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Preface

It is our pleasure to welcome you to the 11th International Conference on Princi-
ples of Distributed Systems (OPODIS 2007), held during December 17–20, 2007,
in Guadeloupe, French West Indies.

During the past years, OPODIS has established itself as one of the most
important events related to principles of distributed computing, networks and
systems. In this year’s edition, we received 106 submissions in response to the call
for papers. Papers were sought soliciting original research contributions to the
theory, specifications, design and implementation of distributed systems, includ-
ing: communication and synchronization protocols; distributed algorithms, mul-
tiprocessor algorithms; distributed cooperative computing; embedded systems;
fault-tolerance, reliability, availability; grid and cluster computing; location- and
context-aware systems; mobile agents and autonomous robot; mobile comput-
ing and networks; peer-to-peer systems, overlay networks; complexity and lower
bounds; performance analysis of distributed systems; real-time systems; secu-
rity issues in distributed computing and systems; sensor networks: theory and
practice; specification and verification of distributed systems; testing and exper-
imentation with distributed systems.

It was a hard task to select the 32 excellent papers that are compiled in
this volume. All submissions received at least three reviews, resulting in an
overall number of more than 350 reviews—involving more than 100 reviewers—
being conducted. An important piece of the process was the Program Committee
electronic meeting held during the week of September 10. It was definitely an
outstanding performance by all 42 Program Committee members and their co-
reviewers. We are convinced that a very good set of papers was selected for
presentation at OPODIS 2007.

This year’s edition also featured two exciting keynote talks by Moti Yung
(Google Inc., USA) and Tarek Abdelzaher (University of Illinois at Urbana-
Champaign, USA). We are grateful that those two distinguished speakers
accepted our invitation to share with us their views.

It would not have been possible to set up this exciting program without
the close cooperation and support of the General Chair, Hacène Fouchal, who
deserves a big share of credit. We would also like to thank Thibault Bernard
for his role as Publicity Chair and on managing both the electronic submission
and reviewing system and OPODIS 2007 Web site, and to the other members of
the Organizing Committee, Céline Butelle, Harry Gros-Désormeaux and Vincent
Levorato.

December 2007 Eduardo Tovar
Philippas Tsigas
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A Decentralized, Scalable, and Autonomous Grid
Monitoring System

Laurent Baduel1 and Satoshi Matsuoka1,2

1 Tokyo Institute of Technology,
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

2 National Institut of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan

baduel@smg.is.titech.ac.jp, matsu@is.titech.ac.jp

Abstract. Grid monitoring systems collect a substantial amount of information
on the infrastructure’s status in order to perform various tasks, more commonly
to provide a better use of the grid’s entities. Modern computational and data grids
have become very complex by their size, their heterogeneity, their interconnec-
tion. Monitoring systems as any other grid’s tools have to adapt to this evolution.
In this paper we present a decentralized, scalable, and autonomous grid moni-
toring system able to tackle the growths of scale and complexity. System’s com-
ponents communications are hierarchically organized on a peer-to-peer overlay
network. Fresh information is efficiently propagated thanks to an directed gos-
sip protocol that limits the number of message. Automation of key management
operations eases system administration and maintenance. This approach provides
scalability and adaptability. The main properties of our application are presented
and discussed. Performance measurements confirm the efficiency of our system.

1 Introduction

Grid platforms with their ever-growing communication infrastructures and computing
applications become larger and larger, which results in an exponential complexity in
their engineering and maintenance operations. To efficiently handle such large and
complex systems monitoring is necessary. By providing a global view of the system
monitoring tools allow identifying performance problems and assisting in resources
scheduling. Modern large scale systems do not allow anymore centralized organiza-
tions, with hand deployment, configuration, and administration. Automation of key op-
erations must be introduced in such systems to free the administrators and programmers
of many tiresome tasks.

After presenting related work, we propose a grid monitoring system built to address
these challenges. It provides a scalable and portable monitoring of a wide range of enti-
ties connected in distributed systems. This decentralized tool achieves its communica-
tions thanks to a peer-to-peer overlay network. Peer-to-peer has become a popular way
to communicate on grid thanks to its scalability, its decentralization, and its resistance
to faults. It has already proved their efficiency in many aspects of distributed applica-
tions such as embarrassingly parallel computing, persistent and scalable storage, and
especially in file sharing and dissemination. We use a gossip protocol to quickly spread

E. Tovar, P. Tsigas, and H. Fouchal (Eds.): OPODIS 2007, LNCS 4878, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 L. Baduel and S. Matsuoka

information in the entire system. Components of the system are organized as a directed
acyclic graph to guide information from their source to the bases storing the entire
system state. This, combined to over-aged information filtering, reduces the amount of
exchanged messages. Finally we have deployed a first implementation on a real grid
and evaluated performance of our system.

In summary the contributions of this article are (1) the details of the conception of
a decentralized and scalable grid monitoring system in which components are hierar-
chically organized through a directed acyclic graph on a peer-to-peer overlay network
that provides a valuable communication layer thanks to a gossip multicast protocol,
assures good performance on grids, and allows self-management of the system; (2) a
performance evaluation of this system driven in a real large-sized grid. Speed of in-
formation dissemination, age of recorded information, impact of messages limitation,
and dynamic adaptability are examined and discussed. This paper rather focuses on the
fast and decentralized dissemination of information than on other aspects of monitoring
such as sensors implementation or database organization.

The rest of this article is organized as follow: Section 2 describes the general
properties of a monitoring system and insists on the specific requirements for grid envi-
ronments. Then it presents related work. Section 3 introduces the architecture for mon-
itoring system on which we based our implementation. Section 4 presents our original
communication scheme based on peer-to-peer and what we name a directed gossip pro-
tocol. Then Section 5 details self-management mechanisms introduced in the system
to help scalability and maintenance. Section 6 details the implementation and presents
performance evaluations of the application. Finally Section 7 concludes the article and
presents expected future works.

2 Grid Monitoring Systems

The activity of measuring significant resources parameters allows analyzing the usage,
the behavior, and the performance of a cluster or a grid. It also provides Grid monitoring
systems to collect a substantial amount of information on the infrastructure’s status in
order to perform various tasks, more commonly to provide a better use of the grid’s
entities.

Monitoring a system consists of observing events and communicating them to who
are interested in that information. There are commonly two systems on a grid. Accord-
ing to [1], a grid monitoring system manages rapidly changing status information, such
as the load of a CPU or the throughput of a network link. The high dynamicity of data
that a grid monitoring system must handle makes it different from a grid information
system which handles more static data, for instance the hardware configuration of a
node. Although grid infrastructures can benefit a lot from a unified system that handles
both roles. The global knowledge provided by a unified grid monitoring system helps
resource scheduling, allocation and usage: reservation tools can be plugged in order to
distribute resources and guarantee quality of service.

Monitoring dedicated to grids is subject to a growing interest. The recent large grids
do not support anymore efficiently the existing monitoring tools. Most of existing so-
lutions are adaptations of cluster oriented monitoring tools, and then lay to scalability
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and robustness issues. As detailed further the Network Weather Service is built around
a centralized controller, and the Globus Monitoring and Discovery System suffers per-
formance and scalability issues due to its LDAP architecture. On the contrary, the grid
monitoring system we propose is adapted to the grid thanks to its scalability and fault
tolerance ability, and also thank to its autonomous management.

The rest of this section presents a survey about grid monitoring systems and their
potential autonomous mechanisms for configuration and adaptation.

2.1 Network Weather Service (NWS)

The Network Weather Service [2] is a distributed system that periodically monitors
and dynamically forecasts the performance that various network and computational re-
sources can deliver over a given time interval. The components of a NWS resource
monitoring system are: a name server: a centralized controller that keeps a registry of
all components and monitoring activities; sensors that produce resource observations;
memories that store resource observations; and forecasters that process resource obser-
vations. Limits of the NWS architecture come from the presence of the name server. It
introduces bottleneck, single point of failure, and does not embed security mechanism.
Moreover the connections between sensors and the name server are manually managed
by the administrator before starting the system. NWS is hardly applicable to a grid
scale, mostly because of the absence of a real database.

2.2 Globus Monitoring and Discovery System (MDS)

The Monitoring and Discovery System [3] is the information services component of
the Globus Toolkit and provides information about the available resources on the grid
and their status. MDS is based on the Lightweight Directory Access Protocol (LDAP).
The distributed nature of the LDAP architecture is appealing: information is organized
hierarchically, and the resulting tree might be distributed over different servers. In a grid
perspective, the hierarchy often reflects the organization of the grid: from continental
networks to national networks to local networks. Leaves are single resource, like cluster
of computers, single computer or storage element.

However, the LDAP architecture is appropriate to store static information, like the
number of processors in a cluster, or the size of a disk partition. When data are more
frequently changing, the LDAP architecture is a wrong choice: it is unsuitable to sup-
port frequent write operations. Indeed the LDAP Client Update Protocol is based on
the assumption that “data changes, renames, and deletions of large subtrees are very
infrequent” [4]. Under that condition LDAP architecture suffers serious performance
and scalability problems.

2.3 Relational Grid Monitoring Architecture (R-GMA)

The Structured Query Language (SQL) allows manipulation of a relational database.
Several implementations of this database are designed for extremely demanding appli-
cations. They offer a good compromise between the distributiveness, and the cost of



4 L. Baduel and S. Matsuoka

query operations. In particular the database can be replicated in order to improve scal-
ability and fault tolerance. The R-GMA [5] was developed to address those problems.
The scalability of the architecture is improved by introducing components that com-
bine data from the database and cache the results. R-GMA is an implementation of the
GGF’s GMA model (see Section 3) and is now developed as part of the Enabling Grids
for E-science in Europe (EGEE) project. A strength of R-GMA is its ability to support
queries which combine information across objects of different class (a join operation).

R-GMA focuses on the way data are stored, i.e. the relational database that is actu-
ally implemented by a virtual database distributed and accessible by hidden component
named mediator. Concerns of easy deployment and adaptability are not the main issues
of R-GMA.

2.4 Ganglia

Ganglia [6] is a scalable distributed monitoring system for high-performance comput-
ing systems such as clusters and Grids. It is based on a hierarchical design targeted
at federations of clusters. It widely uses technologies such as XML for data represen-
tation, XDR1 [7] for compact and portable data transport, and RRDtool2 [8] for data
storage and visualization. It uses carefully engineered data structures and algorithms to
achieve low per-node overheads and high concurrency. The implementation has been
ported to a large set of operating systems and processor architectures, and is currently
in use on thousands of clusters around the world. It has been used to link clusters across
university campuses and around the world and can scale to handle clusters with 2000
nodes.

Ganglia’s implementation consists in the collaboration of two daemons. gmond run-
ning on every node provides local network monitoring by recording and communicating
with multicast primitives. gmeta offers local networks federation by taking in charge
the communication with other remote gmeta daemon. Ganglia is efficient and easy
to deploy on small or medium sized clusters. However the copy on each node of the
entire local network status may lead to scalability problem. Moreover some equipment
with limited resources that may be present in a grid (such as personal digital assistant
or various scientific equipments) may not be able to host a gmond daemon and its
database. Finally the deployment and maintenance of double system gmond/gmeta
require expertise from the administrators.

3 The Grid Monitoring Architecture

The Global Grid Forum (now known as Open Grid Forum) has introduced the Grid
Monitoring Architecture (GMA) [9] which offers scalability and flexibility required by
a grid monitoring system. This architecture simply identifies three kinds of component:

– the producers retrieve various information of a device and make them available to
other GMA components; for instance a sensor reporting the CPU load of a comput-
ing node.

1 XDR stands for eXternal Data Representation.
2 RRD stands for Round Robin Database.
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– the consumers request monitored information for which they have interest; for in-
stance a resource broker that wants to locate suitable computing nodes.

– the directory service supports information publication and discovery of components
as well as monitored information. A directory service is a place where producers
advertise their data, and consumers advertise their needs.

In addition to those three basic components, the GMA lets room for intermediate com-
ponents. Those components consist of both a consumer and a producer. They allow
aggregation, filtering, forwarding, or broadcasting of the information received by other
producers. Often monitoring tools use aggregator components. Those components help
at the scalability of the system by avoiding communication bottlenecks between the
producers and the directory service: the number of exchanged messages is reduced.

Scalability is assured by the separation of the publication, discovery, and query tasks.
The GMA does not specify the way the components communicate among each others
(message content or network protocol) or the format used by the directory service to
store the information. Because of its flexibility and scalability we based our autonomic
grid monitoring system on the GMA.

4 Decentralized and Scalable Communication Scheme

The priorities when building a grid tool is to ensure scalability and fault tolerance. Peer-
to-peer networks and Gossip protocols scale very well thanks to their very decentralized
organization. The decentralization of those systems also provides a good tolerance to
faults by providing alternate paths of communication and replication of data.

4.1 A Peer-to-Peer Architecture

Grids and peer-to-peer have both an identical approach to the accomplishment of their
goal: the use of overlay structures. However we can make an important distinction be-
tween the approaches of grids and peer-to-peer:

– Grids provide a large amount of services to moderated-sized communities with a
generally high quality of service. Because of their hierarchical and static organiza-
tions grids are vulnerable to faults.

– In contrast peer-to-peer systems provide limited and specialized services to a very
large amount of users. Peer-to-peer systems are strongly resistant to failure as a
whole, but they do not provide a high quality of service. This limitation results
from the fact the services are of nature as being provided in mass, and thus lead to
various problems such as the node volatility, the best effort performance provided
by the Internet, etc.

According to [10] the complementary nature of the strengths and weakness of the
two approaches suggests that the interests of the two communities are likely to grow
closer to each other. The main goals of current grids architecture are to increase their
scalability and to provide a better handling of failures. Symmetrically peer-to-peer sys-
tems aim at improving the range of their services.
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Current grids’ component communications are fragile mainly because of static or-
ganizations and the absence of alternate paths of communication. They need to be sus-
tained by suitable overlays that are scalable and fault resilient. Peer-to-peer libraries are
the first stone to answers those concerns. As mentioned in Section 2 the main issue of
current monitoring systems is their centralized and static organization. Centralization
introduces weakness in a system because of the single point of failure problem and of-
ten leads to scalability issues by introducing bottleneck. A static organization makes the
maintenance of a large system specially challenging for the administrators.

As the GMA model does not specify communication mechanism for data transfer, we
decided to use peer-to-peer oriented communications. Figure 1 presents the structure of
a monitoring system using peer-to-peer interconnections. The producers are in contact
with aggregators. With regard to fast spreading of the information and fault-tolerance,
every producer keeps a contact with several aggregators (more details below). Similarly,
the aggregators communicate with the directory service. The directory service is made
of components that store information about the producers and the values they have
produced. We name those components global storages. For the same reasons as one
producer keeps contact with several aggregators, one aggregator keeps contact with
several global storages. Finally the consumers contact the directory service (i.e. the
global storages) to get the information it is interested in. A consumer may ask for the
location of the producer of a particular kind of event, and then contact the producer in
order to be directly notified of the information produced. A consumer may also ask for
the values stored in the global storage.

LocalLA

Prod. Producer

Storage
Global

Cons.

GS

Consumer

global storage
Interrogation to

to producer
Direct connection

Prod.

LA

GS

Cons.

Prod.

Prod.

Prod.

Prod.

Prod.

Prod.

Prod.

LA

LA

GS

Cons.

Aggregator

Fig. 1. Infrastructure

By introducing distribution, and indirect communication through a peer-to-peer net-
work, we have to be careful regarding performance. The major challenge of our grid
monitoring system is to disseminate the information coming from the producers as fast
as possible to the global storages. Outdated information is useless since it is no more
relevant of the current node’s status that may have radically changed. The monitoring
system has to be low resources consuming. Monitoring activities must not impact the
execution of other applications in the grid. CPU and bandwidth consumptions have to
be significantly low.
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4.2 A Directed Gossip Protocol

The growth of large scale distributed applications is driving the need for scalable and
reliable communications. Many network-level reliable multicast protocols are based
on IP Multicast that is not widely deployed, resulting in a need for application-level
broadcast protocol.

The communication model of our monitoring has to be scalable and low resource
consuming. The system must spread the data as fast as possible in the entire system to
ensure reactivity. On the other hand it is necessary to save bandwidth resource, for in-
stance by avoiding multiple sending of the same data. We can not accept any component
of the system emits several times the same info. Our solution is to use a gossip protocol
[11] in order to broadcast the information. A pure gossip protocol takes place in rounds
where in each round a participating process selects randomly another process and share
information with it. In “push” gossip the process that initiates the gossip communicate
its information to the selected target. It has been shown that in a group of n machines
if one machine starts out with a new piece of information it takes O(log n) rounds for
every machine to become aware with that information [12].

The interest for using Gossip protocols on top peer-to-peer networks comes from two
main points. (1) As mentioned before gossip protocols are very efficient to propagate
information in large systems, like peer-to-peer systems. (2) Similarly to peer-to-peer
systems, gossip protocols are totally decentralized and thus perfectly scalable.

In our system, we slightly modified the gossip protocol. All the nodes need not to get
the information, but only the global storages. Thereby, the gossiping is performed only
from producers to aggregators, from aggregators to global storages, and from global
storages to global storages. This hierarchical structure, that is a directed acyclic graph
from producers to global storages, provides a double benefit: by reducing the number
of nodes to be informed it increases the scalability and reduces time and amount of
messages required for all those nodes to be informed. As explained before, a challenge
of our system is to spread information from one producer to all the global storages in
the shortest time.

5 An Autonomous Monitoring System

Autonomic computing designates complex self-managed systems in which elements in-
teract with each others in order to organize themselves and obtain a satisfactory general
behavior. Modern large-scale computing systems widely distributed across multiple ad-
ministrative domains have reached an unbelievable complexity. Autonomic computing
offers to solve this problem through a smart and increased automation, freeing sys-
tem administrators of many burdensome activities. Indeed, in modern large scale and
distributed environments, and particularly grids, main difficulties has moved from ap-
plication programming to configuration and maintenance.

As presented in [13] self-management falls in four categories: the self-deployment
configures automatically the system; the self-optimization tunes the system to obtain
the best performance; the self-healing detects, diagnostics, and fixes malfunctions; the
self-protection defends the system against malicious attacks and cascading failures. In
[14] we have presented the interests of using autonomic computing and how automatic
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behaviors can be implemented thanks to a peer-to-peer overlay network. The imple-
mentation of the four aspects of self-managed systems is based on the properties of
peer-to-peer libraries, particularly the ability to dynamically find resources.

Self-configuration. When a new component enters into the system it has firstly to con-
nect to the peer-to-peer network, then it may automatically retrieve some codes from
other components in activity in the system, and finally it locates the components with
which it will communicate. We will illustrate this procedure thanks to the producer
component. A new producer firstly joins the peer-to-peer overlay network by searching
for peers on the local network (broadcast) or by contacting a bootstrap group composed
of nodes expected to be always online. Then as sensor’s implementation for computa-
tional nodes may be quite similar, the producer may download the sensor’s code from
another producer already in activity. Finally the producer establishes contacts with a
number of aggregators defined by the administrator. Those aggregators are selected re-
garding to the round trip time (RTT) that is the metric we use to express distance. A
panel of aggregators with all RTTs is kept in order to uniformly spread information to
“close” and “far” area of the network.

Self-optimization. Our policy for self-optimization is the dynamic dimensioning of the
system size (number of components) according on the variation of its load. The size
should be increase when the system gets overloaded and decrease in case of underload.
In our system, the aggregators (and the global storages) have to adapt to the number
of producer. Those components becomes overloaded when they receive more messages
than they can handle or when they use more resources than they are supposed to do.
An overloaded component takes the initiative to redirect some its producers to another
component or, if no acceptable component is found, to create a new component. We
consider an aggregator underloaded if during three successive evaluations the aggre-
gator has received less than a fixed number of messages. The three evaluations allows
smoothing the adaptation of the system and avoiding over-reactivity. We may also con-
sider to observe the throughput, memory, or CPU usage of the component. Overtaking
a certain threshold actions may be taken. Another aspect of the self-optimization may
consist in regular observations of the system’s performance. If the performance does
not obey to constraints set by the administrator, the system may decide to take some
measure. An example can be the momentary reduction of a communication frequency
in order to eliminate network congestions.

Self-healing. A basic policy for self-healing can consist of the automatic detection of
component’s failure and the dynamic replacement of the failing component with the
guaranty the system remains globally coherent. When an aggregator or a global storage
fails, the failure is detected by the producers. If a producer does not succeed to com-
municate with a component, a failure is suspected. The producer broadcasts a message
in the peer-to-peer network indicating the suspicion of a component failure, with the
identity of the component. If one or more other producers confirm the failure of this
component, an election mechanism decides where to restart the failed component. The
election mechanism basically looks by a peer-to-peer search for the free host providing
the more bandwidth, memory, and CPU power. In the case a failed component is not
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detected, the self-optimization mechanism may observe the overload of one component
and decide the creation of a new one (c.f. self-optimization mechanism).

Self-protection. To make the system resistant to cascade failure we utilize the robust
communication mechanism of some peer-to-peer networks that are able to re-route mes-
sages if a communication link falls and address peers that may have been disconnected
during a while. We also rely on the replication of all aggregator and global storage com-
ponents. The information aged x in one of those components is also present in another
component with an age y, x and y beeing very similar. De facto there is no need to
actively maintain consistency between those components.

6 Experimentations

This section presents some details of the implementation such as the peer-to-peer library
we used and its particular features. Then it introduced the grid platform on which we
performed experimentations. Relevant performance measurements are presented and
discussed, proving the qualities of our monitoring in term of efficiency, scalability, and
adaptability.

6.1 Implementation Details

JXTA [15] is a set of open and generalized peer-to-peer protocols that allow any con-
nected device on the network to communicate and collaborate as peers. The JXTA pro-
tocols are independent of any programming language, and multiple implementations
(called bindings) exist for different environments thus it is well adapted to the hetero-
geneous environments that compose a grid. JXTA has its own independent naming and
addressing mechanism: a peer can move around the network, changes its transport pro-
tocol and network addresses, even being temporarily disconnected, and still addressable
by other peers. This capability allows being resistant to the volatility of nodes in a grid.
Moreover JXTA provides secure communication and access to resources following a
role-based trust model. It provides also the possibility to cross firewall under the condi-
tion peers support HTTP. Rendezvous peers maintains a cache of advertissements and
forward discovery requests to help other peers discover resources. Each rendezvous
peer is like any other peer but keeps a list of other known rendezvous peers and a list of
the peers that are using it as a rendezvous. Relay peers maintains information about the
paths to other peers and routes messages to peers. They also forward messages on the
behalf of peers that cannot directly address another peer (NAT environments). We con-
figured those peers in order to connect peers from different sub-networks that compose
a grid.

JXTA provides three levels of communication: (1) the endpoint service providing
asynchronous, unidirectional, and unreliable static point-to-point communications; (2)
the pipes providing asynchronous, unidirectional, and unreliable dynamic communica-
tions; and (3) the JXTA sockets adding reliability. We base our system on BiDiPipes
that are pipes enhanced with bidirectional and (optinal) reliable communication. As
exposed in [16] pipes provides better performance than sockets, moreover C/C++ im-
plementation of JXTA does not provide the socket API. Indeed sockets are not part of
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the core specification of JXTA. In one direction bidipipes transport information from
producer to aggregator, then to global storage; in the other direction the pipe is used
to relay control signals for autonomic purposes. Control signals are for instance RTT
Request and Reply, Ping, Component failure suspicion, New component available (for
acquaintenances redirection), etc.

6.2 Performance Measures and Optimization

The Grid’5000 project aims at building an experimental Grid platform gathering 9 sites
geographically distributed in France combining up to 5000 processors. The plans are to
assemble a physical platform featuring 16 clusters, each with an hundred to a thousand
computers, connected by Renater the French Education and Research Network. Most
sites are connected to Renater at 10 Gb/s (few of them still at 2.5 Gb/s). This high col-
laborative research effort is funded by the French ministry of education and research,
INRIA, CNRS, the universities of all sites and several regional councils. Clusters com-
posing the Grid’5000 platform are heterogeneous. To lead our experiments we used
from 200 to 620 nodes (the number of nodes we used did not impact on the perfor-
mance we observed cause each node was able to run the entire set of components we
assigned to it). Multiple components were instanced on a same node, but for scalabil-
ity reasons they were hosted in a unique Java Virtual Machine process. The collected
information was limited to CPU and memory load.

The major point of interest in our system is to know how fresh the information in
the global storages is, so our first experiment consists of observing the age of the in-
formation in a global storage. Each component gossips every 30 seconds. Our system
being totally asynchronous we have no concern about possible time divergence between
components: each component acts autonomously. At the beginning of the experiment
the graph of components is already formed as follows. The ratios are arbitrarily set to
1 local aggregator for 100 producers and 1 global storage for 10 aggregators. Each pro-
ducer is linked to 10 aggregators, each local aggregator is linked to 10 global storages,
and each global storage is linked to 10 other global storages. The system ran one hour
before being observed. Figure 2 presents the age of information in the global storages
sorted by age. The instant of the observation is age 0.

Information in global storage is recent. The curves show peaks near the time of the
observation. In a 20,000 producers system the peak is at -1.5 minute with 7.179% of the
total information. In a 100,000 producers system the highest amount of information is
aged 4.5 minutes with 3.697%. The average age of information is given in the following
table (the size of the system is exposed in producers and age is exposed in minutes).

System size 20K 40K 60K 80K 100K
Average age 5.226 6.249 7.292 8.537 9.753

From Figure 2 we observe that half of the information, the older part, may be consid-
ered as useless. Indeed it is unnecessary to relay “old” information. Moreover it allows
saving 50% of aggregators and storages’ messages size. Figure 3 presents the age of
information in the global storages sorted by age. In this experiment aggregators and
storages only gossips the younger half of their information.
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Fig. 3. Distribution of information by age with filtering of old information (50%)

We observe a reduction of the amount of older information, resulting in a higher
percentage of younger information. The message reduction of course does not improve
the efficiency of the system, it role is to reduce by almost half the amount of data
transferred on the network.

Efficiency of the system seems to be very slightly impacted by the reduction of mes-
sages. Thanks to that observation we can imagine a dynamic adaptation of the age
of information communicated each iteration in order to obtain the best trade-off be-
tween efficiency and bandwidth consumption. The following table shows the average
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age of information in the storage is reduced thanks to the reduction of old information
transmissions.

System size 20K 40K 60K 80K 100K
Average age 2.105 2.846 3.539 4.171 4.902

The second experiment consists of observing the time required by a new producer
entering the system to be known by all the global storages. It means the propagation
time required by all global storages to receive at least one information from the new
producer. Figure 4 presents the results. The curves plot the average percentage of global
storages in the system that already got at least one information from a new producer.
The new producer is introduced at time 0 into a system running for several minutes.
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Fig. 4. Knowledge of a new producer in the entire system (i.e. all global storages)

In less than 4 minutes 92.0% of the global storages of a 100,001 producers system
(i.e. 100 global storages according to the conditions of our experiment) have been in-
formed of the new producers. Considering the abscence of point of centralization we
consider the spreading of new information is very fast thanks to the gossip protocol. A
first reason is that during one round the information is actually relayed three times: first
from the producer to an aggregator, then in an aggregated form with other information
from the aggregator to a global storage, and finally once again from the global stor-
age to another global storage. Another reason is that our directed gossip protocol does
not “broadcast” but “multicast” since only a subgroup of elements (the global storages)
finally receives the information through the hierarchical architecture.

In our last experiment, we observe the adaptation of the number of aggregator re-
garding variation of producers in the system. From a 100 producers system, we add 10
new producers every 30 seconds, until the system reaches a size of 1,000 producers.
Then number of producers remains stable for 7.5 minutes before we remove them grad-
ually, 10 every 30 seconds. Producers cleanly exit: they notify their aggregators when
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they leave the system. During this experiment, we arbitrarily chose to declare an aggre-
gator overloaded when it receives more than 100 information from the producers during
three successive iterations. Similarly it is considered as underloaded if during three of
its iterations it receives less than 80 information.

Figure 5 presents the number of aggregators and producers (by hundred), along the
experiment. The curves remain close; it attests the quantity of aggregators increases
in the same proportion as the producers. The ratio between aggregators and producers
stays approximately the same over the time (average: 1 aggregator for 82.79 producers).
The very fast growth of aggregators in the first minutes of the experiment results from
the fact the system was already overloaded in its initial settings.

7 Conclusion and Perspectives

We presented a decentralized, scalable, and autonomous grid monitoring system able
to tackle the growths of scale and complexity. The system’s components are hierarchi-
cally organized on a peer-to-peer overlay network. A directed gossip protocol ensures
efficient propagation of fresh information. Overproduction of messages is avoided by
the organization of communication paths in DAG and by filtering on information de-
pending on its age. Autonomic behaviors guarantee easy deployment and adaptability
at runtime. The implementation was detailed as well as performance measurements that
confirm the efficiency of our system. At this time the main advantages of our system
are (1) its ability to be quickly and easily deploy; (2) its capacity to self-adapt; and (3)
its fault-tolerance by information replication and alternative paths of communication.
On the other hand, a drawback is to provide only “statistically” good quality of service:
small probabilities remain to return a bad (too old) information.
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To address this problem we will organize the global storages into a peer-group and
access them all as a single distributed entity. The point is to make them communicating
with each others to collaborate answering a consumer request. One of the global stor-
ages necessarily contains the freshest value of searched information, so by comparing
the age of their information they can return the freshest one. This peer-group service
guarantees to obtain the freshest information and make possible to distribute the global
storages’ information base leading to an improved scalability and a new reduction of
messages on the network.

Our next consideration is to integrate our monitoring service with the Open Grid
Software Architecture (OGSA) [17] which is more likely to become the standard way
to access grid services. Also in order to solve more complex requests involving sev-
eral fields of search, as R-GMA does, we think to deploy relational database in global
storages.

Finally the security concerns must be taken in consideration. Our current implemen-
tation only rely on the security mechanism provided by the communication layer: the
peer-to-peer library. A secure system must be aware of authentication, trust, and data
integrity in order to prevent malicious attacks.
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Abstract. The deferred update technique is a widely used approach for building
replicated database systems. Its fame stems from the fact that read-only transac-
tions can execute locally to any single database replica, providing good perfor-
mance for workloads where transactions are mostly of this type. In this paper,
we analyze the deferred update technique and show a number of characteristics
and limitations common to any replication protocol based on it. Previous works
on this replication method usually start from a protocol and then argue separately
that it is based on the deferred update technique and satisfies serializability. Dif-
ferently, ours starts from the abstract definition of a serializable database and
gradually changes it into an abstract deferred update protocol. In doing that, we
can formally characterize the deferred update technique and rigorously prove its
properties. Moreover, our specification can be extended to create new protocols
or used to prove existing ones correct.

1 Introduction

In the deferred update technique, a number of database replicas are used to implement
a single serializable database interface. Its main idea consists in executing all opera-
tions of a transaction initially on a single replica. Transactions that do not change the
database state can commit locally to the replica they executed, but other transactions
must be globally certified and, if committed, have their update operations (those that
change the database state) submitted to all database replicas. This technique is adopted
by a number of database replication protocols in different contexts (e.g., [1,2,3,4,5]) for
its good performance in general scenarios. The class of deferred update protocols is very
heterogeneous, including algorithms that can optimistically apply updates of uncertified
transactions [2], certify transactions locally to the database that executed them [1], ex-
ecute all concurrent update transactions at the same database [3], reorder transactions
during certification [4], and even cope with partial database replication [5]. However,
all of them share the same basic structure, giving them some common characteristics
and constraints.

Despite its wide use, we are not aware of any work that explored the inherent limita-
tions and characteristics of deferred update database replication. Ours seems to be the
first attempt in this direction. We specify a general abstract deferred update algorithm
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that embraces all the protocols we know of. This general specification allows us to iso-
late the properties of the termination protocol necessary to certify update transactions
and propagate them to all database replicas. We show, for example, that the termination
protocol must totally order globally committed transactions, a rather counter-intuitive
result given that serializability itself allows transactions that operate on different parts
of the database state to execute in any order. For example, according to serializability, if
two transactions t1 and t2 update data items x and y , respectively, and have no other op-
erations, it is correct to execute either t1 before t2 or t2 before t1. Therefore, one could
expect that some databases would be allowed to execute t1 followed by t2 while others
would execute t2 followed by t1. In deferred update protocols, however, all databases
are obliged to execute t1 and t2 in exactly the same order, limiting concurrency.

Moreover, previous works considered that databases should satisfy a property called
order-preserving serializability, which says that the commit order corresponds to a
correct serialization of the committed transactions. This bears the question: Is order-
preserving serializability necessary for deferred update replication? We show that
databases can satisfy a weaker property, namely active order-preserving serializability,
which we introduce. According to this property, found in some multiversion databases,
the internal database serialization must satisfy the commit order only for transactions
that change the database state, without further constraining read-only transactions.

In our approach, we start with a general serializable database and refine it to our
abstract deferred update algorithm. Similarly, one can use our specification to ease de-
signing and proving specific protocols. One can simply prove a protocol correct by
showing that it implements ours through a refinement mapping [6]. Our specifications
use atomic actions to define safety properties [7,8]. Due to the space limitations, we
present only high-level specifications. Complete TLA+ [9] specifications, which have
been model checked for a finite subset of the possible execution scenarios, are given in
our technical report [10].

2 A General Serializable Database

The consistency criterion for transactional systems in general is Serializability, which
is defined in terms of the equivalence between the system’s actual execution and a se-
rial execution of the submitted transactions [11]. Traditional definitions of equivalence
between two executions of transactions referred to the internal scheduling performed
by the algorithms and their ordering of conflicting operations. This approach has led
to different notions of equivalence and, therefore, different subclasses of Serializabil-
ity [12]. In a distributed scenario, however, defining equivalence in terms of the internal
execution of the scheduler is not straightforward since there is usually no central sched-
uler responsible for ordering transaction operations. To compare a serial centralized
schedule with a general distributed one (e.g., in a replicated database), one has to create
mappings between the operations performed in both schedules and extend the notion
of conflicting operations to deal with sets of operations, since a single operation in the
serial centralized schedule may be mapped to a set of operations executed on different
sites in the distributed one [11]. This approach is highly dependent on the implemented
protocol and, as explained in [13], does not generalize well.
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Differently, we specify a general serializable database system, which responds to re-
quests according to some internal serial execution of the submitted transactions.
A database protocol satisfies serializability if it implements the general serializable
database specification, that is, if its interface changes could be generated by the gen-
eral serializable database. This sort of analysis is very common in distributed systems
for its compromise between abstraction and rigorousness [8,9,13].

In our specification of serializability, we first define all valid state transitions for nor-
mal interactions between the clients and the database, without caring about the values
returned as responses to issued operations, but rather storing them internally as part of
the transaction state. The database is free to abort a transaction at any time during the
execution of its operations. However, a transaction t can only be committed if its com-
mit request was issued and there exists a sequential execution order for all committed
transactions and t that corresponds to the results these transactions provided. We say
the transaction is decided if the database has aborted or committed it. Operations issued
for decided transactions get the final decision as its result.

We assume each transaction has a unique identifier and let Tid be the set of all
identifiers. We call Op the set of all possible transaction operations, which execute over
a database state in set DBState and generate a result in set Result and a new database
state. We abstract the correct execution of an operation by the predicate CorrectOp(op,
res , dbst , newdbst), which is true iff operation op, when executed over database state
dbst , may generate res as the operation result and newdbst as the new database state. In
this way, our specification is completely independent of the allowed operations, coping
with operations based on predicates and even nondeterministic operations. As a simple
example, one could define a database with two integer variables x and y with read and
write operations for each variable. In this case, DBstate corresponds to all possible
combinations of values for x and y , Op is the combination of an identifier for x or
y with a read tag or an integer (in case of a write), and Result is the set of integers.
CorrectOp(op, res , dbst , newdbst) is satisfied iff newdbst and res correspond to the
results for the read or write operation op applied to dbst .

Two special requests, Commit and Abort , both not present in Op, are used to ter-
minate a transaction, that is, to force a decision to be taken. Two special responses,
Committed and Aborted , not present in Result , are used to tell the database user if
the transaction has been committed or aborted. We also define Decided to equal the
set {Committed , Aborted}, Request to equal Op ∪ {Commit , Abort}, and Reply to
equal Result ∪ Decided .

During a transaction execution, operations are issued and responses are given un-
til the client issues a Commit or Abort request or the transaction is aborted by the
database for some internal reason. We represent the history of a transaction execution
by a sequence of elements in Op ×Result , corresponding to the sequence of operations
executed on the transaction’s behalf and their respective results. We say that a transac-
tion history h is atomically correct with respect to initial database state initst and final
database state finalst iff it satisfies the recursive predicate defined below, where THist
is the set of all possible transaction histories and Head and Tail are the usual operators
for sequences. Moreover, for notation simplicity, we identify the first and second ele-
ments of a tuple t in Op × Result by t .op and t .res respectively.
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CorrectAtomicHist(h ∈ THist, initst , finalst ∈ DBState)
Δ
=

if h = 〈〉 then initst = finalst
else ∃ist ∈ DBState : CorrectOp(Head(h).op, Head(h).res, initst , ist) ∧

CorrectAtomicHist(Tail(h), ist , finalst)

Intuitively, a transaction history is atomically correct with respect to initst and finalst
iff there are intermediate database states so that all operations in the history can be
executed in their correct order and generate their correct results.

During the system’s execution, many transactions are started and terminated (possi-
bly concurrently). We represent the current history of all transactions by a data structure
called history vector (set THistVector ) that maps each transaction to its current history.
We say that a sequence seq of transactions and a history vector thist correspond to a
correct serialization with respect to initial state initst and final state finalst iff the recur-
sive predicate below is satisfied, where Seq(S ) represents the set of all finite sequences
of elements in set S .

CorrectSerialization(seq ∈ Seq(Tid), thist ∈ THistVector , initst , finalst ∈ DBState)
Δ
=

if seq = 〈〉 then initst = finalst
else ∃ist ∈ DBState : CorrectAtomicHist(thist(Head(seq)), initst , ist) ∧

CorrectSerialization(Tail(seq), thist , ist ,finalst)

Intuitively, this predicate is satisfied iff there are intermediate database states so that
all transactions in the sequence can be atomically executed in their correct order gen-
erating the correct results for their operations. We can now easily define a predicate
IsSerializable(S , thist , initst) for a finite set of transaction id’s S , history vector thist ,
and database state initst , satisfied iff there is a sequence seq containing exactly one
copy of each element in S and a final database state finalst such that Correct
Serialization(seq, thist , initst , finalst) is satisfied. Predicate IsSerializable indicates
when a set of transactions can be serialized in some order, according to their execution
history, so that every operation returns its correct result when the execution is started in
a given database state.

We abstract the interface of our specification by the primitives DBRequest(t , req),
which represents the reception of a request req on behalf of transaction t , and
DBResponse(t , rep), which represents the database response to the last request on
behalf of t with reply rep. The only restriction we make with respect to the database
interface is that an operation cannot be submitted on behalf of transaction t if the last
operation submitted for t has not been replied yet, which releases us from the burden of
using unique identifiers for operations in order to match them with their results. Notice
that the system still allows a high degree of concurrency since operations from different
transactions can be submitted concurrently.

Our specification is based on the following internal variables:

thist : A history vector, initially mapping each transaction to an empty history.
tdec: A mapping from each transaction to its current decision status: Unknown ,

Committed , or Aborted . Initially, it maps each transaction to Unknown .
q: A mapping from each transaction to its current request or NoReq if no request is

being executed on behalf of that transaction. Initially, it maps each transaction to
NoReq .
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ReceiveReq(t ∈ Tid, req ∈ Request)
Enabled iff:

– DBRequest(t, req)
– q[t] = NoReq

Effect:
– q[t]← req

ReplyReq(t ∈ Tid, rep ∈ Reply)
Enabled iff:

– q[t] ∈ Request
– if tdec[t] ∈ Decided

then rep = tdec[t]
else q[t] ∈ Op ∧ rep ∈ Result

Effect:
– DBResponse(t, rep)
– q[t]← NoReq
– if tdec[t] /∈ Decided then

thist[t] ← thist[t] ◦ 〈q[t], rep〉

DoAbort(t ∈ Tid)
Enabled iff:

– tdec[t] /∈ Decided
Effect:

– tdec[t]← Aborted

DoCommit(t ∈ Tid)
Enabled iff:

– tdec[t] /∈ Decided
– q[t] = Commit
– IsSerializable(committedSet ∪ {t},

thist, InitialDBState)
Effect:

– tdec[t]← Committed

Fig. 1. The atomic actions allowed in our specification of a serializable database

Figure 1 presents the atomic actions of our specification. Action ReceiveReq(t , req)
is responsible for receiving a request on behalf of transaction t . Action
ReplyRep(t , rep) replies to a received request. It is enabled only if the transaction
has been decided and the reply is the final decision or the transaction has not been de-
cided but the current request is an operation (neither Commit nor Abort ) and the reply
is in Result . This means that responses given after the transaction has been decided
carry the final decision and requests to commit or abort a transaction are only replied
after the transaction has been decided. Action ReplyReq is responsible for updating the
transaction history if the transaction has not been decided. It does that by appending the
pair 〈q[t ], rep〉 to thist [t ] (we use ◦ to represent the standard append operation for se-
quences). Action DoAbort(t) simply aborts a transaction if it has not been decided yet.
Action DoCommit(t) commits t only if a t ’s commit request was issued and the set of
all committed transactions (represented by committedSet ) together with t is serializ-
able with respect to the initial database state, denoted by the constant InitialDBState.

3 The Deferred Update Technique

3.1 Preliminaries

As mentioned before, deferred update algorithms initially execute transactions on a sin-
gle replica. Transactions that do not change the database state (hereinafter called pas-
sive) may commit locally only, but active transactions (as opposed to passive ones) must
be globally certified and, if committed, have their updates propagated to all replicas (i.e.,
operations that make them active). In order to correctly characterize the technique, we
need to formalize the concepts of active and passive operations and transactions. An
operation op is passive iff its execution never changes the database state, that is, iff the
following condition is satisfied.

∀st1, st2 ∈ DBState, rep ∈ Result : CorrectOp(op, rep, st1, st2) ⇒ st1 = st2 (1)



A Formal Analysis of the Deferred Update Technique 21

An operation that is not passive is called active. Similarly, we define a transaction his-
tory h to be passive iff the condition below is satisfied.

∀st1, st2 ∈ DBState : CorrectAtomicHist(h, st1, st2) ⇒ st1 = st2 (2)

Notice that a transaction history composed of passive operations is obviously passive,
but the converse is not true. A transaction that adds and subtracts 1 to a variable is
passive even though its operations are active.

The deferred update technique requires some extra assumptions about the system.
Operations, for example, cannot generate new database states nondeterministically for
this could lead different replicas to inconsistent states. The following assumption makes
sure that operations do not change the database state nondeterministically but still al-
lows nondeterministic results to be provided to the database user.

Assumption 1 (State-deterministic operations). For every operation op, and data-
base states st and st1, if there is a result res1 such that CorrectOp(op, res1, st , st1),
then there is no result res2 and database state st2 such that st1 	= st2 ∧ CorrectOp
(op, res2, st , st2).

As for the database replicas, one may wrongly think that simply assuming that they
are serializable is enough to ensure global serializability. However, two replicas might
serialize their transactions (local and global) differently, making the distributed execu-
tion non-serializable. Previous works on deferred update protocols assumed the notion
of order-preserving serializability, originally introduced by Beeri et al. in the context
of nested transactions [14]. In our model, order-preserving serializability ensures that
the transactions’ commit order represents a correct execution sequence, a condition
satisfied by two-phase locking, for example. We show that this assumption can be re-
laxed since deferred update protocols can work with the weaker notion of active order-
preserving serializability we introduce. Active order-preserving serializability ensures
that there is an execution sequence of the committed transactions that generates their
correct outputs and respects the commit order of all active transactions only. This no-
tion is weaker than strict order-preserving serializability in that passive transactions
do not have to provide results based on the latest committed state. Some multiversion
concurrency control mechanisms [11] are active order-preserving but not strict order-
preserving. Specifications of order-preserving and active order-preserving serializabil-
ity can be derived from our specification in Figure 1 by just adding a variable serialSeq ,
initially equal to the empty sequence, and changing the DoCommit action. We show
the required changes in Figure 2. The strict case (a) is simple and only requires that
serialSeq ◦ t be a correct sequential execution of all committed transactions. The action
automatically extends serialSeq with t . The active case (b) is a little more complicated
to explain and requires some extra notation. Let Perm(S ) be the set of all permuta-
tions of elements in finite set S (all the possible orderings of elements in S ), and let
ActiveExtension(seq, t) be seq if thist [t ] is a passive history or seq ◦ t otherwise. The
action is enabled only if there exists a sequence containing all committed transactions
such that it represents a correct sequential execution and ActiveExtension(seq, t) is
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DoCommit(t ∈ Tid)
Enabled iff:

– tdec[t] /∈ Decided
– q[t] = Commit
– ∃st ∈ DBState :

CorrectSerialization(serialSeq ◦ t, thist, InitialDBState, st)
Effect:

– tdec[t]← Committed
– serialSeq ← serialSeq ◦ t

(a)

DoCommit(t ∈ Tid)
Enabled iff:

– tdec[t] /∈ Decided
– q[t] = Commit
– ∃seq ∈ Perm(committedSet ∪ {t}), st ∈ DBState :

CorrectSerialization(seq, thist, InitialDBState, st) ∧
ActiveExtension(serialSeq, t) is a subsequence of seq

Effect:
– tdec[t]← Committed
– serialSeq ← ActiveExtension(serialSeq, t)

(b)

Fig. 2. DoCommit action for (a) strict and (b) active order-preserving serializability

a subsequence of it.1 In this action, serialSeq is extended with t only if t is an active
transaction.

3.2 Abstract Algorithm

We now present the specification of our abstract deferred update algorithm. It gener-
alizes the ideas of a handful of deferred update protocols and makes it easy to think
about sufficient and necessary requirements for them to work correctly. Our specifica-
tion assumes a set Database of active order-preserving serializable databases, and we
use the notation DB(d)!Primitive( ) to represent the execution of interface primitive
Primitive (either DBRequest or DBResponse) of database d . Since transactions must
initially execute on a single replica only, we let DBof (t) represent the database re-
sponsible for the initial execution of transaction t . One important remark is that these
internal databases receive transactions whose id set is Tid × N, where N is the set
of natural numbers. This is done so because a single transaction in the system might
have to be submitted multiple times to a database replica in order to ensure that it com-
mits locally. Recall that our definition of active order-preserving serializability does
not force transactions to commit. Therefore, transactions that have been committed by
the algorithm and submitted to the database replicas are not guaranteed to commit un-
less further assumptions are made. The only way around this is to submit these trans-
actions multiple times (with different versions) until they commit. Besides the set of
databases, we assume a concurrent termination protocol, fully explained in the next

1 sequence subseq is a subsequence of sequence seq iff it can be obtained by removing zero or
more elements of seq .
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section, responsible for committing active transactions and propagating their active op-
erations to all databases.

The algorithm we present in the following orchestrates the interactions between the
global database interface and the individual internal databases. It is mainly based on the
following internal variables:

thist , q: Essentially the same variables as in the specification of a serializable database.
dreq: A mapping from each transaction t to the operation that is currently being sub-

mitted for execution on DBof (t), or NoReq if no operation is being submitted. This
variable is used to implement the asynchronous communication that tells DBof (t)
to execute an operation of t . Initially all transactions are mapped to NoReq .

dreply: Similar to dreq , but mapping each transaction t to the last response given by
DBof (t).

dcnt : A mapping from each database d and transaction t to an integer representing
the number of operations that executed on d for t . It counts the number of opera-
tions DBof (t) has executed for t during t ’s initial execution and, if t is active, the
number of active operations the other databases (or DBof (t) if it does not manage
to commit t directly after it is globally committed) have executed for t after it is
globally committed. It is initially 0 for all databases and transactions.

pdec: A mapping like tdec in the specification of a serializable database, used to tell
whether the transaction was decided without being proposed for global termination
either because it was prematurely aborted during its initial execution or because it
was a passive transaction that committed on its execution database.

vers: A mapping from each database d and transaction t to an integer representing
the current version of t being submitted to d . It is initially 0 for all databases and
transactions.

dcom: A mapping from each database d and transaction t to a boolean telling whether
t has been committed on d . It is initially false for all databases and transactions.

When a Commit request is issued for a transaction whose history has been active, a
decision must be taken on whether to commit or abort this transaction with respect
to active transactions executed on other databases. In our specification, this is done
separately by a termination protocol. The reason why we isolated this part of the spec-
ification is twofold. First, the nature of the rest of the algorithm is essentially local to
the database that is executing a given transaction and it seems interesting to separate it
from the part of the specification responsible for synchronizing active transactions ex-
ecuted on different databases. Second, the properties of the termination protocol, when
isolated, can be related to properties of other agreement problems in distributed com-
puting, which helps understand and solve it. The interface variables of the termination
protocol used in our general specification are the following:

proposed : This is an input variable that keeps the set of all proposed transactions. It is
initially empty.

gdec: An output variable that keeps a mapping like pdec above, but managed by the
termination protocol only. It tells whether a proposed transaction has already been
decided or not.
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learnedSeq: Another output variable mapping each database d to a sequence of glob-
ally committed active transactions. This sequence tells database d the order in
which these active transactions must be committed to make the whole execution
serializable. Initially, it maps each database to the empty sequence.

Our specification implements a serializable database, which can be proved by a refine-
ment mapping from its internal variables to those of a general serializable database.
Actually, the only internal variable of our specification of a serializable database not
directly implemented in our abstract algorithm is tdec, given by joining the values of
pdec and gdec in the following way:

tdec[t ] Δ= if t ∈ proposed then gdec[t ] else pdec[t ] (3)

For simplicity, we use this definition of tdec in some parts of our specification. Another
extra definition used in our algorithm is the ActHist(t) operator that returns the subse-
quence of thist [t ] containing all its active operations. The atomic actions of our abstract
algorithm, without the internal actions of the individual databases and the termination
protocol, are shown in Figure 3.

Action ReceiveReq treats the receipt of a transaction request. If the transaction re-
sponsible for the operation has been decided (either for pdec or gdec according to the
definition of tdec given above), then it only changes q[t ]. Otherwise, it either proposes
t for the termination protocol or sends the request to DBof (t) through variable dreq[t ].
Our complete specification allows passive transactions to be submitted for the termi-
nation protocol too and this is why we wrote “is active” between quotation marks. We
allow that because sometimes it might not be possible to identify all passive transac-
tions. Therefore, our specification also embraces algorithms that identify only a subset
of the passive transactions as passive and conservatively propose the others for global
termination.

Action ReplyReq replies a transaction request. It is very similar to the original
ReplyReq action of our serializable database specification. The small differences only
make sure that the value replied for a normal operation comes from DBof (t) and, in this
case, dreq[t ] is set back to NoReq to wait for the next operation. Actions Premature
Abort and PassiveCommit abort or commit a transaction that has not been proposed
for global termination. It can only be committed if a commit request was correctly
replied by DBof (t), which can only happen if t has a passive history.

Action DBReq submits a request to a database. There are three conditions that en-
able this action. The first one represents a normal request during the transaction’s initial
execution or a commit request for a passive transaction. The second one represents an
operation request for an active transaction that has been proposed to the termination
protocol. Notice that operations of proposed transactions can be optimistically submit-
ted to the database before they commit or appear in some learnedSeq . Some algorithms
do that to save processing time after the transaction is committed, reducing the latency
for propagating transactions to the replicas. The third condition that enables this action
represents a commit request for a transaction that has been committed by the termi-
nation protocol. For that to happen, the transaction must be present in learnedSeq[d ]
and all transactions previous to it in the sequence must have been committed on that
database. Moreover, all active operations of that transaction must have been applied to
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ReceiveReq(t ∈ Tid, req ∈ Request)
Enabled iff:

– DBRequest(t, req)
– q[t] = NoReq

Effect:
– q[t]← req
– if tdec[t] /∈ Decided then

if req = Commit ∧ thist[t] “is active”
then proposed ← proposed ∪ {t}
else dreq[t]← req

ReplyReq(t ∈ Tid, rep ∈ Reply)
Enabled iff:

– q[t] ∈ Request
– if tdec[t] ∈ Decided then

rep = tdec[t]
else
q[t] ∈ Op ∧ rep ∈ Result ∧
dcnt[DBof (t)][t] > Len(thist[t]) ∧
rep = dreply[t]

Effect:
– DBResponse(t, rep)
– q[t]← NoReq
– if tdec[t] /∈ Decided then

• thist[t] ← thist[t] ◦ 〈q[t], rep〉
• dreq[t]← NoReq

PrematureAbort(t ∈ Tid)
Enabled iff:

– t /∈ proposed
– pdec[t] /∈ Decided

Effect:
– pdec[t]← Aborted

PassiveCommit(t ∈ Tid)
Enabled iff:

– t /∈ proposed
– pdec[t] /∈ Decided
– dreply[t] = Committed

Effect:
– pdec[t]← Committed

DBReq(d ∈ Database, t ∈ Tid, req ∈ Request)
Enabled iff any of the conditions below hold.

Condition 1: (external operation request)
– d = DBof (t)
– dreq[t] = req
– dcnt[d][t] = Len(thist[t])

Condition 2: (operation after termination)
– t ∈ proposed
– dcnt[d][t] < Len(ActHist(t))
– req = ActHist(t)[dcnt[d][t] + 1].op

Condition 3: (commit after termination)
– req = Commit
– ∃i ∈ 1..Len(learnedSeq[d]) :

learnedSeq[d][i] = t ∧
∀j ∈ 1..i : dcom[d][learnedSeq[d][j ]]

– either d = DBof (t) ∧ vers[d][t] = 0
or dcnt[d][t] = Len(ActHist(t))

Effect:
– DB(d)!DBRequest(〈t,vers[d][t]〉, req)

DBRep(d ∈ Database, t ∈ Tid, rep ∈ Reply)
Enabled iff:

– DB(d)!DBResponse(〈t, vers[d][t]〉, rep)
Effect:

– if d = DBof (t) then dreply[t]← rep
– if rep = Aborted ∧ t ∈ proposed then

• vers[d][t]← vers[d][t] + 1
• dcnt[d][t] ← 0

else
• dcnt[d][t] ← dcnt[d][t] + 1
• dcom[d][t]← rep = Committed

Fig. 3. The atomic actions allowed in our specification of a serializable database

the database already, which is true if the database is the one originally responsible for
the transaction and it has not changed the transaction version or the operations counter
dcnt [d ][t ] equals the number of active operations in the transaction history. Recall that,
by the definition of a serializable database, a request can only be submitted if there is
no pending request for the same transaction. This is actually an implicit pre-condition
for DBReq given by the specification of a serializable database.

Action DBRep treats the receipt of a response coming from a database. If the
database is the one responsible for initially executing the transaction, it sets drepy[t ]
to the value returned. If the transaction is aborted but it has been proposed for global
termination, it changes the version of that transaction on that database and sets the oper-
ation counter to zero so that the transaction’s operations can be resubmitted for its new
version; otherwise, it just increments the operation counter and sets dcom accordingly.
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3.3 Termination Protocol

The termination protocol gives a final decision to proposed transactions and, if they are
committed, forwards them to the database replicas. It “reads” from variables proposed
and thist (it relies on the transaction history to decide on whether to commit or abort it),
and changes variables gdec and learnedSeq . As explained before, variable gdec simply
assigns the final decision to a transaction; learnedSeq , however, represents the order in
which each database should submit the active transactions committed by the termination
protocol. These are the three safety properties the termination protocol must satisfy in
order to ensure serializability:

Nontriviality. For any transaction t , t is decided (gdec[t ] ∈ Decided ) only if it was
proposed.

Stability. For any transaction t , if t is decided at any time, then its decision does not
change at any later time; and, for any database d , the value of learnedSeq[d ] at any
time is a prefix of its value at all later times.

Consistency. There exists a sequence seq containing exactly one copy of every com-
mitted transaction (according to gdec) and a database state st such that Correct
Serialization(seq, thist , InitialDBState, st) is true and, for every database d ,
learnedSeq[d ] is a prefix of seq .

The following theorem asserts that our complete abstract specification of a deferred
update protocol is serializable. This result shows that every protocol that implements
our specification automatically satisfies serializability. The proofs of our theorems can
be found in [10].

Theorem 1. Our abstract deferred update algorithm implements the specification of a
serializable database given in Section 2.

This theorem results in an interesting corollary, stated below. It shows that indeed
databases are not required to be strict order-preserving serializable, an assumption that
can be relaxed to our weaker definition of active order-preserving serializability.

Corollary 1. Serializability is guaranteed by our specification if databases are active
order-preserving serializable instead of strict order-preserving serializable.

The three aforementioned safety properties are not strictly necessary to ensure serializ-
ability. Nontriviality can be relaxed so that non-proposed transactions may be aborted
before they are proposed and Serializability is still guaranteed. However, we see no
practical use of this since our algorithm already allows a transaction to be aborted at any
point of the execution before it is proposed. Committing a transaction before proposing
depends on making sure that the history of the transaction will not change and, in case
it is active, on whether there are alternative sequences that ensure the Consistency prop-
erties if the transaction is committed or not, a rather complicated condition to be used in
practice. Stability can be relaxed by allowing changes on suffixes of learnedSeq[d ] that
have not been submitted to the database yet. However, keeping knowledge of what part
of the sequence has already been submitted to the database and possibly changing the
rest of it is equivalent to implementing our abstract algorithm with learnedSeq[d ] being
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the exact sequence locally submitted to the database. As a result, we see no practical
advantage in relaxing Stability.

Consistency can be relaxed in a more complicated way. In fact, the different se-
quences learnedSeq[d ] can differ, as long as the set of intermediate states they gen-
erate (states in between transactions) are a subset of the intermediate states generated
by some sequence seq containing all globally committed transactions and satisfying
CorrrectSerialization(seq, thist , InitialDBState, st) for some state st . Ensuring this
property without forcing the learnedSeq sequences to prefix a common sequence is
hard and may lead to situations in which committed transactions cannot be added to
a sequence learnedSeq[d ] for they would generate states that are not present in any
sequence that could satisfy our consistency criterion.

One might think, for example, that the consistency property can be relaxed to al-
low commuting transactions that are not related (i.e., operate on disjunct parts of the
database state) in the sequences learnedSeq[d ]. For that, however, we have to make
some assumptions about the database state in order to define what we mean by disjunct
parts of the database state. For simplicity, let us assume our database state is a mapping
from objects in a set Object to values in a set Value and operations can read or write
a single object value. We define the objects of a transaction history h, represented by
Obj (h), to be the set of objects the operations in h read or write. A consistency property
based on the commutativity of transactions that have no intersecting object sets can be
intuitively defined as follows:

Alternative Consistency. There exists a sequence seq containing exactly one copy
of every committed transaction (according to gdec) and a database state st such
that CorrectSerialization(seq, thist , InitialDBState, st) is true and, for every
database d , learnedSeq[d ] contains exactly one copy of some committed trans-
actions (according to gdec) and, for every transaction t in learnedSeq[d ], the fol-
lowing conditions are satisfied:

– Every transaction t ′ that precedes t in seq and shares some objects with t also
precedes t in learnedSeq[d ], and

– Every transaction t ′ that precedes t in learnedSeq[d ] either precedes t in seq
or shares no objects with t .

Although this new consistency condition seems a little complicated, it is weaker than
our original property for it allows the sequences learnedSeq[d ] differ in their order for
transactions that operate on different objects. The following theorem shows that this
property is not enough to ensure Serializability in our abstract algorithm.

Theorem 2. Our abstract deferred update algorithm with the Consistency property for
termination changed for the Alternative Consistency property defined above does not
implement the specification of a serializable database given in Section 2.

This result basically means that one cannot profit much from using Generic Broad-
cast [15] algorithms to propagate committed transactions. Our properties as originally
defined seem to be the weakest practical conditions for ensuring Serializability in de-
ferred update protocols. In fact, we are not aware of any deferred update replication
algorithm whose termination protocol does not satisfy the three properties above.
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So far, we have not defined any liveness property for the termination protocol.
Although we do not want to force protocols to commit transactions in any situation
(since this might rule out some deferred update algorithms that conservatively abort
transactions), we think that a termination protocol that does not update the sequences
learnedSeq[d ] eventually, after having committed a transaction, is completely useless.
Therefore, we add the following liveness property to our specification of the termination
protocol:

Liveness. If t is committed at a given time, then learnedSeq[d ] eventually contains t .

As it happens with agreement problems like Consensus, this property must be revisited
in failure-prone scenarios, since it cannot be guaranteed for databases that have crashed.
Independently of that, one can easily spot some similarities between the properties we
have defined and those of Sequence Agreement as explained in [16]. Briefly, in the
sequence agreement problem, a set of processes agree on an ever-growing sequence of
commands, built out of proposed ones. The problem is specified in terms of proposer
processes that propose commands to be learned by learner processes, where learned [l ]
represents the sequence of commands learned by learner l . Sequence Agreement is
defined by the following properties:

Nontriviality. For any learner l , the value of learned [l ] is always a sequence of pro-
posed commands.

Stability. For any learner l , the value of learned [l ] at any time is a prefix of its value
at any later time.

Consistency. For any learners l1 and l2, it is always the case that one of the sequences
learned [l1] and learned [l2] is a prefix of the other.

Liveness. If command V has been proposed, then eventually the sequence learned [l ]
will contain V as an element.

This problem is a sequence-based specification of the celebrated atomic broadcast prob-
lem [17]. The exact relation between the termination protocol and Sequence Agreement
is given by the following theorem.

Theorem 3. The four properties Nontriviality, Stability, Consistency, and Liveness
above satisfy the safety and liveness properties of Sequence Agreement for transactions
that commit.

One possible way of reading this theorem is that any implementation of the termination
protocol is free to abort transactions, but it must implement Sequence Agreement for
the transactions it commits. As a consequence, any lower bound or impossibility result
for atomic broadcast and consensus applies to the termination protocol.

4 Conclusion

In this paper, we have formalized the deferred update technique for database replication
and stated some intrinsic characteristics and limitations of it. Previous works have only
considered new algorithms, with independent specifications, analysis, and correctness
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proofs. To the best of our knowledge, our work is first effort to formally characterize
this family of algorithms and establish its requirements. Our general abstraction can
be used to derive other general limitation results as well as to create new algorithms
and prove existing ones correct. Some algorithms can be easily proved correct by a
refinement mapping to ours. Others may require an additional effort due to the extra
assumptions they make, but the task seems still easier than with previous formalisms. In
our personal experience, we have successfully used our abstraction to obtain interesting
protocols and correctness proofs, which will appear elsewhere.

Finally, to increase the confidence in our results, we have model checked our specifi-
cations using the TLA+ model checker (TLC). Our specifications have been extensively
checked for consistency problems besides type safety and deadlocks. For that we used
a database containing a small vector of integers with operations that could read and
write the vector’s elements. Our model considered a limited number of transactions (up
to 10), each one containing a few operations. The automatic checking confirmed our
results and allowed us to find a number of small mistakes in the TLA+ translation of
our ideas. We strongly believe these specifications can be extended or directly used in
future works in this area.
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Abstract. Situation awareness is an important application category
in cyber-physical systems, and distributed video-based surveillance is
a good canonical example of this application class. Such applications
are interactive, dynamic, stream-based, computationally demanding, and
needing real-time or near real-time guarantees. A sense-process-actuate
control loop characterizes the behavior of this application class. ASAP is
a scalable distributed architecture for a multi-modal sensor network that
caters to the needs of this application class. Features of this architecture
include (a) generation of prioritization cues that allow the infrastruc-
ture to pay selective attention to data streams of interest; (b) virtual
sensor abstraction that allows easy integration of multi-modal sensing
capabilities; and (c) dynamic redirection of sensor sources to distributed
resources to deal with sudden burstiness in the application. In both em-
pirical and emulated experiments, ASAP shows that it scales up to a
thousand of sensor nodes (comprised of high bandwidth cameras and
low bandwidth RFID readers), significantly mitigates infrastructure and
cognitive overload, and reduces false negatives and false positives due to
its ability to integrate multi-modal sensing.

1 Introduction

Situation Awareness is both a property and an application class that deals with
recognizing when sensed data could lead to actionable knowledge. However, be-
cause of a huge increase in the amount of sensed data to be handled, providing
situation awareness has become a challenge. With advances in technology, it
is becoming feasible to integrate sophisticated sensing, computing, and com-
munication in a single small footprint sensor platform. This trend is enabling
deployment of powerful sensors of different modalities in a cost-effective manner.
While Moore’s law has held true for predicting the growth of processing power,
the volume of data that applications handle is growing similarly, if not faster.

There are three main challenges posed by data explosion for realizing situa-
tion awareness: overload on the infrastructure, cognitive overload on humans in
the loop, and dramatic increase in false positives and false negatives in identify-
ing threat scenarios. Consider, for example, providing situation awareness in a

� ASAP stands for “Priority Aware Situation Awareness” read backwards.
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Fig. 1. Resource usage in a centralized camera network: cameras produce data at 5 fps
with 320x240 resolution. Image processing happens on a 1.4GHz Pentium processor.

battlefield. It needs complex fusion of contextual knowledge with time-sensitive
sensor data obtained from different sources to derive higher-level inferences. With
an increase in the sensed data, a fighter pilot will need to take more data into
account in decision-making leading to a cognitive overload and an increase in
human errors (false positives and negatives). Also, to process and disseminate
the sensed data, more computational and network resources are needed thus
overloading the infrastructure.

The severity of infrastructure overload is more apparent for camera sensor
networks because image dissemination and processing tasks are very resource
intensive. Consider, for example, a simple surveillance system that does mo-
tion sensing and JPEG encoding/decoding. Figure 1 shows the processing re-
quirements for such a system using a centralized set up: cameras produce data
at 5 frames/second with a 320x240 resolution; image processing happens on a
1.4GHz Pentium processor. The results show that the above centralized setup
cannot scale beyond four cameras (the CPU load is nearly 100%.) If we increase
the video quality (frames/second and resolution), even a high-end computing
resource will be unable to process more than a few cameras.

Clearly, scaling up to a large number of cameras (on the order of 100’s or
1000’s) warrants a distributed architecture. Further, to mitigate the challenges
posed by the data explosion there is a need to add a prioritize step in the control
loop for situation awareness. The ASAP architecture presented in this paper
caters to the sense-process-prioritize-actuate control loop. Adding the prioritize
step is expected to help not only in an effective use of the available resources,
but also to achieve scalability and meet real-time guarantees in the data deluge.

ASAP provides features that are aimed to address the specific challenges posed
by situation awareness application:

– It provides a framework for generating priority cues so that the system (and
humans in the loop) can pay selective attention to specific data streams thus
reducing both the infrastructure and cognitive overload.

– It consists of two logical networks, namely, control and data. The former
generates priority cues and the latter provides processing functions (filtering
and fusion) on the selected data streams. This tiered architecture enables the
physical network consisting of cameras, sensors, and computational resources
to be scaled up or down more easily. Further this logical separation aids in
dealing with sudden burstiness in the sensed environment.
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– It provides facilities for dynamic redirection of control and data streams
to different computational resources based on the burstiness of the sensed
environment.

– It provides an abstraction, virtual sensor, that allows sensors to operate
multi-modally to reduce the ill effects of false positives and false negatives.

– It integrates hand-held devices (such as iPAQs) to enable flexible delivery of
alerts and information digests.

The unique contributions of our work are as follows: (a) a systematic approach to
help prioritize data streams, (b) a software architecture that ensures scalability
and dynamic resource allocation, and (c) multi-model sensing cues to reduce
false positives and false negatives.

The rest of the paper is organized as follows. Section 2 explores situation
awareness applications to understand their requirements. Section 3 explains the
ASAP architecture and its prioritization strategies. The implementation and
evaluation of ASAP platform are presented in Sections 4 and 5, respectively.
Related work is discussed in Section 6. Section 7 concludes the paper.

2 Understanding ASAP Requirements

2.1 Example Application: Video Based Surveillance

A video-based surveillance system is an attractive solution for threat identifica-
tion and reduction. Cameras are deployed in a distributed fashion; the images
from the cameras are filtered in some application-specific manner, and are fused
together in a form that makes it easy for an end user (human or some program) to
monitor the area. The compute intensive part may analyze multiple camera feeds
from a region to extract higher-level information such as “motion”, “presence
or absence of a human face”, or “presence or absence of any kind of suspicious
activity”. Security personnel can specify a set of security policies that must be
adhered to, e.g. “only specified people are allowed to enter a particular area”,
and the system must continuously ensure that an alert is generated whenever
any breach happens. Similarly, security personnel can do a search on all available
camera streams for an event of interest, e.g. “show me the camera feed where
there is a gas leak”. To support the above two ways of deriving actionable knowl-
edge, the extracted information from camera streams, e.g. motion or number of
faces etc., may be the meta-data of importance for information prioritization.
With a large number of surveillance cameras (e.g. 3K in New York [1] and 400K
in London [2]), it becomes a more interesting issue.

2.2 Application Requirements

Applications such as video-based surveillance are capable of stressing the avail-
able computation and communication infrastructures to their limits. Fusion ap-
plications, as we refer to such applications in this paper have the many common
needs that should be supported by the underlying ASAP platform:
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1. High Scalability: The system should scale to large number of sensor streams
and user queries. This necessarily means that the system should be designed
to reduce infrastructure overload, cognitive overload, and false positives and
false negatives. False positives refer to the actionable knowledge triggers
generated by the system that turns out to be not really a security threat or
an event of interest. False negatives refer to the security threat situations or
interesting events that are missed by the system.

2. Query vs Policy-based interface: Situation awareness applications need to
support both query- and policy-based user interfaces. A query-based inter-
face will allow users to search streams of interest based on tags or information
associated with the streams. On the other hand, a policy-based interface will
allow users to specify conditions to monitor and to generate alerts based on
the conditions. A set of policies can be specified by a security administrator
to proactively monitor an area. A platform for situation awareness applica-
tions should provide both the query-based and policy-based mechanisms.

3. Heterogeneity and Extensibility: With advances in sensing technologies, it
has become possible to deploy different types of sensors on a large scale
to derive actionable knowledge. Further, since a single type of sensor may
not be sufficient to provide accurate situational knowledge, there is a need
to use different types of sensors to increase the accuracy of event detection.
There is also a need to use different types of sensors, because a single sensing
modality is often not sufficient to provide accurate situational knowledge. For
use in diverse application scenarios, it is imperative that ASAP accommodate
heterogeneity of sensing, while being flexible and extensible.

3 Architecture

Figure 2 shows the logical organization of the ASAP architecture into control and
data network. The control network deals with low-level sensor specific processing
to derive priority cues. These cues in turn are used by the data network to
prioritize the streams and carry out further processing such as filtering and
fusion of streams. It should be emphasized that this logical separation is simply
a convenient vehicle to partition the functionalities of the ASAP architecture.
The two networks are in fact overlaid on the same physical network and share
the computational and sensing resources. For example, low bitrate sensing such
as an RFID tag or a fire alarm are part of the control network. However, a high
bitrate camera sensor while serving the video stream for the data network may
also be used by the control network for discerning motion.
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Figure 3 shows the software architecture of ASAP: it is a peer-to-peer network
of ASAP agents (AA) that execute on independent nodes of the distributed
system. The software organization in each node consists of two parts: ASAP
Agent (AA) and Sensor Agent (SA). There is one sensor agent per sensor, and
a collection of sensor agents are assigned dynamically to an ASAP agent.

3.1 Sensor Agent

SA provides a virtual sensor abstraction that provides a uniform interface for
incorporating heterogeneous sensing devices as well as to support multi-modal
sensing in an extensible manner. This abstraction allows new sensor types to be
added without requiring any change of the ASAP agent (AA). There is a poten-
tial danger in such a virtualization that some specific capability of a sensor may
get masked from full utilization. To avoid such semantic loss, we have designed
a minimal interface that serves the needs of situation awareness applications.

The virtual sensor abstraction allows the same physical sensor to be used
for providing multiple sensing services. For example, a camera can serve not
only as a video data stream, but also as a motion or a face detection sensor.
Similarly, an SA may even combine multiple physical sensors to provide a multi-
modal sensing capability. Once these different sensing modalities are registered
with ASAP agents, they are displayed as a list of available features that users
can select to construct a query for ASAP platform. ASAP platform uses these
features as control cues for prioritization (see Section 3.2).

3.2 ASAP Agent

As shown in Figure 3, an AA is associated with a set of SAs. The association is
dynamic, and is engineered at runtime in a peer-to-peer fashion among the AAs.
The components of AA are shown in Figure 3.

Query Interface
ASAP agent provides a simple query interface with SQL-like syntax. Clients can
pose an SQL query using control cues as attributes. Different cues can be com-
bined using “AND” and “OR” operators to create multi-modal sensing queries.
Here are some example queries which are self evident as to their intent: 1

1) SELECT images FROM zone("Gate13") WHERE RFIDTag = ‘James’
2) SELECT images FROM zone("any") WHERE FaceRecognition = ‘Alice’
3) SELECT COUNT(Object) FROM zone("Concourse B")

False Positives and Negatives

Figure 2 shows that sensed data leads to events, which when filtered and fused
ultimately leads to actionable knowledge. Unfortunately, individual sensors may
often be unreliable due to environmental conditions (e.g., poor lighting condi-
tions near a camera). Thus it may not always be possible to have high confidence
1 It should be understood that the above queries are just a few examples. The interface

is extensible to support different types of sensors, as well as, dispense both streams
and digests of streams as the query output.
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in the sensed data; consequently there is a danger that the system may experi-
ence high levels of false negatives and false positives. It is generally recognized
that multi-modal sensors would help reduce the ill effects of false positives and
negatives. The virtual sensor abstraction of ASAP allows multiple sensors to be
fused together and registered as a new sensor. Unlike multi-feature fusion (a la
face recognizer) where features are derived from the same (possibly noisy) image,
multi-sensor fusion uses different sensing modalities. ASAP exploits a quorum
system to make a decision. Even though a majority vote is implemented at the
present time, AA may assign different weights to the different sensors commen-
surate with the error rates of the sensors to make the voting more accurate.

Prioritization Strategies

ASAP needs to continuously extract prioritization cues from all the cameras and
other sensors (control network), and disseminate the selected camera streams
(data network) to interested clients. ASAP extracts information from a sensor
stream by invoking the corresponding SA. Since there may be many SAs regis-
tered at any time, invoking all SAs may be very compute intensive. ASAP needs
to prioritize the invocations of SAs to scale well with the number of sensors. This
leads to the need for priority-aware computation in the control network. Once
a set of SAs that are relevant to client queries are identified, the corresponding
camera feeds need to be disseminated to the clients. If the bandwidth required to
disseminate all streams exceed the available bandwidth near the clients, network
will end up dropping packets. This leads to the need for priority-aware commu-
nication in the data network. Based on these needs, the prioritization strategies
employed by ASAP can be grouped into the following categories: Priority-aware
computation and priority-aware communication.

Priority-aware Computation. The challenge is dynamically determining a set of
SAs among all available SAs that need to be invoked such that overall value
of the derived actionable knowledge (benefit for the application) is maximized.
We use the term Measure of Effectiveness (MOE) to denote this overall benefit.
ASAP currently uses a simple MOE based on clients’ priorities.

The priority of an SA should reflect the amount of possibly “new” information
the SA output may have and its importance to the query in progress. Therefore,
the priority value is dynamic, and it depends on multiple factors, including the
application requirements, and the information already available from other SAs.
In its simplest form, priority assignment can be derived from the priority of the
queries themselves. For instance, given two queries from an application, if the
first query is more important than the second one, the SAs relevant to the first
query will have higher priority compared to the SAs corresponding to the second
query. More importantly, computations do not need to be initiated at all of SAs
since (1) such information extracted from sensed data may not be required by any
AA, and (2) unnecessary computation can degrade overall system performance.
“WHERE” clause in SQL-like query is used to activate a specific sensing task.
If multiple WHERE conditions exist, the lowest computation-intensive task is
initiated first that activates the next task in turn. While it has a trade-off between
latency and overhead, ASAP uses this for the sake of scalability.
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(a)Axis 207MW (b)RFID Antenna (c)ASAP client on iPAQ

Fig. 4. Testbed building blocks

Priority-aware Communication. The challenge is designing prioritization tech-
niques for communication on data network such that application specific MOE
can be maximized. Questions to be explored here include: how to assign priori-
ties to different data streams and how to adjust their spatial or temporal fidelities
that maximizes the MOE?

In general, the control network packets are given higher priority than data
network packets. Since the control network packets are typically much smaller
than the data network packets, supporting a cluster of SAs with each AA does
not overload the communication infrastructure.

4 Implementation

We have built an ASAP testbed with network cameras and RFID readers for
object tracking based on RFID tags and motion detection. In implementing
ASAP, we had three important goals: (1) platform neutrality for the “box” that
hosts the AA and SA, (2) ability to support a variety of sensors seamlessly (for
e.g., network cameras as well as USB cameras), and (3) extensibility to support
a wide range of handheld devices including iPAQs and cellphones. Consequent
to these implementation goals, we chose Java as the programming language
for realizing the ASAP architecture. Java also provides Java Media Framework
(JMF) API [3] that supports USB cameras on many platforms.

Table 1. Axis 207MW specifications

Specifications

Video Compression Motion JPEG, MPEG-4

Resolutions 15 resolutions up to 1280x1024

Frame Rate Up to 14 fps up to 1280x720, Up to 12 fps in 1280x1024

Wireless interface IEEE 802.11g 6-54 Mbps, IEEE 802.11b 1-11 Mbps

Figure 4 shows the building blocks of our testbed: a network camera, Axis
207MW from Axis Communication [4] and RFID antenna from Alien Technol-
ogy [5]. The key specifications of the network camera are given in Table 1.
Considering iPAQ2 performance, we decided to use motion JPEG with 320x240
2 At the time of writing, our implementation uses an iPAQ and/or a desktop for the

GUI client. We plan to extend the implementation to include a cellphone through
web service in the near future.
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resolution, 5 fps, and 40 compression. Higher compression value (0–100) corre-
sponds to lower quality and smaller image size. A JPEG frame requires 8–14
KBytes depending on the image content.

ASAP implementation consists of 3 main components: GUI Client, Sensor
Agent, and ASAP Agent. GUI client has a simple interface to send a query.
In a simple query, a user can select from drop-down lists for features such as
RFID tag and motion detection, which tag needs to be tracked, and how many
output streams he/she would like to receive. For a more complicated query such
as tracking based on multiple tags and/or multiple features, SQL query is used.
Then, the query is represented as an XML document and sent to the nearest
ASAP Agent (either through the wired network or wirelessly depending on the
connectivity of the client to the ASAP infrastructure). The client uses a name
server to discover a nearby ASAP agent. In our current implementation, a text
file at a well-known location serves the purpose of a name server. While there
could be a debate about a scalability issue in this kind of naming service, the
deployment of camera surveillance system is usually static, and AA keeps caches
of topology information. Even in the case of dynamic deployment, ASAP can
easily integrate DNS-like service which is not the focus of this work.

4.1 Sensor Agent

Sensor Agent needs to provide as simple as possible interface to alleviate the de-
velopment of different types of sensors. This component requires frequent changes
and updates due to the changes in detection algorithms or addition of sensors.
The development of SA consists of 3 steps. The first step is the development of
sensor functionality. It can be either physical sensor functions such as RFID tag
reading or virtual sensor like motion detection or face recognition. The second
step is the registration of sensor through a uniform interface. A control mes-
sage handler is the last step. ASAP supports rich APIs to ease the second and
third steps, and an application programmer can focus only on the first step. By
having a tiered network architecture, Sensor Agent and ASAP Agent are func-
tionally less dependent upon each other. This makes the ASAP software easy to
understand, maintain, and extend with different sensors types.

The virtual sensor abstraction serves to make implementing new sensor func-
tionality a cinch in ASAP. For e.g., given a camera, if the developer decides
to implement two different functionalities (say, face recognition and motion de-
tection) using the camera, then she would register each as a distinct sensor
agent (SA) with the ASAP agent. This componentization of SAs allows modular
extension to the overall architecture without any central control ensuring the
scalability of the architecture.

For the testbed, we implemented camera, motion, and RFID sensors. In the
case of camera sensors, ASAP supports USB cameras and Axis network cameras.
JMF is used to support USB cameras, and it supports Windows, Linux, and
Solaris. Axis supports HTTP API called VAPIX API. By sending HTTP request,
camera features can be controlled, and images or streams can be retrieved. By
sending a request, http://[address]/axis-cgi/mjpg/video.cgi, a camera is
turned on and starts sending motion JPEG. With JMF, the camera URL is
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represented as following; vfw://0 on Windows platform or v4l://1 on Linux
platform. The last digit starts from 0 to the number of USB cameras attached
exclusively. ASAP provides APIs for uniformly accessing cameras independent
of their type. It implicitly figures out the camera type from the URL once again
reducing the programming burden on the developer.

The data from the Sensor Agent may be directed dynamically to either the
control network or the data network at the behest of the ASAP agent. The
command from AA to SA specifies start/stop as well as periodicity (for periodic
sensors, see Section 3.1). Alert sensors simply send a binary output. For instance,
the RFID reader responds yes/no to a query for tracking a specific tag. It is
possible for the user to control the amount of communication generated by an
SA using the query interface. For example, if the user sets a threshold of motion,
then this will be communicated by AA in a command to the SA. Upon receiving
such a command, the associated SA for motion detection needs to send an alert
only when the level of motion crosses the threshold specified by the AA. Even
for a periodic stream (such as a video stream) communication optimization is
possible from the query interface using the WHERE clause.

We implemented Java motion detection based on open source and RFID sen-
sor using Alien Technology APIs. Since the ASAP agent is responsible for all
command decisions regarding the granularity of operation of the SAs, it was easy
to implement a variety of sensors (including multi-modal ones). Our experience
validates our claim regarding the utility of the virtual sensor abstraction.

4.2 ASAP Agent

ASAP Agent (AA) is the core component of ASAP system. Not only does it
handle multiple clients and Sensor Agents, but also communicates with other
AAs in a distributed manner. ASAP Agent works as a delegate of a client.
Since a client does not have global knowledge (e.g. how many cameras or RFID
readers are deployed), it picks an ASAP Agent, and sends queries. AA should
meet the following requirements: (1) efficient handling of multiple client queries,
(2) efficient management of the control and data networks, and (3) dynamic load
balancing via assignment of SAs to AAs.

Query Handler Module

Query handler module receives queries from multiple clients. An ASAP Agent
that receives a query, interprets it, and decides on which peer AAs to activate
on the control network. For example, a security guard may issue the following
query to find where in Gate 11 “Ellice” is and request to receive one camera
stream if she is in Gate 11.

SELECT images FROM zone(‘Gate 11’) WHERE RFIDTag = ‘Ellice’

As we mentioned in Section 3.2, each AA handles a cluster of SAs. There is no
global knowledge of SA to AA association. A given AA knows the attributes
of its peers (for e.g., which AA is responsible for SAs in Gate 11). Thus, upon
receiving this query, the AA will forward the query to the appropriate AA using
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the control network. Upon receiving the forwarded query, the AA for Gate 11
will issue commands to its local SAs (if need be) to satisfy the query. If the AA
already has the status of the SAs associated with it, then it can optimize by
responding to the query without having to issue commands to its SAs.

Priority Assignment Module

The function of the priority assignment module is three-fold: 1) control message
management, 2) relative priority assignment, and 3) data network management.
Each of these functions is implemented by separate sub-modules.

Control message management sub-module maintains a client request map.
Some of these requests may be from local clients, while others may be forwarded
from peer AAs. If the request needs local resources, then it hands it to the rel-
ative priority assignment sub-module. If it requires remote resources, then it is
forwarded as a control message to the peer AA. Communication is saved when
a new client request can be satisfied by a pending remote request to the peer.

Relative priority assignment sub-module assigns priority values to vari-
ous data streams. The priorities are assigned in the range {high,medium,low}.
ASAP uses only three values for priority assignment due to a simple and efficient
priority queue management and different streams are assigned to these queues.
All streams belonging to the queue for one priority level are treated in the same
way. This coarse grained priority assignment suits very well to ASAP. While
more fine grained priority assignments are possible, they increase the complex-
ity of implementation and overhead in queue managements.

The priority assignment happens over a series of steps and can take place in
two different ways. The first is a top-down approach where a client query has a
priority associated with it. In this case streams satisfying a query are assigned
the priority associated with the query. If one stream satisfies the queries from
multiple clients, the highest priority value among the queries is assigned to it.
The accumulated or average priority among the queries can lead to a priority
inversion. After a priority is assigned, streams are split into 3 groups for queues
of different priority levels.

With a bottom-up approach, ASAP assigns a priority to a stream. Since there
is no correlation among streams that meet distinct queries, this assignment oc-
curs when a client requests for more than one stream or the conditions in a
query are satisfied by multiple streams. In this situation AA assigns priority val-
ues ranging in {high,medium,low} to these streams. For instance, when a client
requests a highest motion detection limited by 3 streams, a stream with the
highest commotion will have {high} priority. As in a top-down approach, if a
stream is requested by multiple clients, ASAP chooses the highest priority.

Data network management sub-module sends control messages to SAs
indicating the data network to be turned on or off. The control messages also
contain the priority assigned to the data network. The same scheme of control
message management sub-module is used to manage request map of streams, and
both control and data network are optimized to reduce redundant transmission.
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Fig. 5. Resource usage (Centralized vs.
ASAP): A single object tracking system
based on RFID tag. Cameras produce
data (320x240 5 fps).
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Fig. 6. Testbed vs. Emulated: A single
object tracking system based on RFID tag
with 4 cameras, 4 motion sensors, and 4
RFID readers

5 Evaluation

Before we go into the details of our scalability results, it is worth looking at
how ASAP handles the concern that was raised in the introduction section.
With a simple setup of 4 cameras, 4 motion sensors, 4 RFID readers, and a
single client, we showed in Figure 1 that the CPU usage on a typical desktop
system is close to 100%. Figure 5 shows the same setup using the prioritization
strategy of ASAP and compares it with the 4-camera result from Figure 1. In
this setup, ASAP uses a specific RFID tag as a control cue to decide the camera
stream to be processed. As can be seen, use of control cues to select the camera
stream results in a 60% improvement in CPU load. This establishes a baseline
of expectation for performance improvement with the prioritization strategies of
ASAP, and the promise ASAP offers for reducing the infrastructure overload. In
the following subsections, we detail the experimental setup and the performance
results of our scalability studies.

5.1 Experimental Setup

Since our current testbed has only a limited number of real cameras and RFID
readers, the testbed is not enough for a large scale evaluation. Therefore, we
developed emulated sensors support using the uniform virtual sensor interface
discussed in Section 3. Due to the virtual sensor abstraction, an ASAP Agent
does not distinguish whether data comes from an emulated sensor or a real
sensor. The emulated camera sends JPEG images at a rate requested by a client.
The emulated RFID reader sends tag detection event based on an event file,
where different event files mimic different object movement scenarios.

To understand the impact of using emulated sensors on our results, we per-
formed an experiment to compare the resource usage of emulated sensors with
that of real sensors. Figure 6 shows the comparison. This experiment uses a net-
work of 4 camera sensors, 4 RFID, and 4 motion detection, for a single object
tracking. Because emulated sensors generate images and read from event files,
they consume more CPU and memory resources than real sensors. However, the
results show that the emulated setup is close enough to the real testbed thus
validating our scalability studies with emulated sensors.
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Table 2. Workload Parameters

Parameter Configuration

Number of SAs 20, 125, 245, 500, 980

Image Format M-JPEG 320x240 @ 5 fps

Number of Queries 1, 4, 8, 16, 32

Multi-Modality 1, 2, 3-Modality

Table 3. Cluster Specification

CPU Dual Intel Xeon 3.2 GHz

Memory 6GB

Network Gigabit Ethernet

Number of Nodes 53

OS Linux (Kernel 2.6.9)
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Fig. 7. Scalability results: The solid line represents the effect of the number of SAs on
different scalability metrics for a single query. The dotted lines point to the scalability
results when the number of queries is varied from 1 (Q = 1) to 32 (Q = 32) for a setup
with 980 SAs.

Workload

For the following experiments, workload used is as follows. An area is assumed
to be made of a set of cells, organized as a grid. Objects start from a randomly
selected cell, wait for a predefined time, and move to a neighbor cell. The number
of objects, i.e. the number of RFID tags, the grid size, and the object wait time
are workload parameters.

Table 2 summarizes the parameters used in our experiments. The number of
SAs is varied from 20 to 980. An ASAP agent is assigned for every 20 SAs. For
e.g., for a setup with 20 SAs, there will be one ASAP agent, and for a setup with
125 SAs, there will be 6 ASAP agents. Each ASAP agent runs on a distinct node
of a cluster (see Table 3) of dual Intel Xeon 3.2 GHz processors with 6GB of
RAM running Linux. A fixed experiment duration (15 minutes) is used through
all performance evaluations. Other experimental parameters are explained below
in the context of the specific experiments.

5.2 Scalability, Query Handling, and Latency

Figure 7 shows scalability results for tracking a single object when the number of
SAs is increased. This corresponds to an application scenario wherein the move-
ment of a suspicious individual carrying a boarding pass with a specific RFID is
tracked in an airport. To handle the increase in the number of cameras and other
sensors, more ASAP Agents are added (with 20:1 ratio between SAs and ASAP
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agent). Figure 7(a) shows the average CPU load over all the ASAP agents for
a particular configuration. On each node, processing cycles are used for ASAP
agent, SAs, and performance monitoring. With a single query, only one ASAP
agent in the entire system has to do the heavy lifting. While there is processing
cycles devoted to SAs and monitoring in each node of the distributed system
despite the fact that there is just a single query, the prioritization architecture
ensures that the CPU load due to the SAs on each node is pretty minimal. Since
the Y-axis is the CPU load averaged over all the nodes, there is an initial drop in
the average CPU load (from 25% to 19%) and then it remains the same at about
20%. The fact that the average CPU load remains the same despite the size of
the deployment (with 980 sensors we use 49 nodes of the cluster) is confirmation
of the scalability of the ASAP architecture. As a side note, the CPU load on
each node due to performance monitoring is 7.5%.

For the maximum workload configuration of 980 SAs, Figure 7(a) also shows
how ASAP scales with varying number of queries (clients). The multiple query
experiment assumes the queries are independent of one other and are emanating
from distinct clients. This corresponds to an application scenario wherein the
movement of multiple suspicious individuals carrying boarding passes tagged
with distinct RFIDs are tracked in an airport by different security personnel.
Increasing the number of queries increases the average CPU load, but at a very
low rate. For example, when the number of queries increases from one to 32, the
average CPU usage per node increases only by 4%.

Figure 7(b) shows the scalability of ASAP for delivering output (video streams)
to multiple clients. The workload (Table 2) fixes the camera data generation at 5
fps. Ideally, we would like to see this as the delivered frame rate to the clients. With
the single node vanilla system that we discussed in the introduction (Section 1), we
observed an output delivery rate of 3 fps (a companion measurement to Figure 1).
As can be seen in Figure 7(b), the average output delivery rate is over 4.26 fps
over the range of SAs we experimented with. The frame rate degrades gracefully
as the size of the system is scaled up (along the x-axis). Even when the number
of queries increase, the frames per second degrades gracefully, for e.g., with 32
queries, ASAP delivers (Figure 7(b)) on an average 3.87 fps over the range of SAs
we experimented with.

Figure 7(c) shows the end-to-end latency measurement as the system size is
scaled up (along the x-axis). The measured time is the elapsed time between
receiving a frame at the SA associated with a camera to the time it is delivered
to a client. This latency is 135 ms with a single AA. As the system is scaled up
the source SA and the destination client may be associated with different nodes
(i.e., different AAs as shown in Figure 3) requiring a forwarding of the data
stream. However, as can be seen from Figure 7(c), the forwarding only slightly
increases the end-to-end latency as the system is scaled up. On an average the
latency is 170 ms over the range of SAs we experimented with. Similarly, the
latency is not affected tremendously with the number of queries. In fact with
16 queries, there is even a reduction in the latency which may be attributed
to perhaps the source SA and the destination client being collocated at an AA
more often than not (thus reducing the forwarding messages incurred).
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5.3 Network Bandwidth

Another important resource to consider as we scale up the system size is the net-
work bandwidth. Similar to the CPU load experiments in Section 5.2, we wish
to understand how the network bandwidth requirement changes with increasing
system size and increasing number of queries. As a point of reference, the ob-
served raw bandwidth requirement per M-JPEG stream (from the Axis camera)
is 40 KBytes/sec to 60 KBytes/sec (at 5 fps) depending on the contents of the
image frame. There are three sources of demand on network bandwidth in the
ASAP architecture: an AA receiving data streams from sensors via associated
SAs (including forwarding to peer AAs), an AA sending data streams to clients,
and AAs communicating control information with another. The first two are de-
mands placed on the physical network by the data streams and the third by the
control streams. Figure 8 shows the network bandwidth used for a single query
when the system is scaled up. The send bandwidth remains roughly the same
and tracks the frames/sec delivered to the clients in Figure 7(b). The receive
bandwidth roughly doubles beyond one node and represents the data forward-
ing between AAs. However, it stays pretty much the same independent of the
system size showing the scalability of the ASAP architecture. The reason for the
doubling is due to the fact that the workload assumes random positioning of the
object being tracked (over the 15 minute window of experimentation time); thus
the larger the network the more the chance of data being forwarded between
AAs. However, there is at most one hop of forwarding due to the peer-to-peer
nature of the AA arrangement in the ASAP architecture. The control traffic
(small black line which is almost invisible) is just 2% of the total bandwidth
usage independent of the system size due to the variety of optimizations that we
discussed in Section 4.2.

Figure 9 shows the average bandwidth usage for increasing number of queries.
This experiment uses the maximum workload configuration of 980 SAs (Table 2).
As with the CPU load experiments, each client query is tracking a different ob-
ject. We do have results when all the clients request the same object to be tracked
but have not presented them in this paper for space considerations. As may be
expected such clustering of requests results in reducing the network requirements
(specifically the receive and control traffic bandwidths are reduced).
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5.4 Other Results

We have also conducted experiments to test false positives and false negatives.
ASAP uses a dynamic voting mechanism to reduce the ill effects of false positive
and false negatives. These mechanisms result in reduction in the range of 18%-
64% for false-positives and -negatives. Due to space limitations, we do not present
these experiments and results.

6 Related Works

There have been other interesting researches on architecture for camera sensor
networks, which have motivated ASAP’s two-tier approach of control and data
networks. IrisNet [6] provides an architecture for a worldwide sensor web. It also
shares commonalities with ASAP such as agent-based approach, two-tier net-
work, and heterogeneous sensors support. The major difference lies in the main
goal and target applications. IrisNet focuses on distributed database techniques
for gathering sensor data and querying the collected data. The result of query
in IrisNet is a digest of information culled from the collected data stored in the
distributed databases. The focus of ASAP is to prioritize and prune data collec-
tion in an application-specific manner to deal with the data explosion so that
irrelevant data is neither collected, nor processed, nor stored. Further, ASAP
provides a continuous stream of information as the query result (which may be
real-time data streams or digests of processing such real-time streams) satisfy-
ing the query constraints. The techniques for storing and retrieving data and
maintaining consistency of the distributed databases, a forte of IrisNet project,
is a nice complement to our work.

SensEye [7] is an architecture for multi-tier camera sensor network. SensEye
uses three tier networks, and sense-actuate control loop exists from lowest tier
(with low resolution cameras) to the highest (with higher resolution cameras).
While SensEye focuses on the reduction of power consumption, having 3-tiered
network can increase the complexity of software architecture. Tenet [8] also uses
a tiered architecture. However, the focus of Tenet lies on the architecture support
for simplifying application development and concurrent application, while ASAP
focuses on how to query camera sensors in a scalable manner.

A natural way to think about managing resources in situation awareness ap-
plications is to leverage the application dataflow. For example, RF 2ID [9] is a
middleware that uses the flow of tagged objects to create a group of nodes that
can process the data generated from those objects. Similarly, the concept of flow
is used to support QoS-aware routing [10]. In such situations, location-based cor-
relation [11] can facilitate the desirable clustering of the nodes. Also, techniques
from on-demand clustering [12] can be used to further reduce the amount of
communication required to do reclustering in a dynamic environment. Finally,
apart from using just location-based attributes, other attributes can also be used
to achieve an application-aware clustering [13].

Supporting QoS in network layers has been an active area of research because
of the growing popularity of cell phones and multimedia services. QoS-aware
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medium access control protocols have been proposed to handle different tech-
niques to match with different data types, for e.g., IEEE 801.11e handles four dif-
ferent data classes for better QoS support [14]. To handle real-time requirements
for QoS-aware routing, common techniques used are rate-control techniques at
data sources and route adjustments by finding least-cost and delay-constrained
links [15]. Similarly, rate control and congestion control mechanisms have been
used to provide QoS-aware transport protocols [16]. Our application-layer ap-
proach to do the priority assignment is complementary to and fits on top of the
above network layer techniques.

7 Conclusions

Situation awareness is an important application category in cyber-physical sys-
tems. Video-based surveillance is an example of this category of applications.
There is an explosion in the amount of data that has to be dealt with in such
applications, especially as the data sources scale up.

ASAP is a distributed systems architecture for camera based sensor networks
that deals with this data deluge. The unique feature of ASAP is a systematic
approach to prioritizing the data streams, and the subsequent processing of these
streams using cues derived from a variety of sensory sources. Further, the peer-
to-peer nature of the ASAP architecture ensures scalability to a large number
of camera sources, and for the dynamic allocation of computational resources to
hot spots in the application. Lastly, the system provides a systematic way for
reducing false positives and false negatives using multi- modal sensing.
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Abstract. We consider the following abstraction of recommendation systems.
There are players and objects, and each player has an arbitrary binary prefer-
ence grade (“likes” or “dislikes”) for each object. The preferences are unknown
at start. A player can find his grade for an object by “probing” it, but each probe
incurs cost. The goal of a recommendation algorithm is to find the preferences
of the players while minimizing cost. To save on cost, players post the results of
their probes on a public “billboard” (writing and reading from the billboard is
free). In asynchronous systems, an adversary controls the order in which play-
ers probe. Active algorithms get to tell players which objects to probe when they
are scheduled. In this paper we present the first low-overhead algorithms that
can provably reconstruct the preferences of players under asynchronous schedul-
ing. “Low overhead” means that the probing cost is only a polylogarithmic fac-
tor over the best possible cost; and by “provably” we mean that the algorithm
works with high probability (over internal coin tosses) for all inputs, assuming
that each player gets some minimal number of probing opportunities. We present
algorithms in this model for exact and approximate preference reconstruction.

1 Introduction

Recommendation systems are an important ingredient of modern life, where people
must make decisions with partial information [7]. Everyday examples include buying
books, going to a movie, choosing an on-line store etc. Computer-related examples
include, among others, choosing peers in a potentially hostile peer-to-peer environment,
or choosing a route in an unreliable network. The basic idea underlying such systems
is that users can use the experience reported by others so as to improve their prediction
of their own opinions. However, users may differ in their opinions either because they
have different “tastes,” or because their objectives may be different (e.g., in a peer-
to-peer network some users may wish to destroy the system). Obviously, only users
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whose preferences are similar to those of many others can enjoy the advantages of
recommendation systems.

Most recommendation systems in use rely on various heuristics, trying to match a
user with others of similar taste [6] or an item with similar items [8]. Recently, recom-
mendation systems were looked at from the algorithmic viewpoint, using the following
framework [5,4]. There are n users (also called “players”), and m products (a.k.a. “ob-
jects”), and each user has an unknown grade for each product. Each user can find his
grade for each product by means of “probing” that product, but each probe incurs a unit
cost (probing represents buying a book, or renting a movie etc.). The system provides
a public “billboard” on which users post the results of their probes for the benefit of
others.

Existing work. There are a few variants in the literature regarding the power of the
algorithm and its goal. In this paper, we assume that the role of the algorithm is to tell
the player which object to probe whenever the player gets a chance to probe. The goal
is to correctly output all (or most) of the player’s preferences, even though a player
may probe only a negligible fraction of the object space. This problem has been studied
before, and some previous solutions exist, each with its own drawback:

• Committee. Some algorithms (e.g., in [5,4]) require some players to probe all ob-
jects. This solution is problematic in practice both because it’s unfair, and because
it is vulnerable to malicious users, who may obstruct the selection of the committee,
or may gain control over some committee members.

• Separability assumptions. Some algorithms (e.g., in [5]) work only if the prefer-
ences of the players admit a “low rank approximation,” which translates to a severe
restriction on the solvable inputs. These restrictions do not appear to apply in many
cases.

• Synchrony. In [2,1], the algorithm is synchronous in the sense that time proceeds in
global rounds. Each player probes once in each round; results from previous rounds
are used to determine which objects to probe in the next round. Synchrony is hard
to implement in practice, even if we assume that players are willing to follow the
protocol: e.g., some players may wish to go much faster than others.

The first two disadvantages were removed recently [2,1].

Our contribution. In this paper, we take the next step by showing how to overcome the
latter difficulty: we present an asynchronous algorithm to reconstruct the full preference
vectors of players with similar tastes, regardless of the schedule in which they take
probing steps. The total probing cost to a set of players with the same taste is larger
than the best possible by only a polylogarithmic factor, provided that each player in the
set makes some minimal number of probes, or that the number of similar players is at
least a polylog fraction. We use a randomized scheduling methodology, which may be
interesting in its own right.

More precisely, we assume that there is an arbitrary schedule that specifies a sequence
of players so that at each step, the next player according to the schedule may take a
probing action. The algorithm can control only which object does that player probe,
based on the results posted on the billboard so far and random coin tosses. (We assume
that the schedule is oblivious, i.e., the schedule is fixed ahead of time and may not depend
on the outcome of coin tosses.) In this model the number of players that share a given
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taste is not very important: what counts is the total volume of probes done by players of
a given taste. Therefore, our primary complexity measure is the total work by a given
player set, i.e., the volume of probes performed by that set of users in a given schedule.

Clearly, the minimal amount of work that has to be done to find m grades is m
probes, because each object must be probed at least once. In this paper we show that
after the execution of Õ (m) probes by the members of a single taste group, the correct
vector appears as the output of one of the members, and thereafter it will propagate to
all other members of the taste group in Õ (n) additional probes (once they are given
sufficiently many probing opportunities). We note that our algorithms does not termi-
nate: rather, the output value is continuously updated, but once it has reached the correct
output the output remains correct.

Our main result for exact type reconstruction is as follows (Õ (·) and Ω̃ (·) ignore
polylogarithmic factors).

Theorem 1. Fix a schedule where Ω̃ (1) fraction of the first Õ (m) probes are by play-
ers with identical preferences. Then with high probability, after Õ (m) work by these
players, their output stabilizes on their true preferences.

A similar result holds for the approximate case.

Theorem 2. Fix a schedule where Ω̃ (1) fraction of the first Õ (m) probes are by play-
ers with preferences at distance D = Õ (1) from each other for some given D. Then
with high probability, after Õ (m) work by these players, their output is with distance
O(D) from their true preferences.

Our algorithms consider only players performing some minimal work, which is un-
avoidable. To see that, consider executions where there are k tastes, and each taste
group gets a 1/k fraction of the total number of probes. Symmetry considerations can
be used to prove that Ω(k) probes are needed for a user just to figure out to which group
he belongs (see [3] for a formal argument).

Organization. The remainder of this paper is organized as follows. We formally define
the model and some notation in Section 2. In Section 3 we describe and analyze the
algorithm for exact preference reconstruction. In Section 4 we present our algorithm for
approximate reconstruction of the preference vectors. The analysis of the approximate
algorithm is omitted from this extended abstract.

2 Preliminaries

Model. The input consists of n players and m objects. Each player p has an unknown bi-
nary grade for each object, and these grades are represented by a vector v(p) ∈ {0, 1}m

sometimes called the preference vector. An execution proceeds according to a schedule,
which is an arbitrary infinite sequence of player identifiers. In a single step of an execu-
tion, the player selected by the schedule may probe a single object, i.e., learn its grade
for that object. The identity of the object probed by the player is under the control of
the local algorithm run by the player. We assume that the results of all previous probes
by all players are available to everyone, and in particular they may be used by players
to determine which object to probe next. The algorithm maintains, at each player p,
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an output vector g(p), which is an estimate of the preference vector v(p). The output
vector changes over time. The goal of the algorithms in this work is to use similarity
between players in order to minimize the total number of probes they perform. We con-
sider two cases: in the exact reconstruction case, the goal is that g(p) will stabilize on
v(p) exactly. In the approximate case, we are satisfied if from some point on, g(p) dif-
fers from v(p) in no more than D grades, for some given parameter D. In the former
case, a player can rely only on other players with exactly the same preference vector,
while in the latter case, a player may also “collaborate” with players whose preference
vectors are close to his own.

Comments. First, for simplicity of presentation, we shall assume in the remainder of
this paper that m = n. The extension to arbitrary number of objects is straightforward.
Second, we note that it may be the case that some players do not report their true results.
For our purposes, such players are not considered to be similar to honest players with
the same preference vector.

Notation. Given a grade vector v and a set of coordinates (i.e., objects) O, let v|O denote
the projection of v on O, i.e., the vector resulting from v by picking only the coordinates
in O. For any two vectors u, v of the same length, we denote by dist(v, u) the Ham-
ming distance between u and v. For a set O of coordinates, we define distO(v, u) =
dist(v|O, u|O), i.e., the number of coordinates in O on which the two vectors differ.

Unless otherwise stated, all logarithms in this paper are to base 2. Õ (·) and Ω̃ (·)
ignore polylogarithmic factors.

2.1 Building Block: Algorithm SELECT

One of the basic building blocks we use extensively in our algorithms is the oper-
ation of selection, defined as follows. The input to a player p consists of a set V
of grade vectors for a set of objects O, and a distance bound D. It is assumed that
min {dist|O(v(p), v) : v ∈ V } ≤ D. The goal of the algorithm is to find the vector
from V which is closest to v(p) on O.

SELECT(V, D)
(1) Repeat

(1a) Let X(V ) be set of coordinates on which some two vectors in V differ.
(1b) Execute Probe on the first coordinate in X that has not been probed yet.
(1c) Remove from V any vector with more than D disagreements with v(p).
Until all coordinates in X(V ) are probed or X(V ) is empty.

(2) Let Y be the set of coordinates probed by p throughout the algorithm. Find the
set of vectors U ⊆ V closest to v(p) on Y , i.e., U = {v ∈ V : ∀u ∈ V :
distY (u, v(p)) ≥ distY (v, v(p))} .

(3) Return a randomly selected vector from U .

The main property of SELECT is summarized in the following lemma.

Lemma 1 ([1]). If dist(v, v(p)) ≤ D for some v ∈ V , then the output of SELECT(V, D)
by player p is the closest vector to v(p) in V . The total number of probes executed in
SELECT(V, D) is less than (D + 1)|V |.

To aid readability, we write SELECT EXACT(V ) for SELECT(V, 0).
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2.2 Randomized Multiplexing

In our algorithms, we use a simple methodology for running multiple sequential tasks in
parallel by a single player. In this extended abstract we only give an informal overview
of the general framework.

The setup is as follows. Without getting into the details of the local computational
model, let us assume that there is a well-defined notion of a sequential program, that
consists of a sequence of atomic steps. Given the notion of a sequential program, we
define the concept of a task recursively, as either an infinite-length sequential program,
or a tuple rmux(p1 : T1, . . . , pn : Tn), where n ≥ 1, and for all 1 ≤ i ≤ n, Ti is a task
and pi is a positive real number called the relative allocation of Ti. It is required that∑n

i=1 pi = 1.

Fig. 1. Example of a mul-
tiplexing tree

Graphically, a task can be visualized as a rooted tree, where
edges are labeled by real numbers between zero and one, and
leaves are labeled by sequential programs. For example, con-
sider the task

T0 = rmux(1
3 :T1,

1
2 :T2,

1
6 :T3) ,

where T1 = rmux(1
2 : T11,

1
2 : T12), and each of the tasks

T2, T3, T11 and T12 is a sequential program. This task is illus-
trated in Figure 1.

The semantics of executing a task is like that of a multitasking operating system:
each sequential program has its own state, called context. The sequential programs are
executed in parallel, one step at a time. A time slot is allocated to a program at leaf �
with probability which is the product of the labels on the path leading from the root
to �. (In the figure, for example, the allocations of T11, T12 and T3 is 1

6 each.). In each
system step, a random leaf is chosen according to its probability, and a single instruction
is executed in the context of that leaf’s program; as a result, the context is updated (and
possibly some global side effects take place). The contexts of all other leaf programs
remain unchanged.

Using standard large deviations bounds, we have the following result for a set of
players executing the same task asynchronously in parallel.

Theorem 3. Consider an asynchronous schedule of T steps, and suppose all players
execute the same task T . Let T0 be a sequential program whose probability in T is p.
Then for any δ > 0: if p · T ≥ 3 log 2/δ, then with probability at least 1 − δ, the total
number of steps of program T0 done by all players together is p · T · (1 + o(1)) as
T → ∞.

Intuitively, Theorem 3 says that if the expected number of steps that T should get is at
least logarithmic, then with high probability the absolute deviation from the expected
value is smaller than any positive constant factor.

The rmux construct is useful for stabilizing sequential programs, namely programs
whose output stops changing after sufficient work was done. Even without explicit in-
dication of stabilization, when programs with acyclic dependencies are run in parallel
using rmux, their output will stabilize in a bottom-up fashion.



Asynchronous Active Recommendation Systems 53

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1
1 . . . v2

n/2

...
. . .

... ?
v

n/2
1 . . . v

n/2
n/2

v
n/2+1
n/2+1 . . . v

n/2+1
n

?
...

. . .
...

vn
n/2+1 . . . vn

n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Fig. 2. Matrix representation of the synchronous algorithm. Rows represent players and columns
represent objects. After returning from the recursion, the entries in two quadrants are unknown.

3 Exact Preference Reconstruction

In this section we develop an algorithm for exact types. More formally, let P be any set
of players with the same preference vector vP . Each player p maintains an output vector
g(p). The goal of the algorithm is to minimize the total number of probes by players in
P until their output vector stabilizes on vP precisely. We start with some intuition and
outline the general structure of the algorithm. In Section 3.1 we specify the algorithm,
and in Section 3.2 we analyze it.

The synchronous algorithm. Our starting point is the synchronous algorithm D from
[2]. To gain some intuition, we briefly review the way the synchronous algorithm works.
First, it is assumed that a lower bound α on the relative frequency of players with
exactly the same taste is given. The algorithm proceeds as follows. Given a set of players
and a set of objects, the players and objects are split into two subsets each. Each half
of the players recursively determines the values of half of the objects, and then the
results are merged. Figure 2 gives a matrix representation of the situation after returning
from the recursive call. Merging (i.e., filling in the missing entries) is done by applying
SELECT EXACT to the preference vectors that are sufficiently popular in the other half,
where “sufficiently popular” means that the preference vector is supported by, say an
α/2 fraction of the players. This guarantees correctness, because with high probability,
at least an α/2 fraction of any large enough random player set are players of the given
type (whose global frequency is at least α).

Asynchronous algorithm: basic structure and main ideas. Algorithm D does not
work in the asynchronous case, because it is an adversarial schedule that controls which
player gets to probe and when. Hence the number of players of a specific type that exe-
cute the algorithm at a given recursion level may be arbitrary, and the crucial popularity
threshold becomes meaningless. If we try all possible vectors, the cost to a player in-
creases to the trivial Θ(n).

Our approach to solve this difficulty can be intuitively described as based on the
following ideas. Consider a specific type P . Clearly, the amount of work a single player
p ∈ P needs to do (on average) is inversely proportional to the amount of help he gets
from other players of P . In our case, let us first assume that the density (i.e., fraction)
of probes done by players of P in a given prefix of the execution is some known value
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α (provided by an oracle to be implemented later). Note that even when we are given
the density of the probes by players of P , we cannot readily apply the synchronous
algorithm, because, for example, it may be the case that all these probes are allocated
by the schedule to the same player, which, according to D, is supposed to probe only a
few objects. We cope with this problem using randomization as follows.

First, as a matter of convenience, we view the recursive partitioning of the object
set as a complete binary tree, with the root corresponds to all objects, each of its
two children to half of the objects etc. Each leaf corresponds to about 4/α objects.
In Algorithm D, the players are arranged in a parallel tree, and the execution proceeds
from the leafs toward the root level by level, where in each node each player executes
SELECT EXACT.

Here, we use spatial and temporal randomization to overcome the asynchronous
schedule. By spatial randomness we mean that when a player gets a chance to probe,
he effectively assumes the identity of a random player. This way the work is more-or-
less evenly divided over the objects. By temporal randomness we mean that instead of
going over the leaf-root path in an order, in our algorithm, after the player have cho-
sen a random identity (and thus a leaf), he chooses a random node along the path from
that leaf to the root. This ensures that all nodes will get their “right” amount of work—
but not necessarily in the right order. To prove correctness, we show that node outputs
stabilize to their correct values inductively, starting from the leaves and ending at the
root. We note that this randomization increases the required number of probes by an
O(log n) factor.

Two more ideas are used in the final algorithm. First, we eliminate the assumption
that the density α of the probes by players of P is known by running multiple in-
stances of the algorithm in parallel, using the rmux construct. Version i works under
the assumption that α ≥ 2−i. The player chooses among the various instances us-
ing SELECT EXACT. Second, consider the case where some players wake up after most
many players have already found the correct vector. To avoid duplicating the work, each
player continuously looks for a good complete recommendation, by trying all possible
output vectors generated by other players. We show that once the correct output appears
as g(p) for some player, it spreads quickly to all working players.

Finally, let us address the issue of the number of probes by a player. We note that
the number of probes by a player in the synchronous algorithm is O( log n

α ). In the asyn-

chronous algorithm, only players doing Ω( log3 n
α ) probes are useful for the algorithm.

Another way to guarantee that sufficient work is useful is to require that the total work
done by player of the given type is at least Ω(n log3 n/α).

We present the algorithm in a bottom up fashion: first, we describe an algorithm
that assume that the density of the probes by players of P is known, and then give the
top-level algorithm.

3.1 The Algorithm

Algorithm for a given α. The objects are recursively divided into a tree structure as
described above. Given a node v, obj(j) denotes the set of objects associated with v. If
v is not a leaf, then it has two children denoted c1(v) and c2(v). Each node v has a list
G(v) of possible grade vectors, posted by the players.
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The players work in elementary batches called jobs, where each job consists of 4/α
probes. Jobs are executed within the context of a single tree node. The goal of a job at
node v is to append another vector to G(v). The job algorithm at a node v is as follows.

JOB(v) // 0 < α ≤ 1 is a given parameter
(1) If v is a leaf, probe all objects in obj(v) and post the results in G(v).
(2) If v is an internal node:

(2a) Read the list G(c1(v)) and let B1 be the set of the 2/α most popular vectors in
it (break ties arbitrarily). Similarly, construct a set B2 of the 2/α most popular
vectors in G(c2(v)).

(2b) g ← concatenation of SELECT EXACT(B1) and SELECT EXACT(B2); append
g to G(v).

(2c) If v is the root, g(p) ← SELECT EXACT({g(p), g}).

Note that since the schedule is asynchronous, SELECT EXACT in Step 2b is not done
atomically (Step 2c consists of a single probe). Asynchrony has no effect on the output
if v is a leaf (Step 1), because the set of objects probed in this case is always obj(v). But
if v is an internal node, the situation is different: while the probing of Step 2b is carried
out, the contents of the lists G(c1(v)) and G(c2(v)) may change. In our algorithm these
lists are read once, at the beginning of the job (Step 2a) resulting in lists B1 and B2
whose contents is then frozen throughout the remainder of the execution of the job.

The algorithm for a given α is simply “execute jobs at random:”

Algorithm BASIC(α)
Repeat forever: pick a random node v and execute JOB(v).

Note that Algorithm BASIC(α) is a non-terminating sequential program. Its output is
the vector g(p) (written by a root job), which changes over time.

Algorithm for Unknown α. We now explain how to execute the algorithm without
knowledge of α. Let P be a set of players with the same preference vector vP . As we
show later, BASIC(α) guarantees that for some player p0 ∈ P , we will eventually have
g(p0) = vP , provided that α is the relative density of probes by players of P . Thus, we
need to solve two problems: how to choose the right value of α, and how to disseminate
vP to the other players of P , once vP is discovered. Our approach is to solve both
problems using the rmux construct. Choosing the right value of α is done by trying all
log n powers of 1/2 in parallel as possible values of α. To disseminate vP , each player
p repeatedly compares his own output g(p) (which is common to all his instances of
PULL and BASIC) with the output of a randomly chosen player. Formally, we define the
following simple task:

Algorithm PULL(V, D)
Repeat forever:

pick a random vector v ∈ V and execute g(p) ← SELECT({g(p), v} , D).

The main algorithm can now be specified as follows. Let αmin be the smallest value
of α for which the algorithm is designed, and define I = log(1/αmin) (note that I =
O(log n) if the schedule length is polynomial in n). We run I tasks in parallel, and the
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PULL task. We note that the set of vectors sent to PULL changes over time: if g(p′) is
chosen in PULL, its current value is copied over and sent to SELECT EXACT.

Main Algorithm for Exact Reconstruction

rmux(
1/2: rmux

( 1
I :BASIC(1

2 ), 1
I :BASIC(1

4 ), . . . , 1
I :BASIC( 1

2I )
)
,

1/2: PULL({g(p′) | p′ is a player} , 0) // the set sent to PULL is dynamic
)

3.2 Analysis

We now analyze the main algorithm. Fix a specific set of players P with identical pref-
erence vector vP . Below, we first do some straightforward accounting, and then analyze
the instance of the basic algorithm that runs with the “correct” α value. We show that
after Õ (n) work in that instance, at least one player in P holds vP in its output vector.
We show that after this point, only Õ (m) more work in total is needed until that output
reaches all other players in P .

We start with some necessary notation. Fix an arbitrary schedule S. Define TP =
32In log2 n = Õ (n), and let S0 be the shorest prefix of S that contains TP probes
by players in P . We denote T0 = |S0|. Let α0 = TP /T0. We assume that α0 ≥
2−I . Finally, define T1 = T0/2I . As immediate corollaries of Theorem 3, we have the
following.

Lemma 2. With high probability, each instance of the basic algorithm gets T1(1+o(1))
probes in S0, of which an α0(1 + o(1)) fraction are executed by players in P .

Lemma 3. Consider an instance A = BASIC(α) run by the main algorithm. The num-
ber of probes executed at a given node of A in S0 is, with high probability, 2T1

αn (1+o(1)),
of which an α0(1 + o(1)) fraction are done by players of P .

Define α1 = 4nI log n
TP

α0 = α0
8 log n , and let i0 = 
log 1/α1�. Henceforth, we focus

on the specific task executing BASIC(2−i0). Let us call this task Ai0 . We will use the
following concept.

• A leaf � is said to be done at time t if at least log n jobs were completed by players
of P in � in the time interval (0, t].

• An internal node v at height h > 0 is said to be done at time t if there exists some
time t′ < t, such that both children of v are done by time t′, and at least log n jobs
of v were fully executed by players of P in the time interval (t′, t].

Note that done is a stable predicate: once a node is done, it is considered done through-
out the remainder of the prefix of S containing T0 probes. The significance of the notion
is made apparent in the following key lemma.

Lemma 4. Consider the execution of Ai0 . Suppose a node v is done at time t0. Then
at all times t0 ≤ t ≤ T0, at least α1/2 fraction of the vectors in G(v) are the correct
grade vectors of players in P for obj(v).
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Proof: By induction on the height of v. For the base case, suppose that v is a leaf. By
Lemma 3, the total number of probes at v at any given time is no more than 2T1

α1n (1 +
o(1)), and since each job contains 4

α1
probes, the total number of jobs in a leaf v (and

hence the size of G(v)) is at most T1
2n (1 + o(1)). Therefore, once the total number of

jobs by players of P in v exceeds α1T1
2n = 4nI log n

T0
· T0

2I · 1
2n = log n , the number of

vectors in G(v) that are correct for P is at least an α1/2 fraction, as required.
For the induction step, assume that the lemma holds for height h − 1 and consider a

node v at height h. Let u1 and u2 be the children of v. By definition and the induction
hypothesis, we have that starting at the time t′ when both u1 and u2 were done, all
jobs at v had the correct vectors of them among their B1 and B2 lists (Step 2a of the
job algorithm). By the correctness of SELECT EXACT, each of these jobs will write the
correct output in G(v). Next, by Lemma 3, we have that the total number of probes in v
is again at most 2T1

α1n (1+ o(1)), which means that |G(v)| ≤ T1
2n (1+ o(1)), because each

job at v consists of 4/α1 probes. As in the base case, once at least α1T1
2n = log n jobs are

completed at node v after its children are done, the correct vector for the players of P
will be in the most popular vectors of v.

The proof of Lemma 4 hints at the main argument of the theorem: we need to show
that the nodes in the computation tree become gradually done. The remaining difficulty
lies in the asynchrony: Lemma 3 talks about the total number of probes by players in
P throughout the execution, while Lemma 4 talks about jobs, and at specific times.
However, there is a logarithmic factor between α0 used in Lemma 3 and α1 used in
Lemma 4; as we show next, this additional freedom, together with a guarantee on the
minimum work done by each player, suffice to prove the result.

Lemma 5. If each player in P executes at least 256I log2 n
α0

probes, then with high prob-
ability, each player in P executes at least 2 log n jobs in instance Ai0 .

Proof: The size of each jobs is 4
α1

= 32 log n
α0

. The expected number of probes by each

player in P is at least 128 log2 n
α0

in instance Ai0 . By Chernoff inequality the probability

each player probes less than half of the expectation is at most exp(−Ω( log2 n
α0

)). Since

there are at most n players each of them probes, with high probability, at least 64 log2 n
α0

times, i.e., 2 logn jobs.

Lemma 6. If the number of probes in Ai0 by players in P is α0T1 ≥ 16n log2 n, then
at time T0 the root node is done w.h.p.

Proof: Consider only work done by players of P during the execution of Ai0 . Define
time intervals inductively as follows: t0 is the start of the schedule. Suppose that th
is defined, for 0 ≤ h < H , where H = log αn

4 is the tree height. Define th+1 to be
the first time in which we have α1n log n

2h completed jobs that were executed at nodes at
height h and started after th. Let us call these jobs “effective jobs.”
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To prove the lemma, it suffices to show that we can define these time points up to
tH+1, and that tH+1 ≤ T0: this implies that at time tH+1 ≤ T0, the root node is done.
First, note that a job that starts in the interval (th, th+1] may finish its execution outside
that interval. However, for any given h ≥ 0, a player may start at most one job in
[th, th+1] that doesn’t finish in that interval. Since by Lemma 5, each player executes
at least 2 logn jobs, and since H ≤ log n, at least half of the jobs are fully executed
within one time interval.

We now prove that tH+1 ≤ T0. Consider jobs executed within one time interval. In
the first interval, half of the jobs are in leaves, so w.h.p., t1 occurs before 2α1n log n(1+
o(1)) such jobs are executed. Since the number of effective jobs is halved from one time
interval to the next, and since the number of nodes in height h is half the number of
nodes in height h − 1, in each interval there are at most 2α1n log n(1 + o(1)) jobs, and
tH+1 is before 2α1Hn logn(1+o(1)) ≤ 2α1n log2 n jobs. Since by time T0 16n log2 n
probes are executed by players in P , the number of jobs executed within single interval
is at least 16n log2 nα1

4 · 1
2 ≥ 2α1n log2 n, and it follows that tH+1 ≤ T0.

For any h, the α1n log n
2h effective jobs are distributed over α1n

2h+2 nodes. By Chernoff
bound each node is associated with at least log n effective jobs with probability at least
1 − 1

n9/8.
. As there are α1n

2 = O(n/ log n) nodes then by time tH+1 all nodes in the
computational tree are done with high probability.

By Lemma 2, the schedule for Ai0 consists of 16n log2 n
α0

probes, of which an α0 fraction
are by players in P . Therefore, by Lemmas 6 and 4, by time T0, the root node of Ai0

is done, and at least one player in P has g(p) = vp. Next, we show that the PULL

task allows players in P learn this vector in “epidemic” style. The key is that once a
player p ∈ P tests vP in PULL, that player will eventually assign g(p) ← vP , and
furthermore, p will never change his g(p) value ever again, because it will never find
it to be inconsistent with his preferences. As more players assign vP to their output
vector, the probability of a player to choose it in PULL increases.

For the next lemma, call a probe by player p ∈ P non-stabilized if g(p) �= vP at the
time of the probe.

Lemma 7. Suppose that the root node of Ai0 is done at some point. Then after
O(n log n) additional non-stabilized probes, we have g(p) = vP for all p ∈ P .

Proof Sketch: Once Ai0 is done, at least one player p0 ∈ P executed JOB(root) when
c1(root) and c2(root) are already done, and after that job is done we have g(p0) = vP .
Let σl, for l > 0, be a random variable whose value is the number of non-stabilized
probes done starting at the time that the lth player in P assigns vP as its output, and
ending at the time that the (l + 1)st such player assigned vP as its output.

Consider σl: With probability 1/2, the algorithm chooses a random player and ex-
amines its opinion. As there are l players holding vP as their output, the probability
of each probe to produce the right vector is l

2n , and hence the expected value of σl is

2n/l. It follows that after expected
∑|P |−1

l=1
2n
l < 2n ln |P | non-stabilized probes, all

|P | players will have vP as their output. Using standard arguments, it can also be shown
that O(n log n) such probes are also sufficient w.h.p.
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We can now conclude with the following theorem, which combines the previous results
to show the full picture: if enough probes are done by players with the same preference
vector, their output stabilizes on their true preference vector.

Theorem 4. Let S be a schedule such that at least α fraction of the probes are by
players with exactly the same preference vector vP running the algorithm for exact
reconstruction. Then with high probability, after total work of (1 + 8

α )33nI log2 n, the
output of all these players has stabilized on the correct value, where I ≥ log(1/α).

Proof: Let P be the players with the same preference vector. Assume there are at least
(1 + 8

α )33nI log2 n probes by players in P in S.

Consider the prefix T of the schedule in which 32+264/α
33+264/αα|S| > (32 + 264

α )nI log2 n

probes are by players in P . The fraction of probes by players in P in this prefix is α′ >
32
33α. The number of players in P that don’t make at least 256I log2 n

α′ < 264I log2 n
α probes

is at most |P | ≤ n. Therefore, at least 32nI log2 n probes are made by players who

probe at least 256 log3 n
α′ times each. By Lemmas 6 and 4, the root node at Ai0 is done

and at least one player in P has its preference vector as its opinion at the end of the prefix
T . By Lemma 7, after at most n logn additional non-stabilized probes, all players in P
learn their preference vector.

Theorem 1 is an immediate corollary of Theorem 4.

4 Approximate Preference Reconstruction

In Section 3 we presented an algorithm for reconstructing the preference vectors without
any error (w.h.p.). One drawback of that algorithm was that collaboration took place
only among players with identical preferences. In many cases, however, the number of
players that share the exact same preferences may be small. In this section we extend
on the results of Section 3 and present an asynchronous algorithm that allows players
to use recommendations of any player whose preference vector differs from their own
in no more than D objects, for some given parameter D. The output of the algorithm,
at each player, may contain O(D) errors. The total work done by the players of the
similar preferences in our algorithm is Õ

(
nD5/2

)
. The analysis of the algorithm is

omitted from this extended abstract. For simplicity, we assume D = O(log n) here.

4.1 Algorithm

The asynchronous algorithm is based on the synchronous algorithm SMALL presented
in [1]. The algorithm works as follows. Let P be set of players and D ≥ 0 be such
that dist(v(p), v(p′)) ≤ D for any p, p′ ∈ P . As in the exact reconstruction case, we
first assume that the algorithm is given the density parameter α. Conceptually, the al-
gorithm consists of three phases. In the first phase, the object set O is partitioned into
s = O(D3/2) random parts denoted {Oj}s

j=1, and Algorithm BASIC(α) is run by all
players on each Oj . Algorithm BASIC is guaranteed to succeed only if there are suffi-
ciently many probes by players whose preferences on the objects of Oj are identical.
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Fortunately, it can be shown that with probability at least 1
2 , a random partition of O

will have, in each part, “many” players in P fully agreeing. Therefore, if K indepen-
dent random partitions of O are used, then one of them will succeed in all parts with
probability at least 1 − 2−K .

Typically, a player in P shares his exact preferences with sufficiently many other
players in P and have correct output for BASIC(α) in some of the Oj parts, but in other
parts, his result of BASIC(α) is unpredictable. To remedy this problem, in the second
phase of the Algorithm, players adopt as their output, for each object part Oj , the closest
of the most popular output vectors of Algorithm BASIC(α). In the full paper we show
that concatenating these s partial vectors by a player in P results in a preference vector
that contains no more than 5D errors.

Due to asynchrony, it may be the case that only a single player in P arrives at the
correct vector in the second phase. The third phase of the algorithm disseminates this
vector to other players using the PULL mechanism. This phase may introduce D more
errors, so that the final output may contain up to 6D errors.

Asynchrony also implies that sequential execution of the phases cannot be guaran-
teed. We solve this problem by running all sequential programs in parallel, using the
rmux construct. This ensures that at the price of polylogarithmic blowup in the number
of probes, once the output of one phase has stabilized, it can be used as input to the next
phase.

Finally, the assumption of a given parameter α is lifted by running a logarithmic
number of possible α values in parallel. See the complete algorithm below.

Let s = 100D3/2. The algorithm uses K = O(log n) random partitions of O: for
1 ≤ k ≤ K , the kth partition is O = Ok

1 ∪ Ok
2 ∪ . . . ∪ Ok

s . The top level algorithm
below uses the task PASTEi,k, which pastes together all s components of the output
corresponding to α = 2−i in the kth partition.

Algorithm APPROX(D)

rmux(
1/3: rmux( 1

K·s·I : BASIC(2−i) on Ok
j , for randomly chosen 1 ≤ i ≤ I,

1 ≤ j ≤ s, 1 ≤ k ≤ K) ,
1/3: rmux( 1

K·I : PASTEi,k for randomly chosen 1 ≤ i ≤ I, 1 ≤ k ≤ K) ,
1/3: rmux(PULL({g(p′) | p′ is a player} , 6D)
)

Let Ai,k
j be the k execution of the basic algorithm for α = 2−i on the object set Ok

j ,
let the output of each such execution at given time be the 2i+1 most popular vectors in
the root. Each player p maintains an output g(p) which changes over time. Note this
g(p) isn’t updated by the task JOB(root) as in the algorithm for exact reconstruction.

Operator PASTE : Algorithm PASTE, specified below, gets as input a partition index k,
an α value 2−i (repersented by i), and continuously updates the player’s output vector
for this case.
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PASTEi,k

Repeat forever:
(1) For each j ∈ {1, . . . , s}:

Let V be the 2i+1 most popular vectors in G(root) of Ai,k
j

ui,k
j ← SELECT(V, D)

(2) Let u be the concatenation of ui,k
j over all j.

Execute PULL({u, g(p)} , 5D).

As the output of Ai,k
j might change over time, it is read once at the start of the procedure

and frozen throughout the execution. Note that each execution of this operator takes
O(sD2i+1) probes.

The performance of the algorithm is summarized in the theorem below (proof
omitted). Theorem 2 is an immediate corollary of Theorem 5 below.

Theorem 5. Let P be a set of players such that dist(p, p′) ≤ D for any p, p′ ∈ P . Let S
be a schedule with a prefix of length T = Ω(nD5/2I log3 n

α2 ), of which at least fraction α
of the probes are by players of P executing Algorithm APPROX. By the end of the prefix,
with high probability, there exists a player p0 ∈ P with dist(g(p0), v(p0)) ≤ 5D. In
O(Dn log n) additional work by players in P with dist(g(p), v(p)) > 6D, all these
players will have, with high probability, dist(g(p), v(p)) ≤ 6D.
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Abstract. This report describes a necessary and sufficient test for the schedu-
lability of a set of sporadic hard-deadline tasks on a multiprocessor platform,
using any of a variety of scheduling policies including global fixed task-priority
and earliest-deadline-first (EDF). The contribution is to establish an upper bound
on the computational complexity of this problem, for which no algorithm has
yet been described. The compute time and storage complexity of the algorithm,
which performs an exhaustive search of a very large state space, make it practical
only for tasks sets with very small integer periods. However, as a research tool,
it can provide a clearer picture than has been previously available of the real suc-
cess rates of global preemptive priority scheduling policies and low-complexity
sufficient tests of schedulability.

1 Introduction

This report describes a “brute force” algorithm for determining whether a hard-deadline
sporadic task system will always be scheduled so as to meet all deadlines, for global
preemptive priority scheduling policies on multiprocessor platforms. The algorithm is
presented in a generic form, that can easily be applied to earliest-deadline-first, fixed-
priority, least-laxity-first, earliest-deadline-zero-laxity, throwforward, and a variety of
other scheduling policies.

Symmetric multiprocessor platforms have long been used for high performance real-
time systems. Recently, with the introduction of low-cost multi-core microprocessor
chips, the range of potential embedded applications of this kind of architecture as ex-
panded rapidly.

The historically dominant approach to scheduling real-time applications on a multi-
processor has been partitioned; that is, to assign each task (statically) to a processor, and
then apply a single-processor scheduling technique on each processor. The alternative
is global scheduling; that is, to maintain a single queue of ready jobs and assign jobs
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from that queue dynamically to processors. Despite greater implementation overhead,
the global approach is conceptually appealing in several respects.

Several sufficient tests have been derived for the schedulability of a sporadic task
set on a multiprocessor using a given scheduling policy, such as global preemptive
scheduling based on fixed task priorities (FTP) or deadlines (EDF) [1,2,3,5,6,7,10,14].
For example, it can be shown that a set of independent periodic tasks with deadline
equal to period will not miss any deadlines if it is scheduled by a global EDF policy
on m processors, provided the sum of the processor utilizations does not exceed (m −
1)umax + umax, where umax is the maximum single-task processor utilization [14,10].

One difficulty in evaluating and comparing the efficacy of such schedulability tests
has been distinguishing the causes of failure. That is, when one of these schedulability
tests is unable to verify that a particular task set is schedulable there are three possible
explanations:

1. The problem is with the task set, which is not feasible, i.e., not able to be scheduled
by any policy.

2. The problem is with the scheduling policy. The task set is not schedulable by the
given policy, even though the task set is feasible.

3. The problem is with the test, which is not able to verify the fact that the task set is
schedulable by the given policy.

To the best of our knowledge there are no previously published accounts of algorithms
that can distinguish the above three cases, for global multiprocessor scheduling of spo-
radic task sets with arbitrary deadlines. The intent of this paper is to take one step toward
closing this gap, by providing an algorithm that can distinguish case 2 from case 3.

The algorithm presented here is a simple one, based on modeling the arrival and
scheduling processes of a sporadic task set as a finite-state system, and enumerating
the reachable states. A task set is schedulable if and only if no missed-deadline state is
enumerated. Although the computational complexity of this state enumeration process
is too high to be practical for most real task systems, it still interesting, for the following
reasons:

1. At least one prior publication [6] has incorrectly asserted that this problem can
be solved by a simpler algorithm, based on the presumption that the worst-case
scenario occurs when all tasks have jobs that arrive periodically, starting at time
zero.

2. To the best of our knowledge, no other correct algorithm for this problem has yet
been described.

3. This algorithm has proven to be useful as a research tool, as a baseline for evalu-
ating the degree to which faster, but only sufficient, tests of schedulability fail to
identify schedulable task systems, and for discovering interesting small examples
of schedulable and unschedulable task sets.

4. Exposure of this algorithm as the most efficient one known for the problem may
stimulate research into improved algorithms.

Section 2 reviews the formal model of sporadic task systems, and what it means for a
task system to be schedulable. Section 3 describes a general abstract model of system
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states, and Sections 4 and 5 explain how to compute the state transitions in the model.
Section 6 shows how this model fits several well known global multiprocessor schedul-
ing policies. Section 7 describes a generic brute-force schedulability testing algorithm,
based on a combination of depth-first and breadth-first search of the abstract system
state graph. Section 8 provides a coarse estimate of the worst-case time and storage
requirements of the brute-force algorithm. Section 10 summarizes, and indicates the
direction further research on this algorithm is headed.

2 Sporadic Task Scheduling

A sporadic task τi = (ei, di, pi) generates a potentially infinite sequence of jobs, char-
acterized by a maximum (worst case) compute time requirement ei, a maximum re-
sponse time (relative deadline) di , and a minimum inter-arrival time (period) pi. It is
assumed that ei ≤ min(di, pi), since otherwise a task would be trivially infeasible. A
sporadic task system τ is a set of sporadic tasks {τ1, τ2, . . . , τn}.

An arrival time sequence ai for a sporadic task τi is a finite or infinite sequence of
times ai,1 < ai,2 < · · · such that ai,j+1 − ai,j ≥ pi, for j = 1, 2, . . .. An arrival time
assignment r for a task set is a mapping of arrival time sequences ai to tasks τi, one for
each of the tasks in τ . An arrival time assignment and a task set define a set of jobs.

An m-processor schedule for a set of jobs is a partial mapping of time instants and
processors to jobs. It specifies the job, if any, that is scheduled on each processor at
each time instant. For consistency, a schedule is required not to assign more than one
processor to a job, and not to assign a processor to a job before the job’s arrival time or
after the job completes. For a job arriving at time a, the accumulated compute time at
time b is the number of time units in the interval [a, b) for which the job is assigned to a
processor, and the remaining compute time is the difference between the total compute
time and the accumulated compute time. A job is backlogged if it has nonzero remaining
compute time. The completion time of a job is the first instant at which the remaining
compute time reaches zero. The response time of a job is the elapsed time between
the job’s arrival time and its completion time. A job misses its absolute deadline if the
response time exceeds its relative deadline.

The laxity (sometimes also known as slack time) of a job at any instant in time prior
to its absolute deadline is the amount of time that the job can wait, not executing, and
still be able to complete by its deadline. At any time t, if job J has remaining compute
time e and absolute deadline d, its laxity is �J(t) def= d − e.

The jobs of each task are required to be executed sequentially. That is the earliest start
time of a job is the maximum of its arrival time and the completion time of the preceding
job of the same task. This earliest start time is also called the ready time of the job.

The decision algorithm described here is restricted to integer values for task peri-
ods, compute times, and deadlines. This is not a serious conceptual restriction, since
in any actual system time is not infinitely divisible; the times of event occurrences and
durations between them cannot be determined more precisely than one tick of the sys-
tems most precise clock. However, it is a practical restriction, since the complexity of
the algorithm grows exponentially with the number of clock ticks in the task periods,
compute times, and deadlines, as will be explained later. The notation [a, b) is used
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for time intervals, as a reminder that the interval includes all of the time unit starting
at a but does not include the time unit starting at b. These conventions allow avoid
potential confusion around end-points and prevent impractical schedulability results
that rely on being able to slice time at arbitrary points. They also permit exhaustive
testing of schedulability, by considering all time values in a given range.

3 The Abstract State Model

Determining whether a sporadic task system τ can miss any deadlines if scheduled
according to a given algorithm can be viewed as a reachability problem in a finite non-
deterministic state transition graph. Given a start state in which no jobs have yet ar-
rived, the problem is to determine whether the system can reach a state that represents a
scheduling failure. A task set is schedulable if-and-only-if there is no sequence of valid
transitions from the system start state to a failure state.

Ha and Liu [11] defined the concept of predictable scheduling policy, and showed
that for all preemptive global fixed-task-priority and fixed-job-priority scheduling poli-
cies are predictable. As a consequence, for such scheduling policies, schedulability tests
need only consider the case where each job’s compute time requirement is equal to the
worst-case compute time requirement of its generating task.

In order to reduce the time and storage complexity of determining schedulability,
it is desirable to express the system state as simply as possible, and to eliminate from
consideration as many states as possible.

Given a task system τ , an abstract system state S is defined to be an n-tuple of the
form

((nat(S1), rct(S1)), . . . , (nat(Sn), rct(Sn)))

The value nat(Si) denotes the earliest next arrival time for task τi, relative to the current
instant, and the value rct(Si) denotes the remaining compute time of the job of τi that
is currently contending for processor time.

If rct(Si) is zero there is no job of τi contending for processor time. That is, all the
jobs of τi that have arrived so far have been completed. In this case the earliest time
the next job of τi can arrive is nat(Si) time units from the present instant. That value
cannot be negative, and it is zero only if a job of τi can arrive immediately.

If rct(Si) is positive, there is a job J of τi contending for processor time and J needs
rct(Si) units of processor time to complete. In this case, nat(Si) is the offset in time,
relative to the current instant, of earliest time that the next job of τi after J can arrive.
If the value is negative, the earliest possible arrival time of the next job of τi after J is
nat(Si) time units in the past.

It follows that the an abstract system state S determines the following information
for each task in the system:

– Task τi has a ready job if-and-only-if rct(Si) > 0.
– The remaining compute time of the current ready job of τi is rct(Si).
– The time to the arrival of the next job after the current ready job of τi is nat(Si).
– The time to the next deadline of the current ready job of task τi is

ttd(Si) = nat(Si) − (pi − di) (1)
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– The laxity of the current ready job of τi is

laxity(Si) = ttd(Si) − rct(Si) (2)

There are two kinds of state transitions: (1) The passage of one instant of time is mod-
eled by a clock-tick state transition, which is deterministic. (2) A job becoming ready
is modeled by a ready state transition. Ready transitions are non-deterministic, because
the sporadic task model allows a job to arrive at any time that is at least one period after
the arrival time of the preceding job in the same task.

An abstract system state is reachable if it is reachable from the start state via a finite
sequence of clock-tick and ready transitions.

The system start state is defined to be ((0, 0), . . . , (0, 0)). That is the state in which
there are no tasks contenting for processor time and all tasks are eligible to arrive.

An abstract state is a failure state if there is some task τi for which laxity(Si) < 0,
that is, if the remaining time to deadline is less than the remaining compute time of the
current ready job of τi.

It follows from the construction of the model that a task system is schedulable to
meet deadlines if-and-only-if no failure state is reachable from the start state. This can
be tested using any finite graph reachability algorithm.

4 Clock-Tick Transitions

The clock-tick successor of a state S depends on the set run(S) of tasks that the schedul-
ing policy chooses to execute in the next instant. We assume that run(S) includes only
tasks τi that need to execute (that is, rct(Si) > 0) and the number of tasks in run(S)
does not exceed the number of available processors.

The clock-tick successor S′ = Next(S) of any abstract system state S is computable
as follows:

rct(S′i)
def=

{
rct(Si) if τi /∈ run(S)
rct(Si) − 1 if τi ∈ run(S)

nat(S′i)
def=

{
max(0, nat(Si) − 1) if rct(Si) = 0
nat(Si) − 1 if rct(Si) > 0

The reasoning behind the computation of rct(S′i) is simple. S′ represents a state that
is one time unit further into the future than S, so on the transition from S to S′ the
remaining compute time is reduced by one time unit for those jobs that are scheduled
to execute, and is unchanged for those jobs that are not scheduled to execute.

The reasoning behind the computation of nat(S′i) involves two cases, based on whether
there is a job of τi contending for processor time in S:
(i) If rct(Si) = 0 then there is no job of τi contending for processor time, and the earliest
time a job of τi can arrive is nat(Si) time units after S. If nat(Si) ≤ 0 the inter-arrival
constraint permitted a job of τi to arrive at the time of S, but it did not arrive and so can
still arrive at the time of S′; therefore nat(S′i) = 0. Otherwise, nat(Si) > 0 and the time
to next arrival in S′ should be one time unit shorter than in S, so nat(S′i) = nat(Si)−1.
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(ii) If rct(Si) > 0 then there is a job J of τi contending for processor time in S, and
if di > pi, there may be one or more other backlogged jobs of τi that have arrived but
are waiting for J to complete. Let J ′ be the next job of τi to arrive after J . The earliest
time that J ′ could arrive is nat(Si) (positive or negative) time units from the time of S.
Since S′ represents a state one time unit later than S, the adjustment for the passage of
one unit of time is nat(S′i) = nat(S′i) − 1.

At first it might seem that the value of nat(S′i) could decrease without bound in case
(ii) if di > pi. That is not possible, so long as we stop as soon as we find a failure
state. The deadline constraint provides a lower bound on how far negative nat(S′i) can
go without a job missing a deadline. That is, if S is a non-failure state and J has non-
zero remaining compute time then the current time is certainly before J’s deadline,
the deadline of J ′ is at least pi units in the future, and J ′ cannot arrive earlier than
min(di −pi, 0)+1 time units before S′. Therefore, the number of reachable non-failure
states is finite.

5 Ready Transitions

The event of a new job becoming ready is modeled by a ready state transition. A job of
a sporadic task may become ready any time that the preceding job of τi has completed
execution and at least pi time has elapsed since the preceding job arrived. In other
words, a ready transition from state S for task τi is possible if-and-only-if rct(Si) = 0
and nat(Si) ≤ 0.

For each task τi and each state S such that rct(Si) = 0 and nat(Si) ≤ 0, the states
S′ to which a τi-ready transition is possible are all those that differ from S only in the
values of rct(S′i) and nat(S′i) and satisfy the following:

rct(S′i) = ei, nat(Si) + pi ≤ nat(S′i) ≤ pi

The reasoning is that a new job J ′ of τi does not become ready until the current job
J of τi has been completed (indicated by rct(Si) = 0), and the exact arrival time of
J ′ does not matter until that instant. Then, the arrival time of J ′ can be chosen (non-
deterministically) to be any instant from the present back to nat(S′i) clock ticks into the
past. It follows that the earliest arrival time of the next job of τi after J ′, relative to the
present, can be any value between nat(Si) + pi and pi.

Ready transitions are non-deterministic, and are viewed as taking no time. Therefore,
several of them may take place between one time instant and the next. Ready(S) is the
set of all states that can be reached by a sequence of one or more ready transitions from
state S.

6 Specific Scheduling Policies

The basic abstract state model described above contains enough information to sup-
port the computation of run(S) for several scheduling policies, including the following
global multiprocessor scheduling policies:
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Fixed task priority: Assuming the tasks are ordered by decreasing priority, choose the
lowest-numbered tasks.

Shortest remaining-processing first: Choose tasks with the smallest nonzero values
of rct(Si).

Earliest deadline first (EDF): Choose tasks with the shortest time to next deadline.
The time to next deadline of each task can be computed using equation (1).

Least laxity first (LLF): Choose tasks with the smallest laxities. The laxity of each
task can be computed using equation (2).

Throwforward [12]: Choose up to m tasks by the following algorithm: (i) Choose
the task with shortest ttd(Si). Let t

def= ttd(Si) for this task. (ii) Choose the tasks with
positive throwforward on the above task, where the throwforward TF(Si) of task τi in
state S is defined as follows:

TF(Si)
def= t − (ttd(Si) − rct(Si))

Our state model can also be applied to some hybrids of the above algorithms, in-
cluding earliest-deadline zero-laxity (EDZL) and ED/LL [8]. EDZL was shown to be
predictable in [13] and [9], and the proof in [9] applies also to ED/LL. Some more
algorithms can also be supported, by adding information to the state. For example, to
resolve priority ties in favor of the task that last executed on a given processor, it is
sufficient to add one bit per task, indicating whether the task executed in the preceding
time instant.

7 Generic Algorithm

It is clear that the set of all states reachable from the start state can be enumerated by
breadth-first or depth-first search. Suppose the state set Known starts out containing just
the start state. The objective of the algorithm is to compute the closure of this set under
all legal clock-tick and ready transitions, by iteratively visiting each member of the set,
where visiting a state S involves: (a) determining the unique clock-tick successor, if
there is one; (b) determining the set of states Ready(S), including one state for each
possible combination of new ready jobs. Each new state encountered in step (a) or step
(b) is then added to the set of reachable states, Known . Thus, at any point in time the
set Known includes both all the states that have been visited and some unvisited states
whose predecessors have been visited.

To keep track of which states have been visited, the set Unvisited is introduced,
which initially is the same as Known . When a new state is found, it is added to both
Known and Unvisited . States to visit are chosen from Unvisited , and they are removed
once they have been visited. Depending on whether Unvisited is organized as a stack
or a queue, this results in either a depth-first or a breadth-first enumeration of reachable
states. The algorithm terminates when either a failure state is found or there are no
remaining states left in Unvisited .
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BRUTE(τ )

1 S ← ((0, 0), . . . , (0, 0))
2 Unvisited ← {S} ∪ Ready(S)
3 Known ← Unvisited
4 while Unvisited �= ∅ do {
5 choose S ∈ Unvisited
6 Unvisited ← Unvisited −{S}
7 repeat
8 if ∃i laxity(S, τi) < 0 then return 0 � failure
9 S ← Next(S)

10 if S /∈ Known then {
11 Known ← Known ∪ {S}
12 for S′ ∈ Ready(S) do
13 if S′ /∈ Known then {
14 Known ← Known ∪ {S′}
15 Unvisited ← Unvisited ∪ {S′}
16 }
17 } else S ← undefined
18 until S = undefined
19 }
20 return 1 � success

Fig. 1. Pseudo-code for brute-force schedulability test

The algorithm BRUTE, whose pseudo-code is given in Figure 1, differs from the
above abstract description by taking the following two shortcuts.
(i) Since there is a most one state that can be reached by clock-tick transition from
any given state, the step of inserting clock-tick successors into Unvisited is skipped,
and the clock-tick successor is visited immediately after its clock-tick predecessor. In
this way, the algorithm proceeds depth-first along the (deterministic) clock-tick tran-
sitions, and queues up in Unvisited all the unknown states that can be entered via
(non-deterministic) ready transitions from states encountered along the depth-first path.
When the algorithm reaches a state from which no further clock-tick transitions are
possible, it backtracks to the next unvisited state.
(ii) Since the set Ready(S) is closed under ready transitions, there is no need to enumer-
ate further ready transitions from states in Ready(S). Therefore, step (b) of visitation
is skipped for states that are added via step (b) of visitation.

Note that the chain of states S′ enumerated by the depth-first repeat-until loop at line
(7) is completely determined by the state S chosen at line (5). There is a possibility that
the chains of states for two different values of S may converge to a common state, after
which the two chains will be the same. Such repetition of states entered on a clock-tick
transition will be detected at line (10), terminating the repeat-until loop early via line
(17) if S′ is found in Known . This avoids re-traversal of convergent chains, and limits
the aggregate number of iterations of the repeat-until loop (summed over all iterations
of the while-loop) to one iteration per state reachable by a clock-tick transition.
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Fig. 2. Success of quick versus brute-force tests for global EDF scheduling, for task sets with
integer periods in the range 1 . . . 5 and unconstrained deadlines

Algorithm Brute is just one of several state enumeration algorithms that would work.
The combination of depth-first search for clock-tick transitions and breadth-first search
for ready transitions was chosen because it seemed to result in failures being detected
earlier, on the average, than with pure breadth-first or depth-first search.

8 Computational Complexity

It is clear that algorithm Brute visits each node and each edge of the state graph at
most once, so the worst-case computation complexity can be bounded by counting the
number of possible states.

Theorem 1. The worst-case complexity of deciding schedulability on an abstract
system-state graph for a task system τ of n tasks is O(N · (1 + 2n)), and N is an
upper bound on the number of system states, where

N =
n∏

i=1

((ei + 1)(min(0, di − pi) + pi + 1)) (3)

Proof

Clearly, the range of values for rct(Si) is in the range 0 . . . ei. From the definition of
nat(Si) and the reasoning in the last paragraph of Section 4, it is clear that the range of
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Fig. 3. Success of quick versus brute-force tests for global EDF scheduling, for task sets with
integer periods in the range 1 . . . 5 and constrained deadlines

values for nat(Si) is in the range min(0, di − pi) + 1 . . . pi. Therefore, an upper bound
on the number of nodes in the state graph is the value N given in (3).

The number of edges per node is at most 1 + 2n; that is, one for the clock-tick
transition and at most 2n for the various combinations of possible ready transitions.
Therefore, the number of edges is grossly bounded by

E ≤ N × (1 + 2n) (4)

The theorem follows. �

Theorem 1 gives an upper bound on the number of iterations of the innermost loop of
algorithm BRUTE. The primitive operations on the set Known can be implemented in
average-case O(n) time (to compare the n elements of a state) using a hash table, and
the primitive operations on the set Unvisited can be implemented in time O(n) (to copy
new states) using a stack. It follows that the worst-case complexity of the algorithm is
at most O(n ·N ·(1+2n)), where N is the upper bound on the number of states derived
in Theorem 1.

Assuming that ei and pi fit into a standard integer-sized word of memory, the storage
size of one state is O(n) words, and so an upper bound on the storage complexity of
the algorithm is O(n · N),

These bounds grows very quickly, both with the number of tasks and the sizes of
the task periods and deadlines. On the other hand, the bound is based on counting the
entire domain of all possible states, and over-bounding the number of state transitions,
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Fig. 4. Success of brute-force test for global EDF scheduling with respect to time granularity

whereas the algorithm considers only reachable states and terminates soon as it finds a
failure state. Therefore, the actual numbers of states and transitions considered by the
algorithm will be less than the upper bound.

9 Performance

We have implemented and tested algorithm BRUTE for all the specific scheduling poli-
cies mentioned as examples in Section 6. Because of the large storage and execution
time requirements (especially storage), we have only been able to test it on small task
sets. Nevertheless, the results are interesting. Due to the page limit of this conference,
only the results of one experiment are provided here.

The experiments whose results are shown in Figures 2 through 5 are for global EDF
scheduling of pseudo-randomly generated task sets, on two processors. The periods
(pi) are uniformly distributed in the range 1 . . . pmax, for pmax in the range 3 . . . 6. (We
ran out of memory for pmax = 6.) The utilizations (ui = ei/pi) are exponentially
distributed with mean 0.35. The deadlines (di) are uniformly distributed in the range
[uipi, pi] (constrained deadlines), or the range [uipi, 4 ∗ pi] (unconstrained deadlines).

Duplicate task sets were discarded, as were task sets that could be obtained from
other task sets by re-ordering the tasks or scaling all the task parameters by an integer
factor. In addition, task sets that were trivially schedulable by global EDF because n ≤
m or

∑n
i=1 ei/ min(di, pi) ≤ 1, or obviously unschedulable by any algorithm because
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Fig. 5. Number of states examined by brute-force EDF test

maxmin load > m [4] were also discarded. The experiment was run on 100,000 task
sets that passed this initial screening.

The following tests were applied to each task set:

– Quick EDF: The sufficient schedulability test for global EDF scheduling of
Bertogna, Cirinei, and Lipari[6] and the density test

∑N
i=1

ci

min{di,Ti} ≤ m, (also
described in [6]) were computed. Since task sets that passed either of these quick
tests are schedulable, they were not subjected to the brute force test.

– Brute EDF: Algorithm BRUTE for global EDF scheduling was applied to the re-
maining task sets.

Figure 2 is a normalized histogram in which the X axis corresponds to a total processor
utilization value (the value 100 corresponding to both of the two processors being fully
utilized) and the Y axis corresponds to the ratio of the number of task sets that could be
shown to be schedulable to the number of task sets tested (the value one corresponding
to every task set being schedulable), for the utilization range [X, X + 0.01). A Y-value
of 1.0 indicates that all task sets were verified as being schedulable. The jaggedness
of the graph is due primarily to the small range of integer values (0 . . . 5) permitted for
periods and execution times, which produces only a small number of possible utilization
values and makes some values more probable than others. The jaggedness is further
exaggerated by the small sample size. This is especially apparent at utilization values
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below 50 percent, because very few such task sets passed through the filter for trivially
schedulable test cases.

It can be seen that the quick EDF tests are rather pessimistic, especially at higher
utilization levels. The EDF performance, according to the brute force test, appears to
be near 100 percent. That may seem suspiciously good, considering that some of the
task sets tested might be infeasible (not schedulable by EDF or any other algorithm).
Part of the explanation is that rule for choosing unconstrained deadlines is strongly
biased toward post-period deadlines. Such task sets tend to be feasible, and to be EDF-
schedulable. The performance of global EDF was much worse on other experiments,
shown in Figure 3, where the task deadlines were constrained to be less than or equal
to the periods.

Part of the explanation also is that task sets with smaller integer periods tend to be
more readily schedulable at high utilization levels than task sets with a larger range of
periods. This is apparent in Figure 4, which shows the distribution of the number of
states explored by the brute-force EDF algorithm for several values of pmax.

Figure 5 shows the distribution of the number of states explored by the brute-force
EDF algorithm This makes it clear why the experiments were limited to task sets with
very small integer values for periods, deadlines, and execution times.

10 Conclusion

Schedulability of sporadic task systems on a set of identical processors can be decided
in finite time for several global preemptive priority-based scheduling policies, using a
generic brute-force enumerative algorithm. Gross upper bounds have been derived for
the time and storage complexity of this approach.

At least one prior publication has incorrectly asserted that schedulability of sporadic
task systems under global EDF scheduling can be decided using a simpler algorithm,
based on simulating execution when all tasks have jobs that arrive periodically, starting
at time zero. To the best of our knowledge, ours is the first proposal of a correct algo-
rithm for this problem. Moreover, it also applies to a variety of other global scheduling
policies.

The algorithm has been implemented and tested on a variety of task sets, for several
different scheduling policies. Exponential growth in the running time and storage, es-
pecially storage, limit the algorithm to small task sets. Nevertheless, it has proven to
be useful as a research tool, for finding examples of task sets that are schedulable by
one method and not by another, and in providing insight into the degree to which more
efficient but only sufficient tests of schedulability err in the direction of conservatism.

We hope that, by publishing this simple brute-force algorithm, we may establish a
base-line and stimulate further research into this important class of scheduling
problems.
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Abstract. This paper tackles the consensus problem in asynchronous systems
prone to byzantine failures. One way to circumvent the FLP impossibility result
consists in adding synchrony assumptions (deterministic solution). In the con-
text of crash failures (at most t processes may crash), the weakest partially syn-
chronous system model assumes at least one correct process with outgoing links
that eventually permit a bounded transmission delay with at least t neighbors (the
set of neighbors may change over time).

Aguilera et al. provided the main result for systems where at most t processes
may exhibit a byzantine behavior. They assume a correct process with all its out-
going and incoming links eventually timely. This paper considers a system model
with at least one correct process connected with x privileged neighbors with even-
tually timely outgoing and incoming links. In this system model, a byzantine con-
sensus protocol is proposed. It uses authentication and assumes x ≥ 2t.

Keywords: Asynchronous distributed system, Byzantine process, Consensus,
Distributed algorithm, Eventually timely link, Fault tolerance, Resilience.

1 Introduction

Context and motivation. In a distributed system a process is correct if it meets its spec-
ification during the whole execution. A process can, however, experience failures for
different reasons (hardware, software, intrusion, etc.). The failure could be a simple
crash. In this case, it simply stops its execution (fail-stop process). Otherwise a faulty
process can exhibit an arbitrary behavior. Such a process is called Byzantine. This bad
behavior can be intentional (malicious behavior due to intrusion) or simply the result
of a transient fault that altered the local state of the process, thereby modifying its be-
havior in an unpredictable way. We are interested here in solving agreement problems
(more precisely, the Consensus problem) in asynchronous distributed systems prone to
Byzantine process failures whatever their origin.

In the Consensus problem, each process proposes a value, and the non-faulty pro-
cesses have to eventually decide (termination property) on the same output value (agree-
ment property) that should be a proposed value (validity property). This problem, whose
statement is particularly simple, is fundamental in fault-tolerant distributed computing
as it abstracts several basic agreement problems. Unfortunately, the Consensus prob-
lem has no deterministic solution in asynchronous distributed systems where even a
single process can crash [13] (this is known as the FLP impossibility result). So, to
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solve Consensus, asynchronous distributed systems have to be enriched with additional
power. Synchrony assumptions [12], Common coins [22], randomization [5], and unre-
liable failure detectors [8] are examples of such additions that make it possible to solve
Consensus despite asynchrony and failures. When considering Byzantine processes, the
Consensus validity property is stated as: if all correct processes propose the same value
v then only v can be decided. Indeed, a Byzantine process may propose a wrong value.

Related work. To allow deterministic solutions to the Consensus problem [12], asyn-
chronous systems need to be enriched with additional synchrony assumptions. In the
context of crash failures, this approach has been abstracted in the notion of unreliable
failure detectors [8]. A failure detector can be seen as a distributed oracle that gives
(possibly incorrect) hints about which processes have crashed so far. Nearly all imple-
mentations of failure detectors consider that, eventually, the underlying system behaves
in a synchronous way. More precisely, they consider the partially synchronous system
model [8] which is a generalization of the models proposed in [12]. A partially syn-
chronous system assumes there are bounds on process speeds and message transfer
delays, but these bounds are not known and hold only after some finite but unknown
time (called Global Stabilization Time).

The partially synchronous system model is considered by most of the works on
Byzantine Consensus [3,16,7,10,11,17,18,20]. [16] and [10] build a muteness failure
detector1 that is then used to solve the Consensus problem. The Byzantine consensus
algorithm proposed in [14] uses directly an eventually perfect muteness failure detec-
tor. Paxos-like protocols [6,20] first look for a stable leader before solving consensus
or implementing state machine replication. Finally, [11,18] establish lower bounds re-
lating resiliency and (very) fast decision. [11] gives a generic algorithm that can be
parametrized (w/wo authentication, fast/very fast decision) by taking into account the
maximum number of processes that may crash or have malicious behavior. These two
papers divide processes into three categories proposers, acceptors and learners (each
process can play different roles).

Other system models have been considered like the Trusted Timely Computing Base
TTCB [9]. A TTCB is a special communication channel, also nicknamed wormhole,
that guarantees timely behavior in an otherwise asynchronous byzantine environment.
The idea is that this channel is used only by critical aspects of the application (e.g., a
consensus protocol), where most of the system uses a standard asynchronous medium.
Similarly to the works presented above, it is assumed that the wormhole allows timely
communications between any pair of correct processes.

For a system composed of n partially synchronous processes [12] among which at
most t may crash, many models [2,15,19] try to restrict the eventually synchronous
property of communication to only a subset of links in contrast to the related works
cited above which assume that the whole system is eventually synchronous. In this set-
ting, a link between two processes is said to be timely at time τ if a message sent at
time τ is received not later than τ + δ. The bound δ in not known and holds only after
some finite but unknown time τGST (called Global Stabilization Time). A link is called

1 A muteness failure detector is an oracle that allows to distinguish between a silent Byzantine
process and a correct process that is slow or with which communication is slow.
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eventually timely if it is timely at all times τ ≥ τGST . The system model considered
in [2] assumes at least one correct process with t outgoing eventually timely links (pro-
cesses communicate using point-to-point communication primitives). Such a process
is called an �t-source (eventual t-source). On the other hand, the system model con-
sidered in [19] assumes a broadcast communication primitive and at least one correct
process with t bidirectional but moving eventually timely links. These two models are
not comparable [15]. In such a context, [2] proved that an �t-source is necessary (and
sufficient) to solve Consensus which means that it is not possible to solve Consensus if
the number of eventually timely links is smaller than t or if they are not outgoing links
of a same correct process.

In the context where the t faulty processes can exhibit a Byzantine behavior, Aguilera
et al. [3] propose a system model with weak synchrony properties that allows to solve
the consensus problem. Namely, the model assumes at least one correct process with
all its outgoing and incoming links eventually timely (the other links of the system are
asynchronous). Such a process is called an eventual bisource (� bisource). This means
that the number of eventually timely links could be as low as 2(n − 1) links. Their
protocol does not need authentication but they first build very costly communication
procedures on top of point-to-point communication2. Their consensus protocol consists
of a series of rounds each made up of 10 communication steps and Ω(n3) messages.

Contribution. This paper first proposes a system model where processes are eventually
synchronous and the communication model lies between the asynchronous model and
the partially synchronous model. The assumed model considers that only few links
are eventually synchronous. If all links are asynchronous the communication model
is asynchronous. On the other hand, if all links are eventually synchronous, the system
meets the partially synchronous model of [12]. It is thus stronger than the asynchronous
model where the Consensus problem cannot be solved and is weaker than the partially
synchronous model [12] where Byzantine Consensus can be solved if t < n/3 (with
or without authentication3). The eventually synchronous links have to respect some
pattern in order to be able to solve the Byzantine consensus. This pattern is captured
by the notion of eventual bisource with a scope x. The eventual bisource assumed by
[3] has a maximal scope (x = n − 1). Informally, an eventual x-bisource is a correct
process where the number of privileged neighbors is x instead of n − 1. In this system
model, a byzantine consensus protocol is proposed. It uses authentication and assumes
an �2t-bisource. We assume t < n/3 meeting the resiliency lower bound byzantine
consensus [12]. The proposed protocol enjoys the nice property of being very simple
compared to other paxos like algorithms and elegant in its design. Moreover, in good
settings, the decision is reached within 5 communication steps whatever is the behavior
of byzantine processes. Good settings occur when the first coordinator is a 2t-bisource.

This is a very interesting property as under a normal setting, the communication sys-
tem is mainly synchronous (having an �2t-bisource is very likely to happen) and failures

2 These communication procedures are similar to the consistent broadcast and the authenticated
broadcast procedures [24].

3 Byzantine Consensus can be solved with t < n/2 only if the processes are partially syn-
chronous and communication are synchronous.
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seldom occur. A Consensus algorithm designed for the proposed model terminates as
soon as some (even unknown) part of the system enjoys the 2t-bisource property. Of
course, if the system is completely synchronous, the decision can be reached faster.
Contrarily, one asynchronous link over the (n − 1)2 links of the system can prevent an
algorithm designed for a partially synchronous model from terminating.

Paper structure. This paper is made up of five parts. Section 2 defines the computation
and failure model and the byzantine consensus problem. Section 3 presents the consen-
sus protocol we propose and Section 4 proves its correctness. Section 5 discusses the
cost of the protocol and makes a conjecture with the intuition that sustains it. Finally,
Section 6 concludes the paper.

2 Computation Model and the Consensus Problem

2.1 Computation Model

The system model is patterned after the partially synchronous system described in [12].
The system is made up of a finite set Π of n (n > 1) fully-connected processes, namely,
Π = {p1, . . . , pn}. Moreover, up to t processes can exhibit a Byzantine behavior, which
means that such a process can behave in an arbitrary manner. This is the most severe
process failure model: a Byzantine process can crash, fail to send or receive messages,
send arbitrary messages, start in an arbitrary state, send different values to different
processes, perform arbitrary state transitions, etc. A process that exhibits a Byzantine
behavior is called faulty. Otherwise, it is correct.

Communication network. The communication network is reliable in the sense that a
message sent by a correct process to another correct process will be received exactly
once within a finite time. Messages are not altered by the link and the receiver knows
who the sender is. In other words, we are using authenticated asynchronous links. Such
a communication network can be built atop of fair lossy links (in fair lossy links, a mes-
sage can be lost a finite number of times). As advocated in [15], advanced techniques
like [1] or [4] could be adopted here. They prove that even a simple retransmission
until acknowledgment protocol suffices to implement a reliable link between correct
processes. Using these techniques, a message that was initially lossy will eventually
be received by its destinator. Note that the simulation preserves the timeliness of the
messages sent on timely fair-lossy links.

Synchrony properties and bisource. Every process executes an algorithm consisting
of atomic computing steps (send a message, receive a message or execute local com-
putation). We assume that processes are partially synchronous, in the sense that every
correct process takes at least one step every θ steps of the fastest correct process (θ is
unknown). Instead of real-time clocks, time is measured in multiples of the steps of the
fastest process like in [12]. In particular, the (unknown) transfer delay bound δ is such
that any process can take at most δ steps while a timely message is in transit. Hence,
we can use simple step-counting for timing out messages. Hereafter, we rephrase the
definition of [15] to define more formally a timely link and a bisource.
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Definition 1. A link from a process p to any process q is timely at time τ if (1) no
message sent by p at time τ is received at q after time (τ + δ) or (2) process q is not
correct.

Definition 2. A process p is an x-bisource at time τ if:
- (1) p is correct
- (2) There exists a set X of processes of size x, such that: for any process q in X , both
links from p to q and from q to p are timely at time τ . The processes of X are said to be
privileged neighbors of p.

Definition 3. A process p is an �x-bisource if there is a time τ such that, for all τ ′ ≥ τ ,
p is an x-bisource at τ ′.

For the rest of the paper, we consider a partially synchronous system where the only
assumed synchrony properties are those needed by the �x-bisource. This means that all
the links that do not participate in the �x-bisource could be asynchronous.

Authentication. A process may be Byzantine and disseminate a wrong value (differ-
ent from the value it would have obtained if it behaved correctly). To prevent such a
dissemination, the protocol uses certificates. This implies the use of application level
signatures (public key cryptography such as RSA signatures). A straightforward im-
plementation of certificates would consist of including a set of signed messages as a
certificate. For example, process p has to relay a value (say v) it has received from
process q. Process q signs its message and sends it to p. Process p cannot relay v′ if it
cannot forge q’s signature. Of course p can say that it received no value from q (no one
can check whether this is true or not) but if it relays a value from q, it is necessarily the
value it actually received from q. This means that in our model we assume that Byzan-
tine processes are not able to subvert the cryptographic primitives. Now, suppose that p
has to send to all processes the majority value among all the values it has received. The
certificate, will consist of the set of received signed messages (any process can check
that the value p has sent is really the majority value).

A certificate for a message m sent by p contains at least (n − t) messages p has re-
ceived, such that these messages led p to send m according to the protocol. Certificates
do not prevent all the bad behaviors of Byzantine processes. As in many asynchronous
protocols, during an all-to-all exchange, a process waits for at most n− t messages oth-
erwise it may block forever (of course a process can receive more than n− t messages).
In a general case, two different sets of n − t messages can have a different majority
value (each of the them can be certified). A Byzantine process that receives more than
(n − t) messages can send different certified majority values to different processes (in
this case the certificate only means that the sent value is a possible value).

2.2 The Consensus Problem

The Consensus problem has been informally stated in the introduction. This paper con-
siders multivalued Consensus (no bound on the cardinality of the set of proposable
values): every process pi proposes a value vi and all correct processes have to eventu-
ally decide on some value v in relation with the set of proposed values. Let us observe
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that, in a byzantine failure context, one must not choose a consensus definition that is
too strong. For example, it is not possible to force a faulty process to decide as a cor-
rect process, since a byzantine process can decide whatever it wants. Similarly, it is not
always possible to decide a proposed value since a faulty process can initially propose
different values to distinct processes and consequently the notion of “proposed value”
is not defined for byzantine processes. Thus, in such a context, the consensus problem
is defined by the following three properties:

– Termination: Every correct process eventually decides.
– Agreement: No two correct processes decide different values.
– Validity: If all the correct processes propose the same value v, then only the value

v can be decided.

3 The Byzantine Protocol

The proposed protocol (Figure 1) uses authentication and assumes an �2t-bisource.
Each process pi manages a local variable esti which contains its current estimate of
the decision value. The init phase (lines 1-3) consists of an all-to-all message exchange
that allows to initializes the variable esti to a value it has received at least (n − 2t)
times if any4. Otherwise, esti is set vi the value proposed by pi. This phase establishes
the validity property as if all correct processes propose the same value v, all processes
will receive v at least (n − 2t) times and the only value that can be received at least
(n − 2t) times is v (in this case, v is the only certified value). From line 5, all messages
exchanged during each phase are signed, and include as certificate (n− t) messages the
emitting process has received during the previous exchange phase.

Message validity Each process has an underlying daemon that filters the mes-
sages it receives. For example, the daemon will discard all duplicate messsages
(necessarily sent by byzantine processes as we assume reliable send and re-
ceive operations between correct processes). The daemon, will also discard all
messages that are not syntactically correct, or that do not comply with the text
of the protocol (e.g. a process that sends two different messages with the same
type within the same round, a process that sends a QUERY(r,*) message to a
process that is not the coordinator of round r, etc.). Of course a message that
do not comply with the associated certified is also discarded.

After the init phase, the protocol procedes in consecutive asynchronous rounds. Each
process manages a variable ri (initially set to 0). Each round r is coordinated by a pre-
determined process pc (e.g., c can be defined according to the round robin order). So,
the protocol uses the well-known rotating coordinator paradigm. Each round is com-
posed of four communication phases.

First phase of a round r (lines 5-7). Each process that starts a round (including its coor-
dinator) first sends its own estimate (with the associated certificate) to the coordinator

4 This phase does not use certificates as there is no prior communication.
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(pc) of the current round and sets a timer to (Δi[c]). Δi is an array of time-outs (one
per process) managed by pi. When the timer times out while waiting the response from
a process pj , Δi[j] is incremented. This allows to eventually reach the bound on the
round trip between pi and pj if pi and pj are privileged neighbors. Moreover, this pre-
vents pi from blocking while waiting (line 6) for the response of a faulty coordinator.
When the coordinator of round r receives a valid QUERY message (perhaps from itself)
containing an estimate est for the first time at line 195, it sends sends a COORD(r, est)
messages to all processes.

The COORD message is sent from another parallel task because the coordinator of
round r could be stuck in previous rounds and if it does not respond quickly, the sender
on the QUERY message may time out. This is why, whatever is the coordinator doing,
as soon as it receives a valid QUERY message for a round it coordinates, it sends the
included estimate to all processes (this allows a coordinator to coordinate a round with
a certified value it has received even if it is itself lying far behind).

If the current coordinator is a 2t-bisource it has at least 2t privileged neighbors
among which at least t are correct process. Consequently, at least (t + 1) correct pro-
cesses (the t correct neighbors and the coordinator itself) got the value v of the coordi-
nator and thus set their variable aux to v ( �= ⊥). If the current coordinator is byzantine,
it can send nothing to some processes and perhaps send different certified values to dif-
ferent processes (in such a case, necessarily none of these values has been decided in a
previous round as we will see later). If the current coordinator is not a 2t-bisource or if
Byzantine, the three next phases allow correct processes to behave in a consistent way.
Either none of them decides or if some of them decide a value v, then the only certified
value for the next round will be v and thus preventing Byzantine processes from intro-
ducing other values.

Second phase of a round r (lines 8-10). This phase aims to extend the scope of the 2t-
bisource. Indeed, if the current coordinator is a 2t-bisource then at least (t + 1) correct
processes set their variable auxi to the same non-⊥ value (say v). During the second
phase, all processes relay the value they got from the coordinator (with its certificate)
or ⊥ if they timed out (all-to-all message exchange). Each process collects (n− t) valid
messages (the values carried by these messages are stored into a set Vi - of course each
value appears at most once in Vi as Vi is a set). If the coordinator is a 2t-bisource then
any correct process will get at least one message from the set of (t+1) correct processes
that got the value of the coordinator because (n − t) + (t + 1) > n. Otherwise, this
phase has no particular effect. The condition (Vi − {⊥} = {v}) of line 10 means that
if there is only one non-⊥ value v in Vi then this value is kept in auxi (otherwise, auxi

is set to ⊥).

Third phase of a round r (lines 11-13). This phase has no particular effect if the coor-
dinator is correct. Its aims is to avoid the situations where the coordinator is Byzantine.
Indeed, in such a case two different correct processes may have set their auxi variables

5 For any round, the coordinator will receive at least (n − t) QUERY messages but it will send
COORD messages only once and will ignore subsequent QUERY messages related to the same
round.
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to different values. Phase three is a filter, it ensures that at the end of this phase, at most
one non ⊥ value can be kept in the aux variables. In other words, if pi and pj are cor-
rect processes and if auxi �= ⊥ and auxj �= ⊥ then necessarily, auxi = auxj whatever
is the behavior of the byzantine processes. This phase consists of an all-to-all message
exchange. Each process collects (n − t) valid messages the values of which are stored
in a set Vi. If all received messages contains the same value v (Vi = {v}) then v is kept
in auxi otherwise auxi is set to the default value ⊥. At the end of this phase, there is at
most one (or none) certified value v ( �= ⊥).

Fourth phase of a round r (lines 14-17). This phase is the decision phase. Its aim is
to ensure that the Agreement property will never be violated. This prevention is done
in the following way: if a correct process pi decides v during this round then if some
processes progress to the next round, then v is the only certified value. After an all-to-
all message exchange, processes collect (n − t) valid messages and stores the values in
Vi. If the set Vi of pi contains a unique non ⊥ value v, pi decides v. Indeed among the
(n− t) values v received by pi, at least t+1 have been sent by correct processes. Recall
that after phase three, there is at most one certified values. This means that all processes
receive at least one value equal to v (the other values could be v or ⊥). Consequently
any set of (n − t) valid signed messages of this phase, will certify a unique value v.
If a process pj has received only ⊥ values, it is sure that no process decides during
this phase and thus it can keep the value it already has stored in estj (the certificate
composed of the (n − t) valid signed messages containing ⊥ values, allow pj to keep
its previous values).

Before deciding (line 16), a process first sends to all other processes a signed mes-
sage DEC that contains the decision value (and the associated certificate). This will
prevent the processes that progress to the next round from blocking because some cor-
rect processes have already decided. When a process pi receives a valid DEC message at
line 20, it first relays is to all other processes and then decides. Indeed, task T3 is used
to implement a reliable broadcast to disseminate the eventual decision value prevent-
ing some correct processes from blocking while others decide (not all processes decide
necessarily during the same round).

4 Correctness of the Protocol

Remark: A message exchange is the combination of a send to all operation
and a message collect operation issued by every process. Let us note that, as
there are at most t byzantine processes. Each correct process collects (n − t)
messages since only the byzantine processes could be silent (only message
delivered by the communication daemon described in the previous section are
considered).
There are four such exchanges: lines 1-2, lines 8-9, lines 11-12 and lines 14-15.

Lemma 1. Let Vi and Vj be the sets of messages collected by two correct processes pi

and pj respectively after a message exchange. We have:

Vi ∩ Vj �= ∅
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Function Consensus(vi)

Init: ri ← 0; Δi[1..n] ← 1;

Task T1: % basic task %
——————————————————- init phase ———————————————————–

(1) send INIT(ri, vi) to all;
(2) wait until

`
INIT(ri, ∗) received from at least (n − t) distinct processes

´
;

(3) if
`
∃v : received at least (n − 2t) times

´
then esti ← v else esti ← vi endif;

repeat forever
(4) c ← (ri mod n) + 1; ri ← ri + 1;

—————————————————- round ri ———————————————————–
(5) send QUERY(ri, esti) to pc; set timer(Δi[c]);
(6) wait until

`
COORD(ri, est) received from pc or time-out

´
store value in auxi; % else ⊥ %

(7) if (timer times out)) then Δi[c] ← Δi[c] + 1 else disable timer endif;

(8) send RELAY(ri, auxi) to all;
(9) wait until

`
RELAY(ri, ∗) received from at least (n − t) distinct processes

´
store values in Vi;

(10) if (Vi − {⊥} = {v}) then auxi ← v else auxi ← ⊥ endif;

(11) send FILT1(ri, auxi) to all;
(12) wait until

`
FILT1(ri, ∗) received from at least (n − t) distinct processes

´
store values in Vi;

(13) if (Vi = {v}) then auxi ← v else auxi ← ⊥ endif;

(14) send FILT2(ri, auxi) to all;
(15) wait until

`
FILT2(ri, ∗) received from at least (n − t) distinct processes

´
store values in Vi;

(16) case (Vi = {v}) then send DEC(v) to all; return(v);
(17) (Vi = {v, ⊥}) then esti ← v;
(18) endcase;

————————————————————————————————————————–
end repeat

Task T2: % coordination task %
(19) upon receipt of QUERY(r, est) for the first time for round r: send COORD(r, est) to all;

Task T3:
(20) upon receipt of DEC(est): send DEC(est) to all; return(est);

Fig. 1. The Byzantine Consensus Protocol (assumes a 2t-bisource)

Proof. The proof is by contradiction. Suppose that Vi ∩ Vj = ∅ and let S be the set of
all messages pi and pj can receive during the message exchange (i.e. messages sent to
pi and pj).

We have |S| = |Vi| + |Vj|. Thus, |S| = 2 × (n − t) as each process waits for (n − t)
messages during the collect phase of an exchange.

Moreover, let f be the actual number of byzantine processes (f ≤ t). Since, the
(n − f) correct processes send (according to the protocol) the same message to both
processes and the f byzantine processes can send a different message to them, we have
|S| ≤ 1 × (n − f) + 2 × f = (n + f) and hence, |S| ≤ (n + t) as f ≤ t.

We have, |S| ≥ 2 × (n − t) and |S| ≤ (n + t). This leads to (n + t) ≥ 2 × (n − t)
i.e. n ≤ 3t a contradiction as we assume n > 3t 	
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Lemma 2. After the message exchange lines 11-12, at most one non-⊥ value can be
certified.

Proof. Let us consider a run where a process pi collects only messages carrying values
v. Process pi keeps the value v (the collected messages constitute the certificate of v).
By Lemma 1, no other process pj can exhibit a set of (n − t) that all carry w values
as the two sets need to intersect and hence, no certificate can be exhibited for another
value. 	


Corollary 1. If a process decides a certified value v during a round, then only v can
be decided in the same or in the next rounds (no other value than v can no more be
certified).

Proof. Let us consider the first message exchange that led a process pi to decide a
certified value v (pi received only v values during the exchange). As pi received a
certified value v then, by Lemma 2 v is the only certified value. Thus all valid messages
either carry v or ⊥. By Lemma 1, we have: ∀j, Vi ∩ Vj �= ∅. As pi received only v
values, all possible sets of messages of size (n − t) (i.e. certificates for the next round)
include at least one one message carrying the value v. If a process decides, it decides v.
If it does not decide, it has to set its local variable estj to v for the next round (v will
be the only certified value as even ⊥ is not certified). 	


Theorem 1 (agreement). No two correct processes decide differently.

Proof. If a correct process decides at line 20, it decides a certified value decided by
another process. Let us consider the first round where a process decides at line 16. By
Corollary 1, if a process decides a certified value during the same round, it decides the
same value. If a process decides after receiving a DEC message at line 20 it decides the
same value. Any process that starts the next round with its local variable esti �= v will
see its messages rejected (no value different from v could be certified). 	


Lemma 3. If no process decides a certified value during r′ ≤ r, then all correct pro-
cesses start r + 1.

Proof. Let us first note that a correct process cannot be blocked forever in the init phase.
Moreover, it cannot be blocked at line 6 because of the time-out.

The proof is by contradiction. Suppose that no process has decided a certified value
during a round r′ ≤ r, where r is the smallest round number in which a correct process
pi blocks forever. So, pi is blocked at lines 9, 12 or 15.

Let us first examine the case where pi blocks at line 9. In that case, as r is the
smallest round number in which a correct process pi blocks forever, and as line 9 is
the first statement of round r where a process can block forever this means that all
correct processes (they are at least (n − t)) eventually execute line 8. Consequently
as communication is reliable between correct processes the messages sent by correct
processes will eventually arrive and pi that blocks forever at line 9. It follows that if pi

does not decide, it will proceed to the next round. A contradiction. 	


Theorem 2 (termination). If there is a �2t-bisource in the system, then all correct
processes decide eventually.
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Proof. If a correct process decides then, due to the sending of DEC messages at line 16,
any correct process will receive such a message and decide accordingly (line 20).

So, suppose that no process decides. The proof is by contradiction. By hypothesis,
there is a time τ after which there is a process px that is a 2t-bisource. Let pj be a
correct process and one of the 2t privileged neighbors of px. As no process decides, the
time-out on the round-trip delay (from pj to px plus the local computation time on px

plus the transmission delay back to pj) as computed by pj will continuously increase
(line 7) until it bypasses the bound imposed by the system model. Consequently, there
is a time τ ′ after which the respective timers of all the privileged neighbors of px will
never expire. Let r be the first round that starts after τ ′ and that is coordinated by px. As
by assumption no process decides, due to Lemma 3, all the correct processes eventually
start round r.

All correct processes (and possibly some byzantine processes) pi start round r and
send a QUERY message to px (line 5). When the coordinator px of round r receives
the first QUERY message (line 19), it sends a COORD message to all processes. If we
consider any privileged neighbor pi of px the COORD message will be sent by px at the
latest when the QUERY message from pi is received by px. This means that no one of
the correct privileged neighbors of px will time-out. They all will receive the COORD

message.
In the worst case, there are t byzantine processes among the 2t + 1 privileged neigh-

bors of px. A byzantine process can either relay the value of px or relay ⊥ during the
next phase (these are only two certified values). This allows to conclude that the value
v sent by px is relayed (line 8) at least by the t + 1 correct privileged neighbors of px

(the only other possible value is ⊥). Since each process collects at least (n − t) RELAY

messages we can conclude that all processes will get at least one message RELAY con-
taining the value v of px. It is important to notice that even byzantine processes cannot
lie about the fact they received px’s value at line 10 as any set of (n − t) messages
contains at least one value v and possibly ⊥ values.

During the third phase (lines 11-13), as the value v of px is the only certified value,
all the processes that emit a certified message (byzantine processes can stay mute) emit
v. This allows to conclude that all processes will have to set their aux value to v value
line 13. By the same way, all processes that emit certified messages will emit v at line
14. From there we can conclude that correct processes will all decide at line 16, which
proves the theorem. 	


Theorem 3 (validity). If all correct processes propose v, then only v could be decided.

Proof. Let v the only proposed value by correct processes. Since all correct processes
propose v, v is sent at least (n − t) times at line 1. Since processes discard at most t
messages, we can conclude that at line 3 any process will receive at least (n−2t) times
the value v. Moreover, any value proposed by byzantine processes will be received at
most t times. As n > 3t, we have t < n − 2t. Consequently, the only certified value
is v. 	
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5 Discussion

5.1 On the Efficiency of the Protocol

The number of rounds executed by the protocol is unbounded but finite. Each round
in composed four all-to-all message exchanges. Each message exchange needs Ω(n2)
messages if the links are reliable (we do not include messages sent by the byzantine
processes as they can sent any number of messages).

If we consider synchronous runs (we assume accurate values for the time-outs) and
no process exhibits a malicious behavior, the protocol terminates after the first round
(four communication steps) and the init phase (one communication step). The protocol
thus terminates in 5 communication steps.

Let us now consider synchronous links and f ≤ t processes exhibit malicious be-
havior. In the worst cat case, the first f coordinators are Byzantine. This means that
the protocol will terminate at the latest after round f + 1 (and the init phase). The total
number of communication steps is thus (4f + 5). Which is the worst case.

5.2 On the Minimality of the �2t-bisource

If we consider the partially synchronous model we defined in Section 2 (extension of
[12]), we conjecture that an �2t-bisource in the weakest timing assumption that allows
to solve the Byzantine Consensus problem if at most t processes can exhibit a Byzantine
behavior.

The intuition that underlies this conjecture is the following. The �2t-bisource and
its privileged neighbors can be seen as a cluster. Inside this cluster, communication is
eventually synchronous as the bisource (1) is a correct process, (2) has timely links
with all other processes of the cluster and thus can serve as a router between processes
that will provide eventually timely communication between any pair of processes. We
suppose that processes are partially synchronous. Moreover, if we assume that commu-
nication is synchronous then it has been proved in [12] that the size of the cluster needs
to be at least 2t + 1 if authentication is used to be able to solve synchronous Byzantine
Consensus inside the cluster. In our case communication is only partially synchronous
but we still only need a size of 2t + 1 for the cluster for the following reason.

The whole set of processes can be used for agreement preserving will trying all
possible clusters. Let us imagine a protocol that executes a series of rounds each coor-
dinated by a preselected cluster (a rotating coordination among all possible clusters of
size 2t + 1). Necessarily, it will select the good cluster infinitely often if the algorithm
executes an infinite number of rounds. During the first phase of a round, the processes
of the selected cluster execute a limited scope synchronous Byzantine Consensus and
each of them broadcasts its decision value to the whole set of processes of the system.
Indeed, if the communication between the processes of the cluster is synchronous, the
correct processes that compose it will all decide the same value otherwise the processes
of the cluster will terminate the synchronous Byzantine consensus with different values.
In the latter case, the whole processes of the system need to execute all-to-all message
exchanges to preserve the overall agreement property (at most one value). In the case
where the correct process of the cluster have all decided the same value, in order to be
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able to extend the agreement among the processes of the ”good” cluster to the whole
system, it is necessary for the cluster to be enough big. This minimal size is also 2t + 1
as this implies that there are at least t + 1 correct processes of the cluster that will send
the decided value and hence any process from outside the cluster that collects messages
from the cluster will get at least one response from a correct process.

In this sketch, we can see that 2t + 1 is used twice. The first time to reach among
the processes of the cluster (the minimal size is 2t + 1) and the second time, the cluster
needs to be large enough in order to be able to extend the decision to the whole system
such that any process is sure to hear from at least one correct process of the cluster.

6 Conclusion

This paper has presented a protocol for solving Consensus in distributed systems prone
to Byzantine failures. The protocol assumes a relaxed partially synchronous distributed
system but where at least 4t communication links are eventually synchronous. These
links connect the same process (2t incoming links and 2t outgoing links). The proposed
protocol has very simple design principles. In favorable setting, it can reach decision in
only 5 communication steps and needs only Ω(n2) messages in each step. Of course
this protocol uses authentication.

The major contribution of this paper is to show that Byzantine Consensus is possible
with very fewtimelyy links (4t eventually synchronous links) versus 2n links for the
best known protocol. Moreover, we conjecture that this is a lower bound.
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Abstract. We consider the problem of synchronizing clocks in synchronous sys-
tems prone to transient and dynamic process failures, i.e., we consider systems
where all processes may alternate correct and Byzantine behaviors. We propose
a clock synchronization algorithm based on periodical resynchronizations which
is based on the assumption that no more than f < n/3 processes (with n the
number of processors in the system) are simultaneously faulty. Both, accuracy
(clocks being within a linear envelope of real-time) and precision (maximum de-
viation between clocks) perpetually hold for processes which sufficiently long
follow their algorithm. We provide expressions for both the recovery time and
the failure turn-over rates. Both expressions are independent of f , and are less
than the time needed to execute 3 resynchronizations.

1 Introduction

Tightly synchronized and accurate clocks among the members of a distributed system is
a fundamental service as it allows, e.g., to perform synchronized actions or estimate the
behavior of the environment in a control system. One way to ensure reliable and tight
synchronization among local clocks is the use of a clock synchronization algorithm.
Essentially such an algorithm overcomes clock drift, variations of transmission delays
and failures. It guarantees that the maximum deviation between (correct) local clocks
is bounded (precision) and that these clocks are within a linear envelope of real-time
(accuracy).

There is considerable literature devoted to the design and implementation of clock
synchronization algorithms; see [1,2,3,4,5] for an overview. Some algorithms are spec-
ified for environments in which processes may crash [6], may suffer timing failures [7],
or may execute arbitrarily bad operations [1,8,9,10]. The last type of behavior, called
Byzantine, is the most severe type of process failures. It captures all causes of failures,
ranging from accidental memory bit flips to malicious attacks on a system. Therefore
this model seems appropriate for a large range of distributed applications.

Another kind of fault tolerance is self-stabilization. Here it is assumed that the system
behaves arbitrarily (including, e.g., that the assumed threshold of faults is temporarily
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violated) but if eventually all processes behave according to the algorithm the system
stabilizes to a good state (where in our case the clock synchronization properties hold).
A highly interesting work is with respect to joining the two approaches: Self-stabilizing
clock synchronization algorithms that work in the presence of permanent Byzantine
faults are given in [11,12]. However, these solutions share some properties which seem
inherent to the problem of fault-tolerant self-stabilization: First, even processes that al-
ways follow their algorithm are not guaranteed to remain synchronized to each other
(this is clearly due to well known bounds on resilience [1] which are violated dur-
ing unstable periods) and second, resynchronization of recovered processes takes O(f)
time.

This paper is based on the idea, that permanent failures are too optimistic for cer-
tain applications, while fault-tolerant self-stabilization might be too pessimistic, or the
provided properties too weak. We therefore explore under which conditions clock prop-
erties can be provided permanently in the presence of transient and dynamic Byzantine
faults, where processes recover from “bad periods” with an arbitrary state and just start
following their algorithm. We, however, limit the number of components which may
suffer from faults simultaneously.

This Byzantine-recovery failure model has been previously investigated in [13,14]
(both work will be discussed in Section 6). In [14], the work is motivated by secu-
rity schemes for which a clock synchronization algorithm under this failure model is
more robust than others. However, our motivation for this failure model comes from
long-lived applications in the space domain. There, transient and repeated bit-flips phe-
nomena, caused by single event upsets (SEU), may impact processors of the computing
system. In addition, mission times can be extremely long, rendering unrealistic the hy-
pothesis that there is a limitation on the number of faults that may occur during the
application life, and that only a subset of the processors can be affected by these faults.
To deal with such strong requirements, complex checking procedures are designed,
and reconfiguration and/or correcting mechanisms are applied on the altered compo-
nents. Such mechanisms ensure that altered processors recover some operational state,
mainly they recover a correct execution code. Clearly, recovering an operational state
does not mean recovering a safe state, i.e., having the clock synchronized, for example.
To summarize, the notion of faulty and correct processors does not make sense in the
Byzantine-recovery failure model, “correct” in the sense that a processor is correct for
the whole mission. Rather, processors alternate between periods of time during which
they are faulty, and periods of time during which they follow their prescribed protocol.

Contribution. We propose a clock synchronization algorithm tolerant to moving Byzan-
tine failures. In particular our algorithm guarantees that in presence of up to f “mov-
ing” and concurrent Byzantine failures, correctly behaving processes (that is at least
n − f processes, with n ≥ 3f + 1, and n the number of processors in the system)
have synchronized logical clocks. Our algorithm is a variation of Srikanth and Toueg’s
clock synchronization algorithm [9], in which the classic notion of “correct process”
is assumed. The challenge of the present work is the guarantee that correctly behaving
processes are never corrupted by recovering processes, and that clocks of recovering
processes get quickly tightly synchronized with those of correctly behaving processes.
We provide an expression for the recovery time (i.e., the period of time after which a
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recovered process is synchronized with the other processes). This bound is independent
of f , and is roughly equal to the time needed to execute two resynchronizations. We de-
rive an expression for the failure turn-over rate, i.e., the maximal allowable frequency
at which processes may enter (and leave) faulty periods. This rate is also independent
of f , and is roughly equal to the time needed to execute three resynchronizations.

2 System Model and Problem Statement

Network and Clock Model. The system consists of a finite set of n ≥ 3f +1 processes,
where f is a parameter which is used below for our failure assumption. Processes com-
municate and synchronize with each other by sending and receiving messages over a
(logically) fully connected reliable point-to-point network. The system is synchronous,
as that there exists known upper and lower bounds on processing speeds; every process
has access to a hardware clock with bounded drift with respect to Newtonian real-time;
and there is a known upper bound on messages transmission delays. More precisely, we
assume the following:

1. The rate of drift of physical clocks from real-time is bounded by a known constant
� > 0. That is, if Hp(t) is the reading of the hardware clock of process p at real-time
t, then for all t2 ≥ t1:

t2 − t1
1 + �

≤ Hp(t2) − Hp(t1) ≤ (1 + �)(t2 − t1)

The rate of drift between clocks is consequently bounded by dr = � · 2+�
1+� .

2. There is an upper bound δ on the time required for a message to be prepared by a
process, sent to a process and processed by the recipient of the message.

Failure Model. As written above, we want to model transient and dynamic process fail-
ures, i.e., processes may temporarily (permanent process failures are just a special case)
deviate from the specified behavior. For example, such a process may arbitrarily change
its local state, omit to send messages, may change the content of its messages or may
even generate spurious messages. Note however, that we exclude masquerading by our
logical point-to-point assumption. Further we want to model recovery such that process
p reaches an operational state whenever p recovers a correct code, and makes steady
progress in its computation, i.e., follows its algorithm. Note that p’s execution context
may be still altered (similar to self-stabilization), and thus p may still be perceived as
faulty as long as it has not reached a safe state, i.e., an internal state that satisfies prob-
lem specific invariants (e.g., having its logical clock synchronized). The time needed to
reach a safe state from an operational one is called the recovery time, and is denoted in
the following by j.

Definition 1 (Obedient Processes). We denote by Obedient(t1, t2) the set of processes
that follow their algorithm during the whole real-time interval [t1, t2], and by PΔ(t)
the set in Obedient(max{0, t − Δ}, t), with Δ being some constant real-time interval.
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Definition 2 (Fault Model). For every real-time t > 0 it holds that

|Pm(t)| ≥ n − f (1)

with m being some constant real-time (the fault turn-over interval), and n ≥ 3f + 1.
Initially, at time t = 0, all processes are in an initial (i.e., correct) state.

This definition states that in a sliding window of length m, the number of processes
that can concurrently exhibit faulty behavior is no more than f , with n ≥ 3f + 1. With
m = ∞ there are at least n − f “correct” processes, while at most f may fail during an
execution: We get similar restrictions as in the classic Byzantine fault model [15,16].

Problem Statement. As previously said, a clock synchronization algorithm allows
processes to update their local clocks to overcome drifts and failures. Process p’s lo-
cal clock (also called in the literature p’s logical clock) at real-time t, denoted Cp(t),
follows its hardware clock Hp(t) with periodic re-adjustment. A Δ-Clock Synchroniza-
tion algorithm has to satisfy the following two properties:

(π) Precision. At any real-time t ≥ 0 and for any two processes p, q ∈ PΔ(t) it holds
for some constant Dmax that

|Cp(t) − Cq(t)| ≤ Dmax

(α) Accuracy. For any process p and for any two real-times s and e with p ∈ Obedient
(s, e)∧ (e− s) > Δ it must hold for any two real-times t1, t2 ∈ [s+Δ, e], t1 < t2,
for some constants a, b, c, and d that

t2 − t1
a

− b ≤ Cp(t2) − Cp(t1) ≤ (t2 − t1) c + d

Precision ensures that the maximum deviation between logical clocks of any two pro-
cesses that are obedient for at least Δ real-time units is bounded. Accuracy guarantees
that the logical clock of a process obedient for at least Δ real-time units remains in the
linear envelope of real-time.

3 The Algorithm

Algorithm 1 is a variant of the non-authentication clock synchronization algorithm by
Srikanth and Toueg [9]. Its rules (starting with “on”) are executed atomically. There
are several data structures, namely Buffer and timestamps, where Bufferp[q] contains
the last resynchronization message sent by q that p received, and timestampsp[q], p’s
local time at which p received that resynchronization message. The algorithm relies on
several parameters. The (local) interval P between two executions of the resynchroniza-
tion protocol, the delete interval parameter R which is the time interval during which
resynchronization messages are locally kept within Buffer, and the adjustment param-
eter A guaranteeing that logical clocks of processes which are obedient for sufficiently
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long are not set back. All these parameters are computed from the estimation of sys-
tem parameters δ and �. They have to satisfy the following solvable set of constraints,
constraints that will be discussed in the remainder:1

A ≥ r · (1 + �) P > (3 · δ) · (1 + �) + A + R · (1 + �)
R = r · (1 + �) r = (P − A) · dr + 3 · δ

After discussing the general principles of our algorithm, we will show that it solves
Δ-Clock Synchronization under the failure assumption of Definition 2 for Δ = j and
m as follows (with an infinitesimally small ε):

j ≥ 2 · r + P · (1 + �) m ≥ j + R · (1 + �) + δ + ε

Srikanth and Toueg’s Algorithm [9]. We briefly discuss the principles of their algo-
rithm. It is based on processes which are either “correct” or “faulty” permanently.
The resynchronization proceeds in rounds, a period of time during which processes
exchange messages and update their logical clocks: When the logical clock of some
correct process shows time k · P , with k ≥ 1, this process sends a message to all, in-
dicating that it is ready to resynchronize. When a correct process receives f + 1 such
messages, it knows that at least one was sent by a correct process, and thus that at least
one correct process is ready to resynchronize. Therefore it also sends such a message
to all. Upon receipt of a resynchronization message from n − f ≥ 2f + 1 processes,
process p knows that all correct processes will receive at least n − 2f ≥ f + 1 of these
messages within bounded time, and will therefore send their resynchronization mes-
sages to all, such that in turn every correct process receives n− f such messages within
bounded time. Thus, p “accepts” this message and resynchronizes its logical clock to
k · P + A.

Our Algorithm. Intuitively, the main problem in the dynamic fault model is that a pro-
cess has to get rid of messages which it receives from a, then faulty, process for “future”
rounds, i.e., for too large values of k. In the static failure model this is simpler to over-
come since such messages are sent just by the at most f faulty processes during the
whole execution, while in the dynamic model such messages may be sent by every
process at times it does not follow its algorithm.

The structure of our algorithm is similar to [9]. Resynchronizations are triggered
periodically (line 7), and if properly relayed, and agreed by sufficiently many processes
resynchronization is applied by all the processes in Pj(t) (line 25). To prevent too much
bad information from being present in Buffer, invalid messages are deleted from Buffer
(line 11). A message is invalid if it belongs to Buffer for more than R logical time units,
or if its reception time is in the future; R corresponds to the maximal time needed to
properly complete a resynchronization phase. To prevent incorrect resynchronizations,

1 The constraints are given here as required for the proofs. At first sight there seem to be cyclic
dependencies. However, by simple arithmetical manipulation one can derive that A does in
fact only depend on δ and � while P must be greater than A plus a term depending again on
δ and �. The system is sound if � < 0.32, which is in practice given as hardware clocks have
drift rates between 10−6 and 10−4.
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Algorithm 1. Clock Synchronization Algorithm
1: variables
2: k← 1 // round number
3: vector of integers: Buffer[1 . . . n]← ⊥
4: vector of real: timestamps[1 . . . n]← 0
5: real: C(t)← 0
6: sent ∈ {TRUE, FALSE} ← FALSE

7: on C(t) = k · P do
8: if sent = FALSE then
9: send (TICK, k) to all
10: sent← TRUE

11: on ((timestamps[q] < C(t)− R) ∨ (C(t) < timestamps[q])) ∧ (Buffer[q] �= ⊥) do
12: Buffer[q]← ⊥

13: on receipt of message (TICK, �) sent by process q do
14: Buffer[q]← �
15: timestamps[q] = C(t)
16: if |{r : Buffer[r] = �}| ≥ f + 1 ∧ � = k then
17: if sent = FALSE then
18: send (TICK, �) to all
19: sent← TRUE

20: if |{r : Buffer[r] = �}| ≥ n − f then
21: for all r ∈ Π do
22: timestamps[r]← timestamps[r] + (� · P + A− C(t))
23: if Buffer[r] = � then
24: Buffer[r]← ⊥
25: C(t)← � · P + A
26: k← � + 1 // set round number
27: sent← FALSE

process p relays a (TICK, k) message only if it makes sense for itself, i.e., (1) p is sure
that at least one process with a “good” internal state wants to resynchronize, (2) both
q and p agree on the resynchronization round (line 16), and (3) p has not already sent
(TICK, k).

The presence of n−f (TICK, k) messages in p’s buffer is sufficient to resynchronize
its clock, i.e., to set it to k ·P +A. This also allows a recovering process p to resynchro-
nize its clock. Note that this resynchronization need not be based on “real” messages,
as p may still have bad information in its buffer that is due to the time when it did not
follow its algorithm, and thus it may synchronize to a wrong clock. However, the algo-
rithm guarantees that at the end of the next resynchronization, p will have cleaned its
buffer, and will be able to resynchronize its clock with all the other correct processes.
We did not explicitly handle overruns of the round number k or the clock variables.
With assumptions on the mission duration, variables can be dimensioned sufficiently
large, such that overruns only happen due to local faults such that variables can be reset
safely.

4 Properties of the Algorithm

In this section we give the main lines of the correctness proofs. (See [17] for the com-
plete proofs.) We begin by defining some intensively used notations.

If some process p ∈ Pj(t) takes some step s at real-time t then we say that p properly
executes s and if some process p ∈ Pj(t) sends some message m at real-time t we



96 E. Anceaume et al.

say that p properly sends m. If p properly executes line 26, then p terminates round
�. Moreover, we will heavily use tdel which is defined to be 2δ. We now give some
preliminary definitions, the first of which are similar to [9].

Definition 3. For each round k, the instant the first process properly sends (TICK, k)
is denoted by readyk. The time the f + 1st process properly sends (TICK, k) is denoted
gok. The time the n − f th process properly sends (TICK, k) is called fast-gok. Finally,
the time the first (or last) process properly terminates round k and sets its clock to
kP + A is denoted begk (or endk, resp.). Further, based on these times we define:

Ok = Obedient(readyk, fast-gok + δ)
Ck = Obedient(readyk − r, fast-gok + δ)
Sk = Obedient(readyk − j, fast-gok + δ)

The following properties form a central part of the analysis. Essentially these properties
impose constraints on local structures at the start of a resynchronization period. In this
section, we assume initial synchronization, i.e., we assume that the properties hold for
k = 1. A large part of the analysis is then devoted to prove that the properties are in
fact invariants of the algorithm. On these invariants we later build our proofs for (π) and
(α). We discuss in Section 5 how and under which assumptions initial synchronization
can be achieved.

Invariant 1. With respect to round k ≥ 1, we define:

(S) Synchronized Start. fast-gok − readyk ≤ tdel + (P − A) · dr.
(N) Consistent round numbers. At readyk−ε (for an infinitesimally small ε) all processes

in Pj(readyk) have a round number equal to k and sent = FALSE.
(B) Clean buffer. At real-time readyk−ε all processes in Pj(readyk) have Buffer[p] = ⊥

and there are no messages in transit on outgoing links of processes p ∈ Pj(readyk).
(C) |Sk| ≥ n − f .
(T) No process has properly sent a message (TICK, �) for � ≥ k before readyk.

In the case of classic, i.e., static Byzantine faults, a consequence of the model is, that
at no time, a correct process has received messages by more than f faulty processes.
In our case, we neither have the notion of a correct nor of a faulty process. In order to
achieve clock synchronization — and thus to circumvent the lower bound in [1] — we
have to ensure that not too much bad information is present at processes which should
ensure properties (π) and (α).

Recall that the fault turn-over interval m (see Definition 2) satisfies the following
relation: m ≥ j + R · (1 + �) + δ + ε, with an infinitesimally small ε, and the recovery
time j is such that j = 2 · r + P · (1 + �). Intuitively, m must be greater than the
recovery time j (otherwise the adversary could corrupt all the processes in the system
by moving fast enough from one to another one), and must face situations in which
some process p that recovered a safe state at time t (i.e., p enters Pj(t)) may have
sent “wrong” messages right before t. Thus buffers have to be cleaned (which takes
δ + R · (1 + �) + ε real time units) before the adversary is allowed to break into new
processes. Then we have:
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Lemma 1 (Clean State). At all times t, any process p ∈ Pj(t) has less than or equal
to f values different from ⊥ in the vector Buffer which were not received via properly
sent messages.

Proof. Suppose by way of contradiction that p has more than f values in his vector
Buffer which it wrote in line 14 due to a message sent by some process q at some time
t′ ≤ t such that q �∈ Pj(t′). By line 11, no values which are older than R are kept in p’s
vector Buffer. Thus messages by more than f distinct processes must have been sent at
some times t′ such that these processes where not in Pj(t′) and t − R · (1 + �) − δ ≤
t′ ≤ t.

As |Pm(t)| ≥ n−f and m ≥ j +R · (1+�)+ δ +ε it follows that Pj(t′) ⊇ Pm(t).
Consequently, |

⋃
t′ p �∈ Pj(t′)| ≤ f which provides the required contradiction to p

having received messages by more than f distinct processes. 
�

We now investigate properties of the round structure. We show two basic properties of
our algorithm, which are named after similar properties of the broadcasting primitive in
[9,18], i.e., unforgeability and correctness.

Lemma 2 (Unforgeability). If a process properly terminates round k at time t, then at
least one process properly has sent (TICK, k) at some time t′ ∈ [t − R · (1 + �) − δ, t].

Proof. Assume by contradiction that q ∈ Pj(t′) terminates round k at time t′, although
no message (TICK, k) was properly sent in the given interval. Due to line 20, it does so
because it has at least n−f ≥ f +1 entries in Buffer for round k. By Lemma 1 no more
than f of these are due to processes not in Pj(t′′) when they send (TICK, k) at time t′′,
with t′′ ≤ t′. Thus at least one process must have properly sent (TICK, k) within the
interval (otherwise it would have been deleted by time t in line 11) which provides the
required contradiction. 
�

Lemma 3. The first process that properly sends (TICK, k) does so in line 9.

Lemma 4. No process properly terminates round k at some time t′ < gok.

Lemma 5. For every k, if (S) then (C).

Proof. By Definition 2, |Pm(t)| ≥ n − f , for all t. Consequently, it suffices to show
that m ≥ fast-gok + δ − readyk + j. By (S), fast-gok + δ − readyk + j ≤ δ + (P −
A) dr + tdel + j = r + j. Further, m = j + R(1 + �) + δ + ε such that it follows that
m > fast-gok + tdel − readyk + j which concludes the proof. 
�

We now present some lemmas which are all built upon properties (S), (N), (B), (C), and
(T) . These lemmas are used in the induction proof of Theorem 2.

Lemma 6. Suppose (S), (N), (B), (C), and (T) hold for round k. Then process p ∈ Ok

does not remove any messages that are sent within [readyk, fast-gok + δ] within this
interval via line 11.

Proof. Only messages older than R on p’s logical clock are removed (in line 11). The
minimum real-time duration for R is R

1+� which is r. Consequently only messages sent

before fast-gok +δ−r are removed. By (S), fast-gok +δ−r < readyk which concludes
the proof. 
�
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Lemma 7. Suppose (S), (N), (B), and (C), and (T) hold for round k. Then no process
in Sk sends a (TICK, �), with � �= k, message within [readyk, fast-gok + δ].

Lemma 8. Suppose (S), (N), (B), (C), and (T) hold for round k. Then let some process
p ∈ Ok receive (TICK, k) messages by at least n − f distinct processes in Sk within
[readyk, t], with readyk ≤ t ≤ fast-gok + δ.

1. p terminates round k within [readyk, t].
2. After terminating round k within [readyk, t], p does not terminate round � for some

� �= k by gok + tdel.

Lemma 9 (Correctness). Suppose (S), (N), (B), (C), and (T) hold for round k. Then
every process in Ok terminates round k within [readyk, gok + tdel].

Proof. By gok, f + 1 processes properly send (TICK, k). These messages are received
by all processes in Sk (which have a clean Buffer due to Lemma 1) such that by time
gok + δ at least f + 1 messages are in their buffer. These processes send (TICK, k) by
time fast-gok ≤ gok + δ due to line 18. Thus the messages by these at least n − f
distinct processes are received by all processes in Ok within [readyk, fast-gok + δ]. By
Lemma 8, our lemma follows. 
�

Lemma 10. Suppose (S), (N), (B), (C), and (T) hold for round k. Then:

1. Every p ∈ Ck terminates round k exactly once within [gok, gok + tdel].
2. At time gok + tdel, p has at most f messages for round k sent by processes in Sk

and at most f messages which where not sent properly in Buffer.

Proof. As processes in Ck follow their algorithm at least r before readyk, they have
deleted all messages they had in their Buffer that were due to a time where they possibly
did not follow their algorithm in line 11.

Due to Lemma 9 and by similar reasoning with which one can show Lemma 4, every
process p ∈ Ck terminates round k at some time t ∈ [gok, gok + tdel] at least once.
To prove (1), let p do so such that it removes all messages from Buffer for round k in
line 24. It does so based on n − f received messages, i.e., at least n − 2f messages by
processes in Sk. Only one2 (TICK, k) message sent by each process in Sk is received
such that no more than f messages from processes in Sk can be received after t. Con-
sequently, p cannot reach the n − f > 2f threshold necessary to execute line 26 (and
terminate round k) within [t, gok + tdel].

The first part of (2) is a consequence of the proof of (1), while the second part of the
proof is identical to the proof of Lemma 1. 
�

Let in the remainder of this section ek be the time the last process in Ck terminates
round k within [gok, gok + tdel] and also fix the real-time τ = ek + (P − A)(1 + �).

Lemma 11. For every process p ∈ Pj(τ) it holds that p ∈ Ck.

2 Processes follow their algorithm, i.e., cannot terminate a round other than k within the time
window, consequently they cannot set their round number to k (and set sent to FALSE) which
would be required to re-send a message.
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Proof. First we have to show that τ − j ≤ readyk − r. According to its definition,
j = 2 · r + P · (1 + �). We have to show that τ − readyk ≤ r + P · (1 + �), i.e.,

ek − readyk ≤ (P − A) · dr + δ + tdel + A(1 + �) (2)

By property (S), fast-gok − readyk ≤ tdel + (P − A) · dr and by Lemma 8, ek ≤
fast-gok + δ. Consequently, we know that ek − readyk ≤ 3δ + (P − A) · dr which —
by the size of A — proves Equation (2).

Second we have to show that fast-gok + δ ≤ τ , i.e., that

fast-gok + δ ≤ ek + (P − A)(1 + �). (3)

Since by definition of P , P −A > (3 ·δ) ·(1+�)+R(1+�), we can prove Equation (3)
by showing that fast-gok ≤ ek + 2δ.

By Lemma 4, gok ≤ begk. Since by time gok + δ all processes in Sk receive f + 1
(TICK, k) messages and therefore send (TICK, k) it follows that fast-gok ≤ gok + δ
since |Sk| ≥ n − f . As gok ≤ begk ≤ ek it follows that fast-gok ≤ ek + δ and thus our
lemma follows. 
�

Lemma 12. If (S), (N), (B), (C), and (T) hold for round k, then no messages are prop-
erly sent within [begk + tdel, readyk+1], for any k > 0.

Proof. Lemma 11 in conjunction with Lemma 10 shows that all processes p ∈ Pj(τ)
update their round number once to k + 1 within tdel. By Lemma 10(2), there are not
sufficiently many messages in transit such that p can execute line 18 before the first
process in Ck has properly sent (TICK, k + 1), while there are also not sufficiently many
messages (i.e., less than n−f ) to execute line 25 before the first process in Ck has sent a
message. Thus processes properly execute no rule (except line 11) before the first clock
of a process in Ck properly reaches (k + 1) · P which is not before begk + P−A

1+� which

thus is a lower bound for readyk+1. 
�

Lemma 13 (Monotony). Suppose (S), (N), (B), (C), and (T) hold for round k. If p ∈
Pj(τ) terminates round k within [readyk, begk + tdel], then at no time t, begk + tdel <
t ≤ τ , p terminates round k.

Proof. Suppose p ∈ Pj(τ) terminates round k within [readyk, begk + tdel]. By Lemma
12, from begk + tdel on, no process properly sends (TICK, k). Within [readyk, begk +
tdel], no process properly sends (TICK, �), with � < k (Lemma 7). By an argument
similar to the one used for Lemma 2, the lemma follows. 
�

After all these preliminary lemmas, we finally arrive at our major theorem. If initial
synchronization is given one may set σ = 0. For our initialization algorithm, however,
σ will be 2.

Theorem 2. Algorithm 1 ensures that for all k ≥ σ the properties (S), (N), (B), (C),
and (T) as well as ek − begk ≤ tdel are satisfied given that the properties (S), (N), (B),
(C), and (T) hold for some round σ ≥ 0.
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Proof. The proof is by induction on k. For k = σ, (S), (N), (B), (C), and (T) hold since
the properties of initial synchronization are assumed to hold. By Lemma 10 the base
case follows.

Now assume that (S), (N), (B), (C), and (T) hold for all �, with σ ≤ � < k + 1 and
e� − beg� ≤ tdel. We have to show that they hold for round k + 1. Relation ek+1 −
begk+1 ≤ tdel then follows directly from Lemma 10.
(S) All processes p ∈ Pj(τ) send (TICK, k + 1) at the latest by ek + (P − A)(1 + �)
which constitutes an upper bound for fast-gok+1. From the induction assumptions and
Lemma 10 it follows that ek − begk ≤ tdel. Thus fast-gok+1 − readyk+1 ≤ tdel +(P −
A) dr which proves (S) for k + 1.
(N) Since no rules (except line 11) are executed after processes in Pj(τ) have set their
round number to k + 1, their round number remains unchanged and sent = FALSE as it
is set to this value when the round number is updated.
(B) As no rules (except line 11) are properly executed by processes in Ck between
ek and readyk+1, no messages are sent by processes in Pj(readyk+1) in this interval,
and all messages they have sent before are received by ek + δ. Thus between time
begk + tdel + δ and time readyk+1, no properly sent message from p can be received
in q’s buffer, with q ∈ Pj(readyk+1). By time begk + tdel + δ + R(1 + �), q’s buffer
is empty (line 11). We have to show that (1) begk + tdel + δ + R(1 + �) < readyk+1.
The lower bound for readyk+1 is obtained as follows. Let p be the first process that
properly terminates round k and let it be the process with the fastest clock. It will send
(TICK, k + 1) when its clock reads (k +1)P . Consequently, readyk+1 ≥ begk + P−A

1+� .

From (1), we have to show that tdel + δ + r < P−A
1+� . From constraints on P , and A it

follows that we have to show that tdel + δ + r < (tdel+δ)·(1+�)+R(1+�)
1+� = tdel + δ + R

which is obvious from the definition of R.
(C) Straightforward from Lemma 5
(T) As no rules (except line 11) are properly executed by processes in Ck between ek

and readyk+1, no messages are sent by processes in Pj(readyk+1) within this interval.
By Lemma 7, no process properly sends a (TICK, �) message, with � �= k + 1, within
[readyk, fast-gok + δ]. Finally by the induction assumptions, no process has properly
sent a message (TICK, �) for � ≥ k before readyk. 
�

Lemma 14. For every round k it holds that ek+1 − readyk ≤ j.

Theorem 3. For every round k it holds that endk − begk ≤ tdel.

Proof. From Lemma 14 it follows that if p ∈ Pj(t) it holds that p ∈ Ok for the latest
resynchronization period with ek ≤ t. Process p’s round number is thus greater than k
at time t and if it follows its algorithm until e� for some � > k it sets its round number
to � + 1 by then (Lemma 10) and thus, after ek has a round number greater than k as
long it remains obedient. Thus, it never again properly sends (TICK, k) after ek, such
that by Lemma 2 and Lemma 13 no process properly terminates round k after ek; by
the definition of endk the theorem follows. 
�

We have seen that the collective update of the round numbers is ensured which is funda-
mental for round based clock synchronization algorithms. Based upon it one can show
the following properties of the local bounded drift clocks.
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Algorithm 2. Initialization Algorithm
1: variables
2: Buffer0[n]← FALSE

3: sent0 ∈ {TRUE, FALSE} ← FALSE

4: on external start event do
5: if sent0 = FALSE then
6: send (START) to all
7: sent0 ← TRUE

8: on receipt of message (START) sent by process q do
9: Buffer0[q]← TRUE

10: if
∣
∣
{

r : Buffer0[r]
}∣
∣ ≥ f + 1 then

11: if sent0 = FALSE then
12: send (START) to all
13: sent0 ← TRUE

14: if
∣
∣
{

r : Buffer0[r]
}∣
∣ ≥ n− f then

15: C(t)← A
16: k← 1 // start clock

Theorem 4 (Precision). For all real-times t and for any two processes p, q ∈ Pj(t) it
holds that
|Cp(t) − Cq(t)| ≤ Dmax, with Dmax

Δ= P
1+� · dr + A

(1+�)2 + tdel (1+� (2+�))
1+�

Theorem 5 (Accuracy). For any process p and for any two real-times s and e with
p ∈ Obedient(s, e) ∧ (e − s) > j it must hold for any two real-times t1, t2 ∈ [s + j, e],
0 ≤ t1 < t2, that

t2 − t1
a

− b ≤ Cp(t2) − Cp(t1) ≤ (t2 − t1) c + d

with
a =1 + � b =0
c = P (1+�)

P−A−tdel (1+�) d =P − P−A−tdel (1+�)
(1+�)2

5 Initialization

For initial synchronization, it is usually assumed that all processes of the system are
up and listening to the network when the algorithm is started [9,10]. In systems where
processes boot at unpredictable times, it was shown in [19] that this assumption can be
dropped. In this paper, we consider the classic case and propose an initialization pro-
tocol which requires that there are sufficiently many processes following their protocol
during the initialization phase.

Definition 4 (Failure Model for Initialization). Let t be the maximum real-time at
which a process p ∈ Obedient(0, t), properly starts initialization. Then it holds that
|Obedient(0, tb)| ≥ n − f with tb = t + 2δ + 2 · (P − A)(1 + �), and ∀t′ > tb :
|Pm(t′)| > n − f .

Algorithm 2 presents a protocol which established initial synchronization, i.e., ensures
Invariant 1 when used in conjunction with Algorithm 1 for k = 2: All processes in
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Pj(tb) properly terminate round 0 within tdel of each other. However, since these pro-
cesses may start synchronization whenever they want, the initial synchronization period
is is not bounded in size. This is only given for the first resynchronization such that start-
ing with the second resynchronization (which can be shown to terminate before tb) our
properties (S), (N), (B), (C), and (T) hold. (More detailed analysis is given in [17].)

6 Related work

From the failure model perspective, the problem we solve is different from the Byzantine-
tolerant self-stabilization version of clock synchronization [11,12]. There, all the
processes start with a possibly corrupted state, and eventually converge toward a safe
state in which all processes have a synchronized clock. From the properties our algo-
rithm achieves, we provide precise expressions on how many faults may occur in the
system such that still perpetual clock synchronization is possible, which is in sharp con-
trast with self-stabilization.

The closest work to ours is the one of Barak et al. [14]. Their synchronization algo-
rithm assumes that processes alternate between correct behaviors and faulty ones, and
that no more than f processes can fail during sliding window of length θ. Differently
from our solution, their resynchronization algorithm uses a convergence function simi-
lar to the differential fault-tolerant midpoint function of Fetzer and Cristian [20]. Max-
imal drift of logical clocks, �, is very close to the one of hardware clocks, which shows
the adequacy of that convergence function for maximizing logical clock accuracy. How-
ever, the weakness of their algorithm lies in the way clock synchronization is achieved.
Whenever some process p decides to start a resynchronization phase, p asks all the pro-
cesses to send their current clock values, which enables p to estimate the “system time”.
It is not hard to see that in case of Byzantine failures, resynchronizations can be invoked
infinitely often with the main consequence of overloading processors and communica-
tion links which makes it difficult to guarantee some upper-bound on communication
delays, as well as on the maximal error reading estimates, which has clearly a dramatic
impact of convergence functions, and thus on the clock synchronization algorithm as
the achievable precision depends on the timing uncertainty of the system [21]. Mod-
ifying their algorithm to prevent such behavior does not seem trivial. An idea would
be to reject/ignore too early clock synchronization messages, but this would postpone
recovery, and probably would have severe impact on the correctness proof. In contrast
to their solution, ours does not compute a new clock based on the clock values of other
processes but based on the receipt of a minimum number of synchronization messages;
some of which must have been sent by “correct” processes, preventing thus abusive re-
lease clock resynchronizations. Finally, regarding fault turn-over rate, we improve the
results by Barak et al. [14] by a factor of approximately 3.

Anceaume et al. [13] present an ad-hoc solution to the clock synchronization prob-
lem for the particular case where f = 1 and n ≥ 4. The present work is a generalization
of that result by considering an unvalued variable f .

Open Problems. We proposed (simple) mechanisms to transform a clock synchroniza-
tion algorithm tolerant to permanent Byzantine failures into an algorithm in which all
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processes may recover after Byzantine failures. This transformation takes advantage of
the inherent properties of the problem we address, namely, data have a limited dura-
tion of validity, or can be refreshed periodically. We conjecture that it is possible to
design automatic transformations for all distributed algorithms that manipulate evanes-
cent variables.
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3 Département d’informatique, Université du Québec en Outaouais, Canada
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Abstract. We consider the problem of exploring an anonymous unoriented ring
by a team of k identical, oblivious, asynchronous mobile robots that can view
the environment but cannot communicate. This weak scenario is standard when
the spatial universe in which the robots operate is the two-dimentional plane,
but (with one exception) has not been investigated before. We indeed show that,
although the lack of these capabilities renders the problems considerably more
difficult, ring exploration is still possible.

We show that the minimum number ρ(n) of robots that can explore a ring
of size n is O(log n) and that ρ(n) = Ω(log n) for arbitrarily large n. On one
hand we give an algorithm that explores the ring starting from any initial con-
figuration, provided that n and k are co-prime, and we show that there always
exist such k in O(log n). On the other hand we show that Ω(log n) agents are
necessary for arbitrarily large n. Notice that, when k and n are not co-prime, the
problem is sometimes unsolvable (i.e., there are initial configurations for which
the exploration cannot be done). This is the case, e.g., when k divides n.

1 Introduction

1.1 Framework

Recently a lot of attention has been devoted to the computational and complexity issues
arising in systems of autonomous mobile entities located in a spatial universe U . The
entities have storage and processing capabilities, exhibit the same behavior (i.e., execute
the same protocol), can move in U (their movement is constrained by the nature of
U), and are asynchronous in their actions. Depending on the context, the entities are
sometimes called agents, other times robots; in the following, we use the latter. The
research concern is on determining what tasks can be performed by such entities, under
what conditions, and at what cost. In particular, a central question is to determine what
minimal hypotheses allow a given problem to be solved.
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Depending on the nature of U , there are two basic settings in which autonomous
mobile entities are being investigated. The first setting, called sometimes continuous
universe, is when U is the two-dimensional plane (e.g., [1,9,10,19,27,29,30]). The sec-
ond setting, sometimes called graph world or discrete universe, is when U is a simple
graph (e.g., [3,4,7,12,20,21]). In both settings, each robot is viewed as operating in a
Look - Compute - Move cycle. The robot observes the environment (Look), then, based
on this observation, it decides to stay idle or to move (Compute), and in the latter case
it moves towards its destination (Move).

Interestingly, in spite of the common features of the two settings, the researchers
investigating them usually operate under two radically different assumptions on the
robots’ capabilities.
(1) Communication vs Vision - In the investigations in a graph world, the robots are
assumed to communicate with each other directly; e.g., by means of tokens [6,7], or
whiteboards [12,20], or when they meet [20]. Instead, in the studies on a continuous
universe, the robots do not communicate in any explicit way; they however see the po-
sition of the other robots and can acquire knowledge from this information (e.g., see
[1,9,10,19,26,27,29,30]).
(2) Persistency vs Obliviousness - In addition to its program, each robot has a local
memory (sometimes called notebook or workspace), used for computations and to store
different amount of information obtained during the cycles. In all the investigations
in a graph world, the local memory is possibly limited (e.g., each robot is a finite-
state automaton) but almost always persistent: unless explicitly erased by the robot,
all the information contained in the workspace will persist thoughout the robot’s cy-
cles. Instead, in the majority of the studies on a continuous universe, the robots are
oblivious: all the information contained in the workspace is cleared at the end of each
cycle. In other words, the robots have no memory of past actions and computations,
and the computation is based solely on what has been determined in the current cy-
cle. The importance of obliviousness comes from its link to self-stabilization and
fault-tolerance.

Let us point out that there is nothing inherent in the nature of U that forces these
differences in the assumptions. In other words, there is no reason why robots in a
graph should not be oblivious; on the contrary, an oblivious solution would be highly
desirable ensuring fault-tolerance and self stabilization. Similarly, there is nothing in
the continuous domain that forbids robots from communicating explicitly; indeed, in
the recent investigations on mobile sensor networks, the robots do communicate wire-
lessly [24].

Surprisingly, nobody has investigated how to solve problems in the discrete universe
if the robots have the capabilities and limitations standard in the continuous one. In
fact, with one exception, there are no studies on how a collection of asynchronous
oblivious robots endowed with vision can perform a non-trivial task without any com-
munication. The only exception is the recent investigation of the gathering problem in
the ring [23].

In this paper, we continue this investigation and focus on a basic primitive problem
in a graph world: Exploration, that is the process by which every node of the graph is
visited by at least one robot, and we study this problem in a ring.
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1.2 Our Results

We consider the problem of exploring an anonymous ring of size n by k oblivious
anonymous asynchronous robots scattered in the ring. The robots are endowed with
vision but they are unable to communicate. Within finite time and regardless of the
initial placement of the robots, each node must be visited by a robot and the robots
must be in a configuration in which they all remain idle.

We first show that this problem is unsolvable if k|n. We then prove that, whenever
gcd(n, k) = 1, for k ≥ 17, the robots can explore the ring terminating within finite
time. The proof is constructive: we present a terminating protocol that explores the ring
starting from an arbitrary initial configuration, and prove its correctness.

Finally, we consider the minimum number ρ(n) of robots that can explore a ring
of size n. As a consequence of our positive result we show that ρ(n) is O(log n). We
also prove that ρ(n) = Ω(log n) for arbitrarily large n. More precisely, there exists a
constant c such that, for arbitrarily large n, we have ρ(n) ≥ c log n.

1.3 Related Work

Algorithms for graph exploration by mobile entities (robots) have been intensly studied
in recent literature. Several scenarios have been considered. Most of the research is
concerned with the case of a single robot exploring the graph. In [2,6,7,14,18] the robot
explores strongly connected directed graphs and it can move only in the direction from
head to tail of an edge, not vice-versa. In particular, [14] investigates the minimum
time of exploration of directed graphs, and [2,18] give improved algorithms for this
problem in terms of the deficiency of the graph (i.e., the minimum number of edges
to be added to make the graph Eulerian). Many papers, e.g., [15,16,17,22,25] study the
scenario where the explored graph is undirected and the robot can traverse edges in both
directions. In [15] the authors investigate the problem of how the availability of a map
influences the efficiency of exploration. In [25] it is shown that a graph with n nodes
and e edges can be explored in time e+O(n). In some papers, additional restrictions on
the moves of the robot are imposed. It is assumed that the robot has either a restricted
tank [5,8], forcing it to periodically return to the base for refueling, or that it is tethered,
i.e., attached to the base by a rope or cable of restricted length [17].

Exploration of anonymous graphs presents different difficulties. In this case it is im-
possible to explore arbitrary graphs by a single robot if no marking of nodes is allowed.
Hence the scenario adopted in [6,7] allows the use of pebbles which the robot can drop
on nodes to recognize already visited ones, and then remove them and drop in other
places. The authors concentrate attention on the minimum number of pebbles allowing
efficient exploration and mapping of arbitrary directed n-node graphs. (In the case of
undirected graphs, one pebble suffices for efficient exploration.) In [7] the authors com-
pare exploration power of one robot with a constant number of pebbles to that of two
cooperating robots, and give an efficient exploration algorithm for the latter scenario.
In [6] it is shown that one pebble is enough if the robot knows an upper bound on the
size of the graph, and Θ(log log n) pebbles are necessary and sufficient otherwise.

In all the above papers, except [7], exploration is performed by a single robot. Ex-
ploration by many robots has been investigated mostly in the context when moves of
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the robots are centrally coordinated. In [21], approximation algorithms are given for
the collective exploration problem in arbitrary graphs. In [3,4] the authors construct ap-
proximation algorithms for the collective exploration problem in weighted trees. On the
other hand, in [20] the authors study the problem of distributed collective exploration of
trees of unknown topology. However, the robots performing exploration have memory
and can directly communicate with each other.

To the best of our knowledge, the very weak assumption of asynchronous identi-
cal robots that cannot send any messages and communicate with the environment only
by observing it, has not been previously used in the context of graph exploration. It
has been used, however in the case of robots moving freely in the plane (e.g., see
[1,9,10,11,19,26,30]), where the robots were oblivious, i.e., it was assumed that they do
not have any memory of past observations. Oblivious robots operate in Look-Compute-
Move cycles, similar to those described in our scenario. The differences are in the
amount of synchrony assumed in the execution of the cycles. In [13,30] cycles were
executed synchronously in rounds by all active robots, and the adversary could only
decide which robots are active in a given cycle. In [9,10,11,19,26] they were executed
asynchronously: the adversary could interleave operations arbitrarily, stop robots during
the move, and schedule Look operations of some robots while others were moving.

Our scenario has been recently introduced in [23] to study the gathering problem
in the ring. This scenario is very similar to the asynchronous model used in [19,26].
The only difference with respect to [19,26] is in the execution of Move operations. All
possibilities of the adversary concerning interleaving operations performed by various
robots as well as the characteristics of the robots are the same as in the model from
[19,26].

2 Preliminaries

2.1 Terminology and Definitions

The network we consider is a ring of n nodes, u0, u1, . . . , un−1; i.e., ui is connected1

to both ui−1 and ui+1. The indices are used for notation purposes; in fact, the nodes
are anonymous (i.e., identical) and the ring is unoriented. Operating in the ring are k
identical robots; initially, at time t = 0, there is at most one robot in each node. During
the exploration, robots move, and at any time they occupy some nodes of the ring.

We shall indicate by di(t) the multiplicity of robots present at node ui at time t; more
precisely di(t) = 0 indicates that there are no robots, di(t) = 1 indicates that there is
exactly one robot, and di(t) = 2 indicates that there is more than one robot at ui at time
t. If di(t) = 2, we will say that there is a tower in ui at time t.

Let δ+j(t) denote the sequence δ+j(t) =< dj(t) dj+1(t) . . . dj+n−1(t) >, and
let δ−j(t) denote the sequence δ−j(t) =< dj(t) dj−1(t) . . . dj−(n−1)(t) >. The
unordered pair2 of sequences δ+j(t) and δ−j(t) describes the configuration of the

1 Here and in the following, all operations on the indices are modulo n.
2 Since the ring is not oriented, agreement on only one of the two sequences might be impossible,

and the pair cannot be ordered.
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system at time t viewed from node uj . Let Δ+(t) = {δ+j(t) : 0 ≤ j < n} and
Δ−(t) = {δ−j(t) : 0 ≤ j < n}.

We will denote by δmax(t) the lexicographically maximum sequence in Δ+(t) ∪
Δ−(t). It is immediate to verify that there is at most one maximal sequence in each of
Δ+(t) and Δ−(t). A configuration is said to be symmetric if the maximal sequences in
Δ+(t) and Δ−(t) are equal, and asymmetric otherwise.

Each robot operates in Look-Compute-Move cycles described in section 1.1. Cycles
are performed asynchronously for each robot: the time between Look, Compute, and
Move operations is finite but unbounded, and is decided by the adversary for each action
of each robot. The only constraint is that moves are instantaneous, as in [23], and hence
any robot performing a Look operation sees all other robots at nodes of the ring and not
on edges. However, a robot R may perform a Look operation at some time t, perceiving
robots at some nodes, then Compute a target neighbor at some time t′ > t, and Move
to this neighbor at some later time t′′ > t′ in which some robots are in different nodes
from those previously perceived by R because in the meantime they performed their
Move operations. Hence robots may move based on significantly outdated perceptions.
We assume that the robots can perceive, during the Look operation, if there is one or
more robots in a given location; this ability, called multiplicity detection is a standard
assumption in the continuous model [9,23,26]. We now describe formally what a robot
perceives when performing a Look operation. Consider a robot R that, at time t is at
node uj and performs a Look; the result of this operation, called the view of R at time t,
is precisely the unordered pair of sequences {δ+j(t), δ−j(t)}, that is, the configuration
of the system at time t viewed from node uj . We order all views as follows: order each
pair {δ+j(t), δ−j(t)} lexicographically and then use the lexicographic order on these
pairs. From its view, the robot can determine δmax(t), decide whether or not it is unique,
and compute views of all other robots.

Let robot R perform in the same cycle a Look operation at time t′ and a Move
operation at time t′′ > t′. We will say that R is engaged to move (or, simply engaged)
in the open interval (t′, t′′); that is, R is engaged at any time t, where t′ < t < t′′.

One final precision has to be added, concerning the decisions of robots made during
the Compute action. Every such decision is based on the snapshot obtained during the
last Look action. However it may happen that both edges incident to a node v currently
occupied by the deciding robot look identical in this snapshot, i.e., v lies on a symmetry
axis of the configuration. In this case if the robot decides to take one of these edges, it
may take any of the two. We assume the worst-case decision in such cases, i.e., that the
actual edge among the identically looking ones is chosen by an adversary.

We say that exploration of a n-node ring is possible with k robots, if there exists an
algorithm which, starting from any initial configuration of the k robots without tow-
ers, allows the robots to explore the entire ring and brings all robots to a configuration
in which they all remain idle. Obviously, if n = k, the exploration is already accom-
plished, hence we always assume that k < n.

2.2 Basic Restriction

Lemma 1. Let k < n. If k|n then the exploration of a n-node ring with k robots is not
possible.
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Proof. By contradiction, let P be a solution protocol. Choose as the initial configu-
ration an equidistant placement of the k robots in the ring (it exists since k|n). Thus,
initially the states of all robots are identical, say σ(0). Clearly this state is not a termi-
nal state. Otherwise, since k < n, P would terminate without exploring the ring, thus
contradicting the correctness of P . Consider now an adversary that uses a synchronous
scheduler and a consistent orientation of the ring. Then, at each time step t, the states
of all robots continue to be identical, say σ(t), and furthermore they are the same as
those of previous steps; i.e., σ(t) = σ(0) for all t. Hence the robots will never enter a
terminal state, contradicting the fact that P leads within finite time to a configuration in
which all robots remain idle. ��

In the following we will consider the case when gcd(n, k) = 1, and design an algorithm
that allows k ≥ 17 robots to explore a n-node ring whenever gcd(n, k) = 1. Observe
that if gcd(n, k) = 1, the configuration is either asymmetric or it is symmetric with
respect to a single axis of symmetry. Therefore at most two robots can have the same
view. In the symmetric case, the adjective symmetric will be used with respect to this
unique axis of symmetry. Note that symmetric robots have the same view.

3 Exploration of a Ring

3.1 Overview of the Algorithm

The overall structure of the algorithm can be seen as a sequence of three distinct phases:
Set-Up, Tower-Creation, and Exploration.

The purpose of the Set-Up phase is to transform the (arbitrary) initial configuration
into one from a predetermined set of configurations (called no-towers-final) with special
properties. More precisely, in the Set-Up phase, the robots create a configuration where
there is a single set of consecutive nodes occupied by robots, or two such sets of the
same size (called blocks). When the configuration is no-towers-final, the next phase
begins.

The purpose of the Tower-Creation phase is to transform the no-towers-final con-
figuration created in the previous phase, into one from a predetermined set of config-
urations (called towers-completed) in which everything is prepared for exploration to
begin. More precisely, in the Tower-Creation phase, one or two towers are created inside
each block (the number depending on the parity of the size of the block); furthermore a
number of robots become uniquely identified as explorers. As soon as the configuration
is towers-completed, the next phase begins.

During the Exploration phase, the ring is actually being explored. The configuration
reached upon exploration depends solely on the configuration at the beginning of this
phase. The set of these special exploration-completed configurations is uniquely identi-
fied, and once in a configuration of this type, no robots will make any further move.

The Set-Up phase is by far the most complicated part of the algorithm, hence we
describe it in a detailed way. To simplify the presentation, the next two phases are
described in detail only in the case when k is odd. The case of k even can be described
and analyzed using similar techniques and is omitted.
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Since the robots are oblivious (i.e., they have no recollection of actions and computa-
tions made in previous cycles), there is no explicit way for them to record which phase
is the current one. This information is derived by a robot solely based on the configura-
tion currently observed (i.e., the one obtained as a result of the Look operation). Since
the determination of the phase should be non-ambiguous, each reachable configuration
should be assigned to exactly one phase.

For any possible configuration we will identify a set of players, which are the robots
deciding to move if they perform a Look operation in this configuration, and correspond-
ing destinations, i.e., target neighbors. The exploration algorithm (which contains the
rules describing the Compute actions in the robot’s cycle) can be succinctly formulated
as follows.

Algorithm RING EXPLORATION

If I am a player
move to my destination

3.2 Set-Up Phase

The first phase of the protocol is the Set-Up. The fact of being in this phase is easily rec-
ognizable by the robots since, unlike those of the other phases, the configurations of this
phase contain no towers. Precisely because they contain no towers, any configuration
of this phase can be an initial configuration.

We define the interdistance of a configuration as the minimum distance taken over
all pairs of distinct robots in the configuration. Given an arbitrary configuration of in-
terdistance d, a block is a maximal set of robots, of size at least 2, forming a line with a
robot every d nodes. The size of a block is the number of robots it contains. The border
of a block are the two nodes occupied by the two extremal robots of the block. A robot
not in a block is said to be isolated. A robot is said to be a neighbor of a block/robot if
in at least one direction there is no robot between itself and the block/robot. A leader
of a configuration is a robot from which the view is the maximal in the configuration,
with respect to the order defined in Section 2.1. A block containing a leader is called a
leading block. Otherwise it is called a non-leading block.

The Set-Up phase is described by identifying four types of configurations that form a
disjoint partition of all possible configurations without towers. For each type we indicate
the players and their destinations.

Type A. A configuration of type A is a configuration of interdistance d ≥ 1 with at
least one isolated robot. Consider an arbitrary configuration of type A and let S be the
maximum among the sizes of the blocks that are neighbors of at least one isolated robot.
Let I be the set of isolated robots that are neighbors of a block of size S such that no
other isolated robot is closer to a block of size S. The players in a configuration of type
A are all the robots in I. The destination of a player is its adjacent node in the direction
of the closest neighboring block of size S.



112 P. Flocchini et al.

Type B. A configuration of type B is a configuration of interdistance d ≥ 1, without
isolated robots, and containing at least one non-leading block. More precisely, if all
blocks have the same size then the configuration is of type B1. Otherwise, it is of type
B2.

Consider an arbitrary configuration of type B1. If there is only one leader, then the
player is the leader and its destination is its adjacent node outside the block it belongs to.
From now on, we assume that there are two leaders. This implies that the configuration
is symmetric. There are two cases. The first case is when the blocks are of size 2.
Since k ≥ 17, there are at least 9 blocks and hence there exist two symmetric blocks
separated by at least three blocks on each side. (Observe that this property does not
hold for k = 16.) The players in such a configuration are the robots of such two blocks,
having the smallest view. The destination of a player is its adjacent node outside the
block it belongs to. We consider now the second case, that is when the blocks are of
size larger than 2. The players in such a configuration are the pair of symmetric robots
that are the closest to each other among the robots at the border of a block and such
that these two robots are not neighbor. The destination of a player is the adjacent node
outside the block it belongs to.

Consider an arbitrary configuration of type B2 and let s be the minimum size of a
block in the configuration. Let S be the maximum among the sizes of the blocks that are
neighbors of a block of size s and let d be the minimal distance between a block of size
s and a block of size S. We define T as the set of robots belonging to a block of size s,
neighbors of a block of size S, and at distance d from it. The players in a configuration
of type B2 are the robots in T with the largest view. The destination of a player is its
adjacent node in the direction of its neighboring block of size S.

Type C. A configuration of type C is a configuration of interdistance d ≥ 2, without
isolated robots, and such that each of its blocks is a leading block. Note that this implies
that either all robots are in the same block or the robots are divided in two blocks of
the same size. Moreover, there are exactly two leaders because the configuration is
symmetric. The players in a configuration of type C are the two leaders. The destination
of a player is its adjacent node in the direction of the block it belongs to. (This is not
ambiguous because leaders are always located at the border of a block).

Type D. A configuration of type D is a configuration of interdistance d = 1, without
isolated robots, and such that each of its blocks is a leading block. Type D is the set of
configurations no-towers-final. When such a configuration is reached, the Set-Up phase
ends and the Tower-Creation phase begins.

Note that types A, B, C and D form a partition of all possible initial configurations
(when gcd(n, k) = 1).

The general idea of the Set-Up phase is to create few compact blocks (interdistance
1). Each decrease of interdistance is accomplished by first decreasing the number of
blocks. The following lemmas show how this progress is achieved. The proofs of most
of them are ommitted due to lack of space. Theorem 1 shows that a no-towers-final
configuration is always reached at the end.

Lemma 2. Assume that at some time t the configuration is of type A and that the only
engaged robots are isolated robots engaged to move toward a neighboring block. Then
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after finite time, the configuration is of type B, C or D, of the same interdistance as in
time t, and no robots are engaged.

Lemma 3. Assume that at some time t the configuration is asymmetric, of type B1, and
that no robots are engaged. Then after finite time, the configuration is of type B2, of the
same interdistance as in time t, no robots are engaged, and there is one block less than
at time t.

Lemma 4. Assume that at some time t the configuration is symmetric, of type B1, with
blocks of size 2, and that no robots are engaged. Then after finite time, the configuration
is of type C or D, of the same interdistance as in time t, and no robots are engaged.

Lemma 5. Assume that at some time t the configuration is symmetric, of type B1,
with blocks of size s ≥ 3, and that no robots are engaged. Then after finite time, the
configuration is of type B2, C or D, of the same interdistance as in time t, no robots
are engaged, and there are fewer blocks than at time t.

Lemma 6. Assume that at some time t the configuration is of type B2 and that no
robots are engaged. Then after finite time, the configuration is of type B, C or D, of the
same interdistance as in time t, no robots are engaged, and there are fewer blocks than
at time t.

Lemma 7. Assume that at some time t the configuration is of type C, of interdistance
d ≥ 2, and that no robots are engaged. Then at some time t′ > t one of the two
following situations occurs:

– The configuration is of type A, of interdistance d − 1, and the only engaged robots
are isolated robots engaged to move toward a block.

– The configuration is of type B, of interdistance d − 1, and no robots are engaged.

Proof. Assume that at some time t the configuration is of type C, of interdistance d ≥ 2,
and no robots are engaged. The players are the two leaders. After finite time, at least
one will move. Consider the moment t1 where the first moves. At this moment the
configuration changes to type A. If the other player moved at the same time or is not
engaged, we are done because the configuration is of type A, of interdistance d−1, and
no robots are engaged.

Thus we assume that the other player R is engaged at time t1. By the definition of
type C configurations and the fact that k ≥ 17, it is engaged to move toward an isolated
robot R′ that is at distance exactly d. Note that until R moves, there is only one block
(of interdistance d−1) and R is a neighbor of it (its other neighbor is R′). Moreover, R
is isolated and no robots will move toward it to make a block because no other robot is
engaged at the moment and because a player in a configuration of type A never moves
toward an isolated robot. Therefore, the configuration will remain of type A while R
does not move.

Consider now the time t2 where R makes its move. If this move does not make it
belong to a block, then the configuration is of type A, of interdistance d − 1, and the
only engaged robots are isolated robots engaged to move toward a block. Assume now
that the move of R makes it belong to a block. Then necessarily it is a new block,
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of size two, and formed with robot R′. If R′ is not engaged then we are at a time t′

satisfying the lemma. Indeed if there are isolated robots then the first situation occurs,
and if there are not then the other block is larger, of size k − 2, and thus the second
situation occurs. If R′ is engaged at time t2, then there are no isolated robots because
there is none between R and the other block (in the segment excluding R′) and there
is none between R′ and the other block (in the segment excluding R) since R′ got
engaged as an isolated robot and thus was engaged to move toward a block. Therefore,
we are in the following situation: there are two blocks of sizes k − 2 and 2, at distances
at least d+1 (on both sides); exactly one robot of the smaller block is engaged to move
toward the other block, and no other robots are engaged. Thus the configuration is of
type B2 and after some finite time, one of the two robots of the smaller block will move.
At this moment, the first situation occurs, which concludes the proof of the lemma. ��

Theorem 1. Any initial configuration is transformed after finite time into a configura-
tion of type D (i.e. no-towers-final) without engaged robots.

Proof. Let Φ be the property that the only engaged robots (if any) in a given configu-
ration are isolated ones and they are engaged to move toward a neighboring block. For
any configuration c of type A, B or C define the triple T (c) = (d, t, x), where d is the
interdistance of c, t is the type of c, i.e., t is A, B or C, and x is the number of blocks in
c. Order all triples lexicographically, assuming that C < B < A. Lemmas 2 – 7 imply
that any configuration c of type A, B or C satisfying property Φ is transformed after
finite time either in a configuration c′ of type A, B or C satisfying property Φ, such that
T (c′) < T (c), or in a configuration of type D with no robots engaged. Since any initial
configuration satisfies property Φ, this concludes the proof.

Figure 1 ilustrates the progress of configurations toward type D. ��

3.3 Tower-Creation Phase

The second phase of the protocol is Tower-Creation. This phase begins with a configu-
ration of type D, i.e., one of the configurations no-towers-final. The goal of this phase

A

B C

D

Fig. 1. Progress toward type D. Dashed arrows correspond to transitions where the interdistance
decreases. The loop corresponds to a transition where the number of blocks decreases.
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empty node

node occupied by a single robot

node occupied by a tower

(a)

(b)

Fig. 2. Transformed blocks (a) of odd size (b) of even size

is to create one or two towers in each block (depending on the parity of the number of
robots per block). More precisely, in a block of odd size there will be one tower, and in a
block of even size there will be two towers. In a block of odd size the tower is formed by
the central robot moving to its adjacent node containing the robot with the larger view.
In a block of even size the two towers are formed by the two central robots moving
to their other neighbors. The obtained configuration is called towers-completed. This
is easily recognizable as each block of a no-towers-final configuration is transformed
as follows. A block of odd size 2a + 1 is transformed into a segment of a consecutive
robots followed by an empty node, followed by a tower, followed by a segment of a−1
consecutive robots. A block of even size 2a is transformed into a segment of a − 2
consecutive robots followed by a tower, followed by two empty nodes followed by a
tower, followed by a segment of a − 2 consecutive robots (see Figure 2).

Since we limit our detailed description to the case of k odd, the only possibility is
that the no-towers-final configuration starting the Tower-Creation phase consists of one
block of odd size. In this case the phase consists of one move of the central robot. This
robot moves to the neighbor decided by the adversary, as the configuration is symmetric.

3.4 Exploration Phase

Exploration starts when towers in the preceding phase are created. Note that the empty
nodes adjacent to towers have already been explored, so the segments of empty nodes
between the transformed blocks are the only ones possibly not yet explored. Each of
these segments is explored in the current phase using one or two robots closest to the
segment. If k is even, such a segment must lie between two segments of consecutive
robots of equal size, and it is explored by the two border robots that meet in the middle
of the segment (either at the extremities of the central edge, or in the central node). The
obtained configuration is called exploration-completed.

We describe exploration in detail for k odd. In this case the configuration starting
Exploration phase is a single transformed block of odd size, with a = (k −1)/2 (hence
in particular a ≥ 3), see Figure 2 (a). The unique player is the robot in the segment of
a−1 consecutive robots, farthest from the tower. This robot moves to its empty neighbor
node. In a resulting configuration with a single isolated robot, the player is this robot and
it moves toward the segment of a consecutive robots. When the configuration contains
a + 1 consecutive robots followed by an empty node, followed by a tower, followed by
a segment of a − 2 consecutive robots, all robots remain idle. At this point exploration
is completed.

From Theorem 1 describing the conclusion of the Set-Up phase and from the prop-
erties of Tower-Creation and Exploration phases we get the following result.
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Theorem 2. Let 17 ≤ k < n. Algorithm RING EXPLORATION allows a team of k
robots to explore a n-node ring and enter a terminal state within finite time, provided
gcd(n, k) = 1.

4 Size of the Minimum Team

In this section we show that the minimum number of robots that can explore a n-node
ring regardless of their initial position, is logarithmic in n. More precisely, we have the
following result.

Theorem 3. The minimum number ρ(n) of robots that can explore a n-node ring has
the following properties:

1. ρ(n) ∈ O(log n);
2. there exists a constant c such that, for infinitely many n, we have ρ(n) ≥ c log n.

Proof. Let pj denote the j-th prime, and let pj# denote the pj-primorial, that is

pj# = Πj
i=1 pi (1)

An important property of the primorial is the following [28]:

lim
j→∞

(pj#)
1

pj = e . (2)

We will now prove each part of the theorem separately.

Part 1
Let f(n) be the smallest integer coprime with n and larger than 16. Thus, by Theorem
2, exploration is possible with f(n) agents. Hence, ρ(n) ≤ f(n).

Take j such that pj#
13# ≤ n <

pj+1#
13# . We have f(n) ≤ pj+1. (Otherwise, all primes

in {17, . . . , pj+1} divide n and hence n ≥ pj+1#
13# , contradiction.) By property (2) we

have 2 ≤ (pj#)
1

pj , for sufficiently large j. Hence 2pj ≤ pj#, and thus pj ≤ log(pj#).
Hence pj+1 ≤ log(pj+1#) ≤ log(pj#)+ log pj . Since pj+1 ≤ pj#+1 ≤ 2 ·13# ·n,
we have ρ(n) ≤ f(n) ≤ pj+1 ≤ log(2 · 13# · n) + log n, which is at most 3 log n, for
sufficiently large n.

Part 2
Let n be the least common multiple of integers 1, 2, . . . , m. Let g(n) be the smallest
integer not dividing n. By Lemma 1 we have ρ(n) ≥ g(n). We have g(n) ≥ m + 1.
The Prime Number Theorem implies ln n

m → 1. Hence ln n ≤ 2m, for sufficiently large
m. This implies the existence of a constant c such that ρ(n) ≥ g(n) ≥ m + 1 > m ≥
ln n
2 ≥ c log n. ��

It should be noted that for some specific values of n, the number ρ(n) is constant. For
example, if n > 17 is prime, then Theorem 2 shows that 17 robots can explore the
n-node ring, hence ρ(n) ≤ 17.
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5 Conclusion

In this paper we have analyzed the exploration problem in rings by asynchronous robots
when they are oblivious and can see the environment but cannot communicate. This is
a further step in the understanding of how these robots’ capabilities, standard in con-
tinuous universes, can be exploited in the discrete ones. These results open several in-
teresting problems and pose intriguing questions. First, the complete characterization
of couples (n, k) for which exploration of the ring is solvable remains open. Next, the
problem of exploring other topologies and arbitrary graphs is a natural extension of
this work. Moreover, since the robots cannot communicate, they have to be able to ob-
serve the environment; an immediate question is what happens if the robots can only
see within a fixed distance. Accuracy of vision as well as fault-tolerance are issues that
should be addressed by future research.
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at the University of Ottawa, as a postdoctoral fellow. Andrzej Pelc was partially sup-
ported by the Research Chair in Distributed Computing at the Université du Québec en
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Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 374–386. Springer, Heidelberg (2002)

16. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. In:
SODA 2002. Proc. 13th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 588–597.
ACM Press, New York (2002)

17. Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. In:
SODA 2001. Proc. 12th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 807–814.
ACM Press, New York (2001)

18. Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Brodal, G.S.,
Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 11–22. Springer, Heidelberg (2005)

19. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard tasks for weak robot. In: Aggar-
wal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 93–102. Springer,
Heidelberg (1999)

20. Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration. In: Farach-
Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 141–151. Springer, Heidelberg (2004)

21. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing
problems. SIAM J. Comput. 7, 178–193 (1978)

22. Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. In:
SODA 2007. Proc. 18th Annual ACM-SIAM Symp. on Discrete Algorithms, New Orleans,
Louisiana, USA (January 2007)

23. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring.
In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, Springer, Heidelberg (2006)

24. Li, X., Santoro, N.: An Integrated self-deployment and coverage maintenance scheme for
mobile sensor networks. In: Cao, J., Stojmenovic, I., Jia, X., Das, S.K. (eds.) MSN 2006.
LNCS, vol. 4325, Springer, Heidelberg (2006)

25. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. Journal of Algorithms 33, 281–
295 (1999)

26. Prencipe, G.: On the feasibility of gathering by autonomous mobile robots. In: Pelc, A.,
Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 246–261. Springer, Heidelberg
(2005)

27. Prencipe, G., Santoro, N.: Distributed algorithms for mobile robots. In: TCS 2006. Proc. 5th
IFIP Int. Conf. on Theoretical Computer Science, pp. 47–62 (2006)

28. Ruiz, S.M.: A Result on Prime Numbers. Math. Gaz. 81, 269 (1997)
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Abstract. In Sensor Networks, the lack of topology information and the avail-
ability of only one communication channel has led research work to the use of
randomization to deal with collision of transmissions. However, the scarcest re-
source in this setting is the energy supply, and radio communication dominates
the sensor node energy consumption. Hence, redundant trials of transmission as
used in randomized protocols may be counter-effective. Additionally, most of the
research work in Sensor Networks is either heuristic or includes unreallistic as-
sumptions. Hence, provable results for many basic problems still remain to be
given. In this paper, we study upper and lower bounds for deterministic commu-
nication primitives under the harsh constraints of sensor nodes.

1 Introduction

The Sensor Network is a well-studied simplified abstraction of a radio-communication
network where nodes are deployed at random over a large area in order to monitor
some physical event. Sensor Networks is a very active research area, not only due to
the potential applications of such a technology, but also because well-known techniques
used in networks cannot be straightforwardly implemented in sensor nodes, due to harsh
resource limitations.

Sensor Networks are expected to be used in remote or hostile environments. Hence,
random deployment of nodes is frequently assumed. Although the density of nodes
must be big enough to achieve connectivity, precise location of specific nodes cannot
be guaranteed in such scenario. Consequently, the topology of the network is usually
assumed to be unknown, except perhaps for bounds on the total number of nodes and the
maximum number of neighbors of any node. In addition, given that in Sensor Networks
only one channel of communication is assumed to be available, protocols must deal
with collision of transmissions.

Most of the Sensor Network protocols use randomness to deal with collisions and
lack of topology information. Randomized protocols are fast and resilient to failures,
but frequently rely on redundant transmissions. Given that the most restrictive resource
in a Sensor Network is energy and that the dominating factor in energy consumption
is the radio communication, deterministic algorithms may yield energy-efficient solu-
tions. In this paper, deterministic communication primitives are studied under the harsh
restrictions of sensor nodes.

Model. We model the potential connectivity of nodes as a Geometric Graph where n
nodes are deployed in R

2, and a pair of nodes is connected by an undirected edge if and
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only if they are at an Euclidean distance of at most a parameter r. It is important to stress
that this topology models the potential connectivity of nodes. However, upon deploy-
ment, two neighboring nodes still have to establish a communication link in order to be
neighbors in terms of the communication network. The geometric graph model implies
a circular-range assumption, which in practice may not be true. However, whenever this
is the case, the minimum radius may be taken without extra asymptotic cost.

Although random, deployment is not the result of an uncontrolled experiment where
any outcome has a positive probability. Hence, we assume that the network is connected
and that the maximum degree, i.e., the maximum number of nodes located within a
radius of r of any node, is a known value k − 1 < n. Each node knows only the total
size of the network n, its unique identifier in {1, . . . , n} and the maximum degree k−1.

Regarding sensor node limitations, we use the comprehensive Weak Sensor
Model [12] unless otherwise stated. The following assumptions are included in this
model. Time is assumed to be slotted and all nodes have the same clock frequency,
but no global synchronizing mechanism is available. Furthermore, nodes are activated
adversarially. The communication among neighboring nodes is through broadcast on
a shared channel where a node receives a message only if exactly one of its neigh-
bors transmits in a time slot. If more than one message is sent in the same time slot, a
collision occurs and no collision detection mechanism is available. Sensor nodes can-
not receive and transmit in the same time slot. The channel is assumed to have only
two states: transmission and silence/collision. The memory size of each sensor node
is bounded by O(1) words of O(log n)1 bits. We assume that sensor nodes can adjust
their power of transmission but only to a constant number of levels. Other limitations
include: limited life cycle due to energy constraints, short transmission range, only one
channel of communication, no position information, and unreliability.

In a time slot, a node can be in one of three states, namely transmission, reception,
or inactive. A node that is in the transmission or reception state is active. We denote
a temporal sequence of states of a node as a schedule of transmissions, or simply a
schedule when the context is clear.

Problem Definition. An expected application of Sensor Networks is to continuously
monitor some physical phenomena. Hence, in this paper, the problem we address is
to guarantee that each active node can communicate with all of its neighboring active
nodes infinitely many times. The actual use of such a capability will depend of course
on the availability of messages to be delivered. Our goal is to give guarantees on the
energy cost and the time delay of the communication only, leaving aside the overhead
due to queuing or other factors.

In Radio Networks, messages are successfully delivered by means of non-colliding
transmissions. Non-colliding transmissions in single-hop Radio Networks are clearly
defined: the number of transmitters must be exactly one. However, in a multi-hop sce-
nario such as Sensor Networks the same transmission may be correctly received by
some nodes and collide with other transmissions at other nodes. Thus, a more precise
definition is necessary. If in a given time slot exactly one of the adjacent neighbors
of a node x transmits, and x itself is not transmitting, we say that there was a clear

1 Througout this paper, log means log2 unless otherwise stated.
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reception at x in that time slot. Whereas, in the case where a node transmits a message
in a given time slot, and no other node within two hops of the transmitter transmits in
the same time slot, we say that there was a clear transmission. Notice that when a clear
transmission is produced by a node, all its neighbors clearly receive at the same time.
Of course, in a single-hop network both problems are identical.

In this paper, our goal is to guarantee that each node communicates with all of its
at most k − 1 neighbors. Hence, a closely-related communication primitive known as
selection is relevant for our purposes. In the selection problem, each of k active nodes
of a single-hop Radio Network hold a different message that has to be delivered to all
the active nodes. Once its message is successfully transmitted, a node becomes inactive.
Given that we want to guarantee communication forever, in this paper, we give upper
and lower bounds for generalizations of the selection problem that we define as follows.

Definition 1. Given a single-hop Radio Network of n nodes where k of them are ac-
tivated possibly at different times, in order to solve the Recurring Selection problem
every active node must clearly transmit infinitely many times.

Definition 2. Given a Sensor Network of n nodes and maximum degree k − 1, where
upon activation, possibly at different times, nodes stay active forever, in order to solve
the Recurring Reception problem every active node must clearly receive from all of its
active neighboring nodes infinitely many times.

Definition 3. Given a Sensor Network of n nodes and maximum degree k − 1, where
upon activation, possibly at different times, nodes stay active forever, in order to solve
the Recurring Transmission problem every active node must clearly transmit to all of
its active neighboring nodes infinitely many times.

Given that protocols for such problems run forever, we need to establish a met-
ric to evaluate energy cost and time efficiency. Let Ri

u(v) be the number of trans-
missions of u between the (i − 1)th and the ith clear receptions from u at v, and
Ru(v) = maxi Ri

u(v). In order to measure time we denote ΔRi
u(v) the time (number

of time slots) that are between the (i−1)th and the ith clear receptions from u at v, and
ΔRu(v) = maxi ΔRi

u(v). Similarly, Let T i(u) be the number of transmissions from u
between the (i − 1)th and the ith clear transmissions from u, and T (u) = maxi T i(u);
and let ΔT i(u) be the time between the (i − 1)th and the ith clear transmission from
u, and ΔT (u) = maxi ΔT i(u).

We define the message complexity of a protocol for Recurring Reception as
max(u,v) Ru(v), over all pairs (u, v) of adjacent nodes; and for Recurring Transmis-
sion as maxu T (u) over all nodes u. We define the delay of a protocol for Recurring
Reception as max(u,v) ΔRu(v), over all pairs (u, v) of adjacent nodes; and for Recur-
ring Transmission as maxu ΔT (u) over all nodes u. Any of these definitions is valid
for the Recurring Selection problem since clear transmissions and clear receptions are
the same event in a single-hop network.

Unless otherwise stated, throughout the paper we assume the presence of an ad-
versary that gets to choose the time step of activation of each node. Additionally, for
Recurring Selection, the adversary gets to choose which are the active nodes; and for
Recurring Reception and Recurring Transmission, given a topology where each node
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has at most k − 1 adjacent nodes, the adversary gets to choose which is the identity
of each node. In other words, the adversary gets to choose which of the n schedules is
assigned to each node.

Constraints such as limited life cycle and unreliability imply that nodes may power
on and off many times. If such a behaviour were adversarial, the delay of any protocol
could be infinite. Therefore, we assume that active nodes that become inactive are not
activated back.

Related Work. In [1], Alon, Bar-Noy, Linial and Peleg gave a deterministic distributed
protocol to simulate the message passing model in radio networks. Using this technique,
each node receives a transmission of all its neighbors after O(k2 log2 n/ log(k log n))
steps. Unfortunately, simultaneous wake-up and ω(log n) memory size is required. In
the same paper, lower bounds for this problem are also proved by showing bipartite
graphs that require Ω(k log k) rounds. Bipartite graphs with maximum degree ω(1) are
not embeddable in geometric graphs therefore these bounds do not apply to our setting.

The question of how to diseminate information in Radio Networks has led to dif-
ferent well-studied important problems such as Broadcast [2, 20] or Gossiping [21, 4].
However, deterministic solutions for these problems [8, 6, 10, 5] include assumptions
such as simultaneous startup or the availability of a global clock, which are not feasible
in Sensor Networks.

The selection problem previously defined was studied [19] in static and dynamic
versions. In static selection all nodes are assumed to start simultaneously, although the
choice of which are the active nodes is adversarial. Instead, in the dynamic version,
the activation schedule is also adversarial. For static selection, Komlos and Green-
berg showed in [18] a non-constructive upper bound of O(k log(n/k)) to achieve one
successful transmission. More recently, Clementi, Monti, and Silvestri showed for this
problem in [9] a tight lower bound of Ω(k log(n/k)) using intersection-free families.
For k distinct successful transmissions, Kowalski presented in [19] an algorithm that
uses (2�−1, 2�, n)-selectors for each �. By combining this algorithm and the existence
upper bound of [3] a O(k log(n/k)) is obtained. Using Indyk’s constructive selector,
a O(k polylog n) is also proved. These results take advantage of the fact that in the
selection problem nodes turn off upon successful transmission. For dynamic selection,
Chrobak, Ga̧sieniec and Kowalski [7] proved the existence of O(k2 log n) for dynamic
1-selection. Kowalski [19] proved O(k2 log n) and claimed Ω(k2/ log k) both by using
the probabilistic method, and O(k2 polylog n) using Indyk’s selector.

A related line of work from combinatorics is (k, n)-selective families. Consider the
subset of nodes that transmit in each time slot. A family R of subsets of {1, . . . , n}
is (k, n)-selective, for a positive integer k, if for any subset Z of {1, . . . , n} such that
|Z| ≤ k there is a set S ∈ R such that |S ∩ Z| = 1. In terms of Radio Networks, a set
of n sequences of time slots where a node transmits or receives is (k, n)-selective if for
any subset Z of k nodes, there exists a time slot in which exactly one node in the subset
transmits. In [17] Indyk gave a constructive proof of the existence of (k, n)-selective
families of size O(k polylog n). A natural generalization of selective families follows.
Given integers m, k, n, with 1 ≤ m ≤ k ≤ n, we say that a boolean matrix M with t
rows and n columns is a (m, k, n)-selector if any submatrix of M obtained by choos-
ing arbitrarily k out of the n columns of M contains at least m distinct rows of the
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identity matrix Ik. The integer t is the size of the (m, k, n)-selector. In [11] Dyachkov
and Rykov showed that (m, k, n)-selectors must have a size Ω(min{n, k2 logk n})
when m = k. Recently in [3], De Bonis, Ga̧sieniec and Vaccaro showed that (k, k, n)-
selectors must have size t ≥ (k − 1)2 log n/(4 log(k − 1) + O(1)) using superim-
posed codes. In the same paper, it was shown the existence of (k, k, n)-selectors of size
O(k2 ln(n/k)).

Regarding randomized protocols, an optimal O(D + k)-algorithm for gossiping in a
Sensor Network of diameter D was presented in [14]. The algorithm includes a prepro-
cessing phase that allows to achieve global synchronism and to implement a collision
detection mechanism. After that, nodes transmit their message to all neighboring nodes
within O(k+log2 n log k) steps with high probabiliy. The expected message complexity
of such phase is O(log n+log2 k). A non-adaptive randomized algorithm that achieves
one clear transmission for each node w.h.p. in O(k log n) steps was shown in [13]. The
expected message complexity of such a protocol is O(log n). In the same paper it was
shown that such a running time is optimal for fair protocols, i.e., protocols where all
nodes are assumed to use the same probability of transmission in the same time slot.

Our Results. Our objective is to find deterministic algorithms that minimize the mes-
sage complexity and, among those, algorithms that attempt to minimize the delay. As
in [18], we say that a protocol is oblivious if the sequence of transmissions of a node
does not depend on the messages received. Otherwise, we call the protocol adaptive.
We study deterministic oblivious and adaptive protocols for Recurring Selection, Recur-
ring Reception and Recurring Transmission. These problems are particularly difficult
due to the arbitrary activation schedule of nodes. In fact, the study of oblivious protocols
is particularly relevant under adversarial wake-up, given their simplicity as compared
with adaptive protocols where usually different phases need to be synchronized. If we
were able to weaken the adversary assuming that all nodes are activated simultaneously,
as it is customary in the more general Radio Network model, the following well-known
oblivious algorithm would solve these problems optimally.

For each node i,
node i transmits in time slot t = i + jn, ∀j ∈ N ∪ {0}.

The message complexity for this algorithm is 1 which of course is optimal. To see why
the delay of n is optimal for a protocol with message complexity 1, assume that there
is an algorithm with smaller delay. Then, there are at least two nodes that transmit in
the same time slot. If these nodes are placed within one-hop their transmissions will
collide, hence increasing the message complexity.

We first study oblivious protocols. We show that the message complexity of any
oblivious deterministic protocol for these problems is at least k. Then, we present
a message-complexity optimal protocol, which we call Primed Selection, with delay
O(kn log n). We then evaluate the time efficiency of such a protocol studying lower
bounds for these problems. Since a lower bound for Recurring Selection is also a lower
bound for Recurring Reception and Recurring Transmission, we concentrate on the
first problem. By giving a mapping between (m, k, n)-selectors and Recurring Selec-
tion, we establish that Ω(k2 log n/ log k) is a lower bound for the delay of any protocol
that solves Recurring Selection. Maintaining the optimal message complexity may be a
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good approach to improve this bound. However, the memory size limitations motivates
the study of protocols with some form of periodicity. Using a simple argument we show
that the delay of any protocol that solves Recurring Selection is in Ω(kn), for the im-
portant class of equiperiodic protocols , i.e., protocols where each node transmits with
a fixed frequency. Finally, we show that choosing appropriately the periods that nodes
use, for k ≤ n1/6 log log n Primed Selection is also optimal delay wise for equiperiodic
protocols. Given that most of the research work in Sensor Networks assumes a logarith-
mic one-hop density of nodes, Primed Selection is optimal in general for most of the
values of k and the delay is only a logarithmic factor from optimal for arbitrary graphs.

Moving to adaptive protocols, we show how to implement a preprocessing phase
using Primed Selection so that the delay is reduced to O(k2 log k).

To the best of our knowledge, no message-complexity lower bounds for recurring
communication with randomized oblivious protocols have been proved. Nevertheless,
the best algorithm known to solve Recurring Selection w.h.p. is to repeatedly transmit
with probability 1/k which solves the problem with delay O(k log n) and expected
message complexity in O(log n). Therefore, deterministic protocols outperform this
randomized algorithm for k ∈ o(log n) and for settings where the task has to be solved
with probability 1.

Roadmap. Oblivious and adaptive protocols are studied in Sections 2 and 3 respec-
tively. Lower bounds are studied for message complexity in Section 2.1 and for the
delay in Section 2.3. The Primed Selection oblivious protocol is presented and ana-
lyzed in Section 2.2. An improvement of this algorithm for most of the values of k is
shown in Section 2.4 whereas an adaptive protocol that uses Primed Selection is given
in Section 3. We finish with some acknowledgements.

2 Oblivious Protocols

2.1 Message-Complexity Lower Bound

A lower bound on the message complexity of any protocol that solves Recurring Selec-
tion is also a lower bound for Recurring Reception and Recurring Transmission. To see
why, we map Recurring Selection into Recurring Reception and viceversa. A similar
argument can be given for Recurring Transmission.

Consider a single-hop Radio Network NS where Recurring Selection is solved and a
Sensor Network NR where Recurring Reception is solved. Consider the set of k active
nodes in NS . There is at least one node i with degree k−1 in NR. Map any of the active
nodes in NS to i and the remaining k − 1 active nodes in NS to the neighbors of i in
NR. The adversarial choice of which are the k active nodes in NS is equivalent to the
adversarial choice of which schedules of the protocol are assigned to i and its neighbors
in NR.

Now, for the sake of contradiction, assume that for any protocol that solves Recurring
Selection, the message complexity is at least s but there is a protocol P that solves
Recurring Reception with message complexity r < s. Then, we can use P to solve
Recurring Selection as follows. Consider a network NR that contains a clique of size k.
P must solve Recurring Reception in this network. Consider nodes u and i that belong
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to the clique in NR. By definition of Recurring Reception, it is guaranteed that i receives
from u every r transmissions of u. Hence, every r transmissions of u there is at least
one transmission of u that does not collide with any other node adjacent to i. Since
this is true for each of the nodes adjacent to i, Recurring Selection can be solved with
message complexity r which is a contradiction.

Theorem 1. Any oblivious deterministic algorithm that solves the Recurring Selection
problem, on an n-node single-hop Radio Network where k nodes are activated, perhaps
at different times, has a message complexity of at least k.

Proof. Assume for the sake of contradiction that there exists a protocol such that some
node i achieves a non-colliding transmission every t < k transmissions. But then, an
adversary can activate each of the other k − 1 nodes in such a way that at least one
transmission collides with each transmission of i within an interval of t transmissions,
which is a contradiction.

2.2 A Message-Complexity-Optimal Protocol: Primed Selection

In the following sections we present our Primed Selection protocol for deterministic
communication. Such a protocol solves Recurring Selection, Recurring Reception and
Recurring Transmission with the same asymptotic cost. For clarity, we first analyze the
protocol for Recurring Selection, then we extend the analysis to Recurring Reception and
finally we argue why Recurring Transmission is solved with the same asymptotic cost.

A static version of the Recurring Selection problem, where k nodes are activated
simultaneously, may also be of interest. For the case k = 2, a (k logk n)-delay protocol
can be given recursively applying the following approach. First, evenly split the nodes
in two subsets. Then, in the first step one subset transmits and the other receives and in
the next one the roles are reversed. Finally, recursively apply the same process to each
subset.

Recurring Selection. We assume that the choice of which are the active nodes and the
schedule of activations is adversarial. In principle, k different schedules might suffice to
solve the problem. However, if only s different schedules are used, for any s < n there
exists a pair of nodes with the same schedule. Then, since the protocols are oblivious,
if the adversary activates that pair at the same time the protocol would fail. Instead, we
define a set of schedules such that each node in the network is assigned a different one.

We assume that, for each node with ID i, a prime number p(i) has been stored in
advance in its memory so that p(1) = pj < p(2) = pj+1 . . . p(n) = pj+n−1. Where
p� denotes the �-th prime number and pj is the smallest prime number bigger than k.
Notice that the biggest prime used is p(n) < pn+k ∈ O(n log n) by the prime number
theorem [16]. Hence, its bit size is in O(log n). Thus, this protocol works in a small-
memory model. The algorithm, which we call Primed Selection is simple to describe.

For each node i with assigned prime number p(i),
node i transmits with period p(i).

Theorem 2. Given a one-hop Radio Network with n nodes, where k nodes are acti-
vated perhaps at different times, Primed Selection solves the Recurring Selection prob-
lem with delay in O(kn log n) and the message complexity per successful transmission
is k, which is optimal as shown in Theorem 1.
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Proof. If no transmission collides with any other transmission we are done, so let us
assume that there are some collisions. Consider a node i whose transmission collides
with the transmission of a node j �= i at time tc. Since p(i) and p(j) are coprimes,
the next collision among them occurs at tc + p(i)p(j). Since p(i)p(j) > p(i)k, j does
not collide with i within the next kp(i) steps. Node i transmits at least k times within
the interval (tc, tc + kp(i)]. There are at most k − 1 other active nodes that can collide
with i. But, due to the same reason, they can collide with i only once in the interval
[tc, tc + kp(i)]. Therefore, i transmits successfully at least once within this interval. In
the worst case, i = n and the delay is in O(kp(n)) ∈ O(kn log n). Since every node
transmits successfully at least once every k transmissions, the message complexity is k.

Recurring Reception. A protocol for Recurring Selection may be used to solve the
Recurring Reception problem. However, two additional issues appear: the restrictions
of sensor nodes and the interference among one-hop neighborhoods. As mentioned,
Primed Selection works under the constraints of the Weak Sensor Model. We show in
this section that interference is also handled.

Recall that in the Recurring Reception problem n nodes of a Sensor Network are
activated, possibly at different times, the maximum number of neighbors of any node is
bounded by some value k − 1 < n, and every active node must receive from all of its
active neighboring nodes periodically forever. The non-active nodes do not participate
in the protocol. We assume the choice of which are the active nodes and the schedule
of activations to be adversarial.

Theorem 3. Given a Sensor Network with n nodes, where the maximum number of
nodes adjacent to any node is k−1 < n, Primed Selection solves the Recurring Recep-
tion problem with delay in O(kn log n) and the message complexity per reception is k,
which is optimal as shown in Theorem 1.

Proof. Consider any node u and the set of its adjacent nodes N(u). If u receives the
transmissions of all its neighbors without collisions we are done. Otherwise, consider
a pair of nodes i, j ∈ N(u) that transmit –hence, collide at u– at time tc. Since p(i)
and p(j) are coprimes, the next collision among them at u occurs at time tc + p(i)p(j).
Since p(i)p(j) > p(i)k, j does not collide with i at u within the next kp(i) steps. Node
i transmits at least k times within this interval. There are at most k − 2 other nodes
adjacent to u that can collide with i at u, and of course u itself can collide with i at
u. But, due to the same reason, they can collide with i at u only once in the interval
[tc, tc + kp(i)]. Therefore, i transmits without collision at u at least once within this
interval and the claimed delay follows. The transmission of every node is received by
some neighboring node at least once every k transmissions.

Recurring Transmission. Observe that Primed Selection solves the Recurring Trans-
mission problem also, modulo an additional factor of 7 in the analysis, because any
two-hop neighborhood has at most 7k nodes, by a simple geometric argument based on
the optimality of an hexagonal packing [15].

2.3 Delay Lower Bounds

De Bonis, Ga̧sieniec and Vaccaro have shown [3] a lower bound of ((k −m+1)	(m−
1)/(k−m+1)
2/(4 log(	(m−1)/(k−m+1)
)+O(1))) log(n/(k−m+1)) on the
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size of (k, m, n)-selectors when 1 ≤ m ≤ k ≤ n, k < 2m − 2. When m = k > 2, this
lower bound gives a lower bound of Ω(k2 log n/ log k) for the delay of any protocol
that solves Recurring Selection. To see why, recall that a (k, m, n)-selector is defined
as follows

Definition 4. [3] Given integers k, m, and n, with 1 ≤ m ≤ k ≤ n, we say that a
boolean matrix M with t rows and n columns is a (k, m, n)-selector if any submatrix of
M obtained by choosing k out of n arbitrary columns of M contains at least m distinct
rows of the identity matrix Ik . The integer t is the size of the (k, m, n)-selector.

Now, assume that there exists a protocol P for Recurring Selection with delay in
o(k2 log n/ log k). Recall that a protocol for Recurring Selection is a set of schedules
of transmissions. Assuming that all nodes start simultaneously, consider such a set of
schedules. By definition of Recurring Selection, for each choice of k schedules of P ,
i.e., active nodes, there exists a positive integer t ∈ o(k2 log n/ log k) such that in ev-
ery time interval of length t each active node must achieve at least one non-colliding
transmission.

Representing a transmission with a 1 and a reception with a 0, the set of schedules
can be mapped to a matrix M where each time step is a row of M and each schedule is a
column of M . The arbitrary choice of k active nodes is equivalent to choose k arbitrary
columns of M . The time steps where each of the k active nodes achieve non-colliding
transmissions gives the m = k distinct rows of the identity matrix Ik in M . Therefore,
there exists a (k, k, n)-selector of size in o(k2 log n/ log k) which violates the afore-
mentioned lower bound. Thus, Ω(k2 log n/ log k) is a lower bound for the delay of any
protocol that solves Recurring Selection and, as shown before, a lower bound for Recur-
ring Selection is a lower bound for Recurring Reception and Recurring Transmission.

Recall that our main goal is to minimize the message complexity. Hence, this lower
bound might be improved if we maintain the constraint of k message complexity. Nev-
ertheless, in order to obtain a better lower bound, we will use the memory size constraint
present in the Weak Sensor Model (and any Radio Network for that matter) which leads
to protocols with some form of periodicity.

We define an equiperiodic protocol as a set of schedules of transmissions where, in
each schedule, every two consecutive transmissions are separated by the same number
of time slots. A simple lower bound of Ω(kn) steps for the delay of any equiperiodic
protocol that solves Recurring Selection can be observed as follows. n different periods
are necessary otherwise two nodes can collide forever. At least k transmissions are nec-
essary within the delay to achieve one reception successfully as proved in Theorem 1.
Therefore, there exist a node with delay at least kn, which we formalize in the following
theorem.

Theorem 4. Any oblivious equiperiodic protocol that solves Recurring Selection in a
one-hop Radio Network with n nodes, where k of them are activated possibly at different
times, has delay at least kn.

2.4 A Delay-Optimal Equiperiodic Protocol for k ≤ n1/6 log log n

In Primed Selection, the period of each node is a different prime number. However,
in order to achieve optimal message complexity as proved in Theorem 1, it is enough
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to use a set of n periods such that, for each pair of distinct periods u, v, it holds that
v/ gcd(u, v) ≥ k and u/ gcd(u, v) ≥ k. In this section, we define such a set of periods
so that, when used as periods in Primed Selection, gives optimal delay for equiperiodic
protocols when k ≤ n1/6 log log n.

The idea is to use a set of composite numbers each of them formed by log log n
prime factors taken from the smallest log n primes bigger than k. More precisely, we
define a compact set C as follows. Let p� denote the �-th prime number. Let pμ be a
prime number such that pμ = 2 if k ≤ 2, and pμ−1 < k ≤ pμ otherwise. Let P be
the set of prime numbers P = {pμ, pμ+1, . . . , pμ+log n−1}. Let F be a family of sets
such that F = {F |(F ⊂ P ) ∧ (|F | = log log n)}. Make C a set of composite numbers
such that C = {cF |cF = (

∏
i∈F i) ∧ (F ∈ F)}. The following lemma shows that the

aforementioned property holds in a compact set.

Lemma 1. Given a positive integer k ≤ n and a compact set C defined as above,
∀u, v ∈ C, u �= v it holds that v/ gcd(u, v) ≥ k and u/ gcd(u, v) ≥ k.

Proof. For the sake of contradiction, assume that there exists a pair u, v ∈ C, u �= v
such that either v/ gcd(u, v) < k or u/ gcd(u, v) < k. Let U = {u1, u2, . . . , ulog log n}
and V = {v1, v2, . . . , vlog log n} be the sets of prime factors of u and v respectively.
Given that the prime factorization of a number is unique and that |U | = |V |, there must
exist ui ∈ U and vj ∈ V such that ui /∈ V and vj /∈ U . But then u/ gcd(u, v) ≥ ui ≥ k
and v/ gcd(u, v) ≥ vi ≥ k.

We assume that, for each node with ID i, a number P (i) ∈ C has been stored in
advance in its memory so that no two nodes have the same number. It can be derived
that |C| =

( log n
log log n

)
≥ n for large enough values of n. Hence, C is big enough as to

assign a different number to each node.
In order to show the delay-optimality of this assignment it remains to be proved that

the biggest period is in O(n) when k ≤ n1/6 log log n, which we do in the following
lemma.

Lemma 2. Given a positive integer k ≤ n1/6 log log n and a compact set C defined as
above, maxc∈C{c} ∈ O(n).

Proof. Consider the prime number pk+log n. Using the prime number theorem, it can
be shown that the number of primes in the interval [k, pk+log n] is bigger than log n.
Hence, in order to prove the claim, it is enough to prove (pk+log n)log log n ∈ O(n).
Thus, using the prime number theorem, for some constants α, β we want to prove

(β(k + log n) log(k + log n))log log n ≤ αn.

Replacing k ≤ n1/6 log log n, the inequality is true for large enough values of n.

Now we are in conditions to state the main theorem for Recurring Selection which
can be proved using Lemmas 1 and 2 and Theorems 1 and 4, and can be extended to
Recurring Reception and Recurring Transmission.

Theorem 5. Given a one-hop Radio Network with n nodes, where k ≤ n1/6 log log n

nodes are activated perhaps at different times, using a compact set of periods Primed
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Selection solves the Recurring Selection problem with optimal message complexity k
and O(kn) delay, optimal for equiperiodic protocols.

The good news is that this value of k is actually very big for most of the applications of
Sensor Networks, where a logarithmic density of nodes in any one-hop neighborhood
is usually assumed.

3 Adaptive Protocols: Reduced Primed Selection

The same technique used in Primed Selection yields a reduced delay if we use only
O(k) coprime periods in the whole network as long as we guarantee that, for every
node u, every pair of nodes i, j ∈ N(u) ∪ {u} use different coprimes. However, given
that the topology is unknown, it is not possible to define an oblivious assignment that
works under our adversary.

We show now how to reduce the delay introducing a pre-processing phase in which
nodes self-assign those primes appropriately. Given that in this protocol it is necessary
to maintain two sets of k primes, we relax the Weak Sensor Model assuming that the
memory size of each node is bounded only by O(k + log n) bits. We further assume
that nodes are deployed densely enough so that if we reduce the radius of transmission
by a constant factor the network is still connected. This assumption introduces only
an additional constant factor in the total number of nodes to be deployed n and the
maximum degree k − 1.

The intuition of the protocol follows. As before, we use prime numbers bigger than
k but, additionally, the smallest k of them are left available. More precisely, each node
with ID i ∈ 1, . . . , n is assigned a big prime number p(i) so that p(1) = pj+k <
p(2) = pj+k+1 . . . p(n) = pj+k+n−1. Where p� is the �-th prime number and pj is the
first prime number bigger than k. Again, given that k ≤ n, the size in bits of the biggest
prime is still in O(log n).

Using their big prime as a period of transmission nodes first compete for one of
the k small primes left available. Once a node chooses one of these small primes, it
announces its choice with period its big prime and transmits its messages with period
its small prime. If at a given time slot these transmissions coincide, it is equivalent to the
event of a collision of the transmissions of two different nodes, hence, we do nothing.

In order to prevent two nodes from choosing the same small prime, each node main-
tains a counter. A node chooses an available small prime upon reaching a final count.
When a node reaches its final count and chooses, it is guaranteed that all neighboring
nodes lag behind enough so that they receive the announcement of its choice before
they can themselves choose a small prime.

In order to ensure the correctness of the algorithm, no two nodes within two hops
should choose the same small prime. Therefore, we use a radius of r/2 for message
communication2 and r for small-prime announcements.

We omit the details of the algorithm in this extended abstract for brevity. The analysis
follows. It was shown before that the delay of Primed Selection is in O(kn log n). For
clarity of the presentation, we denote this value as T .

2 The choice of small radius r/2 is arbitrary. Any radius in Θ(r) strictly smaller than r would
work with the same asymptotic cost.
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Let us call a node that has chosen a small prime a decided node and undecided
otherwise. In order to prove correctnes, we have to prove that every node becomes
decided and that no pair of neighboring nodes choose the same prime.

Lemma 3. Given any node u that becomes decided in the time slot t, the counter of
every undecided node v ∈ N(u) is at most T in the time slot t.

Proof. Consider a node u that becomes decided at time t. For the sake of contradiction,
assume there is an undecided node v ∈ N(u) whose counter is greater than T at t.
By the definition of the algorithm, v did not receive a bigger counter for more than
T steps before t, and u did not receive a bigger counter for 2T steps before t. In the
interval [t − T, t] the local counter of u is larger than the local counter of v. As shown
in Theorem 3, v must receive from u within T steps. But then, v must have been reset
in the interval [t − T, t].

Theorem 6. Given a Sensor Network with n nodes, where the maximum degree is k −
1 < n, if nodes run Reduced Primed Selection, no pair of neighboring nodes choose the
same small prime and every node becomes decided within O(Tn2) steps after starting
running the algorithm.

Proof. The first statement is a direct conclusion of Lemma 3 and Theorem 3. For the
second statement, if a node u is not reset within T steps no neighbor of u has a bigger
counter and u will become decided within 2T steps. Thus, it takes at most (n+1)T steps
for the first node in the network that becomes decided. By definition of the algorithm, a
decided node does not reset the counter of any other node. Applying the same argument
recursively the claim follows.

Theorem 7. Given a Sensor Network with n nodes, where the maximum degree is k −
1 < n, after the pre-processing, the delay of Reduced Primed Selection is O(k2 log k)
and the message complexity is k.

Proof. As in Theorem 3.
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Deterministic Leader Election in Anonymous Sensor
Networks Without Common Coordinated System
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Abstract. We address the Leader Election (LE) problem in networks of anony-
mous sensors sharing no kind of common coordinate system. The contribution of
this paper is twofold: First, assuming n anonymous sensors agreeing on a com-
mon handedness (chirality) of their own coordinate system, we provide a com-
plete characterization on the sensors positions to deterministically elect a leader.
Our result holds for any n > 1, even if the n sensors have unlimited visibility
and regardless of their capabilities, unbounded memory, mobility, and communi-
cation settings. Second, we show that this statement also holds assuming sensors
without chirality provided that n is odd.

Keywords: Distributed Leader Election, Sense of Direction, Chirality, Sensor
Networks.

1 Introduction

In distributed settings, many problems that are hard to solve otherwise become easier to
solve with a leader to coordinate the system. The problem of electing a leader among a
set of computing units is then one of the fundamental tasks in distributed systems. The
Leader Election (LE) Problem consists in moving the system from an initial configu-
ration were all entities are in the same state into a final configuration were all entities
are in the same state, except one, the leader. The leader election problem is covered in
depth in many books related to distributed systems, e.g., [13,16].

The distributed systems considered in this paper are sensor networks. Sensor net-
works are dense wireless networks that are used to collect (to sense) environmental
data such as temperature, sound, vibration, pressure, motion, etc. The data are either
simply sent toward some data collectors or used as an input to perform some basic
cooperative tasks. Wireless Sensor Networks (WSN) are emerging distributed systems
providing diverse services to numerous applications in industries, manufacturing, secu-
rity, environment and habitat monitoring, healfcare, traffic control, etc. WSN aim for
being composed of a large quantity of sensors as small, inexpensive, and low-powered
as possible. Thus, the interest has shifted towards the design of distributed protocols
for very weak sensors, i.e., sensors requiring very limited capabilities, e.g., uniformity
(or, homogeneity — all the sensors follow the same program —, anonymity — the sen-
sors are a priori indistinguishable —, disorientation — the sensors share no kind of
coordinate system nor common sense of direction.
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However, in weak distributed environments, many tasks have no solution. In partic-
ular, in uniform anonymous general networks, the impossibility of breaking a possibly
symmetry in the initial configuration makes the leader election unsolvable determinis-
tically [1]. In this paper, we investigate the leader election problem with sensors having
minimal capabilities, i.e., they are anonymous, uniform and disoriented. We come up
with the following question: “Given a set of such weak sensors scattered on the plane,
what are the (minimal) geometric conditions to be able to deterministically agree on a
single sensor?”

Related Works. Similar questions are addressed in [2,9,10]. In the former, the authors
address the problem of Localization in sensor networks. This problem is to reconstruct
the positions of a set of sensors with a Limited Visibility, i.e., sensors which are able
to locate of other sensors within a certain distance v > 0. The authors show that no
polynomial-time algorithm can solve this problem in general. In [9,10], the authors
address the Pattern Formation problem for sensors having the additional capability of
mobility. Such mobile sensors are often referred to as robots or agents. The Pattern For-
mation problem consists in the design of protocols allowing autonomous mobile robots
to form a specific class of patterns, e.g., [18,9,10,4,11,6,7,8]. In [9], the authors discuss
whether the pattern formation problem can be solved or not according to the capabilities
the robots are supposed to have. They consider the ability to agree on the direction and
orientation of one axis of their coordinate system (North) (Sense of Direction) and a
common handedness (Chirality). Assuming sense of direction, chirality, and Unlimited
Visibility — each robot is able to locate all the robots —,, they show that the robots can
form any arbitrary pattern. Then, they show that with the lack of chirality, the problem
can solved in general with an odd number of robots only. With the lack of both sense of
direction and chirality, the pattern formation problem is unsolvable in general.

In [10], the authors show the fundammental relationship between the Pattern Forma-
tion problem and the Leader Election problem. They show that under sense of Direction
and chirality, the Leader Election problem can be solved by constructing a total order
over the coordinates of all the agents. With sense of direction and lack of chirality, the
Leader Election is solvable if and only if the number of robots is odd. Informally, the
results in [9,10] comes from the fact that starting from some symmetric configurations,
no robot can be distinguished if the number of robots is even. In other words, they
show that even if the robots have sense of direction and unlimited visibility, the lack of
chirality prevents from breaking symmetry in a deterministic way.

Contribution. In this paper, we address the leader election problem under very weak
assumptions: the sensors share no kind of common coordinate system. More precisely,
they are not required to share any unit measure, common orientation or direction. How-
ever, even under such an assumption, they can agree on a common handedness or not.

The contribution of this paper is twofold. Assuming a set of n anonymous sensors
with chirality, we first provide a complete characterization (necessary and sufficient
conditions) on the sensors positions to deterministically elect a leader. Our result holds
for any n > 1, even if the sensors have unlimited visibility and regardless of their
capabilities, unbounded memory, mobility, and communication settings. The sufficient
condition is shown by providing a deterministic algorithm electing a leader.
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The proof is based on the ability for the sensors to construct a Lyndon word from the
sensors’ positions as an input. A Lyndon word is a non-empty word strictly smaller in
the lexicographic order than any of its suffixes, except itself and the empty word. Lyn-
don words have been widely studied in the combinatorics of words area [12]. However,
only a few papers consider Lyndon words addressing issues in other areas than word
algebra, e.g., [3,5,17,7]. In [7], we already shown the power of Lyndon words to built
an efficient and simple deterministic protocol to form a regular n-gon. However, the
results in [7] hold for a prime number n of robots only.

The second fold of our contribution addresses the lack of chirality. We show that our
characterization still holds if and only if the number of sensors is odd. Again, we give a
deterministic algorithm that shows the sufficient condition.

In the next section (Section 2), we formally describe the distributed model and the
words considered in this paper. Both results are presented in Section 3. Finally, we
conclude this paper in Section 4.

2 Preliminaries

In this section, we define the distributed system considered in this paper. Next, we
review some formal definitions and basic results on words and Lyndon words

2.1 Model

Consider a set of n sensors (or agents, robots) arbitrarily scattered on the plane such
that no two sensors are located at the same position. The sensors are uniform and anony-
mous, i.e, they all execute the same program using no local parameter (such that an
identity) allowing to differentiate any of them. However, we assume that each sensor
is a computational unit having the ability to determine the positions of the n sensors
within an infinite decimal precision. We assume no kind of communication medium.
Each sensor has its own local x-y Cartesian coordinate system defined by two coor-
dinate axes (x and y), together with their orientations, identified as the positive and
negative sides of the axes.

In this paper, we discuss the influence of Sense of Direction and Chirality in a sensor
network.

Definition 1 (Sense of Direction). A set of n sensors has sense of direction if the n
sensors agree on a common direction of one axis (x or y) and its orientation. The sense
of direction is said to be partial if the agreement relates to the direction only —i.e., they
are not required to agree on the orientation.

In Figure 1, the sensors have sense of direction in the cases (a) and (b), whereas they
have no sense of direction in the cases (c) and (d).

Given an x-y Cartesian coordinate system, the handedness is the way in which the
orientation of the y axis (respectively, the x axis) is inferred according to the orientation
of the x axis (resp., the y axis).

Definition 2 (Chirality). A set of n sensors has chirality if the n sensors share the
same handedness.



Deterministic Leader Election in Anonymous Sensor Networks 135

y

x
y

x

y

x

(a) Sense of Direction and Chirality

y

x

y

y

x

x

(b) Sense of Direction and No
Chirality

y

x
y

x

y
x

(c) No Sense of Direction and
Chirality

y
y

x

y
x

x

(d) No Sense of Direction and No
Chirality

Fig. 1. Four examples showing the relationship between Sense of Direction and Chirality

In Figure 1, the sensors have chirality in the cases (a) and (c), whereas they have no
chirality in the cases (b) and (d).

2.2 Words and Lyndon Words

Let an ordered alphabet A be a finite set of letters. Denote ≺ an order on A. A non
empty word w over A is a finite sequence of letters a1, . . . , ai, . . . , al, l > 0. The
concatenation of two words u and v, denoted u ◦ v or simply uv, is equal to the
word a1, . . . , ai, . . . , ak, b1, . . . , bj, . . . , bl such that u = a1, . . . , ai, . . . , ak and v =
b1, . . . , bj , . . . , bl. Let ε be the empty word such that for every word w, wε = εw = w.
The length of a word w, denoted by |w|, is equal to the number of letters of w—|ε| = 0.

A word u is lexicographically smaller than or equal to a word v, denoted u � v, iff
there exists either a word w such that v = uw or three words r, s, t and two letters a, b
such that u = ras, v = rbt, and a ≺ b.

Let k and j be two positive integers. The kth power of a word w is the word denoted
sk such that s0 = ε, and sk = sk−1s. A word u is said to be primitive if and only if
u = vk ⇒ k = 1. Otherwise (u = vk and k > 1), u is said to be strictly periodic. The
reversal of a word w = a1a2 · · · an is the word w̃ = an · · ·a1. The jth rotation of a
word w, notation Rj(w), is defined by:

Rj(w) def=
{

ε if w = ε
aj , . . . , al, a1, . . . , aj−1 otherwise (w = a1, . . . , al, l ≥ 1)

Note that R1(w) = w.

Lemma 1 ([12]). Let w and Rj(w) be a word and a rotation of w, respectively. The
word w is primitive if and only if Rj(w) is primitive.

A word w is said to be minimal if and only if ∀j ∈ 1, . . . , l, w � Rj(w).
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Definition 3 (Lyndon Word). A word w (|w| > 0) is a Lyndon word if and only if w is
nonempty, primitive and minimal, i.e., w 	= ε and ∀j ∈ 2, . . . , |w|, w ≺ Rj(w).

For instance, if A = {a, b}, then a, b, ab, aab, abb are Lyndon words, whereas aba,
and abab are not— aba is not minimal (aab � aba) and abab is not primitive (abab =
(ab)2).

3 Leader Election

The leader election problem considered in this paper is stated as follows: Given the
positions of n sensors in the plane, the n sensors are able to deterministically agree on
the same position L called the leader.

3.1 Leader Election with Chirality

In this subsection, we assume a sensor networks having the property of chirality. A
configuration π of the sensor network is a set of positions p1, . . . , pn (n > 1) occupied
by the sensors. Given a configuration π, SEC denotes the smallest enclosing circle of
the positions in π. The center of SEC is denoted O. In any configuration π, SEC is
unique and can be computed in linear time [14,19]. It passes either through two of the
positions that are on the same diameter (opposite positions), or through at least three of
the postions in π. Note that if n = 2, then SEC passes both sensors and no sensor can
be located inside SEC, in particular at O. Since the sensors have the ability of chirality,
they are able to agree on a common orientation of SEC, denoted �.

Given a smallest enclosing circle SEC, the radii are the line segments from the
center O of SEC to the boundary of SEC. Let R be the finite set of radii such that
a radius r belongs to R iff at least one sensor is located on r but O. Denote �R the
number of radii in R. In the sequel, we will abuse language by considering radii in
R only. Given two distinct positions p1 and p2 located on the same radius r (∈ R),
d(p1, p2) denotes the Euclidean distance between p1 and p2.

Definition 4 (Radius Word). Let p1, . . . , pk be the respective positions of k robots
(k ≥ 1) located on the same radius r ∈ R. Let wr be the word such that

wr
def=

{
0 if there exists one sensor at O
a1, . . . , ak with a1 = d(O, p1) and ∀i ∈ [2, k], ai = d(pi−1, pi) , otherwise

Note that all the distances are computed by each sensor with respect to its own coordi-
nate system, i.e., proportionally to its own measure unit. Let RW be the set of radius
words built over R, computed by any sensor s. The lexicographic order � on RW is
naturally built over the natural order < on the set of real numbers.

Remark 1. If there exists one sensor on O (n > 2), then for every radius r ∈ R, wr = 0.

Let r be a radius in R. The successor of r, denoted by Succ(r, �), is the next radius in
R, according to �. The ith successor of r, denoted by Succi(r, �), is the radius such
that Succ0(r, �) = r, and Succi(r, �) = Succ(Succi−1(r, �), �). Given r and its
successor r′ = Succ(r, �), �(rOr′) denotes the angle between r and r′.
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Fig. 2. Computation of Configuration words — the sensors are the black bullets

Definition 5 (Configuration Word Set)
Given an orientation �, let CW� be the set of configuration words, computed by any
sensor s, build over R such that for each radius r ∈ R, the associated configura-
tion word W (r) is equal to (0, 0) if wr = 0, otherwise W (r) is equal to the word
a1, . . . , ak such that k = �R and ∀i ∈ [1, k], ai = (Succi−1(r, �), �(Succi−1(r, �)
OSucci(r, �))).

Remark 2. The three following propositions are equivalent:

1. There exists one sensor on O
2. For every radius r ∈ R, W (r) = (0, 0)
3. CW� = {(0, 0)}

In Figure 2, if � is the clockwise orientation, then: W (r1) = (abc, β)(c2, γ)2(c, γ)
(d, β)(e, α) and W (r2) = (c2, γ)2(c, γ)(d, β)(e, α)(abc, β).

If � is the counterclockwise orientation, then: W (r1) = (abc, α)(e, β)(d, γ) (c, γ)
(c2, γ)(c2, β) and W (r2) = (c2, β)(abc, α)(e, β)(d, γ)(c, γ)(c2, γ).

Remark 3. Let W (r1) and W (r2) be two words in CW�, r1 and r2 belong to R. Then,
W (r1) (respectively, W (r2)) is a rotation of W (r2) (resp. W (r1)) — refer to Figure 2.

Let ACW � be the set of letters over CW�. Let (u, x) and (v, y) be any two letters in
ACW � . Define the order � over ACW � as follows:

(u, x) � (v, y) ⇐⇒

⎧
⎨

⎩

u � v
or
u = v and x < y

The lexicographic � order over CW� is naturally built over �.

Remark 4. Each sensor having its own unit measure, given r ∈ R, the word W (r)
computed by any sensor s can be different to the one computed by another sensor s′.
However, all the distances are computed by each sensor proportionally to its own mea-
sure unit. So, if W (r) � W (r′) for one sensor s, then W (r) � W (r′) for every sensor
s′. In particular, if W (r) is a Lyndon word for one sensor s, then W (r) is a Lyndon
word for every sensor s′.
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Lemma 2. If there exists two distinct radii r1 and r2 in R such that both W (r1) and
W (r2) are Lyndon words, then CW� = {(0, 0)}.

Proof. Assume by contradiction that there exists two distinct radii r1 and r2 such that
both W (r1) and W (r2) are Lyndon words and CW� 	= {(0, 0)}. By Remark 2, there
exists no sensor located at O. By Remark 3, W (r1) (respectively, W (r2)) is a rotation
of W (r2) (resp. W (r1)). So, by Definition 3, W (r1) ≺ W (r2) and W (r2) ≺ W (r1).
A contradiction.

Lemma 3. If there exists r ∈ R such that W (r) is a Lyndon word, then the n sensors
are able to determiniscally agree on the same sensor L.

Proof. Directly follows from Lemma 2 and Remark 4: If there is a sensor s located on
O, then the n sensors are able to agree on L = s. Otherwise, there exists a single r ∈ R
such that W (r) is a Lyndon word. In that case, all the sensors are able to agree on the
sensor on r which is the nearest one from O.

Lemma 4. If there exists no radius r ∈ R such that W (r) is a Lyndon word, then there
exists no deterministic algorithm allowing the n sensors to agree on the same sensor L.

Proof. Assume by contradiction that no radius r ∈ R exists such that W (r) is a Lyndon
word and there exists an algorithm A allowing the n sensors to deterministically agree
on the same sensor L. Let minW be a word in CW� such that ∀r ∈ R, minW �
W (r). That is, minW is minimal. Assume first that minW is primitive. Then, minW
is a Lyndon word which contradicts the assumption. So, minW is a strictly periodic
word (there exists u and k > 1 such that minSC = uk) and, from Lemma 1, we
deduce that for all r ∈ R, W (r) is also strictly periodic. Thus, for every r ∈ R, there
exists at least one radius r′ ∈ R such that r 	= r′ and W (r) = W (r′). So, for every
radius r ∈ R, there are k > 1 radii in R on which the sensors can have the same view
of π. It is the case if the sensors have the same measure unit and their y axis meet the

α α

α α
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a

d

b a b

x

x

x

x

x

x

Fig. 3. A counter example showing Lemma 4



Deterministic Leader Election in Anonymous Sensor Networks 139

radius on which they are located — refer to Figure 3. In that case, A cannot allow the n
sensors to deterministically agree on the same sensor L.

The following theorem follows from Lemmas 3 and 4:

Theorem 1. Given a configuration π of any number n ≥ 2 sensors with chirality scat-
tered on the plane, the n sensors are able to deterministically agree on the same sensor
L if and only if there exists a radius r ∈ R such that W (r) is a Lyndon Word.

3.2 Leader Election Without Chirality

Without chirality, the sensors are not able to agree on a common orientation of SEC.
Define � (respectively, �) the clockwise (resp., counterclockwise) orientation. Obvi-
ously, with respect to their handedness, some of the n sensors choose to orient SEC
according to �, whereas some other to �. In this subsection, we use same definition
of radius word (Definition 4) as in Subsection 3.1. Since the sensors have no chirality,
for each radius r ∈ R, there are two configuration words w.r.t. the orientation of SEC,
denoted by W (r)� and W (r)�. Let CW be the set of all the configuration words,
computed by any sensor s, in both clockwise and counterclockwise orientations.

We now show that the statement of Theorem 1 also holds assuming no chirality if n
is odd.

Lemma 5. Given an orientation ◦ of SEC in {�, �}, if there exists two distinct radii
r1 and r2 in R such that both W (r1)◦ and W (r2)◦ are Lyndon words, then CW ◦ =
{(0, 0)}.

Proof. The proof is similar to that of Lemma 2.

Let RL be the subset of radius r ∈ R such that W (r) is a Lyndon word in the clockwise
or in the counterclockwise orientation. Denote �RL the number of radii in RL.

Lemma 6. If �RL > 2, then for any orientation ◦ of SEC in {�, �}, ∀r ∈ R,
W (r)◦ = (0, 0).

Proof. Assume by contradiction that �RL > 2 and there exists ◦ ∈ {�, �} and r ∈ R
such that W (r)◦ 	= (0, 0). Since �RL > 2, there exists at least two distinct radii r1 and
r2 such that either W (r1)� and W (r2)� are Lyndon words or W (r1)� and W (r2)�

are Lyndon words. Without loss of generality, assume that W (r1)� and W (r2)� are
Lyndon words. By, Lemma 5, CW� = {(0, 0)}. By Remark 2, ∀r ∈ R, W (r)� =
(0, 0) and W (r)� = (0, 0). Hence, there exists no r ∈ R such that W (r)◦ 	= (0, 0). A
contradiction.

Lemma 7. If n is odd and �RL ≥ 1, then the n sensors are able to determiniscally
agree on the same sensor L.

Proof. Since n is odd, n ≥ 3. From Lemma 6, there are three cases to consider:
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r1 r2

s1

sL

2s

l

Fig. 4. An example showing the construction in the proof of Lemma 7

1. �RL > 2. Then, ∀r ∈ R and for any orientation ◦ of SEC in {�, �}, W (r)◦ =
(0, 0). Thus, there exists one sensor s located at O. The n sensors are then able to
agree on s.

2. RL = {r}. If W (r) the leader is the nearest sensor to O, on r.
3. RL = {r1, r2}. Again, there are two subcases :

(a) W (r1)� = (0, 0). The leader is the sensor at the center of SEC.
(b) W (r1)� 	= (0, 0). From Lemma 5 again, if W (r1)� (respectively W (r1)�) is

a Lyndon word, then W (r2)� (resp. W (r2)�) is a Lyndon word. Without loss
of generality, assume that W (r1)� and W (r2)� are Lyndon words. We have
two subsubcases :

i. W (r1)� 	= W (r2)�. Without loss of generality again, assume that
W (r1)� ≺ W (r2)�. The leader is the nearest sensor to O on r1.

ii. W (r1)� = W (r2)�. In that case, note that r1 and r2 divide SEC into
two parts, π1 and π2, where n1 and n2 are the number of robots inside π1
and π2, respectively. Since W (r1)� = W (r2)�, the number x of sensors
located on r1 is equal to the number of robots located on r2. So, the total
number of sensors located on r1 and r2 is equal to 2x (because there is no
sensor at the center of SEC). Thus, n1 +n2 = n− 2x because no sensors
located on r1 and r2 is in π1 or π2. Since n − 2x is odd (n is odd), there
exists one part of SEC with an even number of robots, and one part of
SEC with an odd number of sensors. Without loss of generality, assume
that n1 is odd. Let s1 and s2 be the nearest sensors to O on r1 and r2,
respectively. Consider P the set of lines passing through the sensors in π1
which are parallel to the line (s1, s2) — refer to Figure 4. Since n1 is odd,
there exists at least one line in P with an odd number of sensors located
on it. Among those lines, choose the unique line which is the nearest from
both O and the line (s1, s2). Denote this line by l and the number of sensors
located on it in π1 by nl. Therefore, the leader is the unique sensor sL

which is the median sensor among the sensor on l and π1, i.e., the (�nl

2 � +
1)th sensor starting indifferently from the left or the right of l in π1.
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Fig. 5. A counter example showing that the statement of Theorem 2 does not hold if n is even

Lemma 8. If there exists no radius r ∈ R such that either W (r)� or W (r)� is a
Lyndon word, then there exists no algorithm allowing the n sensors to deterministically
agree on the same sensor L.

Proof. The proof is similar as to that of Lemma 4.

The following theorem follows from Lemmas 7 and 8:

Theorem 2. Given a configuration π of any number n ≥ 2 sensors without chirality
scattered on the plane, the n sensors are able to determiniscally agree on the same
sensor L if and only if n is odd and there exists a radius r ∈ R such that W (r) is a
Lyndon Word.

Note that the equivalence does not work with an even number of sensors. A counter
example is shown in Figure 5. For any orientation in {�, �}, there exists one Lyndon
word equal to (d, α)(d, β)(d, γ)(d, β). However, the symetry of the configuration does
not allow to choose any sensor as a leader.

4 Conclusion

We studied the leader election problem in networks of anonymous sensors sharing no
kind of common coordinate system. Assuming anonymous sensors with chirality, we
used properties of Lyndon words to give a complete characterization on the sensors
positions to deterministically elect a leader for any number n > 1 of sensors. We also
showed that our characterization still holds with sensors without chirality if and only if
the number of sensors is odd.

Our future work will concentrate to find a similar characterization for an even num-
ber of sensors without chirality. A more general problem is to find the minimal geo-
metrical conditions to determiniscally solve other collaborative tasks in mobile sensor
networks such as pattern formation for which we know that no solution exists in general
if the sensors do not agree on a sense of direction [15].
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Abstract. Global state snapshots are a fundamental primitive for wireless net-
works that sense and control real environments. Consistent and timely snapshots
are potentially costly. Cost reduction is often realized by gathering only a “delta”
from previous snapshots. In this paper, we explore an alternative form of effi-
ciency by generalizing the notion of a snapshot to satisfy distance sensitivity
properties, wherein the state of nearby nodes is available with greater resolu-
tion, speed, and frequency than that of farther away nodes. Our algorithms are
memory efficient and do not require global time synchronization or localization.

For pedagogical reasons, we describe our solutions for the case of perfect 2-d
grid topologies first, and then show how to extend them for higher dimensions,
for network with irregular density, arbitrary sized holes, networks and non unit
disk radios. We also discuss how different control applications can exploit these
generalized snapshots.

1 Introduction

Sensor networks have found significant adoption in continuous observation applications
and are now progressively being incorporated in distributed control applications, for
instance, pursuer evader tracking [1, 2] and control of distributed parameter systems
such as flexible structures [3, 4]. These applications often require information from
network nodes to be periodically delivered to one or more observer/controller nodes in
the network in a consistent and timely manner. For example, in pursuer evader tracking,
pursuer objects require ongoing knowledge of other pursuer/evader locations in order to
maintain an optimum assignment. In distributed vibration control of flexible structures,
controllers need to (re)estimate the modes of vibration using samples from across the
network in order to optimally assign controllers for each mode and to use the optimal
control parameters. Thus global state snapshots are fundamental for wireless networks
that sense and control real environments.

Although consistency, timeliness, and reliability have traditionally been the main
design considerations for periodic snapshots, their efficiency becomes essential when
considering resource constrained wireless sensor networks. The standard way to realize
efficiency is to communicate the “delta” from previous readings or from model-driven
predictions, possibly in compressed form. In this paper, we explore a complementary
form of efficiency based on the observation that many applications can accommodate
generalized forms of snapshots, wherein the information delivered across the network is
not necessarily consistent but satisfies certain distance sensitive properties: The state of
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nearby nodes has greater resolution (distance sensitive resolution), arrives faster (dis-
tance sensitive rate) and with higher speed (distance sensitive latency). By way of ex-
ample, consider: (1) In pursuer evader tracking, information about nearer objects are
required at a faster rate and lower latency that that of farther objects for guaranteeing
optimal pursuit [1,5]. (2) In scale based control [6] used for vibration control of flexible
structures, different controllers are assigned to different modes (frequencies) of vibra-
tion; in this case, estimating characteristics of lower frequencies requires information
from a wider area but that can be sampled at a slower rate and coarser resolution than
that for nearer areas.

While collecting snapshots at a central base station has been a common pattern in
sensor networks, delivering snapshots to nodes in-network is desirable from an effi-
ciency and correctness perspective in large scale networks used for applications such as
object tracking [5] and distributed control and is also an emerging pattern in applications
involving mobile users. In this paper we focus on in-network delivery of snapshots.

Informal problem statement: Given is a connected wireless sensor network with N
nodes embedded in an f dimensional space. Each node periodically generates m bits of
information, can communicate at W bits per second, and is memory constrained.

Design efficient snapshots of the network state that are distance sensitive in
resolution, latency, and rate for periodic delivery at (some or all) nodes.

Contributions: In this paper, we systematically design wireless sensor network al-
gorithms that periodically deliver distance sensitive snapshots to all nodes in the net-
work. Our algorithms are easily adapted to allow snapshots to be delivered only to a
subset of nodes as opposed to all nodes. They are memory efficient, requiring only
O(3f ∗ log(N

1
f ) ∗ m) bits per node. They are readily realized in networks with irregu-

lar density, networks with arbitrary sized holes, imperfect clustering, and non unit disk
radios. We quantify the maximum rate at which information can be generated at each
node so that snapshots are periodically delivered across the network, the algorithms
can of course be operated at lower rates than these. For our services, global time syn-
chronization is not required; a local notion of time however is needed to ensure fair
scheduling of transmission of nodes.

Overview of algorithms and main results: Consider an ideal network where nodes are
embedded in a virtual 2-d grid such that there is exactly one node at each grid location
and that each grid node can reliably reach each of its neighbors in the grid and no oth-
ers. Snapshots with distance sensitive latency may be realized in these grids, firstly, by
scheduling each node to transmit its local view of the network so as to not interfere with
its neighbors and, secondly, by ensuring that the schedules all nodes to transmit at the
same rate. In order to ensure uniform latency, we introduce a single level of clustering
to regulate the flow of information in all directions by proceeding in rounds. Intuitively,
a round is a unit of time when information is exchanged between any level 1 cluster and
all its neighboring clusters. Our scheduling and other protocol actions at each step are
such that information is propagated across the network in a pipelined manner; by this,
new information can be generated at a node as soon as previous information has been
dispersed only to its local neighborhood as opposed to the entire network.
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In this first algorithm, in a snapshot S of the network delivered to all nodes the
staleness of the state of a node i in S is O(3f ∗N ∗m∗d), where d = dist(i, j),
and the average network communication cost is as high as O(N2 ∗ m) for N
samples (one from each node).

To add distance sensitive resolution, instead of dispersing the individual state of each
node, we map the state of nodes into aggregate values of non-overlapping regions. We
then deliver snapshots across the network such in a snapshot delivered to a node j,
the size of a region into which a node i is mapped increases as dist(i, j) increases.
Thus, the resolution with which i is represented in the snapshot decreases as dis(i, j)
increases. To achieve this kind of snapshot delivery, we refine the clustering of nodes
into a hierarchical one with a logarithmic number of levels as the network size. The
basic idea is that a clusterhead at each level compresses data from all nodes in that level
into m bits. Thus, the data aggregated at each level is represented by the same number
of bits. At higher levels, the data is summarized with a coarser resolution as these levels
contain more nodes.

In this second algorithm, in a snapshot S of the network delivered to node j
the resolution of the state of a node i in S decreases as O(df ), the staleness of
the state of a node i in S is O(32f ∗ m ∗ log(n) ∗ d) and the average network
communication cost for N samples is O(3f ∗ log(n) ∗ N ∗ m).

To achieve distance sensitive rate, we schedule the delivery of aggregated information
at each level such that information of higher levels is delivered over a larger interval
as opposed to lower levels. We do this in two ways. In the first solution, we allocate
an exponentially increasing number of bits per message to lower level aggregates so
that they are delivered at a faster rate. In the second solution, we allocate more time for
aggregation and dispersion of lower level data.

In the first of these two algorithms, the average communication cost per N
samples (one from each node) is O(3f ∗ N ∗ (m + log(n/m))). In the second,
the average communication cost per N samples (one from each node) in the
second algorithm is O(N ∗ m), but the staleness of the received states grows
as O(df ).

Our algorithms allow for a user-pluggable aggregation function. We require only that
the function, say f, be idempotent and satisfy the following decomposability property:
∀a, b, f(a ∪ b) = f(f(a) ∪ f(b)). Examples of such functions are average, max, min,
count and wavelet functions.

We then relax our regularity assumptions and describe how our algorithms handle
the cases of non uniform density, non uniform radio range and holes of arbitrary sizes
in the network. The case of over density is modeled as certain virtual grid locations
containing more than 1 node. In the case of holes in the network, we show that our
algorithms achieve distance sensitivity in terms of the shortest communication path
between any two nodes as opposed to the physical distance.

Outline of the paper: In Section 2, we present the system model. In Section 3,
we design a snapshot service that has the property of distance sensitive latency. In
Section 4, we design a snapshot service that has the additional property of distance
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sensitive resolution. In Section 5, we refine our snapshot service so that snapshots are
delivered with a distance sensitive rate property. In Section 6, we consider irregular net-
works. We discuss related work in Section 7 and make concluding remarks in Section 8.

2 Model and Specification

In this section, we present the system model and a generalization of the concept of
snapshots based on distance sensitive properties.

Network model: A sensor network consists of N nodes that are embedded in an f -
dimensional space. We let n abbreviate N

1
f . The nodes induce a connected network

where each communicate at W bits per second. Nodes are synchronized in time. Each
node j periodically generates m bits of (sensor) information, and maintains a data struc-
ture comprising the most recent state of nodes (or partitions of nodes) and a timestamp
associated with that state.

In the next three sections (3-5), for ease of exposition, we restrict our attention to
sensor networks that form a 2 dimensional grid with a node at every grid location. We
further assume that node communication follows an idealized disk model: specifically,
each node can communicate reliably with all its neighbors in the grid and with no others.
We define the neighbors of node j to be the ones to its north, east, west, and south and
also to its northeast, northwest, southeast, or southwest that exist in the grid; we denote
these (up to 8) neighbors as j.n, j.e, j.w, j, s, j.ne, j.nw, j.se and j.sw respectively.
In Section 6, we remove each of these restrictive assumptions.

Definition 1 (Snapshot S). A snapshot S is a mapping from each node in the network
to a state value and a timestamp associated with that state value.

A consistent snapshot is one where the timestamps associated with each state value
are all the same. The staleness of a state value in S is the time elapsed between its
timestamp and the current time. We now consider a generalization where state values
do not necessarily correspond to the same instant of time but their staleness enjoys a
distance sensitive property.

Definition 2 (Snapshots with distance sensitive latency). A snapshot S received by
a node j has distance sensitive latency if the staleness in the state of each node i in S
decreases as dist(i, j) decreases.

We now further generalize the notion of snapshots so that state is associated with par-
titions p of the network as opposed to individual nodes. Let P be a partitioning of the
network.

Definition 3 (Snapshot S of P ). A snapshot S of P is a mapping from each partition
p in P to a state value and a timestamp associated with that state value.

The generalized definition is useful even if P is not a total but a partial partition, i.e.,
not all nodes are represented in the snapshot. The state and timestamp of each p in S
intuitively represent the aggregate state of all nodes in the partition and the aggregate
timestamp. We assume that the timestamp of recording the state of all nodes in any
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partition p is the same, and refer to this common value as the aggregate timestamp.
Note that the aggregate timestamp of different partitions may be different.

As there may not exist a mapping from the aggregate state of a partition to the exact
state of individual nodes that was recorded for the purpose of computing the aggregate,
the latter may be estimated using some function of the state of the partition. The res-
olution of the state of a node in a snapshot is an inverse measure of the error between
the state of the node that was recorded and the aggregate state of the partition p that it
belongs to.

We are interested in snapshots where the increase in the error in the state of a node
is bounded by the size of the partition p to which it belongs. This leads us to con-
sider a generalization where the resolution of the state of a node increases as distance
decreases.

Definition 4 (Snapshots with distance sensitive resolution). A snapshot S of P re-
ceived by a node j has distance sensitive resolution if the resolution of the state of each
node i covered by P increases as dist(i, j) decreases.

Informally speaking, the size of the partition to which the state of node i is mapped into
in a snapshot received at j increases as dist(i, j) increases. Therefore the resolution
with which i is represented in S decreases with distance.

Finally, we consider a generalization where the rate at which state of the nodes is
reported to a node decreases as the distance of the nodes increase.

Definition 5 (Snapshots with distance sensitive rate). A node j receives snapshots of
P with distance sensitive rate if the rate at which the state of each node i covered by P
is updated in snapshots received by j increases as dist(i, j) decreases.

3 Distance Sensitive Latency Snapshots

In this section, we describe a snapshot service that has distance sensitive latency. More-
over, by introducing a single level of clustering, we also achieve information flow with
uniform latency in all directions. Uniformity is a desirable property especially when
aggregation needs to be performed.

Clustering: In order to achieve uniform latency, we create a single level of clustering.
The grid is partitioned in 3 by 3 sub-grids of nodes, with the center node in each sub-
grid cluster being its clusterhead. We call the clusterhead a level 1 node and the rest of
the nodes in the cluster as level 0 nodes. This kind of clustering is illustrated in Fig. 1.

Schedule: We schedule the nodes to transmit in rounds. A round is a unit of time in
which information is exchanged between a level 1 clusterhead and all of its 8 neigh-
boring level 1 clusterheads. Each round is divided into multiple slots. In the first slot,
all level 1 clusterheads transmit. In the remaining slots, all level 0 nodes in each cluster
transmit twice. The second transmission by a node within a round takes place after all
its 8 neighbors have transmitted at least once. Intuitively speaking, during the first turn
for a node, information is communicated outwards from the clusterhead. In the next
turn for the node, information is communicated to the level 1 clusterhead that the node
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belongs to. A simple non-interference schedule that satisfies these constraints is one
where all level 0 nodes take turns in a round robin manner. Each round thus consists of
17 slots.

Fig. 1. 1 level clustering

Algorithm S1: In slot 0 of every round, the
level 1 nodes update their own state in the lo-
cal data structure and transmit the entire data
structure. The level 0 nodes in each cluster
update their local data structure as follows:
wlog, node j.ne copies the state of all nodes
in its own cluster and the state of nodes in all
level 1 clusters that are not north east of j.

To explain the actions in other slots, with-
out loss of generality, consider level 1 nodes
j and k and level 0 nodes j.ne and k.sw, as
shown in Fig. 1.

– In the first slot for node j.ne, j.ne transmits its local data structure which contains
the updates that were heard from j. Node k.sw updates the state of all nodes in
clusters that are southwest of k.

– In the second slot for node j.ne, j.ne transmits its local data structure which con-
tains the updates sent from k and k.sw, heard via k.sw. Node j updates the state of
all nodes in clusters that are north east of j. ��

In the remaining slots, the states are exchanged along the other axes around j. In al-
gorithm S1, information flows between any 2 nodes through paths defined by level 1
clusters. Moreover, by the rules of updating a unique path is maintained for commu-
nicating state from a node to any other node [7]. Within a round, information is fully
exchanged in a level 1 neighborhood. Thus, the latency involved in moving information
between a pair of nodes depends on the number of level 1 clusters in their path, and this
is uniform in all directions. Note also that between a pair of level 1 nodes, information
is exchanged in 17 slots and the length of the path through level 1 nodes is proportional
to d. We now state the following lemmas, the proofs of which have been relegated to
the technical report for reasons of space.

Lemma 1. In S1, the maximum staleness in the state of a node i received by a snapshot
at node j is O(N ∗ m ∗ d) where d = dist(i, j). ��
Lemma 2. In S1, the average communication cost to deliver a global snapshot to all
nodes per sample from each node is O(N2 ∗ m). ��

4 Distance Sensitive Resolution Snapshots

To incorporate the property of distance sensitive resolution, we refine the partitioning
of the network into a hierarchical one with a logarithmic number of levels, which are
numbered 0..(log3n). A 3 by 3 set of 9 level r clusters form a cluster at level r + 1, as
illustrated in Fig. 2. Each node belongs to one cluster at each level, and each cluster has
a clusterhead which is the center node of that cluster. A clusterhead at level r is also a
clusterhead at levels 0..r − 1.
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Fig. 2. Hierarchical clustering

Overview of algorithm S2: The basic idea is
that a clusterhead at each level compresses data
from all nodes in that level into m bits. Thus,
aggregated data at each level is represented by
the same number of bits. At higher levels, data is
summarized into a coarser resolution as the lev-
els contain more nodes. The aggregated data is
then dispersed to all nodes at that level. This so-
lution suffers from a multi-level boundary prob-
lem however: two nodes could be neighbors but
belong to a common cluster only at level r � 1.
Thus despite being neighbors, both nodes get a
summary of the other at a much coarser resolu-
tion than desired. The multi-level boundary prob-
lem is illustrated in Fig. 2, where nodes j and k are neighbors at level 0 but belong to
a common cluster only at level 3. To avoid this problem, we disperse a summary com-
puted at level r not only to nodes in level r cluster, but also to nodes in all neighboring
level r clusters. We now describe a pipelined implementation of this algorithm.

Notations: Let j.L be the highest level for which j is clusterhead. Note that there are
at most 8 neighbors at each level for each node in the grid topology. We implement
virtual trees along the structure at each level. To describe these trees, we will need the
following definitions.

Definition 6 (tree(k, j)). tree(k, j), where j is a level k clusterhead, is a level k tree
formed with j as root and spanning all nodes in the level k cluster of j and all level k
clusters that are its neighbors.

Definition 7 (j.in(k, y)). For each tree(k, y) that j belongs to, j.in(k, y) is j’s parent
towards root y.

Definition 8 (j.out(k, y)). For each tree(k, y) that j belongs to, j.out(k, y) is the set
of j’s descendants on the tree.

Definition 9 (M(k, y)). M(k, y) is the level k summary computed by a level k cluster-
head y.

In Fig. 3, a level 1 tree rooted at j is shown as an illustration. The level 1 tree extends
up to all level 0 nodes in its own cluster and level 0 nodes in the 8 neighboring level
1 clusters. The trees represent the distance up to which an aggregate at any level is
propagated.

Schedule: In the first slot of a round, level 1 clusterheads transmit. In the remaining
slots, all the level 0 nodes per cluster take turns and transmit twice such that the second
transmission occurs after all its 8 neighbors have transmitted at least once, as described
in algorithm S1.
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Fig. 3. Illustrating level 1 tree rooted at j

Local storage: Each node i stores the
most recent value of M(x, y) received
by i for each tree(x, y) that i belongs
to. The state of any node j is obtained
as a function of M(x′, y′) where x′ is
the smallest level that contains informa-
tion about j. Recall that the resolution
of the state of j decreases as the num-
ber of nodes in the aggregate M(x′, y′)
increases.

Algorithm S2: We describe the actions
executed by the nodes.

– In slot 0 of each round nodes with j.L > 0 compute the summary M(r, j) for each
level 1 ≤ r ≤ j.L that they are a clusterhead of based on the corresponding lower
level information received in the previous round. The computed summary at each
level is transmitted to the children on the respective tree rooted at j. Thus M(r, j)
is sent to j.out(r, j) for 1 ≤ r ≤ j.L.

– To explain the actions of level 0 nodes, without loss of generality, consider level 1
nodes j and k and level 0 nodes j.ne and k.sw as shown in Fig. 1.

• In first slot for j.ne, for each tree(x, y) that j.ne belongs to but is not a leaf
of, transmit M(x, y) as heard in slot 0 from j.in(x, y) to j.out(x, y). Also,
transmit its own information M(0, j.ne) to children in the level 0 tree rooted
at j.ne.

• In second slot for j.ne, for each tree(x, y) that j.ne belongs to but not a leaf
of, transmit M(x, y) as heard in slots 2 to 8 from j.in(x, y) to j.out(x, y).

– The action at any node j upon receiving a message from i is as follows: for each
tree(x, y) that j belongs to, store M(x, y) if i = j.in(x, y). ��

In summary, aggregates computed at each level are copied only going downwards along
a tree. This is sufficient for a level r node to compute aggregates from level r−1 nodes,
because a tree at level r − 1 extends up to all level 0 nodes in neighboring level r − 1
clusters. And one of the neighboring level r − 1 node is a level r node. Thus, when
a computed aggregate by any node is being dispersed to nodes in its own cluster and
the neighboring clusters, it is also being sent in to a higher level node to compute an
aggregate. In Fig. 3, nodes p and q are level 2 clusterheads. Note that the level 1 tree
rooted at j reaches the level 2 clusterhead q that j belongs to. Since a level r node is
equidistant from all level r − 1 nodes and because of the uniform latency property, the
computed summaries are synchronous.

Lemma 3. In S2, the slot width sW needed is (9∗log(n)−7)∗m
W bits per second.

Proof. Note that, at most 9 trees at levels 1..log(n) − 1 can pass through each node.
There is only one level logn tree. Also j belongs to only one level 0 tree for which it is
not a leaf. Hence the maximum message length needed per slot is (9 ∗ log(n) − 7) ∗ m
bits [7]. The result follows. ��
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Lemma 4. In S2, the maximum staleness in the state of a node i received by a snapshot
at node j is O(log(n) ∗ m ∗ d) where d = dist(i, j).

Proof. Consider a node p at level r. To compute a summary at level r, level r − 1
summaries are needed. dist(p, q) = 3r−1, where q is any node in the set p.nbr(r). A
level r − 1 summary is computed based a level r − 2 summary, and so on until level
0. Upon summation, the staleness of a level 0 (individual node) state information in a
level r summary is equal to (17/2)∗3r−1∗sw [7]. The maximum distance traveled by a
level r summary is (3/2) ∗ 3r with latency bounded by (17/2)∗ 3r ∗ sw. The minimum
distance between j and i for which a level r summary is the smallest level that contains
information about j is 3r−1. The result follows. ��

Lemma 5. In S2, the resolution of state of a node i in a snapshot received at node j is
Ω( 1

d2 ) where d = dist(i, j).

Proof. In a level r summary, the state of 9r nodes is compressed into m bits. We thus
regard the error in the state of each node in that summary to be O(9r). The minimum
distance between i and j at which j gets a level r summary of i but not a level r − 1
summary of i is 3r−1. Thus, the error in the state of i in a snapshot received at j is O(d2)
and the resolution of state of i in a snapshot received at j is Ω( 1

d2 ), where d = dist(i, j).

Lemma 6. In S2, the average communication cost in the network to deliver a snapshot
of one sample from each node to all nodes is O(N ∗ log(n) ∗ m).

Proof. To deliver a snapshot with a sample from each node, every node communicates
O(m ∗ log(n)) bits n times. And to deliver a snapshot with y samples from each node,
every node communicates O((n + y) ∗ (m ∗ log(n))) bits, since all the y samples are
pipelined. Hence, if y is large and y = Ω(n), the average communication cost at each
node to deliver a snapshot of a sample from each node to all nodes is O(m ∗ log(n)).
The average communication cost over N nodes is O(N ∗ (m ∗ log(n)). ��

Lemma 7. In S2, the memory requirement per node is O(log(n) ∗ m) bits.

Proof. Recall that the data structure maintained at each node is the most recent value of
M(x, y) received by i for each tree(x, y) that i belongs to. Nodes do not buffer infor-
mation to be forwarded over multiple rounds. The maximum number of trees through
any node is O(log(n)), with m bits of information flowing along each tree. The result
follows.

Extending to other dimensions: In an f dimensional structure, nodes are divided into
clusters with 3f nodes per cluster. Thus there are 3f − 1 level 0 nodes per cluster. Each
round consists of 2 ∗ 3f − 1 slots and thus the number of slots per round increases pro-
portional to 3f . Further, there can be at most 3f −1 neighbors at each level. Thus, there
can be O(3f ∗ log(n)) trees passing through each node. Using these, we can general-
ize Lemmas for performance of S2 [7]. We summarize our results for all algorithms in
Fig. 4 in Section 5.
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5 Distance Sensitive Rate Snapshots

In this section, we describe two algorithms in which nodes receive snapshots that are
distance sensitive in latency, resolution and also distance sensitive in rate.

5.1 Distance Sensitive Rate by Data Division

We partition the network hierarchically into clusters and schedule nodes to transmit
in rounds exactly as we did in algorithm S2. However, instead of transmitting m bits
for each level of data in every round, we allocate the number of bits hierarchically.
Accordingly, a message transmitted by a node in any given round consists of m bits for
each level 0 information, m/3 bits for each level 1 information, and 1 bit for each level
from log(m) to log(n).

Algorithm S3a: By way of refining algorithm S2, consider a level 0 node with j.L =
r. A level r summary is computed by this node once every 3r rounds based on the most
recent level r − 1 summaries it receives. This summary M(r, j), which consists of m
bits, is transmitted in slot 0 of each round with max(1, m

3r ) bits per round. Thus, a level
r summary is sent over min(3r, m) rounds. The actions for forwarding nodes remain
the same except for the change that each node now only receives a fraction of M(x, y)
in every round for each tree(x, y) that it belongs to, and it forwards only that fraction
in the next round. We now state the latency and communication cost of algorithm S3a.

Lemma 8. In S3a, the maximum message length needed per slot in algorithm is 11 ∗
m
2 + 9 ∗ log( n

m) bits. ��

Lemma 9. In S3a, the maximum interval between when a node j receives the state of
node i is O((m + log(n/m) ∗ d), where d = dist(i, j). ��

Lemma 10. In S3a, the maximum staleness in the state of a node i received by a snap-
shot at node j is O((m + log(n/m)) ∗ d) where d = dist(i, j). ��

Lemma 11. In S3a, the average communication cost to deliver a snapshot of one sam-
ple from each node to all nodes is O(N ∗ (m + log(n/m)). ��

5.2 Distance Sensitive Rate by Time Division

Again, we hierarchically partition the network into clusters and schedule nodes to trans-
mit in rounds exactly as in algorithm S2.However, instead of allocating exponentially
increasing number of bits per level in each round, we allocate each round to a particular
level and the information corresponding to that level is propagated only in that round.
The frequency at which a round is allocated to a particular level increases exponentially
as level decreases.

Algorithm S3b: Consider level r > 0. Let the rounds be numbered starting from 1.
All rounds enumerated by 2r−1 + i × 2r for i > 0 are allocated to round r, where
r > 0. A level 0 information is carried in all rounds. Consider a round s that belongs to
level rs > 0. A node j with level j.L ≥ rs computes the summary only corresponding
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to level rs. The computed summary at each level is transmitted to the children on the
respective tree rooted at j. Level 0 nodes forward information only pertaining to level
rs in round s.

Lemma 12. In S3b, the maximum message length needed per slot is 10 ∗ m bits.

Lemma 13. In S3b, the maximum staleness in the state of a node i received by a snap-
shot at node j is O(m ∗ d2) where d = dist(i, j). ��

Lemma 14. In S3b, the maximum interval between when a node j receives the state of
node i is O(m ∗ d). ��

Lemma 15. In S3b, the average communication cost to deliver a snapshot of one sam-
ple from each node to all nodes is O(N ∗ m). ��

Lemma 16. In S3a and S3b, the memory requirement per node is O(log(n) ∗ m).

Both algorithms S3a and S3b can be generalized to f dimensions just as algorithm S2
is [7]. We summarize all our results in Fig. 4.

Algorithm Staleness Communication cost Resolution Interval Memory
S1 O(3f ∗ N ∗ m ∗ d) O(N2 ∗ m) full independent of d N ∗ m
S2 O(32f ∗ log(n) ∗ m ∗ d O(3f ∗ N ∗ m ∗ log(n)) Ω( 1

df ) independent of d 3f ∗ log(n) ∗ m
S3a O(32f ∗ (m + log(n/m)) ∗ d) O(3f ∗ N ∗ (m + log(n/m))) Ω( 1

df ) O(3f ∗ (m + log(n/m)) ∗ d) 3f ∗ log(n) ∗ m
S3b O(32f ∗ m ∗ d2) O(3f ∗ N ∗ m) Ω( 1

df ) O(m ∗ d ∗ 3f ) 3f ∗ log(n) ∗ m

Fig. 4. Summary of results for snapshot algorithms

6 Irregular Networks

In this section, we show how our algorithms continue to yield distance sensitive snap-
shots in the following cases: non uniform density, holes of arbitrary sizes within the
connected network, non unit disk radios and imperfect clustering.

Clustering Model CM : We assume the existence of a clustering layer that partitions
the general but connected network, as modeled in Section 2, into hierarchical clusters
such that every network node belongs to one cluster at each level. As perfect (i.e., reg-
ular and symmetric) clustering may no longer be possible, we weaken that assumption
to: each level 1 cluster includes all nodes that are 1 hop away but may also include
nodes that are up to some bounded number of hops, z, from it. Likewise, all higher
level clusterheads also have the same radius range as opposed to a uniform radius.

More formally, our clustering assumption is stated as follows. For simplicity we
specify the model for a 2 dimensional network that can be generalized to f dimensions.
In this model, we refer to distance in terms of communication hop distances.

– (C1) All nodes within hop distance 3k−1
2 from a level k clusterhead belong to that

cluster.
– (C2) The maximum hop distance of a node from its level k clusterhead is zk× 3k−1

2 .
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– (C3) There exists a path from each clusterhead to all nodes in that cluster containing
only nodes belonging to that cluster.

– (C4) At all levels k > 0, there is at least one and at most 8 neighboring level
k clusters for each level k clusterhead and there exists a path between any two
neighboring clusterheads.

We note that the existence of such clustering solutions has been validated in previous
research [8] and also been used in the context of object tracking.

Fig. 5. Virtual grid

Once the network has been partitioned into clus-
ters, we impose a virtual grid on the network, as
shown in Fig. 5. Each level 0 node belongs to some
cell, but now each cell in the virtual grid may con-
tain any number of nodes. In particular, cells may be
empty and empty cells may be contiguous; we call
sets of contiguous empty cells the holes of the net-
work.

Over density cells: In the virtual grid, each cell gets
a slot to transmit as described in algorithm S2. When
a cell has more than one node, each node in the cell

gets a turn over multiple rounds to send its data, resulting in time sharing between nodes
of a cell to transmit its own data. However, once data is sent out from the source, the
forwarding of the data does not incur this extra delay despite going through denser cells.
This is because any node in the dense cell that gets a turn in a given round can forward
the data heard in the previous round from neighboring cells.

Under density cells, holes, and imperfect clustering: We first describe the changes
needed in the scheduling to handle clusters of non uniform size. We then describe how
distance sensitivity is preserved.

Scheduling scheme (FS): Recall that a round is a unit of time in which information is
exchanged between a level 1 clusterhead and all its neighboring level 1 clusterheads. In
the general model, a level 1 cluster can cover up to a z hop neighborhood. Accordingly,
the basic round scheduling introduced in Section 3 is adapted to have O(3z) level 0
slots that fulfill the function of a round. Some slots may not be utilized because the
cells may be empty.

Distance sensitivity: Recalling the clustering specifications stated above, consider any
two nodes i and j in the network. Let the shortest path between these two nodes in the
presence of holes be hop distance p.

Lemma 17. Under clustering model CM , if k is the smallest level at which i and j are
neighbors then p > 3k−1.

Proof. Note that i and j are not neighbors at level k − 1. And if p ≤ 3k−1, then a level
k − 1 cluster cannot exist between i and j since from property C1, a level k − 1 cluster
has a minimum radius of 3k−1−1

2 . ��

Theorem 1. Under model CM , algorithms S2, S3a and S3b yield snapshots that re-
tain their distance sensitive properties.
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Proof. From the previous lemma, the minimum distance between two nodes i and j for
which level k is the smallest level at which i and j are neighbors is 3k−1.

Despite the fact the trees are not formed along the regular grid pattern, it still holds
that not more than 9 trees per level pass through any node. This is because there at most
8 neighboring level k clusters for any level k cluster. Moreover, the maximum degree
of any node in all trees is still 8, by imposing the virtual grid for level 0. Therefore,
the slot width allocations in algorithms S2, S3a and S3b are sufficient to transmit all
information. ��

Fig. 6. Handling holes in dense networks

Fig. 6 illustrates how snapshots are com-
municated in irregular networks. The
figure shows a level 1 cluster with a clus-
terhead A that has 7 neighboring level 1
clusters. The small unfilled circles repre-
sent cells of the virtual grid; these may
contain one or more level 0 nodes. The
level 1 clusters cover up to a 2 hop neigh-
borhood. The figure also shows a level 1
tree rooted at A and extending up to clus-
ters B and C.

Non-uniform radio range: If commu-
nication range were relaxed to radio in-
terference range varying from 1 to s hops,
the basic scheduling for each round would

need to take into account this additional interference. This would result in longer round
lengths proportional to the size of interference region.

Implementation considerations: We now highlight considerations for implementing
our snapshot services in wireless sensor networks. The snapshot services that we con-
sider in this paper are high density operations and TDMA [9] is naturally suited for
such scenarios as interference can be avoided. But we do not need global time syn-
chronization in the network. Nodes in their network can learn their TDMA slots by
knowing their relative position to that of a clusterhead and locally scheduling in a non
interference manner. Note that our snapshot services are continuous and we do not re-
cover a lost message. On the other hand we avoid message losses by interference free
scheduling.

Another issue to consider is that of localization. For our snapshot services, informa-
tion is communicated only along a tree structure that is rooted at clusterheads of differ-
ent levels. Knowledge of location is not needed in the protocol actions; only knowledge
of which trees a node belongs to is sufficient. Also it is sufficient for the nodes to be
scheduled in a non interference manner, not particularly in any order. Thus localization
is not required for our snapshot services.

7 Related Work

Communicating periodic global state snapshots is a well studied problem in distributed
systems [10] and consistency, timeliness and reliability have been the main design
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considerations in those studies. But efficiency becomes essential when considering pe-
riodic snapshots for resource constrained wireless sensor networks. To the best of our
knowledge algorithms for delivering periodic snapshots across a wireless sensor net-
work have not been studied before.

A common approach to achieving compression for efficiency is to exploit the tem-
poral and spatial correlation of data being shared. For example, in [11], the authors
propose a framework for a one time all-to-all broadcast of sensor data assuming the
data is spatially correlated. Instead, in this paper we do not require data to be corre-
lated. At the same time, our algorithms can be used in conjunction with other forms of
compression.

Fractionally cascaded information [12] is a form of distance sensitive resolution that
is widely used in computational geometry community for speeding up data structures.
Recently, fractional cascading has been used for sensor networks as an efficient stor-
age mechanism [13, 14]. Data is first stored at multiple resolutions across the net-
work, which is then used to efficiently answer aggregate queries about a range of
locations without exploring the entire area. In contrast, we have considered a model
where information is generated and consumed on an ongoing basis. At the same time
these services can be used in range based querying as well as in several other control
applications.

An algorithm for creating the multi-resolution data structure based on probabilistic
gossip mechanism has been discussed in [14]. In [14], the algorithm described is for
a one shot dispersion and proceeds in stages while our services are for a model where
information is consumed on an ongoing basis and accordingly we describe a pipelined
implementation that is based on scheduling. In [14], the aggregation oprations are du-
plicate insensitive and global time synchronization is assumed while we do not require
either of these properties. Our comunication costs and latency are lower than those
in [14] and we also describe services that additionally have distance sensitive rate prop-
erties. But we note that while we assume hierarchical clustering in our solutions, the
algorithm in [14] does not.

The idea of distance sensitive rate has also arisen in other contexts. Fisheye state
routing is a proactive routing protocol [15] that reduces the frequency of topology up-
dates to distant parts of the network.

Recently algorithms for bulk data collection in sensor networks have been proposed.
In [16] data is collected from one node at a time, while [17] performs concurrent,
pipelined exfiltration of data using TDMA schedules. Our algorithms can be special-
ized for the case of bulk convergecast and we additionally emphasize on efficiency
using distance sensitive properties.

8 Conclusion

We have generalized the basic notion of snapshots using distance sensitive notions and
accordingly designed efficient wireless sensor network algorithms that periodically de-
liver them. We achieve compression by forming hierarchical clusters and aggregating
information at clusterheads. To communicate the snapshots, we embed logical trees
rooted at clusterheads that extend up to all neighboring clusters at the corresponding
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level. Aggregate information at each level is then propagated downwards along the
respective tree and this is sufficient for higher level clusterheads to compute respective
aggregates. Our algorithm actions are such that information propagates in a pipelined
manner; by this, new information can be generated as soon as previous information has
been dispersed to a local neighborhood as opposed to the entire network. We achieve
further compression in our algorithms by exponentially decreasing the bandwidth allo-
cated to aggregates at higher levels.

Our algorithms are memory efficient and realizable in networks with irregular den-
sity, with arbitrary sized holes, and imperfect clustering. We have quantified the max-
imum rate at which information can be generated at each node so that snapshots are
periodically delivered across the network; the algorithms can be operated at lower rates.
We have specified the allowable aggregation functions in abstract terms, allowable func-
tions include average, max, min and wavelet functions. Our algorithms neither require
global time synchronization nor localization.

We expect to implement our snapshot algorithms in the context of applications such
as pursuer evader tracking and vibration control, and study their performance and trade-
offs more exhaustively in the future.
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Abstract. We consider the distributed construction of a minimum weight 2-
edge-connected spanning subgraph (2-ECSS) of a given weighted or unweighted
graph. A 2-ECSS of a graph is a subgraph that, for each pair of vertices, contains
at least two edge-disjoint paths connecting these vertices. The problem of finding
a minimum weight 2-ECSS is NP-hard and a natural extension of the distributed
MST construction problem, one of the most fundamental problems in the area of
distributed computation. We present a distributed 3

2 -approximation algorithm for
the unweighted 2-ECSS construction problem that requires O(n) communication
rounds and O(m) messages. Moreover, we present a distributed 3-approximation
algorithm for the weighted 2-ECSS construction problem that requires O(n logn)
communication rounds and O(n log2 n+m) messages.

1 Introduction

The robustness of a network subject to link failure is often modeled by the edge connec-
tivity of the associated graph. On the other hand, in order to construct a communication-
efficient backbone of the network, it is crucial to find a spanning subgraph with low
weight, where the weight of an edge represents for example bandwidth or latency.
Hence, the construction of highly-connected subgraphs with low weight is a fundamen-
tal problem in network design. Due to the distributed nature of a network, it is important
to decentralize such a task. However, mostly non-distributed algorithms have been pro-
posed. From the vast area of non-distributed connectivity algorithms, the papers [1,2,3]
are the most related to this work. The best investigated problem in our context is proba-
bly the distributed minimum spanning tree (MST) construction problem. Starting with
the seminal paper of Gallagher et al. [4] which introduced the first distributed algorithm
with a non-trivial time and message complexity, there has been a line of improvements
concerning the time complexity [5,6]. However, the failure of one edge already discon-
nects a MST. Therefore, we consider a natural extension of this problem, the distributed
construction of a minimum weight 2-edge-connected spanning subgraph (2-ECSS) of a
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given graph G = (V,E). That is, a subgraph such that for each pair of vertices, there ex-
ist at least two edge-disjoint paths connecting them. A 2-ECSS is hence resilient against
the failure of a single edge.

Let n = |V | and m = |E|. The problem of computing a minimum weight 2-ECSS
of a given graph is known to be NP-hard, even in the unweighted case. This follows
by a reduction from the Hamiltonian cycle problem: a graph has a Hamiltonian cy-
cle if and only if it has a 2-ECSS of the size of the number of vertices in the graph.
Furthermore, the problem is MAX-SNP-hard [7]. We therefore consider distributed ap-
proximation algorithms for the weighted and unweighted version of this problem. To
simulate bandwidth limitation, we restrict messages to O(logn) bits in size, thus meet-
ing the CONGEST model described in [8]. This restriction is important, since if we
allow messages of arbitrary size, we can solve every distributed optimization problem
in O(n) rounds by collecting the whole network topology in one vertex. But if we re-
strict the size, this trivial approach requires Ω(nm) rounds and messages if we assume
that we need Ω(logn) bits to represent an edge.

1.1 Contributions

For the unweighted 2-ECSS construction problem, we present a distributed 3
2 - approxi-

mation algorithm using O(n) communication rounds and O(m) messages. The approx-
imation ratio is based on a result by Khuller and Vishkin [1]. For the weighted 2-ECSS
construction problem, we give a distributed 3-approximation algorithm that requires
O(n logn) communication rounds and O(n log2 n + m) messages. The approximation
ratio of the latter algorithm meets the best known approximation ratio which was in-
troduced by Khuller and Thurimella [3]. Our algorithm has the same basic structure as
the algorithm described in [3], but a different implementation, since the proposed re-
duction to the computation of a minimum directed spanning tree does not work in the
more restrictive distributed model. Moreover, the best known distributed algorithm for
the computation of a minimum directed spanning tree requires Ω(n2) communication
rounds [9]. Hence, our algorithm beats such a straightforward approach. Observe that
O(n logn) communication rounds correspond to the running time of the best known
non-distributed algorithm for the computation of a minimum weight directed spanning
tree which was introduced by Gabow [10]. It is worth noting that our results show that
more complex connectivity problems than the MST construction problem can be effi-
ciently approximated in the distributed context.

1.2 Further Related Work

In other words, this paper discusses the distributed construction of a minimum weight
subgraph that does not contain bridges, where a bridge is an edge whose removal dis-
connects the graph. Hence, a bridge-finding algorithm can be used to verify a 2-ECSS.
An optimal distributed algorithm for this task is given in [11]. Another related problem
is the distributed construction of a sparse k-connectivity certificate [12], that is a sparse
k-connected subgraph. However, the paper [12] does not deal with the approximation
of an optimal 2-connectivity certificate. In the distributed context, labeling schemes can
be quite helpful for various tasks. The vertex-connectivity labeling scheme described
in [13] is the most related to our context.
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1.3 Model

Consider an undirected graph G = (V,E) with an associated non-negative edge-weight
function ω . In the unweighted case, the function ω is constant. Each vertex hosts a pro-
cessor with “unlimited computational power”. Hence, the terms “vertex” and “proces-
sor” are synonyms in this context. All vertices begin with distinct identifiers. Initially,
the vertices do neither know the network size nor the identities of their neighbors, but
have a fixed list of incident edges including the weight of these edges. Finally, to dis-
tributively solve the 2-ECSS construction problem, each vertex needs to have a sublist
of this list such that the union of these sublists defines the 2-ECSS. The only way to
achieve information about their neighborhood is to communicate via elementary mes-
sages that can be sent along incident edges. Communication takes place in synchronous
rounds: in each round, each vertex is allowed to exchange a message with each neigh-
bor and do some local computation. A single vertex, named leader, initiates the algo-
rithm. This model, where all elementary messages are O(logn) bits in size, is called
CONGEST [8]. In addition to the number of rounds, also called the time complexity,
the message complexity, that is the total number of messages sent, is also often used to
measure the performance of an algorithm.

1.4 Outline and Definitions

In Sect. 2 and 3, we describe distributed approximation algorithms for the unweighted
and weighted 2-ECSS construction problem, respectively. Both algorithms use the same
straightforward strategy to find a 2-ECSS: compute a rooted spanning subtree T , and
then solve a tree augmentation problem for T , i.e., find an augmentation of T with
minimum weight. An augmentation of a spanning subtree T is a 2-ECSS A of G that
contains T , and the weight of A is the sum of the weights of the edges in A that do
not belong in T . We refer to all edges in T as tree edges and to all other edges in G as
back edges. We say that a back edge {u,w} ∈ E covers a vertex v ∈ V if and only if
v lies on the unique simple path from u to w in T . Moreover, we say that a back edge
e ∈ E covers a tree edge e′ ∈ E if both endpoints of e′ are covered by e. Hence, to get an
optimal augmentation of T , we need to find a set of back edges with minimum weight
that covers all tree edges. This is the major problem in the distributed context, since it is
not possible for a vertex to decide whether to add an adjacent edge or not only on local
information.

For a vertex v ∈ V , we denote by Tv the subtree of T rooted in v. A vertex v ∈ V is an
ancestor of a vertex u ∈V if and only if u ∈ Tv. The depth of a vertex v ∈V is the distance
from v to the root of T with respect to the hop-metric. We denote the depth of a vertex v
by depth(v). The depth of T is the maximum depth of a vertex in T . All logarithms are
base 2. For an integer i, let [i] := {1, . . . , i}. We do not distinguish in between a path P
and its vertex set V (P). Hence, |P| denotes the number of vertices on P.

We assume that G is 2-connected. To ensure this, we can first run a biconnectivity
check [11]. To avoid degenerated cases, we assume that any shortest path does not con-
tain loops of weight 0. We use the terms broadcast and convergecast to abstract standard
tasks in the design of distributed algorithms. In a broadcast, we distribute information
top-down in a tree. A convergecast is the inverse process, where we collect information
bottom-up.
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2 The Unweighted Case

The following algorithm Acard is basically a distributed version of the algorithm de-
scribed in [1]. As already mentioned in Sect. 1.4, we first compute a rooted spanning
tree T of G. In this case, we choose T to be a DFS-tree. Such a tree T can be straight-
forward computed in O(n) time with O(m) messages and has the nice property that for
every back edge {u,w} ∈ E , either u is an ancestor of w or w is an ancestor of u in
T . As a byproduct of the DFS-computation, each vertex v ∈ V knows its DFS-index
in T . Next, we determine for each vertex v ∈ V the back edge {u,w} ∈ E that covers
{v, p(v)} such that min{depth(u),depth(w)} is minimal, where p(v) is the parent of v.
We denote this edge by sav(v). Clearly, if all tree edges in Tv are already covered, the
back edge sav(v) is the “best choice” to cover the edge {v, p(v)}, since besides covering
{v, p(v)}, it covers the most edges above. We can easily implement a convergecast in
T such that afterwards, each vertex v ∈ V knows sav(v) and additionally the depth of
both endpoints of sav(v). Then, to cover T , we use the following bottom-up process in
T which can be implemented as a convergecast in T : when a vertex v is reached by the
convergecast, v checks whether the back edges added by the vertices in Tv cover the
edge {v, p(v)} as well. To this end, v only needs to know the minimum depth of a vertex
covered by the edges that have been added by the vertices in Tv. This information can
be easily aggregated during the convergecast. If {v, p(v)} is not covered, then {v, p(v)}
is a bridge, and hence v adds the back edge {u,w} = sav(v). This is the critical point,
since there is no global control to address, but v has to tell both endpoints u,w to add
sav(v) to the their list of adjacent edges. A straightforward approach would be for v to
send a request message addedge(u,w) to u and w. Note that we can route such a request
on the shortest path in T by using the DFS-indices of the vertices in an interval routing
scheme [14]. However, this approach requires Ω(n2) time and messages. We show that
the strategy to send only one request message addedge(u,w) to the nearest of the two
endpoints u and w is much more efficient. Specifically, v sends addedge(u,w) to u if
|depth(u)−depth(v)| ≤ |depth(w)−depth(v)|, and to w, otherwise. This endpoint then
informs the other endpoint by sending a message over the edge {u,w}.

Theorem 1. Algorithm Acard has time complexity O(n) and message complexity O(m).

Proof. Clearly, the only critical part is the adding of edges. To add an edge {u,w}, a
vertex v needs to send a request message addedge(u,w) either to u or to w. We will
show that the number of elementary messages needed for this process is O(n). Hence,
the time complexity is O(n) as well.

Let E ′ be the back edges added to T in algorithm Acard , and let e1,e2, . . . ,er be an
ordering of E ′ such that if the endpoint of e j with the smaller depth in T is an ancestor
of the endpoint of ei with the smaller depth in T , then j < i. For a back edge ei = {u,w}
with u is an ancestor of w, let Pi be the unique simple path from u to w in T . Let then
Vi := ∑i

j=1 Pj. In contrast to the adding of edges, we count the number of messages top-
down in T . Let a(i) be the total number of elementary messages needed to add the back
edge ei. We will show that a(i) ≤ |Vi|− |Vi−1|. Hence, ∑r

1 a(i) ≤ n. The claim follows.
For a back edge ei with a path Pi = (v1,v2, . . . ,vs), let vk ∈ Pi be the vertex that dis-

covered that {vk, p(vk)} is a bridge, where p(vk) is the parent of vk, and hence decided
to add the edge ei. Then ei = {v1,vs} = sav(vk) and v1 �= vk. For contradiction, assume



Distributed Approximation Algorithms for Finding 2-Edge-Connected Subgraphs 163

that vk ∈ Vi−1. Then there exists at least one path Pj = (u1,u2, . . . ,ut) with j < i such
that vk ∈ Pj and u1 is an ancestor of v1. Hence, the edge e j = {u1,ut} covers {vk, p(vk)}.
Therefore, the edge ei was added before e j, because otherwise, {vk, p(vk)} would have
already been covered by e j. Hence, u1 �= v1, since otherwise, there would have been no
need to add e j. But then, the edge e j would have been a better choice than ei for vk to
add. Hence, vk �∈ Vi−1.

The vertex vk has either sent a request message addedge(v1,vs) to v1 or to vs, de-
pending on which of these vertices is closer. The number of elementary messages
needed to deliver this request is therefore the distance to the closest vertex. Hence,
we need to distinguish two cases. First, if vs is closer, i.e., s− k < k − 1, then we need
s − k ≤ |Vi|− |Vi−1| messages, since vk �∈ Vi−1, and hence Vi\Vi−1 contains at least the
vertices on the subpath (vk,vk+1, . . . ,vs) of Pi. Second, if v1 is closer, i.e., k −1 ≤ s− k,
then we need k − 1 ≤ s− k ≤ |Vi|− |Vi−1| messages for the same reason. Therefore, in
both cases, a(i) ≤ |Vi|− |Vi−1|. ��

Theorem 2. [1] Algorithm Acard is a distributed 3
2 -approximation algorithm for un-

weighted 2-ECSS construction problem.

3 The Weighted Case

The weighted case is much more involved than the unweighted case, since we can
not simply follow the description of a known non-distributed algorithm. In contrast
to the unweighted case, we first compute a rooted MST T . For example, we can use
the well-known algorithm of Gallager et al. [4] for this task that requires O(n logn)
time and messages. Note that since the weight of T and the weight of an optimal aug-
mentation of T are both smaller than the weight of an optimal 2-ECSS of G, a dis-
tributed α-approximation algorithm for the weighted tree augmentation problem yields
a distributed (1 + α)-approximation algorithm for the weighted 2-ECSS construction
problem.

This section is organized as follows. For the sake of exposition, we first consider the
case that T is a chain, i.e., T has only one leaf, in Sect. 3.1. We use here that the tree
augmentation problem for a chain is equivalent to a shortest path problem. Second, we
extend the obtained algorithm to the general case in Sect. 3.2. The high-level idea is
to decompose a general spanning tree T in paths in order to compute one shortest path
for each path in the decomposition with a modified weight function. Altogether, these
shortest paths result in a 2-approximation of an optimal augmentation of T . In combi-
nation with the distributed MST construction, this yields a distributed 3-approximation
algorithm for the weighted 2-ECSS construction problem. Note that although the basic
structure of this algorithm is the same as the algorithm described in [3], we can not use
the same simple proof to obtain the approximation ratio of 2.

3.1 The Chain Case

Assume that T is a chain, and let then v1,v2, . . . ,vn be an ordering of V such that
depth(vi) = i − 1. Consider the following orientation G∗ = (V,E∗) of G: for each tree
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Fig. 1. The orientation G∗ of G

edge {vi,vi+1} ∈ E , (vi+1,vi) ∈ E∗, and for each back edge {vi,v j} ∈ E with i < j,
(vi,v j) ∈ E∗. We use the notion of back and tree edges in G∗ analogously to G, but
define the weights of the edges E∗ as follows: the back edges in E∗ have the same
weight as the corresponding back edges in E , but the tree edges in E∗ have weight 0.
The following observation motivates this construction.

Observation 3. Let A be the shortest path from v1 to vn in G∗. Then adding all edges
in G that correspond to the back edges on A to T yields an optimal augmentation of T .

For example, consider a graph G with five vertices v1,v2,v3,v4,v5. Assume that we
have four additional back edges {v1,v3},{v1,v5},{v2,v5},{v3,v5} of weight 0,5,1,3,
respectively. The graph G∗ is depicted in Fig. 1. The shortest path from v1 to v5 in G∗

contains the two back edges (v1,v3) and (v2,v5). The corresponding edges in G are
{v1,v3} and {v2,v5}. Adding these edges to T yields an optimal augmentation of T .

According to Observation 3, we only need to distributively compute the shortest
path from v1 to vn in G∗. Clearly, we can use the well-known distributed single-source
shortest path algorithm of Bellman and Ford for this task [15]. In this algorithm, each
vertex vi needs to hold two variables dist(vi) and next(vi), where dist(vi) stores the
length of the shortest path to vn currently known, and next(vi) stores the first edge in
this path. Since these variables need to be updated n times, this algorithm requires O(n)
rounds and O(nm) messages. Because we can not transfer this algorithm to the general
case described in Sect. 3.2 and the number of messages is quite high, we will describe
a modification of this algorithm that takes O(n logn) time and messages.

For simplicity, assume that n is a power of 2. Then, by iteratively halving the path
P := (v1,v2, . . . ,vn), we can construct a binary tree of depth logn with ordered children
whose vertices with depth i are a fragmentation of the path P in subpaths of length n/2i.
We call this tree without the vertices with depth logn that represent subpaths contain-
ing a single vertex the hierarchical fragmentation of P and denote it by F(P). For a
subpath Q ∈ F(P) with Q = (vs,vs+1, . . . ,vr), we refer to the subpaths (vs,vs+1, . . . ,vt)
and (vt+1,vt+2, . . . ,vr) with t = (r − s + 1)/2 as the left and right half of Q, respec-
tively. We say that a back edge (u,w) ∈ E∗ belongs to a subpath Q ∈ F(P) if u and w
lie on the left and right half of Q, respectively. The following algorithm is based on an
inverse inorder-traversal of the tree F(P). In an inverse inorder-traversal, the right and
left child of a vertex are processed before and after this vertex, respectively.

For example, the sequence(v3,v4),(v1,v2,v3,v4),(v1,v2)is an inverse inorder- traver-
sal of F(v1,v2,v3,v4), that is the hierarchical fragmentation of the path (v1,v2,v3,v4).
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Algorithm Asp

1. Set dist(vn) := 0, and for each i ∈ [n − 1], set dist(vi) := ∞.
2. Let Q1,Q2, . . . ,Qk be an inverse inorder-traversal of F(P). For l = 1, . . . ,k, process

the subpath Ql = (vs,vs+1, . . . ,vr) twice with the following two distance update
steps:
(a) For each back edge (vi,v j) ∈ E∗ that belongs to Ql , if it holds that dist(v j)+

ω(vi,v j) < dist(vi), then set dist(vi) := dist(v j) + ω(vi,v j) and next(vi) :=
(vi,v j).

(b) For i = s, . . . ,r − 1, if dist(vi) < dist(vi+1), then set dist(vi+1) := dist(vi) and
next(vi+1) := (vi+1,vi).

3. Return next(v1),next(v2), . . . ,next(vn).

To analyze algorithm Asp, we need the following two simple observations.

Observation 4. Each back edge in G∗ belongs to exactly one subpath in F(P).

Observation 5. Let A be the shortest path from v1 to vn in G∗. Then, for each subpath
Q ∈ F(P), A contains at most two back edges that belong to Q.

Lemma 1. Algorithm Asp is a single-source shortest path algorithm, i.e., it holds for
the next-variables returned by Asp that for each vertex vi, next(vi) is the first edge on
the shortest path from vi to vn in G∗.

Proof. For each i ∈ [k], let Ki := {e ∈ E∗ | e belongs to Qi}, and let G∗
i = (V,E∗

T ∪
⋃i

j=1 Kj) be a subgraph of G∗, where E∗
T are the tree edges in E∗.

We prove via induction on the index j that after a subpath Q j is processed, it holds
for each vertex vi that dist(vi) contains the distance from vi to vn in G∗

j . Since the next-
variables are updated according to the dist-variables and G∗ = G∗

k , the claim follows.
Assume that the induction hypothesis holds after Q j is processed. For a vertex vi, let R
be the shortest path from vi to vn in G∗

j+1 if such a path exists. If there is no such path,
then the distance from vi to vn in G∗

j+1 is ∞, and hence we are done. Assume now that the
path R contains no back edge from Kj+1. Then R is the shortest path from vi to vn in G∗

j
as well, and hence, by the induction hypothesis, we are done. Therefore, we only have
to consider the case that R contains at least one back edge from Kj+1. By Observation 5,
there are at most two such edges. Since the case that there is only one such edge works
analogously, assume that there are exactly two such edges, say (u,w),(u′,w′) ∈ Kj+1,
and (u,w) appears before (u′,w′) on R. Let R′ be the subpath of R from w′ to vn. Since
R′ does not contain an edge from Kj+1, the induction hypothesis implies that dist(w′)
contains the distance from w′ to vn in G∗

j before the processing of Q j+1. Note that
during the processing of Q j+1, we run the distance update steps twice. Since the distance
dist(w′) “travels” through G∗ during the distance updates, dist(w) = dist(w′)+ω(u′,w′)
after the first round. For the same reason, dist(vi) = dist(w′)+ω(u,w)+ω(u′,w′) after
the second round. Hence, dist(vi) contains the weight of the path R after the processing
of Q j+1. This proves the induction. ��
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Having algorithm Asp, it is easy to define an augmentation algorithm A seq
chain for T : run

algorithm Asp, use the returned next-variables to compute the shortest path A from v1

to vn in G∗, and add the edges in G corresponding to the back edges on A to T . The
following theorem follows immediately from Observation 3 and Lemma 1.

Theorem 6. Algorithm A seq
chain computes an optimal augmentation of T .

To turn algorithm A seq
chaininto a distributed algorithm, we need to show how to distribu-

tively “emulate” an inverse inorder-traversal. We can assume that each vertex vi knows
its index i and the size n of the graph G. Hence, for each index t ∈ [k], it is clearly
possible for a vertex to determine the two indices s,r with Qt = (vs,vs+1, . . . ,vr) and
vice versa. Using this, we can simulate a loop through the range 1,2, . . . ,k by sending a
message around that carries the current position in this loop. Specifically, when a vertex
vi receives such a message with a current position t, it is able to determine whether vi

is the first vertex on the subpath Qt , i.e., Qt = (vs,vs+1, . . . ,vr) and i = s. If yes, then vi

marks itself and releases a message with the current position t + 1. Otherwise, v routes
the received message towards the first vertex on the subpath Qt . This process terminates
when the first vertex on Qk is marked. Observe that the first vertices on the subpaths
Q1,Q2, . . . ,Qk are marked in exactly this order. Hence, this process emulates an inverse
inorder-traversal.

Note that using this emulation of an inorder-traversal, we can easily distribute algo-
rithm A seq

chain, since each edge in G∗ directly corresponds to an edge in G. Hence, we
can use these edges to update distances as in the distributed Bellman-Ford algorithm.
Moreover, for a current subpath Qt = (vs,vs+1, . . . ,vr), each vertex vi on the left half of
Qt is able to check for each outgoing edge (vi,v j) if v j lies on the right half of Qt by
comparing j, s and r. Therefore, for each such subpath (vs,vs+1, . . . ,vr), we only need
to broadcast the indices s and r once in this subpath before processing it. We refer to
the resulting distributed algorithm as Achain.

Theorem 7. Algorithm Achain has time complexity O(n logn) and message complexity
O(n logn + m).

Proof. First, we count the number of messages sent over the tree edges in G. Since for
each tree edge e ∈ E , the corresponding edge in E∗ belongs to 
logn� many subpaths in
F(P), e has to pass O(logn) messages during the emulation. Because there are n−1 tree
edges, we get O(n logn) messages for the tree edges in G in total. The time complexity
follows.

By Observation 4, each back edge in G∗ belongs to exactly one subpath in F(P).
Hence, each back edge is used only once to update a distance, and therefore, for each
such edge, the corresponding edge in G needs to pass only a constant number of mes-
sages. This results in O(m) messages for the distance updates with the back edges in
G∗. The claim follows. ��

3.2 The General Case

In this subsection, we first show how to adapt algorithm A seq
chain to the general case.

Afterwards, we turn the result into a distributed algorithm. We first need to state some
definitions.
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Fig. 2. A sample graph G

For each vertex v ∈ V , we name the child u of v in T such that |Tu| is maximal the
heavy child of v. Ties are broken arbitrarily. Let w be the root of T . Then, for each vertex
v ∈ V\{w}, let Tv := Tv\Tu, where u is the heavy child of v. If v is a leaf of T , then let
Tv := Tv. In other words, Tv is the subtree of T rooted in v without the subtree rooted
in its heavy child u. Moreover, let Tw := Tu, where u is the heavy child of the root w.
Using the notion of a heavy child, we can unambiguously define a decomposition of
T in a sequence of heavy paths P1,P2, . . . ,Pk with the following four properties: First,
∪k

i=1Pi = V . Second, Each path Pi descending, i.e., it holds for two consecutive vertices
u,w ∈ Pi that depth(u) < depth(w). Third, for each path Pi, we denote the first and last
vertex on Pi by pi and li, respectively, and for each vertex v ∈ Pi\{pi, li}, it holds for the
heavy child u of v as well that u ∈ Pi. Fourth, each path Pi has maximal length subject
to the constraint that for two paths Pi,Pj with i �= j, either Pi ∩Pj = /0 or Pi ∩Pj = {pi}
and i > j. In the latter case, we call the path Pj the father path of Pi and Pi a child path
of Pj. Hence, we can think of this decomposition as a tree of paths. Observe that p1 is
the root of T and the vertices l1, l2, . . . , lk are the leaves of T .

For example, consider the graph G depicted in Fig. 2. The thickened edges are the
edges belonging to the spanning tree T rooted in v1, and the back edges are labeled with
their weight. Since |Tv4 | > |Tu|, v4 is the heavy child of v3. Hence, we decompose T in
paths P1,P2 with P1 = (v1,v2,v3,v4,v5) and P2 = (v3,u). Consequently, P1 is the father
path of P2, and P2 is the child path of P1.

For a vertex v ∈ V and a heavy path Pi, we name the closest vertex to v on Pi in T
with respect to the hop-metric the projection of v to Pi. Moreover, by projecting the two
endpoints of an edge e ∈ E to Pi, we get a new edge to which we refer as the projection
of e to Pi. Then, for each heavy path Pi, let E ′

i be the projections of all edges E to Pi,
and let G′

i := (Pi,E ′
i ) be an undirected graph. Since the subtree of T induced by Pi is

a spanning tree of G′
i and a chain, we can construct an orientation Gi = (Pi,Ei) of G′

i
analog to the construction of the orientation G∗ of G as described in Sect. 3.1. Each
edge in a graph Gi corresponds to an edge in G′

i, and each edge in G′
i corresponds to an

edge in G. Hence, each edge in Gi corresponds to an edge in G as well. Additionally,
we say that two edges e ∈ Ei and e′ ∈ E j with i �= j correspond to each other if they
both correspond to the same edge in G. We associate each graph Gi with an edge-weight
function ωi. The weight functions ω1,ω2, . . . ,ωk are recursively defined as follows: for
each tree edge e ∈ Ei, let ωi(e) := 0. Let now e = (u,w) ∈ Ei be a back edge, and let
e′ = {u′,w′} ∈ E be the corresponding edge in G with u and w are the projections of
u′ and w′ to Pi, respectively. Assume that the weight functions ωi+1,ωi+2, . . . ,ωk are
already known, and let R be the path in T from w to w′. We travel along this path to
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compute a value Δ(w,w′). Initially, we set Δ(w,w′) := 0. For each path Pj with j > i that
path R enters, we subtract the distance from p j to l j in G j from Δ(w,w′), and for each
path Pj with j > i that path R leaves at a vertex v ∈ Pj, we add the distance from v to l j

in G j to Δ(w,w′). Let then ωi(e) := Δ(w,w′)+ ω(e′). Observe that Δ(w,w′) ≤ 0. The
intuition behind this construction is that the edge {u′,w′} does not only cover vertices
on the path Pi, but it might also cover vertices on some paths Pi+1,Pi+2, . . . ,Pk. Hence,
adding the edge (u,w) might have a higher benefit. To this end, we decrease the weight
of the edge (u,w) by adding the value Δ(w,w′) that represents the additional benefit
of the edge (u,w). We chose Δ(w,w′) such that we get a constant approximation ratio.
Finally, if Gi contains parallel edges, remove all edges except the one with the smallest
weight with respect to the weight function ωi. Now, we are ready to adapt algorithm
A seq

chain to the general case.
For example, consider again the graph G depicted in Fig. 2. The projection of u to P1

is v3, and hence the projection of the back edge {v1,u} to P1 is {v1,v3}. Note that the
graph G1 is exactly the graph illustrated in Fig. 1. Assume that we want to compute the
weight ω1(e) of the edge e = (v1,v3) ∈ E1. To this end, we first need to compute the
value Δ(v3,u). The graph G2 only contains the back edge e′ = (v3,u) ∈ E2, and since
the projection of u to P2 is u again, ω2(e′) = 2. Let R be the path of length 1 from v3

to u. The only path R enters is P2, and the shortest path from p2 = v3 to l2 = u in G2 is
exactly the edge e′. Hence, Δ(e′) = −2, and therefore ω1(e) = 0.

Algorithm A seq

1. Let A1 be the shortest path from p1 to l1 in G1.
2. For i = 2, . . . ,k, do the following steps:

(a) Let Pj be the father path of Pi.
(b) If A j contains an incoming edge (u, pi) ∈ E j of pi and the edge (pi,w) ∈ Ei

corresponding to (u, pi) is not a loop, i.e., w �= pi, then let Ai be the concate-
nation of the edge (pi,w) with the shortest path from w to li in Gi. Note that
we can interpret an edge as a path of length 1. Otherwise, let Ai be the shortest
path from pi to li in Gi. Use algorithm A seq

chain to calculate these shortest paths.
3. Augment T with all edges in G that correspond to the back edges on the paths

A1,A2, . . . ,Ak.

To illustrate Step 2b of algorithm A seq, consider again the graph G depicted in Fig. 2.
Then the shortest path A1 from p1 to l1 contains the edge (v1,v3) ∈ E1, and the corre-
sponding edge (v3,u) ∈ E2 is not a loop. Hence, A2 is a concatenation of the edge (v3,u)
and the shortest path from u to l2 in G2. But since u = l2, A2 = (v3,u). Due to space
limitations, we have to omit the quite technical proof of the following theorem.

Theorem 8. Algorithm A seq is a 2-approximation algorithm for the weighted tree aug-
mentation problem.

When it comes to turn algorithm A seq into a distributed algorithm, the main problem is
the computation of the paths A1,A2, . . . ,Ak. Unfortunately, we can not apply a straight-
forward modification of algorithm Achain described in Sect. 3.1, since the back edges in
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a graph Gi do not directly correspond to edges in G, i.e., the back edge in G correspond-
ing to a back edge in Gi might have different endpoints. Hence, these edges are virtual
and can therefore not be used to pass messages. However, there is a close relationship
which can be exploited to simulate the edges in Gi. We need one more ingredient: to
give the vertices in G a geometric orientation in the tree T , we initially compute an
ancestor labeling scheme for T . As a consequence, each vertex v ∈ V holds an ancestor
label, and knowing the ancestor labels of two vertices u,w ∈ V , it is possible to deter-
mine whether u is an ancestor of w in T simply by comparing these ancestor labels.
We can for example use the ancestor labeling scheme of size O(logn) described in [16]
whose computation requires O(n) rounds and messages. In the following, we identify
each vertex in G with its ancestor label, i.e., whenever we send a message that contains
a vertex as a parameter, we represent this vertex by its ancestor label.

Now, we are ready to describe the simulation of edges. Similar to algorithm Achain,
each vertex v ∈ V holds some variables dist1(v),dist2(v), . . . ,distk(v) and next1(v),
next2(v), . . . ,nextk(v). Initially, each vertex v ∈ V sets disti(v) := ∞ for each i ∈ [k].
Afterwards, each vertex li sets disti(li) := 0. Recall that the vertices l1, l2, . . . , lk are
the leaves of T . For a graph Gi, let e = (u,w) ∈ Ei be a back edge, and let e′ =
{u′,w′} ∈ E be the edge in G that corresponds to e with u and w are the projec-
tions of u′ and w′ to Pi, respectively. If u �= u′ or w �= w′, then e does not directly
correspond to e′. To apply algorithm Achain, assume that during the inverse inorder-
traversal of F(Pi), the back edge e needs to be used to update the distance of u, but
since it is virtual, we can not directly use it. Assume as well that we have already
computed all shortest distances in the graphs Gi+1,Gi+2, . . . ,Gk, i.e., for each heavy
path Pj with j > i and each vertex v ∈ Pj, dist j(v) contains the distance from v to
l j in G j. In this case, by the definition the value Δ(w,w′), the vertex w can initiate
a broadcast in Tw such that afterwards, the vertex w′ knows about Δ(w,w′). Such a
broadcast simply adds up distances top-down. We need to distinguish two cases. First,
let u ∈ Pi\{pi} as depicted in Fig. 3. Then, w broadcasts its current distance disti(w)
in the subtree Tw. Once w′ has received disti(w), it sends disti(w) and Δ(w,w′) to
its neighbor u′. Note that w′ can locally decide whether u′ ∈ Tu by comparing the
ancestor labels of u and u′. If disti(w) + Δ(w,w′)+ ω(u′,w′) < disti(u′), then u′ sets
disti(u′) := disti(w)+Δ(w,w′)+ω(u′,w′). Recall that ωi(u,w) = Δ(w,w′)+ω(u′,w′).
Finally, u collects disti(u′) by a convergecast in Tu and sets disti(u) := disti(u′). Hence,
a distance update with the edge (u,w) can be simulated by a broad- and convergecast in
Tw and Tu, respectively. It is easy to see that we can parallelize this simulation for all
edges that belong to a subpath Q ∈ F(Pi) such that each vertex v ∈ Q needs to initiate
only constantly many broad- and convergecasts in Tv during the processing of Q. We
refer to this processing of Q as the new processing.

Second, let u = pi. Then let (u,w) ∈ Ei be an outgoing edge of u, and let {u′,w′} ∈ E
be the corresponding edge in G with u and w are the projections of u′ and w′ to Pi,
respectively. The problem is that there is no vertex u ∈ Pi\{pi} such that u′ ∈ Tu, and
therefore, we can not efficiently reach u′ by a convergecast. But we can exploit the
following simple observation.

Observation 9. Let R be the shortest path from a vertex v ∈ Pi to li in Gi. If pi ∈ R, then
all edges on R ahead pi are tree edges.
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By Observation 9, it suffices to update distances with the outgoing edges of pi only once
after the inverse inorder-traversal of F(Pi), and then update distances with all tree edges
in Gi again. This can be implemented by constantly many broad- and convergecasts in
Tpi . Note that using the ancestor labels, we can locally decide for a vertex u′ whether
u′ �∈ Tpi . We call this the finalization of Gi.

Now, we are ready to describe the distributed algorithm A . This algorithm has two
phases. Phase 1 works as follows. As in the sequential algorithm A seq, we process the
heavy paths P1,P2, . . . ,Pk bottom-up. This can be implemented by a convergecast in T .
Once we are done with all child paths of a heavy path Pi, we start to compute all shortest
distances in Gi by using algorithm Achain in combination with the new processing of
a subpath and the finalization of Gi as described above. This immediately gives us the
following lemma.

Lemma 2. After Phase 1, for each heavy path Pi and each vertex v ∈ Pi, nexti(v) con-
tains an orientation of the edge in G that corresponds to the first edge on the shortest
path from v to li in Gi.

Phase 2 resembles the adding of edges in algorithm Acard described in Sect. 2. Initially,
each vertex v ∈ V marks itself as uncovered. Then the root vertex v of T marks itself
as covered and adds the edge {u,w} ∈ E to the augmentation, where (u,w) = next1(v).
Recall that the edges contained in the next-variables are orientations of edges in G.
The adding of edges works similar to algorithm Acard: when a vertex v ∈ V wants to
add an edge {u,w} ∈ E to the augmentation, where (u,w) = nexti(v) for a i ∈ [k], it
sends a message addedge(u,w) to w to request w to add the edge {u,w} to its list of
adjacent edges. Then w informs its neighbor u to act similarly. To distinguish the two
endpoints, here it is important that the next-variables contain directed edges. Since we
use ancestor labels to identify the vertices, we can easily route such a message through
T . Note that we also allow messages to travel upwards in T . In contrast to algorithm
Acard , such a message spawns new messages on its way to its destination. Specifically,
assume that a vertex v ∈ V receives a message addedge(u,w) from its parent. If w �= v,
then the message branches towards a child c of v. Specifically, the message branches
towards the child c with w ∈ Tc. In this case, c marks itself as covered. Let C be the
children of v that have not been marked as covered. For each child c ∈ C, v adds the
edge nexti(v), where Pi is the heavy path with {v,c} ⊆ Pi, and marks all children in C
as covered as well. Clearly, after this process, each vertex in G is marked as covered.
It is easy to see that this process corresponds to the computation of shortest paths in
the sequential algorithm: for each graph Gi, a sequence of messages “travels” along

e′

e
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pi

u′

w′

Tu

Tw

Pi

Fig. 3. The edge e′ and its projection e



Distributed Approximation Algorithms for Finding 2-Edge-Connected Subgraphs 171

the path Ai. Hence, this process yields the same augmentation as algorithm A seq. The
following theorem follows immediately.

Theorem 10. Algorithm A is a distributed 2-approx. algorithm for the weighted tree
augmentation problem.

Since all messages contain at most a constant number of ancestor labels and a path
length, the message size is O(logn). To analyze the time and message complexity, we
need the following definition. We call a subsequence Pa(1),Pa(2), . . . ,Pa(s) of P1,P2, . . . ,Pk

a monotone sequence of heavy paths if a(1)= 1 and for each i ∈ [s−1], Pa(i) is the father
path of Pa(i+1). For each v ∈V , let then h(v) be the depth of Tv. In the following, For each
i ∈ [k], we abbreviate Tpi by Ti and h(pi) by h(i). We need the following preliminary
lemma.

Lemma 3. For each monotone sequence of heavy paths Pa(1),Pa(2), . . . ,Pa(s),

s

∑
i=1

h(a(i)) ≤ n.

Proof. We show that for each i ∈ [s−1], |Ta(i)| ≥ |Ta(i+1)|+h(a(i)). Since |Ta(1)| ≤ n
and |Ta(s)| ≥ h(a(s)), the claim follows by using this inequation inductively.

Let v ∈ Ta(i) be a vertex with maximal depth in Ta(i), and let P be the path from
pa(i) to v in T . Hence, h(a(i)) = |P| − 1. We need to distinguish two cases. First, if
v �∈ Ta(i+1), then P∩Ta(i+1) ⊆ {pa(i+1)}. Hence, |Ta(i)| ≥ |Ta(i+1)|+h(a(i)). Second, if
v ∈ Ta(i+1), then let u be the child of pa(i+1) with v ∈ Tu, and let w �= u be the heavy child
of pa(i+1). Let P′ be the subpath of P from u to v. By the definition of the heavy path
decomposition, |Tw| ≥ |Tu| ≥ |P′|. Clearly, |Ta(i)| ≥ |Ta(i+1)|+ |P\P′|+ |Tw|−1. Hence,
|Ta(i)| ≥ |Ta(i+1)|+ h(a(i)). Therefore, in both cases, |Ta(i)| ≥ |Ta(i+1)|+ h(a(i)). ��

Theorem 11. Algorithm A has time complexity O(n logn).

Proof. First, we analyze the number of rounds needed for Phase 1. There are two time-
critical parts for each path Pi. First, we need to emulate an inverse inorder-traversal of
the hierarchical fragmentation F(Pi) of Pi. As already explained in the proof of Theo-
rem 7, this can be done in O(|Pi| log |Pi|) rounds. Second, to simulate the edges in Gi,
for each vertex v ∈ Pi\{pi}, we need 
log |Pi|� broad- and convergecasts in Tv, where
each takes 2 ·h(v) rounds. For each i ∈ [k], let t(i) be total number of rounds passed until
we are done with path Pi. Hence, the number of rounds needed for Phase 1 is t(1). Let
Pa(1),Pa(2), . . . ,Pa(s) be a monotone sequence of paths such that for each i ∈ [s − 1], if
Pa(i) has a child path, we chose Pa(i+1) to be the child path of Pa(i) such that t(a(i+ 1))
is maximal. Consequently, the time needed for this sequence dominates all other se-
quences. We separately count the number of rounds needed for the two time-critical
parts for this sequence. Then t(1) is the sum of rounds of theses two parts. Because
∑s

i=1 |Pa(i)| ≤ n + s− 1, the rounds needed for the first time-critical part is

O(
s

∑
i=1

|Pa(i)| log |Pa(i)|) = O(n logn).
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Since no vertex is counted twice

s−1

∑
i=1

∑
v∈Pa(i)\{pa(i),pa(i+1)}

h(v) ≤ n.

Hence, by Lemma 3, the time needed for the second time-critical part is

O(
s

∑
i=1

∑
v∈Pa(i)\{pa(i)}

log |Pa(i)| ·h(v)) = O(n logn).

Note here that ∑v∈Pa(s)\{pa(s)} h(v) = 0, because Pa(s) has no child path.
In Phase 2, we send addedge-messages around. Observe that each vertex receives at

most two such messages from its parent and one from its heavy child. Hence, since then
each vertex passes a constant number of messages, we need O(n) time for this phase.
The claim follows. ��

Theorem 12. Algorithm A has message complexity O(n log2 n + m).

Proof. As already explained in the proof of Theorem 11, we need O(n) messages for
Phase 2. Hence, we only have to analyze Phase 1. We do this by counting the number
of messages passed by an edge e ∈ E . We need to distinguish two cases. First, let e
be a tree edge. Hence, e = {v, p(v)} for a vertex v ∈ V , where p(v) is the parent of
v. The heavy paths above v form a monotone sequence of heavy paths. Clearly, by the
definition of the heavy path decomposition, the length of a monotone sequence of heavy
paths is ≤ 
logn�. For each such path Pi, the edge e needs to pass one message for each
broad- or convergecast the projection u of v to Pi initiates in Tu. Since each vertex
u ∈ Pi initiates O(log |Pi|) many broad- and convergecasts in Tu, the edge e has to pass
O(log2 n) messages. Second, let e be a back edge. Clearly, there is at most one heavy
path Pi such that the projection of e to Pi is not adjacent to pi. Consequently, the edge
e is used only once during the simulation of edges to pass messages. Hence, each back
edge has to pass O(1) messages. The claim follows by summing up all messages. ��

4 Conclusion

In this paper, we presented distributed approximation algorithms for the weighted and
unweighted 2-ECSS construction problem, where the main building blocks were dis-
tributed tree augmentation algorithms. The major open problem is to establish lower
bounds as for the distributed MST construction problem [17].
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Abstract. Wireless embedded sensor networks are predicted to provide attrac-
tive application possibilities in industry as well as at home. IEEE 802.15.4 and
ZigBee are proposed as standards for such networks with a particular focus on
pairing reliability with energy efficiency, while sacrificing high data rates.

IEEE 802.15.4 is configurable in many aspects, including the synchronicity
of the communication, and the periodicity in which battery-powered sensors
need to wake up to communicate. This paper develops a formal behavioral
model for the energy implications of these options. The model is modularly
specified using the language MODEST, which has an operational semantics
mapping on stochastic timed automata. The latter are simulated using a variant of
discrete-event simulation implemented in the tool MÖBIUS. We obtain estimated
energy consumptions of a number of possible communication scenarios in
accordance with the standards, and derive conclusions about the energy-optimal
configuration of such networks. As a specific fine point, we investigate the
effects of drifting clocks on the energy behavior of various application scenarios.

Keywords: Sensor networks, formal modelling, distributed coordination, power-
aware design, clock drift.

1 Introduction

Quantitative analyses of ad hoc and wireless networks have in the past been concen-
trating on scalability and routing questions [6]. The predominantly applied techniques
are based on simulation using enhanced tools such as GloMoSim or NS-2 [23,5], Om-
net [21] or commercially available simulation tools, such as Opnet. Another approach
is based on instruction-level simulation of the actual microcontroller codes [22,20].

The credibility of simulation results obtained using the above enhanced modelling
tools seems not to be free of doubts. Such studies generally suffer from (1) unclarities of
how simulation models are obtained from the modelling language, (2) the sheer number
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of parameters with non-obvious effects adjustable by the user, some of them having
hidden effects on the simulation outcomes, (3) excessive simulation times needed to
simulate the ensemble of many protocol stacks and states, and (4) the impossibility to
validate simulation results through reproducible real-life experiments.

As a matter of fact, some recent articles have criticized the extremely poor quality
and reproducibility of simulation-based experimentations with ad hoc or wireless net-
works [13,6]. Indeed, this questions the validity of simulation-based predictions for this
area as a whole.

The work presented in this paper is among the few which attempt to attack the above
mentioned principal problems. Other loosely similar approaches include [16,12]. While
we still rely on discrete-event simulation as our analytic workhorse, we proceed in
a drastically different way. The main difference is that (1) we use a language with
a strictly formal semantics, which is equipped with well-established abstraction tech-
niques. Consequently, the underlying stochastic model for simulation is well-defined
and the obtained simulation results are trustworthy. (2) We expose all assumptions ex-
plicitly, since they are part of the formal system specification. (3) We do not model
entire protocol stacks, but work with well-justified abstractions of lower layer effects.
We consider worst-case scenarios, if no other information is available. But (4) we do
not yet provide real-life experiments to back up our simulation results.

The model is modularly specified using the language MODEST, which has an opera-
tional semantics mapping on stochastic timed automata. The latter are simulated using a
variant of discrete-event simulation implemented in the tool MÖBIUS. In this paper, that
approach is applied to the IEEE 802.15.4 and ZigBee standards. This is a protocol fam-
ily dedicated to low-bandwidth sensor networks operating on battery. IEEE 802.15.4 is
configurable in many aspects, including the synchronicity of the communication, and
the periodicity in which battery-powered sensors need to wake up to communicate. The
particular configuration chosen has obvious – and non-obvious – implications on the
lifetime of battery-powered devices. An obvious rule of thumb is, for instance, that
battery-operated devices can survive longer timespans if they need to wake up less of-
ten. This paper investigates the non-obvious rules.

We obtain estimated energy consumptions of a number of possible communication
scenarios in accordance with the standards, and derive conclusions about the energy-
optimal configuration of such networks. In particular, we investigate the effects of
time-slotted and unslotted medium access techniques, and their interplay with drifting
clocks. Our observations allow us to establish rules of the following kind: (1) Unslot-
ted CSMA/CA is more favourable w.r.t. energy saving than slotted CSMA/CA. (2) If
devices using GTSs and CSMA/CA coexist, those operating in GTSs expend consider-
ably less energy. (3) Small clock drifts can have far overproportional effects on energy
consumption, but with only minor adverse effects on battery lifetimes. For sure, power
consumption does not only depend on clock drift and synchronization policy. It also de-
pends on many other factors, such as link quality and other environmental conditions.
For our studies, these are assumed constant, since we see no way to include them in our
studies without loosing focus. Further, we do not include comparison with experimental
measurements. The reason is that (1) controlling physical clock drifts is virtually impos-
sible with available hardware, and (2) real-life experiments would take several months
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or years to show measurably distinct effects on battery lifetimes. The main contribution
of this paper is that it pioneers a model-based analysis of the interplay of clock drift and
energy cost in sensor networks.

The paper is organized as follows: Section 2 provides a brief introduction to ZigBee
and IEEE 802.15.4. In Section 3, the modelling formalism we employ is described
together with the tool chain supporting it. Section 4 describes the modelling of ZigBee
and IEEE 802.15.4 in MODEST. We also clarify the modelling assumptions we make
and discuss in detail a particular model representative. In Section 5, we describe and
discuss the simulation experiments and their results. Section 6 concludes the paper.

2 ZigBee and IEEE 802.15.4

This section provides a general introduction to ZigBee and IEEE 802.15.4, focussed
on the characteristics and features that are important for the scope of the paper. For
more detailed information, the interested reader is invited to consult the standard
documents [3,2].

ZigBee is a wireless communications standard for low-cost and low-power consump-
tion networks. It is a layered architecture. Both physical and medium access control
(MAC) layers are defined in IEEE 802.15.4 standard. The ZigBee standard, on the
other hand, provides the definition of the Network layer and the framework for the
Application layer. ZigBee supports star, tree and mesh network topologies. In all these
topologies, a device called ZigBee coordinator controls the network, but per-to-peer
communication is allowed in mesh topology.

IEEE 802.15.4 is an open standard for ultra-low complexity, cost, power consumption
and low data rate wireless connectivity among inexpensive devices in wireless personal
area networks (WPAN) [2]. Devices participating in WPAN can be distinguished into
full-function devices (FFD) and reduced-function devices (RFD). Communication be-
tween FFDs and RFDs is possible, but RFDs cannot directly communicate with each
other. An FFD may become a personal area network (PAN) coordinator, a coordinator,
or a device. There are two topologies in which a WPAN can operate: star and peer-to-peer.

The functional characteristic of low-rate PAN can be distinguished into beacon-
enabled and nonbeacon-enabled networks. The simplest manner of operation is
nonbeacon-enabled, where the network operates by using the (unslotted) Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA). CSMA/CA is a multiple ac-
cess protocol similar to CSMA/CD. As opposed to CSMA/CD, which operates by lis-
tening to the channel while sending in order to detect collisions, CSMA/CA tries to
avoid collisions by listening to the channel for a predetermined amount of time prior to
transmissions.

In beacon-enabled mode, on the other hand, the coordinator periodically emits bea-
con signals, which provide a frame of reference for a time-slotted access to the medium.
More precisely, a so-called superframe structure, which is defined by the coordinator, is
used. Inside of the superframe structure, communication can be carried out with a guar-
anteed time slot (GTS) mechanism or with slotted CSMA/CA mechanisms. Devices
using GTS and those using CSMA/CA may coexist, as we will explain below.
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The structure of a superframe is
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Fig. 1. The Superframe Structure

shown in Fig. 1. The coordinator
broadcasts network beacons regu-
larly. These beacons mark the begin-
nings and the ends of superframes.
The beacons can be used for synchro-
nization purpose, to identify the PAN,
to describe the structure of the su-
perframe, as well as to announce the
GTS allocations.

The coordinator can divide a superframe into an active and an inactive portion. The
active portion is further divided into 16 equally sized slots. The coordinator may decide
to allocate up to 7 of these slots as GTSs. These GTSs form the Contention-Free Period
(CFP) and must appear at the end of the active portions. The rest of the slots forms the
Contention-Access Period (CAP), in which devices compete using a slotted CSMA/CA
mechanism.

The length of a superframe (Beacon Interval–BI) is determined by the coordinator
by varying Beacon Order (BO) which influences the length exponentially:

BI = aBaseSuperframeDuration× 2BO, 0 ≤ BO ≤ 14,

where aBaseSuperframeDuration = 960 symbols. The duration of active portion
(Superframe Duration–SD) is set by varying Superframe Order (SO):

SD = aBaseSuperframeDuration× 2SO, 0 ≤ SO ≤ BO ≤ 14.

3 MODEST and Supporting Tools

The Modelling and Description Language for Stochastic and Timed Systems (MOD-
EST) [8] is a specification formalism for stochastic real-time systems. The language is
rooted in classical process algebra, i.e. the specification of models is compositional.
Basic activities are expressed with atomic actions, more complex behavior with con-
structs for sequential composition, non-deterministic choice, parallel composition with
CSP-style synchronization, looping and exception handling. A special construct exists
to describe probabilistic choice. Clocks, variables and random variables are used to
describe stochastic real-time aspects.1

In order to facilitate the analysis of the different models, tool support is indispens-
able. The MODEST Tool Environment (MOTOR) is a software tool that implements the
MODEST semantics and is the central vehicle in the multi-solution analysis of MOD-
EST models. The by now most mature backend of MOTOR is provided by a link to
the MÖBIUS evaluation environment. MÖBIUS has been developed independently from
MODEST and MOTOR at the University of Illinois at Urbana-Champaign [14]. From a
user perspective, the MOTOR/MÖBIUS tandem enables one to perform simulation of
MODEST models, and to gather performance and dependability estimates.

1 MODEST also supports for modelling time variation, especially time non-determinism, but this
feature is not used in this case study.
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Simulation-based analysis covers the largest language fragment of MODEST: the only
concept that cannot be supported by simulation is non-determinism, in particular of de-
lay durations and non-deterministic choice between actions. We exclude the former
by assuming maximal-progress with respect to delays. We do not restrict action non-
determinism, since it is a convenient modelling instrument. However, no mechanisms,
like a well-specified-check [15], is implemented yet to ensure the validity of the simu-
lation statistics in the presence of action non-determinism.

MOTOR and its connection to MÖBIUS is mature and has been tested in a number of
non-trivial case studies. In [18], it has been used for reliability analysis of the upcom-
ing European Train Control System standard. In [9], it has been applied to the analysis
of an innovative plug-and-play communication protocol, which has led to a patent ap-
plication of our industrial partner. In [10], MOTOR has been used for the optimization
of production schedules, in combination with timed automata-based schedule synthesis
with UPPAAL.

4 Modelling

We model ZigBee/IEEE 802.15.4-compliant personal area networks in a star topology.
Each network consists of a single PAN coordinator and a number of stations or devices.
We assume that the PAN coordinator has continuous power supply, while the stations
do not. A station can be either an FFD or an RFD, attached to a sensor. Periodically, a
station communicates with the PAN coordinator, either to transmit its gathered sensor
data or to receive instructions, but a station cannot communicate with other stations.

Two separate models, beacon and nonbeacon-enabled PAN models, are built. The
simpler, nonbeacon-enabled model is parameterized by BI, but this is not used to signal
beacons. Instead, BI is used to indicate the arrival of messages to each station from
its sensor. Each station, in both models, is assumed to always have a message to send:
almost one slot-length of data every beacon interval.

In the beacon-enabled PAN model, some of the stations use the CAP for CSMA/CA
communications, and some use GTS in the CFP, the detailled scenarios considered are
described later. The model is parameterized by BI, the beacon interval. We set the su-
perframes to have the same duration as BI, hence there is no inactive period. Every BI-
equivalent time units, the PAN coordinator broadcasts a beacon, and all stations must be
ready to receive it. Henceforth, the coordinator is ready to receive transmissions from
the stations. The stations which are not assigned any GTSs compete with other simi-
lar stations to send their messages by using slotted CSMA/CA, while the stations with
assigned GTSs wait for their turns.

To save energy, a station goes to sleep mode whenever it has a chance to. For in-
stance, a station sleeps while waiting for its GTS turn or when performing backoff or
whenever it has no messages to transmit. However, a station must always wake up be-
fore its turn to transmit or before the beacon is transmitted.

We abstain from modelling the PAN initialization. We instead concentrate on the typ-
ical operations of the PAN, when the stations are transmitting messages. The physical
layer of IEEE 802.15.4 is not modelled either. For instance, we assume that there is no
significant propagation delay and no channel selection procedure. Nevertheless, those
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physical layer constants which affect the timing of the communication, such as the du-
ration of CCAs (Clear Channel Assessments), are taken into account. Furthermore, we
assume the PAN to operate in 2.4 GHz band, hence all devices transmit at 62.5 ksym-
bols/s. The medium is assumed uniform, in the sense that all participants have complete
knowledge of it.

4.1 Models

The model of the PAN in beacon-enabled mode is described in this section, focusing
on slotted CSMA/CA, which is more complex and interesting than the GTS case. Com-
plete details are available as a tutorial-style modelling guide [4]. The model consists of
two distinct process definitions: coordinator() and station(), modelling the
behaviors of a PAN coordinator and a station, respectively. In all experiments, we set
macMaxCSMABackoff (the maximum number of backoff attempts before declaring a
channel access failure) to 5 and macMinBE (the minimum value of the backoff expo-
nent) to 2.

The System. The model of the overall system is depicted in MODEST model 1. The
system consists of 11 process instances, one coordinator and ten stations, run in parallel.

This is achieved by using
MODEST model 1 : The complete system
01 par{
02 ::coordinator()
03 ::relabel {...} by {...} station(1)
.. ...
12 ::relabel {...} by {...} station(10)
13 }

the parallel composition con-
struct par{}. Processes inside
of a parallel composition con-
struct run concurrently and
synchronize on their common
actions, if existing. The operator
relabel {} by {} p() relabels actions in the first set by the actions in the second
in a particular instance of process p(). This allows multiple instantiations of process
definition station().

The Coordinator. A simple model of the PAN coordinator is shown in MODEST

model 2, especially to highlight some of the clock manipulation features of MODEST.
The coordinator has two clock variables: btimermodelling the time progress between
beacons, and clock c modelling the transmission time of a beacon. In MODEST, clocks
increase linearly with time and can only be reset to zero. The coordinator process begins
by immediately sending a beacon (action sendb_start).All beacons are of length

MODEST model 2 : The coordinator
01 process coordinator() {
02 clock btimer, c;
03 sendb_start {= bintheair=true =} ;
04 when(c==52) sendb_end {= bintheair=false =} ;
05 do{::when(btimer==binterval) sendb_start {= c=0, btimer=0, bintheair=true =} ;
06 when(c==52) sendb_end {= bintheair=false =}
07 }}

52μs (lines 04 & 06), namely the duration of the smallest possible beacon. Action
sendb_end signals the end of the beacon’s transmission. From then on, the coor-
dinator waits until clock btimer is equal to the value of binterval (line 05). At
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this point, a beacon interval has expired and the coordinator broadcasts a new beacon.
The coordinator proceeds thus continuously, broadcasting beacons every time a beacon
interval expires.

The process makes use of two global variables, i.e. variables accessible to all pro-
cesses in the model. They are binterval, of type integer, which represents the time
it takes for a BI according to the standard; and bintheair, a boolean variable used
to indicate to the whole system that a beacon is being transmitted. Delimiters {= =}
wrap a set of variable assignments. Such assignments are executed atomically at the
time instant of the action preceeding them.

The Stations. The model of the station is shown in MODEST model 3 and 4. In the
beginning, a station waits until a new beacon is transmitted (line 10). At the same time,
it resets its main clock and sets ttosend (the duration of the remaining data to send).
Once the beacon finishes, the station aligns its backoff boundary with the superframe
slot boundary by waiting until a multiple of the backoff period (line 16) expires since
the beginning of the previous beacon (line 14). The station then performs backoff and
attempts to transmit. This is repetitively done as long as there is still something to send
and enough time to do so (line 13), otherwise (line 12) the station just waits for the next
beacon.

The maximum length of messages submittable to the physical layer is 133 bytes,
which takes 4256 μs to transmit in 2.4 GHz band. Thus the remaining data is split
accordingly (line 14). Line 16 is a placeholder for the code for the random selection of
variable r.

MODEST model 3 : The station (Part 1)
01 process station(int id) {
.. ...
10 do{::when(bintheair) beacon_received {= mainclock=0, ttosend=sendingtime =} ;
11 when(!bintheair) start_waiting ;
12 do{::when(ttosend==0 || !enoughtime) do_nothing {= enoughtime=true =} ; break
13 ::when(ttosend>0 && enoughtime) start_csmaca
14 {= NB=0, CW=2, BE=2, attosend=(ttosend>=4256)?4256:ttosend =} ;
15 when(mainclock%320==0)
16 do{::choose_random {= c=0, r=//Uniform(0,2ˆBE-1), backofftime=r*320 =} ;
.. ...

As shown in MODEST model 4, once the duration of the backoff delay is determined,
the backoff is performed only if there is still enough time to complete the backoff to-
gether with a CCA before the contention-access period ends (line 19). CCA detection
time is equal to 8 symbols period, namely 128 μs in 2.4 GHz band. If there is not enough
time, the station stops and waits until the next beacon comes (line 18). A CCA is car-
ried out immediately after the backoff finishes (line 20 & 21). There are three possible
outcomes of the CCA: a busy channel, an idle channel with enough time to send the cur-
rent portion of the message and an idle channel but not enough time. The outcome of
a CCA is determined by the value of global variable sending. This variable indicates
the number of stations currently transmitting. A station about to transmit increases this
variable and decreases it again once the transmission finishes.
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MODEST model 4 : The station (Part 2)
.. ...
17 alt{
18 ::when(mainclock>=CAP-backofftime-ccatime) {= enoughtime=false =} ; break
19 ::when(mainclock<CAP-backofftime-ccatime)
20 when(c==backofftime) {= c=0 =} ;
21 do{::when(c==ccatime)
22 alt{::when(sending>0)
23 alt{::when(NB<=maxbackoff) channel_busy {=CW=2,NB=NB+1,BE=(BE<6)?BE+1:6=};break
24 ::when(NB>maxbackoff) {= restart=true =} ; break }
25 ::when(sending==0 && mainclock<CAP-attosend-960) count_down_CW {= CW=CW-1 =} ;
26 alt{::when(CW==0) wait_for_boundary ;
27 when (c==320) send_message_start {= sending+=1, c=0 =} ;
28 when (c==attosend) send_message_end
29 {= ttosend-=attosend, sending-=1, restart=true =} ; break
30 ::when(CW>0) wait_for_boundary ;
31 when(c==320) {= c=0 =} }
32 :when(sending==0 && mainclock>=CAP-attosend-960)
33 {= enoughtime=false, restart=true =} ; break }
34 } ; alt{::when(restart) {= restart=false =} ; break
35 ::when(!restart)
36 } } } } } }

A busy channel triggers another backoff if the number of backoff so far does not
exceed the maximum allowed – maxbackoff – (line 22 & 23), otherwise the whole
CSMA/CA procedure must be restarted to transmit the current portion of the message
(line 24). When the channel is idle but there is not enough time to complete the trans-
mission (line 32) the station escapes the CSMA/CA procedure and waits for the next
beacon for further attempts.

In a beacon-enabled PAN, two CCAs are required after backoffs before the trans-
mission of the message. Hence, when the channel is idle and there is enough time to
complete the transmission (line 25), the transmission is only commenced if CW = 0
(line 26), namely when two consecutive CCAs find the channel idle. The transmission,
which starts at the next backoff boundary, is announced to all other devices by increas-
ing the global variable sending, and it takes the amount of time to send the portion
of the message, namely attosend.

Once the portion of the message is transmitted, the station decreases the variable
sending and updates the remaining portions of the message to transmit by chang-
ing ttosend (line 29). Henceforth, the station restarts the CSMA/CA procedure to
transmit the remaining message, without waiting for a new beacon.

4.2 Energy Consumption

In modelling the energy consumption of a station, we use the technical specification of
CC2420 [1]. CC2420 is a 2.4 GHz ZigBee/IEEE 802.15.4-compliant radio frequency
(RF) transceiver produced by Chipcon AS. Fig. 2 summarizes the specification relevant
for this paper. During its operation, the transceiver can be in four modes: shutdown,
idle, transmitting or receiving modes. The rate of energy consumption while occupying
these modes [11] are 0.144, 712, 30672 and 35280 μW, respectively. A small amount of
energy is required during the shutdown mode to power clock and to witness power-ups.

Furthermore, the transitions from mode s to i, from mode i to t, and from mode i to r
do not happen instantaneously, but take 970, 194 and 194 μs to complete, respectively.
During these transitions [11], the transceiver is considered to be still in the original
mode, while consuming energy at the level of the destination mode. This reflects that the
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transceiver requires time (and power) to turn on its transmitting and receiving devices.
All other transitions, namely those with dotted edges in the figure, take no time to
complete.

When the PAN coordinator broad-

s

0.144μW

i

712μW

t 30672μW

r 35280μW

970μs

194μs

194μs

Fig. 2. Energy Modes of CC2420

casts a beacon, all stations must be
in receiving mode. That means, some
time beforehand, they must have wo-
ken up and proceeded to the idle and
then to the receiving mode. If a sta-
tion is assigned GTSs, it immediately
changes to shutdown mode upon the
completion of the beacon. However,

the station must already be in transmitting mode, when its assigned GTSs begin. To
anticipate this, the station must leave the shutdown mode 1164 (namely 970+194) μs
before the GTSs. After finishing the transmission in the GTSs, the station moves to
idle mode. If there is still ‘enough’ time before the next beacon, it changes further to
shutdown mode.

A station without assigned GTSs must compete with similar stations by using slotted
or unslotted CSMA/CA to gain access to the medium. Immediately after the end of a
beacon, the station enters the CSMA/CA procedure. Depending on the duration of the
backoff delay, the station may transition to idle or shutdown mode. If the backoff delay
is long enough, the station may sleep and wake up 1164 μs before it must perform a
CCA, and be ready in receiving mode. If two consecutive CCAs result in idle channel,
the station changes to transmitting mode and sends the message portion. This is per-
formed continuously until the whole message is sent. Afterwards, the station may move
to shutdown mode if there is enough time to do so before the next beacon.

To incorporate the energy consumption to the PAN models, each instant of station
changes variables time_in_s_mode, time_in_i_mode, time_in_t_mode
and time_in_r_mode every time it spends some portions of time in s, i, t, and
respectively r mode. The framework models are annotated accordingly and the four
variables are turned into four global variable arrays, that each instant of station ac-
cesses through its id. The amount of energy consumed by a station during a beacon
interval is the sum of the amount of time it spends in each mode weighted by the rate
of the energy consumption of the mode.

Referring back to MODEST models 3 and 4, the background color of each line number
of the model corresponds to the energy mode as depicted in Fig. 2. Those line numbers
with two background colors indicates the case where the station is deciding whether to
enter idle or shutdown mode based on the progress of its main clock so far.

4.3 Clock Precision

Clock precision is important to ensure the correct functioning of ZigBee/IEEE 802.15.4-
compliant PANs. In the case of PANs which provide CFPs, it is crucial that stations
with assigned GTSs transmit exactly in their allocated period of time. Similarly with
PANs employing the slotted CSMA/CA mechanism, the ability to correctly determine
the backoff boundaries, which requires a precise clock, is necessary to avoid collisions.
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Quarz-based clocks are generally used for electronic devices. Such clocks suffer
from inaccuracy due to aging and temperature variations. Usually, the manufacturers
guarantee a certain upper bound inaccuracy for their clock products. Assuming this
upper bound to be constant is actually not realistic. However, we do so in our models.
Hence, a clock with a guaranteed accuracy may deviate from the real time within a given
time interval based on the accuracy and exhibit at different times a different deviation
from the real time.

Clock inaccuracy is usually expressed in ‘parts per million’ (ppm), referring to the
maximum difference (in time units) one may witness relative to perfect time, within a
million time units. In the models, we assume that a physical clock with a guaranteed
accuracy of p ppm may show at time t, a clock value within the interval:

[t − p · 10−6 · t, t + p · 10−6 · t].

A station, however, does not know the exact value of the deviation. Nevertheless, it
must be able to precisely observe the deadlines, for instance the arrival of a beacon.
Therefore, it counts on the maximum inaccuracy and be ready for the beacon even
before the actual time. It is also assumed that the stations synchronize their clocks to
the PAN coordinator’s, while receiving the beacons.

We model the effect of clock inaccuracy to energy consumption in the following way.
Assume that a station must wait for W time units to be ready for some event. The clock
of the station has inaccuracy p ppm. The actual waiting time W ′ for the station is:

W ′ = W − W · p · 10−6 + W · p′ · 10−6, (1)

where W ·p·10−6 is the maximum deviation of the clock given the clock inaccuracy and
W · p′ · 10−6 is the actual deviation. The actual inaccuracy p′ is a value in the interval
[−p, p]. The models can be parametrized by the actual deviation. In full generality, a
clock’s inaccuracy may be time-dependent, in which case the above formula involves
integration.

5 Simulations

In this section, we describe the simulations of the MODEST models presented in the
previous section. The simulation was done with discrete-event simulator of MÖBIUS,
and we only present an excerpt of several thousand simulation runs we performed.
First, the experimental setups are described. The result of the experiments is presented
afterwards, followed by its analyses and discussions.

Experiments. In all experiments, the system is a personal area network, which consists
of a single PAN coordinator and 10 stations with star topology. The network uses 2.4
GHz band and all durations appearing in the standard which are defined by amount of
symbols are adapted accordingly. The networks do not use any inactive periods, thus
the beacon interval is always the same as the superframe duration (BI=SD).

The experiments cover BO = 0, · · · , 10, which means a beacon interval ranges
from 15360 μs to 15728640 μs. Similarly the length of a slot ranges from 960 μs to
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Fig. 3. Percentage of time per energy mode and energy consumption for perfect clocks

983040 μs. In all experiments, a station always has about a slot-length message to trans-
mit during the duration between two beacons. A station using GTS mode can transmit
the whole message continuously. On the other hand, a station using slotted or unslotted
CSMA/CA can only transmit 133 bytes at a time, which takes 4256 μs to transmit.

The simulation time of each experiment spans 10 beacon intervals. For instance,
when BO = 7, a beacon interval takes 1966080 μs. Therefore, the simulation is run
for around 20 seconds (19660800 μs). Simulations are carried out to estimate the mean
values of some measures of interest, such as the time a station spends in shutdown mode.
The simulation is repeated until the mean values of all measures of interest converge
with relative confidence interval 0.1 and confidence level 95%. MÖBIUS allows users
to adjust these settings as desired.

As mentioned earlier, we consider worst-case scenarios whenever appropriate. For
clock inaccuracy, the worst scenarios occur when the clock of the PAN coordinator
is progressing as slow as possible within its inaccuracy bounds, while the clock of a
station is in its fastest possible progress. Referring to Eqn. 1, the clock of a station is
fastest when p′ = −p. Then the station, which needs to wake up some time before the
actual deadlines, actually wakes up even earlier because its clock is too fast. We proved
this situation to be worst case by analytical means, which is backed up by simulation.

All simulations are conducted on a PC with a Pentium 4 3.0 GHz processor with
1 GB RAM running Linux 2.6.17-2.686. The CPU time per experiment series ranges
from around 5.2 seconds to 15429 seconds (about 4.25 hours).

Results. The graphs in Fig. 3 summarize our experimental results when clocks are
perfect. The leftmost graph shows the percentage of the time spent in transmit, receive
and idle modes for the 7 stations assigned with GTSs in experiment series 1 (we denote
this as series 1G). While the portion of time spent in transmit mode is constant for
all BO’s, the portions in receive and idle modes diminish as the beacon intervals get
larger, and become less than 1% after BO = 5. This is because the actual time spent in
receive and idle modes remains constant for all beacon intervals, thus their percentages
decrease as the beacon intervals get longer. They are constant because a station only
goes to receive mode while receiving beacons and to idle mode prior to the arrivals of
beacons and before the transmissions of the messages.
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Fig. 4. Increase of energy consumptions when clocks drift, relative to perfect clocks

The second graph in the figure depicts the same percentage distribution for the 3
stations using slotted CSMA/CA in experiment series 1 (denoted as series 1C). The
portion of time spent in the transmit mode remains almost constant and around 0.25%
higher throughout than the previous case. The percentage of time spent in receive mode
is also almost constant at around 8%, which is higher than in series 1G. The percentage
increase in receive mode is due to the CCAs, and since the number of CCAs to be
performed is proportional to the length of the message, the percentage is steady for
most BO values. The time spent in the idle mode, on the other hand, increases with
the length of beacon intervals. The longer the beacon interval, the longer a slot-length
message. However, since the length of message portion transmittable is restricted, the
more often slotted CSMA/CA procedure is repeated to send the whole message. Hence
the station spends more percentage of time in idle mode.

The third and fourth graphs in the figure show similar percentage distribution for
experiment series 2 and 3, namely 10 stations using slotted and unslotted CSMA/CA,
respectively. Compared to series 1C, the percentage of time spent in receive mode is
higher in series 2. This is due to the fact that there are 10 stations for 15 CAP slots
in series 2 compared to 3 stations for 8 CAP slots in series 1C. Thus stations perform
more CCAs and spend more percentage of time in receive mode. Similar reason applies
to the percentage of idle mode. In series 3, however, the percentage of time spent in
receive mode is lower than in series 1C and 2 because the stations perform only one
CCA in every CSMA/CA cycle. Between themselves, the stations in experiment series
3 spend more time in idle mode compared to those in series 2. This can be explained by
the absence of beacons in unslotted CSMA/CA. Once a station finishes transmitting the
whole message, it has no estimation when the next message will be available and thus
must stay idle. The station enters the shutdown mode when performing backoff.

The rightmost graph in Fig. 3 depicts the amount of energy consumed by a station
during a beacon interval time for each value of BO and for each of the formerly described
series. Note that the y-axis of the graph is in logarithmic scale. The largest energy
consumption is around 0.096946940587 Joules per beacon interval when BO = 10. We
can observe that for all values of BO, a station using GTSs consumes the least amount
of energy. A station using the unslotted CSMA/CA consumes more energy that that
using GTSs but less than the energy consumption of a station using slotted CSMA/CA.
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A question arises as to why the energy consumption of a station in series 1C is lower
than that in series 2, considering the fact that the former has more CAP-slots per station.
The reason is in series 1C, a station spends more time in shutdown mode, namely during
the CFP period. This can also be observed from the second graph in the figure. It is
also worth noting that the differences between the energy consumptions amongst the
series are significant, even though they are not apparent due the logarithmic scale. For
instance, a station in series 2 consumes almost thrice the energy of a station in series
1G and almost twice of a station in series 3.

Fig. 4 shows the influence of worst-case clock drifts on the energy consumptions
of stations in series 1G, 2 and 3, respectively. Consistently, clock drifts increase the
amount of energy consumed for all experiments. The graphs in the figure show the in-
crease in energy expended relative to the amount of energy needed in the precise clock
setting. The first graph depicts the deviations for a station in series 1G with clock inac-
curacies 40, 20, 10 and 5 ppm for BO = 0, 2, 4, 6, 8, 10. We observe a linear correlation
between the clock inaccuracies and the deviations in the graph. For instance, for most
of BO values, a station with clock inaccuracy 40 and 20 ppm spends approximately
0.25% and respectively 0.125% more energy than a station with precise clock. The sec-
ond and third graphs in Fig. 4 depicts the deviations for a station in series 2 and 3,
respectively. We abstain from explaining the precise patterns exhibited by these plots
for increasing BO due to space constraints. However, the effects of the level of clock
inaccuracies are obvious. In both graphs, higher clock inaccuracy tends to cause higher
energy consumption level.

Overall, a deviation of 0.25% or 0.125% may seem small. If extrapolated, it amounts
to about half a day per year decrease in lifetime of a battery. However, a clock drift of
40 ppm is – percentwise – only 0.004%, and we thus conclude that such a clock drift
may be amplified by a factor of 62.5 when looking at the excess in energy consumption
caused.

6 Conclusion

This paper has advocated a rigorous approach to modelling and simulation of energy-
aware networked embedded systems. In this approach, MODEST, a language with a
strictly formal semantics is used to specify the system under study. Since all as-
sumptions are exposed explicitly in the specification, the underlying stochastic model
is well-defined and the obtained simulation results are trustworthy. This is different
from many other simulation-based results lately published in the networking litera-
ture. The simulation is carried out via the tools MOTOR and MÖBIUS. MOTOR is
available as source code from http://www.purl.org/net/motor under the
GPL license. MÖBIUS is freely available for educational and research purposes from
http://www.mobius.uiuc.edu/. MOTOR can be installed as an add-on pack-
age to the MÖBIUS installation.

We applied the proposed approach to the modelling of crucial medium access mech-
anisms in IEEE 802.15.4, with a particular emphasis on energy specific configuration
relevant to ZigBee operation. When investigating the effects of time-slotted (i.e.,
beacon-enabled) and unslotted medium access techniques, we observed that slotted

http://www.purl.org/net/motor
http://www.mobius.uiuc.edu/
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CSMA/CA is clearly inferior to unslotted CSMA/CA w.r.t. energy efficiency. In slotted
mode, devices using GTSs use considerably less energy than those using CSMA/CA.

Our studies of drifting clocks reveal some interesting observations. Most of them are
consistent with what one might expect – but we did not see them published elsewhere.
However interesting, they only show minor quantitative effects. The IEEE standard
limits the allowed clock drift to 40 ppm, and this appears to be caused by correctness
concerns. (One can show that with 64 ppm the clock boundaries could drift apart to an
extent that the protocol could desynchronize and thus malfunction). In the worst case
we estimate that a clock drift of 40 ppm induces a shortage in battery life of about half
a day per year. While this amplifies the clock drift by a factor of about 60, we think
it is not particularly significant, leading us to finally negate the question in the title of
this paper.
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2 IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France
raynal@irisa.fr

Abstract. Considering an asynchronous system made up of n processes and
where up to t of them can crash, finding the weakest assumptions that such a
system has to satisfy for a common leader to be eventually elected is one of the
holy grail quests of fault-tolerant asynchronous computing. This paper is a step
in such a quest. It has two main contributions. First, it proposes an asynchronous
system model, in which an eventual leader can be elected, that is weaker and
more general than previous models. This model is captured by the notion of in-
termittent rotating t-star. An x-star is a set of x + 1 processes: a process p (the
center of the star) plus a set of x processes (the points of the star). Intuitively,
assuming logical times rn (round numbers), the intermittent rotating t-star as-
sumption means that there are a process p, a subset of the round numbers rn, and
associated sets Q(rn) such that each set {p}∪Q(rn) is a t-star centered at p, and
each process of Q(rn) receives from p a message tagged rn in a timely manner
or among the first (n − t) messages tagged rn it ever receives. The star is called
t-rotating because the set Q(rn) is allowed to change with rn. It is called inter-
mittent because the star can disappear during finite periods. This assumption, not
only combines, but generalizes several synchrony and time-free assumptions that
have been previously proposed to elect an eventual leader (e.g., eventual t-source,
eventual t-moving source, message pattern assumption). Each of these assump-
tions appears as a particular case of the intermittent rotating t-star assumption.
The second contribution of the paper is an algorithm that eventually elects a com-
mon leader in any system that satisfies the intermittent rotating t-star assumption.
That algorithm enjoys, among others, two noteworthy properties. Firstly, from a
design point of view, it is simple. Secondly, from a cost point of view, only the
round numbers can increase without bound. This means that, be the execution
finite or infinite, be links timely or not (or have the corresponding sender crashed
or not), all the other local variables (including the timers) and message fields have
a finite domain.

Keywords: Assumption coverage, Asynchronous system, Distributed algorithm,
Eventual t-source, Eventual leader, Failure detector, Fault-tolerance, Message
pattern, Moving source, Omega, Partial synchrony, Process crash, System model,
Timely link.

1 Introduction

1.1 Leader Oracle: Motivation

A failure detector is a device (also called oracle) that provides the processes with
guesses on which processes have failed (or not failed) [3,21]. According to the
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properties associated with these estimates, several failure detector classes can be de-
fined. It appears that failure detector oracles are at the core of a lot of fault-tolerant
protocols encountered in asynchronous distributed systems. Among them, the class of
leader failure detectors is one of the most important. This class, also called the class of
leader oracles, is usually denoted Ω. (When clear from the context, the notation Ω will
be used to denote either the oracle/failure detector class or an oracle of that class.) Ω
provides the processes with a leader primitive that outputs a process id each time it is
called, and such that, after some finite but unknown time, all its invocations return the
same id, that is the identity of a correct process (a process that does not commit fail-
ures). Such an oracle is very weak: (1) a correct leader is eventually elected, but there
is no knowledge on when it is elected; (2) several (correct or not) leaders can co-exist
before a single correct leader is elected.

The oracle class Ω has two fundamental features. The first lies on the fact that, de-
spite its very weak definition, it is powerful enough to allow solutions to fundamental
problems such as the consensus problem [4]. More precisely, it has been shown to be the
weakest class of failure detectors that allows consensus to be solved in message-passing
asynchronous systems with a majority of correct processes (let us remind that, while
consensus can be solved in synchronous systems despite Byzantine failures of less than
one third of the processes [14], it cannot be solved in asynchronous distributed systems
prone to even a single process crash [7]). Basically, an Ω-based consensus algorithm
uses the eventual leader to impose a value to all the processes, thereby providing the
algorithm liveness. Leader-based consensus protocols can be found in [9,13,18]. The
second noteworthy feature of Ω lies on the fact that it allows the design of indulgent
protocols [8]. Let P be an oracle-based protocol that produces outputs, and PS be the
safety property satisfied by its outputs. P is indulgent with respect to its underlying
oracle if, whatever the behavior of the oracle, its outputs never violate the safety prop-
erty PS . This means that each time P produces outputs, they are correct. Moreover, P
always produces outputs when the underlying oracle meets its specification. The only
case where P can be prevented from producing outputs is when the implementation
of the underlying oracle does not meet its specification. (Let us notice that it is still
possible that P produces outputs despite the fact that its underlying oracle does not
work correctly.) Interestingly, Ω is a class of oracles that allows designing indulgent
protocols [8,9]. More precisely, due to the very nature of an eventual leader, it cannot
be known in advance when that leader is elected; consequently, the main work of an
Ω-based consensus algorithm is to keep its safety property, i.e., guarantee that no two
different values can be decided before the eventual leader is elected.

Unfortunately, Ω cannot be implemented in pure asynchronous distributed systems
where processes can crash. (Such an implementation would contradict the impossibility
of solving consensus in such systems [7]. Direct proofs of the impossibility to imple-
ment Ω in pure crash-prone asynchronous systems can be found in [2,19].) But thanks
to indulgence, this is not totally bad news. More precisely, as Ω makes it possible the
design of indulgent protocols, it is interesting to design “approximate” protocols that do
their best to implement Ω on top of the asynchronous system itself. The periods during
which their best effort succeeds in producing a correct implementation of the oracle
(i.e., there is a single leader and it is alive) are called “good” periods (and then, the
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upper layer Ω-based protocol produces outputs and those are correct). During the other
periods (sometimes called “bad” periods, e.g., there are several leaders or the leader is
a crashed process), the upper layer Ω-based protocol never produces erroneous outputs.
The only bad thing that can then happen is that this protocol can be prevented from
producing outputs, but when a new long enough good period appears, the upper layer
Ω-based protocol can benefit from that period to produce an output.

A main challenge of asynchronous fault-tolerant distributed computing is conse-
quently to identify properties that are at the same time “weak enough” in order to be
satisfied “nearly always” by the underlying asynchronous system, while being “strong
enough” to allow Ω to be implemented during the “long periods” in which they are
satisfied.

1.2 Existing Approaches to Implement Ω

Up to now, two main approaches have been investigated to implement Ω in crash-prone
asynchronous distributed systems. Both approaches enrich the asynchronous system
with additional assumptions that, when satisfied, allow implementing Ω. These ap-
proaches are orthogonal: one is related to timing assumptions, the other is related to
message pattern assumptions.

The eventual timely link approach. The first approach considers that the asynchronous
system eventually satisfies additional synchrony properties. Considering a reliable com-
munication network, the very first papers (e.g., [15]) assumed that all the links are
eventually timely1. This assumption means that there is a time τ0 after which there is a
bound δ -possibly unknown- such that, for any time τ ≥ τ0, a message sent at time τ is
received by time τ + δ.

This approach has then been refined to obtain weaker and weaker assumptions. It has
been shown in [1] that it is possible to implement Ω in a system where communication
links are unidirectional, asynchronous, and lossy, provided that there is a correct process
whose n − 1 output links are eventually timely (n being the total number of processes).
This assumption has further been weakened in [2] where it is shown that Ω can be built
as soon as there is a correct process that has only t eventually timely links (where t is a
known upper bound on the number of processes that can crash); such a process is called
an eventual t-source. (Let us notice that, after the receiver has crashed, the link from a
correct process to a crashed process is always timely.)

Another time-based assumption has been proposed in [16] where the notion of even-
tual t-accessibility is introduced. A process p is eventual t-accessible if there is a time
τ0 such that, at any time τ ≥ τ0, there is a set Q(τ) of t processes such that p /∈ Q(τ)
and a message broadcast by p at τ receives a response from each process of Q(τ) by
time τ + δ (where δ is a bound known by the processes). The very important point
here is that the set Q(τ) of processes whose responses have to be received in a timely
manner is not fixed and can be different at distinct times.

The notions of eventual t-source and eventual t-accessibility cannot be compared
(which means that none of them can be simulated from the other). In a very interesting

1 Actually, the Ω protocol presented in [15] only requires that the output links of the correct
process with the smallest identity to be eventually timely.
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way these two notions have been combined in [11] where is defined the notion of even-
tual t-moving source. A process p is an eventual t-moving source if there is a time τ0
such that at any time τ ≥ τ0 there is a set Q(τ) of t processes such that p /∈ Q(τ) and a
message broadcast by p at τ is received by each process in Q(τ) by time τ + δ. As we
can see, the eventual t-moving source assumption is weaker than the eventual t-source
as the set Q(τ) can vary with τ .

Other time-based approaches are investigated in [5,12]. They consider weak assump-
tions on both the initial knowledge of processes and the network behavior. Protocols
building Ω are presented [5,12] that assume the initial knowledge of each process is
limited to its identity and the fact that identities are totally ordered (so, a process knows
neither n nor t). An unreliable broadcast primitive allows the processes to communi-
cate. One of the protocols presented in [5] is communication-efficient (after some time
a single process has to send messages forever) while, as far as the network behavior
is concerned, it only requires that each pair of correct processes be connected by fair
lossy links, and there is a correct process whose output links to the rest of correct pro-
cesses are eventually timely. It is shown in [12] that Ω can be built as long as there
is one correct process that can reach the rest of the correct processes via eventually
timely paths.

The message pattern approach. A totally different approach to build Ω has been in-
troduced in [17]. That approach does not rely on timing assumptions and timeouts. It
states a property on the message exchange pattern that, when satisfied, allows Ω to be
implemented. The statement of such a property involves the system parameters n and t.

Let us assume that each process regularly broadcasts queries and, for each query,
waits for the corresponding responses. Given a query, a response that belongs to the
first (n − t) responses to that query is said to be a winning response. Otherwise, the
response is a losing response (then, that response is slow, lost or has never been sent
because its sender has crashed). It is shown in [19] that Ω can be built as soon as the
following behavioral property is satisfied: “There are a correct process p and a set Q of t
processes such that p /∈ Q and eventually the response of p to each query issued by any
q ∈ Q is always a winning response (until -possibly- the crash of q).” When t = 1, this
property becomes: “There is a link connecting two processes that is never the slowest (in
terms of transfer delay) among all the links connecting these two processes to the rest
of the system.” A probabilistic analysis for the case t = 1 shows that such a behavioral
property on the message exchange pattern is practically always satisfied [17].

This message pattern approach and the eventual timely link approaches cannot be
compared. Interestingly, the message pattern approach and the eventual t-source ap-
proach have been combined in [20]. This combination shows that Ω can be imple-
mented as soon as there is a correct process p and a time τ0 after which there is a set Q
of t processes q such that p /∈ Q and either (1) each time a process q ∈ Q broadcasts a
query, it receives a winning response from p, or (2) the link from p to q is timely. As it
can be seen, if only (1) is satisfied, we obtain the message pattern assumption, while, if
only (2) is satisfied, we obtain the eventual t-source assumption. More generally, here,
the important fact is that the message pattern assumption and the timely link assumption
are combined at the “finest possible” granularity level, namely, the link level.
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1.3 Content of the Paper: Towards Weaker and Weaker Synchrony Assumptions

A quest for a fault-tolerant distributed computing holy grail is looking for the weakest
synchrony assumptions that allow implementing Ω. Differently from the quest for the
weakest information on failures that allows solving the consensus problem (whose re-
sult was Ω [4]), it is possible that this quest be endless. This is because we can envisage
lots of base asynchronous computation models, and enrich each of them with appropri-
ate assumptions that allow implementing Ω in the corresponding system. Such a quest
should be based on a well-formalized definition of a low level asynchronous model,
including all the models in which Ω can be implemented. There is no guarantee that
such a common base model exists.

So, this paper is only a step in that direction. It considers the classical asynchronous
computing model where processes can crash. They communicate through a reliable
network [3,7]. (Fair lossy links could be used instead of reliable links2 but we do not
consider that possibility in order to keep the presentation simple.) The paper shows that
it is possible to implement Ω in an asynchronous system from a synchrony assumption
weaker than any of the previous ones, namely, eventual t-source, eventual t-moving
source, or the message pattern assumption. Interestingly, these specific assumptions
become particular cases of the more general (and weaker) assumption that is proposed.
In that sense, the paper not only proposes a weaker assumption, but has also a generic
dimension.

The proposed behavioral assumption (that we denote A) requires that each process
regularly broadcasts ALIVE(rn) messages, where rn is an increasing round number
(this can always be done in an asynchronous system). The sending of ALIVE(rn) mes-
sages by the processes can be seen as an asynchronous round, each round number defin-
ing a new round.

To make easier the presentation we describe first an assumption A+ of which A is a
weakening. A+ is as follows. There is a correct process p and a round number RN0 such
that, for each rn ≥ RN0 , there is a set Q(rn) of t processes such that p /∈ Q(rn) and
for each process q ∈ Q(rn) either (1) q has crashed, or (2) the message ALIVE(rn) sent
by p is received by q at most δ time units after it has been sent (the corresponding bound
δ can be unknown), or (3) the message ALIVE(rn) sent by p is received by q among the
first (n − t) ALIVE(rn) messages received by q (i.e., it is a winning message among
ALIVE(rn) messages received by q). It is easy to see, that if only (1) and (2) are satisfied,
A+ boils down to the eventual t-moving source assumption, while if only (1) and (3) are
satisfied, it boils down to a moving version of the message pattern assumption (because
the set Q() can change over time). The set of processes {p} ∪ Q(rn) defines a star
centered at p. As it must have at least t points (links), we say it is a t-star. Moreover,
as Q(rn) can change at each round number, we say that p is the center of an eventual

2 This can easily be done by using message acknowledgments and piggybacking: a message
is piggybacked on the next messages until it has been acknowledged. So, a message sent by
the underlying communication protocol can be made up of several messages sent by the upper
layer algorithm. It is nevertheless important to remark that such a piggybacking + acknowledg-
ment technique is viable only if the size of the messages sent by the underlying communication
protocol remains manageable.
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rotating t-star (“eventual” because there is an arbitrary finite number of round numbers
during which the requirement may not be satisfied).

While A+ allows implementing Ω, it appears that a weakened form of that assump-
tion is sufficient. This is the assumption A. It is sufficient that p be the center of an even-
tual rotating t-star only for a subset of the round numbers. More precisely, A requires
that there is an infinite sequence S = s1, s2, . . . of (not necessarily consecutive) round
numbers, and a bound D (not necessarily known), such that, ∀k ≥ 1, sk+1 − sk ≤ D,
and there is a process p that is the center of a rotating t-star when we consider only
the round numbers in S. We call such a configuration an eventual intermittent rotating
t-star (in fact, the “eventual” attribute could also be seen as being part of the “intermit-
tent” attribute).

Basically, the difference between A+ and A is related to the notion of observation
level [10]. While A+ considers a base level including all the round numbers, A provides
an abstraction level (the sequence S) that eliminates the irrelevant round numbers. Of
course, as it is not known in advance which are the relevant round numbers (i.e., S), an
A-based algorithm has to consider a priori all the round numbers and then find a way
to dynamically skip the irrelevant ones.

After having introduced A+ and A, the paper presents, in an incremental way, an
A+-based algorithm and an A-based algorithm that build a failure detector oracle of
the class Ω. The A-based algorithm enjoys a noteworthy property, namely, in an infinite
execution, only the round numbers increase forever. All the other local variables and
message fields remain finite. This means that, among the other variables, all the timeout
values (be the corresponding link eventually timely or not) eventually stabilize. From
an algorithmic mechanism point of view, the proposed algorithm combines new ideas
with mechanisms also used in [2,5,11,17,20].

All the proofs and additional technical developments can be found in [6].

2 Definitions

2.1 Basic Distributed System Model

We consider a system formed by a finite set Π of n ≥ 2 processes, namely, Π =
{p1, p2, . . . , pn}. Process identifiers are totally ordered. Without loss of generality we
assume that ID(pi) < ID(pj), when i < j, and use ID(pi) = i. We sometimes
use p and q to denote processes. A process executes steps (a step is the reception of
a set of messages with a local state change, or the sending of messages with a local
state change). A process can fail by crashing, i.e., by prematurely halting. It behaves
correctly (i.e., according to its specification) until it (possibly) crashes. By definition, a
correct process is a process that does not crash. A faulty process is a process that is not
correct. As previously indicated, t denotes the maximum number of processes that can
crash (1 ≤ t < n).

Processes communicate and synchronize by sending and receiving messages through
links. Every pair of processes (p, q) is connected by two directed links, denoted p → q
and q → p. Links are assumed to be reliable: they do not create, alter, or lose messages.
In particular, if p sends a message to q, then eventually q receives that message unless
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one of them fails. There is no assumption about message transfer delays (moreover, the
links are not required to be FIFO).

Processes are synchronous in the sense that there are lower and upper bounds on
the number of processing steps they can execute per time unit. Each process has also
a local clock that can accurately measure time intervals. The clocks of the processes
are not synchronized. To simplify the presentation, and without loss of generality, we
assume in the following that the execution of the local statements take no time. Only
the message transfers consume time.

In the following, ASn,t[∅] denotes an asynchronous distributed system as just de-
scribed, made up of n processes among which up to t < n can crash. More generally,
ASn,t[P ] will denote an asynchronous system made up of n processes among which up
to t < n can crash, and satisfying the additional assumption P (so, P = ∅ means that
the system is a pure asynchronous system).

We assume the existence of a global discrete clock. This clock is a fictional device
which is not known by the processes; it is only used to state specifications or prove
protocol properties. The range of clock values is the set of real numbers.

2.2 The Oracle Class Ω

Ω has been defined informally in the introduction. A leader oracle is a distributed entity
that provides the processes with a function leader() that returns a process id each time
it is invoked. A unique correct process is eventually elected but there is no knowledge of
when the leader is elected. Several leaders can coexist during an arbitrarily long period
of time, and there is no way for the processes to learn when this “anarchy” period is
over. A leader oracle satisfies the following property [4]:

– Eventual Leadership: There is a time τ and a correct process p such that any
invocation of leader() issued after τ returns the id of p.

Ω-based consensus algorithms are described in [9,13,18] for asynchronous systems
where a majority of processes are correct (t < n/2). These algorithms can then be
used as a subroutine to solve other problems such as atomic broadcast (e.g., [3,13]).

As noticed in the introduction, whatever the value of t ∈ [1, n − 1], Ω cannot be
implemented in ASn,t[∅]. Direct proofs of this impossibility can be found in [2,19]
(“direct proofs” means that they are not based on the impossibility of asynchronously
solving a given problem such as the consensus problem [7]).

3 The Additional Assumption A

This section defines a system model, denoted ASn,t[A] (ASn,t[∅] enriched with the
assumption A) in which failure detectors of the class Ω can be built. (Said differently,
this means that Ω can be implemented in all the runs of ASn,t[∅] that satisfy A.)

Process behavior requirement. The assumption A requires that each process pi regu-
larly broadcasts ALIVE(rn) messages (until it possibly crashes). The parameter rn is a
round number that, for each process pi, takes the successive values 1, 2, . . .
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Let send time(i, rn) be the time at which pi broadcasts ALIVE(rn). The words
“regularly broadcasts” means that the duration separating two broadcasts by the same
process is bounded. More formally, there is a bound β (not necessarily known by the
processes) such that, for any round number rn and any process pi (until it possibly
crashes), we have 0 < send time(i, rn+1)− send time(i, rn) ≤ β. It is important to
notice that, given two different processes, there is no relation linking send time(i, rn)
and send time(j, rn). It is easy to see that this broadcast mechanism can be imple-
mented in ASn,t[∅].

In the text of the algorithms, “repeat regularly ST ” means that two consecutive
executions of the statement ST are separated by at most β time units.

Definitions. According to the time or the order in which it is received, an ALIVE(rn)
message can be δ-timely or winning. These notions are central to state the assumptions
A+ and A. It is important to remark that they are associated with messages, not with
links. Let δ denote a bounded value.

Definition 1. A message ALIVE(rn) is δ-timely if it is received by its destination
process at most δ time units after it has been sent.

Definition 2. A message ALIVE(rn) is winning if it belongs to the first (n − t) ALIVE

(rn) messages received by its destination process.

System model ASn,t[A+]. The additional assumption A+ is the following: There is a
correct process p, a bound δ, and a finite round number RN0 , such that for any rn ≥
RN0 , there is a set of processes Q(rn) satisfying the following properties:

– A1: p /∈ Q(rn) and |Q(rn)| ≥ t (i.e., {p} ∪ Q(rn) is a t-star centered at p), and
– A2: For any q ∈ Q(rn) (i.e., any point of the star), one of the following properties

is satisfied: (1) q has crashed, or (2) the message ALIVE(rn) is δ-timely, or (3) the
message ALIVE(rn) is winning.

It is important to see that p, δ, and RN0 are not known in advance, and can never
be explicitly known by the processes. As said in the introduction, the process p that
satisfies A+ is the center of an eventual rotating t-star.

A+ includes several dynamicity notions. One is related to the fact that the sets Q()
are not required to be the same set, i.e., Q(rn1) and Q(rn2) can be different for rn1 	=
rn2. This is the rotating notion (first introduced in [11,16] under the name moving set).
A second dynamicity notion is the fact that two points of the star {p} ∪ Q(rn) (e.g.,
p → q1 and p → q2), are allowed to satisfy different properties, one satisfying the
“δ-timely” property, while the other satisfying the “winning” property. Finally, if the
point q appears in Q(rn1) and Q(rn2) with rn1 	= rn2, it can satisfy the “δ-timely”
property in Q(rn1) and the “winning” property in Q(rn2).

It is important to notice that the assumption A+ places constraints only on the mes-
sages tagged ALIVE. This means that, if an algorithm uses messages tagged ALIVE plus
messages with other tags, there is no constraint on the other messages, even if they use
the same links as the ALIVE messages.
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System model ASn,t[A]. As indicated in the introduction, A is a weakening of A+ that
allows the previous properties to be satisfied by only a subset of the round numbers.
(None of the previous assumptions proposed so far have investigated such an assump-
tion weakening.)

The additional assumption A is the following: There is a correct process p, a bound
δ, a bound D, and a finite round number RN0 , such that:

– There is an infinite sequence S of increasing round numbers s1 = RN0 , s2, . . . , sk,
sk+1, . . ., such that sk+1 −sk ≤ D, (so, the round numbers in S are not necessarily
consecutive), and

– For any sk ∈ S there is a set of processes Q(sk) satisfying the properties A1 and
A2 previously stated.

When D = 1, A boils down to A+. So, A weakens A+ by adding another dynamicity
dimension, namely, a dimension related to time. It is sufficient that the rotating t-star
centered at p appears from time to time in order Ω can be built. This is why we say that
A defines an intermittent rotating t-star. The limit imposed by A to this dynamicity
dimension is expressed by the bound D.

4 An A+-Based Leader Algorithm
This section presents and proves an algorithm that builds a failure detector of the class Ω
in ASn,t[A+]. This algorithm will be improved in the next sections to work in ASn,t[A]
(Section 5), and then to have only bounded variables (Section 6).

4.1 Principles and Description of the Algorithm

The algorithm is based on the following idea (used in one way or another in several
leader protocols -e.g., [2,17]-): among all the processes, a process pi elects as its current
leader the process it suspects the least to have crashed (if several processes are the least
suspected, pi uses their ids to decide among them).

Local variables. To attain this goal each process pi uses the following local variables:

– s rni and r rni are two round number variables. s rni is used to associate a round
number with each ALIVE() message sent by pi. When s rni = a, pi has executed
up to its ath sending round.
r rni is the round number for which pi is currently waiting for ALIVE() messages.
When r rni = b, pi is currently executing its bth receiving round.
Sending rounds and receiving rounds are not synchronized (separate tasks are as-
sociated with them).

– timeri is pi’s local timer.
– susp leveli[1..n] is an array such that susp leveli[j] counts, from pi’s point of

view, the number of rounds during which pj has been suspected to have crashed by
at least (n − t) processes.

– rec fromi[1..] is an array such that rec fromi[rn] keeps the ids of the processes
from which pi has received an ALIVE(rn) message while rn ≥ r rni (if rn <
r rni when the message arrives, then it is too late and is consequently discarded).
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– suspicionsi[1.., 1..n] is an array such that suspicionsi[rn, j] counts, as far as the
receiving round rn is concerned, how many processes suspect that pj has crashed.

Process behavior. The algorithm for a process pi is described in Figure 1. It is made
up of two tasks. The task T 1 (Lines 1-3) is the sending task. In addition to its round
number, each ALIVE() message carries the current value of the array susp leveli (this
gossiping is to allow the processes to converge on the same values for those entries of
the array that stop increasing).

The task T 2 is the main task. When leader() is locally invoked, it returns the id of
the process that locally is the least suspected (Lines 19-21). If several processes are
the least suspected, their ids are used to decide among them3. When an ALIVE(rn, sl)
message is received, T 2 updates accordingly the array susp leveli, and rec fromi[rn]
if that message is not late (i.e., if r rni ≥ rn). The core of the task T 2 is made up of
the other two sets of statements.

– Lines 8-12. The timer timeri is used to benefit from the “δ-timely message” side
of the assumption A+, while the set rec fromi[r rni] is used to benefit from its
“winning message” side. At each receiving phase r rni, pi waits until both the
timer has expired and it has received (n − t) ALIVE(rn, ∗) messages with rn =
r rni.

When this occurs, as far as the receiving phase r rni is concerned, pi suspects
all the processes pk from which it has not yet received ALIVE(r rni, ∗) message. It
consequently informs all the processes about these suspicions (associated with the
receiving phase r rni) by sending to all a SUSPICION(r rni, suspects) message
(Line 10). Then, pi proceeds to the next receiving phase (Line 12). It also resets the
timer for this new (r rnith) waiting phase (Line 11).

The timer has to be reset to a value higher than the previous one when pi dis-
covers that it has falsely suspected some processes because its timer expired too
early4. A way to ensure that the timeout value increases when there are such false
suspicions, is adopting a conservative approach, namely, systematically increasing
the timeout value. So, a correct statement to reset the timer (at Line 11) could
be “set timeri to s rni” (or to r rni) as these round numbers monotonically
increase.

It appears (see the proof) that susp leveli[j] is unbounded if pi is correct and pj

is faulty. So, another possible value to reset timeri is max({susp leveli[j]}1≤j≤n).
The reason to reset timeri that way (instead of using s rni or r rni) will be-

come clear in the last version of the algorithm (Section 6) where we will show that
all the susp leveli[j] variables can be bounded, and so all the timeout values will

3 Let X be a non-empty set of pairs (integer, process id). The function min(X) returns the
smallest pair in X, according to lexicographical order. This means that (sl1, i) is smaller than
(sl2, j) iff sl1 < sl2, or (sl1 = sl2) ∧ (i < j).

4 Let us remark that an ALIVE(rn,∗) message that arrives after the timer has expired, but be-
longs to the first (n−t) ALIVE(rn,∗) messages received by pi, is considered by the algorithm
as if it was received before the timer expiration. So, such a message cannot give rise to an er-
roneous suspicion.
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init: for each rn ≥ 1 do rec fromi[rn] ← {i} end do;
for each rn ≥ 1, 1 ≤ j ≤ n do suspicionsi[rn, j] ← 0 end do;
s rni ← 0; r rni ← 1; susp leveli ← [0, . . . , 0]; set timeri to 0;

task T1:
(1) repeat regularly:

% Two consecutive repeats are separated by at most β time units %
(2) s rni ← s rni + 1;
(3) for each j �= i do send ALIVE(s rni, susp leveli) to pj end do

task T2:
(4) upon reception ALIVE(rn, sl) from pj :
(5) for each k do susp leveli[k] ← max(susp leveli[k], sl[k]) end do;
(6) if rn ≥ r rni then rec fromi[rn] ← rec fromi[rn] ∪ {j}
(7) end if

(8) when (timeri has expired) ∧ (|rec fromi[r rni]| ≥ n − t):
(9) let suspects = Π \ rec fromi[r rni];
(10) for each j do send SUSPICION(r rni, suspects) to pj end do;
(11) set timeri to max({susp leveli[j]}1≤j≤n);
(12) r rni ← r rni + 1

(13) upon reception SUSPICION(rn, suspects) from pj :
(14) for each k ∈ suspects do
(15) suspicionsi[rn, k] ← suspicionsi[rn, k] + 1;
(16) if (suspicionsi[rn, k] = n − t)
(17) then susp leveli[k] ← susp leveli[k] + 1 end if
(18) end do

(19) when leader() is invoked by the upper layer:
(20) let � such that (susp leveli[�], �) = min({(susp leveli[j], j)

}
1≤j≤n

);
(21) return (�)

Fig. 1. Algorithm for process pi in ASn,t[A+]

also be bounded (while the round numbers cannot be bounded). Let us notice that
bounded timeout values can allow reducing stabilization time.

– Lines 13-18. When it receives a SUSPICION(rn, suspects) message, pi increases
suspicionsi[rn, k] for each process pk such that k ∈ suspects (Line 15). More-
over, if pk is suspected by “enough” processes (here, n − t) during the receiving
phase rn, pi increases susp leveli[k] (Lines 16-17)5.

5 It is worth noticing that the system parameter t is never explicitly used by the algorithm. This
means that (n − t) could be replaced by a parameter α. For the algorithm to work, α has to be
a lower bound on the number of the correct processes.
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4.2 Proof of the Algorithm

Lemma 1. Let pi be a correct process and pj a faulty process. susp leveli[j] increases
forever.

Lemma 2. Let p� be a correct process that is the center of an eventual rotating t-star
(i.e., it makes true A+). There is a time after which, for any process pi, susp leveli[�]
is never increased at Line 17.

Theorem 1. The algorithm described in Figure 1 implements Ω in ASn,t[A+].

5 An A-Based Leader Algorithm

5.1 From A+ to A

The difference between A+ and A lies on the fact that the properties A1 and A2 that
define an eventual rotating t-star, have no longer to be satisfied by each round number
starting from some unknown but finite number RN0 , but only by the round numbers
of an infinite sequence S = s1, s2, . . . , sk, sk+1, . . ., that (1) starts at RN0 (i.e., s1 =
RN0 ), and (2) is such that ∀k, sk+1 − sk ≤ D, where D is a (possibly unknown)
constant.

This means that, when compared to an A+-based algorithm, an Ω A-based algorithm
has to filter the round numbers in order to skip the irrelevant ones, i.e., the round num-
bers that do not belong to S. In a very interesting way, this can be attained by adding a
single line (more precisely, an additional test) to the A+-based algorithm described in
Figure 1. The corresponding A-based algorithm is described in Figure 2 where the new
line is prefixed by “∗”.

The variable susp leveli[k] must no longer be systematically increased when there
is a round number rn such that suspicioni[rn, k] = n − t. This is in order to prevent
such increases when rn is a round number that does not belong to the sequence S. But,

——————- The Lines 1-12 are the same as in Figure 1 ——————–

(13) upon reception SUSPICION(rn, suspects) from pj :
(14) for each k ∈ suspects do
(15) suspicionsi[rn, k] ← suspicionsi[rn, k] + 1;
(16) if (suspicionsi[rn, k] = n − t)
* ∧ (∀x : rn − susp leveli[k] < x < rn : suspicionsi[x, k] ≥ n − t)

(17) then susp leveli[k] ← susp leveli[k] + 1 end if
(18) end do

——————- The Lines 19-21 are the same as in Figure 1 ——————–

Fig. 2. Algorithm for process pi in ASn,t[A]



From an Intermittent Rotating Star to a Leader 201

on the other side, susp leveli[k] has to be forever increased if pk has crashed. To attain
these “conflicting” goals, the variables susp leveli[k] and suspicioni[rn, k] are simul-
taneously used as follows: susp leveli[k] is increased if suspicioni[rn, k] = n − t
and, ∀x such that rn − susp leveli[k] < x < rn, we have suspicioni[x, k] ≥ n − t.
When it is satisfied, this additional condition means that pk has been continuously
suspected during “enough” rounds in order susp leveli[k] to be increased. The ex-
act meaning of “enough” is dynamically defined as being the round number window
[rn − susp leveli[k] + 1, rn], thereby allowing not to explicitly use the bound D (that
constraints the sequence S) in the text of the algorithm.

5.2 Proof of the Algorithm

The statements of the lemmas and theorem that follow are the same as in Section 4. As
A is weaker than A+ their proofs are different.

Lemma 3. Let pi be a correct process and pj a faulty process. susp leveli[j] increases
forever.

Lemma 4. Let p� be a correct process that is the center of an eventual rotating t-star
(i.e., it makes true A). There is a time after which, for any process pi, susp leveli[�] is
never increased at Line 17.

Theorem 2. The algorithm described in Figure 2 implements Ω in ASn,t[A].

6 A Bounded Variable A-Based Leader Algorithm

When we examine the A-based leader algorithm described in Figure 2, it appears that,
for each process pi, the size of its variables is bounded, except for variables s rni,
r rni, and susp leveli[j] in some cases (e.g., when pj crashes). Since the current
value of max({susp leveli[j]}1≤j≤n) is used by pi to reset its timer, it follows that
all the timeout values are potentially unbounded (e.g., this occurs as soon as one pro-
cess crashes).

We show here that each local variable susp leveli[j] can be bounded whatever the
behavior of pj and the time taken by the messages sent by pj to pi. Consequently, all the
variables (except the round numbers) are bounded, be the execution finite or infinite. It
follows that all the timeout values are bounded, whatever the fact that processes crash
or not, and the links are timely or not. This is a noteworthy property of the algorithm.
(Of course, it remains possible to use s rni or r rni if, due to specific application
requirements, one needs to have increasing timeouts.)

6.1 Bounding all the Variables susp leveli[k]

Let us observe that if susp leveli[k] is not the smallest value of the array susp leveli,
pi does not currently considers pk as the leader. This means that it is not necessary
to increase susp leveli[k] when susp leveli[k] 	= min({susp leveli[j]}1≤j≤n). The
proof shows that this intuition is correct.
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(13) upon reception SUSPICION(rn, suspects) from pj :
(14) for each k ∈ suspects do
(15) suspicionsi[rn, k] ← suspicionsi[rn, k] + 1;
(16) if (suspicionsi[rn, k] = n − t)

* ∧ (∀x : rn − susp leveli[k] < x < rn : suspicionsi[x, k] ≥ n − t)
** ∧ (susp leveli[k] = min({susp leveli[j]}1≤j≤n))

(17) then susp leveli[k] ← susp leveli[k] + 1 end if
(18) end do

Fig. 3. Algorithm with bounded variables for process pi in ASn,t[A]

Let B be the final smallest value in the array susp leveli[1..n], once the eventual
leader has been elected. The previous observation allows us to conclude that no value in
this array will ever be greater than B +1, and consequently, all the values are bounded.

As for the previous algorithm (Figure 2), The resulting algorithm can be attained
by adding a single line (more precisely, an additional test) to the A+-based algorithm
described in Figure 1. This new test is described in Figure 3 where it appears at the line
marked “**”.

6.2 Proof and Properties of the Algorithm

Lemma 5. Let p� be a correct process that makes true the assumption A. There is a
time after which, for any process pi, susp leveli[�] is never increased at Line 17.

Definition 3. Let Bj be the greatest value (or +∞ if there is no such finite value) ever
taken by a variable susp leveli[j], ∀i ∈ [1..n]. Let B = min(B1, . . . , Bn) or +∞ if
all Bj are equal to +∞.

Lemma 6. Let pi be a correct process and pj a faulty process. We eventually have
susp leveli[j] > B.

Theorem 3. The algorithm described in Figure 3 implements Ω in ASn,t[A].

Lemma 7. ∀ pi, max({susp leveli[x]}1≤x≤n) − min({susp leveli[x]}1≤x≤n) ≤ 1
is always satisfied.

Theorem 4. No variable susp leveli[j] is ever larger than B + 1.

7 Conclusion

Combining the result of [3,4] with this paper we obtain the following theorem:

Theorem 5. Consensus can be solved in any message-passing asynchronous system
that has (1) a majority of correct processes (t < n/2), and (2) an intermittent rotating
t-star.
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Abstract. The multiprocessor Deadline-Monotonic scheduling of sporadic task
systems is studied. A new sufficient schedulability test is presented and proved
correct. It is shown that this test offers non-trivial quantitative guarantees, includ-
ing a processor speedup bound.
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1 Introduction

A real-time system is often modelled as a finite collection of independent recurring
tasks, each of which generates a potentially infinite sequence of jobs. Every job is char-
acterized by an arrival time, an execution requirement, and a deadline, and it is required
that a job complete execution between its arrival time and its deadline. Different formal
models for recurring tasks place different restrictions on the values of the parameters
of jobs generated by each task. One of the more commonly used formal models is the
sporadic task model [1,2], which is described in Section 2.1

In this paper, we consider real-time systems that are modeled by the sporadic task
model and implemented upon a platform comprised of several identical processors. We
assume that the platform

– is fully preemptive: an executing job may be interrupted at any instant in time and
have its execution resumed later with no cost or penalty.

– allows for global inter-processor migration: a job may begin execution on any pro-
cessor and a preempted job may resume execution on the same processor as, or a
different processor from, the one it had been executing on prior to preemption.

– forbids intra-task parallelism: each task may have at most one job executing on at
most one processor at each instant in time, regardless of how many jobs of the task
are awaiting execution and how many processors are idle.

We study the behavior of the well-known and very widely-used Deadline Monotonic
scheduling algorithm [3] when scheduling systems of sporadic tasks upon such pre-
emptive platforms. (We describe the Deadline Monotonic algorithm is Section 2.3.) We
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will refer to Deadline Monotonic scheduling with global inter-processor migration as
global DM (or simply DM).

Our results, and significance. We present a new test for determining whether a given
sporadic task system is guaranteed to meet all deadlines upon a specified computing
platform, when scheduled using global DM. We prove the correctness of this test, and
provide several different quantitative characterizations of its performance. For instance,
we show that any sporadic task system that is feasible (i.e., can be scheduled using an
optimal clairvoyant algorithm) is identified as being DM-schedulable by our test upon a
platform in which each processor is approximately four times as fast.

Previous tests for determining whether sporadic task systems can be successfully
scheduled using DM have been applicable only to task systems in which every sporadic
task generates a job only after the deadline of its previous job has elapsed (such task
systems are called constrained-deadline task systems – see Section 2.1). Since (as stated
above) our machine model forbids the simultaneous execution of multiple jobs of the
same task, getting rid of this restriction turns out to be surprisingly challenging. We
believe that one of the major contributions of the research represented in this paper is
the discovery of general techniques for dealing with task systems in the absence of this
restriction, thereby enabling the analysis of the behavior of scheduling algorithms on
sporadic task systems that are not constrained-deadline.

Organization. The remainder of this paper is organized as follows. In Section 2 we
formally define the task and machine models used, and provide some additional use-
ful definitions. In Section 3 we derive, and prove the correctness of, a new global DM

schedulability test. In Section 4 we provide a quantitative characterization of the effi-
cacy of this new schedulability test in terms of the resource augmentation metric.

2 Model and Definitions

In this section, we describe in greater detail the task (Section 2.1) and machine (Sec-
tion 2.2) models used in this research. We also briefly discuss the Deadline Mono-
tonic scheduling algorithm (Section 2.3), and motivate and describe the speedup metric
which we use to evaluate the goodness of the schedulability test that will be derived
(Section 2.4). We briefly list some related research in Section 2.5.

2.1 Task Model

A sporadic task τi = (Ci, Di, Ti) is characterized by a worst-case execution require-
ment Ci, a (relative) deadline Di, and a minimum inter-arrival separation parameter
Ti, also referred to as the period of the task. Such a sporadic task generates a poten-
tially infinite sequence of jobs, with successive job-arrivals separated by at least Ti

time units. Each job has a worst-case execution requirement equal to Ci and a dead-
line that occurs Di time units after its arrival time. We refer to the interval, of size Di,
between such a job’s arrival instant and deadline as its scheduling window. A sporadic
task system is comprised of several such sporadic tasks. A task system is said to be a
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constrained-deadline sporadic task system if it is guaranteed that each task in the sys-
tem has its relative deadline parameter no larger than its period. A task system that is
not constrained-deadline is said to be an arbitrary-deadline task system.

Throughout this paper, τ denotes an arbitrary-deadline sporadic task comprised of
the n tasks τ1, τ2, . . . , τn. We assume that these tasks are indexed in order or non-
decreasing relative deadline parameters: Di ≤ Di+1 for all i, 1 ≤ i < n.

We now introduce some definitions and notation used in the remainder of this paper.

Definition 1 (density; largest density). The density δi of a task τi is the ratio (Ci/ min
(Di, Ti)) of its execution requirement to the smaller of its relative deadline and its pe-
riod. For each k, 1 ≤ k ≤ n, δmax(k) denotes the largest density from among the tasks
τ1, τ2, . . . , τk:

δmax(k) def=
k

max
i=1

(δi)

��

That is, δmax(k) denotes the density of the task of greatest density among the k tasks
with the smallest values of the relative deadline parameters.

The concepts of demand bound function and load find widespread use in real-time
schedulability analysis. We provide formal definitions below; for further detail, consult,
e.g., [4].

Definition 2 (DBF). For any t > 0, the demand bound function DBF(τi, t) of a spo-
radic task τi bounds the maximum cumulative execution requirement by jobs of τi that
both arrive in, and have deadlines within, any interval of length t. ��

It has been shown [2] that

DBF(τi, t) = max
(

0, (
⌊

t − Di

Ti

⌋

+ 1)Ci

)

Definition 3 (load). For each k, 1 ≤ k ≤ n, a load parameter is defined as follows:

LOAD(k) def= max
t>0

(∑k
i=1 DBF(τi, t)

t

)

��

Efficient algorithms have been designed for computing LOAD both exactly in pseudo-
polynomial time, and approximately to any arbitrary desired degree of accuracy in poly-
nomial time — see, e.g., [5,6].

The following Lemma relates the density of a task to its DBF:

Lemma 1. For all tasks τi and for all t ≥ 0,

t × δi ≥ DBF(τi, t) .
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Proof Sketch: This lemma is easily validated informally by sketching DBF(τi, t) as
a function of t, and comparing this with the graph for t × δi, a straight line of slope
(Ci/ min(Di, Ti)) through the origin. DBF(τi, t) is a step function comprised of steps
of height Ci, with the first step at t = Di and successive steps exactly Ti time units
apart. It is seen that the graph of δi lies above the plot for DBF(τi, t), for all t. (For
Di < Ti, the graph for δi touches the plot for DBF(τi, t) at t = Di; for Di = Ti, the
two touch at all integer multiples of Ti; and for Di > Ti the two plots never touch.) ��
In constrained task systems — those in which Di ≤ Ti ∀i — a job becomes eligible
to execute upon arrival, and remains eligible until it completes execution1. In systems
with Di > Ti for some tasks τi, we require that at most one job of each task be eligible
to execute at each time instant. We assume that jobs of the same task are considered in
first-come first-served order; hence, a job only becomes eligible to execute after both
these conditions are satisfied: (i) it has arrived, and (ii) all previous jobs generated by
the same task that generated it have completed execution. This gives rise to the notion of
an active task: briefly, a task is active at some instant if it has some eligible job awaiting
execution at that instant. More formally,

Definition 4 (active task). A task is said to be active in a given schedule at a time-
instant t if some job of the task is eligible to execute at time-instant t. That is, (i) t ≥
the greater of the job’s arrival time and the completion time of the previous job of the
same task, and (ii) the job has not completed execution prior to time-instant t. ��

2.2 Processor Model

In this paper, we study the scheduling of sporadic task systems upon a platform com-
prised of m identical processors, where m is an integer ≥ 1. For the most part (except,
e.g., in Lemmas 4 and 5), we assume that all processors are of unit computing capac-
ity: a job completes one unit of execution by executing upon a processor for one unit
of time. We assume that the platform is fully preemptive — an executing job may be
interrupted at any instant in time and have its execution resumed later with no cost or
penalty. We assume that the platform allows for global inter-processor migration – a
job may begin execution on any processor, and a preempted job may resume execution
on the same processor as, or a different processor from, the one it had been executing
on prior to preemption. (However, each task may have at most one job executing on at
most one processor at each instant in time.)

2.3 Deadline Monotonic Scheduling

Priority-driven scheduling algorithms operate as follows: at each instant in time they
assign a priority to each job that is awaiting execution, and choose for execution the
jobs with the greatest priority. The Deadline Monotonic (DM) scheduling algorithm [3]
is a priority-driven scheduling algorithm that assigns priority to jobs according to the
relative-deadline parameter of the task that generates them: the smaller the relative
deadline, the greater the priority.

1 Or its deadline has elapsed, in which case the system is deemed to have failed.
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Recall that we are assuming that tasks are indexed in order of non-decreasing dead-
lines; henceforth, we assume that DM assigns jobs of τi priority over jobs of τi+1, for
all i.

2.4 Processor Speedup Bounds

With respect to a given platform, a given sporadic task system is said to be feasible if
there exists a schedule meeting all deadlines, for every collection of jobs that may be
generated by the task system. A given sporadic task system is said to be (global) DM

schedulable if DM meets all deadlines for every collection of jobs that may be generated
by the task system. While every DM-schedulable task system is trivially feasible, it is
known that not all feasible task systems are DM-schedulable. A schedulability test for
DM scheduling accepts as input the specifications of a sporadic task system and an iden-
tical multiprocessor platform, and determines whether the system is DM-schedulable
upon the platform. Such a test is exact if is correctly identifies all DM-schedulable sys-
tems, and sufficient if it identifies some, but not necessarily all, DM-schedulable systems
(however, it must not incorrectly declare some non DM-schedulable system to be DM-
schedulable).

Processor speedup bounds are one metric that may be used for quantifying the qual-
ity of sufficient schedulability tests. A sufficient schedulability test is said to have a
processor speedup bound of c if

– Any task system deemed schedulable by the test is guaranteed to actually be so;
and

– For any task system that is not deemed schedulable by the test, it is the case that the
task system is actually not schedulable upon a platform in which each processor is
1
c times as fast.

Intuitively speaking, a processor speedup bound of c for a sufficient schedulability test
implies that the inexactness of the test penalizes its user by at most a speedup factor of
c when compared to an exact test. The smaller the processor speedup bound, the better
the sufficient schedulability test: a processor speedup bound of 1 would mean that the
test is in fact an exact one.

2.5 Related Work

The Deadline Monotonic scheduling algorithm has been widely studied in the context of
uniprocessor systems (see, e.g., [7,8,9,4]), and is arguably one of the most widely-used
real-time scheduling algorithms. However, not much research has been done on global
DM scheduling upon multiprocessor platforms. Baker [10] and Bertogna et al. [11] have
presented, and evaluated via simulation, sufficient schedulability tests for multiproces-
sor global DM that are essentially formulae involving the parameters of all the tasks
in the system under consideration. Our own recent research [12,13] has attempted to
obtain speedup bounds for DM; however, our results thus far only apply to constrained-
deadline sporadic task system. To our knowledge, this paper contains the first non-trivial
speedup bounds for global DM of arbitrary-deadline sporadic task systems.
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Fig. 1. Notation. A job of task τk arrives at ta. Task τk is is not active immediately prior to ta,
and is continually active over [ta, td).

3 A DM Schedulability Test

In this section, we derive (Theorem 1) a DM-schedulability test for arbitrary sporadic
task systems.

Consider any legal sequence of job requests of task system τ , on which DM misses
a deadline. Suppose that a job Jk of task τk is the one to first miss a deadline, and that
this deadline miss occurs at time-instant td (see Figure 1).

Discard from the legal sequence of job requests all jobs of tasks with priority lower
than τk’s, and consider the DM schedule of the remaining (legal) sequence of job re-
quests. Since lower-priority jobs have no effect on the scheduling of greater-priority
ones under preemptive DM, it follows that a deadline miss of τk occurs at time-instant
td (and this is the earliest deadline miss), in this new DM schedule. We will focus hence-
forth on this new DM schedule.

Let ta denote the earliest time-instant prior to td, such that τk is continuously active2

over the interval [ta, td]. It must be the case that ta is the arrival time of some job of τk

since τk is, by definition, not active just prior to ta and becomes active at ta.
It must also be the case that ta ≤ td −Dk. This follows from the observation that the

job of τk that misses its deadline at td arrives at td − Dk. If Dk < Tk, then ta is equal
to this arrival time of the job of τi that misses its deadline at td. If Dk ≥ Tk, however,
tk may be the arrival-time of an earlier job of τk.

Let C denote the cumulative execution requirement of all jobs of τk that arrive ≥ ta,
and have deadline ≤ td. By definition of DBF and Lemma 1, we have

C ≤ DBF(τk, td − ta) ≤ δk × (td − ta) . (1)

We now introduce some notation: for any time-instant t ≤ ta,

– let W (t) denote the total amount that all jobs, other than those generated by task
τk that arrive ≥ ta, and have deadline ≤ td, execute over the interval [t, td) in this
new DM schedule, plus C. (Informally, W (t) denotes the amount of work that DM

needs –but fails– to execute over [t, td).)
– Let Ω(t) denote W (t) normalized by the interval-length: Ω(t) def= W (t)/(td − t).

Since jobs of τk receive strictly less than C units of execution over [ta, td), all m pro-
cessors must be executing jobs of tasks other than τk for a total duration greater than
(td − ta − C) over this interval. Hence it must be the case that

W (ta) > (td − ta − C)m + C
2 See Definition 4 to recall the definition of an active task.
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i.e.,

Ω(ta) >
(td − ta − C)m + C

td − ta

= m − (m − 1)
C

td − ta

≥ m − (m − 1)
(δk × (td − ta))

td − ta
(By Equation 1)

= m − (m − 1)δk

Let
μk

def= m − (m − 1)δk (2)

Let to denote the smallest value of t ≤ ta such that Ω(t) ≥ μk. Let Δ
def= td − to (see

Figure 1).
Now the work that needs to be done by DM over [to, td) (which we denote as W (to))

arises from two sources: those jobs that arrive at or after to, and those that arrive prior
to to but have not completed execution in the DM schedule by time-instant to. We will
refer to jobs arriving prior to to that need execution over [to, td) as carry-in jobs. (The
job of τi arriving at time-instant ti in Figure 1 is an example of a carry-in job, provided
it is still active at time-instant to.)

For constrained sporadic task systems — those in which Di ≤ Ti(∀i) — a bound can
be obtained on the number of carry-in jobs. Unfortunately, extending this bound directly
to arbitrary-deadline sporadic task systems yields a bound that is too pessimistic to be
useful. However, similar reasoning can be applied to bound the number of distinct tasks
contributing carry-in jobs (although each such task may contribute multiple carry-in
jobs).

Lemma 2. The number of tasks that have carry-in jobs is bounded from above by
�μk� − 1.

Proof: Let ε denote an arbitrarily small positive number. By definition of the instant to,
Ω(to − ε) < μk while Ω(to) ≥ μk; consequently, strictly fewer than μk jobs must have
been executing at time-instant to. And since μk ≤ m (as can be seen from Equation 2
above), it follows that some processor was idled over [to − ε, to), implying that all tasks
with jobs awaiting execution at this instant would have been executing. This allows us
to conclude that there are strictly fewer than μk – equivalently, at most (�μk� − 1) –
tasks with carry-in jobs. ��

Lemma 3. The total remaining execution requirement of all the carry-in jobs of each
task τi (that has carry-in jobs at time-instant to) is < Δ × δmax(k).

Proof: Let us consider some task τi that has carry-in jobs. By definition of carry-in
jobs, it must be the case that τi is active at time-instant to. Let ti < to denote the
earliest time-instant such that τi is active throughout the interval [ti, to]. Observe that ti
is necessarily the arrival time of some job of τi. If Di < Ti, then ti is the arrival time
of the (sole) carry-in job of τi, as illustrated in Figure 1. If Di ≥ Ti, however, ti may
be the arrival-time of a job that is not a carry-in job — see Figure 2.
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Let φi
def= to − ti (see Figure 1). All the carry-in jobs of τi have their arrival-times and

their deadlines within the (φi +Δ)-sized interval [ti, to), and consequently their cumu-
lative execution requirement is ≤ DBF(τi, φi + Δ); in what follows, we will quantify
how much of this must have been completed prior to to (and hence cannot contribute to
the carry-in). We thus obtain an upper bound on the total work that all the carry-in jobs
of τi contribute to W (to), as the difference between DBF(τi, φi + Δ) and the amount
of execution received by τi over [ti, to).

By definition of to as the earliest time-instant t ≤ ta at which Ω(t) ≥ μk, it must be
the case that Ω(ti) < μk. That is,

W (ti) < μk(Δ + φi) (3)

On the other hand, Ω(to) ≥ μk, meaning that

W (to) ≥ μkΔ (4)

From Inequalities 3 and 4 and the definition of W (·), it follows that the amount of work
done in the EDF schedule over [ti, to) is less than μkφi. Let yi denote the amount of time
over this interval [ti, to), during which some job of τi is executing. All m processors
must be executing jobs from tasks other than τi for the remaining (φi − yi) time units,
implying that the total amount of work done in the DM schedule over [ti, to) is at least
m(φi − yi) + yi. From these upper and lower bounds, we have

m(φi − yi) + yi < μkφi

≡ mφi − (m − 1)yi < (m − (m − 1)δk)φi

⇒ mφi − (m − 1)yi < (m − (m − 1)δmax(k))φi

≡ yi > φiδmax(k) (5)

As argued above, the total amount of work contributed to W (to) by all the carry-in
jobs of τi is bounded from above by DBF(τi, φi + Δ) minus the amount of execution
received by jobs of τi over [ti, to). This is bounded from above by

DBF(τi, φi + Δ) − yi

< DBF(τi, φi + Δ) − φi δmax(k) (by Inequality 5 above)

≤ (φi + Δ)δi − φi δmax(k) (from Lemma 1)

≤ (φi + Δ)δmax(k) − φi δmax(k)
= Δ δmax(k)

as claimed in the lemma. ��
A pointed out previously, W (to) — the amount of work that the DM schedule needs (but
fails) to execute over [to, td) — arises from two sources: the carry-in jobs, and those
jobs that arrived at or after to.

– First, consider the work contributed by the carry-in jobs: by Lemmas 2 and 3,
there are at most (�μk�− 1) distinct tasks with carry-in jobs, with the total carry-in
work for all the jobs of each task bounded from above by Δ δmax(k) units of work.
Therefore their total contribution to W (to) is bounded from above by (�μk� −
1)Δ δmax(k).
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�
time

ti to

�

�

�

�

�

�

φi
� �

Fig. 2. Example: defining ti for a task τi with Di ≥ Ti. Three jobs of τi are shown. Task τi is
not active prior to the arrival of the first of these 3 jobs, and the first job completes execution
only after the next job arrives. This second job does not complete execution prior to to. Thus, the
task is continuously active after the arrival of the first job shown, and ti is hence set equal to the
arrival time of this job.

– All other jobs that contribute to W (to) arrive within the Δ-sized interval [to, td),
and hence have their deadlines within [to, td + Dk), since their relative deadlines
are all ≤ Dk. Their total execution requirement is therefore bounded from above
by (Δ + Dk) × LOAD(k).

Considering both sources together, we obtain the following bound on W (to):

W (to) ≤ (Δ + Dk)LOAD(k) + (�μk� − 1)Δ δmax(k) (6)

Since, by the definition of to, it is required that Ω(to) be at least as large as μ, we must
have (

1 +
Dk

Δ

)

LOAD(k) + (�μk� − 1)δmax(k) ≥ μk

as a necessary condition for DM to miss a deadline; equivalently, the negation of this
condition is sufficient to ensure DM-schedulability:

(

1 +
Dk

Δ

)

LOAD(k) + (�μk� − 1)δmax(k) < μk

⇐ (since Dk ≤ Δ)

2 LOAD(k) + (�μk� − 1)δmax(k) ≤ μk

This immediately yields the following sufficient schedulability condition for global DM:

Theorem 1. Sporadic task system τ is global-DM schedulable upon a platform com-
prised of m unit-capacity processors, provided that for all k, 1 ≤ k ≤ n,

2 LOAD(k) + (�μk� − 1)δmax(k) < μk , (7)

where μk is as defined in Equation 2 above: μk = m − (m − 1)δk. ��

4 A Processor Speedup Bound

Theorem 1 can be used to determine whether any sporadic task system is DM-
schedulable upon a platform of m unit-capacity processors. To our knowledge, this is
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the first DM-schedulability test that is applicable to arbitrary-deadline sporadic task sys-
tems. In this section, we obtain a processor speedup bound for this DM-schedulability
test. Our approach is as follows. We will identify (Lemma 5) the smallest value of x ≤ 1
for which we can prove that any sporadic task system not deemed DM-schedulable upon
m speed-1 processors by the test of Theorem 1 is infeasible upon m speed-x processors.
By taking the contra-positive, we may conclude that 1

x is a processor speedup bound
for the test of Theorem 1.

We first obtain the following corollary to Theorem 1:

Corollary 1. Sporadic task system τ is global-DM schedulable upon a platform com-
prised of m unit-capacity processors, provided that for all k, 1 ≤ k ≤ n,

LOAD(k) ≤ 1
2
(m − (m − 1)δk)(1 − δmax(k)) (8)

Proof: From Theorem 1, we know that τk meets its deadline provided for all k, 1 ≤
k ≤ n,

2 LOAD(k) + (�μk� − 1)δmax(k) ≤ μk

≡ LOAD(k) ≤ μk − (�μk� − 1)δmax(k)
2

⇐ Since �μk� − 1 < μk

LOAD(k) ≤ 1
2

μk (1 − δmax(k))

≡ LOAD(k) ≤ 1
2
(m − (m − 1)δk)(1 − δmax(k))

which is as claimed in the corollary. ��
We are almost ready to obtain a processor speedup bound. But first, we need another
technical lemma.

Lemma 4. Any sporadic task system τ that is feasible upon a multiprocessor platform
comprised of m speed-x processors must satisfy

δmax(k) ≤ x and LOAD(k) ≤ mx (9)

for all k, 1 ≤ k ≤ n.

Proof Sketch: Suppose that task system τ is feasible upon m speed-x processors. To
prove that δmax(k) ≤ x, consider each task τi separately:

– In order to be able to meet all deadlines of τi if τi generates jobs exactly Ti time
units apart, it is necessary that Ci/Ti ≤ x.

– Since any individual job of τi can receive at most Di × x units of execution by its
deadline, we must have Ci ≤ Di × x; i.e., Ci/Di ≤ x.

Putting both conditions together, we get (Ci/ min(Ti, Di)) ≤ x. Taken over all the
tasks τ1, τ2, . . . , τk, this observation yields the condition that δmax(k) ≤ x.

Since any individual job of τi can receive at most Di × x units of execution by its
deadline, we must have Ci ≤ Di × x; i.e., Ci/Di ≤ x. Taken over all tasks in τ , this
observation yields the first condition.
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To prove that LOAD(k) ≤ mx, recall the definition of LOAD(k) from Section 1. Let
t′ denote some value of t which defines LOAD(k):

t′ def= argmax
t>0

(∑k
i=1 DBF(τi, t)

t

)

.

Suppose that all tasks in {τ1, τ2, . . . , τk} generate a job at time-instant zero, and each
task τi generates subsequent jobs exactly Ti time-units apart. The total amount of exe-
cution that is available over the interval [0, t′) on this platform is equal to mxt′; hence,
it is necessary that LOAD(k) ≤ mx if all deadlines are to be met. ��
Using Corollary 1 and Lemma 4, we obtain below a bound on the processor speedup
that is sufficient in order for the test of Theorem 1 to identify DM-schedulability:

Lemma 5. Any sporadic task system that is feasible upon a multiprocessor platform
comprised of m speed-x processors platform is determined to be global-DM schedula-
ble on m unit-capacity processors by the DM-schedulability test of Theorem 1, provided

x ≤ (4m − 1) −
√

12m2 − 8m + 1
2(m − 1)

(10)

Proof: Suppose that τ is feasible upon a platform comprised of m speed-x processors.
From Lemma 4, it must be the case that LOAD(k) ≤ mx and δmax(k) ≤ x for all k. For
τ to be determined to be DM-schedulable upon m unit-capacity processors by the test
of Theorem 1, it follows from Corollary 1 that it is sufficient that for all k, 1 ≤ k ≤ n:

LOAD(k) ≤ 1
2
(m − (m − 1)δk)(1 − δmax(k))

⇐ mx ≤ 1
2
(m − (m − 1)x)(1 − x)

≡ (m − 1)x2 − (4m − 1)x + m ≥ 0

Solving for x using standard techniques for the solution of quadratic inequalities yields
Equation 10. ��
Lemma 5 bounds from above the values of x such that task systems feasible on speed-x
processors are correctly identified as being DM-schedulable by the test of Theorem 1.
From the definition of processor speedup (Section 2.4), it can be seen that the proces-
sor speedup bound for the schedulability test of Theorem 1 is obtained by taking the
multiplicative inverse of this x:

Theorem 2. The DM-schedulability test of Theorem 1 has a processor speedup bound
of

2(m − 1)
(4m − 1) −

√
12m2 − 8m + 1

(11)

��

Equation 11 expresses the processor speedup bound as a function of the number of
processors m in the platform. The computed values for selected example values of m are
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Table 1. The processor speedup bound as a function of m

m: 3 4 5 10 20 30 50 100 1000

speedup: 2.246 2.595 2.812 3.261 3.494 3.572 3.636 3.684 3.727

listed in Table 1 above. As seen from this table, the bound increases with increasing m,
apparently approaching some upper bound as m becomes very large. Standard algebraic
techniques may be used to show that it is indeed the case that the bound of Equation 11
increases with increasing m, asymptotically approaching (2 +

√
3) as m → ∞:

Corollary 2. The DM-schedulability test of Theorem 1 has a processor speedup bound
of (2 +

√
3) (≈ 3.73). ��

Discussion. It is known that global DM is not an optimal scheduling algorithm upon uni-
or multi-processors, in the sense that there are feasible arbitrary-deadline sporadic task
systems upon which DM misses deadlines. It is also easy to show that the schedulability
test of Theorem 1 is not an exact one, in that there are DM-schedulable systems that this
test fails to correctly identify as being so. The significance of the processor speedup
result in Corollary 2 lies in what it tells us about the “goodness” of the conjunction of
global DM and our schedulability test: in essence, it is asserting that a processor speedup
of (2 +

√
3) compensates for both the non-optimality of global DM and the inexactness

of our schedulability test.

5 Conclusions

We have derived a new sufficient schedulability test for determining whether a given
sporadic task system is DM-schedulable upon a preemptive multiprocessor platform,
when global inter-processor migration is permitted. To our knowledge, this is the first
non-trivial DM schedulability test that may be be applied to the analysis of arbitrary-
deadline sporadic task systems.

We have also obtained a processor speedup bound for our test. This speedup bound
of (2 +

√
3) ≈ 3.73 tells us that any arbitrary-deadline sporadic task system that is

feasible upon a multiprocessor platform is correctly identified by our test as being DM-
schedulable upon a platform in which each processor is 3.73 times as fast.
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Abstract. LFTHREADS is a thread library entirely based on lock-free methods,
i.e. no spin-locks or similar synchronization mechanisms are employed in the
implementation of the multithreading. Since lock-freedom is highly desirable in
multiprocessors/multicores due to its advantages in parallelism, fault-tolerance,
convoy-avoidance and more, there is an increased demand in lock-free meth-
ods in parallel applications, hence also in multiprocessor/multicore system ser-
vices. This is why a lock-free multithreading library is important. To the best of
our knowledge LFTHREADS is the first thread library that provides a lock-free
implementation of blocking synchronization primitives for application threads.
Lock-free implementation of objects with blocking semantics may sound like a
contradicting goal. However, such objects have benefits: e.g. library operations
that block and unblock threads on the same synchronization object can make
progress in parallel while maintaining the desired thread-level semantics and
without having to wait for any “slow” operations among them. Besides, as no
spin-locks or similar synchronization mechanisms are employed, processors are
always able to do useful work. As a consequence, applications, too, can enjoy
enhanced parallelism and fault-tolerance. The synchronization in LFTHREADS is
achieved by a new method, which we call responsibility hand-off (RHO), that
does not need any special kernel support.

Keywords: lock-free, multithreading, multiprocessors, multicores, synchroniza-
tion, shared memory.

1 Introduction

Multiprogramming and threading allow the processor(s) to be shared efficiently by sev-
eral sequential threads of control. This paper studies synchronization algorithms for re-
alizing standard thread-library operations and objects (create, exit, yield and mutexes)
based entirely on lock-free methods. Lock-freedom implies that no spin-locks or simi-
lar locking synchronization is used in the implementation of the operations/objects and
guarantees that in a set of concurrent operations at least one of them makes progress
when there is interference and thus operations eventually completes.

The rationale in LFTHREADS is that processors should always be able to do useful
work when there are runnable threads available, regardless of what other processors do;
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i.e. despite other processors simultaneously accessing shared objects related with the
implementation of the LFTHREADS-library operations and/or suffering stop failures or
delays (e.g. from I/O or page-fault interrupts).

Even a lock-free thread library needs to provide blocking synchronization objects,
e.g. for mutual exclusion in legacy applications and for other applications where threads
might need to be blocked, e.g. to interact with some external device. Our new synchro-
nization method in LFTHREADS implements a mutual exclusion object with the stan-
dard blocking semantics for application threads but without enforcing mutual exclusion
among the processors executing the threads.We consider this an important part of the
contribution in this paper. It enables library operations blocking and unblocking threads
on the same synchronization object to make progress in parallel, while maintaining the
desired thread-level semantics, without having to wait for any “slow” operation among
them to complete. This is achieved via a new synchronization method, which we call
responsibility hand-off (RHO), which may also be useful in lock-free synchronization
constructions in general. Roughly speaking, the RHO method handles cases where pro-
cessors need to perform sequences of atomic actions on a shared object in a consistent
and lock-free manner, for example a combination of (i) checking the state of a mutex,
(ii) blocking if needed by saving the current thread state and (iii) enqueuing the blocked
thread on the waiting queue of the mutex; or a combination of (i) changing the state
of the mutex to unlocked and (ii) activating a blocked process if there is any. “Tradi-
tional” ways to do the same use locks and are therefore vulnerable to processors failing
or being delayed, which the RHO method is not. The method is lock-free and manages
thread execution contexts without needing special kernel or scheduler support.
Related and motivating work. A special kernel-level mechanism, called scheduler ac-
tivations, has been proposed and studied [1,2], to enable user-level threads to offer the
functionality of kernel-level threads with respect to blocking and also leave no processor
idle in the presence of ready threads, which is also LFTHREADS’s goal. It was observed
that application-controlled blocking and interprocess communication can be resolved at
user-level without modifications to the kernel while achieving the same goals as above,
but multiprogramming demands and general blocking, such as for page-faults, seem
to need scheduler activations. The RHO method and LFTHREADS complement these
results, as they provide thread synchronization operation implementations that do not
block each other unless the application blocks within the same level (i.e. user- or kernel-
level). LFTHREADS can be combined with scheduler activations for a hybrid thread
implementation with minimal blocking.

To make the implementation of blocking mutual exclusion more efficient, operating
systems that implement threads at the kernel level may split the implementation of
the mutual exclusion primitives between the kernel and user-level. This is done in e.g.
Linux [3] and Sun Solaris [4]. This division allows the cases where threads do not need
to be blocked or unblocked, to be handled at the user-level without invoking a system
call and often in a non-blocking way by using hardware synchronization primitives.
However, when the calling thread should block or when it needs to unblock some other
thread, an expensive system call must be performed. Such system calls contain, in all
cases we are aware of, critical sections protected by spin locks.
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Although our present implementation of LFTHREADS is entirely at the user-level,
its algorithms are also suited for use in a kernel - user-level divided setting. With our
method a significant benefit would be that there is no need for spin locks and/or dis-
abling interrupts in either the user-level or the kernel-level part.

Further research motivated by the goal to keep processors busy doing useful work
and to deal with preemptions in this context includes: mechanisms to provide some form
of control on the kernel/scheduler to avoid unwanted preemption (cf. e.g. [5,6]) or the
use of some application-related information (e.g. from real-time systems) to recover
from it [7]; [8] and subsequent results inspired by it focus on scheduling with work-
stealing, as a method to keep processors busy by providing fast and concurrent access
to the set of ready threads; [9] aims at a similar direction, proposing thread scheduling
that does not require locking (essentially using lock-free queuing) in a multithreading
library called Lesser Bear; [10] studied methods of scheduling to reduce the amount of
spinning in multithreaded mutual exclusion; [11] focuses on demands in real-time and
embedded systems and studies methods for efficient, low-overhead semaphores; [12]
gives an insightful overview of recent methods for mutual exclusion.

There has been other work at the operating system kernel level [13,14,15,16], where
basic kernel data structures have been replaced with lock-free ones with both perfor-
mance and quality benefits. There are also extensive interest and results on lock-free
methods for memory management (garbage collection and memory allocation, e.g.
[17,18,19,20,21,22]).

The goal of LFTHREADS is to implement a common thread library interface,
including operations with blocking semantics, in a lock-free manner. It is possible
to combine LFTHREADS with lock-free and other non-blocking implementations of
shared objects, such as the NOBLE library [23] or software transactional memory
constructions (cf. e.g. [24,25]).

2 Preliminaries

System model. The system consists of a set of processors, each having its own local
memory as well as being connected to a shared memory through an interconnect net-
work. Each processor executes instructions sequentially at an arbitrary rate. The shared
memory might not be uniform, that is, for each processor the latency to access some
part of the memory is not necessarily the same as the latency for any other processor to
access that part. The shared memory supports atomic read and write operations of any
single memory word, and also stronger single-word synchronization primitives, such as
Compare-And-Swap (CAS) and Fetch-And-Add (FAA) used in the algorithms in this
paper. These primitives are either available or can easily be derived from other available
primitives [26,27] on contemporary microprocessor architectures.

Lock-free synchronization. Lock-freedom [28] is a type of non-blocking synchro-
nization that guarantees that in a set of concurrent operations at least one of them makes
progress each time operations interfere and thus some eventually completes. Other types
of non-blocking synchronization are wait-freedom and obstruction-freedom. The cor-
rectness condition for atomic non-blocking operations is linearizability [29]. An exe-
cution is linearizable if it guarantees that even when operations overlap in time, each
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of them appears to take effect at an atomic time instant that lies within its respective
time duration, such that the effect of each operation is consistent with the effect of its
corresponding operation in a sequential execution in which the operations appear in the
same order.

Non-blocking synchronization is attractive as it offers advantages over lock-based
synchronization, w.r.t. priority inversion, deadlocks, lock convoys and fault tolerance.
It has also been shown, using well-known parallel applications, that lock-free methods
imply at least as good performance as lock-based ones in several applications, and of-
ten significantly better [30,31]. Wait-free algorithms, as they provide stronger progress
guarantees, are inherently more complex and more expensive than lock-free ones. Ob-
struction freedom implies weak progress guarantees and can be used e.g. for reference
purposes, for studying parallelization.

In LFTHREADS the focus is on lock-free synchronization due to its combined benefits
in progress, fault-tolerance and efficiency potential.

The problem and LFTHREADS’s API. The LFTHREADS library defines the following
procedures for thread handling1:
create(thread,main): creates a new thread which starts in the procedure main; exit:
terminates the calling thread and if this was the last thread of the application/process
the latter is terminated as well;
yield : causes the calling thread to be put on the ready queue and the (virtual) processor
that running it to pick a new thread to run from the ready queue.

For blocking mutual exclusion-based synchronization between threads
LFTHREADS provides a mutex object supporting the operations:
lock (mutex): attempts to lock the mutex. If it is locked already the calling thread is
blocked and enqueued on the waiting queue of the mutex;
unlock (mutex): unlocks the mutex if there are no waiting threads in the waiting queue,
otherwise the first of the waiting threads is made runnable and becomes the owner of
the mutex (only the thread owning the mutex may call unlock );
trylock (mutex): tries to lock the mutex. Returns true on success, otherwise false.

3 Detailed Description of the LFTHREADS Library

3.1 Data Structures and Fundamental Operations

We assume a data type, context t, that can store the CPU context of an execution (i.e.
thread) and some operations to manipulate such contexts (cf. Fig. 1). These operations,
available in many operating systems2, are:
(i) save(ctx) stores the state of the current CPU context in the supplied variable and
switches the processor to a special system context. There is one such context for each
processor. The return value from save is true when the context is stored and false when
the context is restored.

1 The interface we present here was chosen for brevity and simplicity. Our actual implementation
aims to provide a POSIX threads compliant (IEEE POSIX 1003.1c) interface.

2 In systems supporting the Single Unix Specification v2 (SUSv2), e.g. GNU/Linux,
getcontext(2), setcontext(2) and makecontext(3) can be used; in other Unix
systems setjump(3) and longjmp(3) or similar.
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type context t is record 〈implementation defined〉;
function save(ctx : out context t): boolean;
/* Saves the current CPU context and switches to a
* system context. The call returns true when
* the context is saved; false when it is restored. */

procedure restore(ctx : in context t);
/* Replaces the current CPU context with a
* previously stored CPU context.
* The current context is destroyed. */

procedure make context(ctx : out context t;
main : in pointer to procedure);

/* Creates a new CPU context which will wakeup
* in a call to the procedure main when restored. */

type thread t is record
uc : context t;

type lf queue t is record 〈implementation defined〉;
procedure enqueue(q : in out lf queue t;

thread : in pointer to thread t);
/* Appends the TCB thread to q. */
function dequeue(q : in out lf queue t;

thread : out pointer to thread t): boolean;
/* If the queue is not empty the first thread t pointer
* in the queue is dequeued and true is returned.
* Returns false if the queue is empty. */

function is empty(q : in out lf queue t): boolean;
/* Returns true if q is empty, false otherwise. */

function get cpu id(): cpu id t
/* Returns the ID of the current CPU (an int). */

/* Global shared variables. */
Ready Queue : lf queue t;

/* Private per-processor persistent
* variables. */

Currentp : pointer to thread t;

/* Local temporary variables. */
next : pointer to thread t;
old count : integer;
old : cpu id t;

procedure create(thread : out thread t;
main : in pointer to procedure)

C1 make context(thread.uc, main);
C2 enqueue(Ready Queue, thread);

procedure yield()
Y1 if not is empty(Ready Queue) then
Y2 if save(Currentp.uc) then
Y3 enqueue(Ready Queue, Currentp);
Y4 cpu schedule();

procedure exit()
E1 cpu schedule();

procedure cpu schedule()
CI1 loop
CI2 if dequeue(Ready Queue, Currentp)

then
CI3 restore(Currentp .uc);

Fig. 1. The basic thread operations and shared data in LFTHREADS

(ii) restore(ctx) loads the supplied stored CPU context onto the processor. The restored
context resumes execution in the (old) call to save, returning false. The CPU context
that made the call to restore is lost (unless it was saved before).
(iii) make context(ctx,main) creates a new CPU context. The new context starts in a
call to the procedure main when it is loaded onto a processor with restore.

Each thread in the system will be represented by a thread control block (TCB) of
type thread t, containing a context t field for storing the thread’s state when it is not
being executed on one of the processors.

Further, we assume we have a lock-free queue data structure (like e.g. [32]) for
pointers to thread control blocks; the queue supports three lock-free and linearizable
operations: enqueue, dequeue and is empty (each with its intuitive semantics). The
lock-free queue data structure is used as a building block in the implementation of
LFTHREADS. However, as we will see in detail below, additional synchronization meth-
ods are needed to make operations involving more than one queue instance lock-free
and linearizable.

3.2 Thread Operations in LFTHREADS

The general thread operations and variables used are shown in Fig. 1. The variables
consist of the global shared Ready Queue3, which contains all runnable threads not

3 The Ready Queue here is a lock-free queue, but e.g. work-stealing [8] could be used.
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currently being executed by any processor, and the per-processor persistent variable
Current, which contains a pointer to the TCB of the thread currently being executed on
that processor.

In addition to the public thread operations create, exit and yield , introduced above,
there is an internal operation, cpu schedule, used for selecting the next thread to load
onto the processor. If there are no threads available in the Ready Queue, the processor
is idle and waits for a runnable thread to appear.

3.3 Blocking Thread Synchronization and the RHO Method

To facilitate blocking synchronization among application threads, LFTHREADS pro-
vides a mutex primitive, mutex t. While the operations on a mutex, lock , trylock and
unlock have their usual semantics for application threads, they are lock-free with re-
spect to the processors in the system. This implies improved fault-tolerance properties
against stop and timing faults in the system compared to traditional spin-lock-based
implementations, since even if a processor is stopped or delayed in the middle of a
mutex operation all other processors are still able to continue performing operations,
even on the same mutex. However, note that an application thread trying to lock a mu-
tex is blocked if the mutex is locked by another thread. A faulty application can also
dead-lock its threads. It is the responsibility of the application developer to prevent such
situations.4

Mutex operations in LFTHREADS. The mutex t structure (cf. Fig. 2) consists of three
fields: (i) an integer counter, which counts the number of threads that are in or want to
enter the critical section protected by the mutex; (ii) a lock-free queue, where the TCBs
of blocked threads that want to lock the mutex is stored; and (iii) a hand-off flag, whose
role and use will be described in detail below.

The operations on the mutex t structure are shown in Fig. 2. In rough terms, the lock
operation locks the mutex and makes the calling thread its owner. If the mutex is already
locked the calling thread is blocked and the processor switches to another thread. The
blocked thread’s context will be activated and executed later when the mutex is released
by its previous owner.

In the ordinary case a blocked thread is activated by the thread releasing the mu-
tex by invoking unlock , but due to fine-grained synchronization, it may also happen in
other ways. In particular, note that checking whether the mutex is locked and entering
the mutex waiting queue are distinct atomic operations. Therefore, the interleaving of
thread-steps can e.g. cause a thread A to find the mutex locked, but later by the time it
has entered the mutex queue the mutex has been released, hence A should not remain
blocked in the waiting queue. The “traditional” way to avoid this problem is to ensure
that at most one processor modifies the mutex state at a time by enforcing mutual exclu-
sion among the processors, e.g. by using a spin-lock. In the lock-free solution proposed
here, the synchronization required for such cases is managed with a new method, which

4 I.e. here lock-free synchronization guarantees deadlock-avoidance among the operations im-
plemented in lock-free manner, but an application that uses objects with blocking semantics
(e.g. mutex) of course needs to take care to avoid deadlocks due to inappropriate use of the
blocking operations by its threads.
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we call the responsibility hand-off (RHO) method. In particular, the thread/processor
releasing the mutex is able, using appropriate fine-grained synchronization steps, to
detect whether such a situation may have occurred and, in response, “hand-off” the
ownership (or responsibility) for the mutex to some other processor.

By performing a responsibility hand-off, the processor executing the unlock can
finish this operation and continue executing threads without waiting for the concur-
rent lock operation to finish (and vice versa). As a result, the mutex primitive in
LFTHREADS tolerates arbitrary delays and even stop failures inside mutex operations
without affecting the other processors’ ability to do useful work, including operations
on the same mutex. The details of the responsibility hand-off method are given in the
description of the operations, below:

The lock operation: Line L1 atomically increases the count of threads that want to
access the mutex using Fetch-And-Add. If the old value was 0 the mutex was free and
is now locked by the thread. Otherwise the mutex is likely to be locked and the current
thread has to block. Line L3 stores the context of the current thread in its TCB and
line L4 enqueues the TCB on the mutex’s waiting queue. From now on, this invocation
of lock is not associated with any thread.

However, the processor cannot just leave and do something else yet, because the
thread that owned the mutex might have unlocked it (since line L1); this is checked by
line L6 to L8. If the token read from m.hand-off is not null then an unlock has tried
to unlock the mutex but found (line U2) that although there is a thread waiting to lock
the mutex, it has not yet appeared in the waiting queue (line H2). Therefore, the unlock
has set the hand-off flag (line H5). However, it is possible that the hand-off flag was
set after the thread enqueued by this lock (at line L4) had been serviced. Therefore, this
processor should only attempt to take responsibility of the mutex if there is a thread
available in the waiting queue. This is ensured by the is empty test at line L7 and the
CAS at line L8 which only succeeds if no other processor has taken responsibility of
the mutex since line L6. If the CAS at line L8 succeeds, lock is now responsible for the
mutex again and must find the thread wanting to lock the mutex. That thread (it might
not be the same as the one enqueued by this lock ) is dequeued from the waiting queue
and this processor will proceed to execute it (line L9-L10). If the conditions at line L7
are not met or the CAS at line L8 is unsuccessful, the mutex is busy and the processor
can safely leave to do other work (line L11).

To avoid ABA-problems (i.e. cases where CAS succeeds because the variable has
been modified from its old value A to some value B and back to A) m.hand-off should,
in addition to the processor id, include a per-processor sequence number. This is a well-
known method in the literature, easy to implement and has been excluded from the
presented code to make the presentation clearer.

The trylock operation: The operation will lock the mutex and return true if the mutex
was unlocked. Otherwise it does nothing and returns false. The operation tries to lock
the mutex by increasing the waiting count on line TL1. This will only succeed if the
mutex was unlocked and there were no ongoing lock operations. If there are ongoing
lock operations or some thread has locked the mutex, trylock will attempt to acquire
the hand-off flag. If the trylock operation succeeds in acquiring the hand-off flag it



224 A. Gidenstam and M. Papatriantafilou

becomes the owner of the mutex and increases the waiting count at line TL3 before
returning true. Otherwise trylock returns false.

The unlock operation: If there are no waiting threads unlock unlocks the mutex. Oth-
erwise one of the waiting threads is made owner of the mutex and enqueued on the
Ready Queue. The operation begins by decreasing the waiting count at line U1, which
was increased by this thread’s call to lock or trylock . If the count becomes 0, there
are no waiting threads and the unlock operation is done. Otherwise, there are at least
one thread wanting to acquire the mutex and the do hand-off procedure is used to ei-
ther find the thread or hand-off the responsibility for the mutex. If the waiting thread
has been enqueued in the waiting queue, it is dequeued (line H2) and moved to the
Ready Queue (line H3) which completes the unlock operation. Otherwise, a respon-
sibility hand-off is initiated to get rid of the responsibility for the mutex (line H5):

• The responsibility hand-off is successful and terminates if: (i) the waiting queue
is still empty at line H6; in that case either the offending thread has not yet been
enqueued there (in which case, it has not yet checked for hand-offs) or it has in fact
already been dequeued (in which case, some other processor took responsibility
for the mutex); or if (ii) the attempt to retake the hand-off flag at line H8 fails, in
which case, some other processor has taken responsibility for the mutex. After a
successful hand-off the processor leaves the unlock procedure (line H7 and H9).

• If the hand-off is unsuccessful, i.e. the CAS at line H8 succeeds, the processor is
again responsible for the mutex and must repeat the hand-off procedure. Note that
when a hand-off is unsuccessful, at least one other concurrent lock operation made
progress, namely by completing an enqueue on the waiting queue (otherwise this
unlock would have completed at lines H6-H7). Note further that since the CAS
at line H8 succeeded, none of the concurrent lock operations have executed line
L6-L8 since the hand-off began.

Fault-tolerance. Regarding processor failures, the procedures enable the highest
achievable level of fault-tolerance for a mutex. Note that even though a processor failure
while the unlock is moving a thread from the m.waiting queue to the Ready Queue
(between line H2 and H3) could cause the loss of two threads (i.e. the current one and
the one being moved), the system behaviour in this case is indistinguishable from the
case when the processor fails before line H2. In both cases the thread owning the mutex
has failed before releasing ownership. At all other points a processor failure can cause
the loss of at most one thread.

4 Correctness of the Synchronization in LFTHREADS

To prove the correctness of the thread library we need to show that the mutex primitive
has the desired semantics. We will first show that the mutex operations are lock-free
and linearizable with respect to the processors and then that the lock-free mutex imple-
mentation satisfies the conditions for mutual exclusion with respect to the application
threads. First we (i) define some notation that will facilitate the presentation of the
arguments and (ii) establish some lemmas that will be used later to prove the safety,
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type mutex t is record
waiting : lf queue t;
count : integer := 0;
hand-off : cpu id t := null;

procedure lock(m : in out mutex t)
L1 old count := FAA(&m.count, 1);
L2 if old count �= 0 then

/* The mutex was locked.
* Help or run another thread. */

L3 if save(Currentp.uc) then
L4 enqueue(m.waiting, Currentp);
L5 Currentp := null;

/* The thread is now blocked. */
L6 old := m.hand-off;
L7 if old �= null and

not is empty(m.waiting) then
L8 if CAS(&m.hand-off, old, null)

then /* We now own m; */
/* ... run a blocked thread */

L9 dequeue(m.waiting, Currentp);
L10 restore(Currentp); /* Done. */
L11 cpu schedule(); /* Done. */

function trylock(m : in out mutex t): boolean
TL1 if CAS(&m.count, 0, 1) then return true;
TL2 else if GrabToken(&m.hand-off) then
TL3 FAA(&m.count, 1);
TL4 return true;
TL5 return false;

procedure unlock(m : in out mutex t)
U1 old count := FAA(&m.count, −1);
U2 if old count �= 1 then

/* There is a waiting thread. */
U3 do hand-off(m);

procedure do hand-off(m : in out mutex t)
H1 loop /* We own the mutex. */
H2 if dequeue(m.waiting, next) then
H3 enqueue(Ready Queue, next);
H4 return; /* Done. */

else
/* The waiting thread isn’t ready! */

H5 m.hand-off := get cpu id();
H6 if is empty(m.waiting) then

/* Some concurrent operation will
* see/or has seen the hand-off. */

H7 return; /* Done. */
H8 if not CAS(&m.hand-off,

get cpu id(), null) then
/* Some concurrent operation
* acquired the mutex. */

H9 return; /* Done. */

function GrabToken(loc : pointer to cpu id t)
: boolean

GT1 old := *loc;
GT2 if old = null then return false;
GT3 return CAS(loc, old, null);

Fig. 2. The lock-free mutex protocol in LFTHREADS

liveness, fairness and atomicity properties of the algorithm. Due to space constraints
the full proofs can be found in [33].

Definition 1. A thread’s call to a blocking operation Op is said to be completed when
the processor executing the call leaves the blocked thread and goes on to do something
else (e.g. executing another thread). The call is said to have returned when the thread
(after becoming unblocked) continues its execution from the point of the call to Op.

Definition 2. A mutex m is locked when m.count > 0 and m.hand-off = null. Other-
wise it is unlocked.

Definition 3. When a thread τ ’s call to lock on a mutex m returns we say that thread
τ has locked or acquired the mutex m. Similarly, we say that thread τ has locked or
acquired the mutex m when the thread’s call to trylock on the mutex m returns True.
Further, when a thread τ has acquired a mutex m by a lock or successful trylock oper-
ation and not yet released it by calling unlock we say that the thread τ is the owner of
the mutex m (or that τ owns m).

Lock-freedom. The lock-free property of the thread library operations will be estab-
lished with respect to the processors. An operation is lock-free if it is guaranteed to
complete in a bounded number of steps unless it is interfered with an unbounded num-
ber of times by other operations and every time operations interfere, at least one of them
is guaranteed to make progress towards completion.
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Theorem 1. The mutex operations lock, trylock and unlock are all lock-free.

The lock-freedom of trylock and unlock with respect to application threads follows
from their lock-freedom with respect to the processors, as they do not contain con-
text switches. The operation lock is neither non-blocking nor lock-free for application
threads, since a call to lock on a locked mutex should block.

Linearizability. Linearizability guarantees that the result of any concurrent execution
of operations is identical to a sequential execution where each operation takes effect
atomically at a single point in time (its linearization point) within its duration in the
original concurrent execution.

Theorem 2. The mutex operations lock, trylock and unlock are linearizable.

Mutual exclusion properties. The mutual exclusion properties of the new mutex pro-
tocol are established with respect to application threads.

Theorem 3 (Safety). For any mutex m and at any time t there is at most one thread τ
such that τ is the owner of m at time t.

Theorem 4 (Liveness I). A thread τ waiting to acquire a mutex m eventually acquires
the mutex once its lock operation has enqueued τ on the m.waiting queue.

Theorem 5 (Liveness II). A thread τ wanting to acquire a mutex m can only be starved
if there is an unbounded number of lock operations on m performed by threads on other
processors.

Theorem 6 (Fairness). A thread τ wanting to acquire a mutex m only has to wait for
the threads enqueued on the m.waiting queue before τ was enqueued.

5 Experimental Study

The primary contribution of this work is to enhance qualitative properties of thread li-
brary operations, such as the tolerance to delays and processor failures. However, since
lock-freedom may also imply performance/scalability benefits with increasing number
of processors, we also wanted to observe this aspect. We made an implementation of
the mutex object and the thread operations on the GNU/Linux operating system. The
implementation is written in the C programming language and was done entirely at
the user-level using “cloned”5 processes as virtual processors for running the threads.
The implementation uses the lock-free queue in [32] for the mutex waiting queue and
the Ready Queue. To ensure sufficient memory consistency for synchronization vari-
ables, memory barriers surround all CAS and FAA instructions and the writes at lines
L6 and H5. The lock-based mutex implementation uses a test and test-and-set spin-lock

5 “Cloned” processes share the same address space, file descriptor table and signal handlers etc
and are also the basis of Linux’s native pthread implementation.
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Fig. 3. Mutex performance in LFTHREADS and pthreads at high contention

to protect the mutex state. Unlike the use of spin-locks in an OS kernel, where usu-
ally neither preemptions nor interrupts are allowed while holding a spin-lock, our vir-
tual processors can be interrupted by the OS kernel due to such events. This behaviour
matches the asynchronous processors in our system model.

The experiments were run on a PC with two Intel Xeon 2.80GHz processors (acting
as 4 due to hyper-threading) using the GNU/Linux operating system with kernel version
2.6.9. The microbenchmark used for the experimental evaluation consists of a single
critical section protected by a mutex and a set of threads that each try to enter the critical
section a fixed number of times. The contention level on the mutex was controlled
by changing the amount of work done outside the critical section. We evaluated the
following configurations experimentally:

• The lock-free mutex using the protocol presented in this paper, using 1, 2, 4 and 8
virtual processors to run the threads.

• The spin-lock based mutex, using 1, 2, 4 and 8 virtual processors.
• The platform’s standard pthreads library and a standard pthread mutex. The

pthreads library on GNU/Linux use kernel-level “cloned” processes as threads,
which are scheduled on all available processors, i.e. the pthreads are at the same
level as the virtual processors in LFTHREADS. The difference in scheduling makes
it difficult to interpret the pthreads results with respect to the others; i.e. the pthreads
results are primarily for reference.

Each configuration was run 10 times; the diagrams present the mean.

High contention. Fig. 3 shows the results when no work is done outside the critical sec-
tion, i.e. the contention on the mutex is high. The desired result here is that throughput
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for an implementation stays the same regardless of the number of threads or (virtual)
processors. This would imply that the synchronization scales well. However, in reality
the throughput decreases with increasing number of virtual processors, mainly due to
preemptions inside the critical section (but for spin-locks also inside mutex operations)
and synchronization overhead. The results indicate that the lock-free mutex has less
overhead than the lock-based.

Low contention. Fig. 4 shows the results when the threads perform 1000 times more
work outside the critical section than inside, making the contention on the mutex low.
With the majority of the work outside the critical section, the expected behaviour is
a linear throughput increase over threads until all (physical) processors are in use by
threads, thereafter constant throughput as the processors are saturated with threads run-
ning outside the critical section. The results agrees with the expected behaviour; we see
that from one to two virtual processors the throughput doubles in both the lock-free and
spin-lock based cases. (Recall that the latter is a test-and-test-and-set-based implemen-
tation, which is favoured under low contention). Note that the step to 4 virtual proces-
sors does not double the throughput — this is due to hyper-threading, there are not 4
physical processors available. Similar behaviour can also be seen in the pthread-based
case. The lock-free mutex shows similar or higher throughput than the spin-lock-based
for the same number of virtual processors; it also shows comparable and even better
performance than the pthread-based when the number of threads is large and there are
more virtual processors than physical.

Summarizing, we observe that LFTHREADS’s lock-free mutex protocol implies com-
parable or better throughput than the lock-(test-and-test-and-set-)based implementation,
both in high- and in low-contention scenaria for the same number of virtual processors,
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besides offering the qualitative advantages in tolerance against slow, delayed or crashed
threads, as discussed earlier in the paper.

6 Conclusion

This paper presented the LFTHREADS library and the responsibility hand-off (RHO)
method. Besides supporting a thread-library interface with lock-free implementation of
a blocking synchronization primitive and fault-tolerance properties, the RHO method
can be regarded as a conceptual contribution, which can be useful in lock-free synchro-
nization in general.

The present implementation of LFTHREADS is done entirely at the user-level, but
the algorithms are well suited for use also in a kernel - user-level divided setting. A
significant benefit of the new method there is that neither modifications to the operating
system kernel nor spin-locks and/or disabling of interrupts are needed in the user-level
or the kernel-level part. LFTHREADS constitutes a proof-of-concept of lock-free im-
plementation of the blocking mutex introduced in the paper and serves as basis for an
experimental study of its performance. The experimental study performed here, using
a mutex-intensive microbenchmark, shows positive figures. Moreover, the implemen-
tation can also serve as basis for further development, for porting the library to other
multiprocessors and experimenting with parallel applications such as the Spark98 ma-
trix kernels or the SPLASH-2 suite.
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Abstract. We present a novel translation of systems that are tolerant of crash
failures to systems that are tolerant of Byzantine failures in an asynchronous en-
vironment, making weaker assumptions than previous approaches. In particular,
we assume little about how the application is coded. The translation exploits an
extension of the Srikanth-Toueg protocol, supporting ordering in addition to au-
thentication and persistent delivery. We illustrate the approach by synthesizing a
version of the Castro and Liskov Practical Byzantine Replication protocol from
the Oki and Liskov Viewstamped Replication protocol.

Keywords: Byzantine Fault Tolerance, Ordered Broadcast.

1 Introduction

Developing applications that span multiple administrative domains is difficult if the
environment is asynchronous and machines may exhibit arbitrary failures. Yet, this is
a problem that many software developers face today. While we know how to build
replicated data stores that tolerate Byzantine behavior (e.g., [4]), most applications go
well beyond providing a data store. Tools like Byzantine consensus may help develop-
ing such applications, but most software developers find dealing with arbitrary failures
extremely challenging. They often make simplifying assumptions like a crash failure
model, relying on careful monitoring to detect and fix problems that occur when such
assumptions are violated.

We are interested in techniques that automatically transform crash-tolerant applica-
tions into Byzantine-tolerant applications that do not require careful monitoring and
repair.

This paper makes the following contributions. First we present a novel ordered
broadcast protocol that we will use as a building block. The protocol is an extension of
the Srikanth and Toueg authenticated broadcast protocol often used in Byzantine con-
sensus protocols [11], adding consistent ordering for messages from the same sender
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even in the face of Byzantine behavior. Second, we present a new way of translating a
distributed application that is tolerant of crash failures into one that tolerates the same
number of Byzantine failures, while imposing fewer restrictions on how the applica-
tion is constructed than previous approaches. Third, we show how a version of the
Castro and Liskov Practical Byzantine Replication protocol [4] can be derived from the
Oki and Liskov Viewstamped Replication protocol [10] using our translation technique,
something not possible with previous approaches.

We present background in Sect. 2. After describing a system model in Sect. 3,
we introduce three mechanisms used for translation: Authenticated Reliable broadcast
(Sect. 4), Ordered Authenticast Reliable broadcast (Sect. 5), and the translation mecha-
nism itself (Sect. 6). Correctness proofs for these appear in the appendix. In Sect. 7 we
demonstrate the translation mechanism.

2 Background

The idea of automatically translating crash-tolerant systems into Byzantine systems can
be traced back to the mid-eighties. Gabriel Bracha used a translation similar to ours to
generate a consensus protocol tolerant of t Byzantine failures out of 3t + 1 hosts [3].
Brian Coan also presents a translation [6] that is similar to Bracha’s. The most important
restriction in these approaches is that input protocols are required to have a specific
style of execution, and in particular they have to be round-based with each participant
awaiting the receipt of n − t messages before starting a new round. These requirements
exclude, for example, protocols that designate roles to senders and receivers such as
the primary role used in Viewstamped Replication [10]. Our approach makes no such
assumptions, and we will demonstrate our approach for Viewstamped Replication.

Toueg, Neiger and Bazzi worked on an extension of Bracha’s and Coan’s approaches
for translation of synchronous systems [9,2,1]. Their approach takes advantage of syn-
chrony to detect faulty hosts and eliminate them from the protocol. The extension can
be applied to our scheme as well.

Most recently, Mpoeleng et al. [8] present a translation that is intended for syn-
chronous systems, and transforms Byzantine faults to so-called signal-on-failure faults.
They replace each host with a pair, and assume only one of the hosts in each pair may
fail. They require 4t + 2 hosts, but the system may break with as few as two failures no
matter how large t is chosen.

3 System Model

In order to be precise we present a simple model to talk about machines, processes,
and networks. The model consists of agents and links. An agent is an active entity that
maintains state, receives messages on incoming links, performs some processing based
on this input and its state, possibly updating its state and producing output messages on
outgoing links.

Links are abstract unidirectional FIFO channels between two agents. Agents can
interact across links only. In particular, an agent can enqueue a message on one of its
outgoing links, and it can dequeue messages from one of its incoming links (assuming
a message is available there).
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We use agents and links to model various activities and interactions. Processes that
run on hosts are agents, but the network is also an agent—one that forwards mes-
sages from its incoming links to its outgoing links according to some policy. Agents
are named by lower-case Greek letters α, β, .... For agents that are processes, we will
use subscripts on names to denote which hosts they run on. For example, βi is an agent
that runs on host hi.

Hosts are containers for agents, and they are also the unit of failure. Hosts are either
honest, executing programs as specified, or Byzantine [7], exhibiting arbitrary behavior.
We also use the terms correct and faulty, but not as alternatives to honest and Byzan-
tine. A correct host is honest and always eventually makes progress. A faulty host is a
Byzantine host or an honest host that has crashed or will eventually crash. Honest and
Byzantine are mutually exclusive, as are correct and faulty. However, a host can be both
honest and faulty.

We do not assume timing bounds on execution of agents. Latency in the network
is modeled as execution delay in a network agent. Note that this prevents hosts from
accurately detecting crashes of other hosts.

Fig. 1. An agent model and a refinement

Figure 1 depicts an example of an
agent model and a refinement. Agents
are represented by circles, links by ar-
rows, and hosts by rectangles. The top
half models two application agents β1
and β2 running on two hosts h1 and
h2 communicating using a FIFO net-
work agent φ. The bottom half re-
fines the FIFO network using an unreli-
able network agent ν and two protocol
agents φS

1 and φR
2 that implement order-

ing and retransmission using sequence
numbers, timers, and acknowledgment messages. This kind of refinement will be a
common theme throughout this paper.

4 The ARcast Mechanism

The first mechanism we present is Authenticated Reliable broadcast (ARcast). This
broadcast mechanism was suggested by Srikanth and Toueg, and they present an imple-
mentation that does not require digital signatures in [11]. Their implementation requires
n > 3t. As shown below, it is also possible to develop an implementation that uses dig-
ital signatures, in which case n only has to be larger than 2t.

4.1 ARcast Definition

Assume βi, ... are agents communicating using ARcast on hosts hi, .... Then ARcast
provides the following properties:

1. bc-Persistence. If two hosts hi and hj are correct, and βi sends a message m, then
βj delivers m from βi;
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2. bc-Relay. If hi is honest and hj is correct, and βi delivers m from βk, then βj

delivers m from βk (host hk is not necessarily correct);
3. bc-Authenticity. If two hosts hi and hj are honest and βi does not send m, then βj

does not deliver m from βi.

Informally, ARcast ensures that a message is reliably delivered to all correct receivers
in case the sender is correct (bc-Persistence) or in case another honest receiver has
delivered the message already (bc-Relay). Moreover, a Byzantine host cannot forge
messages from an honest host (bc-Authenticity).

4.2 ARcast Implementation

x We assume there is a single sender βi on hi. We model ARcast as a network agent ξi,
which we refine by replacing it with the following agents (see Fig. 2):

ξS
i sender agent that is in

charge of the sending side
of the ARcast mechanism;

ξR∗ receiver agents that are in
charge of the receive side;

φ FIFO network agent
that provides point-to-
point authenticated FIFO
communication between
agents. Fig. 2. Architecture of the ARcast implementation

if the sender is on host hi

The mechanism has to be instantiated for each sender. The sending host hi runs the
ARcast sender agent ξS

i . Each receiving host hj runs a receiver agent ξR
j . There have to

be at least 2t + 1 receiving hosts, one of which may be hi. When ξS
i wants to ARcast

a message m, it sends 〈echo m, i〉i, signed by hi using its public key signature, to all
receivers. A receiver that receives such an echo message for the first time forwards it
to all receivers. On receipt of t+1 of these correctly signed echoes for the same m from
different receivers (it can count an echo from itself), a receiver delivers m from i.

Due to space considerations, we omit the (simple) correctness proof.

5 The OARcast Mechanism

ARcast does not provide any ordering. Even messages from a correct sender may be
delivered in different orders at different receivers. Next we introduce a broadcast mech-
anism that is like ARcast, but adds delivery order for messages sent by either honest or
Byzantine hosts.

5.1 OARcast Definition

OARcast provides, in addition to the ARcast properties, the following:
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4. bc-FIFO. If two hosts hi and hj are honest and βi sends m1 before m2, and βj

delivers m1 and m2 from βi, then βj delivers m1 before m2;
5. bc-Ordering. If two hosts hi and hj are honest and βi and βj both deliver m1 from

βk and m2 from βk, then they do so in the same order (even if hk is Byzantine).

As a result of bc-Ordering, even a Byzantine sender cannot cause two honest re-
ceivers to deliver OARcast messages from the same source out of order. bc-FIFO en-
sures that messages from honest hosts are delivered in the order sent. OARcast does not
guarantee any order among messages from different sources, and is thus weaker than
consensus.

5.2 OARcast Implementation

Fig. 3. Architecture of the OARcast implementation if the sender
is on host hi

We describe how OAR-
cast may be implemented
using ARcast. Again, we
show the implementation
for a single sender βi

on host hi. With mul-
tiple senders, the imple-
mentation has to be in-
stantiated for each sender
separately. We refine the
OARcast network agent
ωi by replacing it with the
following agents (see Fig. 3):

ωS
i sender agent that is in charge of the sending side of the OARcast mechanism;

ωO∗ orderer agents that are in charge of ordering;
ωR
∗ receiver agents that are in charge of the receive side;
φ FIFO network agent that provides point-to-point authenticated FIFO communica-

tion from the sender agent to each orderer agent;
ξ∗ ARcast network agents each provides ARcast from a particular orderer agent to all

receiver agents.

We need to run 3t + 1 orderers on separate hosts, of which no more than t may fail.
A host may end up running a sender, a receiver, as well as an orderer. A receiver ωR

j

maintains a sequence number cj , initially 0. An orderer ωO
k also maintains a sequence

number, tk, initially 0.
To OARcast a message m, ωS

i sends m to each orderer via φ. When an orderer ωO
k

receives m from ωS
i , it ARcasts 〈order m, tk, i〉 to each of the receivers, and increments

tk. A receiver ωR
j awaits 2t+1 messages 〈order m, cj, i〉 from different orderers before

delivering m from ωS
i . After doing so, the receiver increments cj .

We prove the correctness of this implementation in Appendix A.

6 The Translation Mechanism
In this section, we describe how an arbitrary protocol tolerant only of crash failures can
be translated into a protocol that tolerates Byzantine failures.
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6.1 Definition

Below we use the terms original and translated to distinguish the system before and af-
ter translation, respectively. The original system tolerates only crash failures, while the
translated system tolerates Byzantine failures as well. The original system consists of n
hosts, each of which runs an actor agent, α1, . . . , αn. Each actor αi is a state machine
that maintains a running state si, initially si

0, and, upon receiving an input message m,
executes a deterministic state transition function F i: (mo, s

i
c+1) := F i(m, si

c) where

– c indicates the number of messages that αi has processed so far;
– si

c is the state of αi before processing m;
– si

c+1 is the next state of si
c as a result of processing m (called F i(m, si

c).next);
– mo is a finite, possibly empty set of output messages (called F i(m, si

c).output).

The state transition functions process one input message at a time and may have no
computational time bound.

Actors in the original system communicate via a FIFO network agent φ. Each ac-
tor maintains a pair of input-output links with the FIFO network agent. When an actor
αi wants to send a message m to another actor αj (may be itself), αi formats m (de-
tailed below) and enqueues it on αi’s output link. We call this action αi sends m to
αj . φ dequeues m from the link and places it into the message buffer that φ maintains.
Eventually φ removes m from its buffer and enqueues m on the input link of αj . When
αj dequeues m we say that αj delivers m from αi. The original system assumes the
following of the network:

1. α-Persistence. If two hosts hi and hj are correct and αi sends m to αj , then αj

delivers m from αi.
2. α-Authenticity. If two hosts hi and hj are honest and αi does not send m to αj ,

then αj does not deliver m from αi.
3. α-FIFO. If two hosts hi and hj are honest and αi sends m1 before m2, and αj

delivers m1 and m2 from αi, then αj delivers m1 before m2;

Note that in the original system all hosts are honest. However, for the translation we
need to be able to generalize these properties to include Byzantine hosts.

Messages in the original system are categorized as internal or external. Internal mes-
sages are sent between actors and are formatted as 〈d, i, j〉, where d is the data (or
payload), i indicates the source actor, and j indicates the destination actor. External
messages are from clients to actors and are formatted as 〈d, ⊥, j〉, similar to the for-
mat of internal messages except the source actor is empty (⊥). Internal and external
messages are in general called α-messages, or simply messages when the context is
clear.

In the original system all actors produce output messages by making transitions
based on input as specified by the protocol. We call such output messages valid. We
formalize validity below.

External messages are assumed to be valid. For example, we may require that
clients sign messages. An internal message m sent by actor αi is valid if and only
if there exists a sequence of valid messages mi

1, . . . , m
i
c delivered by αi such that

m ∈ F i(mi
c, F

i(mi
c−1, F

i(. . . , F i(mi
1, s

i
0).next . . .).next).next).output. The
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Fig. 4. Translation: the original system (left) is simulated at each host in the translated system
(right). Dark circles are master actors. Dashed lines represent OARcast communication.

expression means that actor αi sends m after it has processed the first c input mes-
sages, be they internal or external. Note that external input forms the base case for this
recursive definition, as actors produce no internal messages until at least one delivers
an external message.1

In order for the original system to work correctly, each actor needs to make transi-
tions based on valid input. More formally,

4. α-Validity. If hi is honest and αi delivers m from αj , then m is valid.

The property is granted to the original system by default, because it is in an environment
where faulty hosts follow the protocol faithfully until they crash.

Besides the four α–properties, the original system requires no other assumptions
about communication among actors. However, the original system may require non-
communication assumptions such as “up to t hosts can fail.”

The Translation mechanism transforms a crash-tolerant system in which all hosts
require the four α-properties into a Byzantine-tolerant system that preserves the α-
properties.

6.2 Implementation

In the original system, each actor αi runs on a separate host hi. In the translated sys-
tem each host simulates the entire original system (see Fig. 4). That is, a host runs a
replica of each of the n actors and passes messages between the actors internally us-
ing a simulated network agent, called coordinator, that runs on the host. We denote the
coordinator running on host hi as κi.

To ensure that the different hosts stay synchronized, the coordinators agree on the
order in which messages are delivered to replicas of the same actor. The replica of αi

on host hj is called αi
j . We designate αi

i as the master replica and αi
j (i �= j) as slave

replicas. On honest hosts, the replicas of each actor start in the same initial state.
Each coordinator replaces φ of the original system by OARcast, i.e., OARcast is

used to send messages. OARcast guarantees that coordinators agree on the deliv-
ery of messages to replicas of a particular actor. Coordinators wrap each α-message

1 We model periodic processing not based on input by external timer messages.
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Fig. 5. Anatomy of host hi in the trans-
lated system

in a κ-message. κ-messages have the form
〈tag m, i〉, where tag is either internal or ex-
ternal, m is an α-message, and i indicates the
destination actor.

Each coordinator maintains an unordered
message bag and n per-actor-replica message
queues. By Bi we denote the message bag at
host i and by Qj

i we denote the message queue
for actor αj

i at host i (see Fig. 5). The pseudo-
code for a coordinator κi appears in Fig. 6. κi

intercepts messages from local actors, and it re-
ceives messages from remote coordinators. κi

places α-messages sent by local actor replicas
in Bi, and places α-messages received within κ-
messages from κj in Qj

i . When there is a match
between a message m in the bag and the head of
a queue, the coordinator enqueues m for the corresponding actor.

// Message from external client
On receipt of msg m = 〈x,⊥, i〉:

κi.send(〈external m, i〉);

// Message from actor j to actor k

On α
j
i .send(〈d, j, k〉):

Bi.add(〈d, j, k〉);
if k = i then

κi.send(〈internal 〈d, j, i〉, i〉);

// κ-message from j

On κi.deliver(〈tag m, j〉):
Q

j
i .enqueue(m);

// Head of queue matches msg in bag
When ∃j : Q

j
i .head() ∈ Bi:

m = Q
j
i .dequeue();

Bi.remove(m);
α

j
i .deliver(m);

// Head of message queue is external
When ∃j, d : Q

j
i .head() = 〈d,⊥, j〉:

m = Q
j
i .dequeue();

α
j
i .deliver(m);

Fig. 6. Pseudo-code of the Translation Mechanism
for coordinator κi

The translated system guarantees α-
Persistence, α-Authenticity, α-FIFO,
and α-Validity to all master actors on
honest hosts. Appendix B contains a
proof of correctness.

7 Illustration: BFT

In 1999 Castro and Liskov published
“Practical Byzantine Fault Tolerance,”
a paper about a replication protocol
(BFT) for a Byzantine-tolerant NFS file
system [4]. The paper shows that BFT
is indeed practical, adding relatively lit-
tle overhead to NFS. In this section we
show, informally, that a protocol much
like BFT can be synthesized from the
Viewstamped Replication protocol by
Oki and Liskov [10] and the transfor-
mations of the current paper. The main
difference is that our protocol is struc-
tured, while BFT is largely monolithic.
In our opinion, the structure simplifies
understanding and enhances the abil-
ity to scrutinize the protocol. The BFT
paper addresses several practical issues
and possible optimizations that can be
applied to our scheme as well, but omit-
ted for brevity.
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(a) before translation (b) after translation

Fig. 7. A normal case run of (a) the original system and (b) the translated system. Dashed arrows
indicate the archive message from the primary. Between brackets we indicate the correspond-
ing BFT message types.

Viewstamped Replication is a consensus protocol. A normal case execution is shown
in Fig. 7(a).2 A client sends a request to a server that is elected primary. The primary
server sends an archivemessage to each server in the system. If a quorum responds to
the client, the request is completed successfully. In the case of failures, a possibly infinite
number of rounds of this consensus protocol may be necessary to reach a decision.

If we were to apply translation literally as described, we would end up with a pro-
tocol that sends significantly more messages than BFT. The reason for this is two-fold.
First, our translation does nothing to group related information from a particular sender
to a particular receiver in single messages. Instead, all pieces of information go out,
concurrently, in separate small messages. While explicit optimizations could eliminate
these, FIFO protocols like TCP automatically aggregate concurrent traffic between a
pair of hosts into single messages for efficiency, obviating the need for any explicit
optimizations. Note that while these techniques reduce the number of messages, the
messages become larger and the number of rounds remains the same.

Second, the translation would produce a protocol that solves uniform Byzantine con-
sensus [5], guaranteeing that if two honest servers decide on an update, they decide
on the same update. In a Byzantine environment, one may argue that this property is
stronger than needed. We only need that if two correct servers decide on an update,
they decide the same update. The reason for this is that clients of the system have to
deal with the results from Byzantine servers, and because Byzantine and crashing hosts
are both counted towards t it is not usually a problem that an honest server makes a
“mistake” before crashing. Such servers would be outvoted by correct servers.

BFT does not provide uniform consensus, but Viewstamped Replication does. Our
translation maintains uniformity. This arises in the bc-Relay property, which requires
that if an honest host delivers a message, then all correct hosts have to do the same. For
our purposes, it would be sufficient to require that if a correct host delivers a message,
all correct hosts have to follow suit.

2 Slightly optimized for our purpose by sending decide messages back to the client instead
of the primary.
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If we revisit the ARcast implementation, we see that the protocol maintains the orig-
inal uniform bc-Relay property by having a receiver await t + 1 copies of a message
before delivery. Doing so makes sure that one of the copies was sent by a correct re-
ceiver that forwards a copy to all other correct receivers as well. For non-uniform bc-
Relay this is unnecessary because the receiver itself, if correct, is guaranteed to forward
the message to all other correct receivers, and thus a receiver can deliver the message as
soon as the first copy is received. The echo traffic can be piggybacked on future traffic.

Using this modification, Fig. 7(b) demonstrates a normal run of the translated system
for t = 1. The figure only shows the traffic that is causally prior to the reply received by
the client and thus essential to the latency that the client experiences. In this particular
translation we used t additional hosts for OARcast only, but a more faithful translation
would have started with 3t + 1 servers. Nevertheless, the run closely resembles that of
a normal run of BFT (see Figure 1 of [4]).

8 Conclusion

We presented a mechanism to translate a distributed application that tolerates only crash
failures into one that tolerates Byzantine failures. Few restrictions are placed on the ap-
plication, and the approach is applicable not only to consensus but to a large class of
distributed applications. The approach makes use of a novel broadcast protocol. We
have illustrated how the approach may be used to derive a version of the Castro and
Liskov Practical Byzantine Replication protocol, showing that our translation mecha-
nism is pragmatic and more powerful than previous translation approaches.
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A Correctness of OARcast

Lemma 1. Say hi and hj are honest and m is the cth message that ωR
j delivers from ωS

i ,
then m is the cth message that ωS

i sent.

Proof. Say m is not the cth message sent by ωS
i , but it is the cth message delivered by

ωR
j . ωR

j must have received 2t+1 messages of the form 〈order m, c−1, i〉 from different
orderers. Because only t hosts may fail, and because of bc-Authenticity of ARcast, at
least one of the order messages comes from a correct orderer. Because communication
between ωS

i and this orderer is FIFO, and because the sender does not send m as its cth

message, it is not possible that the orderer sent 〈order m, c − 1, i〉. ��

Lemma 2. Say m is the cth message that a correct sender ωS
i sends. Then all correct

receivers receive at least 2t + 1 messages of the form 〈order m, c − 1, i〉 from different
orderers.

Proof. Because the sender is correct, each of the correct orderers will deliver m. As all
links are FIFO and m is the cth message, it is clear that for each orderer ωO

k, tk = c − 1.
Each correct orderer ωO

k therefore sends 〈order m, c − 1, i〉 to all receivers. Because at
least 2t + 1 of the orderers are correct, and because of ARcast’s bc-Persistence, each
correct receiver receives 2t + 1 such order messages. ��

Theorem 1. OARcast satisfies bc-Persistence.

Proof. Assume the sending host, hi, is correct, and consider a correct receiving host
hj . The proof proceeds by induction on c, the number of messages sent by ωS

i. Consider
the first message m sent by ωS

i . By Lemma 2, ωR
j receives 2t + 1 messages of the form

〈order m, 0, i〉. By Lemma 1 it is not possible that the first message that ωR
j delivers is

a message other than m. Therefore, cj = 0 when ωR
j receives the order messages for m

and will deliver m.
Now assume that bc-Persistence holds for the first c messages from ωS

i . We show that
bc-Persistence holds for the (c+1)st message sent by ωS

i . By Lemma 2, ωR
j receives 2t+1

messages of the form 〈order m, c, i〉. By the induction hypothesis, ωR
j will increment cj

at least up to c. By Lemma 1 it is not possible that the cth message that ωR
j delivers is a

message other than m. Therefore, cj = c when ωR
j receives the order messages for m

and will deliver m. ��

Theorem 2. OARcast satisfies bc-Authenticity.

Proof. This is a straightforward corollary of Lemma 1. ��

Theorem 3. OARcast satisfies bc-Relay.
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Proof. By induction on the sequence number. Say some correct receiver ωR
j delivers

the first κ-message m from ωS
i . Therefore, ωR

j must have received 2t + 1 messages
of the form 〈order m, 0, i〉 from different orderers when cj = 0. Because of the bc-
Relay property of ARcast, all correct receivers receive the same order messages from
the orderers. By Lemma 1 it is not possible that a correct receiver ωR

j′ delivered a κ-
message other than m, and therefore cj′ = 0 when ωR

j′ receives the order messages.
Thus ωR

j′ will also deliver m.
Now assume the theorem holds for the first c κ-messages sent by ωS

i . Say some
correct receiver ωR

j delivers the (c+1)st κ-message m from ωS
i. Therefore, ωR

j must have
received 2t+1 messages of the form 〈order m, c, i〉 from different orderers when cj = c.
Because of the bc-Relay property of ARcast, all correct receivers receive the same order
messages from the orderers. Because of the induction hypothesis, the correct receivers
deliver the first c κ-messages. By Lemma 1 it is not possible that a correct receiver ωR

j′

delivered a κ-message other than m, and therefore cj = c when ωR
j′ receives the order

messages. Thus ωR
j′ will also deliver m. ��

Lemma 3. Say m is the cth message that an honest receiver ωR
j delivers from ωS

i , and
m′ is the cth message that another honest receiver ωR

j′ delivers from ωS
i . Then m = m′

(even if hi is Byzantine).

Proof. Say not. ωR
j must have received 2t + 1 messages of the form 〈order m, c − 1, i〉

from different orderers, while ωR
j′ must have received 2t + 1 messages of the form

〈order m′, c − 1, i〉 from different orderers. As there are only 3t + 1 orderers, at least
one correct orderer must have sent one of each, which is impossible as correct orderers
increment their sequence numbers for each new message. ��

Theorem 4. OARcast satisfies bc-Ordering.

Proof. Corollary of Lemma 3. ��

Theorem 5. OARcast satisfies bc-FIFO.

Proof. Evident from the FIFOness of messages from senders to orderers and the se-
quence numbers utilized by orderers and receivers. ��

B Correctness of Translation

We prove correctness of the Translation mechanism assuming the bc-properties. In par-
ticular, we show that the collection of coordinators and slave replicas that use the Trans-
lation mechanism preserves the α-properties: α-Persistence, α-Authenticity, α-FIFO,
and α-Validity, for the master replicas {αi

i}.
For convenience, we combine bc-Relay and bc-Ordering to state that coordinators

on correct hosts deliver the same sequence of κ-messages from any κk, even if hk is
Byzantine. This is put more formally in the following lemma:

Lemma 4. For any i, j, and k, if hi and hj are correct, then κi and κj deliver the same
sequence of messages from κk.



244 C. Ho, D. Dolev, and R. van Renesse

Proof. bc-Relay guarantees that κi and κj deliver the same set of messages from κk.
bc-Ordering further guarantees that the delivery order between any two messages is the
same at both κi and κj . ��

In the proof we need to be able to compare states of hosts. We represent the state of
host hi by a vector of counters, Φi = (c1

i , . . . , c
n
i ), where each ck

i is the number of
messages that (the local) actor αk

i has delivered. As shown below, within an execution
of the protocol, replicas of the same actor deliver the same sequence of messages. Thus
from ck

i and ck
j we can compare progress of replicas of αk on hosts hi and hj .

Lemma 5. Given are that hosts hi and hj are correct, αk
i delivers m1, . . . , mc, and

αk
j delivers c′ ≤ c messages. Then the messages that αk

j delivers are m1, . . . , mc′ .

Proof. By the Translation mechanism, the first c′ messages that αk
i and αk

j deliver
are the contents of the first c′ κ-messages that κi and κj delivered from κk, resp. By
Lemma 4, the two κ-message sequences are identical. This and the fact that links from
coordinators to actors are FIFO imply that the first c′ messages that αk

i and αk
j deliver

are identical. ��

In the remaining proof we use the following definitions and notations:

– hi reaches Φ = (c1, . . . , cn), denoted hi � Φ, if ∀j cj
i ≥ cj ;

– Φ = (c1, . . . , cn) precedes Φ′ = (c′1, . . . , c
′
n), denoted Φ < Φ′, if (∀i ci ≤ c′i) ∧

(∃j cj < c′j);
– Φ = (c1, . . . , cn) produces m if m ∈

⋃n
i=1

⋃ci

c=1(F
i(mi

c, s
i
c−1).output),

where mi
c is the cth message to αi and si

c−1 is the state of αi after it processes the
first c − 1 input messages.

Corollary 1. If Φ produces m on a correct host, Φ produces m on all correct hosts that
reach Φ.

Proof. By Lemma 5 and because replicas of the same actor start in the same state and
are deterministic, if Φ produces m on a correct host, Φ produces m on all correct hosts
that reach Φ. ��

We now show that if a correct host is in a particular state then all other correct hosts
will reach this state.

Lemma 6. If there is a correct host hi in state Φ, then, eventually, all correct hosts
reach Φ.

Proof. By induction on Φ. All correct hosts start in state Φ0 = (0, . . . , 0), and ∀Φ �=
Φ0 : Φ0 < Φ.
Base case: All correct hosts reach Φ0 by definition.
Inductive case: Say that correct host hi is in state Φ = (c1, . . . , cn), and the lemma
holds for all Φ′ < Φ (Induction Hypothesis). We need to show that any correct host hj

reaches Φ.
Consider the last message m that some actor replica αp

i delivered. Thus, m is the
cth
p message that αp

i delivered. The state of hi prior to delivering this message is Φ′ =
(c1, . . . , cp − 1, . . . , cn). It is clear that Φ′ < Φ. By the induction hypothesis hj � Φ′.
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By the Translation mechanism we know that 〈tag m, p〉 (for some tag) is the cth
p

κ-message that κi delivers from κp. Lemma 4 implies that 〈tag m, p〉 must also be the
cth
p κ-message that κj delivers from κp. Since hj � Φ′, αp

j delivers the first cp − 1
α-messages, and thus κj must have removed those messages from Qp

j . Consequently,
m gets to the head of Qp

j . (1)
Now there are two cases to consider. If m is external, then κj will directly remove

m from Qp
j and enqueue m on the link to αp

j . Because αp
i delivered m after delivering

the first cp − 1 messages (Lemma 5), and αp
i and αp

j run the same function F p, αp
j will

eventually deliver m as well, and therefore hj � Φ.
Consider the case where m is internal. By definition, Φ′ = (c1, . . . , cp − 1, . . . , cn)

produces m at host hi. By Corollary 1, Φ′ produces m at host hj . Thus, eventually κj

places the message in the message bag Bj . (2)
(1) and (2) provide the matching condition for κj to enqueue m on its link to αp

j .
Using the same reasoning for the external message case, hj � Φ. ��

We can now show the first two communication properties. (The proof for α-FIFO has
been omitted for lack of space.)

Theorem 6. (α-Persistence.) If two hosts hi and hj are correct and αi
i sends m to αj ,

then αj
j delivers m from αi.

Proof. Suppose hi is in state Φi when αi
i sends m to αj . By Lemma 6, hj � Φi.

Thus, αi
j sends m to αj as well. By the Translation mechanism, κj places m in Bj and

OARcasts 〈internal m, j〉. By bc-Persistence, κj delivers 〈internal m, j〉 (from itself)
and places m on its queue Qj

j . (1)

By the Translation Mechanism, each external message at the head of Qj
j is dequeued

and delivered by αj
j . (2)

Let us consider an internal message m′ at the head of Qj
j . Since hj is correct, the

Translation mechanism ensures that κj has delivered 〈internal m′, j〉 (the κ-message
containing m′ and from κj). bc-Authenticity ensures that κj has indeed sent the κ-
message. By the Translation mechanism, κj always puts a copy of m′ in Bj before
sending 〈internal m′, j〉. Thus, m′ in Qj

j is matched with a copy in Bj , and αj
j delivers

m′. This together with (2) show that αj
j delivers all internal messages in Qj

j . (3)

(1) shows that m sent by αi
i arrives in Qj

j , and (3) shows that αj
j delivers all internal

messages in Qj
j . Together they show that αj

j delivers m from αi. ��

Theorem 7. (α-Authenticity.) If two hosts hi and hj are honest and αi
i does not send

m to αj , then αj
j does not deliver m from αi.

Proof. Assume αj
j delivers m from αi, but αi

i did not send m to αj . By the Transla-

tion mechanism, a necessary condition for αj
j to deliver m from αi is that κj delivers

〈internal m, i〉. By bc-Authenticity of OARcast, κi must have OARcast 〈internal m, i〉.
Then by the Translation mechanism, αi

i must have sent m, contradicting the
assumption. ��

We introduce a lemma that helps us show α-Validity:
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Lemma 7. Actor replicas on honest hosts only send valid messages.

Proof. Suppose not. Let m sent by αi
j be the first invalid message sent by an actor

replica on an honest host. Since hj is honest, there must be a sequence of messages
mi

1, . . . , m
i
c that αi

j delivered, such that

m ∈ F i(mi
c, F

i(mi
c−1, F

i(. . . , F i(mi
1, s

i
0).next . . .).next).next).output

Since m is the first invalid message sent by an actor replica, all internal messages in
the sequence mi

1, . . . , m
i
c must be valid. Moreover, external messages are valid by def-

inition. Thus, all messages mi
1, . . . , m

i
c are valid. But then, m is valid by definition,

contradicting the assumption. ��

Theorem 8. (α-Validity.) If hi is honest and αi
i delivers m from αj , then m is valid

(even if j �= ⊥ and hj is faulty.)

Proof. If m is an external message, then it is valid and unforgeable by definition.
If m is an internal message, the fact that αi

i delivers m from αj implies that αj
i has

sent m to αi. By Lemma 7, m is valid. ��
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Abstract. We consider static ad-hoc wireless networks where nodes have the
same initial battery charge and they may dynamically change their transmission
range at every time slot. When a node v transmits with range r(v), its battery
charge is decreased by β × r(v)2 where β > 0 is a fixed constant.

The goal is to provide a range assignment schedule that maximizes the number
of broadcast operations from a given source (this number is denoted as the length
of the schedule). This maximization problem, denoted as MAX LIFETIME, is
known to be NP-hard and the best algorithm yields worst-case approximation
ratio Θ(log n), where n is the number of nodes of the network [5].

We consider random geometric instances formed by selecting n points in-
dependently and uniformly at random from a square of side length

√
n in the

Euclidean plane.
We first present an efficient algorithm that constructs a range assignment sched-

ule having length, with high probability, not smaller than 1/12 of the optimum.
We then design an efficient distributed version of the above algorithm where

nodes initially know n and their own position only. The resulting schedule guar-
antees the same approximation ratio achieved by the centralized version thus ob-
taining the first distributed algorithm having provably-good performance for this
problem.

1 Introduction

Range assignments in ad-hoc networks. In static ad-hoc radio networks (in short, ad-
hoc networks), nodes have the ability to vary their transmission ranges (and, thus, their
energy consumption) in order to provide good network connectivity and low energy
consumption at the same time. More precisely, the transmission ranges determine a
(directed) communication graph over the set V of nodes. Indeed, a node v, with range
r, can transmit to another node w if and only if w belongs to the disk centered in v and
of radius r. The transmission range of a node depends, in turn, on the energy power
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supplied to the node. In particular, the power Pv required by a node v to correctly
transmit data to another station w must satisfy the inequality (see [22])

Pv

dist(v, w)2
≥ η (1)

where dist(v, w) is the Euclidean distance between v and w while η is a constant that,
wlog, can be fixed to 1.

In several previous theoretical works [1,9,16,21], it is assumed that nodes can ar-
bitrarily vary their transmission range over the set {dist(v, w) | v, w ∈ V } How-
ever, in some network models (like sensor networks), the adopted technology allows
to have only few possible transmission range values. For this reason, we will assume
that nodes have the ability to choose their transmission range from a finite set Γ =
{0, r1, r2 . . . , rk} (with 0 < r1 < r2 < ... < rk) that depends on the particular adopted
technology (see [7,8,22]). Further technical constraints on Γ will be given and discussed
in Subsection 1.1.

A fundamental class of problems, underlying any phase of a dynamic resource al-
location algorithm in ad-hoc wireless networks, is the one known as range assign-
ment problems. In these problems the goal is to find a transmission range assignment
r : V → Γ such that (1) the corresponding communication graph satisfies a given
connectivity property Π , and (2) the overall energy power cost(r) =

∑
r(v)2 required

to deploy the assignment is minimized (see for example [16,21]). Clearly, the maximal
range value rk in Γ must be sufficiently large to guarantee that at least one feasible
solution exists.

Several research works [1,9,16] have been devoted to the case where Π is defined as
follows: Given specific source s ∈ V , the transmission graph has to contain a directed
spanning tree rooted at s (a broadcast tree from s). The relevance of this problem
(denoted as MIN ENERGY BROADCAST) is due to the fact that any communication
graph satisfying the above property allows the source to perform a broadcast operation.
Broadcast is a task initiated by the source that wants to transmits a message to all nodes.
This task constitutes a basic and thus fundamental operation in real life multi-hop radio
networks [2,3,16]. As for the worst-case complexity, MIN ENERGY BROADCAST is
known to be NP-hard [9] (even when |Γ | = 3 and r1 is a small positive constant) and a
series of constant-factor approximation algorithms are available in [1,4,9,18]. The best
known approximation factor is close to 4 and it is given in [6]. In [5], a more general
version of MIN ENERGY BROADCAST is given where not uniform node efficiency is
considered. In this version, a function e : V → R+ is given and the energy cost,
required to transmit from node v to w, is d(v, w)2/e(v). This non-symmetric version
of MIN ENERGY BROADCAST seems to be harder: the best known algorithm yields
approximation ratio Θ(log n) [5].

The MAX LIFETIME problem. The above power assignment problems do not consider
important ad-hoc network scenarios where nodes are equipped with batteries of limited
charge and the goal is to maximize the number of broadcast operations. This important
(maximization) range assignment problem has been first analytically studied in [5] and
it is the subject of our paper.
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The goal is to maximize the lifetime of the network while having, at any time period
t, a broadcast tree from a given source. Formally, each node is initially equipped with
a battery charge 1 B > 0 that, at every time period t, is reduced by amount β × rt(v)2

where rt(v) denotes the range assigned to node v during t and β > 0 is a fixed constant
depending of the adopted technology. In this paper, we assume β = 1, however, all
our results can be easily extended to any β > 0. A range assignment schedule is a set
of functions {rt : V → Γ, t = 1, . . . , m}. A range assignment schedule is said to be
feasible if, at any time period t, rt yields a broadcast tree from s and, for any v ∈ V , it
holds that

m∑

t=1

rt(v)2 ≤ B

Then, the MAX LIFETIME problem is to find a feasible range assignment schedule of
maximal length m.

In [5], MAX LIFETIME is shown to be NP-hard. In the same paper, by means of a
rather involved reduction to MIN ENERGY BROADCAST with non uniform node effi-
ciency, a polynomial time algorithm is provided yielding approximation ratio Θ(log n).
This positive result also holds when the initial node battery charges are not uniform.

A static version of MAX LIFETIME has been studied in [20]: the broadcast tree is
fixed during the entire schedule and the quality of solutions returned by the MST-based
algorithm is investigated. Such results and techniques are clearly not useful for our
(dynamic) MAX LIFETIME problem.

Several other problems concerning network lifetime have been studied in the litera-
ture [7,8,20]. Their definitions vary depending on the particular node technology (i.e.
fixed or adjustable node power) and on the required connectivity or covering property.
However, both results and techniques (mostly of them being experimental) are not re-
lated to ours.

Our results. To the best of our knowledge, previous analytical results on MIN ENERGY

BROADCAST and MAX LIFETIME concern worst-case instances only. Some experi-
mental studies on MIN ENERGY BROADCAST have been done on random geometric
instances [10,18]. Such input distributions turn out to be very important in the study
of range assignment problems. On one hand, they represent the most natural random
instance family where greedy heuristics (such as the MST-based one - see [16] ) have
a bad behaviour [18]. On the other hand, random geometric distributions is a first good
way to model well-spread networks located on flat 2-dimensional regions [7,8,16,20].

We study MAX LIFETIME in random geometric instances of arbitrary size: set V
is formed by n nodes selected uniformly and independently at random from the 2-
dimensional square of side length �

√
n�. Such instances will be simply denoted as ran-

dom sets. Notice that the maximal Euclidean distance among two nodes in random sets
is

√
2n, so the maximal range value rk can be assumed to be not larger than

√
2n.

A natural and important open question is thus to establish whether efficiently-
constructible range assignment schedules exist for MAX LIFETIME having provably-
good length on random sets. Moreover, the design of efficient distributed
implementations of such schedules is of particular relevance in ad-hoc networks.

1 So we here assume that, at the very beginning, all nodes are in the same energy situation.
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To this aim, we first provide an upper bound on the length of optimal (i.e. maximal)
range assignment schedules for any finite set V in the 2-dimensional plane. So this
upper bound holds in the worst-case. Then, we present an efficient algorithm that, on
any instance (V, s), returns a feasible schedule. Furthermore, when V is a random set,
we prove the schedule length is, with high probability2 (in short, w.h.p.), not smaller
than 1/12 of the optimum. The algorithm is centralized and works in O(n2 + nT ) time
where T is the number of broadcast operations yielded by the schedule.

In Section 4, we modify our centralized algorithm in order to design a distributed
protocol for MAX LIFETIME on random sets. The protocol assumes that every node
initially knows n and its Euclidean position only. This assumption is reasonable in
static ad-hoc networks since node position can be either stored in the set-up phase or it
can locally computed by every node by using GPS systems. This operation is not too
expensive in terms of energy consumption since it is performed once and for all in the
set-up phase.

We then show that the resulting scheduling is equivalent to that yielded by the cen-
tralized version and, hence, it achieves w.h.p. a constant approximation ratio as well.
We thus get the first distributed protocol for MAX LIFETIME having provably good
performance.

The protocol performs, somewhat in parallel, two tasks: (1) It constructs a broadcast
communication subgraph starting from the source and (2) transmits the source message
along this subgraph to all nodes. We emphasize that all node costs due to both the above
tasks are taken into account: whenever a node transmits any message with range r, its
battery charge is decreased by r2.

Our analysis thus evaluates the number of broadcast operations achieved by our pro-
tocol. This suffices for bounding the approximation ratio. However, we also analyze the
amortized completion time of single broadcast operations produced by our protocol. To
this aim, we consider the synchronous model of communication [2,3,12,11,14] and take
care of the MAC layer too: in fact, we also consider time delays due to avoid collisions.

Node communications thus work in synchronous time-slots and the amortized com-
pletion time of a protocol, yielding T broadcast operations, is the overall number of
elapsed time slots divided by T .

It turns out that our protocol has amortized completion time

O

(
r2n

√
n

T
+ r2

2 +
√

n

r2

)

Since our protocol w.h.p. returns an almost maximal number T of broadcast operations,
we can point out some interesting facts.

Assume that r2 ∈ Γ is close to the connectivity threshold of random geometric
graphs [15,19,23,24], i.e., r2 = Θ(

√
log n) (this setting is relevant in our random input

- see Subsection 1.1). Then, the worst scenario for our protocol is when the initial
battery charge B is very small so that T is as well small, say T = O(1). In fact, we get
an amortized completion time O(n

√
n log n) that is a factor

√
n log n larger than the

best-known distributed broadcasting time [15], i.e., O(n).
2 Here and in the sequel the term with high probability means that the event holds with proba-

bility at least 1 − 1
nc for some constant c > 0.
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However, those optimal-time distributed protocols [15] do not care about node en-
ergy costs and, thus, about the lifetime of the network. Our protocol, instead, somewhat
trades global network lifetime with completion time of each single broadcast operation.
This fact clearly arises whenever B is large enough to allow T = Ω(

√
n) number of

broadcast operations: in this case, we get O(n
√

log n) amortized completion time, thus
very close to the best-known distributed broadcasting completion time.

1.1 Preliminaries

A random set V is formed by n nodes selected uniformly and independently at random
from the square Q of side length �

√
n�. The source node s can be any node in V . The

length of a maximal feasible range assignment schedule (in short, schedule) for an input
(V, s) is denoted as opt(V, s).

Given a set V of n nodes in the 2-dimensional Euclidean space and a positive real
r, the disk graph G(V, r) is the symmetric graph where two nodes in V are linked if
d(v, w) ≤ r. When V is a random set, the resulting disk graph distribution is known
as geometric random graphs that are the subject of several important studies related to
wireless networking [15,19,23,24]. In particular, it is known that, for sufficiently large
n, a random geometric graph G(V, r) is w.h.p. connected if and only if r ≥ μ

√
log n,

where μ = 1 + ε for any constant ε > 0 [19,23,24] . The value CT(n) = μ
√

log n is
known as the connectivity threshold of random geometric graphs.

Assumptions on range set Γ . As for set

Γ = {0, r1, r2 . . . , rk}, with 0 < r1 < r2 < ... < rk ≤
√

2n

we make the following assumptions that are motivated by our choice of studying
random sets.

The first positive value in Γ , i.e. r1, is assumed to be 1 ≤ r1 < CT(n). Observe that
if r1 ≥ CT(n) then MAX LIFETIME on random sets admits a trivial schedule which is,
w.h.p., a constant factor approximation: indeed the source must transmit at every time
period with range at least r1 and so all other nodes can transmit with the same range at
every time period.

All other values in Γ can be arbitrarily fixed in input provided that all of them are not
smaller than CT(n) and at least one of them is larger than 2

√
2c

√
log n, where c > μ is

a small constant that will be defined in Lemma 2. Informally speaking, we require that
at least one value in Γ is a bit larger than the connectivity threshold. This is reasonable
and relevant in energy problems related to random geometric wireless networks since
this value is the minimal one achieving w.h.p. global connectivity. Further discussion
on such assumptions can be found in Section 5.

2 The Upper Bound

In this section, we provide an upper bound on the length of any feasible range assign-
ment schedule for a set V .

Consider the disk graph G(V, r1) and let k1 be the size of the connected component
Cs of G containing source s.
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Lemma 1. Given a set V and a source s ∈ V , it holds that opt(V, s) ≤ B
r2
1

. Further-

more, if k1 < n then

opt(V, s) ≤ min
{

B

r2
1

,
B

r4
2
(k1r

2
2 + r2

1 − k1r
2
1)

}

Proof. Since the source must transmit with range at least r1 at any time period, the first
upper bound follows easily.
If k1 < n then consider any feasible range assignment schedule S. Let l1 and l2 be
the number of time periods where the source transmits with range r1 and at least r2,
respectively. It must hold that

l1r
2
1 + l2r

2
2 ≤ B

Since k1 < n then, in each of the l1 time periods of S, there is at least one node in
Cs but s having radius at least r2. This yields

l1r
2
2 ≤ (k1 − 1)B

By simple calculations, from the above two inequalities, we derive an upper bound
on the number of time periods of S, i.e.

l1 + l2 ≤ min
{

B

r2
1
r,

B

r4
2
(k1r

2
2 + r2

1 − k1r
2
1)

}

	

Notice that if V is a random set then, since r1 < CT(n), it holds w.h.p. k1 < n.

3 The Algorithm

In this section we present a simple and efficient algorithm for MAX LIFETIME and
then we analyze its performance. For the sake of simplicity, in this extended abstract
we restrict ourselves to the case r2 ≥ c

√
log n. Nevertheless, it is easy to extend all our

results to the more general assumption described in Section 1.1.
In order to prove the approximation ratio achieved by the schedule returned by our

algorithm, we will use the following result that is a simple consequence of Lemma 1
in [17].

Lemma 2. Constants c > 0 and γ > 0 exist such that the following holds. Given a
random set V ⊆ Q of n nodes, consider the partition of Q into square cells of side
length 
 where c

√
log n ≤ 
 ≤

√
n. Then, w.h.p., every cell contains at least γ
2 nodes.

The constants can be set as c = 12 and γ = 5/6.

Theorem 1. Let V ⊆ Q be a random set of n nodes and s ∈ V be any source node.
Then, w.h.p., the range assignment schedule returned by BS is feasible and it has length
at least βopt(V, s), where β = 1/12.

Proof. From Lemma 2, every cell contains w.h.p. a Pivot (transmitting with range r2)
at every time period. At every time period, there is a Pivot in Ws. This implies that,
at any time period, the set of Pivots w.h.p. forms a strongly-connected subgraph that
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Algorithm 1. BS (Broadcast Schedule)
1: Input: Set V ⊆ Q of n nodes; a source s ∈ V ; a battery charge B > 0; the range set

Γ = {0, r1, r2 . . . , rk}
2: Partition Q into square cells of side length r2/(2

√
2); For any cell Qj , let Vj be the set of

nodes in Qj ; construct an arbitrary ordering in Vj

3: Let Cs be the connected component in G(V, r1) that contains s
4: if |Cs| ≤ r2

2 then
5: Ws ← Cs

6: else
7: Ws is defined as any connected subgraph of Cs such that it contains s and |Ws| = r2

2

8: end if
9: Construct an arbitrary ordering of Ws

10: for any time period t = 1, . . . , do
11: if node with index t mod |Ws| in Ws has remaining battery charge at least r2

2 then
12: it is selected as Pivot and range r2 is assigned to it
13: else
14: The algorithm stops
15: end if
16: for any cell Qj do
17: if node with index t mod |Vj | in Qj has remaining battery charge at least r2

2 then
18: it is selected as Pivot and range r2 is assigned to it
19: else
20: The algorithm stops
21: end if
22: end for
23: All nodes in Ws not selected in lines 11 and 17 have radius r1

24: All nodes in V \ Ws not selected in line 17 have range 0
25: end for

covers all nodes in V and s is connected to one of such Pivots. Moreover, BS assigns,
to every node, an energy power which is never larger than the current battery charge of
the node.

We now evaluate the length T of the scheduling produced by BS, so T is the last
time period of the BS’s run on input (V, s). Let w be any node in V \ Ws then, from
Lemma 2, in its cell there are w.h.p. at least (γr2

2)/8 nodes. So, w spends at most energy
(

8T

γr2
2

)

r2
2 (2)

From (2), T can be any value such that

T ≤ γB

8
(3)

During the schedule, every node v in Ws will have range r1 or r2. Let |Ws| = k,
then the energy spent by v is at most

(
T

k
+

8T

γr2
2

)

r2
2 + Tr2

1 (4)
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Notice that in (4) we have considered the fact that a node in Ws can have range r2
because it has been selected as Pivot of its cell (Line 17) or as Pivot of Ws (Line 11).
Now, two cases may arise.

- If k ≥
(

r2
r1

)2
, since r1 ≥ 1, from (4) the amount of spent energy is at most

Tr2
1 (2 + 8/γ). So, T can be any value such that

T ≤ B

r2
1 (2 + 8/γ)

(5)

Observe that every value T that satisfies 5, it also satisfies Eq. 3. So T can assume value
B

r2
1(2+8/γ) and, from Lemma 1, we have that

T ≥ opt(V, s)
2 + 8/γ

- If k <
(

r2
r1

)2
, according to the definition of Ws, we have k = k1. From (4) and some

simple calculations, the energy spent by v ∈ Ws is at most

T
r4
2 + k1r

2
1r

2
2 + (8/γ)k1r

2
2

r2
2k1 + r2

1 − k1r2
1

where we used the fact that r2
1 − k1r

2
1 ≤ 0. Observe also that since k1 <

(
r2
r1

)2
and

r1 ≥ 1, we get

k1r
2
1r

2
2 + (8/γ)k1r

2
2 ≤ r4

2

(

1 +
8

γr2
1

)

≤ r4
2

(

1 +
8

γr2
1

)

It thus follows that the energy spent by v is at most

T
r4
2 + k1r

2
1r

2
2 + (8/γ)k1r

2
2

r2
2k1 + r2

1 − k1r2
1

≤ T
r4
2(2 + 8/γ)

r2
2k1 + r2

1 − k1r2
1

It follows that T can be any value such that

T ≤ r2
2k1 + r2

1 − k1r
2
1

r4
2(2 + 8/γ)

B (6)

Finally, by combining (3), (6), and Lemma 1, we get again

T ≥ opt(V, s)
2 + 8/γ

So, the Theorem is proved for β = 1/(2 + 8/γ) > 1/12. 	
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4 The Distributed Version

In this section, we present a distributed version of BS. As mentioned in the Introduc-
tion, we adopt the synchronous model of node communication: the protocol acts in
homogeneous time slots.

The resulting protocol is non spontaneous and assumes that every node v knows
the number n of nodes, its own position (w.r.t. an absolute coordinate system) and,
clearly, Γ .

In what follows, the eccentricity of source s in Ws (i.e. the maximal distance between
s and a node in Ws) is denoted as h(Ws) and the t-th message sent by the source is
denoted as mt. We assume that mt contains the value of time period t.

Protocol: DBS (Distributed Broadcast Schedule)

Preprocessing: /* Construction of Ws ⊆ Cs such that h(Ws) ≤ r2
2 . */

– One-to-All. Starting from s, use round robin among nodes and range transmis-
sion r1 to inform all nodes in Cs that are at most within r2

2 hops from s: such
nodes will form Ws. The one-to-all operation induces a spanning tree Tree of
Ws rooted at s.

– All-to-One. By a simple bottom-up process on Tree and using round robin on
each level, s collects all node labels and the structure of Tree.

– Initialization. Every node sets a local counter counter = −1. Furthermore,
each node has a local array P of length (γ/8)r2

2 where it will store the ordered
list of the first (γ/8)r2

2 labels belonging to its own cell. This array is initially
empty.

Let us observe that at the end of the Preprocessing phase, source s has full knowledge
of Ws.

Broadcast operations:
– For t = 0, 1, . . . /* time periods */

Execute Procedure BROADCAST(mt)

Procedure BROADCAST(mt)

Nodes in Ws only:
– Source s selects the (t mod min{|Ws|, r2

2})-th node in Ws as Pivot (range r2
will be assigned to it);
s transmits, with range r1, 〈mt, P 〉 where P is the path in Tree from s to the
Pivot.

– When a node in Ws receives 〈mt, P 〉 , it checks whether its label is the first
in P . If this is the case, it transmits, with range r1, 〈mt, P

′〉 where P ′ is the
residual path to the Pivot.

– When the selected Pivot p of Ws receives 〈mt, P = (p)〉, it transmits, with
range r2, 〈mt, i〉 where i is the index of its cell.

All nodes:
– If (t ≤ (γ/8)r2

2) then
• When a node v receives, for the first time w.r.t. time period t, 〈mt, i〉 from

the Pivot of a neighbor cell i, it becomes active.
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• An active node, at every time slot, incrementscounter by one and checks
whether its label is equal to the value of its counter. If this is the case, it
becomes the Pivot of its cell and transmits, with range r2, 〈mt, i〉 where i
is the index of its cell.

• When an active node in cell i receives 〈mt, i〉, it (so the Pivot as well)
records in P [t] the current value of counter c, i.e. the label of the Pivot,
and becomes inactive.

– else (i.e. (t > (γ/8)r2
2))

• When a node v receives, for the first time w.r.t. time period t, 〈mt, i〉 from
the Pivot of a neighbor cell i, it checks if its label is equal to P [t mod
(γ/8)r2

2]. If this is the case, it becomes the Pivot of its cell and transmits,
with range r2, 〈mt, j〉 where j is the index of its cell.

The above protocol has the following properties that are a key-ingredient in the perfor-
mance analysis.

Fact 2. Even though they initially do not known each other, all nodes in the same cell
are activated (and disactivated) at the same time slot, so their local counters share the
same value at every time slot. Furthermore, after the first (γ/8)r2

2 broadcast operations,
all nodes in the same cell know the set P of Pivots of that cell.

More precisely, if l0 < l1 < l2 < · · · are the labels of the nodes in a cell, then, during
the first (γ/8)r2

2 broadcast operations (i.e.time periods), the Pivot of the cell at time
period t will be node having label lt.

Lemma 3. Given a random set V ⊆ Q and any source s ∈ V , if the length of the
broadcast schedule yielded by BS is T , then the length of the broadcast schedule yielded
by DBS is at least T − 2.

Proof. Notice that, the only difference in terms of power consumption between BS and
DBS lies in the Preprocessing phase required by the latter. In that phase, at most two
messages with range r1 are sent by a node to discover Ws. Indeed, thanks to Fact 2, the
if branch of the Broadcast procedure for nodes in V spends time instead of power in
order to discover the set of Pivots of each cell. Hence, in the worst case, the distributed
version performs two broadcasts less than the centralized algorithm. 	


Corollary 1. Let V ⊆ Q be a random set of n nodes and s ∈ V be any source node.
Then, w.h.p., the range assignment schedule returned by DBS is feasible and it has a
length at least βopt(V, s) − 2 where β = 1/12.

Proof. Direct consequence of Theorem 1 and Lemma 3. 	


We now evaluate message and time complexity of DBS.

Lemma 4. The overall number of node transmissions (i.e. the message complexity) of
DBS is O(|Ws| + T · ((n/r2

2) + r2
2)), where T is the length of the schedule.

Sketch of the proof. Observe that in the Preprocessing phase only nodes in Cs can ex-
change messages. In particular, s and all nodes within r2

2 hops from s send only one
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message; all other nodes within 1 and r2
2 − 1 hops from s send two messages. So, the

message complexity of the Preprocessing phase is Θ(|Ws|). Thanks to Fact 2, during
each broadcast, exactly one message per cell is sent, so globally O(8n/r2

2) messages
are exchanged; to this number of messages, we have to add those sent by the nodes of
path P in Ws: this value is bounded by r2

2 . 	


Theorem 3. The overall number of time slots required by DBS to perform T broadcast
operations is w.h.p.

O(r2n
√

n + T · (r2
2 +

√
n/r2))

Sketch of the proof. For a single broadcast operation performed by DBS, we define the
delay of a cell as the number of time slots from its activation time and the selection of
its Pivot. Observe that the sum of delays introduced by a cell during the first (γ/8)r2

2
broadcasts is at most n. Then, the delay of any cell becomes 0 for all broadcasts after
the first (γ/8)r2

2 ones. Moreover, a broadcast can pass over at most O(
√

n/r2) cells.
By assuming that a maximal length path (this length being Θ(

√
n/r2)) together with

maximal cell delay can be found in each of the first min{(γ/8)r2
2, T } broadcasts, we

can bound the maximal overall delay with

O(r2n
√

n) (7)

In the Preprocessing phase, DBS uses round robin to avoid collisions. During the
All-to-One phase, each node needs to collect all messages from its children before
sending a message to its parent in Tree. Hence, the whole phase is completed in

O(nr2
2) (8)

time slots as the height of Tree is bounded by r2
2 .

Finally, the number of time slots required by every broadcast without delays and
Preprocessing time is

O(r2
2 +

√
n/r2) (9)

since r2
2 is the upper bound on h(Ws) and the length of any path on the broadcast tree

outside Ws is O(
√

n/r2).
By combining (7), (8), and (9), we get the theorem bound without considering col-

lisions among cell Pivots. In order to avoid such collisions, we further organize DBS
into iterative phases: in every phase, only cells with not colliding Pivot transmissions
are active. Since the number of cells that can interfere with a given cell is constant,
this further scheduling will increase the overall time of DBS by a constant factor only.
This iterative process can be efficiently performed in a distributed way since every node
knows n and its position, so it knows its cell. 	

From Theorem 3, the amortized completion time of a single broadcast operation per-
formed by DBS is

O

(
r2n

√
n

T
+ r2

2 +
√

n

r2

)
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5 Open Problems

In this paper, we have studied the MAX LIFETIME problem on random sets. Further
interesting future studies should address other basic operations than broadcasting: for
instance, the gossiping operation which is known to be NP-hard too [5]. A more techni-
cal problem, left open by our research, is the study of MAX LIFETIME when Γ contains
more than one positive values smaller than the connectivity threshold CT(n) of random
geometric graphs. This case seems to be very hard since it concerns the size and the
structure of the connected components of such random graphs under the threshold con-
nectivity [19,23].
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Abstract. Objects like queue, swap, and test-and-set allow two processes to
reach consensus, and are consequently “universal” for a system of two processes.
But are there deterministic objects that do not solve 2-process consensus, and
nevertheless allow two processes to solve a task that is not otherwise wait-free
solvable in read-write shared memory?

The answer “no” is a simple corollary of the main result of this paper: Let A
be a deterministic object such that no protocol solves consensus among n+1 pro-
cesses using copies of A and read-write registers. If a task T is wait-free solvable
by n + 1 processes using read-write shared-memory and copies of A, then T is
also wait-free solvable when copies of A are replaced with n-consensus objects.
Thus, from the task-solvability perspective, n-consensus is the second strongest
object (after (n+1)-consensus) in deterministic shared memory systems of n+1
processes, i.e., there is a distinct gap between n- and (n + 1)-consensus.

We derive this result by showing that any (n+1)-process protocol P that uses
objects A can be emulated using only n-consensus objects. The resulting emu-
lation is non-blocking and relies on an a priori knowledge of P . The emulation
technique is another important contribution of this paper.

1 Introduction

Consensus [1] (n-consensus object) is a fundamental abstraction that allows n processes
to agree on one of their input values. Consensus is n-universal: every object shared by n
processes can be wait-free implemented using n-consensus objects (and read-write reg-
isters), i.e., the object can be “replaced” with n-consensus objects, so that the external
observer cannot detect the replacement [2].

But which aspects of the universality of n-process consensus remain valid in a system
of n+1 processes? Ideally, one would wish to show that, in a system of n+1 processes,
every object that does not allow for (n + 1)-process consensus (to be called an object
of consensus power less than n + 1) can be wait-free implemented from n-consensus
objects. This would imply that every problem that can be solved by n + 1 processes
using objects of consensus power less than n + 1 can also be solved using n-consensus
objects.

In this paper, we address an easier question: whether every deterministic object of
consensus power less than n + 1 can be replaced with n-consensus objects, so that the

E. Tovar, P. Tsigas, and H. Fouchal (Eds.): OPODIS 2007, LNCS 4878, pp. 260–273, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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replacement is not detectable in a given (n + 1)-process protocol P . Thus, we consider
the classical emulation problem: given a protocol P designed for a system with objects
from a set C, how to emulate P in a system with objects from a set C′.

We show that every protocol for n+1 processes using read-write registers and objects
A of consensus power less than n + 1 can be emulated using only read-write registers
and n-consensus objects. Our emulation is non-blocking [2]: at least one active process
is guaranteed to take infinitely many (emulated) steps of P . Even though the emulation
does not ensure progress for every active process, it helps in answering the following
question: is there a decision task T [3] for n+1 processes that can be solved by objects
of consensus power less than n + 1 but cannot be solved using n-consensus objects?
The answer is “no”: our non-blocking emulation implies that every terminating protocol
for n + 1 processes using objects A of consensus power less than n + 1 can be wait-
free emulated using n-consensus objects. Thus, from the task-solvability perspective,
n-consensus is the strongest object for systems of n + 1 processes in which (n + 1)-
process consensus is unachievable, i.e., in a strict sense, there are no objects between
n- and n + 1-consensus.

The emulation technique presented in this paper is novel and interesting in its own
right. It is based on the fundamental inseparability property which we show to be inher-
ent for all (n + 1)-process protocols that use registers and objects of consensus power
less than n + 1. Inseparability generalizes the concept of connectivity used in classical
characterizations of distributed computing models (e.g., [1,2,4]) and it captures the very
essence of the inability of a collection of shared objects to solve consensus.

Note that the aforementioned emulation does not answer the question of robustness
of (deterministic) consensus hierarchy posed by Jayanti [5]. Our protocol does not im-
ply that a protocol using a composition of deterministic objects A and B, each of con-
sensus power n, can be emulated using only registers and n-consensus objects. Proving
or refuting this statement is left for future work.

The paper is organized as follows. In Section 2, we describe the system model. In
Section 3, we introduce the key notions of our result: inseparability and non-separating
paths. Section 4 presents our emulation protocol and Section 5 concludes the paper.

2 Preliminaries

In this section, we describe the system model, and introduce some key notions. Missing
details of the model can be found in [2,5,6].

Processes. We consider a set Π of n + 1 (n ≥ 1) asynchronous processes p1, p2, . . . ,
pn+1 that communicate using atomic shared objects. Every object is characterized by
a set of ports that it exports, a set of states the object can take, a set of operations that
can be performed on the object, a set of responses that these operations can return, and
a relation known as the sequential specification of the type that defines, for every state,
port, and applied operation, the set of possible resulting states and returned responses.
We assume that objects are deterministic: the sequential specification of a determinis-
tic object is a function that carries each state, port, and operation to a new state and a



262 E. Gafni and P. Kuznetsov

corresponding response. In particular, we assume that processes have access to read-
write shared memory.

Protocols. A protocol P is a collection of deterministic state machines P1, . . . Pn+1,
one for each process. For every i, Pi maps every local state of pi to the next operation
it has to perform on a shared object (if any). Since all protocols and shared objects we
consider are deterministic, we can model an execution of a protocol as an initial system
state and a sequence of process identifiers, specifying the order in which processes
take steps in the execution. To simplify the presentation, our emulation assumes that a
protocol has only one initial state. In Section 4.3, we show how our emulation can be
extended to protocols with multiple initial states.

We also distinguish between terminating and non-terminating protocols. In a termi-
nating protocol, every process that takes sufficiently many steps reaches an irrevocable
final view (we say that the process terminates). Without loss of generality, we con-
sider protocols in which a terminated process keeps taking null steps, i.e., we focus on
protocols in which every active process takes infinitely many steps.

States and views. Every finite execution is regarded as a state of P , unambiguously
defining states of all shared objects and local states of processes (to be called views)
that result after the execution completes.

There is a natural ancestor/descendant relation between states of P : we say that state
x′ is a descendant of state x (x is an ancestor of x′), and we write x → x′, if x is a
prefix of x′. We also say that a (finite or infinite) execution e extends a state x if x is a
prefix of e.

We say that a view v of a process pi appears in a state x (of P ) if the local state of
pi in x is v. Let viewi(x) denote the view of process pi that appears in state x. We say
that a view v is compatible with a state x if v appears in x or an ancestor of x.

For an execution e and a process pi, e|i denotes the sequence of distinct views of
pi (resulting after pi takes its steps in e) that appear in prefixes of e (in the order of
appearance). For two distinct views v and v′ of the same process pi, we say that v′ is a
descendant of v (or v precedes v′), and we write v → v′, if there is an execution e such
that v precedes v′ in e|i.

For two views v and v′ of the same process pi such that v → v′, next(v, v′) denotes
the earliest view u such that (i) v → u, and (ii) u = v′ or u → v′. We say that v
immediately precedes v′ if v → v′ and v′ = next(v, v′).

Consensus. The consensus problem [1] is one in which a set of processes need to reach
an agreement on one of their proposed values. More precisely, every process starts
with an initial proposal in {0, 1} and it is required that: (Termination) Every process
that takes sufficiently many steps eventually decides on a value; (Agreement) No two
processes decide on different values; (Validity) If a process decides on a value v, then v
was proposed by some process.

It is sometimes convenient to relate the consensus problem among m processes to the
m-consensus object. The object exports m ports and can be accessed with the propose()
operation that takes a value as a parameter and returns one of the proposed values, so
that no two propose() operations return different values.
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We say that an object A solves m-process consensus if there exists an m-process
protocol that solves consensus using read-write registers and copies of object A.1 The
consensus power of A, denoted cons(A), is the largest m such that A solves m-process
consensus [2]. If no such largest m exists, then cons(A) = ∞. Further, if cons(A) = n,
then cons({A, n-consensus}), the consensus power of the composition of A and n-
process consensus, is n, i.e., (n + 1)-process consensus cannot be solved using copies
of an object of consensus power n and n-consensus objects [4].

Team consensus is a form of consensus in which processes are divided a priori into
two non-empty teams and which satisfies Validity, Termination, and Team Agreement:
no two processes decide on different values, under the condition that processes on the
same team propose the same value. Consensus is, in a precise sense, equivalent to team
consensus: if A can solve m-process team consensus, then A can solve m-process con-
sensus [8,9].

Approximate agreement. Though it is impossible to reach non-trivial agreement us-
ing only read-write registers [1,10], we can achieve approximate agreement [11] that
guarantees that all decided values are sufficiently close. Formally, the ε-agreement task
(where ε ∈ [0, 1] is a specified parameter) is defined for two processes, q0 and q1, as fol-
lows. Every process qi (i = 0, 1) outputs a value xi ∈ [0, 1] such that (1) if qi is the only
participant, then qi outputs i, and (2) |x0 − x1| ≤ ε. It is known that, for all ε ∈ (0, 1],
the 2-process ε-agreement task is wait-free solvable using read-write registers [11].

Protocol emulation. We address the following problem: given a protocol P that uses
objects in a set C, design a protocol that emulates P using objects in a set C′. In the
emulation, processes start from their views in an initial state of P , and every active (not
yet terminated) process may periodically output a new view that results after the process
takes one more step of P .

On the safety side, the emulation must guarantee that all views output by the pro-
cesses are compatible with some execution of P . On the liveness side, a non-blocking
emulation ensures that either every participating process eventually reaches a final view,
or at least one participant obtains infinitely many distinct views. Clearly, if P is ter-
minating, then any non-blocking emulation of P is also wait-free: every participant
eventually reaches a final view.

3 Inseparability

The following observation generalizes the arguments of most valence-based asyn-
chronous impossibility proofs (e.g., [1,2,4]). Let P be any protocol using objects of
collective consensus power n, and let x be any state of P . Then the immediate de-
scendants of x are, in a strict sense, connected. More precisely, for every non-empty
partitions Π0 and Π1 of Π , there exists an execution e of P going through x in which
some process pi takes infinitely many steps, without being able to decide whether the
first step of e extending x was taken by a member of Π0 or a member of Π1.

1 The protocol designer is allowed to initialize the shared objects to any (reachable) states: this
ability does not affect the consensus power of deterministic objects [7].
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Formally, let P be any protocol, and e0 and e1 be executions of P . We say that e0
and e1 are i-confusing if (1) pi takes infinitely many steps in both e0 and e1, and (2)
e0|i = e1|i. In other words, pi cannot distinguish e0 and e1, even by taking infinitely
many steps of P .

Let x0 and x1 be any two states of P . We say that x0 and x1 are inseparable (by
P ), and we write x0 ∼ x1, if there exist pi ∈ Π and e0 and e1, extending x0 and x1,
respectively, such that e0 and e1 are i-confusing and either viewi(x0) = viewi(x1), or
viewi(x0) immediately precedes viewi(x1), or vice versa.

Lemma 1. Let x0 and x1 be any two states of a protocol P , such that x0 = x1 or
x0 → x1 and some process pi ∈ Π takes at most one step in x1 after x0. Then x0 ∼ x1.

Proof. Indeed, since pi takes at most one step in x1 after x0, either viewi(x0) =
viewi(x1) or viewi(x0) immediately precedes viewi(x1). Let e be any execution extend-
ing x1 in which pi takes infinitely many steps. Then e0 = e and e1 = e are i-confusing,
and, thus, x0 ∼ x1. �	

3.1 Inseparably Connected Sets of States

Let ≈ denote the transitive closure of the ∼ relation. We say that a set of states is
inseparably connected if, for every two states x0 and x1 in the set, x0 ≈ x1.

Let x be any state of P . An immediate descendant of x is a one-step extension of
x, i.e., a state that results after some process applies exactly one step to x. Note that if
x0 = x1 or x0 is an immediate descendant of x1, then, by Lemma 1, x0 ∼ x1, and if
x0 is a descendant of x1, then x0 ≈ x1. Let G(x) denote the set of all n + 1 immediate
descendants of x. We say that a protocol P is inseparably connected if for every state
x of P , G(x) is inseparably connected.

Theorem 1. Let A be any deterministic object of consensus power less than n + 1 and
P be any protocol among n + 1 processes using copies of A and read-write registers.
Then P is inseparably connected.

Proof. Suppose, by contradiction, that there exists a state x of P , such that G(x), the
set of all n + 1 immediate descendants of x, is not inseparably connected. We establish
a contradiction by presenting a protocol that solves (team) consensus among n + 1
processes using objects A and read-write registers.

Since G(x) is not inseparably connected, it can be partitioned into two non-empty
sets, G0 and G1, such that for all x0 ∈ G0 and x1 ∈ G1, x0 � x1. Let processes
whose steps applied to x result in G0 constitute team Π0 and the rest constitute team
Π1. Clearly, Π0 ∪ Π1 = Π .

Assume that all objects used by P are initialized to their states in x. Let R0 and R1
be two shared registers, initially ⊥. Every process pi first writes its proposal in a shared
register Rj such that pi ∈ Πj . Then pi takes steps of P starting from its view in x.
Note that the views obtained by the processes are compatible with some execution of
P extending x. The process stops when, for some k ∈ {0, 1}, its view cannot appear in
any descendant of any state in G1−k. At this point, the process returns the value read
in Rk.
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Suppose, by contradiction, that the Termination property of consensus is violated:
assume, without loss of generality, that P has an execution e0 passing through a state
x0 ∈ G0, in which pi takes infinitely many steps, and every view obtained by pi in e0
could have been obtained in an execution e1 passing through a state x1 ∈ G1. Thus,
e0 and e1 are i-confusing. Moreover, since x0 and x1 are immediate descendants of the
same state x, viewi(x0) = viewi(x1), or viewi(x0) immediately precedes viewi(x1), or
vice versa. Thus, x0 ∼ x1 — a contradiction.

Now suppose that a process gets a view that is only compatible with descendants of
states in Gk (k ∈ {0, 1}). Thus, the current execution e extends a state in Gk , and the
process that took the first step in e after x has previously written its proposal in Rk. By
the algorithm, the process returns the value read in Rk and, thus, Validity is satisfied.
Since e extends a state in Gk, no process can ever obtain a view (in e) that is only
compatible with executions extending a state in G1−k. Thus, no process ever returns a
value read in R1−k. Now assume that processes on the same team (Π0 or Π1) propose
the same value. Thus, no two different non-⊥ can be read in Rk — Team Agreement is
ensured.

Hence, object A solves (n + 1)-team consensus and, therefore, (n + 1)-consensus
— a contradiction. �	

3.2 Non-separating Paths

In every phase of our emulation protocol, processes try to reconcile their (possibly
different) estimates of the emulated system state and the views to be output. Since we
can use only registers and n-consensus objects, n+1 participants can only be guaranteed
to reach approximate agreement. The approximate agreement is solved along a path
connecting the concurrent estimates.

Formally, let P be a protocol, and (v0, x0) and (v1, x1) be tuples such that for i =
0, 1, xi is a non-initial state of P , and vi is a view that is compatible with xi. Let
preci(x0, x1) (i = 0, 1) be defined as follows. If x0 ∼ x1, then preci(x0, x1) = xi.
Otherwise, preci(x0, x1) is the immediate predecessor of xi.

We say that a sequence (u0, y0), . . . , (u�, y�), where each uj is a view of P and each
yi is a state of P , is a non-separating path connecting (v0, x0) and (v1, x1) if:

(1) (u0, y0) = (v0, x0) and (u�, y�) = (v1, x1).
(2) ∀j = 0, . . . , � − 1, uj and uj+1 are both compatible with both yj and yj+1.
(3) ∀j = 0, . . . , � − 1, yj ∼ yj+1.
(4) ∀j = 1, . . . , � − 1, ∃i ∈ {0, 1}, such that (i) preci(x0, x1) → yj and (ii) either

uj = vi or uj is not compatible with preci(x0, x1).

Property (2) stipulates that the views of every two neighbors in a non-separating path
must be compatible with both corresponding states. Intuitively, we need this property
to ensure that all views produced by our emulation appear in some execution of the
emulated protocol, i.e., the emulation is safe.

Property (3) requires that the states of every two neighbors in a non-separating path
must be inseparable. Thus, it makes sure that competing state estimates produced by
our emulation protocol are, in a strict sense, connected, so we could inductively extend
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the emulation. Property (4) implies that, for every view uj on the path, there exists
i ∈ {0, 1} such that, unless uj = vi, uj appears in a descendant of preci(x0, x1) and
does not appear in preci(x0, x1). In other words, view uj is “fresh” with respect to
preci(x0, x1). Intuitively, we need properties (3) and (4) to ensure that our emulation
indeed makes progress, i.e., in each phase of the emulation, at least one participating
process manages to perform one more step of P and obtain a new view.

If x′0 and x′1 are inseparable, then any two tuples (v0, x0) and (v1, x1) where each xi

(i = 0, 1) is x′i or one of x′i’s immediate descendants and vi is compatible with xi can
be connected via a non-separating path. Moreover the length of this path (the number
of hops) is bounded by 10(2n + 1).

Lemma 2. Let P be any inseparably-connected protocol. Let x′0 and x′1 be non-initial
states of P such that x′0 ∼ x′1. Then for all (v0, x0) and (v1, x1) such that ∀i = 0, 1,
xi ∈ {x′i} ∪ G(x′i) and vi is compatible with xi, there exists a non-separating path
connecting (v0, x0) and (v1, x1) the length of which does not exceed L = 10(2n + 1).

Proof. There are three possible cases:
(a) Assume that x0 ∼ x1 and, thus, precj(x0, x1) = xj , j = 0, 1.

Let i be the smallest process identifier such that there exists i-confusing executions
e0 and e1 that extend x0 and x1, respectively, and either viewi(x0) = viewi(x1),
or viewi(x0) immediately precedes viewi(x1), or viewi(x1) immediately precedes
viewi(x0).

Let zj (j = 0, 1) be the shortest prefix of ej in which pi obtains a view that is
compatible neither with x0 nor with x1. Note that, since e0 and e1 are i-confusing,
viewi(z0) = viewi(z1) = v, and, since viewi(x0) and viewi(x1) are either identical or
one of them immediately precedes the other, for each j = 0, 1, pi takes at most two
steps from xj to reach view v.

Let yj (j = 0, 1) be the shortest prefix of ej in which pi takes at least one step after
xj (note that yj can be equal to zj). Let uj = viewi(yj) (note that uj can be equal to v).

Now we construct the non separating path connecting (v0, x0) and (v1, x1) as
follows (Figure 1 (a)): (v0, x0), (v0, y0), (u0, y0), (u0, z0), (v, z0), (v, z1), (u1, z1),

(v0, x0) (v1, x1)

(a)

(v0, y0) (v1, y1)

(u0, y0) (u1, y1)

∼(v, z0)

(u0, z0)

(v, z1)

(u1, z1)

∼

x′1

(b)

x′0

∼

∼
(w1

0, y
1
0)(v0, x0)

∼∼ ∼∼∼

(w1
1, y

1
1) (v1, x1)(wm0

0 , ym0
0 ) (wm1

1 , ym1
1 )

Fig. 1. Non-separating path connecting (v0, x0) and (v1, x1): (a) x0 ∼ x1, (b) x0 ∈ G(x′
0) and

x1 ∈ G(x′
1)
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(u1, y1), (v1, y1), (v1, x1). Trivially, property (1) of non-separating paths are satisfied.
Note that, by construction, e0 and e1 extend z0 and z1, respectively, and viewi(z0) =
viewi(z1) = v. Since e0 and e1 are i-confusing, z0 ∼ z1. By Lemma 1, xj ∼ yj and
yj ∼ zj (j = 0, 1). Thus, property (3) is satisfied.

For each internal vertex (u, y) in the path, u is compatible with the states of both
its neighbors and, unless u ∈ {v0, v1}, u is not compatible with xj = precj(x0, x1)
(j = 0, 1). Finally, each internal state in the path (yj or zj) is a descendant of xj =
precj(x0, x1). Thus, properties (2) and (4) are satisfied. The length of the path is 9.

(b) Now assume that x0 � x1, x0 ∈ G(x′0) and x1 ∈ G(x′1), and, thus, preci(x0, x1)
is the immediate ancestor of xi, i = 0, 1. Recall that x′0 ∼ x′1. Let i be the smallest
process identifier such that there exists i-confusing executions e0 and e1 that extend x′0
and x′1, respectively, and viewi(x′0) and viewi(x′1) are either identical or one of them
precedes the other.

Let, for j = 0, 1, y′j be the state resulting after the first step of ej is applied to
x′j . Clearly, y′0 ∈ G(x′0) and y′1 ∈ G(x′1). Note that since executions e0 and e1 are
i-confusing executions for x′0 and x′1, they are also i-confusing executions for y′0 and
y′1. Let u′j denote the last view of the process taking the last step in y′j , j = 0, 1.

Similarly to case (a), let yj (j = 0, 1) denote the shortest prefix of ej in which pi

takes exactly one step after x′j , and zj denote the shortest prefix of ej in which pi obtains
a view that is compatible neither with x′0 nor with x′1. Let uj and be the last view of
pi in yj . Note that since x′0 ∼ x′1, viewi(z0) = viewi(z1) = v. Thus, Z = (u′0, y′0),
(u′0, y0), (u0, y0), (u0, z0), (v, z0), (v, z1), (u1, z1), (u1, y1), (u′1, y1), (u′1, y

′
1) is a non-

separating path connecting (u′0, y′0) and (u′1, y′1).
Recall that P is inseparably connected, so G(x′0) and G(x′1) are each inseparably

connected. Thus, for all j = 0, 1, there is a sequence of states y0
j , . . . , y

mj

j of G(x′j)
such that y0

j = xj , y
mj

j = y′j , and, for each k = 0, . . . , mj − 1, yk
j ∼ yk+1

j . Let wk
j

denote the last view of the process taking the last step in yk
j .

Now let, for each j = 0, 1 and k = 0, . . . , mj − 1, Zk
j denote the non-separating

path, constructed as described above in case (a), connecting (wk
j , yk

j ) and (wk+1
j , yk+1

j ).
Now consider the concatenation of paths Z0

0 , Z1
0 , . . ., Zm0−1

0 , Zm0
0 , Z , Zm1

1 , Zm1−1
1 ,

. . ., Z1
1 , Z0

1 (Figure 1 (b)). Inductively, this is a non-separating path connecting (v0, x0)
and (v1, x1). Since paths Zk

j and Z are bounded by 9 and mj ≤ n (j = 0, 1), the total
length of the non-separating path is bounded by 9(2n + 1) + 2n < 10(2n + 1).
(c) Finally, assume that x0 � x1, x0 = x′0 and x1 ∈ G(x′1). Let x′′0 be the state in G(x0)
such that there exists x′′1 ∈ G(x′1) and x′′0 ∼ x′′1 (since P is inseparably connected, such
x′′0 and x′′1 do exist). Let v′′j denote the last view of the process taking the last step in
x′′j , j = 0, 1.

By employing the reasoning of case (b), we construct a non-separating path Z con-
necting (v′′0 , x′′0 ) and (v1, x1). Since x′′0 and x′′1 are inseparable, the path does not
“travel” through states in G(x0), and the length of Z is bounded by 9(n + 1) + n.

Then the non-separating path connecting (v0, x0) and (v1, x1) is obtained by adding
(v0, x0), (v0, x

′′
0 ) to the beginning of Z . The case x0 ∈ G(x′0) and x1 = x′1 is symmet-

ric. The length of the resulting path is bounded by 10(2n + 1). �	
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3.3 P -reconciliation

To reconcile possibly conflicting estimates of the system state and the view to pro-
mote, our emulation of a protocol P uses a subroutine called P -reconciliation. In the
2-process P -reconciliation task, every process qi (i = 0, 1) has an input (vi, xi), where
vi is a view of P and xi is a state of P such that vi is compatible with xi. If both q0 and
q1 participate, and there exists a non-separating path connecting (v0, x0) and (v1, x1)
of length at most L (let γ be the shortest such path), then each qi outputs a tuple (Ui, zi)
where Ui is a set of at most two views and yi is a state of P , such that:

(1) U0 ∩ U1 �= ∅, and
(2) there exist two neighbors (u0, y0) and (u1, y1) in γ such that {z0, z1} ⊆ {y0, y1}

and U0 ∪ U1 ⊆ {u0, u1}.

Otherwise, if qi is the only participant in the task or no such path γ exists, then qi

outputs ({vi}, xi).

Shared variables :
R0 , R1, initially⊥

upon P -reconcile(vi, xi):

1: Ri := (vi, xi)
2: s := ε-agreement() {ε = 1/(2L) where L = 10(2n + 1)}
3: if R1−i = ⊥ then {If qi goes solo }
4: return ({vi}, xi)
5: (v1−i, x1−i) := R1−i {Fetch the competing proposal}
6: if (v0, x0) and (v1, x1) cannot be connected via a non-separating path of length≤ L then
7: return ({vi}, xi)
8: let (u0, y0), (u1, y1) . . . , (u�, y�) be the shortest non-separating path

connecting (v0, x0) and (v1, x1)
9: let j ∈ {0, . . . , �} be such that s ∈ ((j − 1/2)/�, (j + 1/2)/�]
10: z := yj

11: if s ∈ ((j − 1/4)/�, (j + 1/4)/�] then {If s belongs to 1/4�-vicinity of j/�}
12: U = {uj}
13: else if s < j/� {s belongs to the mid-half of [(j − 1)/�, j/�]}
14: U = {uj−1, uj}
15: else {s belongs to the mid-half of [j/�, (j + 1)/�]}
16: U = {uj , uj+1}
17: return (U, z)

Fig. 2. 2-process P -reconciliation task: code for every process qi, i = 0, 1

Lemma 3. P -reconciliation is wait-free solvable using read-write registers.

Proof. A P -reconciliation algorithm is presented in Figure 2. In the algorithm, every
process qi first registers its proposal (vi, xi) in the shared memory (line 1). Then it runs
ε-agreement with ε = 1/(2L) (L = 10(2n + 1)). Let s ∈ [0, 1] be the value returned
by ε-agreement. Then qi reads R1−i (line 3). If R1−i = ⊥ or there does not exist a
non-separating path γ of length � ≤ L connecting the two proposals, then qi returns
({vi}, xi) (lines 4 and 7). Otherwise, qi computes a tuple (Ui, zi), based on the output
of ε-agreement (s), as follows (the procedure is summarized in Figure 3):

– Let j ∈ {0, . . . , �} be such that s belongs to a 1/(2�)-neighborhood of j/�, i.e.,
s ∈ ((j − 1/2)/�, (j + 1/2)/�]. Then pi sets zi = yj .
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{uj−1} {uj−1, uj} {uj} {uj+1}{uj , uj+1}

Assigned views

(uj , yj)(uj−1, yj−1) (uj+1, yj+1)

yj yj+1

Assigned states

yj−1

j/� (j + 1)/�(j − 1)/�

Fig. 3. Mapping the output of ε-agreement to views Ui and states yi

– If s belongs to the 1/(4�)-neighborhood of j/�, i.e., s ∈ ((j −1/4)/�, (j+1/4)/�]
then pi sets Ui = {uj}.

– Otherwise, if s < j/�, i.e., s belongs to the middle half-interval of [(j − 1)/�, j/�],
then pi sets Ui = {uj−1, uj}. Else, if s belongs to the middle half-interval of
[j/�, (j + 1)/�], then pi sets Ui = {uj, uj+1}.

Since ε = 1/(2L) and � ≤ L, the values s0 and s1 returned by ε-agreement at q0
and q1, respectively, are within 1/(2�) from each other.

By inspecting Figure 3 and taking into accound that |s0 − s1| ≤ 1/(2�), we observe
that the following cases are only possible.

If q0 and q1 return the same state yj (s0 and s1 both belong to the 1/(2�)-
neighborhood of some j/�), then either U0 and U1 are equal to the same non-empty
set of views (U0 = U1 ∈ {{uj−1, uj}, {uj}, {uj, uj+1}}), or U0 and U1 are related by
containment ({U0, U1} ⊆ {{uj−1, uj}, {uj}} or {U0, U1} ⊆ {{uj, uj+1}, {uj}}). In
both cases, the set of all returned views is either a subset of {uj−1, uj} or or a subset
of {uj, uj+1}, and the properties of P -reconciliation are satisfied.

If q0 and q1 return different states, then the two states can only be some yj and yj+1
(neighbors in γ). Furthermore, either q0 and q1 both return {uj, uj+1} as the sets of
views, or one of them returns {uj, uj+1}, and the other — {uj} or {uj+1}, and the
properties of P -reconciliation are satisfied. �	

4 Protocol Emulation

Let P be any inseparably connected (n + 1)-process protocol. In Figure 4, we present
a non-blocking emulation of P that uses only n-consensus objects and read-write
registers.

4.1 Overview

In the emulation, every process periodically outputs views, called converged views. The
emulation guarantees that at every moment of time, there exists an execution of P that
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is compatible with the sequence of views output locally at every process, and either
every participating process eventually reaches a final view, or at least one participant
outputs infinitely many views.

The emulation proceeds in asynchronous phases. The participants of a phase first
split into two teams, q0 and q1. If n = 1, then pi is assigned to team qi, i = 0, 1. If
n ≥ 2, then every process dynamically chooses its team using a sequence of n test-
and-set objects.2 Every process that wins one of the test-and-set objects joins the first
team, denoted q0, and the left-out process constitutes the second team, denoted q1. Note
that if n ≥ 2 and n or less processes participate in a phase, then there can be at most
active team in that phase — q0.

Each team qj then agrees on the estimate of the emulated system state and a “fresh”
view of a member of qj that qj is willing to promote in the current phase (in case n ≥ 2,
team q0 uses an n-consensus object for this).

Shared variables :
n-consensus objects C[ ][ ] {An array of consensus objects for every phase}

Important local variables at pi:
xi, initially x̄ {Current system state estimate (x̄ is the initial system state)}
vi , initially viewi(x̄) {The last converged view of pi}

1: k := 0
2: repeat
3: k := k + 1
4: if vi = viewi(xi) then
5: zi := the state after pi applies its step to xi

6: else
7: zi := xi

8: wi := next(vi, viewi(zi)) {Choose the next view of pi to promote}
9: join a team qj (j = 0, 1) {If n ≥ 2, first n join q0 using test-and-set objects,}

{and the last joins q1; if n = 1, pi joins team qi i = 0, 1}
10: (w, z) := agree with qj on (wi, zi) {If n ≥ 2, then q0 uses n-consensus}
11: (U, y) := P -reconcilek(w, z) {On behalf of team qj , using n-consensus}
12: xi := y
13: if ∃u ∈ U , vi → u then {A view of pi has converged in phase k}
14: vi := next(vi, u) {Compute the next view of pi toward u}
15: output vi

16: until vi is final

Fig. 4. The emulation protocol: code for every process pi, i = 1, . . . , n + 1

The two teams then act as processes q0 and q1 in an instance of P -reconciliation task
which they use to reconcile on how to make progress. If n ≥ 2, then in every instance
of P -reconciliation, multiple processes in team q0 use a series of n-consensus objects
(distinct for every instance of P -reconciliation) to act as a single process. Team q0 is
associated with an (n + 1)-array of registers T0, and q1 is associated with a register
T1. To write a value v in executing the ε-agreement protocol, every process in q0 incre-
ments its local sequence number and updates its slot in Tn with v, equipped with the
monotonically increasing sequence number, while q1 simply writes the value in T1. To
perform a read operation, processes in q0 read T1 and use n-process consensus to agree

2 Test-and-set objects can be wait-free implemented from 2-process consensus objects and thus
from objects of consensus power 2 [12].
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on the read value, while q1 reads all slots in T0 and returns the value with the largest
sequence number.

Let the P -reconcilek(w, z) procedure return a tuple (U, y) at process pi (line 11).
Then pi adopts y as its state estimate, and if U contains a view u of pi, then pi outputs
the next view toward u (line 15) . We demonstrate below that, inductively, all views
output up to phase k are compatible with every state estimate computed at the end of
phase k. Furthermore, by the properties of P -reconciliation, all views in U are “fresh”,
i.e., they extend views output in previous phases. Since the sets of views returned by
P -reconciliation have a non-empty intersection, at least one process pi participating
in every phase is guaranteed to output a new view at the end of the phase. Thus, the
resulting simulation is both safe and live.

4.2 Correctness

Theorem 2. Every inseparably connected (n+1)-process protocol P can be emulated
in a nonblocking manner using n-consensus objects and read-write registers.

Proof. Consider the protocol in Figure 4. We show first that the protocol preserves the
following invariants:

(P1) In each phase k, there exist two inseparable states x̃0 and x̃1 of P such that each
system state estimate xi computed at the end of phase k is in {x̃0, x̃1}, and all views
output up to phase k are compatible with both x̃0 and x̃1.

(P2) At the end of each phase k, at least one process pi that participated in the phase
(i.e., reached line 9 in Figure 4 in phase k) succeeds in taking one more emulated
step of P and outputs a new view.

Initially, all processes agree on the initial state of P , denoted x̄, and the initial views
of all processes are compatible with x̄. Inductively, suppose that P1 holds at the end of
phase k − 1. In phase k, every process pi chooses the next state zi and the next view
wi (that pi obtains if it is chosen to make a new step of P ), based on its current view vi

and its current system state estimate xi (lines 5 and 8). Note that each zi ∈ {x̃0, x̃1} ∪
G(x̃0)∪G(x̃1), and wi is compatible with zi. Since x̃0 ∼ x̃1, precj(z0, z1) ∈ {x̃0, x̃1}
(j = 0, 1).

Let (w̃j , z̃j) denote the tuple proposed by team qj (j = 0, 1) to the P -reconciliation
procedure in line 10, and let (Uj , yj) be the value returned by P -reconcilek(w̃j , z̃j). By
Lemma 2, there exists a non-separating path connecting (w̃0, z̃0) and (w̃1, z̃1) of length
≤ L. By the properties of P -reconciliation, (U0, y0) and (U1, y1) correspond to some
neighbors in such a path (let us denote it γ).

Thus, by the properties of non-separating paths, y0 and y1 are inseparable, and every
view U0 ∪U1 is compatible with both y0 and y1. Further, each yj extends x̃0 or x̃1, and
each u ∈ U0 ∪ U1 is not compatible with some x̃0 or x̃1, unless u ∈ {w̃0, w̃1}. Thus,
every view that is compatible with both x̃0 and x̃1 is also compatible with both y0 and
y1. Since each pi ∈ qj sets xi to yj (line 12) and outputs a new view only if it belongs
to Uj (line 14), P1 is inductively preserved.

Now, since U0 ∩ U1 �= ∅, there is at least one view that is seen by every process that
completes the phase. Thus, at least one process pi will find its view in Uj . Thus, at least
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one process will output a new view in line 15. Note that if n or less process participate
in phase k (which can happen only if some process crashes in phase k − 1 or earlier),
then only one team (if n ≥ 2, then it can only be q0) takes part in P -reconciliation and,
thus, the participants of phase k agree on the state and the view proposed by one of
them. Otherwise, if all n + 1 processes participate in phase k, some process in Π gets
a new view. In both cases, some process participating in phase k obtains a new view.
Thus, P2 is preserved.

Finally, P1 and P2 ensure that in every execution of our emulation, all output views
are compatible with some execution of P , and, at least one active process keeps making
progress by outputting new views. Thus, our protocol indeed emulates P in a non-
blocking manner. �	

Theorems 1 and 2 imply the following results:

Corollary 1. Let A be a deterministic object of consensus power less than n+1. Every
protocol using copies of A and registers can be emulated in a non-blocking manner
using n-consensus objects and registers.

Corollary 2. Let A be a deterministic object of consensus power less than n+1. There
is no task T that can be wait-free solved using copies of A and registers, but cannot be
wait-free solved using n-consensus objects and registers.

4.3 Multiple Initial States

The emulation protocol presented in the previous section can be easily extended to
protocols with multiple initial states that differ only in inputs of processes. (This seems
to be the case for most protocols.) Indeed, in our emulation, a team qi needs to know
the initial states of other processes only if, in a given phase k, it faces a competition
with the other team q1−i, i.e., only if qi reaches line 5 of the P -reconcile algorithm in
Figure 2. If this never happens, then qi only needs to know the (estimated) states of
shared objects to be able to make progress. But such a competition between q0 and q1
can only happen if all n + 1 processes participate in phase k (otherwise, only one team
would be “populated”). Thus, we can easily extend our emulation to the case of multiple
initial states: every process registers its input in the shared memory before participating
in the first phase of the emulation protocol. When qi faces the competition with the
other team (qi reaches line 5 in Figure 2), qi can compute an estimate of the current
state of P using all n + 1 registered inputs. ¿From this point on, the emulation will run
as described in Figure 4.

5 Conclusion

We formalized one outcome of the intuition that n processes using n-process consensus
are tantamount to a single process. Hence n + 1 processes with n-process consensus
are like two processes. It is easy to see why there is no task between read-write shared
memory and 2-process consensus: A task’s output complex [3] is either connected -
then the two process can solve the task using reads and writes - or it is disconnected - in
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which case the task amounts to consensus. In generalizing this intuition we encountered
certain difficulties: we only managed to equate n processes with one when a protocol
was given ahead of time, and we could derive only a non-blocking emulation of the
protocol. We conjecture that these limitations are inherent. We also conjecture that our
results can be extended from n + 1 to any number of processes between n + 1 and 2n:
any deterministic object of consensus power less than n + 1, when used to solve a task
T for k processes, n + 1 ≤ k ≤ 2n, can be replaced with n-consensus objects.
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Abstract. We investigate the complexity of searching for a given vertex in a
scale-free graph, using only locally gathered information. In such graphs, the
number of nodes of degree x is proportional to x−β for some constant β > 0. We
consider two random scale-free graph models: the Chung-Lu model and the Móri
model (a generalization of the Barabási-Albert model) proving two lower bounds
of Ω(n/ logΘ(β) n) and Ω(n1/2) on the expected time to find the worst-case
target, under a restrictive model of local information.

Keywords: Distributed Algorithm, Routing, Random graphs.

1 Introduction

In this paper, we investigate the efficiency of local search algorithms for some rela-
tively unstructured networks. By local search, we mean that each vertex knows its very
close neighborhood, typically the identities, degrees and possibly the contents. Assum-
ing there is no preprocessing, we are interested in seeking a vertex of a given identity
starting from any vertex. The time complexity of searching is expressed as the number
of vertices to explore before reaching the target or a neighbor of the target. For an ar-
bitrary graph and a worst-case choice of vertices, time complexity can be of the same
order as the size of the graph itself. However, there is some hope that for large classes
of graphs, the size of the exploration sequence would drastically decrease.

Recent literature exhibits non trivial properties shared by the topologies of numerous
real-world distributed networks: the combination of a low diameter, a specific degree
distribution of the vertices and a sparse network are typically representative of a small-
world topology. The degree distribution of the vertices tends to follow a power-law

distribution, that is the number of vertices of degree x is proportional to n
( 1

x

)β
for an

n-vertex graph and β a constant strictly greater than one. Graphs having this property
are often called scale-free graphs. Moreover, it has been observed that for real-life
networks, β tends to belong to the range [2, 3].

In this paper, we focus on the navigability property of scale-free graphs. Roughly
speaking, a labeled graph is f -navigable if a distributed algorithm, using only the la-
bels of the visited vertices (or its neighborhood), is able to route a message for any
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source and any target along a path of O(f) vertices. This concept has been introduced
in a seminal paper of Kleinberg [22] (see also the excellent survey [23] and recent ex-
tensions [17,18,30,19,1]) showing the ability of a user or a mobile agent to route along
shorts paths within graphs built from a deterministic graph (2D-grid) augmented by one
random extra edge per node. Kleinberg gives some condition on the design of the ran-
dom extra edges to get log2(n)-navigable graphs and proves that many augmentation
processes lead to graphs that are not n1/3-navigable even if the diameter is polyloga-
rithmic (See Nguyen and Martel [28]). However, graphs in the Kleinberg model are not
scale-free and it turns out that labels are very informative since the underlying subgraph
is a 2D-grid and labels represent coordinates.

We show in this paper that random graphs built in different scale-free models are not
nc-navigable for explicit constants c.

Keep in mind that these lower bounds hold for local distributed algorithms. All local1

distributed search algorithms presented in the literature work as follows: given the set of
visited vertices, one should choose the next vertex to explore. The process stops as soon
as the target is reached. In the following, the underlying network is a random scale-free
labeled graph of n nodes whose identities belong to the range [1, n]. Each vertex knows
its own identity and its degree and we study two models of local knowledge: each node
either knows the labels of its neighbors (strong model) or it does not (weak model). The
first model is the more realistic; the second model is mostly a technical tool to prove
lower bounds, which are then extended to the strong model using known results on the
maximum degree.

Recall that we are interested in the time complexity of the search. For an arbitrary
graph (for instance, a chain), the time complexity is clearly linear. Due to the common
properties of scale-free graphs (low diameter and existence of large degree vertices),
one might hope that the time complexity for the strong model could be very small,
sublinear and possibly polylogarithmic.

Such a claim can be found in different studies dealing with economic search strate-
gies in scale-free networks (see [2,21,29]) in the strong knowledge model. In these
papers, the authors start from different random graph models whose degree distribu-
tions follow power laws and provide heuristics to reach a target vertex. Simulations and
mean-field analysis are used to claim that on average, the target can be reached in O(nc)
steps, for constant c < 1, using simple greedy algorithms. To our knowledge, it is still
an open problem to know if these scale-free graphs are navigable in the polylogarith-
mic sense. In this paper, we answer this question negatively for two specific models of
random scale-free graphs: the first one deals with random graphs with a fixed degree
distribution whereas the second one is based upon preferential attachment processes.
In both models, we prove polynomial lower bounds on the number of vertices that any
local distributed algorithm is likely to visit before reaching the target, for a worst-case
choice of target2 In the following, we develop the important difference between the two
models.

1 A distributed algorithm is local if vertices only know information on a close neighboorhood.
2 It is assumed that the target label is chosen prior to determining the random graph; thus, our

result is about the maximum, over the possible choices of targets, of the expected number of
vertices the algorithm will visit.
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1.1 Related Works

Scale-free models. In this section, we summarize models of scale-free graphs which
are related to our work. One can distinguish two families of scale-free models: pure
random graphs and random evolving graphs.

In the pure random graph models, a random graph is built from a fixed degree dis-
tribution [25] (or possibly expected degree sequence in [9,11]). In such a model, it is
important to notice that the degrees of neighbors are independant. Aiello et al. [3,9] fo-
cus on the power-law distribution and show the emergence of a huge component under
some condition, proving that the largest component can have linear size and a loga-
rithmic diameter. However, the pure random graph models do not explain how a graph
comes to have a power law degree sequence. The random evolving models attempt to
explain this emergence of a power law distribution.

In the evolving models, one starts from a fixed small graph (a single vertex, loop, or
edge) and at successive time steps, new vertices and edges are added. The target of a
new edge is chosen randomly, either uniformly (uniform attachment) or with probability
proportional to the current degree of the target (preferential attachment). The simplest
models add a single vertex and edge per time step. Variants with higher degree can be
obtained either by adding more edges per time step, or, say, by building an nd-vertex
graph and merging every d consecutive vertices into one; this results in a graph with
n vertices and nd edges, so that the average degree is d. In these models, the degree
and age of a vertex are positively correlated. In particular, the degrees of neighbors are
not independant, and mean-field analysis of the models should not be used for random
evolving graphs. This will make a real difference with the pure random graph models
whenever we aim at analysing a search process.

Most of the models based on preferential attachment and their properties can also
be found in the work of Bollobás and Riordan [5]. To our knowledge, Barabási and
Albert [4] first proposed the preferential attachment model with out-degree 1 in order
to get a power law distribution. In [6] (see also [5],[7]) Bollobás and Riordan gave a
mathematically precise description of the Barabási-Albert model (BA model). In [7] it
was shown rigorously that the proportion P (x) of vertices with degree x asymptotically
obeys a power law for x ≤ n1/15, where n is the number of vertices. Furthermore, in
[6] it was proved for d ≥ 2 that the graph is connected with high probability and
that the diameter is asymptotically log(n)/ log log(n) while for d = 1 the diameter is
approximately log(n) (see also [5]). Other variants of the BA model have been proposed
[8,31,15,16] and in all of them, scale-free random graphs are obtained.

Extensions to more general models combining uniform and preferential attachment
have been studied in [26,27,12,24]. In these papers, each new vertex chooses with re-
spective probabilities p and 1 − p whether to use uniform or preferential attachment.
Depending on the value of parameter p, the power law distribution can be observed
and is proved by Cooper and Frieze [12] (in a very general model in which extra links
between old vertices can also be added) or by Móri [26,27]. In these last models, the
authors also give the asymptotic limit of the maximum degree, which tends to be of
order nc for some explicit constant c depending on the model parameters (but not equal
to what one would obtain by extrapolating the power-law up to P (d) = 1/n).
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To sum up, many differences exist between graphs built in the pure random scale-free
graphs models and in the random evolving models:

– the degree distributions are not the same for high degree nodes in both models.
For the maximum degree, we get Θ(

√
n) for the Barabási and Albert models and

o(
√

n) for the pure random graph models with a constant average degree;
– the degree distribution in evolving graphs is typically not well known for high de-

grees. This makes the analysis of the search process more complicated;
– for the evolving models, there is a correlation between the age, which is a natural

label of a node, and its degree. It is one reason why one might have hoped that the
routing task could be done quickly using only knowledge of the neighboring labels.

Distributed search in scale-free graphs. As an input, Adamic et al. [2] takes random
graphs in the random power law model whose exponent β is strictly between 2 and 3.
They propose two strategies: a pure random walk and a search process based on high
degree vertices. This last distributed algorithm works as follows: at each step, the next
visited vertex is the highest degree neighbor of the set of visited vertices. Using a mean-
field analysis of this greedy algorithm, the authors prove that the target is reached on
average in O(n2(1−2/k)) steps whereas for a pure random walk, the time complexity
becomes O(n3(1−2/k)) steps. The article also provides simulations on random graphs
and sampling of the peer-to-peer network Gnutella confirming the tendancy of the the-
oretical analysis. However, this article lacks a well-defined random graph model, which
means that comparison to our work is difficult. For instance, the underlying graph seems
to be connected whereas it is not the case for the rigourous pure scale-free random
graphs (Chung-Lu for instance). The reader can also refer to [29,20] for distributed
search protocols dedicated to scale-free graphs in a Peer-to-peer context.

In [21], the authors deal with a similar high degree search process as in [2], using the
BA model for the underlying topology. The article contains simulations indicating that
after visiting a sublinear, though polynomial, number of vertices, a path of logarithmic
length can be found between the source and target vertices. Note that all of these articles
deal with the average time complexity on all pairs of sources and targets.

1.2 Our Contribution

We focus on two models of random scale-free graphs: the Chung-Lu model belongs to
the pure random graph models whereas the Móri graph is an evolving model mixing
preferential and uniform attachment. Actually, the Móri model is extremely close to a
properly defined variant of the Barabási-Albert model, which we rephrase to use inde-
gree of vertices instead of total degree (this makes it possible to explore a wider range
of parameters; in both models edges come with a natural orientation).

Our results are summarized in Table 1 and show the difference between different
scale-free models. A precise description of the random graph models and local search
models is given in Section 2. Note that the upper bound holds for a non well-defined
scale-free graph (using mean-field analysis) and gives a bound on the average number of
vertices to visit for a random target whereas our lower bounds consider the worst-case
target. Our main results are as follows:
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Theorem 1. In the Chung-Lu model with n vertices, power-law parameter 2 < β < 3
and average degre d, for constant d > 4/e, no searching algorithm:

– operating in the weak model, can find a path to vertex n with an expected number
of requests less than Ω(n log−β n).

– operating in the strong model, can find a path to vertex n with an expected number

of requests less than Ω
(
n log−

β(β−1)
β−2 (n)

)
.

Theorem 2. For any d ≥ 1, in the Móri graph G
(d)
N with parameters3 d and p (0 <

p ≤ 1), no searching algorithm operating in the weak model can find a path to vertex
n ≤ N with an expected number of requests less than Ω(n1/2).

For p < 1/2, no searching algorithm operating in the strong model can find a path
to vertex n with an expected number of requests less than Ω(n1/2−p−ε), for any ε > 0.

Due to space limitations, proofs of Theorem 1 and Theorem 2 are only sketched in
Sections 4 and 5. Note that our result, at least for the basic BA model (p = 1/2 in our
indegree-based model), may appear to be a consequence of Cooper et al.’s result [13]
that the dominating number of the BA graph of size n is Ω(n), but it is not clear how one
could rigorously argue that searching for the worst-case target requires (with positive
probability) visiting a positive proportion of a dominating set; the search algorithm is
provided with some information in the form of vertex labels indicating their age.

Table 1. Lower bounds on search time are result of this paper

Type Scale-free models Knowledge model Lower Bounds Upper Bounds

Pure random ? Strong O(n2(1−2/k)) [2]
Chung-Lu Weak Ω( n

logβ n
)

Chung-Lu Strong Ω

(

n

log
β(β−1)

β−2 (n)

)

Evolving d-out Móri Weak Ω(n1/2)

d-out Móri Strong Ω(n1/2−p−ε)

2 Models

In this section, we describe more precisely both the random graph models we study, and
the class of possible searching processes over which our lower bound results hold. We
concentrate on models for which rigorous degree distribution results are known.

All graphs are constructed as directed graphs, but searching always takes place in the
corresponding undirected graph.

In previous literature, preferential attachment models are described in terms of total
degree. In this paper, we prefer to use indegree instead; the advantage is that selecting an
existing vertex for preferential attachment is equivalent to selecting a uniform existing
edge and copying its destination.

3 Móri’s papers use a parameter α > −1; correspondence with our indegree-based model is
through the change of parameter p = 1/(2 + α), which lets p be interpreted as a probability.
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2.1 Graph Models: The Chung-Lu Model

The Chung-Lu model of random graphs with a fixed sequence of expected degrees[9,11]
is a pure random graph model which can be used to produce graphs with a power-law
degree distribution.

In the G(w) model, w = (w1, w2, . . . , wn) is a vector of nonnegative weights, and
one obtains a random graph where vertex i has expected degree exactly wi by including
an edge (i, j) with probability pi,j = wiwj/

∑
k wk. Thus, each degree is a sum of

independent Bernoulli random variables, which ensures that a node with high expected
degree is extremely likely to have a degree within ratio close to 1 of its expectation.
Thus, by using an expected degree sequence w which matches a power-law distribution,
one obtains a graph whose degrees closely follow the distribution, with high probability.

We consider the graphs obtained with a sequence of the form

wi =
⌊
ci−

1
β−1

⌋
, i0 ≤ i < i0 + n,

where c = β−2
β−1dn

1
β−1 and i0 = n

(
d(β−2)
m(β−1)

)β−1
are defined as in [9,10] to achieve

prescribed average degree d > 1, maximum degree m = o(
√

nd) and exponent 2 <
β < 3 for the power law.

2.2 Graph Models: The Móri Model

The Móri model Gt of random trees starts, at time t = 2, with two vertices 1, 2 and
a single edge between them; then, at each later time, a new vertex t is added, together
with a single outgoing edge to an older vertex u which is chosen with probability

pt(u) =
d′t(u) + α

2(t − 1) + tα
,

where α > −1 is some fixed parameter and d′t(u) denotes the total degree of vertex u
at time t. Setting p = 1

2+α and noticing that the indegree dt(u) is simply d′t(u) − 1, we
rephrase this as

pt(u) =
pdt(u) + (1 − p)

t − 2p

(Note that the equality dt(u) = d′t(u)−1 is not true for the root 1, which has outdegree
0; the correct formula for pt(1) is (pdt(1) + 1)/(t − 2p).)

Thus, each new vertex can flip a biased coin and, with probability p, select its neigh-
bor preferentially (based on indegree), or, with probability 1−p, uniformly (except that
the root 1 has a “weight” 1/(1 − p) instead of 1, and is thus slightly more likely to be
chosen). Note that p = 0 corresponds to a uniform attachment process whereas p = 1/2
corresponds exactly to the Barabási-Albert model.

So far our random graph is a tree; to get the d-out Móri graph of size n (with average
degree 2d), G

(d)
n , take the Móri tree of size nd and, for each 1 ≤ i ≤ n, merge vertices

d(i − 1) + 1 to d.i into a new vertex i; this may result in outdegrees lower than d
for a few vertices if multiple edges and loops are removed. It is proved in [26,27] that
the resulting graph has a power law degree distribution with exponent β = α + 3 and
maximum degree Θ(np).
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2.3 Modeling the Searching Process

We aim at proving lower bounds on the complexity of searching for a given vertex
in a random graph, using only local information. For this, we consider two models of
local knowledge, which differ in the information gained when a vertex is visited for the
first time. At each time step, the searching process can try to discover a new vertex by
making a request. The process can stop and output the description of a path from the
starting vertex to the target vertex; our measure of its performance is the number of
requests it made prior to stopping.

– In the weak model, a request is in the form of a pair (u, e), where u is an already
discovered vertex, and e is an edge incident to u. The answer to the request is the
identity v of the other endpoint of edge e, together with the list of all edges incident
to v.

– In the strong model, a request is in the form of a vertex u that is adjacent to an
already discovered vertex, and the answer consists of the list of vertices adjacent to
u.

Our lower bound proofs rely on the weak model; results on the more realistic strong
model come from known upper bounds on the degrees of the studied graphs.

Note that we do not impose restrictions on the sequence of requests. If modeling a
search by a mobile agent, one would require at least that each request be about a vertex
adjacent to the previous one, even if it meant re-issuing a previous request, so as to
model the movement from one known vertex to another. We are also not making any
assumptions on the computing power or memory requirements of the searching process.
Since we are working on lower bounds, any results are valid under more restrictive
assumptions.

3 Vertex Equivalence

Our proofs of lower bounds are based on a probabilistic notion of vertex equivalence.
Intuitively, vertices are equivalent if their identities can be exchanged without modify-
ing the probability distribution on graphs. In this section, we make this notion precise,
and show how it can be used to prove lower bounds on the complexity of searching
processes.

Definition 1. Let G be some graph on the vertex set [[1, n]] = {1, . . . , n}, and σ ∈ Sn

some permutation of [[1, n]]. We write σ(G) for the graph on the same vertex set that is
obtained by applying permutation σ on the vertices of G.

Definition 2. Let G be some random graph model on the vertex set [[1, n]], and V ⊂
[[1, n]]; that is, we assume that a probability space Ω is given, where a graph-valued
random variable is defined with the appropriate probability distribution.

We say that the vertices in V are (probabilistically) equivalent if, for any σ ∈ SV ,
the random graphs G and σ(G) have the same probability distribution.

If E is some event, we say that the vertices in V are equivalent conditioned on E if,
for all σ ∈ SV , G and σ(G) have the same probability distribution, conditioned on E .
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We do not require that E be G-measurable – that is, when looking at a possible realiza-
tion g of the graph, or even at a possible realization of the graph process g1, . . . , gt, it
might not be possible to decide whether E occurred. We only have to find, in a suitable
(faithful) model for the construction of our random graph, an event E (which will be
measurable with respect to the construction process) with a large enough probability
such that our equivalence property holds conditioned on E .

The following lemma is the key to our lower bounds.

Lemma 1. If a set V of vertices is equivalent conditioned on some event E , then any
search process operating in the weak model, starting from any vertex u and searching
for any vertex v ∈ V (v �= u), has an expected complexity of at least |V |P(E)/2.

Proof. The whole proof is a formalization of the intuitively obvious fact that, condi-
tioned on E , the vertices in V are visited by the searching process in a uniform random
order until the target is found, which implies that, on expectation, half of the vertices in
V are visited before the target.

Let A denote some searching strategy in the weak model; that is, A defines, for
each size n, starting vertex u and target vertex v, and each finite sequence of searching
requests and possible answers to these requests, the next request that the searching
process should make (or, if the searching process is itself randomized, a probability
distribution for the next request). For each possible realization g of the random graph,
A thus defines a (finite or infinite) sequence A(g) of requests and answers; thus, on
the probability space Ω for the random graph, it defines a stochastic searching process
(Rt, At)t≥0 (here Rt is the t-th request, and At is the answer to it). We are concerned
with the length of this process, that is, the first index t for which the visited vertex
(specified in At) is the target v. If this length is not finite with probability 1, then its
expectation is infinite and the lemma holds; thus, in the remaining of this proof, we
assume that, with probability 1, the searching process does visit its target at some point.

Let σ be a uniform random permutation of the vertices of V , independent of the
random graph G and of E . We now define a new searching process (R′t, A

′
t)t≥0 as

follows: for any element ω ∈ Ω of the probability space,

– if ω /∈ E , (R′t, A
′
t)(ω) = (Rt, At)(G(ω)) (that is, if E does not occur, the new

searching process is pointwise identical to the original);
– if ω ∈ E , (R′t, A′t)(ω) = (Rt, At)(σ(G(ω))) (that is, if E occurs, the new searching

process is obtained by running strategy A on the permuted graph σ(G)).

Obviously, the probability distribution of (R′t, A′t) conditioned on E is exactly that of
(Rt, At) conditioned on E (the two are identical); and, thanks to the conditional equiv-
alence, the same is true for the processes conditioned on E . Thus, the two processes
(Rt, At) and (R′t, A′t) have the same probability distribution.

Now, on E , the order in which (R′t, A
′
t) discovers the vertices of V is uniformly

random (that is, conditioned on the first k of them that X ′ visits, the k+1-st is uniformly
distributed among the |V | − k remaining); thus, the rank among them of target v is
uniformly distributed, and the expected rank for v is thus (1 + |V |)/2. Removing the
conditioning, the expected number of vertices in V that the search process (R′t, A′t)
visits until it finds v (an obvious lower bound on the expected number of requests) is
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at least (1 + |V |)P(E)/2. Since (R′t, A
′
t) and (Rt, At) have the same distribution, this

completes the proof of the lemma.

4 The Chung-Lu Graph

An example of a random graph model where vertices are naturally equivalent according
to our definition is the Chung and Lu model of random graphs with given expected
degrees.

In this model, it is clear that any vertices with the exact same weight wi are (uncon-
ditionally) equivalent, since their incident edges are decided by independent collections
of Bernoulli random variables with the same distribution.

Though such graphs are not connected, it is proved in [9] that, with high probability,
they have only one “giant” component of linear size, which contains all vertices of
degree a least C logd(n) for suitable C. For an integer k = Θ(log(n)), the number of
equivalent vertices with expected degree k is Θ(n/ logβ(n)).

Now consider some searching algorithm on this model, where we arbitrarily set
the cost of searching for some vertex in a different connected component to 0 (that
is, we assume that some oracle tells us “for free” if the target is in a different com-
ponent). Lemma 1 yields a lower bound of Ω(n/ logβ(n)) in the weak model, and
Ω(n/m logβ(n)) in the strong model if m is the (high probability) maximum degree;
a more careful analysis, using the sum of the largest degrees (an algorithm operating
in the strong model and using N requests, can be simulated in the weak model with
a number of requests at most equal to the sum of the N largest degrees in the graph),

would give an almost linear bound of Ω(n/ log
β(β−1)

β−2 (n)), when the target is a vertex
of expected degree Θ(log(n)).

5 The Móri Graph

In this section, we follow a similar approach to prove Theorem 2. Contrary to the
Chung-Lu case where we had unconditional equivalence, we need conditional
equivalence.

5.1 Conditional Equivalence in the Móri Tree

Lemma 2. For any integers a, b, n with a ≤ b ≤ n, in Gn, the vertex set V = [[a+1, b]]
is equivalent conditioned on the event

Ea,b =
⋂

a<k≤b

{Nk ≤ a},

where Nk denotes the father of vertex k (that is, the destination of its outgoing edge).

We are now ready to prove our main result on this model; all we need is to prove
that, for suitable choices of a and b, |V | and P(Ea,b) are both large enough.

Lemma 3. Let b = a + �(a − 1)1/2	. Then P(Ea,b) ≥ e−(1−p).
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5.2 Proof of Theorem 2

Combining Lemmas 2 and 3, we see that, in Gt (for t ≥ n +
√

n − 1), the vertices in
[[n, n +

√
n − 1]] are equivalent conditioned on an event of probability bounded away

from 0. Going from Gt to G
(d)
t/d, we also get the same equivalence result for vertices in

[[n/d, (n+
√

n − 1)/d]] conditioned on the same event (permuting the vertices in G
(d)
t/d

corresponds to only permuting the vertices in Gt in such a way as too keep together
blocks of d consecutive vertices; this corresponds to invariance under the action of
a subgroup where we have proved invariance under the action of the whole group).
Lemma 1 then concludes the proof for the weak model.

The strong model case then follows from Móri’s result [27] that the maximum degree
in graph Gt is of order tp, which implies that, with high probability, this maximum
degree is less than tp+ε (Móri’s result does not apply for p = 0, which is the uniform
attachment model; in this case, the maximum degree is logarithmic, as proved in [14]).
Any algorithm operating in the strong model can be simulated in the weak model by
replacing each request about vertex u by requests about all edges incident to u. This
gives a slowdown factor of at most the maximum degree. As a consequence, the weak
model lower bound of Ω(n1/2) translates to Ω(n1/2−p−ε) in the strong model. 
�

6 Conclusion and Open Problems

We have proved, in our weak model of local information (and in the strong model, for
the Chung-Lu graphs), a polynomially high lower bound on the time required to find a
given vertex in the considered model of scale-free graphs. This is in contrast with all
proved upper bound results on the diameter of such graphs, which is at most logarithmic
in expectation and with high probability. That is, these random graph models cannot be
searched in time polynomial in their diameter. Thus, these graph models do not have
the “small world” easy searchability property as exhibited by several authors in different
models of random graphs. The technique we used seems broad enough to be adapted to
other models of growing random graphs (Cooper-Frieze).

For the evolving graph model, our results carry over somehow weakly to the (ar-
guably more realistic) strong model of local information, whenever the maximum de-
gree can be proved to be significantly smaller than n1/2 (like in the BA model). Note
that though our results are mostly stated as “worst-case expected time”, taking the aver-
age over all source and target pairs is easy, and the same asymptotic lower bound holds:
Ω(n1/2) requests on average.
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Abstract. A fast self-stabilizing algorithm is described to rapidly construct a
balanced overlay network from a directed graph initially with out-degree 1, a nat-
ural starting case that arises in peer-to-peer systems where each node attempts to
join by contacting some single other node. This algorithm constructs a balanced
search tree in time O(W + log n), where W is the key length and n is the num-
ber of nodes, improving by a factor of log n on the previous bound starting from
a general graph, while retaining the properties of low contention and short mes-
sages. Our construction includes an improved version of the distributed Patricia
tree structure of Angluin et al. [1], which we call a double-headed radix tree. This
data structure responds gracefully to node failures and supports search, predeces-
sor, and successor operations in O(W ) time with smoothly distributed load for
predecessor and successor operations. Though the resulting tree data structure is
highly vulnerable to disconnection due to failures, the fast predecessor and suc-
cessor operations (as shown in previous work) can be used to quickly construct
standard overlay networks with more redundancy.

Keywords: Overlay network, balanced search tree, pipeline, randomization, self-
stabilizing, fault tolerance.

1 Introduction

Much work has been done recently on rapidly building a peer-to-peer system with a ring
or line structure such as Chord [2] or skip graphs [3]. The naive approach of sequential
insertion performs quite poorly for large networks: the time complexity is Θ(n log2 n)
for Chord and Θ(n log n) for skip graphs. So there is an incentive to find ways to exploit
the parallelism of the system to build a network more quickly. Such a fast construction
algorithm could allow rapid deployment of overlay networks or serve as a substitute for
more complex self-repair mechanisms.

Several heuristic algorithms have been proposed that appear to converge in time
O(log n) [4,5,6,7]. But it is difficult to prove that this bound in fact holds, and the
question of obtaining theoretical results justifying the observed practical performance
remains open.
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In previous work [1], we showed how to quickly sort nodes in a weakly-connected
graph of bounded degree d with a provable time bound O(W log n), where n is the
number of nodes and W is the length of node identifiers. This running time, which is
O(log2 n) under the reasonable assumption that W = O(log n), is much higher than
both the lower bound of Ω(d+log n) shown in the same paper and the observed behav-
ior of practical methods. The algorithm contains three components: a randomized pair-
ing algorithm that constructs a distributed matching from a degree-d weakly-connected
graph; a distributed merging algorithm for combining balanced trees of nodes, i.e., dis-
tributed Patricia trees; and a supernode simulation that allows a tree to simulate a single
supernode in the pairing algorithm. In each iteration, the output of the pairing algo-
rithm is used to join nodes/supernodes into larger supernodes that then participate in
subsequent iterations of the pairing algorithm, until a single supernode remains. The
ultimate supernode is actually a distributed Patricia tree consisting of all the nodes,
which supports efficient search, predecessor and successor operations. As observed
in [1], having fast predecessor and successor operations can then be used to quickly
construct other more robust distributed data structures, such as Chord rings or skip
graphs.

In this paper, we present an even faster algorithm with expected time complex-
ity of only O(W + log n) (which is O(log n) if node identifiers are small) and
expected message complexity of O(n log n), which preserves the properties of low
contention and short messages in our previous work [1]. The algorithm assumes that
it starts with a directed graph initially with out-degree 1, an important special case
that arises in practice. For example, a node joining an overlay network will typically
connect to a single existing node, yielding a directed tree. If we relax the restriction
that nodes attempt to connect to nodes already in the network, then in full generality
we get a graph with out-degree 1, which may contain a cycle. Producing a sorted list
quickly in this model then allows the construction of more complex data structures as
in [1].

Despite the possibility of having a cycle, we use tree terminology: each node points
to a parent, and we assume that each node also knows its children, which can be
achieved by children’s initial probes. There is no restriction on the diameter of the
input structure, and unlike the output tree, children in the input graph are unordered.
Our algorithm first restructures the input graph into a child-sibling graph, which can
be viewed as consisting of a network of horizontal links (the sibling pointers) and ver-
tical links (the parent and child pointers). By using a randomized pairing algorithm
alternately along the horizontal and vertical links, we quickly pair off nodes and merge
them to form distributed tree structures called double-headed radix trees (DHR trees),
ultimately obtaining a single DHR tree.

What is important and different from our previous work [1] is that tree merges are
pipelined, so when the roots of any pair of DHR trees start to merge, the lower layers
of these trees may not be fully formed yet. This eliminates the overhead of internal
communication within supernodes as in [1] and explains the reduction in cost from the
previous algorithm by a factor of O(W ). The degree limitation on the input graph is
carefully maintained to ensure that no supernode is given more than a constant number
of outgoing edges so that merges will not create high contention.
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Double-headed radix trees can be thought of as radix trees in which the leaves have
been removed (with their keys propagated up to some ancestor) and the root has been
split into a left and right root (the “double head”); these changes eliminate the need
to allocate new internal nodes during merges and allow DHR trees to respond more
gracefully to node failures than the distributed Patricia trees of [1] from which they are
ultimately derived. From the point of view of network construction, the key property
is that despite these optimizations they continue to support the fast predecessor and
successor operations needed to extract (for example) a sorted ring.

The paper is organized as the following: we first introduce our model in Section 2 and
then double-headed radix trees in Section 3. Section 4 gives the synchronous contraction
algorithm. We show how our algorithm can be adapted to an asynchronous environment
in Section 5. Finally, we conclude our work in Section 6.

1.1 Other Related Work

In addition to work specifically aimed at building overlay networks, there are several
strains of work in the literature on problems that are similar to the fast construction
problem. These include resource discovery [8,9,10,11,12], leader election [13], and
parallel sorting [14], which will be described briefly below; for a detailed discussion of
the relation between these problems and the fast construction problem see the discussion
in [1].

The Resource Discovery Problem was introduced by Harchol-Balter et al. [8], in
which all the processes in an initial weakly connected knowledge graph learn the iden-
tities of all the other processes. The problem was then relaxed to require that one pro-
cess becomes the leader with the knowledge of all the other process identities, and
the leader’s identity is known to the whole system. In the related papers [8,9,10,11,12]
addressing this problem, the final knowledge graph usually contains a star on all the
vertices and messages may contain the whole list of all the processes. Cidon et al. [13]
gave a deterministic algorithm for leader election in an initially connected knowledge
graph with O(n) messages and time O(n), in which each non-leader must finally have
an identified path to its leader, rather than a direct edge.

Goodrich et al. [14] introduced a parallel sorting algorithm for a parallel pointer
machine that may be the closest work to ours. It builds a binary tree over nodes and then
merges components according to the tree. Consecutive merging phases are pipelined to
give an O(log n) total time. However, our algorithm achieves this time complexity in a
far more difficult and dynamic distributed environment.

2 Model

We assume that in the initial state, n processes form a directed graph G with maximum
out-degree 1, with each process running as a node in G. Such a graph naturally forms a
tree, and each node u in G knows the identifier of its unique parent u.parent, which can
be null if u is a root, and also the identifiers of its (set of) children u.children learned
from children’s initial probes, which will be the empty set if u is a leaf. Using tree
terminology, we will describe edges as parent and child pointers instead of incoming
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and outgoing edges. Furthermore, we assume the initial graph G has a maximum in-
degree d = O(log n).

Following [1], we assume throughout that a process u can only send a message to an-
other process v if u knows v’s identifier, i.e., if v is in u.parent∪u.children. Formally,
we assume that messages are of the form (s, t, σ) or (s, t, σ, u), where s is the sender, t
is the receiver, σ is a message type, and u (if present) is a single process identifier.

We first assume that our algorithms run in a synchronous model. The computation
proceeds in rounds, and all messages sent to a process s in round i are delivered si-
multaneously in round i + 1. In other words, we assume the standard synchronous
message-passing model with the added restrictions that processes can only communi-
cate with known processes and can only send O(1) messages per round. This follows
the synchronous model used in [1]. Though this assumption might seem to limit the
applicability of our results, we show (in Section 5) that a suitably adapted synchronizer
will allow our algorithm to run in an asynchronous environment without introducing
too much additional cost.

3 Double-Headed Radix Trees

We first introduce an improved version of the distributed Patricia tree structure of An-
gluin et al. [1], which we call a double-headed radix tree or DHR tree. A DHR tree
with at least two nodes has two roots: a left root and a right root. (For a singleton, there
is only one root, which we think of as being both the left and right root.) Its height is
bounded by the length of a node identifier, W , and any node has at most two children.
Each internal node stores the longest common prefix of the subtree of which it is the
root and pointers to its parent and children. The two roots also store pointers to each
other.

An example is shown in Figure 1(a). The node identifiers are listed in the table, and
their prefixes within parentheses. To support searching, the tree must have the following
property:

Property 1. The left and right roots have incomparable prefixes, as do the two children
of any node.

This property guarantees the correctness of searching. While searching for a particular
node identifier, we start from the roots and follow the path that leads to longer prefix
match. If the node with such an identifier exists somewhere in the DHR tree, its pre-
fix has been stored in all its ancestors. Since Property 1 holds, the searching path is
uniquely determined.

We also define a single-headed radix tree (SHR tree) to facilitate merging proce-
dures. A DHR tree can be transformed into a SHR tree by promoting its left root to a
new super-root with only one child and the children of the two roots are assigned to the
former right root. The corresponding SHR tree of Fig. 1(a) is shown in Fig. 1(b). We
can also think of the left and right trees of a DHR tree as SHR trees.

The procedure to merge two DHR trees to form a larger DHR tree is quite straight-
forward. Any merge of two DHR trees can be reduced to merging two corresponding
SHR trees, since any DHR tree can be transformed into a SHR tree. The prefixes of
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Fig. 1. An example of a DHR tree and its corresponding SHR tree

the two merging roots are compared and the new root can be determined immediately,
i.e. in time O(1), which means that the new root can represent the combined DHR tree
without waiting for the whole merge to be finished. Details of the merging procedures
are given in Appendix A.2.

Given multiple DHR trees, pipelined merges to combine all these trees into a single
tree can be viewed as multiple merging waves that propagate down the tree, with each
consecutive wave following a few steps later. A partially complete tree can participate
in another merge as soon as its root is determined, so that the extra time cost for an
additional merge is constant. The result is that a tree of merges of maximum depth k
can be completed in O(W + k) time.

For the pairing algorithm given in Section 4, the depth k is given by the number of
rounds of pairing, which is O(log n) with high probability. It follows that the running
time of the full construction algorithm is O(W + log n).

4 Algorithms

This section contains a family of algorithms for quickly constructing an overlay network
starting with a directed graph with maximum out-degree 1 and bounded in-degree d.
The structure of our algorithm is as follows:

1. In the pre-stage, described in Section 4.1, the initial graph is converted into a child-
sibling graph we call the contraction graph. Each node in the contraction graph is
always the left root of some DHR (initially all singleton trees).

2. In the merging stage, described in Section 4.2, we alternate between contract-
ing the child-sibling graph vertically (along the parent-child axis) and horizontally
(along the sibling axis). Each contraction involves merging two DHR trees and
replacing their left roots in the contraction tree with the single left root of the com-
bined tree. An additional fix-up procedure is used to prevent each merged node
from ending up with more than one child (or right sibling), by “kicking” such extra
neighbors into the list of siblings (or descendants) one level down on the child-
parent axis (or on the sibling axis) of the graph.

The pre-stage takes O(d) time to construct the child-sibling graph, where we assume
d = O(log n). It uses a total of O(n) messages of length O(W ).
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The merging stage, described in Section 4.2, takes advantage of pipelined merges of
DHR trees to allow each merging operation to appear to complete in O(1) time from
the point of view of the contraction graph. This is the time needed to merge the top lay-
ers of two DHR trees and obtain the identifier of the new roots. Though the first merge
operation continues to propagate downwards and will not finish for an additional O(W )
time, it is nonetheless possible to start a new merge operation immediately (which will
then propagate through the merged trees behind the first merge operation). This pipelin-
ing means that each additional layer of merging adds only O(1) time to the O(W ) cost
of the first merge. The total cost of the merging stage is O(W +log n) with high proba-
bility, with a total of O(n log n) messages of size O(W ) each. This dominates the cost
of the pre-stage and gives the overall asymptotic complexity of the algorithm.

4.1 Pre-stage

In the pre-stage, the original graph G is transformed into a child-sibling graph C. For
each node u in G, it sequences the nodes in u.children in arbitrary order and notifies
each of its children v ∈ u.children of v’s left sibling and right sibling, denoted as
v.leftsibling and v.rightsibling respectively. At the end, u only keeps a child pointer to
its leftmost child, denoted as u.child. Figure 2 gives an example of how an ordinary
graph (in this case a tree) can be transformed into a child-sibling graph. The pre-stage
takes O(d) rounds, as each node can notify only one of its children per round. At round
(d + 1), all the nodes will proceed to the merging stage as described in Section 4.2.
Note that this description assumes that the in-degree bound d is a fixed parameter of the
algorithm known to all nodes.

The child-sibling graph C can be thought as a graph of many crossing directional
links embedded in two dimensions. In Figure 2(b), rightward arrows indicate horizontal
links generated by sibling pointers and downward arrows indicate vertical links gener-
ated by child pointers. The child-sibling graph will have a root if and only if there is
some node with out-degree 0. Conversely, if there is a cycle in this graph, it can only
appear as a vertical cycle along the (rootless) child-parent axis.

4.2 Merging Stage

The merging stage consists of a sequence of contraction operations that alternate be-
tween contracting horizontal and vertical links generated by the pre-stage. We start

Fig. 2. Pre-stage: Transform a tree into a child-sibling tree
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with a horizontal contraction operation (in Section 4.2) along all horizontal links and
then a vertical contraction operation (in Section 4.2) along all vertical links, and then
repeat the procedure until only a single DHR tree is left. Some care must be taken dur-
ing the contractions to ensure that all nodes maintain bounded degree; this is done by
having the nodes push extra edges down towards their children (or rightward towards
their right siblings). If the graph is a tree, this pushes extra edges toward the leaves. If
instead the graph contains a cycle, it instead shuffles the extra edges between levels. The
main purpose of pushing downwards is not so much to grab extra space (since there is
none in the cycle case) as it is to prevent extra edges from piling up as the root contracts
downward in the tree case.

Horizontal Contraction. A horizontal contraction operation proceeds in two parts.
First, we do a pairing, which consists of (a) using a randomized algorithm to pair off

nodes along horizontal links; (b) merging each pair of paired nodes (both being the left
roots of two DHR trees) to form a new DHR tree; and (c) replacing each such pair in
the contraction graph with the new left root of the resulting DHR tree.

Second, we move edges within the contraction graph. After merging some node may
contain two child pointers with each coming from the previously paired nodes, so we
must readjust the contraction graph C to retain the child-sibling property.

In detail, the horizontal contraction operation proceeds as follows:

For each node u, so long as u is still within the contraction tree, it performs:
Pairing:
round i: Let chosen be picked uniformly from {u.leftsibling, u.rightsibling};

if chosen is null, choose another value; if still null, wait for Vertical
Contraction.

round i + 1: Send (u, chosen, pair) to chosen.
round i + 2: Upon receiving (v, u, pair) from v do:

If v = chosen, send (u, v, accept) to v;
otherwise, send (u, v, reject) to v.

round i + 3: Upon receiving (v, u, accept) from v do:
u merges with v and w.l.o.g, assume u becomes the new left root and
v disconnects from the contraction graph.
Upon receiving (v, u, reject) from v do:

Do nothing.
Readjusting:
round i + 4: If either u.rightsibling �= null, denoted as u1, or u has a second

child from previous round, denoted as c1, u pushes both u1 and c1 to a
lower level:
1. If u.child is null, let u.child = u1 (as in Figure 3 (a));
2. otherwise, if u has only one child, let u.child.rightsibling = u1 (as in

Figure 3 (b));
3. otherwise, u has two children c and c1. Assume u keeps c as u.child.

(a) If u.rightsibling �= null, let c.rightsibling=u1 and u1.rightsibling=
c1 (as in Figure 3 (c));

(b) otherwise, let c.rightsibling = c1 (as in Figure 3 (d)).
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Fig. 3. Possible adjustments after a horizontal contraction

Fig. 4. Merging stage: Horizontal contraction operation and its postadjustment

In round i + 3, u takes over v’s outgoing edges, and v is disconnected from the
contraction graph and no longer participates in subsequent pairing procedures. Since all
of these operations can be finished in one round, we can take advantage of pipelining
to force every newly generated root to enter the next round of the pairing procedure at
once, which is depicted in Section 3 as pipelined merges.

After a horizontal contraction operation, the graph C may not be a child-sibling
graph any more. But notice that (as long as the previous graph is a child-sibling graph)
the worst case is that some nodes have two children. We only need to do a local adjust-
ment to retain the child-sibling structure as in round i + 4. Here all the nodes simul-
taneously push their right siblings to a lower level (to be their children or to be their
children’s right siblings) so that each node still keeps a constant number of outgoing
edges.

Figure 4 shows a possible merging result from the contraction graph C in Figure 2(b).
Here, a double-circled node indicates that a pair of nodes have merged with each other.
The subsequent edge readjustment is shown in Figure 4(b).
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Fig. 5. Possible adjustments after a vertical contraction

Vertical Contraction. A vertical contraction operation is executed in exactly the same
way as a horizontal contraction operation, except that it uses vertical rather than hori-
zontal links. The main effects of this are (a) it is possible that we may have to contract
a cycle rather than a path, and (b) so the pairing and pushing directions are switched.

Horizontal contractions do not contract cycles, but just “kick” edges along the cy-
cles. Vertical contractions shrink cycles by merging adjacent nodes; when the cycle is
reduced to two nodes, they can detect this and merge into a single node. Aside from this
last optimization, there is no need to distinguish cycles from paths during the merging
stage.

In pairing steps, for each node u, chosen is picked uniformly from {u.parent,
u.child}, and merging is carried out along vertical links. In readjusting steps, u first
pushes its child rightward to be either u.rightsibling’s child or just its right sibling, and
then u pushes its second right sibling (if any) to be either u.rightsibling’s child or the
child of u.rightsibling.child. These adjustments are shown in Figure 5.

It is not hard to see that the algorithm does not partition the graph, so as long as
it continues to merge nodes, there will be only one DHR tree left. The time complex-
ity of the contraction algorithm is given in the theorem below. The proof appears in
Appendix A.1.

Theorem 1. The contraction algorithm finishes in O(W + log n) rounds on average
and with high probability.

4.3 Fault Tolerance Issues

In this section, we assume the underlying network is reliable and there is no message
loss, but that nodes are subject to crash failures that can be detected by the node’s
neighbors. We give a very brief sketch of how DHR trees respond to node failures and
how the contraction algorithm can be used to reconnect fragmented DHR trees.

When a node u in a DHR tree fails, the tree will separate into at most three well-
formed DHR or SHR trees. The tree containing u’s parent is a valid DHR tree itself
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even if u’s ancestors may not store the longest prefixes of their subtrees any more.
But this tree can still correctly perform searching and merging operations. Each of u’s
subtrees can become a valid DHR tree by promoting one of its root’s own children to
be the other root, an operation that takes O(1) time. If these two trees need to connect
back to the contraction tree after being separated, only their roots will try to repair these
connections.

Since network partitions are irreversible in the absence of extra edges, we make a
reasonable assumption that every node will keep information about several other nodes,
although it chooses only one as its initial outgoing edge in the contraction graph. Thus,
whenever some node fails, the root of a separated tree will try to contact nodes still in the
contraction graph through its unused links. These contacts are propagated up through
the DHR trees (possibly merging with other incoming contacts as they propagate up).
Since two trees T1 and T2 may simultaneously attempt to join each other, this may lead
to a cycle in the contraction graph. But since our algorithm can gracefully handle cycles,
after node failures stop and the contraction graph correctly reforms, our algorithm will
ultimately stabilize.

5 Extension to an Asynchronous Model

So far we have assumed a synchronous model, which (a) simplifies the analysis of the
contraction algorithm, (b) allows extra edges to be pushed down through the contraction
tree without piling up, and (c) eliminates the need for explicit coordination of changes
between nodes. The price of this assumption may, however, be too high in a practical
setting, and it makes it difficult to compare our algorithm with previous algorithms
(such as that of [1]) that work in asynchronous environments.

To address this issue, we show how the α synchronizer of [15] can be adapted to our
setting. Details are given in the full paper. The result is:

Theorem 2. Starting from an initial tree with consistent parent and child pointers, the
tree contraction algorithm running under an α synchronizer produces a single DHR
containing all nodes in O(W +log n) time using O(n(W +log n)) messages with high
probability in an asynchronous system.

6 Conclusion

We have described a fast self-stabilizing algorithm to rapidly construct a balanced over-
lay network from a directed graph initially with out-degree 1. This algorithm organizes
all the nodes in the network into a novel balanced search tree data structure that responds
gracefully to node failures and supports quick search, predecessor and successor oper-
ations. And by applying predecessor and successor operations, the nodes can quickly
form into a sorted link, which turns out to be a fundamental structure for many linear
overlay networks. Our analysis shows that the expected running time of the algorithm
is O(W +logn), which improves by a factor log n on our previous work [1], while still
preserving low contention and using messages with length proportional to the length W
of node identifiers.
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Our algorithm is designed for in a synchronous model, but applying a synchronizer
can extend the algorithm to work in an asynchronous environment. The key difficulty
here is how to incorporate late arriving nodes into the ongoing procedure; more work
needs to be done in this area.

In building our data structure, we developed methods for pushing extra edges down-
ward to maintain small degree and for pipelining sequential merges efficiently. It is an
interesting open problem whether these tools may be applied to algorithms for more
general classes of initial graphs.
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A Appendix

A.1 Analysis of Time Complexity

Since the contraction graph C has at most n edges, there is a one-to-one mapping be-
tween each edge and some merge, except for the last merge that collapses the possible
vertical cycle, which may consume two antiparallel edges. Thus after every successful
merge, the total number of edges is reduced by one. In the following analysis, we will
show that after one horizontal and vertical contraction operations, a constant fraction of
edges will be eliminated on average.

Assume before the ith contraction operations there are Ai−1 horizontal edges and
Bi−1 vertical edges(e.g. A0 + B0 = n − 1 or n).

Lemma 1. After the ith horizontal and vertical contraction operations, E[Ai + Bi] ≤
7
8 (Ai−1 + Bi−1).

Proof. Let H be the number of horizontal edges and V the number of vertical edges
removed by the ith horizontal and vertical contraction operations. Since the probability
of choosing any edge is at least 1/4, we have E[H ] ≥ 1

4Ai−1.
After the horizontal contraction operation, we readjust the contraction graph to retain

the child-sibling property. This adjustment may change some vertical edges to horizon-
tal edges. But the number of such edges is no more than Bi−1/2, because such an
adjustment happens only if a (consolidated) node has two children. Removing these
edges leaves Bi−1/2 vertical edges to participate in the i-th vertical contraction, and so
E[V ] ≥ 1

4 (Bi−1/2) = 1
8Bi−1. So we have

E[Ai + Bi] = (Ai−1 + Bi−1) − E[H ] − E[V ] ≤ 7
8
(Ai−1 + Bi−1) . (1)

��

We use a classic theorem regarding probabilistic recurrence relations, due to Karp [17].
If a process can be described as T (x) = a(x) + T (h(x)), where x is a nonnegative real
variable, a(x) is a nonnegative real-valued function of x and h(x) is a random variable
ranging over [0, x] and having expectation less than or equal to m(x), where m is a
nonnegative real-valued function, then the following theorem holds.
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Theorem 3 ([17]). Suppose there is a constant d such that a(x) = 0, x < d and
a(x) = 1, x ≥ d. Let ct = min{x|u(x) ≥ t}. Then, for every positive real x and every

positive integer w, Pr[T (x) ≥ u(x) + w] ≤
(

m(x)
x

)w−1
m(x)
cu(x)

,

in which u(x) denotes the least nonnegative solution of τ(x) = a(x) + τ(m(x)), a
deterministic counterpart of the above process. u(x) is uniquely given by the formula
u(x) =

∑∞
i=0 a(m[i](x)), where m[0](x) = x and m[i](x) = m(m[i−1](x)) for i =

1, 2, . . ..
Our contraction algorithm can be illustrated in the form of Theorem 3 as in [17]:

m(x) = 7
8x, a(x) = 0, x < 1, a(x) = 1, x ≥ 1 for the time cost of each horizontal and

vertical contraction operation is O(1). Then u(x) = 0 for x < 1, u(x) = 	log8/7(x)
+

1 for x ≥ 1 and ct =
( 8

7

)t−1
. Then Theorem 3 gives the following result when we

substitute x with n − 1, n ≥ 3 and let w = �c log8/7(n − 1)� for any fixed constant c:

Pr[T (n−1)≥	log8/7(n−1)
+w+1]≤
(

7
8

)w−1
n − 1

( 8
7

)�log8/7(n−1)�+1 ≤ 1
(n − 1)c−1 .

(2)
Therefore, with high probability we will only need O(log n) rounds to reduce all the

edges. If this bound fails, we are left with a contraction graph which again collapses to a
single node in an additional O(log n) rounds w.h.p. It follows that the expected number
of rounds to contract all the edges is also O(log n).

To this must be added the (deterministic) time cost O(W ) for the final DHR tree to
finish all the pipelined merges. We thus obtain the total time cost for our algorithms
O(W + log n), and thus prove Theorem 1.

A.2 Merging Two DHR Trees

Here we describe the merging procedure for a pair of DHR trees. Denote a DHR tree as
TD, and similarly a SHR tree as TS. When the distinction is not necessary, both a DHR
tree and a SHR tree can be denoted as T and called a radix tree. We adopt the following
definitions:

– For u and v, TD(u, v) indicates a DHR tree with left root u and right root v; TS(u)
indicates a SHR tree rooted at u. When there is no possibility of confusion, T (u)
means a radix subtree rooted at u.

– For a node u, its identifier is denoted as u.id and its prefix as u.prefix. For a radix
tree T , its prefix means the longest common prefix of all the node identifiers in T ,
denoted as T.prefix.

– For two prefixes x and y, we use x = y to indicate that x is equal to y, x �= y that
x is incomparable to y, and x ⊂ y that y is a short prefix of x respectively.

Any merge of two DHR trees can be reduced to merging two corresponding SHR
trees, since any DHR tree can be transformed into a SHR tree. Assume T1 is merging
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Fig. 6. Merging two DHR trees T1 and T2

with T2 as in Fig. 6(a) and let b be the first bit position at which T1.prefix differs from
T2.prefix. There are only three cases categorized by the relationship of T1 and T2’s
prefixes.

1. If T1.prefix �= T2.prefix, we combine these two SHR trees into one DHR tree.
The tree with the b-th bit equal to 0 will become the left tree of the merged DHR
tree while the other becomes the right tree, as in Fig. 6(b).

2. If T1.prefix = T2.prefix, we can break the tie by choosing the tree with a head
of a smaller node identifer, e.g. T1, and another tree T2 is decomposed into two
smaller SHR trees, i.e. its left and right trees, which slide down along T1 and carry
on further merges with subtrees of T1, as in Fig. 6.

3. If T1.prefix ⊂ T2.prefix or T2.prefix ⊂ T1.prefix, e.g. as in Fig. 6 (d), the tree
with shorter prefix keeps its root while the other slides down for further merges.

When a SHR tree is sliding down another tree, it either further decomposes into
smaller SHR trees or settles down somewhere deep in the tree. For example, as in Fig. 7,

Fig. 7. T ′ is sliding down along another tree
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T ′ is sliding down along another tree. If it encounters a subtree with the same prefix,
it just decomposes into two smaller SHR trees, each of which slides down along the
proper branch. If a subtree with incomparable prefix, assuming T (u) as in Fig. 7(a), is
encountered, T ′ will take u as one of its child and substitute T (u) in the original tree.
If T ′ ⊂ T (u).prefix, then T ′ can just keep sliding down along the proper branch. But
if T (u).prefix ⊂ T ′, T ′ needs to first decompose into two smaller SHR trees, one of
which replaces u’s position and takes u as its child while the other slides down, as in
Fig. 7(b).
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Abstract. Self-stabilization is a versatile technique to withstand any transient
fault in a distributed system. Mobile robots (or agents) are one of the emerging
trends in distributed computing as they mimic autonomous biologic entities. The
contribution of this paper is threefold. First, we present a new model for studying
mobile entities in networks subject to transient faults. Our model differs from the
classical robot model because robots have constraints about the paths they are al-
lowed to follow, and from the classical agent model because the number of agents
remains fixed throughout the execution of the protocol. Second, in this model, we
study the possibility of designing self-stabilizing algorithms when those algo-
rithms are run by mobile robots (or agents) evolving on a graph. We concentrate
on the core building blocks of robot and agents problems: naming and leader
election. Not surprisingly, when no constraints are given on the network graph
topology and local execution model, both problems are impossible to solve. Fi-
nally, using minimal hypothesis with respect to impossibility results, we provide
deterministic and probabilistic solutions to both problems, and show equivalence
of these problems by an algorithmic reduction mechanism.

1 Introduction

A large panel of recent research in Distributed Computing focused on solving problems
using mobile entities, often denoted by the term of robots or agents. Those entities
typically evolve in the network (that comprises a fixed set of nodes forming a particular
topology) to provide services, either to the user of the network or to its core components.
With the advent of large-scale networks that involve a total number of components in
the order of the million, two particular issues were stressed: (i) the resources used by
the agents should be kept to a minimum given a particular problem (see e.g. [15]),
and (ii) the fault and attack tolerance capabilities are of premium importance. Most of
the works on fault and attack tolerance with mobile agents deals with external threats,
i.e. the faulty part of the system or the attacker is not an agent itself. For example,
several papers (e.g. [9]) investigate the black hole search problem, where mobile entities
must cooperate to find a hostile node of the network that destroys every mobile entity
traversing it. In an orthogonal manner, decontamination and graph searching papers
(e.g. [14]) consider the chasing of hostile mobile entities that are harmful to the nodes
but not to the agents.

In this paper, we consider the novel problem of dealing with faults and attacks that
hit the mobile entities themselves, that is, the threat is internal. More precisely, we
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consider that an arbitrary transient fault or attack hits the system (both nodes and mobile
entities), and devise algorithmic solutions to recover from those faults and attacks. The
faults and attacks are transient in the sense that there exists a point from which they
don’t appear any more. In practice, it is sufficient that the faults and attacks are sporadic
enough for the network to provide useful services most of the time. In this context, self-
stabilization [10] is an elegant approach to forward recovery from transient faults and
attacks as well as initializing a large-scale system. Informally, a self-stabilizing system
is able to recover from any transient fault or attack in finite time, without restricting the
nature or the span of those faults and attacks.

Related works. Mobile (software) agents on graphs were studied in the context of self-
stabilization e.g. in [16,17,6,11], but the implicit model is completely different from
ours. In the aforementioned works, agents are software entities that are exchanged
through messages between processes (that are located in the nodes of the network),
and thus can be destroyed, duplicated, and created at will. In [16,6], a single agent
is assumed at a given time, and this agent is responsible for stabilizing a simultane-
ously running (classical aka non-stabilizing) distributed algorithm. In [17], exactly n
agents are supposed to traverse a n sized tree network infinitely often, by means of a
swap primitive that swaps agents located at two neighboring nodes. In [11], the authors
consider dynamic evolving networks and rely on random walks to ensure proper agent
traversal; again, the purpose of the agent protocol is to ensure that a single agent sta-
bilizes the system. By contrast, in this paper, we focus on the self-stabilization of the
agents themselves, and our model keeps the number of agents fixed for the whole life
of the network.

Self-stabilizing mobile (hardware) robots in 2-dimensional space were recently stud-
ied in e.g. [19,18,13]. Here a fixed set of k mobile robots are able to move uncon-
strained, yet are not able to communicate other than by viewing the relative position of
other robots. The presented algorithms are oblivious in the sense that between any two
activations of a particular robot, the previous state of the robot is cleared. As such, those
algorithms are inherently self-stabilizing, since any scheduling for execution will reset
the state of a robot. In this model several problems have been studied under different
assumptions on the environment (schedulers, fault-tolerance, robots visibility, accuracy
of compasses): circle formation, pattern formation, gathering, leader election, scatter-
ing. However, the lack of digital communication between the robots somewhat limits
the kind of problems that can be solved and a broad class of impossibility results have
been obtained [19,18,13,7,1]. In this paper, we introduce non-oblivious robots (agents)
in the context of self-stabilization and enable digital communication between robots
(either because they are located at the same node or by using so-called whiteboards) to
solve more elaborate tasks (e.g. naming and leader election), yet we restrict the motion
capabilities of the robots (only edges of a given graph can be followed).

A third related model in the area of self-stabilization is that of Population Protocols
(see e.g. [4,5,3]). In this model, finite-state agents interact in pairs chosen by an adver-
sary, with both agents updating their state according to a joint transition function. For
each such transition function, the resulting population protocol is said to stably com-
pute a predicate on the initial states of the agents if, after sufficiently many interactions
in a fair execution, all agents converge to having the correct value of the predicate. It



On the Self-stabilization of Mobile Robots in Graphs 303

was proved that this model permits to compute problems that can be expressed through
Presburger arithmetic. Our model permits as well to express joint transition functions
between agents located at the same node, but also (indirectly) between agents that are
hosted by the same node at different moments through the whiteboard abstraction.

Our contribution. The contribution of this paper is threefold. First, we present a new
model for studying mobile entities in networks subject to transient fault. Our model
differs from the classical robot model because robots have constraints about the paths
they are allowed to follow, and from the classical agent model because the number of
agents remains fixed throughout the execution of the protocol. Second, in this model,
we study the possibility of designing self-stabilizing algorithms when those algorithms
are run by mobile robots (or agents) evolving on a graph. We concentrate on the core
building blocks of robot and agents problems: naming and leader election. Not surpris-
ingly, when no constraints are given on the network graph topology and local execution
model, both problems are impossible to solve. Finally, using minimal hypotheses with
respect to impossibility results, we provide deterministic and probabilistic solutions to
both problems, and show equivalence of these problems by an algorithmic reduction
mechanism. From a theoretical perspective, our results complement the widely known
possible vs. impossible problems in anonymous distributed systems (see e.g. [21,22]).
From a practical perspective, our symmetry breaking algorithm enables to solve other
problems such as gathering (see [8]) that have known solutions when mobile entities
have unique identifiers.

Outline. In Section 2, we present the computing model that is introduced in this paper.
Section 3 provides impossibility results that justify the assumptions made in subsequent
sections. Section 4 presents a deterministic algorithm for naming in acyclic networks
with half-duplex links, while Section 5 provides a probabilistic naming algorithm for
general networks. Section 6 shows that the naming and leader election problem are
equivalent (by reduction of one problem to the other). Concluding remarks are presented
in Section 7.

2 Model

The network is modeled as a connected graph G = (V, E), where V is a set of nodes,
and E is a set of edges. We assume that nodes have local distinct labels for links, but
no assumption is made about the labeling process. Nodes also maintain a so-called
whiteboard which can store a fixed amount of information. We distinguish between
acyclic networks (i.e. trees) and cyclic networks (i.e. that contain at least one cycle).

Agents (or robots) are entities that move between neighboring nodes in the network.
A link is full-duplex if two agents located at neighboring nodes can exchange their
position at the same time, crossing the same link in opposite directions. A link is half-
duplex if only one direction can be used at a given time. We assume that k agents are
present in the network at any time. Also, each agent is modeled by an automata whose
state space is sufficient to hold a identifier that is unique in the network (i.e. the state
space is at least k states). An agent may move from one node to one of the node’s
neighbors based on the following information: (i) the current state of the agent, (ii) the
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current state of other agents located at the same node, (iii) the local link labels of the
current node (and possibly the label of the incoming link used by the agent to reach the
node), and (iv) the memory stored at the node (the whiteboard).

A configuration of the system is the product of all agents locations and states and
all whiteboards contents. The behavior of the system is essentially asynchronous, in the
sense that there is no bound on the number of moves that an agent can make between
any two moves of another agent. There is one notable exception: when two (or more)
agents are at the same node, the execution order is decided by the host node. In the
following we assume that no two agents located at the same node execute their actions
concurrently. However, agents located at different nodes may execute their actions con-
currently. So, in any configuration of the system, the scheduler may choose any subset
of nodes that hold at least one agent: then, in one atomic step all chosen nodes execute
the code of all their host agents. The pseudo-code of each node (unless otherwise stated)
is formally presented as Algorithm 1.

Algorithm 1. Pseudo-code at node i
foreach agent on node

agent.execute()
end foreach

We assume that the scheduler is fair in the sense that if a node holds at least one
agent, it is eventually scheduled for execution by the scheduler. A round starting from
configuration c is the minimum time until all nodes that hold at least one agent in c
have been activated by the scheduler. We now define the naming and leader election
problems that we focus on in this paper:

Definition 1 (Naming). Let S be a system with k agents. The system S satisfies the
naming specification if all k agents eventually have an unique identifier (no two agents
in S share the same identifier).

In the leader election problem agents have either the leader role or the follower role.

Definition 2 (Leader Election). Let S be a system with k agents. The system S satisfies
the leader election specification if an unique agent eventually has the leader role and
all the agents have the follower role.

Our goal is to withstand transient failures. For this purpose, we assume that every
“changing” aspect of the network can be arbitrarily modified in the initial configuration
of the system. These “changing” aspects include: (i) the agent states, (ii) the agent
positions, (iii) the whiteboard states.

Definition 3 (Self-stabilizing Problem). Let S be a system with k agents. The system
S satisfies the naming or the leader election specification in a self-stabilizing way if
Definition 1 and Definition 2 respectively are verified in spite of an arbitrary initial
configuration.
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3 Impossibility Results

The results in this section are negative. We consider networks where agents have infinite
memory, and nodes have whiteboards with infinite memory. Also, the scheduling is
constrained in the sense that at every step, all nodes that hold at least one agent are
scheduled for execution. With our assumptions, the initial memory of every agent is
supposed to be identical, and the initial content of each whiteboard is supposed to be
identical as well. Agents are anonymous and deterministic.

Theorem 1. Deterministic naming or leader election of mobile agents is impossible in
cyclic networks, even assuming synchronous scheduling, and infinite memory for each
agent and whiteboard.

Proof (Sketch): Assume the topology of the network is a cycle. The proof idea follows
the lines of impossibility results found in [2]. Intuitively, assume a cyclic network in a
symmetric initial configuration with two agents. Assume the agents have both the same
identifier (or leader) variable and all the whiteboards in the network are initialized with
the same arbitrary values. Since agents execute the same deterministic algorithm, there
exists an execution of the system refereed in the following as e such that all configura-
tions appearing in this execution are symmetrical with respect to the agents view. Since
a configuration solving the naming problem is asymmetrical with respect to the agents
view, and the fact that e does not contain asymmetrical configurations, there exists an
execution of the system that never reaches a naming or leader election configuration.

In the following we construct a symmetric execution e with respect to the agents
view. Without restraining the generality assume only two agents in the network placed
such that agents have exactly the same view and the same initial state s0. Since the two
agents have the same view, start in identical states, and execute the same deterministic
algorithm, they execute the same action. So, both agents will reach exactly the same
state s0 (in case the agents do not change their state) or s1 �= s0. In the new state the
agents have the same view of the network and the same state so they execute again the
same action. Either, the two agents keep the same state or they both change to a new
state s2. The agents can repeat this game infinitely often. Overall, there is an infinite
execution where the two agents pass exactly through the same states in the same time
(s0)∗(s1)∗(s2)∗ . . . and the system never reaches an asymmetrical configuration. �

Theorem 2. Deterministic naming or leader election of mobile agents is impossible
in acyclic networks with full-duplex links, even assuming synchronous scheduling, and
infinite memory for each agent and whiteboard.

Proof (Sketch): Consider a network consisting of two nodes u and v linked by edge
e. Assume that there is an agent at each node. Initially all agents are in the same state,
and all nodes whiteboards are in the same state. Also, the local labeling of edges is the
same at each node. So, the network is completely symmetric, from an agent point of
view. Now, each time an agent is scheduled for execution, it may update its own state,
update the whiteboard, or (inclusive) move to the other node. Now assume that the
scheduling of the agents is synchronous, this means that at every step, the state of each
agent remains identical, the state of each whiteboard remains identical, and the relative
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position of each agent with respect to the view of the other agent remains the same.
Overall, symmetry can not be broken by a deterministic agent algorithm, and naming
or leader election can not be achieved. �

4 Self-stabilizing Deterministic Naming in Acyclic Networks with
Half-Duplex Links

In the following we propose a deterministic self-stabilizing algorithm for agents naming
in acyclic networks with half-duplex links. In networks with k agents the algorithm
uses O(log(k)) bits memory per agent and O(k log(Δk)) per node, where Δ is the
maximum degree of the network.

Each agent has a state that includes a software identifier id (“software” meaning that
this identifier can be corrupted), that is represented by some integer. Each node has a
whiteboard (that can be corrupted as well) that can store up to k 2-tuples 〈id, edge〉.
The id part of the 2-tuple denotes the integer identifier of an agent, and the edge part
of the 2-tuple denotes a local edge identifier. This whiteboard is meant to represent the
identifiers of the latest k agents with distinct identifiers that visited the node, along with
the corresponding outgoing edge they took last time they visited the node. Each node
provides to the agents that visit the node some helper functions to access the whiteboard:

– edge(i) returns the edge that is associated to i if i is present in the whiteboard, and
nil if i is not in the whiteboard.

– visit(i, j) sets the edge j to be associated to agent i if i is in the whiteboard,
or adds the entry (i, j) to the whiteboard if i is not present. If the whiteboard al-
ready contains k tuples with distinct identifiers, the least recently updated one is
dropped from the whiteboard. After updating the whiteboard, the agent exits the
node through port j.

– new returns a new identifier that does not exists in the whiteboard.

When arriving at a node, an agent checks whether the node has its identifier in its
whiteboard. If it is not present, it adds its identifier and erases one of the identifiers if
there are more than k identifiers on the node’s whiteboard (assuming FIFO order). If
it is present, then either there is another agent with the same identifier at the current
node, or the agent is the only one with its identifier. In the first case, the first agent
to be executed by the node simply picks up a new identifier, and initiates a Eulerian
traversal. In the second case, the agent checks if the last outgoing edge followed by an
agent with its identifier is the same as the current incoming edge. In the case it points to
another edge (which means there is a discrepancy, whatever its cause), the node simply
follows the path corresponding to its identifier, trying to confront the other agent with
the same identifier (if such agent exists). Finally, when an agent enters a node through
the expect ed edge, it continues performing a Eulerian tour of the tree, e.g. by choosing
the outgoing edge that is next in the Eulerian tour, i.e. edge (j + 1) mod δ, if j was the
incoming edge. Formally, the algorithm that is executed by each agent is presented as
Algorithm 2.

We prove self-stabilization by defining a predicate for legitimate configurations, then
proving (i) every computation starting from a legitimate configuration is correct (see



On the Self-stabilization of Mobile Robots in Graphs 307

Algorithm 2. Deterministic agent code for tree networks
id: integer
execute() {

if ( edge(id) == nil )
visit( id, 0 ) // add self, will exit through port 0 by default

else if ( exists agent j on node i such that j.id == id )
id = new // Not present or somebody else has the same id

visit( id, 0 ) // add self, will exit through port 0 by default
else if ( edge(id) != incoming edge ) )

visit( id, edge( id ) ) // Follow possible conflicting agent
else
visit( id, edge( id ) + 1 mod delta ) // continue Eulerian traversal

}

Appendix), and (ii) every computation starting from an arbitrary configuration eventu-
ally reaches a legitimate configuration.

Definition 4 (Legitimate configuration). A legitimate configuration for Algorithm 2
satisfies the three following properties: (i) all agents have distinct “software” identi-
fiers, (ii) all whiteboards tuples contain only actual agent identifiers, and (iii) all white-
boards tuples are consistent with actual agent locations.

Lemma 1 (Correctness). Every computation of Algorithm 2 that starts from a legiti-
mate configuration satisfies the Naming problem specification.

Proof (Sketch): Since all k agents have distinct identifiers, and all k identifiers are
present in all whiteboards, the whiteboards do not contain any spurious identifier in-
formation. So, an agent arriving at a node always finds its own identifier, with proper
incoming edge. As a result, agents never change identifier, whiteboards never drop ex-
isting identifiers, and edge information is kept accurate, so that every agent performs
Eulerian traversal of the tree forever. �

In the following we prove that starting from any configuration, the system converges to
a legitimate configuration.

Lemma 2. An agent with identifier i eventually visits every node infinitely often.

Proof (Sketch): Assume the contrary, i.e. there exists a time in the execution where at
least one node u never gets visited by any agent with identifier i. In turn, this means
that for every neighbor v of u, either v is never visited by an agent with identifier i (and
the argument can be repeated on the neighbors of v), or v is visited infinitely often but
the agent never takes the edge toward u (shortened as eu). The only way for an agent
a with identifier i not to take eu is (i) to exit through edge number 0 (and that edge is
not eu), (ii) to follow the path of a (supposedly) other agent with identifier i that did not
take eu, or (iii) to never take eu by performing a Eulerian traversal of the graph (i.e. the
agent never arrives by port (eu − 1 mod δ)). Cases (i) and (ii) can be executed only a
finite number of times (since there are k agents), so this implies that the node is visited
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infinitely often by agents that properly execute the (edge(i) + 1 mod δ) rule and never
exit through eu. Since the network is acyclic, this last case is impossible. �

Lemma 3. If two agents have the same identifier they eventually meet within O(m)
rounds, where m is the number of edges of the graph.

Proof (Sketch): Note that a node that keeps its identifier either follows the apparent
path of a supposed other node, or performs a Eulerian traversal of the tree. Intuitively,
the proof goes as follows. The apparent path may be either fake (it leads to a node
that does not have identifier i in its whiteboard, or that does not contain another agent
with identifier i) or real (the path leads to an agent whose identifier is i). If the path is
fake, it is nevertheless finite, and the agent will perform only a finite number of steps
to reach the end of the path and realize it is fake. When an agent realizes a path is
fake, it executes the Eulerian traversal algorithm. When a node switches to the Eulerian
traversal algorithm, its path becomes real. Now, if the path is real, the agent chases a
real agent in an acyclic network, and the path information is correct. Since the network
is acyclic and the links are half duplex, the two agents are bound to meet each other.

An agent follows a fake path when the information on whiteboards erroneously in-
dicates the presence of another agent with the same identifier. In order to check and
correct the information in the whiteboards and agents, in the worst case, has to visit
every node in network. In order to perform the traversal, each edge is visited at most
twice. Hence the complexity of the traversal is O(m). �

Note that after an agent visited each node of the graph at least once, all whiteboards are
coherent with the agent direction and identifier.

Lemma 4 (Convergence). Starting from any arbitrary initial configuration with k
agents, any computation eventually reaches a legitimate configuration in O(km) rounds.

Proof (Sketch): First, we observe that no identifier that is initially present in the net-
work on some agent is ever removed from the network. This is due to the fact that an
agent only changes its identifier when observing that another agent at the same node
has the exact same identifier. Since agents execute their code sequentially (activated by
nodes), the first activated agent with a conflicting identifier changes its identifier, and
the other agent remain unchanged (unless there are more that two agents at the same
node with the same identifier).

Now, we prove that starting from any initial configuration, the number of distinct
identifiers only increases until it reaches k. Initially the number of distinct identifiers is
at least 1. Suppose that there exists some integer j (1 ≤ j < k) such that there exists
j distinct identifiers in the network. Now, after finite time, O(jm), all j identifiers are
present in each whiteboard in the network (see Lemma 3). Since j < k, there exist
at least two agents with the same identifier. By the above argument, two agents with
the same identifier are to meet within finite time, O(m). When this is done, one of the
agents will change its identifier to a new identifier. Since all j identifiers are on the
whiteboards and are regularly refreshed, a new identifier (not in the existing j set) will
be solicited by the agent, and the number of total identifiers in the network rises to
j + 1. By induction hypothesis, the number of distinct identifiers eventually reaches k
after O(km) rounds.
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When all agents have distinct identifiers, they all traverse all the network infinitely
often (see Lemma 2). When each of them has traversed the network at least once, the
paths to the agents are all correct with respect to their current position. As a conse-
quence, the configuration is legal. �

5 Probabilistic Naming in Arbitrary Networks

In this section we assume an weaker model where agents cannot communicate via
whiteboard and the network is arbitrary with full-duplex links. Theorems 1 and 2 pro-
vide impossibility results related to deterministic naming in this model. In the following
we show the possibility of probabilistic naming. The idea is to make every agent ran-
domly move in the network. Anytime two agents that are located at the same node have
the same identifier, each agent randomly chooses a new identifier. If there are several
agents at the same node with distinct identifiers, the random walk is continued.

Each node provides to the agents that visit the node some helper functions:

– random(S) returns a random element from set S.
– visit(j) makes the agent exit the node through port j.

Algorithm 3. Probabilistic agent code executed at node i for arbitrary networks
id: integer
execute() {

if (there exists agent a such that a.id = id at node i)
id := random( 1..k )

else
visit( random( 0..degree(i) ))

}

Algorithm 3 presents the core of our algorithm for probabilistic agent naming. In the
presentation, a random value for the identifier is assumed to be between 1 and k, but an
upper bound on k may also be used to boost stabilization time (e.g. k2). The proof of
correctness can be found in the appendix.

Definition 5 (Legitimate configuration). A configuration is legitimate if and only if
all agents have distinct identifiers.

Lemma 5 (Correctness). Every computation of Algorithm 3 that starts from a legiti-
mate configuration satisfies the naming problem specification.

Proof (Sketch): Assume all identifiers are distinct for all agents, then the “if” clause is
never falsified, so the identifier of the agent is never changed. As a result, the configu-
ration remains legitimate. �

Lemma 6 (Convergence). Starting from an arbitrary initial configuration, the network
eventually reaches a legitimate configuration. The expected stabilization time is O(kn3)
where k is the number of agents in the network.



310 L. Blin, M. Gradinariu Potop-Butucaru, and S. Tixeuil

Proof (Sketch): We first make the two following observations:

1. when two agents with two different identifiers meet at the same node in the network,
their random walk is unaffected by the meeting;

2. when two agents with the same identifier meet at the same node in the network,
they stop moving until at least one of them randomly picked a new identifier.

In an arbitrary initial configuration, a pair of agents (u, v) in the network may share the
same identifier. We consider occurrences of meetings of two agents or more at the same
node in the network. When random walks are unbiased, the meeting time between any
two agents is O(n3), [20]. Here we do not consider the meeting time between agents
with different identifiers. Instead we consider the first occurrence of a meeting involv-
ing two or more agents of the same color. When this occurs, the two agents draw a
random coin and get a random identifier. With probability at least 1

k , the drawn fresh
random identifier is unique in the whole network. So, anytime two agents with the same
identifier meet, there is a positive probability that they both get a unique identifier in
the system. Anytime this happens, the number of agents who share their color with at
least one other agent decreases by one. As a result, with probability one, a configu-
ration where all agents have unique identifiers is reached, and remains thereafter. The
stabilization time O(kn3). �

6 Naming and Leader Election

In this section, we consider the relationship between the aforementioned naming prob-
lem, and the leader election problem, where the network must eventually reach a con-
figuration where exactly one agent is elected and all others are non-elected.

6.1 From Naming to Leader Election

We first observe that given a naming of k robots in the network, it is easy to come up
with a leader election protocol.

1. In our deterministic protocol, whiteboards are used to register all identifiers used
in the system by the agents. When an agent arrives at some node, it checks from
the whiteboard if its identifier is maximum in the whiteboard, and becomes elected
if so. If its identifier is not maximum in the node’s whiteboard, the agent becomes
non-elected. After stabilization of the naming algorithm, all whiteboards contain
the exact identifiers used in the network, which means that all whiteboards con-
tain the same identifiers in the system. So, if an agent has maximal identifier on
one whiteboard, it has maximum identifier on all whiteboards. This guarantees the
correctness of the leader election protocol.

2. In our probabilistic protocol, eventually all nodes have distinct identifiers in the
network. If the exact value of k was used in the algorithm, then a node can simply
checks its identifier against k to detect if it is the leader or not. If only an upper
bound on k was used, then a more complicated process is required. The procedure
is as follows: each node stores the identifiers of the last k − 1 distinct agents it last
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saw; then if its identifier is maximum among those identifiers, it becomes elected,
and remains non-elected otherwise. The leader status is updated anytime the list of
the k − 1 distinct encounters is modified. After stabilization of the naming algo-
rithm, all identifiers are distinct, so a non-biased random walk is performed by each
agent. Then each agents meets every other agent regularly within polynomial time.
Overall, after polynomial time, every agent has met every other agent and stored
their identifiers in its local memory. When every agent has all other agent iden-
tifiers in its local memory, the leader status remains correct and unchanged. The
memory cost of the algorithm is O(k log(k)) per agent and the time complexity is
polynomial.

An alternative to this algorithm is as follows. Each agent performs a random
walk in the network (at each node the agent chooses with equal probability (1/node
degree) the next edge to visit). In [12] it is proved that the expected time for a
random walk to cover all nodes of a graph is O(n log(n)). Each time an agent
visits a node it marks in the node table its identifier if it is not present. If the agent
identifier is the maximum in the table then the agent is the leader otherwise it keeps
the follower status. The memory complexity of the algorithm is O(k log(k)) per
node and the expected time complexity is O(kn log(n)).

6.2 From Leader Election to Naming

Now consider the reverse problem of solving the naming problem given a leader in
the group of agents. Our solution is presented as Algorithms 4 and 5. For simplicity,
we assume that the leader agent is identified by a special symbol that is not in the
domain on non-leader agents identifiers and which can be recognized by the node as
the leader mark. First we assume that each node, when activating agents, gives lower
priority to the leader agent (i.e. the code of the leader agent, if present on the node,
is executed last). The intuition of the algorithm is as follows: the leader agent simply
performs a Eulerian traversal of the tree, and is not influenced by the other nodes. On
its way during each traversal, the leader leaves in the edge variable of each traversed
whiteboard the outgoing edge it used to exit last time it visited the node. In a legitimate
situation, those edge variables constitute a tree pointing toward the current location
of the leader. The rationale for the non-leader nodes is as follows: (i) when the leader
is not present on the same node, the non-leader node simply follows the edge left by
the leader, trying to reach it, and (ii) when the leader is present on the same node, the
non-leader agent first checks against duplicate identifiers of non-leader agents located
at the same leader-based node, and pick up a new fresh identifier if needed, then they
take the same outgoing edge as the leader, in order to always remain at the same node as
the leader agent. Since the network is acyclic and the links are half-duplex, every non-
leader node eventually meets the leader, and once met, they never leave the leader. So,
eventually, the leader agent collects all non-leader agents at its current location. When
all agents are co-located at the same node and check that no duplicate identifiers exist,
the naming process is finished.

Definition 6 (Legitimate configuration). A configuration of the network is legitimate
if it satisfies the following properties: (i) all non-leader agents have distinct identifiers,
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Algorithm 4. Deterministic agent code for naming in tree networks
id: integer
execute() {

if ( leader )
edge := edge + 1 mod delta // follow the Eulerian traversal
visit( edge )

else
if ( leader is present on the same node )

if (id is conflicting among present agents on the node)
id := new // take fresh identifier

visit( edge + 1 mod delta ) // take same exit as that of the leader
else

visit( edge ) // follow leader
}

Algorithm 5. Deterministic node code for naming in tree networks
foreach non-leader agent on node

agent.execute()
end foreach
leader.execute()

(ii) all agents are located in the same node, and (iii) all edge whiteboards point toward
the node that contain all agents.

Lemma 7 (Correctness). Starting from a legitimate configuration, the naming prob-
lem is solved.

Proof (Sketch): In a legitimate configuration, all agents have distinct identifiers. From
the code of the algorithm, an agent may change its identifier only when discovering that
it shares the same identifier with another agent. As a result, an agent never changes its
identifier onwards, and the naming problem is solved. �

Lemma 8 (Convergence). Starting from an arbitrary initial configuration, a legitimate
configuration is eventually reached.

Proof (Sketch): We first prove that eventually, all edge whiteboards point toward the
node that contain the leader. We observe that the leader behavior does not depend on
the behavior of the non-leader agents. Second, when the leader leaves a node (whatever
the initialization of the whiteboard of this node may be), the edge whiteboard of this
node will always point toward the leader agent onwards (the network is acyclic, so
the leader agent may only come back though this edge), and the next time the edge
whiteboard is modified, it will advertise the current last taken edge by the leader agent.
Our second observation is that whatever the initialization of the whiteboards, the leader
agent always perform a Eulerian traversal of the network. As a result, all nodes are
eventually visited by the leader node, and when all nodes have been visited at least
once, all edge whiteboards are pointing toward the leader agent.
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The second step of the proof is to show that any non-leader agent eventually meets
the leader agent. Since the edge whiteboards all point toward the leader agent, and
that non-leader agents that are not located on the same node as the leader simply follow
the edge whiteboards, they always move toward the leader agent. Since the network
is acyclic and the links are half-duplex, the leader agent and any non-leader agent are
bound to meet within O(m) rounds. Now, when a non-leader agent meets the leader
agent, their moving behavior remains the same hereafter (i.e. the leader and the non-
leader agents follow exactly the same path at the same moment–when the node they are
both located on is activated). So, eventually, within O(km) rounds all agents are located
at the same node at a given moment, and remain located at the same node hereafter
(though the node they are located changes anytime it is scheduled for execution).

When all agents are gathered at the same node, non-leader nodes (that are executed
in sequence when the node is activated) simply choose different identifiers. After one
such node activation, all agents have distinct identifiers, are gathered at the same node,
and all edge whiteboards are pointing to them. As a consequence, the configuration is
legitimate. �

7 Concluding Remarks

In this paper, we introduced the problem of self-stabilizing mobile robots in graphs,
and presented deterministic and probabilistic solutions to the problems of naming, and
leader election among robots. From a practical point of view, the main difference be-
tween the two solutions is that the deterministic solution uses a whiteboard (i.e. a local
memory available at every node that the agents can use to communicate with others)
while the probabilistic one does not. An interesting open question that is raised by this
work is the trade-off between whiteboard availability and randomness capabilities. In
addition, it would be of theoretical interest to prove that the computational power of
our model is strictly greater (in terms of predicates that can be computed) than the
Population Protocol model.
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Abstract. Peer to peer overlay networks have proven to be a good support for
storing and retrieving data in a fully decentralized way. A sound approach is to
structure them in such a way that they reflect the structure of the application. Peers
represent objects of the application so that neighbours in the peer to peer network
are objects having similar characteristics from the application’s point of view.
Such structured peer to peer overlay networks provide a natural support for range
queries. While some complex structures such as a Voronoï tessellation, where
each peer is associated to a cell in the space, are clearly relevant to structure the
objects, the associated cost to compute and maintain these structures is usually
extremely high for dimensions larger than 2.

We argue that an approximation of a complex structure is enough to provide
a native support of range queries. This stems from the fact that neighbours are
important while the exact space partitioning associated to a given peer is not as
crucial. In this paper, we present the design, analysis and evaluation of RayNet,
a loosely structured Voronoï-based overlay network. RayNet organizes peers in
an approximation of a Voronoï tessellation in a fully decentralized way. It relies
on a Monte-Carlo algorithm to estimate the size of a cell and on an epidemic
protocol to discover neighbours. In order to ensure efficient (polylogarithmic)
routing, RayNet is inspired from the Kleinberg’s small world model where each
peer gets connected to close neighbours (its approximate Voronoï neighbours in
Raynet) and shortcuts, long range neighbours, implemented using an existing
Kleinberg-like peer sampling.

1 Introduction

Structure versus search expressiveness. Plethora of peer to peer overlay networks have
been proposed in the past years to manage data collection at a large-scale. Peer to peer
overlays organize peers in a logical network and are characterized by their underlying
structure. As far as data management is concerned, they differentiate each other by the
expressiveness and efficiency of the search functionalities they support. The expres-
siveness of search relates to the way data can be accessed: (i) exact search is used to
access data objects identified by a unique identifier; (ii) attribute-based search enables
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to access data using a set of attribute, value pairs; (iii) in range queries, the attribute
values are specified for a given range At one end of the spectrum lie unstructured over-
lays in which each peer gets connected to a set of arbitrary neighbours. Such networks
rely on constrained flooding techniques to search for data [21]. This provides a way to
implement all types of search but such approaches often suffer from lack of efficiency.
A query may need to ultimately visit the whole network to ensure exhaustive results.
Fully structured overlays lie at the other end of the spectrum. In such networks, peers
are organized along a precise structure such as a ring. In DHT-based networks [20],
each object gets associated to a given peer. Such networks provide an efficient sup-
port for a DHT functionality. However, their expressiveness is naturally limited by the
exact-match interface they provide.

We argue that, in order to improve upon the efficiency of expressive queries, the
structure of the peer to peer overlay should reflect the application’s one. Peers are then
application objects and get connected to neighbours (i.e. sharing similar characteristics
from the application point of view). Such a logical organization provides a natural sup-
port for nearest neighbours and range queries. Such peer to peer overlays then support
natively complex queries. Examples of such approaches are : Sub-2-Sub [26] and Megh-
doot [10] for content-based publish and subscribe or Skip-graph based overlays [1,9].
Those structures are however sometimes extremely complex to maintain accurately. For
example, maintaining a Voronoï tessellation as in [4] involves a high overhead when the
dimension is larger than 2 [6], and is prone to high levels of calculation degeneracy.

Weakening the structure. In this paper we argue that a loose structure is actually enough
from the search perspective. What really matters is that each peer gets connected to
carefully chosen neighbours, so that the graph can be exhaustively visited. The exact
logical structure is not as crucial, provided that its estimation enables correct routing
for all requests. In this paper, we propose a general approach based on a Monte-Carlo
algorithm to approximate a complex structure, in order to build a loosely structured
overlay network. More precisely, we propose an algorithm to approximate the size of
Voronoï cells, upon which we build neighbourhood relations.

Contributions. The contributions of this paper are the following. First, we propose a
general approach based on a Monte-Carlo method to approximate the size of a Voronoï
cell. Then we propose the design and evaluation of RayNet, a weakly structured overlay
network, achieving an approximation of a Voronoï tessellation. Following the generic
approximation method, each peer in RayNet relies on an epidemic-based protocol to
discover its neighbours. Using such a protocol, the quality of the estimation gradually
improves to eventually achieve a close approximation of a Voronoï tessellation. This
protocol ensures that each peer gets connected to its Voronoï-like neighbours while
avoiding the need to accurately compute the exact Voronoï cells, thus keeping the over-
all overhead low. Each peer in RayNet also maintains a set of long-range links (also
called shortcuts) to implement a small-world topology. Efficient (poly-logarithmic)
routing in RayNet is achieved by choosing the shortcuts according to a distribution
advocated by Kleinberg in [17]. Both links are created by gossip-based protocols. Fi-
nally, we evaluate the performance of RayNet through simulations and investigate its
performance both in terms of bootstrapping time and routing performance. Note that
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implementing the query algorithm is actually out of the scope of this paper, and that we
focus on the creation of the overlay itself.

2 Design Rationale

System model. We consider a system composed of n nodes, and a set of objects. We
assume that each object is stored on the node that has created it. The overlay is actu-
ally linking objects themselves, rather than computing entities. This design choice is
similar to the one made for Skip-Graphs based systems [1,9]. Nodes can maintain a set
of objects. Although the mapping of objects to physical nodes may be investigated to
improve performance, the scope of this paper is to present the object-to-object overlay
and its capabilities. Leveraging the presence of multiple objects per node or proposing
mapping algorithms of objects to physical nodes that provides better scalability, fault
tolerance or performance is therefore left for future work.

We consider a d dimensional attribute space. Each object is exactly identified by a
value for each attribute. The attribute values of an object represent the coordinates of the
object in the attribute space. This may obviously lead to skewed distribution of objects
in the naming space.

We assume that each peer maintains a partial view of the network, called its view and
consisting of a list of neighbours (IP addresses and coordinates).

Structuring the network using Voronoï diagrams. Figure 1 describes coarsely the tar-
geted structure for a two dimensional data set. A set of objects (black points) is main-
tained in the distributed application naming space. To achieve a structure that permits
nearest neighbour and range queries possibilities, peers having close attribute values
should be linked in the overlay. Figure 1 shows such links for a sample object oi. Our
general goal for the creation of these links is as follows: for any point ptarget belonging
to the application naming space, for a query that passes through an object oi, either oi is
the nearest to ptarget and is the solution, or oi knows a peer oj that is nearer to the des-
tination. This property ensures that greedy routing always succeeds, since the distance
to the destination point is reduced at each step during the query propagation process.

A structure that ensures this property is the De-
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Fig. 1. Target structure

launay graph, which is the dual of the Voronoï di-
agram. The Voronoï diagram of a set of generators
points {p ∈ R

d} is a tessellation of R
d into disjoint

cells. Each cell vc(px) is composed of all points
that are closer to px than to any other generator in
the set. The links we aim at creating are adjacen-
cies relations between objects cells, and compose
the Delaunay graph.

We have already successfully used Voronoï dia-
grams in the context of routing mechanisms [4] in a structured object-to-object overlay,
This overlay provides a native support for range queries and nearest neighbour queries
for datasets over two dimensions naming spaces. However, maintaining accurately this
structure is extremely costly when the dimension goes over 2 [6]. First, the number
of neighbours an object needs to handle is growing exponentially with the dimension.



318 O. Beaumont, A.-M. Kermarrec and É. Rivière

Second, the maintenance cost to keep exactly all these links consistent in spite of nodes
and links failure increases accordingly.

However, defining the exact Voronoï cells is more than what is actually needed to
ensure that greedy routing succeeds in such a network. What matters is actually the
fact that each peer gets connected to its “close” neighbours along all directions. Also,
imposing a fixed size set of neighbours at each object is desirable for scalability and
load balancing purposes.

We base our design on the following observation: for an object o with neighbourhood
consisting of objects whose Voronoï cell shares a boundary with o’s cell, the volume of
o’s cell in the tessellation of all objects is the same as o’s cell volume in the Voronoï
tessellation of only o and its neighbours. We are thus interested in discovering neigh-
bours (partial view of the network) o.view for each object o in the system, for which
the volume of o’s cell in the tessellation of o ∪ o.view is minimal. We use a fixed size
set of neighbours, and each object exchanges its current view of the network by means
of a gossip-based protocol. Figure 2 presents the principle of this evolution: the more
peers an object detects, the more opportunities of choosing a peer configuration it en-
counters to improve its zone approximation. In the following section, we highlight the
principles of gossip-based protocols used for overlay construction, presents the biased
peer-sampling protocol we use to provide small world characteristics to the overlay
(especially for routing efficiency purposes). We then describe the core of our proto-
col, that is gossip-based construction of coverage and closeness at each peer, and the
mechanisms that permit this construction, Monte-Carlo Voronoï cell size estimation.

o’s cell in the
tesselation of

object o and
its view

o U o.view

Fig. 2. Desired evolution of an object’s neighbourhood: convergence towards the smallest (esti-
mated) Voronoï cell. From random connections (left) to smallest possible zone (right).

3 Approximation Through Gossip

In this paper, we use gossip-based protocols to create and maintain the peer to peer
overlay network. Although the focus of this paper is to approximate the neighbourhood
at each peer, ultimately routing efficiently (in poly-logarithmic time) through the struc-
ture is an important concern. A small-world topology is created to achieve this. In this
section we provide some background on small-world networks and gossip-based pro-
tocols. We then describe an existing gossip-based protocol that approximates a small-
world topology. Finally, we present how we extend the generic gossip-based protocol
framework to build the neighbourhood of each peer.
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3.1 Small-World Networks

Small-world network models were introduced to investigate the inherent routing capa-
bilities of human relations networks. In such network models, each peer is connected
to its closest neighbours in a topology as well as additional long-range contacts, also
called shortcuts. Watts and Strogatz [27] introduce such a small-world topology where
shortcuts are picked uniformly at random. In 2000, Kleinberg [17] demonstrated that
poly-logarithmic routing could be achieved using a greedy algorithm if such shortcuts
were chosen according to a specific distribution (d-harmonic). In his work, Kleinberg
consider a n × n grid where every vertex has edges to its four direct neighbours and
k (typically one) long-range neighbour(s). This long-range neighbour is chosen with a
probability proportional to 1

ld , where d is the dimension and l is the Euclidean distance
between the vertex and its remote neighbour. These results can be extended to more
general topologies and higher dimensions [3,4]

3.2 Gossip-Based Overlay Construction

Gossip-based protocols, first introduced to reliably disseminate events in large systems,
have now been recognized as a scalable and reliable basic building block to instantiate
and maintain peer to peer overlay networks. Their scalability stems from their simplic-
ity, their ability to capture system dynamics and the emergent properties they lead to.
They have been successfully applied to a large number of settings from reliable broad-
cast [5] to overlay maintenance [8,12,23,25], and from aggregation [15] to system size
estimation [22] and are now turned into a generic and sound substrate for building and
maintaining large-scale overlay networks [24].

A gossip-based protocol relies on a periodic exchange of information between peers.
Such a period is called a cycle. Each peer keeps a (usually fixed-size) set of peers, called
its view. Periodically, each peer picks a target from its view of the system, exchanges
some information with it and processes the received information. If the information
exchanged relates to neighbourhood, such a protocol creates an overlay network. We
focus on such protocols in this paper. A gossip-based protocol is characterized by the
following three parameters:

– Peer selection policy: each peer pi chooses periodically a gossip target from its
view pi.view;

– State exchanged: the state exchanged between peers is membership information
and consists of a list of peers (subset of their views);

– State processing: upon receipt of the list, the receiving peer merges the list of peers
received with its own view to compose a new list of neighbours.

It turns out that these parameters can be tuned so that the resulting graph exhibit prop-
erties which are extremely close to those of a random graph [8,12,25], providing a Peer
Sampling Service: each peer’s view contains a set of randomly drawn other peers from
the network and this view changes at each cycle. More generally, it has been shown that
arbitrary structures can be maintained this way, including fully structured peer to peer
overlay networks [11,23,26].
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For instance, it has been shown in [7] that peer sampling protocol can be biased
in order to approximate the distribution advocated by Kleinberg to improve routing in
small-world networks. This can be achieved by simply adapting the state processing
phase, to keep in the view, a set of peers that exhibits a Kleinberg-like long link length
distribution. We use this protocol, called small-world peer sampling in the remaining
of this document, as the substrate of our protocol, to achieve efficient routing.

3.3 Approximating the Close Neighbourhood: Coverage and Closeness

It has been shown in [11,25] that the same generic gossip protocol can be used to enable
each peer to create links to its closest neighbours according to a given proximity metric.
The peer selected to gossip with is then chosen as the closest from the view, and the state
processing keeps the closest peers from the union of the local and received views. Such
a clustering protocol is usually run concomitantly with a peer sampling service in order
to ensure connectivity and to leave peers with the ability to cluster nodes1.

In this paper, we propose to use a generalization of such a protocol to approximate
the neighbourhood of a given peer. However, minimizing distances to each peer inde-
pendently is not sufficient to ensure that the routing will succeed in all directions. Thus,
instead of optimizing each item of the view independently, our approach is to decide
on a new view as a whole. That means that, at each gossip cycle, set of peers are ex-
amined as configurations (potential new views) and not independently. To the best of
our knowledge, this is the first time such an approach of generalization of gossip-based
overlay construction protocols is proposed.

We denote as the utility of a new configuration the metric that permits us to decide
whether a configuration is better than the current view or not. This utility is the estima-
tion of the Voronoï cell size, as decided by our Monte-Carlo estimation algorithm (see
Section 4.1). This metric ensures that (1) closeness is achieved, which means that even-
tually a peer will get to know peers that are as close as possible to itself and (2) coverage
is ensured, i.e. eventually each portion of the space surrounding a peer is covered by a
neighbour, if such a peer exists in the system.

4 Protocol Details

In this section we provide the details of building and maintaining RayNet. RayNet is
based on a gossip-based approach: at each cycle, an object o chooses a gossip partner
od from its current view (or a subset of its view) of the system to gossip with. After the
state is exchanged, o then evaluates if there exists a new view (configuration of objects)
that ensures better coverage and closeness. The candidate configurations have thus to
be considered as a whole, and peer objects cannot be selected independently.

4.1 View Evolution Using Voronoï Cell Size Estimation

Size of the view. To ensure coverage and closeness, an object uses the estimated volume
of its Voronoï cell based on its set of neighbours. Effectively, greedy routing succeeds if

1 Obviously non uniform topologies would be prone to create disconnected clusters otherwise.
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Fig. 3. Illustration of the Monte Carlo method (o is the central point)

o knows neighbours in each possible direction (to get closer to any other target object)
and close neighbours (when the target object is close to o). If the volume of the Voronoï
cell at o is bounded, then o knows Delaunay neighbours in all directions and if the
volume of this cell is the smallest possible one, then these peers are among o’s closest
neighbours. In general, 2d + 1 neighbours are enough to get a bounded Voronoï cell. In
order to keep extra close neighbours, we set the size c of objects views to c = 3d + 1.
Moreover, we assume that peers exchange their entire view during a gossip operation.

Monte-Carlo cell volume estimation. Once views have been exchanged, object o needs
to estimate the volume of its Voronoï cell, for every possible configuration (on a naive
basis; we show in the following Sections that examining all possible configurations is
not mandatory). The volume of the cell is computed for each configuration. That is,
given a set of objects o.view ∪ od.view = {o1, . . . , on}, for each possible configu-
ration {oi1 , . . . , oic} of size c, we estimate the volume of the Voronoï cell of o in the
tessellation of points o∪{oi1 , . . . , oic}. Then, if a new configuration is found, for which
the volume of the cell of object o is reduced, this configuration is used as o’s new view.

There is no need to effectively compute the cell itself, which would be computation-
ally expensive and prone to high levels of calculation degeneracy. Instead, we propose
a new Monte-Carlo method for estimating this volume. Figure 3 presents an illustration
of this approach in a two dimensional space. Note that this approach scales to higher
dimensions.

A set of R rays is created, whose starting point is o and directions are drawn uni-
formly at random on the unit hyper-sphere. To this end, we use the method described
in [18] that provides uniform probability distribution of points on the hyper-sphere. Al-
gorithm 1.left describes the method. Rays (dashed lines starting from o on Figure 3)
will act as probes, for which we discover the closest intersection point pint lying on
the ray r with a (virtual) Voronoï cell of another object in the configuration, this object
being the object o2 for which λ = ||pint, o|| = ||pint, o2|| is minimal. For this, the
function compDistOnRay() in Algorithm 1.left computes λ for each point. Distances
λ = ||pint, o2|| are represented by discontinuous lines from o2 to the intersection pint

on Figure 3. Lines (a) to (b) of Algorithm 1.left present the selection of the closest peers
for each ray. We keep all λ values for each ray (set Λ), and use them to compute the
estimation of the cell volume as follows (line (c) of Algorithm 1.left). Each ray r is as-
sociated to a ball of radius λr whose volume is given by (BallV ol × (λr)d)/R, where
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BallV ol is the volume of the unit ball in dimension d. The volume of the estimated
cell is the average value, for all rays, of volumes of such balls (the contribution for each
ray is represented as grey cones on Figure 3). Such an estimator of the volume of the
Voronoï cell is clearly unbiased, so that the estimated volume converges to the volume
of the Voronoï cell when R → +∞. Nevertheless, the convergence strongly depends
on the shape of the Voronoï cell, thus imposing the use of a large enough R (103 in the
current implementation).

calcVolume()
parameters : config (SET[objects])
begin

SET[double] Λ← ∅
o.rays← createRays(R)

(a) for double[] r ∈ o.rays do
double λ←∞
for object oj ∈ config do

double l← compDistOnRay(r,oj)
if l < dist then

λ← l

(b) Λ← Λ ∪ λ

/* BallVol contains the unit Ball volume in dimension
d */

(c) return
BallV ol×

∑
λ∈Λ(λd)

R

end

update_naive()
parameters : od.view (SET[objects])
Local variables:
S : SET[objects]
vol : double

begin
o.current_vol← calcVolume(o.view)
foreach S ∈ Pc(view ∪ od.view) do

vol← calcVolume(S)
if vol < o.current_vol then

o.view ← S
o.current_vol← vol

end

Algorithm 1. Monte-Carlo algorithm for estimating the volume of the cell for object o (left)
and naive update algorithm for o receiving od.view (right).

4.2 Discovery of a New Configuration: Naive Approach

We describe in this section and in Algorithm 1.right the naive approach to select a new
view for an object o upon reception of the view od.view. In order to determine the best
view among the set of candidates, we need to estimate the volume of the Voronoï cell
of o for the subgraph S

⋃
o for each possible set S of c peer objects in the augmented

view. That is, each possible subset of size c among o.view∪od.view shall be evaluated
for replacement of o.view.

Evaluating all Cc
2c = O(c!) possible configurations would provide exhaustive and

accurate results, though at an unaffordable price. Therefore, we propose in the next
Section a more realistic algorithm significantly reducing the overall complexity to a
cost that is linear in the space dimension d.

4.3 Discovery of a New Configuration: Efficient, Linear Time Approach

Algorithm 2 presented in this section requires rays for a given object to be chosen once
and for all upon creation of the object, in order to save information between configura-
tions’ associated cell volumes. Each peer o maintains a bipartite graph best containing
on one side peers objects of o.view, and on the other side the rays o.rays. We denote
by bestO(r) the Voronoï neighbour op of o according to ray r: it is the node op such that
a ray issued from o and whose direction is r first reaches the Voronoï cell of op (this
entry is never empty). Similarly, we denote by {bestR(op)} the set of rays for which op

is the current Voronoï neighbour of o (this set may be empty).
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The objective is as follows: to compute o’s new view, for each object op in od.view∩
o.view (i.e. all peers for which {bestR(op)} does not contain any information), we
determine the set of rays for which od is the Voronoï neighbour of o in the augmented
view Voronoï diagram. This operation is described by lines (a) to (b) of Algorithm 2.
Peers found to be a Voronoï neighbour of o for a given ray are stored in the set improve,
which has the same semantic as bestO, except that entries for some rays can be empty.

On line (c), either improve or bestO has information, for each ray, about which
peer in the augmented view is a Voronoï neighbour of o. The next step is to compute
to which extent each peer is needed in the new configuration. More precisely, given a
peer ox, we compute the volume of the cell of o with all peers but ox (lines (c)-(d)). If
the volume of the cell increases dramatically, that means that peer ox was mandatory
to ensure closeness and proximity. On the other hand, if the volume remains the same,
then peer ox has no contribution to coverage nor closeness.

Note that, unlike the naive method (Algorithms 1), it is not necessary to iterate
through all peers of the tested configuration to find the peer with the smallest λ value.
This information is usually contained in either bestO, if such a peer lies in o.view, or in
improve, if such a peer is a candidate peer from the distant view. The only case when
one needs to iterate through all peers is when the best known peer for a given ray is ox,
the currently ignored peer.

Volumes associated to each peer (i.e. the volume without that peer in the configu-
ration) are stored in the map volumes. This map is then sorted by decreasing volume
values : starting from entries of peers that contributes highly to coverage and closeness,
to entries of peers that have no or few contribution to coverage and closeness. The new

update()
parameters : op.view (SET[objects]) /* distant view */
Local variables:

improve (map ray→ object) init ∅ /*improve has the same semantic as bestO*/
volumes (list of pairs (object,volume)) init ∅

begin
(a) foreach ray r ∈ o.rays do

double bestλ =⊥
object imp =⊥
foreach object oj ∈ (od.view ∩ o.view) do

λ← distOnRay(r, oj )

if λ <

{
bestO(r) if bestλ =⊥

bestλ if bestλ 
=⊥ then

imp← oj

bestλ = λ

if bestλ 
=⊥ then
(b) improve[r] = imp

(c) foreach object ox ∈ o.view ∪ (od.view ∩ oi.view) do
(d) volumes← volumes∪ pair(ox,calcVolumeImproved(best∪ improve, (od.view∩ oi.view) � ox))

sort volumes by decreasing volume
o.view ← {volumes1.o, . . . , volumesc .o}
update bestO and bestR

end

Algorithm 2. Update of object’s view o.view : efficient approach. Sets bestO and bestR are
constructed and coherent i.r.t. the current o.view when starting the algorithm.
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configuration is built from the c peers that presents the maximum contribution, i.e. peers
of the first c entries of volume.

The cost of the approach is as follows: there are up to (r × c) calls to method dis-
tOnRay(), if all c candidates were unknown to the current peer, and up to (2 × c) calls
to calcVolume(). Each call to distOnRay() has cost 1: it is a fixed size set of scalar
products. Each call to calcVolume() takes r × (1 + 2×c−1

2×c ) operations, where the term
2×c−1
2×c stands for the few cases where the “best” peer is the currently ignored peer ox

(on average, 1
2×c occurrences per call). The overall cost is thus � 5(r × c) operations,

where r is a constant and c only depends on the dimension of the naming space d, i.e.
c =O(d). The overall cost of the improved update algorithm is thus O(d) operations.

5 Experimental Evaluation

In this section, we evaluate RayNet along two metrics: (1) the time needed by a chaotic
system to converge towards an overlay where all routes succeed and (2) when such
an overlay is created, how many steps are required by greedy routing from any object
to the nearest object of a target point, as a function of system size. Expected results
are respectively: (1) a fast convergence and self-organization towards full success for
routing requests and (2) a poly-logarithmic evolution of the route size according to the
size of the system, thanks to the small-world peer sampling layer.

We developed a simulator using Java, and ran simulations for populations of objects
ranging from 500 to 7.000 objects. The dimension of the object naming space d ranges
from 2 to 6. All objects points are drawn uniformly at random in this space. For all
experiments, r = 103 rays were used to estimate cell volumes, and 3×d+1 neighbours
are kept at each object. At each cycle, two exchanges take place, one for the small-
world peer sampling layer (8 peers out of 20 maintained peers are sent), the other for
the coverage and closeness layer (exchange of views). Also, for the first two cycles,
each peer selects randomly 10 peers from the small-world peer sampling layer and
assess them for potential inclusion in a new configuration to bootstrap the coverage and
closeness level.

Bootstrapping the overlay. First, we evaluate the time RayNet takes to converge to-
wards an overlay state where every routing request succeed. The overlay is initialized
to a random graph for the small-world peer sampling layer, and no peer for the cov-
erage and closeness layer. This makes sense as bootstrapping from a chaotic state is
the worst case for gossip-based overlay construction mechanisms. More, following the
proposal of [16] (with successful instantiations such as [13,23,26]), this represents the
case where a distributed application needs the rapid instantiation of a routing substrate
on top of a peer sampling layer. This experiment shows that our proposal fits perfectly
in this scope, while being obviously applicable to long-term runs.

Figure 5 presents the results for all dimensions, and for different object population
sizes. Hit ratio denotes the proportion of routes that succeed onto exactly the object
that is nearest to the query destination. At each cycle, 20.000 random (object, desti-
nation point) pairs are tested. As expected, the hit ratio increases with the number of
exchanges. In addition, perfect routing is achieved within at most 30 to 35 cycles, re-
gardless of the dimension. Note that the cycle period is to be defined by the application,
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Fig. 4. Evolution of routes hit ratio for dimensions 2 to 6
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Fig. 5. Routing efficiency (data for (a) and (b) is the same)

and depends on the trade-off between quality of service and cost on computing enti-
ties. It is possible however to bootstrap faster by using shorter periods at the beginning
and to decrease it when steady state has been reached. In a dynamic scenario, objects
would join gradually, and each object can use several short-term gossip exchanges to in-
sert themselves faster in the overlay. The hit ratio converges slightly slower if there are
more nodes. Note that this does impact neither the time a node would need to join an al-
ready constructed overlay, nor the complexity of local self-organization of the structure.
Figure 5 shows that approximating the structure does not impact routing correctness.

Routing efficiency. The second evaluation metric is the routing efficiency: how many
routing steps are needed on average to route between a source object an a destina-
tion point. This metric is directly impacted by the performance of the small-world peer
sampling substrate as well as the quality of the close neighbourhood. It has a great
impact on the efficiency of search mechanisms that can be proposed over the RayNet
overlay. Figures 5.(a) and 5.(b) present the evolution of the routing costs as a function
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of the number of objects, for several dimensions. Particularly, Figure 5.(b) plots the
log log(mean hops) as a function of log(objects). The line shape of Figure 5.(b) proves
that route sizes are poly-logarithmic in the number of objects, as expected by the small
world characteristic of RayNet. We consider this property as being the key to scalability
of future search mechanisms. The reason why higher dimensions present smaller rout-
ing paths is due to the fact that the size of the view at each objects increases linearly
with the dimension d: for final steps (where small world links are not used), more possi-
bilities are available for deciding on the next step of the route, which obviously slightly
decreases the number of steps that use links from the coverage and closeness layer. This
shows that approximating the structure does not impact routing performance.

6 Related Works

Other protocols have been proposed to deal with multidimensional data querying and
complex query support in large scale distributed systems. Structured overlays with
exact-search interface have been used to implement range queries [2] even if such over-
lays are not natively addressing such capabilities. These approaches present relatively
high costs of maintenance of the structures: either a second indexing mechanism based
on objects rather than nodes is built, whose cost is added to the cost of the structured
overlay itself, or a single index is used but with the need for an implicit load balancing
algorithm to replace the inherent load balancing provided by hash mechanisms. RayNet
steps away from these approaches by being designed with the native support for com-
plex queries in mind from the beginning.

The authors previously used exact Voronoï diagram (in dimension 2 only) for the
design of VoroNet [4]. This structured overlay organizes objects in an overlay that, like
RayNet, reflects exactly the application semantic space, by using the exact Delaunay
graph (and not an approximation) as the basic routing substrate along with explicit
small-world construction. Using such exact structures, while providing efficient search
and routing, suffers from two drawbacks: (1) maintaining the Delaunay complex for
higher dimensions would be too costly and (2) maintenance in two dimensions in face of
churn is a difficult (yet not unsolvable) problem. RayNet addresses these two problems
by (1) using an estimation of Voronoï cells as the basis for the construction of a subset
of the Delaunay complex and (2) using Gossip-Based, self-organizing protocols that
embed both protocol construction and re-organization in the same protocol, relieving
the need for explicit fault tolerance mechanisms.

Skip-Webs [1] are multidimensional data structures that enable querying of data on a
large scale, with multidimensional attributes. Nonetheless, maintaining such a structure
in presence of churn may have a tremendous cost. Note that using Gossip-based tech-
niques to construct this “Skip-List-like” structure could benefit from Gossip-based over-
lay construction protocols, such as the ones used for uni-dimensional data in GosSkip [9].

7 Conclusion

In this paper, we presented a new approach to create overlays that reflect a distributed
application shared objects naming space. Organizing application objects in a distributed
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data structure based on the Delaunay graph of object points is sound but costly. We
show that accuracy is not crucial and that reasonable approximation does not impact
routing in such a structure. This paper presents the design and evaluation of RayNet,
a peer to peer overlay that links objects in a multi-dimensional naming space, where
each object’s view is drawn according to an estimation of its Voronoï cell size using
a Monte-Carlo algorithm. Gossip-based protocols are extensively used to provide self-
organization properties and routing efficiency. Simulation results convey the soundness
and efficiency of the approach.

Next steps in this research are the following. First, we would like to investigate com-
plex queries mechanisms for which RayNet was designed to be the support. At the
moment, range queries are implemented by using constraint flooding; refined mecha-
nisms can be proposed by carrying some state on the query dissemination messages.
We would like to investigate the scalability to higher dimensions of the mechanisms
provided by [19]. Second, although gossip-based protocols are inherently resilient to
nodes failures, little research has been done on securing such protocols. Following the
early proposal of [14], we would like to investigate mechanisms to make our protocol
resilient to adversary behaviours and detect malicious peers.

Acknowledgments. We would like to thank François Bonnet, who helped us to integrate
the gossip-based small-world peer sampling in RayNet [7] and Philippe Duchon, whose
comments and expertise helped us on early stages of this work.
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Abstract. We study private computations in a system of tiny mobile agents. We
consider the mobile population protocol model of Angluin et al. [2] and ask what
can be computed without ever revealing any input to a curious adversary. We
show that any computable predicate of the original population model can be
made private through an obfuscation procedure that exploits the inherent non-
determinism of the mobility pattern. In short, the idea is for every mobile agent
to generate, besides its actual input value, a set of wrong input values to confuse
the curious adversary. To converge to the correct result, the procedure has the
agents eventually eliminate the wrong values; however, the moment when this
happens is hidden from the adversary. This is achieved without jeopardizing the
tiny nature of the agents: they still have very small storage size that is indepen-
dent of the cardinality of the system. We present three variants of this obfuscation
procedure that help compute respectively, remainder, threshold, and or predicates
which, when composed, cover all those that can be computed in the population
protocol model.

A little bird has whispered a secret to me. [10]

1 Introduction

Despite the large amount of recent work on mobile systems, very little theoretical re-
search has been devoted to modelling such systems. A notable exception is the work
of Angluin et al. [2]: they introduced the population protocol model to describe sys-
tems of very simple mobile agents. The model has totally asynchronous agents, only
a constant amount of memory per agent, no system infrastructure, and no assumptions
about the mobility patterns of the agents, except for a fairness guarantee that ensures
(for example) that agents cannot be forever disconnected from the others. The model
was illustrated with a set of sensors, each strapped to a bird. Pairs of sensors could
communicate when their host birds were close together, and the sensor network would
provide aggregated information about the flock.

The population protocol model, along with some variations, has been studied in a
series of papers [1,2,3,4,5,6,8]. In particular, the class of decision problems that can
be solved by the population protocol model has been characterized precisely. Angluin
et al. [2] gave several examples of predicates that can be computed in the population
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protocol model, and it was later shown that no others are computable [4]. This gave a
characterization of computable predicates in the model: those that can be expressed in
Presburger arithmetic [11]. This is essentially first-order arithmetic, using the symbols
+, 0, 1, ∧, ∨, ¬, ∀, ∃, =, <, (, ) and variables.

Computability in the population protocol model is defined in terms of eventually
stabilizing to the correct output value. This is an essential property of the model, since
there are no assumptions about the mobility pattern of the agents, beyond the weak
fairness guarantee. In particular, an individual agent may have no interactions at all for
an arbitrarily long prefix of a computation, so in general, one can never be certain that
the final output value has been computed.

A key aspect of the population model is anonymity: there is no way to distinguish
any two agents. One motivation for such an assumption is the lack of infrastructure and
the mass production that might render it difficult to assign unique identifiers to agents
or to programme them individually. Another motivation is for the agents to preserve
their privacy. An agent might simply not want to reveal who it is, when it met which
other agent or where it was. The first motivation underlying anonymity is sometimes
questionable. Indeed, it takes only a small number of bits to store a huge collection of
agent identifiers and a simple randomized procedure can generate distinct identifiers
with very high probability. The second motivation seems generally more relevant, for
there are many reasons a mobile agent might not like to leave its identifier wherever it
goes or share it with whomever it meets.

In this work, we explore the privacy aspect of these anonymous mobile systems. That
is, not only do we consider algorithms where agents never reveal their identifiers but we
also seek for them to hide their input values from one another while computing some
function of those inputs. In general, we say an algorithm is private if an honest but
curious agent cannot learn any information about the inputs to the system (including
even the number of inputs) beyond what can be deduced from its own input and the
output value that must be computed. (This requirement would enforce anonymity, even
if the agents had identifiers: otherwise one could deduce a lower bound on the number
of participating agents.) Here, we focus on ensuring privacy in any finite prefix of a
computation. This, together with the fact that population protocols are only required to
eventually stabilize to the correct output value, allows us to strengthen the notion of
privacy: we require that an honest but curious agent cannot definitively learn anything
about the inputs of agents at any point in the computation, yet the algorithm must still
correctly stabilize to the correct output value.

Consider a simple example of determining which of two candidates is the winner
of an election by the agents. Assume each agent has input value 1 if it votes for the
first candidate and 2 if it votes for the second candidate. There is a simple protocol to
achieve this computation [2]: when two agents with different votes meet, they cancel
each other. Once an agent has had its vote cancelled, it remembers the last non-cancelled
vote that it has seen to determine its output. (Some extra care must be taken to deal with
the possibility of a tie vote.) This protocol, however, provides no privacy. In fact, the
unpredictability of the mobility pattern might allow a single curious agent to meet all
others in their initial state and deduce the exact input vector of the entire population,
discovering exactly how many agents voted for each candidate. In this paper, we ask
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what predicates can be computed without letting any curious agent, at any point of its
computation, determine any information about the input (or output) values of any other
agent. Following the specific example above, this means we would like a curious agent
to be unable to determine at any point of its computation how many agents voted for a
candidate, the width of the margin by which one candidate won, whether the number of
voters was even or odd, and so on.

In a sense, we study a variant of secure multi-party computations [9] in the context
of population protocols. We consider a passive adversary that can read the state of one
agent but cannot corrupt it. However, there are several ways in which our work differs
from the usual notion of secure multi-party computation. The tiny nature of the devices
we consider precludes the use of expensive cryptographic protocols. The anonymity of
the system means that signature schemes cannot be used. Our algorithms do not use
randomization, instead relying on the inherent non-determinism of the mobility pattern.
Interestingly, in our model, the curious agent can see the entire state of any other agent
it interacts with, so no secret keys can be used to achieve privacy.

We prove that any predicate that can be computed in the original population proto-
col model, namely any predicate that can be expressed in Presburger arithmetic, can be
computed privately. Our result holds even if the curious agent can store an unbounded
amount of information, namely the states of all agents it has interacted with from the
beginning of the computation to the present. At the heart of our result lies the idea of
an obfuscation procedure which heavily relies on the non-determinism of the mobility
pattern. We use this procedure in different forms, according to whether we compute a
remainder, a threshold or an or predicate. (The composition of these covers all pred-
icates computable by population protocols.) Basically, we make agents change their
input values without changing the overall output, in a way designed to confuse any cu-
rious agent. In the context of the voting example, this would, roughly speaking, mean
that every agent would generate, besides its own vote several votes that cancel each
other. The procedure is devised such that (a) the confusing values are eventually can-
celled, without any curious agent knowing when that happens, and (b) the correct result
is indeed computed, while making sure that the size of the memory of every agent is
fixed, independent of the size of the system.

The rest of the paper is organized as follows. We first recall the original popula-
tion protocol model and introduce our definition of private computation in this context.
Then we show how to compute any remainder or threshold predicate, and then how
to compute Boolean combinations of such predicates, deriving our general result about
what can be computed in a private way. We conclude by discussing several research
directions for private mobile computing.

2 Private Population Protocols

Our formalization of the population protocol model is based on the work of Angluin et
al. [2]. For a population of n agents, Pn = {p0, . . . , pn−1} denotes the set of agents.
(The subscripts are for convenience only, and are not visible to the agents themselves:
they do not have any effect on an execution.) Each agent in the system is modelled
as a finite state machine, and algorithms must be uniform: each finite state machine



332 C. Delporte-Gallet et al.

is “programmed” identically and the programming does not depend on the number of
agents in the system. This makes the model strongly anonymous, since there is not
enough space in the state to give each agent a unique identifier.

Let Σ be a finite input alphabet and Y be a finite output alphabet. Each agent pi has
an input drawn from Σ. The input for a population protocol for n agents is a vector
I = (σ0, . . . , σn−1) of elements of Σ, where σi is the input of agent pi. Let D be the
set of all vectors on Σ of length at least two. The goal of an algorithm is to compute a
function f : D → Y . Each agent must eventually output the value of this function for
the input that was initially provided to the agents. Here we restrict ourselves to compute
only predicates: the output alphabet is the set {0, 1}.

We now describe how to specify a population protocol. A population protocol is
defined by a finite set Q of possible agent states, an input assignment ι : Σ → Q, a
transition relation δ ⊆ Q × Q × Q × Q, and an output assignment ω : Q → Y . If two
agents in states q1 and q2 encounter each other, they can change into states q′1 and q′2,
respectively, where (q1, q2, q

′
1, q
′
2) ∈ δ. We sometimes use the notation q1, q2 → q′1, q

′
2

to describe the elements of δ.
A configuration is a mapping C : Pn → Q specifying the state of each agent. Let C

and C′ be configurations, u, v be distinct agents and t be a transition. We say that C goes
to C′ with interaction e = ((u, v), t), denoted C

e→ C′, if t = (C(u), C(v), C′(u),
C′(v)) belongs to δ and C′(w) = C(w) for all w ∈ Pn − {u, v}. We say that C goes
to C′ in one step, denoted C → C′, if C

e−→ C′ for some interaction e = ((u, v), t);
in this case e is called the interaction associated with this step, t is the transition of this
step and agent u and agent v are involved in this step.

An execution of the protocol on input I ∈ D is an infinite sequence of configurations,
C0, C1, C2, . . . such that (1) C0 is the initial assignment for I: if I = (σ0, . . . , σn−1)
then, for all i such that 0 ≤ i ≤ n − 1, C0(pi) = ι(σi) and (2) Ci → Ci+1 for all i. An
execution fragment is a contiguous portion of an execution. The output of an agent in
state q is ω(q). We say that the execution stably outputs v ∈ Y if every agent eventually
outputs v and never changes its output thereafter. Formally, this means that there is an i
such that for all agents p and for all j > i, ω(Cj(p)) = v.

If every sequence of interactions were considered to be a possible execution in the
model, then isolated agents might never interact with one another. Thus, the model must
incorporate a fairness guarantee. In a fair execution, if a configuration C occurs in-
finitely often and C → C′, then C′ occurs infinitely often. If, for example, we associate
probabilities with different interactions, then an execution will be fair with probability
1. A protocol stably computes a function f : D → Y if, for every input I ∈ D, ev-
ery fair execution on input I stably outputs f(I). In the following, all executions are
assumed to be fair.

Given an execution E = C0, C1, C2, . . . and an agent u, the history of interac-
tions for agent u in E, denoted Hu(E) is the sequence of states and transitions of
interactions associated with each step of E in which u is involved. More precisely
Hu(E) = (q0, t0), . . . (qi, ti) . . . where ti is the transition of the i-th interaction in
which pi is involved and qi is the state of agent u when this interaction occurs. The
history of interactions for agent u in E up to T is the initial segment of length T of
Hu(E) if T is greater than the length of Hu(E) and Hu(E) otherwise.
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We now define the notion of privacy for a population protocol. If some agent encoun-
ters another agent, we assume that it learns both the current state of the other one and
what transition is chosen. Then, intuitively, the protocol has the privacy property if no
agent can learn anything about the current input from any initial sequence of the history
of interactions in which it is involved. Let I1 and I2 be two inputs in D where some
agent p gets the same input value. The agent p is able to distinguish I1 from I2 if, for
at least one execution E1 on input I1, the history of interactions for p in E1 up to some
T cannot be an initial segment of a history of interactions of agent p for any execution
on input I2. A population protocol has the output-independent privacy property if no
agent is able to distinguish any pair of sufficiently large input vectors in which it has the
same input value. More formally, a population protocol has this property if and only if
there is a constant n0 such that for any agent p and any inputs I1 and I2 of size at least
n0 in which p has the same input, and any execution E1 on input I1, and any T , there
exists an execution E2 on input I2, such that the histories of p’s interactions up to T are
identical in E1 and E2. Thus, if the protocol is private, at no time in the execution E1 on
input I1 can an agent p deduce with certainty that the input vector of the execution was
not I2. In other words, there is no time when p can rule out any possible input vector
(of size at least n0).

3 Computing Predicates Privately

Our goal is to show that all predicates computable in the population protocol model
are computable privately. We shall show that all computable predicates can be com-
puted by a protocol satisfying several properties, and that those properties are sufficient
for output-independent privacy. We label the curious agent p0. (Since the identities of
agents cannot be used in the protocols themselves, the arguments below are not affected
by this convention.)

Consider a population protocol with state set Q. Fix some collection G of system
configurations, which we shall call good configurations. A transition q, r → s, t of the
protocol is called G-imitable if, from any configuration C0 ∈ G with p0 in state q or
r, there exists an execution fragment C0 → C1 → · · · → Cm such that Cm ∈ G and
agent p0 participates in exactly one interaction during the fragment and that interaction’s
transition is q, r → s, t. (This property should hold both for the case where p0 is playing
the role of the agent that changes from state q to s and for the case where p0 changes
from r to t.)

The following theorem, which will be proved in Sections 3.1, 3.2 and 3.3, will yield
protocols that have output-independent privacy.

Theorem 1. Let P be any predicate that is computable in the population protocol
model (without privacy). Then there exist a protocol A that computes P , a constant
n0 and a set G of configurations of A such that

1. for any initial configuration with at least n0 agents, there is an execution fragment
of A that contains no interactions involving p0 and ends in a configuration of G,

2. every transition of A is G-imitable,
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3. for any states q1 and q2, there is a sequence of interactions between two agents that
start in states q1 and q2 and end in states q2 and q1, respectively, and

4. for any states q1 and q2, the “null” transition q1, q2 → q1, q2 is permitted.

We now show that the first two properties of the preceding theorem are sufficient for
privacy.

Theorem 2. Any population protocol that satisfies Properties 1 and 2 of Theorem 1 has
output-independent privacy.

Proof. Consider any execution prefix E, starting from an initial configuration C0. Let
C′0 be any initial configuration that has at least n0 agents. We must construct an execu-
tion prefix E′, starting from C′0, such that p0 undergoes the same sequence of interac-
tions in E and E′. We begin E′ with the execution fragment that satisfies Property 1,
which does not include any interactions involving p0 and leaves the system in a good
configuration.

Then, for each interaction involving p0 in E, we append an execution fragment to
the end of the constructed execution using the definition of G-imitability. Each fragment
includes exactly one interaction that involves p0, and that interaction’s transition is the
same as in p0’s next interaction in E, and the fragment leaves the system in a good
configuration. The existence of such a fragment is guaranteed by Property 2.

When all of these fragments have been appended, we obtain the required execution
E′. The history of interactions for p0 is the same in E and E′, by construction. 
�

The following corollary follows immediately from Theorems 1 and 2.

Corollary 1. Every predicate that can be computed in the population protocol model
(without privacy) can be computed with output-independent privacy.

Although Properties 3 and 4 of Theorem 1 are not required for privacy, they are crucial
for our proof, in Sect. 3.3, that Boolean combinations of privately computable predi-
cates are also privately computable.

3.1 Computing Remainder Predicates

Let Σ be an input alphabet. Let cσ be an integer constant for each σ ∈ Σ and let m
and r be integer constants such that 0 ≤ r < m. The predicate P (I) that is 1 on input

I = (σ0, . . . , σn−1) if and only if
n−1∑

i=0
cσi ≡ r(mod m) is called a remainder predicate.

In this section, we show that any remainder predicate can be computed in a way that
satisfies the properties of Theorem 1.

There is a fairly straightforward way to compute the predicate P (I) if there is no
need for privacy [2]. Each agent stores a value, initially cσ, where σ is the input symbol
of the agent. When two agents with values v1 and v2 meet, one agent gives its value to
the other: they change their values to 0 and v1 + v2. All arithmetic is done modulo m.
The algorithm maintains the sum of the values of all agents as an invariant. Eventually,
the sum is stored in a single agent, which can then determine the output value and
disseminate it to all other agents.
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To ensure privacy, we must add transitions that allow agents to disguise their input
values. When agents in states v1 and v2 meet, one can give the other part of its value:
the agents change their values to v1 + 1 and v2 − 1. This preserves the sum of the
agents’ values as an invariant. However, this modification, by itself, would prevent the
protocol from converging to the correct output. To avoid this problem, we introduce
a mechanism that ensures that this transition is only applied a finite (but unbounded)
number of times. This will be sufficient to obscure the inputs from the adversary, while
still ensuring that the sum is eventually gathered into a single agent to produce the
output value. This mechanism is implemented by giving each agent a flag that is initially
1 and is eventually changed to 0. The transitions in which one agent shifts part of its
value to the other are enabled only while the flags are 1. The algorithm is described
more precisely in the following proof.

Proposition 1. Any remainder predicate can be computed by a protocol satisfying the
properties of Theorem 1.

Proof. We give the protocol that computes the predicate
n−1∑

i=0
cσi ≡ r(mod m). The

state of each agent is a pair (v, f) comprised of a value v ∈ {⊥0, ⊥1, 0, 1, . . . , m − 1}
and a Boolean flag f . Let Q be the set of all such pairs (v, f). The values ⊥0 and ⊥1
are used to indicate that the agent has given its value to another agent and is no longer
active in exchanging values; the subscript indicates the agent’s output value. The initial
state of an agent with input σ is (cσ mod m, 1). The output for states (r, 0) and (⊥1, 0)
is 1. The output for all other states is 0. The transitions M1 to M10 are given below,
where v1 and v2 are any values in {0, 1, . . . , m− 1}, i is any value in {0, 1} and q1 and
q2 are any states. All arithmetic is done modulo m. An asterisk (∗) is used as a wildcard
to match any value, and indicates that part of the state is not changed by the transition.

(v1, 1), (v2, 1) → (v1 + 1, 1), (v2 − 1, 1) (M1)

(∗, 1), (∗, ∗) → (∗, 0), (∗, ∗) (M2)

(∗, 0), (∗, 1) → (∗, 1), (∗, 1) (M3)

(v1, 0), (v2, 0) → (v1 + v2, 0), (0, 0) (M4)

(v1, 0), (0, 0) → (v1, 0), (⊥0, 0) (M5)

(⊥i, ∗), (∗, 1) → (0, 0), (∗, 1) (M6)

(r, 0), (⊥i, 0) → (r, 0), (⊥1, 0) (M7)

(v1, 0), (⊥i, 0) → (v1, 0), (⊥0, 0), if v1 �= r (M8)

q1, q2 → q2, q1 (M9)

q1, q2 → q1, q2 (M10)

Transition M1 is the crucial one for privacy: it conceals inputs by shifting part of an
agent’s value to another agent, and can be invoked as long as the agents’ flags are 1.
Transitions M2 and M3 control the flags. Transition M4 gathers the sum into a single
agent once the flags are 0, and Transition M5 ensures that exactly one agent ends up with
a non-⊥ value. Transition M6 allows the ⊥ values to be turned back to 0, reversing the
effect of Transition M5 as long as flags are 1. Transitions M7 and M8 spread the output
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value from the (eventually unique) agent with a non-⊥ value to all other agents. Finally,
Transitions M9 and M10 are included to satisfy Properties 3 and 4 of Theorem 1.

We first argue that this protocol correctly computes the predicate P (I). Transition
M2 ensures that, from any configuration, there is always a reachable configuration in
which all flags are 0. Thus, any fair execution will eventually enter a configuration in
which all flags are 0. After that point, all flags will remain 0 forever. Then, Transition
M4 ensures that every agent except one will have a value that is either 0 or ⊥. Tran-
sition M5 ensures that, eventually, exactly one agent will have a value different from
⊥. (Transition M6 cannot be applied since all flags are 0.) Since the sum of the non-
⊥ values stored in all agents (modulo m) is left invariant by all of the transitions, the

one remaining non-⊥ value will be

(
n−1∑

i=0
cσi

)

mod m, so it will have the correct out-

put value. Transitions M7 and M8 ensure that all other agents eventually stabilize with
output P (I) also.

We now show that the protocol satisfies the properties of Theorem 1. We choose
n0 = 5 and we define a configuration to be in G if and only if it has at least five agents,
and agents p1, . . . , p4 each have flag 1 and non-⊥ values. Any initial configuration with
at least n0 agents is good, so Property 1 of Theorem 1 is trivially satisfied. Property 3
is satisfied, since the protocol includes Transition M9, which allows any pair of agents
to swap states in a single interaction. Property 4 is also satisfied, since the protocol
includes Transition M10.

It remains to show that every transition of the protocol is G-imitable. Consider any
transition to be imitated. Suppose the curious agent interacts with an agent in state (v, f)
in this transition. Let C0 ∈ G. We show how to drive agent p1 into state (v, f), starting
from configuration C0. We consider two cases.

If v is a non-⊥ value, p1 and p2 meet repeatedly using Transition M1 until p1 has
value v. Then, if f = 0, p1 sets its flag to 0 using Transition M2. At this point, p1 has
state (v, f).

If v is ⊥0 or ⊥1, p1 and p2 meet repeatedly using Transition M1 until p1 has value
0. Then agents p1 and p2 set their flags to 0 using Transition M2, and meet once more
using Transition M5 to set p1’s state to (⊥0, 0). If v = ⊥1, p3 and p4 meet using
Transition M1 until p3’s state is (r, 1), p3 sets its flag to 0 using Transition M2, and
then p3 meets p1 using Transition M7 to set p1’s state to (⊥1, 0). At this point, p1’s
state is (v, 0). If f = 1, then p1 meets p4 using Transition M3 to set its flag to 1. Then,
p1 will be in state (v, f).

Once the agent p1 has been driven into state (v, f), it has the necessary interaction
with p0. After that, the system can be returned to a good configuration as follows. The
above procedure leaves p4 with a non-⊥ value and flag 1. Thus any of p1, p2, p3 that
have values ⊥0 or ⊥1 can meet p4 using Transition M6 to enter state (0, 1). Then any
of p1, p2, p3 that have flag 0 can meet p4 using Transition M3 to set their flags to 1. The
resulting configuration is good. 
�

3.2 Computing Threshold Predicates

Let Σ be an input alphabet. Let cσ be an integer constant for each σ ∈ Σ and let k be
an integer constant. The predicate P (I) that is 1 on input I = (σ0, . . . , σn−1) if and
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only if
n−1∑

i=0
cσi ≥ k is called a threshold predicate. In this section, we show that any

threshold predicate can be computed privately. We begin with the special case where
the threshold k is positive.

Proposition 2. Any threshold predicate with a positive threshold k can be computed by
a protocol satisfying the properties of Theorem 1.

Proof. The general approach used to construct this algorithm is similar to the one used
in Sect. 3.1 to compute remainder predicates privately. Each agent stores a value and a
flag bit, and while flags are 1, the agents can shift parts of their values to each other.
Eventually, the flags will all be set to 0, and the algorithm will compute the sum.

For remainder predicates, the sum (modulo m) could be stored in a single agent. For
threshold predicates, we cannot use modular arithmetic, so the sum may end up spread
across several agents. Let m = 2 · max({|cσ| : σ ∈ Σ} ∪ {k}). Each agent will store
a value between −m and m. If the sum is positive, eventually, some number of agents
(possibly 0) have the value m, at most one other agent has a positive value, and the
remaining agents have value 0. On the other hand, if the sum is negative, all agents
eventually have non-positive values.

Because the sum is not collected into a single agent, distributing the output value
to all agents is more complicated than in Sect. 3.1. Each agent stores an output bit. As
long as the agent’s flag is 1, its output bit is meaningless, so by convention we require
it to be 0. Once an agent’s flag is 0, the value of the output bit behaves as follows. If
an agent’s value is at least k, its output bit must be 1. If an agent’s value is negative, its
output bit must be 0. Otherwise, an agent’s output bit can be either 0 or 1: in this case,
the agent will determine its output bit from its interactions.

We now give a full description of the algorithm. The state of each agent is a triple
(v, o, f) where −m ≤ v ≤ m, and o and f are Boolean values representing the output
bit and flag bit, respectively. As described above, not all triples are legal states: the
output bit can take values 0 and 1 only when f = 0 and 0 ≤ v < k. Initially, the state
of an agent with input symbol σ is (cσ, 0, 1). The transitions T1 to T8 are given below,
where v1 and v2 are any values between −m and m and q1 and q2 are any states. (The
notation [v1 ≥ k] in Transition T2 indicates that the output bit should be set to 1 if and
only if v1 ≥ k.)

(v1, 0, 1), (v2, 0, 1) → (v1 + 1, 0, 1), (v2 − 1, 0, 1), if v1 < m and v2 > −m (T1)

(v1, 0, 1), (∗, ∗, ∗) → (v1, [v1 ≥ k], 0), (∗, ∗, ∗) (T2)

(∗, ∗, 0), (∗, 0, 1) → (∗, 0, 1), (∗, 0, 1) (T3)

(v1, ∗, 0), (v2, ∗, 0) →

⎧
⎨

⎩

(m, 1, 0), (v1 + v2 − m, 1, 0) if m ≤ v1 + v2 ≤ 2m
(v1 + v2, 1, 0), (0, 1, 0) if k ≤ v1 + v2 < m
(v1 + v2, 0, 0), (0, 0, 0) if − m ≤ v1 + v2 < k

⎫
⎬

⎭
,

if v1 · v2 �= 0

(T4)

(v1, 1, 0), (v2, 0, 0) → (v1, 1, 0), (v2, 1, 0), if v1 ≥ k and 0 ≤ v2 < k (T5)

(v1, 0, 0), (v2, 1, 0) → (v1, 0, 0), (v2, 0, 0), if v1 < k and 0 ≤ v2 < k (T6)

q1, q2 → q2, q1 (T7)

q1, q2 → q1, q2 (T8)
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Transitions T1, T2 and T3 play the same role as Transitions M1, M2 and M3 in Sect. 3.1.
Values are collected into a smaller number of agents using Transition T4. The output
value is distributed using Transitions T5 and T6. Transitions T7 and T8 are included to
satisfy Properties 3 and 4 of Theorem 1.

The proof that this protocol correctly computes P (I) is similar to the proof of Propo-
sition 1 but a little more complicated. The details can be found in [7].

We now show that the protocol satisfies the properties of Theorem 1, which are
sufficient for privacy. We choose n0 to be 12. We define a configuration to be in G if
and only if it has at least 6 agents, the flags of agents p1, . . . , p5 are all 1, and the sum
of the values of agents p0, . . . , p5 is equal to 0.

First we establish Property 1 of Theorem 1. Consider any initial configuration that
has at least 12 agents. We describe how to drive the system into a good configuration
without using any interactions involving p0. For i = 1, 2, 3, 4, 5, agents pi and pi+5
interact using Transition T1 until each of the agents p1, . . . , p5 have value 0. Then, p5
interacts with p11 using Transition T1 until its value is the negation of p0’s value. The
resulting configuration is good.

Next, we show that the protocol satisfies Property 2 of Theorem 1. Consider any
transition to be imitated. Suppose the curious agent interacts with an agent in state
(v, o, f) in this transition. Let C0 be any good configuration. We show how to drive
agent p1 into state (v, o, f), starting from C0. First, p1, . . . , p5 meet using Transition
T1 until p1, p2, p3 and p4 each have value 0. (This is possible, since the sum of values
of p1, . . . , p5 in configuration C0 is equal to the opposite of the value of p0, so the sum
is between −m and m.) Next, p1 and p2 meet repeatedly, using Transition T1 until p1
has value v. If f = 0, p1 and p2 meet again, this time using Transition T2, to change
p1’s flag to 0. If, at this point, p1’s output bit differs from o, we must have 0 ≤ v < k
and o = 1. In this case, p3 and p4 meet repeatedly using Transition T1 until p3’s value
is k, then once more to change p3’s flag to 0 using Transition T2, and then p3 and p1
meet using Transition T5 to change p1’s output bit to 1. When all of these interactions
have occurred, p1 is in state (v, o, f).

Next, p0 and p1 have their interaction. Now, we must restore the system to a good
configuration. In C0, the sum of the values of p0, . . . , p5 was 0, since C0 ∈ G. All
interactions since C0 have been among agents p0, . . . , p5 and every transition preserves
the sum of the values of the two interacting agents. Thus, the sum of the values of agents
p0, . . . , p5 is still 0. The interactions since C0 may have changed at most three agents’
flags from 1 to 0. Since p1, . . . , p5 all had flag 1 in C0, there is at least one agent whose
flag is still 1. If any of p1, . . . , p5 have flag 0, those agents meet an agent whose flag is
1 using Transition T3 to set their flags back to 1. The resulting configuration is good.

Properties 3 and 4 of Theorem 1 are trivial, since the protocol has Transitions T7
and T8. 
�

Corollary 2. Any threshold predicate can be computed by a protocol satisfying the
properties of Theorem 1.

Proof. We have already described how to compute any threshold predicate with a pos-
itive threshold k. To compute a threshold predicate with a threshold k ≤ 0, notice that
n−1∑

i=0
cσi ≥ k if and only if

n−1∑

i=0
(−cσi) �≥ −k + 1. Since −k + 1 > 0, we can compute
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the threshold predicate
n−1∑

i=0
(−cσi) ≥ −k + 1 as described in the proof of Proposition 2

and negate the result. 
�

3.3 Computing All Semilinear Predicates

To complete the proof of Theorem 1, we show that the properties of the theorem can be
preserved when computing Boolean combinations of predicates.

Theorem 3. If predicates P 1 and P 2 can be computed by population protocols which
satisfy the properties of Theorem 1, then there are population protocols that compute
¬P 1 and P 1 ∨ P 2, also satisfying the properties of Theorem 1.

Proof. The required population protocol for ¬P 1 is obtained by simply negating the
output map of the protocol for P 1.

We now construct a population protocol for computing P 1 ∨ P 2. Let A1 = (Q1, δ1,
ι1, ω1) and A2 = (Q2, δ2, ι2, ω2) be the population protocols for P 1 and P 2, respec-
tively. The protocol for P 1 ∨ P 2 is quite straightforward: it simply runs the algorithms
A1 and A2 in parallel. Each agent’s state will contain two components, one represent-
ing the state of the agent in each of the two algorithms. Whenever two agents meet,
they have an interaction from the first algorithm, using the first components of their
states, and an interaction from the second algorithm, using the second components of
their states.

More formally, this protocol has the form A = (Q, δ, ι, ω), where:

Q = Q1 × Q2,

ι(σ) = (ι1(σ), ι2(σ)),
ω(q) = ω1(q) ∨ ω2(q), and

δ = {((q1, q2), (r1, r2), (s1, s2), (t1, t2)) : (q1, r1, s1, t1) ∈ δ1 and

(q2, r2, s2, t2) ∈ δ2}.

Since A1 and A2 satisfy Property 4 of Theorem 1, this definition of δ allows two agents
who have an interaction to update the first or second halves of their states according to
the transition relation of A1 or A2, respectively, while leaving the other halves of their
states unchanged. Similarly, because A1 and A2 satisfy Property 3, this definition of
δ allows two agents to swap the first halves or the second halves of their states while
leaving the other halves unchanged. These facts are useful in some of the constructions
we give below. If C = ((q1

1 , q2
1), (q

1
2 , q2

2), . . . , (q
1
n, q2

n)) is a configuration of algorithm
A, we use the notation C1 for (q1

1 , q1
2 , . . . , q

1
n) and C2 for (q2

1 , q
2
2 , . . . , q

2
n). Also, we

write C = (C1, C2).
We first argue that this algorithm A stably computes the predicate P 1 ∨P 2. Consider

any fair execution E = (C1
0 , C2

0 ), (C1
1 , C2

1 ), (C1
2 , C2

2 ), . . . of A on some input I of size
n. We show that E1 = C1

0 , C1
1 , C1

2 , . . . is a fair execution of A1. By the definition of
A, C1

0 is the initial configuration of A1 on input I , and for all i, C1
i → C1

i+1, according
to the transition relation of A1. To see that E1 is fair, suppose some configuration C1

appears infinitely often in the execution and C1 → D1 is a possible transition of A1.
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Since there are only a finite number of possible configurations of A2 with n agents,
some configuration (C1, C2) must appear infinitely often in E. Because A2 satisfies
Property 4 of Theorem 1, (C1, C2) → (D1, C2) is a possible transition of A. Since E is
fair, (D1, C2) must appear infinitely often in E. Thus, D1 appears infinitely often in E1,
as required. A symmetric argument proves that C2

0 , C2
1 , C2

2 , . . . is a fair execution of A2.
Thus, after some point, if any agent is in state (q1, q2), we must have ω1(q1) = P 1(I)
and ω2(q2) = P 2(I), so ω(q1, q2) = ω1(q1) ∨ ω2(q2) = P 1(I) ∨ P 2(I).

In the remainder of this proof, we show that A satisfies the properties of Theorem 1.
Choose n1

0 and G1 to satisfy the properties of Theorem 1 for A1. Choose n2
0 and G2 to

satisfy the properties of Theorem 1 for A2. Let n0 = max(n1
0, n

2
0). Let G be the set of

configurations C where the first components of the elements of C form a configuration
in G1 and the second components of elements of C form a configuration in G2. (I.e.,
G = {(C1, C2) : C1 ∈ G1 and C2 ∈ G2}.) We shall show that n0 and G satisfy the
properties of Theorem 1 for A.

First, we show that A has Property 1. Consider any initial configuration C0 =
(C1

0 , C2
0 ) for algorithm A that has size at least n0. Then, C1

0 is an initial configura-
tion of A1 with at least n0 ≥ n1

0 agents. There exists an execution fragment of A1

that starts from C1
0 and leads to a configuration C1 ∈ G1. Thus, there is an execution

fragment of A that starts from (C1
0 , C2

0 ) and leads to (C1, C2
0 ). Since C2

0 is an initial
configuration of A2 with at least n0 ≥ n2

0 agents, there is also an execution fragment of
A2 that starts from C2

0 and leads to a configuration C2 ∈ G2. Thus, there is an execution
fragment of A that starts from (C1, C2

0 ) and leads to (C1, C2) ∈ G. Concatenating the
two execution fragments of A establishes Property 1 of Theorem 1 for protocol A.

Next, we show that A has Property 2. Consider any transition (q1, q2), (r1, r2) →
(s1, s2), (t1, t2). Let C = (C1, C2) be any good configuration of A in which p0 has
state (q1, q2). Then, C1 ∈ G1 and C2 ∈ G2.

Since p0 is in state q1 in C1, there is an execution fragment of A1 starting from C1

and ending in a good configuration G1 during which p0 has just one interaction, which
has transition q1, r1 → s1, t1. Let pi be the agent that p0 interacts with. Let D1 and
F 1 be the configurations immediately before and after p0’s interaction. Then, there is
an execution fragment α1 of A starting from (C1, C2) and ending in (D1, C2) during
which p0 has no interactions. (In α1, interactions affect only the first components of
agents’ states.)

Since p0 is in state q2 in C2, there is an execution fragment of A2 starting from C2

and ending in a good configuration G2 during which p0 has just one interaction of the
form q2, r2 → s2, t2. Let pj be the agent that p0 interacts with. Let D2 and F 2 be the
configurations immediately before and after p0’s interaction.Then, there is an execution
fragment α2 of A starting from (D1, C2) and ending in (D1, D2) during which p0
has no interactions. (In α2, interactions affect only the second components of agents’
states.)

If i �= j, let β1 be an execution fragment starting from (D1, D2) in which pi and pj

swap the second components of their states. (Otherwise, let β1 be an empty execution
fragment.) At the end of β1, agent pi is in state (r1, r2). Let β2 be an execution fragment
starting from the end of β1 consisting of a single interaction between p0 and pi, applying
the transition (q1, q2), (r1, r2) → (s1, s2), (t1, t2). If i �= j, let β3 be an execution
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fragment starting from the final configuration of β2 in which pi and pj swap the second
components of their states. (Otherwise, let β3 be an empty execution fragment.) Then,
at the end of β1 · β2 · β3, the configuration of the system is (F 1, F 2).

There is an execution fragmentγ1 of A starting from (F 1, F 2) and ending in (G1, F 2)
during which p0 has no interactions. (The interactions in γ1 affect only the first halves of
agents’ states.) There is also an execution fragment γ2 of A starting from (G1, F 2) and
ending in (G1, G2) during which p0 has no interactions. (The interactions in γ2 affect
only the second halves of agents’ states.)

Putting these fragments together, we obtain the fragment α1·α2·β1·β2·β3·γ1·γ2 of A,
which starts from configuration (C1, C2), ends in (G1, G2) ∈ G, and during which p0
has exactly one interaction, which has transition (q1, q2), (r1, r2) → (s1, s2), (t1, t2).
Thus, this transition is G-imitable. This completes the proof of Property 2 for A.

Next, we establish Property 3 for A. Let (q1
1 , q

2
1) and (q1

2 , q2
2) be any two states of Q.

There is a sequence of interactions of A1 between two agents that start in states q1
1 and

q1
2 and end in states q1

2 and q1
1 , respectively. Thus, there is a sequence of interactions of

A between two agents that start in states (q1
1 , q2

1) and (q1
2 , q2

2) and end in states (q1
2 , q

2
1)

and (q1
1 , q2

2), respectively. Also, there is a sequence of interactions of A2 between two
agents that start in states q2

1 and q2
2 and end in states q2

2 and q2
1 , respectively. So there

is a sequence of interactions of A between two agents that start in states (q1
2 , q

2
1) and

(q1
1 , q

2
2) and end in states (q1

2 , q2
2) and (q1

1 , q
2
1), respectively. Concatenating the two se-

quences of interactions of A yields the required sequence that starts with two agents
in states (q1

1 , q2
1) and (q1

2 , q2
2) and ends with the agents in states (q1

2 , q
2
2) and (q1

1 , q2
1),

respectively. Thus, A satisfies Property 3 of Theorem 1.
Finally, Property 4 of Theorem 1 for A follows trivially from the definition of δ and

the fact that both A1 and A2 have this property. 
�

Putting together all of the preceding results yields a proof of Theorem 1. It is known
that every predicate computable in the population protocol model can be expressed
as a Boolean combination of remainder and threshold predicates [4]. It follows from
Proposition 1, Corollary 2 and Theorem 3 that all such predicates can be computed by
a protocol that satisfies the properties of Theorem 1. (Notice that in no case do we ever
choose a value of n0 that is greater than 12, so the choice of n0 does not depend on the
predicate to be computed.)

4 Concluding Remarks

Although we restricted attention to computing predicates, the techniques can be applied
to any function. Let f : D → Y be any function that is computable by a population
protocol without privacy. Then, for each y ∈ Y , define a predicate Py(x) to be 1 if
and only if f(x) = y. This predicate can be computed, and can therefore be computed
privately. All of the (finitely many) predicates Py can be computed in parallel using the
same approach as in Sect. 3.3 to yield a private protocol for computing f .

This work is a first step toward studying private mobile computing. Several directions
for future research are appealing. Some seem fairly accessible. For instance, one could
show that our obfuscation procedure can also be effective against a dynamic adversary
that can control several agents on the fly. None of these agents will be able to determine
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the input values of the other agents, either individually or collectively. Other problems
appear more difficult. It is not clear whether it is possible to devise an obfuscation pro-
cedure that would work if the adversary need only eventually converge toward gaining
knowledge of the inputs of other agents, without necessarily knowing when the correct
input values have been discovered. We restricted attention to problems where all agents
produce the same output, but one could also consider problems that require agents to
output different values. Some papers have altered the basic model of population pro-
tocols by putting a probability distribution on the possible transitions. Can we design
protocols that would protect privacy with high probability, even if the adversary knows
the probability distribution? It would also be intriguing to see how the agents should
be strengthened to hide their inputs from an active adversary, who can cause agents to
diverge from the protocol.

Acknowledgements. This research was supported in part by the Natural Sciences and
Engineering Research Council of Canada.
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Abstract. Network overlays have been the subject of intensive research in recent
years. The paper presents an overlay structure, S-Fireflies, that is self-stabilizing
and is robust against permanent Byzantine faults. The overlay structure has a
logarithmic diameter with high probability, which matches the diameter of less
robust overlays. The overlay can withstand high churn without affecting the abil-
ity of active and correct members to disseminate their messages. The construction
uses a randomized technique to choose the neighbors of each member, while lim-
iting the ability of Byzantine members to affect the randomization or to disturb
the construction. The basic ideas generalize the original Fireflies construction that
withstands Byzantine failures but was not self-stabilizing.

1 Introduction

Network overlays have become a basic technique for routing among a dynamic set
of participants. The literature studies various efficiency measures and availability is-
sues. Recent papers address the issues of stabilization [1,2,3] and overcoming Byzan-
tine faults [4,5,6]. In the current paper we extend the Fireflies construction [6], making
it self-stabilizing. We call the resulting system S-Fireflies, for “stabilizing” Fireflies. S-
Fireflies provides robust support (middleware) for various peer-to-peer and distributed
applications, including Distributed Hash Tables ([7,8]) and reliable broadcast. For ex-
ample, Fireflies has been used for Byzantine video streaming [9] and secure dissemi-
nation of software patches [10], and S-Fireflies can make the same applications signifi-
cantly more robust.

S-Fireflies provides a dissemination structure along which members can exchange
messages. The structure is an overlay graph among currently active members, having
logarithmic diameter and adapting to churn (members coming and going). It overcomes
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Byzantine members who may try to prevent correct members from reliably communi-
cating, or to cause them to send a large amount of useless messages. We assume that the
networking facility underneath the overlay allows any two correct and active members
to establish a communication channel, resembling networking over the Internet.

Each member maintains communication channels to a subset of the active members.
The dissemination structure is composed of a dynamic number of “random subgraphs”
that determine neighboring members with whom a member communicates. The se-
quence of subgraphs is used also for constructing additional structures that monitor
availability of neighboring members.

Members may leave or crash, some may be Byzantine, and some or all may face tran-
sient faults that arbitrarily change values stored in their memory. S-Fireflies guarantees
that the system will maintain its robustness as long as the number of correct and active
members is sufficiently larger than the number of Byzantine members and the number
of members that have recently recovered. Moreover, if the system loses the required
ratio among correct and failed members, it will converge to a robust overlay once the
ratio is restored and remains so for a long enough period of time.

When the system recovers from a transient fault members may not know which are
the currently active members. Moreover, it may be that the system may find itself in
several disjoint components. In [1] the authors assume the existence of some failure de-
tection subsystem, and when instability is identified, members flood the network to form
a new stable membership. In [3] a gossiping style is used, with members occasionally
probing potential neighbors to identify whether they are active or not. Our technique
resembles this later one, though we reduce the ability of Byzantine members to probe
all members all the time.

A significant challenge of overcoming churn and facing Byzantine failures is to find
ways to limit the ability of faulty members to take advantage of high churn to destroy
the system’s structure. Mechanisms that deal with churn and transient faults may make
the system prone to replay attacks by Byzantine members. A typical use of counters
becomes problematic in the environment we envision, and special care need be given to
the use of digital signatures. While we address these issues in the S-Fireflies system, the
technique presented in this paper is general and can be applied to improve the robustness
of other overlay networks. Our protocols use randomization and the results are achieved
with high probability (whp).

1.1 Related Work

The structures that we create are intended to simulate random graphs, in contrast to
ring-based Distributed Hash Tables (DHTs) like Chord [7]. In Chord, members are orga-
nized in a single ring, with each member having log N “fingers” pointing across the ring
that provide routing shortcuts. Instead, in S-Fireflies each member has log N pseudo-
random neighbors, from which we construct the various structures. In both cases mem-
bers end up with log N neighbors, but an important difference is that in S-Fireflies the
neighbor relation is easily verifiable, preventing a Byzantine member from claiming to
be a neighbor of an arbitrary other member.

[4] describes defenses against various Byzantine behavior for Pastry [8], another
ring-based DHT. The paper suggest remedial approaches to impersonation [11], as well
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as to attacks on overlay routing table maintenance and message forwarding. An eclipse
attack is an attack where malicious members isolate correct members by filling the
neighbor table of a correct member with addresses of malicious members. [5] suggests
thwarting this attack by enforcing bounds on the in- and out-degrees of P2P members.
None of these approaches consider self-stabilization however.

There has been a variety of work on Byzantine-tolerant epidemic protocols, appar-
ently starting with [12]. These protocols consider the problem of correct members not
accepting any malicious updates without using unforgeable signatures, and use a form
of voting instead.

Drum [13] is a DoS-resistant multicast protocol. It uses a combination of gossip
techniques, resource bounds for certain operations, and random UDP ports in order
to fight DoS attacks, especially those directed against a small subset of the correct
members. These techniques are orthogonal to the ones used by S-Fireflies.

The issue of self-stabilization was studied in the context of group membership [1].
That work assumes that there is failure detection—once the system detects failure it
switches to a stabilization phase. The main objective is to reduce communication over-
head. The paper does not deal with permanent presence of Byzantine faults.

One observation in the current paper is that in order to overcome Byzantine members
there is a need for a high connectivity underlying graph. One could consider using
Harary graphs, or even Logarithmic Harary Graphs [14]. Unfortunately, despite its high
connectivity, such structures are fragile and cannot be built on-the-fly in the presence
of Byzantine members.

2 The Model

The system consists of a set P of members. Each member, m, has an identifier m.id ∈
P , that is randomly assigned by a central authority (CA). To simplify notations we as-
sume that all identifiers are in [1, . . . , |P|], and we use the convention m ∈ P . Members
can be active or passive. An active member participates in the protocol; a passive one
may be dead or detached. Some of the active members may be Byzantine. Members
may go through transient periods resulting in an arbitrary state of the various variables,
though the protocols (consisting of code and constants) are hard-coded and unaffected
by transient faults. We assume that members may dynamically fail; failed members may
recover and need to be re-integrated into the system.

We assume the existence of a public key cryptography scheme that allows each mem-
ber to verify the signature of each other member. We further assume that non-Byzantine
members never reveal their private keys,1 such that faulty members cannot forge signa-
tures. Member identifiers and their keys are part of their hard-coded state. The keys (as
well as the signed identifier) are acquired via a trusted CA.

We assume that after going through a transient failure period the system eventually
recovers, and at steady state the probability of an active member being Byzantine is
bounded by pbyz .2 We also assume that the communication network allows any two

1 A Byzantine member that reveals its private key can never recover and be considered correct.
2 One can assume that this holds only when the number of active members is more than some

small n0. One may generalize pbyz to be a distribution over the number of active members.
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active members to establish a secure communication channel. Moreover, there is a con-
stant δ that bounds, with high probability, the time it takes messages among active mem-
bers to reach their destination. Informally, we are interested in establishing an overlay
among a given set of members over the Internet.

Correct members have internal timers that run at a bounded drift from real time,
which enable them to measure periods of time with relative precision. We do not require
clock values to be synchronized.

Members that face transient failure may find themselves in an arbitrary state. There-
fore it may take some time to integrate them back into the system.

Definition 1. An active member is non-faulty if it follows its protocols, processes mes-
sages in no more than π real-time units and has a bounded drift of its internal timer. An
active member that is not non-faulty is considered Byzantine.

A member will be called faulty or Byzantine, interchangeably.

Definition 2. A member is correct if it has been non-faulty for Δmemb.

The value of Δmemb is determined in Theorem 2. The communication network itself
may face periods of time during which it deviates from its assumed properties.

Definition 3. A communication network is non-faulty if messages arrive at their desti-
nation within δ real-time, and the content of the messages as well as the identity of the
sender are not tampered with.

Definition 4. A communication network is correct if it has been non-faulty for Δnet

real-time.

The value of Δnet is chosen such that all messages that were sent before t1 or were
forged due to transient faults in the network are removed by t1 + Δnet.

Definition 5. A system is coherent if there is group G of correct members, such that
|G| ≥ N · (1 − pbyz), where N is the number of the currently active members, and the
network connecting the members in G is correct.

In the following, we will discuss only members from G, thus, when stating “correct
member m,” we actually mean “correct member m s.t. m ∈ G.”

Once the system is coherent, a message between any two correct members is sent,
received, and processed within d real-time units, where d includes δ, π, and drifts of
local timers. For simplicity we will assume that Δnet = 2d, though one can choose
different values.

3 The BSS Overlay Service Specification

Each correct member has a view, m.view, which is a subset of all members, P . Infor-
mally, m2 ∈ m1.view means that m1 believes that m2 is, at least until recently, neither
stopped nor exhibiting Byzantine behavior. Conversely, m2 /∈ m1.view means that m1
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believes that m2 is stopped or faulty.3 The subset m.neighbors of a member’s view
represents its neighbors.

An overlay G, G = (V, E), is a directed graph whose members, V ⊆ P , are the
active members and E = {(mi, mj)|mi, mj ∈ V, mj ∈ mi.neighbors}. A Byzantine-
Self-Stabilizing (BSS) overlay G, is an overlay G that is Byzantine-tolerant and self-
stabilizing. Thus, a BSS-overlay forms a usable routing substrate among the active
members that is highly robust. We refer to the graph spanned by the BSS-overlay in
which each directed edge is replaced by an undirected one as underlying-BSS-overlay .
For maintaining the BSS-overlay each member has an additional list: m.detect contains
members used for failure detection.

Our goal is to design a protocol that guarantees that when the system is coherent the
following properties hold with high probability:4

P1: There is a directed path in the BSS-overlay from any correct member to any other
correct member composed of only correct members;

P2: The diameter of the underlying-BSS-overlay is bounded by O(log(V ));

Our aim is to develop protocols that converge from any arbitrary initial state, once
the system stabilizes and there are enough correct members; i.e., the protocols spans a
BSS-overlay among the active members satisfying the properties above. Moreover, we
wish to reduce the time it takes for the system to converge and for a recovering member
to be considered correct, i.e., to obtain Δmemb as small as possible.

4 Data Structures

4.1 The Sequence of Subgraphs

The randomization used in the various structures of S-Fireflies are derived from a se-
quence of permutations. Each member m has a list m(r1), . . . , m(rj) of permutations,
where m(ri) is a permutation over P − {m}. For each permutation m should connect
to the first member in that permutation, and if that member is down, m will connect to
the next member in the permutation, and so on.

The solution proposed in this paper requires the list of permutations to be chosen
independently and uniformly at random. This list should have at least |P| · log(|P|)
permutations in it, since each member should have at most log N neighbors. According
to experiments done by [6], a collision-resistant hash function can provide the required
“randomization”.5 Therefore, we will assume the existence of a hash function

H : (P , N ) → permutations([1, . . . , |P|]),

where N is the set of natural numbers and permutations() is the set of all permutations
over some group, such that for each member and subgraph index there is a permutation
over the set P . It is assumed that each member knows all permutations.

3 We do not provide Virtual Synchrony properties such as consensus on views.
4 The probabilities can be tuned to any desired probability.
5 One can have the CA randomly select the permutations and send them to each member, ex-

changing practical performance with theoretical robustness.
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Table 1. Additional View Lists

List Description Duration Action

rcnt suspected members that were recently 2Δ remove from m.view
suspected move to rcnt removed

rcnt removed members that were recently removed Δ remove
to be joined recently accepted members Δ move to m.view

Members are aware of their successors and predecessors on the various subgraphs,
where a successor m of m′ on the ith subgraph is the first active member along the ri

permutation of m′ as perceived by the view of m′; if m is a successor of m′ then m′ is
the predecessor of m (on subgraph i). The actual number of subgraphs that a member
uses may differ in different structures and will be specified for each one accordingly.
On subgraph i:

succi(m) = min
j

{m(ri)j |m(ri)j ∈ m.view} ,

predi(m) = {m′|m ∈ succi(m′)} ,

Recall that m �∈ m(ri). Note that predi(m) might contain several members. When the
specific subgraph is clear from context we omit the subscript i. Our notations resembles
those of [2].

We introduce operators that represent the segment of potential successors or prede-
cessors of a member in a subgraph:

seg succi(m) = {m(ri)j |j < location(succi(m), m(ri))} ,
seg predi(m) = {m′|m′ = succi(m), location(m′, m(ri)) �= 1)} ,

where location(m, perm) returns the index of m in the permutation perm. Observe
that these operators depend on the current view of the member, and different members
might have different views.

4.2 The Views

High churn in the system and uncertainty about the time at which various members
update their views require that each member maintains temporary lists of additional
members, as described in Table 1. S-Fireflies members gossip on the BSS-overlay dis-
semination structure (Section 5), and the connectivity is chosen so with high probability
all members learn of new gossip within Δ time units.

A member that is suspected as failed (as described in Section 6) is listed on the
rcnt suspected list and if it does not rejoin within 2Δ (as described in Section 7) it is
removed from m.view (and from rcnt suspected). During the uncertainty period mem-
bers in this list are still considered as potentially connected. The process of joining is
also a double step. A joiner that will be accepted (as described in Section 7) is first
placed in the to be joined list, and will be integrated into m.view only after being in
the list for Δ time units, giving the rest of the members a chance to identify the new
addition.
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S-Fireflies does not reach agreement on views, therefore views can always differ.
At steady state the difference among the views of two correct members is due to the
lists above and due to Byzantine behavior. To accommodate for that flexibility, when a
member m considers its view, m.view, to check whether m′ is allowed to connect to
m, it will actually consider rcnt removed’s and to be joined’s effect on m.view; that is,
m will accept m′ to connect to it if there is an update of m.view with members from
rcnt removed ∪ to be joined such that m′ ∈ predi(m) (for some i ≤ r′m, as defined in
Section 5). In such a case we say that the view of m′ is close to the view of m. However,
when m considers which members to connect to, it will consider m.view only. Such a
behavior will allow the required flexibility for m and m′ to connect to each other in the
presence of joining and leaving members.

4.3 The Epoch and Epoch List

The assumed existence of digital signatures reduces the ability of Byzantine members to
mislead correct members. But since members may fail and recover, Byzantine members
can replay old signed messages. In a self-stabilizing environment it is challenging to
identify replayed messages.

In order to reduce the ability of Byzantine members to perform a convincing replay
attack, a member needs a mechanism that produces some randomization to its new
identity when it recovers. To achieve that, a member chooses periodically (and during
recovery) a new random incarnation number. A new epoch of a member is the signed
pair (prev inc, new inc), where prev inc is its previous incarnation value and new inc
is its new incarnation value. The incarnation values are random numbers from a large
enough space (much larger than the memory space of the faulty members), so that the
probability that a member repeats the pair (prev inc, new inc) is negligible, and the
ability of a faulty member to replay such a pair is even smaller. We will ignore this
small probability of error.

The introduction of a random epoch is similar to choosing a random id. Therefore, in
our protocols, whenever a member sends a signed message it should include its current
epoch. We assume that members send signed messages, and members ignore any mes-
sage that is not signed properly or does not carry the matching epoch. We will ignore
these details when describing the protocols.

Each member maintains as part of its view the latest epoch of each member in the
view (“the epoch list”). A receiver of a signed message will consider the message cur-
rent only if the epoch matches the last epoch the receiver knows of. If the recent epoch
was received less than Δ ago, it can still accept signed messages containing the pre-
vious epoch value. The message is current also when the member did not receive the
new epoch yet, but its latest copy of the epoch matches the prev inc part of the epoch
of the received message. When a member m1 updates its epoch (done once in Δepoch)
it will send a special message containing the new epoch; this message is disseminated
the same as other messages in the system. If a member m2 receives such a message
and m2’s current epoch is equal to m1’s prev inc then m2 updates its view of m1’s
epoch.
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5 The Dissemination Structure

The dissemination structure is defined according to the neighbor relations induced by
the set of subgraphs as determined by the size of the views of individual active members.
Let Nm = |m.view| and define gm, the number of active members m establishes a
connection to, as

gm = g0 + 	 1
1 − pbyz

ln Nm
,

where g0 is a minimal number of neighbors (defined in Theorem 1). Member m estab-
lishes a secure channel with the gm different members of m.view that are succ(m) in
one of the first r(m.view) subgraphs, where r(m.view) is the minimal number of such
subgraphs satisfying

rm(m.view) = min
i

(
∣
∣
⋃

j≤i

{m′|m′ = succj(m)}
∣
∣ = gm)

r(m.view) and rm will also be used. These gm members are the members of the
m.neighbors set, and member m will gossip its messages along these channels. Note
that whp rm = gm.

Since views of different members may differ, member m accepts a connection re-
quest from each active member m′ who is pred(m) in one of r′m permutations of m′,
defined as:

r′m = r(m.view ∪ rcnt removed ∪ to be joined) · (1 + pbyz).

Thus, m estimates the number of subgraphs of m′ within which it appears as a
succ(m′) in order to accept the connection. In such a case we say that the view of
m′ is close to the view of m. This notion of “close” intends to allow for two correct
members to differ by the potential presence of current Byzantine members and view
changes that are in transit. As in [6], if the request arrives from a member that is not
pred(m), a message is returned containing an update.

The dissemination structure that defines the BSS-overlay is composed of the active
members and the secure channels they establish with their neighbors. Each member m
has gm outgoing links.

Theorem 1. A gossip protocol over BSS-overlay completes with high probability within
Δ = (lnN + c0) · d, where N is the number of currently active and correct members
and c0 is a constant that depends on the probability of message loss and on pbyz .

Proof. Sketch: Kermarrec et al. [15] show that it is possible to build effective gossip
protocols if each member only has a small set of uniformly chosen members it gossips
with. In the dissemination structure, each member m effectively gossips with some gm

neighbors from its view uniformly at random, where gm is large enough to create a
connected graph of correct members; if we have k neighbors, then pbyz · k neighbors
will by Byzantine (in expectation), hence we would like to have (1+p

byz
) ·k neighbors;

now we have an additional p2
byz

· k Byzantine neighbors, and so on. Using
∑∞

i=0 pi
byz

=
1

1−p
byz

, we obtain the definition of gm.
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Detection of a Crashed Member /* executed at member m */
/* others members act upon receiving appropriate message */

/* all gossip along the BSS-overlay */
Monitoring m:

If suspects crashing of m′ = succi(m) then
add m′ to rcnt suspected;
disseminate “suspect(m, epochm, m′, epochm′)”,

where epoch is m’s epoch and epochm′ is m′’s;
Member m′′:

when received “suspect(m, epochm, m′, epochm′)” from m and m′ �= m′′ do
if epochm and epochm′ current and m = pred(m′) and m �∈ banned(m′) then

add m′ to rcnt suspected;
disseminate “suspect(m, epochm, m′, epochm′)”,

when received “suspect(m, epochm, m′, epochm′)” from m and m′ = m′′ do
if epochm and epochm′ current and m = pred(m′) then

add m to banned(m′′)

if |banned(m′′)| > fm′′ then banned(m′′) =⊥
invoke a new incarnation of m′′

Fig. 1. Handling Suspicions

A classic result of Erdös and Rényi [16] shows that in a graph of n members, if the
probability of two members being connected is pn = (log n + c + o(1))/n, then the
probability of the graph being connected goes to exp(− exp(−c)). The proof follows
this line of arguments, using the potential difference between views of different mem-
bers, their additional lists, and their estimate of the number of currently active members.
The value of g0 is determined by c and the initial n for which the estimates hold. ��

6 Membership Maintenance

The membership maintenance draws upon ideas presented in [6]. The basic idea is
that members exchange accusations regarding suspected misbehavior of other members.
They keep track of other members using the detection structure (defined below) and
gossip their accusations using the dissemination structure.

In the detection structure, each member maintains outgoing links (some of which
may overlap with the links of other structures) with its successors in a number of sub-
graphs such that each member in its view has gm different pred(m) members. The
number of detection subgraphs that an active member considers is determined as fol-
lows: Increase the number of subgraphs until for every m′ ∈ m.view there exist at
least gm different members of m.view as their predecessors on the different subgraphs.
More formally:

detect(m) = min
r

(
⋃

i≤r

{predi(m)}| ≥ gm).
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Each member maintains secure channels with the set of its successors along these
subgraphs. When a member is requested to establish a secure channel it checks that the
requester is in pred for one of the subgraphs implied by that view (while considering
to be joined and rcnt removed).

The detection structure is the graph spanning the active members and all channels to
their successors in one of the detection subgraphs, as defined above. Member m moni-
tors succi(m), for each i ≤ detect(m), and is expected to be monitored by predi(m).

We use the pinging techniques of [6]. If a member suspects that the member it moni-
tors fails, it gossips along the dissemination structure an accusation message as defined
in [6], except that each such message carries the epoch as defined above. Observe that
the pinging technique does not have long term state and therefore introduces no diffi-
culty to stabilization of the system.

To prevent faulty members from continuously sending accusation messages about
correct and active members, each member maintains a list banned-members flagging up
to fm of its predecessors as disabled. A predecessor that is disabled cannot disseminate
any accepted accusation of a member. Figure 1 presents the schematic protocol that
handles crash detection.

The view of each member includes not only the identities of members it assumes to
be active and correctly operating, but also for each member the latest signed epoch and
the vector of disabled predecessors.

Observe that the detection structure does not need to use the technique of skipping
across accused members, used in [6], in order to guarantee that each member has a
monitoring member. Our detection structure has that property by construction.

Members also track the activities of other members and if they can prove Byzantine
behavior they can disseminate such a proof and members can remove the faulty member.
We will not elaborate on that optimization.

Lemma 1. A crashed member will be removed from the view of every correct and active
member within 3Δ, whp.

Proof. When the system becomes coherent correct members exchange messages within
Δ whp. A crashed member has at least one correct and active predecessor that is not in
its banned-members list. That member will detect the crash and will be able to dissem-
inate that to all correct and active members whp. Within Δ it will reach all correct and
active members, and within an additional 2Δ those members will update their views.

��

7 Recovery of Members

Due to the self-stabilizing requirement, the system must cope with transient faults.
Members can be subject to such faults, and may be able to identify them via incon-
sistencies in their internal state, or they may realize that other members suspect them as
failed. In such cases, the member needs to recover and integrate back into the system.

Observe that the new epoch cannot be disseminated as is because simple gossiping
will enable faulty members to gossip about past values, thus enabling replay attacks.
The first step of recovering a member is to ensure it has an updated epoch list.
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Sending epochs and views to all members /* executed at member m

every Δ1/|P| time units */
Member m:

Send epoch and m.view to member i;
i := i + 1(mod |P|);

Member m′:
upon receiving epoch and view from m, update epoch list with m’s epoch, and update

m′.view with m.view

Fig. 2. Background process: sending epochs and views to all members

7.1 Epoch Renewal and Epoch List Stabilization

The usage of signatures handicaps Byzantine members to some degree; however, the
Byzantine members may replay signed messages. To prevent this, each member p has
a counter that it includes in each message and increments for each message. Receiving
members will not accept a message from a member with a lower counter than expected.
Due to transient faults, members in the system may have invalid values for these coun-
ters. Moreover, Byzantine members may replay messages of higher counters in case of
a transient fault that caused the correct members to think that there are lower counter
values.

To overcome both these issues a member should select a new epoch every so often
(depending on the system security requirements); with each new epoch the message
counter is reset. However, there might be a mismatch between a receiving members’
value of prev inc of p and p’s value of prev inc; this will lead to members not accept-
ing the new incarnation.

We consider two scenarios: The first is a scenario in which a majority of correct
members have undergone transient faults, and their epoch lists are not valid anymore;
in the second scenario only a small portion of members have undergone transient faults
(this is likely the more common case in practice).

To solve the first case – when many members have undergone transient faults – we
use a background process that periodically sends the epoch and view to each mem-
ber (see Figure 2). The second case is solved by contacting the immediate neighbors
and updating the list of epochs and views according to their majority agreement (see
Figure 3).

Transient faults may disturb other data structures as well as the epoch list. If the value
of m.view is too far off to even connect to other members to gather information about
the epoch list then m has to wait Δ1 time for the algorithm in Figure 2 to update its
epoch list. In case m.view approximately represents which members are up and which
not then the algorithm in Figure 3 will operate correctly and “re-update” the epoch list
of m within Δ1′ time.

In Figure 3, the size of the group to request the epoch list from (Nepoch) affects
tolerance to multiple transient failures. To increase tolerance this size can be increased.
Let ptrans be the probability of having a transient fault at some member. If (pbyz +
ptrans) < 1/2 then the larger Gepoch is, the higher the probability of “hitting” enough



354 D. Dolev, E.N. Hoch, and R.van Renesse

Getting epoch list /* executed at member m every Δ1′ time units */
Member m:

Gepoch :=randomly select Nepoch active members from m.view;
request epoch list and view from all members in Gepoch;
upon receiving responses (wait at most 2d to collect responses):

for each member, select the epoch that appears most often.
for each member, select the state that appears most often.

Fig. 3. Background process: getting epoch list and views from members

Choosing a new epoch
Member m:

either once every Δepoch or if m has been accused:
randomly select a new epoch;
disseminate the new epoch;

Member m′:
upon receiving information about a new epoch of member m, if m′ epoch list contains

m’s prev inc then update the epoch list with the current epoch of m;

Fig. 4. Background process: choosing a new epoch

correct members in the search for epoch lists. Moreover, if m.view was subject to some
transient faults, then the larger Gepoch is, the larger group out of m.view is examined,
which increases the probability of reaching enough correct members.

Assume that each member renews its epoch to ensure that the epoch is always fresh
every Δepoch period (as specified in the next subsection).

Lemma 2. Starting from any state, each correct member has an updated epoch list
within Δ1 + Δepoch.

Note that from this point on correct members can communicate safely among each
other; also, Byzantine members cannot use replay attacks because all epochs have been
changed.

7.2 Periodical Epoch Update

A member m creates a new epoch every Δepoch and disseminates the message among
all members (see Figure 4).

Lemma 3. An active and correct member that renews its epoch in less than Δ from the
time the first correct and active member suspects it as failed succeeds to do so before it
is removed from the view of any correct and active member, whp.

Proof. Sketch: The renewal message carries the new epoch that matches the last epoch
at all active and correct members in its previous view. Since dissemination takes less
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than Δ, whp, its renewal message reaches and is accepted by each such member before
it is removed from the rcnt suspected list of any such member. Note that the renewal
message may reach members that are not aware of the suspicion. If an old suspicion
message will be received in such a case its epoch will not match and the message will
be ignored. ��

Note that the lemma also claims that a member that renews its epoch without it be-
ing in rcnt suspected of any correct member also has its epoch accepted by all correct
members within Δ whp.

Lemma 4. A correct and active member will not enter the rcnt suspected list of any
correct and active member as long it remains active, whp.

7.3 Stabilization of the Overlay Network Structures

In Section 7.1 it was shown that all correct members eventually agree on their epoch
list. However, due to transient failures, members might disagree on the dissemination
structures.

In the following the self-stabilization of the overlay network structures is consid-
ered (assuming the epoch list has stabilized). Consider all correct members in the sys-
tem to be in an arbitrary state. That is, a member m has arbitrary values for m.view,
rcnt suspected, etc. By the algorithm in Figure 2 after Δ1 all members will have similar
view sizes; hence they will agree on the value of gm.

Since each member continuously monitors the members in seg succi (for all i ≤ rm)
and in seg predi (for all i ≤ r′m), then eventually each member will have connec-
tions with the members it should be connected too. (Note that the lists rcnt suspected,
rcnt removed, to be joined, and banned are cleared when the items in them are old
enough.)

From this point on all disseminations are performed correctly, as messages are sent
and received along the “correct” connections; however, members still do not have valid
views of all the network, and it will take time for this view to become consistent. Note
that this view inconsistency is not an issue, as it only affects new connections in case
some member leaves the overlay network and since seg succ and seg pred are always
monitored, such failures will be detected.

In addition, members’ states are continuously disseminated along the network (for
example, due to periodic distribution of new epochs described in Section 7.2). Since
each active member is connected to the overlay, once the overlay network has its con-
nections set each member will disseminate its sate. Hence, after an additional Δ time
units all members will receive each such dissemination and will have up-to-date views
of the status of all other correct members.

Note that this stabilization will take no more than O(Δ + Δscan) time whp (where
Δscan is the interval for scanning seg pred and seg succ, and is also the rate at which
members refresh their banned-members list). Define the stabilization period Δ2 =
O(Δ + Δscan).

Theorem 2. Starting from an arbitrary state, each disjoint set of the system converges
within Δmemb = Δepoch + Δ1 + Δ2.
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Proof. Sketch: Starting from an arbitrary state, after Δepoch + Δ1 time all non-faulty
and active members agree on each other’s epochs. From this step on, secure commu-
nication can commence. In addition, all members agree (approximately) on the view
size. Hence, they all consider the same gm which leads to the construction of a working
overlay network; after an additional Δ2 time, all correct members will have up-to-date
overlay structures in their connected subgraph. ��

Theorem 3. The BSS-overlay with the detection and the integration structure satisfies
properties P1 and P2, with high probability.

Proof. Sketch: We prove that once the system is coherent the system converges from an
arbitrary state to a safe state and that once it is in a safe state it remains in such a state
unless the system becomes incoherent.

Let G be the set of members that are active and non-faulty for Δepoch + Δ1 + Δ2.
Within Δepoch + Δ1 after the system becomes coherent each one of them will go
through its subgraphs and will end up learning about all possible connected compo-
nents. Within Δ2 each member m will connect to at least gm members. Observe that in
these bi-lateral exchanges members add to their view each member they found active.

Within Δ each one will establish connections with gm and will connect the BSS-
overlay. Members that crash disappear from views and correct and active members
remain in views. ��

8 Conclusion

The paper presents a robust and self-stabilizing overlay network. In order to establish
self-stabilization while overcoming Byzantine faults some unique techniques are devel-
oped. These techniques can help turn other constructions into self-stabilizing systems
that withstand Byzantine faults. The basic techniques are: 1) the use of randomization
to create permutations of the list of members; 2) the use of a pair of random numbers
to form a member’s epoch, instead of an ordinal number; 3) the introduction of inte-
gration and detection structures that enable dealing with high churn without the need to
reconstruct the overlay network when members fail and recover.
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Abstract. We consider the parallel simulation of distributed systems based upon
the notion of separability. We define a model of distributed systems that inte-
grates a limited set of temporal properties, from which we deduce specific par-
allel simulation strategies avoiding rollback and dynamic scheduling which are
often necessary to obtain an optimal rate of parallelism in parallel and/or dis-
tributed simulations. In particular, we present strategies that enable to compute
the simulation schedule in advance, or even statically.

This approach appears to be relevant for a large class of distributed compu-
tations, inasmuch as it relies upon a limited set of temporal properties of the
simulated systems.

Keywords: parallel discrete event simulation, causality, scheduling, separability.

1 Introduction

The design of distributed algorithms and systems is intrinsically and notably hard, due
to the lack of global time, the impossibility of having an instant global knowledge of
the system state, and the open and dynamic nature of such systems. Our aim is to study
efficient and scalable models and mechanisms, that are fitted to simulating such sys-
tems, for analysis and validation purposes. More precisely, our goal is to enable the
(application or simulation) programmer to take advantage of simulation features, which
are not available in a distributed setting:

– the existence of a global view of the simulated system, that can be used for debug-
ging, or, more generally, for observing global predicates;

– the ability to predict forthcoming events in the simulated system, which is useful for
the control of the simulation itself, but could also be a means to provide theoretical
properties that cannot be implemented in a real distributed environment, such as
oracles.
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By its problematics, our approach departs from the field of distributed or parallel sim-
ulation [1], where the core problem is the parallel or distributed implementation of the
simulator itself, regardless of the simulated system.

The simulation of a system involves three notions of time, that should be clearly set
apart [1]:

– the physical time, which is the time in the system that is the target of the simulation.
For example, if the simulation models the activity of an airport during one day, the
physical time bounds of the simulation could be from 6.00 GMT July 8, 1969 to
6.00 GMT July 9, 1969.

– the simulation time, which is the (internal) representation of time used and managed
by the simulator to order the simulation events.

– the wallclock time, which is the time related to a given run of the simulation. For
example, the previous airport simulation may have been run in 55 minutes, from
10.15 GMT to 11.10 GMT, on September 5, 2007.

The control of a simulation, that is the scheduling of the simulation actions, can be
characterized by the way in which the relationship between the physical time and the
other times is handled (or not). Numerous works in the field of distributed simulation
focus on the synchronization between the components of the simulation, at runtime.
In other words, these works focus on the relationship between the wallclock time and
other times, and especially the physical time. Different kinds of consistencies have thus
been defined, allowing to state various constraints:

– the causal consistency of a distributed simulation run is usually enforced by build-
ing a global virtual time [2,3,1,4], such as in the HLA framework which ensures the
interoperability of simulators and a global ordering of interactions between simu-
lators [5,6,7];

– multi-player real-time games provide a classic example of application where the
wallclock time is to be integrated in the scheduling of the simulation events [8].

On the other hand, the use of the specificities of a class or model of simulated systems,
in order to optimize the scheduling of a simulation has little been explored, to the best
of our knowledge. Thus, for example, although some proposals have attempted at in-
creasing parallelism [9], the lack of assumptions on the simulated system in HLA leads
to runs that can be inefficient, as a global order on the simulation events has to be built.

This work comes within the latter direction. Specifically, we consider the simulation
of a a specific class of distributed systems, where physical time, relating to components
and their interactions, is explicit, and is an integral part of the model. In particular, the
distributed system model relies on a temporal characterization of the components’ be-
havior (i.e. whether they are sporadic, periodic, or aperiodic), and of their interactions.

The scheduling of the simulation aims mainly at:

– reducing the overhead induced by the management of the simulation:
• either in terms of context switching between the simulation activities or in

terms of synchronization barriers;
• by taking advantage of the temporal properties of the system, namely: the fre-

quency, the jitter and the delay of the interactions.
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In this perspective, one of the key ideas of this paper is to characterize and deter-
mine the separable CPU bursts of the simulation’s components, that is the compu-
tation slices that are causally independent, and can thus be run concurrently. This
separability analysis is based on the temporal aspects of the simulated system, and
exploits the global view of the system which is available to the simulator.

– supervising the simulation, which leads to relate the simulation time to the other
times. A centralized model appears to be the most convenient user model for su-
pervision purposes. Hence, it seems interesting to relate a distributed model (which
is the simulated system’s model) to a centralized model (which is the simulation’s
model) and, in particular to provide the means to build:

• a global time, a pace that corresponds to the simulation’s pace;
• consistent snapshots, corresponding to state observations, required for the mon-

itoring of the simulation.

To this end, our approach is to construct a synchronous run, out of an asynchronous
one, along the lines of the general pattern provided by synchronizers [10]. This
pattern will prove to be well fitted, in terms of efficiency, for the setting that we
consider in the remainder of this paper, where the simulation tasks are periodic.

Section 2 presents the context of this study, and introduces the (classic) distributed
system model used by simulations. Then, we elaborate this model, in order to introduce
the temporal properties on which the separability analysis is based. Lastly, we state a
necessary and sufficient condition to ensure the consistency of separate and concurrent
computations. Section 3 presents an evaluation of consistent computation slices based
on communication delays, while Section 4 analyses separability from communication
frequencies. Section 5 concludes the paper.

2 Separability in Distributed Computations

We first present the general context of this study. Then, we present our definitions of
distributed computations. Lastly, separability leads to express a criterion for dividing a
computation into causally consistent steps and to define a corresponding static schedul-
ing of the simulation.

2.1 Context of the Study

The starting point of this study is the notion of separability proposed by Pierre Keller in
the field of space systems [11]. The simulation of space systems is complex and costly.
Furthermore, space systems are becoming increasingly complex, as they involve more
and more components and satellites, which raises the problem of the scalability of their
simulation.

In order to tackle these difficulties, the notion of separability brings in a methodol-
ogy and a heuristics for decomposing these systems, based on their interactions. This
approach aims at enabling a sequential or parallel simulation of the behavior of sep-
arable systems, at introducing of a physical logic for subsystems initialization, and at
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Fig. 1. Distributed Computation

reducing of the size of the state vector of separated subsystems, which will correlatively
reduce the time and space complexity of the simulation.

Separability assumes that subsystems:

– have an interface that can be described by discrete interactions1;
– have sporadic interactions, i.e. the frequency of their interactions has an upper

bound;
– may have drifting clocks.

These assumptions transpose straightforwardly into the setting of distributed computa-
tions, which provide a basis to reason about behavioral aspects of such systems. The
study of separability in this formal framework enables to define dedicated efficient
scheduling strategies for the simulation of these systems.

2.2 Distributed Computation Model

We start from the standard model of distributed computations [12,13]. In this model,
a distributed computation is abstracted as a set of communicating processes. A static
view as in Figure 1(a) consists in a graph in which vertices are processes and edges are
communication channels.

A dynamic view of the computation consists in a timing diagram in which each
process generates a sequence of events. A distributed computation is described as a set
of events and a partial order capturing the causal relationship between events [14]. For
instance, Figure 1(b) illustrates the dynamic behavior of three processes {P0, P1, P2}
exchanging messages. Each send event ei precedes causally the corresponding receive
event ri, and all the events of each process (internal events, send events or receive
events) are totally ordered.

This event-oriented abstraction allows to specify various properties about distributed
computations. For instance, the notion of cut allows to verify whether a global snapshot
of a distributed computation is consistent [15].

The notion of separability leads to define a more structured description of distributed
computations. More precisely, events are grouped into so-called slices of computation2.

1 Separable subsystems can be submitted to continuous interactions, such as gravity, which are
handled and simulated autonomously by each subsystem, but are not relevant for the schedul-
ing of the simulation.

2 This notion of slice is not related to the notion of slice developped by Garg [13]. The later is
an abstraction of a cut used to compute a global predicates.
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Figure 2 illustrates this notion: the distributed computation is structured as a sequence
of event sets (slices) σk:

σ1 = {e1, e2, r2} σ2 = {e3, e4, r1} σ3 = {e5, e, r3, r4, r5} . . .

Definition 1 (Slice-Oriented Computation). Any distributed computation can be de-
scribed as a sequence of slices σ = σ1σ2 . . . such that the following properties are
verified:

– Each slice σi is a finite set of events;
– Events belonging to slices preceding a given slice σi precede causally at least one

event of σi:
∀i, ∀k < i, ∀e ∈ σk, ∃e′ ∈ σi : e ≺ e′

– Events belonging to slices following a given slice σi are causally preceded by at
least one event of σi:

∀i, ∀k > i, ∀e ∈ σk, ∃e′ ∈ σi : e′ ≺ e

In other words, a slice defines a buffer between the past and the future of a distributed
computation.

For parallel simulation purposes, we aim at determining slice-oriented compositions of
a distributed computation. Each slice will delineate a parallel simulation unit during
which each process performs a simulation step. Our main goal consists in defining the
longest periods of simulation steps in any slice without resulting in causal inconsisten-
cies or rollback steps.

With respect to these constraints, a parallel slice of simulation will be safe if, at the
beginning of its execution, all the messages to be received during this slice have already
been sent during an earlier slice and, consequently, are ready to be received during
this current slice or any future one. In other words, each process is allowed to perform
its simulation step in an independent way without any constraints about its execution
speed because all the messages to be received during this step are already pending at
the beginning of the slice execution.

This principle leads to define the following separability criterion and execution pat-
terns for the parallel simulation of distributed computations.
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Fig. 3. Revisited Static View of a Distributed Computation

2.3 Separability Criterion

The definition of the separability criterion relies upon the notion of slice defined in 2.2.
However, for the slice to be safe (i.e. separable), its set of events must satisfy a more
restrictive property.

Definition 2 (Separability Criterion). A distributed computation can be described as
a sequence of separable slices σ = σ1 . . . σi . . . verifying the following separability
property: for any slice σi, if a send event of a message m exists in the slice, then the
corresponding receive event does not belong to this slice σi. In other words, this receive
event can only belong to a later slice σk, k > i and the message can be considered as
in transit with respect to the slice σi. More formally, this property can be stated by:

∀m, i : e(m) ∈ σi ⇒ r(m) /∈ σi (≡ ∃k > i : r(m) ∈ σk)

2.4 Distributed Computation Model for Parallel Simulation

According to the previous assumptions, the scheduling of the parallel simulation of a
distributed computation relies upon the evaluation of slice durations. Thus, we need an
abstract model of distributed computations that allows to express the required temporal
parameters. We extend the static view given in Figure 1(a) by interpreting the edges
as message links. A link is defined as a unidirectional point-to-point communication
channel, and may have the following attributes:

– a minimal delay Δ: this parameter specifies the lower bound of message trans-
fer, that is, the time interval between the send event and the corresponding receive
event;

– a frequency H : this parameter states the frequency of the messages; the correspond-
ing period T = 1

H can also be used;

When the message frequency is known, two other parameters can be specified:

– a jitter δ: we consider this jitter as an uncertainty upon the reception date. This
uncertainty comes as well from variations in the communication delay as from an
uncertainty in the send event date. Strictly speaking, a system with jitter is not
periodic. However, if the jitter is small enough (which is a reasonable assumption),
it can still be considered as periodic.
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– a phase ϕ: even in a periodic system, all subsystems may not start sending messages
at the same date. A fixed frequency link can have a different phasing from the
others. This phase is noted ϕ. On a link with period T and phase ϕ, the n-th message
is sent at date n ∗ T + ϕ.

Figure 3 describes an example with two processes. Several links can be defined from a
source process to a destination process: for instance, two links are specified from P1 to
P2. However, at the implementation level, the same communication channel can be used
to transfer the messages associated to different links connecting the same processes.

2.5 Scheduling of a Parallel Simulation

The slicing of a distributed computation allows to simulate a distributed computation as
a sequence of slices. A slice execution only begins when the previous one is terminated,
namely, when all the processes have performed their simulation step in the current slice.
Moreover, all messages sent during a simulation step by a process must be recorded
because their receive dates can only belong to a latter slice according to the separability
criterion (Definition 2).

3 Parallel Simulation Using Delays

In this section, we show how to compute the simulation step intervals for each process,
when each link is only characterized by a minimal communication delay.

3.1 An Example of Separability Analysis

We consider a small system with only two processes. We assume the following param-
eters: process P1 sends messages to P2 with a minimal delay Δ1 and process P2 sends
messages to P1 with a minimal delay Δ2.

In such a case, the separability can only be derived from the delays. Initially, the
available lookahead3 for each process is equal to the minimal transmission delay of
messages sent by the other processes. In other words, the process P1 can perform a first
simulation step during (simulation) time interval [0, Δ2[. In parallel, process P2 can
perform a step during (simulation) time interval [0, Δ1[. From the simulation point of
view, the frontier of each slice, i.e. the set of the maximal events (for the causal order)
of the slice, acts as a synchronization barrier (see Figure 4(b)). Thus, the distributed
computation is simulated as a sequence of separable slices, and the frontier of each
slice is a consistent cut. After this first slice execution, each process begins a new step
simulation: for process P1, this new step will last for Δ1 and, for process P2, it will last
for Δ2.

Figure 4(a) illustrates this behavior. During its first step (1), each process will not
receive any message: the messages sent by other processes during this step will not
be received before the second step, due to transmission delays. Then, during the next

3 That is: the maximal duration for which a given process can be run (or simulated) concurrently,
without interacting (and thus synchronizing) with other processes.
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Fig. 4. Running Consistent Slices

slice simulation (2), they receive messages sent during the previous slice and may send
other messages which will be received in following slices, slice (3) for instance. The
simulations of slices 3 and 4 follow the same pattern and have the same properties with
respect to the separability criterion: no message is ever sent and received during the
same slice simulation.

Figure 4(b) describes the synchronization of parallel simulation steps. In this particu-
lar case, each process executes steps alternating Δ1 and Δ2 continuous periods. Process
P1 starts with a Δ2 period and process P2 with a Δ1 period.

3.2 Slicing in the General Case

We consider the general case, when a set of processes P = Pi, 0 < i ≤ N exchange
messages. Any pair (Pi, Pj), i 
= j can communicate through different message links.
Let Δij be the minimal transmission delay for the set of links from Pi to Pj . This delay
measures the minimal transfer time of a message sent by a process Pi to the process Pj ,
for all links from Pi to Pj . If no communication occurs, we assume the minimal delay
is infinite: Δij = +∞ iff Pi does not send any message to Pj .

The evaluation of slices relies upon the following principle: an initial slice is first
determined and, then, a sequence of repeated slices is computed.

The initial slice of the parallel simulation consists in running the processes in parallel
during a period equal to the minimal transfer delay of messages received by this process
from other processes. The initial step duration Γi for a process Pi is equal to:

Γi = min
k �=i

Δki

Without loss of generality, we change the numbering of the processes according to their
Γi value in ascending order. This numbering ensures the property: ∀i : Γi ≤ Γi+1

Proposition 1. Step Interval Evaluation. The duration of the simulation steps of all
processes can be evaluated statically. More precisely, the parallel simulation of N pro-
cesses ordered according to their Γi attribute can execute steps of the following periods:

– The sequence of steps of the first process P1 is assigned the values4: (Γ1; Γ2)∗
– The sequence of steps of all other processes is assigned the values: Γp; (Γ1; Γ2)∗

4 The regular expression (a; b)∗ defines an undefined number of iterations of the basic sequence
a; b.
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Proof. After the execution of the first slice, all processes are allowed to start running a
second slice. In order to enforce separability, its duration (Ωi for process Pi) must be at
most equal to the minimal step duration of the initial slice of the other processes:

Ωi = min
k �=i

Γk

The evaluation of the Ωi durations is straightforward: thanks to the process renumber-
ing, we have the following property:

– for the first process P1: Ω1 = mink �=1 Γk = Γ2
– for the other processes Pi, i > 1: Ωi = mink �=i Γk = Γ1

Therefore, during the second slice, the process P1 is run during a Γ2 interval and all the
other processes run during a Γ1 interval.

When all processes have terminated this second slice, they can start a third slice
during which a process Pi will perform a simulation step of Θi duration. The evaluation
of these intervals relies upon the following remark: the processes P1 et P2 which receive
their messages with the shortest delays, have been running during the same Γ1 + Γ2
interval. All the other processes Pi, i > 2 have been running during a longer interval:

∀i > 2 : Γi + Γ1 ≥ Γ1 + Γ2

The instant t0 = Γ1+Γ2 (see Figure 5) sets up a frontier from which the assumptions
of the initial point are valid again: each process Pi is allowed to run during Γi. For the
two first processes, since they are stopped at point t0, they can actually continue during
respectively Γ1 and Γ2. The other processes are ahead in time: they are allowed to run
until the instant t0 + Γi, but they have already performed an interval equal to Γi + Γ1.
Therefore, they can only run during the following Θi duration intervals:

∀i > 2 : Θi = (t0 + Γi) − (Γi + Γ1)

But, from t0 = Γ1 + Γ2, we deduce:

∀i > 2 : Θi = (Γ1 + Γ2 + Γi) − (Γi + Γ1) = Γ2
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Indeed, all the processes, except P1, are allowed to run during an interval equal to Γ2
in parallel with the process P1 which is only allowed to run during an interval equal to
Γ1. Then, the simulation can continue with a fourth slice identical to the second one:
the process P1 runs during a Γ2 interval and all the others run during a Γ1 interval.

3.3 Performance

With respect to parallelism, the simulation performance exclusively depends on the two
processes receiving their messages with the shortest delays. Their parameters Γ1 et Γ2
determine the simulation steps. If we do not consider the first slice, the execution time
to simulate a period Γ1 + Γ2 of the actual system is 2 ∗ Γ2. Therefore, the rate between
the simulation speed and the actual system execution is:

Γ1 + Γ2

2 ∗ Γ2
=

1
2
(1 +

Γ1

Γ2
)

As Γ1 ≤ Γ2, we also obtain:

1
2

≤ 1
2
(1 +

Γ1

Γ2
) ≤ 1

In the worst-case, parallel simulation is twice slower than the actual distributed
computation.

3.4 Conclusion

In a distributed computation with known minimal communication delays between pro-
cesses, static lookahead steps can be computed leading to a parallel execution at worst
twice slower than the actual system. Moreover, if the two processes which communicate
the most rapidly (i.e. P1 and P2) satisfy Γ1 = Γ2, then the parallelism is optimal.

Moreover, message frequencies are not involved in this computation, as the schedul-
ing of the simulation step intervals described in Proposition 1 solely relies upon the Γi

attributes, and thus on message delays. Therefore, any sending behavior is allowed.
In the following section, we analyze how knowledge about message frequencies al-

low to decrease the number of synchronization barriers during a parallel simulation.

4 Parallel Simulation Using Frequencies

4.1 Principle

We consider a system where all communications are periodic. Each communication
link is used at a fixed frequency. Actually, communication can happen less often than
the fixed frequency, by missing some slots. However, the delay between two sendings
must always be a multiple of the frequency.

A simulation run is split into slices. Our goal is to achieve an optimal degree of
parallelism for the simulation, that is to find a simulation where each step has the same
duration for all subsystems. However, consecutive slices do not have to be of the same
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duration. In doing so, time loss only occurs because of the duration of a subsystem
simulation step (upon which the simulation scheduler has no influence) and, for a small
part, because of the required synchronization at the end of each step.

To ensure the separability requirement, we must choose a duration slice so that no
message is both sent and received in the same slice. A solution is to choose a slice dura-
tion such that the global system advances strictly until the next reception. All processes
advance in parallel by this duration. Once each process has reached this same date, a
new slice, which includes the effective reception, is done. Thus, the message has been
sent in a previous slice and received in a different slice.

The choice of the duration is improved by using the transmission delay: when we are
seeking the next reception, transmission delay can be used to assure that the message
was not sent in the current slice but in a previous slice; if so, it does not induce a frontier
and can be ignored.

If all communication frequencies are fixed and known, we can a priori determine the
duration of each slice, yielding a sequence of slices. Except for a fixed prefix of slices,
this sequence is periodic: it cycles after a duration which is the least common multiple
of the communication periods. For instance, if a system has three communication links
with periods of 5 s, 8 s and 12 s, we get a sequence of 40 slices whose cumulated
duration is 120 s. After that duration, the sequence of slices starts over again.

Proposition 2. If all communication frequencies are fixed, there exists a periodic se-
quence of slices which ensures separability. The total duration of this sequence is the
least common multiple of the communication periods.

Let us consider a cut at any large enough date t. This date t must be such that a message
has been sent and received on all links, that is: t ≥ maxl∈L(l.phase+ l.delay). At date
t+lcm of the periods, every process has made an integer number of slices, and is in the
same configuration (with regard to communication) as at date t. So the whole system is
in the same configuration.

4.2 Jitter

Let us note δ the reception jitter. If we consider a communication link having period T ,
delay Δ, jitter δ and first emission date (phase) ϕ, the n-th message is received at a date
included in [n ∗ T + ϕ + Δ − δ, n ∗ T + ϕ + Δ + δ].

Jitter introduces two problems:

– an early message could be received before the frontier and invalidate the separabil-
ity criterion. To avoid this, the frontier is set at the earliest date, δ before the date
given by the frequency;

– a message can be ignored if we are sure that it was sent in a previous slice. As the
exact sent date is unknown, we choose the latest date, δ after the date given by the
frequency.

To ensure that, on a given link, a send event is never considered to happen after its
corresponding receive event, the jitter must be less than half the transmission delay Δ.
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4.3 Algorithm

For a link l, we consider all the parameters introduced in the model: its transmission
delay Δ, its period T , its jitter δ and its phase ϕ.

At time t, the date of the next message which will be received on link l is at least5:

nextDate(t, l) Δ= (t + l.T − l.Δ − l.ϕ) ÷ l.T ∗ l.T + l.Δ + l.ϕ − l.δ

At time t, the link l causes the next frontier if:

nextDate(t, l) = min
l′∈L

nextDate(t, l′)

but this message can be ignored if we know that it comes from a previous slice, that is:

nextDate(t, l) − l.Δ + 2 ∗ l.δ ≥ previous frontier

If the message is not ignored, nextDate(t, l) is the new frontier and a slice of duration
nextDate(t, l) − previous frontier is run.

4.4 Example

We consider a system with two subsystems and two links. The periods are such that
T2 = 5

2T1. The least common multiple is 5T1 and we generate a sequence of slices
whose cumulated duration is 5T1. Three cases are considered, based on different trans-
mission delays. For the sake of simplicty, we have chosen a common start date of 0
where the two subsystems start with the reception of a message on their links.

– If the delays are small enough (Figure 6), all messages induce a frontier and the
sequence is (T1, T1,

1
2T1,

1
2T1, T1, T1)∗.

– If the delay of a double-arrow message (period T2) is greater than 1
2T1 (Figure 7),

the double-arrow message which is received at date 5
2T1 has necessarily been sent

in the previous slice. It can be ignored and the sequence is (T1, T1, T1, T1, T1)∗
– if the delay of a single-arrow message (period T1) is greater than 1

2T1 (Figure 8), the
third single-arrow message has necessarily been sent in slice 3 and can be ignored.
The sequence is (T1, T1,

1
2T1,

3
2T1, T1, T1)∗.

5 The operator ÷ is the integer division.
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5 Conclusion

We have proposed a parallel execution pattern for simulating distributed computations.
This approach avoids complex and dynamic synchronization of simulators (including
dynamic look-ahead computation, rollback or dead-reckoning) and allows an a priori
evaluation of simulation step intervals of processes. Moreover, this static schedule pro-
vides a simple means to assess the overhead and the degree of parallelism of the sim-
ulation. In this respect, the implementation of a simulation engine is currently being
developped in the field of space systems and will illustrate the theoretical results of our
study. However, the constraints to cope with the message frequencies can be too rigid.
We are currently extending our parallel simulation model to introduce more flexibility
and enable dynamic commutation of frequencies:

– upon exceptional asynchronous events (failures, reconfiguration of the system for
instance);

– to handle clock drifts, which may result in a discernible change in the links’ phase
or frequency, over time.

These commutations divide the global simulation into long periods during which step
intervals are statically known. However, a commutation occurrence leads to reevaluate
step intervals according to the updated, new or disappeared links and their parameter
values.
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Our approach must also be confronted with simulations involving testbeds and con-
sequently real-time constraints. The static features of our strategy seems a propitious
property insofar as simulated step intervals are perfectly known.
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Small-World Networks:
From Theoretical Bounds to Practical Systems
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Abstract. In small-world networks, each peer is connected to its closest neigh-
bors in the network topology, as well as to additional long-range contact(s), also
called shortcut(s). In 2000, Kleinberg provided asymptotic lower bounds on rout-
ing performances and showed that greedy routing in an n-peer small-world net-
work performs in Ω(n

1
3 ) steps when the distance to shortcuts is chosen uniformly

at random, and in Θ(log2 n) when the distance to shortcuts is chosen according
to a harmonic distribution in a d-dimensional mesh. Yet, we observe through
experimental results that peer to peer gossip-based protocols achieving small-
world topologies where shortcuts are randomly chosen, perform reasonably well
in practice.

Kleinberg results are relevant for extremely large systems while systems con-
sidered in practice are usually of smaller size (they are typically made up of less
than one million of peers). This paper explores the impact of Kleinberg results in
the context of practical systems and small-world networks. More precisely, based
on the observation that, despite the fact that the routing complexity of gossip-
based small-world overlay networks is not polylogarithmic (as proved by Klein-
berg), this type of networks ultimately provide reasonable results in practice. This
leads us to think that the asymptotic big O() complexity alone might not always
be sufficient to assess the practicality of a system whose size is typically smaller
that what the one theory targets. The paper consequently proposes a refined rout-
ing complexity measure for small-world networks (namely, a recurrence formula
that can be easily computed). Yet, given that Kleinberg proved that the distribu-
tion of shortcuts has a strong impact on the routing complexity (when extremely
large networks are considered), arises the question of leveraging this result to im-
prove upon current gossip-based protocols. We show that gossip-based protocols
(designed for less than one million of peers) can benefit from a good approxi-
mation of Kleinberg-like small-world topologies (designed for extremely large
networks). Along, are presented simulation results that demonstrate the relevance
of the proposed approach.

1 Introduction

Distributed systems have experienced a dramatic scale shift over the past decade. Peer
to peer (P2P) overlay networks have been at the center of distributed systems research
both in the theoretical and practical communities, often in a fully de-correlated manner
though. The research yields rather different expectations whether theory or practice is
considered. On one hand, practical implementations target effectiveness for the most
frequent cases, potentially at the price of lack of theoretical “worst-case” guarantees.

E. Tovar, P. Tsigas, and H. Fouchal (Eds.): OPODIS 2007, LNCS 4878, pp. 372–385, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Small-World Networks: From Theoretical Bounds to Practical Systems 373

On the other hand, theoretical analysis provides asymptotic bounds for extremely large
systems, without always being used to design solutions viable in practice. Routing is
one of the main issues encountered in these systems. Focusing on the cost of routing in
2-dimensional torus topologies, this paper is an attempt to (i) consider both theory and
practice in the context of small-world overlay networks, where each peer is connected to
its closest neighbors in the topology and additional long-range contact(s) (shortcut(s)),
and (ii) leverage both areas to provide provably-efficient systems. Its main contribu-
tions are the following.

– Asymptotic bounds are relevant for extremely large systems. Yet, systems consid-
ered in practice are typically smaller, usually under a million. Considering such
practical systems and a greedy routing strategy, the paper first confronts asymp-
totic bound results with the efficiency achieved using practical epidemic (also called
gossip-based) protocols. We observe through simulations that the expected gap in
the routing performance between the two approaches to select shortcuts is not en-
tirely reflected in such practical systems. Based on this observation, we argue that
the asymptotic complexity analysis alone is not sufficient to assess the practicality
of a small-world topology. The paper refines consequently this analysis and char-
acterizes the cost of routing, in terms of the average number of hops in both the
grid and uniform topologies. This cost is expressed by a recurrence formula that
can easily be computed1.

– According to the previous results, the paper provides a fresh look at epidemic-
based overlay networks and argue that they can achieve small-world topologies.
We investigate the improvement of epidemic-based small-world networks to fully
leverage Kleinberg’s results in practical settings2. More specifically, we provide the
design and preliminary results of a gossip-based protocol, biasing the peer sampling
component used to create shortcuts, so that it provides a good approximation of
Kleinberg’s harmonic distribution.

The table below summarizes methods to analyze algorithms/systems. This paper is
mainly concerned with “Recurrence Formula” and “Simulations”.

Theory
O( ) Formula Describe asymptotic behaviors for all pb instances

Recurrence Formula
Give exact results for each pb instance

Experiments
Simulations

Real Experiments

Small-World Networks and Kleinberg’s Result. Small-world networks have been
introduced as an analytical way of understanding and exploiting the six degrees of

1 As shown in the paper, the number of hops provided by the formula and the number of hops
provided by simulation experiments are practically the same. The advantage (with respect to
a simulation) of having a recurrence formula lies in its generality, the fact that it can easily
be computed, and the fact that computing a formula is much more efficient than running a
simulation. (Finding a corresponding closed form formula remains an open problem.)

2 “Practical setting” means here “a network with no more than one million of nodes”. So, we
are mainly interested in distributions suited to “small” grids/topologies when we adopt a “big
O() point of view”.
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separation stating that two random individuals are separated by small chains of ac-
quaintances [13]. When applied to computing networks, this can be achieved by each
node in a mesh, knowing its closest neighbors and having additional shortcuts in the
graph. While Watts and Strogatz [18] considered shortcuts as picked up uniformly at
random, Kleinberg refined this result, demonstrating that meshes augmented with short-
cuts provide a polylogarithmic routing and navigation under a greedy routing protocol,
as long as the distances from the peers to their shortcuts follow a specific distribution
(d-harmonic) [11,12]. One of the main results of Kleinberg’s work is the determination
of the magnitude order of the routing complexity in such networks (this model is further
detailed in Section 2). This result has been of the utmost importance in the community,
leading to a full range of works improving upon the routing complexity based on an in-
crease knowledge of the system or a slightly different greedy algorithm (e.g., [1,8,14]).
Yet, those results consider extremely large system sizes.

Epidemic-Based Overlay Networks. Epidemic-based (or gossip-based) protocols
were first introduced to reliably disseminate data in large-scale networks [2,4]. In the
practical world, epidemic-based protocols have received an increasing attention as a
scalable and reliable solution to build and maintain P2P overlay networks of arbitrary
structure [9,10]. Their convergence properties, reliability and simplicity make them
however attractive for much more than data dissemination [6]. More specifically, they
have been applied in a wide variety of settings and are now turned into a generic tool to
build and maintain large-scale overlay networks. It turns out that depending on the peer
locally chosen for the interaction and the information exchanged, gossip-based proto-
cols can be used to build overlay networks ranging from fully random-like unstructured
networks to fully (DHT-like) structured networks (e.g., [7]). In this paper, we take a
fresh look at overlay networks based on epidemic protocols and consider them with
respect to small-world networks.

Epidemic protocols may be used to construct P2P overlay networks achieving graph
properties very close to those of random graphs [5,10,15]. Typically, a gossip-based
peer sampling service provides each peer with a set of long range contacts in a large-
scale overlay network [10]. Resulting graphs are extremely robust and remain connected
even in the presence of a large number of failures. In the context of this paper, we con-
sider such a peer sampling service to be a way to implement randomly chosen shortcuts
of small-world networks. Gossip-based protocols have also been used to create overlays
optimized with respect to application-specific metric (e.g., clustering peers according
to a proximity metric). It is actually relatively straightforward to use such gossip-based
clustering protocols [16,17] to choose the local neighbors in a small-world network.

Motivation. The paper focuses on systems provided with (i) an underlying peer sam-
pling gossip-based protocol that provides each peer with a random sample of the system
(i.e., each peer is provided with shortcuts randomly chosen), and (ii) a gossip-based
clustering protocol that provides each peer with a set of close neighbors (according
to the considered underlying topology). Such a combination creates therefore a small-
world topology according to the Watts and Strogatz model [18].

While, as proved by Kleinberg [12], the routing expectation (expected number of
hops) is Ω(n

1
3 ) (n being the total number of peers), it appears that performance results
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Fig. 1. Choice of shortcuts: random choice vs Kleinberg’s model choice

in practical settings turn out to be reasonable and follow the exponential convergence
time of epidemic-based protocols, thus qualifying such networks for efficient routing.
On another side, should the peer sampling service provide a sample following the distri-
bution as defined in the Kleinberg model [12], the routing cost should greatly improve
to Θ(log2 n).

The previous observations constitute the starting point of our work. Simulating a sys-
tem whose size ranges from 5000 to 500, 000 peers, using six close neighbors and 1 or
10 shortcut(s) in a uniform topology, we first compared the random selection of short-
cuts against Kleinberg’s selection, and computed the average number of hops between
any pair of peers in the system (this is depicted on the Fig. 1). It appears that (as ex-
pected) the average number of hops between two peers is significantly improved when
using the latter choice. The discrepancy increases with the size of the system and the
number of shortcuts. These results show however that a random selection of neighbors
keeps the average number of hops within reasonable bounds.This gives the motivation
of our work, namely, while Kleinberg results are obviously relevant for extremely large
systems, to the best of our knowledge, no one looked at the impact of those results
on smaller size systems such as the ones encountered in practiced. In this paper, we
show that the impact is not as striking as expected between random and Kleinberg-like
shortcuts but important enough so that the practical systems should try to benefit from
small-world network theory.

Contribution. Kleinberg’s results were obtained on a d-dimensional grid topology.
As such a topology is not always encountered in practice, we consider in this paper a
topology where peers are randomly and uniformly distributed. Accordingly, the paper
refers to the uniform topology.

Based on the observed results, we argue that relying on the magnitude order of the
complexity analysis is not sufficient to draw conclusions on the practicality of an ap-
proach. Using random shortcuts, the first contribution provides a refinement of the anal-
ysis of the routing cost in the uniform topology. This analysis provides us with a way
to compute the expected routing performance in small-world networks. Simulations re-
sults demonstrate the good accuracy of the number of hops provided by the proposed
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analysis. As Kleinberg’s selection of shortcuts yields an improved routing, we apply
our approach to that model too. We have also conducted simulations, the results of
which are extremely encouraging. The table below the right summarizes the paper
contributions.

Finally, we propose the design and preliminary evaluations of a gossip-based proto-
col leveraging the theory to achieve an approximation of a Kleinberg-like small-world
network. More developments can be found in [3].

Routing cost according to the way shortcuts are selected
Topology Random Kleinberg’s model

Grid Ω(n
1
3 ) Θ(log2 n)

Uniform Ω(n
1
3 ) and Eq 2 (Section 3.1) Θ(log2 n) and Eq 5 (Section 3.2)

2 System Model and Simulation Setup

This section describes the system models considered in the paper. Dealing with failures
is out of the scope of this paper. Network dynamic is also left out for this study and
left for future work (robustness in face of high dynamics is one of the main strengths of
epidemic-based protocols and we are confident that resulting protocols should sustain
high dynamic).

In this paper, we consider a uniform topology. We also conducted the analysis in
the context of the Grid topology; details can be found in [3]. The uniform topology
considered is based on a 2-dimensional torus. In the following, a peer A is denoted by
its name or its coordinates in the corresponding topology. The positions of the n peers
are chosen uniformly at random in a 2-dimensional torus [0 : 1]×[0 : 1]. More precisely,
the pair of coordinates (Ax, Ay) associated with a peer A are chosen from the set [0 : 1]
following a uniform random distribution. In this topology, the distance between two
peers located at (i1, j1) and (i2, j2) is the classical Euclidean distance, i.e.,

de =
√

min(|i2 − i1|, 1 − |i2 − i1|)2 + min(|j2 − j1|, 1 − |j2 − j1|)2.

Fig. 2. Uniform topology (n = �2 = 25)



Small-World Networks: From Theoretical Bounds to Practical Systems 377

2.1 Neighbor Selection

In a small-world network, each peer, fully characterized by its location in the torus,
maintains a view of the system. That view is made up of two sets of neighbors: a set of
local neighbors (or local contacts), which are close neighbors in the graph and a set of
long-range neighbors, called shortcuts, chosen according to a selection distribution.

We consider a greedy routing algorithm to navigate a small-world network. This
means that, at each hop, a message is routed to a peer, the position of which is closer
to the destination thus ensuring that the distance to the destination always decreases as
the routing process progresses. At each routing peer, the neighbors from these two sets
are considered to select the peer to which a message has to be routed.

Local Contact Selection. To allow for a greedy routing, each peer must know at least
six of its closest neighbors, one in each wedge of the space as shown in the figure above.
(If a node does not have a contact belonging to one of these wedges, it can easily been
shown that the greedy routing may fail [19] 3.) Partitioning evenly the space around
each peer into 60◦ wedges, and assigning a local contact belonging to each of these
wedges ensures that the greedy routing can be implemented using only local contacts.

Shortcut Selection. Shortcuts are added to the view of each peer to speed up the rout-
ing process, providing them with candidates to perform “large” routing steps. The com-
plexity achieved by a greedy routing is highly sensitive to the way such shortcuts are
chosen. We consider two selection algorithms in this paper, providing each peer with q
shortcuts. In the figure above, we have q = 2, and the two shortcuts are depicted with
dashed lines.

– Random selection: As introduced in the Watts and Strogatz model [18] and im-
plemented using the peer sampling protocol in the context of epidemic-based algo-
rithms, the selection is done uniformly at random. Each peer A is provided with q
shortcuts by choosing q peers uniformly at random from the set of all the peers of
the network that are not local contacts of A.

– Kleinberg’s selection: As proposed in [12], shortcuts can be added according
to a non-uniform distribution. Selecting shortcuts this way has proven to signifi-
cantly reduce the cost of a greedy routing, achieving polylogarithmic complexity.
In Kleinberg’s model, a peer A selects a peer B as a shortcut with a probability
proportional to the value δ(B) = 1

d(A,B)2 (d() denotes the Euclidean distance).

More precisely, a peer B is chosen by a peer A with probability δ(B)∑
B′∈S δ(B′) where

S denotes the set of all the peers that are not a local contact of A. In the following,
this selection mode will be referred as Kleinberg’s selection.

2.2 Simulation Setup

Due to page limitation, the simulation setup is not described in detail. The results are
illustrated by comparing analytical results against simulation results obtained using the

3 In practice, there is no need of this condition if the algorithm takes enough local contacts. It is
possible to show that the probability of these special cases is then close to 0.
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simulator PeerSim [20]. This simulator allows us to choose the topology, the number of
nodes, the number of local contacts p, and the number of shortcuts q. For each generated
network, a high number (500, 000 if not specified otherwise) of pairs of peers have been
randomly selected to evaluate the cost of the routing. The simulator also implements the
gossip-based protocols evaluated in Section 4.

3 Routing Analysis in Small-World Overlay Networks

3.1 Small-Worlds with Randomly Selected Shortcuts

As already noticed, studying the complexity of greedy routing in a grid topology in
[12], Kleinberg proved that a random selection of shortcuts in a small-world network
gives rise to a routing cost with an expected number of hops that is at least αn

1
3 , where

n denotes the number of peers and α is a coefficient -not explicitly determined- that is
independent of n.

The good performance achieved in small-world networks by epidemic protocols (and
more specifically by the random selection of shortcuts achieved by peer sampling proto-
cols), led us to think that knowing the value of α is actually interesting. The idea here is
that knowing more precisely that value enables us to analyze efficient implementations,
and allows consequently for a better understanding of why gossip-based protocols are
practically efficient. Although Kleinberg’s study is only on the grid topology, we are
confident that the same kind of results can be extended to the uniform topology. We
checked this experimentally [3] and consider only the uniform topology in this paper.

In a uniform topology, distances are real numbers in [0,
√

2
2 ] (let us recall that the

nodes are on a [0 : 1] × [0 : 1] torus). Let us define f(d), a function that gives the
average number of routing hops between any two peers that are at distance d. p denotes
the number of local contacts and q denotes the number of (randomly chosen) shortcuts.
Local contacts are defined from a radius; let us estimate the corresponding radius rp.
As the torus [0 : 1] × [0 : 1] represents an area of 1 unit, the average surface is p

n when
considering p peers. If a disk is used to approximate that area, its radius is rp =

√
p

nπ .
dq(i) denotes the density of probability that the best shortcut is at distance i of the

destination. The function d1() is as follows (details can be found in [3]):

0 ≤ i ≤ 1
2 : d1(i) = 2πi,

1
2 < i ≤

√
2

2 : d1(i) = −2πi + 8i arcsin
( 1

2i

)
.

The other functions dq() can be computed recursively from d1() (the derivative symbol
dk is omitted in order not to overload the formulas):

dq(i) = dq−1(i)
(

1 −
∫ i

k=0
d1(k)

)

+
(

1 −
∫ i

k=0
dq−1(k)

)

d1(i). (1)

Taking into account these modifications, we obtain the following recurrence formula
for the uniform topology:

0 < d ≤ rp : f(d) = 1,
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(b) Kleinberg’s Selection

∀d > rp : f(d) = 1+

(∫ d−rp

i=0
dq(i)f(i)

)

+

(

1 −
∫ d−rp

i=0
dq(i)

)

f(d−rp). (2)

Figure 3(a) compares simulations wrt the formula for networks of size ranging from
4, 000 up to one million. Each peer knows p = 20 local contacts and q = 2 random
shortcuts are chosen. We observe a slight discrepancy between our formula and the
simulation results. This comes from the fact we always consider that a local contact is
located on the circle of radius rp, and consequently the distance to the destination is
reduced by rp each time a local contact is used. In a real setting, as a local contact may
be within the disk of radius rp, the gain may be smaller (it would actually be possible
to take this fact into account at the price of a much more complicated formula).

3.2 Small-Worlds with Shortcuts According to Kleinberg’s Distribution

In this section, we analyze the performance of routing algorithms based on Kleinberg’s
shortcut selection

Local Contacts Analysis. The effect of the p local contacts on the routing performance
is the same, be the q shortcuts selected randomly or according to Kleinberg’s distribu-
tion. So, in our analysis, the study of locals contacts remains the same, namely, there is
an estimated radius rp =

√
p

nπ which corresponds to the area approximately covered
by the local contacts.

Distribution of Shortcut Locations. Since the shortcuts are no longer chosen follow-
ing the uniform distribution, that distribution becomes more complex. As described in
Section 2, a shortcut B is selected by a peer A following a probability proportional to
the inverse of the square of the distance between A and B. We already know the dis-
tribution of the distance between two peers, that is expressed by the function d1(). We
consequently obtain the density of probability dist() that the shortcut B is at distance i
from A from the following formula (defined only for i > rp since shortcuts can not be
taken amongst local contacts):

∀rp < i ≤
√

2
2

: dist(i) =
d1(i)

i2

∫ √
2

2
k=rp

d1(k)
k2

. (3)
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Fig. 3. Best shortcut

Expected Number of Hops. As in the previous analysis, we need to compute the
probability for a peer to use one of its shortcuts in the routing process. The previous
recurrence formulas remain correct if the function d() is appropriately adapted. Let us
start with only one shortcut (q = 1). We are looking for the density of probability d′1()
that the shortcut is at distance i to the destination.

Figure 3 depicts the following situation: S is the source node, D the destination, and
P the shortcut; d, i, and j denotes the distances SD, DP , and SP , respectively. From
a geometrical analysis we conclude that j =

√
d2 + i2 − 2di cos(α). Summing all the

possible positions of P over the circle gives:

d′1(d, i) = i

∫ 2π

α=0

dist
(√

d2 + i2 − 2di cos(α)
)

2π
√

d2 + i2 − 2di cos(α)
.

Let us notice that the function d′1() depends not only on i, but also on a second param-
eter measuring the Euclidean distance d between the source and the destination. More
generally, the function d′q(), for more shortcuts q > 1, can be computed from the value
of d′1(). We then obtain the following value:

d′q(d, i) = d′q−1(d, i) ∗
(

1 −
∫ i

k=0
d′1(d, k)

)

+
(

1 −
∫ i

k=0
d′q−1(d, k)

)

d1(d, i). (4)

Finally, similarly to Equation 2 the routing cost can be computed with the following
recurrence:

∀d > rp : f(d) = 1+

(∫ d−rp

i=0
d′q(d, i)f(i)

)

+

(

1 −
∫ d−rp

i=0
d′q(d, i)

)

f(d−rp).

(5)
Figure 3(b) compares simulations wrt the formula for networks of size ranging from
4, 000 up to 150, 000. Each peer knows p = 20 local contacts and q = 2 Kleinberg’s
shortcuts are chosen. We observe again a slight discrepancy between our formula and
the simulation results. This come from the same fact as described for the Figure 3(a),
namely, the use of a local contact always reduces the distance to the destination by the
distance rp.

Figure 4 shows the impact of the number of shortcuts on the average number of
hops in a 200, 000 peer system and compares the random shortcut selection against the
Kleinberg’s one. As expected, the routing performance improves with the number of
shortcuts regardless of the shortcuts selection. However, we observe that the routing
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Fig. 4. Impact of the number of shortcuts on the routing performance in a 200,000 peer system

performance decreases faster with Kleinberg’s selection: with one shortcut only, Klein-
berg’s selection improves the number of hops of 16% with one shortcuts and 48% with
10 shortcuts. Although the average number of hops is less than 20 in a 200,000 peer
system using randomly selected shortcuts, and therefore qualify for a practical system,
there is still room for improvement by leveraging the Kleinberg’s selection method in
practice.

4 Kleinberg-Like Epidemic-Based Small-World Networks

Gossip-based protocols have been recognized as a sensible and efficient paradigm for
building peer to peer overlay networks of arbitrary structure. Current gossip-based pro-
tocols can achieve already small-world topologies with random shortcuts. This sec-
tion presents the design of a gossip-based protocol implementing a small-world overlay
network where shortcuts are selected according to an approximation of Kleinberg’s
selection.

A Generic Gossip-Based Protocol. Let us consider a system made up of n peers
uniquely defined by their coordinates4. Each peer maintains a set of neighbors (IP ad-
dress of other peers in the system) called its view, reflecting its knowledge of the mem-
bership of the system5. This creates a connection graph, where an edge between two
peers A and B means that each of them belongs to the view of the other one. Each peer
executes an active thread and a passive thread. The size of a view is c (c being a param-
eter of the system). Periodically each peer A runs the active thread: (i) it selects from its
view a peer B to gossip with, (ii) sends a message to B containing a subset of its view,
and (iii) merges its own view with the information received from B, truncating its view
back to c. The passive thread on A (i) sends to B a subset of its view upon receiving

4 Peers could join and leave the system dynamically although we do not consider dynamics in
our experiments.

5 As, in this paper, we consider the use of gossip-protocols for overlay maintenance only, the
state of a peer is fully represented by its view.
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a gossip message from B and (ii) merges its own view with the information received
from B, truncating its view back to c. (Many details of the protocol are omitted due
to space limitations, but full details can be found in [10].) It turns out that the resulting
connection graph strongly depends on the peer selection, the state exchanged during the
gossip and the processing of the state to compute the resulting view.

Local Contact Selection. Using the generic protocol described above, a clustering
gossip-based protocol may be used to create the local contacts in a small-world. Let us
consider the uniform topology case. As shown in Figure 2, each peer needs to maintain a
peer in each of the six wedges attached to each peer (recall that each wedge covers 60◦).
In such a context, a gossip-based algorithm may easily be implemented as follows. Peer
selection: the closest peer, according to the Euclidean distance, in one of the wedge of
the circle, is chosen to gossip with (at random if several candidates). State exchanged:
in this preliminary version, the whole views are exchanged. State processing: the closest
peers, according to the Euclidean distance and optimizing along all directions, are kept.
(In a dynamic system, such a clustering protocol might be run in parallel with a random
peer sampling protocol.)

Random Shortcuts. It has been shown in [10] that such a gossip-based protocol can
be used to provide a random sample to each peer. (Running the Cyclon [15] protocol for
example results in a graph, the properties of which are close to those of random graphs
with respect to the average path length, clustering coefficient and diameter.) Therefore,
this gossip-based protocol can be run together with the clustering protocol mentioned
above in a straightforward manner, thereby implementing the random shortcuts of a
small-world random graph. For the purpose of comparison, we use the Cyclon protocol
in our simulations of gossip-based random small-world overlays (Figure 5).

Creating Kleinberg ’s Shortcuts. In order to leverage the potential of the d-harmonic
distribution as defined in [11], we bias the peer sampling service in order to approximate
the distribution advocated by Kleinberg. To that end, we propose to change the nature of
the state exchanged between peers upon gossip, in order to match as closely as possible
this distribution. The algorithm on peer A is implemented as follows. Peer selection: a
peer B is chosen uniformly at random from A’s view (of size c). State exchanged: c

2
peers are chosen in A’s view to reflect the Kleinberg’s distribution. More specifically, a
peer A keeps a peer C from its view with a probability proportional to δ(C) (as defined
in 2.1, i.e., δ(C) = 1

d(A,C)2 where d is the distance separating A and C). The remaining
c
2 peers are sent to B during the gossip operation. This enables to minimize the loss of
information during the gossip operation. State processing: the view is replaced by the
c
2 non chosen entries from the view, sent over during the gossip operation.

We illustrate this protocol through an example. Both Cyclon and the proposed pro-
tocol follow the same pattern. They differ only in the way a peer selects the set of peers
it sends to another peer during a round (steps denoted (2) and (3) in the following).
While these peers are randomly selected in Cyclon, they are selected according to their
distance in the proposed protocol.
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The behavior of each protocol is explained through the following example. Let A
and B be two peers whose views (of size c = 6) are vA = {B, C, D, E, F, G} and
vB = {U, V, W, X, Y, Z}, respectively.

A round in the random peer sampling protocol

1 A randomly selects a peer from its view (say B).
2 A randomly selects c

2 − 1 other peers from its view, say C and E, and sends to B
the set A to B = {A, C, E}.

3 When B receives the set A to B from A, it randomly selects c
2 peers from it

view (e.g., the set B to A = {U, W, Z}), and sends it to A. It executes vB ←
(vB \ B to A) ∪ A to B to obtain its new view. So, the view of B is now vB =
{A, V, C, X, Y, E}.

4 Finally, when A receives the set B to A from B, it executes vA ←
(
vA \ ({B} ∪

A to B)
)
∪B to A to obtain its new view, that becomes vA = {U, W, D, Z, F, G}.

A round in the Kleinberg-like sampling protocol

1 A randomly selects a peer from its view (say B).
2 Among the other peers in A’s view (v′A = vA\{B} = {C, D, E, F, G}), A chooses

c
2 peers to be kept in its view and sends the other peers to B. The peer selection is
done according to Kleinberg’s distribution. A computes the value 1

d(A,x)2 for each
peer x ∈ v′A. Then A keeps a peer in its view according to a probability proportional
to the previous value. More precisely, a peer x is chosen with probability

1
d(A,x)2

∑
y∈v′

A

1
d(A,y)2

.

For example A keeps the peers {D, E, F} and then sends to B the set A to B =
{A, C, G}.

3 When B received the set A to B from A, it keeps c
2 peers in its view (according

to Kleinberg’s distribution), e.g., the set {U, V, Z}, and sends the remaining peers
to A, i.e., the set B to A = {W, X, Y } to A. It finally executes vB ← (vB \
B to A) ∪ A to B to update its view, that becomes vB = {U, V, A, C, G, Z}.

4 Finally, when A receives the set B to A from B, it executes vA ←
(
vA \ ({B} ∪

A to B)
)

∪ B to A to update its view, that becomes vA = {W, X, D, E, F, Y }.

Figure 5 compares the routing performance in the uniform topology of a gossip-based
protocol implementing an approximation of Kleinberg distribution against a
gossip-based protocol implementing the random selection (peer sampling service). In
addition we compared those simulations with the hypothetical ideal simulation mode 6.
Those preliminary results confirm that gossip-based protocols can be used to achieve in
a fully decentralized way a close approximation of Kleinberg-like small-world overlay
networks. We are currently investigating a broader exploration of the parameter space.

6 In this mode, all nodes are considered in the simulator to select the shortcuts.
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Fig. 5. Ideal versus gossip-based selection of random and Kleinberg shorcuts in small-world over-
lay networks

5 Conclusion

This work has been motivated by the observation that, despite theoretical evidence that
a random selection of shortcuts in small-world networks is not optimal from a greedy
routing point of view, such systems are reasonably efficient in practice (i.e., systems
where the number of nodes does not usually go beyond one million). To have a bet-
ter understanding of this observation, we (i) precisely analyzed the average number
of routing hops (required in a greedy routing strategy), both in the grid topology and
the uniform topology, and (ii) compared the random selection and Kleinberg’s selec-
tion of shortcuts. Not surprisingly, this analysis confirms the superiority of Kleinberg’s
selection, but nonetheless demonstrates that a random selection of shortcuts is not prac-
tically irrelevant. Simulation results show that there is an almost perfect match between
the results observed in practice and the recurrence formula provided by our analysis.
As practical small-world topologies (i.e., when the number of nodes remain “reason-
ably small”) can already be implemented using a two layer gossip-based protocol, we
proposed a gossip-based protocol whose peer sampling service is modified to benefit
from an approximation of Kleinberg selection of shortcuts, thereby leveraging theory
results to improve practical protocols. Further investigation is now needed to refine the
biased gossip-based protocol, explore arbitrary topologies, apply such techniques to
other routing strategies and consider dynamic settings.
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semination in Distributed Systems. IEEE Computer 37(5), 60–67 (2004)

7. Fraigniaud, P., Gauron, P., Latapy, M.: Combining the Use of Clustering and Scale-free Na-
ture of User Exchanges into a Simple and Efficient P2P System. In: Proc. European Conf. on
Parallelism (EUROPAR 2005) (2005)

8. Fraigniaud, P., Gavoille, C., Paul, C.: Eclecticism Shrinks even Small Worlds. In: Fraigniaud,
P., Gavoille, C., Paul, C. (eds.) Proc. 23th ACM Symposium on Principles of Distributed
Computing (PODC 2004), pp. 169–178. ACM Press, New York (2004)

9. Jelasity, M., Babaoglu, O.: T-Man: Gossip-based Overlay Topology Management. In: Proc.
Engineering Self-Organising Applications (ESOA 2005) (2005)

10. Jelasity, M., Guerraoui, G., Kermarrec, A.-M., van Steen, M.: The Peer Sampling Ser-
vice: Experimental Evaluation of Unstructured Gossip-based Implementations. In: Proc. 5th
ACM/IFIP/USENIX Int’l Conference on Middleware. Lecture Notes in Computer Science,
pp. 79–98. Springer-Verlag, Heidelberg (2004)

11. Kleinberg, J.: Navigation in a Small World. Nature 845(406) (2000)
12. Kleinberg, J.: The Small-World Phenomenon: an Algorithmic Perspective. In: Proc. 32nd

ACM Symposium on Theory of Computing, pp. 163–170. ACM Press, New York (2000)
13. Milgram, S.: The Small-World Problem. Psychology Today 61(2), 60–67 (1967)
14. Naor, M., Wieder, U.: Know The Neighbor’s Neighbor: Better Routing for Skip-Graphs and

Small Worlds. In: IPTPS 2004. LNCS, vol. 3279, pp. 269–277. Springer, Heidelberg (2005)
15. Voulgaris, S., Gavidia, D., van Steen, M.: CYCLON: Inexpensive Membership Management

for Unstructured P2P Overlays. Journal of Network and Systems Management 13(2), 197–
217 (2005)

16. Voulgaris, S., Rivière, E., Kermarrec, A.-M., van Steen, M.: Sub-2-Sub: Self-Organizing
Content-Based Publish and Subscribe for Dynamic and Large Scale Collaborative Networks.
In: Proc. 5th Workshop on Peer-to-Peer Systems (2006)

17. Voulgaris, S., van Steen, M.: Epidemic-style Management of Semantic Overlays for Content-
Based Searching. In: RSCTC 2000. LNCS (LNAI), vol. 2005, Springer, Heidelberg (2001)

18. Watts, D.J., Strogatz, S.H.: Collective Dynamics of Small-World Networks. Nature 393, 440–
442 (1998)

19. Yao, A.C.C.: On Constructing Minimum Spanning Trees in k-dimensional Space and Related
Problems. SIAM Journal of Computing 11, 721–736 (1982)

20. http://peersim.sourceforge.net/
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and Naming Problems
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Abstract. This paper investigates whether the assumption of unique identifiers
is essential for wait-free distributed computing using shared objects of various
types. Algorithms where all processes are programmed identically and do not
use unique identifiers are called anonymous. We study the anonymous solvability
of two key problems, consensus and naming. These problems are used to define
measures of a type T ’s power to solve problems anonymously. These measures
provide a significant amount of information about whether anonymous imple-
mentations of one type from another are possible. We compare these measures
with one another and with the consensus numbers defined by Herlihy [13].

1 Introduction

It is routinely assumed, in the literature on distributed computing, that processes have
unique identifiers or, equivalently, that each process can be given a different programme
to follow. Such a system is called eponymous [21]. In contrast, in an anonymous system,
processes do not have unique identifiers and are programmed identically. This paper
studies the differences between anonymous and eponymous systems in the context of
wait-free shared-memory computation.

Unique identifiers are used in many ways. They are incorporated into timestamps to
ensure that no two timestamps are identical. A process can announce information in a
register that it alone is allowed to write, and that information will never be overwritten
by another process. Processes can access a compare&swap object with their own iden-
tifiers and determine which process accessed it first. These uses of unique identifiers
(and many others) are useful tools in solving problems. But are they truly essential?
This paper studies how the answer to this question depends on the types of objects that
are being used.

Our primary motivation is foundational: it is crucial to understand the significance
of each assumption that is made when defining a model of distributed computing. In the
widely-studied model of asynchronous, shared-memory computing where algorithms
are designed to tolerate failures, the ubiquitous assumption of unique identifiers has
received scant attention. One reason for this is the availability of identifiers in most real
systems (although handing out those names can be tricky, particularly in systems where
nodes frequently arrive and leave). It is worth knowing whether anonymous algorithms
exist, even when identifiers are available, because processes accessing shared objects
may not want to divulge their identifiers for reasons of privacy. Processes may not
want other processes, or even the server housing the shared memory, to know who is
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performing operations on the shared data, or even whether two operations are being
invoked by the same process. If it is possible to implement any required algorithms
anonymously, then processes can maintain this kind of privacy. (If a process wishes to
keep its identity secret even from the data server, a trusted third party can be used as an
anonymizer to forward messages between a process and the server.)

This paper focusses on asynchronous shared-memory systems, where n processes
communicate with one another using linearizable shared objects. In keeping with the
anonymous theme, we consider only oblivious types, where the behaviour of the object
in response to an operation cannot depend on the identity of the invoking process. Any
number of processes may experience crash failures; algorithms that work correctly in
such an environment are called wait-free [13].

Herlihy [13] defined the consensus number of type T , denoted cons(T ), to be the
maximum number of processes that can solve wait-free consensus using objects of type
T and registers. If no such maximum exists, then cons(T ) = ∞. This classifies objects
into the consensus hierarchy: a type T is at level k of the hierarchy if cons(T ) = k.
The consensus number of a type is an effective measure of its power in eponymous
systems for two reasons. Firstly, consensus is universal: if cons(T ) ≥ k then there is a
wait-free eponymous implementation (for k processes) of every object from objects of
type T and registers. Secondly, if cons(T1) < cons(T2), then objects of type T1 (and
registers) cannot implement an object of type T2 for more than cons(T1) processes.

A key problem for studying anonymous systems is the naming problem, where each
process must output a distinct natural number. If naming can be solved, then many tech-
niques from eponymous algorithms can be used in the system too. A naming algorithm
may choose arbitrarily large names. In the strong naming problem, the n processes must
output distinct names from {1, 2, . . . , n}. We shall see that this version is strictly harder
to solve. These naming problems address the question of whether the identifiers that are
used by so many algorithms can be assigned within the system model or whether they
must be pre-assigned. If the strong naming problem can be solved, then any eponymous
algorithm can be run: processes first choose identifiers and then run the code of that
process.

The following assumptions are widely used and are, in particular, used in defining
cons(T ): (1) an unlimited number of objects of type T are available, (2) an unlimited
number of registers are available, (3) algorithms are deterministic, (4) objects can be
initialized by the algorithm designer, (5) n (or an upper bound on n) is known, (6) pro-
cesses have unique identifiers, and (7) the identifiers are 1, 2, . . . , n. Variants of the
hierarchy were defined by altering assumptions (1) and (2) [15], but it was ultimately
agreed that these assumptions are indeed natural. Without assumption (3), the consen-
sus hierarchy collapses because randomized algorithms can solve consensus among any
number of processes using only registers [8]. Assumption (4) is essentially redundant
for deterministic objects [5], although the proof of this requires unique identifiers. Al-
gorithms that work without assumption (5) have been widely studied in eponymous
systems [1].

Here, we retain assumptions (1) to (5) to study the importance of (6) and (7). (In
[25] we also briefly consider the effect of dropping assumption (5).) The significance
of assumption (6) was questioned by Buhrman et al. [7], who showed it is crucial for
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Herlihy’s universality result: a system equipped with registers and black-box objects
that solve consensus cannot solve the naming problem. We continue this line of re-
search by studying arbitrary types of shared objects. The goals of this paper include
understanding what the consensus hierarchy would look like without assumption (6),
and whether (7) is an essential addition to (6).

The anonymous consensus number of a type T , denoted acons(T ), is the maximum
number of processes that can solve anonymous wait-free consensus using objects of
type T and registers. If there is no such maximum, then acons(T ) = ∞. A type T is
at level k of the anonymous consensus hierarchy if acons(T ) = k. The strong naming
number of a type T , denoted snaming(T ) is the maximum number of processes for
which there exists an anonymous wait-free strong naming algorithm using objects of
type T and registers. If there is no such maximum, then snaming(T ) = ∞. There is
no need to define a corresponding hierarchy for the ordinary naming problem, since we
shall prove that any type that can solve naming among two processes can solve naming
among any number of processes. In the end, it may turn out that the strong naming
hierarchy similarly collapses into two levels (1 and ∞): it is an open question whether
there exist types at other levels of the strong naming hierarchy.

In eponymous systems, a type T is universal for k processes if and only if cons(T ) ≥
k [13]. The same result does not hold for anonymous systems. The universal number
of a type T , denoted univ(T ), is the maximum number of processes for which every
type of object can be anonymously implemented from objects of type T and registers.
If no such maximum exists, then univ(T ) = ∞. We show that, if the system can solve
strong naming for two processes, then univ(T ) = cons(T ). On the other hand, if the
system cannot solve strong naming for two processes, then univ(T ) is clearly 1. The
classification of types T according to acons(T ), univ(T ) and their ability to solve
naming provides a lot of information about whether anonymous implementations are
possible.

This paper proves the following facts about these new measures.

• A type is at level 1 of the anonymous consensus hierarchy if and only if it is at level
1 of the (standard) consensus hierarchy (Theorem 2).

• For types T at level x ≥ 2 of the consensus hierarchy, acons(T ) can take any value
between 2 and x, inclusive (Proposition 4).

• If acons(T ) < cons(T ) then objects of type T (and registers)cannot solve naming
(Theorem 5).

• We characterize types that can solve naming, showing that if 2-process naming can
be solved, then naming can be solved for any number of processes.

• If strong naming and consensus can be solved for two processes, then strong nam-
ing can be solved for any number of processes (Corollary 1).

• Strong naming is strictly harder than naming (Theorem 6).
• Strong naming is equivalent in difficulty to naming in systems where 2-process

(eponymous) consensus can be solved (Theorem 4).

The main results are combined in Sect. 6 to show every type belongs to a row of Table 1.
It is unknown whether any types belong to row 3; we give example types for all others.
All deterministic types belong to rows 1, 5 and 6.
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Table 1. Classification of types by their ability to solve consensus and naming

Solves
Example types T cons(T ) acons(T ) naming? snaming(T ) univ(T )

register 1 1 No 1 1
weak-name 1 1 Yes 1 1

? 1 1 Yes z ∈ {2, 3, . . .} 1
strong-name 1 1 Yes ∞ 1

Tx,y x ∈ {2, 3, . . . , ∞} y ∈ {2, 3, . . . , x} No 1 1
aconsx x ∈ {2, 3, . . . , ∞} x Yes ∞ x

Related Work. Asynchronous anonymous computation in failure-free models has been
studied previously. Johnson and Schneider gave leader-election algorithms [16]. Attiya,
Gorbach and Moran characterized tasks solvable using only registers [3]. Aspnes, Fich
and Ruppert looked at models with other types of shared objects, such as counters
[2]. Several randomized algorithms using registers are known for naming [9,18,19,26],
which was introduced by Lipton and Park [19].

There is also some work on fault-tolerant anonymous computing, which is closer to
the topic of this paper. Panconesi et al. [24] gave a randomized wait-free naming algo-
rithm. It is not purely anonymous since it uses single-writer registers, which give the
system some ability to distinguish between different processes’ actions. Randomized
naming is known to be impossible if only multi-writer registers are available [7,9,18].
However, consensus is solvable in this randomized model [7]. Thus, naming is strictly
harder than consensus in the randomized setting. This also implies that the anonymous
consensus hierarchy collapses if randomization is permitted, just like the ordinary con-
sensus hierarchy.

Guerraoui and Ruppert investigated what can be implemented deterministically in
an anonymous asynchronous system using only registers if processes may crash [12].
In addition to giving algorithms for basic problems, they characterized the types that
have obstruction-free implementations. Herlihy and Shavit [14] characterized decision
tasks that have wait-free eponymous solutions using only registers, and extended the
characterization to systems with a kind of anonymity: processes have identifiers but
are only allowed to use them in very limited ways. Merritt and Taubenfeld considered
uniform algorithms (where processes do not know the size of the system) in a failure-
free model where processes have identifiers but can only use them in a limited way:
identifiers can be compared with one another but cannot be used, for example, to index
into an array [22].

2 Preliminaries

We briefly describe the model of computation, which is fairly standard except for the as-
sumption of anonymity. An object type is described by a sequential specification, which
is comprised of a set of possible states Q, a set of operations OP , a set of responses to
operations RES and a transition function δ : Q × OP → P(Q × RES) − ∅. (P(S)
denotes the power set of S.) If (q′, r) ∈ δ(q, op), it means that when a process applies
op to an object in state q, the object may return response r and switch to state q′. An
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object type is deterministic if |δ(q, op)| = 1 for all q, op. An object type has finite non-
determinism if |δ(q, op)| is finite for all q, op. The behaviour of an object when accessed
concurrently is governed by the constraint that it is linearizable. The most basic shared
type is the register which stores a value and provides READ and WRITE operations.

A distributed algorithm is a (deterministic) sequential programme for each process,
P1, . . . , Pn. The subscripts 1, . . . , n are used for convenience to reason about the sys-
tem; the algorithm cannot make use of them. The programme can do standard (Turing-
computable) steps on the process’s local memory, and perform operations on shared
objects. If the programmes assigned to all processes are identical, the algorithm is called
anonymous. A step of an algorithm is described by (Pi, op, X, res, q), which indicates
that process Pi accesses object X using operation op, receiving result res and causing
X to enter the state q. The step also includes any local computation by the process,
which is not represented explicitly. An execution of an algorithm is a sequence of steps
satisfying two constraints: the subsequence performed on each object X conforms to
X’s sequential specification, and the subsequence performed by each process Pi con-
forms to Pi’s programme. A solo execution by Pi is an execution where only Pi takes
steps. A configuration describes the state of all shared objects and the local state of all
processes.

We consider two types of problems in this paper: one-shot tasks and (long-lived)
implementations. In a one-shot task, each process receives an input (possibly null) and
must produce an output. The problem specification describes which outputs are legal
for each possible assignment of inputs to processes. In an implementation, the goal is to
implement or simulate an object X of type T . A solution gives a programme (for each
process) for each operation that can be applied to X and specifies the initial state of
all shared objects used in the implementation for each possible initial state of X . The
implementation must be linearizable. Wait-freedom requires that no process can take an
infinite number of steps in any execution without completing its programme.

The consensus problem allows inputs from an arbitrary set. In the binary consensus
problem, inputs must be 0 or 1. The two problems are equivalent: If there is an anony-
mous binary consensus algorithm for k processes using objects of type T and registers,
then acons(T ) ≥ k. The proof of this is identical to the proof of Proposition 8 in [12],
where the output of consensus is agreed upon bit-by-bit. We therefore consider only
binary consensus. We denote 1 − x by x.

Some proofs below use valency arguments, introduced by Fischer, Lynch and Pater-
son [11]. We generalize their definitions slightly to take advantage of anonymity. Fix
some (binary) consensus algorithm. Let T be a tree with the following properties. Each
node represents a configuration of the algorithm. One configuration may be represented
by several nodes. The root of T represents an initial configuration. If a node v has a
child u, then the configuration u is reachable from v. An example of such a tree is the
complete execution tree, in which each node v has one child for each configuration that
is reachable from v by a single step. A branch in T corresponds to an execution. If,
during the execution from the root to a node, a process outputs a value, label that node
with that value. If no descendant of a node is labelled by v, that node is called v-valent
in T . A node is univalent in T if it is 0- or 1-valent in T ; otherwise it is multivalent in
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T . When T is the complete execution tree, we omit the phrase “in T ” for these terms
and the definitions correspond to the original ones [11].

Wait-freedom does not require a bound on the number of steps before termination.
However, the following application of König’s Lemma [17] was observed in [4,6]. (We
assume finite non-determinism throughout the rest of this paper.)

Proposition 1. Consider a wait-free algorithm for a one-shot task. If the algorithm
uses only objects with finite non-determinism then, for any input, the algorithm has a
finite execution tree.

3 Anonymous Consensus Numbers

Here, we study the anonymous consensus hierarchy. (See [25] for details omitted due
to lack of space.) We begin with easy consequences of the definition of acons and the
fact that an anonymous algorithm can run in an eponymous system.

Observation 1. For all types T , acons(T ) ≤ cons(T ).

Proposition 2. If acons(T1) < acons(T2), then objects of type T1 and registers cannot
implement T2 in an anonymous system of more than acons(T1) processes.

Proof (sketch). If T2 can be implemented anonymously from T1 objects and registers,
then T1 objects and registers can simulate any consensus algorithm that uses T2 objects
and registers. �	

The anonymous consensus hierarchy is full: it has types at every level. A register has
consensus number one [8,20], so acons(register) = 1, by Observation 1. Herlihy gave
a consensus algorithm for any number of processes using a compare&swap object [13].
That algorithm is anonymous, so acons(compare&swap) is ∞. For 2 ≤ k < ∞, con-
sider the type aconsk, which has one operation, PROPOSE(x) for x ∈ {0, 1}, that returns
the argument of the first PROPOSE operation to each of the first k PROPOSE operations
performed on it. After the kth PROPOSE, it returns to its initial state. To solve k-process
anonymous consensus, each process proposes its input value to an aconsk object and
outputs the value the object returns. A simple valency argument proves that the type
cannot solve consensus among more processes. Thus, we have the following result.

Proposition 3. For 2 ≤ k < ∞, acons(aconsk) = cons(aconsk) = k.

Observation 1 says that anonymous consensus is no easier than consensus. Here, we
show that anonymous consensus is strictly harder: it is possible for acons(T ) to be
strictly smaller than cons(T ). We define an object type Tx,y that has cons(T ) = x and
acons(T ) = y, for any x and y satisfying 2 ≤ y ≤ x ≤ ∞. The type Tx,y will, of
necessity, be somewhat artificial, since we wish to construct an example for all pos-
sible values of x and y. (A more natural example type T with acons(T ) < cons(T )
is given in [25].) A process accesses an object of type Tx,y either anonymously, using
a PROPOSE(value) operation, or eponymously using a PROPOSE(value, id) operation.
Intuitively, an object, initially in state ⊥, solves consensus by returning to each opera-
tion the first value proposed to it, but does so only if it is accessed anonymously by at
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most y processes and by at most y − x additional processes that use unique identifiers.
If more than y processes access it anonymously or if two processes use the same iden-
tifier, then the object changes to the UPSET state and returns useless random results to
all further accesses. To implement this functionality, the state of the object stores the
value first proposed to it, the number of anonymous accesses that have taken place and
the set of identifiers that have been used by the eponymous accesses.

Proposition 4. For 2 ≤ y ≤ x ≤ ∞, cons(Tx,y) = x and acons(Tx,y) = y.

Proof. If x < ∞, there is a simple eponymous consensus algorithm for x processes
that uses a single object of type Tx,y, initialized to state ⊥. For 1 ≤ i ≤ y, the ith
process performs a PROPOSE(input) operation on the object and outputs the result.
For y < i ≤ x, the ith process performs a PROPOSE(input, i) operation on the object
and outputs the result. If x = ∞, then this algorithm can be used with any number of
processes. Thus, cons(Tx,y) ≥ x.

If y < ∞, y processes can solve consensus anonymously as in the previous para-
graph: each process performs a PROPOSE(input) operation on an object initialized to
⊥ and returns the result. If y = ∞, then this algorithm can be used for any number of
processes. Thus, acons(Tx,y) ≥ y.

If x < ∞, a straightforward valency argument proves cons(Tx,y) ≤ x [25].
Finally, we show acons(Tx,y) ≤ y. To derive a contradiction, suppose there is an

anonymous consensus algorithm for y + 1 processes, denoted P0, . . . , Py , using only
objects of type Tx,y and registers. We use a valency argument. Consider a tree T ,
where each node represents a configuration C such that process P1, . . . , Py have the
same local state in C, constructed as follows. The root is the initial configuration where
process P0 has input 0 and processes P1, . . . , Py have input 1. If C is any configuration
in the tree where P0 has not terminated, we add left children of C to represent the
configurations that can be reached from C by a single step of process P0. Similarly, if
C is any configuration in the tree where P1 has not terminated, we add right children of
C to represent the configurations that can be reached from C by a sequence of y steps
where each of the processes P1, . . . , Py take an identical step. There is at least one such
extension because a sequence of WRITES to a register will all return a null response, a
sequence of READS of a register will all return identical responses, and a sequence of
operations on an object of type Tx,y can always all return identical responses.

All leaves of T are univalent in T . The root is multivalent in T , since the executions
where only P0 takes steps must produce output 0 and the executions where P0 takes
no steps must produce output 1. There must be a node C such that C is multivalent in
T and C’s children are all univalent in T ; otherwise there would be an infinite path
of nodes that are multivalent in T , which is impossible in a wait-free algorithm. Then
there must be a left child Cleft of C that is v-valent in T and a right child Cright of C
that is v-valent in T .

If P0 and P1 either access different objects or if they both read the same register in
their first steps after C then a right child of Cleft and a left child of Cright are identical
configurations, contradicting the fact that they have opposite valencies. If, in their next
steps after C, P0 writes a register R and P1 accesses R, then P0 cannot distinguish
Cleft from a left child of Cright, which is again a contradiction. A symmetric argument
applies if P0 reads a register R and P1 writes to R in their next steps after C. Thus, P0
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and P1 must both access the same object, X , in their next steps after C and X must be
of type Tx,y.

Let α be a solo execution by P0, starting from configuration C and passing through
Cleft. In α, P0 must output v. If an object of type Tx,y (in any state) has the same
operation applied to it y times, it will end up in the state UPSET (since y ≥ 2). Thus,
in Cright, X’s state must be UPSET. The local state of P0 and the state of every object
except X are the same in C and Cright. Thus, the execution α is also legal starting from
Cright, since the sequence of responses that P0 receives from X in α can also occur
if the execution is started from Cright, where X is upset. So, Cright has a descendant
in T that outputs v. However, Cright is v-valent in T . This contradiction proves that
acons(Tx,y) ≤ y. �	

Although the consensus hierarchy and the anonymous consensus hierarchy are quite
different, the division between levels one and two coincide.

Theorem 2. For any type T , cons(T ) = 1 if and only if acons(T ) = 1.

Proof. The “only if” direction follows from Observation 1. To prove the converse,
we show that cons(T ) ≥ 2 implies acons(T ) ≥ 2. Assume cons(T ) ≥ 2. Let
PROPOSE0(x) and PROPOSE1(x) be the code that is executed by two processes to solve
consensus eponymously. Let B be a bound on the maximum number of steps a process
must do while executing either of these routines. Proposition 1 guarantees the existence
of such a bound, since there are only two possible inputs to each of the two processes in
the binary consensus algorithm. The following anonymous 2-process consensus algo-
rithm uses two registers R0 and R1 (initially ⊥), in addition to any shared objects used
by PROPOSE0 and PROPOSE1.

PROPOSE(x)
if a READ of Rx returns � then return x
else

WRITE(�) in Rx

run PROPOSEx(x) until it halts or B steps of it have been taken
let r be the result of the preceding line (if the subroutine halts)
if a READ of Rx returns � then output r
else output x

The algorithm is clearly wait-free. It is necessary to include the “time limit” of B steps in
calling the subroutine PROPOSEx(x) because, when both processes call PROPOSE0(0)
or both call PROPOSE1(1), there is no guarantee that those subroutines will halt. If both
processes have the same input x, then Rx is always ⊥, so outputs can only be x. We
now prove that if the two processes have different inputs and both produce outputs,
those outputs are equal. Consider two cases.

If one process P with input x sees � when first reading Rx, then the value of Rx

remains ⊥ throughout the execution. Thus, the other process, Q, can only output its
own input value, x. Process P also can only return x.

If each process sees ⊥ in its first READ, then one process runs PROPOSE0(0) and the
other process runs PROPOSE1(1). This means that the subroutines will both terminate
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within B steps and will both produce the same output r. If both processes output r,
agreement is guaranteed. However, if one process P sees ⊥ in its second READ of Rx,
then it outputs its own input x. In this case, P has completed running PROPOSEx(x)
before the other process Q started running PROPOSEx(x), so r must be equal to x, and
Q must return x also. �	

4 Naming

In this section, we study the ability of anonymous systems to solve the naming problem
using different types of shared objects. First, we see in Theorem 3 that, in contrast to
the consensus problem, the number of processes in the system has no effect on whether
the naming problem is solvable. This theorem also gives an exact characterization of
the types of objects that can be used to solve the naming problem, using the following
definition of Aspnes, Fich and Ruppert [2].

Definition 1. An operation is idemdicent if, for every starting state, every operation,
and every choice of operands for that operation, it is possible that two consecutive
invocations of the operation with these operands return identical responses. A type is
idemdicent if every operation defined on it is idemdicent.

Intuitively, an object is idemdicent if it is incapable of breaking symmetry between two
processes. Examples include registers, snapshot objects, resettable consensus objects,
counters (with separate READ and INCREMENT operations, the latter of which returns
a null result), and the type Tx,y of Sect. 3.

Theorem 3. For any type T and any n ≥ 2, the following are equivalent.
(1) Naming can be solved for n processes using objects of type T .
(2) Naming can be solved for n processes using objects of type T and registers.
(3) Naming can be solved for two processes using objects of type T .
(4) Naming can be solved for two processes using objects of type T and registers.
(5) T is not idemdicent.

Proof. Trivially, we have (1) ⇒ (2) ⇒ (4) and (1) ⇒ (3) ⇒ (4).
(4) ⇒ (5): Suppose two processes can solve naming using objects of type T and

registers. To derive a contradiction, assume T is idemdicent. Consider an execution of
the naming algorithm where the two processes alternate taking steps, both performing
the same sequence of operations and getting the same sequence of responses. This is
possible, since the algorithm is anonymous and every time the two processes perform
the same operation on an object, that object can return the same response to both, by the
definition of idemdicence. In this execution, both processes produce the same output, a
contradiction.

(5) ⇒ (1): Assume (5). Suppose two successive invocations of operation op on an
object in state q cannot return the same response. Let R be the set of possible responses
that can be returned if up to n successive invocations of op are applied to an object
initially in state q. Let d = |R|. Since T has finite non-determinism, d is finite. An
algorithm for the naming problem among n processes can be constructed using objects
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of type T as a weak kind of splitter [23]. The naming algorithm uses a tree data structure
of height n − 1, where every internal node has d children. Each node has an associated
object of type T , initialized to state q. The edges leading from a node v to its d children
are labelled by the elements of R. The leaves of the tree are labelled by distinct natural
numbers.

To run the naming algorithm, each process starts at the root of the tree and follows a
path towards a leaf. For each internal node v that the process visits, it applies the opera-
tion op to the associated object. When it receives a response r, the process advances to
a child of v along the edge labelled by r. When the process reaches a leaf, it outputs the
label of that leaf. If m processes access a node v, the first two processes must receive
different responses and proceed to different children of v. Thus, at most m−1 processes
will visit any child of v. It follows by induction on k that at most n − k processes will
visit any node at depth k in the tree. Thus, at most one process will reach any leaf, and
this guarantees that the names produced by the algorithm are distinct. �	

5 Strong Naming

We now consider the strong naming problem, where processes must return distinct
names from the range {1, . . . , n}. In Corollary 1, we obtain a result analogous to The-
orem 3. However, it applies only to object types whose consensus numbers are at least
two. It is an open problem whether the result also holds for objects at level one of the
consensus hierarchy. The following proposition shows that, if the system is capable of
solving consensus among two processes, the naming and strong naming problems are
equivalent.

Theorem 4. If cons(T ) ≥ 2 then, for any n, objects of type T and registers can solve
n-process naming if and only if they can solve n-process strong naming.

Proof. The claim is trivial for n = 1. For n ≥ 2, the “if” part of the claim is trivial.
For the converse, suppose naming is solvable for n processes using objects of type T
and registers. By Theorem 3, T is not idemdicent. By Proposition 1, the tree of possible
executions of the naming algorithm is finite, and therefore the set of possible names is
finite. Let M be the maximum possible name.

The following algorithm solves the strong naming problem for n processes. It uses a
data structure that consists of n binary trees, numbered 1 to n, each with M leaves, to
implement a renaming algorithm that reduces the size of the name space. Each internal
node of each tree is associated with a different instance of two-process eponymous
consensus, which is implemented from objects of type T and registers. Each process
first obtains a name i ∈ {1, 2, . . . , M} using the naming algorithm. It then accesses the
first binary tree, starting from the ith leaf and moving along the path from that leaf to the
root. At each internal node, it proposes left or right to the instance of the two-process
eponymous consensus algorithm associated with the node. If the process arrived at the
node from its left child, it proposes left, using the consensus algorithm for process 1,
and if it arrived from the right child, it proposes right, using the consensus algorithm for
process 2. The process continues towards the root only if the result returned is equal to
the value it proposed. In this case, we say that the process wins at that node. A process
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that does not receive its own input as the output of consensus at some node is said to
lose at that node. If it ever loses at some node, it stops accessing the tree and switches to
the next tree. It accesses this tree in exactly the same way, again moving on to the next
one if it ever loses at some node. The process continues accessing trees until it wins at
the root of one of the trees. If the process wins at the root of the jth tree, it outputs j as
its name and halts.

The consensus algorithm associated with a node is run by at most one process for
each of the two children of the node, namely the process that either started at that child
(if the child is a leaf) or won at that child (if the child is an internal node). Thus, the
algorithm will correctly solve consensus. At most one process will win at the root of
any tree, and it follows that all names produced will be distinct elements of the set
{1, 2, . . . , n}. To prove that processes terminate, we observe that if r processes access
nodes at some level of a tree T , at least r/2� of them either win or experience a halting
failure. So, if any processes access tree T , at least one process either wins at the root
of T or fails at some time during its accesses to T . Thus, if k processes access a tree,
at most k − 1 processes access the next tree. It follows that every process eventually
produces a name. �	

Combining Theorem 3 and Theorem 4 yields the following corollary.

Corollary 1. If cons(T ) ≥ 2 and n ≥ 2, the following are equivalent.
(1) Objects of type T and registers can solve n-process strong naming.
(2) Objects of type T and registers can solve 2-process strong naming.
(3) T is not idemdicent.

Corollary 1 reveals the following connection between consensus and naming.

Theorem 5. If T is not idemdicent, acons(T ) = cons(T ).

Proof. To derive a contradiction, suppose T is not idemdicent but acons(T ) �= cons(T ).
By Observation 1, acons(T ) < cons(T ). Thus, cons(T ) ≥ 2 and acons(T ) �= ∞.
Since T is not idemdicent, strong naming can be solved for acons(T ) + 1 processes
using objects of type T and registers, by Corollary 1. Then, acons(T ) + 1 processes
can solve consensus anonymously using objects of type T and registers by first solving
strong naming and then running an eponymous consensus algorithm. This contradicts
the definition of acons(T ). �	

Theorem 4 showed that naming and strong naming are equivalent if the underlying sys-
tem can solve two-process consensus. However, if this is not the case, strong naming
is strictly harder than naming. We now define a type that can solve naming for any
number of processes but cannot solve strong naming even for two processes. The weak-
name object has one operation, GETNAME. The first two GETNAME operations non-
deterministically return any two distinct names from {1, 2, 3}. If any further GETNAME

operations are performed, the object non-deterministically chooses any value from
{1, 2, 3} to return. More formally, the state set is {⊥, 1, 2, 3, UPSET}. The transition
function is given by δ(⊥, GETNAME) = {(i, i) : i ∈ {1, 2, 3}}, δ(i, GETNAME) =
{(UPSET, j) : j ∈ {1, 2, 3} − {i}}, and δ(UPSET, GETNAME) = {(UPSET, j) : j ∈
{1, 2, 3}}.
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Theorem 6. Weak-name objects can solve naming for n processes, for all n. Weak-
name objects and registers cannot solve strong naming for two processes.

Proof. If a weak-name object is in state ⊥, the first two accesses must return different
results. By Theorem 3, it can solve naming for any number of processes.

Assume that weak-name objects and registers can solve strong naming for two pro-
cesses. To derive a contradiction, we shall use a reduction involving the renaming
problem. The renaming problem is to design an anonymous algorithm such that, in
any execution where processes receive distinct inputs from {1, . . . , M}, they output
distinct values from {1, . . . , m}. We describe how to build a two-process renaming al-
gorithm for M = 3 and m = 2 using only registers. This was shown to be impossible
by Herlihy and Shavit [14].

To solve the renaming problem, each of the two processes runs the strong naming
algorithm. Each weak-name object X used in the naming algorithm is simulated without
doing any accesses to shared memory as follows. We consider several cases, depending
on how X is initialized. First, suppose X is initially ⊥. When a process with input i is
supposed to first access X , it pretends that the response from X was i. If the process
does any subsequent accesses to X , it pretends X’s response was i mod 3 + 1. Note
that, in any execution, the first two simulated responses from X will be distinct, whether
those two accesses are by the same process or by different processes. If X initially has
state i, then all accesses to X return the response i mod 3 + 1. If X is initially UPSET,
then all accesses to X return the response 1. This simulation of the algorithm requires
only registers. Because this is a faithful simulation of the strong naming algorithm,
the two processes will output distinct values from {1, 2}, thereby solving the renaming
problem, which is impossible. �	

Corollary 2. The type weak-name has consensus number 1.

Proof. By Theorem 6, weak-name objects can solve the naming problem for two pro-
cesses. If cons(weak-name) were bigger than one, then, by Theorem 4, strong naming
for two processes could be solved using weak-name objects and registers, but this would
contradict Theorem 6. �	

6 Summary

The preceding results provide enough information to give a fairly complete picture
of the classification of object types according to their ability to solve consensus and
naming, and their universal numbers.

Theorem 7. Every type T belongs to one of the rows in Table 1. (The fourth column
describes whether naming can be solved for any number of processes greater than 1
using objects of type T and registers.)

Proof. We first show that every type T belongs to some row in Table 1, ignoring the
last column for now.

Suppose cons(T ) = 1. By Observation 1, acons(T ) = 1. If T is idemdicent, it
cannot solve naming (even with registers), by Theorem 3, so its strong naming number
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is 1. Thus, T belongs to row 1. If T is not idemdicent, then it can solve naming, so it
belongs to row 2, 3 or 4, depending on its strong naming number.

Now suppose cons(T ) = x > 1. If T is idemdicent, then objects of type T (and reg-
isters) cannot solve naming, by Theorem 3. Therefore, they cannot solve strong naming,
even for two processes, either. The anonymous consensus number of T must be at least
two, by Theorem 2, and at most x, by Observation 1. Thus T belongs to row 5 of Ta-
ble 1. If T is not idemdicent, then acons(T ) is also x, by Proposition 5. Objects of type
T can solve naming, by Theorem 3. Objects of type T and registers can solve strong
naming for any number of processes, by Proposition 1. Thus, T belongs to row 5 of
Table 1.

Finally, we show that the value given for univ(T ) is correct for each row. For the
first 4 rows, univ(T ) = 1, since objects of type T and registers cannot implement 2-
process consensus. For row 5, univ(T ) must be 1, since objects of type T and registers
cannot solve 2-process strong naming. For types in row 6, univ(T ) ≤ x, since objects
of type T and registers cannot implement consensus for x + 1 processes. To see that
univ(T ) = x, x processes can anonymously implement any object using objects of type
T and registers by first solving strong naming and then applying Herlihy’s universal
construction [13]. �	
It is unknown whether any types belong to row 3 of Table 1, so it is possible that this
row could be removed from the table, or additional constraints on the value of z could
be included. We now show that the rest of the classification cannot be improved: we
give examples for each other row in Table 1.

A register has consensus number 1 [8,20] and is idemdicent, so it belongs to row 1.
The weak-name object is in row 2, by Theorem 6 and Corollary 2.

For row 4, we define a new strong-name type. It provides one operation, GETNAME(k)
where k is a positive integer, that returns a positive integer. If processes perform up to k
GETNAME operations with the same argument k, the object returns distinct responses
from {1, 2, . . . , k}. If processes access the object in a different way, the object becomes
upset and returns non-deterministic results. The following proposition, proved in [25],
shows that this type occupies line 4 of Table 1. The proof that it has consensus number
1 shows that there is an eponymous implementation for two processes that does not use
shared memory.

Proposition 5. snaming(strong-name) = ∞ and cons(strong-name) = 1.

For 2 ≤ y ≤ x ≤ ∞, the type Tx,y, defined in Sect. 3 has cons(Tx,y) = x and
acons(Tx,y) = y, by Proposition 4. It is easy to verify that Tx,y is idemdicent. Thus,
there are types in row 5 of Table 1 for all possible values of x and y.

The final row of Table 1 contains the aconsx type, defined in Sect. 3, for 2 ≤ x < ∞.
Two successive invocations of PROPOSE(1) starting from state (0, x − 1) return 0 and
1, so this type is not idemdicent, and can solve naming. The compare&swap type is also
in the final row of Table 1, with x = ∞.

6.1 Deterministic Types

If we restrict attention to deterministic types only, then the classification of Theorem 7
can be refined. The objects given above as examples for rows 1 and 6 of Table 1 are
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deterministic. The following proposition rules out the possibility of any deterministic
types in rows 2, 3 and 4 of Table 1.

Proposition 6. If T is deterministic and not idemdicent, then acons(T ) ≥ 2.

Proof. If T is deterministic and not idemdicent, there is a state q and an operation op
such that two successive invocations of op return results r1 and r2 with r1 �= r2. The
following anonymous algorithm solves two-process consensus using one object X of
type T , initialized to q, and two registers R0 and R1, initialized to ⊥. A process can
output only the input of the process that accesses X first.

PROPOSE(x)
WRITE(�) in Rx

if applying op to X returns r2 and a READ of Rx returns � then return x
else return x �	

There are deterministic types in row 5 of Table 1. For example, standard consensus
objects have consensus number ∞, but are idemdicent. Whether there is a deterministic
type in row 5 for all x and y is an open question.
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Abstract. FIFO Queues have over the years been the subject of significant re-
search. Such queues are used as buffers both in a variety of applications, and in
recent years as a key tool in buffering data in high speed communication net-
works.

Overall, the most popular dynamic-memory lock-free FIFO queue algorithm
in the literature remains the MS-queue algorithm of Michael and Scott. Unfor-
tunately, this algorithm, as well as many others, offers no more parallelism than
that provided by allowing concurrent accesses to the head and tail. In this paper
we present the Baskets Queue - a new, highly concurrent lock-free linearizable
dynamic memory FIFO queue. The Baskets Queue introduces a new form of
parallelism among enqueue operations that creates baskets of mixed-order items
instead of the standard totally ordered list. The operations in different baskets
can be executed in parallel. Surprisingly however, the end result is a linearizable
FIFO queue, and in fact, we show that a basket queue based on the MS-queue
outperforms the original MS-queue algorithm in various benchmarks.

Keywords: CAS, Compare and Swap, Concurrent Data Structures, FIFO queue,
Lock-free, Non-blocking, Synchronization.

1 Introduction

First-in-first-out (FIFO) queues are among the most basic and widely used concurrent
data structures. They have been studied in a static memory setting [1,2] and in a dynamic
one [3,4,5,6,7,8,9,10,11,12,13,14,15,2]. The classical concurrent queue is a linearizable
structure that supports enqueue and dequeue operations with the usual FIFO semantics.
This paper focuses on queues with dynamic memory allocation.

The best known concurrent FIFO queue implementation is the lock-free queue of
Michael and Scott [16] which is included in the JavaTM Concurrency Package [17]. Its
key feature is that it maintains, in a lock-free manner, a FIFO ordered list that can be
accessed disjointly through head and tail pointers. This allows enqueue operations to
execute in parallel with dequeue operations.

A later article by Ladan-Mozes and Shavit [7] presented the optimistic queue that in
many cases performs better than the MS-queue algorithm. The optimistic doubly-linked
list reduces the number of compare-and-swap (CAS) operations necessary to perform
an enqueue and replaces them with simple stores. However, neither algorithm allows
more parallelism then that allowed by the disjoint head and tail.
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Fig. 1. The abstract Baskets Queue

In an attempt to add more parallelism, Moir et. al [18] showed how one could use
elimination as a back-off scheme to allow pairs of concurrent enqueue and dequeue
operations to exchange values without accessing the shared queue itself. Unfortunately,
in order to keep the correct FIFO queue semantics, the enqueue operation cannot be
eliminated unless all previous inserted nodes have been dequeued. Thus, the elimination
backoff queue is practical only for very short queues.

In this paper we present a new approach that allows added parallelism in the design
of concurrent shared queues. Our approach, which we apply to the MS-queue [16], can
also be applied to the optimistic queue [7]. In our new “basket” approach, instead of
the traditional ordered list of nodes, the queue consists of an ordered list of groups
of nodes (baskets). The order of nodes in each basket need not be specified, and in
fact, it is easiest to maintain them in LIFO order. Nevertheless, we prove that the end
result is a linearizable FIFO queue. The benefit of the basket technique is that, with
little overhead, it introduces a new form of parallelism among enqueue operations by
allowing insertions into the different baskets to take place in parallel.

1.1 The Baskets Queue

Linearizability was introduced by Herlihy and Wing [4] as a correctness condition for
concurrent objects. For a FIFO queue, an execution history is linearizable if we can
pick a point within each enqueue or dequeue operation’s execution interval so that the
sequential history defined by these points maintains the FIFO order.

We notice that the definition of linearizability allows overlapping operations to be
reordered arbitrarily. This observation leads to the key idea behind our algorithm: a
group of overlapping enqueue operations can be enqueued onto our queue as one group
(basket), without the need to specify the order between the nodes. Due to this fact, nodes
in the same basket can be dequeued in any order, as the order of enqueue operations can
be ”fixed” to meet the dequeue operations order. Moreover, nodes from different groups
may be inserted in parallel.

A concise abstraction of the new queue is a FIFO-ordered list of baskets where each
basket contains one or more nodes (see Fig. 1). The baskets fulfill the following basic
rules:
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Fig. 2. (1) Each thread checks that the tail-node’s next field is null, and tries to atomically change
it to point to its new node’s address. (2) Thread A succeeds to enqueue the node. Threads B and C
fail on the same CAS operation, hence both of them will retry to insert into the basket. (3) Thread
B was the first to succeed to enqueue, at the same time thread D calls the enqueue operation, and
finishes successfully to enqueue onto the tail. (4) thread C finishes successfully.

1. Each basket has a time interval in which all its nodes’ enqueue operations overlap.
2. The baskets are ordered by the order of their respective time intervals.
3. For each basket, its nodes’ dequeue operations occur after its time interval.
4. The dequeue operations are performed according to the order of baskets.

Two properties define the FIFO order of nodes:

1. The order of nodes in a basket is not specified.
2. The order of nodes in different baskets is the FIFO-order of their respective baskets.

The basic idea behind these rules is that setting the linearization points of enqueue
operations that share an interval according to the order of their respective dequeues,
yields a linearizable FIFO-queue.

How do we detect which enqueue operations overlap, and can therefore fall into
the same basket? The answer is that in algorithms such as the MS-queue or optimistic
queue, threads enqueue items by applying a Compare-and-swap (CAS) operation to the
queue’s tail pointer, and all the threads that fail on a particular CAS operation (and also
the winner of that CAS) overlap in time. In particular, they share the time interval of
the CAS operation itself. Hence, all the threads that fail to CAS on the tail-node of
the queue may be inserted into the same basket. By integrating the basket-mechanism
as the back-off mechanism, the time usually spent on backing-off before trying to link
onto the new tail, can now be utilized to insert the failed operations into the basket,
allowing enqueues to complete sooner. In the meantime, the next successful CAS op-
erations by enqueues allow new baskets to be formed down the list, and these can be
filled concurrently. Moreover, the failed operations don’t retry their link attempt on the
new tail, lowering the overall contention on it. As we will show, this leads to a queue
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Fig. 3. A queue composed of 4 baskets

algorithm that unlike all former concurrent queue algorithms requires virtually no tun-
ing of the backoff mechanisms to reduce contention, making our algorithm an attractive
out-of-the-box queue.

In order to enqueue, just as in MS-Queue, a thread first tries to link the new node to
the last node. If it failed to do so, then another thread has already succeeded. Thus it
tries to insert the new node into the new basket that was created by the winner thread
(see Fig. 2). To dequeue a node, a thread first reads the head of the queue to obtain the
oldest basket. It may then dequeue any node in the oldest basket.

As we noted earlier, the implementation of the Baskets Queue we present here is
based on Michael and Scott’s MS-queue. Our algorithm maintains a linked list of nodes
logically divided into baskets (see Fig. 3). Although, as the reader will see, in our im-
plementation the baskets have a stack-like behavior, any concurrent pool object that
supports the add and the remove operations, can serve as a basket. The advantage of
such objects is that they can deliver more scalability than the stack-like baskets.

1.2 Performance

We compared our new lock-free queue algorithm to the lock-free MS-queue of Michael
and Scott [16], and to the Optimistic-Queue by Ladan-Mozes and Shavit [7]. The algo-
rithms were implemented in the C programming language and were executed on a 16
processors Sun Fire 6800 running the Solaris 9 operating system.

As our empirical results show, the new algorithm scales better under high contention
due to the simultaneous successful enqueue operations. We believe that as the num-
ber of processors running the basket queue increases, it will be possible to replace the
stack-like baskets with more scalable data-structures based on diffracting-trees [19] or
counting-networks [20], that will make the Baskets Queue even faster.

2 The Baskets Queue

We now describe our algorithm in detail. Since we employ CAS operations in our
algorithm, ABA issues arise [16,15]. In Section 2.2, we describe the enqueue and
dequeue operations ignoring ABA issues. The tagging mechanism we added to over-
come the ABA problem is explained in Section A. The code in this section includes this
tagging mechanism.
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struct pointer_t {
<ptr, deleted, tag>: <node_t *, boolean, unsigned integer>

};

struct node_t { struct queue_t {
data_type value; pointer_t tail
pointer_t next; pointer_t head

}; };

void init_queue(queue_t* q)
I01: node_t* nd = new_node() # Allocate a new node
I02: nd->next = <null, 0, 0> # next points to null with tag 0
I03: q->tail = <nd, 0, 0>; # tail points to nd with tag 0
I04: q->head = <nd, 0, 0>; # head points to nd with tag 0

Fig. 4. Types, structures and initialization

Although the nodes of the same basket need not be ordered, we insert and remove
them in a stack-like manner, one by one. It is a subject for further research to determine
if it feasible to exploit weaker orders to make the queue more scalable.

2.1 Data Structures

Just as in the MS-queue, our queue is implemented as a linked list of nodes with head
and tail pointers. The tail points either to a node in the last basket, or in the second
to last basket. In contrast to the MS-queue, we use pointer marking [10] to logically
delete nodes. The queue’s head always points to a dummy node, which might be fol-
lowed by a sequence of logically deleted (marked) nodes.

2.2 The Baskets Queue Operations

The FIFO queue supports two operations: enqueue and dequeue. The enqueue
method inserts a value into the queue and the dequeue method deletes the oldest
value from the queue.

To enqueue a new node into the list, the thread first reads the current tail. If the
tail is the last node (E07) it tries to atomically link the new node to the last node
(E09). If the CAS operation succeeded the node was enqueued successfully, and the
thread tries to point the queue’stail to the new node (E10), and then returns. However,
if the thread failed to atomically swap the Null value, it means that the thread overlaps
in time with the winner of the CAS operation. Thus, the thread tries to insert the new
node to the basket (E12-E18). It re-reads the next pointer that points to the first node
in the basket, and as long as no node in the basket has been deleted (E13), it tries to
insert the node at the same list position. If the tail did not point to the last node, the
last node is searched (E20-E21), and the queue’s tail is fixed.

To prevent a late enqueuer from inserting its new node behind the queue’s head, a
node is dequeued by setting the deleted bit of its pointer so that a new node can only
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E01: nd = new_node()
E02: nd->value = val
E03: repeat:
E04: tail = Q->tail
E05: next = tail.ptr->next
E06: if (tail == Q->tail)):
E07: if (next.ptr == NULL):
E08: nd->next = <NULL, 0, tail.tag+2>
E09: if CAS(&tail.ptr->next, next, <nd, 0, tail.tag+1>):
E10: CAS(&Q->tail, tail, <nd, 0, tail.tag+1>
E11: return True
E12: next = tail.ptr->next
E13: while((next.tag==tail.tag+1) and (not next.deleted)):
E14: backoff_scheme()
E15: nd->next = next
E16: if CAS(&tail.ptr->next, next, <nd, 0, tail.tag+1>):
E17: return True
E18: next = tail.ptr->next;
E19: else:
E20: while ((next.ptr->next.ptr != NULL) and (Q->tail==tail)):
E21: next = next.ptr->next;
E22: CAS(&Q->tail, tail, <next.ptr, 0, tail.tag+1>)

Fig. 5. The enqueue operation

be inserted adjacently to another unmarked node. As the queue’s head is only required
as a hint to the next unmarked node, the lazy update approach of Tsigas and Zhang [1]
can be used to reduce the number of CAS operations needed to update the head.

To dequeue a node, a thread reads the current state of the queue (D01-D04) and re-
checks it for consistency (D05). If the head and tail of the list point to the same
node (D06), then either the list is empty (D07) or the tail lags. In the latter case, the
last node is searched (D09-D10) and the tail is updated(D11). If the head and the
tail point to different nodes, then the algorithm searches for the first unmarked node
between the head and the tail (D15-D18). If a non-deleted node is found, its value
is first read (D24) before trying to logically delete it (D25). If the deletion succeeded
the dequeue is completed. Before returning, if the deleted node is far enough from the
head (D26), the free chain method is performed (D27). If while searching for a
non-deleted node the thread reached the tail (D21) the queue’s head is updated
(D22). See Fig. 7 for an illustration.

The free chain procedure tries to update the queue’shead (F01). If it successful,
it is safe to reclaim the deleted nodes between the old and the new head (F02-F05).

3 Performance

We compared the performance of our FIFO queue to the best performing dynamic
memory FIFO-queue algorithms. The algorithms were compiled in the C programming
language with Sun’s ”CC” compiler 5.8 with the flags ”-XO3 -xarch=v8plusa”. The
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const MAX_HOPS = 3 # constant

data_type dequeue(queue_t* Q)

D01: repeat
D02: head = Q->headf
D03: tail = Q->tail
D04: next = head.ptr->next
D05: if (head == Q->head):
D06: if (head.ptr == tail.ptr)
D07: if (next.ptr == NULL):
D08: return ’empty’
D09: while ((next.ptr->next.ptr != NULL) and (Q->tail==tail)):
D10: next = next.ptr->next;
D11: CAS(&Q->tail, tail, <next.ptr, 0, tail.tag+1)
D12: else:
D13: iter = head
D14: hops = 0
D15: while ((next.deleted and iter.ptr != tail.ptr) and (Q->head==head)):
D16: iter = next
D17: next = iter.ptr->next
D18: hops++
D19: if (Q->head != head):
D20: continue;
D21: elif (iter.ptr == tail.ptr):
D22: free_chain(Q, head, iter)
D23: else:
D24: value = next.ptr->value
D25: if CAS(&iter.ptr->next, next, <next.ptr, 1, next.tag+1>):
D26: if (hops >= MAX_HOPS):
D27: free_chain(Q, head, next)
D28: return value
D29: backoff-scheme()

Fig. 6. The dequeue operation

different benchmarks were executed on a 16 processor Sun FireTM 6800 running the
SolarisTM 9 operating system.

3.1 The Benchmarked Algorithms

We compared our FIFO-queue algorithm to the lock-free queue of Michael and Scott
[16], and to the Optimistic Queue of Ladan-Mozes and Shavit [7]. To expose the pos-
sible effects of our use of logical deletions, a variation of the MS-Queue with logical
deletions was added as a control. The set of compared queue implementations was:

1. Baskets Queue - the new algorithm implementation.
2. Optimistic Queue - the pre-backoff version of the Optimistic FIFO-queue.
3. MS-queue - the lock-free version of the Michael and Scott’s queue.
4. MS-queue lazy head - This is a variation of MS-Queue where dequeues are per-

formed by logically deleting the dequeued node. Therefore, following Tsigas and
Zhang’s technique [1], the queue’s head may be updated only once for several de-
queues.
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Fig. 7. (1) three nodes are logically deleted. (2) the first non-deleted node is deleted (3) the head
is advanced (4) the chain of deleted nodes can be reclaimed.

void free_chain(queue_t* q, pointer_t head, pointer_t new_head)

F01: if CAS(&Q->head, head, <new_head.ptr, 0, head.tag+1>):
F02: while (head.ptr != new_head.ptr):
F03: next = head.ptr->next
F04: reclaim_node(head.ptr)
F05: head = next

Fig. 8. The free chain procedure

3.2 The Benchmarks

We chose to use the same benchmarks as in the optimistic queue article [7].

• 50% Enqueues: each process chooses uniformly at random whether to perform an
enqueue or a dequeue, creating a random pattern of 50% enqueue and 50% de-
queue operations.

• Enqueue-Dequeue Pairs: each process alternately performs an enqueue or a
dequeue operation.

• Grouped Operations: each process picks a random number between 1 and 16, and
performs this number of enqueues or dequeues. The process performs enqueues
and dequeues alternately as in the Enqueue-Dequeue Pairs benchmark.

The total number of enqueue and dequeue operations is not changed, they are only
executed in a different order.

3.3 The Experiments

We ran the specified benchmarks measuring the total time required to perform one
million operations as a function of the number of processes. For each benchmark and
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Fig. 9. The 50 % enqueues benchmark
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Fig. 10. The Enqueue-Dequeue pairs bench-
mark

algorithm we chose the exponential backoff delays that optimize the maximal latency
(the maximal time required to complete an operation).

To counteract transient startup effects, we synchronized the start of the processes
(i.e: no process started before all others finished their initialization phase).

3.4 Empirical Results

Figures 9, 10 and 11 show the results of the three different benchmarks. It can be seen
that high levels of concurrency have only moderate effects on the performance of the
Baskets Queue. The Baskets Queue is up to 25% faster than the other algorithms. This
can be explained by the load on the tail of all the data-structures but the baskets queue,
whereas in the baskets queue the contention on the tail is distributed among several bas-
kets. However, at lower concurrency levels, the optimistic approach is superior because
the basket-mechanism is triggered upon contention.

When we optimized the exponential backoff delays of the algorithms for each bench-
mark, we found that for the Basket Queue the optimal backoff delays of all three
benchmark is identical. In contrast, for the other algorithms, no single combination
of backoff-delays was optimal for all benchmarks. This is due to the fact that the ex-
ponential backoff is used only as a secondary backoff scheme when inserting into the
baskets, thus it has only a minor effect on the performance.

To further test the robustness of our algorithm to exponential backoff delays, we con-
ducted the same benchmark test without using exponential backoff delays. As seen in
figures 12, 13 and 14, in this setting the Baskets Queue outperforms the other algorithms
by a large factor. This robustness can be explained by the fact that the basket-mechanism
plays the role of the backoff-mechanism by distributing concurrent enqueue operations
to different baskets.

To gauge the effectiveness of the basket-mechanism on our 16 processor machine,
we took snapshots of the list of baskets. Figure 15 shows a typical snapshot of the
Baskets Queue on the 50% enqueues benchmarks. The basket sizes vary from only 1
to 3 nodes. In the average case, an enqueue operation will succeed to enqueue after at
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Fig. 15. A typical snapshot of the queue (16 processes)

most 3 failed CAS operations. The baskets sizes are smaller than 8 nodes as one would
expect them to be, because the elements are inserted into the baskets one by one. This
unnecessary synchronization on the nodes of the same basket imposes a delay on the
last nodes to be inserted.
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In addition to the robustness to exponential backoff delays, this snapshot confirms
that when in use, the backoff-mechanism inside each basket needs only to synchronize
at most 3 concurrent enqueues, if any. Therefore, it has only a minor effect on the overall
performance. We believe that for machines where exponential backoff techniques are
crucial for performance, this robustness makes our algorithm a natural solution as an
out-of-the-box queue, to be used without the requirement of fine tuning.
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A Memory Management

Our memory manager is similar to the memory manager of the optimistic queue [7]. It
consists of a shared pool of nodes. Each thread possesses a list of pointers to nodes in
the shared pool, ready for its exclusive allocation. When a thread physically removes a
node from the queue, it adds the node’s pointer to its list of available allocations.

Although the memory manager is rather simple, the algorithm can be easily adapted
to interact with more sophisticated memory schemes as well as garbage collected
languages.

A.1 The Tagging Mechanism and the ABA Problem

As our algorithm is based on CAS operations, it suffers from the known ABA problem
[16,15]. To overcome it we use the standard tagging-mechanism approach [16,21]. A
portion of each pointer address is used to timestamp changes of the pointer, where the
pointer and the tag are manipulated atomically using a single CAS operation.

B Correctness Proof

Due to lack of space, the correct set semantics and lock-free proofs are omitted.

B.1 Linearizability of Our Algorithm

If by ordering the operations in the order of their linearization points the queue be-
haves as the abstract sequential queue, then the queue is linearizable to the abstract
FIFO-queue.
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Definition 1. A sequential FIFO queue as defined in [22] is a data structure that sup-
ports two operations: enqueue and dequeue. The state of the queue is a sequence
<e1, ..., ek> of items. The queue is initially empty. The semantics of enqueue and
dequeue operations on a given state <e1, ..., ek> is described as follows:

• enqueue(n) - inserts n to the end of the queue yielding the new state
<e1, ..., ek, n>

• dequeue() - if the queue is empty, the operation returns ”empty” and does not
change the state. Otherwise, it deletes and returns the oldest value from the queue,
yielding a new state <e2, ..., ek>

Definition 2. The linearization point of a dequeue operation that returned a value is
the successful pointer marking at line D23.

Definition 3. The linearization point of a dequeue operation that returned ”empty”
is when reading the dummy node’s next null pointer at line D04.

Definition 4. The linearization points of the enqueue operations of a basket are set
inside the basket’s shared time interval in the order of their respective dequeues. In
other words, the linearization points of the enqueues are determined only once the items
are dequeued.

Lemma 1. The enqueue operation of the same basket overlap in time.

Proof. An enqueue operation tries to insert a node into a basket only if it failed to
CAS on the tail of the list (E09). Before trying to CAS, the enqueue operation
checks that the next pointer of the tail-node is null. Thus, all the failed enqueue
operations overlap the time interval that starts at some point when the next pointer of
the tail-node is null, and ends when it points to a new node. The winner of the CAS
overlap the same interval too. ��

Lemma 2. The baskets are ordered according to the order of their respective time in-
tervals.

Proof. A basket is created by a successful enqueue operation on the tail of the
queue. The enqueue operations that failed to enqueue, retry to insert their nodes at
the same list position. Therefore, the first node of a basket is next to the last node of the
previous basket, and the last node of a basket is the winner of the CAS operation. ��

Lemma 3. The linearization points of the dequeue operations of a basket come after
the basket’s shared time interval.

Proof. In order for a dequeue operation to complete, the node must be in the list.
A basket’s first node is linked into the list only after the CAS operation on the tail
is completed. The completion of this CAS operation is also the end of the shared
time interval of the basket. Thus nodes can be marked only after the basket’s time
interval. ��

Lemma 4. The nodes of a basket are dequeued before the nodes of later (younger)
baskets.
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Proof. The nodes are dequeued according to their sequential order in the list (which
is logically divided into baskets). In addition, since the nodes are deleted by pointer
marking, once all the nodes of a basket are dequeued, no more nodes are allowed to be
enqueued into it. ��

Lemma 5. The linearization point of a dequeue operation that returned ”empty”
comes exactly after an equal number of enqueue and dequeue operations.

Proof. If the next pointer of the dummy node is null then all the enqueued nodes had
been removed from the list. Since nodes are removed from the list only after they are
marked, the linearization point of an ”empty” dequeue comes after equal number of
enqueue and dequeue linearization points. ��

Theorem 1. The FIFO-queue is linearizable to a sequential FIFO queue.

Proof. Ignoring for a moment dequeues that return ”empty”, from lemmas 2 and 4,
the order in which baskets are dequeued is identical to the order in which baskets are
enqueued. From lemma 3 the enqueue operations of a basket preceed its dequeues.
Lemma 1 guarantees that the construction of definition 4 is possible. Thus the order of
the enqueue operations of a basket is identical to the order of its dequeue operations,
and the queue is linearizable.

From lemma 5 the queue is linearizable also with respect to dequeue operations that
returned ”empty”. ��
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Abstract. Blin et al. (2006) proposed a distributed protocol that enables the
smallest number of searchers to clear any unknown asynchronous graph in a de-
centralized manner. Unknown means that the searchers are provided no a priori
information about the graph. However, the strategy that is actually performed
lacks of an important property, namely the monotonicity. That is, the clear part
of the graph may decrease at some steps of the execution of the protocol. Actu-
ally, the protocol of Blin et al. is executed in exponential time. Nisse and Soguet
(2007) proved that, in order to ensure the smallest number of searchers to clear
any n-node graph in a monotone way, it is necessary and sufficient to provide
Θ(n log n) bits of information to the searchers by putting short labels on the
nodes of the graph. This paper deals with the smallest number of searchers that
are necessary and sufficient to monotoneously clear any graph in a decentralized
manner, when the searchers have no a priori information about the graph.

The distributed graph searching problem considers a team of searchers that is
aiming at clearing any connected contaminated graph. The clearing of the graph is
required to be connected, i.e., the clear part of the graph must remain permanently
connected, and monotone, i.e., the clear part of the graph only grows. The search
number mcs(G) of a graph G is the smallest number of searchers necessary to
clear G in a monotone connected way in centralized settings. We prove that any
distributed protocol aiming at clearing any unknown n-node graph in a monotone
connected way, in decentralized settings, has competitive ratio Θ( n

log n
). That is,

we prove that, for any distributed protocol P , there exists a constant c such that
for any sufficiently large n, there exists a n-node graph G such that P requires at
least c n

log n
mcs(G) searchers to clear G. Moreover, we propose a distributed pro-

tocol that allows O( n
log n

) mcs(G) searchers to clear any unknown asynchronous
n-node graph G in a monotone connected way.

Keywords: Graph searching, Monotonicity, Competitive ratio.

1 Introduction

In graph searching [6,17], a team of searchers is aiming at capturing an invisible arbi-
trarily fast fugitive hidden in a graph (see [3] for a survey). Equivalently, an undirected
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connected graph is thought as a system of tunnels contaminated by a toxic gas. In this
setting, the searchers are aiming at clearing the graph. The search problem has been
widely studied in the design of distributed protocols for clearing a network in a decen-
tralized manner [5,7,8,9,16]. Initially, all edges are contaminated. The searchers stand
at the vertices of the graph and move along the edges. An edge is cleared when it is
traversed by a searcher. A clear edge e is recontaminated as soon as there exists a path
P between e and a contaminated edge such that no searchers are occupying any vertex
or any edge of P . A search strategy is a sequence of moves of the searchers along the
edges of the graph, such that, initially, all the searchers are placed at a particular ver-
tex of the graph, called the homebase. Moreover, this sequence of moves must satisfy
that recontamination never occurs, that is, a clear edge always remains clear. A search
strategy is aiming at clearing the whole network. Given a graph G and a homebase
v0 ∈ V (G), the search problem consists in designing a distributed protocol that allows
the smallest number of searchers to clear G starting from v0. The search strategy must
be computed online by the searchers themselves.

Note that, by definition, a search strategy satisfies two important properties. First, a
search strategy is monotone [4,13]. That is, the contaminated part of the graph never
grows. This ensures that the clearing of the graph can be performed in polynomial
time. Secondly, a search strategy is connected [1,2], in the sense that, at any step of the
strategy, the clear part of the graph induces a connected subgraph. This latter property
ensures safe communications between the searchers. In the following, the search num-
ber mcs(G, v0) of a graph G with homebase v0 ∈ V (G) denotes the smallest number
of searchers required to clear the graph in a monotone connected way, starting from v0,
in centralized settings.

Several distributed protocols have been proposed to solve the search problem
[1,5,7,8,9,14,16]. Two main approaches have been proposed in the previous works.
On one hand, Blin et al. proposed a distributed protocol that enables mcs(G, v0) + 1
searchers to clear any unknown asynchronous graph G, starting from any homebase
v0 ∈ V (G), in a connected way [5]. That is, the clearing of the graph is performed
without the searchers being provided any information about the graph. However, the
search strategy that is actually performed is not monotone and may be performed in
exponential time, which is not surprising since the problem of computing mcs(G, v0)
is NP-complete [15]. On the other hand, the distributed protocols that are proposed
in [7,8,9,14,16] enable mcs(G, v0) + 1 searchers to monotoneously clear a graph G,
starting from a homebase v0, such that the searchers are given some a priori informa-
tion about it. In this paper, we consider the problem from another point of view. More
precisely, we address the problem of the minimum number of searchers permitting to
solve the search problem (again, the performed strategy must be connected and mono-
tone) without any a priori information about the graph.

1.1 Model and Definitions

The searchers are modeled by synchronous autonomous mobile computing entities
with distinct IDs. A network is modeled by a synchronous undirected connected sim-
ple graph. The network is anonymous, that is, the nodes are not labelled. The deg(u)
edges incident to any node u are labelled from 1 to deg(u), so that the searchers can
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distinguish the different edges incident to a node. These labels are called port numbers.
Every node of the network has a zone of local memory, called whiteboard, in which
searchers can read, erase, and write symbols. It is moreover assumed that searchers can
access these whiteboards in fair mutual exclusion.

A search protocol P is a distributed protocol that solves the search problem, i.e., for
any connected graph G and any homebase v0 ∈ V (G), a team of searchers executing
P can clear G in a connected monotone way, starting from v0. In these settings, the
searchers do not know in advance in which graph they are launched. The number of
searchers used by P to clear G is the maximum number of searchers that stand at the
vertices of G over all steps of the execution of P . The quality of a search protocol P is
measured by comparing the number of searchers it used to clear a graph G to the search
number mcs(G, v0) of G. This ratio, maximized over all graphs and all starting nodes,
is called the competitive ratio r(P) of the protocol P .

1.2 Our Results

We prove that any search protocol for clearing n-node graphs has competitive ratio
Ω( n

log n ). Moreover, we propose a search protocol that has competitive ratio O( n
log n ).

More precisely, we prove that for any distributed protocol P , there exists a constant
c such that for any sufficiently large n, there exists a n-node graph G with a home-
base v0 ∈ VG, such that P requires at least c n

log n mcs(G, v0) searchers to clear G,
starting from v0. On the other hand, we propose a search protocol that uses at most
O( n

log n ) mcs(G, v0) searchers to clear any connected graph G in a connected mono-
tone way, starting from any homebase v0 ∈ V (G). Moreover, our protocol performs
clearing of n-node graphs using searchers with at most O(log n) bits of memory, and
whiteboards of size O(n) bits.

1.3 Related Work

In connected graph searching [1,2,10], the clear part must remain connected during all
steps of the search strategy. This property is very useful as soon as we want to ensure the
communications between the searchers to be secured. Contrary to the classical, i.e., non-
connected, graph searching [4,13,17], the monotonicity has a cost in terms of number
of searchers. Indeed, Alspash et al. proved that recontamination does help in the case of
connected graph searching [18] (see also [11]). That is, they describe a class of graphs
for which the smallest number of searchers required to clear these graphs is strictly less
than the number of searchers necessary to clear them in a monotone connected way.
This result has an important impact since it is not known whether the decision problem
corresponding to the connected search number of a graph, i.e., the smallest number
of searchers required to clear a graph in a connected way, belongs to NP. Moreover,
monotone strategies are of particular interest in decentralized settings since, first, they
perform in polynomial time, and second, it is a priori difficult to design non-monotone
search strategies.

Several distributed protocols have been proposed to solve the search problem for
particular graph’s topologies. More precisely, Barrière et al. designed protocols for
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clearing trees [1], Flocchini, Luccio and Song considered tori [7] and meshes [8], Floc-
chini, Huang and Luccio considered hypercubes [9], and Luccio dealt with Sierpinski’s
graphs [14]. Assuming the searchers know the topology of the graph G they must clear,
these protocols enable mcs(G, v0) + 1 searchers to clear G in a monotone connected
way, starting from any homebase v0 ∈ V (G). The extra searcher, compared to the cen-
tralized case, is necessary and due to the asynchrony of the network [8]. In [5], Blin
et al. proposed a distributed protocol that allows mcs(G, v0) + 1 searchers to clear
any unknown asynchronous graph G in a connected way, starting from any homebase
v0 ∈ V (G). In this case, the searchers do not need any a priori information about the
graph in which they are placed. However, the search strategy that is actually performed
is not monotone and may be performed in exponential time. In [16], Nisse and Soguet
proposed to give to the searchers some information about the graph by putting short
labels on the nodes of the graph. They proved that Θ(n log n) bits of information are
necessary and sufficient to solve the search problem for any n-node asynchronous graph
G, using mcs(G, v0) + 1 searchers and starting from a homebase v0.

2 Lower Bound

This section is devoted to prove a lower bound on the competitive ratio of any search
protocol. For this purpose, we consider a game between an arbitrary search protocol
and an adversary. Roughly, the adversary gradually builds the graph, which is actually
a ternary tree, as the search protocol clears it in a monotone connected way. The role of
the adversary is to force the protocol to use the maximum number of agents to clear the
graph. The fact that the adversary can build the graph during the execution of the search
protocol is possible since the searchers have no information concerning the graph they
are clearing.

We need the following definition. A partial graph is a simple connected graph which
can have edges with only one end. Edges with one single end (resp., two ends) are called
half-edges (resp., full-edges). Let G = (V, H, F ) be a partial graph, where V is the
vertex-set of G, H its set of half-edges and F its set of full-edges. Let G− be the graph
(V, F ). Let G+ be the graph obtained by adding a degree-one end to any half-edge of G.

Let us give some definitions and results that will be used in the following. A ternary
tree is a tree whose internal vertices have degree at most three. A search strategy that
is not constrained to satisfy neither the connected property, nor the monotone property
is simply a sequence of moves of the searchers along the edges of a graph that results
in clearing the whole graph. s(G) denotes the smallest number of searchers that are
necessary to clear a graph G in such a way. The class of trees has particularly been
studied regarding graph searching. In particular, the following results have been proved.

Theorem 1. Let T be a tree with n ≥ 2 vertices,
s(T ) ≤ 1 + log3(n − 1) (Megiddo et al. [15])
For any v0 ∈ V (T ), mcs(T, v0) ≤ 2s(T ) − 1 (Barrière et al. [2])

The remaining part of this section is devoted to the proof of Theorem 2.

Theorem 2. Any search protocol for clearing n-node graphs has competitive ratio
Ω( n

log n ).
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Proof. Let P be any search protocol. We prove that there exists a constant c > 0, such
that for any n ≥ 5, there exists a n-node ternary tree T (actually, if n is odd, T has
exactly one internal vertex of degree two, and none otherwise), such that P uses at
least k searchers to clear T in a monotone connected way, starting from any homebase
v0 ∈ V (T ), with k ≥ c n

log n mcs(T, v0).
Let n ≥ 5. We consider an unknown ternary tree T , that P has to clear starting from

v0 ∈ V (T ). Let us describe the game executed turn by turn by P and the adversary
A. Initially, the partial graph Tp consists of a single vertex, the homebase v0, incident
to three half-edges. All searchers are placed at v0. Then, P and A play alternatively,
starting with P . At each round, Tp = (V, H, F ) corresponds to the part of T that P
currently knows. P chooses a searcher and it moves this searcher along an edge e of
Tp if it does not imply recontamination. Such a move is always possible since P is a
search protocol, and thus, it eventually clears T . Note that e may be a half-edge or a full-
edge. If e is a full-edge, then A skips its turn. Otherwise, two cases must be considered.
Either |V (T +

p )| < n − 1, or |V (T +
p )| = n − 1. In the first case, A adds a new end

v to e such that v is incident to two new half-edges f and h. That is, the partial graph
becomes Tp = (V ∪ {v}, Hnew, Fnew), with Hnew = (H \ {e}) ∪ {f} ∪ {h} and
Fnew = F ∪ {e}. In the latter case, A adds a new end v to e such that v is incident to
only one new half-edge f . Again, this is possible since P does not know the graph in
advance. The game ends when |V (T +

p )| = n. At such a round, A decides that the graph
T is actually T +

p .
Let us consider the last round, that is when |V (T +

p )| = n. We show that at this round
the number k of vertices of T +

p occupied by searchers is at least k ≥ n/4. Let us first
do the following easy remarks. At each round of the game, T−p is a ternary tree, and T +

p

is a ternary tree with at least (n + 2)/2 leaves (this can be easily prove by induction on
the number of rounds). Moreover, T−p is exactly the clear part of T at this step of the
execution of P . In other words, the half-edges of Tp corresponds to the contaminated
edges that are incident to the clear part of T . Since the execution of P ensures that the
strategy performed is monotone, it follows that, at any round of the game, the vertices
incident to at least one half-edge are occupied by a searcher. From the previous remarks,
it follows that T +

p is a ternary tree with at least (n+2)/4 vertices occupied by a searcher.
Indeed, every parent of a leaf in T +

p must be occupied by a searcher, and every node is
parent of at most two leaves. Thus, P uses at least k ≥ n/4 searchers. By Theorem 1,
mcs(T, v0) ≤ 2(1 + log3(n − 1)). Therefore,

k ≥ mcs(T, v0) × n

8(1 + log3(n − 1))
.

It follows easily that there is a constant c > 0 such that for any n ≥ 5 we have

k ≥ c
n

log n
mcs(T, v0) ,

which concludes the proof the theorem. ��

3 Upper Bound

In this section, we propose a search protocol mc search (for monotone connected
search) with competitive ratio O( n

log n ) for any n-node graph. Combining with the lower
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bound proved in section 2, it shows that Θ( n
log n mcs(G, v0)) searchers are necessary

and sufficient to clear any unknown n-node graph G in a monotone connected way,
starting from any homebase v0 and in decentralized settings.

Before describing the search protocol mc search, we need some definitions. In the
following, the depth of a rooted tree T is the maximum length of the paths between the
root and any leaf of T . Let v ∈ V (T ) that is not the root. Let u be the parent of v,
then the edge {u, v} is called the parent-edge of v. A complete ternary tree is defined
as follows. The complete ternary tree T0 of depth 0 consists of a single vertex, called
its root. For any k ≥ 1, a complete ternary tree Tk of depth k is a ternary tree in which
all internal vertices have degree exactly three, and there exists a vertex, called its root,
that is at distance exactly k from all leaves.

Theorem 3. (Barrière et al. [2])
For any k ≥ 0, mcs(Tk) = k + 1.

A graph H is a minor of a graph G if H is a subgraph of a graph obtained by a succes-
sion of edge contractions∗ of G. A well known result is that, for any graph G and any
minor H of G, s(G) ≥ s(H). Note that this result is not valid for the search number
mcs, i.e., there exist some graph G, and H minor of G such that mcs(H) > mcs(G) [2].

3.1 Idea of Protocol mc search

Let us roughly describe the search protocol mc search. Let G be a connected n-node
graph and v0 ∈ V (G). The main issue of mc search is to maintain two dynamic
rooted trees T and S. At each step, T is a subtree of the clear part of G, and S is a minor
of T with same root. Intuitively, S represents the current positions of the searchers in
G, and T enables the searchers to move in the clear part of the graph by performing a
DFS of T . Initially, S = T = {v0} and all searchers are at v0.

Roughly speaking, at each step, Protocol mc search tries to clear an edge of G
that is chosen such that S becomes as close as possible to a complete ternary tree. If the
chosen edge e reaches a new vertex, i.e., a vertex that is not occupied by a searcher yet,
e is added to S and labelled Minor. Otherwise, e is labelled Removed, meaning that
e has been cleared but it does not belong to S nor T .

At some step of the execution of Protocol mc search, it might happen that some
vertices of S are not “useful” to let S be the densest possible ternary tree. Such vertices
are those vertices of S with degree two or less in S, and whose all incident edges (in G)
have been cleared. Let v be such a vertex and e its parent-edge. Protocol mc search
is aiming at “contracting” e. There are two cases according whether v is a leaf of S or
not. In the first case, e is labelled Removed. In the latter case, e will be used by the
searchers to circulate between the different components of S in G. For this purpose,
e is labelled Tree. As a consequence, edges labelled Minor and Tree induce a tree
T that enables the searchers to circulate in the clear part of G, by performing a DFS.
Especially, T enables the searchers to reach all vertices of S.

We will show in the next sections that Protocol mc search eventually clears G in
a monotone connected way, starting from v0, and using N > 0 searchers. Moreover,
� The contraction of the edge e with endpoints u, v is the replacement of u and v with a single

vertex whose incident edges are the edges other than e that were incident to u or v.
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mc search organizes the moves of the searchers in such a way that the following
three properties are satisfied at any step. These three properties enable to show that
N = O( n

log n × mcs(G, v0)).

1. T and S have maximum degree three,
2. the vertex-set of S is the set of vertices of G occupied by a searcher at this step,

and
3. S has depth k ≥ 1 only if there exists a previous step when S was the complete

ternary tree Tk−1.

Let us consider k to be the maximum depth of S during the clearing of G. By properties
1,2 and 3,

N ≤ |V (Tk)| = |V (Tk)|
log |V (Tk)| × log |V (Tk)|.

Moreover, by property 3, Tk−1 is minor of G, thus s(Tk−1) ≤ s(G) ≤ mcs(G, v0) and
|V (Tk−1)| ≤ 2|V (G)|. By Theorems 1 and 3, log |V (Tk)| = O(k) = O(mcs(Tk−1)) ≤
O(s(Tk−1)) ≤ O(s(G)) ≤ O(mcs(G, v0)). Finally, since the function x

log x is strictly
increasing, and |V (Tk)| = 3 |V (Tk−1)| + 1 ≤ 3 |V (G)| + 1 = 3 n + 1, we obtain:

N = O( n
log n × mcs(G, v0)).

3.2 Protocol mc search

In this section, we describe the main features of protocol mc search that is described
in Figure 1. For the purpose of simplifying the presentation, we assume in this figure
that searchers are able to communicate by exchanging messages of size O(log n) bits.
This assumption can be implemented by an additional searcher. This extra searcher will
be used to schedule the moves of the other searchers and to transmit few information
between the searchers. For this purpose, the extra searcher performs a DFS of the tree
T that enables it to reach any other searcher. First, we describe the data structure used
by mc search.

Every searcher has a state variable �eve� ∈ {0, · · · , n}. Roughly, this variable indi-
cates the distance between the vertex currently occupied by the searcher and the root,
in the tree S. Initially, any searcher has �eve� = 0.

The whiteboard of every vertex v ∈ V (G) contains one vector statusv. For any
edge e ∈ E(G) incident to v, statusv[e] takes a value in L = {Contaminated,
Removed, T ree, Minor}. Initially, for any vertex v and any edge e, statusv[e] =
Contaminated. To simplify the presentation, we assume that each edge e = {u, v} ∈
E(G) has only one label �(e) = statusv[e] = statusu[e] ∈ L. This also may be
implemented by the extra searcher. Moreover the whiteboard of every vertex v contains
a boolean rootv which is either true if v is the current root of S or false.

The protocol is divided in O(|E(G)|) phases. At each phase, at least an edge is
relabelled. Note that any edge labelled Contaminated (resp., Minor, resp., Tree)
can be labelled Minor or Removed (resp., Tree or Removed, resp., Removed). The
edges labelled Removed are not relabelled, which proves that Protocol mc search
terminates.



422 D. Ilcinkas, N. Nisse, and D. Soguet

Let us define some notations. At any step, T is the subgraph of G induced by the
edges labelled Minor or Tree. In the next section, we prove that T is indeed a tree. S
is the minor of T obtained by contracting all edges labelled Tree. Initially, T is rooted
at v0. Finally, for any vertex v ∈ V (G), mv , tv , rv , cv denote the number of edges
incident to v that are respectively labelled Minor, Tree, Removed, Contaminated.

Let us describe a phase of the execution of Protocol mc search. A phase starts by
the election of the searcher that will perform the move or the labelling of an edge. The
elected searcher is an arbitrary searcher with minimum �eve� and that occupies a vertex
v ∈ V (G) satisfying one of the following four conditions, that we detail below. Case
a: tv +mv ≤ 2 and cv ≥ 1, Case b: mv = 1, tv = 0 and cv = 0, Case c: mv + tv = 2,
mv > 0, cv = 0 and v is not the root, Case d: mv + tv = 2, cv = 0 and v is the
root. We prove below that, while the graph is not clear, at least one vertex occupied by
a searcher satisfies one of these conditions.

We will prove that, at any phase, any searcher actually occupies a vertex of S. There-
fore, this election can easily be implemented by the extra searcher performing a DFS
of T . Moreover, that can be done with O(log n) bit of memory, since the extra searcher
only needs to remember the minimum �eve� of a searcher satisfying one of the above
conditions that it meets during this DFS.

Once the extra searcher has performed this DFS and has gone back to the root, let
k be the minimum �eve� satisfying one of the conditions, it has met. Then, the extra
searcher performs a new DFS to reach a searcher A with �eve� = k at a vertex v ∈
V (G) satisfying one of the conditions. We consider the four cases.

Case a. tv + mv ≤ 2 and cv ≥ 1. That is, v has degree at most two in T and it is
incident to a contaminated edge e. This case is aiming at adding an edge to T and
S for letting S to be as close as possible to a complete ternary tree.

In this case, the extra searcher has led another searcher B from the root to v
during its second DFS. The searcher B, followed by the extra searcher, clears e
and reaches its other end u ∈ V (G). Either there is an other searcher at u, i.e., u
belongs to S, or not, i.e., u /∈ V (T ). In the first case, the extra searcher labels e
with Removed, i.e. e is clear but it does not belong to T . Then, B and the extra
searcher goes back to the root. In the second case, the extra searcher labels e with
Minor, i.e. e is added to S and T . Then, B remains at u to guard it, and B takes
�eve� = k + 1.

Case b. mv = 1, tv = 0 and cv = 0. That is, v has degree one in T and S, and it
is incident to no contaminated edge. This case is aiming at removing a leaf from
S and T , because no other edge incident to this vertex might be added to T . This
corresponds to relabelling Removed the edge e incident to v in S that was labelled
Minor. Moreover, let P be the maximal-inclusion path in T , such that v is an end
of P , all edges of P are labelled Tree and all internal vertices in P have degree two
in T , then all these edges are relabelled Removed, which corresponds to removing
all the vertices of P from T .

In this case, searcher A traverses the edge e labelled Minor, labelling it
Removed. Let u be the other end of e. Once e has been removed from T , if u
has degree one in T and its incident edge f in T has label Tree, f is removed
in a similar way. This process is done recursively while it is possible. Note that
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u cannot be incident to a contaminated edge, otherwise, the protocol ensures that
another searcher with �eve� < k would have stand at u. To conclude this case, the
extra searcher and searcher A go back to the root and takes �eve� = 0. Again, it is
possible thanks to a DFS of T .

Case c. mv + tv = 2, mv > 0, cv = 0 and v is not the root. That is, v has degree two
in T and at least one in S and it is incident to no contaminated edge. This case is
aiming at contracting an edge e in S. That corresponds to relabelling Tree an edge
incident to v in S that was labelled Minor. We prove that the parent-edge of such
vertex is actually labelled Minor.

In this case, searcher A traverses the edge e labelled Minor, labelling it Tree.
Then, searcher A goes back to the root and takes �eve� = 0. Since, this case cor-
respond to the contraction of e in S, we need to update, i.e., to decrease by one,
the level of any searcher standing at a descendant of v. For this purpose, the extra
searcher can perform a DFS of Tv the subtree of T rooted in v. Finally, the extra
searcher goes back to the root.

Case d. mv + tv = 2, cv = 0 and v is the root. That is, v has degree two in T and it is
incident to no contaminated edge. This case is aiming at contracting an edge in S.
There are two cases according whether v is incident to an edge labelled Minor, or
not. If v is incident to an edge labelled Minor, let e be this edge. Otherwise, let w
be the vertex that is one of the two vertices closest to v in T and such that mw > 0,
let e be the edge labelled Minor incident to w, and let u be the other end of e.
Note that we will prove that such a vertex w has degree two in T and is incident
to exactly one edge labelled Minor. This case is aiming at contracting the edge e
in S. That corresponds to relabelling the edge e with Tree. This case also modifies
the position of the root.

In this case, all searchers standing at v (the root) are aiming at traversing the edge
e and at labelling it Tree. If e is incident to v, it can easily be done. Otherwise, the
searchers choose one of the two edges incident to v and traverse all edges labelled
Tree that they meet until reaching a vertex incident to an edge labelled Minor,
i.e., the vertex w. Then, they traverse e = {w, u} and relabelled it Tree. In both
cases, the searchers reach the vertex u that becomes the new root, i.e., the booleans
rootv and rootu are updated. Again, we need to update, i.e., to decrease by one, the
level of any searcher standing at a descendant of v in the subtree containing u. This
can be done by the extra searcher as in the previous case. Finally, the extra searcher
goes back to the new root.

3.3 Correctness of Protocol mc search

This section is devoted to prove the following theorem.

Theorem 4. Let G be a connected n-node graph and v0 ∈ V (G). Protocolmc search
enables O( n

log n mcs(G, v0)) searchers to clear G in a monotone connected way, starting
from v0.

Proof. The difficult part of the proof consists in showing that not too many searchers
are used. Thus, let us first prove that Protocol mc search clears G in a monotone
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Initially all searchers stand at v0 with �eve� = 0. T = (v0, ∅) with v0 as root.
During the execution of mc search, T is the tree that consists of edges labelled Tree or Minor.

Description of the execution of any phase of Protocol mc search.

While there exists an edge labelled Contaminated do
1. Election of a searcher A occupying a vertex v, with minimum �eve�, say L, such that one of the four

following cases is satisfied.
(Case a) tv + mv ≤ 2, cv ≥ 1
(Case b) mv = 1, tv = 0, cv = 0
(Case c) mv + tv = 2, mv > 0, cv = 0 and v is not the root
(Case d) mv + tv = 2, cv = 0 and v is the root

2. (Case a)
A searcher B standing at the root is called and goes to v.
Let e be an edge incident to v and labelled Contaminated;
B clears e; Let u be the other end of e;
if u is occupied by another searcher then

Label e Removed;
Searcher B goes to the root;

else Label e Minor; Searcher B takes �eve� = L + 1; endif

(Case b)
Let e be the edge incident to v labelled Minor.
Label e Removed and let u its other end;
if v is the root then u becomes the new root;

all searchers standing at v go to u; endif
While mu = 0, tu = 1, cu = 0 do

Let f be the edge incident to u labelled Tree.
Label f Removed; Let u′ the other end of f and A goes to u′;
if u is the root then u′ becomes the new root

and all searchers standing at u go to u′; endif
u ← u′;

EndWhile
Searcher A goes to the root;

(Case c)
Let e be the parent-edge of v and u its other end;
Label e with Tree;
Let Tv be the subtree of T obtained by removing e and containing v;
Any searcher occupying a vertex of Tv decreases its �eve� by one;
Searcher A goes to the root;

(Case d)
Let e be an edge that is closest to v in T such that e is labelled Minor;
Let u be the vertex such that e is its parent-edge;
Label e with Tree;
Let T ′ be the subtree of T obtained by removing e and that does not contain v;
Any searcher occupying a vertex of T ′ decreases its �eve� by one;
u becomes the new root;
All searchers that were standing at v go to u;

endWhile

Fig. 1. Protocol mc search

connected way. Initially, all edges are labelled Contaminated and the label of an edge
e becomes Minor or Removed as soon as e is traversed by a searcher. Moreover, af-
ter this traversal, each of its ends is occupied by a searcher (Case a). The strategy is
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obviously monotone since a searcher is removed from a vertex v if either v is occupied
by an other searcher (Case a), or no contaminated edge is incident to v, i.e. cv = 0,
(Cases b, c and d). Therefore, the strategy is monotone and connected since it is mono-
tone and starts from a single vertex v0. Finally, Protocol mc search eventually clears
G. Indeed, at each step, an edge is labelled, and any edge is relabelled at most three
times: Minor, T ree, and Removed in this order. Thus, no loop can occur. Moreover,
we prove below that T is a tree. Therefore, at any step, at least the searchers occupying
its leaves satisfy the conditions of the cases a, b, c, or d. Thus, while there remains a
contaminated edge, a searcher will eventually be called to clear this edge.

The remaining part of the section is devoted to prove that Protocol mc search
uses at most O( n

log n mcs(G, v0)) searchers. For this purpose, it is sufficient to prove
the three properties described in section 3.1. More precisely, we prove the following
lemma.

Lemma 1. Let us consider a phase of the execution of Protocol mc search. Let T be
the subgraph of G induced by the edges labelled Minor or Tree. Let S be the minor
of T when all edges labelled Tree have been contracted.

1. T and S are rooted trees with maximum degree at most three,
2. the vertex-set of S is the set of vertices of G occupied by a searcher at this phase,

and
3. S has depth k ≥ 1 only if there exists a previous step when S was the complete

ternary tree Tk−1.

The proof is by induction on the number of phases of the execution of Protocol
mc search. Initially, the result is obviously valid. Let p > 0 be a phase of the ex-
ecution of mc search and let us assume that the result is valid for any previous phase.
Let T ′ be the subgraph of G induced by the edges labelled Minor or Tree after phase
p − 1, and S′ the minor corresponding to the contraction of edges labelled Tree.

First we prove that S and T are acyclic. Note that, by definition, for any vertex
v ∈ V (G), mv + tv is the degree of v in T ′. According to the induction hypothesis, T ′

is a tree with maximum degree at most three. Let v be a vertex incident to at least one
edge labelled Contaminated and that is not occupied by a searcher. By monotonicity
of the strategy, all edges incident to v are labelled Contaminated. Thus, such a vertex
does not belong to T ′. Let us show that after phase p, T is a tree with maximum degree
three. We consider the four cases (a),(b),(c) and (d).

Case a. Either an edge e = {v, u} is added to T ′, i.e., T = (V (T ′)∪{u}, E(T ′)∪{e}),
or T ′ remains unchanged, i.e., T = T ′. Since, v ∈ V (T ′) and u /∈ V (T ′), T is a
tree in both cases. Moreover, mv + tv ≤ 2, thus v has degree at most two in T ′.
Thus T has maximum degree at most three.

Case b. mv + tv = 1, thus v is a leaf of T . Let u′ ∈ V (T ′) be the neighbor of v
and e = {u′, v} that is labelled Minor. First e is relabelled Removed, thus v is
removed from T ′. Then, if u′ is of degree one in T ′ \ {v} and its incident edge
f in T ′ \ {v} is labelled Tree, f is relabelled Removed, i.e. u′ is removed from
T ′ \ {v}. This process is repeated recursively. Thus, T is a tree obtained from T ′

by recursively removing leaves of T ′. Hence, the maximum degree of T is at most
three.
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Cases c and d. At most one edge of T ′ is relabelled Tree, thus T ′ = T . In the proof
of the Claim (see above) we prove that exactly one edge of T ′ is relabelled Tree.

It follows that T is a tree with maximum degree at most three. Since S is a minor of T ,
S is a tree.

Before proving that the maximum degree of S is three, we prove the second property.
We prove by induction on p that the vertices occupied by a searcher are exactly: the root,
and those vertices the parent-edge of which is labelled Minor.

Initially, the result is obviously valid. Let p > 0 be a phase of the execution of
mc search and let us assume that the result is valid for any previous phase. We con-
sider the four cases a, b, c and d. Let V ′M be the set of vertices such that their parent-edge
are labelled Minor after the phase p − 1.

Case a. An edge e = {v, u} labelled Contaminated is the only edge to be rela-
belled. It is relabelled either Removed or Minor. In the first case, S = S′ and
the searchers occupy exactly the same vertices than after the phase p − 1, thus the
property holds. In the second case, u is a leaf of T , and e is the parent edge of
u. Thus S = (V (S′) ∪ {u}, E(S′) ∪ {e}). Moreover the vertices occupied by a
searcher are exactly V (S′) ∪ {u}. Thus the property holds.

Case b. Let e = {v, u} be the edge adjacent to v labelled Minor. e is the only edge
relabelled from Minor to Removed. All the other relabelled edges are labelled
from Tree to Removed. Thus VM = V ′M \{v}. Indeed note that if the root changes,
the parent-edge of each vertex in V ′M \ {v} does not change. If the root does not
change, then S = (V (S′) \ {u}, E(S′) \ {e}). Moreover the vertices occupied
by a searcher are exactly V (S) and the property holds. If the root changes to w,
S = (VM ∪ {w}, E(S′) \ {e}), the vertices occupied by a searcher are exactly
V (S) and the property holds.

Case c. The parent-edge e of the vertex v is the only edge relabelled, and according
to induction hypothesis it is relabelled from Minor to Tree. Thus S = (V (S′) \
{v}, E(S′) \ {e}). Moreover the vertices occupied by a searcher are exactly V (S),
thus the property holds.

Case d. Let e be an edge that is closest to v in T ′ such that e is labelled Minor. We
will prove in the next proof that such an edge always exists. If this edge does not
exist nothing happens and the property holds.

Let u be the vertex such that e is its parent-edge. The edge e is the only edge
relabelled, it is relabelled from Minor to Tree. Thus VM = V ′M \ {u}. Indeed the
root changes such that the parent-edge of each vertex in VM does not change and u
is the new root. The root changes to u, thus S = (VM ∪{u}, E(S′)\{e}). Moreover
the vertices occupied by a searcher are exactly VM ∪ {u} and the property holds.

Thus, at phase p, the vertex-set of S is the set of vertices of G occupied by a searcher
at this phase.

In order to prove that S has maximum degree at most three, we need the following
claim:

Claim. Let v ∈ V (T ) incident to an edge e labelled Tree, and such that e is not its
parent-edge. Let Tv be the subtree of T obtained by removing e from T and that does
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not contain v. There exists an edge f = {u, w} labelled Minor, such that f is the
parent edge of w, u has degree two in T , and the subtree P of Tv obtained by removing
f from Tv and that contains u consists of a path of edges labelled Tree.

Obviously, Tv contains at least one edge labelled Minor because all leaves of T are
labelled Minor. Indeed, when a leaf is added to T , its incident edge is labelled Minor
(Case a) and, when a leaf and its incident edge e labelled Minor are removed, the
whole path of edges labelled Tree at which e is attached are removed (Case b).

We now prove that, for any vertex u ∈ V (T ) that is not the root, such that all its
incident edges in T are labelled Tree, u has degree two in T . Since we have proved
that a leaf can only be incident to an edge labelled Minor, u has degree at least two
in T . For purpose of contradiction, let us assume that u has degree three in T . Let us
consider the phase of the execution of mc search such that the last edge incident to u
and labelled Contaminated has been relabelled. From this phase, the degree of u in T
might only have decreased. It follows that this vertex cannot have satisfied conditions
corresponding to Cases b,c, or d. Thus, u has never been the root otherwise it would
still be the case. Moreover, the parent-edge of u has never been relabelled contradicting
the fact that it is labelled Tree. Hence, such a vertex u has degree exactly two in T .

Let f be the edge labelled Minor that is the closest to v in Tv. Let u be the end of
f that is closest to v. Obviously, u is not the root and its parent-edge is labelled Tree.
It only remains to prove that u has degree exactly two in T . Similarly to the previous
paragraph, we assume, for purpose of contradiction, that u has degree three in T . Again,
this leads to the fact that its parent-edge could not have been relabelled, a contradiction.
Thus, u has degree two and it is incident to an edge labelled Minor and another edge
labelled Tree. Moreover, all internal vertices of the path between u and v have degree
two in T and they are incident to edges labelled Tree. This concludes the proof of the
Claim. �

Now, let us prove that S has maximum degree at most three. According to the in-
duction hypothesis, S′ has maximum degree at most three. To prove that the maximum
degree of S is at most three, the four cases a, b, c and d must be considered by taking
into account the previous claim. Indeed using the Claim, we get that the degree in S of
a node v is actually equal to mv + tv , i.e., its degree in T . The induction consists to
prove that at the end of the phase p, for all node v ∈ S, mv + tv ≤ 3 according to the
case a, b, c and d. The formal proof is omitted due to lack of space and can be found
in [12].

To conclude the proof of the lemma, let us prove the third property. First, for any
searcher occupying a vertex v of S, its level is the distance between v and the root. Let
k ≥ 1 and let us consider the first phase p at which the depth of S becomes k. The phase
p consists of the clearing of a contaminated edge e = {u, v} with u ∈ V (S) occupied
by a searcher with level k − 1, and v ∈ V (G) \ V (T ). Since the move performed at
phase p is executed by the searcher with smallest level, it means that no searcher with
level less than k − 1 can move. That is, all internal vertices of S have degree three and
S has depth k − 1, i.e. S = Tk−1. This concludes the proof of the lemma and of the
theorem. ��



428 D. Ilcinkas, N. Nisse, and D. Soguet

References

1. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by mobile
agents. In: 14th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pp. 200–
209. ACM Press, New York (2002)

2. Barrière, L., Fraigniaud, P., Santoro, N., Thilikos, D.: Connected and Internal Graph Search-
ing. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 34–45. Springer, Heidelberg
(2003)

3. Bienstock, D.: Graph searching, path-width, tree-width and related problems (a survey) DI-
MACS Ser. in Discrete Mathematics and Theoretical Computer Science, 5, pp. 33–49 (1991)

4. Bienstock, D., Seymour, P.: Monotonicity in graph searching. Journal of Algorithms 12, 239–
245 (1991)

5. Blin, L., Fraigniaud, P., Nisse, N., Vial, S.: Distributing Chasing of Network Intruders. In:
Flocchini, P., Gasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 70–84. Springer,
Heidelberg (2006)

6. Breisch, R.: An intuitive approach to speleotopology. Southwestern Cavers 5, 72–78 (1967)
7. Flocchini, P., Luccio, F.L., Song, L.: Decontamination of chordal rings and tori. In: Proc.

of 8th Workshop on Advances in Parallel and Distributed Computational Models (APDCM)
(2006)

8. Flocchini, P., Luccio, F.L., Song, L.: Size Optimal Strategies for Capturing an Intruder in
Mesh Networks. In: Proceedings of the 2005 International Conference on Communications
in Computing (CIC), pp. 200–206 (2005)

9. Flocchini, P., Huang, M.J., Luccio, F.L.: Contiguous search in the hypercube for capturing
an intruder. In: Proc. of 18th IEEE Int. Parallel and Distributed Processing Symp (IPDPS),
IEEE Computer Society Press, Los Alamitos (2005)

10. Fraigniaud, P., Nisse, N.: Connected Treewidth and Connected Graph Searching. In: Correa,
J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 470–490. Springer,
Heidelberg (2006)

11. Fraigniaud, P., Nisse, N.: Monotony properties of connected visible graph searching. In:
Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 229–240. Springer, Heidelberg (2006)

12. Ilcinkas, D., Nisse, N., Soguet, D.: The cost of monotonicity in distributed graph searching.
Technical Report, LRI-1475, University Paris-Sud, France (September 2007)

13. LaPaugh, A.: Recontamination does not help to search a graph. Journal of the ACM 40(2),
224–245 (1993)

14. Luccio, F.L.: Intruder capture in Sierpinski graphs. In: Crescenzi, P., Prencipe, G., Pucci, G.
(eds.) FUN 2007. LNCS, vol. 4475, pp. 249–261. Springer, Heidelberg (2007)

15. Megiddo, N., Hakimi, S., Garey, M., Johnson, D., Papadimitriou, C.: The complexity of
searching a graph. Journal of the ACM 35(1), 18–44 (1988)

16. Nisse, N., Soguet, D.: Graph searching with advice. In: Prencipe, G., Fales, S. (eds.)
SIROCCO 2007. 14th Colloquium on Structural Information and Communication Complex-
ity. LNCS, vol. 4474, pp. 51–67. Springer, Heidelberg (2007)

17. Parson, T.: Pursuit-evasion in a graph. In: Parson, T. (ed.) Theory and Applications of Graphs.
Lecture Notes in Mathematics, pp. 426–441. Springer, Heidelberg (1976)

18. Yang, B., Dyer, D., Alspach, B.: Sweeping Graphs with Large Clique Number. In: Fleischer,
R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 908–920. Springer, Heidelberg
(2004)



Timed Quorum Systems for
Large-Scale and Dynamic Environments

Vincent Gramoli1,2,� and Michel Raynal2

1 INRIA Futurs,
Parc Club Orsay Université, 91893 Orsay, France
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Abstract. This paper presents Timed Quorum System (TQS), a quorum system
for large-scale and dynamic systems. TQS provides guarantees that two quorums,
accessed at instances of time that are close together, intersect with high probabil-
ity. We present an algorithm that implements TQS at its core and that provides
operations that respect atomicity with high probability. This TQS implementation
has quorums of size O(

√
nD) and expected access time of O(log

√
nD) mes-

sage delays, where n measures the size of the system and D is a required param-
eter to handle dynamism. This algorithm is shown to have complexity sub-linear
in size and dynamism of the system, and hence to be scalable. It is also shown
that for systems where operations are frequent enough, the system achieves the
lower bound on quorum size for probabilistic quorums in static systems, and it is
thus optimal in that sense.

Keywords: Time, Quorums, Churn, Scalability, Probabilistic atomicity.

1 Introduction

The need of resources is a main motivation behind distributed systems. Take peer-to-
peer (p2p) systems as an example. A p2p system is a distributed system that has no
centralized control. The p2p systems have gained in popularity with the massive utiliza-
tion of file-sharing applications over the Internet, since 2000. These systems propose a
tremendous amount of file resources. More generally, there is an increasing amount of
various computing devices surrounding us: IDC predicts that there will be 17 billions
of traditional network devices by 2012. In such a context, it is common knowledge
that scalability has become one of the most important challenges of today’s distributed
systems.

The scale-shift of distributed systems modifies the way computational entities
communicate. Energy dependence, disconnection, malfunctioning, and environmen-
tal factors affect the availability of various computational entities independently. This
translates into irregular periods of activity during which an entity can receive messages
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or compute tasks. As a result of this independent and periodic behaviors, these systems
are inherently highly dynamic.

Quorum system is a largely adopted solution for communication in message-passing
system. Despite the interest for emulating shared-memory in dynamic systems [1,2,3,4],
there is no scalable solution due to the cost of their failure handling mechanism or their
operation complexity.

This paper describes a Timed Quorum System (TQS) for large-scale dynamic sys-
tems. TQS provides guarantees that two quorums, accessed at instances of time that
are close together, intersect with high probability. We propose an algorithm that imple-
ments TQS and that verifies probabilistic atomicity: a consistency criterion that requires
each operation to respect atomicity with high probability. This algorithm is analyzed to
show scalability in terms of complexity. More precisely, the expected time complexity
is O(log

√
nD) message delays, where n measures the size of the system and D is a

required parameter to handle dynamism. It is also shown that for systems where oper-
ations are frequent enough, the algorithm achieves a lower bound, O(

√
n), on quorum

size for probabilistic quorum in static systems, and it is thus optimal in that sense. In ad-
dition, we show that our solution does not need a reconfiguration mechanism to tolerate
the dynamic and fault-prone environment for which it is designed due to the integration
of a replication mechanism on top of the operations performed on the replicated object.

Related Work. Dynamic quorum systems are a very active research area. Some dynamic
quorum systems rely on failure detectors where quorums are dynamically redefined
according to failure detection, This adaption leads to a redefinition of the quorums [1,5]
or to the replacement of the failed nodes in the quorums [6,7,8]. For example, in [7],
a communication structure is continuously maintained to ensure that quorums intersect
at all time (with high probability).

Other solutions rely on periodic reconfigurations [2,4] where the quorum systems are
subsequently replaced. These solutions are different from the previous ones since the
newly installed quorums do not need to intersect with the previous ones. In [3] a quorum
abstraction is defined by two properties: (i) intersection and (ii) progress, in which the
notion of time is introduced. First, a quorum of a certain type intersects the quorum
of another type contacted subsequently. Second, each node of a quorum remains active
between the time the quorum starts being probed and the time the quorum stopped being
probed.

As far as we know, TQS is the first quorum system that expresses guarantees that
are both timely and probabilistic. Time and probability relax the traditional intersec-
tion requirement of quorums. We present a scalable emulation of a probabilistic atomic
memory where each operation is atomic with high probability and complexity is sub-
linear in both the size and the dynamism of the system.

Roadmap. Section 2 presents the model and describes the problem. Section 3 defines
the Timed Quorum System. Section 4 presents a shared object by specifying read
and write operations based on a TQS. Section 5 shows that this solution implements
TQS and verifies probabilistic atomicity, and analyses the complexity of the algorithm.
Finally, Section 6 concludes the paper.
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2 System Model and Problem Definition

2.1 Model

The computation model is very simple. The system consists of n nodes. It is dynamic
in the following sense. Every time unit, cn nodes leave the system and cn nodes enter
the system, where c is an upper bound on the percentage of nodes that enter/leave the
system per time unit and is called the churn; this can be seen as new nodes “replacing”
leaving nodes. A node leaves the system either voluntarily or because it crashes. A node
that leaves the system does not reenter it later. (Practically, this means that, when a node
reenters the system, it is considered as a new node; all its previous knowledge of the
system state is lost.) For the sake of simplicity, it is assumed that for any subset S of
nodes, the portion of replaced nodes is c|S|. As explained below, the model can be made
more complex. The universe U denotes all the nodes of the system, plus the ones that
have already left the system and the ones that have not joined the system yet.

2.2 Problem

Most of the dynamic models assume that dynamic events are dependent from each
other: only a limited number of nodes leave and join the system during a bounded
period of time. For instance in [4], it is assumed that node departures are dependent:
quorum replication ensures that all nodes of at least any two quorums remain active
between the occurrence of two reconfigurations. However, in a real dynamic system,
nodes act independently. Due to this independence, even with a precise knowledge of
the past dynamic events, one can not predict the future behavior of a node. That is,
putting this observation into the quorums context, it translates into the impossibility of
predicting deterministically whether quorums intersect.

In contrast, TQS requires that quorums intersect with high probability. This allows to
use a more realistic model in which there is a certain probability that nodes leave/join
the system at the same time. That is, the goal here is to measure the probability that
any two quorums intersect as time elapses. Observe that, realistically, the probability
that k nodes leave the system increases as time elapses. As a result, the probability
that a quorum Q(t) probed at time t and that a quorum Q(t′) probed at time t′ intersect
decreases as the period |t′−t| increases. In the following we propose an implementation
of TQS where probability of intersection remains high.

More precisely, each quorum of our TQS implementation is defined for a given time
t. Each quorum Q(t) has a lifetime Δ that represents a period during which the quorum
is reachable. Differently from availability defined in [5], reachability does not depend
on the number of nodes that are failed in a quorum system because this number is
unpredictable in dynamic systems. Instead, a Q(t) quorum is reachable if at least one
node of quorum Q(t) is reached with high probability: if two quorums are reachable
at the same time, they intersect with high probability. More generally, let two quorums
Q(t) and Q(t′) of a TQS be reachable during Δ time (their lifetime is Δ); if |t−t′| ≤ Δ
then Q(t) and Q(t′) intersect with high probability.
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2.3 Preliminary Notations and Definitions

This section defines several terms that are used in the algorithm description. Recall that
a shared object is accessed through read operations, which return the current value of
the object, and write operations, which modify the current value of the object. Initially,
any object has a default value v0 that is replicated at a set of nodes and V denotes the
set of all possible values present in the system. An object is accessed by read or write
operations initiated by some nodes i at time t ∈ T that return or modify the object
value v. (T is the set of all possible time instances.) If a node initiates an operation,
then it is referred to as a client. All nodes of the system, including nodes of the quorum
system, can initiate a read or a write operation, i.e., all nodes are potential clients and
the multi-reader/multi-writer model is used. In the following we only consider a single
object accessed by operations.

First, to clarify the notion of currency when concurrency happens, it is important
to explain what are the up-to-date values that could be considered as current. We refer
to the last value as the value associated with the largest tag among all values whose
propagation is complete. We refer to the up-to-date values at time t as all values v that
satisfies one of the following properties: (i) value v is the last value or (ii) value v is a
value whose propagation is ongoing and whose associated tag is at least equal or larger
to the tag associated with the last value.

Second, it is important to understand what is a successful phase. The goal of a con-
sultation phase is to return an up-to-date value, whereas the goal of the propagation
phase is to propagate an up-to-date value v so that v can be identified as an up-to-date
value. Thus, we refer to a successful phase as a phase that achieves its goal. Observe
that, if the consultation of an operation is unsuccessful, then the subsequent propagation
phase of the same operation might propagate a new value with a small tag so that this
value will not be identifiable as an up-to-date value. In this case, we say that both the
consultation and propagation are unsuccessful phases. A more formal definition of the
successful/unsuccessful phase follows.

Definition 1 (Successful Phase). A consultation phase φ is successful if and only if it
returns an up-to-date value val(φ). A propagation phase ρ is successful if and only if
it propagates a tag tag(ρ) largest than any of the tags that were in the system when ρ
started. A phase is unsuccessful if it is not successful.

We refer to successful operations as operations whose consultation phase and propaga-
tion phase are successful.

TQS ensures that two active quorums will intersect with high probability, however,
if no quorum is active, then the value of an object does no longer persist. To ensure
that new operations replicate the object value sufficiently, we assume that at last one
operation is executed every period Δ. As previously explained this mechanism serves
as a continuous replication and replaces the traditional reconfiguration mechanism to
cope with accumulated failures.

2.4 Probabilistic Atomic Object

A probabilistic atomic object aims at emulating a memory that offers high quality of
service despite large-scale and dynamism. For the sake of tolerating scale-shift and
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dynamism, we aim at relaxing some properties. However, our goal is to provide each
client with a distributed shared memory emulation that offers satisfying quality of ser-
vice. Quality of service must be formally stated by a consistency criterion that defines
the guarantees the application can expect from the memory emulation. We aim at pro-
viding quality of service in terms of accuracy of read and write operations. In other
words, our goal is to provide the clients with a memory that guarantees that each read
or write operation will be successfully executed with high probability. We define the
probabilistic atomic object as an atomic object where operation accuracy is ensured
with high probability.

Let us first recall properties 2 and 4 of atomicity from Theorem 13.16 of [9] which
require that any sequence of invocations and responses of read and write operations
applied to x satisfies a partial ordering ≺ such that:

– (π1, π2)-ordering: if the response event of operation π1 precedes the invocation
event of operation π2, then it is not possible to have π2 ≺ π1;

– (π1, π2)-return: the value returned by a read operation π2 is the value written by the
last preceding write operation π1 regarding to ≺ (in case no such write operation
π1 exists, this value returned is the default value).

The definition of probabilistic atomicity is similar to the definition of atomicity: only
Properties 2 and 4 are slightly modified, as indicated below.

Definition 2 (Probabilistic Atomic Object). Let x be a read/write probabilistic
atomic object. Let H be a complete sequence of invocations responses of read and
write operations applied to object x. The sequence H satisfies probabilistic atomicity
if and only if there is a partial ordering ≺ on the operations such that the following
properties hold:

1. For any operation π2, there are only finitely many successful operations π1, such
that π1 ≺ π2.

2. Let π1 be a successful operation. Any operation π2 satisfies (π1, π2)-ordering with
high probability. (If π2 does not satisfy it, then π2 is unsuccessful.)

3. if π1 is a successful write operation and π2 is any successful operation, then either
π2 ≺ π1 or π1 ≺ π2;

4. Let π1 be a successful operation. Any operation π2 satisfies (π1, π2)-return with
high probability. (If π2 does not satisfy it, then π2 is unsuccessful.)

Observe that the partial ordering is defined on successful operations. That is, either an
operation π fails and this operation is considered as unordered or the operation succeeds
and is ordered with respect to other successful operations.

Even though an operation succeeds with high probability, there might be a lot of
unsuccessful operations in a long enough execution. However, our goal is to provide
the operation requester (client) with high guarantee of success for each of its operation
request.

3 Timed Quorum System

This section defines Timed Quorum Systems (TQS). Before being created or after its
lifetime has elapsed, a quorum is not guaranteed to intersect with any other quorum,
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however, during its lifetime a quorum is considered as available: two quorums that are
available at the same time intersect with high probability. In dynamic systems nodes
may leave at any time, but this probability is bounded, thus it is possible to determine
the intersection probability of two quorums.

Next, we formally define TQS that are especially suited for dynamic systems. Recall
that the universe U contains the set of all possible nodes, including nodes that have not
yet joined the system. First, we restate the definition of a set system as a set of subsets
of a universe of nodes.

Definition 3 (Set System). A set system S over a universe U is a set of subsets of U .

Then, we define the timed access strategy as a probability distribution over a set sys-
tem that may vary over time. This definition is motivated by the fact that an access
strategy defined over a set S can evolve. To compare with the existing probabilistic dy-
namic quorums, in [7] the authors defined a dynamic quorum system using an evolving
strategy that might replace some nodes of a quorum while its access strategy remains
identical despite this evolution. Unlike the dynamic quorum approach, we need a more
general framework to consider quorums that are different not only because of their
structure but also because of how likely they can be accessed. The timely access strat-
egy adds a time parameter to the seminal definition access strategy given by Malkhi et
al. [10]. A timely access strategy is allowed to evolve over time.

Definition 4 (Timed Access Strategy). A timed access strategy ω(t) for a set system
S at time t ∈ T is a probability distribution on the elements of S at time t. That is,
ω : S × T → [0, 1] satisfies at any time t ∈ T :

∑
s∈S ω(s, t) = 1.

Informally, at two distinct instants t1 ∈ T and t2 ∈ T , an access strategy might be
different for any reason. For instance, consider that some node i is active at time t1 while
the same node i is failed at time t2, hence it is likely that if i ∈ s, then ω(s, t1) �= 0
while ω(s, t2) = 0. This is due to the fact that a node is reachable only when it is active.

Definition 5 (Δ-Timed Quorum System). Let Q be a set system, let ω(t) be a timed
access strategy for Q at time t, and let 0 < ε < 1 be given. The tuple 〈Q, ω(t)〉 is a
Δ-timed quorum system if for any quorums Q(t1) ∈ Q accessed with strategy ω(t1)
and Q(t2) ∈ Q accessed with strategy ω(t2), we have:

Δ ≥ |t1 − t2| ⇒ Pr[Q(t1) ∩ Q(t2) �= ∅] ≥ 1 − ε.

4 Timed Quorum System Implementation for Probabilistic
Atomic Memory

In the following, we present a structureless memory. The quorum systems this memory
uses does not rely on any structure, that is, the quorum system is flexible. In contrast
with using a logical structured overlay (e.g., [11]) for communication among quorum
system nodes, we use an unstructured communication overlay [12]. The lack of struc-
ture presents several benefits. First, there is no need to re-adapt the structure at each
dynamic event. Second, there is no need for detecting failure. Our solution proposes
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a periodic replication. To ensure the persistence of an object value despite unbounded
leaves, the value must be replicated an unbounded number of times. The solution we
propose requires periodic operations and an approximation of the system size. Although
we do not focus on the problem of approximating the system size n, we suggest the use
of existing protocols approximating closely the system size in dynamic systems [13].

4.1 Replicating During Client Operations

Benefiting from the natural primitive of the distributed shared memory, values are repli-
cated using operations. Any operation has at its heart a quorum-probe that replicates
value. On the one hand, it is natural to think of a write operation as an operation that
replicates a value. On the other hand, in [14] a Theorem shows that ”read must write”,
meaning that a read operation must replicates the value it returns. This raises the ques-
tion: if operations replicate, why does a memory need additional replication mecha-
nism? In large-scale systems, it is also reasonable to assume that shared objects are
frequently accessed because of the large number of participants. Since operations pro-
vide replication and shared objects experience frequent operation requests in large-scale
systems, frequent replications can be mainly ensured by client operations.

4.2 Quorum Probe

The algorithm is divided in three distinct parts that represent the state of the algorithm
(Lines 1–12), the actions initiated by a client (Lines 13–42), and the actions taken upon
reception of messages by a node (Lines 43–63), respectively. Each node i has its own
copy of the object called its value val i and an associated tag tagi. Field tag is a couple
of a counter and a node identifier and represents, at any time, the version number of
its corresponding value val . We assume that, initially, there are q nodes that own the
default value of the object, the other nodes have their values val set to ⊥ and all their
tags are set to 〈0, 0〉.

Each read and write operation is executed by client i in two subsequent phases, each
disseminating a message to q = O(

√
nD) nodes, where D = (1 − c)−Δ represents the

inverse of the portion of nodes that stayed in the system during period Δ. This dynamic
parameter D is required to handle churn c during period Δ.1 The two successive phases
are called the consultation phase and the propagation phase. The consultation phase
aims at consulting the up-to-date value of the object that is present in the system. (This
value is identifiable because it is associated with the largest tag present in the system.)
More precisely, client i disseminates a consultation message to q nodes so that each
receiver j responds with a message containing value val j and tag tagj so that client i
can update val i and tag i. In fact, i updates val i and tag i if and only if the tagi has either
a smaller counter than tagj or it has an equal counter but a smaller identifier i < j (node
identifiers are always distinct); in this case we say tag i < tagj for short (cf. Lines 51
and 53). Ideally, at the end of the consultation phase client i has set its value val i to
the up-to-date value. Read and write operations differ from the value and tag that are
propagated by the client i. Specifically, in case of a read, client i propagates the value

1 It is shown in [10] that q = O(
√

n) is sufficient in static systems.
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Algorithm 1. Disseminating Memory at node i

1: State of node i:
2: q = β

√
n

(1−c)
Δ
2

, the quorum size

3: �, k ∈ N the disseminating parameters taken such that kl+1−1
k−1 ≥ q

4: val ∈ V , the value of the object, initially ⊥
5: tag , a couple of fields:
6: counter ∈ N, initially 0
7: id ∈ I , an identifier initially i
8: marked , an array of booleans initially false at all indices
9: sent-to-nbrs1 , sent-to-nbrs2 two sets of node identifiers, initially ∅

10: rcvd-from-qnodes , an infinite array of identifier sets, initially ∅ at all indices
11: sn ∈ N, the sequence number of the current phase, initially 0
12: father ∈ I , the id of the node that disseminated a message to i, initially i

13: Readi:
14: 〈val , tag〉 ← Consult()
15: Propagate(〈val , tag〉)

16: Write(v )i:
17: 〈∗, tag〉 ←Consult()
18: tag .counter ← tag .counter + 1
19: tag .id ← i
20: val ← v
21: Propagate(〈val , tag〉)

22: Consulti:
23: ttl ← �
24: sn ← sn + 1
25: while (|sent-to-nbrs1 | < k) do
26: send〈CONS, val , tag , ttl , i, sn〉 to
27: a set J of (k − |sent-to-nbrs1 |) neighbors �= father
28: sent-to-nbrs1 ← sent-to-nbrs1 ∪ J
29: end while
30: sent-to-nbrs1 ← ∅
31: wait until |rcvd-from-qnodes [sn ]| ≥ q

32: return (〈val , tag〉)

and tag pair freshly consulted, while in the case of write, client i propagates the new
value to write with a strictly larger tag than the largest tag that i has consulted so far.
The propagation phase propagates the corresponding value and tag by dissemination
among nodes.

Next, we focus on the dissemination procedure that is at the heart of the consultation
and propagation phases. There are two parameters, �, k, that define the way all con-
sultation or propagation messages are disseminated. Parameter � indicates the depth of
the dissemination, it is used to set a time-to-live field ttl that is decremented at each
intermediary node that participates in the dissemination; if ttl = 0, then dissemina-
tion is complete. Parameter k represents the number of neighbors that are contacted by
each intermediary participating node. Together, parameters � and k define the number
of nodes that are contacted during a dissemination. This number is k�+1−1

k−1 (Line 3) and
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33: Propagate(〈 val,t 〉)i:
34: ttl ← �
35: sn ← sn + 1
36: while (|sent-to-nbrs1 | < k) do
37: send〈PROP, val , tag , ttl , i, sn〉 to
38: a set J of (k − |sent-to-nbrs1 |) neighbors �= father
39: sent-to-nbrs1 ← sent-to-nbrs1 ∪ J
40: end while
41: sent-to-nbrs1 ← ∅
42: wait until |rcvd-from-qnodes [sn ]| ≥ q

43: Participatei (Activated upon reception of a message):
44: recv〈type, v , t , ttl , client-id , sn〉 from j
45: if (marked [sn]) then
46: send〈type , v , t , ttl , client-id , sn〉 to a neighbor �= j
47: else
48: marked [sn ] ← true
49: father ← j
50: if ((type = CONS)) then 〈v, t〉 ← 〈val , tag〉
51: if ((type = PROP)) then 〈val , tag〉 ← 〈v, t〉
52: if (type = RESP) then
53: if (tag < t) then 〈val , tag〉 ← 〈v, t〉
54: rcvd-from-qnodes [sn] ← rcvd-from-qnodes [sn ] ∪ {j}
55: ttl ← ttl − 1
56: if (ttl > 0) then
57: while (|sent-to-nbrs2 | < k) do
58: send〈type , v , t , ttl , client-id , sn〉 to
59: a set J of (k − |sent-to-nbrs2 |) neighbors �= father
60: sent-to-nbrs2 ← sent-to-nbrs2 ∪ J
61: end while
62: sent-to-nbrs2 ← ∅
63: send 〈RESP, val , tag , ttl , ⊥, sn〉 to client-id

represents the number of nodes in a balanced tree of depth � and width k: each node
having exactly k children. (This value is provable by recurrence on the depth � of the
tree.) Observe that � and k are chosen such that the number of nodes that are contacted
during a dissemination be larger than q as written Line 3.

There are three kinds of messages denoted by message type: CONS, PROP, RESP
indicating if the message is a consultation message, a propagation message, or a re-
sponse to any of the two other messages. When a new phase starts at client i, a time-to-
live field ttl is set to � and a sequence number sn is incremented. This number is used
in message exchanges to indicate whether a message corresponds to the right phase.
Then the phase proceeds in sending continuously messages to k neighbors waiting for
their answer (Lines 25–29 and Lines 36–40). When the k neighbors answer, client i
knows that the dissemination is ongoing. Then client i receives all messages until a
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large enough number q of nodes have responded in this phase, i.e., with the right se-
quence number (Lines 31, 42). If so, then the phase is complete.

Observe that during the dissemination, messages are simply marked (if they have
not already been marked), responded (to client i), and re-forwarded to other neighbors
(until ttl is null). Messages are marked by the node i that participates in a dissemina-
tion for preventing node i from participating multiple times in the same dissemination
(Line 45). As a result, if node i is asked several times to participate, it first participates
(Lines 48–63) and then it asks another node to participate (Lines 45–47). More pre-
cisely, if marked [sn] is true, then node i re-forwards messages of sequence number sn
without decrementing the ttl . Observe that phase termination and dissemination termi-
nation depends on the number of participants rather than the number of responses: it
is important that enough participants participate in each dissemination for the phase to
eventually end.

4.3 Contacting Participants Randomly

In order to contact the participants randomly, we implemented a membership proto-
col [12]. This protocol is based on Cyclon [15], thus, it is lightweight and fault-tolerant.
Each node has a set of m neighbors called its view Ni, it periodically updates its view
and recomputes its set of neighbors. Our underlying membership algorithm provides
each node with a set of m ≥ k + 1 neighbors, so that phases of Algorithm 1 dissem-
inate through a tree of degree k + 1. This algorithm shuffles the view at each cycle of
its execution so that it provides randomness in the choice of neighbors. Moreover, it
has been shown by simulation that the communication graph obtained with Cyclon is
similar to a random graph where neighbors are picked uniformly among nodes [16].

For the sake of uniformity, the membership procedure is similar to the Cyclon algo-
rithm: each node i maintains a view Ni containing one entry per neighbor. The entry
of a neighbor j corresponds to a tuple containing the neighbor identifier and its age.
Node i copies its view, selects the oldest neighbor j of its view, removes the entry ej of
j from the copy of its view, and finally sends the resulting copy to j. When j receives
the view, j sends its own view back to i discarding possible pointers to i, and i and j
update their view with the one they receive by firstly keeping the entries they received.
The age of neighbor j entry denotes the time that elapsed since the last message from
j has been received; this is used to remove failed neighbor from the list. This variant of
Cyclon exchanges all entries of the view at each step like in [17].

5 Correctness Proof and Performance Analysis

Here, we show that Algorithm 1 implements a Timed Quorum System and that it emu-
lates the probabilistic atomic object abstraction defined in Definition 2. The key points
of this proof are to show that quorums are sufficiently re-activated by new operations
to face dynamism and that subsequent quorums intersect with very high probability
to achieve probabilistic atomicity. The proofs of Lemmas and Theorems can be found
in [18].
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5.1 Assumptions and Notations

First, we only consider executions starting with at least q nodes that own the default
value of the object. In these executions, at least one propagation phase from a successful
operation starts every Δ time units and let the time of any phase be bounded by δ time
units. We assume that during a propagation that propagates a value v to q nodes and that
executes between time t and t + δ, there is at least one instant t′ where the q nodes own
value v simultaneously. This instant, t′, can occur arbitrarily between time t and t + δ.
Even if this assumption may not seem realistic since propagation occurs in parallel of
churn (i.e., at the time the propagation contacts the qth node the first contacted node
may have left the system), our motivations for this assumption comes from the sake of
clarity of the proof and we claim that the absence of this assumption leads to the same
results.

Second, we assume that our underlying communication protocol provides each node
with a view that represents a set of neighbors uniformly drawn at random among the
set of all active nodes. This assumption is reasonable since, as already mentioned, the
underlying algorithm is based on Cyclon that shuffles node views and provides com-
munication graph similar to a random graph [16].

Next, we show that Algorithm 1 implements a probabilistic object. Observe that
the liveness part of this proof relies simply on the activity of neighbors, and the fact
that messages are eventually received. More precisely, by examination of the code of
Algorithm 1, messages are gossiped among neighbors while neighbors are uniformly
chosen. It is clear that operation termination depends on eventual message delivery. As
a result, only the safety part of the proof follows. In the following, val(φ) (resp. tag(φ))
denote, the value (resp. tag) consulted/propagated by phase φ.

5.2 Correctness Proof

First, we restate a Lemma appeared in [19] that computes the ratio of nodes that leave
the system as time elapses, given a churn of c. The result is the ratio of nodes that leave
and join, and helps computing the probability that up-to-date values remain reachable
despite dynamism.

Lemma 1. The ratio of initial nodes that have been replaced after τ time units is at
most C = 1 − (1 − c)τ .

The reader will find the proof of this Lemma 1 in [19]. The following Lemma gives
a lower bound on the number of nodes that own the up-to-date value at any time in
the system. (Recall that an up-to-date value is either the value with the largest tag and
whose propagation is complete, or any value with a larger tag, but whose propagation
is ongoing.)

Lemma 2. At any time t in the system, the number of nodes that own an up-to-date
value is at least q(1 − c)Δ, where Δ is the maximum period between two subsequent
and successful propagation starting time instances, q is the quorum size, and c is the
churn of the system.
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The following fact gives this well-known bound on the exponential function, provable
using the Euler’s method.

Fact 1. (1 + x
n )n ≤ ex for n > |x|.

Next Lemma lower bounds the probability that any consultation consults an up-to-date
value v. Recall that sometime it might happen that a value v′ is unsuccessfully propa-
gated. This may happen when a write operation fails in consulting the largest tag just
before propagating value v′. Observe that in any case, a successful consultation returns
only successfully propagated values.

Lemma 3. If the number of nodes that own an up-to-date value is at least q(1 − c)Δ

during the whole period of execution of consultation φ, then consultation φ succeeds
with high probability (≥ 1 − e−β2

, with β a constant).

This Corollary simply concludes the two previous Lemmas stating that any consultation
executed in the system succeeds by returning an up-to-date value.

Corollary 1. Any consultation φ succeeds with high probability (≥ 1 − e−β2
, with β a

constant).

Proof. The result is straightforward from Lemma 2 and Lemma 3. � Last but not

least, the two Theorems conclude the proof by showing that Algorithm 1 implements a
Δ-TQS and verifies probabilistic atomicity.

Theorem 1. Algorithm 1 implements a Δ-Timed Quorum System, where Δ is the max-
imum period between two subsequent and successful propagation starting time in-
stances.

Theorem 2. Algorithm 1 implements a probabilistic atomic object.

5.3 Performance Analysis

The following Lemmas show the performance of our solution: the first Lemma gives
the expected message complexity of our solution while the second Lemma gives the ex-
pected time complexity of our solution. Observe first that operations complete provided
that sent messages are reliably delivered. Building onto this assumption, an operation
complete after contacting O(

√
nD) nodes. The following Lemma shows this result.

Lemma 4. An operation completes after having contacted O(
√

nD) nodes.

Proof. This is straightforward from the fact that termination of the dissemination pro-
cess is conditioned to the number of distinct nodes contacted: q = O(

√
nD), with

D = (1 − c)−Δ (cf. Line 2). Since there are two disseminating phases in each opera-
tion, an operation is executed after contacting O(

√
nD) nodes. �

Next Lemma indicates that an operation terminates in O(log
√

nD) message delays, in
expectation.
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Lemma 5. If messages are not lost, the expected time of an operation is O(log
√

nD)
message delays.

Proof. The proof relies on the fact that q′ nodes are contacted uniformly at random with
replacement. In expectation, the number q′ that must be contacted to obtain q distinct
nodes is q′ = q = O(

√
nD). Since nodes are contacted in parallel along a tree of depth

� and width k, the time required to contact all the nodes on the tree is � = O(logk q).
That is, it is done in � = O(logk

√
nD) message delays. �

6 Conclusion

This paper addressed the problem of emulating a distributed shared memory that copes
with scalability and dynamism while being efficient. TQS ensures probabilistic inter-
section of quorums in a timely fashion. Interestingly, we showed that some TQS imple-
mentation verifies a consistency criterion weaker but similar to atomicity: probabilistic
atomicity. Hence, any operation satisfies the ordering required for atomicity with high
probability. The given implementation of TQS verifies probabilistic atomicity, provides
lightweight (O(

√
nD) messages) and fast (O(log

√
nD) message delays) operations,

and does not require reconfiguration mechanism since periodic replication is piggy-
backed into operations.

Since we started tackling the problem that node can fail independently, we are now
able to implement probabilistic memory into more realistic models. Previous solutions
required that a very few amount of nodes could fail at the same time. More realistically,
a model should allow node to act independently. Thus, an interesting question is: what
probabilistic consistency can TQS achieve in such a more realistic model?
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Abstract. Consider the following game between a worm and an alert1 over a
network of n nodes. Initially, no nodes are infected or alerted and each node
in the network is a special detector node independently with small but constant
probability. The game starts with a single node becoming infected. In every round
thereafter, every infected node sends out a constant number of worms to other
nodes in the population, and every alerted node sends out a constant number of
alerts. Nodes in the network change state according to the following four rules: 1)
If a worm is received by a node that is not a detector and is not alerted, that node
becomes infected; 2) If a worm is received by a node that is a detector, that node
becomes alerted; 3) If an alert is received by a node that is not infected, that node
becomes alerted; 4) If a worm or an alert is received by a node that is already
infected or already alerted, then there is no change in the state of that node.

We make two assumptions about this game. First, that an infected node can
send worm messages to any other node in the network but, in contrast, an alerted
node can send alert messages only through a previously determined, constant de-
gree overlay network. Second, we assume that the infected nodes are intelligent,
coordinated and essentially omniscient. In other words, the infected nodes know
everything except for which nodes are detectors and the alerted nodes’ random
coin flips i.e. they know the topology of the overlay network used by the alerts;
which nodes are alerted and which are infected at any time; where alerts and
worms are being sent; the overall strategy used by the alerted nodes; etc. The
alerted nodes are assumed to know nothing about which other nodes are infected
or alerted, where alerts or worms are being sent, or the strategy used by the in-
fected nodes.

Is there a strategy for the alerted nodes that ensures only a vanishingly small
fraction of the nodes become infected, no matter what strategy is used by the
infected nodes? Surprisingly, the answer is yes. In particular, we prove that a
simple strategy achieves this result with probability approaching 1 provided that
the overlay network has good node expansion. Specifically, this result holds if
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flaw exists and thereby eliminate false alerts.
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d ≥ α and α
β(1−γ) > 2d

c
, where α and β represent the rate of the spread of the

alert and worm respectively; γ is the probability that a node is a detector node; d
is the degree of the overlay network; and c is the node expansion of the overlay
network. Next, we give empirical results that suggest that our algorithms for the
alert may be useful in current large-scale networks. Finally, we show that if the
overlay network has poor expansion, in particular if (1−γ)β > d, then the worm
will likely infect almost all of the non-detector nodes.

Keywords: Self-certifying alert, worm, overlay network, peer-to-peer, expander
graphs, epidemic processes.

1 Introduction

Attacks on the Internet are characterized by several alarming trends: (i) increases in
frequency: large-scale attacks are approximately doubling every year [2]; (ii) increases
in speed: the recent slammer worm infected 90% of vulnerable hosts within 10 minutes
[3]; and (iii) increases in severity: the slammer worm had many unforeseen conse-
quences including failures of 911 emergency data-entry terminals, network outages,
and canceled airline flights, [3,4,5,6]. In addition, there has been a broadening of mo-
tivations for attack to include extortion [7,8]; phishing [9,10,11]; sending anonymous
spam [12,13]; and political reasons [14,15]. Modern computer worms simply propagate
too quickly for human detection. Since attacks are now occurring at a speed which pre-
vents direct human intervention, there is a need to develop automated defenses. Since
the financial, social and political stakes are so high, we need defenses which are prov-
ably good against a worst case attacks.

A promising recent result in this direction is the development of self certifying
alerts(SCAs)[1]. An SCA is a short, machine verifiable, automatically generated proof
that a security flaw exists. Because an SCA is short, it is easily propagated through a
network. Because an SCA is efficiently verifiable, false positives are eliminated. SCAs
are generated by dedicated machines called detectors. Detectors run instrumented soft-
ware to automatically detect a worm, determine which vulnerability the worm exploits,
and then generate an SCA for the worm, i.e. a short proof that the vulnerability the
worm exploits does in fact exist. After receiving and verifying an SCA, a machine can
generate a filter that blocks infection by analyzing the exploit which the SCA proves
exists. Because the SCA focuses on the security flaw exploited by a worm, rather than
the textual content of the worm, SCAs can easily be created for polymorphic worms.
Recent empirical results suggest that SCAs can be generated, checked and deployed
efficiently. For example, the Vigilante system [16] takes 18 milliseconds to generate an
SCA for the Slammer worm, the resulting SCA is 457 bytes long, the time to verify
this SCA is 10 milliseconds, and the time to create a filter from the verified SCA is 24
milliseconds. These times for SCA generation, verification and filter creation are on the
same scale as the time it takes a worm to infect a machine. Vigilante performs similarly
for two other Internet worms, Code Red and Blaster.

Distribution of alerts in the Vigilante system is performed by the Pastry[17] peer-
to-peer overlay network. It is shown empirically that a very small fraction of special
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detector nodes is enough to ensure that a worm infects no more than 5% of the
vulnerable population. While these initial results are promising, several critical prob-
lems remain. First, Vigilante requires that the nodes participating in the overlay network
all be resistant to infection. Second, Vigilante requires that the topology of the overlay
network be hidden from the worm. These two assumptions may hold true for an overlay
network owned and operated by a single company, but seem unlikely to hold for a large-
scale open source peer-to-peer network. Finally, while the Vigilante systems performs
well empirically against currently known worms, the system has no known theoretical
guarantees against all worms. In this paper, we focus exclusively on the problem of
distribution of alerts through an overlay network and address these three problems.

1.1 Our Model

We model our problem of alert distribution as a game between a worm and an alert over
a synchronous network. Initially, no nodes are infected or alerted and each node in the
network is a special detector node independently with fixed probability γ. The game
starts with a single node becoming infected. In every round thereafter, every infected
node sends out β worms to other nodes in the population, and every alerted node sends
out α alerts for fixed constants α and β. Nodes in the network change state according
to the following four rules: 1) If a worm is received by a node that is not a detector and
is not alerted, that node becomes infected; 2) If a worm is received by a node that is a
detector, it is not infected, instead it becomes alerted; 3) If an alert is received by a node
that is not infected, that node becomes alerted; 4) If a worm or an alert is received by
a node that is already infected or already alerted, then there is no change in the state of
that node.

We make two assumptions about this game. First, an infected node can send worm
messages to any other node in the network but, in contrast, an alerted node can send
alert messages only through a previously determined, constant degree overlay network.
In other words, the alert-spreading algorithm is “polite” in the sense that it does not
bombard arbitrary nodes with alerts unless it knows that they are interested in receiving
them. Since the worm is not required to be polite, it is not constrained by the overlay
network, although a particularly sophisticated worm may exploit the structure of the
overlay network for its own purposes. An edge in this overlay network represents an
agreement between two nodes to accept SCAs from each other. Second, we assume
that the infected nodes are intelligent, coordinated and essentially omniscient. In other
words, the infected nodes know everything except for which nodes are detectors and
the alerted nodes’ random coin flips i.e. they know the topology of the overlay network
used by the alerts; which nodes are alerted and which are infected at any time; where
alerts and worms are being sent; the overall strategy used by the alerted nodes; etc.
Moreover, the worm is unconstrained in which nodes it attacks. For example, it could
always try to infect nodes which have never been infected before. The alerted nodes are
assumed to know nothing about which other nodes are infected or alerted, where alerts
or worms are being sent, or the strategy used by the infected nodes. Also the number of
messages an alerted node can send is constrained by the degree of the graph.
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1.2 Results

In our results, we make use of a d-regular overlay network with node expansion c. As a
concrete example, a random d-regular graph has node expansion c = d/5−1 with high
probability2. Throughout this paper, we use the phrase with high probability (w.h.p) to
mean with probability at least 1 − 1/nε for some fixed ε > 0. Let RANDOM be the
algorithm that has each alerted node in each round send out alerts to α nodes selected
uniformly at random without replacement from its neighbors in the overlay. Our main
theoretical results are stated below as the following two theorems which are proven in
Sections 2 and 4 respectively.

Theorem 3: If d ≥ α and α
β(1−γ) > 2d

c , then the algorithm RANDOM ensures that,
w.h.p, only o(n) nodes are ever infected.

Theorem 6: If the overlay network has bounded degree d and β(1 − γ) > d, then
any alert algorithm in expectation will save a fraction of non-detector nodes that ap-
proaches 0 as n gets large

Our empirical results, presented in Section 3, show that if the overlay network is a d-
regular random graph, as n grows large, the algorithm RANDOM saves an increasingly
large fraction of the nodes against a worm that spreads uniformly at random. For exam-
ple, for n = 106, d = 100, β = 1, α = 5 and γ = .02, we were able to save 99% of the
nodes on average.

1.3 Other Related Work

Several approaches for generating self-certifying alerts have been proposed recently
(see e.g. [19,20,21], but few systems have been proposed for disseminating those alerts.
The Vigilante system and its limitations have been discussed above. Zhou et al. [22]
propose a system for distributing alerts over a network, but their system is focused
on confronting worms that can spread only through the same overlay network through
which the alert is spreading. Vojnovic and Ganesh [23] and Shakkottai and Srikant [24]
perform exhaustive analytical and empirical studies of the effectiveness of different
types of alert dissemination. However, their work focuses only on worms that spread
uniformly at random in the network. In contrast, our work considers worms that may
use smarter dissemination strategies.

2 Alert Versus Worm in an Expanding Overlay Network

In this section, we focus on d-regular graphs for our overlay network. We show that for
a suitable choice of parameters and a particular type of overlay network, we are able to
save most of the nodes from getting infected with high probability. More precisely, at
the end of the process only o(n) nodes get infected, and all other nodes get alerted.

The essential idea is that we want the long-run growth rate of the set of alerted nodes
to be higher than the rate for the infected nodes. The rate for infected nodes is easy to

2 See [18] for an algorithm for sampling from random d-regular overlay networks in a dis-
tributed manner.
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calculate; assuming an optimal choice of targets, each infected node infects on average
an additional β(1 − γ) nodes per round. The rate for alerted nodes is trickier, as alerted
nodes are limited by the structure of the overlay network. But we can get a lower bound
on the expected rate during the early parts of the protocol by observing that A alerted
nodes will between them have at most dA neighbors, of which at least cA will not
already be alerted, where c is the expansion parameter of the network. It follows that
each alerted node will attempt to alert on average at least α(c/d) unalerted nodes at
each step. In the absence of the worm, this would give the growth rate of the alerted
nodes; with M infected nodes, we must subtract these from the pool of new alerted
nodes (using the simplifying assumption that the worm successfully concentrates itself
on the boundary of the set A). Fortunately these lost infected nodes are compensated
for somewhat by the boost of γβM new alerted nodes from triggered detectors.

This overview ignores two important details. Because we want a high-probability
bound, it is not enough simply to consider expected growth rates. And because the
expansion factor applies only for sets with n/2 or fewer elements, we must consider
separately the case where the set of alerted nodes is larger. We handle both problems by
dividing the execution into three phases. Phase I starts with a single infected node and
ends when ln n worm messages have been received by nodes in the network. During
this phase we ignore the spread of alerts and content ourselves with getting only the
Θ(γ ln n) alerted nodes that result from successful detections. Phase II starts at the end
of of Phase I. During this phase we use the fact that the number of infected and alerted
nodes are both Ω(log n) to show that both the worm and the SCA propagate at close
to the expected rate with high probability; the key point is that when the populations of
both are large enough, Chernoff bounds apply to the increases. Phase II ends when n/d2

nodes have been alerted by the SCA; at this point we can no longer rely on the expansion
properties of the network and must resort to a different analysis. Note that there are
expansion properties till the end of Phase II. For this analysis, done in Section 2.3,
we show that in constant number of steps, we would alert n/2 nodes and then after c
log(log(n)) further steps we would have only o(n) not alerted or not infected nodes.
Thus we would have shown that only o(n) nodes could have been infected and θ(n)
nodes have been alerted.

In the remainder of this section, all lemmas that bound a random variable’s value for
t rounds hold with probability greater than or equal to 1 − t/nc for some fixed constant
c > 0. Also for all the remaining lemma’s in this section, d ≥ α.

2.1 Phase I

Let Z be the set of nodes that receive the first ln n worm messages; i.e., the set of nodes
that receive worm messages in Phase I.

We write Ai for the number of nodes alerted at time t, counting from the end of
Phase I; thus A0 is the number of nodes alerted in Z .

Lemma 1. At the end of Phase I, (a) the expected number of alerted nodes E[A0] is
at least γ ln n; and (b) for any c > 0, there exists a constant δ ≤ 1/2, such that with
probability greater than 1 − 1/nc, (1 − δ) E[A0] ≤ A0 .
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Proof. For each v ∈ Z , let Xv be the indicator random variable for the event that v
is alerted in Phase I and let Yv be the event that v is a detector node. While the Xv

are not necessarily independent, we do have that Xv ≥ Yv for all v, and thus A0 =∑
v∈Z Xv ≥

∑
v∈Z Yv. It follows that E[A0] ≥

∑
E[Yv] = γ|Z| = γ ln n. The second

part is an immediate application of Chernoff bounds.

It follows that A0 is Θ(ln n) with high probability.

2.2 Analysis of Phase II

For the second phase, begin by comparing the number of infected nodes in the actual
process with the number of infected nodes in an infinite graph where the SCA has no
effect on the spread of the worm. The process in the latter graph has the advantage of
being much easier to analyze; and, as we show, it gives an upper bound on the outcome
of the original process.

Formally, let Mt be the number of infected nodes at time t in the original graph,
where as before we count rounds from the start of Phase II. Let M ′

t be the number
of infected nodes at time t in an infinite graph under the assumptions that (a) no alert
messages are ever sent out by the detector nodes, even though they are alerted by worm
messages, and (b) each infected node spreads the worm to β unique, previously unin-
fected nodes in the network at each round. Where no confusion will result, we also use
Mt and M ′

t to refer to the set of nodes infected in each case.
Observe that the assumptions for M ′

t only increase the number of infected nodes;
so that M ′

t stochastically dominates Mt in the sense that ∀ k ≥ 0, Pr(M ′
t ≥ k) ≥

Pr(Mt ≥ k), no matter what strategy the worm applies in the original graph.
Let M0 and M ′

0 count the nodes infected by the end of Phase I, in their respective
simulations. From Lemma 1, we have that M0 ≤ |Z| − A0 ≤ ln n.

Lemma 2. For all t ≥ 0, the expected value of the random variable M ′
t at time t is

equal to (1 + β(1 − γ))tM0.

Proof. By our assumption about the number of messages sent by the infected nodes
and the fraction of detector nodes, the expected number of new infected nodes is β(1 −
γ) E[M ′

t], where (1 − γ) is the probability that a given node is not a detector node.
Hence the recurrence relation for E[M ′

t] is E[M ′
t]=(1 + β(1 − γ)) E[M ′

t−1]. Hence
E[M ′

t] = (1 + β(1 − γ))tM0.

We now show that M ′
t remains closely bounded around its expected value, thus giving

an upper bound on the variable Mt. The proof of the following lemma is somewhat
technical; it is omitted from this extended abstract due to space constraints.

Lemma 3. For any c > 0 and fixed β and γ, there exists a constant k such that, for
sufficiently large n and any t, it holds that M ′

s ≤ k E[M ′
s] for all s ≤ t

We now turn to alerted nodes. Let At be the number of nodes that are in the alerted state
at time t. For any set of vertices A, let N(A) be the set of neighbors of nodes in A in
the overlay network that are not themselves in A. Let the random variable Zt be equal
to the number of nodes in N(At−1) that receive an alert message at time step t.
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Lemma 4. For all t ≥ 0, At ≥ At−1 + Zt- M ′
t .

Proof. Out of the unalerted nodes which receive alert messages, at most M ′
t−1 nodes

could be infected nodes. Hence the lower bound result holds true.

Lemma 5. For all t ≥ 0, E(Zt) ≥ (cα/d)At−1.

Proof. Let St−1 be the set of nodes that are alerted at time t−1 and let n′ = |N(St−1)|.
Number the nodes in N(St−1) from 1 to n′. Let Xi,t = 1 if the i-th such node is alerted

at time step t for the first time, and 0 otherwise. Then Zt ≥
∑n′

i=1 Xi,t. By linearity of

expectation, E[Zt] ≥
∑n′

i=1 E[Xi,t]. Observe that each node counted in At−1 sends an
alert to fixed neighbor with probability α/d; it follows that for each node i in N(St−1),
Pr[Xi,t = 1] ≥ α/d. We thus have E[Zt] ≥ n′α/d ≥ (cα/d)At−1, where c is the
expansion factor.

Lemma 6. For all t ≥ 0 At ≥ At−1 + (1/2)E(Zt) − M ′
t .

Proof. We now imagine that the alerted nodes use the following process to decide where
to send out their α alert messages. They randomly permute all of their neighbors and
then send out alerts to the first alpha nodes in this random permutation. Imagine further
that some alerted node j determines its random permutation by assigning a random
variable Xj,i to each node i that is a neighbor of j. This random variable takes on a
value uniformly at random in the real interval between 0 and 1. The nodes that the alert
is sent to are thus determined by finding the α random variables among the d whose
outcomes are closest to 0. For each node i and j, there is a separate such random Xj,i

and we note that these random variables are all independent. Let f be a function such
that Zt = f(X1,1, X1,2, . . . , Xm,d). We note that f satisfies the Lipchitz condition, i.e
|f(X1,1, X1,2, . . . , Xl,p, . . . , Xm,d)−f(X1,1, X1,2, . . . , X

′
l,p, . . . , Xm,d)| ≤ 1. This is

the case since a change in the outcome of a single Xi,j will at most cause one new node
to receive an alert and one old node to not receive an alert. Hence we can use Azuma’s

Inequality to say that Pr( Pr(|Zt − E(Zt)| ≥ (1/2)E(Zt) ≤ 2e
− (1/4)E(Zt)2

2At−1d . Since by
the previous lemma E(Zt) ≥ (cα/d)At−1, the right hand side is less than or equal to

2e
− ((cα/d)At−1)2

8At−1d which is O(1/nk′
) for some constant k′ > 0 since At−1 is θ(ln n).

The lemma then follows by a simple Union bound.

Let k be the multiplicative constant of the expectation, in the statement of lemma 3.

Lemma 7. For all t ≥ 0, At ≥ (1 + (αc)/(2d))At−1 − k(1 + β(1 − γ))t ln n

Proof. From Lemma 5 and Lemma 6 we get that the number of nodes alerted at round
t follows the inequality At ≥ At−1 + (1/2)((cα/d)At−1) − M ′

t . Hence At ≥ (1 +
(αc)/(2d))At−1 − M ′

t . By Lemma 2 and Lemma 3 we know that M ′
t is no more than

k(1 + β(1 − γ))t ln n for t rounds, with probability at least 1-t/nc. Hence replacing
the upper bound value of Mt in the above expression yields the inequality At ≥ (1 +
(αc)/(2d))At−1 −k(1+β(1−γ))t ln n.

Let p = (1 + (αc)/(2d)), q = (1 + β(1 − γ)). Hence the recurrence relation as given
in the last lemma is At ≥ pAt−1 − kqt.
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Lemma 8. For all t ≥ 0, At ≥ ptA0 − k(qt + pqt−1 + . . . pt)

Proof. Proof is by induction on t. It is easy to see that the base case holds. Assume
that the claim holds for all rounds less than or equal to t-1. Hence At ≥ p(pt−1A0 −
k(qt−1+ . . . pt−1))−kqt. Expanding the algebraic expression, we get the expression in
the claim.

Let κ = p/q. Then At ≥ pt ln n − ptk(1 + 1/κ + . . . (1/κ)t). Or

At ≥ pt(ln n − k(1 + 1/κ + . . . (1/κ)t)). (1)

2.3 Analysis of Phase III

In this phase, we make use of a graph with two types of expansion. We show below
that a random d regular graph has the types of expansion that we need. The proof of the
following two theorems are omitted from this extended abstract.

Theorem 1. Let d ≥ 30 and ε > 0, then with high probability, a random d-regular
graph G has the following properties

1. For any set S such that ε log n ≤ |S| ≤ n
d2 , |N(S)| ≥ |S|(d

5 − 1).

2. For any set S such that n
d2 ≤ |S| ≤ n

2 , |N(S)| ≥ |S|
2 .

The following theorem assumes that the overlay network has expansion properties
as given in the Theorem 1.

Theorem 2. Assume that at some point, the number of alerted nodes is at least n/d2

and that the number of infected nodes is no more than n1−ε for some ε > 0. Then w.h.p,
at the end of the process, all but o(n) nodes will be alerted.

The next theorem is the main result of this section.

Theorem 3. If d ≥ α and α
β(1−γ) > 2d

c , then the algorithm RANDOM ensures that,
w.h.p, only o(n) nodes are ever infected.

Proof. Since α
β(1−γ) > 2d

c , therefore αc
2d > β(1 − γ). Hence 1+ αc

2d > 1 + β(1 − γ), or

p/q > 1. From equation 1 it is clear that At ≥ ptln n − 3k. Hence At ≥ pt. Hence for
t ≥ logpn, At ≥ Ω(n). Hence in Phase II, the process cannot last for more that logp(n)
steps. Hence from Lemma 3, we know that Mlogp(n) ≤ k(1 + β(1 − γ))logp(n) with
probability greater than 1−logp(n)/nc. Hence Mlogpn < k qlogp(n). Since p > q, clearly
Mt = o(n) at the end of Phase II. Further it is O(n1−ε). Now, from Theorem 2 , we know
that if we have o(n1−ε) infected nodes at the end of Phase II , we would have at most
o(n) infected nodes at the end of the Phase III.
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3 Empirical Results

We simulated the spread of a worm and an alert through a network to empirically de-
termine the fraction of nodes saved.3 We performed our experiment using a random
d-regular graph as the overlay network and set each node in the network to be a detec-
tor node independently with probability γ. In addition, we fixed the worm strategy such
that each infected node, in each round, sent out the worm to β unique nodes selected
uniformly at random, and we fixed the alert strategy such that each alerted node sent
out the alert to α unique nodes selected uniformly at random among its neighbors in the
overlay network. We note that the worm strategy we used in these experiments is not
necessarily the best possible worm strategy, but we selected this strategy for concrete-
ness. Our d regular random graph was created using the configuration model method
proposed in [25].

In each round we iterate through the set of vertices, allowing each infected or alerted
node to send the worm or alert to the appropriate number of other nodes in the network.
There are several possible strategies for resolving the status of a virgin (i.e. neither
alerted or infected) node that gets both a worm message and an alert message in the
same round. In our previous theoretical analysis, we assumed that if a node receives
just one worm message it becomes infected. However, in our experiments, we used the
somewhat more relaxed and realistic assumption that the probability that the node gets
infected equals the number of worm messages received divided by the total number of
messages received, and that the probability the node becomes alerted is 1 minus this
quantity. We note that this assumption is equivalent to assuming that the messages all
arrive in the node’s message queue according to some random permutation.

Figure 1(a) illustrates our results when γ = 0.1, β = 1, α = 1 and d = 10, where
we varied the value of n from 210 to 220, multiplying at each step by 2. To remove noise
in the simulation, each data point represents the average over 100 trials. The best result
we obtained was saving only 45% of the nodes for n = 220. Even though this final data
point is somewhat disappointing, we do observe a clear increasing trend in the fraction
saved as n increases.

Given these results, it seems for current network sizes, there is not much hope for
the alert when α = β. We thus next considered the case where α > β. In practice, this
condition may hold since the alerts are traveling through a predetermined overlay net-
work and a technique such as throttling can ensure that alert messages received through
the overlay are given priority over types of messages. To explore this scenario, we con-
ducted experiments where we fixed β at 1. We then determined necessary values of γ
for each α ranging from 2 to 10, that would ensure that we save 90%, 95% and 99% of
the nodes (Figure 1(b)). The values of n and d used in the experiment were 106 and 100
respectively. The results of these experiments were much more encouraging. In partic-
ular, for α = 2, we were able to save 99% of the nodes with γ = .14. When α = 5,
we required a γ of .018 to save 99% of the nodes, and when α = 10, we required
a γ of only .001 to save 99% of the nodes. These results suggest that our algorithms

3 All of the code necessary to replicate these experiments is available at
http://www.cs.unm.edu/∼navin/worm.html.

http://www.cs.unm.edu/~navin/worm.html
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(a)

(b)

Fig. 1. (a) log of the network size versus fraction of nodes saved (b) contour plot of α versus γ
required to save 99%, 95% and 90% of the nodes

for spreading alerts might be most effective in conjunction with other techniques (like
throttling) that would enable the alerts to spread more quickly than the worm.

4 Is Expansion Necessary?

In this section, we consider what happens in graphs with poor expansion properties.
In particular, we look at the growth rate of the number of nodes at distance k from
some initial point of infection, and show that if this growth rate is small, the worm
successfully infects almost every node that does not detect it itself.

For the purposes of this lower bound, we adopt a simplified deterministic version
of the model. We proceed in a sequence of rounds starting from the time at which the
worm is first detected, and think of the graph as organized in layers V0, V1, . . . , where



Worm Versus Alert: Who Wins in a Battle for Control of a Large-Scale Network? 453

V0 contains the initial a0 alerted and b0 infected nodes, and each Vi is the set of nodes
at distance i from this initial set.

We ignore the structure of the interconnections between layers; instead, we allow an
SCA that has already alerted ai nodes in layer Vi to alert any αai nodes in layer Vi+1
in one round. Because the worm can spread without regard to the layer structure, we
assume that it can attempt to infect these nodes first; a round thus consists of the worm
attempting to infect nodes in layer Vi+1 followed by the SCA attempting to alert any
nodes that are left.

Let bi be the total number of infected nodes in layer i after round i and let Bi =∑i
j=0 be the total number of infected nodes after round i without regard to what layer

they are in. The worm can attempt to infect up to βBi nodes in round i + 1; of these,
γβBi will trigger detectors.

If we similarly let ai be the number of alerted nodes in layer Vi after round i, then
the SCA can attempt to alert αai nodes in layer Vi+1. But because the worm goes first,
there may not be any nodes left to alert.

The overall pattern in round i + 1 is thus:

1. The worm attempts to infect up to βBi nodes in layer Vi+1, of which
(1 − γ)βBi become infected and γβBi become alerted.

2. The SCA spreads from layer Vi to layer Vi+1, yielding an additional
min(αai, |Vi+1| − βBi) alerted nodes.

This gives us the recurrence

bi+1 = (1 − γ)min (|Vi+1|, βBi)
ai+1 = γ min (|Vi+1|, βBi) + min (αai, |Vi+1| − βBi)

Theorem 4. Define ai, bi, and Vi as above. Let |V0|, |V1|, . . . be such that, for all i ≥ 0,

|Vi+1| ≤ β(1 − γ)
i∑

j=0

|Vi|.

Let b0 ≥ (1 − γ)|V0|. Then bi ≥ (1 − γ)|Vi| for all i.

Proof. Straightforward induction on i. The base case is given. For the induction step
suppose the claim holds for i. Then we have

bi+1 = (1 − γ)min (|Vi+1|, βBi)

= (1 − γ)min

⎛

⎝|Vi+1|, β
i∑

j=0

bj

⎞

⎠

≥ (1 − γ)min

⎛

⎝|Vi+1|, β(1 − γ)
i∑

j=0

|Vj |

⎞

⎠

= (1 − γ)|Vi+1|.
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In other words, if the growth rate of the graph is small enough and the initial set of
alerted nodes is small enough, then the SCA has no effect beyond the original detection
sites.

For a large enough graph, a higher initial growth rate or lower initial worm numbers
can be compensated for in the limit. For simplicity, we consider an infinitely large graph
that is again organized into layers V0, V1, . . . as above.

Theorem 5. Let ai, bi, Vi be as in Theorem 4. Let b0 > 0 and let

lim sup
i→∞

|Vi+1|
∑i

j=0 |Vi|
< (1 − β)γ. (2)

Suppose further that |Vi+1| ≥ |Vi| for all i. Then

lim
i→∞

bi

|Vi|
= (1 − γ).

Proof. We assume that α is sufficiently large that at the end of round i, any node in
layer i that is not infected is alerted. This assumption only hurts the worm, so if the
assumption is violated the result only improves.

From (2), there exists some ε, i0 such that for all i > i0,
|Vi+1| ≤ (1 − ε)(1 − γ)β

∑i
j=0 |Vj |. Let ri = Bi/

∑i
j=0 |Vj | and compute, for i > i0,

bi+1 = (1 − γ)min (|Vi+1|, βBi)

= (1 − γ)min

⎛

⎝|Vi+1|, βri

i∑

j=0

|Vi|

⎞

⎠

= min

⎛

⎝(1 − γ)|Vi+1|, riβ(1 − γ)
i∑

j=0

|Vi|

⎞

⎠

≥ min
(

(1 − γ)|Vi+1|,
ri

1 − ε
|Vi+1|

)

= min
(

1 − γ,
ri

1 − ε

)

|Vi+1|.

Unless ri = 1 − γ, we expect bi+1/|Vi+1| to be larger than ri; in particular we have
bi+1/|Vi+1| ≥ min((1 − γ), (1 + ε)ri). The new ratio ri+1 is a weighted average of
ri and bi+1/Vi+1. Under the assumption that |Vi| is nondecreasing, the weight on the
second term is at least 1/(i + 1). Thus we have

ri+1 ≥ i

i + 1
ri +

min(1 − γ, εri)
i + 1

= ri +
min((1 − γ) − ri, εri)

i + 1
.

Observe that the first term in the minimum is decreasing and the second increasing. As

long as εri < (1 − γ)ri, we have ri+1 ≥ ri
ε

i+1 . So ri+k ≥ ri

(
1 + ε

∑k−1
j=i

1
j+1

)
; as
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the series diverges, eventually ri+k must be large enough that the first term takes over.
But then let si = (1−γ)−ri, and compute si+1 = (1−γ)−ri+1 ≤ si − si

i+1 = si
i

i+1 ,
from which it follows via a telescoping product that si+k ≤ si

i
i+k , which goes to zero

in the limit.

The proof of the following theorem follows directly from the above.

Theorem 6. For a graph with bounded degree d, we have |Vi+1| ≤ d
∑i

j=1 |Vj | + 1.
So if (1 − γ)β > d we expect almost no non-detector nodes to be alerted.

5 Conclusion and Future Work

We have described a simple distributed algorithm for spreading alert messages through
a network during a worm attack and have proven that this algorithm protects all but
a vanishingly small fraction of the network provided that the alerts spread through an
overlay network with sufficiently good node expansion. Our algorithm is provably good
no matter what strategy the worm uses to spread through the network. We have demon-
strated empirically that this algorithm works effectively against a randomly spreading
worm under conditions that may be reasonable for modern computer networks. Finally,
we have shown that if the overlay network has poor expansion, then the worm will
likely infect almost all of the non-detector nodes in the network. Many open problems
remain including: (1) tightening the upper and lower-bounds for the expansion needed
in the overlay network to save almost all of the nodes; (2) developing other models
for the spread of a dynamic process and its inhibitor over a network, and finding prov-
ably good strategies in these models; and (3) further empirical study to determine the
efficacy of deploying our algorithm in a real network.
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