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Abstract. We investigate inference control in logic databases. The ad-
ministrator defines a confidentiality policy, i. e., the pieces of informa-
tion which may not be disclosed to a certain user. We present a static
approach which constructs an alternative database instance in which the
confidential information is replaced by harmless information. The con-
struction is performed by the means of constraint programming: The task
of finding an appropriate database instance is delegated to a hierarchical
constraint solver. We compare this static approach to a dynamic infer-
ence control mechanism – Controlled Query Evaluation – investigated in
earlier work, and we also point out possible extensions which make use
of the various opportunities offered by hierarchical constraint solvers.
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1 Introduction

A key feature of a secure information system is preservation of confidentiality:
Each user must only learn the information he is allowed to. Traditional ap-
proaches rely on static access rights assigned to the data, and suffer from the
inference problem [1]: The user may combine several pieces of accessible infor-
mation in order to infer confidential information. For example, the two pieces
of data “Alice is a manager” and “a manager’s salary is $50,000” can be easily
combined to the information that Alice’s salary must be $50,000.

This problem can be overcome by a proper inference control mechanism: The
administrator defines a confidentiality policy which specifies which pieces of in-
formation may not be disclosed. The inference control mechanism will then make
sure that this confidential information cannot be inferred from the data returned
to the user. Basically, there are dynamic and static approaches to the inference
problem. A dynamic inference control mechanism monitors the queries and an-
swers during runtime, and possibly distorts or filters part of the answers. On
the other hand, a static approach modifies the original data such that the confi-
dential information is removed or replaced, and queries can be processed in the
ordinary manner without the need for any additional processing at runtime.
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Controlled Query Evaluation (CQE) [2] has been designed as a dynamic ap-
proach to the inference problem in logical databases. After each query, the system
checks whether the answer to that query – combined with the previous answers
and possible a priori assumptions – would enable the user to infer any secret
information. If so, the answer is either refused or modified. Finally, the answer
is stored in a log file in order to be accounted for later. CQE has been studied
under various parameters [2,3,4], and there is also a static, SAT-solver based
approach to CQE [5].

In this paper, we pick up the framework of CQE and present a static ap-
proach in which an alternative database instance is constructed from the orig-
inal instance which does not contain any confidential information anymore. As
opposed to [5], finding such a database instance is achieved by modelling the re-
quirements as a constraint satisfaction problem (CSP) [6,7]. A constraint solver
is a piece of software which tries to find an assignment over a set of variables
such that a set of user-defined constraints is satisfied. In particular, boolean con-
straint solvers operate on the domain {true, false} (meaning that each variable is
assigned a value of either true or false), and allows us to specify the constraints
as a set of boolean formulas. A problem arises in case the constraints are in-
consistent, for example, if one constraint demands that a = true, and another
constraint demands that a = false. In this situation, a hierarchical constraint
solver can be used to identify an assignment which satisfies only part of the
constraints, according to some previously established hierarchy. The concept of
constraints can be found in various research fields of security, for example in the
context of role-based access control [8,9] or secure workflow models [10].

The paper is outlined as follows: Section 2 presents the logical framework and
the declarative requirements for a confidentiality-preserving inference control
mechanism. In Section 3, we recall Controlled Query Evaluation as a dynamic
enforcement method. The foundations of hierarchical constraint networks are
presented in Section 4. In Section 5, we show how to use hierarchical constraint
networks in order to construct a suitable alternative database instance. A com-
parison of this static approach to the existing dynamic mechanisms can be found
in Section 6. In Section 7, we propose some extensions which further exploit the
abilities of hierarchical constraint solvers. We finally conclude in Section 8.

2 Declarative Framework

We consider complete logic databases, founded on some logic L, for example
propositional or first-order logic. Let S model of Φ denote that the structure S
is a model of the sentence Φ wrt. to the semantics of the logic under consideration.
Let the logical implication operator |= be defined as usual: A set of sentences Σ
implies a single sentence Φ (Σ |= Φ) iff each structure which is a model of Σ is
also a model of Φ.

Definition 1 (Logic databases and ordinary query evaluation). A data-
base instance db is a structure of the logic under consideration. The database
schema DS captures the universe of discourse and is formally defined as the set of
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all instances. A (closed) query is a sentence Φ. It is evaluated within a database
instance db by the function

eval(Φ) : DS → {true, false} with

eval(Φ)(db) :=

{
true if db model of Φ

false otherwise

(1)

We also use an alternative evaluation function which returns the query or its
negation, respectively:

eval∗(Φ) : DS → {Φ, ¬Φ} with

eval∗(Φ)(db) :=

{
Φ if db model of Φ

¬Φ otherwise

(2)

Definition 2 (Confidentiality policy). The confidentiality policy is a set

policy := {Ψ1, . . . , Ψm}

of potential secrets, each of which is a sentence of the logic under consideration,
with the following semantics: In case Ψi is true in the actual database instance
db, the user may not learn this fact. Otherwise, if Ψi is false in db, this fact may
be disclosed to the user. Accordingly, the user may believe that Ψi is false even
if it is actually true.

Example 3. Given a database which holds the medical record of some person,
the confidentiality policy given by

policy := {aids, cancer}

defines that the user may not learn that the person suffers from aids, and may
neither learn that the person suffers from cancer. In case the person does not
suffer from one of these diseases, that information may be disclosed to the user.

The aim of an inference control mechanism is to protect the potential secrets in
the aforementioned manner. We abstractly formalize an inference control mech-
anism as a function

f(Q, db, prior, policy) := 〈ans1, . . . , ansn〉

where

– Q = 〈Φ1, . . . , Φn〉 is a (finite) query sequence,
– db is the actual database instance,
– prior is the user’s a priori assumptions, given as a set of sentences in the

logic under consideration, and
– policy is the confidentiality policy.
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The function returns a sequence of answers, where each ansi ∈ {Φi, ¬Φi}.1 The
answers are to be generated iteratively, i. e., the i-th answer must be returned
before the i + 1-th query is received.

We assume that each enforcement method f goes along with a function

precond(db, prior, policy) ∈ {true, false}

which defines the admissible arguments for f . For example, an enforcement
method could refuse to start a session if any of the potential secrets can al-
ready be inferred from the a priori assumptions in the first place. Based on this
abstract definition, we can introduce our notion of confidentiality.

Definition 4 (Confidentiality of an enforcement method). An enforce-
ment method f preserves confidentiality if and only if

for all finite query sequences Q,
for all instances db,
for all confidentiality policies policy,
for all potential secrets Ψ ∈ policy,
for all sets of a priori assumptions prior
so that (db, prior, policy) satisfies the precondition,
there exists an instance db′

so that (db′, prior, policy) satisfies the precondition,
and the following two conditions hold:
(a) [(db, policy) and (db′, policy) produce the same answers]

f(Q, db, prior, policy) = f(Q, db′, prior, policy)
(b) [Ψ is false in db′]

eval(Ψ)(db′) = false

Condition (a) guarantees that db and db′ are indistinguishable to the user; he
cannot tell whether db or db′ is the actual database instance. Condition (b)
makes sure that Ψ is false in db′; as the user considers db′ as a possible actual
database instance, he cannot rule out that Ψ is actually false.

3 A Dynamic Approach – Controlled Query Evaluation

We briefly recall Controlled Query Evaluation, in particular the uniform lying
method for known potential secrets in complete databases, as found in [11,2].
This enforcement method keeps a log file of the past answers, and uses logical
implication in order to detect threats to the confidentiality policy.

The log file logi is a set of sentences of the logic under consideration, initialized
with the a priori assumptions:

log0 := prior

1 Previous work [2] additionally uses the special symbol mum to indicate a refused
answer; however, the present paper does not consider refusal.
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After each query Φi, the answer ansi is added to the log file:

logi := logi−1 ∪ {ansi}

The uniform lying method makes sure that the log file does never imply the
information that at least one potential secret must be true, by keeping

logi �|= pot sec disj with pot sec disj =
∨

Ψ∈policy

Ψ

as an invariant throughout the query sequence. For the a priori assumptions, the
invariant is enforced by the precondition

precond(db, prior, policy) := prior �|= pot sec disj.

Having received the query Φi, an appropriate answer is chosen so that the invari-
ant is preserved: If the actual value eval∗(Φi)(db) does not lead to a violation, it
is returned to the user. Otherwise, the negation of the actual value is returned
as the answer, i. e., a lie is issued.

ansi :=

{
eval∗(Φi)(db) if logi−1 ∪ {eval∗(Φi)(db)} �|= pot sec disj
¬eval∗(Φi)(db) otherwise

Theorem 5. The uniform lying method for known potential secrets preserves
confidentiality in the sense of Definition 4.

The full proof can be found in [2]. We give a short sketch here. Consider that
logn �|= pot sec disj. This means that there must be a structure db′ which is a
model of logn but not a model of pot sec disj, and thus also no model of Ψ for
each particular Ψ ∈ policy. This satisfies condition (b) of Definition 4. It can also
be shown that the same answers are returned under db and db′, which satisfies
condition (a).

4 Constraint Satisfaction Problems

In this section, we present the fundamentals of constraint satisfaction problems.
We first introduce ordinary constraint networks, and then present the concept
of hierarchical constraint networks which are able to handle conflicting set of
constraints.

4.1 Constraint Networks

Basically, a constraint network consists of a set of variables, each with a specific
domain, and a set of constraints over these variables. The task of a constraint
solver is to find a variable assignment which satisfies all constraints.

Definition 6 (Constraint network). A constraint network is a tuple (X, D, C)
where
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– X = {x1, . . . , xn} is a set of variables,
– D = {d1, . . . , dn} specifies the domain of each variable, and
– C = {c1, . . . , cm} is a set of constraints.

Definition 7 (Solution of a constraint network). A variable assignment θ
for a constraint network (X, D, C) is a set

{(x1, v1), . . . , (xn, vn)},

with {x1, . . . , xn} are the variables from X, and each vi ∈ di is a value from the
respective domain.

We write c(θ) = true to indicate that a variable assignment θ satisfies a
constraint c ∈ C, and c(θ) = false otherwise. A solution of a constraint network
(X, D, C) is a variable assignment which satisfies all constraints from C, i. e.,
c(θ) = true for all c ∈ C.

A constraint network may have a unique solution, multiple solutions, or even no
solutions, in case the constraints are inconsistent and thus conflicting.

4.2 Constraint Hierarchies

Given a conflicting set of constraints, an ordinary constraint network does not
have a solution, because there is no variable assignment which satisfies all con-
straints at the same time. One could however be interested to find an ap-
proximate solution, i. e., a variable assignment which satisfies only some of the
constraints. One approach to this problem are hierarchical constraint networks
[12], which we introduce in this section.

Definition 8 (Hierarchical constraint network). A hierarchical constraint
network is a tuple (X, D, C, H), where (X, D, C) is a constraint network, and
H = {H0, . . . , Hl} is a constraint hierarchy. The latter defines a partition of the
constraint set C, assigning a strength i with 0 ≤ i ≤ l to each constraint c ∈ C.
In particular, we have

Hi ∩ Hj = ∅ for all i �= j

and ⋃
Hi∈H

Hi = C.

The constraints c ∈ H0 are called the required constraints.

The aim is to find a variable assignment which satisfies all of the constraints from
H0, and satisfies the other constraints from H1, . . . , Hl “as good as possible”.
There might be various notions of what a “better” solution is; for the moment,
we assume that we have a predicate

better(σ, θ, H)

saying that σ is a better variable assignment than θ wrt. the constraint hierarchy
H . better must be irreflexive and transitive. Based on this predicate, we can
formally define a solution of a hierarchical constraint network.
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Definition 9 (Solution of a hierarchical constraint network). Let (X, D,
C, H) be a hierarchical constraint network. Let

S0 := { θ | c(θ) = true for all c ∈ H0 }

be the set of variable assignments which satisfy all required constraints. A solu-
tion to the hierarchical constraint network (X, D, C, H) is a variable assignment
θ such that

θ ∈ S0 and ¬better(σ, θ, H) for all σ ∈ S0.

A solution satisfies all required constraints from H0. Regarding the other levels
1, . . . , l, we investigate different approaches to define a better predicate.

Locally better. A variable assignment σ is locally better than a variable as-
signment θ iff both assignments satisfy exactly the same set of constraints
up to some level k − 1, and for level k, σ satisfies some constraint c ∈ Hk

which θ does not satisfy, and σ also satisfies any constraint from Hk which θ
satisfies. In other words, we only consider the lowest level on which σ and θ
differ; any other level k +1, . . . , l does not have an influence on the decision.
Given an error function e with

e(c, θ) :=

{
0 if c(θ) = true
1 if c(θ) = false,

we can formally define the locally-better predicate as follows:

betterlocally(σ, θ, H) := ∃k > 0 such that
∀i ∈ {1, . . . , k − 1}, ∀c ∈ Hi : e(c, σ) = e(c, θ) and
∃c ∈ Hk : e(c, σ) < e(c, θ) and
∀d ∈ Hk : e(d, σ) ≤ e(d, θ)

Globally better. The globally-better predicate is parameterized by a function
g(θ, Hi) which calculates how good a variable assignment θ satisfies the con-
straints on level i. A variable assignment σ is globally better than a variable
assignment θ if both have the same quality (according to g) up to level k−1,
and σ has a better quality than θ on level k:

betterglobally(σ, θ, H) := ∃k > 0 such that
∀i ∈ {1, . . . , k − 1} : g(σ, Hi) = g(θ, Hi) and
g(σ, Hk) < g(θ, Hk)

(3)

A suitable g function could e. g. count the number of constraints satisfied
on a given level. (This is different from betterlocally, where the exact set
of constraints needs to be satisfied in order to have the same quality on
some level i ≤ k − 1.) One could also assign weights to the constraints and
calculated the weighted sum of the satisfied constraints. Further options are
pointed out in [12].
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5 A Static Approach Using a Constraint Network

We present a static inference control method csp using a hierarchical constraint
network. First, we show how to construct an alternative database instance dbalt,
which does not contain any confidential information anymore. Based on this
alternative database instance, we can easily construct an enforcement method
which satisfies the requirements of Definition 4.

5.1 Construction of dbalt

Given a database instance db, a set of a priori assumptions prior, and a confiden-
tiality policy policy, we construct a hierarchical constraint network CN(db, prior,
policy) = (X, D, C, H) as follows:

Variables X: The set X = {x1, . . . , xn} of variables corresponds to the set of
atomic sentences in the corresponding database schema DS. For example,
when using propositional logic, X corresponds to the set of propositions.

Domains D: Each variable xi has the domain di = {true, false}.
Constraints C: The set C of constraints consists of three subsets Cps, Cprior

and Cdb:
1. The potential secrets must not hold in the alternative database instance:

Cps :=
⋃

Ψ∈policy

{¬Ψ} (4)

2. The a priori assumptions must hold in the alternative database instance:

Cprior :=
⋃

α∈prior

{α}

3. All atoms should have the same value as in the original database instance:

Cdb :=
⋃

x∈X

{eval∗(x)(db)}

Note that these constraints may be conflicting – in particular, Cps and Cdb

will be inconsistent in case at least one potential secret is true in the original
instance.

Hierarchy H: We establish the following constraint hierarchy H = {H0, H1}:
The constraints from Cps and Cprior are the required constraints:

H0 := Cps ∪ Cprior

The constraints from Cdb are assigned to level 1:

H1 := Cdb
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A valid solution to this constraint network is a variable assignment to all atoms
of DS, and thus a structure which can be regarded as an alternative database
instance dbalt. The constraints ensure that none of the potential secrets is true in
dbalt, and that any sentence from prior holds in dbalt. Finally, dbalt should have a
minimum distance to the original database instance db, i. e., a minimum number
of atoms should have a different truth value in db and dbalt. This is achieved by
employing the betterglobally predicate (3) with the underlying function

g(σ, Hi) := |{c ∈ Hi | c(σ) = false}|

which counts the number of constraints from Hi that are not satisfied (i. e., the
number of atoms with a different truth value).

Remark 10. Given a relatively large database schema DS, the number of atoms
(and thus the number of variables in X) can become very large. As an optimiza-
tion, we can restrict X to the relevant atoms, i. e., those atoms which appear in
at least one sentence of either policy or prior. The truth value of these relevant
atoms will be calculated by the constraint network; all other, non-relevant atoms
will have the same truth value in dbalt as in the original instance db.

5.2 Enforcement Method Based on dbalt

Based on the alternative database instance, we construct an enforcement method
csp. The algorithm involves a preprocessing step which is initiated prior to the
first query. In that step, the alternative database instance is generated with the
means of the constraint network described in the previous section. The precondi-
tion precondcsp is satisfied if a valid alternative database instance was identified.
Finally, the evaluation of the query sequence is performed within the alternative
database instance dbalt, using the eval∗ function (ordinary query evaluation).

Definition 11 (Enforcement method csp). Let Q be a query sequence, db a
database instance, prior a set of a priori assumptions, and policy a confidentiality
policy. We define an enforcement method csp along with its precondition function
precondcsp as follows.

1. Preprocessing step
If db |= Ψ for some Ψ ∈ policy, or db �|= α for some α ∈ prior, construct an
alternative database instance dbalt as specified in Section 5.1.

Otherwise, choose dbalt := db.
The precondition precondcsp(db, prior, policy) is satisfied iff a valid al-

ternative database instance dbalt could be identified. (Note that prior and
policy might be inconsistent, so that the constraint network will not have a
solution.)

2. Answer generation
All queries are evaluated in the alternative database instance dbalt using the
ordinary query evaluation function:

ansi := eval∗(Φi)(dbalt) for 1 ≤ i ≤ n (5)
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Theorem 12. csp preserves confidentiality in the sense of Definition 4.

Proof. Let Q be a query sequence, db a database instance, prior the a priori
assumptions, and policy a confidentiality policy, such that precondcsp(db, prior,
policy) is satisfied. Let Ψ ∈ policy be a potential secret.

In the preprocessing step, dbalt is either generated by the constraint network
(in case at least one potential secret is true in the original db, or the a priori as-
sumptions do not hold in db), or is identical to db. Query evaluation is performed
within dbalt using the ordinary eval∗ function.

We show that dbalt can be regarded as a database instance db′ as demanded by
Definition 4, such that precondcsp(dbalt, prior, policy) is true, and both conditions
from that definition are satisfied.

Condition (b) [Ψ is false in dbalt]: If dbalt = db, then db does not imply any
potential secret, in particular db �|= Ψ . Otherwise, if dbalt was generated by the
constraint network, the constraints in Cps make sure that none of the potential
secrets hold in dbalt.

Precondition: The preprocessing step for (dbalt, prior, policy) will notice that
none of the potential secrets holds in dbalt (see proof for condition (b) above), and
that the a priori assumptions are satisfied in dbalt (due to the constraints Cprior

used for the construction of dbalt). It will thus choose dbalt as the “alternative”
database instance, and will not initiate the generation of a different instance by
the constraint solver. Thus, dbalt itself will serve as the “alternative” database
instance, and the precondition is satisfied for (dbalt, prior, policy).

Condition (a) [Same answers]: We have shown above that the “alternative”
database instance under (dbalt, prior, policy) will then be dbalt itself. Conse-
quently, the same answers will be returned as under (db, prior, policy).

6 Comparison

In this section, we compare the static, constraint-based approach from Section 5
to the existing dynamic CQE approach (cf. Section 3).

Generally, the dynamic approach involves a certain overhead at query time:

1. We need to keep a log file of all past answers which consumes space. In
particular, when multiple users (with the same confidentiality requirements)
query the database at the same time, we need to keep a distinct log file for
each user.

2. At each query, an implication problem must be solved, as we need to make
sure that the resulting log file does not imply the disjunction of all poten-
tial secrets pot sec disj. However, logical implication can be computationally
expensive or even undecidable in certain logics.

On the other hand, the static approach involves the expensive preprocessing
phase in which the alternative database instance is generated; there is however
no overhead at query time. We can also re-use the alternative database instance
for multiple users and/or sessions, given that the users are subject to the same
confidentiality policy, and are assumed to have the same a priori assumptions.
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Table 1. Answers for the query sequence Q1 = 〈a, b〉

Dynamic Approach Static Approach

Query Φi Answer ansi Log File logi Answer ansi

a a {a} a

b ¬b {a, ¬b} ¬b

Given these considerations, the static approach is more favorable if we expect
long query sequences or multiple sessions by users with the same confidentiality
requirements.

Although neither approach can anticipate future queries, the dynamic CQE
approach can take advantage of that fact that it can dynamically choose when
to return a lie, and only issue a distorted answer as a “last resort”. This can lead
to a gain of availability in certain situations. We demonstrate this by a minimal
example in propositional logic.

Example 13. Consider the database schema DS = {a, b} and the database in-
stance db = {a, b} (both a and b are true in db). We assume that the user does
not make any a priori assumptions (prior = ∅), and he is not allowed to know
that a and b are both true: policy = {a ∧ b}.

As eval(a ∧ b)(db) = true, the preprocessing step of the static approach will
need to construct an alternative database instance, using the constraint network
(X, D, C, H) with

X := {a, b},

D := {{true, false}, {true, false}},

C := Cps ∪ Cdb with Cps = {¬(a ∧ b)} and Cdb = {a, b},

H := {H0, H1} with H0 = Cps and H1 = Cdb.

This constraint network has two possible solutions:

θ1 = {a → true, b → false}
θ2 = {a → false, b → true}

Both satisfy all constraints from H0 = Cps and a maximum number of con-
straints from H1 = Cdb. We cannot predict which solution will be chosen by the
constraint solver. Assume that it will chose θ1, then we have

dbalt = {a, ¬b}.

Consider the query sequence Q1 = 〈a, b〉. The respective answers are given in
Table 1. The dynamic approach will first return the original answer a, as it does
not imply the disjunction of all potential secrets pot sec disj = a ∧ b. However,
it returns a lie for the second query b. The static approach with the alternative
database instance dbalt = {a, ¬b} returns exactly the same answers.
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Table 2. Answers for the query sequence Q2 = 〈b, a〉

Dynamic Approach Static Approach

Query Φi Answer ansi Log File logi Answer ansi

b b {b} ¬b

a ¬a {b, ¬a} a

When we reverse the query sequence (Q2 = 〈b, a〉, cf. Table 2), the static
approach returns the same answers: First the lie ¬b, then the honest answer a.
The dynamic approach however gives the honest answer b first, and then returns
the lie ¬a. You can see that the dynamic approach uses the lies only as a last-
minute action. Nevertheless, both approaches issue the same number of honest
and dishonest answers, respectively.

Now imagine the user only issues a single query for b: Q3 = 〈b〉. The dynamic
approach returns the honest answer b, while the static approach returns the
lie ¬b. This lie is not necessary to protect the potential secret a∧b. However, the
static approach cannot know that the user will never ask for a, and cannot risk to
omit the lie. In this situation, the dynamic approach offers a higher availability.

7 Extensions

The static inference control method presented in Section 5 resembles the dy-
namic uniform lying method of Controlled Query Evaluation, as summarized in
Section 3, as well as the SAT-solver based approach from [5]. Hierarchical con-
straint networks however offer further possibilities, some of which we point out
in this section, as a guideline for future work.

7.1 Explicit Availability Policy

A forthcoming extension of the SAT-solver based approach from [5] offers the
ability to specify an explicit availability policy, namely a set avail of sentences
for which the system must always return the correct truth value, and which must
not be used as a lie in order to protect one of the potential secrets. In the context
of our static method, we demand that any sentence from avail must have exactly
the same truth value in dbalt as in the original instance db:

for each α ∈ avail : eval(α)(dbalt) = eval(α)(db)

We can achieve this property by introducing another set of constraints

Cavail :=
⋃

α∈avail

{eval∗(α)(db)}

which is merged into the set of required constraints H0:

H0 := Cps ∪ Cprior ∪ Cavail.



140 J. Biskup et al.

The constraint solver will then ensure the desired property. In particular, it will
fail to find a solution if the actual truth values of the sentences from avail in db
contradict to the negation of the potential secrets. For example, avail = {aids}
and policy = {aids} will be inconsistent in case eval(aids)(db) = true.

7.2 Multiple Levels of Potential Secrets

The basic approach from Section 5, as well as Definition 4, assumes that each
potential secret has the same quality wrt. secrecy: The user may not infer any
of the potential secrets.

Depending on the application, one could imagine to soften this requirement
and establish a hierarchy of potential secrets: secrets that the user must not
learn, secrets that the user should not learn, secrets that the user should rather
not learn, etc. The confidentiality policy is split up into multiple subsets of
potential secrets,

policy = policy0 ∪ policy1 ∪ policy2 ∪ . . . ∪ policyl,

where policy0 are the strict potential secrets, and the potential secrets from
policy1, . . . , policyl are called loose potential secrets. Similar to (4), we construct
a set Cpsi of constraints for each 0 ≤ i ≤ l:

Cpsi :=
⋃

Ψ∈policyi

{¬Ψ}

These constraints, together with Cprior and Cdb, are organized in the constraint
hierarchy H = {H0, . . . , Hl+1} as follows: The constraints Cps0 for the strict
potential secrets remain in the set of required constraints:

H0 := Cps0 ∪ Cprior

Each set of constraints Cpsi corresponding to a set of loose potential secrets
policyi (1 ≤ i ≤ l) is assigned a level of its own:

Hi := Cpsi

Finally, the constraints Cdb, demanding a minimum distance to the original
database, build the highest level:

Hl+1 := Cdb

It is important to choose a suitable better predicate (cf. Section 4) which re-
flects the desired relationship between the various levels of potential secrets.
The betterglobally predicate (3) may be a good choice; however, it might be favor-
able to “trade” a non-protected potential secret on some level i against multiple
protected potential secrets on a level k > i. This would not be possible with
betterglobally, and the administrator would have to choose a different predicate.

Alternatively, or in addition to multiple levels of potential secrets, it is also
possible to assign a weight to each potential secret. In this case, a suitable g
function underlying the betterglobally predicate (3) must be used which considers
these weights. Some possible functions are given in [12].
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7.3 Refusal

The present approach constructs an alternative database instance dbalt in which
the truth values of certain atoms have been changed such that none of the po-
tential secrets hold in dbalt. This corresponds to the concept of lying in dynamic
inference control.

Alternatively, one could erase the truth values of particular atoms in order
to protect the secret information. This can be easily achieved by allowing an
additional value – say, undef – for each variable x in the constraint network.
The resulting alternative database instance is incomplete: The value of certain
sentences cannot be determined due to the missing truth values.

Of course, the user expects the answers to originate from a complete database.
It is therefore not acceptable to disclose that certain information is missing in
dbalt, and that a query Φ cannot be answered. A possible solution is to pick up
the refusal approach from Controlled Query Evaluation [11]: In addition to Φ
and ¬Φ, we allow the special answer mum indicating a refused answer. Each time
the alternative database instance dbalt cannot provide the answer to a query Φ,
the system returns mum instead.

It is important to avoid harmful meta inferences : The user may not conclude
from a refused answer that the secret information he might have asked for is
actually true. For example, given policy = {a} and db = {a, b}, the alternative
database instance could be dbalt = {b} (with the truth value of a removed). The
query Φ = a will lead to a refusal. The user could then conclude that a must
have been true in the original database instance.

To avoid such meta inferences, we must remove the truth value of the potential
secret a even if it was not true in the original instance, for example in case
db′ = {¬a, b}, which would then lead to the same alternative instance dbalt = {b}.
Then, a refused answer does not provide any information about the original query
value anymore.

8 Conclusion

We have presented a static approach for inference control in logic databases.
The system is supported by a hierarchical constraint solver which generates
an alternative database instance in which all confidential information has been
replaced by harmless information. In general, this corresponds to the uniform
lying approach of the (dynamic) Controlled Query Evaluation framework. In
Section 6, we have shown that both approaches have advantages and drawbacks,
and that maximum availability (measured by the number of distorted answers)
can only be achieved by a dynamic approach, yet with a relatively high runtime
complexity. This result justifies the employment of dynamic approaches when
maximum availability is an issue.

The use of a constraint solver makes the construction of a suitable alternative
database instance rather easy, as we can declaratively define the desired prop-
erties for that database instance (which generally correspond to the declarative
properties demanded by Definition 4). While the basic static approach from
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Section 5 only makes use of the fundamental abilities of hierarchical constraint
networks, there are various options to exploit the remaining opportunities, some
of which were presented in Section 7. These shall be further investigated in future
work.

References

1. Farkas, C., Jajodia, S.: The inference problem: A survey. SIGKDD Explo-
rations 4(2), 6–11 (2002)

2. Biskup, J., Bonatti, P.A.: Controlled query evaluation for enforcing confidentiality
in complete information systems. International Journal of Information Security 3,
14–27 (2004)

3. Biskup, J., Bonatti, P.A.: Controlled query evaluation with open queries for a
decidable relational submodel. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006. LNCS,
vol. 3861, pp. 43–62. Springer, Heidelberg (2006)

4. Biskup, J., Weibert, T.: Keeping secrets in incomplete databases. Submitted, 2007.
In: FCS 2005. Extended abstract presented at the LICS 2005 Affiliated Workshop
on Foundations of Computer Security (2005), available from
http://www.cs.chalmers.se/∼andrei/FCS05/fcs05.pdf

5. Biskup, J., Wiese, L.: On finding an inference-proof complete database for con-
trolled query evaluation. In: Damiani, E., Liu, P. (eds.) Data and Applications
Security XX. LNCS, vol. 4127, pp. 30–43. Springer, Heidelberg (2006)

6. Apt, K.: Principles of Constraint Programming. Cambridge University Press, Cam-
bridge (2003)
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