of the blocking mutex introduced in the paper and serves as basis for an
experimental study of its performance. The experimental study performed here, using
a mutex-intensive microbenchmark, shows positive figures. Moreover, the implemen-
tation can also serve as basis for further development, for porting the library to other
multiprocessors and experimenting with parallel applications such as the Spark98 ma-
trix kernels or the SPLASH-2 suite.

Acknowledgements. We thank the anonymous reviewers for useful comments.

References

1. Anderson, T., Bershad, B., Lazowska, E., Levy, H.: Scheduler Activations: Effective Ker-
nel Support for the User-Level Management of Parallelism. In: ACM Trans. on Computer
Systems, pp. 53–79. ACM Press, New York (1992)

2. Feeley, M.J., Chase, J.S., Lazowska, E.D.: User-level threads and interprocess communica-
tion. Technical Report TR-93-02-03, University of Washington, Department of Computer
Science and Engineering (1993)

3. Franke, H., Russell, R., Kirkwood, M.: Fuss, futexes and furwocks: Fast userlevel locking in
linux. In: Proc. of the Ottawa Linux Symp, pp. 479–494 (2002)

4. Multithreading in the solaris operating environment. Technical report, Sun Microsystems
5. Kontothanassis, L.I., Wisniewski, R.W., Scott, M.L.: Scheduler-conscious synchronization.

ACM Trans. Computer Systems 15(1), 3–40 (1997), doi:10.1145/244764.244765
6. Holman, P., Anderson, J.H.: Locking under pfair scheduling. ACM Trans. Computer Sys-

tems 24(2), 140–174 (2006)
7. Devi, U.C., Leontyev, H., Anderson, J.H.: Efficient synchronization under global edf

scheduling on multiprocessors. In: Proc. of the 18th Euromicro Conf. on Real-Time Sys-
tems, pp. 75–84. IEEE Computer Society, Los Alamitos (2006)

8. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing,
In: Proc. of the 35th Annual Symp. on Foundations of Computer Science (FOCS), 356–368
(1994)

230 A. Gidenstam and M. Papatriantafilou

9. Oguma, H., Nakayama, Y.: A scheduling mechanism for lock-free operation of a lightweight
process library for SMP computers. In: Proc. of the 8th Int. Conf. on Parallel and Distributed
Systems (ICPADS), 235–242 (2001)

10. Zahorjan, J., Lazowska, E.D., Eager, D.L.: The effect of scheduling discipline on spin over-
head in shared memory parallel processors. IEEE Trans. on Parallel and Distributed Sys-
tems 2(2), 180–198 (1991)

11. Zuberi, K.M., Shin, K.G.: An efficient semaphore implementation scheme for small-memory
embedded systems. In: Proc. of the 3rd IEEE Real-Time Technology and Applications Symp
(RTAS), IEEE, pp. 25–37. IEEE Computer Society Press, Los Alamitos (1997)

12. Anderson, J.H., Kim, Y.J., Herman, T.: Shared-memory mutual exclusion: major research
trends since 1986. Distributed Computing 16(2-3), 75–110 (2003)

13. Massalin, H., Pu, C.: A lock-free multiprocessor OS kernel. Technical Report CUCS-005-91
(1991)

14. Massalin, H.: Synthesis: An Efficient Implementation of Fundamental Operating System Ser-
vices. PhD thesis, Columbia University (1992)

15. Greenwald, M., Cheriton, D.R.: The synergy between non-blocking synchronization and
operating system structure. In: Operating Systems Design and Implementation, 123–136 (
1996)

16. Greenwald, M.B.: Non-blocking synchronization and system design. PhD thesis, Stanford
University (1999)

17. Valois, J.D.: Lock-free linked lists using compare-and-swap. In: Proc. of the 14th ACM
Symp. on Principles of Distributed Computing (PODC), ACM, pp. 214–222. ACM Press,
New York (1995)

18. Michael, M.M., Scott, M.L.: Correction of a memory management method for lock-free data
structures. Technical Report TR599, University of Rochester, Computer Science Department
(1995)

19. Michael, M.: Scalable lock-free dynamic memory allocation. In: Proc. of SIGPLAN 2004
Conf. on Programming Languages Design and Implementation, ACM Press, ACM SIG-
PLAN Notices (2004)

20. Gidenstam, A., Papatriantafilou, M., Sundell, H., Tsigas, P.: Practical and efficient lock-free
garbage collection based on reference counting. In: Proc. of the 8th Int. Symp. on Parallel
Architectures, Algorithms, and Networks (I-SPAN), pp. 202–207. IEEE Computer Society
Press, Los Alamitos (2005)

21. Gidenstam, A., Papatriantafilou, M., Tsigas, P.: Allocating memory in a lock-free manner.
In: Proc. of the 13th Annual European Symp. on Algorithms (ESA), pp. 242–329. Springer,
Heidelberg (2005)

22. Herlihy, M., Luchangco, V., Martin, P., Moir, M.: Nonblocking memory management support
for dynamic-sized data structures. ACM Trans. on Computer Systems 23(2), 146–196 (2005)

23. Sundell, H., Tsigas, P.: NOBLE: A non-blocking inter-process communication library. In:
Sundell, H., Tsigas, P. (eds.) Proc. of the 6th Workshop on Languages, Compilers and Run-
time Systems for Scalable Computers, Springer, Heidelberg (2002)

24. Marathe, V.J.I.W.N.S., Scott, M.L: Adaptive software transactional memory. In: Proc. of the
19th Int. Conf. on Distributed Systems (DISC), Springer, pp. 354–368. Springer, Heidelberg
(2005)

25. Shavit, N., Touitou, D.: Software transactional memory. In: Proc. of the 14th ACM Symp. on
Principles of Distributed Computing (PODC), pp. 204–213. ACM Press, New York (1995)

26. Jayanti, P.: A complete and constant time wait-free implementation of CAS from LL/SC and
vice versa. In: Proc. of the 12th Int. Symp. on Distributed Computing (DISC), pp. 216–230.
Springer, Heidelberg (1998)

LFTHREADS: A Lock-Free Thread Library 231

27. Moir, M.: Practical implementations of non-blocking synchronization primitives. In: Proc.
of the 16th annual ACM Symp. on Principles of Distributed Computing, pp. 219–228. ACM
Press, New York (1997), citeseer.ist.psu.edu/moir97practical.html

28. Herlihy, M.: A methodology for implementing highly concurrent data objects. ACM Trans.
on Programming Languages and Systems 15(5), 745–770 (1993)

29. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Trans. on Programming Languages and Systems 12(3), 463–492 (1990),
http://www.acm.org/pubs/toc/Abstracts/0164-0925/78972.html

30. Sundell, H.: Efficient and Practical Non-Blocking Data Structures. PhD thesis, Chalmers
University of Technology (2004)

31. Tsigas, P., Zhang, Y.: Evaluating the performance of non-blocking synchronisation on
shared-memory multiprocessors. In: Proc. of the ACM SIGMETRICS 2001/Performance
2001, pp. 320–321. ACM Press, New York (2001)

32. Tsigas, P., Zhang, Y.: A simple, fast and scalable non-blocking concurrent fifo queue for
shared memory multiprocessor systems. In: Proc. 13th ACM Symp. on Parallel Algorithms
and Architectures, pp. 134–143. ACM Press, New York (2001)

33. Gidenstam, A., Papatriantafilou, M.: LFthreads: A lock-free thread library. Technical Report
MPI-I-2007-1-003, Max-Planck-Institut für Informatik, Algorithms and Complexity (2007)

	LFTHREADS: A Lock-Free Thread Library
	Introduction
	Preliminaries
	Detailed Description of the LFthreads Library
	Data Structures and Fundamental Operations
	Thread Operations in LFthreads
	Blocking Thread Synchronization and the RHO Method

	Correctness of the Synchronization in LFthreads
	Experimental Study
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

