
Deterministic Leader Election in Anonymous Sensor
Networks Without Common Coordinated System
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Abstract. We address the Leader Election (LE) problem in networks of anony-
mous sensors sharing no kind of common coordinate system. The contribution of
this paper is twofold: First, assuming n anonymous sensors agreeing on a com-
mon handedness (chirality) of their own coordinate system, we provide a com-
plete characterization on the sensors positions to deterministically elect a leader.
Our result holds for any n > 1, even if the n sensors have unlimited visibility
and regardless of their capabilities, unbounded memory, mobility, and communi-
cation settings. Second, we show that this statement also holds assuming sensors
without chirality provided that n is odd.
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Networks.

1 Introduction

In distributed settings, many problems that are hard to solve otherwise become easier to
solve with a leader to coordinate the system. The problem of electing a leader among a
set of computing units is then one of the fundamental tasks in distributed systems. The
Leader Election (LE) Problem consists in moving the system from an initial configu-
ration were all entities are in the same state into a final configuration were all entities
are in the same state, except one, the leader. The leader election problem is covered in
depth in many books related to distributed systems, e.g., [13,16].

The distributed systems considered in this paper are sensor networks. Sensor net-
works are dense wireless networks that are used to collect (to sense) environmental
data such as temperature, sound, vibration, pressure, motion, etc. The data are either
simply sent toward some data collectors or used as an input to perform some basic
cooperative tasks. Wireless Sensor Networks (WSN) are emerging distributed systems
providing diverse services to numerous applications in industries, manufacturing, secu-
rity, environment and habitat monitoring, healfcare, traffic control, etc. WSN aim for
being composed of a large quantity of sensors as small, inexpensive, and low-powered
as possible. Thus, the interest has shifted towards the design of distributed protocols
for very weak sensors, i.e., sensors requiring very limited capabilities, e.g., uniformity
(or, homogeneity — all the sensors follow the same program —, anonymity — the sen-
sors are a priori indistinguishable —, disorientation — the sensors share no kind of
coordinate system nor common sense of direction.
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However, in weak distributed environments, many tasks have no solution. In partic-
ular, in uniform anonymous general networks, the impossibility of breaking a possibly
symmetry in the initial configuration makes the leader election unsolvable determinis-
tically [1]. In this paper, we investigate the leader election problem with sensors having
minimal capabilities, i.e., they are anonymous, uniform and disoriented. We come up
with the following question: “Given a set of such weak sensors scattered on the plane,
what are the (minimal) geometric conditions to be able to deterministically agree on a
single sensor?”

Related Works. Similar questions are addressed in [2,9,10]. In the former, the authors
address the problem of Localization in sensor networks. This problem is to reconstruct
the positions of a set of sensors with a Limited Visibility, i.e., sensors which are able
to locate of other sensors within a certain distance v > 0. The authors show that no
polynomial-time algorithm can solve this problem in general. In [9,10], the authors
address the Pattern Formation problem for sensors having the additional capability of
mobility. Such mobile sensors are often referred to as robots or agents. The Pattern For-
mation problem consists in the design of protocols allowing autonomous mobile robots
to form a specific class of patterns, e.g., [18,9,10,4,11,6,7,8]. In [9], the authors discuss
whether the pattern formation problem can be solved or not according to the capabilities
the robots are supposed to have. They consider the ability to agree on the direction and
orientation of one axis of their coordinate system (North) (Sense of Direction) and a
common handedness (Chirality). Assuming sense of direction, chirality, and Unlimited
Visibility — each robot is able to locate all the robots —,, they show that the robots can
form any arbitrary pattern. Then, they show that with the lack of chirality, the problem
can solved in general with an odd number of robots only. With the lack of both sense of
direction and chirality, the pattern formation problem is unsolvable in general.

In [10], the authors show the fundammental relationship between the Pattern Forma-
tion problem and the Leader Election problem. They show that under sense of Direction
and chirality, the Leader Election problem can be solved by constructing a total order
over the coordinates of all the agents. With sense of direction and lack of chirality, the
Leader Election is solvable if and only if the number of robots is odd. Informally, the
results in [9,10] comes from the fact that starting from some symmetric configurations,
no robot can be distinguished if the number of robots is even. In other words, they
show that even if the robots have sense of direction and unlimited visibility, the lack of
chirality prevents from breaking symmetry in a deterministic way.

Contribution. In this paper, we address the leader election problem under very weak
assumptions: the sensors share no kind of common coordinate system. More precisely,
they are not required to share any unit measure, common orientation or direction. How-
ever, even under such an assumption, they can agree on a common handedness or not.

The contribution of this paper is twofold. Assuming a set of n anonymous sensors
with chirality, we first provide a complete characterization (necessary and sufficient
conditions) on the sensors positions to deterministically elect a leader. Our result holds
for any n > 1, even if the sensors have unlimited visibility and regardless of their
capabilities, unbounded memory, mobility, and communication settings. The sufficient
condition is shown by providing a deterministic algorithm electing a leader.
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The proof is based on the ability for the sensors to construct a Lyndon word from the
sensors’ positions as an input. A Lyndon word is a non-empty word strictly smaller in
the lexicographic order than any of its suffixes, except itself and the empty word. Lyn-
don words have been widely studied in the combinatorics of words area [12]. However,
only a few papers consider Lyndon words addressing issues in other areas than word
algebra, e.g., [3,5,17,7]. In [7], we already shown the power of Lyndon words to built
an efficient and simple deterministic protocol to form a regular n-gon. However, the
results in [7] hold for a prime number n of robots only.

The second fold of our contribution addresses the lack of chirality. We show that our
characterization still holds if and only if the number of sensors is odd. Again, we give a
deterministic algorithm that shows the sufficient condition.

In the next section (Section 2), we formally describe the distributed model and the
words considered in this paper. Both results are presented in Section 3. Finally, we
conclude this paper in Section 4.

2 Preliminaries

In this section, we define the distributed system considered in this paper. Next, we
review some formal definitions and basic results on words and Lyndon words

2.1 Model

Consider a set of n sensors (or agents, robots) arbitrarily scattered on the plane such
that no two sensors are located at the same position. The sensors are uniform and anony-
mous, i.e, they all execute the same program using no local parameter (such that an
identity) allowing to differentiate any of them. However, we assume that each sensor
is a computational unit having the ability to determine the positions of the n sensors
within an infinite decimal precision. We assume no kind of communication medium.
Each sensor has its own local x-y Cartesian coordinate system defined by two coor-
dinate axes (x and y), together with their orientations, identified as the positive and
negative sides of the axes.

In this paper, we discuss the influence of Sense of Direction and Chirality in a sensor
network.

Definition 1 (Sense of Direction). A set of n sensors has sense of direction if the n
sensors agree on a common direction of one axis (x or y) and its orientation. The sense
of direction is said to be partial if the agreement relates to the direction only —i.e., they
are not required to agree on the orientation.

In Figure 1, the sensors have sense of direction in the cases (a) and (b), whereas they
have no sense of direction in the cases (c) and (d).

Given an x-y Cartesian coordinate system, the handedness is the way in which the
orientation of the y axis (respectively, the x axis) is inferred according to the orientation
of the x axis (resp., the y axis).

Definition 2 (Chirality). A set of n sensors has chirality if the n sensors share the
same handedness.
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Fig. 1. Four examples showing the relationship between Sense of Direction and Chirality

In Figure 1, the sensors have chirality in the cases (a) and (c), whereas they have no
chirality in the cases (b) and (d).

2.2 Words and Lyndon Words

Let an ordered alphabet A be a finite set of letters. Denote ≺ an order on A. A non
empty word w over A is a finite sequence of letters a1, . . . , ai, . . . , al, l > 0. The
concatenation of two words u and v, denoted u ◦ v or simply uv, is equal to the
word a1, . . . , ai, . . . , ak, b1, . . . , bj, . . . , bl such that u = a1, . . . , ai, . . . , ak and v =
b1, . . . , bj , . . . , bl. Let ε be the empty word such that for every word w, wε = εw = w.
The length of a word w, denoted by |w|, is equal to the number of letters of w—|ε| = 0.

A word u is lexicographically smaller than or equal to a word v, denoted u � v, iff
there exists either a word w such that v = uw or three words r, s, t and two letters a, b
such that u = ras, v = rbt, and a ≺ b.

Let k and j be two positive integers. The kth power of a word w is the word denoted
sk such that s0 = ε, and sk = sk−1s. A word u is said to be primitive if and only if
u = vk ⇒ k = 1. Otherwise (u = vk and k > 1), u is said to be strictly periodic. The
reversal of a word w = a1a2 · · · an is the word w̃ = an · · ·a1. The jth rotation of a
word w, notation Rj(w), is defined by:

Rj(w) def=
{

ε if w = ε
aj , . . . , al, a1, . . . , aj−1 otherwise (w = a1, . . . , al, l ≥ 1)

Note that R1(w) = w.

Lemma 1 ([12]). Let w and Rj(w) be a word and a rotation of w, respectively. The
word w is primitive if and only if Rj(w) is primitive.

A word w is said to be minimal if and only if ∀j ∈ 1, . . . , l, w � Rj(w).
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Definition 3 (Lyndon Word). A word w (|w| > 0) is a Lyndon word if and only if w is
nonempty, primitive and minimal, i.e., w 	= ε and ∀j ∈ 2, . . . , |w|, w ≺ Rj(w).

For instance, if A = {a, b}, then a, b, ab, aab, abb are Lyndon words, whereas aba,
and abab are not— aba is not minimal (aab � aba) and abab is not primitive (abab =
(ab)2).

3 Leader Election

The leader election problem considered in this paper is stated as follows: Given the
positions of n sensors in the plane, the n sensors are able to deterministically agree on
the same position L called the leader.

3.1 Leader Election with Chirality

In this subsection, we assume a sensor networks having the property of chirality. A
configuration π of the sensor network is a set of positions p1, . . . , pn (n > 1) occupied
by the sensors. Given a configuration π, SEC denotes the smallest enclosing circle of
the positions in π. The center of SEC is denoted O. In any configuration π, SEC is
unique and can be computed in linear time [14,19]. It passes either through two of the
positions that are on the same diameter (opposite positions), or through at least three of
the postions in π. Note that if n = 2, then SEC passes both sensors and no sensor can
be located inside SEC, in particular at O. Since the sensors have the ability of chirality,
they are able to agree on a common orientation of SEC, denoted �.

Given a smallest enclosing circle SEC, the radii are the line segments from the
center O of SEC to the boundary of SEC. Let R be the finite set of radii such that
a radius r belongs to R iff at least one sensor is located on r but O. Denote �R the
number of radii in R. In the sequel, we will abuse language by considering radii in
R only. Given two distinct positions p1 and p2 located on the same radius r (∈ R),
d(p1, p2) denotes the Euclidean distance between p1 and p2.

Definition 4 (Radius Word). Let p1, . . . , pk be the respective positions of k robots
(k ≥ 1) located on the same radius r ∈ R. Let wr be the word such that

wr
def=

{
0 if there exists one sensor at O
a1, . . . , ak with a1 = d(O, p1) and ∀i ∈ [2, k], ai = d(pi−1, pi) , otherwise

Note that all the distances are computed by each sensor with respect to its own coordi-
nate system, i.e., proportionally to its own measure unit. Let RW be the set of radius
words built over R, computed by any sensor s. The lexicographic order � on RW is
naturally built over the natural order < on the set of real numbers.

Remark 1. If there exists one sensor on O (n > 2), then for every radius r ∈ R, wr = 0.

Let r be a radius in R. The successor of r, denoted by Succ(r, �), is the next radius in
R, according to �. The ith successor of r, denoted by Succi(r, �), is the radius such
that Succ0(r, �) = r, and Succi(r, �) = Succ(Succi−1(r, �), �). Given r and its
successor r′ = Succ(r, �), �(rOr′) denotes the angle between r and r′.
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Fig. 2. Computation of Configuration words — the sensors are the black bullets

Definition 5 (Configuration Word Set)
Given an orientation �, let CW� be the set of configuration words, computed by any
sensor s, build over R such that for each radius r ∈ R, the associated configura-
tion word W (r) is equal to (0, 0) if wr = 0, otherwise W (r) is equal to the word
a1, . . . , ak such that k = �R and ∀i ∈ [1, k], ai = (Succi−1(r, �), �(Succi−1(r, �)
OSucci(r, �))).

Remark 2. The three following propositions are equivalent:

1. There exists one sensor on O
2. For every radius r ∈ R, W (r) = (0, 0)
3. CW� = {(0, 0)}

In Figure 2, if � is the clockwise orientation, then: W (r1) = (abc, β)(c2, γ)2(c, γ)
(d, β)(e, α) and W (r2) = (c2, γ)2(c, γ)(d, β)(e, α)(abc, β).

If � is the counterclockwise orientation, then: W (r1) = (abc, α)(e, β)(d, γ) (c, γ)
(c2, γ)(c2, β) and W (r2) = (c2, β)(abc, α)(e, β)(d, γ)(c, γ)(c2, γ).

Remark 3. Let W (r1) and W (r2) be two words in CW�, r1 and r2 belong to R. Then,
W (r1) (respectively, W (r2)) is a rotation of W (r2) (resp. W (r1)) — refer to Figure 2.

Let ACW � be the set of letters over CW�. Let (u, x) and (v, y) be any two letters in
ACW � . Define the order � over ACW � as follows:

(u, x) � (v, y) ⇐⇒

⎧⎨
⎩

u � v
or
u = v and x < y

The lexicographic � order over CW� is naturally built over �.

Remark 4. Each sensor having its own unit measure, given r ∈ R, the word W (r)
computed by any sensor s can be different to the one computed by another sensor s′.
However, all the distances are computed by each sensor proportionally to its own mea-
sure unit. So, if W (r) � W (r′) for one sensor s, then W (r) � W (r′) for every sensor
s′. In particular, if W (r) is a Lyndon word for one sensor s, then W (r) is a Lyndon
word for every sensor s′.



138 Y. Dieudonné and F. Petit

Lemma 2. If there exists two distinct radii r1 and r2 in R such that both W (r1) and
W (r2) are Lyndon words, then CW� = {(0, 0)}.

Proof. Assume by contradiction that there exists two distinct radii r1 and r2 such that
both W (r1) and W (r2) are Lyndon words and CW� 	= {(0, 0)}. By Remark 2, there
exists no sensor located at O. By Remark 3, W (r1) (respectively, W (r2)) is a rotation
of W (r2) (resp. W (r1)). So, by Definition 3, W (r1) ≺ W (r2) and W (r2) ≺ W (r1).
A contradiction.

Lemma 3. If there exists r ∈ R such that W (r) is a Lyndon word, then the n sensors
are able to determiniscally agree on the same sensor L.

Proof. Directly follows from Lemma 2 and Remark 4: If there is a sensor s located on
O, then the n sensors are able to agree on L = s. Otherwise, there exists a single r ∈ R
such that W (r) is a Lyndon word. In that case, all the sensors are able to agree on the
sensor on r which is the nearest one from O.

Lemma 4. If there exists no radius r ∈ R such that W (r) is a Lyndon word, then there
exists no deterministic algorithm allowing the n sensors to agree on the same sensor L.

Proof. Assume by contradiction that no radius r ∈ R exists such that W (r) is a Lyndon
word and there exists an algorithm A allowing the n sensors to deterministically agree
on the same sensor L. Let minW be a word in CW� such that ∀r ∈ R, minW �
W (r). That is, minW is minimal. Assume first that minW is primitive. Then, minW
is a Lyndon word which contradicts the assumption. So, minW is a strictly periodic
word (there exists u and k > 1 such that minSC = uk) and, from Lemma 1, we
deduce that for all r ∈ R, W (r) is also strictly periodic. Thus, for every r ∈ R, there
exists at least one radius r′ ∈ R such that r 	= r′ and W (r) = W (r′). So, for every
radius r ∈ R, there are k > 1 radii in R on which the sensors can have the same view
of π. It is the case if the sensors have the same measure unit and their y axis meet the

α α

α α
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b a b

x

x

x

x

x

x

Fig. 3. A counter example showing Lemma 4
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radius on which they are located — refer to Figure 3. In that case, A cannot allow the n
sensors to deterministically agree on the same sensor L.

The following theorem follows from Lemmas 3 and 4:

Theorem 1. Given a configuration π of any number n ≥ 2 sensors with chirality scat-
tered on the plane, the n sensors are able to deterministically agree on the same sensor
L if and only if there exists a radius r ∈ R such that W (r) is a Lyndon Word.

3.2 Leader Election Without Chirality

Without chirality, the sensors are not able to agree on a common orientation of SEC.
Define � (respectively, �) the clockwise (resp., counterclockwise) orientation. Obvi-
ously, with respect to their handedness, some of the n sensors choose to orient SEC
according to �, whereas some other to �. In this subsection, we use same definition
of radius word (Definition 4) as in Subsection 3.1. Since the sensors have no chirality,
for each radius r ∈ R, there are two configuration words w.r.t. the orientation of SEC,
denoted by W (r)� and W (r)�. Let CW be the set of all the configuration words,
computed by any sensor s, in both clockwise and counterclockwise orientations.

We now show that the statement of Theorem 1 also holds assuming no chirality if n
is odd.

Lemma 5. Given an orientation ◦ of SEC in {�, �}, if there exists two distinct radii
r1 and r2 in R such that both W (r1)◦ and W (r2)◦ are Lyndon words, then CW ◦ =
{(0, 0)}.

Proof. The proof is similar to that of Lemma 2.

Let RL be the subset of radius r ∈ R such that W (r) is a Lyndon word in the clockwise
or in the counterclockwise orientation. Denote �RL the number of radii in RL.

Lemma 6. If �RL > 2, then for any orientation ◦ of SEC in {�, �}, ∀r ∈ R,
W (r)◦ = (0, 0).

Proof. Assume by contradiction that �RL > 2 and there exists ◦ ∈ {�, �} and r ∈ R
such that W (r)◦ 	= (0, 0). Since �RL > 2, there exists at least two distinct radii r1 and
r2 such that either W (r1)� and W (r2)� are Lyndon words or W (r1)� and W (r2)�

are Lyndon words. Without loss of generality, assume that W (r1)� and W (r2)� are
Lyndon words. By, Lemma 5, CW� = {(0, 0)}. By Remark 2, ∀r ∈ R, W (r)� =
(0, 0) and W (r)� = (0, 0). Hence, there exists no r ∈ R such that W (r)◦ 	= (0, 0). A
contradiction.

Lemma 7. If n is odd and �RL ≥ 1, then the n sensors are able to determiniscally
agree on the same sensor L.

Proof. Since n is odd, n ≥ 3. From Lemma 6, there are three cases to consider:
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Fig. 4. An example showing the construction in the proof of Lemma 7

1. �RL > 2. Then, ∀r ∈ R and for any orientation ◦ of SEC in {�, �}, W (r)◦ =
(0, 0). Thus, there exists one sensor s located at O. The n sensors are then able to
agree on s.

2. RL = {r}. If W (r) the leader is the nearest sensor to O, on r.
3. RL = {r1, r2}. Again, there are two subcases :

(a) W (r1)� = (0, 0). The leader is the sensor at the center of SEC.
(b) W (r1)� 	= (0, 0). From Lemma 5 again, if W (r1)� (respectively W (r1)�) is

a Lyndon word, then W (r2)� (resp. W (r2)�) is a Lyndon word. Without loss
of generality, assume that W (r1)� and W (r2)� are Lyndon words. We have
two subsubcases :

i. W (r1)� 	= W (r2)�. Without loss of generality again, assume that
W (r1)� ≺ W (r2)�. The leader is the nearest sensor to O on r1.

ii. W (r1)� = W (r2)�. In that case, note that r1 and r2 divide SEC into
two parts, π1 and π2, where n1 and n2 are the number of robots inside π1
and π2, respectively. Since W (r1)� = W (r2)�, the number x of sensors
located on r1 is equal to the number of robots located on r2. So, the total
number of sensors located on r1 and r2 is equal to 2x (because there is no
sensor at the center of SEC). Thus, n1 +n2 = n− 2x because no sensors
located on r1 and r2 is in π1 or π2. Since n − 2x is odd (n is odd), there
exists one part of SEC with an even number of robots, and one part of
SEC with an odd number of sensors. Without loss of generality, assume
that n1 is odd. Let s1 and s2 be the nearest sensors to O on r1 and r2,
respectively. Consider P the set of lines passing through the sensors in π1
which are parallel to the line (s1, s2) — refer to Figure 4. Since n1 is odd,
there exists at least one line in P with an odd number of sensors located
on it. Among those lines, choose the unique line which is the nearest from
both O and the line (s1, s2). Denote this line by l and the number of sensors
located on it in π1 by nl. Therefore, the leader is the unique sensor sL

which is the median sensor among the sensor on l and π1, i.e., the (�nl

2 � +
1)th sensor starting indifferently from the left or the right of l in π1.
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Lemma 8. If there exists no radius r ∈ R such that either W (r)� or W (r)� is a
Lyndon word, then there exists no algorithm allowing the n sensors to deterministically
agree on the same sensor L.

Proof. The proof is similar as to that of Lemma 4.

The following theorem follows from Lemmas 7 and 8:

Theorem 2. Given a configuration π of any number n ≥ 2 sensors without chirality
scattered on the plane, the n sensors are able to determiniscally agree on the same
sensor L if and only if n is odd and there exists a radius r ∈ R such that W (r) is a
Lyndon Word.

Note that the equivalence does not work with an even number of sensors. A counter
example is shown in Figure 5. For any orientation in {�, �}, there exists one Lyndon
word equal to (d, α)(d, β)(d, γ)(d, β). However, the symetry of the configuration does
not allow to choose any sensor as a leader.

4 Conclusion

We studied the leader election problem in networks of anonymous sensors sharing no
kind of common coordinate system. Assuming anonymous sensors with chirality, we
used properties of Lyndon words to give a complete characterization on the sensors
positions to deterministically elect a leader for any number n > 1 of sensors. We also
showed that our characterization still holds with sensors without chirality if and only if
the number of sensors is odd.

Our future work will concentrate to find a similar characterization for an even num-
ber of sensors without chirality. A more general problem is to find the minimal geo-
metrical conditions to determiniscally solve other collaborative tasks in mobile sensor
networks such as pattern formation for which we know that no solution exists in general
if the sensors do not agree on a sense of direction [15].
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