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Preface

The “Traffic and Granular Flow ’07” conference was the seventh of a series
of international conferences that started in 1995 in Jülich (Germany). Since
then, the conference took place in Duisburg (1997), Stuttgart (1999), Nagoya
(2001), Delft (2003) and Berlin (2005).

The aim of TGF conferences is to facilitate the exchanges between various
fields dealing with transport. When the conference was created, the fields that
were represented were road traffic and granular flow – hence the name of the
series. Since then, the scope of the conference has been enlarged to include
in particular collective motion in biology (molecular motors), a subject which
turns out to have many connections with the two original ones.

Transversal themes have emerged. For TGF07, a session was specifically
devoted to the subject of networks. An important theme is also the one of
self-propelled particles. It ranges from granular flows with anisotropic grains,
to collective motion of animals, and to pedestrian traffic.

We were very happy to organize the 2007 occurrence of TGF in Orsay
(France), at the University Paris-Sud. The conference was organized mainly
by the Laboratory of Theoretical Physics (LPT), with the help of the Labora-
tory FAST (Fluides, Automatique et Systèmes Thermiques) – these two labo-
ratories are both associated to the CNRS (Centre National pour la Recherche
Scientifique) – and of the GARIG Group at INRETS.

With more than 2000 researchers or teaching researchers, University Paris-
Sud represents 4% of the french public research. More than 25000 students are
studying at this university. It is known for its high scientific level. Recently, the
Fields medal (2006) honored Wendelin Werner, professor at the mathematical
departement at the Orsay campus. In 2007, the physics Nobel price was given
to A. Fert, professor at University Paris-Sud.

Besides, the Orsay campus is located in a scientifically very active area,
very near for example Ecole Polytechnique and CEA.

In France, research on road traffic is mainly performed in specialized public
research centers, the main two being INRETS (Institut National de Recherche
sur les Transports et leur Sécurité) and LCPC (Laboratoire Central des Ponts
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et Chaussées). Both of them have important research centers in region Ile-
de-France. Besides, for the sake of building roads, LCPC also has an active
research activity in the granular field.

The TGF07 conference was the opportunity to gather national actors as
well as international researchers. It took place from the 20th to 22nd of June
2007. 127 participants from 24 nationalities were present. The 8 plenary talks
and the 70 posters allowed exchanges between the various communities. Par-
allel sessions (48 oral presentations) allowed more specialized and thorough
discussions within each field.

We would like to thank our sponsors. We are especially grateful to Region
Ile-de-France, first because it was our main sponsor, but also because it was
the only one who gave us an answer enough in advance, so that we could
decide to go on. Without Region Ile-de-France, this conference would not have
taken place. The conference was supported also by the CEA (Commissariat
à l’énergie atomique), the ministry of research, the RTRA “triangle de la
physique”, CNRS, INRETS, DGA, University Paris-Sud, the French embassy
in India, and the European Physical Journal.

We would like to thank Olivier Dauchot and Cécile Sykes for their valuable
help on scientific and pratical issues, and Henk Hilhorst, the director of the
Laboratory of Theoretical Physics, for his support during the preparation of
the conference. Odile Heckenauer and Mireille Calvet deserve a special thank-
you for all the administrative and organizational work they did before the
conference, and for their presence during the whole conference at the welcome
desk. Thank-you also to Gérard Hoffeurt, Manuel Ramos, Antoine Seguin and
Yann Bertho for their help before and during the conference. We are grateful
to Mrs. Dahm-Courths for the great work she did on the proceedings.

Paris, Duisburg Cécile Appert-Rolland
October 2008 François Chevoir

Birgit Dahm-Courths
Philippe Gondret
Sylvain Lassarre

Jean-Patrick Lebacque
Michael Schreckenberg



Avant-Propos

La conférence internationale “Traffic and Granular Flow ’07” (TGF07) était
la 7ème d’une série qui a débuté en 1995 à Jülich (Allemagne). Depuis, des
conférences TGF ont eu lieu à Duisburg (1997), Stuttgart (1999), Nagoya
(2001), Delft (2003) et Berlin (2005).

L’objectif des conférences TGF est de faciliter les interactions entre divers
domaines de recherche touchant au transport. Lors de la création de cette
série de conférences, les domaines représentés étaient le trafic routier et les
écoulements granulaires – d’où le nom de la série. Depuis, les thèmes abordés
se sont multipliés, en particulier pour inclure les mouvements collectifs en bi-
ologie (moteurs moléculaires), un sujet qui s’est avéré avoir des problématiques
communes avec les thèmes d’origine de la conférence.

Des thèmes plus transversaux émergent peu à peu. Lors de TGF07, une
session a été spécialement consacrée aux réseaux. Un autre thème important
est celui des particules auto-propulsées, qui va des écoulements granulaires à
grains anisotropes aux mouvements collectifs d’animaux, et au trafic piéton.

Nous étions très heureux de pouvoir organiser TGF07 à Orsay (France),
à l’Université Paris-Sud. La conférence a été essentiellement organisée par le
Laboratoire de Physique Théorique (LPT), avec l’aide du Laboratoire FAST
(Fluides, Automatique et Systèmes Thermiques) – ces deux laboratoires sont
tous deux associés au CNRS (Centre National pour la Recherche Scientifique)
– et du groupe GARIG à l’INRETS.

Avec plus de 2000 chercheurs ou enseignants-chercheurs, l’Université Paris-
Sud représente 4% de la recherche publique française. Plus de 25000 étudiants
y étudient. L’Université Paris-Sud est reconnue pour son haut niveau scien-
tifique. Récemment, la médaille Fields (2006) a été remise à Wendelin Werner,
professeur au Département de Mathématiques du campus d’Orsay. En 2007,
le prix Nobel de physique a été décerné à A. Fert, professeur à l’Université
Paris-Sud.

Le campus d’Orsay est de plus situé dans un environnement scientifique
très actif, proche par exemple de l’ Ecole Polytechnique et du CEA.
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En France, la recherche sur le trafic routier est principalement effectuée
dans des centres de recherche publique spécialisés, les deux principaux étant
l’INRETS (Institut National de Recherche sur les Transports et leur Sécurité)
et le LCPC (Laboratoire Central des Ponts et Chaussées). Tous les deux ont
d’importants centres de recherche en région Ile-de-France. De plus, le LCPC
a aussi une grosse activité de recherche sur les milieux granulaires, liée à la
fabrication et à l’entretien des infrastructures (routes . . . ).

La conférence TGF07 a été l’occasion de réunir acteurs nationaux et
chercheurs étrangers. Elle a eu lieu du 20 au 22 Juin 2007. 127 participants
de 24 nationalités différentes étaient présents. Les 8 sessions plénières et les
70 posters ont permis de nombreux échanges entre les diverses communautés,
tandis que les sessions parallèles (communications orales) ont été le lieu de
discussions plus spécialisées et plus approfondies au sein de chaque sujet.

Nous souhaitons maintenant remercier nos sponsors. Nous sommes tout
spécialement reconnaissants envers la région Ile-de-France, d’une part parce
que c’était notre sponsor principal, mais aussi parce que c’était le seul qui nous
ait donné une réponse suffisamment à l’avance pour que nous puissions décider
de nous lancer dans l’organisation de cette conférence. Sans la région Ile-de-
France, cette conférence n’aurait pas eu lieu. La conférence TGF07 a aussi
été soutenue financièrement par le CEA (Commissariat à l’énergie atomique),
le ministère de la recherche, le RTRA “triangle de la physique”, le CNRS,
l’INRETS, la DGA, l’Université Paris-Sud, l’ambassade de France en Inde, et
le European Physical Journal.

Nous aimerions remercier ici Olivier Dauchot et Cécile Sykes pour leur aide
précieuse tant sur le plan scientifique que pratique, et Henk Hilhorst, directeur
du Laboratoire de Physique Théorique, pour son soutien tout au long de la
préparation de la conférence. Nous devons des remerciements tout particuliers
à Odile Heckenauer et Mireille Calvet pour tout leur travail administratif et
d’organisation avant la conférence, et pour leur présence pendant toute la
conférence à la table d’enregistrement. Merci aussi à Gérard Hoffeurt, Manuel
Ramos, Antoine Seguin et Yann Bertho pour leur aide avant et pendant la
conférence. Nous sommes reconnaissants envers Mme Dahm-Courths pour le
travail effectué pour les Actes de la conférence.

Paris, Duisburg Cécile Appert-Rolland
Octobre 2008 François Chevoir

Birgit Dahm-Courths
Philippe Gondret
Sylvain Lassarre

Jean-Patrick Lebacque
Michael Schreckenberg
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Detailed Data of Traffic Jam Experiment
Akihiro Nakayama, Minoru Fukui, Katsuya Hasebe, Macoto
Kikuchi, Katsuhiro Nishinari, Yuki Sugiyama, Shin-ichi Tadaki, and
Satoshi Yukawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Prediction Accuracy of Evacuation Times for High-Rise
Buildings and Simple Geometries by Using Different
Software-Tools
Christian Rogsch, Wolfram Klingsch, Armin Seyfried, and
Henning Weigel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Statistical Approach to Traffic Flow
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Pattern Formation in Slowly Drained Granular-Fluid Systems
Bjørnar Sandnes, Henning Arendt Knudsen, Knut Jørgen M̊aløy, and
Eirik Grude Flekkøy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629



Contents XV

Emerging Stripe Patterns in Drying Suspension Droplets
Bjørnar Sandnes and David Molenaar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

Behaviour of Railway Ballast Under Cycling Loading
Gilles Saussine and Pierre Etienne Gautier . . . . . . . . . . . . . . . . . . . . . . . . . 641

Penetration of a Projectile by Impact into a Granular
Medium
Antoine Seguin, Yann Bertho, and Philippe Gondret . . . . . . . . . . . . . . . . . . 647

Rheological Transition in Granular Media
Zahra Shojaaee, Lothar Brendel, and Dietrich E. Wolf . . . . . . . . . . . . . . . . 653

Stress Transmission in a Multi-Phase Granular Packing
Vincent Topin, Jean-Yves Delenne, Farhang Radjäı, and
Frédéric Mabille . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

Part III Molecular Motors and Motion in Biology

Non-Equilibrium Collective Transport on Molecular Highways
Andrea Parmeggiani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

Traffic of Molecular Motors: From Theory to Experiments
Paolo Pierobon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679

Numerical Investigations on Coupling of Asymmetric
Exclusion Process with Zero Range Process
Rui Jiang, Bin Jia, Mao-Bin Hu, Ruili Wang, and Qing-Song Wu . . . . . 689

Traffic by Small Teams of Molecular Motors
Melanie J.I. Müller, Janina Beeg, Rumiana Dimova, Stefan Klumpp,
and Reinhard Lipowsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695

Traffic Flow on Ant Trails: Empirical Results vs. Theoretical
Predictions
Alexander John, Andreas Schadschneider, Katsuhiro Nishinari, and
Debashish Chowdhury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

Part IV Networks

Modeling Metropolis Public Transport
Christian von Ferber, Taras Holovatch, Yurij Holovatch, and
Vasyl Palchykov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

Attack Vulnerability of Public Transport Networks
Christian von Ferber, Taras Holovatch, and Yurij Holovatch . . . . . . . . . . . 721



XVI Contents

Traffic Dynamics Based on Local Routing Strategy in a
Weighted Scale-Free Network
Mao-Bin Hu, Yong-Hong Wu, Rui Jiang, Qing-Song Wu, and
Wen-Xu Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733

Performance Evaluation of VANET Under Realistic Vehicular
Traffic Assumption
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Modelling of Traffic Flow from an Engineer’s
Perspective

Partha Chakroborty and Akhilesh Kumar Maurya
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Kanpur 208016, India partha@iitk.ac.in, akmaurya@iitk.ac.in

1 Introduction

The purpose of this short paper is threefold. First, it highlights the require-
ments of a traffic engineer from a model of traffic flow; that is, it discusses
what properties of a flow model will make it attractive and useful to an engi-
neer. Second, the paper points out the basic features of the existing models of
traffic flow. Third, the paper presents some of the work done by the authors to
develop models which attempt to meet some of the needs of traffic engineers.

The paper is divided into five sections of which this is the first. The second,
third and fourth sections are devoted to the three points mentioned in the
previous paragraph. The last section summarizes this paper.

2 An Engineer’s Requirements from Traffic Flow Models

A traffic engineer is entrusted with the duty of designing and efficiently op-
erating facilities which aid in the mobility of goods and vehicles. This task is
the most challenging when it comes to road traffic for a variety of reasons:
(i) there are a large number of vehicles on roads, (ii) these vehicles belong to
different classes with widely varying operating characteristics, and (iii) each
vehicle is driven by a human driver whose nature and characteristics vary.
In physical terms, traffic engineers dealing with road traffic essentially deal
with a system which has a large number of particles of various shapes and
sizes, whose response to different situations are different and are “motivated.”
In addition to introducing the issue of “motive,” the involvement of human
drivers in the system cause roadway and traffic features to have psychological
(in addition to physical) impact on the stream behaviour.

Roadway features include various aspects of the road like road width,
shoulder width, grade (or slope), curves — their frequency and curvature,
surface conditions, etc. Traffic features include, the vehicle mix in the stream,
the driver mix in the stream, traffic rules (like speed limit) and other control

mailto:partha@iitk.ac.in
mailto:akmaurya@iitk.ac.in
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measures (like signals, signs, etc.). Based on how these different aspects are
present in a situation (or facility), a traffic engineer often divides the flow into
two broad categories: uninterrupted flow and interrupted flow. The former
relates to flow seen on freeways and expressways while the latter relates to flow
seen on arterials and other urban streets. In the former type, the traffic stream
primarily gets impacted by the roadway features and some traffic rules but
unlike in the interrupted stream case does not go through intersections with
conflicting movements. For instance, the Highway Capacity Manual defines
uninterrupted flow as flow (or stream) that “results from the interactions
among vehicles in the stream and between vehicles and the geometric and
environmental characteristics of the roadway;” while interrupted flow is the
flow on facilities which have elements (like traffic signal, stop signs) which
stop traffic periodically irrespective of the flow or traffic that exists [1].

In this paper the discussion concentrates on uninterrupted traffic flow and
what are required of models of such flows. The reason for concentrating on
uninterrupted traffic flow is that a large part of a nation’s road network (for
example the expressway system) as well as some sections of arterials (with
large inter-intersection separation) and rural roads carry traffic which are
largely uninterrupted. To begin the discussion, first, the way in which an
engineer views a transport facility catering to uninterrupted traffic flow is de-
scribed. For an engineer, a facility catering to uninterrupted flow is a system
characterized by a set of parameters which the engineer can control; for exam-
ple, the lane width and the number of lanes, the shoulder width, the grades
on the road, the types and frequency of horizontal curves on the road, etc.
What is of paramount importance to the engineer is to know what impact
changes in these parameters will have on the ability of the facility to provide
efficient transportation. More specifically, one is interested in knowing, for a
given combination of the various design parameters, what will be the average
speed, density of the stream at various flow levels (or loosely speaking, de-
mand levels), what is the maximum value of flow (or capacity) that can be
handled by the facility, what kind of level of service the road will provide to
its users, how sensitive will travel time on the road be to minor changes in
demand levels, and many more such questions.

Stated differently, the speed-flow, (or flow-density or speed-density) re-
lation of a road and how this relation depends on the various parameters
outlined above is of interest to a traffic engineer. These relations, in a way,
give the engineer a sense of how a design will respond to various demand lev-
els. Thus the engineer needs a model of traffic flow (or uninterrupted traffic
flow) which will be able to provide, at the very basic, the relationship between
speed and flow for heterogeneous streams (both with respect to vehicles and
drivers) going through roads of varying characteristics (geometry). In addition
to the points mentioned here, an engineer would also expect the uninterrupted
traffic flow models to (i) predict the impact of incidents on the traffic flow,
(ii) understand the perturbations that occur when streams merge or diverge
(like at an on or off ramp); and (iii) incorporate lane changing whenever lane
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discipline is present. It must be mentioned that there exists streams where
lane discipline is absent; for example traffic on Indian expressways hardly
ever move along lanes. One needs to model traffic for such roads also for the
same reasons as above.

Enhancing the need for such models is the fact that a traffic engineer does
not have a laboratory where he/she can perform controlled experiments or
what-if studies; for example, one will not be able to “see” what might happen
if an extra curve is introduced on the road or if an obstacle is placed on the
road. This increases a traffic engineer’s reliance on models of traffic flow which
can simulate traffic realistically under a variety of conditions.

3 Uninterrupted Traffic Flow and its Models

In this section, uninterrupted flow and certain parameters which help quantify
the flow are discussed. Next, the existing classes of models for such uninter-
rupted flow are briefly described. This description is excerpted from a previous
paper by the author [2].

3.1 Uninterrupted Traffic Streams

In the previous section a small description was provided on what is meant by
uninterrupted flow and why it is important to study such flow. In this section
uninterrupted flow and its characteristics are looked at in slightly greater
detail.

An uninterrupted traffic stream is an outcome of the responses of indi-
vidual drivers to the immediate driving scenario. The responses of drivers
are in terms steering and speed control. These controls are achieved through
a sequence of steering angle and acceleration rate choices. Three different
interactions cause a particular flow to occur; these are driver-vehicle interac-
tions, vehicle-vehicle interactions, vehicle-road interactions. These are briefly
described in the following paragraphs.

A vehicle has certain operating characteristics and these characteristics
impact how a driver interacts with the vehicle he/she is driving which in turn
shows up in the behaviour of a driver-vehicle pair. For example, drivers driving
two-wheelers often react differently to a situation than say a driver driving an
eighteen-wheeler because the former has greater acceleration capabilities, re-
spond faster to driver actions, and has higher maneuverability. This variation
has implications on stream behaviour when a stream has a mix of vehicles
with widely varying operating characteristics.

When lane discipline is present, vehicles typically interact with the vehi-
cle ahead in the same lane while driving. Observations tend to suggest that
the following vehicle (FV) reacts to the relative speed and distance headway
between itself and the leading vehicle. The reaction is often impacted by the
speed at which the FV is travelling. This phenomenon is called car-following
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and has been studied extensively. The next section briefly describes some of
the existing models of car-following. Vehicles also interact with other vehicles
in the vicinity when passing or changing lanes. In cultures where lane disci-
pline is weak the vehicle-vehicle interaction is far more complex than when
lane discipline is present. In such situations vehicles interact with a host of
vehicles in its vicinity and a clear lead vehicle does not exist. That is, there is
both longitudinal and lateral interaction between vehicles. Recent work (see
Gunay [3]) also suggests that even when lane discipline is present vehicles
other than the one directly ahead have an impact on how a vehicle moves.
From a theoretical perspective, the two situations are qualitatively different;
when lateral interactions are absent the flow is an outcome of unidimensional
(or linear) interaction between vehicles, whereas when lateral interactions are
present the flow is an outcome of two-dimensional interaction between vehi-
cles. The next section presents some models which attempt to incorporate the
two-dimensional interaction between vehicles.

Static features of the road like road (or lane) width, horizontal curves,
surface deformities, etc. also impact the vehicle (driver) behaviour. Obser-
vations suggest that the nature of the speed-flow relations (or alternatively
speed-density relations) change with various geometric features of the road [1].
The impact of surface deformities (like large potholes) or obstacles (like an
out-of-order vehicle) can cause large disruptions to traffic flow. For example,
as per HCM 2000 [4] estimates, if an obstacle causes a lane blockage on a
three lane expressway, then capacity of the road falls by 50% (notice that it is
much greater than 33%). The interesting aspect of a vehicle-road interaction
is that often (or for large parts) the interaction is due to lateral “forces” since
there is generally no binding on ones forward motion (except when obstacles
occupy the carriageway); for example drivers drive more carefully (i.e., main-
tain larger distances at lower speeds than they would normally do) on narrow
roads because they feel constrained by the closeness of the road edges from
the lateral directions. The reason for bringing this up here is to highlight the
fact that if one attempts to develop models which incorporate vehicle-road
interactions then such models must be able to handle lateral interactions.

Uninterrupted flow has certain defining characteristics; some are micro-
scopic in nature while others are macroscopic. In the following some of the
important microscopic and macroscopic characteristics of uninterrupted traf-
fic streams are mentioned and the reader is directed to certain sources which
present these characteristics in greater detail.

Microscopic Features

1. Drivers in uninterrupted streams at reasonable flow levels, for the most
parts, follow the vehicle ahead and is impacted by the actions of that
vehicle. The behaviour exhibited by drivers in such situations is referred to
as car-following behaviour and has been studies extensively. Car-following
behaviour has certain characteristics properties like, local and asymptotic
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stability, closing-in and shying-away, etc. One may refer to May [5] or
Chakroborty and Kikuchi [6] for a detailed description of the properties
of car-following behaviour.

2. Acceleration noise is the root mean square deviation of acceleration of a
vehicle over a period of time (see Herman et al. [7], Jones and Potts [8])
and is a parameter which can characterize the behaviour of a driver in a
given driving environment. Winzer [9] did a detailed study on acceleration
noise observed in real traffic streams at various flow conditions. Among
other things, he found that average acceleration noise of vehicles tend
to rise with density before reducing again; typically acceleration noise is
below 0.6 m/s2, etc.

3. The time headway distributions of uninterrupted streams have certain
distinguishing features. At low flows, the distribution closely resembles
a shifted exponential distribution (i.e., the vehicle arrivals are Poisson
like); as flow increases the distribution gets right skewed and can be de-
scribed reasonably well through Gamma distributions. The mode of the
distribution is generally less than the median which is less than the mean;
typically the mean is around the 67-percentile value. Further, the ratio of
standard deviation of time headway to its mean generally approaches 1
from below as flow increases. The interested reader may refer to May [5]
for more details on time headway distributions.

4. Speed distributions are typically symmetric with the mean value reduc-
ing with flow in the free flow region. Another interesting feature of such
streams is that average speed varies transversely across the stream; it is
highest on the median lane (left most lane on roads with keep-right pol-
icy) and lowest on the shoulder lane. One may refer to May [5] or Kang
and Chang [10] for more details.

Macroscopic Features

1. Relationships exist between the three basic parameters of traffic streams,
namely, flow, speed and density (or occupancy). Given the fundamental
relation of traffic flow (see Equation 1 provided later), issues of data col-
lection, and the engineering requirements, often speed-flow relationships
are the only relations that are looked at. A large amount of empirical work
has been done to study these relations (for example, see Hall [11], Hall
et al. [12], Banks [13]) and the basic points that emerge are: (i) there are
three distinct regimes, namely, uncongested, queue discharge, and con-
gested regimes, (ii) the general shape can be approximated as that shown
in Figure 1, (iii) the speed remains more or less constant till about 75%
of the maximum flow, (iv) there seems to be a drop in the maximum
flow value along the different arms of the relationship (see Figure 1); this
value, though difficult to observe, has been estimated to be around 3 to 5%
of the pre-congestion maximum flow (see Banks [14, 15] and Agyemang-
Duah and Hall [16]), (v) the location of the arm corresponding to the
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congested regime is often very difficult to fix and some even doubt the
credibility of having such a precise relation in this region (see Ross [17]).
Before leaving this point, it may be mentioned that, often streams do not
operate at “equilibrium” and hence the observations on speed and flow at
a given time may not indicate the equilibrium state of the system.

Fig. 1. Schematic showing the understanding of the shape of speed-flow relation-
ships.

2. Geometry affects the dynamics of a traffic stream because of the impact it
has on drivers. The shape and nature of the relationships between stream
parameters change with changing geometry. Geometric features like lane
(or road) width, lateral clearance (or shoulder width), grades, curves, etc.
affect the speed-flow (and all other) relations. One may refer to HCM [1],
or any other text book on transportation for more discussion on this.

3. Vehicles of different types have different impact on the stream behaviour
due to differences in operating characteristics. Often these impacts are
large; for example, the maximum flow rate (in vehicles per hour) on a
plain terrain road may be reduced by a third if all the vehicles are trucks
and not passenger cars. As can be imagined, different types of drivers have
different impacts on the stream behaviour also. The reader may refer to
HCM [1] for an idea as to how these impacts are taken into account in
engineering studies with traffic streams.

In this section, some microscopic and macroscopic characteristics of an
uninterrupted traffic stream are highlighted. It is felt that realistic models of
traffic flow should strive to achieve these properties. A microscopic model of
traffic flow — that is, one which models traffic flow by modelling individual
vehicle motion, must show the microscopic as well as macroscopic properties
of traffic streams (some of which are highlighted here).
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3.2 Existing Models

The aim of this section is to look at some of the models of traffic flow, in gen-
eral, and to point out, from an engineer’s standpoint, those areas which need
improvement. Consequently, this section is not to be treated as an exhaustive
review of the various models developed in traffic flow. The models are pre-
sented under two classes, namely macroscopic models and microscopic models.
The macroscopic models describe traffic flow in terms of average stream pa-
rameters while the microscopic models try to capture stream behaviour by
describing individual vehicle motion. The microscopic models, at least in the-
ory, can be used to study macroscopic properties of traffic streams.

Macroscopic Models

Macroscopic models of uninterrupted traffic streams typically include the fun-
damental relation (see Equation 1), the continuity equation (see Equation 2)
and some relationship reflecting driver behaviour. Over the years, different
models have been proposed for this relationship. In a latter paragraph brief
descriptions of these models are provided. First, the fundamental and conti-
nuity equations are presented; in the equations, q is the flow, k is the density,
u is the speed of the stream, x is the distance and t is time.

q = uk (1)

∂q

∂x
+
∂k

∂t
= 0 (2)

Driver behaviour is often defined through a relation between u and k.
Although, other pair wise relations (like u − q, q − k relations) are often
reported and studied, it is felt that, while describing driver behaviour, u− k
relations are the most fundamental as they are a direct outcome of the driving
process (note that it is difficult to imagine that individual drivers have any
notion of q while driving).

Over the years various models on u-k relations have been suggested. In
the thirties, Greenshields [18] proposed a linear relation; later Greenberg [19]
proposed a logarithmic relation based on fluid flow analogies of traffic stream
movement. One of the most general descriptions of the u-k relation is the
generalized polynomial model derived from microscopic models of driver be-
haviour (see May [5] for more details). This model is given in Equation 3;
where, uf and kj are free flow speed and jam density, respectively and m and
� are calibration constants.

u1−m = u1−m
f

[
1− k
kj

]�−1

(3)

Many researchers have raised objections to the use of a single function to
describe the u-k relation over the entire density range (the so-called single
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regime models) on the grounds that humans do not behave according to the
same rules over the entire range of density values. There is some merit to
these objections. Many multi-regime models were proposed with Edie’s [20]
model being one of the first. Yet other researchers argued that it is better to
look at the relationship among all the three parameters at once (for example
see Navin [21], and Persaud and Hall [22]).

Unfortunately, there has been very little work on developing a model which
describes the impact of geometry and other road features on driver behaviour.
The Highway Capacity Manual [1], however, makes an attempt to relate ge-
ometric and other conditions to the speed-flow relation through a procedure
which uses various empirically derived look-up tables to determine what the
free flow speed will be in a given situation and then uses this free speed to
choose an appropriate speed-flow curve from a template. In spite of such at-
tempts, the fact remains that one does not have a model which given the
geometric conditions will be able to determine the nature of the driver be-
haviour.

It must be pointed out here, at the cost of being repetitive, that a lot
of research is going on in trying to replicate the observed macroscopic rela-
tions from simple driving rules; however, little or no research is currently on
to relate roadway features and traffic features (like vehicle mix, driver mix,
etc.) to the flow behaviour. Hence, reliance of traffic engineers on ad hoc pro-
cedures, to relate these aspects, continues. Despite advances in computation
abilities and theoretical insight this reliance has not changed in the last half-
a-century. Surely, this needs to change and the author feels researchers must
now channelize their energy to evolve models which will reduce such reliance.

Microscopic Models

As opposed to the macroscopic models, microscopic models attempt to define
the behaviour of a traffic stream by describing the behaviour of individual
drivers in different driving situations. In general, drivers have two basic tasks,
(i) controlling the vehicle’s position along the direction of motion, and (ii)
controlling the vehicle’s position along the width of the road or lane. The
first task is referred to as longitudinal control and is achieved by controlling
the vehicle’s speed (through acceleration / deceleration). The second task of
lateral control is achieved through proper choice of steering angles. In reality
both these activities are inter-dependent and goes on concurrently.

However, in order to simplify the understanding of driving behaviour, often
it is assumed that the primary task of a driver is the longitudinal control of
the vehicle. This assumption is largely true where the road characteristics are
reasonably same for long distances, vehicles have well demarcated travel paths
(like lanes) and vehicles do not generally cross these demarcations; even when
they do it is a discrete event (like lane changing). Under these assumptions,
the vehicle is assumed to be only under the influence of vehicles traveling
in the same path (or lane); that is, only longitudinal interactions are taken
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into account. In the following, some of the properties of longitudinal control
behaviour and its models are described.

The driver’s behaviour in situations where the driver primarily performs
longitudinal control can be broadly divided into three regimes: (i) free flow
behaviour, (ii) car-following behaviour, and (iii) stop-and-go behaviour.

In free flow behaviour the driver is not encumbered by other drivers. The
driver can choose his speed and maintain it purely at will. No models, except
ones which can determine the choice of speeds (or free speeds) of vehicles
given the road conditions are necessary. These are not within the purview of
longitudinal control models, rather such choice of speeds are affected by the
lateral impact of roads edges and other such static obstacles on the driver’s
mind. Further, free flow behaviour occurs when density is very low and the
average distance headway between vehicles is much larger than what can be
reasonably assumed to be a value at which leading vehicles (LVs) can hinder
the following vehicle’s (FV’s) motion.

As densities increase vehicles start traveling closer to one another. In such
situations the actions of a vehicle are affected by the state (or actions) of the
LV; speeds of vehicles fall below their desired speed and there is constant tug-
o-war between two conflicting motivators — the need to reach the destination
as quickly as possible (i.e., urgency) and the concern for ones safety. Further, it
is human nature to feel threatened if distance headway is small at high speeds;
hence as distances reduce so does speed (this can be seen on a macroscopic
scale from any data on u and k). So what happens is that the following vehicle
constantly tries to increase the speed (effect of urgency) but in so doing closes
in; this increases the threat to safety and the person reduces the speed. This
behaviour is referred to as car-following behaviour. This is the prevalent form
of driving, meaning this is the mode in which drivers are for the largest range
of densities (may be from 8 to 10 vehicles per km per lane to about 60 vehicles
per km per lane). In the latter parts of this section more is discussed about
this important driving behaviour. One may also refer to Chakroborty and
Kikuchi [6] for a better exposition.

At the other end of the density scale, where densities are large, vehicles
move with frequent halts or near halts. This kind of traffic is referred to
as stop-and-go traffic. Driver behaviour in this region is impacted by the
vehicles ahead. However, the strength of the relationship is not as strong
as in the car-following case; often it is seen that vehicles keep longer than
safe distances, vehicles do not immediately respond to spacing increments;
etc. It seems that the primary motivator in these cases is only safety and
urgency plays a lesser role. Similar observations have been made by others
(for example, see Minderhoud and Zurbier [23]). It is felt that very little
empirical research has been reported on stop-and-go traffic and more needs
to be done to understand the behaviour better. In the rest of the section, the
discussion is on models of car-following behaviour.

Over the years various models of car-following have been proposed. An
overview of the models can be found in Brackstone and McDonald [24]. Here
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two of these models are mentioned. The models described here are the GHR
models (one of the first set of models in car-following) and the fuzzy rule-based
models (one of the most recent developments in this area).

The GHR models [7, 25–27] proposed the following stimulus-response car-
following rule:

ẍFV (t+ δt) = α�,m
{xFV (t+ δt)}m

{xLV (t)− xFV (t)}�
{ẋLV (t)− ẋFV (t)} (4)

where xi(t) is the position of vehicle i at time t measured from an upstream
point, � and m are calibration constants and are the same as those used in
Equation 3. This rule with a proper choice of the exponents yields actions
which give rise to stability. However, its reliance on only relative speed as the
stimulus (the others simply modify the response to the stimulus) gives rise
to certain problems; for example, this model cannot replicate the closing-in
and shying-away behaviour. For a detailed discussion on this model and its
shortcomings one may refer to Chakroborty and Kikuchi [6]; which it should
not be. These drawbacks, notwithstanding, what this model showed for the
first time was that expressions on the FV’s actions could be derived which gave
rise to stable behaviour. The authors believe that stability is an important
car-following property which every microscopic model of traffic flow must
exhibit.

The fuzzy rule-based model of car-following was initially proposed by
Kikuchi and Chakroborty [28]. These models form the “latest distinct stage
in their development, as it represents the next logical stage in attempting to
accurately describe driver behaviour” (Brackstone and McDonald [24]). The
fuzzy rule-based model [6, 28, 29] simply models driver behaviour by specify-
ing a set of linguistic rules on what to do under different circumstances. For
example, a rule could be: IF (at time t) the Distance headway is very large
AND Relative speed moderately negative AND Acceleration of LV is negative
THEN (at time t+ δt) FV should accelerate mildly.

The results from the model show that all the properties of car-following
behaviour are satisfied (see Chakroborty and Kikuchi [6]). The author believes
that this model illustrated that simple rules-of-thumb can explain in all details
such complicated behaviour as car-following. In this sense, it is felt that rule
based structures like the ones that can be employed in cellular automata
models can be successful in realistically representing driver behaviour and
hence the macroscopic behaviour of the traffic stream.

Before leaving this section it must be pointed out that all models which are
in essence microscopic models of traffic flow (like the cellular automata based
models) must be subjected to tests which determine whether these models
possess the microscopic properties mentioned earlier. Certain car-following
properties, like stability, independence of stable conditions from initial condi-
tions and perturbations, etc. are essential for any microscopic model. If a large
number of the microscopic properties are absent, then the model’s predictions
at a macroscopic level also become suspect.
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Another point which must be reiterated is that the existing microscopic
models of traffic flow ignore lateral interactions. When lane discipline is not
maintained or in situations of extensive weaving (merging or diverging of traf-
fic streams like at roundabouts or near on or off ramps) there is considerable
lateral interactions between vehicles. In such cases studying the process of
longitudinal control of vehicles will not suffice; one has to look at the process
of longitudinal and lateral control of vehicles in a comprehensive manner. In
fact, models which can account for both lateral and longitudinal interactions
between vehicles can in general be used to study the interactions of vehicles
with other features of the road like road edges, geometry, static obstacles like
parked vehicles, etc. It is felt that such models will provide a basis for relating
capacity of roads (or more generally flow behaviour) to engineering features
of the road like width, radius of curves, lateral clearance, and the like. Hence,
the ultimate goal of modeling traffic flow must be to evolve a model of driver
behaviour which can handle both longitudinal and lateral interactions and is
simple enough to be used to simulate a large number of vehicles at a time so
that macroscopic properties of the road can be studied. In the next section,
some recent ideas on modelling both lateral and longitudinal interactions are
discussed.

4 Some New Directions to Modelling Uninterrupted
Traffic

The final goal in microscopic modelling is to be able to devise a comprehensive
model of driver behaviour; a model which under one framework can explain a
driver’s choice of steering angle and acceleration values under various different
driving situations. That is, such models should be able to describe the path
of every vehicle over space and time.

Two types of comprehensive models have been developed in the recent
past. The first are force field models and the second is a model which com-
bines the concepts of utility-based discrete choice models and longitudinal
control models. The force-field based models were developed at IIT Kanpur
(for example, see Gupta et al. [30] and Chakroborty et al. [31]). The force
field idea was also used by Helbing and Tilch [32] to model traffic dynamics;
but the study was limited to only longitudinal control and hence did not con-
tribute towards the development of a comprehensive model as envisaged here.
The force-field based comprehensive model [30, 31] of traffic flow relate the
steering angle and acceleration values to force (or potential) field in a driver’s
vicinity and is based on the following simple ideas:

(i) every goal (or “local” destinations like “ahead of the previous vehicle”)
emanates attractive (or negative) potentials and every other feature on the
road (like road edges, parked vehicles, moving vehicles, etc.) are considered
as obstacles which emanate repulsive (or positive) potentials,

(ii) the potential at a point on the road is assumed to be the algebraic
sum of all the potentials from the various obstacles and goals,
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(iii) the potential at a point is perceived as a threat to a driver’s safety; the
threat increases with speed; hence, it is assumed that the sustainable speed
(a speed at which a driver feels comfortable) at a point is inversely related to
the potential at that point,

(iv) given that a driver wishes to reach his destination quickly, he chooses
the path which minimizes the potential (and hence maximizes the speed),

(v) the acceleration value is related to the potential values and their gra-
dient along the chosen path and in some sense embody the notions of longi-
tudinal control models.

These models are computationally intensive and therefore limited in their
application for simulating large streams. Some work is on going at IIT Kanpur
to develop a comprehensive model which is computationally efficient and yet
reasonably realistic in its representation of a stream both microscopically and
macroscopically.

A preliminary version of such a model has been developed and named
CUTSiM (Comprehensive, Unidirectional, Uninterrupted Traffic Simulation
Model). This model assumes that drivers choose a path based on various
properties of that path like, headway available, closeness to obstacles, difficulty
of re-orienting the vehicle to that path, etc. Once this choice is made, drivers
drive along that path using principles similar to those used for longitudinal
control model described earlier. CUTSiM incorporates the impact of geometry
(so far only in terms of road width) and vehicle mix while simulating a traffic
stream; further CUTSiM does not assume lane discipline. Even so, it has been
shown that under certain conditions of “choice parameters” vehicles can be
made to follow “lanes [33].” It is shown that CUTSiM satisfies most of the
microscopic and macroscopic properties of traffic streams described earlier and
is also computationally efficient. For example, CUTSiM can simulate traffic
streams with upward of 4000 vehicles for an hour in less than 30 minutes on
a desktop computer with dual core 2.2 GHz processor and 32 GB RAM.

Some macroscopic results from CUTSiM are presented here to illustrate
its ability to incorporate the impact of road width and vehicle-mix on stream
behaviour and also to show that it can model streams without lane discipline
reasonably well. The model and its detailed analysis will be presented in a
forthcoming paper based on Maurya [33]; details of a primitive version of
CUTSiM can be found in Maurya and Chakroborty [34]. Figure 2 shows three
speed-flow scatter plots obtained from streams simulated using CUTSiM; on
comparing (a) and (b) parts of the figure one can see that as the lane width
reduces the speed-flow relations obtained from streams simulated using CUT-
SiM also changes and the maximum flow reduces. On comparing (a) and (c)
one can see that as the percentage of trucks is increased the stream behaviour
also changes and the maximum flow in vehicles per hour (vph) falls; another
interesting feature is that at low flow values the effect of trucks on stream
behaviour is much less pronounced than at high flows as is expected. Figure 3
shows a comparison of the speed-flow data collected from Delhi-Gurgaon High-
way in India (road width = 14.6 m; no lane discipline) with those obtained
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Fig. 2. Speed-flow data obtained from streams simulated using CUTSiM for differ-
ent lane widths and vehicle-mix.

Fig. 3. Comparison of speed-flow data obtained from Delhi-Gurgaon Highway (road
width = 14.6 m, no lane discipline) with those obtained from a CUTSiM simulated
stream.
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from a stream simulated using CUTSiM for the same conditions as those on
the Delhi-Gurgaon Highway. As can be seen the match is good.

5 Summary

The purpose of the paper was to highlight (i) the importance of flow models
to traffic engineers who often cannot conduct experiments to see the impact of
certain design alternatives on traffic behaviour, and (ii) the ingredients needed
in a model of traffic flow for it to be really useful for traffic engineering pur-
poses. It was mentioned that developing models which can incorporate both
lateral and longitudinal interactions from both roadway and traffic features
should be the ultimate goal of the exercise of traffic flow modelling. Some new
models which attempt to achieve this goal were also briefly discussed.
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Summary. Cellular automata for the simulation of highway traffic have become
increasingly popular in recent years. But how realistic are these models? We re-
view the current state of this approach, focussing on their ability to reproduce the
macroscopic structure of traffic flow as well as the single-vehicle data obtained empir-
ically. Furthermore the role of accidents is discussed. Although of general relevance
for traffic modelling this aspect has not been attracted much attention so far.

1 Introduction

Modelling of traffic flow has a long history in various fields ranging from
engineering to physics and applied mathematics [1–4]. The model classes used
for their description can be classified in various ways.

Microscopic models represent each car separately. This allows to introduce
different vehicle (or drivers) types with individual properties as well as issues
like route choice. In macroscopic models the state of the system is described
by densities, e.g. a mass density derived from the positions of the cars.

Another characterisation is based on the properties of the variables used
to describe a system of vehicles, namely space, time and state variable (e.g.
velocity). Each of these can either be discrete (i.e. an integer number) or
continuous (i.e. a real number). Discrete time is usually realized through a
parallel or synchronous update where all particles or sites are moved at the
same time. This introduces a timescale that can be used for calibration. Models
that are discrete in all variables are usually called cellular automata (CA).

Interactions between cars can be implemented in at least two different
ways: In a rule-based approach drivers make “decisions” based on their current
situation and that in their neighbourhood as well as their goals etc. These rules
are therefore often motivated by psychology. In contrast, force-based models
specify interactions directly on the level of equations of motion, similar to
classical mechanics although the forces are not necessarily “physical” forces.
Typical examples are car-following and hydrodynamic models [3, 5, 6].
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The dynamics of vehicles can either be deterministic or stochastic. In the
first case the behaviour at future times is completely determined by the past.
In stochastic models, the behaviour is controlled by probabilities and agents
can react differently in the same situation. As known from other examples, the
introduction of stochasticity into rather simple systems can generate rather
complex behaviour. On the other hand, the stochasticity reflects our lack
of knowledge of the underlying physical processes that e.g. determine the
decision-making of the drivers. Stochastic behavioural rules then often lead
to a rather realistic representation of the actual behaviour. This “intrinsic”
stochasticity should be distinguished from external noise terms which are
sometimes added to macroscopic observables, like position or velocity. Often
the main effect of these terms is to avoid certain special configurations which
are considered to be unrealistic. Otherwise the behaviour is very similar to the
deterministic case. For true stochasticity, on the other hand, the deterministic
limit usually has very different properties from the generic case.

Finally, one can distinguish models according to their fidelity which here
refers to the apparent realism of the modelling approach. High fidelity models
try to capture the complexity of decision making, actions etc. that constitute
vehicular motion in a realistic way. In contrast, in the simplest models vehi-
cles (drivers) are represented by particles without any intelligence. Roughly
speaking, the number of parameters in a model is a good measure for fidelity
in the sense introduced here. But note that higher fidelity does not necessarily
mean that empirical observations are reproduced better! One should therefore
distinguish between modelling, which implies the identification of the funda-
mental mechanisms responsible for the observed phenomena, and imitation,
which is just their reproduction without any additional insight.

2 Empirical Results

The quality of any model has to be decided by comparison with empirical ob-
servations on a qualitative or quantitative level. Qualitative results are usually
related to the occurrence of spatio-temporal structures among which jams are
the most prominent (and annoying!). “Jam” in the following will refer to a
sequence of cars standing with small intervehicular distances (see Sec. 2.1).
On the other hand, more qualitative results exist which in principle allow for
a calibration of models (Sec. 2.2).

2.1 Spontaneous Jam Formation

In principle two types of jams can be distinguished. The first type is created by
a bottleneck, i.e. locations of reduced capacity, if the inflow than this capacity.
Apart from these bottleneck-induced jams, spontaneous jams or phantom jams
exist for which this is not true, at least not in an obvious way.
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Fig. 1(left) shows empirical observations [7] indicating that growing in-
stabilities can lead to spontaneous formation of jams even in the absence of
bottlenecks. This is confirmed by controlled experiments (Fig. 1(right) and
[8]) in which drivers were advised to drive as fast as possible around a circular
course. At intermediate densities after a while (typically of the order of 10
minutes) free-flow breaks down and a jam is created. Its origin is the imper-
fect driving of human drivers. Typically if a driver approaches the preceding
car too fast and is forced to brake to avoid an accident, this braking maneuver
will be stronger than actually necessary to avoid the accident. At sufficiently
large densities this overreaction will start a chain reaction which forces other
drivers to brake (and thus overreact) until finally a car has to stop, marking
the beginning of the jam. In the beginning of the experiment drivers were still
focussed and could avoid such behaviour, but they quickly lost concentration.
This shows the importance of psychological effects in traffic.

Fig. 1. Left: Empirical data for the trajectories of single cars showing spontaneous
jam formation (from [7]). Right: Experiment for German TV station WDR demon-
strating the spontaneous formation of jams.

Daganzo and collaborators [9], on the other hand, have argued that all
jams are created by bottlenecks which are just sometimes not easy to iden-
tify. Often jams occur at the same location every day, especially close to road
inhomogeneities like ramps, sharp bends etc. However, these jams are not
necessarily bottleneck-induced and they might occur even though the local
capacity has not yet been reached. Probably both mechanisms play a role
here, e.g. in the sense that inhomogeneities increase the probability of sponta-
neous jamming. In addition, the experiments clearly show that the underlying
instability mechanism has to be taken into account in any modelling approach
since it reflects an essential part of the vehicle-vehicle interactions.
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2.2 Fundamental Diagram and Traffic Phases

At many highway locations, empirical data are nowadays collected automat-
ically by stationary inductive loops. For each vehicle the time of passing is
recorded from which several other quantities can be derived. The flow J is
given by the number of cars N(T ) passing the detector per time interval T ,
i.e. J = 1

TN(T ). The velocity v can be derived from the time interval needed
to pass two loops at close separation. Other quantities that can be obtained
are the length of the vehicle and the headways, i.e. the time interval between
the signals of consecutive cars (temporal headway) and the spatial distance
between them (spatial headway). However, the determination of the density
ρ is rather problematic. This has two reasons, a fundamental and a techni-
cal one: 1) density is a “spatial” quantity that is difficult to measure locally,
especially since the objects are extended, and 2) many detectors are event-
driven and therefore only moving cars can be detected. Problem 1) is often
avoided by using the hydrodynamic relation J = ρv to calculate the density
ρ from the measured flow J and velocity v. The average velocity v is usually
overestimated (if, due to problem 2, standing or slow cars are not detected)
and thus the density ρ is underestimated.

The most important quantitative characterization of traffic flow is the fun-
damental diagram. In physics it usually means the density-dependence of the
flow, J(ρ). Due to the hydrodynamic relation this is equivalent to the relations
v(ρ) or v(J). The latter avoids the problems in the density measurement and
is frequently used in traffic engineering.

Usually data are averaged over 1 to 5 minute intervals to obtain a time-
series of data points. To understand the microscopic structure one needs,
however, data which are not averaged and allow to distinguish between the
cars (single-vehicle data).

Nowadays three different phases of traffic flow can be distinguished in
the fundamental diagram, supported by spatio-temporal observations [11],
although some points remain controversial [12]:

• Free flow: In this phase interactions between vehicles are rare. Every
car moves with its desired velocity corresponding e.g. to a speed limit.
Therefore the flow increases linearly with the density of cars. The free flow
branch F can clearly be seen in Fig. 2(left). The part of the branch with
flows larger than Jout is called metastable branch. It corresponds to a re-
gion where the flow is not uniquely determined by the density.
All states not of free flow type are called congested states. They are char-
acterized by an average velocity that is smaller than the “desired” velocity
of the drivers. Two congested phases can be distinguished.

• Wide moving jams: Jams can form spontaneously, i.e. without any obvi-
ous external reason (see Sec. 2.1). Wide (moving) jams are regions of very
high density and negligible average velocity and flow. Their width is much
larger than the fronts at both ends where the speed of vehicles changes
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Fig. 2. Left: Schematic form of the fundamental diagram. F denotes the free flow
branch and the jam line J is determined by the properties of wide moving jams.
Right: Empirical cross-correlation function obtained on a German highway [10].
Different periods of free-flow and congested traffic are labeled by I through VIII.

sharply. The jam front moves upstream (i.e. opposite to the driving di-
rection) at a typical velocity vJam ≈ 15 km/h [13]. Other characteristic
properties of wide jams are its density and the outflow Jout, which does
not depend on the inflow into the jam [11]. The velocity vJam and the
corresponding flow rate is only determined by the density inside a wide
jam and the delay-time between two vehicles leaving the jam [13].

• Synchronized flow: In synchronized flow [11] the average velocity is sig-
nificantly lower than in free flow, but the flow can be much larger than
in wide moving jams. The main characteristic is the apparent absence
of a functional flow-density form, i.e. the corresponding data points are
spread irregularly over a large two-dimensional area (see Fig. 2(left)). In
time-series of flow-density measurements, the flow can increase or decrease
with increasing density, in sharp contrast to the free-flow (jammed) phase
where flow always increases (decreases). This “irregularity” of the time-
series can be quantified by using the cross-correlation function ccρ,J(τ) ∝
〈ρ(t)J(t+ τ)〉 − 〈ρ(t)〉〈J(t+ τ)〉 between density ρ and flow J [10]. In free
flow ccρ,J(τ) is very close to 1, but in synchronized flow it is almost 0 [10].
Here flow and density are independent of each other. This quantifies the
earlier statement that the data points are “spread irregularly”. Further-
more, on a multilane highway, the time-series of measurements on different
lanes are highly correlated, i.e. synchronized. This was the motivation for
denoting this traffic state as “synchronized traffic”.

Above we have only given the most important properties of the phases.
A more detailed characterization and discussion of the related spatio-temporal
organization of traffic states can be found e.g. in [11] (and references therein).
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2.3 Microscopic Structure

Modern detectors measure single-vehicle data that can provide important in-
formation about the microscopic structure of traffic flow which, of course,
determines the macroscopic properties as well.

The distribution of time-headways, i.e. the time intervals between two
consecutive cars passing the detector, shows a surprisingly large fraction of
headways which are much shorter than allowed by (German) legal regulations
(1.8 sec) [10, 14]. The distributions in the three phases differ, e.g. it becomes
much broader in the synchronized phase (Fig. 3) than in free-flow. In the
outflow region of wide jams a typical headway of approx. 2 sec is observed
which is consistent with a jam velocity of vJam ≈ 15 km/h.

Fig. 3. Distribution of time-headways obtained empirically on German highways.
Left: Free flow regime; Right: Synchronized regime.

Other interesting quantities like velocity distributions and optimal-velocity
curves, i.e. the dependence of the velocity on the distance-headway, are dis-
cussed in more detail in [10, 14].

3 Cellular Automaton Models

In recent years, modern approaches adopted from statistical physics have be-
come quite popular for modelling interdisciplinary problems due to the power-
ful methods that have been developed to deal with interacting many-particle
systems [6]. Among those, a cellular automaton-based description has become
most fruitful due to its the relative simplicity and flexibility. Especially the
fact that the dynamics can be implemented in the form of intuitive “rules”
has allowed to include rather complex aspects (e.g. psychology) in a rather
simple way.
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3.1 General Aspects

In a cellular automaton (CA), space, time and state variables are discrete
which makes them ideally suited for high-performance computer simulations.
For continuum models, discretization is necessary for their numerical treat-
ment and one then has to perform the limit Δx, Δt → 0 in order to obtain
accurate results. In CA the discretizations Δx and Δt are finite and accurate
results can be obtained since the discreteness is already taken into account in
the definition of the model and its dynamics.

Due to the existence of more and more powerful computers, the higher
speed of simulations based on CA will become less important in the future.
However, a point that will become more relevant is the fact that CA models are
rule-based (Sec. 1). This is a great advantage for modelling of interdisciplinary
problems where the interactions between “agents” are not based on physical
forces. Instead rule-based models allow to take into account e.g. psychological
aspects in a natural and efficient way.

3.2 Nagel-Schreckenberg Model

The Nagel-Schreckenberg (NaSch) model [15] is a probabilistic CA able to
reproduce many of the basic features of traffic flow. The state of each car n
(n = 1, 2, . . . , N) is characterized by its velocity vn which can take one of
the vmax + 1 integer values vn = 0, 1, ..., vmax (Fig. 4). The position of the

Fig. 4. A typical configuration in the NaSch model. Cars are moving to the right.
The number in the upper right corner is the speed vn of the vehicle.

n-th vehicle is denoted by xn. Then dn = xn+1 − xn − 1 is its headway, i.e.
the number of empty cells in front of it. At each time step t → t + 1, the
arrangement of the N cars on a finite lattice of length L (i.e. for a global
density ρ = N/L) is updated in parallel according to the following “rules”:

Step 1: Acceleration.
If vn < vmax, velocity is increased by 1, i.e. v(1)n = min(vn + 1, vmax).

Step 2: Deceleration (due to other cars).
If dn < v

(1)
n , velocity is reduced to dn, i.e. v(2)n = min(v(1)n , dn).

Step 3: Randomization.
If v(2)n > 0, velocity is decreased randomly by 1 with probability p, i.e.
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v(3)n =

{
max(v(2)n − 1, 0) with probability p,
v
(2)
n with probability 1− p.

Step 4: Vehicle movement.
Each car is moved forward according to its new velocity vn = v(3)n

determined in Steps 1–3, i.e. xn → xn + vn.

All rules have a simple interpretation. Step 1 expresses the desire of the
drivers to move as fast as possible (or allowed). Often vmax corresponds to a
speed limit which is the same for all the cars. Step 2 reflects the interactions
between vehicles and guarantees the absence of collisions in the model. Here
the velocity of the preceding car is not taken into account. This is already
sufficient to reproduce the basic properties of real traffic. In order to obtain
good agreement with the ‘fine-structure’ of empirical data a more sophisti-
cated braking rule is necessary (see Sec. 4). Step 3 incorporates many effects
that play an important role, e.g. it is responsible for spontaneous jam forma-
tion. Acceleration is delayed since a car will accelerate only with probability
1− p if possible. On the other hand, deceleration processes are enhanced: If a
car has to brake due to another car ahead (Step 2) with probability p it will
even brake further in Step 3. Such overreactions are the origin of spontaneous
jam formation. Another effect incorporated in Step 3 are natural fluctuations.
Even on a free road a driver will not keep a strictly constant velocity which
will then show small fluctuations. Finally, in Step 4 all cars will move with
their new velocity as determined in the first three steps.

This set of rules is minimal in the sense that every subset will no longer
produce realistic behaviour. E.g. by leaving out Step 3 – which is equivalent to
the deterministic limit p = 0 – one no longer finds spontaneous jam formation
[16]. Also the order of the rules is important. Applying Step 2 before Step 1
would no longer guarantee the absence of crashes. By interchanging Step 2
and Step 3, on the other hand, no spontaneous jams would occur.

An important point is the timescale corresponding to one update step. It
should not be too small to allow efficient computer simulations, but also not
too large. It can be estimated in different ways [15], e.g. by identifying the
average ‘free’ velocity vmax − p with a typical speed limit on highways, e.g.
120 km/h. Taking into account that the length of a cell corresponds to 7.5 m in
reality one then finds that for vmax = 5 and p = 0.5 one timestep corresponds
to approximately 1 sec in real time. Since this time is of the same order of
magnitude as the smallest relevant timescale in real traffic, the reaction time
of the drivers, these parameter values are a reasonable choice.

The fundamental diagram of the NaSch model consists of two branches,
a free flow and a congested branch, corresponding to the lines F and J in
Fig. 2(left). However, the free flow branch F ends at flow Jout, i.e. the NaSch
model does not reproduce the metastable states with flow Jout < J < J

(free)
max .

In Sec. 3.3 we will show that already a small modification of the NaSch rules
will remedy this problem. Finally, the NaSch model also does not exhibit a
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Fig. 5. Typical space-time diagrams of the NaSch model (left) and the VDR model
for p � p0 (right). One can clearly see the different structure of the jams.

synchronized phase. Here larger modifications of the rules are necessary. In
Sec. 4 we will show that the human desire for comfortable driving plays an
important role here. This is not incorporated into the basic NaSch rules which
only try to avoid accidents.

The NaSch model is also able to reproduce the spontaneous formation
of jams (see Fig. 5 and [17]) which have their origin in the randomization
step 3 that leads exactly to the overreaction mechanism described in Sec. 2.1.
Fig. 5(left) shows a typical space-time diagrams obtained from simulations of
the NaSch model [17]. For p > 0 one can clearly see various jams (compare
with the empirical result in Fig. 1(right)) with different lifetime and interest-
ing dynamics of these jams, e.g. branching. In the deterministic case p = 0
overreactions are not possible and therefore no spontaneous jams occur [16].

3.3 VDR Model

In order to reproduce the metastable states of high flow corresponding to flows
J > Jout on the free flow branch F in Fig. 2 only a simple modification of
the NaSch model is necessary. In contrast to the original NaSch model, in the
so-called Velocity-Dependent-Randomization (VDR) model [18] the random-
ization parameter depends on the velocity of the car, p = p(v). The rules of
Sec. 3.2 are supplemented by a new rule:

Step 0: Determination of the randomization parameter.
The randomization parameter for the n-th car is given by p = p(vn(t)).

This new step has to be carried out before the acceleration Step 1. The ran-
domization parameter used in Step 3 depends on the velocity vn(t) of the
n−th car after the previous timestep. Metastable states occur for so-called
slow-to-start rules where one chooses [18]

p(v) =
{
p0 for v = 0,
p for v > 0, (1)
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with p0 > p. This means that cars which have been standing in the previous
timestep have a higher probability p0 of braking in the randomization step
than moving cars, explaining the name ‘slow-to-start’ rule. Other slow-to-start
rules have been suggested, see [2, 19] and references therein.

Fundamental diagrams obtained from simulations of the VDR model con-
sist of the two branches F and J in Fig. 2, including the states with J > Jout.
However, no synchronized traffic is found in this simple modification.

The macroscopic structure of the congested state in the VDR model is very
different from that of the NaSch model [17, 18]. It exhibits phase separation
into a free flow region and a large jam which is almost compact for p� 1 (see
Fig. 5(right)). In contrast, in the original NaSch model stop-and-go waves
are found (Fig. 5(left)). On the other hand, the structure of the free flow
branch is very similar to that of the NaSch model. However, for J > Jout

the homogeneous free flow states are not stable, but can decay to a congested
state through fluctuations or small perturbations.

The fundamental diagram of the VDR model can be understood from
heuristic arguments [18]. For small densities every car moves with free-flow
velocity vf = vmax − p and the flux is given by Jhom(ρ) = ρ(vmax − p) which
is identical to the NaSch model with randomization p. For densities close to
ρ = 1, only velocities v = 0 or v = 1 occur and therefore the random braking
is controlled by p0. A simple waiting time argument [18] shows that the flow
in the phase-separated regime is given by Jsep(ρ) = (1− p0)(1− ρ) as in the
jammed branch of a NaSch model with randomization p0.

If the difference between the parameters p and p0 becomes smaller, the
behaviour will be more similar to that of the NaSch model. Jams are no longer
compact, i.e. small holes appear. Furthermore small jams can be formed in
the outflow region of the jam. For p = p0 the NaSch model is recovered.

The behaviour found in the VDR model is generic for models with slow-to-
start rules. The outflow from a large jam is smaller than the maximal possible
flow, i.e. the maximum of the fundamental diagram. Note that the large jam
is only stable if the outflow Jout equals the inflow Jin. For Jout = J (free)

max it
is very unlikely that this condition can be satisfied. Therefore the density far
downstream is rather small and the vehicles propagate almost freely in the
low-density region. The spontaneous formation of jams is suppressed if p is
not too large. This is the basic mechanism which leads to the formation of
the phase-separated state and hysteresis.

4 CA Modeling of Synchronized Flow

Although the VDR model shows metastable states and related phenomena like
hysteresis it is not able to reproduce the characteristic properties of synchro-
nized traffic. Furthermore the agreement with empirical data on a microscopic
level is not very satisfactory [20]. This indicates that an important ingredient
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is still missing. So far the dynamics was mainly based on the avoidance of ac-
cidents. This appears to be insufficient. Therefore it has been suggested that
the desire of the drivers for smooth and comfortable driving is responsible for
the occurrence of synchronized traffic [21]. The avoidance of accidents implies
that only interactions with the next car ahead are important and any infor-
mation about the velocity or the velocity difference to the preceding car is not
taken into account. As we know from our own experience usually one tries to
“anticipate” the behaviour of the predecessor. E.g. if its headway is rather
large than we know that it is very unlikely that (s)he will brake abruptly.
Therefore we are willing to accept a much smaller headway than in denser
traffic. Thus anticipation allows for a much smoother driving.

Thus the three observed traffic phases correspond to different driving
strategies. In free flow, drivers try to drive as fast as possible and interac-
tions are rare. In the jammed phase, the avoidance of accidents determines
the behaviour and in synchronized traffic it is the desire to drive in a smooth
and comfortable way. Drivers try to avoid abrupt velocity changes which re-
quires to observe the behaviour of the surrounding traffic in a more detailed
way than in the other two phases.

The following aspects appear to be important for realistic models, but are
not included in the NaSch or VDR models:
(i) Velocity anticipation: The empirically observed very short temporal head-
ways (Sec. 2.3) can only be explained by strong anticipation effects. Further-
more, at inhomogeneities, e.g. created by ramps, the anticipation of the leaders
velocity avoids abrupt braking of the traffic behind and therefore reduces the
probability to form jams.
(ii) Retarded acceleration: Comfortable driving also implies that cars do not
accelerate immediately in case of a larger gap ahead if they observe slow down-
stream traffic. This leads to a sub-optimal gap usage because the velocity is
smaller than the headway allows. On the other hand, larger gaps in a dense
region reduce the car-car interactions and cut-off the chain reactions of brak-
ing overreactions which are responsible for spontaneous jam formation.
(iii) Timely braking: Finally timely braking suppresses another mechanism of
jam formation: When the velocity adjustment is only based on the distance
to the next car ahead, jams often emerge in the layer between free-flow and
synchronized traffic. In these models the jam formation arises from cars ap-
proaching a slow-moving cluster with high speed which leads to a compactified
region. This artificial mechanism of jam formation can be avoided by allowing
the drivers to adjust their speed to the vehicles ahead.

An important feature for realizing (i)–(iii) is anticipation of the actions
of other drivers in the next timestep. Thus more information about the next
car n + 1 ahead is needed, not just its distance dn as in the NaSch model.
From its velocity vn+1(t) and the headway dn+1(t), an anticipated velocity
vanti = min(dn+1(t), vn+1(t))−1 can be estimated such that vn+1(t+1) ≤ vanti.
This allows to determine a safe velocity vn(t+ 1) not leading to a collision.
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The brake light model [22] incorporates these aspects by extending the
VDR model. Velocity anticipation is realized through brake lights which in-
dicate (within an interaction horizon) velocity changes of the preceding car.
Another feature is a reduced cell length of 1.5 m instead of 7.5 m as in the
standard NaSch model. Therefore the vehicles now have a length of 5 cells.
This allows for a smoother acceleration and deceleration.

These refinements of the model lead to the following characteristics of the
drivers’ behaviour:
(i) For large headways cars move, apart from fluctuations, with their desired
velocity vmax.
(ii) For intermediate headways drivers react to velocity changes of the next
vehicle downstream. This is implemented by introducing brake lights.
(iii) For small headways drivers adjust their velocity such that safe driving is
possible.
(iv) The acceleration is delayed for standing vehicles (slow-to-start) and also
directly after braking events.

The model is able to reproduce all three phases (free-flow, synchronized,
and wide jams) observed in real traffic. Furthermore it shows good agreement
with detailed empirical single-vehicle data in all phases [20]. The model passes
also a rather sensitive test, namely it allows to reproduced the empirically ob-
served coexistence of phases [23], especially the upstream propagation of wide
jams through both free flow and synchronized traffic with constant velocity
and without disturbing these states.

Similar ideas have been used in the model of Kerner, Klenov and Wolf [24].
Here drivers change their behaviour within a certain synchronization distance
to the preceding vehicle. In this situation they try to move at the same velocity
as the preceding car instead of maximizing their speed.

Lee et al. [25] have emphasized the conflict between human overreac-
tion and limited mechanical capabilities as possible origin of congested traffic
states. Their model takes the limited acceleration and deceleration capabilities
of the vehicles into account. In all other models discussed so far deceleration is
not limited in order to avoid accidents. Furthermore different driving strate-
gies are distinguished, depending on the local traffic situation. Optimistic
driving controls the behavior in free flow where drivers accept “unsafe” gaps
which are too small to react to an emergency braking of the leading vehicle.
Pessimistic driving occurs at high densities where interactions between the
cars are strong and braking is likely so that drivers have to remain aloof.

The core of the model is an inequality that defines a velocity cn(t+ 1)
which is considered to be safe by the driver:

xn(t)+Δ+
τf (cn(t+1))∑

i=0

(cn(t+ 1)−Di) ≤ xn+1(t)+
τl(vn+1(t))∑

i=1

(vn+1(t)−Di) . (2)

Δ represents the minimum gap between the vehicles and is at least the length
l of the leading vehicle. Each summation in (2) denotes a deceleration cascade
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with maximum braking capabilityD. As long as both τf (v) and τl(v) are set to
v/D and Δ = l, the deceleration would end in a bumper-to-bumper configura-
tion. But this is weakened if the human factor is introduced. In [25] functions
τf (v), τl(v) and D have been proposed that lead to realistic behaviour. In gen-
eral, they are different for optimistic and pessimistic behaviour. For a detailed
description of the update rules, we refer to [25].

It turns out the model is not intrinsically accident-free, although accidents
are rare [26]. Usually collisions are avoided by introducing a strict hardcore
repulsion between the individual cars. However, this typically leads to pro-
cesses with a very large deceleration. Therefore it is rather difficult to define
a model that at the same time captures the finite deceleration capabilities of
vehicles and is accident-free.

In the presence of limited deceleration capabilities crashes have to be
avoided by choosing the dynamics appropriately. Therefore in [26] a slight
modification of the model has been suggested that appears to be accident-free
and, at the same time, keeps the realistic behaviour of the original model. A
key ingredient are again brake lights which provide a way to communicate
the presence of a hindrance and therefore a possible change of the driving
behaviour (from optimistic to pessimistic) to the following cars.

5 Accidents

An important aspect of real traffic that is usually neglected in modelling
approaches is the occurrence of accidents although these are responsible for a
considerable fraction of jams, either directly or indirectly (e.g. through passing
drivers that slow down).

With regard to accidents, traffic models can be classsified into two classes:
(i) models that are intrinsically accident-free, and (ii) models which are not.
“Intrinsically” means that the dynamics is defined in such a way that acci-
dents are strictly avoided (for every initial condition). A typical example are
CA like the NaSch model where Step 2 in the dynamics enforces the absence
of accidents. However, this can lead to unrealistically large decelerations. Ex-
treme braking maneuvres might have a strong effect on the dynamics and are
a possible origin of jams.

Other models are not intrinsically accident-free, like the model of Lee et
al. (Sec. 4). Some, like the optimal-velocity model [27], are believed to be
accident-free in the stationary state, although accidents can occur for certain
initial conditions during relaxation. However, since here cars are point-like
objects the problem is less important and accidents can be interpreted as
overtaking maneuvres. The problem is not restricted to microscopic models.
Also in hydrodynamic models accident-like behaviour can be observed, e.g.
cars moving backwards [28].

In principle, two types of accidents in real traffic can be distinguished,
namely those due to careless drivers and those related to technical failures
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(tyre blowout etc.). The latter are difficult to implement explicitly in simple
models and could be treated as random events. Careless and aggressive drivers,
on the other hand, can be taken into account, e.g. by modification of the
dynamical rules in CA models.

One general problem with models that are not intrinsically accident-free
is the need to specify how to deal with these accidents if they occur in the
simulations. This is an important issue since it might have a strong influence
on the dynamics, especially for microscopic quantities. Surprisingly this is
not discussed in most publications, although this means that the dynamics of
the model has not been fully specified! Sometimes authors seem even not to
be aware of the accidents occurring in their models and then it depends on
the specific implementation how these accidents are treated. Obviously such
situations can even lead to artefacts in the dynamics. However, it appears
that in most investigations accidents are only occurring virtually and the
simulated dynamics is always accident-free. Therefore it is better to speak
about dangerous situations instead of accidents3.

There are only a few qualitative studies for CA models that try to elucidate
the importance of accidents. In these approaches the braking rule of the NaSch
model (or other models) is modified such that with a certain probability q
drivers do not respect the safety distance in Step 2, i.e. with probability q the
velocity after this step is v(2)n = dn +1. This leads to an accident, if the car in
front of the careless driver will not move in the same timestep. This has first
been studied for the deterministic limit of the NaSch model in [29, 30] and
then been generalized to other models [31–35].

Since accidents do not occur during the simulations but are replaced by
a “safe” dynamics, quantities like the accident probability are just special
correlation functions of the original model. In fact it is closely related to the
spatial headway distribution.

In the original definition, accidents or dangerous situations only occur with
stopped cars and thus only at high densities. Therefore modifications of the
“accident criteria” have been suggested, e.g. in [36]. In reality, accidents due
to careless driving do not only occur with standing cars, but more generally
involving vehicles with large velocity differences. Another source of dangerous
situations are abrupt velocity changes and small safety gaps.

This poses the question how relevant these investigations are for real traffic
accidents. It appears that the probability of dangerous situations is systemat-
ically overestimated due to the correlations induced by the fact that accidents
are not explicitly modelled. If an “accident” has occurred it is rather likely
that another one involving the same vehicles will occur shortly after that
because the conditions are usually still fulfilled.

This short discussion shows that additional work is required to understand
the conditions better under which accidents are likely to occur. In addition

3 This is by now the standard terminology due to my insistence in several referee
reports.
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this might help to further improve the dynamical properties of the models
since accident avoidance is a major factor in the driving behaviour. A special
challenge is the combination of realistic car-following behaviour with limited
deceleration capabilities.

A first step in the direction of a more realistic investigation of traffic ac-
cidents has been in [37]. A model is proposed that describes the dynamics of
a platoon of vehicles undergoing emergency braking, but taking into account
reaction times and braking capabilities. The model can be applied to real
platoons obtained from empirical studies which takes into the effects of short
headways (Sec. 2.3) and allows to investigate the impact of legal regulations
(speed limits or minium headways).

6 Conclusions and Outlook

We have seen that cellular automata are able to reproduce the empirically
observed properties of highway traffic. On a macroscopic level, the basic ob-
served spatio-temporal structures like spontaneous jams can already be found
in the NaSch model. More sophisticated models even show the microscopic
characteristics obtained from single-vehicle data and related structures like
the occurrence of a synchronized phase. However, these models still need sev-
eral parameters that have to be adjusted. Since this also applies to other
model classes, we need a better understanding of the underlying mechanisms
to reduce the number of necessary parameters. Maybe a more detailed look
at the dynamical processes leading to accidents can be useful in this respect.

Nowadays, cellular automata are so realistic that they form the basis for
reliable traffic forecasts. These extend the idea of online simulation [38] which
is an (iterative) algorithm to derive the state of a traffic network from incom-
plete information obtained from detectors at certain points in the network.
This is possible due to efficiency and accuracy of the underlying dynamical
models. The information is made available on the internet (see e.g. [39]) and
can be used to plan a trip. Nowadays even travel times can be predicted.
Drivers may then decide to change the travel route or travel time or even try
to avoid the trip or use public transport.
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Summary. This paper tackles the issues of the minimal and sufficient number of
replication needed to evaluate correctly the mean value of a stochastic simulation
results but also the shape of the results’ distribution. Indeed, stochasticity is more
and more widespread in traffic flow models.

On one hand, microscopic models try to reproduce inter-vehicular deviation
through stochastic algorithm. Distributions are sources of randomness. Even if many
articles discuss the need for a certain number of simulations to obtain reliable results,
they seldom if ever suggest a way to determine this number. Different simulations
runs can produce various results due to a randomly assignment of desired speed of
each car for example.

On other hand macroscopic models have no individual parameter. This can pre-
vent them from representing some traffic phenomena as roundabout insertion; lane-
changing; various desired speed. . . Stochasticity can overcome those weaknesses. Re-
cently [1] presents a microscopic Lagrangian solution of LWR model allowing indi-
vidual fundamental diagram.

Thereby, numerous runs have to be computed to estimate the mean value of a
measure of effectiveness (MOE) but also to test if the results come from a particular
stochastic process. The knowledge of the whole distribution allows us to determine
every percentile needed (for example the 5% worse situations).

The aim of this paper is to propose a way to identify such distributions and to
estimate the minimal number of replications that one should make to obtain a given
confidence level.

We will focus on car-following component of models while lane changing, in-
sertion (ramps, roundabout), and assignment will not be considered. However the
proposed methodology can be applied to any components of traffic models.
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1 Review of Distribution in Microscopic Traffic
Simulation Models

1.1 Car Following Behavior Experimental Distributions

As a human process, traffic flow is full of individual parameters. These param-
eters hardly measurable can have a high dispersion. It will be quite difficult to
provide an exhaustive overview, so note the commonly behavioral parameters
used in both microscopic and macroscopic traffic flow models:

• Reaction time: Historical measurement can be found in [2]. Values are
comprised into 0.7 and 2 second.

• Safe headway,
• Desired speed,
• Acceleration and deceleration ability of vehicles,
• Vehicles weight and size,
• Drivers aggressiveness . . .

1.2 Simulation Tools Input Parameters Distribution

Most of the microscopic traffic simulations models have the tremendous am-
bition to reproduce each individual driver behavior. Actually, they are repro-
ducing only a part of the above-mentioned distribution of individual vehicle or
driver parameters. For instance, reaction times are often chosen identically for
any vehicle. Even if this major assumption permits to reduce computational
difficulties, it neglects effects of inter-individual dispersion of behaviors.

For other individual parameters (desired speed or safe headways), the dis-
tributions are usually embedded into microscopic models. Default values for
parameters’ mean and variance are usually proposed to microscopic simulation
users.

1.3 Output Analysis

The measure of effectiveness (MOE) has a strong impact in the analysis of
the simulations outputs. Two families of MOE can be easily distinguished:

• Aggregated measures as the queue length: theses variables result from the
global behavior of the traffic flow and their values are somehow the sum of
individual dispersion. Thereby, these MOEs are less sensible to the number
of replications than some other MOEs.

• Individual measures as the travel time: these outputs must be studied not
only through mean values but also through extremal values.

Furthermore, the final use of the MOE plays a role in the needed replication
number. It is addressing at least two main questions:
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• In the most frequent case, general results of the simulated system are
searched. In this case, the minimal number of replication must be chosen
to ensure that the complete distribution will appear within the replica-
tion set and that mean and variance are reflecting with fidelity the traffic
conditions that will occur if the simulation is realistic.

• One may want to be sure that the system will never or in very rare cases
be in situation resulting in MOE higher or lower than a given threshold.
For instance, this can be the maximum waiting time in the on-ramp signal:
if more than 5% of the incoming flow suffers a waiting time of 5 minutes
then we will exclude this policy, even if mean waiting time value is correct.
We will then speak of an “exclusion simulation study”.

The total number of replications must be determined carefully, in order
to avoid, on the one hand the waste of computation time, on the other hand
the lack of been able to predict an extreme case of simulation results. We
will here present an a posteriori method that can ensure that the minimal
and necessary number of replications is attained. We will take into account
various aspects:

• Is the MOE a result of a distribution (mean or extreme value)?
• Is it a global and aggregated value?
• Is simulation study an exclusion or a comprehensive one?

2 Illustrative Example on Particular Stochastic Model

This section presents the test bed that we used to develop our method. The
well-known LWR macroscopic model is resolved at a microscopic scale [1]. It
allow us to capture multiple behaviors in our model whereas the robustness
and readiness of a first order macroscopic model are kept.

2.1 The Lagrangian Godunov Resolution of the LWR Model

We will present briefly the numerical scheme used for the Lagrangian resolu-
tion of the LWR model. Readers could refer to [3] for the whole theory.

Let us define Q(k, x, t) as the fundamental diagram depending on k the
density, x space coordinate, and t the time. In the remainder of the paper,
the fundamental diagram will be triangular. kc will define the critical density,
km the jam density, vm the free flow speed, i.e. ∂kQ(k, x, t) for k ≤ kc, and w
the wave speed i.e. −∂kQ(k, x, t) for k ≥ kc.

Recently, [3] proposes to solve the LWR model in Lagrangian coordinates
inspired by the variational principle explained in [4]. The LWR solution is
X(n, t) the solution of a Hamilton-Jacobi equation (1).

∂tX = V ∗(−∂nX,n, t) (1)
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where V ∗ is speed-spacing relationship depending on spacing s, i.e. −∂nX =
s = 1/k, n the vehicle number and t the time. v(n, t) = ∂tX is the speed of
the vehicle n.

The conservation equation associated is the usual LWR hyperbolic equa-
tion express in s and v = V ∗(s, n, t) variables:

∂ts(n, t) + ∂nV ∗(s, n, t) = 0 (2)

Fig. 1. (a) Fundamental diagram, (b) speed-spacing relationship.

Numerically one can compute the model on a Godunov scheme with
parameters Δt and Δn. The discrete solution becomes [3] for a triangular
fundamental diagram Q:

X(n, t+Δt) = min
(
X(n, t) + vmΔt, (1−α)X(n, t) +αX(n−Δn, t)−wΔt

)
(3)

where:

• vm is the free speed of vehicle n,
• α = wkmΔt/Δn where w (respectively vm) is the wave speed (respectively

the free flow speed) of the vehicle n−Δn.

As in the usual Godunov resolution of the LWR model, a CFL condition
is needed to avoid numerical diffusion.

Δn ≥ max
s,n,t

∣∣∂s(V (s, n, t)
)∣∣Δt (4)

2.2 Distribution of Fundamental Diagrams

The α parameter is particular to each vehicle n and linked to the FD. Assum-
ing that time-stepΔt and volume-stepΔn stay constant during the simulation
and common to all the vehicles, wave speed w and maximal density km could
be distributed. Formally each probability distribution could be used. We are
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focusing here on normal distribution, Poisson and bimodal processes. Physical
meaning of the bimodal distribution is a flow composed only by heavy trucks
and light vehicles. Both of the parameters have the same process centered on
a mean value.

3 General Framework

The aim of this paper is to propose a method to determine the sufficient
number of replication needed to well evaluate the mean value of the results
but also the shape of the result’s distribution. The tests we proposed are done
a posteriori and are based on a statistical test of adequacy.

3.1 Goals of the Proposed Method

The goal of the paper is to propose a method to evaluate adequacy of the
result distribution with theoretical laws. The following method is built on
existing statistical test.

The first stage of the proposed method is to determine if the number of
runs made is sufficient to estimate the mean value of the results according
to a given confidence level. For practitioners, it is often sufficient to have an
estimation of the mean scenario. The paper will illustrate a statistical test easy
to compute which ensure by an incremental method that enough simulations
have been done.

The second stage consists on a adequacy test to determine the shape of
the result distribution. Once again, we use existing statistical tests. This in-
cremental process accept or reject particular shape of the distribution.

These two steps allow to completely determine the distribution of the
results with a given confidence level. Analysis of the MOE can be followed
like percentile studies, standard deviation estimation . . .

3.2 Statistical Tests

We used three different statistical tests for evaluating mean value and ad-
equacy with a theoretical process. To the author’s knowledge publications
about replications propose only formula to obtain a good point estimate of
mean value. Therefore our method is build on two step. First incremental
approach taken from [5] and [6] allows us to obtain an estimate of the mean.
Then the second stage comprises of statistical tests of the null hypothesis that
data come from a specified process.

Student Test

First of all, real mean value μ must be well estimated by X̄. [6] propose a
method based on Student test (t-test) to assure that enough replications
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have been ran. The algorithm could be found in the report [6]. It is based on
the construction of the confidence interval for the mean value. This interval
can be determined using the Student distribution:

X̄(n)± tn−1,1−α/2

√
S2(n)
n

(5)

where:

• X̄(n) is the estimate of μ the real mean value from n simulation runs.
• S2(n) is the estimate of σ the standard deviation from n simulation runs.
• n is the number of replication.
• α is the level of significance.
• tn−1,1−α/2 is the critical value of the t-test for n − 1 degrees of freedom

and significance α.

The Student test only concerns samples identically independently dis-
tributed. This assumption will be confirmed with tests of adequacy.

Jarque-Bera Test for Normal Distribution

The Jarque-Bera test (JB-test) is a measure of goodness-of-fit with a normal
distribution. It is based on the result’s sample kurtosis and skewness. Kurtosis
can be interpreted as the measure of the “peakedness” of the probability
process of a real-valued random variable. Similarly skewness is the measure
of the asymmetry. A distribution has positive skew if the right tail is longer
or fatter and negative skew if the left tail is longer or fatter.

Normal distribution has some particular values for skewness and kurtosis.
The JB-statistic can be used to test the hypothesis that the results come from
a normal process with unknown parameters.

JB =
n

6

(
S2 +

(K − 3)2

4

)
(6)

where:

• n is the number of observations (i.e. runs),

• S is the skewness of the data S =
1
n

∑n

i=1
(x−x̄)3(

1
n

∑n

i=1
(x−x̄)2

)3/2

• K is the kurtosis of the data K =
1
n

∑n

i=1
(x−x̄)4(

1
n

∑n

i=1
(x−x̄)2

)2
JB-statistic calculated is compared with a critical value to accept or reject
hypothesis.

The JB-test is more recommended than the χ2-test to test the null hypoth-
esis that the data come from a normal distribution. The χ2-test is a discrete
test and do not use all the characteristics of the Gaussian probability process
on the contrary of JB-test.
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Kolmogorov-Smirnov Test for any Distribution

The one sample Kolmogorov-Smirnov (KS-test) compares the empirical
distribution function with the cumulative distribution function specified. In
theory any distribution function can be used. KS-test is more sensitive at
point near the median of the distribution than at its tails. To well evaluate
the 5% percentile of worth situation when we expect a Gaussian distribution
process, JB-test is much more powerful. We will only use the KS-test to test
the hypothesis that the results come from a Poisson distribution function. The
KS-statistic is calculated and compared with the critical value of KS-test.

KS = max
x
|Fn(x)− F (x)| (7)

where:

• Fn is the empirical distribution function for n observation xi defined as:

Fn(x) =
1
n

n∑
i=1

{
1 if yi ≤ x
0 otherwise.

• F is the theoretical repartition function of the process (Poisson distribu-
tion).

4 Results

4.1 Experimental Test Bed

Two theoretical scenarios have been defined: (i) a lane restriction scenario and
(ii) a traffic signal on a single lane. The aim of these simulations is to illustrate
the method and to stress out differences between estimating the mean value
of a MOE and estimating the whole distribution.

Minimal replication number found may have no physical meaning. How-
ever, it still gives a glance at how proposed statistical tests can run.

For both simulation cases, parameters such as jam density and desired
speed have been distributed through (i) a normal process, (ii) a Poissonian
law and (iii) a bimodal process whereas the in-flow is constant.

Finally, we determine the minimal replication number to obtain both es-
timated mean value and distribution’s shape with a level-confidence of 95%
for maximal travel time and mean travel time.

4.2 Results

Lane Restriction

As explained before, first we test our method with the lane restriction scenario
for parameters normally distributed. The mean value of the results distribu-
tion is well estimated with 9 replications of the simulation (figure 2). The
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Fig. 2. Test of adequacy for a normal distribution: (a) Student test, (b) JB test.

hypothesis of adequacy with a normal distribution of the results is always ac-
cepted according to the JB-test. We can conclude that results are normally
distributed and their distribution is totally determined by only 9 runs.

At a glance, the results are much more complicated when parameters are
distributed through a bimodal process. Thus, this time 13 replications are
needed to well evaluate the mean value of the maximum travel time and more
than 16 runs for the mean travel time. Despite that the JB-test is true for a
few number of replications, once the mean value is well estimated according
to the student test, the JB-test rejected the hypothesis that the results are
normally distributed. A KS-test has to be done to consider that MOEs are
coming from a particular process. However, figure 3 shows that we can not
conclude results distribution fitted a theoretical process.

Results with parameters distributed through a Poissonian process are not
displayed here. We find that only 5 replications are needed to estimate the
mean value of the both MOEs but more than 50 to obtain a positive results
of the test of adequacy of the results with a normal distribution.

Traffic Signal

Figure 4 shows results of statistical tests for the traffic signal scenario normally
distributed parameters. The mean value of both MOEs are well estimated with
only 5 runs. However, according to the JB-test more than 18 replications
are needed to ensure that results come from a normal process.
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Fig. 3. Test of adequacy for a bimodal distribution: (a) Student test, (b) JB test,
(c) KS test.

Fig. 4. Test of adequacy for a normal distribution: (a) Student test, (b) JB test.

We do not display results of Poissonian process and bi-modal law here.
Note that parameters distributed through a bi-model law leads to normally
distributed results where results of parameters distributed through a Poisso-
nian have not a particular shape.
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5 Discussion

In this paper, we proposed a operational method to ensure that (i) mean
value of the result distribution is well estimated and (ii) result distribution is
adequate with a particular theoretical process. This method relies on existing
statistical tests.

We illustrate it with a two theoretical scenarios based on a microscopic
resolution of the well-known LWR model. It allows to distribute parameters
through vehicles according stochastic laws.

The obtained results stress out the efficiency of the method. They also
give a first idea of the number of replication needed to well-estimate the MOE
distribution for a very simple model on a very simple scenario.

Though these results depend strongly on the model and scenario we choose.
The main insight of the paper is more the method we proposed. It can be
used with every microscopic or macroscopic model. Those statistical test can
be implemented aside of the model. Even if the method is a posteriori, we
strongly recommend to add it when calibration and validation of stochastic
model are made.

Finally, some phenomenon are smoothing stochasticity in traffic flow such
as traffic signal. Authors are now studying these phenomenon.

References

1. Ludovic Leclercq. Hybrid approaches to the solutions of the “Lighthill-

Witham-Richards” model. Transportation Part B, 41:701–706, 2007.
2. M. Brackstone and M. Mc Donald. Car-following: a historical review. Trans-

portation Research Part F: Psychology and Behaviour, (2):181–196, 1999.
3. Ludovic Leclercq, Jorge Andres Laval, and Estelle Chevallier. The Lagrangian

coordinates and what it means for first order traffic flow models. In Richard E.
Allsop, Michael G.H. Bell, and Benjamin G. Heydecker, editors, Transportation
and Traffic Theory 2007 (ISTTT17), pages 735–754, London, U.K., 2007. Else-
vier.

4. C. F. Daganzo. A variational formulation of kinematic waves: basic theory and
complex boundary conditions. Transportation Research Part B, 39:187–196, 2005.

5. A. M. Law and W. D. Kelton. Simulation, Modeling and Analysis. McGraw-Hill,
Boston, 3rd edition, 2000.

6. W. Burghout. A note on the number of replication runs in stochastic traffic
simulation models. Technical Report CTR2004:01, Center for Traffic Research,
2004.



Capacity and Capacity Drop of a Revolving
Door

Winnie Daamen1, Serge P. Hoogendoorn1, and Henk van Wijngaarden2

1 Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
w.daamen@tudelft.nl, s.p.hoogendoorn@tudelft.nl

2 Boon Edam Group Holding B.V., Ambachtstraat 4, 1135 GG Edam, The
Netherlands hwn@boon.nl

1 Introduction

Designing safe and efficient pedestrian infrastructure is complicated [1–7]. The
main reason for this is the complex interaction between the infrastructure
users (two directional pedestrian flows, crossing flows, waiting pedestrians,
etc.), and the infrastructure. These interactions make it nearly impossible to
predict the infrastructure functioning beforehand, without using proper tools,
such as computer simulation.

Usually, entrance points (such as doors, sliding doors, revolving doors and
turnstiles) are the active bottlenecks in the design, both in normal and in ex-
ceptional conditions (e.g. evacuations). It is therefore remarkable that avail-
able computer software does generally not model entrance points explicitly
and accurately [8–13]. Moreover, new entrance concepts and technologies are
developed, of which the functioning can only be correctly predicted using accu-
rate simulation tools correctly considering pedestrian behavior at the entrance
point.

Before simulation tools can be extended with pedestrian behavior in and
around entrance points (specifically revolving doors), we need to further our
insight into the behavior of pedestrians and pedestrian flows near these points.
This contribution describes laboratory experiments involving a revolving door
and in particular focusses on the capacity drop suggested by the first results
obtained from the data.

2 Laboratory Experiments Involving a Revolving Door

To derive a model describing pedestrian behavior in and around revolving door
accurately, detailed insights into this behavior are required. These data can be
obtained by collecting real-life data or by performing laboratory experiments.
The chosen data collection method should fulfill the following requirements:

mailto:w.daamen@tudelft.nl
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1. The resulting data set should contain microscopic pedestrian behavior,
e.g. individual walking speeds, acceleration, interaction behavior and in-
dividual pedestrian characteristics.

2. The resulting data set should contain macroscopic flow behavior, e.g. flow,
density and (average) speed.

3. Observation conditions should be stable to get the best possible results.
4. Flow conditions should be stable to have multiple observations in similar

flows.
5. The observed behavior should be realistic.
6. The revolving door should perform in conditions varying between low flows

and saturated flows in which congestion is likely to occur.
7. The population should correspond to the population in different environ-

ments, e.g. transfer stations and shopping centers.

Apart from the aforementioned requirements, some practical requirements
came up with respect to the observation equipment, the locations available
to attach the equipment at the observed site and the time needed to per-
form the observations. During real-life observations, flow conditions may vary
only slightly, which makes congestion hard if not impossible to observe. To
observe different populations (requirement 7) different areas will have to be
observed. Advantages are that the observed behavior is natural (if people do
not recognize the observation equipment) and that a random population is
observed. In a controlled environment the researcher is in control of all condi-
tions, concerning not only external factors, but also flow composition and flow
size, variation of the flow over time and revolving door characteristics (e.g.
revolving speed and safety sensor adjustment). Disadvantages are the cost to
build up a revolving door in the laboratory and the fact that the observations
might be biased since participants do not behave naturally. The latter can
be overcome by keeping the experiments on a skill-based level, that is that
pedestrians will behave in a subconscious way. Since pedestrians are familiar
with revolving doors, they will not expose ‘new’ behavior, thus behaving as in
real-life. These considerations as well as our experiences in performing exper-
iments to observe pedestrian behavior [14, 15] lead to the decision to perform
laboratory experiments.

2.1 Experimental Set Up

Two types of variables are distinguished for the experimental set up, namely
experimental variables and context variables. Experimental variables are sys-
tematically changed during the experiments to isolate and to describe their
influence within the system. Context variables are variables that cannot be
influenced by the researcher, but do influence the system performance.

The experimental variables are free door rotation speed, population and
pedestrian flow composition, flow and walking pattern.

The initial rotation speed of the revolving door is the speed with which
the tips of the door wing travel over the circumference of the entrance. At low
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rotation speed, pedestrians have much time to fill a segment, but their travel
time through the door will be higher. At high rotation speed, the opposite
occurs: pedestrians have less time to fill the segment, but they are able to
pass the door faster.

Populations are combinations of different types of pedestrians. Multiple
variables are brought together in this experimental variable, such as pedestrian
type (gender, trip motive), free speed indication and the degree in which
pedestrians want to maintain their free or desired speed (if someone has to
catch a train, he will put more effort into keeping a high speed than when he is
strolling along a shopping street). The size of the pedestrian flow determines
the load upon the revolving door. The aim is to gradually load the entrance
to and beyond its capacity and then gradually decrease the load again.

Walking patterns indicate predefined routes that pedestrians follow during
the experiments. Changing those routes will lead to loads from different di-
rections, thus distinguishing between unidirectional flows, bidirectional flows
and crossing flows. When the door is only loaded from one direction, pedes-
trians have a longer time to fill the segment than when an opposite flow is
present that first has to empty the segment. In case of opposite flows, strict
separation of the two flows (e.g. by using a fence) might decrease the hinder
and thus optimize the throughput of the revolving door.

As indicated before, the above described experimental variables are sys-
tematically changed during the experiments to identify their influence on the
system performance and pedestrian behavior. In an ideal situation, all combi-
nations of variables should be tested. Due to the time restrictions, a selection
has been made of the values of the observed variables. The performed scenarios
are shown in Table 1.

2.2 Performing the Experiments

The experiments have been performed in the Stevin Laboratory of the Delft
University of Technology. The walking area was 10 meters wide and 20 meters
long (see Fig. 1(a)). Two video cameras were mounted perpendicular above
the pedestrian flow at a height of 10 meters. The revolving door was located
in the middle of the walking area. A digital camera observed the walking
area upstream of the revolving door (see Fig. 1(b)), while an analogue camera
observed the revolving door (see Fig. 1(c)). A second analogue camera next
to the door was used to register the characteristics of pedestrians entering the
door (see Fig. 1(d)).

Eighty persons participated in the experiment, whose age varied between
14 and 80 years. Each pedestrian was given a white T-shirt and a colored cap,
the color of which depended on the role of the participant (normal walking
pedestrian, fast walking pedestrian, walking as a couple or walking with a
shopping trolley). The participants were subdivided into 8 groups of 10 people.
Acquaintances were separated as much as possible to stimulate individual
behavior. ‘Real’ couples were grouped together to form realistic couples in the
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Table 1. Overview of experimental scenarios
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scenarios five to eight. All group compositions were heterogeneous, indicating
that groups consisted of men and women of different age.

2.3 Data Analyses

Before the gathered data can be analyzed, the raw video images need to be
processed. For this, dedicated software has been developed at the department
of Transport & Planning to identify and track pedestrians. The software re-
sults in a data set containing for each pedestrian his or her location over time
(each 0.04 second), thus allowing to draw trajectories and perform detailed
traffic analyses.

To obtain data on door capacity, we use cumulative curves (see Fig. 2).
A cumulative curve describes the time moments that passengers pass a given
cross-section. We have determined two cross-sections: one at the start of
the walking area and a second one downstream of the revolving door (see
Fig. 2(a)). Since the revolving door is considered to be the bottleneck, the
departure curve can be used to determine the capacity of the revolving door.

The use of cumulative curves implies a first-in-first-out order of pedestri-
ans. Since the system is empty at the start of each scenario, the travel time
w of the N th pedestrian corresponds to the horizontal distance between the
departure curve D−1(N) and the arrival curve A−1(N) (see Fig. 2(c)) and
can be calculated by

w (N) = A−1 (N)−D−1 (N) (1)
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Fig. 1. Overview of the laboratory and images from the three video cameras.

To calculate the delay of an individual pedestrian, a ‘free’ departure curve
V(t) has been drawn, which is similar to the arrival time, but shifted over the
free walking time to the right. This free walking time is obtained by calculating
the travel time at low flows, since the delay due to the door is still included,
while a pedestrian does not have waiting time due to congestion. When the
realized departure curve is on top of the ‘free’ departure curve, pedestrians
encounter no delays. The horizontal distance between the realized departure
curve and the ‘free’ departure curve indicates the delay of each pedestrian.
The total delay is then the cumulative delay of all pedestrians that arrived
at X2 during the considered time period, while the average delay is the total
delay divided by the number of pedestrians. While the arrival curve is rather
smooth, the departure curve has a clear step-wise character. The varying step
sizes show the varying capacity of the door over time. During oversaturation
(queuing) full segments empty quickly, but because of the door breakdowns
it takes time before the next segment opens again. Hence, the higher the load
upon the door, the more distinctive the steps become. The height of the steps
indicates the number of pedestrians inside a segment, while the duration of a
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Fig. 2. Cumulative curves.

step (so-called clearing time) indicates the time it takes to empty the segment
(see Fig. 2(d)).

3 Capacity of the Revolving Door

Capacity is defined as the maximum number of passengers passing a cross-
section during a given time period. Capacity is stochastic, with a certain mean
and standard deviation. We can distinguish between two capacities: the pre-
queue capacity (outflow from bottleneck just before congestion sets in) and
the queue discharge rate (outflow from bottleneck during congestion).

The nature of a revolving door (stepwise release of pedestrians each time
a segment opens) limits the number of useful observations to determine the
capacity. To overcome this problem, we will apply slanted cumulative curves.
The slope of a cumulative curve (in this case the departure curve) describes
the throughput and capacity of the revolving door. However, it is hard to
determine variations in the slope directly for the cumulative curves. Therefore,
we apply slanted cumulative curves, which are cumulative curves in which the
variations are shown with respect to a specific flow q0 (see Fig. 3):

Dslanted (t) = D (t)− q0 (t− t0) (2)
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where Dslanted(t) is the slanted cumulative curve, D(t) is the departure curve,
q0 is a first crude estimate for the global average capacity and t0 is the time
the observations started.

Fig. 3. Slanted curves of sc. 1 to determine capacity of revolving door.

The interaction between pedestrians and revolving door results in a varying
system performance. The fluctuating capacity is indicated by the trends in the
slanted departure curve during queuing time (see the figure on the righthand
side in figure 3). The total capacity C is here determined as the total number
of pedestrians passing the door during oversaturation:

C =
Dslanted (tqe)−Dslanted (tqb)

tqe − tqb
+ q0 (3)

where tqb indicates the start of the considered period and tqe indicates the
end of this time period.

Table 2 shows an overview of the capacity trends and the global capacity
of each scenario. For each scenario at least three trends can be distinguished.
The first and the last trend are usually highest, while the trends in between
are lower. This suggests that the capacity depends on the length on the queue:
the shorter the queue, the higher the capacity.

The observed capacity of the revolving door varies between 25.3 P/min
(scenario 5) and 38.9 P/min (scenario 3). For both commuter and shopping
population, an increase in door rotation speed results in a higher mean ca-
pacity (up to 19%). The opposite flow in scenario 4 clearly shows a reduction
in the capacity (about 15%). Also the population has a large effect on the
door capacity: with commuters the capacity is 10.1%–26.2% higher than with
a shopping population. Shoppers are strolling and less aggressive than com-
muters, which benefits the use of the entrance. However, couples and individ-
uals with a trolley require more space and do not feel the urge of completely
filling a segment. The occupancy inside the door is therefore far from optimal,
which has a negative influence on the capacity.
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Table 2. Capacity trends and global capacity of each scenario

Capacity Scenario 1 Scenario 2 Scenario 3 Scenario 4
[P/min] vr = 0.5m/s vr = 0.75m/s vr = 1.0m/s vr = 0.75m/s

Trend 1 33.0 44.2 48.5 35.2
Trend 2 30.6 35.3 37.8 16.7
Trend 3 34.1 25.1 39.5 27.2
Trend 4 – 36.8 – 33.8
Trend 5 – – – 26.7

Global mean 32.7 36.3 38.9 30.6

Scenario 5 Scenario 6 Scenario 7 Scenario 8
vr = 0.5m/s vr = 0.75m/s vr = 1.0m/s vr = 0.75m/s

Trend 1 25.9 25.2 15.0 25.6
Trend 2 25.6 25.0 32.2 30.9
Trend 3 – 30.0 24.5 27.5
Trend 4 – 45.8 – 25.3
Trend 5 – 25.6 – –

Global mean 25.3 26.8 28.8 27.5

4 Capacity Drop of the Revolving Door

When the load upon the door increases, the door suffers severe breakdowns
caused by pedestrians constantly activating the safety sensors. The breakdown
frequencies, and subsequently the observed capacity, are due to the interaction
between pedestrians and revolving door. The idea is that only the pedestrians
at the head of the queue influence the functioning of the entrance, since they
are the ones interacting with the mechanism. However, their behavior might
be influenced by the amount of pedestrians that are in the queue. The more
pedestrians in the queue, the higher the pressure on the pedestrians in front,
the more pushy their behavior and consequently the more often a sensor gets
activated. This might lead to a throughput that is higher before congestion
sets in than during congestion. To illustrate this, Fig. 4 shows for each scenario
the observed throughput (during a complete experiment, indicated by crosses)
and the throughput during congestion (capacity, indicated by circles).

For all scenarios, it appears that the highest observed throughput is higher
than the highest observed capacity. The difference varies between 2.5P/min
in scenario 7 and 12.0P/min in scenario 3. On average, the difference is more
than 17% of the observed capacity.

A similar phenomenon can be observed in car traffic. Here, the pre queue
capacity occurs just before congestion sets in. This capacity is higher than
the queue discharge rate, which is the capacity during congestion. However,
the difference between the pre queue capacity and the queue discharge rate is
lower than the difference observed here for pedestrian in revolving doors. Also
the cause is somewhat different: where in car traffic the pre queue capacity
is higher due to more efficient driver behavior, in pedestrian traffic around
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Fig. 4. Observed flows and capacities for all scenarios.

revolving doors, the difference is caused by the activation of the safety sensors
in the door.

5 Conclusions and Future Work

Revolving doors are a means to provide access to buildings, while maintaining
the interior climate. Although they are frequently used in designs of pedestrian
facilities, their behavior is generally not included sufficiently accurate in the
pedestrian simulation tools used to assess these designs. Many issues appear to
be unresolved, such as the capacity of a revolving (given its characteristics and
the characteristics of the pedestrian population), and the queuing processes
in front of the door. This contribution has focussed on the capacities observed
in a laboratory experiments with a revolving door.

To this end, after automatically tracking the pedestrians on the col-
lected video images, we derived pedestrian trajectories, cumulative curves
and slanted cumulative curves. These are used to asses the capacity as well
as a possible capacity drop of revolving doors.

For both commuter and shopping population, an increase in door rotation
speed results in a higher average capacity (up to 19%). Opposite flows cause a
reduction in the capacity (about 15%). When the door is used by commuters,
the door capacity is 10.1%–26.2% higher than with a shopping population.
This is mainly due to the larger space requirements and the lack of urge to
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completely fill a door segment. For the different experiments, a capacity drop
of 17% on average was observed.

Future work will consist of further elaboration of data analyses and theory
and model formulation for pedestrian behavior in and around revolving doors.
However, we will start with further analyses of the available data, e.g. with
respect to self-organized phenomena. Based on the results of the data analyses
we will derive theories describing this pedestrian behavior. These theories
will then be translated into models, each describing different aspects of the
pedestrian behavior. Our final aim is to include these models in our pedestrian
simulation tool Nomad [9].

References

1. Daamen W (2002) A quantitative assessment on the design of a railway station.
In: Allen J, Hill RJ, Brebbia CA, Sciutto G, Sone S (eds) Computers in railways
VIII. WIT Press, Southampton:191–200.

2. Fruin JJ (1971) Pedestrian Planning and Design. Metropolitan Association of
Urban Designers and Environmental Planners Inc., New York.

3. Hoogendoorn SP, Daamen W (2004) Design assessment of Lisbon transfer
stations using microscopic pedestrian simulation. In: Allen J, Hill RJ, Breb-
bia CA, Sciutto G, Sone S (eds) Computers in railways VIII. WIT Press,
Southampton:135–147.

4. Helbing D, Buzna L, Johansson A, Werner T (2005) Trans Sci 39(1):1–24.
5. De Neufville R, Grillot M (1982) J of Trans Eng 11(TEI):87–102.
6. TRB (2000) Highway Capacity Manual, Special Report 209. National Academy

of Sciences, Washington.
7. Willis A, Gjersoe N, Havard C, Kerridge J, Kukla R (2004) Environment and

Planning B: Planning and Design 31(6):805–828.
8. Helbing D, Molnar P (1995) Phys Rev E 51(5):4282–4286.
9. Hoogendoorn SP, Bovy PHL (2003) Optimal Control Applications and Methods

24:153–172.
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1 Introduction

Control measures introduced to improve traffic performance in motorway traf-
fic include speed limit control, ramp metering, user information aiming at ho-
mogenizing the practical speed along the motorway sections and at minimizing
the number and the severity of accidents and consequently increasing safety
[1]. On the other hand, introduction of electronics and computer systems in
the vehicle technologies have significantly contributed to safety and comfort.
However, the prediction of the crash in real time is still in investigation phase
and some research efforts are dedicated in this area [2]. During the last five
years, there is an increasing focus on the development of real time (“potential
crash”) prediction algorithm on urban motorway traffic [3–5].

With respect to the safety evaluation analysis, the classical approaches
consist in collecting incidents/accidents traffic data during the experimented
scenarios (traffic control strategies, modification of the infrastructure etc.),
and in proceeding to traffic impact and statistical safety analysis of the number
of accidents before and after the implementation of these scenarios. However,
the constitution of the accident database must includes a minimum number
of accident in order to guaranty the statistical significance before undertaking
the evaluation procedure. This means that the field data collection period
must have a long time comprising between 5 to 10 years, which is the “price
to pay” for having significant safety evaluation results.

This paper is focused on the development of risk index modeling using
real-data measurements. The risk model can be used either off-line as a safety
evaluation index leading to the dramatical reduction of the field test periods,
or in real-time like safety monitoring tool (e.g. real time safety user warning
system). Another important issue concerns the optimal traffic control strate-
gies such as coordinated ramp metering, speed limit control, route guidance,
etc. The risk index can be introduced in the global criterion which can be
considered as a multi-criterion function to be optimized in real time (safety
index combined with traffic index).
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2 Data Base Characteristics

The ring way of Paris is fully equipped with loop detectors located at around
every 500 meters apart for traffic measurements of traffic volume, occupancy
rate and speed. The developed model index is based on the collection of traffic
measurements synchronized with incidents/accidents data on the ring way
of Paris. The incidents/accidents data characteristics are collected from the
real time Automatic Incident Detection system (AID). These characteristics
include: starting time, end time, location, weather conditions, severity. The
first step was the collection of the incidents/accidents on the overall ring-way
of Paris. The second step was the extraction from the traffic database of the
associated traffic measurements. For each incident/accident the considered
measurement stations are depicted in the figure 1 and includes two upstream
and two downstream measurement stations.

Fig. 1. Topology of the considered stretch measurements for each crash.

The collected traffic data covers two hours (one before and one after the
crash) of the measurement stations of the considered stretch for each accident.
The time interval of the measurements is equal to one minute.

The final constituted database includes the overall accidents occurred and
traffic data during 3 years (2002–2004). The total number of accidents col-
lected is around 900.

After measurements data cleaning, among the 900 accidents, only 85 ac-
cidents are considered, corresponding to sunny days. The accidents occurring
during the night periods are excluded.

3 Methodology

The applied methodologies are based on statistical analysis of the traffic con-
ditions before the accident [5, 6]. The main objective of this step is to analyze
the traffic conditions before the occurrence of the accident and to extract
the most important traffic variables to be considered for the risk modelling.
A series of multivariate statistical methods is used, with the aim of finding
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the relationship between the accident and the traffic measurements. Two well-
known statistical methods are used: clustering analysis and the most common
form of factors analysis [7]. In particular, the principal components analysis
is applied to find the non-correlated variables to be used for the risk model
building. According to the selected stretch by accident, the total number of
variables characterizing the traffic database is equal to 4(stations) ∗ 3(volume,
occupancy rate and speed) ∗ 4(number of lanes) which corresponding to 48
variables. For the clustering analysis, several possibilities are investigated:

• Clustering by upstream occupancy rates/lane
• Clustering by downstream occupancy rates/lane
• Clustering by all occupancy rates/lane
• Clustering by upstream occupancy rates/station
• Clustering by downstream occupancy rates/station
• Clustering by all occupancy rates/station

The principal components analysis results demonstrate that the traffic vol-
ume, speed and occupancy rates of consecutive measurement stations are very
correlated. Consequently, only two variables are considered for the clustering
studies and in particular the traffic volumes and the occupancy rates (the
speeds variables are omitted).

Lastly, based on the clustering output results, linear regression and non
linear logistic modelling approaches are applied using two variables (Oc, Q)
for the risk index model building.

In the following section, two cluster analysis cases are reported:

• Clustering by all occupancy rates/lane
• Clustering by all occupancy rates/station

4 Clustering Results

In order to exhibit the particular cluster of traffic conditions which prevail at
the time just before the accident, the hierarchical ascending clustering using
the statistical tool named “SAS” is performed.

4.1 Clustering Results by all Occupancy Rates per Lane

In this case, five main representative clusters are found. The first cluster is
characterized by a homogeneous average occupancy (MOcc) on the 16 mea-
surement locations. The occupancy rates (Occ) are between 9% and 15%, and
characterize a low occupancy rate which corresponds to light traffic conditions.
This cluster contains 2191 observations and represents 42.96% of all measure-
ments. The cluster 2 gathers the observations with higher and inhomogeneous
average occupancy. Indeed, the MOcc are lower on the fast lane; their values
vary around the critical occupancy (18% to 23%). The two central lanes have
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higher occupancy rates and correspond to unstable traffic states. All lanes
of the last station (St4) are congested. The occupancy rates range from 24%
to 27%. This cluster represents 27.37% of the samples. As regards cluster 3
(representing 8.8% of the data), a clear transition is observed between the
MOcc of the upstream stations, which are very high (36% to 52%), and the
low MOcc of the downstream stations (6% to 11%). The MOcc of cluster 4
are homogeneous on the 16 measurement locations, with high values, ranging
from 30% to 40%. This cluster represents 19.39% of the population. These
states correspond to a high level of congestion. Lastly, cluster 5 is character-
ized by average upstream MOcc (16% to 21%), particularly on the first two
lanes, and very congested downstream (52% to 68%). Moreover, we observe
that station St4 is more fluid than station St3. This cluster is less representa-
tive (1.15% of the data). Screening the time evolution of the clusters (one hour
before the crash) of all accident records (85 in total), 41 accidents indicate
a change of cluster during the last six minutes, i.e. 48% of the cases. If only
the last observation before the accident is observed, among the total number
of accidents, 39 accidents (46%) are moved to cluster 3. Cluster 3 represents
upstream congestion and downstream fluid conditions. The risk modelling is
based on the traffic state of this cluster.

4.2 Logistic Regression

The database is split into two parts. The first half is dedicated to the cali-
bration of the linear regression and the second half is used for the validation
of the risk model. During the validation process, the same parameters found
during the calibration step are used.

The logistic regression is performed by considering this cluster (cluster 3)
which presenting the highest level of crash. In this case, the risk model value
is set to 1, otherwise it set to 0. Hence, the logistic regression model found is
the following:

Risk =
1

1 + exp−(α+ f(St1Oci)+G(St2Oci, Qj)+H(St3Oci, Qj)+Φ(St4Oci, Qj))
(1)

where: f(St1, Oc) = βSt1Oc1 + νSt1Oc3
G(St2, Oc,Q) = γSt2Oc1 + δSt2Oc3 + θSt2Oc4 + ξSt2Q2

H(St3, Oc,Q) = ϑSt3Oc4 + μSt4Oc4 + σSt3Q2

Φ(St4, Oc,Q) = πSt4Oc2 + χSt4Oc4 + ϕSt4Q1

and:
α = −5.7335;β = 0.01107; ν = −0.0827;
γ = 0.02601; δ = 0.1102; θ = 0.1886; ξ = −0.00407;
ϑ = 0.3851;μ = −0.5809;σ = 0.00663;
π = −0.4483;χ = −0.5809;ϕ = 0.00449.
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N.B: StiOcj variable corresponds to the occupancy measurements of the
station(i) and lane(j).

Using all measurements of traffic volume (Q) and occupancy rate (Oc),
the Risk model found includes 13 parameters and 12 variables. The obtained
results during the validation step are not satisfactory. As a matter of fact,
applying the Risk model on the second half of the database generates a large
oscillation of the Risk value between 0 and 1. This behavior is probably du to
the high number of parameters and variables.

In order to reduce the number of parameters and variables, the same ap-
proach is applied on the aggregate variables by measurement stations aiming
at the reduction of the number of parameters.

4.3 Model Based on the Clustering by Station

Using the measurements by station, the number of used variable used is dra-
matically reduced leading to the simplification of the risk model and in partic-
ular its interpretation. During the clustering step, the same number of cluster
(5 clusters) is found as already reported in the previous section (by lane).

Cluster 1 is the most dense one (more than 36% of all observations cases).
It is characterized by quite homogeneous Occ and average flow over the 4
stations, (Occ of 11% to 12% and a flow of 1450 to 1500 vehicles per hour
and per lane) characterizing fluid traffic conditions. Cluster 2 presents a very
high Occ on the (upstream) stations St1 and St2 and rather average down-
stream (14% to 18%). As for the flow, it is rather stable and low compared to
other clusters. This cluster contains 20% of the overall observations. Cluster 3
presents high occupancy rates over all stations. The flow is higher upstream.
Cluster 4 has average Occ close to the usual 20% critical value, increasing
from upstream to downstream (26.7% at station St4). The flows are higher
than the other clusters, up to 1774 veh/h/lane at station St2. Cluster 5 has a
high average Occ (around 37%) at all stations and a lower flow (around 1230
veh/h/lane). When we consider the accidents and attribute to each time step
the cluster number to which it belongs, we observe that 43 accidents out of
85 studied (50.58%) present cluster change during the last six minutes. For 60
accidents (i.e. more than 70% of them), the last time step belongs to cluster
2, characterized by a rarefaction shock wave (congested upstream and fluid
downstream).

The same approach as the one previously described is applied. The Risk
model is set to 1 for the observations belonging to cluster 2 and 0 elsewhere.
The calibration of the Risk model is based on 70% of the full observations.
The logistic regression model output is the following:

Risk =
1

1 + exp−(α+ βOc1 + γOc2 + δOc3 + θOc4 + ΦQ1)
(2)
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where:
α = −7.1677;β = 0.0.1383; γ = −0.1061; δ = −0.2052;
θ = 0.1886;φ = 0.00038;
and the Oci variable is the occupancy measurements by station.

In this model, we can observe that the number of parameters is reduced.
Compared to the first one (equation 1), only 6 parameters must be calibrated
instead of 13.

The risk model validation has been proceed on the rest of the database
which represents (30%) of the total observations. The same model parameters
obtained are applied on 1000 observations which are not used for the cali-
bration. The output results of this model indicate that the risk index value
is maximal just before the occurrence of the accident. The risk index time
evolution results are depicted in the figures 2 and 3.

In the figure 3, we can observe that before the occurrence of the real
accident, the risk index is very high without accident. However, around 30

Fig. 2. Acc-1: Time evolution of the cumulative risk index.

Fig. 3. Acc-2: Time evolution of the cumulative risk index.
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minutes later, the accident is occurred. This means that the traffic flow is
completely instable leading the generation of the accident.

5 Risk Model Application

In frame of the European project “EURAMP”, field trials have been con-
ducted aiming at traffic impact evaluation of several ramp metering strategies.
Four control strategies has been tested:

• no control: reference case
• ALINEA: traffic responsive strategy
• Variable cycle ALINEA
• coordinated strategy

The test site is located in the south of the Ile de France Motorway network
(figure 4). The total length of the experimental area is approximately 20
kilometers (only the direction towards Paris is considered). This part of the
motorway includes 5 consecutive on-ramps, which are fully equipped with
loop detectors and traffic signals. The carriageway is equipped with detector
stations (each 500 m) for traffic volume, occupancy and speed measurements.

The overall period of these field trials are limited to 6 months. During
the evaluation process, the risk index was applied for the safety evaluation.
However, before using the safety index model, it is necessary to undertake the
model validation process. The used data corresponds to the collected accidents
synchronized with measurement traffic data. The total number of collected
accidents is equal to 60. After data cleaning and accidents selection criteria
(sunny day, night excluded), only 20 accidents are selected for the analysis

Fig. 4. Field trial test site.
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Fig. 5. Risk index time evolution: case acc 1.

Fig. 6. Risk index time evolution: case acc 2.

and in particular the risk model validation. The same risk model parameters
found on the ring way of Paris are conducted on A6W motorway. Figures 5
and 6 depict the risk index time evolution of two selected accidents.

We can underline that: using the same parameters of the build risk model
by station on the ring way of Paris and applying to the A6W motorway, the
obtained results of the risk index is very promising. Without any calibration,
the risk index value is maximal before the accident occurs. Consequently,
we can assume that the computation of risk index can be considered as a
robust safety index and can be compared between the tested ramp metering
strategies.

Figure 7 depicts the time evolution of the risk index of the four tested
strategies on the A6W motorway. The risk index is computed at every sta-
tion for 6 minute time interval, using the traffic measurements of the two
upstream and downstream stations; all local indices are cumulated, resulting
in a Cumulative Risk Index pertaining to the whole motorway section.
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Fig. 7. Risk index time evolution of the four ramp metering strategies.

The cumulative risk index by strategy is computed on the overall mo-
torway sections (19 sections) and on the overall time period (6h–12h). The
obtained results indicate that the implementation of the ramp metering strate-
gies improve the safety aspect (reduction of the number of accidents) by 20%.
In particular, the safety benefit is more important in case of the coordina-
tion (29%). These results are very similar than the other safety evaluation
impact of the ramp metering based on the accidents/incident collection data
collection during several years. Extensive results can be found in [6].

6 Conclusion and Next Steps

As indicated, the obtained results are very promising. The number of param-
eters of the risk model was limited to 5 which can minimize the effort of the
calibration process. The behavior of the risk index is satisfactory as regards
the real occurrence of accidents. In particular, with the same topology of the
used motorway axis, the risk index model can be applied without any calibra-
tion which is an important results for the real time application. Investigations
on other motorway sites are necessarily for the validation results. However,
more investigations are needed in order to take into account other parameter
conditions such as the weather conditions, luminosity and in particular the
night.
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Summary. This paper explores specifications of microscopic traffic models that
could capture congestion dynamics and model accident-prone behaviors on a high-
way section in greater realism than models currently used in practice. A compar-
ative assessment of several major acceleration models is conducted, especially in
regards to congestion formation and incident modeling. Based on this assessment,
alternative specifications for a car-following/lane changing model are developed and
implemented in a microscopic simulation framework. The models are calibrated and
compared in terms of resulting vehicle trajectories and macroscopic flow-density re-
lationships. Experiments are conducted with the models under different degrees of
relaxation of the safety constraints typically applied in conjunction with simulation
codes used in practice. The ability of the proposed specifications to capture traffic
behavior in extreme situations is examined. The results suggest that these spec-
ifications offer an improved basis for microscopic traffic simulation for situations
that do not require an accident free environment. As such, the same basic behavior
model structure could accommodate both extreme situations (evacuation scenarios,
over-saturated networks) as well as “normal” daily traffic conditions.

1 Introduction

Acceleration models are at the core of operational traffic behaviors. Funda-
mentally, car-following models aim at describing the trajectory of the nth

vehicle in a traffic lane given the trajectory of the (n − 1)th vehicle in the
same lane. Accordingly, the main assumption in these models is that a re-
lationship exists between a leader and a follower traveling on the same lane
when inter-vehicle spacing is within a given range, typically between 0 to 125
meters [1]. According to Boer [2], more recent acceleration models are struc-
tured to account for several factors such as i) task scheduling and attention
management; ii) the use of perception rather than Newtonian variables; and
iii) satisfying a performance evaluation strategy, rather than an optimal one.

Existing car following models are generally limited in their ability to cap-
ture congestion dynamics [3], especially the onset of traffic breakdown and

mailto:hamdar@northwestern.edu
mailto:masmah@northwestern.edu
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hysteresis phenomena. Moreover, existing car-following models are embedded
in a “crash-free” environment, reflecting important gaps in understanding of
driver behavior under extreme conditions and during incidents.

This paper explores specifications of microscopic traffic models that could
capture congestion dynamics and model accident-prone behaviors on a high-
way section in greater realism than models currently used in practice (com-
mercial software). A brief review of car-following models is first presented in
Section 2; the focus will be on the following five models:

– Gazis, Herman and Potts’ (GHP) model [4]
– Gipps’ model [5]
– Cellular automaton Model (CA) [6]
– IDM or Intelligent Driver Model [3]
– IDMM or Intelligent Driver Model with Memory [7]

After implementing the above models and estimating the corresponding
parameters, Section 3 presents the obtained results in terms of macroscopic
flow-density relationship and the ability to model accidents when relaxing the
safety constraints. Based on this analysis, a modified car-following model with
a simplified lane changing framework is constructed in Section 4. This model
with its new specification is able to capture some traffic characteristics during
breakdown. Moreover, the results in Section 5 suggest that these specifications
offer an improved basis for microscopic traffic simulation for situations that
do not require an accident free environment.

2 Review of Acceleration Models

In previous continuous-time single-lane car-following models, the main re-
sponse to a given stimulus is through acceleration or deceleration. The stimu-
lus consists of the velocity of the driver, the relative velocity between a vehicle
and the front vehicle and finally, the corresponding space-gap [4]. The main
limitation of these models is that they are not applicable for very low traf-
fic densities. Moreover, in dense traffic, small gaps will not induce braking
reactions if the front vehicle is traveling at the same velocity (zero relative
velocity).

Newell [8] addressed this concern by introducing the concept of the ve-
locity depending adiabatically on the gap. As all previous car-following mod-
els, the Newell model is collision free. Moreover, since there is an immediate
dependence of the velocity on the density (gap), very high and unrealistic
accelerations can be produced.

To overcome this limitation, Bando et al. [9] suggested a modified Newell
model, called the Optimal Velocity Model (OVM), in which the change in
velocity is controlled by a relaxation time. Unfortunately, when the relaxation
time is less than 0.9 seconds, the accelerations produced were still unrealistic.
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The generalized force model [10] offered a generalized optimal velocity
function that incorporates reaction to velocity differences and different rules
for acceleration and braking. However, even though this model was able to
produce time-dependent gaps and velocities, unrealistic small accelerations
and decelerations were produced. All the above models (Newell, OVM and
Generalized Force Model) offer important insights to the car-following existing
logic but will not be considered here due to the known problems they face. The
remaining models are numerically assessed in greater detail in the following
section.

3 Numerical Assessment

To be able to compare the performance of the 5 models mentioned in Section 1,
their respective logic was implemented using Visual C++ language. These
models were then calibrated as explained in the following subsection.

3.1 Model Calibration

The data used for calibration are provided through the US FHWA’s Next
Generation Simulation (NGSIM) project. The data set includes trajectory
data for 4733 vehicles over one-half hour (2:35 p.m.–3:05 p.m.) on December
3, 2003 [11]. The data are collected on Interstate 80 in Emeryville, California,
USA by researchers at the University of California, Berkeley. The study area
is a straight 2950 feet freeway section consisting of six lanes (lane 1 through
lane 6) with an on-ramp (lane 7) at the beginning of the section and an off-
ramp (lane 8) at the end. The x and y coordinate location is captured every
1/15th second. These data are also processed so aggregate traffic measures
such as flows and space-mean speeds are calculated over the time period of
the study. As for the implemented models, the network considered is a single-
lane straight freeway section of length L = 10 kilometers. The vehicles are
generated and injected into the network following an exponential inter-arrival
time. 3600 vehicles are generated in a period of two hours before ending the
simulation.

This calibration is performed so acceptable parameters values are used for
each model in the comparative analysis in the next subsections. The param-
eter values obtained for the observed traffic data are presented in Tables 1
through 4. Average flows, densities, speeds and headways for the five models
are collected by placing “virtual” detectors at the end of each one-kilometer
section of the freeway (10 detectors), and collecting average data for each
30 minutes, resulting in 40 data points in each simulation run. The results
are posted in Table 5. The average flow and average speed values are found
to be similar to the results obtained in the NGSIM data. To increase the
confidence in the comparison, three additional simulation runs were used to
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Table 1. Calibrated parameter values for the GHP model

Parameter Calibrated value

Constant parameter c 12.1 m/s (40.2 mi/hr)
Reaction time (Lag) T 1 s

Table 2. Calibrated parameter values for the Gipps model

Parameter Calibrated value

Desired velocity Vn 29 m/s
Mean reaction time τn 0.66 s
Mean acceleration an 0.73 m/s2

Deceleration bn −(2∗ an) m/s2

Mean vehicle length sn 6.5 m

Table 3. Calibrated parameter values for the continuous CA model

Parameter Calibrated value

Maximum velocity vmax 28 m/s
Maximum acceleration amax 1.37 m/s2

Maximum deceleration σ 1.73 m/s2

Vehicle length 4 m

Table 4. Calibrated parameter values for the IDM/IDMM model

Parameter Calibrated Calibrated
value (IDM) value (IDMM)

Desired velocity v0 31 m/s 31 m/s
Safe time headway T 1.6 s –
Maximum acceleration a 0.73 m/s2 0.8 m/s2

Desired deceleration b 1.67 m/s2 –
Acceleration exponent δ 4
Jam distance s0 2 m 1.6 m
Jam distance s1 0 m –
Vehicle length l = 1

ρmax
5 m 6 m

Netto time gap T0 – 0.85 s
Comfortable deceleration b – 1.8 m/s2

Adaptation factor βT = Tjam/T0 – 1.8 s
Adaptation time τ – 600 s

test the effect of randomness on the obtained results. The same range of out-
put values as well as the same patterns of behavior were observed. Moreover,
common random number (CRN) method is used when generating the vehicle
characteristics and their inter-arrival times.
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3.2 Data Analysis

To compare the five models in a consistent manner, the parameters found suit-
able in the calibration study are kept the same during the data analysis. The
comparison is performed in terms of flow-density relationships and incident
formation when relaxing the safety constraints.

3.2.1 Fundamental Diagrams

In this section, the mean inter-arrival time was modified so that the flow-
density data points can cover most of the fundamental diagram space. Five
fundamental diagrams were obtained for the 5 models using the parameters
calibrated in Section 3.1. These fundamental diagrams are illustrated in Fig-
ures 1 through 5.

It can be seen that the GHP model (Figure 1) and the original Gipps
model (Figure 2) did not capture either the metastable congested state or the
instability encountered during or at the beginning of the traffic breakdown.
This problem was already mentioned in several references in the literature in
the case of the GHP model [4] and the Gipps model [5].

In its turn, the CA model showed the beginning of a traffic breakdown
when reaching a flow capacity of 1800 veh/hr (Figure 3). However, as men-

Fig. 1. GHP flow-density.

Fig. 2. Gipps flow-density.
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Fig. 3. CA flow-density.

Fig. 4. IDM flow-density.

Fig. 5. IDMM flow-density.

tioned earlier, the CA lacks the cognitive logic behind it, making the model
“mechanical” and sometimes, unrealistic. This is due to the fact that the
model is controlled heavily by the constant deceleration rate attributed to the
drivers. Finally, both IDM and IDMM showed realistic fundamental diagrams
with a stable region and an unstable region (Figures 4 and 5 respectively).
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3.2.2 Accident Modeling

In this section, the safety constraints imposed in each model will be discussed
briefly. These safety constraints will be then relaxed when the vehicles tra-
verse the first kilometer of the highway stretch. The parameters presented in
Tables 1 through 4 are kept the same. The corresponding results are discussed
afterward. Moreover, when an accident is generated (space separation between
two consecutive vehicles is less than 0), the vehicles involved is the accident
decelerates at a maximum deceleration rate of 6 m/s2 until they come to a
complete stop. The separation between the two consecutive vehicles is then
set to zero.

3.2.2.1 GHP

The main factors that allow an accident-free environment in the GHP model
is the form of the sensitivity term λ and the exact relationship between ac-
celeration and relative speed. It can be seen that having the spacing s in the
denominator λ = c

s will reduce the acceleration response tremendously for
smaller headways. Moreover, assuming that the driver will be able to observe
and measure exactly the relative speed term, the vehicle will travel at the
same speed of the leader.

To relax this safety condition, the λ term is treated as a random variable
with a normal distribution, a mean of λmean = c

s , a standard deviation of
λstd = 0.1 and a range of λmean − 0.1 ≤ λ ≤ λmean + 0.1. This modification
did not cause the formation of any accidents. The accidents were created when
treating the relative speed stimulus as a normally distributed random variable
with a standard deviation of 0.5.

Even though the relaxation is in the order of 0.1, a complete breakdown
with 561 chain-type accidents is immediately produced. Such unrealistic sce-
nario is due to the little elasticity the GHP Model offers between the particles.
The vehicles are not even able to stop once an accident is generated. Once
traffic is disrupted (accident, shockwave), the GHP model is not feasible.

3.2.2.2 Gipps Model

The safety constraint is the Gipps Model is presented in the expression: x′n−1−
−sn−1 > x

′
n. It indicates that when a driver starts decelerating so his vehicle

will stop at a given location x′n−1, the following vehicle will decelerate and
come to rest at x′n before hitting the rear end of the preceding vehicle. To
relax this condition, the risk term Dn is subtracted from x′n−1− sn−1. In this
case, even if x′n−1 − sn−1 −Dn > x

′
n, the distance between two vehicles can

be negative and an accident may be generated.
If the safety conditions are kept, the following relations are obtained:

x′n−1 = xn−1(t)−
vn−1(t)2

2bn−1
(1)
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x′n = xn(t) + [vn(t) + vn(t+ τn)]
τn
2
− vn(t+ τn)2

2bn
(2)

and
x′n−1 − sn−1 ≥ x′n (3)

After introducing Dn, Equation 3 will be transformed to:

xn−1(t)−
vn−1(t)2

2bn−1
− sn−1 −Dn ≥ xn(t) + [vn(t) + vn(t+ τn)]

τn
2

+ vn(t+ τn)θ − vn(t+ τn)2

2bn
(4)

The final expression for the velocity of Vehicle n at Time t+ τn is:

vn(t+ τn)

= min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vn(t) + 2.5anτn

(
1− vn(t)

Vn

)(
0.025 +

vn(t)
Vn

)1/2

;

bnτn+

√
b2nτ

2
n − bn

[
2(xn−1(t)−sn−1−xn(t))− vn(t)τn−

vn(t)2

bn−1
+Dn

]

(5)

Treating the risk factor Dn as a normally distributed random variable with
a mean of 0.1, a standard deviation of 0.1 and a range of 0 < Dn < 0.2, 47
accidents were created. Even though much less accidents were obtained than
in the GHP Model (561 accidents), chain type accidents can still be seen with
a relatively high number compared to real life situations. The logic is still not
suited for incident scenarios.

3.2.2.3 CA Model

The safety condition is imposed by setting the maximum velocity equal to
the space gap sgap(t) between two successive vehicles irrespectively of the
required deceleration needs to be changed. By allowing the velocity to be
equal to sgap(t) + 0.1 m (increase of 10 cm), 29 accidents are produced. This
relatively low number of accidents compared to the GHP and Gipps models
is due to the absence of constraints on the deceleration (braking) rate that
can be applied: unrealistic behavior can still be seen.

3.2.2.4 IDM and IDMM Models

The IDM and the IDMM models assume that the acceleration is a continuous
function of the velocity vα, the gap sα and the velocity difference Δvα:

v̇α = a(α)

[
1−
(
vα

v
(α)

0

)δ

−
(
s∗(vα, Δvα)

sα

)2
]

(6)
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The desired gap s∗ is set by the following equation:

s∗(v,Δv) = s(α)
0 + s(α)

1

√
v

v
(α)
0

+ T (α)v +
vΔv

2
√
a(α)b(α)

(7)

In these two models, the last term of Equation 7 is responsible of pre-
venting crashes even though the safe time headway T (α) is already included.
Accordingly, accidents are obtained by removing this safety buffer. A complete
traffic breakdown with 1211 accidents for IDM and 674 accidents for IDMM
is observed. It should be noted that trying to decrease the desired minimum
gap s∗(v,Δv) by a value up to 1 did not produce any accidents.

4 Improved Model Formulation

The advantage of the Gipps model is its ability to model driving behavior fol-
lowing some plausible cognitive thinking that may be adopted by the driver.
This led to explicitly incorporating the reaction time τn and an asymmetric
application of acceleration versus deceleration. Moreover, the Gipps model
showed an acceptable degree of stability (relatively low number of accidents)
when relaxing its safety constraints. Motivated by these properties, the objec-
tive is to follow the same logic applied in the Gipps model while modifying it
so that interactions between drivers during high density situations can be cap-
tured. In the speed-density relationship, this will be indicated by observing a
metastable state and a sort of traffic break down in the fundamental diagram.

Moreover, further specifications and a simplified lane changing logic are
added so an acceptable incident modeling framework can be offered. The
conditions where incidents are created are called “extreme conditions” for
the rest of the paper.

4.1 Acceleration Model

The model aims to capture driver behavior under “incident” or extreme con-
ditions and congested situations. The modification that can be made on the
variables included in the simulation model (the rest already described in the
original Gipps Model) as well as the description of the initial risk factor D0n

are listed below:

1. an (m/s2): under extreme conditions, drivers typically can be willing to ap-
ply higher acceleration rates than under normal conditions, causing irreg-
ularities and possible instabilities in traffic flow patterns [12]. This variable
is drawn from a truncated Gaussian-shaped (Normal) distribution with a
given mean and variance. The truncation is performed through a range
variable and it is based on the value of the mean chosen during the sensi-
tivity analysis.

2. bn (m/s2): the value of bn can increase in absolute value. The hypothesis
is that under extreme conditions, drivers tend to have higher braking rates
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or increased use of emergency braking [12]. This value is also drawn from
a truncated normal distribution with a given mean, variance and range at
the beginning of the simulation.

3. Vn (m/s) is the speed at which the driver of vehicle n wishes to travel.
In extreme conditions, the value can be randomly chosen from a proba-
bilistic mixture of two normal distributions. For the first distribution, the
mean is higher than the suggested mean in the Gipps Model. For the sec-
ond distribution, the mean is lower than the suggested Gipps mean. This
choice is consistent with an illustration by [13] of the disruptions and the
irregularities in traffic flow resulting from velocity differentials (idealized
as two classes of drivers, so-called “slugs” versus “rabbits”).

4. D0n (m): initial risk factor: it represents the distance a driver is willing
to travel beyond the safety threshold. The safety threshold indicates the
distance between the driver and the leading vehicle at which the driver
would start decelerating so that his vehicle can come to a complete stop
before hitting the preceding vehicle. This value is added to the model
to allow potential accidents to be generated (See Subsection 3.2.2.2). It
reflects the willingness of a driver to take a risk. The value of Dn for each
vehicle n is initially drawn from a truncated normal distribution. When
this value is positive, the driver is willing to take risk and this may increase
the probability of causing an accident. If this value is negative, the driver
prefers to stay within the safety margin so he/she can come to a stop
without hitting the vehicle in front.

5. sn (m) is size of vehicle n instead of its effective size as suggested by the
original Gipps Model.

6. τn (s) is the reaction time corresponding to the driver of Vehicle n.

Using the same logic adopted in Subsection 3.2.2.2 to relax the safety
constraint of the Gipps Model, the relationship of x′n−1 − sn−1 − Dn > x

′
n

will allow the distance between two vehicles to be negative and an accident
may be generated. Moreover, another safety factor illustrated by the safety
margin vn(t+τ)θ in Equation 4 (θ is normally equal to τ/2) is removed. After
introducing Dn (function of D0n), Equation 4 will be transformed to:

xn−1(t)−
vn−1(t)2

2bn−1
−sn−1−Dn ≥ xn(t)+ [vn(t)+vn(t+τn)]

τn
2
− vn(t+ τn)2

2bn
(8)

The new relationship dominating the Gipps logic is:

vn(t+ τn)

=min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vn(t) + 2.5anτn

(
1− vn(t)

Vn

)(
0.025 +

vn(t)
Vn

)1/2

;

bn

(
τn
2

)
+

√
b2nτ

2
n

4
−bn
[
2(xn−1(t)−sn−1−xn(t))−vn(t)τn−

vn(t)2

bn−1
+Dn

]

(9)
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4.2 Lane Changing Decision Logic

Lane-changing decisions are strongly related to the desirable speed at which
a driver wishes to travel. A driver traveling at a speed less than his desirable
speed will seek to increase his speed in the same lane. If another vehicle is in
the way (space headway between the two vehicles is less than 5 meters, which
is the average length of a car), the following driver will consider changing
lanes. However, the driver must check first if this maneuver is possible with
the gaps offered in the adjacent lane. Checking these gaps is a procedure to
be specified as part of the lane changing model.

On the other hand, it was found that the average lead or lag times for all
traffic conditions are almost equal [14]. Accordingly, it may be suggested that
neither the lead nor the lag dominates the gap-acceptance decision in lane-
changing. Therefore, both the leading and the lagging vehicles in an adjacent
lane are objects of interest in this study.

The theoretical estimate of the minimum safe lead value based an assumed
desirable deceleration rate and an average braking perception/reaction time
is given by the following equation:

L1 = vn(t)τn +
vn(t+ τn)2

|2bn|
− vm(t+ τn)2

|2bm|
(10)

where:
m = subscript for a leading vehicle in destination lane
L1 = safe “lead” distance for lane changing (m)
vn(t+ τn) = speed of lane-changing vehicle n (m/sec)
vm(t+ τm) = speed of leading vehicle m in destination lane (m/sec)
bn = deceleration rate vehicle n can sustain (m/sec2)
bm = deceleration rate vehicle m can sustain (m/sec2)
τn = apparent reaction time for vehicle n (braking perception/reaction
time) (sec)
τm = apparent reaction time for vehicle m (braking perception/reaction
time) (sec).

With the same logic, the theoretical estimate of the safe lag value is:

L2 = vm+1(t)τm+1 +
vm+1(t+ τm+1)2

|2bm+1|
− vn(t+ τm+1)2

|2bn|
(11)

where:
m+ 1 = subscript for a lagging vehicle in destination lane
L2 = safe “lag” distance for lane changing (m)
Vn(t+ τn) = speed of lane-changing vehicle n (m/sec)
vm+1(t+ τm+1) = Speed of lagging vehicle m+ 1 in destination lane (m/sec)
bn = deceleration rate vehicle n can sustain (m/sec2)
bm+1 = deceleration rate vehicle m can sustain (m/sec2)
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τn = apparent reaction time for vehicle n (braking perception/reaction
time) (sec)
τm+1 = apparent reaction time for vehicle m+1 (braking perception/reaction
time) (sec).

However, it is suggested that both lag and lead distances are over-
estimated [14]. The use of different parameters during extreme conditions will
help deal with this subject. First, the higher deceleration rates in absolute
value will decrease the safe leads and lags to be accepted. This is expected
during panic behavior especially on the part of aggressive drivers, since their
patience is limited and they tend to accept shorter gaps.

4.3 Incident Modeling

The above model still faces several limitations in its ability to represent car
following behavior during incidents, especially with regard to uncontrollable
chain type accidents. On the other hand, it should be noted that every time
the headway between two vehicles is less than zero, the speed of both vehicles
will decrease at a rate of −6 m/s2 that is the maximum deceleration a vehicle
can sustain. The vehicles will come to rest at the end. The headway of the
two vehicles will be reset to zero governed by the location of the front vehicle.

Accidents will be still possible in this lane changing model due to the
duration required for the lane-changing maneuver. The general idea is that
if the lane-changing maneuver is seen as possible, the respective locations of
vehicles n, m, and m + 1 are computed in the target lane after a given lane
changing time. This time is also drawn from a normal distribution varying
from one driver to another. Moreover, to capture sudden lane changing [12] to
escape an incident, lane changing time is reduced to have a mean of 2 seconds:
a value that is found feasible by sensitivity analysis. If xm(t)− xm+1(t)− sm
is less than or equal to sn, the respective velocities of the three vehicles are
set to be equal to zero by the same manner it was done for car-following. This
indicates the occurrence of an accident in that lane. It may be suggested that
accidents due to lane changing may block both lanes of travel.

To prevent traffic breakdown in a fast manner, it is suggested that once
an accident occurs, another vehicle-specific variable enters into the equation.
This variable is called “alert distance” (Rn). If the vehicle is within an alert
distance from the incident location, the risk of this vehicle will be reset to
zero. In other words, drivers will tend to be more attentive and may slow
down when they see an accident in their sight and for a while after they pass
it [12]: even if on the side of the road, accidents have an effect on the traffic
conditions.

4.4 Parameter Change Over Time

The change in some driver’s characteristics over time is performed through
linking them to dynamic traffic properties in his or her immediate surrounding:
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Fig. 6. Parameters’ change over time: Dn = f1 (separation).

Fig. 7. Parameters’ change over time: bn = f2 (separation).

“deceleration (braking) rate bn” and “risk factor Dn” are considered functions
of the vehicle’s separation (distance separating the front end of a lagging
vehicle to the rear end of the leading one). Moreover, the “alert distance Rn”
depends on the “initial risk factor D0n”. Since literature offers general and not
detailed description of how these characteristics may change, the functional
relations are assumed to be piece-wise linear; they are presented in Figures 6, 7
and 8.

The Critical Separation will be considered equal to the average vehicle
length that is 4 meters. It is the space separation below which drivers will
tend to react in an exaggerated manner to any stimulus [12]. This includes
the usage of the maximum deceleration rate a vehicle can support (bn =
−6 m/s2). Below this separation, drivers are not willing to take any risk
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Fig. 8. Parameters’ change over time Rn = f5 (aDn0).

(Dn = 0 if the original risk factor D0n was greater than zero) but this may be
too late for a collision. However, if the original risk factor was greater than zero
(D0n < 0: drivers already conservative), the risk factor will be always equal to
the original risk factor and will not depend on the space separation. As for the
Safe-Separation, it is chosen to be equal 10 average vehicle lengths (40 meters)
and it is seen as the distance-separation above which drivers do not tend to
take extra precautions for preventing collisions: the initial deceleration rate
bn and the initial risk factor D0n already drawn for normal distributions are
used.

As for Figure 8, the alert distance (alertness of the drivers) is seen neg-
atively correlated to the initial risk factor (aggressiveness). The functional
relationship is also assumed to be linear.

In Conclusion, the above model is rich in behavioral driving parameters
offering flexibility and model dynamics to imitate real-life cognitive drivers’
behaviors. Once implemented, the next section will offer the results obtained
in:

1- Incident-Free Congested Situations
2- Incident Conditions

5 Analysis of Results

This section is divided into two parts. Calibrating the modified Gipps Model
using the NGSIM data will allow a better comparison with the 5 analyzed
models. The flow density relationship of the modified Gipps Model is presented
in Subsection 5.1. In Subsection 5.2, different incident scenarios are produced
and the resulting behavior will be analyzed.

5.1 Incident Free Environment

The NGSIM data described in Section 3.1 is used to calibrate the acceleration
model presented in section 4.1 and 4.4. For comparison purposes, the same
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Table 5. Results obtained by each model after calibration

Model Avg. travel Avg. speed Avg. flowrate Avg. density
time (s) (m/s) (veh/hr) (veh/km)

GHP-Calibrated 29.3 25.6 1533.1 16.7
Gipps-Calibrated 40.0 25.0 1532.0 17.1
IDMM-Calibrated 40.0 25.2 1525.5 17.0
IDM-Calibrated 39.9 25.3 1423.1 15.9
CA-Calibrated 40.8 25.6 1503.0 17.1
Modified Gipps-Calibrated 34.3 24.1 1457.6 17.9
NGSIM Data – 25.6 1578 –

Table 6. Calibrated parameter values for the modified Gipps model

Parameter Calibrated value

Desired velocity Vn 33 m/s (one distribution adopted)
Mean reaction time τn 0.66 s
Mean acceleration an 1.7 m/s2

Mean deceleration bn −3.4 m/s2

Critical space separation s0 2 m
Safe space separation ss 50 m
Mean vehicle length sn 5 m
Original risk factor D0n 0 m

simulation environment created in Section 3 is created here. Calibrated pa-
rameters can be seen in Table 6. The macroscopic results of this calibration
are presented in Table 5.

Flow-Density Relationship

The fundamental diagram corresponding to the modified Gipps model is pre-
sented in Figure 9. Congestion patterns were captured when the flows reach
a value of 1600 veh/hr. At that time, two states are seen: the first state is a
slow traffic movement state (metastable state) until hitting the flow capac-
ity bar of 1900 veh/hr. The other state is the traffic breakdown state and it
is located under the slow-moving vehicle line. This kind of shape has some
common aspects compared to the hysterisis loop.

5.2 Extreme Conditions

Since there are no field data to calibrate or validate this model with the
presence of incidents, the model will rely on sensitivity analysis to examine
the feasibility of the logic used. The initial input parameters and the different
scenarios performed are presented in Tables 7 and 8.

At the beginning, the trajectories of 50 sample vehicles were dressed for
one simulation run using Scenario 1 and Scenario 3. Figures 10 and 11 show
these trajectories in the form of “Time-Space Diagrams”.
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Fig. 9. Flow-density relationship for the modified Gipps model.

Table 7. Main input parameters used in the simulation of extreme events

Input variable Value

Time T (s) 7200
Road length L (m) 10000
Mean reaction time (s) 1
Mean Vd1 (m/s): mean desired velocity for slugs 20
Mean Vd2 (m/s): mean desired velocity for rabbits 35
Percent Vd1(%): percent of slug drivers 40
Mean LCT (s): mean of the Lane Changing Time 2.5
Mean acceleration (m/s2) 2
Mean deceleration (m/s2) −3

Table 8. Different scenarios adopted in the sensitivity analysis

Scenario description Scenario # # of vehicles Mean interrarrival Risk (m)
time (s)

Free-Flow Risk Free 1 1200 6 0
Free-Flow Minor Risk 2 1200 6 1
Free-Flow Major Risk 3 1200 6 5
Free-Flow Break Down 4 1200 6 10
Congested Risk Free 5 3600 2 0
Congested Minor Risk 6 3600 2 1
Congested Major Risk 7 3600 2 5
Congested Break Down 8 3600 2 10

In the first set of trajectories, we can observe two families of drivers; those
with a steeper velocity lines possess higher velocities and thus are the “rabbits”
we mentioned in Section 4.1. The others are the slower slug drivers. Moreover,
in Figure 11, the risk factor is not zero anymore. Accordingly, the horizontal
lines the last until the end of the simulation indicates that an accident has
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Fig. 10. Time-space diagram for one run for scenario 1.

Fig. 11. Time-space diagram for one run for scenario 3.

occurred. Some of the vehicles will be stuck behind these accidents for a while
before being able to perform a lane change. Accordingly, chain type accidents
can be avoided by just waiting behind the vehicles involved in the crash.

After talking about the microscopic trajectory data, the macroscopic data
of average travel times, average speeds, total number of lane changes, total
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Table 9. Output data corresponding to different scenarios adopted in the sensitivity

Performance
measure

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8

Average travel
time (s)

54.9 46.7 48.9 50.9 60.1 59.9 74.0 49.2

Average speed
(m/s)

18.3 27.4 25.4 22.8 16.7 27.8 23.7 22.4

Number of cars
crashed

0.0 14.0 24.0 161.0 0.0 14.0 39.0 108.0

Number of lane
changes

74.0 8733.0 11753.0 3247.0 268.0 37162.0 50542.0 995.0

Average flow
rate (veh/hr)

291.3 290.0 287.4 43.7 874.9 822.8 842.4 15.9

Average density
(veh/(km.lane))

4.5 4.7 5.2 8.1 14.6 15.2 19.6 6.1

Table 10. Avoidance of chain-type accidents: escape by lane changing twice on the
same road segment

Road segment Number of vehicles crashed Number of
index (1 km) Lane 1 Lane 2 lane changes

1 0 2 1023
2 2 2 1575
3 0 2 1086
4 2 0 1135
5 2 0 1022
6 0 2 1193
7 0 2 1036
8 2 2 1363
9 2 0 1128

10 0 2 1192

number of vehicles crashed, average headway, average flows and average den-
sities (over 10 simulation runs) are shown in Table 9.

It was found that the variance of the speed will increase with the risk
factor; this is expected since accidents will bring an increasing number of traffic
fluctuations. In terms of the means, with higher risks, accidents, travel times
and lane changes will increase. On the other hand, speeds and flows decrease.
This special rule is violated sometimes in the traffic breakdown situation. This
is due to the fact that most vehicles are trapped at the beginning of the road
length due to the accidents. Few vehicles will escape and can thus travel at
higher speeds and with higher headways. This “fewer number” of vehicles is
reflected in the low density value for scenario 8 compared to scenario 7.
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Table 10 and the associated visual representation focuses on Scenario 3
and how vehicles escape and travel between accidents avoiding the unrealistic
chain effect observed in and discussed in Subsection 3.2.2.

6 Conclusion

This paper analyzes existing car-following models with an assessment of their
qualities and limitations. The focus was on 5 models:

– GHP model
– Gipps model
– Cellular automaton Model (CA)
– IDM model or Intelligent Driver Model
– IDMM model or Intelligent Driver Model with Memory

The above models were implemented, calibrated and tested in terms flow-
density relationships and ability to model driver behavior during incident
situations.

This kind of review has enabled the formulation of an improved car-
following model that shows instability during congestion without the necessity
of having an accident-free environment. The modified model could capture
some congested flow dynamics (hysteresis effect, beginning of traffic break-
down). Moreover, when incorporating the space risk factor, drivers showed
an acceptable degree of maneuverability by either standing behind accidents
without being involved in a rear-end collision or by changing lanes. Long and
unrealistic chain type accidents causing a total traffic breakdown could be
avoided.

The results suggest that the new specifications presented in this paper offer
an improved basis for microscopic traffic simulation for situations that do not
require an accident free environment. As such, the same basic behavior model
structure could accommodate both extreme situations (evacuation scenarios,
over-saturated networks) as well as “normal” daily traffic conditions.
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Summary. Modeling breakdown probabilities or phase transition probabilities is
an important issue when assessing and predicting the reliability of traffic flow op-
erations. Looking at empirical spatio-temporal patterns, these probabilities clearly
are not only a function of the local prevailing traffic conditions (density, speed), but
also of time and space. For instance, the probability that start-stop wave occurs
generally increases when moving upstream away from the bottleneck location.

The dynamics of the breakdown probabilities are the topic of this paper. We
propose a simple partial differential equation that can be used to model the dynam-
ics of breakdown probabilities, in conjunction with a first-order model. The main
assumption is that the breakdown probability dynamics satisfy the way information
propagates in a traffic flow, i.e. they move along with the characteristics.

The main result is that we can reproduce the main characteristics of the break-
down probabilities, such as observed by Kerner. This is illustrated by means of two
examples: free flow to synchronized flow (F-S transition) and synchronized to jam
(S-J transition). We show that the probability of an F-S transition increases away
from the on-ramp in the direction of the flow; the probability of an S-J transition
increases as we move upstream in the synchronized flow area. Note that all the
examples shown in the paper are deterministic.

1 Introduction

The research and claims of Kerner [1] has resulted in quite a stir in the traffic
flow theory community. Amongst the issues raised by Kerner are the fact that
there are three phases (free flow, synchronized flow and jams), rather than
two (free flow and congestion), the fact that the breakdown phenomenon is
a stochastic process stemming from the fact that small or large disturbances
can trigger phase transitions with a certain probability, and the fact that the
fundamental diagram does not exist since the congested branch is a 2D area,
rather than a straight line.
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Furthermore, Kerner claims that none of the current microscopic or macro-
scopic traffic flow models captures correctly the different flow characteristics
that are observed from empirical analyzes.

This paper focuses on the breakdown phenomenon. More specially, the
main contribution of the paper is that we show a first-order macroscopic
modeling framework that allows us to model the dynamics of the breakdown
or phase-transition probabilities in an intuitive and simple manner.

Different researchers have considered the dynamic modeling of breakdown
probabilities (see [2–4]), commonly using (stochastic) queuing analysis. In this
contribution, we propose using coupled set of partial differential equations de-
scribing both the traffic dynamics (using a simple first-order model) and the
dynamics of the phase-transition probabilities. In other words, the proposed
modeling framework can be considered as a relatively straightforward gener-
alization of the kinematic wave theory.

Note that we focus on the dynamic modeling of the phase-transition prob-
abilities, and the implications this has for the properties of the first-order
model. Other issues discussed by Kerner (such as the 2D area depicting sta-
ble states in synchronized flow) are not considered.

2 Mathematical Model of Breakdown Probability

This contribution describes dynamic modeling of the breakdown (or rather
phase transition) probability, which is denoted by P = P (t, x). Note that the
probability is a function of time t and space x, and is thus not only determined
by the prevailing traffic conditions such as the density.

The macroscopic dynamic model consists of the following set of equations:

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0 (1)

∂P

∂t
+ c(ρ)

∂P

∂x
= π(ρ, P ) (2)

In Eqs. (1) and (2), c(ρ) = dQ
dρ denotes the kinematic wave speed, de-

scribing the speed (and direction!) at which (small) perturbations propagate
through the traffic flow. The kinematic wave speed is equal to the derivative of
the fundamental diagram Q = Q(ρ). This follows directly from the shockwave
equation, stating that the speed of a shockwave S separating regions (ρ1, q1)
and (ρ2, q2) is given by:

ω =
q2 − q1
ρ2 − ρ1

=
Q(ρ2)−Q(ρ1)
ρ2 − ρ1

(3)

yielding:

lim
ρ2→ρ1

Q(ρ2)−Q(ρ1)
ρ2 − ρ1

=
dQ

dρ
(ρ1) (4)
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In Eq. (2), π = π(ρ, P ) denotes the rate of change in the breakdown prob-
abilities P , which are assumed to be a function of the density ρ = ρ(t, x) and
the probability P itself. Also note that P can describe both an F-S transition
(P = PF−S) or a S-J transitions (P = PS−J). Both examples will be shown
in the ensuing of the contribution.

2.1 Model Justification

The concept behind the mathematical model is the assumption that the phase-
transition probability P changes along the characteristic curves (just as the
density). This means that if we consider a perturbation in the flow, the phase-
transition probability P will change along with this perturbation.

To understand this property, let us consider a platoon of vehicles. Sup-
pose that the platoon leader will brake briefly. This perturbation will move
from the one vehicle to the next, possibly changing in amplitude while moving
upstream. The speed at which the perturbation moves is equal to the char-
acteristic speed. If the perturbation becomes sufficiently large, it may induce
a phase transition. Alternatively, the perturbation may damp out implying
that the probability of a phase transition will reduce along the perturbation.

Let us now take a closer look at the characteristic curves. These curves
are parameterized curves C that are defined by the path:

C = {t(s), x(s)} (5)

where t = t(s) and x = x(s) are defined by the following differential equations:

dt

ds
= 1 and

dx

ds
= c(ρ) (6)

Now, let ρ(s) = ρ(t(s), x(s)) denote the (parameterized) density along the
characteristic curve. We have:

dρ

ds
=
dρ

dt

dt

ds
+
dρ

dx

dx

ds
=
∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0 (7)

We thus see that the density ρ is conserved along the characteristic C (i.e.
ρ(s) = ρ(0)). Since the characteristic speed c(ρ) depends on ρ, the speed is
constant as well, and thus the characteristic C is a straight line.

For (2), we can use the same characteristic curves. Let P = P (s) denote
the breakdown probability along C. We can thus show that:

dP

ds
=
dP

dt

dt

ds
+
dP

dx

dx

ds
=
∂P

∂t
+ c(ρ)

∂P

∂x
= π(ρ, P ) (8)

Since dP/ds = π(ρ, P ), π(ρ, P ) can be interpreted as the rate at which the
breakdown probability changes over time along the characteristic.

Please note inside a congested region, c(ρ) ≈ −15 km/h, implying that the
breakdown probability increases as we move upstream away from the point



88 Serge P. Hoogendoorn, Hans van Lint, and Victor Knoop

at which the congestion originated. If we consider P = PS−J (transition from
synchronized to free flow), we can thus model the fact that the probability
of a transition form synchronized flow to wide moving jams increases when
moving away from the head of the queue (in the upstream direction).

Outside congestion, we have c(ρ) ≈ 85 km/h. If we now consider P =
PF−S (probability that we have a transition form free flow to synchronized
flow), we can thus model the observed increases in this probability as we
proceed downstream from the bottleneck, e.g. the fact that congestion sets in
downstream of an on-ramp rather than at the location of the on-ramp itself.

2.2 Discretization of the Equations

To numerically solve the problem, we propose using the standard Godunov
scheme for the conservation of vehicle equation [5]. For the transition proba-
bility, basically any discretization scheme will work. We propose the following
standard scheme:

Pi,j+1 = Pi,j +Δt · π(ρi,j , Pi,j) (9)

−Δt ·
(
c+(ρi,j) ·

Pi+1,j − Pi,j

Δx
+ c−(ρi,j) ·

Pi,j − Pi−1,j

Δx

)

where
c+(ρi,j) = max(0, c(ρi,j)) and c−(ρi,j) = min(0, c(ρi,j)) (10)

3 Example Application of Theory

Let us now show some results of applying the model. In this section, we
will consider both the F-S transitions (P = PF−S) and the S-J transitions
(P = PS−J ). Before showing these examples, we will present the specification
of the transition probability rates π used in the remainder of the contribution.

3.1 Specification of the Fundamental Diagram

In this contribution, we use a simple linear fundamental diagram:

Q(ρ) =

{
Cfree · ρ

ρcrit
ρ ≤ ρcrit

Cqueue · ρjam−ρ
ρjam−ρcrit

ρ > ρcrit
(11)

In Eq. (11), Cfree denotes the free flow capacity (typically 2250 veh/h/lane),
while Cqueue denotes the queue discharge rate (between 1800 and 2000
veh/h/lane); ρcrit denotes the critical density (25 veh/km/lane), and finally
ρjam denotes the jam density. Note that for ρ ≤ ρcrit we have c(ρ) =
Cfree/ρcrit. For ρ > ρcrit we have c(ρ) = Cqueueρjam (ρjam − ρcrit). This
shows clearly how the parameters of the fundamental diagram determine the
way perturbations propagate through the flow.
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3.2 Specification of the Transition Probability Rate

We will use the following linear expression for the rate π(ρ, P ) (both for the
F-S transitions, and the S-J transitions, be it with different parameter values):

π(ρ, P ) =
{

(π0 + π1P ) · ρ−ρ0
ρ1−ρ0

for ρ0 ≤ ρ ≤ ρ1
0 elsewhere (12)

Additionally, we will assume that P = 0, if the density is less than ρ0. Further-
more, P will be limited to values between 0 and 1. After some straightforward
computations, it follows that along the characteristic curves C = {t(s), x(s)},
the transition probability equals:

P (s) = min
{
π0
π1

(
e

π1

(
ρ−ρ0

ρ1−ρ0

)
s − 1

)
, 1
}

(13)

3.3 F-S Transition Probability Behavior

Let us consider two-lane 10 km road with an on-ramp at x = 6 km. For the
piecewise linear fundamental diagram, we assume Cfree = 4500 veh/h, Cqueue

= 4000 veh/h, ρcrit = 50 veh/km and ρjam = 250 veh/km. For the scenario
at hand, we choose Qmain = 3500 veh/h and Qon−ramp = 1250 veh/h. After
playing around with different parameter values, we have chosen π0 = 1 and
π1 = 100 (for illustration purposes); ρ0 = 40 veh/km and ρ1 = ρcrit.

Fig. 1 below shows the results of the numerical experiment. It shows the
density profile, the location of the points on the fundamental diagram, and the
transition probabilities. The F-S breakdown probability increases non-linearly
after the on-ramp at x = 6 km. In other words, the occurrence of a breakdown
becomes more likely further downstream of the on-ramp.

If we, for the sake of argument, assume that we would have an F-S transi-
tion (in this case, modeled by temporarily assume that the capacity is reduced
from Cfree to Cqueue) when PF−S > 0.5, the simulation shows that at a cer-
tain time instant, the transition occurs (downstream of the bottleneck), moves
upstream, and passing the on-ramp location. There it leads to the on-set of
congestion (because the capacity is reduced); see Fig. 2.

3.4 S-J Transition Probability Behaviour

For the S-J transitions, we find similar behavior. In this case, we have again
used π0 = 1 and π1 = 100 (for illustration purposes) to describe the S-J
transition; ρ0 = ρcrit and ρ1 = 200 veh/km. For this scenario, we assume
that Qmain = 4000 veh/h and Qon−ramp = 1500 veh/h, implying that the
bottleneck is oversaturated.

The result is indeed similar to the result we found for the F-S transition
(see Fig. 3): the probability on an S-J transition is zero at the on-ramp (where
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Fig. 1. On-ramp scenario showing increase in the F-S transition probability.

Fig. 2. Speed contours showing F-S transition. Figure shows how congestion sets
in downstream of on-ramp and moves upstream.
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Fig. 3. Probability of an S-J breakdown, increasing as we move from the on-ramp
in the upstream direction.

this model assumes that the head of the queue is located), and increases non-
linearly as we move upstream away from the bottleneck.

As a final example, let us assume that an S-J transition occurs when
PS−J > 0.5 (i.e. it is in a way deterministic). Fig. 4 shows the results of this
analysis. Clearly, the precise values are not realistic, but the general picture
appears to be correct. It is also interesting to note the chaotic-like patterns
that emerge even when this simple example is used.

4 Conclusions and Future Work

In this paper we have proposed a relatively simple extension of the first-order
model pertaining to the inclusion of breakdown probabilities. The breakdown
probability is modeled using a partial differential equation. The main assump-
tion is that information regarding the breakdown probability moves along the
characteristic curves.

The workings of the model are illustrated by means of an example featuring
flow breakdown due to an on-ramp. Using this example, it is shown that the
model can capture the main features of the different phase transitions (free
flow to synchronized flow, synchronized flow to jam).

Future research is aimed at modeling the phase-transition itself. In the
examples provided in this paper, this was achieved using a simple threshold
value for the transition probabilities. A stochastic approach is however more
realistic. Clearly, this would yield a stochastic first-order macroscopic model.
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Fig. 4. Speed contours showing transition from S to J upstream of the on-ramp.

Another extension of the theory is to use a multi-class traffic flow model,
distinguishing between person-cars and trucks. In doing so, the dynamics of
the phase-transitions can be made dependent on the traffic composition, since
clearly this has a strong effect on the breakdown probability dynamics.
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Summary. We present a simple cellular automaton model to study the traffic dy-
namics on a 4-ramp rotary. Vehicles can move in and out of the rotary through
on-ramp and off-ramp, respectively. On the rotary, vehicles move deterministically;
while the ramps operate stochastically. We show that, both numerically and analyt-
ically, the traffic states on the rotary are completely determined by the ramps. The
ramps provide a means to stabilize the density difference on the rotary and to sup-
port the maximum flow as a distinct phase. We are able to obtain exact solutions in
the full parameter space. The complete phase diagram can be derived. We compare
the results between a closed system and an open system. We show that the bulk
density is not a good parameter. The traffic states are better characterized by the
stochastic rates in the boundaries.

1 Introduction

Traffic related problems are all important to a modern society. Some of the
traffic phenomena can only be resorted to the particularity of a few specific
vehicles, for example, the accidents caused by mechanical failure or drunk
driving. However, there are still prominent phenomena could be understood
without attributing to such particularity. The emergence of traffic jam as
vehicular density increases is just one of the example. The complicated phe-
nomena can be understand in terms of simple effective interactions among
identical vehicles [1–4]. Some basic ingredients are: (a) in the steady state,
we still expect vehicles to move asymptotically; (b) the movement of vehicles
should be confined by the roadway; (c) collisions should be avoided since safety
must be a high priority. Along this line, traffic dynamics can be characterized
as non-equilibrium, one-dimensional, and hard-core repulsive.

The asymmetric simple exclusion process (ASEP) can be taken as the
most basic model of traffic dynamics [5]. The roadway is divided into discrete
cells, i.e., a lattice. Vehicles are identical particles hopping on the lattice. Each
cell can only accommodate one particle. Accumulation is forbidden. For each
cell, there are only two possible states, i.e., either empty or occupied by a
particle. Time is also discretized. And the motion is uni-directional. At each

mailto:dwhuang@phys.cycu.edu.tw
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time step, a particle will hop forward to the next cell if that cell is empty in
the previous time step; otherwise, the particle will stay where it is. Particles
are not allowed to hop backward nor to pass each other. When the periodic
boundary condition is imposed, the simple roadway becomes a loop and the
density ρ is a conserved quantity. It is easy to deduce that there are two
different phases as ρ varies. In the low density regime, ρ < 1

2 , all particles
can move freely. In this dimensionless model, the traffic flow is equal to the
density ρ. Even if one starts with a situation where all particles were jammed
pack together, they will self-arrange to separate from each other. When the
asymptotic steady state is reached, there are at least one empty cell in between
any two particles. In the high density regime, ρ > 1

2 , the free flow becomes
inaccessible. It is impossible to have all the particles moving together. The
system will then self-arrange to have all the empty cells kept away from each
other, i.e., separated by at least one particle. Only those particles located right
behind the empty cells will be able to move in the next time step. We have a
traffic flow at (1 − ρ). It is easy to observe that these two phases are related
by the time reversal symmetry or the so-called particle-hole symmetry.

When the closed boundary is replaced by the open boundary, we have to
introduce two parameters (α, β) to specify the two open ends. Particles will be
injected from one end, hopping through the lattice, and then removed from
the other end. The hopping dynamics is deterministic; while the boundary
conditions are stochastic. If the first cell is empty, a new particle will be
injected with a finite probability α; if the last cell is occupied, that particle will
be removed with a finite probability β. Although the parameter space becomes
two-dimensional, there are still only two phases: when α < β, we have the
free flow; when α > β, we have the congestion. In practice, these two phases
are exactly the same as in the case of a closed loop. With open boundaries,
the density is not a conserved quantity. Yet in the asymptotic steady states,
uniform density profiles can still be expected. In the low-density free flow, the
bulk properties are controlled by the injection boundary. The self-consistent
condition is α(1 − ρ) = ρ, which can be solved to give ρ = α/(1 + α). The
bulk properties are independent of the removal boundary. When β varies, the
effects can only be observed in a boundary layer near the last cell. On the
other hand, in the high-density congestion, the system is controlled by the
removal boundary. The self-consistent condition is βρ = (1− ρ), which leads
to ρ = 1/(1 + β). When α varies, only the boundary layer near the first cell
will be affected. As regards to the distinct traffic states, the closed loop and
the open roadway seem to provide the same results. However, such results are
invalided when one goes beyond the homogeneous roadway. With junctions,
the results of the open system and the closed system can be very different.
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Fig. 1. (a) Configuration of a 4-ramp rotary. North-bound traffic and east-bound
traffic are represented by different symbols. The four segments on the rotary are
labeled by number. (b) A 2-loop configuration by imposing periodic boundary con-
ditions. The east-bound traffic consists of segments 1 and 2; the north-bound traffic
consists of segments 2 and 3. (c) Configuration of an open rotary. The east-bound
traffic is controlled by (α2, β2); the north-bound traffic by (α1, β1).

2 Closed Rotary

We consider a four-ramp rotary to regulate the traffic from two different direc-
tions as shown in Fig. 1(a). The north-bound traffic enters from the bottom
side and leaves from the top side; the east-bound traffic enters from the left
side and leaves from the right side. These two types of traffic are totally dis-
tinguishable and represented by different symbols. In the rotary, all vehicles
have to follow each other orderly to move forward counter-clockwise [6]. At the
bottom entrance, newly arrived vehicle has to yield to those vehicles in the ro-
tary, i.e., vehicles entering from the left side get the right-of-way. At the right
exit, if the traffic leaving the rotary is not smooth, the vehicles behind have
to wait patiently. Passing is not allowed in the rotary. Together, the priority
is given to the east-bound traffic, which may block the north-bound traffic
both at the bottom entrance and at the right exit. In this configuration, the
traffic mixes in segment 2. In the upstream (segment 1), only the east-bound
traffic presents; in the downstream (segment 3), only the north-bound traffic
presents. Segment 4 is irrelevant.

When the periodic boundary conditions are imposed separately on the
north-bound traffic and on the east-bound traffic, the rotary is equivalent to
a system consists of two closed loops sharing a finite roadway, see Fig. 1(b).
There are three length scales in the model: Li denotes the length of segment
i, where i = 1, 2, 3. As expected, the dynamics can be characterized by two
parameters ρE and ρN , which denote the densities of east-bound vehicles (in
loop E) and north-bound vehicles (in loop N), respectively. When both ρE
and ρN are small, the traffic is smooth. In practice, the free flow can be
expected on all roadways in the following regime,
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ρE + ρN <
1
2
, (1)

where the congestion will not emerge.
Since the two loops share a finite roadway (segment 2 with a length L2),

the two densities are upper bounded as

ρE(L1 + L2) + ρN (L2 + L3) < (L1 + L2 + L3) . (2)

When ρE and/or ρN are large, gridlock emerges inevitably. For the gridlock
attributed to the high density in loop E, the required conditions are

ρE(L1 + L2) + ρN (L2 + L3) > (L1 + L2) , (3)

ρE(L1 + L2) > (L1 +
1
2
L2) . (4)

The first condition implies that the loop E along is not enough to accommo-
date all the vehicles; the second condition implies that the shared roadway
would still be congested even if all the vehicles try to stay in other place (seg-
ment 1 and segment 3) to make room in segment 2. Similarly, the gridlock
can also be attributed to the high density in loop N .

In between the free flow and gridlock, various kinds of congestion manifest
in this simple model. The complete phase diagram is shown in Fig. 2(a). First,
we consider the homogeneous phases where vehicles distribute homogeneously
on each segment. Of course, different densities can be expected for different
segments. To clarify the notations, ρE and ρN denote the global densities
on the roadways (L1, L2) and (L2, L3), respectively. For each single segment,
the density is denoted by ρi, where i = 1, 2, 3. There are two homogeneous
phases: F-J-J and J-J-F. The notation refers to the segment index 1-2-3 in
Fig. 1(b). On each segment, the traffic conditions can be either free-flowing
(F) or jamming (J). When ρE is small and ρN is large, the traffic in loop N
is congested. Yet free flow can still be maintained in loop E except for the
shared roadway. Such a traffic state is denoted as F-J-J. The regime of this
phase can be obtained as

ρE(L1 + L2) + ρN (L2 + L3) < (L2 + L3) , (5)

ρE(L1 + L2) + ρN (L1 − L2) < L1 −
L2

2
(L1 + L3)
(L2 + L3)

, (6)

ρE(L2 − L3) + ρN (L2 + L3) >
1
2
(L2 + L3) . (7)

The first condition marks the boundary to gridlock, i.e., ρ3 < 1. The second
condition ensures that free flow can still be maintained in segment 1, i.e.,
ρ1 < (1− ρ3). The third condition implies that the loop N is congested, i.e.,
ρ2 >

1
2 . Similarly, the regime for J-J-F phase can also be derived.

Besides the homogeneous phases, the phenomena of phase separation can
also be observed in this simple model. On a homogeneous roadway, congestion
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Fig. 2. (a) Typical phase diagram for a closed rotary shown in Fig. 1(b) with
length scales L1 : L2 : L3 = 4 : 1 : 5. The forbidden regime is shown by the shade.
(b) Typical density profiles of various phases: F-F-F, F-M-S, F-J-J, S-M-S, S-J-J.
The traffic direction is shown by the gray arrow. The length scales are L1 = 1200,
L2 = 300, and L3 = 1500.

only emerges near one end (downstream) and free flow can still be maintained
near the other end (upstream). Somewhere in between these two ends, a sta-
tionary shock front can be sustained. Start with the F-J-J phase, where ρN is
large and ρE is small. If ρE is further increased, the homogeneous free flow in
segment 1 will not be able to sustain. Yet a homogeneous congestion will not
result when the homogeneous free flow broken down. In the resultant S-J-J
phase, the phase separation (S) is observed in segment 1 while the loop N
is still congested. In such a case, though the average density ρ1 can still be
defined mathematically, it is no longer a good parameter to characterize the
dynamics. In fact, the traffic flow in segment 1 is locked into the traffic flow
in segment 3. Thus the dynamics in segment 1 is better characterized by ρ3,
instead of ρ1. The regime of S-J-J phase can be obtained by the constraints:
(1− ρ3) < ρ1 < ρ3 and ρ2 > 1

2 . After some algebraic manipulations, we have

ρE(L1 + L2) + ρN (L1 − L2) > L1 −
L2

2
(L1 + L3)
(L2 + L3)

, (8)

(ρE − ρN ) <
L2(L1 − L3)

2(L1 + L2)(L2 + L3)
, (9)
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1
4

+
L3

2(L2 + L3)
< ρN <

1
2

+
L3

2(L2 + L3)
. (10)

The first condition gives a lower bound to the density in segment 1, i.e., ρ1 >
(1−ρ3); the second condition gives an upper bound to the density in segment
2, i.e., ρ1 < ρ3. The third condition can be retrospected to 1

2 < ρ2 < 1, where
the upper bound of ρ2 marks the boundary to gridlock. For another phase
separation known as the J-J-S phase, the regime can be derived similarly.

Now we have shown that this simple model can provide a rich structure of
various traffic states, which include free flow (F), gridlock (G), homogeneous
jamming (J), and phase separation (S). Yet these phases have not exhausted
the two-dimensional parameter space (ρE , ρN ). We find that the maximum
flow (M) can also be supported as an distinct phase on the shared roadway.
Start with the F-J-J phase, where ρE is small and ρN is large. If ρN is now
decreased, the congestion in loop N will be resolved. However, before the free
flow is restored, we observed a distinct phase denoted as F-M-S, where segment
2 is saturated to the maximum flow and the phase separation appears in
segment 3. The break down of homogeneous congestion in segment 3 provides
a mean to stabilize the maximum flow in segment 2. The traffic flow in segment
3 locks into the traffic flow in segment 1 indirectly. The dynamics in segment 3
is better characterized by ρ1, instead of ρ3. On the shared roadway, the north-
bound vehicles are still the majority. The phase regime can be determined by
the constraints: ρ1 < 1

4 and (1
2 − ρ1) < ρ3 < (1

2 + ρ1). In terms of ρE and ρN ,
the conditions for F-M-S phase become

ρE <
1
4
, (11)

1
2
< (ρE + ρN ) <

1
2

+ ρE
2L3

L2 + L3
. (12)

The conditions for S-M-F phase can be obtained similarly. For the rest area
of the parameter space (ρE , ρN ), phase separation can be observed in both
segments 1 and 3, which is then denoted as S-M-S phase. In summary, we
have derived all the distinct traffic phases in this model. The complete phase
diagram is obtained, see Fig. 2(a). In between the free flow and gridlock, there
are seven distinct phases. Some of the typical density profiles are shown in
Fig. 2(b). For each segment, the traffic states can be free flow (F), jamming (J),
phase separation (S), or maximum flow (M). However, not all the combinations
are possible. The maximum flow only presents in segment 2, i.e., the shared
roadway. Yet free flow and phase separation never appear in segment 2. In
this simple model, the above mean-field considerations yield the exact results.

It is interesting to notice that F-J-F phase is absent. With naive intu-
ition, it is plausible to have a situation where vehicles are congested on the
shared roadway; yet they can move freely on other parts of the roadways, i.e.,
segment 2 becomes a bottleneck to the traffic. However, such an intuition is
flawed. Similarly, the J-J-J phase is also unstable, which can only exist at the
boundary between S-J-J and J-J-S phases.
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Fig. 3. Phase diagrams in the extreme limits of (a) a dominant L2 � L1, L3; (b)
a negligible L2 � L1, L3.

Except for the free flow regime, the phase diagram depends on the length
scales (L1, L2, L3). When the ratio of the shared roadway L2 increases, the
forbidden regime in the parameter space (ρE , ρN ) increases. As the maximum
flow only appears on the shared roadway, naive intuition would expect an
extended M-phases (F-M-S, S-M-S, S-M-F) as L2 increases. However, the
results are quite in the contrary, where the area of M-phases shrinks as the
ratio of L2 increases. In the extreme limit when L2 becomes dominant, i.e.,
L2 � L1, L3, all the M-phases and S-phases disappear completely. The phase
diagram is greatly simplified as shown in Fig. 3(a). In the other extreme
limit when L2 is negligible, i.e., L2 � L1, L3, the phase diagram is shown in
Fig. 3(b). In this case, the entire parameter space becomes accessible. The
gridlock disappears. It is interesting to note that, in these two extreme limits
of L2, the phase diagram becomes independent of the remaining length scales
(L1, L3).

3 Open Rotary

Now we discuss the case of an open rotary [7]. The periodic boundary condi-
tions are replaced by open ramps through which vehicles can move in and out
of the rotary. The system configuration is shown in Fig. 1(c). Instead of the
two-dimensional parameter space (ρE , ρN ), now we have a four-dimensional
parameter space (α1, β1, α2, β2). The in and out of the north-bound vehicles
are controlled by α1 and β1, respectively; the east-bound vehicles by α2 and
β2. The phase regime for each distinct phase can be deduced by the mean-field
theory. As a ramp sits in between two segments, the effects can be replaced
by two effective rates: one to remove vehicles from the segment before and the
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other to add vehicles to the segment after. For example, α1 in the junction
between segments 1 and 2 can be replaced by two rates (a1, b1), where a1
controls the end point of segment 1 and b1 controls the start point of segment
2. Similarly, β2 can be replaced by (a2, b2), where b2 controls the end point of
segment 2 and a2 controls the start point of segment 3. These four effective
rates (a1, b1, a2, b2) can be related to the four physical rates (α1, β1, α2, β2)
by balancing the flow across the ramp and by imposing the self-consistence
from the mean-field theory. Then each segment in the rotary can be treated
as a homogeneous roadway, where the traffic conditions are determined by the
two boundary. The traffic conditions in segment 1 are determined by (α2, b1);
segment 2 by (a1, b2); segment 3 by (a2, β1).

It is interesting to observe that F-J-F phase becomes sustainable in the
open rotary. In contrast, such a phase cannot be supported in the closed
rotary discussed in last section. Across the on-ramp (α1), i.e., the entrance of
north-bound vehicles, the flow balance can be written as

α2

1 + α2
+ (1− ρ∗1)α1 =

b2
1 + b2

, (13)

where ρ∗1 denotes the local density at the on-ramp. The free flow in segment
1 has a traffic flow controlled by the injection: α2/(1 + α2); the congestion
in segment 2 has a traffic flow controlled by the removal: b2/(1 + b2). The
other term represents the inflow from the ramp. The self-consistence at the
end point of segment 1 gives ρ∗1 b1 = α2/(1 + α2). The self-consistence at the
start point of segment 2 gives (1 − ρ∗1)a1 = b2/(1 + b2). Across the off-ramp
(β2),i.e., the exit of east-bound vehicles, the flow balance becomes

b2
1 + b2

=
a2

1 + a2
+ ρ∗2E β2 , (14)

where ρ∗2E denotes the local density of east-bound vehicles at the off-ramp. The
free flow in segment 3 has a traffic flow a2/(1+a2) controlled by the injection.
For steady states, the outflow at the off-ramp should equal to the traffic flow
in segment 1; the inflow at the on-ramp should equal to the traffic flow in
segment 3, i.e., ρ∗2E β2 = α2/(1 + α2) and (1− ρ∗1)α1 = a2/(1 + a2). Thus the
flow balance at the off-ramp, Eq. (14), is satisfied automatically. The free flow
in segment 3 supports a local density at the off-ramp as ρ∗2N = a2/(1 + a2),
where ρ∗2N denotes the local density of north-bound vehicles at the off-ramp.
With the effective removal rate b2 in the congested segment 2, the local density
at the off-ramp can also be written as ρ∗2 = 1/(1 + b2), where ρ∗2 denotes the
effective local density at the off-ramp, which includes two kinds of vehicles.
The vehicle number conservation implies ρ∗2 = ρ∗2E +ρ∗2N which can be written
as

1
1 + b2

=
α2

β2(1 + α2)
+
a2

1 + a2
. (15)

With these equations, the effective rates (a1, b1, a2, b2) and the local densities
(ρ∗1, ρ

∗
2E , ρ

∗
2N ) can all be solved explicitly. The regime of F-J-F phase can then
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be marked self-consistently as α2 < b1, a1 > b2, and a2 < β1. In terms of
(α1, β1, α2, β2), these constraints becomes

β2 − α2

α2 + β2
< α1 <

β2 − α2

2α2β2
, (16)

β2 − α2

α2 + β2 + 2α2β2
< β1 . (17)

In practice, F-J-F phase can only be supported in a regime less than as shown
in above. The upper bound of the effective injection rate a1 < 1 places a much
stringent constraint than α2 < b1 (the free flow condition in segment 1) does.
Thus the upper bound of α1 in Eq. (16) should be replaced by

α1 <
β2 − α2

β2 − α2 + 2α2β2
. (18)

The regime for other distinct phases can also be obtained similarly. It is
interesting to note that the phase diagram becomes independent of the length
scales and can be completely specified by the boundary rates. For the entire
four-dimensional parameter space (α1, β1, α2, β2), there are only five distinct
phases: F-F-F, F-J-F, F-J-J, J-J-F, and J-J-J. When the closed boundary
conditions are replaced by the open boundary conditions, the parameter space
extends hugely; yet the number of distinct phases reduces. The gridlock, phase
separation, and the maximum flow are all disappeared. Only the homogeneous
phases can be supported. With naive combinations of free flow (F) and jam
(J), there could be eight homogeneous phases. But three of them cannot be
realized. When there is only one segment congested, it must be the shared
roadway, i.e., F-F-J and J-F-F- are both impossible. When the free flow can
only be supported in one segment, it cannot be the shared roadway, i.e., J-F-J
is also impossible.

The phase diagram in four-dimensional parameter space is hard to visu-
alize. With two of the parameters fixed, a conventional phase diagram in two
dimension is shown in Fig. 4(a). The typical density profiles of various phases
are shown in Fig. 4(b). The numerical simulations can be exactly reproduced
by the analytical formulas obtained from mean-filed theory.

4 Conclusion

We propose a simple cellular automaton model to study the traffic dynamics in
a rotary. The bulk properties can be successfully analyzed by the mean-field
theory. The numerical simulations can be reproduced by analytical results.
The complete phase diagram can be constructed to display all the distinct
traffic states in the full parameter space. Although the vehicular interactions
are simple and the configuration of a rotary is just a small step to go beyond
a homogeneous roadway, the model does provide a rich structure of various
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Fig. 4. (a) Phase diagram in (α1, β2) for an open rotary. The other two parameters
are fixed at (β1, α2) = (0.3, 0.2). (b) Typical density profiles of various phases: F-F-
F, F-J-F, F-J-J, J-J-F, J-J-J. The traffic direction is shown by the gray arrow. The
length scales are L1 = L2 = L3 = 1000.

traffic states. A rotary can be taken as a system consists of homogeneous seg-
ments separated by the ramps. For each segment, the traffic states can be free
flow, jamming, maximum flow, phase separation, or gridlock. Yet not all the
combinations can be realized. The traffic dynamics in the rotary is a system
driven far away from equilibrium, which imposes very strong constraints on
the possible combinations.

In this model, the dynamics in bulk is deterministic; in boundary, the
ramps operate stochastically. Although the ramps only constitute a negligible
part of the roadway, the phase diagram is highly sensitive to the operation
of ramps. When the ramps are connected to form a closed rotary, the global
density is a conserved quantity. The phase diagram is two-dimensional. The
phase separation is prominent. The characteristics of a phase diagram de-
pends on the length scale. With an open rotary, the phase diagram becomes
four-dimensional. The phase separation disappears. The homogeneous phases
become dominant. The phase diagram is independent of the length scale.

By conventional wisdom, congestion is often attributed to too many vehi-
cles on road. When the vehicular density is high, the homogeneous jamming
becomes inevitable. In that sense, the emergence of phase separation can be
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taken as a signature to the inefficient usage of roadway. In the steady state
on a homogeneous roadway, traffic flow is not a local property, but a global
one. In the phase separation, the free flow in the upstream is limited by the
congestion in the downstream. If the vehicles can be redistributed uniformly
on the roadway, the traffic flow can be significantly enhanced. When the dy-
namics is characterized by the density, phase separation dominates the phase
diagram shown in Fig. 2(a); on the other hand, when the dynamics is charac-
terized by the ramps, phase separation disappears completely. Thus we have
a simple conclusion that, instead of density, the ramp should be monitored
and/or controlled to have a smooth traffic.

To further justify the insufficiency of density, we note that the homoge-
neous jamming (J-J-J) is absent in the phase diagram shown in Fig. 2(a).
When the density is large, the gridlock emerges instead. With naive intuition,
such a severe congestion is often blamed to a few special vehicles, which might
involve in either accidents, mechanical broken down, or violating the traffic
regulations intentionally. However, all these particularities are not addressed
in this simple model, where all the vehicles are exactly the same. And all the
vehicles follow the same rules perfectly. Yet the gridlock still appears, which
can only be attributed to the insufficiency of the regulations. When the dy-
namics is characterized by the ramps, the gridlock also disappears completely.
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Summary. In this paper, we have investigated the effects of adaptive cruise control
(ACC) vehicles in a mixture with manually-controlled (manual) vehicles. The man-
ual vehicles are simulated by using the modified comfortable driving model, which
can describe synchronized traffic flow. The phase transition probabilities from free
flow to synchronized flow and from synchronized flow to jams are studied. The
dependence of microscopic properties of traffic flow, including the spatiotemporal
patterns and the velocity distribution, is explored. Our results are expected to be
useful for developing ACC systems.

1 Introduction

Recently, research on vehicles equipped with adaptive cruise control (ACC)
systems has attracted the interest from both physicists and engineers [1–10].
ACC is a driver assistance system designed to provide more convenience and
comfort to a driver. An ACC-equipped vehicle can detect the presence of a
preceding vehicle and measures the distance (range) as well as the relative
speed (range rate) by using a forward-looking sensor. It automatically adjusts
the vehicle speed to keep a proper range when a preceding vehicle is detected.
Obviously, ACC vehicles will have some impact on the characteristics of traffic
flow, including highway safety, efficiency and capacity, because of their differ-
ent behavior compared with human drivers. Therefore, before ACC vehicles
are deployed on a large scale, their effects on the traffic flow characteristics
need to be carefully investigated.

Previous studies on ACC vehicles focus on the range policy, effect of ACC
vehicles on traffic flow stability, road capacity, traffic safety, and environmental
benefits. However, to our knowledge, the effect of ACC vehicles on the phase
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transition behavior in a mixture of ACC vehicles and manual vehicles has
not been studied. In this paper, we investigate the mixture of ACC vehicles
with manual vehicles described by a CA model, which can describe first order
phase transition from free flow to synchronized flow.

In the next section, the models for simulating ACC vehicles and manual
vehicles are briefly reviewed. The simulation results are presented and ana-
lyzed in section 3. The conclusions are given in section 4.

2 CA Models for ACC Vehicles and Manual Vehicles

In this section, we briefly review the CA models for modelling ACC vehicles
and manual vehicles. In CA models, a road is divided into cells. Each cell
is either empty or occupied by a vehicle. The vehicles move with an integer
velocity 1, 2, . . . , vmax with vmax the maximum velocity of vehicles.

The model for ACC vehicles is recently presented in Ref. [10], in which a
constant time headway (CTH) policy is adopted. The parallel updating rules
of the model are as follows.

(i) Acceleration or deceleration: vn(t+ 1) = min(vmax, dn(t)/T �);
(ii) Randomization: vn(t + 1) = max(0, vn(t + 1) − 1) with probability p =

dn(t)/T � − dn(t)/T for dn(t)/T < vmax and p = 0 for dn(t)/T ≥ vmax.
Note vn(t+ 1) on the right hand side of the equation refers to that deter-
mined in the previous step in this and following equations.

(iii) Motion of a vehicle: xn(t+ 1) = xn(t) + vn(t+ 1).

Here vn is the velocity of vehicle n, dn = xn+1−xn−L is the inter-vehicle
distance, L is the vehicle length, xn is the position of vehicle n, and vehicle
n + 1 precedes vehicle n. T is the time headway preferred by ACC vehicles.
x� denotes the minimum integer that is not smaller than x.

The model for manual vehicles is presented in Refs. [11–13]. The parallel
updating rules of the model are as follows.

1. Determination of the randomization parameter pn(t+ 1):
pn(t+ 1) = p(vn(t), bn+1(t), th,n, ts,n)

2. Acceleration:
if ((bn+1(t) = 0 or th,n ≥ ts,n) and :
(vn(t) > 0)) then : vn(t+ 1) = min(vn(t) + 2, vmax)
else if (vn(t) = 0) then : vn(t+ 1) = min(vn(t) + 1, vmax)
else : vn(t+ 1) = vn(t)

3. Braking rule:
vn(t+ 1) = min(deff

n , vn(t+ 1))
4. Randomization and braking:

if (rand() < pn(t+ 1)) then: vn(t+ 1) = max(vn(t+ 1)− 1, 0)
5. The determination of bn(t+ 1):

if ((vn(t+1) > vn(t)) or (vn(t+1) ≥ vc and tf,n > tc1)) then: bn(t+1) = 0
else if (vn(t+ 1) < vn(t)) then: bn(t+ 1) = 1
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else (vn(t+ 1) = vn(t)) then: bn(t+ 1) = bn(t)
6. The determination of tst,n:

if vn(t+ 1) = 0 then: tst,n = tst,n + 1
if vn(t+ 1) > 0 then: tst,n = 0

7. The determination of tf,n:
if vn(t+ 1) ≥ vc then: tf,n = tf,n + 1
if vn(t+ 1) < vc then: tf,n = 0

8. Motion of a vehicle:
xn(t+ 1) = xn(t) + vn(t+ 1).

Here bn is the status of the brake light (on(off)→ bn = 1(0)). The two times
th,n = dn/vn(t) and ts,n = min(vn(t), h), where h determines the range of
interaction with the brake light, are introduced to compare the time th,n

needed to reach the position of the leading vehicle with a velocity dependent
interaction horizon ts,n. The effective distance is deff

n = dn + max(vanti −
gapsafety, 0), where vanti = min(dn+1, vn+1) is the expected velocity of the
preceding vehicle in the next time step and gapsafety controls the effectiveness
of the anticipation. rand() is a random number between 0 and 1, tst,n denotes
the time that the car n stops, tf,n denotes the time that car n is in the state
vn ≥ vc. The randomization parameter p is defined:

p(vn(t), bn+1(t), th,n, ts,n) =

⎧⎨
⎩
pb : if bn+1 = 1 and th,n < ts,n

p0 : if vn = 0 and tst,n ≥ tc
pd : in all other cases

.

Here vc, tc1, and tc are parameters.

3 Simulation Results

In this section, the simulation results are presented and analyzed. In the sim-
ulations, the parameter values are tc = 9, tc1 = 30, vc = 18, vmax = 20,
pd = 0.25, pb = 0.94, p0 = 0.5, h = 6 and gapsafety = 7. Each cell corresponds
to 1.5m and a vehicle has a length of five cells. One time step corresponds to
1s. Periodic boundary conditions are adopted in the simulations and the road
length is set to Lr = 10000.

Figure 1 shows the fundamental diagram of 100% ACC vehicles (i.e., R= 1)
at different values of T . Here R denotes the ratio of ACC vehicles. A trian-
gular curve of flow rate versus density is reproduced as the CTH policy is
adopted. With the increase of parameter T , both the maximum flow rate and
the corresponding density decrease.

The fundamental diagram of 100% manual vehicles (R = 0) is also shown
in Fig. 1. Initially, the vehicles are homogeneously distributed on the road.
We focus on the probability of the phase transition (see Ref. [14] for details
of phase transition probability).
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Fig. 1. Fundamental diagrams of 100% ACC vehicles at different values of T (black
lines) and of 100% manual vehicles (red lines). F, S and J mean the free flow branch,
synchronized flow branch, and jam branch of 100% manual vehicles, respectively.

Fig. 2. Phase transition probabilities from free flow to synchronized flow (left curve)
and from synchronized flow to jams (right curve) for 100% manual vehicles.

The simulations show there are four critical densities. When the density
is smaller than ρc1, the probability of the phase transition from free flow to
synchronized flow is zero; when the density is larger than ρc2, the probability
of the phase transition from free flow to synchronized flow is one; when ρc1 <
ρ < ρc2, the phase transition probability is shown in Fig. 2. We denote the
maximum flow rate corresponding to ρc2 as qfmax. Similarly, when the density
is smaller than ρc3, the probability of the phase transition from synchronized
flow to jam is zero; when the density is larger than ρc4, the probability of
the phase transition from synchronized flow to jam is one; When the density
ρc3 < ρ < ρc4, the phase transition probability is also shown in Fig. 2.

Comparing the fundamental diagrams of 100% ACC vehicles and 100%
manual vehicles, one can see that the maximum flow rate corresponding to
T = 1.0 is larger than qfmax, and the maximum flow rate corresponding to T =
1.5 is smaller than qfmax. In addition, the congested branches corresponding
to T = 1.0 and T = 1.5 are above the congested branch of manual vehicles,
and the congested branch of ACC vehicles is below that of manual vehicles
for T = 2.20. Next we study the mixture of manual vehicles and ACC vehicles
with T = 1.0, 1.5 and 2.2 respectively.
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3.1 Effects of ACC Vehicles on F → S

In this subsection, we focus on the effects of ACC vehicles on the phase tran-
sition from free flow to synchronized flow in a mixture of ACC vehicles and
manual vehicles. Figure 3 shows the phase transition probability curve under
different values of T and R. It can be seen that:

Fig. 3. Phase transition probability from free flow to synchronized flow for a mixture
of ACC vehicles and manual vehicles. (a) T = 1.0; (b) T = 1.5; (c) T = 2.20.

(i) For T = 1.0, one can see that with the introduction of ACC vehicles,
phase transition probability curve moves right. This means that phase tran-
sition occurs more difficult, i.e., ACC vehicles could enhance the stability of
free flow.

(ii) For T = 1.50, the simulations show that when R is small, the phase
transition probability curve moves left compared with the curve of R = 0.
This means that the phase transition occurs more easily. When the ratio of
ACC vehicles is large (e.g., R > 0.2), the probability curve moves towards the
right with the increase of R.

Comparing Figs. 3(a) and (b), one can see that the curves of T = 1.50 are
on the left of that corresponding to T = 1.0 at any ACC vehicle ratio. This
means that the phase transition occurs more easily if T increases. Further-
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more, one can see that with the increase of T and/or R, the probability curve
becomes steeper, which means that the metastable density range correspond-
ing to the transition from free flow to synchronized flow shrinks.

(iii) For T = 2.20, the results are quite different. One can see that the
probability curves are very steep. Moreover, they only slightly depend on R.
These curves are on the left of that corresponding to R = 0, which means
that a phase transition occurs more easily.

The dependence of the phase transition curve on the parameters R and T
might be relevant to the following effects. (1) In the free flow, the headway
of ACC vehicles is vmaxT because ACC vehicles move with the maximum
velocity. The total headway of ACC vehicle is, therefore, NRvmaxT . Here NR
is the number of ACC vehicles. This leads to the effective headway for manual
vehicles heff = Lr−NRvmaxT

N(1−R) , which may be different from the average headway
h = Lr

N . As a result, the stability is enhanced when heff > h and is weakened
when heff < h. (2) With the increase of ACC vehicle ratio, the chance that a
large platoon of manual vehicles could exist decreases. This will enhance the
stability. (3) An ACC vehicle will change the moving behavior of the manual
vehicle that follows it, because the velocity of the ACC vehicle vACC = dn+1/T
might be much smaller than the expected velocity vanti = min(dn+1, vn+1) of
the manual vehicle, especially for a large T . Therefore, the collision will happen
if the expected velocity of a manual vehicle, which follows an ACC vehicle,
remains unchanged. In our simulations, the expected velocity is changed by
using vanti = min(dn+1/T, vn+1). Obviously, this will weaken the stability if
T > 1.

3.2 Effect of ACC Vehicles on S → J

In this subsection, we focus on the effects of ACC vehicles on the phase tran-
sition from synchronized flow to jam. Figure 4 shows the phase transition
probability curve under different values of T and R. It can be seen that

(i) For T = 1.0: With the increase of R, the probability curve shifts right.
This means that with the introduction of ACC vehicles, the phase transition
from synchronized flow to jams more unlikely occurs. Furthermore, with the
increase of R, the probability curve becomes a little flatter, which means that
the metastable density range corresponding to the transition from synchro-
nized flow to jams expands.

(ii) For T = 1.50 and T = 2.20, similar results are observed. When T =
1.50 and R > 0.8, a jam will not spontaneously appear from synchronized
flow. This is because the propagating speed of the downstream front of a jam
is so large that the jam will soon dissolve even if it forms due to reasons such
as car accidents. When T = 2.20, a jam will not spontaneously appear from
synchronized flow provided R > 0.4.

We have compared the probability curves of T = 1.0, T = 1.50 and T =
2.20, and found that the curves of T = 2.20 are always rightmost and the
curves of T = 1.0 are always leftmost at any ACC vehicle ratio (not shown).
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This means that the phase transition more unlikely occurs if T increases. This
is opposite to the effects of ACC vehicles on F → S discussed in the previous
subsection.

Fig. 4. Phase transition probability from synchronized flow to jams for a mixture
of ACC vehicles and manual vehicles. (a) T = 1.0; (b) T = 1.5; (c) T = 2.20.

3.3 Effects of ACC Vehicles on Microscopic Properties

In this subsection, we study the effects of ACC vehicles on spatiotemporal
patterns and velocity distribution in synchronized flow. Figure 5 shows the
typical spatiotemporal patterns in synchronized flow for different values of R,
with the parameter T = 1.0 and the density ρ = 37.04 vehicles/km (which
corresponds to headway 27 m). One can see that with the increase of R,
the traffic flow gradually evolves into a mixture of free flow and synchronized
flow. Even at R = 0.99, the traffic pattern is still characterized by the mixture.
However, when R = 1, the traffic flow is quite homogeneous (not shown).

Figure 6 shows the spatiotemporal patterns in synchronized flow with the
parameter T = 1.50 and the density ρ = 37.04 vehicles/km. One can see that
there also appears a mixture of free flow and synchronized flow. However, when
R is large, the mixture is suppressed and the traffic flow gradually becomes
homogeneous (see Figs. 7(c) and (d)).
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Fig. 5. Typical spatiotemporal patterns in synchronized flow for different values of
R, with the parameter T = 1.0 and the density ρ = 37.04 vehicles/km. The vehicles
move from left to right and the time is increasing in up direction. (a) R = 0; (b)
R = 0.4; (c) R = 0.8; (d) R = 0.99.

Fig. 6. Typical spatiotemporal patterns in synchronized flow at different values of
R, with the parameter T = 1.5 and the density ρ = 37.04 vehicles/km. The vehicles
move from left to right and the time is increasing in up direction. (a) R = 0.4; (b)
R = 0.8.

Figure 8 shows the snapshots of velocity in synchronized flow when T =
2.20. It is found that with the increase of R, the traffic flow gradually becomes
homogeneous and there is no mixture of free flow and synchronized flow.

Figure 9 shows the velocity distribution in the synchronized flow. One can
see that when R is given, the distribution becomes narrower with the increase
of T . This further demonstrates that if R is fixed, the traffic flow becomes
more homogeneous with the increase of T .
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Fig. 7. Snapshots of velocity corresponding to the traffic flow in Fig. 6. (a) R = 0.4;
(b) R = 0.8; (c) R = 0.99; (d) R = 1.

Fig. 8. Snapshots of velocity in synchronized flow for different values of R, with the
parameter T = 2.2 and the density ρ = 37.04 vehicles/km. (a) R = 0.4; (b) R = 0.8;
(c) R = 1.

4 Conclusions

Previous research on ACC vehicles has studied the impact of ACC vehicles on
traffic flow stability, safety and exhaust emissions. In this paper, we mainly
concentrate on the effects of ACC vehicles on the phase transition in traffic
flow of a mixture of ACC and manual vehicles. Our simulations show that
when the preferred time headway of ACC vehicles is small (e.g., T = 1),
the introduction of ACC vehicles will enhance the free flow stability. How-
ever, when T is large, the introduction of ACC vehicles will reduce the phase
transition threshold ρc2. Different from the phase transition from free flow to
synchronized flow, the introduction of ACC vehicles will generally increase
the threshold from synchronized flow to jams.
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Fig. 9. Velocity distribution in the synchronized flow for different values of R, with
the parameter (a) T = 1.0 (b) T = 1.50 (c) T = 2.20, and the density ρ = 37.04
vehicles/km.

Furthermore, the spatiotemporal patterns and velocity distribution of
mixed ACC vehicles and manual vehicles are also studied. It is interesting
to report that when T is small and the traffic is in synchronized flow, a mix-
ture of free flow and synchronized flow will appear, even though R = 0.99.
In other words, only several manual vehicles will seriously destroy the homo-
geneity of traffic flow. This is undesired and we need to find a way to suppress
this phenomenon.

In our future work, this research needs to be extended to multi-lane traffic
and we also need to consider the impact of various kinds of bottlenecks.
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Summary. We study the car-following behavior of individual drivers in real city
traffic on the basis of publicly available floating car datasets. By means of a nonlinear
optimization procedure based on a genetic algorithm, we calibrate the “Intelligent
Driver Model” and the “Optimal Velocity Model” by minimizing the deviations be-
tween the observed driving dynamics and the simulated trajectory when following
the same leading vehicle. The reliability and robustness of the nonlinear fits can be
assessed by applying different optimization criteria, i.e., different measures for the
deviations between two trajectories. We also investigate the sensitivity of the model
parameters. Furthermore, the parameter sets calibrated to a certain trajectory are
applied to the other trajectories allowing for model validation. We found that the
calibration errors of the Intelligent Driver Model are between 11% and 28%, while
the validation errors are between 22% and 30%. The calibration of the Optimal Ve-
locity Model led to larger calibration and validation errors, and stronger parameter
variations regarding different objective measures. The results indicate that “intra-
driver variability” rather than “inter-driver variability” accounts for a large part of
the fit errors.

1 Introduction

As microscopic traffic flow models are mainly used to describe collective phe-
nomena such as traffic breakdowns, traffic instabilities, and the propagation
of stop-and-go waves, these models are traditionally calibrated with respect to
macroscopic traffic data. Nowadays, as microscopic traffic data have become
more and more available, the problem of analyzing and comparing microscopic
traffic flow models with real microscopic data has raised some interest in the
literature [1–3].

We will consider three empirical trajectories of different drivers that are
publicly available and that have been provided by the Robert Bosch GmbH [4].
The datasets have been recorded in 1995 during an afternoon peak hour on
a fairly straight one-lane road in Stuttgart, Germany. A car equipped with a
radar sensor in front provides the relative speed and distance to the car ahead.



118 Arne Kesting and Martin Treiber

The duration of the measurements are 250 s, 400 s and 300 s, respectively. All
datasets show complex situations of daily city traffic with several accelera-
tion and deceleration periods including standstills due to traffic lights. Here,
we will apply the “Intelligent Driver Model” [5] and the “Optimal Velocity
Model” [6] to these empirical trajectories. By means of a nonlinear optimiza-
tion, we will determine the “optimal” model parameters which fit the given
data best. Since the fit errors alone do not provide a good basis for an under-
standing or benchmarking of the applied car-following models, we will address
further investigations on the role of the objective functions, the structure of
the parameter space and the robustness concerning validation.

In the following section, we introduce the car-following models under in-
vestigation, the simulation set-up, the objective functions and the nonlinear
optimization algorithm. In Sec. 3, the calibration and validation results will
be presented. Finally, the factors influencing the calibration errors will be
discussed in Sec. 4.

2 Calibration Methodology

2.1 Intelligent Driver Model

Car-following models are formulated as ordinary differential equations and,
consequently, space and time are treated as continuous variables. This model
class is typically characterized by an acceleration function that depends on
the actual velocity v(t), the gap s(t) and the velocity difference Δv(t) to the
leading vehicle. Note that Δv is defined as approaching rate, i.e., positive if
the following vehicle is faster than the leading vehicle. The Intelligent Driver
Model (IDM) [5] is defined by the acceleration function

v̇IDM(s, v,Δv) =
dv
dt

= a

[
1−
(
v

v0

)4

−
(
s∗(v,Δv)
s

)2
]
. (1)

This expression combines the acceleration strategy v̇free(v) = a[1 − (v/v0)4]
towards a desired velocity v0 on a free road with a maximum acceleration a
with a braking strategy v̇brake(s, v,Δv) = −a(s∗/s)2 which is dominant if the
current gap s(t) to the preceding vehicle becomes smaller than the “desired
minimum gap”

s∗(v,Δv) = s0 + vT +
vΔv

2
√
ab
. (2)

The minimum distance s0 in congested traffic is significant for low velocities
only. The dominating term of Eq. (2) in stationary traffic is vT which corre-
sponds to following the leading vehicle with a desired time gap T . The last
term is only active in non-stationary traffic and implements an “intelligent”
driving behavior including a braking strategy that, in nearly all situations,
limits braking decelerations to the comfortable deceleration b. Note, however,
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that the IDM brakes stronger than b if the gap becomes too small. This brak-
ing strategy makes the IDM collision-free [5].

2.2 Optimal Velocity Model

The Optimal Velocity Model (OVM) [6] is defined by the acceleration function

v̇OVM(s, v) =
vopt(s)− v

τ
. (3)

The relaxation time τ describes the adaptation to an “optimal velocity” vopt

due to changes in s and v, but not in velocity differences. The properties of
the OVM are defined by the function for vopt(s). For example, Bando et al. [6]
suggested a function of the following form:

vopt(s) =
v0
2

[
tanh

(
s

lint
− β
)
− tanh(−β)

]
. (4)

The parameter v0 defines the desired velocity under free traffic conditions. The
“interaction length” lint determines the transition regime for the s-shaped
function (4) going from vopt(s = 0) = 0 to vopt → v0 when the distance
to the leading vehicles becomes large. Finally, the “form factor” β defines
(together with lint) the shape of the equilibrium flow-density relation, i.e., the
fundamental diagram (see Sec. 3.3 below). In contrast to the IDM, the OVM
exhibits collisions for some regimes of the parameter space.

2.3 Simulation Setup

The Bosch trajectory data contains velocities of both the leading and the
following (measuring) vehicle. These data allow for a direct comparison be-
tween the measured driving behavior and trajectories simulated by a car-
following model with the leading vehicle serving as externally controlled in-
put. Initialized with the empirically given distance and velocity differences,
vsim(t = 0) = vdata(0) and ssim(t = 0) = sdata(0), the model is used to com-
pute the acceleration and, from this, the trajectory of the following car (see
Fig. 1 below). The gap to the leading vehicle is then given by the difference be-
tween the simulated trajectory xsim(t) (front bumper) and the given position
of the rear bumper of the leading vehicle xdata

lead (t):

ssim(t) = xdata
lead (t)− xsim(t). (5)

This can be directly compared to the empirical gap sdata(t). In addition, the
distance ssim(t) has to be reset to the value in the dataset when the leading
object changes as a result of a lane change of one of the considered vehicles.
For example, the leading vehicle of the dataset 3 (cf. Fig. 1) turns into another
street at t ≈ 144 s, which leads to a jump in the gap of the considered follower.
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2.4 Optimization Criteria

The calibration process aims at minimizing the difference between the mea-
sured driving behavior and the driving behavior simulated by the car-following
model under consideration. Basically, any quantity can be used as error mea-
sure that is not fixed in the simulation, such as the velocity, the velocity
difference, or the gap. In the following, we will use the error in the gap s(t)
for conceptual reasons: When optimizing with respect to s, the average veloc-
ity errors are automatically reduced as well. This does not hold the other way
round, as the error in the distance may incrementally grow when optimizing
with respect to differences in the velocities vsim(t) and vdata

follow(t).
For the parameter optimization, we need an objective function as a quan-

titative measure of the error between the simulated and observed trajectories.
As the objective function has a direct impact on the calibration result, we
consider the following three different error functionals F [·] of the empirical
and simulated time series:

Frel[ssim] =
√〈

[(ssim − sdata)/sdata]2
〉
, (6)

Fabs[ssim] =
√
〈(ssim − sdata)2〉 / 〈sdata〉2 , (7)

Fmix[ssim] =
√
〈(ssim − sdata)2/|sdata|〉 /〈|sdata|〉 . (8)

Here, the expression 〈·〉means the temporal average of a time series of duration
ΔT , i.e.,

〈z〉 :=
1
ΔT

∫ ΔT

0

z(t) dt. (9)

Since the relative error Frel is weighted by the inverse distance, this measure
is more sensitive to small distances s than to large distances. As example, a
simulated gap of 10 m compared to a gap of 5 m in the empirical data results in
a large error of 100%, whereas the same deviation of 5 m leads to an error of 5%
only for a spacing of, for instance, 100 m which is typical for large velocities.
In contrast, the absolute error Fabs is less sensitive to small gaps because
the denominator in Eq. (7) is averaged over the whole time series interval.
However, the absolute error measure is more sensitive to large differences in
the numerator, i.e., for large distances s. As the absolute error systematically
overestimates errors for large gaps (at high velocities), while the relative error
systematically overestimates deviations of the observed headway in the low
velocity range, we have also defined a “mixed” error Fmix. Note that the error
measures are normalized in order to make them independent of the duration
ΔT of the considered time series allowing for a direct comparison of different
datasets.
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2.5 Nonlinear Optimization Algorithm

Finding an optimal parameter set for a car-following model with a nonlinear
acceleration function such as (1) and (3) corresponds to a nonlinear optimiza-
tion problem which has to be solved numerically. For finding an approximative
solution to the nonlinear optimization problem, we will apply a genetic algo-
rithm as a search heuristic. The implemented genetic algorithm proceeds as
follows: An “individual” represents a parameter set of a car-following model
and a “population” consists of N such sets. In each generation, the fitness
of each individual in the population is determined via one of the objective
functions (6), (7) or (8). Pairs of two individuals are stochastically selected
from the current population based on their fitness score and recombined to
generate a new individual. Except for the best individual (which is kept with-
out any modification to the next generation), the “genes” of all individuals,
i.e., their model parameters, are varied randomly corresponding to a muta-
tion that is controlled by a given probability. The resulting new generation is
then used in the next iteration. The termination criterion is implemented as a
two-step process: Initially, a fixed number of generations is evaluated. Then,
the evolution terminates after convergence which is specified by a constant
best-of-generation score for at least a given number of generations.

For an efficient search, we have applied constraints for the minimum and
maximum values to restrict the parameter space to positive and reasonable
parameter values. Furthermore, we have to take into account that some re-
gions of the OVM parameter space lead to collisions. In order to make these
“solutions” unattractive to the optimization algorithm, we have added a large
crash penalty value to the objective function.

3 Calibration and Validation Results

3.1 Optimal Model Parameters

By applying the optimization method described in the previous section, we
have found the best fit of the IDM and the OVM to the empirical data. The
calibration results for the three datasets and the considered three objective
functions (6), (7) and (8) are summarized in Table 1. Furthermore, Fig. 1
compares the dynamics of the simulated (using model parameters calibrated
with respect to the mixed error measure (8)) with the empirically measured
trajectories. The obtained errors are in the range between 11% and 34% which
is consistent with typical error ranges obtained in previous studies [1, 2].

Obviously, the calibrated model parameters vary from one dataset to an-
other because of different driving situations and drivers. Furthermore, a model
that fits best a certain driver not necessarily does so for a different driver: In
dataset 3, the IDM performs considerably better than the OVM, while hardly
any difference is found for set 2. Moreover, the calibrated model parameters
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Table 1. Calibration results for the Intelligent Driver Model (IDM) and the Optimal
Velocity Model (OVM) for three different datasets and three different error measures
F [s] regarding deviations in the gap s to the externally given leading car. Notice
that the three datasets represent three different drivers and corresponding driving
styles.

IDM Dataset 1 Dataset 2 Dataset 3

Measure Frel[s] Fmix[s] Fabs[s] Frel[s] Fmix[s] Fabs[s] Frel[s] Fmix[s] Fabs[s]

Error [%] 24.0 20.7 20.7 28.7 26.2 25.6 18.0 13.0 11.2

v0 [m/s] 70.0 69.9 70.0 69.8 69.9 69.9 16.1 16.1 16.4
T [s] 1.07 1.12 1.03 1.51 1.43 1.26 1.30 1.30 1.39
s0 [m] 2.41 2.33 2.56 2.63 2.82 3.40 1.61 1.52 1.04

a [m/s2] 1.00 1.23 1.40 0.956 0.977 1.06 1.58 1.56 1.52

b [m/s2] 3.21 3.20 3.73 0.910 0.994 1.11 0.756 0.633 0.614

OVM Dataset 1 Dataset 2 Dataset 3

Measure Frel[s] Fmix[s] Fabs[s] Frel[s] Fmix[s] Fabs[s] Frel[s] Fmix[s] Fabs[s]

Error [%] 25.0 23.6 23.2 29.3 26.7 25.7 33.6 29.4 33.0

v0[m/s] 13.7 13.5 18.51 13.2 11.5 12.5 14.0 14.8 29.9
τ [s] 1.25 1.10 0.584 1.47 1.68 1.40 1.50 2.78 0.393
lint[m] 3.28 3.70 5.81 4.37 3.84 4.93 5.52 3.81 31.3
β[m] 2.96 2.65 1.99 2.61 2.74 2.26 2.69 4.68 0.133

also depend considerably on the underlying objective function. The IDM pa-
rameter values show a significantly smaller variation for a considered dataset
than the OVM. This finding is relevant for benchmarking traffic models: It
is not sufficient to consider only the fit errors, but the quality of the traffic
model is also determined by the consistency and robustness of the calibrated
parameters. In the following section, we will therefore systematically study the
models’ parameter spaces. In Sec. 4, we will discuss the influencing factors for
the deviations between empirical and simulated car-following behavior.

3.2 Sensitivity Analysis

Starting from the optimized model parameters summarized in Table 1, it is
straightforward to vary a single model parameter while keeping the other pa-
rameters constant. The resulting one-dimensional scan of the parameter space
gives a good insight in the model’s parameter properties and sensitivities. Fur-
thermore, the application of different objective functions (cf. Sec. 2.4) can be
seen as a benchmark of the “robustness” of the model calibration.

Figure 2 shows the resulting error measures of the dataset 3. Remark-
ably, all error curves for the IDM are smooth and show only one minimum.
Consequently, the optimal parameters are easy to determine by the optimiza-
tion algorithm. As the datasets mainly describe car-following situations in
obstructed traffic and standstills, the IDM parameters T , s0 and a are par-
ticularly significant and show distinct minima for the three proposed error
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Fig. 1. Comparison of simulated and empirical trajectories. The model parameters
are calibrated according to Table 1 for the “mixed” error measure (8).

measures while the values of v0 were hard to determine exactly from the
datasets 1 and 2 where the desired velocity is never approximated. The com-
fortable deceleration b is also not very distinct (not shown here). The solutions
belonging to different objective functions are altogether in the same parameter
range. This robustness of the IDM parameter space is an important finding
of this study.

The results for the OVM imply a less positive model assessment: The
calibration results strongly vary with the chosen objective function indicating
a strong sensitivity of the model parameters. Furthermore, too high values of
the desired velocity lead to vehicle collisions in the simulation as indicated by
abrupt raises in the error curves.

3.3 Microscopic Flow-Density Relations

The car-following dynamics shown in the trajectories of Fig. 1 can alterna-
tively be represented by the microscopic flow-density relations. A translation
from the microscopic gap s into the density ρ is given by the micro-macro
relation ρ(s) = 1/(s + l) where l is the vehicle length (which we fix to 5 m).
The flow is then given by Q(s, v) = vρ = v/(s+ l). In Fig. 3, the flow-density
points, (Q(t), ρ(t)), are plotted for each recorded time step t of the empir-
ical data and the simulated trajectories. Furthermore, we have also plotted
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Fig. 2. Systematic variation of one model parameter while keeping the other pa-
rameters at the optimal values listed in Table 1. The diagrams show the considered
error measures (6), (7) and (8) for the IDM (left column) and OVM (right column)
using dataset 3. The errors are plotted in logarithmic scale.

the “fundamental diagrams” describing states of homogeneous and station-
ary traffic. As equilibrium traffic is defined by vanishing velocity differences
and accelerations, the modeled drivers drive at a constant velocity ve which
depends on the gap to the leading vehicle. For the OVM, this equilibrium
velocity is directly given by the optimal velocity function (4). For the IDM
under the conditions v̇ = 0 and Δv = 0, only the inverse, i.e., the equilibrium
gap se as a function of the velocity, can be solved analytically. However, the
fundamental diagrams of the IDM can numerically be obtained by parametric
plots varying v.

These representations depicted in Fig. 3 provide a good overview of the
recorded traffic situations. While the sets 1 and 2 mainly contain car-following
behavior at distances smaller than 20 m (corresponding to densities larger than
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Fig. 3. Microscopic flow-density relations derived from the given and simulated gaps
s(t) and velocities v(t). Additionally, the equilibrium flow-density relation (funda-
mental diagram) is plotted as well. This representation offers an alternative view to
Fig. 1 on the empirical and simulated data.

50 /km), the dataset 3 also features a non-restricted driving situation with a
short period of “free” accelerating corresponding to the branch with densities
lower than 30/km of the flow-density plot.

3.4 Validation

Let us finally validate the obtained calibrated parameters by applying these
settings to the other datasets, i.e., using the parameters calibrated on the basis
of another dataset. We use the three optimal parameter sets listed in Table 1
and restrict ourselves to the “mixed” error measure (8). The obtained errors
can be found in Table 2. Moreover, we have evaluated the arithmetic average
of the calibrated parameters which are listed in the caption of Table 2. This
cross-comparison allows to check for the reliability of the obtained parameters
and reflects the variance of the calibrated parameter values. For the IDM, the
obtained errors for the cross-compared simulation runs are of the same order as
for the calibrated parameter sets. Therefore, the car-following behavior of the
IDM turned out to be robust with respect to reasonable changes of parameter
settings. This is, however, not the case for the OVM. Small changes in the
parameter values lead to large errors and some settings even led to collisions.
This low stability of the OVM results from the fact that velocity differences
are not taken into account.
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Table 2. Cross-comparison of the calibrated parameters for the “mixed” error mea-
sure (8) by applying the calibrated parameter sets for the IDM and OVM to the
other datasets. The underlined errors refer to the parameter values corresponding
to the best calibration results.

Model Dataset Calib. Set 1 Calib. Set 2 Calib. Set 3

IDM Set 1 20.7% 28.8% 28.7%
Set 2 35.2% 26.2% 40.1%
Set 3 41.1% 27.0% 13.0%

OVM Set 1 23.6% collision collision
Set 2 30.5% 26.7% 48.9%
Set 3 collision collision 29.4%

4 Discussion and Conclusions

Let us finally discuss three qualitative influences which contribute to these
deviations between observations and reproduction. A significant part of the
deviations between measured and simulated trajectories can be attributed to
the inter-driver variability as it has been shown by cross-comparing sets 1
and 3 with either model: The errors of the calibrated sets (representing both
the model error and the intra-driver variations, see below) typically are only
half or less of the errors of the cross-compared sets to which the inter-driver
variations contribute as well. For set 2, however, the intra-driver variation and
model errors seem to play the dominating role. Note that microscopic traf-
fic models can easily cope with this kind of heterogeneity because different
parameter values can be attributed to each individual “driver-vehicle unit”.
However, in order to obtain these distributions of calibrated model parame-
ters, more trajectories have to be analyzed.

A second contribution to the overall calibration error results from a non-
constant driving style of human drivers which is also referred to as intra-
driver variability: Human drivers do not drive constantly over time, i.e., they
change their characteristic behavior while driving. For a first estimation, we
have compared the distances at three standstills in the dataset 3 with the
minimum distance s0 as direct model parameter of the IDM. The gaps are
sstop,1 = 1.39 m, sstop,2 = 1.42 m and sstop,3 = 1.64 m, respectively. An an-
alytical minimization of s0 results in sopt

0 ≈ 1.458 m. This optimal solution
defines a theoretical lower bound (based on about 15% of the data of the
considered time series) for a relative error of 7.9%. Therefore, the intra-driver
variability accounts for a large part of the deviations between simulations
and empirical observations. This influence could be captured by considering
time-dependent model parameters reflecting driver adaptation processes as for
example proposed in [7, 8].

Finally, driver anticipation contributes to the overall error as well but is
not incorporated in simple car-following models. This is one possible cause
for a “model error”, i.e., the residual difference between a perfectly time-
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independent driving style and a model calibrated to it. More complex micro-
scopic traffic models aim at taking those aspects into account including an
explicit reaction time [9]. Multi-leader anticipation, however, requires trajec-
tory data because the data recording using radar sensors of single “floating”
cars is limited to the immediate predecessor.
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Summary. We consider a one-dimensional stochastic reaction-diffusion generaliz-
ing the totally asymmetric simple exclusion process, and aiming at describing single
lane roads with vehicles that can change speed. To each particle is associated a
jump rate, and the particular dynamics that we choose (based on 3-sites patterns)
ensures that clusters of occupied sites are of uniform jump rate. When this model
is set on a circle or an infinite line, classical arguments allow to map it to a linear
network of queues (a zero-range process in theoretical physics parlance) with expo-
nential service times, but with a twist: the service rate remains constant during a
busy period, but can change at renewal events. We use the tools of queueing the-
ory to compute the fundamental diagram of the traffic, and show the effects of a
condensation mechanism.

1 A Multi-Speed Exclusion Process

The totally asymmetric exclusion process (tasep) is a popular statistical
physics model of one-dimensional interacting particles particularly adapted
to traffic modeling. This is due to its simple definition, and to the non-trivial
exact solutions which have been unveiled in the stationary regime [1]. One im-
portant shortcoming of this model is that it does not allow particles to move
at different speeds. Cellular automata like the Nagel-Schreckenberg model [2]
address this issue, leading to very realistic though still simple simulators. How-
ever, these models are difficult to handle mathematically beyond the mean
field approximation [3] and an approximate mapping with the asymmetric
chipping model suggests that the jamming phenomenon takes place as a broad
crossover rather than a phase transition [4]. In this paper, we are interested
in analyzing the nature of fluctuations in the fundamental diagram (fd), that
is the mean flow of vehicles plotted against the traffic density. To address this
question, we propose to extend the tasep in a different way, more convenient
for the analysis albeit less realistic from the point of view of traffic.
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Fig. 1. The basic 1-dimensional tasep model.

Fig. 2. The multi-speed 1-dimensional tasep model.

The elementary 1-dimensional tasep (Fig. 1) model is defined on a discrete
lattice (e.g. a finite ring with boundary periodic conditions, a segment with
edges or an infinite line), where each site may be occupied with at most one
particle. Each particle moves independently to the next site (say, to the right),
at the times of a Poisson process with intensity μ. Therefore, the model is a
continuous time Markov process, which state is the binary encoded sequence
σt ∈ {O, V }N of size N (the size of the system), where the letter V (resp.
O) denotes a vehicle (resp. an empty space) at site i. Each transition involves
two consecutive letters when a particle moves from site i to site i+ 1:

V O
μ→ OV.

In order to encode various speed levels, we propose to extend the basic
tasep by allowing the particle to jump at different possible rates which them-
selves vary stochastically in time (Fig. 2). Assuming for now a finite number
of n−1 speed levels, the Markov chain that we consider is a sequence encoded
into a n-alphabet {O,A,B, . . .}

σt = {Vi, . . . , i = 1 . . . N}, Vi ∈ {O,A,B, . . .}

where O is again an empty site, and A, B, . . . represent occupied sites with
jump rates μa, μb, . . .. In our model, the transitions remain local: the particle
may jump to the next site only if it is empty, we allow the final state to
be conditioned by the site after the next. More precisely, we assume that
any transition involves three consecutive letters, and distinguish between two
cases: ⎧⎨

⎩
. . . XOY . . .

μx→ . . . OY Y . . . , Y �= O rule 1,

. . . XOO . . .
μx→ . . . OZO . . . , Z �= O rule 2.

In the second case, the type (or equivalently the jump rate) of the particle
is chosen randomly according to a distribution F . As a limiting case, we will
consider a general continuous distribution F on R

+. In other words, a particle
at site i with rate μx jumps to site i+ 1 and acquires a new rate μz which is
a random function of Vi+2.
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The basic assumption is that if a car gets in close contact to another
one, it will adopt its rate. Conversely, if it arrives at a site not in contact
with any other car, the new rate will be freely determined according to some
random distribution. This models the acceleration or deceleration process in
an admittedly crude manner. This setting is different from usual exclusion
processes with multi-type particles, each having its own jump rate. It is more
in line with the Nagel-Schreckenberg model, with the difference that only local
jumps are allowed and speed is replaced by jump rate.

2 L-Stage Tandem Queue Reformulation

In the context of exclusion processes, jams are represented as cluster of par-
ticles. Clustering phenomena can be analyzed in some cases by mapping the
process to a tandem queueing network (i.e. a zero range processes in statis-
tical physics terms). For the simple tasep on a ring two dual mappings are
possible:

• the queues are associated to empty sites and the clients are the particles
in contact behind this site,

• the queues are associated with particles and the clients are the empty sites
in front of this particle.

By using one of these mappings, the tasep is equivalent to a closed cyclic
queueing network, with fixed service rates equal to the jumping rate μ of
the particles. Steady states of such queueing network have been analyzed
thoroughly (see for ex. Kelly [5]) in terms of a simple product form structure
which we expose now.

Consider an open L-stage tandem queue, with arrival rate λ and a common
service rate μ: L queues with service rate μ are arranged in successive order
(the departures from a given queue coincide with the arrivals to the next one)
and the arrival process of the first queue is Poisson with intensity λ. Each
queue is stable when λ < μ, transient when λ > μ. It is then well known that
the distribution of the number of clients X1, . . . , XL in the queues is

P ({Xi = xi, i = 1 . . . L}) =
L∏

i=1

Pλ(Xi = xi), (1)

where
Pλ(Xi = x) = (1− ρ)ρx, with ρ

def=
λ

μ
.

If the network is closed (the last queue is connected to the first one in the
ring geometry), then expression (1) remains valid, with the constraint that
the total number of clients

∑L
i=1Xi is fixed. In this case, λ can be chosen

arbitrarily, as long as each queue in isolation remains ergodic.
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Fig. 3. Mapping of the variable-speed tasep to a tandem queue.

It can be shown easily [6] that, for a plain tasep on a ring, the size of the
jams is asymptotically a geometric random variable with parameter ρ (when
N = kL, k = 1, 2 . . .). In the open geometry, the arrival rate is an external
parameter which can be set between 0 and μ. When it becomes comparable
to the service rate, i.e. when ρ � 1, large queues may form and a random walk
first time return calculation yields a realistic scaling behavior for the lifetime
distribution of jams [7]

P (t) � t−3/2.

In our multi-speed exclusion process, particles are guaranteed by construc-
tion to form clusters with homogeneous speed, and the mapping of empty sites
to queues is suitable (Fig. 3). The new feature is that the service rate Ri of
a given queue can change with time: it is drawn randomly from a distribu-
tion with cumulative distribution F when the first customer arrives. It is
assumed that there exists a minimal service rate μ0 > 0 such that F (μ0) = 0.
ρ0 = λ/μ0 ≤ 1 is therefore the maximal possible load. The state is determined
by the pair (X,R) and the possible transitions are as follows:

(X = x,R = μ)
λ1{x>0}−−−−−→ (X = x+ 1, R = μ),

(X = 0, R = μ)
λF (dμ′)−−−−−→ (X = 1, R = μ′),

(X = x,R = μ)
μ1{x>0}−−−−−→ (X = x− 1, R = μ).

Since these transitions form a tree (see Fig. 4(a)), each queue in isolation
is a reversible Markov process and its stationary distribution reads:

Pλ(X = x,R ∈ dμ) = Pλ(X = 0)F (dμ)
(
λ

μ

)x

,

with

Pλ(X = 0) =
(∫ ∞

μ0

F (dμ)
μ

μ− λ

)−1

.
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Fig. 4. State graph for isolated queues in the case of (a) the multi-speed process
definition, and (b) a non-reversible queue with hysteresis. States are represented by
black dots and transitions by arrows.

The distribution of the number of customers in the queue is therefore no
longer geometric:

Pλ(X = x) =
∫ ∞

μ0

Pλ(X = x,R ∈ dμ) = Pλ(X = 0)
∫ ∞

μ0

F (dμ)
(
λ

μ

)x

. (2)

Nevertheless, the product form expression (1) for the invariant measure
remains valid, because of the reversibility of the individual queues taken in
isolation (see again [5]). The stationary distribution of the L-stage tandem
queue takes the form

Pλ(S) =
L∏

i=1

Pλ(Xi, Ri),

for any sequence S = {(Xi, Ri), i = 1, . . . , L}. While each queue has a different
service rate at a given time, all the queues have globally the same distribution.
Our model is therefore encoded in the single queue stationary distribution
Pλ(Xi, Ri).

3 The Fundamental Diagram

As announced in Section 1, we turn now to the fundamental diagram (fd), that
is the plot of the mean flow of vehicles against the traffic density. By nature,
the fluctuations in the fd are associated to the jam formation. Schematically,
three main distinct regimes or traffic phases have been identified by empirical
studies [8]: one for to free-flow, and two congested states, the “synchronized
flow” and the “wide moving jam”.
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In the case of the basic tasep, it is well known, and rigorously proved in
some cases, that an hydrodynamic limit can be obtained by rescaling both
the spatial variable x = i/N and the jumping rate according to μ(N) =
NV0, where N is a rescaling which we let to ∞ and V0 is a constant. The
corresponding coarse grained density ρ satisfies the inviscid Burger equation

∂ρ

∂t
= V0

∂

∂x

[
ρ(1− ρ)

]
.

The fd at this scale is deterministic, since

J(ρ) = V0ρ(1− ρ),

and symmetric w.r.t. ρ = 1/2 because of the particle-hole symmetry. V0 rep-
resents the free velocity of cars, when the density is very low.

In practice, points plotted in experimental fd studies are obtained by
averaging data from static loop detectors over a few minutes (see e.g. [8]). This
is difficult to do with our queue-based model, for which a space average is much
easier to obtain. The equivalence between time and space averaging is not an
obvious assumption, but since jams are moving, space and time correlations
are combined in some way [7] and we consider this assumption to be quite
safe. In what follows, we will therefore compute the fd by considering either
the joint probability measure Pλ(d, φ) for an open system, or the conditional
probability measure Pλ(φ|d) for a closed system, where

⎧⎪⎪⎨
⎪⎪⎩
d =

N

N + L
,

φ =
Φ

N + L
,

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L number of queues

N =
L∑

i=1

Xi number of vehicles

Φ =
L∑

i=1

Ri1{Xi>0} integrated flow

are spatial averaged quantities and represent respectively the density and the
traffic flow. We perform the analysis in the ring geometry: this avoids edge
effects, fixes the numbers N of vehicles and L of queues, and finally makes
sense as an experimental setting. In the statistical physics parlance, the fact
that N is fixed means that we are working with the canonical ensemble. As a
result this constraint yields the following form of the joint probability measure:

P (S) =
1

ZL[N ]

L∏
i=1

Pλ(xi, μi),

with the canonical partition function

ZL[N ] def=
∑
{xi}

L∏
i=1

Pλ(xi)δ
(
N −

∑L
i=1 xi

)
.
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These expressions are actually independent of λ in this specific ring geometry.
The density-flow conditional probability distribution takes the form

P (φ|d) =
ZL[N,Φ]
ZL[N ]

, (3)

with
N =

d

1− dL, Φ =
φ

1− dL,

and

ZL[N,Φ] def=
∑
{xi}

∫
· · ·
∫ L∏

i=1

Pλ(xi, dμi)δ
(
N −

∑L
i=1 xi

)
δ
(
Φ−

∑L
i=1 μi1{xi>0}

)
.

Note (by simple inspection, see e.g. [5]) that P (φ|d) is independent of λ.

4 Phase Transition and Condensation Mechanism

The connection between spontaneous formation of jams and the Bose-Einstein
condensation has been analyzed in some specific models, with e.g. quenched
disorder [9], where particles are distinguishable with different but fixed hop-
ping rates attached to them. In the present situation, all particles are identical,
but hopping rates may fluctuate, which is related to annealed disorder in sta-
tistical physics. The condensation mechanism for zero range processes within
the canonical ensemble has been clarified in some recent work [10]. Let us
translate in our settings the main features of the condensation mechanism.
Assume that the number of clients X of an isolated queue has a long-tailed
distribution

P (X = x) ∝
x�1

1
xα
, α > 1.

The empirical mean queue size reads

X̄ =
1
L

L∑
i=1

Xi, and EX̄ = Eλ(X) def=

∫∞
μ0
F (dμ) μ2

(μ−λ)2∫∞
μ0
F (dμ) μ

μ−λ

,

where Eλ(X) is the expected number of clients in an isolated queue, when
the arrival rate is λ. Within the canonical ensemble, X̄ is fixed, while for the
grand canonical ensemble, only the expectation E(X̄) is fixed. In both cases,
for α > 2 there exists X̄c such that, when X̄ > X̄c (E(X̄) > X̄c in the grand
canonical ensemble), one of the queues condenses, i.e. carries a macroscopic
number of particles. When α > 2, there is a condensate with probability
weight O(L1−α).

This condensation corresponds to a second order phase transition, and
occurs at a critical density dc which is the same in the canonical and grand-
canonical formalism. To determine dc, first consider
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d̄(λ) def=
Eλ(X)

1 + Eλ(X)
.

Eλ(X) increases monotonically with λ, which cannot exceed μ0 (see Section 2).
Therefore, if Eμ0(X) = xc < ∞, then there exists a critical density

dc =
xc

1 + xc
,

such that for d ≥ dc one of the queues condenses. The interpretation is that
Nc = Lxc is the maximal number of clients that can be in the queues in the
fluid regime, and the less costly way to absorb the excess N−Nc is to put it in
one single queue. Let us give an example, by specifying the joint law through

P (μ0 ≤ R ≤ μ0y) = F (μ0y) =
(y − 1
r − 1

)α

, 1 ≤ y ≤ r, (4)

where r > 1 is ratio between the highest and lowest speed. In that case, using
(2) we have the following asymptotic as ξ →∞

Pλ(X = x) ∝
( λ
μ0

)x
∫ r

1

(y − 1)α−1y−xdy ∼ 1
xα

( λ
μ0

)x

,

and Eμ0(X) < ∞ when α > 2, which yields the possibility of condensation
above the critical density

dc(α, r) =
(r − 1)α−2

α− 2 + (r − 1)α−2
. (5)

5 Numerical Results

The analysis of (3) in the ring geometry can in principle be performed by
means of saddle point techniques [10, 11], which we postpone to another work.
Instead we present a numerical approach: the fd presented in Fig. 5(a)-(c) is
obtained by solving the recursive relation

ZL[N,Φ] = Pλ(X = 0)ZL−1[N,Φ]+
N∑

x=1

∫
Pλ(x, dμ)ZL−1[N−x, Φ−μ1{x>0}],

up to some value LMAX = 100 for the number of queues, with a fixed value
of λ < μ0. Although in principle one arbitrary value of λ should suffice,
in practice, the results for different values of λ have to be superposed in
the diagram to get significant results. Since this recursion is only tractable
with a finite number of possible velocities, the distribution F used here is
concentrated to two values μ0 and μ1. The presence of a discontinuity in the
fundamental diagram for small values of η def= P (R = μ0)/P (R = μ1) is a finite
size effect, which disappears when the system size is increased while η is kept
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Fig. 5. Probabilistic fundamental diagram on the ring geometry (L + N = 100) for
a two-level speed distribution with η = 1 (a), 0.001 (b) and 10−6 (c); corresponding
single queue distribution as a function of the density for η = 0.001 (d).

Fig. 6. Mean flow as a function of density for a continuous speed distribution
(α = 3) on the ring geometry with varying sizes L + N (left) and corresponding
standard deviation rescaled by

√
L (right).

fixed. Nevertheless, the direct simulation of the closed L-stage tandem queues,
with continuous distribution (4), indicates as expected a second order phase
transition when α > 2 (Fig. 6). This transition is related to the formation
of a condensate, which is marked by the apparition of a bump in the single
queue distribution at the critical density (see Fig. 5(d)). This condensation
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mechanism is responsible for the slope discontinuity. Fluctuations scale like
1/
√
L, as expected from the Central Limit Theorem. Note however that the

critical density is different than the one given by (5) for the open system.

6 Perspectives

In this work, we analyze the fluctuations in the fundamental diagram of traffic
by considering models from statistical physics and using probabilistic tools.
We propose a generalization of the tasep by considering a multi-speed ex-
clusion process which is conveniently mapped onto an L-stage tandem queue.
When the individual queues are reversible, general results from queueing net-
work theory let us obtain the exact form of the steady state distribution. This
measure is conveniently shaped to compute the fd. Depending on the speed
distribution, it may present two phases, the free-flow and the congested ones,
separated by a second order phase transition. This transition is associated to
a condensation mechanism, when slow clusters are sufficiently rare.

In practice, it is conjectured [8] that there are three phases in the fd,
separated by first order phase transition. A large number of possible extensions
of our model are possible, by playing with the definition of the state graph
of a single queue (Fig. 4(a)). This graph accounts either for the dynamics of
single vehicle clusters, when queues are associated to empty sites, or to the
behavior of single drivers when queues are associated to occupied sites. In
order to obtain first order phase transitions, we will consider in future work
models where the single queues are not reversible in isolation, for example
because of an hysteresis phenomenon (Fig. 4(b)).
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A Stochastic Macroscopic Traffic Model
Devoid of Diffusion
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1 Introduction

Macroscopic traffic flow models are based on the continuum hypothesis, which
postulates the existence of macroscopic functions ρ(x, t) (the density), v(x, t)
(the speed), q(x, t) (the flow) describing the state of traffic at any location x
and time t.

The macroscopic dynamics of traffic flow are constrained by the local sup-
ply and demand of traffic [1] as well as by infrastructure capacity and current
regulations. This explains why most macroscopic models are formulated in
terms of deterministic systems of partial differential equations which account
correctly for most macroscopic phenomena. But the macroscopic dynamics of
traffic are affected by the intrinsic stochastic character of driver interaction,
as various phenomena attest (spontaneous jam formation, traffic breakdown,
etc). Driver behavior is partly stochastic, a feature which is largely accounted
for in most microscopic models.

Kinetic models generally contain stochastic components (lane change, de-
sired distributions, etc) which are integrated and become deterministic ele-
ments of the model (refer to [2] and the references therein). Similarly some
first order models such as SSMT [3] contain integrated stochastic building
blocks (for instance conflicts between movements in intersections).

Other efforts have aimed at modeling directly some stochastic processes
of traffic flow [4, 5].

Very few researches have introduced directly stochastic processes into
macroscopic equations of traffic flow (see [6] for an early model). The main
difficulties are computational intractability and diffusive effects. The model
described in this paper introduces a model which is non-diffusive, tractable
numerically, and readily interpretable from a physical point of view.

mailto:etclinic@wanadoo.fr
mailto:lebacque@inrets.fr
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2 Basic Properties of the Generic 2nd Order Model

2.1 Model Formulation

The generic second order model (GSOM) has been introduced in [7]. It
is essentially a LWR 1st order traffic flow model [8] with variable (driver-
dependent) fundamental diagram. The model can be expressed as follows:

∂tρ+ ∂x(ρv) = 0 Conservation of vehicles
∂tρI + ∂x(ρvI) = 0 Conservation of the driver attribute I
v = �(ρ, I) Driver dependent fundamental diagram (FD)

(1)

I is a driver attribute that characterizes the behaviour of each driver. A driver
with attribute I behaves according to a speed-density relationship v = �(ρ, I)
and a flow-density relationship

q = ρv = �(ρ, I)
def
= ρ�(ρ, I)

� is assumed to be concave with respect to ρ, for all values of I. The
ARZ model [9] and the 1-phase Colombo model [7] are special cases of the
GSOM (1).

2.2 Model Properties

The system (1) is a system of two conservation laws. It admits two character-
istic wave speeds,

λ1 = ∂�
∂ρ

λ2 = v
(2)

The 1-waves are kinematical waves which affect density (deceleration - shock-
waves and acceleration - rarefaction waves), with invariant I. The 2-waves are
contact discontinuities which propagate the discontinuity of I at the speed of
traffic (v is the invariant).

Since by combining the first two equations of (1) we deduce:

İ
def
= ∂tI + v∂xI = 0 (3)

it follows that I is conserved along vehicle trajectories, a result in keeping with
the fact that 2-waves propagate discontinuities of I at the speed of traffic.

The model (1) is best understood by noticing the following. If the initial
condition is piecewise constant with respect to I, then the discontinuities of
I propagate at the velocity of the traffic flow and model (1) reduces to a sim-
ple first-order LWR model wherever I is constant, i.e. between discontinuity
points.
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2.3 Examples of GSOM

A first example of GSOM model is given by the ARZ model [9], in which the
function � is defined by:

�(ρ, I) = Ve(ρ) + I (4)

with Ve(ρ) the fundamental speed-density diagram. This model requires some
adjustment in order for the density to stay within physically sound bounds
i.e. to stay bounded by the jam density. The reader is referred to [10] for
a discussion of these problems. The corresponding functions � and � are
illustrated by the following (with triangular flow density relationship):

Fig. 1. ARZ model: equilibrium speed and flow relationships.

A second example of GSOM model is given by the 1-phase Colombo model
[7], which is defined by the following � function

�(ρ, I) =

⎧⎨
⎩
vf (ρ) if ρ ≤ ρcrit(I)(
I + q∗

ρ

)
ν0(ρ) if ρ ≥ ρcrit(I)

(5)

with ∣∣∣∣∣∣∣∣

vf (ρ) = Vmax − βρ

β = Vmax − Vcrit
Qmax/Vcrit

ν0(ρ) = 1− ρ/ρmax

and
ρcrit(I) = 1

2
(
β − I

ρmax

) [Vmax − I + q∗
ρmax

−

√(
Vmax − I + q∗

ρmax

)2

− 4q∗
(
β − I
ρmax

)]
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Fig. 2. 1-Phase Colombo model: equilibrium speed and flow relationships.

This model is illustrated by the figure below. The 1-phase Colombo model
is devoid of any problems such as analyzed in [10], i.e. that jam density is
dependent on I.

2.4 Lagrangian Expression of the GSOM

This section is a generalization of [11]. The first fundamental variable of the
model in Lagrangian form is the cumulative density

N
def
=
∫ +∞

x

ρ(ξ, t)dξ (6)

which is completed by a second variable which is time-like:

T
def
= t

N can be interpreted intuitively as a vehicle index. From these definitions it
follows: ∣∣∣∣ ∂xN = −ρ

∂tN = q

and some easy algebra yields the following expressions for coordinate change:
∣∣∣∣ ∂x = −ρ∂N
∂t = ∂T + q∂N

⇔
∣∣∣∣ ∂N = −r∂x
∂T = ∂t + v∂x

(7)

with
r

def
= 1/ρ

the spacing (note that v = rq).
Let us rewrite (1). The conservation equation can be restated as:

∂tρ+ ∂x(ρv) = 0⇔ ∂T r + ∂Nv = 0
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with
v = �(ρ, I)

def
= V(r, I) (8)

The driver attribute equation can be restated as:

∂tρI + ∂x(ρvI) = 0⇔ ∂T I = 0

This result is logical: I is conserved along trajectories. Let us check the result:

∂t(ρI) + ∂x(ρvI) = 0
∂T (ρI) + q∂N (ρI)− ρ∂N (ρvI) = 0
r∂T (ρI) + v∂N (ρI)− ∂N (ρvI) = 0
r∂T (ρI)− ρI∂Nv = 0

Now using ∂T r + ∂Nv = 0 it follows

r∂T (ρI) + ρI∂T r = 0
∂T (rρI) = 0
∂T I = 0

It can be shown that the transformation (7) is admissible, in the sense that it
respects shockwaves (shockwaves in (x, t) and (N,T ) coordinates are equiva-
lent).

Thus the GSOM system (1) is equivalent to the following system in La-
grangian coordinates:

∂T r + ∂Nv = 0 Conservation of vehicles
∂T I = 0 Conservation of the driver attribute I
v = V(r, I) Driver dependent fundamental diagram

(9)

3 The Stochastic Generic 2nd Order Model

3.1 Model Formulation

The basic idea of the model is to consider the driver attribute I as a vari-
able which is stochastic, as the result of random interactions of the driver
with other drivers. Thus we assume that the dynamics of the attribute I are
described by:

İ = Φ
(
I,
dBt

dt

)
(10)

with Bt a Brownian process (and dBt

dt = Wt the corresponding white noise
process). It should be noted that more complicated interactions than (10)
could be considered, with the effect of interactions being dependent on the
density for instance.
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The resulting stochastic model in natural (x, t) coordinates is:

∂tρ+ ∂x(ρv) = 0 Conservation of vehicles
∂tρI + ∂x(ρvI) = ρΦ(I, dBt

dt ) Dynamics of the driver attribute I
v = �(ρ, I) Driver dependent FD

(11)

The model is better specified in the coordinates (N,T ) (refer to (6)). Let
(Ω, IP) be the underlying probability space; I is a random variable depending
on the vehicle index N (it is a driver attribute) and on the random event
ω ∈ Ω:

I = I(N,T ;ω)
The white noise perturbation is also vehicle-specific, thus

WT =WT (N,ω)

Finally the stochastic GSOM model can be expressed in the Lagrangian (N,T )
coordinates as:

I = I(N,T ;ω)
WT =WT (N,ω)
∂T r + ∂Nv = 0 Conservation of vehicles
∂T I = Φ(I,WT ) Dynamics of the driver attribute I
v = V(r, I) Driver dependent FD

(12)

The idea for solving (12) is the following:

• fix ω ∈ Ω
• integrate ∂T I = Φ(I,WT ) for each N , yielding a solution I(N,T ;ω),
• solve ∂T r + ∂NV(r, I(N,T ;ω)) = 0, yieldig a solution r(N,T ;ω).

If I(N,T ;ω) is regular enough (continuous for almost all ω ∈ Ω), ∂T r +
∂NV(r, I(N,T ;ω)) = 0 can be solved for almost all ω ∈ Ω and can be approx-
imated by a Godunov scheme.

3.2 Godunov (Particle) Discretization of (12)

Let us first consider the Godunov scheme for solving (12). The elements of
the Godunov scheme are described in [1]; we use here the basic elements,
notably the supply/demand approach. The scheme developed below is just an
adaptation for the (N,T ) coordinate system of the [1] template.

The “cells” of the scheme are packets of vehicles counting ΔN vehicles. In
the sequel we simply consider 1 vehicle packets that is ΔN = 1. Note that in
the case of the LWR model [8] (same attribute I for all drivers) the resulting
Godunov scheme is similar to the particle discretization of the Integration

model [12]. Time is discretized into time-steps ΔT , the size of which is defined
by the CFL condition (Courant-Friedrichs-Lewy). The reader is referred to [7]
and to (22).

The flux function in (12) is V(r, I), which is increasing with respect to r
(see figure 3 below).
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Fig. 3. Flux function in (12): speed as a function of inter-vehicular distance.

Thus the demand associated to the flux function V(r, I) is this function
itself, whereas the supply is the maximum speed. In the sequel we shall only
consider homogeneous sections, therefore by the min formula we can ignore the
supply. It follows that for a one-vehicle cell (n), with inter-vehicular distance

rn(t)
def
= xn−1(t) − xn(t) at time step (t) = [tΔt, (t + 1)Δt], the discretized

conservation equation can be stated as:

rn(t+ 1) = rn(t) +Δt (−vn(t) + vn−1(t))
vn(t) = V(rn(t), In(t)) (13)

It follows trivially that the vehicle positions xn(t) are updated according to

xn(t+ 1) = xn(t) +Δtvn(t)
vn(t) = V(rn(t), In(t)) (14)

Fig. 4. Particle discretization.

In order to evaluate In(t+1), it is necessary to integrate ∂T I = Φ(I,WT ).
Thus if we denote by L(I0, t0, t1;ω) the solution at t1 of

İ(s) = Φ(I(s),Ws(n, ω))
I(t0) = I0

it follows:
In(t+ 1) = L(In(t), t, t+Δt;ω) (15)

The complete Godunov discretization is summarized by (14), (15) and (22).
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3.3 Microscopic Formulation of (12)

By letting Δt tend towards 0, the model can be reduced to a follow-the leader
(FTL) model:

∣∣∣∣ ẋn(t) = vn(t) = V(rn(t), In(t))
İn(t) = Φ(In(t),Wt(n, ω))

∀ω ∈ Ω (16)

which can also be expressed using the semi-group L:∣∣∣∣ ẋn(t) = vn(t) = V(rn(t), In(t))
İn(t) = L(In(0), 0, t;ω)

∀ω ∈ Ω (17)

The numerical viscosity in the Godunov discretization scheme (14), (15) is
minimal (i.e. the shock-waves are fitted most exactly) when the CFL condition
(22) is an equality. Thus the FTL model (16) smoothens shockwaves.

4 Examples of Stochastic Models

4.1 Ornstein-Uhlenbeck Process for I

The simplest model for (10) is the linear model:

Φ(I,W ) = −αI + σW (18)

with α and σ two parameters and Wt = dBt

dt a white noise process: the Brow-
nian motion process has independent normal Gaussian increments Bt−Bs of
variance t−s. Let us recall also that the trajectories t→ Bt(ω) are continuous
for nearly all ω ∈ Ω. The idea of expression (18) is simple: the dynamics of In
results from two competing processes: a relaxation process and a white noise
perturbation process.

The expression of the semi-group L is easily deduced

L(I(t), 0, t;ω) = σ
∫ t

0

e−α(t−s)dBs(ω) + I(0)e−αt (19)

(19) defines the solution of (18) as an Ornstein-Uhlenbeck process; the mean
of I(t, ω) is equal to I(0)e−αt and its variance to

σ2 1− e−2αt

2α

The integral in (19) is the standard Wiener integral. These processes are
illustrated in figure 5. Asymptotically, that is at the limit t→ +∞, I(t, ω) is
Gaussian with variance σ2/2α. Thus, the model predicts that the occurrence
of arbitrarily large values of the driver attribute I is possible, albeit with
vanishingly small probability. Such driver behavior is not in accordance with
observations.
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Fig. 5. Processes: Wt, Bt, It.

4.2 Transformed Ornstein-Uhlenbeck Process for I

The idea is to apply a non-linear transformation on an Ornstein-Uhlenbeck
process in order to constrain I within physically acceptable bounds. We will
consider a transformation

F : [−I∗, I∗] → IR

and a process I defined by

˙F(I)(t) = −αF(I(t)) + σ
dBt

dt

For instance, F(I) = Argth(I/I∗) or F(I) = tg(πI/I∗) constitute two possible
choices. We can deduce from (19) that

I(t, ω) = F−1

(
σ

∫ t

0

e−α(t−s)dBs(ω) + F(I(0))e−αt

)
(20)

The process I is illustrated by the following figure 6. The model above is
defined by the following function Φ:

Φ(I,W ) = −α F(I)
F ′(I)

+ σ
W

F ′(I)

4.3 Discretization

We apply the Godunov discretization scheme (14), (15), but replace (15) by
an implicit Euler iteration. This iteration is derived from:
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Fig. 6. Examples of O-U process (left) versus transformed O-U process.

F(It+1
n ) = F(Itn)− αF(It+1

n )Δt+ σΔBt

In this iteration ΔBt is Gaussian, centered, of variance t and the successive
increments ΔBt are independent.

Thus the Godunov (particle) discretization can be expressed as:∣∣∣∣∣∣∣
xt+1

n = xt
n +Δt vtn

vtn = V(rtn, I
t
n))

It+1
n = F−1 ([F(Itn) + σΔBt] /[1 + αΔt])

(21)

The CFL condition for (21) can be obtained by expressing that if the distance
between particle n and n− 1 is greater than the minimum headway rmin(Itn),
it stays so after one iteration:

rmin(Itn) +ΔtV(rtn, I
t
n)) ≤ xt

n−1 − xt
n

The following constraints results, which is applied in the simulation runs:

Δt ≤ Max[
r ≥ rmin(I)
−I∗ ≤ I ≤ I∗

] (1− rmin(I)/r
R(1/r, I)

)
(22)

4.4 Some Simulation Results

As expected, on a free section the random fluctuations of the trajectories
induce clustering and generate spontaneous random perturbations which once
created behave approximately in conformity with LWR theory.

Supply reduction are modelled by limiting the outflow, that is to say the
speed of the lead vehicle. Demand is modelled by introducing new vehicles at a
rate equal to demand, but a distance from the last vehicle which is compatible
with the section supply. This is the reason for the accumulation of vehicles at
the entry point of the section in figure 7.

Features such as shock waves and rarefaction waves are also recaptured,
but include the expected amount of stochastic variability.
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360 380 400 420 440 460 480 500 520

Fig. 7. Examples of particle trajectories, with downstream supply reduction and
upstream variable demand (increasing).

Fig. 8. Examples of classical traffic dynamics. Left: shock wave + variable demand
(decreasing), right: constant demand + supply increase.

5 Conclusion

The stochastic feature introduced into the GSOM model (11) does not in-
duce any diffusion effects, as results trivially from (21): the vehicle speed for
instance cannot be negative. The Godunov particle discretization (21) con-
stitutes a convergent discretization for almost all ω ∈ Ω, and provides an
intuitive description of the model solutions. The model reproduces the vari-
ability of trajectories, as described in [13]. Ongoing research addresses the
following

• deduce the resulting stochastic properties of flow and density, in order to
apply the model to stochastic traffic control,

• extend the model to intersection modeling [14], in order to check whether
the model (11) predicts breakdown of traffic and similar phenomena.
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1 Introduction

The Lighthill-Whitham and Richards (LWR) model [1, 2] is well known for
its simplicity, parsimony and its robustness to replicate basic traffic features.
However, it considers traffic as a homogeneous flow. This can be a serious
limitation when the traffic stream is composed of radically different vehicle
classes, such as cars and heavy trucks near an uphill grade.

Extensive research has been conducted to introduce heterogeneity in the
LWR model; e.g. [3–9]. All these extensions are based on the same principle:
disaggregating the heterogeneous traffic flow into homogeneous and contin-
uum vehicle classes that obey a conservation law with a specific fundamental
diagram (FD). These models are solved numerically in Eulerian coordinates
with methods such as the Godunov scheme [10]. However, these schemes are
known to be very diffusive for hyperbolic systems of conservation laws [4].

Recent developments in traffic flow theory have led to efficient numer-
ical schemes for solving the LWR model. They are derived in Lagrangian
framework rather than in traditional Eulerian one; see for example [11–14].
Additionally, variational theory [15–17] and its extension in Lagrangian co-
ordinates [14] make it possible to prove that these schemes are exact for the
LWR model when the FD is triangular. This is an important leap forward
since current methods introduce numerical errors that can be devastating in
practice. The aim of this paper is to extend the framework in [14] in order to
incorporate multiple vehicle types, each one with a different car-following rule.
In this way, the free-flow speed, the jam density and the wave-speed can be
defined for each individual vehicle class. Note that the one-class car-following
rule has already been coupled with a lane-changing model [18] and thus the
proposed extension is fully compatible with the latter.

The sketch of the paper is as follows: section 1 will recall the Lagrangian
formulation of the LWR model and its numerical resolution using (i) the Go-
dunov scheme and (ii) the variational theory. Section 2 will introduce the
proposed extension, the resulting numerical schemes using (i) and (ii) above,
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and the conditions for the exactness of the numerical schemes. Finally, sec-
tion 3 will present some numerical results focusing on the representation of a
bimodal flow of trucks and cars.

2 The Homogeneous LWR Model in Lagrangian
Coordinates

Traditionally, the LWR model has been formulated in (x,t) coordinates. In-
troducing the cumulative count function N (x,t), which represents the number
of vehicles that have crossed position x by time t, allows to define a new coor-
dinate system (N,t). These Lagrangian coordinates are fixed to a given fluid
particle and move with it in space-time. The purpose is no longer to determine
the local density k(x,t) but the position X (n,t) of vehicle n. In the remainder
of the paper, capital N (respectively X ) will stand for the N (x,t) (respectively
X (n,t)) function while n (respectively x ) will define a specific value taken by
this function. This section briefly presents the Lagrangian formulation of the
LWR model. Details can be found in [14] or in [19].

2.1 Continuum Formulation

Lagrangian Conservation Law

The LWR model in (n,t) coordinates can be expressed as a conservation law:

∂ts+ ∂nv = 0 (1)

This model is fully described by the spacing s which corresponds to 1/k.
The speed v can be derived from the FD v=V (s). Therefore, the LWR model
can be described by the following hyperbolic equation in s:

∂ts+ ∂nV (s) = 0 (2)

Lagrangian Variational Principle

The reader should refer to [15] and [16] for a complete description of variational
theory in Eulerian coordinates. Indeed, the transformation to Lagrangian co-
ordinates preserves the nature of the problem: the LWR model can be ex-
pressed as the Hamilton-Jacobi equation 3 derived from the FD.

∂tX = V (−∂nX) (3)

All the results proven in [15] and [16] can thus be applied to the Lagrangian
variational formulation of the LWR model. Notably, the value of X at a point
P in the (n,t) plane, XP , can be expressed as a least-cost path problem:
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XP = min(B℘ + C(℘) : ∀℘ ∈ V ∩PP ), where∣∣∣∣∣∣∣∣

V: set of all valid paths
PP : set of all paths from boundary condition to P
B℘: X value at the beginning of the path
C(℘): cost of path ℘

(4)

Analogously to [15], “waves” in (n,t) coordinates are characteristics where
s is constant. They have slopes u = ∂sV (s) representing a passing rate.
We define two types of passing rates: (a) u is a “possible passing rate” if
there exists s such that u = ∂sV (s); (b) û is an “allowable passing rate” if
min ∂sV (s) ≤ û ≤ max ∂sV (s). “Valid paths” are continuous and piecewise
differentiable paths n(t) in the (n,t) plane whose slopes n′(t) are allowable
passing rates. “Wave paths” are valid paths whose slopes are possible passing
rates and are thus composed of a succession of waves.

The cost rate r on a wave path is given by dtX. The scalar r represents
the speed of the Eulerian characteristic associated to the passing rate u.

r = dtX = ∂tX + ∂nX∂tn = v − su (5)

As 3 holds and V is concave, one can express r only as a function R(u)
using the Legendre transformation as in [15]:

r = R(u) = sup
s
{V (s)− su} (6)

The cost on a Lagrangian valid path P from B to P is thus:

C(℘) =
∫ tP

tB

R(n′(t))dt (7)

In the next section, we will show how the Lagrangian variational principle
makes it possible to construct a numerical scheme which is exact under few
restrictive assumptions.

2.2 Numerical Resolution

Godunov Scheme

In the Godunov scheme, the N -function is discretized in cells i = 1, 2, . . . of
size Δn and the spacing s is approximated by a constant value, sti, which is
updated at every time step Δt; see Figure 1. Since the flux function V in 2
is non-decreasing in s, the characteristic speed is always non-negative (traffic
anisotropy). The Godunov method reduces then to the upwind method:

st+Δt
i = sti +

Δt

Δn

(
V (sti)− V (sti−1)

)
(8)
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Fig. 1. Lagrangian grid.

The Courant-Friedrich-Lewy’s (CFL) condition 9 should hold to guaranty
the stability and the convergence of 8.

Δn ≥ max
s
|∂sV (s)|Δt (9)

The Lagrangian Godunov scheme can also be expressed in terms of X (n,t)
by noting that the flux V (sti) at a boundary n of a cell i is:

X(n, t+Δt)−X(n, t)
Δt

= V (sti) = V
(
X(n−Δn, t)−X(n, t)

Δn

)
(10)

Let us suppose now that the FD is triangular when expressed in terms of
flow with respect to density:

V (s) = min(vm, w(κs− 1)) (11)

where vm is the free-flow speed, w, the wave speed and κ the jam density; see
Figure 2b. After simplification 10 becomes:

X(n, t+Δt) = min(X(n, t)+vmΔt, (1−α)X(n, t)+αX(n−Δn, t)−wΔt) (12)

where α = wκΔt/Δn. If the CFL condition 9 is satisfied as an equality,
α = 1 and the scheme produces exact results [14]. In that case, one should
fix either the time step Δt or the quantity of vehicle inside a Lagrangian cell
Δn. For practical reason, it is easier to set Δn and to deduce Δt = Δn/wκ.
Equation 12 reduces then to:

X

(
n, t+

Δn

wκ

)
= min

(
X(n, t) + vm

Δn

wκ
,X(n−Δn, t)− Δn

κ

)
(13)

Note that when n is an integer and Δn = 1 then X (n,t) corresponds to
the position xt

n of vehicle n at time t and X (n-1,t) to the position xt
n−1 of

its leader at the same time.
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Fig. 2. Triangular fundamental diagram.

Variational Principle

Daganzo [16] proposed efficient methods to solve the LWR model using the
concept of “sufficient networks”. A “network” is defined as a directed graph
where arcs are valid paths. A network is “sufficient” when the least-cost path
through the network between every pair of nodes is optimum according to
the continuous formulation of the model. In a sufficient network, the solution
is exact at every node provided that the initial data is linear between two
consecutive initial nodes. Otherwise, numerical errors are introduced as all
optimum paths are not necessarily included in the network.

In Lagrangian coordinates, a sufficient network may easily be constructed
when the FD is triangular. In this case, waves have only two possible velocities:
u1 = 0 (free-flow wave) and u2 = wκ (congestion wave). The resulting cost
rates 6 are: R(u1) = vm and R(u2) = −w; see Figure 2b. Any geometric
network formed by two families of parallel equidistant lines with slopes u1
and u2 and separated by Δn1 and Δn2 is sufficient; see Figure 3a. Therefore,
with appropriate initial data, the solution at nodes is exact.

Since u1 = 0 nodes are always lined-up along rows where n values are
constant. Furthermore, if one sets Δn1 = Δn2 = Δn nodes also line-up along
“time-columns”; see Figure 3b. This defines a rectangular lattice in the (n,t)
plane with Δt = Δn/(wκ), which is very practical for computational imple-
mentation. Furthermore, with only two incoming arcs per node, the compu-
tation of 4 at each node is straightforward; i.e.:

X(n, t+Δt)

= min
(
X(n, t) +Δ(n,t)→(n,t+Δt), X(n−Δn, t) + C(n−Δn,t)→(n,t+Δt)

)
= min (X(n, t) + vmΔt,X(n−Δn, t)− wΔt)

(14)
where C(n,t)→(n′,t′) is the cost of the arc between (n,t) and (n’,t ’).
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Fig. 3. Geometric networks associated to the Lagrangian variational principle.

Notice that 14 and 13 are identical. Therefore, the Godunov and the varia-
tional schemes are equivalent when the FD is triangular and the CFL condition
9 is satisfied as an equality; i.e., when Δt = Δn/(wκ).

3 Introducing Different Vehicle Characteristics

3.1 Principle

The only way to distinguish different vehicle characteristics in Eulerian co-
ordinates is to separate the global flow into several continuous homogeneous
classes. The Lagrangian coordinate system makes this easier. Indeed, it allows
for tracking vehicles and therefore applying a specific FD to them.

In the sequel, we suppose that m vehicle classes flow in proportions rj ,
j = 0, 1, . . .m−1. Each class j is characterised by a triangular FD Vj with the
following parameters: vm,j , the free-flow speed, κj , the jam density and wj the
wave-speed. The free-flow speed vm,j depends both on vehicles’ mechanical
performances and legislation. The jam-density κj can be estimated as the
inverse of the mean distance between two stopped vehicles of the same class
j. This distance, lj , is roughly equal to the mean vehicle length plus some
buffer distance between vehicles (about one meter). The wave-speed wj can
be estimated as the ratio between lj and the mean time between two successive
departures inside a queue formed upstream from a traffic signal. Indeed, the
wave-speed corresponds to the velocity of the starting wave observed when a
traffic signal turns green. Note that the index j = 0 will always represent the
class in which the mean vehicle length is minimum. Typically, it corresponds
to passenger cars. For this latter class, the subscript j will be omitted.

For simplicity, we assume that the behavior of a given vehicle class is
defined by the FD of its own class. We will see in the next section how the
car-following rule is modified to account for different FDs.
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3.2 Numerical Resolution

The Lagrangian cell size Δn will now be set to 1, so that cells contain only
one vehicle characterized by its specific FD. We can therefore drop the index i
and refer to cells by the vehicle number, n. Numerical schemes will be derived
either from the Godunov method or the variational principle.

Godunov Scheme

Lebacque in [20] has demonstrated that the Godunov scheme can be applied
with different FDs in each Eulerian cell. This also holds in Lagrangian coor-
dinates. Thus, if the vehicle in cell n belongs to class j, 12 becomes:

X(n, t+Δt) = min
(
X(n, t)+ vm,jΔt, (1−αj)X(n, t)+αjX(n− 1, t)−wjΔt

)
(15)

where αj = wjκjΔt. The CFL condition imposes that:

∀k ∈ [0,m− 1] Δt ≤ 1
wjκj

(16)

This condition cannot be satisfied as an equality for all classes. Thus, the
numerical scheme is no longer exact. Numerical viscosity appears except for
the class where the equality holds.

3.3 Variational Principle

Considering a specific diagram for each vehicle does not modify the slope of
free-flow waves in the Lagrangian network. Indeed, this slope u1,j is always
equal to 0. Only the cost depends on vehicle class: R(u1,j) = vm,j . This can
be easily accounted for as it does not change the structure of the network.

The slope of congestion wave, however, which depends on vehicle class:
u2,j = wjκj . Cost on congestion waves is R(u1,j) = −wj . Thus it is no longer
possible to build a sufficient network in the general case. To reduce numerical
errors, one should set Δt = 1/(wκ). Passenger car positions will then be
exactly calculated. Congestion waves for all other classes will reach position
Xc(t) at time t; see Figure 4a. The location Xc(t) is bounded by X(n, t) and
X(n − 1, t), and should be estimated as this point does not belong to the
network. This will introduce numerical errors. If we suppose that the spacing
is uniform in each Lagrangian cell, Xc(t) can be deduced by:

Xc(t) = (1− αj)X(n, t) + αjX(n− 1, t) (17)

with αj = wjκjΔt. The variational scheme is then:

X(n, t+Δt) = min (X(n, t) + vm,jΔt,Xc(t)− wjΔt) (18)
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Note that 18 is fully equivalent to the Godunov scheme 15. This explains
why this latter scheme is no longer exact for heterogeneous flow.

Fig. 4. Networks to account for different vehicle characteristics.

Under some specific assumptions, it is still possible to have an exact nu-
merical scheme. These assumptions are:

• the wave speed is the same for each j: wj = w;
• the ratio lj (mean vehicle length) over l (mean passenger car length) is an

integer for each j.

Under these assumptions, the ratio wκ/(wjκj) is always an integer. Thus,
each congestion wave can join a network node among the previous time steps;
see Figure 4b. One has just to store the X values at the T previous time steps
with T = max(wκ/(wjκj)). The numerical scheme becomes:

X(n, t+Δt)

= min
(
X(n, t) + vm,jΔt,X

(
n− 1, t−

(
κ
κj
− 1
)
Δt
)
− wj

κ
κj
Δt
) (19)

Note that the above assumptions are not too restrictive. Indeed, many
authors assume that vehicle’s behaviours are almost the same in congestion
[4, 6, 8]. Therefore a constant wave-speed for all classes is a reasonable as-
sumption.

4 Numerical Example

We are now going to focus on the bimodal case: light trucks and passengers
cars. The FD parameters for both classes are:

• passenger cars: vm = 20 m/s; w = 5 m/s; κ = 0.2 veh/m (l = 5 m);
• light trucks: vm, 1 = 12 m/s; w1 = 5 m/s; κ1 = 0.1 veh/m (l1 = 10 m).
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Figure 5 presents the simulation results for a one-lane arterial road with a
traffic signal located 400 m after the entrance. The cycle time is 90 s with 60
s of green time. The incoming flow is equal to 1080 veh/h. The ratio of light
trucks r1 is equal to 10% during 150 s and then switches to 40% until time
t = 340 s which corresponds to the end of the simulation.

Fig. 5. Numerical example - exact variational scheme.

The simulation results show that the proposed numerical scheme repro-
duces the different vehicle behaviour as expected. Notice how shockwaves
propagate upstream as sharp discontinuities in vehicle speeds, regardless of
the vehicle class it crosses. This appealing property is a consequence of the
numerical method being exact for both vehicle classes.

5 Conclusion

This paper proposes an original method to account for a traffic heterogene-
ity in the LWR model. Contrary to previous approaches, this extension is
introduced in Lagrangian coordinates rather than in classical Eulerian ones,
which enable distinguishing vehicle characteristics via class-specific FDs. Fur-
thermore, numerical resolution can be addressed with simple and effective
schemes. The main advantage is that these schemes are exact under few re-
strictive assumptions.

For simplicity, we made the assumption that the behavior of a given ve-
hicle class is defined by the FD of its own class. In particular, this amounts
to assuming that the class of the vehicle immediately downstream of a given
vehicle will not affect its behavior. While this is certainly true in freely-flowing
traffic, in congested conditions this may or may not be the case. Empirical
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evidence should be used to discern this matter. Fortunately, it is straightfor-
ward to extend the proposed model to capture such correlations: all one needs
to do is define the FD for each pair of vehicle types.

The car-following rules proposed in this paper can be straightforwardly
coupled with the lane-changing model in [18], yielding a complete microscopic
multilane and multiclass model. Further research is being undertaken to vali-
date this complete model with empirical data.
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Summary. In this paper, we propose a Cross Entropy (CE) [1] based multiagent
approach for solving static/dynamic traffic assignment problems (TAP). This algo-
rithm utilizes a family of probability distributions in order to guide travelers (agents)
to network equilibrium. The route choice probability distribution depends on the av-
erage network performance experienced by agents on previous days. Based on the
minimization of cross entropy concept, optimal probability distributions are derived
iteratively such that high quality routes are more attractive to agents. The advantage
of the CE method is that it is based on a mathematical framework and sampling
theory, in order to derive the optimal probability distributions guiding agents to
the dynamic system equilibrium. Interestingly, we demonstrate that the proposed
approach based on CE method coincides with dynamic system approaches. Numeri-
cal studies illustrate both nonlinear and bimodal static traffic assignment problems.
A comparative study of the proposed method and the dynamic system approach is
provided to justify the efficiency of proposed method.

1 Introduction

Solving both static/dynamic traffic assignment problems based on realistic
traffic flow models is an important issue in transportation research. Following
the Wardrop equilibrium principle, drivers are assumed to swap to cheaper
cost routes until the costs of all routes actually used are equal and are less than
the costs of unused routes. The traffic assignment problems can be usually for-
mulated as variational inequality, non-linear complementarity or fixed point
problems [2]. For one user class static traffic assignment problems, route travel
cost is evaluated based on a performance function under monotone, symmet-
ric or separable assumptions. Based on these assumptions, classical convex
optimization techniques can be applied for solving these problems without
difficulty. However, for dynamic or multimodal traffic assignment problems,
the classical solution methods can be no more applicable, given that the an-
alytical form of link cost function is generally difficult to derive and also that
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the monotonicity assumption is no longer respected in the case of multimodal
network [3].

To address this issue, there exist many variant approaches in the liter-
ature. We are particularly interested in dynamical system approaches [4–6]
for comparative study with the proposed CE based method. The dynamical
system approaches are based on a day-to-day route flow adjustment process,
for which network flows between the same OD pair are adjusted following
some deterministic or stochastic procedure until (Wardrop) user equilibrium
is achieved. However, the adjustment process is problematic, especially when
there exist more than one class flows between each OD pair. More explicitly,
there is no systematical way to adjust all class flows with consideration of
the asymmetric effect caused by other class users on the network. Another
issue is that the dynamical system approach cannot be applied when there
are multiple equilibrium in multimodal network. Indeed, there is no Lyapunov
function in this case. On the other hand, the dynamical system approach could
be applied to each mode in sequence.

In this work, we derive iteratively the optimal route choice probability dis-
tributions towards network equilibrium based on the CE Method, which is a
stochastic optimization technique for combinatorial and continuous optimiza-
tion problems. Based on the minimization of cross entropy concept, optimal
probability distributions are derived iteratively such that high quality routes
are more attractive to agents. We demonstrate that the proposed CE method
can be seen as a stochastic version of the dynamical system approach, which
is based on importance sampling and rare event theory. Two numerical ex-
amples are illustrated for one and multiple user class static traffic assignment
problems. A comparaison study of the proposed method with dynamical sys-
tem approach is also shown in order to evaluate the efficiency of proposed
method.

2 The Cross Entropy Based Multi-Agent Method

The CE method is an adaptive algorithm for estimating probabilities of rare
events in complex systems. Based on this method, we can modelize user equi-
libria as rare events depending on complex stochastic behavior of all trav-
ellers. Consider a static traffic assignment or network equilibrium problem,
for which a network consists in an origin-destination (OD) pair connected by
a set of routes. Agents are located at origins and choose a route stochasti-
cally to a destination based on a route choice probability distribution. Note
that the probability distribution is related to each OD pair and utilized by
agents of the same OD pair. Let Ci denote travel cost of route i. For sim-
plicity of the exposition we assume here that Ci is a function of its demand,
i.e. Ci = Ci(di), ∀i ∈ I; and I denotes the set of all routes connecting the
same OD pair. Let pi denote the choice probability of route i and Hi(γ)
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denote the performance function of route i, defined by Boltzmann distribu-
tion [7],

Hi(γ) = e−Ci(di)/γ , ∀i ∈ I, (1)

where γ is the control parameter or temperature. We note that γ controls the
swapping force pushing flow to shift from more expensive routes to cheaper
ones. Note that as γ decreases, the swapping force increase. The overall ex-
pected performance based on the choice probability distribution p is the ex-
pectation of all route performance, defined as:

h(p, γ) =
∑
i∈I

piHi(γ), (2)

subject to: ∑
i∈I

pi = 1, ∀pi ≥ 0 (3)

As mentioned above, agents swap from costly routes to cheaper ones in
order to minimize their own cost. Following Rubinstein [1], the optimal choice
probability distribution towards to cheaper routes at next iteration is the
solution of the following optimization problem which minimize the Kullback-
Liebler relative entropy between two consecutive probability distributions,

pw+1 = max
p

Epw [H(γ) lnp], (4)

subject to equation (3), where w is the index of iteration.
The optimization problem of equation (4) is equivalent to

pw+1 = arg min
p

∑
i∈I

pwi e
Ci(di)

γ ln pi, (5)

subject to equation (3).
We can derive the solution of the above equation as:

pw+1
i = pwi ×

e−Cw
i /γw

∑
j∈I

pwj e
−Cw

j /γw , ∀i ∈ I (6)

We note that the derived probability distribution depends on the control pa-
rameter γ, which must be estimated adaptively in order to converge to the
user equilibrium.

As mentioned above, keep γ small will cause more agents swapping to
routes which are cheap. However, swapping flow too early will cause traffic
congestion on the chosen routes and make them unattractive since the cost-
flow relationship is nonlinear. Thus keeping γ too small may renforce routes
that turn out to be inefficient. An adaptive parameter estimation technique to
obtain optimal γ is to minimize γ, provided that the sum over the differences
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between two consecutive probability distributions is bounded. This bound is
decreased iteratively towards 0 like the cooling technique utilized in simulated
annealing method [8]. Thus, we consider the following adaptive estimation of
the control parameter γ:

min γws.t.
∑
i∈I

|pw+1
i − pwi | ≤ αw, (7)

where pwi is defined by equation (5), αw = C
w a numerical divergent series,

the generic term of which converges to 0, and C a constant for setting initial
value of γ.

If the first order approximation is applied to exponential function, i.e.

e−Cw
i /γw

� 1− C
w
i

γw
, if γw →∞ (8)

We can obtain the following dynamical system which is the same as the system
introduced in [6]:

ṗ = −p(C(p)− C(p)), (9)

where C(p) = EpC(p) denotes the expectation of travel cost with respect to
the probability distribution p.

We note that at Wardrop equilibrium, the derived probability distribution
is stable. i.e.

pw+1
i = pwi , if Cw

i = min
j∈I
Cw

j , (10)

which coincides with the result obtained by the dynamical system approach.
Note that the classical CE method has been tailored for cost functions inde-
pendent of demand, which is why it diverges from the adaptation presented
here.

Finally, let us investigate its impact on the derived probability changes of
γ tending to ∞ and 0, respectively.

In the case of γw →∞, we obtain the following results

lim
γw→∞

(pw+1
i − pwi ) = 0, ∀w (11)

On the contrary, when γw → 0, we obtain

lim
γw→0

(pw+1
i −pwi ) = −pwi

⎛
⎜⎜⎜⎜⎝1− 1∑

j∈I

pwj e
Cw

i −Cw
j

γw

⎞
⎟⎟⎟⎟⎠ =

{
−pwi if Cw

i > minj∈I C
w
j

−∞ otherwise

(12)
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3 The Algorithm Based on CE Method

The algorithm for solving general TAPs consists of an iterative procedure
which updates adaptively the probability distributions and the control pa-
rameters until the desired result is obtained. The algorithm is described as
follows:

Main algorithm

1. Initialization
a) Initialize the parameter αw according to the magnitude of route choice

set and set iteration index w = 0.
b) Initialize route choice probability according to a uniform probability
pwi = 1/|Ik|, ∀i ∈ Ik, ∀k ∈ K, where Ik is the set of routes connecting
the same O/D pair k, K is the set of all OD pairs.

2. Compute travel cost
Compute travel costs of all routes with respect to agents’ choice. In the
static case, travel cost can be evaluated by cost-flow functions. However,
in the dynamic case, agents’ experienced travel costs can be computed
with respect to analytical or simulation-based traffic flow models. Differ-
ent traffic flow models can be utilized, such as first-order model [9, 10],
the generic second-order traffic flow model [11, 12] or the cell transition
model [13]. Moreover, different alternatives with related cost specifica-
tions can be taken into account, e.g. mode choice, departure time choice
or destination choice etc.

3. Update the choice probability distribution
For adaptive estimation of γ, we utilize the interpolation method by
bounding 0 ≤ γ ≤ M , where M is a constant. The optimal γ can be
deduced from equation 7. The derived optimal probability distribution
can be thus evaluated by equation 6.

4. Stopping criteria
When w = wmax or the derived choice probability distributions are stable,
stop; otherwise go to step 2.

We note that for multimodal traffic assignment problems, there is one
user equilibrium per class of users, given the other classes of users’ choice.
Accordingly, the probability distributions utilized by agents of different classes
should be distinguished.

4 Numerical Studies

In this section, we study two static traffic assignment problems with respect
to one and multiple classes. The first example is shown in Fig. 1 consisting
of an OD pair with three links [6]. The nonlinear cost-flow functions are the
following:
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Fig. 1. A static mono-modal network.

t1 = 10(1.0 + 0.15(
x1
2

)4)

t2 = 20(1.0 + 0.15(
x2
4

)4)

t3 = 25(1.0 + 0.15(
x3
3

)4)

(13)

x1 + x2 + x3 = 10

where xi is the route flow on link/path i and the travel demand is 10. We
initialize the probability distribution for route (link) choice as uniform. The
evolution of the probability distribution is shown in Fig. 2. We see that after
15 iterations, the probability distribution for link choice becomes stable, and
the link cost over all links is almost equal, as shown in Fig. 3. The estimates
of γ oscillate after the solution nears the network equilibrium, as shown in
Fig. 4.

Fig. 2. Evolution of link choice probability.

The second example concerns a bimodal traffic assignment problem and
is described in Fig. 5. Two classes of users, e.g. car and bus, are present in a
two link/path network. The linear flow-cost function is given by [3]:

tai = 1.5xai + 5xbi + 30, ∀i ∈ {1, 2}
tbi = 1.3xai + 2.6xbi + 28, ∀i ∈ {1, 2}

(14)

da = 16, db = 4
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Fig. 3. Evolution of link travel time.

Fig. 4. Evolution of control parameter γ.

Fig. 5. A static bimodal network.

where tki is the travel time of class k on link i, xki is the number of class k on
link i. dk is the demand of class k. To treat this example, we introduce two
probability distributions with respect to the two user classes. Accordingly,
two different control parameters γ need to be estimated. We initialize the
probability distribution as a uniform distribution for each class. Similarly to
the previous example, we obtain convergence towards a user equilibrium. The
Nagurney field has as components the differences between path costs per mode
on link (1) and (2) as functions of the modal flows on link (1). The Nagurney
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field is shown in Fig. 6, where the equilibrium points are represented by red
stars. The flow vector far from equilibrium converges to the stable equilibria at
the up-left corner or down-right corner according to different initial conditions.
The unstable equilibrium can be found at the center with flows being 8 and
2 for class a and b.

Fig. 6. The velocity vectors associated to the Nagurney field on link 1.

5 Comparison with Dynamical System Approach

In this section, we are interested in comparing our method with other ap-
proaches. Note that the projection-type method [5] attempts iteratively to a
find a fixed point but its convergence speed is slow (linear or less). For this
reason, we choose the dynamical system approach to compare our proposed
CE method. The network is composed of 8 nodes and 12 links with two origins
and two destinations, as shown in Fig. 7. The OD travel demand equals to
1000 for each OD. The nonlinear cost functions are defined as follows:

t1 = 20(1.0 + 0.15(
x1
4

)4)

t2 = 15(1.0 + 0.15(
x2
4

)4)

t3 = 25(1.0 + 0.15(
x3
3

)4)

t4 = 10(1.0 + 0.15(
x4
2

)4)

t5 = 20(1.0 + 0.15(
x5
4

)4)

t6 = 5(1.0 + 0.15(
x6
3

)4)

t7 = 10(1.0 + 0.15(
x7
2

)4)

t8 = 20(1.0 + 0.15(
x8
4

)4)

t9 = 25(1.0 + 0.15(
x9
3

)4)

t10 = 90(1.0 + 0.15(
x10
2

)4)

t11 = 20(1.0 + 0.15(
x11
4

)4)

t12 = 35(1.0 + 0.15(
x12
3

)4)

(15)

dk = 1000,∀k ∈ K,
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where xi denotes number of travelers, k an OD pair. The network equilibrium
solutions obtained by these two approaches (CE and dynamic system) are
very close for all OD pairs. The evolution of path costs, connecting the same
OD pair (O1-D1), obtained by these two methods is shown in Fig. 8. The CE
method converges to equilibrium faster than the dynamical system approach.

Fig. 7. The multiple OD network.

Fig. 8. Evolution of path costs connecting origin O1 and destination D1 based on
CE method (left) and dynamical system approach [4] (right).

6 Conclusion

In this study, a fast convergent CE based multi-agent approach for solving the
general static/dynamic traffic assignment problem has been proposed. Based
on the CE method, the adaptive route flow shifts are derived, resulting from
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travel cost realized on previous day. We have also shown that in a multimodal
network, given that the monotonicity of the travel cost function does not hold,
multiple user equilibrium solutions can be found quickly with different initial
conditions. The results with comparison to the dynamical system approach
show that the proposed CE method approach converges more quickly. It is
also better adapted to complex cost functions, as in the dynamic assignment
problems based on traffic flow models.

We have provided the main algorithm for solving general static/dynamic
traffic assignment problems. Further applications in large scale multimodal
network based on realistic traffic flow models are actually under study.
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1 Introduction

This paper is concerned with the modelling of crowd motion in highly packed
configurations. We are especially interested in describing evacuation situa-
tions: people want to escape from a room, a building, a railway station or a
plane, that may contain obstacles (walls, seats, tables, . . .).

Many strategies have been followed to model crowd motions: macroscopic
models [1–3], Cellular Automata [4–6], queuing models [7, 8] and microscopic
models [9, 10]. The possibility that people may actually get into contact is
usually handled indirectly (repulsive forces or adapted cut-off for microscopic
models, exclusion principle for Cellular Automata or queuing models). We
propose here to integrate a strong non-overlapping constraint in a ODE frame-
work, in the spirit of granular flow models.

Our approach rests on two principles. On the one hand, we define a spon-
taneous velocity, which corresponds to the velocity each individual would like
to have in the absence of other people. On the other hand, individuals (which
are identified to rigid discs) must obey a non-overlapping constraint. Those
two principles lead us to define the actual velocity field as the projection of the
spontaneous velocity over the set of admissible velocities (regarding the non-
overlapping constraints). To perform this projection, we put the problem in a
saddle-point form, which leads us to introduce a collection of Lagrange multi-
pliers. Those Lagrange multipliers can be interpreted as interaction pressure
between people which are in contact.

2 Modelling

We consider N persons identified with rigid disks of common radius r, in a
room represented by a domain Ω ⊂ R

2. The centre of the i-th disk is denoted
by qi. We define the set of configurations:

mailto:Bertrand.Maury@math.u-psud.fr
mailto:Juliette.Venel@math.u-psud.fr
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Q = {q = (q1,q2, . . . ,qN ) ∈ R
2N}.

Moreover, we introduce a spontaneous velocity field

U = (U1, . . . ,UN ),

where Ui represents the velocity which person i would like to have if he were
alone. As a first step, we consider here the simplest model one may think of:
all individuals have the same behaviour, and they do not elaborate complex
strategies to escape. We therefore introduce a global spontaneous velocity field
x �→ U0(x), and we write

U(q) = (U0(q1), . . . ,U0(qN )).

In this hard-sphere approach, overlapping is strictly forbidden, which leads to
the following set of feasible configurations:

Q0 = {q ∈ Q,Dij(q) = |qj − qi| − 2r ≥ 0 ∀i �= j}.

As overlapping is forbidden, two persons already in contact can only increase
their distance: the set of feasible velocities is

Cq = {v , Gij(q) · v ≥ 0 as soon as Dij(q) = 0} ,

with (see Fig. 1)

Gij = ∇Dij = (0, . . . , 0,−eij , 0, . . . , 0, eij , 0, . . . , 0) ∈ R
2N .

Fig. 1. Notations.

We may now state the basic form of the model: the actual velocity field is
the feasible field which is the closest to U for the euclidean distance, which
writes
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dq
dt

= PCqU(q),

where PCq denotes the euclidean projection onto the closed convex cone Cq.

Remark 1. We focus in this note on the handling of contacts, limiting our
scope to the simplest behavioral model, but more sophisticated strategies can
be integrated in the approach. In this spirit, the spontaneous velocity of a
person can be made dependent upon its own characteristics (like personality
or physical force), and the position of its neighbours (according to some self-
optimization strategy, or social rules). It amounts to write the global velocity
field in the general form

U(q) = (U1(q), . . . ,UN (q)).

Note that the dependence is likely to be non-smooth (it involves discrete
decision processes), so that the mathematical results presented in the next
section could be affected. From the numerical point of view though, those
modifications can be implemented straightforwardly, and do not change the
computational times.

3 Mathematical Framework

Despite its formal simplicity, this model does not fit directly into a standard
framework. Let us reformulate the problem by introducing Nq, the outward
normal cone to the set of feasible configurations Q0

Nq = Co
q = {w , (w,v) ≤ 0 ∀v ∈ Cq} .

Thanks to Farkas’ Lemma, this cone can be expressed

Nq =
{
−
∑
λijGij , λij ≥ 0 , Dij(q) = 0 =⇒ λij = 0

}
.

Now using the classical orthogonal decomposition of a Hilbert space as the
sum of mutually polar cones (see [11]), we obtain

dq
dt

= PCqU(q) = U(q)− PNqU(q).

As a consequence,
dq
dt

+ Nq � U(q). (1)

The problem takes the form of a differential inclusion, which has motivated
a huge amount of papers in the last decades. Let us first consider a special
situation where standard theory can be applied. Consider N individuals in a
corridor (see Fig. 2). In that case, as people are not likely to leap accross each
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Fig. 2. One dimensional situation.

other, it is natural to restrict the set of feasible configurations to one of its
connected components:

Q0 = {q = (q1, . . . , qN ) , qi+1 − qi ≥ 2r}.

In this very situation, as Q0 is closed and convex, the multivalued operator
q �−→ Nq identifies to the subdifferential of the indicatrix function of Q0:

∂IQ0(q) = {v, IQ0(q)+(v,h) ≤ IQ0(q+h) ∀h} , IQ0(q) =
∣∣∣∣ 0 if q ∈ Q0

+∞ if q /∈ Q0

therefore q �−→ Nq is maximal monotone. As soon as the spontaneous velocity
is regular (i.e. Lipschitz), standard theory (see e.g. Brezis [12]) ensures well-
posedness.

In the general case, Q0 is not convex, so that q �−→ Nq is not maximal
monotone. Despite the formal simplicity of the model, its analysis calls for
sophisticated abstract tools developed recently by Edmond and Thibault [13,
14]. The well-posedness rests on the fact that the set of feasible configurations
is prox-regular (see [15]), which means that the projection onto Q0 is well-
defined in its neighbourhood. As a consequence, it can be established that the
problem is well-posed.

4 Numerical Simulation

4.1 Time-Stepping Scheme

The numerical scheme we propose is based on a first order expansion of the
constraints expressed in terms of velocities. We introduce a uniform sequence
of time steps

t0 = 0 < t1 < · · · < tp = T , tn+1 − tn = T/p,

and we denote by qn the approximation of q(tn). The next configuration is
obtained as

qn+1 = qn + hun+1,

where un+1 minimizes

1
2
|v −U(qn)|2 over Ch

qn , with
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Ch
q = {v , Dij(q) + hGij(q) · v ≥ 0}.

In other words,
un+1 = PCh

qn
(U(qn)).

This scheme can be shown to converge to the exact solution:

Theorem 1. Let us denote by qh the continuous, piecewise linear function
associated to the numerical scheme. Then qh goes to q uniformly in [0, T ],
where t �→ q(t) is the exact solution.

Proof. The proof is technical and lengthy, and we shall detail it in a forth-
coming paper.

The scheme can be interpreted in the following way. Let us introduce the
set

Qh
0 (q) = {q̃ , Dij(q) + Gij(q) · (q̃− q) ≥ 0},

which can be seen as an inner convex approximation of Q0. Note that Qh
0 does

not depend on h. Yet we keep this notation to emphasize the fact that it is
an approximation of Q0. It is straightforward to check that

qn+1 − qn

h
+ ∂IQh

0 (qn)

(
qn+1

)
� U(qn),

so that the scheme can be seen as a semi-implicit discretization of (1), where
∂IQh

0 (qn) approximates Nqn .

4.2 Projection Step

The costly part of the algorithm lies in the projection of the spontaneous
velocity onto the approximated set of feasible velocities. We propose here to
solve this projection by a Uzawa algorithm (note that any algorithm could
be used to perform this task). This algorithm (see e.g. [16]) is based on a
reformulation of the projection problem onto a saddle-point form:

⎧⎪⎪⎨
⎪⎪⎩

u +Bλ = U

Bu ≤ D

(Bu−D,λ) = 0.

with

U = U(qn) , Bv = (−hGij(qn) · v)i<j , D = (Dij(qn))i<j ,

Bλ = −h
∑
i<j

λijGij(qn).

The Uzawa algorithm produces a sequence λk according to



176 Bertrand Maury and Juliette Venel

λk+1 = Π+

(
λk + ρ

(
B(U−Bλk)−D

))
,

whereΠ+ is the euclidean projection onto the cone of vectors with nonnegative
components (a simple cut-off in practice), and ρ > 0 is a fixed parameter. The
algorithm can be shown to converge as soon as 0 < ρ < 2/‖B‖2 (see [16]).

Remark 2. The auxiliary quantities λij appear as numerical ways to handle the
corresponding constraints. They quantify the way U, the spontaneous velocity
field, does not fit the constraints, and as such they can be interpreted in terms
of pressures undergone by individuals. Although it would be presumptuous at
this stage to assimilate λij to an actual measure of the discomfort experienced
by persons i and j, it is obvious that high values for those Lagrange multipliers
can be expected on zones where people are likely to be crushed.

5 Numerical Experiments

5.1 Counter flowing crowds

The first set of experiments is based on the following situation: we consider
two populations of individuals in a periodic bidimensional domain. They are
represented in black (B) and white (W) in the figures. B-individuals want to
go to the right, and W-individuals tend to go in the opposite direction (with
the same desired speed 1). The simplest model we proposed at the beginning
of this paper, without any avoiding strategies, makes it possible to recover
the so-called fingering pattern (see [10, 17]). The number of inviduals in each
population is 750. Figure 3 represents snapshots of the two populations, at
times 0 (random distribution), 25, 75, and 100. Note on the second figure
from the top, during the transitory period, the apparition of white and black
clusters, due to absence of any social force or auto-optimization strategy in
this test.

5.2 Exit from a Building

The second experiment we performed correspond to the situation of 3000
persons which are randomly distributed in a room at initial time. The sponta-
neous velocity field has constant modulus 1, and is directed along streamlines
of the geodesic distance to a safe spot, far away from the room. We repre-
sented (see Fig. 4), at times 3, 7, 65, and 110 the current configuration and
the corresponding network of interaction pressures. For any couple of discs
in contact, we represent the segment between centers, having its color (from
white to black) depend upon the (positive) Lagrange multiplier which handles
the corresponding constraint. We recover the apparition of arches upstream
the exit (see [17, 18]).
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Fig. 3. Counter flowing crowds.
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Fig. 4. Emergency exit.
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1 Introduction

All the time, traffic problems have attracted extensive attention of scientists
because of the appearance of complex phenomena. i.e. there exist the observed
non-equilibrium phase transitions and various nonlinear dynamical phenom-
ena in the process of traffic congestion. There have been many attempts to con-
struct traffic models, such as cellular automaton models, car-following models,
gas kinetic models and hydrodynamic models, to explain the mechanism of
jams from the viewpoint of physics [1]. The classic optimal velocity (OV)
model is a kind of car-following model proposed by Bando et al. [2] in 1995.
The dynamical equation of the optimal velocity model is obtained as follows

ẍj(t) = a(V (Δxj(t))− ẋj(t)) (1)

where xj(t) is position of the jth car at time t, Δxj(t) is the headway of
the jth car at time t and a is the driver’s sensitivity. The optimal velocity
model assumed that a driver can obtain the vehicle’s acceleration via adjust-
ing a vehicle’s optimal velocity V (Δxj(t)). The OV model is a very simple
car-following model and has succeeded in reproducing the dynamical forma-
tion of congestion. However, OV model can not avoid crash at values of the
sensitivity smaller than about one, a ≤ 1s−1 for it shows unrealistic values of
the acceleration for various optimal functions [3]. Recently, Lenz et al. [4] and
Wilson et al. [3] analyzed the characteristics of the optimal velocity model
and proposed the multiple look-ahead models with many-neighbor and non-
locality to implement the OV model’s drawbacks, in which Wilson et al. [3]
presented three multiple look-ahead models with many-neighbor and non-
locality. In what follows, for simplicity, we call the three models as the model
A, B and C, respectively.
Model A:

ẍj(t) = a(
n∑

l=1

γlV (Δxj+l−1(t))− ẋj(t)) (2)
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Model B:

ẍj(t) = a(
n∑

l=1

γlV (
1
l

l∑
p=1

Δxj+p−1(t))− ẋj(t)) (3)

Model C:

ẍj(t) = a(V (
n∑

l=1

γlΔxj+l−1(t))− ẋj(t)) (4)

where γl is a weight factor to denote the driver to notice the behaviours of
many vehicle ahead in the different manner. In addition, Ge et al. [5] has also
proposed a multiple look-ahead model similar to equation (4) in the form of
difference equation via considering the effect of multi-headway ahead on opti-
mal velocity. Their studies indicates that the properties with many-neighbor
and non-locality is beneficial to enhance the stability of traffic flow. However,
we have carefully performed the simulation at values of the sensitivity smaller
than about one, a < 1s−1 and found that the multiple look-ahead model can
not avoid a negative velocity or to move backward, which it shows unrealistic
and unallowed in real traffic. We will discuss these drawbacks and remove the
defects via introducing multiple relative velocity in section 3. Although Her-
man et al. [6] has ever observed that variation of multiple car relative velocity
ahead affected the current drivers in real traffic, the OV model (1) and all of
the multiple look-ahead models do not contain a driver response to the veloc-
ity difference Δvj(t) (relative velocity) with respect to the preceding car. As
early as 1961, Gazis et al. [7] have proposed the following stimulus-response
equation via considering the velocity difference in a single lane.

ẍj(t+ T ) = κ
vj(t+ T )η

Δxρ
j

Δvj(t) (5)

Here, κ is the driver’s sensitivity to relative velocity, η and ρ is an exponent of
velocity and headway, respectively. But, this equation can not avoid to obtain
the larger acceleration, which exceeds one in real traffic [8]. Helbing et al.
have considered that the relative velocity Δvj(t) = vj+1(t)− vj(t) enables to
enhance the stability of traffic flow in Ref. [8]. Xue et al. [9] also extended
the OV model to take the effect of the relative velocity into account and its
stability is superior to the original OV model.

In this paper, we will combine the multiple look-ahead models with Gazis
et al.’s stimulus-response equation by introducing multi-velocity-differences
ahead.We would like to address whether or not the extended model displays
marked improvement of stability of traffic flow. The linear stability analysis
indicates that the effect of multiple velocity-ahead differences enhance the
stability of traffic in great measure, and is beneficial to reduce the excess
energy consumption of the whole flow in respect to energy consumption.
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2 Model and Stability Analysis

Based on multiple look-ahead model, the stimulus-response equation proposed
by Gazis et al. and symmetrical consideration, the extended model to consider
multiple velocity difference ahead is proposed as follows

ẍj(t) = a(
n∑

l=1

γlV (Δxj+l−1(t))− ẋj(t)) + a
n∑

l=1

vηj+l−1(t)
Δxρ

j+l−1

Δvj(t), (6)

ẍj(t) = a(
n∑

l=1

γlV (
1
l

l∑
p=1

Δxj+p−1(t))− ẋj(t)) + a
n∑

l=1

vηj+l−1(t)
Δxρ

j+l−1

Δvj(t), (7)

ẍj(t) = a(V (
n∑

l=1

γlΔxj+l−1(t))− ẋj(t)) + a
n∑

l=1

vηj+l−1(t)
Δxρ

j+l−1

Δvj(t). (8)

For simplicity, κ is approximately chosen as a Δvj+l−1 and Δxj+l−1 is respec-
tively velocity difference (relative velocity) and headway between jth car and
(j + l − 1)th car ahead at time t. γl (l = 1, 2...n) is a weight factor chosen
according to the different variations of many-vehicle states ahead and has the
following properties [10]. When n > 1,

l �= n, γl =
m− 1
ml

; l = n, γl =
1
mn−1

(9)

m is a parameter in the weight factors and m ≥ 3. Phenomenological param-
eters η and ρ to be fixed by comparison with empirical data are η = 0.953
and ρ = 3.05 or η = 0.8 and ρ = 2.8 [11, 12]. The optimal velocity V (Δxj) is

V (Δxj(t)) = (Vmax/2)(tanh(Δxj(t)− hc) + tanh(hc)), (10)

where Vmax is the maximal velocity, hc is the safety distance.
To apply the linear stability analysis to analyze the stability of the model

described by Eq. (6), (7) and (8), the stable conditions are respectively as

V ′(h)
a

=
n∑

l=1

γl
2l − 1

2
+ n

(V (h))η

hρ
, (11)

V ′(h)
a

=
n∑

l=1

γl
2l

l∑
p=1

(2p− 1) + n
(V (h))η

hρ
, (12)

V ′(h)
a

=
n∑

l=1

γl
2l − 1

2
+ n

(V (h))η

hρ
, (13)

where V ′(h) = dV (Δxj)/dΔxj |Δxj=h. Obviously, the stability criterion Eq.
(11), (12) and (13) is determined by the value of the weighted function γl. We
take the extended model A,C for example to compare its stability with those
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of Wilson’s model A,C and choose the parameter of weight functions m = 3.
Fig. 1 (a) and (b) show the neutral stability lines of model A,C and their ex-
tended model as n = 1, 2, 3, and 5, respectively. In fig. 1, the apex of each curve
denotes the critical point (hc, ac), the traffic flow above each curve is stable
and the traffic jam does not appear. Below each curve, the traffic flow loses its

Fig. 1. Neutral stability curves in the headway-sensitivity space, where vmax = 2.0,
hc = 2.0. The neutral stability curves in Wilson’s model A,C (the dash line) and
their extended model (the solid line) as m = 3, n = 1, 2, 3, and 5, respectively.

stability and the density wave emerges. From fig. 1, it can be found that with
the consideration of more cars ahead, the critical points and the neutral sta-
bility curves are lowered, which means the traffic flow more stable. Moreover,
just only considering two cars ahead and their velocity differences in extended
model is more stable than those taking an arbitrary number of cars ahead in
Wilson’s model A,C into account. That is to say, the stability of the extended
model has been strengthened and traffic jamming is suppressed efficiently.

3 Numerical Simulation and Analysis

In order to demonstrate how the stability of traffic flow is enhanced in the ex-
tended model, we carry out the computer simulation for the extended model
Eq. (6)–(8) and Wilson’s model Eq. (2)–(4) using the forth order Runge-
Kutta scheme under initial condition of homogeneous distribution and peri-
odic boundary condition. Initially, 100 vehicles are homogeneously distributed
on a straight line with the length 200, the mean headway h = 2 and the ini-
tial mean velocity is tanh(2.0). The safety distance chosen is hc = 2.0, the
time-step is 0.01 and the exponent of velocity and headway η = 0.953 and
ρ = 3.05. In the following, we study the stability and properties of two models
through the neutral stability curves, consumption of energy and distribution
of energy consumption of each vehicle, respectively.
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First, the disturbance applies to the leading car to make its larger headway
than the others. Fig. 2 exhibits the snapshots of velocity configuration of 100
vehicles of two models in the unstable condition a = 0.35 at time step t = 1500.
From fig. 2, we can find that the negative speed appears in the Wilson’s model

Fig. 2. A snapshot of velocities of the 100 vehicles of the Wilson’s model A,B,C
and their extended model in the unstable condition a = 0.35 at t = 500.

A,B,C while the extended model are still positive speed. It means the Wilson’s
model can not avoid crash as the sensitivity is a ≤ 0.35 s−1. It is clear that
the multiple velocity differences has an important effect on the stability of the
traffic flow and is consistent with the results of stability analysis..

On the other hand, we study the stable properties of the models from en-
ergy consumption. Under the stable condition, Nakayama et al. [13] presented
the following quantity to estimate such additional energy consumption for all
vehicles,

E =
∑
cars

∑
waves

1
2
(V 2

max − V 2
min). (14)
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where waves denotes the summation of all periods of oscillation until the
disturbance disappears. Shi et al. [10] analyzes additional energy consumption
of some typical car-following models and shows that minimizing the energy
consumption depends on the stability of model. Fig. 3 exhibits the additional
energy consumption for Wilson’s model A,C and their extended model as
n = 1, 2, 3, 4, 5 and the parameter of weighting function m = 3. One can find
in fig. 3 that the consumption of the whole additional energy decreases with
the increasing value of sensitivity (a) and will diverge when sensitivity (a)

Fig. 3. The energy consumption for Wilson’s model A, C (the dashed line) and
their extended (the solid line) model as m = 3, n = 2, 3, respectively.

approaches or exceeds the critical point, it means the traffic flow is in the case
of unstable state and the perturbation on the traffic flow will induce stop-and-
go traffic. And we notice that the energy consumption curves will be reduced
with increasing value of the parameter n in each model. In addition, the energy
consumption in the extended model with n = 2 is lower than that in Wilson’s
model A,C with n = 3. Thus, it can be inferred that the flows in the extended
model with n = 2 have more stability than that in Wilson’s model A,C in
any value of n and a, which confirms the results obtained in stability analysis
above. Under the unstable condition, the disturbance to induce stop-and-go
traffic in the form of oscillation will not disappears. Eq. (14) is not suitable
to describe the whole energy change of traffic flow, but each vehicle’s energy
change is more important to understand formation of traffic jamming. The
change in kinetic energy ΔEj for the vehicle j between the two successive
time step is defined as

ΔEj =
1
2
[v2j (t)− v2j (t− 1)] (15)

where vj(t) and vj(t − 1) are the velocity of vehicle j in the two successive
time-steps, respectively. Fig. 4 shows the profile of distribution on energy
consumption in the extended model A, where the green solid denotes the case
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Fig. 4. Profile of energy consumption of the extended model as m = 3 and n = 1,
2, 3, 4, respectively, and a = 0.5.

as n = 1, the blue solid denotes the case as n = 2, the red solid represents the
case as n = 3 and the black solid represents case as n = 4. The profile of energy
consumption in each case is loop, and each loop is divided into two regions
with ΔEj > 0 and ΔEj < 0. ΔEj > 0 describes the vehicles that will leave
congestion region in the state of acceleration process. ΔEj < 0 indicates that
vehicles enter into the congestion region in way of deceleration. It is obviously
noticeable that the area of acceleration process and deceleration process are
not symmetrical. The latter is larger than the former, which indicates that the
energy consumption of entering into congestion is larger than those of leaving
congestion. In addition, the whole areas of each loop are not equivalent. The
area of loop diminished with increasing n. It can be inferred that the loop of
free flow (or in stable region) will shrink into a dot(h, 0). That is to say, the
traffic is free flow. As a result, for smaller loop of the energy consumption
profiler, traffic flow is more stable.

4 Summary

We have presented an extended model with many-neighbors and non-locality
via considering the effect of multiple velocity differences ahead on the opti-
mal velocity model. The stability of extended model has been strengthened.
Based on the intelligent transport system, drivers can conveniently receive
information of headway and multiple velocity changes ahead. It is possible to
improve traffic, suppress the emergence of a traffic jam, and reduce the energy
consumption.

This work was supported by the National Natural Science Foundation of
China, the National Basic Research Program of China, the Natural Science
Foundation of Guangxi and the Special Foundation for the New Century Tal-
ents Program of Guangxi Zhuang Autonomous Region.
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Summary. The number of models for pedestrian dynamics has grown in the past
years, but the experimental data to discriminate between these models is still to a
large extent uncertain and contradictory. To enhance the data base and to resolve
some discrepancies discussed in the literature over one hundred years we studied the
pedestrian flow through bottlenecks by an experiment performed under laboratory
conditions. The time development of quantities like individual velocities, densities,
individual time gaps in bottlenecks of different width and the jam density in front of
the bottleneck is presented. The comparison of the results with experimental data
of other authors supports a continuous increase of the capacity with the bottle-
neck width. The most interesting results of this data collection is that maximal flow
values measured at bottlenecks can exceed the maxima of empirical fundamental
diagrams significantly. Thus either our knowledge about empirical fundamental dia-
grams is incomplete or the common assumptions regarding the connection between
the fundamental diagram and the flow through bottlenecks need a thorough revision.

1 Introduction

Studies of the dependence between the capacity and the width of a bottleneck
for pedestrian flow can be traced back to the beginning of the last century [1,
2]. But up to now it is discussed controversially whether it increases stepwise
or continuously with width. In the following the basic assumptions of these
two positions are introduced.

Commonly the flow equation in combination with empirical measurements
is used to calculate maximal flow values through bottlenecks [3–6]. With the
width of the pedestrian facility, b, the flow equation can be written

J = Js b with Js = ρ v. (1)

The specific flow, Js, gives the flow per unit-width and is the product of
the average density, ρ, and the average speed, v, of a pedestrian stream. The

mailto:a.seyfried@fz-juelich.de
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empirical relation between flow and density, J = J(ρ), is called the fundamen-
tal diagram and with a given fundamental diagram the capacity of a facility
is defined as the maximum of this function. In general it is assumed that for
a given facility (e.g. corridors, stairs, doors) the fundamental diagrams for
different b merge into one diagram for the specific flow Js. Consequently the
capacity, C, is assumed to be a linear function of the width, b.

Contrary to this, Hoogendoorn and Daamen [7, 8] claim that the capacity
is growing in a step-wise manner. This statement is based on their observation
that inside a bottleneck the formation of lanes occurs, resulting from the
zipper effect during entering the bottleneck. The data in [7, 8] indicate that
the distance between these lanes is independent of the bottleneck-width. This
would imply that the capacity increases only when an additional lane can
develop, i.e. that this would occur in a stepwise manner with increasing width
[8]. Consequently, either the specific flow would decrease between the values
where the steps occur or the flow equation in combination with the concept of
a specific flow would not hold. One goal of this work is to examine this claim.

To resolve the discrepancies an experiment is arranged where the density
and the velocity and thus the flow inside the bottleneck is measured while
a jam occurs in front of the bottleneck. Our experiment is performed under
laboratory conditions with a homogeneous group of test persons and equal
initial conditions for the density and position of the test persons in front of
the bottleneck. Exclusively the width of the bottleneck and the number of
the pedestrians are varied. For a detailed discussion the results are compared
with experimental data of other studies. In this article we concentrate on
unidirectional pedestrian movement through bottlenecks under normal condi-
tions. The term movement under normal means that panic or in particular non
adaptive behavior which can occur in critical situation or under circumstances
including rewards [9] are excluded. This contribution summarizes parts of an
articles and two diploma thesis. The reader may consult [10–12] for more
detailed discussions and additional results.

2 Experimental Setup

The experiment was arranged in the auditorium ‘Rotunde’ at the Jülich Su-
percomputing Centre (JSC) of the Research Centre Jülich. The configuration
is shown in Figure 1. The group of test persons was composed of students and
ZAM staff. The boundary of the corridor in front of the bottleneck and the
bottleneck was arranged from desks. The height of the bottleneck assured a
constant width from the hips to the shoulders of the test persons. The length
of the bottleneck amounted to lbck = 2.8 m. The holding areas ensured an
equal initial density of the pedestrian bulk in front of the bottleneck for each
run. The distance from the center of the first holding area to the entrance of
the bottleneck was three meter.



Empirical Data for Pedestrian Flow Through Bottlenecks 191

Fig. 1. Experimental setup. In the drawing the position of the video cameras are
marked with circles. The holding areas are hatched. The left photo shows a picture
of the camera in front of the entrance in the bottleneck. The right is a snapshot
from the camera above the bottleneck. The trajectories are determined by marking
the center of the head of each person manually.

A stepwise increase of the flow due to lane formation is expected more
pronounced for small numbers of lanes. Thus the width of the bottleneck
was increased from the minimal value of b = 0.8 m in steps of 0.1 m to
a maximal value of b = 1.2 m. For every width runs are performed with
N = 20, 40 and 60 pedestrians in front of the bottleneck. At the beginning
of each run N test persons were placed in the holding areas with a density of
ρini = 3.3 m−2. They were advised to move through the bottleneck without
haste but purposeful. It was emphasized not to push and to walk with normal
velocity. The test persons started to move after an acoustic signal. The whole
cycle of each run was filmed by two cameras, one situated above the center of
the bottleneck and the other above the entrance of the bottleneck.

3 Data Analysis

3.1 Jam Density in Front of the Bottleneck

For the analysis of the jam density in front of the bottleneck only the runs
with N = 60 are used. After selecting and extracting the pictures made by
the camera located a half meter in front of the entrance, people are detected
manually with the help of the software tool Censys 3DTM [13]. To get an
overview of the time dependence and the local values of the density this pro-
cedure was repeated for every second of the run. The measurement area of
1 m2 was chosen directly in front of the bottleneck.
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Fig. 2. Time dependence of density in an observation area of 1 m2 located directly
in front of the entrance (left). Different lines refer to different bottleneck widths.
The resulting mean values of the stationary state as a function of the bottleneck
width (right).

In Figure 2 one observes for every width b the following qualitative devel-
opment of the density in time. In the first five seconds the pedestrian stream
reaches the entrance to the bottleneck and the density increases rapidly. It fol-
lows a stationary phase with large fluctuations around a constant value. The
length of the stationary phase decreases with increasing width. In the last ten
seconds of every run the density decreases to zero. The large fluctuation in
the second phase ranging from ρ = 3 to 8 m−2 can be explained by the small
observation area of 1 m2. However these fluctuations oscillate about a width
independent mean value of ρ = 5 m−2. For the calculation of the mean value
only the data of the second phase are used and as shown in the left figure
they are consistent with the assumption that the width of a bottleneck has
no influence on the density in front of the bottleneck. Indeed the fluctuations
are very large and do not allow a conclusive judgement. Moreover it can not
be excluded that this independence is restricted to small N and b ≥ 0.8 m.

3.2 Trajectories and Probability Distributions in the Bottleneck

The investigation of the flow insight the bottleneck is done by means of the
trajectories (xij , yij , tj). The index i marks the pedestrian, while j marks the
sequence of the points in time. For the determination of the trajectories a
manual procedure based on the standard video recordings of a camera above
the bottleneck is used, see Fig. 1. For details of this procedure and how flow
values, densities and velocities are extracted from the trajectories to study
their time dependence we refer to [10].

In Figure 3 we have collected for the runs with N = 60 the trajectories,
the probability distribution to find a pedestrian at the position x averaged
over y and the probability distribution of the individual time gaps between
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Fig. 3. For the runs with N = 60 and from top to bottom with increasing b: The
trajectories (left), the probability to find a pedestrian at position x (middle) and
probability distribution of the time gaps Δti at y = 0.4 m (right). For b ≥ 0.9 m the
formation of lanes is observable. However the distance between the lanes increases
continuously with b leading to a continuous decrease of time gaps between two
following pedestrians. Thus no indications of a stepwise change of the flow can be
found.

the crossing of two adjacents pedestrians, Δti, at the center of the bottleneck
at y = 0.4 m. The double peak structure in the probability distribution for
b ≥ 0.9 m of the positions indicates the formation of lanes. The separation
of the lanes is continuously growing with the width of the bottleneck. As a
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consequence of the zipper effect one expects also a double peak distribution
for Δt. However this is not as articulated as in the separation of lanes in
space. One can only observe a broadening of the time gap distribution with
increasing b and a drift to smaller values. It is important to note that all
changes as a function of the width are continuous except for the transition
from one to two lanes and thus there are no indications of a stepwise increase
or decrease in any observable.

3.3 Time Dependence of ρ, vi, and Δti in the Bottleneck

For the first pedestrian in a run passing the bottleneck the velocity and density
will be different from the velocity and the density of the following pedestrians.
One expects that the density will increase while the velocity will decrease in
time. A systematic drift to a stationary state, where only fluctuation around
a constant value will occur, is expected.

Fig. 4. Run with N = 60 and b = 1.1 m. Development of individual velocity and
density (left). While the velocity decreases the density increases. Development of
the individual time gaps (right).

Figure 4 shows the time-development of the individual velocities and the
density for the run with N = 60 and b = 1.1 m. Plots for other runs can be
found in [11]. The concept of a momentary density in this small observation
area is problematic because of the small (1-4) number of persons involved and
leads to large fluctuations in the density, see also Sect. 3.1. But one can clearly
identify the decrease of the velocity and the increase of the density. For the
individual time gaps a time dependence or a trend to a stationary state is hard
to identify because the velocity decrease and the density increase compensate
largely. A possible time dependence is hidden by large and regular jumps from
small to high time gaps caused by the zipper effect.
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To find stationary values for the velocity and density by means of re-
gression analysis the tool MINUIT [14] for function minimization is used
with the following model function borrowed from relaxation processes f(t) =
fstat +A exp− t

τ for f(t) = vi(t) and f(t) = ρ(t). The relaxation time τ char-
acterizes the time in which a stationary state will be reached. The amplitude
A gives the difference between the stationary state and the initial velocity or
density. The velocity or density at the stationary state is labeled fstat. For the
fit we use the data of all three runs for one width with different N . Note, that
the model function for the regression only describes the overall decrease in
time and does not account for the density-fluctuations due to the small obser-
vation area or the fluctuations of the velocity in a stable state. Consequently
we do not quote an error margin in Table 1.

Table 1. Results for the fit to vi(t) and ρ(t)

b [m] vstat [m/s] Av [m/s] τv [s] ρstat [m−2] Aρ [m−2] τρ [s]

0.8 1.18 0.354 3.55 1.42 −1.82 0.24
0.9 1.22 0.604 3.00 1.50 −1.20 0.95
1.0 1.17 0.485 3.83 1.59 −1.87 0.31
1.1 0.94 0.745 7.33 1.73 −1.30 2.10
1.2 0.99 0.836 5.63 1.70 −1.28 1.45

The results of the regression analysis are collected in Table 1. For b ≥ 1.0 m
even with N = 60 the stationary state is not reached, see e.g. Fig. 4. The
results for A and τ indicate that the relaxation into the stationary state is
almost independent of the width. However, for a final judgment more data or
a larger number of test persons would be necessary. Nevertheless, the results
are accurate enough to check at which position of the fundamental diagram
the stationary state will be located. Again, the increase of the stationary
values for the density ρstat can be explained by means of the zipper effect in
combination with boundary effects.

4 Combined Analysis with Data from Other
Experiments

4.1 Comparison with the Data of Other Experiments

In Figure 5 we have collected experimental data for flows through bottlenecks
(left) and show how far our measurements fit into common fundamental di-
agrams (right). All measurements for bottleneck flows were performed under
laboratory conditions. The amount of test persons ranged from N = 30 to 180
persons. The influence of panic or pushing can be excluded as the collection is
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Fig. 5. Influence of the width of a bottleneck on the flow (left). Experimental data
from other authors at different types of bottlenecks and initial conditions in compar-
ison with the results of the above described experiment. Experimental data of the
flow and the associated density in the bottleneck (right) in comparison with experi-
mental data for the fundamental diagram of unidirectional pedestrian streams (Mori
[15], Hanking [16]) and the specifications for the fundamental diagram according to
the SFPE Handbook [6] (SFPE) and the guidelines of Weidmann [5] (WM) and
Predtechenskii and Milinskii [3] (PM).

limited to measurements where the test persons were asked to move normally.
However, the experimental arrangements under which this data were taken
differ in many details which provide possible explanations for the discrepan-
cies. Significant differences concern first the geometry of the bottleneck, i.e.
its length and position with respect to the incoming flow, and second the
initial conditions, i.e. initial density values and the initial distance between
the test persons and the bottleneck. The flow measurements of [17] show a
leveling off at b > 0.6 m. But the range of the flat profile from b = 0.6 m
to b = 1.8 m indicates that obviously the passage width is not the limiting
factor for the flow in this setup. The data of [18] and [19] are shifted to higher
flows in comparison with the data of [17, 20] and our data. The height of the
flows in the experiments of Müller and Nagai can be explained by their use of
much higher initial densities which amount to ρini ≈ 5 m−2. That the initial
density has this impact is confirmed by the study of Nagai et al., see Fig. 6 in
[18]. There it is shown that for b = 1.2 m the flow grows from J = 1.04 s−1 to
3.31 s−1 when the initial density is increased from ρini = 0.4 m−2 to 5 m−2.
The agreement between our data and the results obtained by Kretz indicates
the minor importance of the bottleneck-length. This collection suggests that
details of the bottleneck geometry and position play a minor role only, while
the initial density in front of the bottleneck has a major impact.
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4.2 Linear Dependence of Flow and Bottleneck-Width

As mentioned in the introduction one goal of this work is to examine if the
flow or the capacity is a linear function of the width, b, of a bottleneck or if it
grows in a stepwise manner, as suggested by [8]. Such a stepwise growth would
question the validity of the specific flow concept used in most guidelines, see
Sect. 1. However, the previous section has argued for the coherence of our
data set and previous measurements. All of these results are compatible with
a linear and continuous increase of the flow with the width of the bottleneck.
Only around b = 0.7 m the data of [20] show a small edge. The edge is
located exactly at the width where the zipper effect can begin to act, i.e.
provides no evidence for a stepwise behavior in general. Moreover does the
alleged stepwise increase of the flow follows from the assumption that inside
a bottleneck the formation of lanes with constant distance occurs. In [8] this
assumption is based on flow measurements at two different bottlenecks at
b = 1 m and b = 2 m. It is doubtful whether this results can be extrapolated
to intermediate values of the width. In fact our data show no evidence for the
appearance of lanes with constant distance (see Sect. 3.2, in particular Fig. 3).

4.3 Connection Between Bottleneck Flow and Fundamental
Diagrams

The above results can be used to address a crucial question in pedestrian
dynamics, namely the criteria for the occurrence of a jam and thus the con-
nection between bottleneck flow and the fundamental diagram. Commonly it
is assumed that jamming happens when the incoming flow exceeds the ca-
pacity of the bottleneck. Here the capacity of the bottleneck is defined as the
maximum of the fundamental diagram for the specific flow, Js(ρ), times its
width. Moreover most authors assume that in case of a jam the flow through
the bottleneck persist on the capacity. However the comparison in Fig. 5 of the
collected flow values (left) and fundamental diagrams (right) suggest a more
complicated picture and cast doubt on assumptions outlined before. Our re-
sults from Section 3 can be used to examine which density and flow inside
the bottleneck is present for a situation where a jam occurs in front of the
bottleneck. In Sect. 3.1 it was shown that directly in front of the bottleneck
the density fluctuates around 5 m−2. Inside the bottleneck we found a density
of ρ ≈ 1.8 m−2 (see Tab. 1). Fig. 5 (right) indicates that the value for the
stationary density is exactly located at the position where the fundamental
diagram according to the SFPE-Handbook and the guideline of Weidmann
show the maximum of the flow while the absolute value of the flow exceeds
the predicted values. This seems to support the common jam-occurrence cri-
teria. However, two observations cast doubt on this conclusion. Already when
discussing the data of Müller and Nagai we have mentioned that higher initial
densities result in higher flow values, i.e. that the maximal flow can not be
near ρ = 1.8 m−2. In addition do the fundamental diagrams of Mori [15],
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Hanking [16] and PM [3] display a completely different shape. According to
Mori and Hanking and in agreement with the specification of PM the flow will
increase from ρ ≈ 1.8 m−2 or stay constant with increasing density. Moreover
does the level of the flow measured in our experiment conforms much bet-
ter with their specifications. The most important conclusion which can be
drawn from the data collection for fundamental diagrams and bottleneck flow
is that the high flow values reached by increasing the initial density in front of
the bottleneck can not be explained by the maxima of common fundamental
diagrams. Moreover does the complicated picture of density values in front
and inside the bottleneck suggest a revision of the common assumptions for
bottleneck flow.

5 Summary

We have studied experimentally the flow of unidirectional pedestrian streams
through bottlenecks under normal conditions. The jam-density in front of
the bottleneck shows large fluctuations around a mean value of ρ = 5 m−2

independent of the width. The analysis of the trajectories inside the bottleneck
shows that the density tunes around ρ = 1.8 m−2. For a small variation of
the width quantities like the time gap distribution or the lane distance change
continuously if the zipper effect is acting. The comparison of our data with
flow measurements through bottlenecks of different types and lengths suggests
that the exact geometry of the bottleneck is of only minor influence on the
flow. Regarding the increase of the flow with the width all collected data
are compatible with a continuous and linear increase, except for the edge at
b ≈ 0.7 m due to zipper effect is beginning to act. The linear dependency
between the flow and the width holds for different kinds of bottlenecks and
initial conditions. Hence it seems that the basic flow equation in combination
with the use of the specific flow concept is justified for facilities with b > 0.7 m.
However, the rise of the flow through the bottleneck due to an increase of the
initial density in front of the bottleneck from ρ = 1.8 m−2 to 5 m−2 and
the resulting high flow values through the bottleneck can not be explained
by the maxima of common fundamental diagrams. Thus either the available
measurements of density flow relation for pedestrian traffic are incomplete
or the connection between bottleneck flow and fundamental diagram need a
rigorous revision.
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strömen. diploma thesis, Bergische Universität Wuppertal, 2006. www.fz-
juelich.de/jsc/JSCpeople/seyfried/teaching.

12. A. Winkens. Analyse der lokalen Dichte in Fußgängerströmen vor Eng-
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Summary. Many experimental studies have shown the appearance of synchronized
flow at highway bottlenecks. We study highway bottlenecks within the macroscopic
BVT model. The BVT model describes traffic flow as a hyperbolic system of balance
laws. It generalizes the traffic model of Aw, Rascle and Greenberg by introducing in
the momentum equation a new source term, which can become negative due to the
finite reaction and relaxation times of drivers. The model is capable of reproducing
multivalued fundamental diagrams, the metastability of free traffic flow at the onset
of instabilities and wide moving jams. Based on previous work we describe the
coupling conditions for the Riemann problem of the system and apply them to
highway bottlenecks. We focus our study on the situation where the bottlenecks
are either caused by the reduction of the number of lanes or by on-ramps or off-
ramps. Our numerical simulations reproduce the appearance of synchronized flow at
these highway bottlenecks. The analysis of the lane reduction setup shows that the
outflow from the synchronized flow region in front of the bottleneck is constant and
below the maximum free flow. This observation can be understood from the study
of the static solutions within the model. As a consequence of the coupling conditions
static solutions have to cross the jam line, one of the additional equilibrium solutions
within the BVT model. This crossing determines the flow value of the static solution.

1 Balanced Vehicular Traffic: The BVT Model

The BVT model (balanced vehicular traffic model, see [1, 2]) generalizes the
traffic model of Aw, Rascle and Greenberg (often called Aw, Rascle and Zhang
model, too, see [3–5]) by prescribing a more general source term to the pseudo-
momentum equation. The evolution of traffic density ρ and dynamical velocity
v is described by the following hyperbolic system of balance laws
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∂ρ

∂t
+
∂(ρv)
∂x

= 0, (1a)

∂(ρ(v − u(ρ)))
∂t

+
∂(ρv(v − u(ρ)))

∂x
= β(ρ, v)ρ(u(ρ)− v), (1b)

where t denotes the time coordinate and x the space coordinate. The func-
tion u(ρ) denotes the equilibrium velocity, which is monotonously decreasing,
β(ρ, v) is the effective relaxation coefficient. Due to finite reaction times and
finite relaxation times, an effective relaxation coefficient results with negative
values in the neighborhood of the equilibrium flow curve u(ρ) for medium to
high traffic densities ρ [1]. As a consequence of the negative relaxation co-
efficients, there are two additional equilibrium velocity curves, the so-called
high-flow branch and the jam line. The high-flow branch is metastable for
medium traffic densities and unstable for high traffic densities, whereas the
jam line is unstable for medium traffic densities and metastable for high traffic
densities, see [2, 6] for a detailed discussion. We stress, that the BVT model,
like the model of Aw, Rascle and Greenberg, fulfills the anisotropic condi-
tion, the characteristic speeds of the system λ1 = v − ρu′(ρ) and λ2 = v are
bounded from above by the vehicle speed v. Hence the model does not show
the unphysical behavior pointed out by Daganzo [7]. Moreover, the subchar-
acteristic condition [8] is essential for the stability properties above and can
explain the form of the reversed λ observed in the fundamental diagram of
traffic flow [9].

Here we are interested in synchronized flow at highway bottlenecks [10].
We applied the coupling conditions for the Riemann problem of the system
and studied highway bottlenecks either caused be the reduction of the number
of lanes or by on- and off ramps [11]. Our results show that the BVT model
can explain the observation of a capacity drop at highway bottlenecks, i.e. the
outflow from the bottleneck regions is substantially lower than the maximum
capacity of free flow (see e.g. [12, 13]).

2 Coupling Conditions at Intersections

In order to model bottlenecks in the BVT model one has to describe the
coupling conditions at intersections or junctions. These coupling conditions
give rise to the boundary values for vehicle and pseudo-momentum fluxes of
each road section, which are necessary to solve the corresponding initial value
problem in each section.

Although the source term in the pseudo-momentum equation, i.e. the right-
hand side of Eqn. (1b), plays an essential role for the traffic dynamics on
road sections, it can be neglected for the analysis of the Riemann problem at
intersections, since it is never a delta-function. For the homogeneous system
without this source term, i.e. the Aw-Rascle model [3], there is a large amount
of theoretical work on the coupling conditions at intersections [14–18]. For
comments on the difference between these approaches, see [11].
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For a given junction n, let us denote by δ−n and δ+n , respectively the set of
all incoming roads to n (indexed i in the sequel) and the set of all the outgoing
roads from n (indexed k in the following). We require the Eqs. (1a)–(1b) to
hold on each road of δ−n ∪ δ+n . The percentage of cars on the road i intending
to go to the road k are denoted by αik, such that ∀i ∈ δ−n ,

∑
k αik = 1. These

coefficients are assumed to be known.
Let U−

i = (ρ−i , ρ
−
i v

−
i ), ∀i ∈ δ−n and U+

k = (ρ+k , ρ
+
k v

+
k ), ∀k ∈ δ+n , re-

spectively the boundary values at the junction on the incoming and outgoing
roads. We denote by β̂ik, such that ∀k ∈ δ+n ,

∑
i β̂ik = 1, the proportion of

the flow on the road k coming from the road i. We set

β̂ik =
αikdi(ρ−i )∑

i∈δ−
n
αikdi(ρ−i )

∀i ∈ δ−n , ∀k ∈ δ+n , (2)

with the demand functions di defined as

di(ρ) =

{
ηdi(ρ), if ρ ≤ ρ̃i,
ηdi(ρ̃i), if ρ > ρ̃i,

(3)

where the functions ηdi on the incoming roads i are given by

ηdi(ρ) = ρui(ρ) + ρwi(U−
i ), (4)

and the maximum of the corresponding curves corresponds to ρ̃i. The distance
from equilibrium for each road section for arbitrary i ∈ δ−n (and k ∈ δ+n , see
below) can be determined from the state U = (ρ, ρv) by

wi(U) = v − ui(ρ). (5)

On the outgoing roads near the junction we define the homogenized dis-
tance from equilibrium

w∗
k =

∑
i∈δ−

n

β̂ikwi(U−
i ), ∀k ∈ δ+n . (6)

The supply functions sk for arbitrary k ∈ δ+n read

sk(ρ) =

{
ηsk(ρ̃k), if ρ < ρ̃k,
ηsk(ρ), if ρ ≥ ρ̃k.

(7)

Here, the functions ηsk are defined as

ηsk(ρ) = ρuk(ρ) + ρw∗
k, (8)

which reaches its maximum value at ρ̃k.
For all k ∈ δ+n , the intermediate state of density ρ†k on the outgoing road

is given by the intersection point of the curves v = v+k and wk(U) = w∗
k.
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To obtain the downstream fluxes on incoming road section i

f̂−i = qi

(
1

wi(U−
i )

)
(9)

and the upstream fluxes on outgoing road section k

f̂+
k = qk

(
1
w∗

k

)
, (10)

we have to solve the following optimization problem

max
∑

k∈δ+
n

qk subject to (11a)

0 ≤ qi ≤ di(ρ−i ), ∀i ∈ δ−n ; (11b)

0 ≤ qk ≤ sk(ρ†k), ∀k ∈ δ+n ; (11c)

qi =
∑

k∈δ+
n

β̂ikqk, ∀i ∈ δ−n ; (11d)

qk ≤
∑
i∈δ−

n

αikdi(ρ−i ), ∀k ∈ δ+n . (11e)

Details on the solution of this optimization problem for selected bottlenecks
can be found in [11].

3 Synchronized Flow at a Lane Drop Bottleneck

We first analyze the traffic dynamics for the setup depicted in Fig. 1. The
highway under study consists of two 7 km long road sections, with a lane drop
from three lanes in section 1 to two lanes in section 2 at 7 km. Note that in the
mathematical description the transition from three to two lanes is immediate,
the length of the merging segments is neglected. We further prescribe periodic
boundary conditions. Hence, the evolution is fully determined by the initial
data on the two road sections. Throughout this work we use the equilibrium
velocity function of Newell

u(ρ) = um

(
1− exp

(
− λ

um

(1
ρ
− 1
ρm

)))
(12)

with parameter values um = 160 km/h, λ = 3600 [1/h/lane], ρm =
160 [1/km/lane] and an effective relaxation coefficient

β(ρ, v) =

⎧⎪⎨
⎪⎩

ac

u−v , if β̃(ρ, v)(u(ρ)− v)− ac ≥ 0,
dc

u−v , if β̃(ρ, v)(u(ρ)− v)− dc ≤ 0,
β̃(ρ, v), else,

(13)
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Fig. 1. Sketch of the highway under study. The highway consists of two road sections
of 7 km length. The road section 1 consists of three lanes whereas the road section
2 consists of two lanes. We use periodic boundary conditions, i.e. the road section 1
is also located downstream of the road section 2.

β̃(ρ, v) =
1
T̂ um

(
|u(ρ)− v + a1Δv|+ a2Δv

)
(14)

and
Δv(ρ) = tanh

(
a3
ρ

ρm

)(
u(ρ) + cρm

(1
ρ
− 1
ρm

))
, (15)

with parameters ac = 2 m/s2, dc = −5 m/s2, T̂ = 0.1 s, a1 = −0.2, a2 = −0.8,
a3 = 7 and c = −14 km/h. Thus the maximum density of the road section 1 (2)
is 480 vehicles/km (320 vehicles/km). The initial data to start the numerical
simulations consists of equilibrium data on the two road sections. We prescribe
a constant vehicle density ρ0 in both road sections, setting the initial velocity
to v = u(ρ0). We choose the constant ρ0 to be independent of the number of
the lanes, the corresponding scaled densities in each road section follow from
dividing ρ0 by the number of lanes of that road section.

Figure 2 shows the simulation results for the density (left column) and
velocity (right column) for two simulations with initial density ρ0 = 50 [1/km]
(first row) and ρ0 = 100 [1/km] (second row) covering an evolution time of
two hours. Note that, although the initial data are in equilibrium in each road
section, the coupling conditions at the interface between the two road sections
do not guarantee the equilibrium during the evolution.

For a density ρ0 = 50 [1/km], a small region of higher density and lower
velocity forms between about 5.5 km and 7 km. This region corresponds to
data located in the fundamental diagram on and scattered around the jam line.
Clearly, this congested region is fixed at the bottleneck and therefore cannot
correspond to a wide moving jam. Instead it corresponds to synchronized flow.
For a density ρ0 = 100 [1/km], the dynamics becomes more complicated, but
finally a synchronized flow region of extended width (ranging from about 2
km to 7 km) forms. Only in a small region of the road section 1 (between 0
km and 2 km) traffic is in free flow.

For both initial data, we observe the formation of a static solution during
the simulation. These static solutions can be analyzed analytically as follows.
Steady-state solutions of the system (1a) and (1b) are solutions for which, in
an appropriate coordinate system (t̃, z) = (t, x − ŵt) with a constant speed
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Fig. 2. Traffic dynamics at the bottleneck caused by the reduction of the number
of lanes on a highway. The column on the left shows the evolution of the vehicle
density in units [1/km/lane], the column on the right the corresponding evolution of
the velocity in units [km/h]. The first row corresponds to the simulation run for an
initial density ρ0 = 50 [1/km], the second row to an initial density ρ0 = 100 [1/km].

ŵ, all time derivatives with respect to t̃ vanish. It follows from (1a) and (1b)
that steady-state solutions fulfill the following set of equations (see [2, 6])

q = ρ(v − ŵ), (16)

dρ

dz
=
ρ2

q

β(ρ, v)(ρŵ + q − ρu(ρ))
q + u′(ρ)ρ2

, (17)

with a constant q. For static solutions, moreover, we have ŵ = 0 and z = x.
Figure 3 shows the numerical results for the static solutions in more detail.

We note that apart from the location of the shock discontinuity at about 5.5
km and about 1.8 km respectively, the solutions for initial data ρ0 = 50
[1/km] and ρ0 = 100 [1/km] are identical. The right panel of Fig. 3 shows
the solution for ρ0 = 50 [1/km] in the flow-density-diagram. In addition we
indicated for each highway section the equilibrium flow curve ρu(ρ) and the
additional equilibrium curves, which correspond to the zeros of the effective
relaxation coefficient β(ρ, v), i.e. the high-flow branch and the jam line. As
a result of [2, 6], these curves can be subdivided into stable, metastable and
unstable branches, which are shown as solid, dashed and dotted curves in this
panel.
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Fig. 3. Static solution with synchronized flow in front of the bottleneck. The two
panels on the left show the vehicle density and flow profiles for the static solutions,
which finally form for an initial density ρ0 = 50 [1/km] (solid line with circles) and
ρ0 = 100 [1/km] (dashed line). Up to the location of the shock discontinuity, the
static solution is independent of the initial data. Note that for the vehicle flow, the
two curves for initial densities ρ0 = 50 [1/km] and ρ0 = 100 [1/km] fully overlap.
The peaks located at about 5.5 km for ρ0 = 50 [1/km] and at about 1.8 km for
ρ0 = 100 [1/km] in the left upper panel correspond to sections of nontrivial static
solutions. This can be seen in the inset of the left upper panel, where we showed
for comparison the solution of the ordinary differential equations (16)–(17). The
situation in the flow-density-diagram is shown in the right panel, where the circles
correspond to the static data for ρ0 = 50 [1/km]. Up to discretization errors the
constant flow value 3743 [1/h] agrees with the theoretical value determined by the
crossing of the jam line of section 2.

Let us first focus on the jump discontinuities (shocks) at 5.5 km and 1.8
km, respectively. In systems of conservation laws, shocks have to fulfill the
Rankine-Hugoniot jump conditions, which reduce for the BVT model to the
conservation of flow

(ρv)R = (ρv)L, (18)

and the conservation of the distance from equilibrium

(v − u(ρ))R = (v − u(ρ))L. (19)

Here the subscripts L and R denote the states left and right of the shock. The
flow conservation (18) is fulfilled everywhere for the static solutions. More-
over, left (upstream) of the shock, traffic is in equilibrium v = u(ρ). Hence,
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this condition has to be fulfilled for the state on the right of the shock (down-
stream) as well. In analogy to detonation theory, this state downstream of
the shock can be called a von Neumann state [19]. As this state is an unsta-
ble equilibrium state, the solution finally settles to the metastable jam line
corresponding to the same flow value.

Second, we are interested in the coupling conditions at the lane drop bot-
tleneck at 7 km. Analogous conditions to Eqs. (18)–(19) lead to a state down-
stream of the bottleneck in section 2, which is located above the jam line in
the fundamental diagram (see the right panel of Fig. 3). In order to link this
state to an equilibrium state of lower density (which then can be linked to
the equilibrium state in section 1 at 14 km), the static solution has to cross
the jam line (see [20, 21] for a similar discussion). This is only possible pro-
vided that the denominator of the right hand side of Eqn. (17) vanishes on
the jam line (the numerator trivially vanishes, as β(ρ, v) = 0 for the jam line).
From this condition, we obtain a theoretical flow value for the static solution
of 1889.9 [1/h/lane], which we reproduce, up to discretization errors, with
our numerical simulations. Note that this value is independent of the initial
data, and moreover is far below the maximum capacity of free flow. Due to
the existence of the jam line, which follows from negative effective relaxation
coefficients, we thus can explain a capacity drop within the BVT model.

We further note that for higher densities in the initial data, wide moving
jams form for the above lane drop setup.

4 On- and Off-Ramps

In this setup we analyze a two-lane highway with an on-ramp and an off-ramp
(see Fig. 4). For our numerical simulations we chose a length of 7 km for two-
lane road sections 1 and 3 each, and a length of 10 km for the one-lane road
section 2. For the parameterization of the equilibrium velocity curve and the

Fig. 4. Sketch of the simulation setup of a two-lane highway with an on-ramp
between the road sections 1 and 3 at 7 km (bottom) and an off-ramp between the
road sections 3 and 1 at 0 km = 14 km (top).
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effective relaxation coefficient, we use again the values given in Eqs. (12)–(15).
We start the simulations with a constant density in equilibrium on all road
sections of ρ0 = 50 [1/km/lane] and vary the percentage of cars α = α31

aiming to enter the road section 1 from the road section 3. Some numerical
results are presented in Fig. 5. For simplicity, we do not present the simulation
results on road section 2. Nevertheless, the evolution of section 2 influences the
evolution of the other sections due to the boundary conditions at the ramps.
For a value α = 0.5, a narrow stretch of synchronized flow develops in front

Fig. 5. Traffic dynamics at highway bottlenecks caused by on-ramps and off-ramps.
The plot shows the traffic dynamics on the two-lane highway, the road section 1
corresponds to the region between 0 and 7 km, the road section 3 corresponds to
the region between 7 and 14 km. We vary the percentage of cars α intending to
enter road section 1 from the road section 3 (different rows). The column on the left
shows the evolution of the vehicle density in units [1/km/lane], the column on the
right the corresponding evolution of the velocity in units [km/h].

of the on-ramp in the road section 1. For a parameter value α = 0.9 a region
of narrow moving jams forms in front of the off-ramp in the road section 3.

5 Conclusion

We studied synchronized flow at highway bottlenecks within the macroscopic
BVT model. The bottlenecks were either caused by the reduction of the num-
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ber of lanes or by an on-ramp and an off-ramp. We observed a constant outflow
from the synchronized flow region in front of the lane drop bottleneck. This
flow is independent of the width of the synchronized flow region and has a
value far below the maximum free flow in the downstream section, thus repro-
ducing a capacity drop. It follows from the coupling conditions at intersections
and in particular from the crossing of the corresponding static solution with
the jam line in the downstream section.

We stress that the BVT model can reproduce multi-valued fundamental
diagrams, the metastability of free flow at the onset of traffic instabilities,
synchronized flow, wide moving jams and the capacity drop at lane-drop bot-
tlenecks. All these aspects of traffic flows can be reproduced without modeling
lane changes, stochasticity of traffic flow or different driver characteristics and
vehicle types. Of course, all this plays a role in observed traffic patterns. In
our opinion, however, nonlinear instabilities are the most important factor.
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Modeling Lane-Changing Decisions with
MOBIL

Martin Treiber and Arne Kesting

Technische Universität Dresden, Institute for Transport & Economics,
Andreas-Schubert-Straße 23, D-01062 Dresden, Germany

Summary. We present the general model MOBIL (“Minimizing Overall Braking
Induced by Lane Changes”) to derive lane-changing rules for a wide class of car-
following models. Both the utility of a given lane and the risk associated with lane
changes is determined in terms of longitudinal accelerations calculated with micro-
scopic traffic models. This allows for the formulation of compact and general safety
and incentive criteria both for symmetric and asymmetric passing rules. Moreover,
anticipative elements and the crucial influence of velocity differences of the longitu-
dinal traffic models are automatically transferred to the lane-changing rules. While
the safety criterion prevents critical lane changes and collisions, the incentive crite-
rion takes into account not only the own advantage but also the (dis-)advantages
of other drivers associated with a lane change via a “politeness factor”. The pa-
rameter allows to vary the motivation for lane-changing from purely egoistic to a
more cooperative driving behavior. This novel feature allows first to prevent change
lanes for a marginal advantage if this obstructs other drivers, and, second, to let a
“pushy” driver induce a lane change of a slower driver ahead in order to be no longer
obstructed. In a more general context, we show that applying the MOBIL concept
without politeness to simple car-following models and cellular automata results in
lane changing models already known in the literature.

1 Introduction

In the past, single-lane car-following models have been successfully applied
to describe traffic dynamics [1]. Particularly, collective phenomena such as
traffic instabilities and the spatiotemporal dynamics of congested traffic can
be well understood within the scope of single-lane traffic models. But real
traffic consists of different types of vehicles, e.g., cars and trucks. Therefore,
a realistic description of heterogeneous traffic streams is only possible within
a multi-lane modeling framework allowing faster vehicles to improve their
driving conditions by passing slower vehicles. Hence, freeway lane changing
has recently received increased attention [2–4].

The modeling of lane changes is typically considered as a multi-step pro-
cess. On a strategic level, the driver knows about his or her route in a network
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which influences the lane choice, e.g., with regard to lane blockages, on-ramps,
off-ramps, or other mandatory merges [5]. In the tactical stage, an intended
lane change is prepared and initiated by advance accelerations or decelerations
of the driver, and possibly by cooperation of drivers in the target lane [6]. Fi-
nally, in the operational stage, one determines if an immediate lane change is
both safe and desired [7].

In this contribution, we model only the operational decision process. When
considering a lane change, we assume that a driver makes a trade-off between
the expected own advantage and the disadvantage imposed on other drivers. In
particular, our model includes the follower on the target lane in the decision
process. For a driver considering a lane change, the subjective utility of a
change increases with the gap to the new leader on the target lane. However,
if the velocity of this leader is lower, it may be favorable to stay on the
present lane despite of the smaller gap. A criterion for the utility including
both situations is the difference of the accelerations after and before the lane
change, at least, if the acceleration of the longitudinal model is sensitive to
velocity differences. Consequently, the utility of a given lane increases with
the acceleration possible on this lane: The higher the acceleration, the nearer
it is to the “ideal” acceleration on an empty road and the more attractive it
is to the driver. Therefore, the basic idea of our lane-changing model is to
formulate the anticipated advantages and disadvantages of a prospective lane
change in terms of single-lane accelerations.

Compared to explicit lane-changing models, the formulation in terms of
accelerations of a longitudinal model has several advantages. First, the as-
sessment of the traffic situation is transfered to the acceleration function of
the car-following model, which allows for a compact and general model for-
mulation with only a small number of additional parameters. In contrast to
the classical gap-acceptance approach, critical gaps are not taken into account
explicitly. Second, it is ensured that both longitudinal and lane-changing mod-
els are consistent with each other. For example, if the longitudinal model is
collision-free, the combined models will be accident-free as well. Third, any
complexity of the longitudinal model such as anticipation is transfered au-
tomatically to a similarly complex lane-changing model. Finally, the braking
deceleration imposed on the new follower on the target lane to avoid accidents
is an obvious measure for the (lack of) safety. Thus, safety and motivational
criteria can be formulated in a unified way.

The contribution is structured as follows: In Sec. 2, the safety and the
incentive criteria of the lane-changing model MOBIL will be formulated for
symmetric lane-changing rules. In Secs. 2.3 and 2.4, the general rules will
be applied to simple car-following models leading to lane-changing models
already known in the literature. Asymmetric lane-changing rules will be pre-
sented in Sec. 3. We will conclude with a discussion in Sec. 4.
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Fig. 1. Sketch of the nearest neighbors of a central vehicle c considering a lane
change to the left. The new and old successors are denoted by n and o, respectively.

2 Lane-Changing for Symmetric Passing Rules

In the following, we will formulate the lane-changing model MOBIL for the
class of car-following models which are defined by an acceleration function of
the general form

aα :=
dvα
dt

= a(sα, vα, Δvα). (1)

That is, the motion of a single driver-vehicle unit α depends on its veloc-
ity vα, the gap sα to the front vehicle (α − 1) and the relative velocity
Δvα = vα − vα−1. Generalizations to models taking into account more than
one predecessor or an explicit reaction time are straightforward [8].

A specific lane change, e.g., from the right lane to the left lane as shown
in Fig. 1, generally depends on the leader and the follower on the present
and the target lane, respectively. In order to formulate the lane-changing
criteria, we use the following notation: For a vehicle c considering a lane
change, the followers on the target and present lane are represented by n and
o, respectively. The acceleration ac denotes the acceleration of vehicle c on
the actual lane, while ãc refers to the prospective situation on the target lane,
i.e., to the expected acceleration of vehicle c on the target lane for the same
position and velocity. Likewise, ão and ãn denote the acceleration of the old
and new followers after the lane change of vehicle c. Note that the leader on
the target lane is the nearest vehicle on this lane for which the position is
x > xc. Likewise for the followers for which x < xc. This also applies for
the case where the vehicles on neighboring lanes are nearly side by side and
a possible change would lead to negative gaps. In this case, the longitudinal
model must return a very high braking deceleration such that lane changes
are excluded by the criteria to be discussed below.

2.1 Safety Criterion

The safety criterion checks the possibility of executing a lane change by con-
sidering the effect on the follower n in the target lane, cf. Fig. 1. Formulated in
terms of longitudinal accelerations, the safety criterion guarantees that, after
the lane change, the deceleration ãn of this vehicle does not exceed a given
safe value bsafe, i.e.,

ãn ≥ −bsafe. (2)
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Although formulated as a simple inequality, this condition implicitly con-
tains all the dependencies reflected by the longitudinal car-following model,
as the acceleration ãn(t) typically depends on the gap, the velocity and the
approaching rate, cf. Eq. (1). That is, if the longitudinal model has a built-in
sensitivity with respect to velocity differences, this dependency is inherited to
lane-changing decisions. In this way, larger gaps between the following vehi-
cle in the target lane and the own position are required to satisfy the safety
constraint if the following vehicle is faster than the changing vehicle. In con-
trast, smaller gaps are acceptable if the following vehicle is slower. Compared
to conventional gap-acceptance models, this approach depends on gaps only
indirectly, via the dependence on the longitudinal acceleration.

By formulating the criterion in terms of safe braking decelerations of the
longitudinal model, collisions due to lane changes are automatically excluded.
For realistic longitudinal models, bsafe should be well below the maximum pos-
sible deceleration bmax which is about 9 m/s2 on dry road surfaces. Increasing
the value for bsafe generally leads to stronger perturbations due to individual
lane changes. This is relevant in traffic simulations due to the fact that per-
forming a lane change implies a discontinuous change in the input parameters
in the acceleration function of the new follower.

2.2 Incentive Criterion

An actual lane change is only executed if, besides the safety criterion (2), the
incentive criterion is simultaneously fulfilled. The incentive criterion typically
determines whether a lane change improves the individual local traffic situ-
ation of a driver. In the presented model, we propose an incentive criterion
that includes a consideration of the immediately affected neighbors as well.
A politeness factor p determines to which degree these vehicles influence the
lane-changing decision of a driver. For symmetric overtaking rules, we neglect
differences between the lanes and propose the following incentive criterion for
a lane-changing decision of the driver of vehicle c:

ãc − ac︸ ︷︷ ︸
driver

+p
(
ãn − an︸ ︷︷ ︸

new follower

+ ão − ao︸ ︷︷ ︸
old follower

)
> Δath. (3)

The first two terms denote the advantage (utility) of a possible lane change for
the driver him- or herself, where ãc refers to the new acceleration for vehicle
c after a prospective lane change, and ac to the acceleration in the present
situation. The considered lane change is attractive if the driver can accelerate
more. The third term with the prefactor p is an innovation of the presented
model. It denotes the total advantage (acceleration gain – or loss, if negative)
of the two immediately affected neighbors, weighted with the politeness factor
p. It can of course be argued to take into account only the new follower, at
least to give him more weight than the old follower, who will anyway find him-
or herself in an advantageous situation after the lane change of the leading
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vehicle. However, it is straightforward to adapt Eq. (3) accordingly. Finally,
the switching thresholdΔath on the right-hand side of Eq. (3) models a certain
inertia and prevents lane changes if the overall advantage is only marginal
compared to a “keep lane” directive.

In summary, the incentive criterion is fulfilled if the own advantage (ac-
celeration gain) is greater than the weighted sum of the disadvantages (ac-
celeration losses) of the new and old successors augmented by the threshold
Δath. Note that the threshold Δath influences the lane-changing behavior
globally, while the politeness parameter affects the lane-changing behavior lo-
cally, i.e., with respect to the involved neighbors. As is the case for the safety
constraint (2), our incentive criterion is more general than a simple gap-based
rule. If the longitudinal model is sensitive to velocity differences, there may
be an incentive for a lane change even if the gap on the new lane is smaller –
provided that the leader on the new lane is faster. The generalization to traffic
on more than two lanes per direction is straightforward. If, for a vehicle on a
center lane, the safety and incentive criteria are satisfied for both neighboring
lanes, the change is performed to the lane where the incentive is larger.

Since the disadvantages of other drivers and the own advantage are bal-
anced via the politeness factor p, the lane-changing model contains typical
strategic features of classical game theory. The value of p can be interpreted
as the degree of altruism. It can vary from p = 0 (for selfish lane-hoppers) to
p > 1 for altruistic drivers, who do not change if that would deteriorate the
traffic situation of the followers. They would even perform disadvantageous
lane changes if this would improve the situation of the followers sufficiently.
By setting p < 0, even malicious drivers could be modeled who accept own
disadvantages in order to thwart others. Together with the parameter bsafe of
the safety criterion (2), a classification of different driver types is depicted in
Fig. 2. By means of simulation, we found that realistic lane-changing behavior
results for politeness parameters in the range 0.2 < p < 0.5 [9]. In the special
case p = 1 and Δath = 0, the incentive criterion simplifies to

ãc + ãn + ão > ac + an + ao. (4)

Thus, lane changes are only performed, when they increase the sum of acceler-
ations of all involved vehicles which corresponds to the concept of “Minimizing
Overall Braking Induced by Lane Changes” (MOBIL) in the strict sense. When
identifying the safe braking threshold bsafe to the desired braking deceleration
of the underlying car-following model, the strict MOBIL strategy correspond-
ing to p = 1 has no free parameters and might therefore be considered as
a “minimal model” for lane-changing decisions. In the general case, MOBIL
contains three parameters, bsafe, p, and Δathr.

2.3 Application to the Optimal Velocity Model

For reasons of illustration, we will now apply the lane-changing rules (2)
and (3) to the Optimal Velocity Model [10] as a simple representative of a
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Fig. 2. Classification of different driver types with respect to the safe deceleration
parameter and the politeness factor. While the safety criterion prevents critical
lane changes and collisions, the incentive criterion also takes into account the (dis-)
advantages of other drivers associated with a lane change. Most other lane-changing
models implicitly adopt an egoistic behavior (p = 0), and often do not allow any
interaction with the new follower (bsafe = 0). For p = 1, lane changes always lead to
an increase of the average accelerations of the vehicles involved (MOBIL principle).

car-following model. The acceleration equation of the Optimal Velocity Model
for a vehicle α can be written in the form

aα(t) =
dvα
dt

=
Vopt(sα(t))− vα(t)

τ
, (5)

where Vopt(s) represents the “optimal velocity function”, i.e., the equilibrium
velocity for a given spatial vehicle gap s. Defining the inverse sopt(v) of this
function, i.e., the equilibrium distance for a given velocity v, the safety cri-
terion (2) implies for the new follower n on the target lane a minimum safe
distance given by

s̃n > sopt (vn − τbsafe) . (6)

The incentive criterion (3) without politeness factor (p = 0) implies

(
V ′

opt(sc) > 0
)

AND
(
s̃c > sc +

Δathrτ

V ′
opt(sc)

)
, (7)

where a first-order Taylor expansion of the optimal velocity function has been
assumed. This approximation is justified by the small values of Δathrτ which
are 0.1 m/s for the chosen parameters (see below).

The resulting lane-changing rules define a simple gap-acceptance model:
The safety criterion is fulfilled if the gap s̃n to the back vehicle on the target
lane is larger than the equilibrium gap for the actual velocity vn reduced
by τbsafe. The incentive criterion is satisfied if there is an interaction at all
(V ′

opt(s) > 0), and if the gap to the front vehicle s̃c on the other lane is larger by
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the amount of Δathrτ/V
′
opt(sc). The decision model has two parameters: The

safe deceleration with a typical value of bsafe = 3 m/s2, and a lane-changing
threshold of the order of Δathr = 0.1 m/s. Assuming a typical value τ = 0.5 s
for the OVM velocity adaptation time, and typical values for the gradient
V ′

opt(s) of the optimal-velocity function of the order of 1/s, we have τbsafe =
1.5 m/s, and Δathrτ/V

′
opt of the order of 0.1 m. If both terms are neglected,

the OVM safety criterion simply states that the new lag gap must be at least
equal to the “optimal” gap, while an incentive to change lanes is given if the
lead gap on the new lane is larger than that on the present lane.

2.4 Application to the Nagel-Schreckenberg Model

Now, we will apply the lane-changing criteria (2) and (3) to the deterministic
part of the Nagel-Schreckenberg model [11] as generic representative of cellular
automata in traffic modeling. Its update rule is defined by

vα(t+ 1) = min(vα + 1, v0, sα). (8)

Here, the time t is given in seconds, vα is the velocity of vehicle α in units
of 7.5 m/s, v0 the maximum velocity (in the same units), and sα the gap
measured by the number of empty cells of 7.5 m length. This rule may be
interpreted as a discretized version of the car-following equation

dvα
dt

= min(1, v0 − vα, sα − vα). (9)

Applying the rules (2) and (3) (with p = 0 and Δathr < 1) leads to the safety
criterion

s̃n > vn − bsafe, (10)

and the incentive criterion

sc < min(v0, s̃c). (11)

Remarkably, for bsafe = 0, these rules are identical to one of the set of rules
proposed by Wagner et al. [12]. In summary, the MOBIL scheme produces
purely gap-oriented lane-changing rules when applied to the OVM and the
Nagel-Schreckenberg model, i.e., the required gap sizes depend on the own
velocity but not on velocity differences. These (not very realistic) results reflect
the fact that the underlying longitudinal models do not depend on the velocity
difference themselves. In contrast, when applying the MOBIL principle to
longitudinal models that are sensitive to velocity differences, the resulting
lane-changing models depend on velocity differences as well [9].

3 Lane-Changing for Asymmetric Passing Rules

In most European countries, the driving rules for lane usage are restricted
by legislation. We now formulate an asymmetric lane-changing criterion for
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two-lane freeways and assume, without loss of generality, that the right lane
is the default lane, i.e., we implement a “keep-right” directive. Specifically, we
presuppose the following “European” traffic rules: (i) Passing rule: Passing
on the right-hand lane is forbidden, unless traffic flow is bound or congested,
in which case the symmetric rule (3) applies. We treat any vehicle driving at
a velocity below some suitably specified velocity vcrit, e.g., vcrit = 60 km/h, as
driving in bound or congested traffic. (ii) Lane usage rule: The right lane is the
default lane. The left lane should only be used for the purpose of overtaking.
The passing rule is implemented by replacing the longitudinal dynamics on
the right-hand lane by the condition

aEur
c =

{
min(ac, ãc) if vc > ṽlead > vcrit,
ac otherwise, (12)

where ãc corresponds to the acceleration of the considered vehicle if it were
on the left lane (at the same longitudinal coordinate), and ṽlead denotes the
velocity of the front vehicle on the left-hand lane. The passing rule influences
the acceleration on the right-hand lane only (i) if there is no congested traffic
(ṽlead > vcrit), (ii) if the front vehicle on the left-hand lane is slower (vc > ṽlead)
and (iii) if the acceleration ãc for following this vehicle would be lower than
the single-lane acceleration ac in the actual situation. Note that the condition
vc > ṽlead prevents that vehicles on the right-hand lane brake whenever they
are passed.

The “keep-right” directive of the lane-usage rule is implemented by a con-
stant bias Δabias in addition to the threshold Δath. Furthermore, we neglect
the disadvantage (or advantage) of the successor in the right lane in Eq. (3)
because the left lane has priority. This does not mean that this vehicle will
be ignored, because the safety criterion is applied in any case, see Fig. 3. Ex-
plicitly speaking, the resulting asymmetric incentive criterion for lane changes
from left to right reads

ãEur
c − ac + p (ão − ao) > Δath −Δabias, (13)

while the incentive criterion for a lane change from right to left is given by

ãc − aEur
c + p (ãn − an) > Δath +Δabias. (14)

Again, the quantities with a tilde refer to the new situation after a prospective
lane change. While the parameter Δabias is small, it clearly has to be larger
than the threshold Δath. Otherwise, the switching threshold would prevent
changes to the right-hand lane even on an empty road.

Neglecting the follower on the right-hand lane for the incentive criterion
allows one to model the following situation: Via the politeness factor p, a
driver on the right lane considering a lane change to the left takes into ac-
count the disadvantage of the approaching vehicle in the target lane. This
can prevent the considered lane change, even if the lane change is not criti-
cal which is assured by the safety criterion (2). This feature of the MOBIL
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Fig. 3. The asymmetric incentive criterion additionally includes only the following
vehicle in the (left) passing lane. The sketch illustrates the “dynamic pressure” which
is imposed by a fast follower o to the vehicle c. The succeeding driver may induce
a lane change of vehicle c to the right lane if the disadvantage (of being hindered)
exceeds the own disadvantage in the right lane. This “passive cooperation” of the
subject c is frequently observed in countries with asymmetric lane-changing rules,
e.g., after having passed a slow truck.

lane-changing model realistically reflects a perceptive and anticipative driving
behavior, as commonly observed for asymmetric passing rules. Furthermore,
by taking into account only the follower on the faster (left) lane via the po-
liteness factor p, one models a selective dynamic pressure to change lanes that
faster (possibly tailgating) drivers on the fast (left) lane exert on their slower
predecessors, see Fig. 3. This is a frequently observed behavior on European
freeways, particularly on Germany freeways with their wide distribution of
desired velocities.

4 Discussion and Conclusions

We have presented the general concept MOBIL (“Minimizing Overall Braking
Induced by Lane Changes”) defining lane-changing models for a broad class
of car-following models. The basic idea of MOBIL is to measure both the at-
tractiveness of a given lane, i.e., its utility, and the risk associated with lane
changes in terms of accelerations. This means, both the incentive criterion
and the safety constraint can be expressed in terms of the acceleration func-
tion of the underlying car-following model, which allows for an efficient and
compact formulation of the lane-changing model with only a small number of
additional parameters. As a consequence, the properties of the car-following
model, e.g., any dependence on relative velocities or the exclusion of collisions
are transfered to the lane-changing behavior. By virtue of the acceleration-
based decisions, the lane changes are more anticipative as that of gap-based
models. For example, if a leading vehicle on a possible target lane is faster
than the own leader, MOBIL in combination with models that are sensitive
to velocity differences such as the Gipps model [13] or the Intelligent Driver
Model [14], can suggest a lane change even if the lead gap on the target lane
is smaller than that on the actual lane. In a way, MOBIL anticipates that the
gap will be larger in the future. In contrast, we have shown that MOBIL pro-
duces purely gap-oriented lane-changing rules for the Optimal Velocity Model
and the Nagel-Schreckenberg cellular automaton.
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Furthermore, our model takes into account other drivers via a politeness
factor p. The politeness factor characterizes the degree of “passive” coopera-
tiveness among drivers, i.e., the subject vehicle makes a decision by considering
its effects on other drivers. More specifically, even advantageous lane changes
will not be performed if the personal advantage is smaller than the disad-
vantage to the traffic environment, multiplied by p. Furthermore, a “pushy”
driver is able to initiate a lane change of his or her leader, which is a com-
monly observed driving behavior in countries with asymmetric lane-changing
rules and dedicated passing lanes.

Finally, extensions of the proposed acceleration-based concept to other
discrete decision processes of drivers are possible as well. For example, when
approaching a traffic light that switches from green to amber, one has to decide
whether to stop in front of the signal or to pass it with unchanged speed. In the
framework of MOBIL, the “stop” decision will be based on the safe braking
deceleration bsafe. Similar considerations apply when deciding whether it is
safe enough to cross an unsignalized intersection, entering a priority road,
or to start an overtaking maneuver on the opposite lane of a two-way rural
road [15].
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Summary. A macroscopic traffic model for aggressive drivers is developed from a
kinetic equation by means of a maximization procedure and Grad’s method. The
macroscopic equations thus obtained contain a kind a of viscosity effect as well as
density gradients. An stability analysis is developed and stable regions are observed.
The simulation results are shown for one initial condition and they are in general
agreement with traffic flow characteristics.

1 Introduction

Macroscopic model equations to study traffic flow characteristics have been
studied for a long time. In the evolution of such models several lines of thought
have been developed, going from those derived from some phenomenological
considerations up to their derivation from microscopic assumptions [1, 2].
Derivations based on Kinetic Theory have also been presented, in this kind
of approach it is assumed that the single distribution function for a vehi-
cle in a highway satisfies a kinetic equation. In this work, the starting point
is the Paveri-Fontana equation [3], this kinetic equation considers a phase
space in which the individual desired velocity of drivers is considered ex-
plicitly, consequently the distribution function depends on such variable. To
our knowledge, the complete Paveri-Fontana equation has not been solved
in an analytical way, though numerical solutions exist for some special cases
[4]. Then, Paveri-Fontana equation has been used to construct macroscopic
equations to generate models based on a kinetic support [5–7]. As noticed
above, the Paveri-Fontana distribution function contains the individual de-
sired velocity of drivers as an independent variable, it is very difficult to give
a prescription about that because it depends on the drivers disposition. As
an alternative procedure we have found that the integrated equation can be
solved in an exact way for the homogeneous steady state, if we introduce a
model for the averaged desired velocity [8, 9]. Thinking in this way, firstly in
this work we solved the Paveri-Fontana equation in the homogeneous steady
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state for a specific model of the average desired velocity of drivers. By means
of a maximization procedure [10], a local distribution function is also ob-
tained. Such a distribution function is taken as a basis to develop the Grad’s
method [11] which allows us to expand any distribution function in terms of a
complete set of orthonormal polynomials. The distribution function obtained
through this method contains the density and the average velocity of vehicles
as macroscopic variables to describe the time evolution in the system. In order
to consider the spatial inhomogeneities, it was assumed a relaxation behavior
in the perturbed distribution function [8], as a result we obtained the contri-
bution of the gradients in the density and velocity. In the following step we
used the distribution function to calculate the traffic pressure which gave us
the closure relation to be introduced in the macroscopic equations. The closed
macroscopic model is simulated with periodic boundary conditions and one
initial situation. The simulation results show a general agreement [1] with the
characteristics of traffic flow and the corresponding behavior is shown.

2 The Kinetic Equation

To start with the kinetic model we will develop here, let us recall that the com-
plete Paveri-Fontana equation considers a distribution function g(v, w, x, t)
which depends on the instantaneous velocity v, the individual desired velocity
of drivers w, position x and time t. The desired velocity of drivers, in principle,
carries the information about drivers’ disposition. This characteristic makes
the problem somewhat uncontrollable, in such a way that a model for the
desired velocity is necessary to go further. On the other hand the complete
Paveri-Fontana equation can be used to construct an evolution equation for
f(v, x, t) which does not contain explicitly the desired velocity. Such an equa-
tion is constructed by means of the integration over the individual desired
velocity,

∂f

∂t
+ v
∂f

∂x
+
∂

∂v

(
f
V0 − v
τ

)
= f

∫ ∞

0

(1− p)(v′ − v)f(x, v′, t)dv′, (1)

where f(v, x, t)dvdx is the distribution function which gives us the probability
to find a vehicle with instantaneous velocity v in (v, v+dv), position in (x, x+
dx) at time t. The left hand side of (1) represents the drift in the phase space
(v, x) and the right hand side corresponds to the interaction between vehicles,
p is the probability of overtaking. Then we have a kinetic equation in which it
is the average desired velocity V0(v, x, t) the quantity which plays a role, it is
defined by V0(v, x, t) =

∫∞
0
w g(x,v,w,t)

f(v,x,t) dw. This desired velocity is an explicit
function of the instantaneous velocity, position and time. In this work we will
assume a model for aggressive drivers, hence

V0(v, x, t) = ωv, ω > 1, (2)
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where ω is considered as a constant. With this model, equation (1) can be
solved exactly for the equilibrium distribution function fe(v) given by

fe(v) =
α

Γ (α)
ρe
Ve

(
αv

Ve

)α−1

exp

(
−αv
Ve

)
, (3)

where the density ρe and the velocity Ve correspond to the equilibrium state
and the numerical value of the equilibrium velocity is determined by the fun-
damental diagram, Γ (α) is the gamma function and α is a dimensionless
quantity given by α = ρe(1−p)Veτ

ω−1 , which is a constant including information
about the equilibrium state, as well as the model parameters (p, ω, τ). With
the distribution function we have found (3), it is possible to calculate the
velocity variance Θ = V 2

e /α and it is important to emphasize that this ex-
pression for the velocity variance, in this special state, can be compared with
experimental data [12].

3 Entropy Maximization

The distribution function fe(v) describes the equilibrium state for a special
traffic situation and to go further we need a distribution function representing
the behavior of the system out of this reference state. We obtain that distri-
bution function using the informational entropy as introduced by Shannon
[13]

s(x, t) = −
∫ ∞

0

f (0)(v, x, t)Ln
(
f (0)(v, x, t)
fe(v)v

)
dv, (4)

where f (0)(v, x, t) will be the distribution function corresponding to this non-
homogeneous nonsteady state, which will be determined by the maximization
of the entropy with the restriction of the density given by

ρ(x, t) =
∫ ∞

0

f (0)(v, x, t)dv. (5)

The maximization procedure gives us the next result

f (0)(v, x, t) =
α

Γ (α)
ρ(x, t)
Ve

(
αv

Ve

)α−1

exp

(
−αv
Ve

)
. (6)

In this case the local state is determined by ρ(x, t), V (x, t) = Ve(ρ(x, t)),
Θ(x, t) = V 2

e (ρ(x,t))
α .

Inhomogeneities

To obtain a distribution function with the density ρ(x, t) and the average
velocity V (x, t) as independent variables we will develop Grad’s method. We
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consider that a general distribution function can be expanded in terms of a
complete set of orthonormal polynomials generated by the local distribution
function f (0) in such a way that

f(v, x, t) = f (0)
∞∑

n=0

Bα
n (x, t)Pα

n (y), (7)

this expansion in the distribution function is infinite and we need a hypothesis
to cut it in a finite number of terms. In order to have the average velocity as
an independent variable we consider Bα

2 (x, t) = Bα
3 (x, t) = · · · = 0, now the

distribution function is

f (G)(v, x, t) = f (0)

[
1 + α

(
V (x, t)
Ve

− 1
)(
v

Ve
− 1
)]
. (8)

The distribution function given in (8) depends only on the local values of
the relevant variables

(
ρ(x, t), V (x, t)

)
and does not have the contribution of

the corresponding gradients in order to measure the corresponding spatial
inhomogeneities. To go further it is necessary to consider a modification of
the distribution function which takes into account the contribution of the
gradients of the local variables. Then we assume that

f(v, x, t) = f (G)(v, x, t) + f (1)(v, x, t) + · · · , (9)

where the correction to the distribution function f (1)(v, x, t) must satisfy the
compatibility conditions

∫ ∞

0

f (1)(v, x, t) dv = 0,
∫ ∞

0

vf (1)(v, x, t) dv = 0. (10)

These conditions imply that the density and the average velocity will be always
determined by the distribution function f (G)(v, x, t). To complete the proposal
we will assume that the interaction term in (1) can be approximated by a kind
of collective relaxation, hence

∂f (G)

∂t
+ v
∂f (G)

∂x
+
∂

∂x

(
W − v
τ
f (G)

)
= ρ(1− p)(V − v)f (G) − 1

τ0
f (1), (11)

where τ0 is the collective relaxation time and W (x, t) = ωV (x, t) according
to our model for the average desired velocity. The substitution of f (G) in (11)
allows us to obtain f (1).

4 The Traffic Pressure

The distribution function f (1) we have found with (11) contains the spatial
gradients of the density and the velocity, and this fact takes into account the
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spatial inhomogeneities in the system, as measured by the corresponding gra-
dients. The complete distribution function (9) will reproduce the values of the
macroscopic variables density and velocity, however the velocity variance and
consequently the complete traffic pressure are affected by the approximation
we have made, a straightforward calculation shows that

ρ(x, t)Θ(x, t) = P(x, t) = Plocal− ρV 2
e τ

∗

{
1
α

∂V

∂x
+ ρ
Ve

α

∂ρ

∂x

(
V

Ve
− 1
)}
, (12)

where

Plocal = P (G)(x, t)− ρV 2
e τ

∗
(
V

Ve
− 1
)(
ρVe

α
(1− p)− (ω − 1)

τ

)
(13)

and τ∗ = 2τ0 α+1
α is an effective collective relaxation time. It is clear that

this new expression for the traffic pressure is modified by the presence of the
gradients in the macroscopic variables. Certainly some other cumulants of the
distribution function can be calculated, however the traffic pressure is enough
to construct the macroscopic model, as we will see in the next section.

The expression for the traffic pressure (12), deserves some comments:
Firstly, we observe a term proportional to the velocity gradient in such a
way that a kind of viscosity coefficient can be identified as η = ρV 2

e τ∗

α . Sec-
ondly, there is also a term proportional to density gradient. Finally, the terms
in Plocal(x, t) do not contain any gradients, in such a way that it can be
identified with a kind of hydrostatic pressure and it depends on the model
parameters.

5 The Macroscopic Equations

The evolution equations for the macroscopic variables can be obtained from
(1) by multiplying by 1 and v and integrating over the speed in the interval
(0,∞). Then, the two first equations of motion can be written as

∂ρ

∂t
+
∂(ρV )
∂x

= 0, (14)

ρ

(
∂V

∂t
+ V
∂V

∂x

)
= −∂P

∂x
+ ρ
W − V
τ

− ρ(1− p)P. (15)

It is clear that equations (14–15) need a closure hypothesis in order to
have a closed set of equations for the density and velocity. In this model the
closure hypothesis is given by the traffic pressure calculated, (12).

On the other hand, the evolution of the velocity (15) contains the usual
drift terms and it becomes of second order in the derivatives of the density
and the velocity. As we said above the presence of those terms give account of
inhomogeneities effects as well as viscosity in the system. These characteristics
allow us to classify this model as a Navier-Stokes-like one.
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6 Stability

As another point in the analysis of this model, we will consider a small pertur-
bation of the homogeneous steady state in order to study the stability regions.
Hence, we assume that the density and velocity can be written as

ρ(x, t) = ρe + ρ̂ exp(ikx+ γt),
V (x, t) = Ve + V̂ exp(ikx+ γt), (16)

where ρ̂, V̂ do not depend on (x, t) and ρ̂ � ρe, V̂ � Ve. The quantity k
corresponds to the wave vector and γ can be a complex function of the wave
vector.

The stability condition is given by Re γ < 0, otherwise the homoge-
neous steady state is unstable with respect to small perturbations. To de-
termine the stability regions we linearize the macroscopic equations (14–15)
around ρe, Ve taking into account that the probability to overpass is given by
p = exp

(
−10 ρ

ρmax

)
[14]. The direct substitution of (16) in the macroscopic

equations (14–15) allows us to construct a dispersion relation from which
Re γ(k, ρe) can be obtained. The results are shown in Fig. 1(a) for τ0

τ = 3
and in Fig. 1(b) when τ0

τ = 9 respectively. The regions where Re γ(k, ρe) > 0
correspond to the unstable case. We notice that the instability regions shrink
when the quotient between the collective relaxation and the individual relax-
ation times grows, meaning that the value of the collective relaxation time
is a stabilizing factor. In Fig. 1 the equilibrium density as well as the wave
vector are taken in units of ρmax.

Fig. 1. Stability regions for (a) τ0
τ

= 3 and (b) τ0
τ

= 9.

7 Simulation Results

The complete set of equations must be solved by numerical means. The first
step along this line is given by writing the equations in a conservative form,

∂u
∂t

+
∂F(u)
∂x

= S(u) (17)
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where

u =
(
ρ
ρV

)
,

F(u) =
(
ρV

ρV 2 + P

)
,

S(u) =
(

0
ρW−V

τ − ρ(1− p)P

)
. (18)

Secondly, we make xi = i Δx, tn = n Δt in such a way that un
j = u(xj , t

n).
The MacCormack method [15, 16], is now written as follows

ũn
j = un

j −
Δt
Δx
(
Fn

j − Fn
j−1

)
+ Δt Sn

j ,

un+1
j =

1
2

[
ũn

j + un
j −

Δt
Δx

(
F̃

n

j+1 − F̃
n

j

)
+ Δt S̃

n

j

]
. (19)

The reference values for the density and velocity are taken as ρmax =
140 veh/km, Vmax = 120 km/h, the individual relaxation time τ = 30 s
and the collective relaxation time τ0 = 90 s. The probability of immedi-
ate overtaking is taken according with the values given by Helbing [14] p =
exp
(
−10 ρ

ρmax

)
. We will take periodic boundary conditions, so ρ(0, t) = ρ(L, t)

and V (0, t) = V (L, t), where L is the length of the highway. As initial condi-
tion we will take the next,

ρ(x, 0) = ρe,

V (x, 0) = Ve(ρe)
{

1 + δV sin
(

2πx
L

)}
, (20)

where we have taken L = 12 km, ρe = 28 veh/km, Ve(ρe) = 84 km/h accord-
ing to the fundamental diagram and δV = 0.84 km/h.

The simulation results for the density and the velocity are shown in Figs.
2(a) and 2(b) where we see that a small variation in the drivers velocity
produce a growing in the density which propagates along the highway. The
corresponding reduction in the velocity follows the behavior of the density.
We can observe that the variance calculated with (12) has a maximum in an
advanced position with respect to the position in the maximum of the density
as shown in Fig. 2(c). This characteristic is the usual one in real traffic.

8 Concluding Remarks

The macroscopic model we have presented is based on a kinetic equation and
the Grad’s method of solution as well as the approximation made have pro-
vided us with a closure in the macroscopic equations. The variance which is
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Fig. 2. Spatial and temporal behavior of the (a) density, (b) average velocity and
(c) velocity variance for the initial condition given in (20).

a measure of the traffic pressure can be calculated and its behavior is illus-
trated in the corresponding figure. As general comments we can say that this
model has the main characteristics of usual traffic models, in the sense that
the density and velocity behavior are coupled in their maximums and min-
imums. The maximum in the variance occurs in an advanced position with
respect to the maximum in the density. The initial condition considered in the
simulation may correspond to a velocity disorder in the drivers. Also we can
observe a propagating perturbation in which the front wave is almost undis-
turbed. It is worth noticing that in this model there are only two parameters:
the aggression of drivers measured through the parameter ω and the collec-
tive relaxation time τ0

τ . A comment on the value of ω must be made, because
in our calculations its value has been taken from several experimental data.
In fact, we calculated it taking the value of α from the variance prefactor,
the equilibrium density and velocity from the fundamental diagram and the
probability p from Helbing’s data [14]. Such a calculation shows that ω is
greater than one in a very small proportion (<5%), a characteristic which can
be interpreted as an average behavior of drivers.
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Summary. Microscopic dynamical properties of traffic flow are studied from the
aspects of vehicle behavior and driver operation. We studied the nature of fluctu-
ations around the critical region in real traffic by analyzing a time series of varia-
tions of velocity obtained from single-vehicle data measurement. We found that the
probability density function calculated from the time series of velocity variations
is transformed, while a Gaussian distribution transitions into a stable symmetrical
Lévy distribution. The power-law tail in the Lévy distribution indicated that the
time series of velocity variation exhibits critical fluctuations. The power-law tail in
the probability density function suggests that dynamical processes of vehicular traf-
fic are related to a time-discrete stochastic process driven by random amplification
with additive external noise. In contrast, the empirical data of deceleration in a car-
following situation obtained from the driving simulator experiment indicated a large
dispersion of perceptual quantities of a driver when operating the brake pedal. The
result suggests that the algorithm for operating the brake pedal is closely related to
the random amplification in the discrete stochastic process.

1 Introduction

The phase transition of vehicular traffic is a universal feature of traffic flow
[1–3]. One of the empirical facts characterizing the dynamical process in the
phase transition of vehicular traffic is given by the metastable branch derived
from the flux-density relation (i.e., the fundamental diagram), where sponta-
neous formation of high-density flow and its decay are observed in measure-
ment of variations of flux with density. In this relation, flux increases in pro-
portion to density under the critical point. However, a discontinuous reduction
of flux occurs beyond the critical point, and jams eventually emerge through
a mixed state of freely flowing traffic and jams (e.g., stop-and-go traffic).

In typical measurements of traffic using roadside detectors, the assump-
tion of constant velocity and the following distance of individual vehicles on
a stretch of road, which is divided by sensors, restricts the resolving power

mailto:yyokoya@jari.or.jp
http://www.jari.or.jp
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of data collection [2–5]. The restriction hinder the direct comparison of em-
pirical data on real traffic and the results of the numerical simulations or
the analytical calculations especially in the critical-density region with strong
fluctuations of velocity [6]. Therefore, it is important to interpret the flux-
density relation given by empirical data of the time series of the velocity and
the headway of individual vehicles.

In this paper, microscopic dynamical properties of traffic flow are studied
from the aspects of both vehicle behavior and human driver operation. The
real-time behavior of a vehicle in real traffic is measured by an onboard ap-
paratus. The analysis based on single-vehicle data potentially enables us to
analyze the relation between the microscopic processes in the various dynam-
ical phases and the whole surrounding situation (e.g., environmental factors,
road geometry, and conditions of vehicle control). Furthermore, deceleration
is measured by a driving simulator, which provides us the origin of the dy-
namical properties of traffic flow.

This paper is organized as follows. Section 2 presents dynamical features
of microscopic traffic flow observed in real traffic. Section 3 describes driver
behavior in car-following situations obtained from a driving simulator exper-
iment. Finally, Section 4 presents the conclusions.

2 Critical Flow in Real Traffic

2.1 Data Collection

Single-vehicle data is obtained directly from an onboard measurement appara-
tus. Figure 1 schematically illustrates the measurement apparatus, which was
made up of sensors for the vehicle states and a video camera for a forward-
view image. Using sensors and laser radar, we measured acceleration, velocity,
and distance headway. We also recorded a forward-view image simultaneously
with a video camera installed in the front of the vehicle, in order to under-
stand the relation between the measuring vehicle and the preceding vehicles.
The motion of a vehicle in real traffic can be affected by not only the leading
vehicle but also by a few vehicles ahead of the leading vehicle.

In this system, the resolving power of the data collection is determined by
its sampling rate. The sampling rate in our measurement system was 10 [Hz].
Since this measurement system enabled us to calculate local density and flow
directly in real time, we could analyze the states of traffic even in the critical
region where strong fluctuations developed. The traffic was measured on sev-
eral urban roads in Ibaraki Prefecture. These roads are primary distributors
with one or two lanes, in which the average traffic flow is 30,000 vehicles per
day. Traffic jams occur on these roads in the morning and during the evening
rush hour.
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Fig. 1. Schematic diagram of measurement apparatus.

2.2 Time Series of Single-Vehicle Data

Figures 2 (a) and (d) depict successive variations of velocity as

Δv(t) ≡ v̄T (t)− v̄T (t−Δt). (1)

Here, Δt is the sampling rate, and we adopted Δt = 0.1 [sec]. Our measure-
ment apparatus contains noise (about 3 [Hz]) primarily due to the performance
of the sensor detecting a pulse signal from a turning axle and variation of tire
radius due to fine structures of the road surface. Therefore, we eliminated the
noise by calculating the moving average of time series of velocity with time
interval T = 0.3 [sec] as follows.

v̄T (t) =
1
T

t∑
τ=t−T+1

v(τ). (2)

Figures 2 present the observed time series of Δv, v̄T , and the following
distance h for typical stable and unstable runs. Figure 2 (a) reveals small fluc-
tuations. We can confirm that the relation between velocity and the following
distance obeys the general car-following model, e.g., the GM model. However,
we find large fluctuations in Fig. 2 (d), where vehicle density increases and
the vehicle runs unstably. This period includes the transition process from
free flow to congested flow. A particular relation between velocity and the
following distance no longer appears to exist in this period.

2.3 Probability Density Function

Since we can confirm that the observed time series of Δv is stationary, it
is possible to calculate the probability density function (PDF) of Δv. We
introduce the PDF of Δv as

p (Δv(t)) =
n(Δv(t), Δv(t) + δ)

Nδ
. (3)

The quantities n, δ, and N denote the number of data Δv included in an
interval of [Δv(t), Δv(t) + δ], size of time intervals, and the total number of
data Δv.

Figure 3 presents a semilogarithmic plot of p(Δv) obtained for three dif-
ferent time series of stable runs, one of which (open circles) has already been
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Fig. 2. Time series of single-vehicle data of stable (unstable) runs in left column
(right column). (a) ((d)) Successive variation of velocity. (b) ((e)) Velocity. (c) ((f))
Following distance. Velocity (b) and following distance (c) are normalized by the
maximum values of (e) and (f).

Fig. 3. Semilogarithmic plot of the probability density function Δv obtained for
three different time series of stable runs. The solid line represents a Gaussian dis-
tribution.

presented in Fig. 2 (a). We find that the distributions are roughly symmetrical
with respect to Δv, which is scaled by the standard deviation σ in each distri-
bution. In Fig. 3, the solid line denotes a Gaussian distribution with standard
deviation σ calculated from one of the three distributions (open circles). We
find that p(Δv) of the stable runs are well fitted with a Gaussian distribution.

Figure 4 presents distributions obtained for three different time series of
the unstable runs. A time series that gives one of the distributions (open
circles) has already been depicted in Fig. 2 (d). These distributions with sharp
peaks and long tails are more leptokurtic than Gaussian.

The long tails of the distribution of the unstable runs can by identified by
the cumulative distribution defined as

p (≥ |Δv(t)|) =
∫ −|Δv|

−∞
p(x)dx+

∫ ∞

|Δv|
p(x)dx. (4)
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Fig. 4. Semilogarithmic plot of the probability density function of Δv obtained for
three different time series of unstable runs. The solid line represents the Lévy stable
symmetrical distribution.

Fig. 5. Cumulative distribution for one of the three distributions given in Fig. 5.
The solid line represents a Gaussian distribution.

Figure 5 plots the cumulative distribution for one of the three distributions
given in Fig. 4 (open circles) with a Gaussian distribution (solid line). Figure 5
illustrates a power-law tail with an exponent α in the cumulative distribution:

p (≥ |Δv|) ∝ |Δv|−α
. (5)

We find that the slope of the cumulative distribution given in Fig. 5 is fitted
by a power-law distribution with an exponent α ≈ 1.02.

Taking into account the leptokurtic distribution with a sharp peak and
long tails depicted in Fig. 4, the distribution is described by a Lévy stable
symmetrical distribution [7, 8].

p (Δv) =
1
π

∫ ∞

0

dk cos(kΔv) exp(−γΔtkα). (6)

Here, index α refers to the slope of the cumulative distribution given in Eq. (4).
Index γ is a scale factor at Δt = 1. Scale factor γ is given by the Gamma
function as

γΔt = exp
[
α ln

(
Γ (1/α)
παp(0)

)]
. (7)
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Figure 4 compares the PDF p(Δvs) obtained for three different time series
of unstable runs with the Lévy stable symmetrical distribution of α = 1.02
and γΔt = 0.13 (solid line). The horizontal axis of Δv is scaled as

Δvs ≡
Δv

(Δt)1/α
. (8)

The index α of the PDF obtained for each time series is unique. Figure 4
demonstrates good agreement with the Lévy stable distribution in the whole
region.

2.4 Origin of Power-Law Tail

It is well established that empirical observations around the critical region
exhibit a remarkable repetitive property [3, 5, 9], where the velocity of the
n-th vehicle evolves in the same way as that of its preceding (n−1)-th vehicle
except for a certain time delay, which is given as

xn−1(t) = xn(t+ T ) + vBT. (9)

Here, vB represents a constant velocity, at which the global pattern moves
backward. In this condition, we can reduce the general car-following equation
(Eq. (10)) to a one-body equation (Eq. (11)).

ẍn−1(t+ T ) = κ
ẋn(t)− ẋn−1(t)
xn(t)− xn−1(t)

+ f(t), (10)

ẍ(t+ T ) = K(t)ẍ(t) + f(t), (11)

where K(t) = κ/(ẋ(t) + vB), and κ is the sensitivity to the stimulus and f(t)
represents random additive noise (e.g., the so-called acceleration noise that is
often given by white noise [1]).

A discrete stochastic process involving random amplification ai with ad-
ditive external noise bi, which is given by Eq. (12), exhibits a power-law dis-
tribution [10, 11].

Xi+1 = aiXi + bi. (12)

In Eq. (12), a stationary process emerges for the condition 〈ln ai〉 < 0, where
〈· · ·〉 denotes an average over realizations. In addition, a power-law tail is ob-
tained when ai changes intermittently or randomly; for example, ai sometimes
takes values exceeding 1, and bi needs to be so finite that it is susceptible to
intermittent amplifications [11].

The contrast between Eq. (11) and Eq. (12) suggests that the power-law
tail of the PDF ofΔv(t) is closely related to the nature of the driver’s response
to the stimulus.
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3 Deceleration Process

A driver analyzes various information of road and traffic conditions as well
as the relation between the preceding vehicle and his/her own vehicle (e.g.,
headway distance and relative speed) in order to maintain and stabilize vehi-
cle following. The information characterizes the interaction between vehicles,
which provides the fundamental aspects of traffic phenomena from the per-
spective of statistical physics. Therefore, it is important to determine what
kind of information drivers base their acceleration or deceleration decisions
on. For a simple example, drivers change their acceleration, when perceptual
quantities, e.g., headway distance to a vehicle ahead, exceed some criteria.

3.1 Driving Simulator Experiment

We studied driving behavior when the preceding vehicle decelerates. The de-
celeration is recorded by the wide-view driving simulator. Basic specifica-
tions for the driving simulator are listed in Table. 1. The experiment subjects
were 20 healthy adults, 16 males and 4 females (six persons aged 20 to 29
years old, 10 persons aged 30 to 39 years old, two persons aged 40 to 49
years old, and two persons aged 50 to 59 years old). We conducted the ex-
periment on a single-lane straight road. Subjects were instructed to follow
the preceding vehicle running ahead at 60 [km/h] and to allow a safe head-
way distance. The vehicle preceding the subject vehicle was programmed to
decelerate 48 times in a 36 [sec] period at six different deceleration rates
(−0.02G,−0.05G,−0.075G,−0.1G,−0.125G, and −0.15G (G = 9.8 [m/s2]))
with equal probability.

Table 1. Driving simulator specifications

Vehicle model
3-DOF, 4 wheels, Load-shiftable model

(2000cc class passenger car)
Horizontal screen size 237◦ (Include curved surface screen 150◦)

Vertical screen size 34◦

3.2 Deceleration Operations

Deceleration by a driver consists of releasing the accelerator pedal and press-
ing the brake pedal. Figure 6 plots a typical time evolution of deceleration
recorded in the experiment. We find that small deceleration is generated by
engine braking due to releasing the accelerator pedal and that large deceler-
ation is generated by consecutively pressing the brake pedal.

Deceleration is triggered by certain changes in the visual angle of the pre-
ceding vehicle [12], which includes the time headway. Figure 7 plots the time
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Fig. 6. Deceleration of (a) the preceding vehicle, (b) the following (subject) vehicle.
(c) ((d)) indicates the voltage proportional to pedal stroke of accelerator (brake).

headway t̄h at two operation points averaged over all subjects (n = 20) for six
different ap values (Fig. 7(a)) and the standard deviation of t̄h (Fig. 7(b)). We
can find ap dependence of t̄h for pressing the brake pedal but can find hardly
any dependence for releasing the accelerator. Furthermore, the dispersion of
t̄h for pressing the brake pedal exceeds that for releasing the accelerator pedal.
We can also confirm the same tendency in the dispersion of other quantities
such as the headway distance and the relative speed. These results indicate
that pressing the brake pedal is not decided simply by the relation between
the preceding vehicle and the following (own) vehicle at the moment, while
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Fig. 7. (a) Time headway averaged over all subjects and (b) its standard deviation
at two operation points (accelerator and brake) for six different deceleration rates
of the preceding vehicle.

releasing the accelerator pedal is almost completely decided by the relation
between vehicles, such as time headway.

The empirical results obtained from the driving simulator experiment sug-
gest that the algorithms of the two deceleration operations (i.e., releasing the
accelerator pedal and pressing the brake pedal) qualitatively differ from each
other. Therefore, it is necessary to deal with the deceleration process by super-
posing physiological and psychological factors [13–15] in order to determine
the algorithms behind the deceleration operations of drivers.

Our empirical results indicate that the algorithm for releasing the accel-
erator pedal can be constructed mainly from physiological factors, such as
visual perception and simple reaction time. In contrast, psychological factors,
such as anticipation based on the traffic situation in the past and driving at-
titude, seem to play important roles in determining when to press the brake
pedal [16]. As regards the formulation of psychological factors, it is not clear
at this stage whether the large dispersion of physical variables observed in the
relation between vehicles can be accounted for simply by the so-called random
noise terms incorporated in conventional models of traffic flow.

4 Conclusion

We measured time series of single-vehicle data in urban traffic with an onboard
apparatus and found the nature of fluctuations of variations of velocity around
the nonequilibrium phase transition of local vehicular traffic. At low vehicle
density, small fluctuations due to the uncertainty of the driver’s reaction or
various external conditions on the roads add statistical noise to the time
series of the states of local vehicular traffic. An increased density leads to
amplification of the fluctuations as a result of interaction between vehicles,
and instability of traffic flow is induced at the critical density.

We found that the probability-density function calculated from the time
series of variation of velocity is transformed around the critical density, where
a Gaussian distribution changes into a Lévy stable symmetrical distribution.
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The power-law tail in the Lévy distribution indicates that the time series of
variation of velocity exhibits critical fluctuations. We attempted to analyze
microscopic dynamical processes of traffic flow in the transition, in connec-
tion with a discrete stochastic process involving random amplification with
additive external noise, which exhibits a power-law probability density distri-
bution of the variation of velocity. As a result, we found the relation between
the driver’s response to the stimulus and a power-law probability density dis-
tribution.

The empirical data of deceleration in a car-following situation obtained
from the driving simulator experiment indicated a large dispersion of percep-
tual quantities about the relations with a preceding vehicle during operation of
the brake pedal. These results suggest that the property of brake pedal oper-
ation that contributes mainly to the deceleration of a vehicle is closely related
to the random amplification in the discrete stochastic process (Eq. (12)). In
addition, the experiment conditions of car-following set up in the driving sim-
ulator include same density region (Fig. 2 (d)). Therefore, the empirical data
of deceleration is expected to give us some clues for understanding the tran-
sition mechanisms of traffic flow.
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1 Introduction

A very simple microscopic model for single-lane traffic is the cellular automa-
ton model presented by Nagel and Schreckenberg in 1992, called the NaSch
model [1]. Recent experiments have shown that the flow-density in the funda-
mental diagram is more complicated. The different scenario for the jam forma-
tion was proposed by Kerner and Konhauser at DaimlerChrysler in 1994 [2].
Moreover, hysteresis effects encountered in empirical observations are related
to the existence of metastable states in certain density regions, which is not
observed in the NaSch model. For a better understanding of such complex
traffic phenomena, a variety of modifications to the NaSch model have been
proposed by introducing the slow-to-start rules, among which are the VDR
model [3], the TT model [4], the BJH model [5] and so on. They are able to
reproduce metastable states and exhibit the clear separation of the congestion
and free-flow regions in a spatiotemporal plot. However, the nature of phase
transition to induce jamming formation has always attracted considerable ar-
guments. Roters et al. [6] considered the stochastic NaSch model displays
criticality via investigating the dynamical structure factor of the nondeter-
ministic NaSch model. Conversely, Chowdhury et al. [7] showed the existence
of a crossover instead of a critical point. Recently, Levine et al. [8] also dis-
cussed the same question by studying existence of a jamming phase transition
in the asymmetric chipping model and obtained that the system exhibits a
smooth crossover between free flow and jammed states, as the car density is
increased. Cheybani et al. [9] have study the transition from freely to jammed
and super-jammed traffic in the stochastic NaSch model using the spatiotem-
poral correlation function. They have turned out that both the transition from
freely moving to jammed traffic and from jammed to super-jammed traffic in
the stochastic NaSch model is not sharp but rather like a crossover. In theory
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of car-following model, however, traffic jamming will occur when traffic flow
loses its stability starting from uniform initial distribution of cars. Thus, we
can infer that complicated phase transition to induce jamming formation is
not only related to the rule of model but also to the initial distribution and the
maximum velocity of cars. In this paper, we systematically study the phase
transition induced by initial condition to the typical cellular automaton traffic
model, such as the NaSch, VDR (BJH) and TT model. The several definition
of order parameter is used to analyze the characteristics of phase transition of
the several models above mentioned under the homogeneous initial condition.

2 Model and Method of Simulation

In one-dimensional cellular automata traffic model, road is divided into dis-
crete lattice of length L and states of each cell is determined by vmax + 1
velocity of cars v ∈ {0, 1, 2, ..., vmax}. The state of the system at the time t+1
could be obtained from the state at the time t by applying the following rules
to all cars at the same time (i.e., the parallel update rules):

(1) Acceleration:
vn → min(vn + 1, vmax)

(2) Deterministic deceleration to avoid accidents:
vn → min(vn, dn)

(3) Randomization:
vn → max(vn − 1, 0) with probability p

(4) Update of positions:
xn(t+ 1)→ xn + vn

The NaSch model is a minimum model in the sense that all the four steps are
necessary to reproduce the basic features of real traffic. In the NaSch model,
step 3 combined three different behavioral patterns into one computational
rule: fluctuations at maximum speed, retarded acceleration and overreactions
at braking. In the VDR model, the delay probabilities were first considered
as velocity-dependent in contrast to the constant randomization in the NaSch
model. A car will be slow to start when its velocity equals zero, otherwise
accelerate to advance, i.e. the randomization parameter is

p(v) =

{
p0 v = 0
p v > 0

Probability p0 depicts the behavior of standing car slow to start and probabil-
ity p determines uncertain behaviors of other motion cars. The slow-to-start
rule can lead not only to metastable state and hysteresis, but also to phase
separated states at high densities. In the TT model, a standing car with ex-
actly one empty cell in front accelerates with the probability qt = 1− pt and
all other cars accelerate deterministically. In our simulation, a single lane is
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represented a one-dimensional lattice of L = 104 cells with periodic boundary
condition, which corresponds to the length of the actual road 7.5 km. Each
cell is either empty, or occupied by just one vehicle with discrete velocity v.
Velocity ranged between 0 and vmax = 5, where vmax is the speed limit to
correspond to 135 km/h in real traffic. The time step t = 1s corresponds to
the order of the reaction time for a driver. Let vn and xn denote the cur-
rent velocity and position of the nth vehicle respectively. We denote dn(t) by
dn(t) = xn+1 − xn − 1, which is the number of empty cells in front of the nth
vehicle. The computational formulas are given as follows:
Average density:

ρ = N/L (1)

Mean velocity:

V =
n∑

i=1

vi(t)/N =
T+t0−1∑

t=t0

vi(t)/T (2)

Flow:
J = ρV (3)

The numerical simulation was performed according to the above rules. For
each simulation, each run is first conducted 1 × 104 time steps in order to
remove the transient effects and then the data are recorded in successive
4 × 104 time steps. The fundamental diagram is obtained by averaging over
50 runs of simulations.

3 Fundamental Diagram, Solution and Order Parameters

3.1 Fundamental Diagram

The most important empirically measured quantities in traffic flow are usually
shown in the so-called fundamental diagram, which reflects the transit capac-
ity for a one-lane traffic flow model. The fundamental diagrams of the deter-
ministic and stochastic NaSch model are independent on the initial condition,
wherever the initial condition is homogeneous and stochastic initial distribu-
tion. However, for models with slow-to-start rule, such as VDR model, BJH
model and TT model, the fundamental diagrams of these models under the
different initial condition are different and dependent on the initial condition.
For example, if p = 0, the fundamental diagrams of VDR model is shown in
Fig. 1(a). There are three piecewise curves in Fig. 1(a). From velocity versus
density of Fig. 1(b), the three piecewise curves respectively correspond to free
flow, low velocity and traffic jamming. The homogeneous initial distribution
of identical vehicles with the equivalent gap ranges from ρ = 0 to ρ = 0.5. If
the density exceeds 0.5, the homogeneous initial distribution is impossible to
realize. It will lead to drop of flow rate in the fundamental diagram. It is found
that the curve with smaller than density ρ = 0.5 coincides with those of deter-
ministic NaSch model, and drops to the branch of traffic jamming while the
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Fig. 1. Fundamental diagram and velocity versus density of the VDR model
(vmax =5, p0 = 0.75, p = 0).

density exceeds 0.5. It is obvious that at least two cars in this case have gap less
than other’s gap and probability p0 acts on blocking traffic and leads to drop
of flow rate, in which the curve is coincident with the branch of traffic jamming
of VDR model with same slow-to-start probability p0 from stochastic initial
distribution. Using the same method of simulation, we obtain the fundamen-

Fig. 2. Fundamental diagram of the TT model (vmax = 5, pt = 0.75, p = 0).

tal diagram of TT model in Fig. 2 from the different initial distribution while
probability p equals zero and have similar results in the VDR model. From
above discussion, there are two common characteristics that the first transi-
tion point locates at ρc1 = 1/(vmax+1) and the second point at ρc2 = 0.5. The
first transition point means that the criticality occurs, because the traffic flow
really evolves according to the deterministic rule (p = 0) and the deterministic
NaSch model has a criticality [10]. The second point at density ρ = 0.5 has
a discontinuous skipping in the fundamental diagram. It means that traffic
occur the first order phase transition from low velocity to jamming.
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3.2 Solution

From the above analysis, when the density is less than 0.5, the free flow and
low velocity flow are defined in terms of the deterministic NaSch model. If the
density exceeds 0.5, the branch of traffic jamming is determined via making
use of solution of VDR model [3]. The solution of VDR model with p = 0
from the homogeneous initial distribution is as follows.

J =

⎧⎪⎪⎨
⎪⎪⎩

ρvmax ρ < ρc1 = 1
vmax+1

1− ρ ρc1 = 1
vmax+1 ≤ ρ < ρc2 = 1

2

(1− p0)(1− ρ) ρ ≥ ρc2 = 1
2

The solution of VDR model from the stochastic initial distribution is [3]

J =

⎧⎨
⎩

ρ(vmax − p) ρ < ρc = 1−p
vmax+1−2p

(1− p0)(1− ρ) ρ ≥ ρc = 1−p
vmax+1−2p

It is obvious that both solutions are different. Similarly, the approximate solu-
tions of TT model from the homogeneous initial condition and the stochastic
initial distribution are obtained, respectively,

J ≈

⎧⎪⎪⎨
⎪⎪⎩

ρvmax ρ < ρc1 = 1
vmax+1

1− ρ ρc1 = 1
vmax+1 ≤ ρ < ρc2 = 1

2

(1− p0)(1
2 + 1−pt

2 ) ρ ≥ ρc2 = 1
2

and

J ≈

⎧⎨
⎩

ρ(vmax − p) ρ < ρc = 1−p
vmax+1−2p

(1− p0)(1− ρ)(1
2 + 1−pt

2 ) ρ ≥ ρc = 1−p
vmax+1−2p

3.3 Order Parameters

In statistic physics, the order parameter is an important quantity to describe
phase transition. Many authors have introduced many definitions of order
parameter [10–12]. Eisenblatter’s definition [10]:

m =
1
L

L∑
i=1

ni(t)ni+1(t), (4)

where for an empty cell ni = 0 and for a cell occupied by a car ni = 1.
Boccara’s definition [12]:

m = vmax− < v > (5)
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Vilar et al. [11] and Eisenblätter et al. [10] have ever investigated the order
parameter of the deterministic NaSch model and have found that the order
parameter vanishes below the transition density ρc = 1

vmax+1 . The reason is
that every car has at least vmax empty sites in front and propagates with vmax.
Otherwise, the order parameter is nonzero. In this section, we just discuss
order parameter Eq. (4) and (5) in order to more understand the features of
traffic transition. The order parameter of VDR model under the homogeneous
and stochastic initial conditions is shown in Fig. 3(a) and (b). Similarly, the
order parameter of TT model from the homogeneous and stochastic initial
conditions is shown in Fig. 4(a) and (b), respectively. From these plots of
order parameter, it is found that there is a criticality at ρc = 1

vmax+1 and

Fig. 3. Order parameter of VDR model in the different initial conditions (vmax = 5,
p0 = 0.75, p = 0), where the dash of red is obtained from Eq. (5) and the dash of
gray from Eq. (4).

Fig. 4. Order parameter of TT model from the different initial conditions (vmax = 5,
pt = 0.75, p = 0), where the dash of red is obtained from Eq. (5) and the dash of
gray from Eq. (4).
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a discontinuous jump, which reflects the occurrence of the first order phase
transition. These results are consistent with the above discussions. Comparing
the several plots, we consider that order parameter of Eq. (4) is not better
to reflect the phase transition under the homogeneous initial conditions while
Eq. (5) can depict traffic transition of both initial conditions.

4 Summary

There exist three different traffic phases: free flow, low velocity flow and traf-
fic jamming in fundamental diagrams of VDR and TT models without the
stochastic delay probability under the homogeneous initial condition. The be-
haviour from free flow to low velocity flow (0 < ρ ≤ ρc = 1

vmax+1 ) is similar to
those of the deterministic NaSch model. From low velocity flow to traffic jam-
ming, the first order phase transition occurs, where the probability p0 or pt
of slow-to-start plays an important role in traffic jamming. The computation
of the order parameter confirms the characteristics of phase transition. The
analytical solutions corresponding to these models are obtained, respectively.
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1 Introduction

Similarity between the temporal structure of emerging patterns and the spatial
structure of stable patterns is observed in nature, such as biological develop-
ment, growth of trees, forming livers, etc. Can these phenomena be originated
in a general property in dissipative non-equilibrium systems? Traffic flow is
also an example of the cases. The phenomenon is observed in real traffic, the
experiment of circuit and the flow of highway traffic upstream of a bottleneck.
The phenomenon is simulated using a mathematical model such as OV model.

Fig. 1. (Left:) The stable spatial patterns of traffic flow on the upstream of a
bottleneck after relaxation time. The bottleneck is placed at 0m-point, and the
length is 100m. Vehicles move from left to right. (Right:) Space-time plot of jam
formation on periodic boundary condition (a part). The vertical axis is location on
the circuit. The horizontal axis is time evolution.

Figures 1 are the result of simulation of OV model, which shows the stable
structure of traffic flow upstream of a bottleneck [1] (left), and the process
of forming a jam [2] (right). The three distinct patterns of flow are observed,
such as uniform flow, “oscillatory wave flow”, and jam flow. Comparing the
results of two simulations, the similarity is clearly observed. For the purpose
of analytical studying of the similarity, we investigate “the delay-OV (dOV)
model” instead of original OV model. The model is expressed as the following
formula,
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d

dt
xn(t+ τ) = V (xn+1(t)− xn(t)), (1)

where xn is a position of nth particle (vehicle), and τ is a real positive constant
called “delay” as a control parameter. The dOV model shows the very similar
dynamical behavior as the original OV model in case V (x) = tanh(x), which
is the reasonable choice for traffic flow [2]. Eq. (1) has been popular in many
physical phenomena of relaxation towards an optimal equilibrium state, such
as relaxation effect in gases, chemical reactions and synchronization problem.
The formula has been first introduced for traffic flow model with another
choice of OV function [3, 4]. We rewrite Eq. (1) for the headway distance of
two successive particles, hn(t) = xn+1(t)− xn(t), as

d

dt
hn(t+ τ) = V (hn+1(t))− V (hn(t)). (2)

2 Linear Wave Solution and its Stability

We first derive the linear wave solution, assuming that the amplitude hn(t) is
infinitesimal and V (hn) = V (0) + V ′(0)hn. Eq. (2) becomes

d

dt
hn(t+ τ) = hn+1(t)− hn(t). (3)

Here we set V ′(0) = 1 without loss of generality. We obtain the linear solution
as

hn(t) = exp±iα
(
n+

t

2τ

)
(4)

where α is given as a solution of

sinα/2
α/2

=
1
2τ
, (5)

which has a solution if τ is larger than 1/2, meaning that τ = 1/2 is critical
delay. Eq. (4) represents a traveling wave solution with the velocity 1/(2τ)
in the space of index n, which is treated as a continuous variable, moving
backward against the numbering direction. It appears as the traveling wave
in the real space moving opposite direction in the flow of particles [4, 6].

The linear stability of the above solution is analyzed by the behavior of
the small deviation bn beyond the solution, as

d

dt
bn(t+ τ) = bn+1(t)− bn(t). (6)

We suppose bn = exp(iqn + zt), and the dispersion relation z(q) by long
wave-length expansion, q ∼ 0 is

z(q) = iq + q2(2τ − 1) + o(q3), (7)

which indicates that the solution exists for τ > 1/2, but it is always unstable.
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3 Elliptic Solutions

In general, traveling wave solutions are expressed in the form as hn = f(n+vt),
which should satisfy Eq. (2) as

vf ′(n+ v(t+ τ)) = V (f(n+ 1 + vt))− V (f(n+ vt)). (8)

We set v = 1/(2τ) and introduce u = n + vt + 1/2, which is the condition
of integrability [6]. Actually, the traveling waves propagate with the velocity
1/(2τ), just the same as the linear wave. The solutions f are exactly obtained
as the solutions for the following difference-differential equation [6]

v
dG(u)/du
1−G(u)2

= G
(
u+

1
2

)
−G

(
u− 1

2

)
, (9)

where G = V (f). In our case V (x) = tanh(x), which is the choice for corre-
sponding to OV model. A solution of Eq. (9) is

G(u) = β sn(αu, k), (10)

where sn is Jacobi’s elliptic function with modulus k [6], and β is

β = ±k α
4τ
. (11)

The parameter α is determined by

sn(α/2, k)
α/2

=
1
2τ
, (12)

where Eq. (12) has a real solution only if τ > 1/2. In the case of k = 0,
Eq. (12) reduces to the result of linear theory, Eq. (5). The modulus k is a
free parameter of the solution, which indicates the existence of many solutions
traveling with the same velocity v = 1/(2τ). The variation of the solutions de-
pending on k gives the different kind of traveling waves in terms of amplitude
and dispersion relation, from linear wave (k = 0) to cluster solutions (k ∼ 1).

4 Linear Stability of Elliptic Solutions

We investigate the linear stability of elliptic solutions for small amplitudes,
f ∼ small in Eq. (8). The equation of motion for small deviation bn beyond a
traveling wave solution up to the second order of f , as

d

dt
bn(t+ τ) =

{
1− f2(n+ 1 + vt)

}
bn+1(t)−

{
1− f2(n+ vt)

}
bn(t). (13)

For f ∼ small leads G = V (f) = tanh f ∼ f , then

d

dt
bn(t+ τ) =

{
1− β2sn2(α(n+ 1 + vt), k)

}
bn+1(t)

−
{
1− β2sn2(α(n+ vt), k)

}
bn(t). (14)
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We assume k � 1, which is consistent with small f . Here, sn(αu, k) is ex-
panded in terms of modulus k. Up to the second order of k, Eq. (14) is

d

dt
bn(t+ τ) =

{
1−
(
kα

4τ

)2

sin2(α(n+ 1 + vt))

}
bn+1(t)

−
{

1−
(
kα

4τ

)2

sin2(α(n+ vt))

}
bn(t). (15)

The evolution of the time-dependent coefficients in the equation for bn is
slowly comparing with the time development of bn. Then we can ignore the
time-dependence of the coefficients, and use the smallness of the solution
α in Eq. (12) for small k. As the result, we can estimate that sin2(α(n +
vt)) ∼ sin2(αn) ∼ (αn)2. Then we derive the linearized equation for the small
deviation beyond the elliptic solution for the relatively small k < 1 as

d

dt
bn(t+ τ) =

{
1−
(
α2

4τ

)2

k2(n+ 1)2
}
bn+1(t)−

{
1−
(
α2

4τ

)2

k2n2

}
bn(t).

(16)
In the following subsections we investigate the stabilities of elliptic solutions
in the two different boundary conditions corresponding to the boundary of the
open system with bottleneck and the periodic condition with no bottleneck.

4.1 Stability of Traveling Wave Solutions on the Fixed Boundary

First we investigate the stability of elliptic solutions on the fixed boundary
condition that any small deviation is forbidden, which condition is regarded
as a bottleneck [7]. On this condition we assume that bn = 0, (n ≥ N + 1)
meaning that the gate of a bottleneck is set between the particle number N
and N + 1 at a time. Then the equation of the deviation for N is written as

d

dt
bN (t+ τ) = −

{
1−
(
α2

4τ

)2

k2N2

}
bN (t). (17)

It is easily solved for bN , and the solution for the oscillation mode bN−1(ω) is
expressed using the solution bN (ω) by solving Eq. (16) for n = N − 1.

bN−1(ω) =
1− k2(α2/4τ)2N2

k2(α2/4τ)2(2N − 1)
bN (ω). (18)

In general the solution for bn(ω) can be determined by the recursive relation
for the sequence bN , bN−1, . . . , bn+1, bn, . . . upstream of the bottleneck. For
small k the recursive relation is simply expressed as

bn−1(ω) ∼
1
k2
bn(ω). (19)
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This relation shows that the amplitude of the deviation grows rapidly en-
hanced both as far as upstream of a bottleneck and as small as the modulus
k. The result indicates the elliptic solution of modulus k is more and more
unstable as far from a bottleneck with small k. Inversely say, as far from a bot-
tleneck the cluster (jam) solution (k ∼ 1) is stable comparing that the small
modulus (k < 1) solution is relatively stable not so far from a bottleneck.
This characteristic property of instability depending on modulus-parameter
connected with the spatial position for the solutions, is consistent with the
spatial structure of flow upstream of a bottleneck.

4.2 Stability of Traveling Wave Solutions on the Periodic
Boundary

Next, we investigate the stability of elliptic solutions on the periodic boundary
without bottleneck. We set bN+n = bn on the periodic boundary condition,
where N is a total number of particles on a periodic lane. We suppose that
k2N2 ∼ finite for large N together with small k. On this condition, the n-
dependence of the coefficient of the equation for bn Eq. (16), can be neglected
and reduced to the given N as,

d

dt
bn(t+τ) =

{
1−
(
α2

4τ

)2

k2N2

}
bn+1(t)−

{
1−
(
α2

4τ

)2

k2N2

}
bn(t). (20)

Using the above formula we can estimate the k-dependence of the stability
for elliptic solutions. In the same way as for the analysis for the linear wave,
the dispersion relation for the Eq. (20) is

z(q) = iq + q2
[
2τ

{
1−
(
α2

4τ

)2

k2N2

}
− 1

]
+ o(q3). (21)

For given large-N approximation, we can estimate the stability depending on
k. In the case k = 0 the above dispersion relation is reduced to that of the
deviation beyond the linear wave, Eq. (7). If given τ is larger than 1/2, the
elliptic solutions exist. But the solution with modulus k is unstable under the
condition

τ ≥ 1
2
(
1− (α2/4τ)2 k2N2

) , (22)

where the inequality is meaningful as long as the denominator is positive.
Then, the solution for k < kc is unstable, while that for k > kc is stable,
where kc is given by the equality on Eq. (22).

The exact form of dispersion can be derived. For small q

ω ∝ q2 +

(
α2/4τ

)4
k4N4

1−
(
α2/4τ

)2
k2N2

, (23)
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which shows that the deviation wave of disturbance propagates in long range
as “massless particle” for k ∼ 0, meaning that the solution of small k is easily
decayed. For larger k the deviation propagates in short range as “massive
particle”, which means the solution is hard to decay.

As a result, the smaller modulus k solution the earlier it decays and the
larger k solution is more stable and remains after the optimization time. This
characteristic property of modulus-dependence of decay is consistent with the
temporal structure in the phenomenon of flow on periodic boundary with no
bottleneck.

5 Similarity Between Temporal and Spatial Structures

Summarizing up the results of previous sections, we can provide the explana-
tion for the main subject, the similarity between temporal and spatial struc-
tures. We observe the family of traveling wave solutions for particle-flow in
OV type models, such as a linear wave flow, an oscillatory wave flow and a
cluster (jam) flow. In dOV model these solutions are characterized by modulus
parameter (0 ≤ k ≤ 1) in elliptic solutions. The flow patterns of temporal and
spatial structures are commonly considered as the stability of each solution
depending on modulus parameter. As for the spatial stability upstream of a
bottleneck, the smaller of modulus k, the more unstable a solution is, when
it exists far from the bottleneck. This property results in the stable spatial
pattern of flow. As for the temporal stability on periodic boundary condition,
the smaller of modulus k, the earlier a solution decays, while a cluster flow as
the solution k ∼ 1 is stable. This property results in the emerging temporal
pattern of flow. Namely, the temporal and spatial patterns are originated in
the common concept, that is the modulus-dependency of stability, which leads
to the appearance of the similarity of patterns.
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Summary. The behavior of vehicle following model was investigated in the paper
from the point of view of non-linear dynamics. When the mean density of the traffic
flow exceeds some critical limit the formation of stable dissipative structures can be
observed. This pattern-producing system shows further properties typical of complex
system as well.

1 Traffic Flow Model

Simple single lane car following model (CFM) [1] was used for simulation ex-
periments. From the point of view of dynamic systems theory several common
properties can be expected for relatively wide class of the models.

In the CFM vehicle acceleration may be expressed as following function

a = a(v,Δv,Δx) (1)

where v is the vehicle velocity in the traffic flow, Δv the relative velocity with
regard to a vehicle driving before andΔx is the distance from a vehicle driving
ahead.

In the system of vehicles assuming the finite driver reaction interval TR

accelerations of vehicles emerge retarded motion equations system

ai(t) = a(vi(t− TR), Δvi(t− TR), Δxi(t− TR)) (2)

Due to its simplicity we picked the Intelligent Driver Model (IDM) [2] with
finite reaction time. In this model the acceleration is proposed in the form

ai acc = ai 0

[
1−
(
vi
vi 0

)δ
]

(3)

where ai0 is the vehicle acceleration for a low velocity and vi0 is the maximal
vehicle velocity. The coefficient δ is calibrated to the value δ ≈ 4 according
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to measurements. Then the vehicle acceleration drops monotonously with a
growing velocity and after reaching the maximal velocity it becomes zero.

The proposed deceleration contribution is valid in any distance Δsi (dis-
tance of a frontal bumper and a back bumper of the previous driving vehicle,
i.e. the gap between the vehicles) and is of the following form

ai dec = −ai 0

(
Δsi opt

Δsi

)
(4)

where Δsi opt is the optimal distance from the previous vehicle with the given
velocity

Δsi opt = Δsi 0 +ΔviTi +
viΔvi

2
√
ai 0bi 0

(5)

Parameter si0 is the distance at zero velocity, Ti is the optimal time dis-
tance from the previous vehicle, Δvi is the relative velocity with regard to the
previous vehicle. The third term in the relation (5) expresses an “intelligent”
trend to maintain a distance which enables the vehicle to accelerate in a max-
imal way in a quickly changing situation and at the same time not to brake
more intensively than the comfort deceleration expressed by the parameter bi0.

2 Model Verification

To verify and calibrate the parameters of IDM model the GPS measurement
of vehicles position was used. Standard static measurement is not useful be-
cause of its poor accuracy even in case of DGPS (differential GPS) method
with corrections. The RTK (Real Time Kinematic) measurement method [3]
of the carrier phase of GPS signal measurement is more suitable. Wave length
of these signals is about 20 cm, thus measuring with 1% phase accuracy makes
possible the millimeter distance accuracy. However this determination is dis-
rupted of difficult removable ambiguity represented by unknown integer mul-
tiple of carrier wavelength (phase ambiguity). Therefore the reference receiver
with known position in the monitored area was used for fast elimination of
ambiguities. Conjoined compensation of refraction and other errors is an ad-
vantage of this method.

Position measurement of two vehicles with centimeter accuracy and sam-
pling interval 0.1 s allowed us to determine all required properties of vehicles
(position, velocity and acceleration).

Good correspondence between measuring and simulating the movement of
the following vehicle using model described above was reached (see Fig. 1).
Maneuvers of the tested driver are evidently not as fluent as in case of IDM
simulation however general behavior is described by the model very realisti-
cally. It is rather surprising if we take complex strategy of the following driver
into consideration: acceleration using full power of the engine, gentle decelera-
tion using the engine, braking and approach maneuvers with gap and velocity
corrections.
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Fig. 1. Measurement of the first reference vehicle together with measured and
simulated following vehicle.

Reasonable values of the IDM parameters assumed for the simulation:
a0 = 2.0 ms−2, b0 = 4.0 ms−2, v0 = 30 ms−1, T = 1.5 s, TR = 0.5 s.

Non-linear regression methods were not sufficiently stable for parameters
calibrating, furthermore their exact values are not relevant for our qualitative
analysis.

3 Equilibrium Properties of the Traffic Flow

For a traffic flow simulation it is advantageous to use the cyclic border condi-
tions which are commonly used for a systems of interacting particles — in this
case it means to put vehicles on a circular road with sufficiently large radius.
In case of such closed deterministic system the deformed behavior due to the
correlation between the first and the last vehicle can be anticipated.

The 6.28 km circle lane with 500 identical vehicles (with the same param-
eters mentioned above) can be seen on Fig. 2. Initially homogenously placed
vehicles started synchronously and in a small time period spontaneous pertur-
bations appeared. The system reaches steady state after some transient time
where identical congestions move upstream the flow. This “excessively regu-
lar” behavior is not as unrealistic as could be assumed from the simulation
experiment arrangement:

1. Integer number of stationary congestions in the circle due to the cyclic
border conditions is irrelevant in case of sufficient large radius of the lane
(see Fig. 3)

2. The same amplitude of all congestions is not the result of identical vehi-
cles or system simplicity. The congestion velocity (analogy of the group
velocity in wave physics) depends on the congestion shape in particular on
the maximal density fluctuation. Thus the congestions of different shape
move with various velocities — this process eliminates the system steady
state.
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Fig. 2. Spontaneous periodic congestions in steady state of the initial homogenous
flow. Solid line marks the value of the constant global density.

Fig. 3. Convergence of congestions number for long circle lanes. Behavior for dif-
ferent average densities of the flow can be seen.

Density of the congestions asymptotically converges to the value dependent
only on the mean density of the flow (cyclic enclosure of the system is irrelevant
for the radius greater than 4 km — see Fig. 3).

Figure 4 illustrates other common properties of the single lane steady state
flow:

1. The density of the congestions (number per km) increases with the mean
flow density

2. The congestions amplitude (maximal local density) monotonously de-
creases with the mean flow density (and also with the density of con-
gestions)

3. The product of the congestions density and amplitude depends on the
mean flow density linearly.
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Fig. 4. Properties of congestions in system steady state depending on average
(global) flow density.

4 Non-Linear Phenomena of Congestion Behavior

Together with the equilibrium number of congestions we can investigate also
their “group” velocity. The diagram on Fig. 5 demonstrates non-smooth de-
pendence of congestion velocity on the mean flow density.

Fig. 5. Velocity of steady state congestions depending on the mean density of
vehicles.

Variations of congestion speed at higher densities originate from non-linear
effects: the system with certain number of congestions is stable and with a
change of density jumps into the different stable states. In case of generation
of a new congestion their velocity drops abruptly. It is evident that it would
be possible to introduce a phenomenological view on the investigated system,
in which growing “tension” is released by the emergency of a new congestion.
Figure 5 can be assumed also as an analogy of the bifurcation diagram of low
dimensional dynamic system.

Investigated system can exist in various stable states depending only on
various initial conditions. For 1000 vehicles on the lane with 4 km radius
we can “place” the system into a number of different steady states through
the initial periodic density fluctuations. However the stable number of the
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congestions is limited: an insufficient number of initial congestions is unstable
because of their great attracting amplitude — congestions will decay into the
greater number of congestions with the lower amplitude. In case of too large
number of initial congestions the amplitudes fall down and any perturbation
translates the system into the new stable state with the smaller number of
congestions.

Fig. 6. Congestion velocity depending on the congestion amplitude (difference be-
tween the maximal and minimal local density).

Figure 6 illustrates overall linear relation between the amplitude of the
congestion and its group velocity. This relation is not perturbed by various
attributes of the system: all investigated densities of congestions are stable in
the same system. Some critical amplitude of the congestion can be seen: at
higher amplitudes the group velocity increases abruptly and the system loses
its stability. Demonstrated dependence can be assumed as the “dispersion
relation” known in wave theory [4] and is in charge of identical shape of
congestions in steady state.
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Summary. The qualitative properties of solutions of nonlinear differential equation
system that describe traffic flow on a ring are developed. The ring consists of three
links. The stationary points of the system have been found. The flow behavior in
the neighborhood of this point has been considered. The stability of the stationary
points is studied. The behavior of the solution near the boundary is considered.

1 Three-Chain

The qualitative properties of solutions of nonlinear differential equations sys-
tem that describe traffic flow on a ring with three links are developed. We will
call a ring with three links a three-chain, Fig. 1.

Fig. 1. Symmetrical three-chain.

Let ρ(t) = (ρ1(t), ρ2(t), ρ3(t)) be flow densities on each link, 0 ≤ ρi ≤ ρmax,
i = 1, 2, 3.
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The flow dynamics is described by the differential equations system
⎧⎪⎨
⎪⎩

dρ1
dt = f(ρ3)− f(ρ1),

dρ2
dt = f(ρ1)− f(ρ2),

dρ3
dt = f(ρ2)− f(ρ3),

(1)

where f(ρ) = aρ2 + bρ+ c = ρ(ρmax − ρ) is flow intensity.
Then ⎧⎪⎨

⎪⎩

dρ1
dt = (ρ3 − ρ1)(−(ρ3 + ρ1) + ρmax),

dρ2
dt = (ρ1 − ρ2)(−(ρ1 + ρ2) + ρmax),

dρ3
dt = (ρ2 − ρ3)(−(ρ2 + ρ3) + ρmax).

(2)

2 The Number of Stationary Points

Let C be the flow mass, C ≡ ρ1 + ρ2 + ρ3.

Fig. 2. Domain of definition (DD), C < ρmax.

2a) Figure 2 shows the domain boundary on phase space in case of
C <ρmax.

Lemma 1. For C < ρmax there is only one stationary point A = (ρ1 = ρ2 =
ρ3 = C/3).

Figure 3 shows the projection of the velocity field of the differential equa-
tions system (2) to the hyperplane ρ1 + ρ2 + ρ3 = C.

Lemma 2. For C = ρmax there are four stationary points A∗, B∗
1 , B

∗
2 , B

∗
3 .

A∗ = (ρ1 = ρ2 = ρ3 = ρmax/3), B∗
1 = (ρ1 = ρmax, ρ2 = ρ3 = 0), B∗

2 = (ρ2 =
ρmax, ρ1 = ρ3 = 0), B∗

3 = (ρ3 = ρ1 = 0, ρ2 = ρmax).

2b) Let us consider the case ρmax < C <
3
2ρmax.

Let be true ρ1 = ρ2 < ρ3. We have

ρ1 + ρ3 = ρ2 + ρ3 + ρmax, (3)
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Fig. 3. The velocity field for C < ρmax, ρmax = 1.

ρ3 = 2ρmax − C ≥ 0, (4)

ρ1 = ρ2 = C − ρmax ≥ 0. (5)

From (3)–(5) we conclude 2C < 3ρmax. So because of the symmetry it is
true the following statement.

Lemma 3. For
ρmax < C <

3
2
ρmax

there is the stationary points B3 = (ρ1 = ρ2 = C − ρmax, ρ3 = 2ρmax − C),
A = (ρ1 = ρ2 = ρ3 = C

3 ), B1 = (ρ2 = ρ3 = C − ρmax, ρ1 = 2ρmax − C),
B2 = (ρ3 = ρ1 = C − ρmax, ρ2 = 2ρmax − C).

Figure 4 shows the points A, B1, B2, B3.

Fig. 4. DD, ρmax < C < 3
2
ρmax.

Figure 5 shows the projection of velocity field of the system of the differ-
ential equations (2) on hyperplane ρ1 + ρ2 + ρ3 = C.

2c) Suppose that 3
2ρmax < C < 2ρmax.
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Fig. 5. The velocity field for ρmax < C < 3
2
ρmax.

Fig. 6. DD, 3
2
ρmax < C < 2ρmax.

The following stationary points exist:
A = (ρ1 = ρ2 = ρ3 = C

3 ), C1 = (ρ1 = 2ρmax − C, ρ2 = ρ3 = C − ρmax),
C2 = (ρ2 = 2ρmax − C, ρ1 = ρ3 = C − ρmax), C3 = (ρ3 = 2ρmax − C, ρ1 =
ρ2 = C − ρmax).

Figure 7 shows the projection of the velocity field of the system of the
differential equation (2) to the hyperplane ρ1 + ρ2 + ρ3 = C for 3

2ρmax <
C < 2ρmax.

Fig. 7. The velocity field for 3
2
ρmax < c < 2ρmax, (C = 1.75ρmax).
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So in the case when C → 3
2 − 0 the points Bi, i = 1, 2, 3, converge to point

A and then points Ci diverge. For C = 3
2ρmax the stationary points A, B and

C coincide.

Theorem 1. If ρmax < C <
3
2ρmax or if 3

2ρmax < C < 2ρmax then there are
four stationary points

A = (ρ1 = ρ2 = ρ3 =
C

3
),

B1 = (ρ3 = ρ2 = C − ρmax, ρ1 = 2ρmax − C),

B2 = (ρ1 = ρ2 = C − ρmax, ρ3 = 2ρmax − C),

B3 = (ρ1 = ρ2 = C − ρmax, ρ3 = 2ρmax − C).

If C = 3
2ρmax then there is the only one stationary point

ρ1 = ρ2 = ρ3 =
ρmax

2
.

Let us suppose C = 2ρmax. In this case besides the stationary points

A = (ρ1 = ρ2 = ρ3 =
2ρmax

3
)

there exist also the following stationary points:
C3 = (ρ1 = ρ2 = ρmax, ρ3 = 0), C1 = (ρ2 = ρ3 = ρmax, ρ1 = 0), C2 = (ρ3 =
ρ1 = ρmax, ρ2 = 0).

2d) In the case 2ρmax < C < 3ρmax there is the only one stationary point
ρ1 = ρ2 = ρ3 = C

3 , (Fig. 8).

Fig. 8. DD, 2ρmax < C < 3ρmax.

In case of C = 3ρmax there is only one stationary point which is also the
only one admitted point of the phase space ρ1 = ρ2 = ρ3 = ρmax.
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Fig. 9. The velocity field for 2ρmax < C < 3ρmax.

3 Linearization

Let (ρ∗1, ρ
∗
2, ρ

∗
3) be some stationary point where ρ∗1 = ρ∗2 = ρ∗3. Let us study

the flow behavior in the neighborhood of this point. We have

f(ρ∗i + ui) = f(ρ∗i ) + f ′(ρ∗i )ui + o(ui), ui ∼ 0, i = 1, 2, 3.

When ui → 0 the system can be described as
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

du1
dt = f ′(ρ∗3)u3 − f ′(ρ∗1)u1,

du2
dt = f ′(ρ∗1)u1 − f ′(ρ∗2)u2,

du3
dt = f ′(ρ∗2)u2 − f ′(ρ∗3)u3,
u1 + u2 + u3 = 0.

(6)

Theorem 2. The stationary point ρ1 = ρ2 = ρ3 = C
3 is stable then and only

then when the flow mass C is less than half of maximum possible value.

Proof. Let M be the matrix of the system of the system of the differential
equations (6):

M =
(
−f ′(ρ∗1)− f ′(ρ∗3) −f(ρ∗3)

f ′(ρ∗1) −f(ρ∗2)

)
.

Let E be the unit matrix. The characteristic equation of the system is

0 = |M − λE| = λ2 + λ(f ′(ρ∗1) + f ′(ρ∗2)+

+f ′(ρ∗3)) + (f ′(ρ∗1)f
′(ρ∗3) + f ′(ρ∗1)f

′(ρ∗2) + f ′(ρ∗2)f
′(ρ∗3)),

λ2 + 3λf ′(
C

3
) + 3(f ′(

C

3
))2 = 0.

For the strict stability of the local stationary point ρ1 = ρ2 = ρ3 = C
3 it is

necessary and sufficiently that the real parts of the roots of the characteristic
equation are negative. It is in the case when f ′(C

3 ) > 0, that is, when C
3 <

ρmax
2 . The roots of the characteristic equation are imagine because of the
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discriminant of the characteristic equation is negative. In the case C
3 <

ρmax
2

the point A = (ρ1 = ρ2 = ρ3 = C/3) is the stable focus. In the case C
3 >

ρmax
2

this point is the unstable focus.

Theorem 3. The stationary point B1, B2, B3, for ρmax < C <
3
2ρmax, and

the stationary points C1, C2, C3, for 3
2ρmax < C < 2ρmax, are unstable saddles.

Proof. Suppose ρmax < C <
3
2ρmax. Then the point ρ1 = ρ2 = C−ρmax, ρ3 =

2ρmax − C is the stationary point. We have f ′(2ρmax − C) = −f(C − ρmax)
and then f ′(C − ρmax) + f ′(C − ρmax) + f ′(2ρmax − C) = f ′(C − ρmax) > 0.
Characteristic equation of the system is

λ2 + λf ′(C − ρmax)− (f ′(C − ρmax))2 = 0.

The roots of the characteristic equation are real and their signs are different.
In this case the type of point is the “saddle”.

Suppose C = ρmax. As it has been stated in the section 2, in case of
C = ρmax three additional stationary points exist ρ1 = ρ2 = 0, ρ3 = ρmax,
ρ3 = ρ1 = 0, ρ2 = ρmax, ρ2 = ρ3 = 0, ρ1 = ρmax. We have f ′(0) = ρmax,
f ′(ρmax) = −ρmax and hence λ2 − λρmax − (ρmax)2 = 0. The roots of the
characteristic equation are real and their signs are different. So, for C = ρmax

the stationary points B1, B2, B3 are unstable.
Suppose 3

2ρmax < C < 2ρmax. The point B3 = (ρ1 = ρ2 = C − ρmax, ρ3 =
2ρmax − C) is a stationary point. We have f ′(2ρmax − C) = 2 − 3ρmax =
−(3ρmax−2C) = −f(C−ρmax) and so f ′(C−ρmax)+f ′(C−ρmax)+f ′(2ρmax−
C) = f ′(C − ρmax) > 0. Characteristic equation of the system (3) is λ2 +
λf ′(C−ρmax)−(f ′(C−ρmax))2 = 0. The roots of the characteristic equations
are real and their signs are different. The stationary point is the saddle. The
stationary points ρ3 = ρ1 = C − ρmax, ρ2 = 2ρmax − C and ρ2 = ρ3 =
C − ρmax, ρ2 = 2ρmax − C are also saddles.

Suppose C = 2ρmax. As it has been stated in the section 2, in the case C =
ρmax there are three additional stationary points C1 = (ρ2 = ρ3 = ρmax, ρ1 =
0), C2 = (ρ3 = ρ1 = ρmax, ρ2 = 0), C3 = (ρ1 = ρ2 = ρmax, ρ3 = 0).

The roots of the characteristic equation are real and their signs are differ-
ent. So, for C = 2ρmax the stationary points C1, C2, C3 are unstable. Each of
this points is the saddle.

4 Behaviour of the Solution Near the Boundary

Consider the behaviour of the solution near the boundary of the admitted
domain of the phase space that is in the points for which at least one variable
has a value near 0 or near ρmax.

a) Consider the case C < ρmax. Suppose that ρ3 = 0, ρ1 + ρ2 = C. Vector
n = (−1,−1, 2) belongs to the domain of admitted values and is normal for
the domain boundary in the considered point. This vector is directed to the
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inside of the domain. The scalar product of this vector and the vector of the
field velocity equals

f(ρ1)− f(ρ2) + f(ρ2)− f(ρ3) + 2f(ρ1)− 2f(ρ3) = f(ρ3) > 0.

On account of symmetry it is sufficient to consider one part of the bound-
ary only. Hence the flow in the neighborhood of the boundary is uncritical.
Suppose that ρmax < C <

3
2ρmax. Again on account of symmetry, it is suf-

ficient to consider the preceding fragment of the boundary and the neigh-
bor one ρ2 = ρmax, ρ1 + ρ3 = C − ρmax. In the first case the inequal-
ity is true still. Therefore we have for the second part n = (1,−2, 1) and
(v,n) = f(ρ2) − f(ρ1) − 2f(ρ3) + f(ρ1) − f(ρ3) = −3f(ρ3) < 0. Hence the
boundary part appearing anew is a zone of attraction.

b) Suppose ρmax < C < 2ρmax. Consider the case ρ1 ∼ 0, ρ1 < ρ3 <
ρmax−ρ1. Then the right part of the first equation of the system (3) is positive
and so dρ1

dt > 0. Solution of the system removes from the boundary. Consider
the point of the phase space for which ρmax − ρ1 ∼ 0, ρ1 < ρ3 < ρmax − ρ1.
Then the right part of the first equation of system (3) is positive and so
dρ1
dt > 0. The solution of the system approaches to the boundary and the value

of the variable ρ1 attains the critical value ρmax.
c) Consider the case 2ρmax ≤ C < 3ρmax.
Suppose that for some point of the phase space it is true ρmax − ρ1 ∼ 0,

ρ3 < ρmax − ρ1. We have C < ρmax, ρ1 > 0 and hence f(ρ3) > f(ρ1) that
is the right part of the first equation of the system (3) positive and therefore
dρ1
dt > 0. In this case the solution of the system approaches to the boundary

and attains the value ρmax.
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Summary. Microscopic pedestrian models describe individual pedestrian behavior
and the interaction of pedestrians with other pedestrians and obstacles. Continu-
ous time models generally calculate the acceleration of pedestrians due to repulsive
or attractive interactions using for instance distances to other pedestrians and ob-
stacles within a two-dimensional influence area. Two problems that usually arise
with these types of models when simulating very large crowds are extreme accelera-
tions that occur due to very short distances to other pedestrians and obstacles and
large computational times to assess and to calculate the accelerations for individual
pedestrians. This paper presents a hybrid pedestrian management algorithm that
combines a traditional optimized time-based simulation and an event-driven simu-
lation. This way, the task of assessing the surroundings and the task of dealing with
interactions on very short distances are each treated in an optimized way leading to
more reliable accelerations in high densities as well as shorter calculation times.

1 Introduction

Although the computational power available in a personal computer grew
several orders of magnitude in the last decades, performing micro-simulations
involving several thousands of pedestrians still requires a significant amount
of time. This may effectively hinder the application of these models in a de-
sign process in which an architect wants to assess several layouts of public
areas or large buildings. In the next section we will show that most simula-
tion models, among which the NOMAD model [1], apply general approaches
to search pedestrians’ surroundings to identify other pedestrians and obsta-
cles. This search is one of the most time consuming parts of micro-simulation
models computations and it has to be performed each simulation step. In this
contribution we propose an optimized spatial search to improve the quality
and the efficiency of the NOMAD model.
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2 The NOMAD Model

NOMAD is a normative model proposed by Hoogendoorn and Bovy [1]. Being
a microscopic simulation model, it has a discrete time step. The movement
of a pedestrian p in terms of velocity and acceleration can be described as
a system of differential equations. Let rp (t), vp (t) and ap (t) respectively
denote the location, the velocity and the acceleration at time instant t, then
the following is valid:

d

dt
rp(t) = vp(t) (1)

d

dt
vp(t) = ap(t) (2)

The acceleration is the result of different factors affecting the speed of pedes-
trian p, namely the desire to stay as close as possible to a desired trajec-
tory leading towards the pedestrian’s destination, avoiding other pedestrians,
avoiding obstacles, the physical forces when pedestrians collide and some ran-
dom component or noise:

ap(t) =
v0

p (t)− vp (t)
Tp

−Ap

∑
q
e
−dpq(t)

R
p
p −Ao

p

∑
o
e
−dpo(t)

Ro
p +bp(t)+εp(t) (3)

where:

v0
p : desired velocity

dpq : vector pointing from pedestrian p towards pedestrian q
dpo : vector pointing from pedestrian p towards obstacle o
Tp : acceleration time of pedestrian p
Ap : interaction strength between pedestrian p and other pedestrians
Ao

p : interaction strength between pedestrian p and obstacles o
Rp : interaction distance between pedestrian p and other pedestrians
Ro

p : interaction distance between pedestrian p and obstacles o
bp(t) : physical acceleration due to contact forces
εp(t) : random term

A pedestrian is only affected by the pedestrians and obstacles present within
his influence area. The latter can be represented by different forms (isotropic
influence areas, anisotropic influence areas, etc.).

The physical forces bp(t) are calculated as follows [2, 3] (Eq. (4) describes
normal forces, while Eq. (5) describes tangential forces):

b(n)
p (t) = κpδpq(t) (4)

where:

b(n)
p : physical acceleration in direction of centers of p and q
κ : restitution coefficient
δpq(t) : deformation of pedestrians p and q
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b(t)
p (t) = υp

∣∣∣v(t)p (t)− v(t)q (t)
∣∣∣ δpq(t) (5)

where:

b(t)
p : tangential physical acceleration in direction of centers of p and q
υ : tangential viscosity factor
v
(t)
p (t) : tangential speed of pedestrian p
v
(t)
q (t) : tangential speed of pedestrian q
δpq(t) : deformation of pedestrians p and q

3 Improving Efficiency of Micro-Simulation Models

The simulation model NOMAD is capable of reproducing emergent spatial
patterns. However, two problems are potentially encountered due to the for-
mulation of the acceleration term in Eq. (3):

• The physical forces that arise when pedestrians are very close to each other
or close to obstacles can be very large in extreme densities due to large
deformations of pedestrians.

• The computation times to calculate the distance vectors dpq (t) and dpo (t)
at every simulation step can grow excessively, impairing the total time
needed to run a simulation, especially when many pedestrians are present
in dense situations.

There are several ways to solve these problems, such as using dedicated
data representation structures to reduce look-up times for pedestrians in the
direct vicinity of pedestrian p. However, this only partially eliminates the
problem, since it is still dependent on the size of the pedestrian population.
Another way is to use isotropic (circular) influence areas. Usually, it is possible
to implement a simplified query algorithm for this geometry that does not
take the heading of the pedestrian into consideration to assess the distances.
Again, this is not a complete solution, because such an area may produce
unrealistic behavioral results, and it still requires a query at every simulation
step.

The second problem of possibly high interaction forces can be tackled by
using another formulation such as an exponential spring model for the physical
forces:

b(n)
p (t) = c1ec2δpq(t) (6)

Physical accelerations progress in a manner that could prevent too large ac-
celerations to occur (in case of small deformations). It would not solve the
problem when density is very high and large deformations will occur. The
most effective way to prevent high deformations is to reduce the time step
dt. A sufficiently small dt prevents pedestrians to deform too much (due to
numerical issues) since the acceleration terms are calculated more frequently.
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However, a small dt increases the simulation time substantially, which has
already been identified as a problem in the previous section.

4 Hybrid Pedestrian Management

In a simulation, in each time step the walking behavior is calculated for each
individual pedestrian present on the walking area. In this contribution we call
pedestrian management the part of the simulation model responsible to calcu-
late this walking behavior. Hybrid pedestrian management, presented in this
contribution, is a combination of a time based simulation step and an event
based simulation step, where most models are restricted to a time based sim-
ulation step. A time based simulation step considers discrete (constant) time
steps, during which every pedestrian moves the distance calculated consider-
ing the constant speed in the time step (Fig. 1a).

To overcome the high physical forces in high densities, the hybrid man-
agement will distinguish the pedestrians that are very close to each other
(categorized as pedestrians “in-collision”). These pedestrians are handled as
colliding particles in an event-based simulation [4] (Fig. 1b), while for the
other pedestrians the traditional time-based simulation is applied. The latter
are further distinguished in two categories: those being sufficiently far away
from other pedestrians and obstacles in order not to collide during the next
time step (“in-range”) and those being even further away from pedestrians and
obstacles guaranteeing that their influence area will be not interfered (“iso-
lated”). This way of distinguishing three degrees of isolation allows the hybrid
management to optimize the amount of pedestrians that have to calculate the
repulsion terms caused by physical contact.

4.1 Event Step

The hybrid way of handling collisions that may occur during a simulation step
is to subdivide the simulation step into smaller collision event steps of variable
time lengths. The smallest distance that any pedestrian “in-collision” can walk
before he collides with another pedestrian or an obstacle will determine the
next event step. If the time for the next collision event is smaller than the
simulation time step, the pedestrians involved are moved until they collide,
while other pedestrians in the event step will move according to this event
step. The process is then repeated for the next smallest event time step. This
process stops when the added length of the realized event steps including
the next calculated event step is larger than the simulation time step. At
this moment the last collision event is not realized and the residual time (see
Eq. (7)) will be used to move the pedestrians to their final positions in this
step without collisions:

R
step

(t) =
n∑

i=1

Ei
step

(t)− S
step

(7)
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Fig. 1. a) and b) Comparison between a simulation time step and an event step.

where:

Rstep(t) : residual time step
Ei

step
(t) : event time step

Sstep : simulation time step

To handle the collisions that occur at each event step we assume that there a
pedestrian has a maximum deformation in the normal direction (δmax). With
this assumption an event becomes a collision when at least one pedestrian
has δp(t) = δmax. With the introduction of this condition the hybrid manage-
ment makes sure that the collision forces will never be larger then a certain
calibrated value independent of the value of dt.

4.2 Optimized Time Based Simulation Step

The time based simulation step is an optimized step in which the necessity
to assess the influence areas by the pedestrians is minimized. Preferably, all
pedestrians are calculated using the optimized time based simulation step
and only those pedestrians that are too close to other pedestrians or walls will
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perform the event step. The main parameter in the time based optimization is
the isolation time parameter (T ip(t)) which is calculated for each pedestrian
during his initialization phase. The isolation time of a pedestrian indicates
the amount of time a pedestrian can walk without interfering with other
pedestrians or obstacles, since the nearest pedestrian or obstacle is too far
away to risk appearing in his influence area. When the isolation time has
expired, the hybrid management will recalculate it and the process restarts.
These pedestrians are said to be “isolated” from other pedestrians whilst their
isolation time did not expire. By definition an “isolated” pedestrian does not
need to look for other pedestrians in the current time step. To calculate his
walking behavior the repulsion terms due to pedestrians and obstacles as
well as the physical forces from Eq. (3) do not need to be recalculated. His
acceleration can be then described by Eq. (8):

ap(t) =
v0

p (t)− vp (t)
Tp

+ εp(t) (8)

To calculate the lower boundary of T ip(t) for a pedestrian p the hybrid man-
agement calculates the distances between him and all pedestrians around him
and assumes that each pedestrian is in direct collision route regardless of the
real walking directions. Fig. 2 shows the above mentioned worst case situa-
tion.

To be sure that pedestrian q will not reach the influence area of pedestrian
p, the hybrid management uses the maximum speeds (Vmax) and maximum
body radii (Rmax) for both pedestrians. It also must assume all possible direc-

Fig. 2. Pedestrian q entering the influence area of pedestrian p assuming a conflicting
trajectory.
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tion changes by both pedestrians. Therefore it uses a circle with radius Ipmax

to calculate T ip
q (t) and not the real influence area shape. From Fig. 2 we can

derive the expressions for the distance between two pedestrians in terms of
the maximum constants and T ip

q (t) and the expression for T ip
q (t) (Eq. (10)).

Dip
q (t) = 2 ·

(
T ip

q (t) · Vmax

)
+ Ipmax +Rmax (9)

T ip
q (t) =

(
Dip

q (t)− Ipmax −Rmax

2 · Vmax

)
(10)

The isolation parameter time T ip(t) for a pedestrian is obtained as the mini-
mum of all T ip

q (t) that are calculated according to Eq. (11):

T ip(t) = min

(
Dip

q (t)− Ipmax −Rmax

2 · Vmax

)
∀q �= p (11)

If the value obtained in Eq. (11) is larger than the simulation step dt, then
the pedestrian is “isolated” from other pedestrians. For obstacles, a similar
approach is implemented.

A pedestrian p is “in-range” if the nearest pedestrian q is sufficiently dis-
tant to guarantee that no collision will occur, but too close to guarantee that
pedestrian q will not fall within pedestrian p’s influence area. In this case the
acceleration of pedestrian p takes into account all terms of the acceleration
formula in Eq. (3) except the physical term since by definition there is no
chance of collision with any pedestrian (Eq. (12)).

ap(t) =
v0

p (t)− vp (t)
Tp

−Ap
p

∑
q∈P
e
−dpq(t)

R
p
p −Ao

p

∑
o∈O
e
−dpo(t)

Ro
p +εp(t) (12)

To calculate the in-range time (Trp(t)) that a pedestrian is guaranteed to
be free of collisions from other pedestrians we apply the same assumptions
used for the isolation time: maximum parameter values and a straight colli-
sion path. We can deduce the value of T q

rp(t) that is the in-range time that
pedestrian q would take to collide with pedestrian p in a straight trajectory
with full speed:

T rp
q (t) =

(
Drp

q (t)− 2 ·Rmax

2 · Vmax

)
(13)

The maximum time during which pedestrian p will certainly not collide with
other pedestrians is shown in Eq. (14). We define:

T rp(t) = min
(
Drp

q (t)− 2 ·Rmax

2 · Vmax

)
∀q �= p (14)

T ip(t) ≤ dt (15)
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If the value obtained in Eq. (14) is larger than the simulation step dt and
his Tip(t) is smaller than dt then the pedestrian is “in-range” from other
pedestrians. For obstacles, again a similar approach is used.

If a pedestrian is neither “isolated” nor in “in-range”, than his nearest
pedestrian (or obstacle) is so close that there is a theoretical possibility that
they may collide. In this case this pedestrian is “in-collision” and will perform
the event step.

5 Conclusions and Future Work

In this contribution we presented a new hybrid pedestrian management ap-
proach that combines an optimized time-based simulation step and an event-
based simulation step. This hybrid pedestrian manager differentiates pedes-
trians in micro-simulations according to three isolation degrees: “isolated”,
“in-range” and “in-collision”. With this, the hybrid management is able to
optimize the time to compute pedestrians’ accelerations and prevent unreal-
istic repulsive accelerations in very dense situations. This hybrid manager is
expected to improve calculation times and accuracy of accelerations during
high densities in spatially distributed micro-simulations. The next step in this
research is to implement and calibrate the hybrid model including the event
step and compare the quality and the performance of the results with the
traditional management model.
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Summary. We present in this paper a traffic model based on Petri nets and minplus
algebra. A Petri net is represented by two matrices one in standard algebra and the
other in minplus algebra. Then a system point of view is developed based on a
matrix product combining these two algebras. Introducing inputs and outputs on
transitions and places we can link two Petri nets by associating outputs with inputs
of the two systems. This linking corresponds to a contraction operator. Combining
elementary systems with this contraction operator we can build large systems. This
point of view is used to define the traffic dynamics of a regular town from three
elementary Petri nets.

1 Introduction

Two modeling approaches of road traffic can be distinguished: – the macro-
scopic point of view where the traffic is seen as a gas with a comportment law
given by a diagram called the fundamental traffic diagram, – the microscopic
point of view where each individual dynamics is given. The cellular automata
approach is a microscopic point of view with very simplified individual dy-
namics where the fundamental diagram emerges from large simulations.

In this paper, we present a very simplified microscopic traffic model based
on Petri nets [1] with dynamics represented by generalized matrices and a
generalized product mixing standard and minplus matrix (see [2]) product.
Our approach is closed to the cellular automata one given for example in [3].
As in statistical physics, we study the individual vehicle movements to derive
macroscopic laws. The effectiveness of this type of model in determining the
fundamental traffic diagrams has been shown on a circular road [4] and on
traffic networks [5, 6].

To be able to compute the fundamental traffic diagram of towns, we focus
our attention on the system point of view, that is, connecting determinis-
tic Petri nets with inputs and outputs. In particular we introduce a unique
combinator called contraction which generalizes series, parallel and feedback
composition. An application is given to traffic where three elementary Petri
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nets are given from which we can derive the traffic dynamics of a complete
regular town (with traffic lights) using only this contraction operator.

2 Minplus Algebra

The minplus algebra [2] is the structure Rmin = (R ∪ {+∞} ,⊕,⊗) where
the set R ∪ {+∞} is endowed with the operations min (denoted by ⊕, called
minplus sum) and + (denoted by ⊗, called minplus product). The element
ε = +∞ is the zero element, and the element e = 0 is the unity one.

This minplus structure on scalars induces an idempotent semiring struc-
ture onm×m square matrices with the element-wise minimum and the matrix
product defined by (A⊗B)ik = minj (Aij +Bjk) , where the zero and the unit
matrices are still denoted by ε and e.

Event Graphs (Petri nets with places having only one input and one output
arcs) are linear dynamical systems in this algebra and can be represented by
a triple (A,B,C) of minplus matrices. The throughput of the event graph is
then given by the minplus eigenvalue of the matrix A (see [2]).

Traffic on a circular road can be described by an event graph whose dy-
namics is given by a minplus linear system. Determining the fundamental
diagram giving the average flow as a function of the car density corresponds
to compute the eigen value of a minplus matrix (see [4]).

3 Petri Net Dynamics

A Petri net N is a graph with two sorts of nodes: the transitions Q and
the places P and two sorts of arcs, the synchronization arcs (from places
to transitions) and the production arcs (from transitions to places). In this
paper we consider deterministic Petri nets where all the places have only one
downstream arc.

A minplus |P|× |Q| matrix D, called synchronization (decision) matrix is
associated to the synchronization arcs. Dpq = ap if there exists an arc from
the place p ∈ P to the transition q ∈ Q, and Dpq = ε elsewhere, where ap is
the initial marking and is represented graphically by tokens in the places. We
suppose here that the sojourn time in all the places is one time unit.

A standard |Q|× |P| matrix H, called production (hazard) matrix is asso-
ciated with the production arcs. It is defined by Hqp = mqp if there exists an
arc from q to p, and 0 elsewhere, where mqp is the multiplicity of the arc.

Therefore a deterministic Petri net is characterized by the quadruple:

(P,Q, H,D).

It is a dynamic system in which the token evolution is partially defined by the
transition firings saying that a transition can fire as soon as all its upstream
places contain a positive quantity of tokens (fluid) having stayed at least one
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time unit. When a transition fires, it consumes a quantity of tokens equal
to the minimum of all the available quantities being in the upstream places.
Cumulating the firings done up to present time defines the cumulated firing of
the transition. The firing produces a quantity of tokens in each downstream
place equal to the firing of the transition multiplied by the multiplicity of the
corresponding production arc. If the multiplicity of a production arc, going
from q to p, is negative, the firing of q consumes tokens of p.

In the case of a deterministic Petri net, the dynamics is well defined, that
is, there is no token consuming conflict between the downstream transitions.
Then, denoting Q = (Qk

q )q∈Q,k∈N the vector of sequences of cumulated firing
numbers of the transitions and P = (P k

p )p∈P,k∈N the vector of sequences of
cumulated tokens numbers arrived in the places we have:[

P k+1

Qk+1

]
=
[

0 H
D ε

]
�
[
P k+1

Qk

]
def
=
[
HQk

D ⊗ P k+1

]
. (1)

We can generalize the autonomous Petri nets to the input-output Petri
nets. For that we partition the transition and the place sets in three parts:
(V,Q,Z) for the transitions and (U ,P,Y) for the places. These parts repre-
sent the inputs, the states, and the outputs respectively. The inputs are the
transitions [resp. places] without upstream arcs and the outputs are the ones
without downstream arcs. The dynamics (1) can be rewritten:⎡

⎢⎢⎣
P k+1

Qk+1

Y k+1

Zk+1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 A 0 B
C ε D ε
0 E 0 0
F ε ε ε

⎤
⎥⎥⎦�

⎡
⎢⎢⎣
P k+1

Qk

Uk+1

V k

⎤
⎥⎥⎦ def

=

⎡
⎢⎢⎣

AQk +BV k

C ⊗ P k+1 ⊕D ⊗ Uk+1

EQk

F ⊗ P k+1

⎤
⎥⎥⎦ . (2)

This dynamics, denoted S and defined by the matrices (A,B,C,D,E, F ),
associates to the input signals (Uk, V k)k∈N the output signals (Y k, Zk)k∈N. We
write: (Y,Z) = S(U, V ). On these systems many operations such as parallel,
series, feedback and contraction can be defined [7]. Here, we discuss only the
contraction operator which will be used later and which generalize the three
standard ones.

To define the contraction we have first to partition the inputs (denoted in
the case of a partition in two sets by (i, i′)) and the outputs (denoted (o, o′)) of
a system. Then, a system S with the previous partition of inputs and outputs
is denoted Sii′

oo′ .
Given two partitioned systems Sii′

oo′ and S̄o′i′′

i′o′′ we define the contracted

system Ŝii′′

oo′′
def
= Sii′

oo′ S̄o′i′′

i′o′′ as the solution in Y, Y ′′, Z, Z ′′ of the system:{
(Y Y ′, ZZ ′) = S(UU ′, V V ′),
(U ′Y ′′, V ′Z ′′) = S̄(Y ′U ′′, Z ′V ′′),

where the partition of the input places associated to the input partition (i, i′)
is denoted UU ′ with the analogous notations for the outputs Y Y ′ and for the
input and output transitions V V ′ and ZZ ′. The dynamics of Ŝ is defined by:
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Â =

⎡
⎢⎢⎣
A 0 0 B′

0 Ā B̄′ 0
E′ 0 0 0
0 Ē′ 0 0

⎤
⎥⎥⎦ , B̂ =

⎡
⎢⎢⎣
B 0
0 B̄′′

0 0
0 0

⎤
⎥⎥⎦ , Ĉ =

⎡
⎢⎢⎣
C ε ε D′

ε C̄ D̄′ ε
F ′ ε ε ε
ε F̄ ′ ε ε

⎤
⎥⎥⎦ , D̂ =

⎡
⎢⎢⎣
D ε
ε D̄′′

ε ε
ε ε

⎤
⎥⎥⎦ ,

Ê =
[
E 0 0 0
0 Ē′′ 0 0

]
, F̂ =

[
F ε ε ε
ε F̄ ′′ ε ε

]
,

where the input matrices of S and S̄ have been partitioned in:
[
BB′],[

B̄′B̄′′], [DD′], [D̄′D̄′′], and the output matrices have been partitioned in:[
E
E′

]
,
[
Ē′

Ē′′

]
,
[
F
F ′

]
,
[
F̄ ′

F̄ ′′

]
.

4 Traffic Modelling

The traffic is modeled using the following assumptions:

• Each road is made up of sections which can contain only one vehicle.
• A junction is a section which can contain at most one vehicle.
• If a vehicle is not hampered by another one, it stays one time unit in a

section, before moving.
• The vehicles move forward without overtaking.
• At a junction, one goes forward, the next on right or left depending of the

junction type.
• At each junction there is a traffic light giving the moving authorizations.

4.1 The Junction Modelling

Before building the Petri net of the complete regular city, let’s explain the
junction modeling on a system of two circular roads with one junction con-
trolled by a traffic light (Figure 1-Right).

Each road is modeled by a set of sections, and each section is represented
by two places a and ā in the Petri net. If a = 1, the section is occupied by one
vehicle and we have ā = 0, and if a = 0, the section is free, and ā = 1 gives
the permission to enter to this section.

The traffic light is described on the right-side of Figure 1 by the transitions
qN , qE and the places connected to these transitions. At the initial time,
ac = ag and āc = āg = 1 − ac. If ag = 1, then āg = 0, and the light is
green for the vehicles coming from the north, and red for the vehicles coming
from the east. We assume that the phase times of the traffic light takes one
time unit1. At the end of the first phase, qE fires and consumes the token
in ac and products one token in āc, one token in āg, and minus one token
in ag (it consumes the token). The light commute to the other phase where

1 In fact the sojourn times in ac and āc.
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Fig. 1. Left. Regular city on a torus, Right. The Petri net model of a junction.

āg = āc = 1, which corresponds to a green light for the vehicles coming from
the east, and red light for the vehicles coming from the north. This phase takes
also one unit of time, then qN fires and the system come back to the first phase.

Before entering in the crossing we have to know if it is free, this is done by
the tokens in the places āν and ā2ν which must be counted correctly. The neg-
ative multiplicities is necessary for that. Thanks to the negative multiplicity,
each time when a vehicle enter by the North (for example), the authorization
by the east is consumed until the vehicle leaves the crossing. In the right-side
of Figure 1, when aν = 1 (resp. a2ν = 1), the intersection is occupied by a
vehicle which wants to go South (resp. West), and we have āν = ā2ν = 0.
When aν = a2ν = 0, the intersection is free, and āν = ā2ν = 1 gives the
permission to enter into the junction.

We consider that half of the vehicles entered in the crossing want to go
West (by entering in the place a2ν) and the other half want to go South (by
entering in the place aν). In fact, by rounding in appropriate way the number
of vehicles in these two places, the even vehicles entered in the junction go
towards the South, and the odd ones go towards the West.

The dynamic of this system is then written as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qk+1
i = min{ai−1 +Qk

i−1, āi +Qk
i+1}, i = 2, . . . , ν − 1, ν + 2, . . . , 2ν − 1,

Qk+1
ν = min{āν +Qk

1 +Qk
ν+1 −Qk

2ν, aν−1 +Qk
ν−1, ag +Qk

ν +Qk
N −Qk

E},
Qk+1

2ν = min{ā2ν +Qk
1 +Qk

ν+1−Qk
ν, a2ν−1 +Qk

2ν−1, āg +Qk
2ν +Qk

E −Qk
N},

Qk+1
1 = min{aν +

⌈
(Qk

ν +Qk
2ν)/2

⌉
, ā1 +Qk

2},
Qk+1

ν+1 = min{a2ν +
⌊
(Qk

ν +Qk
2ν)/2

⌋
, āν+1 +Qk

ν+2},
Qk+1

N = āc +Qk
E , Qk+1

E = ac +Qk
N .
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The two roads being circular, the system above is closed and it can be writ-
ten in the form (1). The average density of vehicles d in this system is given by:

d =

[
ν−1∑
i=1

ai +
2ν∑

i=ν+1

ai + (aν + a2ν)/2

]
/(2ν).

The average flow of vehicles f in every section of the network is given by:

f = lim
k→∞

1
k
Qk

i , ∀i = 1, 2, . . . , 2ν.

The fundamental diagram is then obtained by computing numerically the
flows for a discretized set of densities.

4.2 Regular City Modeling

To model the traffic of a regular city, we use the following elementary systems:

• A traffic section denoted by T V V̄
ZZ̄

(a, b),

• A junction entry denoted by EV VnVeV0V1V2
ZZsZwZ0Z1Z2

(a, b, c, d),

• A junction exit denoted by X VnVeV
ZsZwZ(a, b),

Fig. 2. Elementary systems.

More details of this construction can be found in [7].
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1 Introduction

Besides various theoretical efforts aiming to understand the basic principles
governing the spatial-temporal structure of traffic flow, considerable attempts
have been made towards realistic problems involving optimization of vehicular
traffic flow. While the existing results in the context of highway traffic seem
to need further manipulations in order to find direct applications, researches
on city traffic have more feasibility in practical applications [1–4]. We believe
that optimisation of traffic flow at a single intersection is a substantial ingredi-
ent for the task of global optimisation of city networks. Isolated intersections
are fundamental operating units of complex city networks and their thorough
analysis would be inevitably advantageous not only for optimisation of city
networks but also for local optimization purposes. Recently, physicists have
paid notable attention to controlling traffic flow at intersections and other
traffic designations such as roundabouts [5–9]. In this respect, our objective
in this paper is to study another aspect of conflicting traffic flow at inter-
sections. In principle, the vehicular flow at the intersection of two roads can
be controlled via two distinctive schemes. In the first scheme the traffic is
controlled without traffic lights. In the second scheme, signalized traffic lights
control the flow. In the former scheme, approaching car to the intersection
yield to traffic at the perpendicular direction by adjusting its velocity to a
safe value to avoid collision. According to driving rules, the priority is given
to the nearest car to the intersection. It is evident that this scheme is efficient
if the density of cars is low. When the density of cars increases, this method
fails to optimally control the traffic and long queues may form which gives
rise to long delays. At this stage the implementation of the second scheme is
unavoidable. Therefore it is a natural and important question to find out un-
der what circumstances the intersection should be controlled by traffic lights?
More concisely, what is the critical density beyond which the non-signalised
schemes begins to fail.

mailto:foolad@iasbs.ac.ir
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2 Description of the Problem

We now present our CA model. Consider two perpendicular one dimensional
closed chains each having L sites. The chains represent urban roads accom-
modating unidirectional vehicular traffic flow. They cross each other at the
sites i1 = i2 = L

2 on the first and the second chain respectively. With no loss
of generality we take the direction of traffic flow in the first chain from south
to north and in the second chain from east to west (see Fig. 1 for illustration).
The discretisation of space is such that each car occupies an integer number
of cells denoted by Lcar. The car position is denoted by the location of its
head cell. Time elapses in discrete steps of Δt sec and velocities take discrete
values 0, 1, 2, . . . , vmax in which vmax is the maximum velocity of cars.

Fig. 1. Intersection of two uni-directional streets.

To be more specific, at each step of time, the system is characterized by
the position and velocity configurations of cars. The system evolves under the
Nagel-Schreckenberg (NS) dynamics. The yielding dynamics in the vicinity
of the intersection is implemented by introducing a safety distance Ds. The
approaching cars (nearest cars to the crossing point i = L

2 ) should yield to
each other if their distances to the crossing point, denoted by d1 and d2 for
the first and second street respectively, are both less than the safety distance
Ds. In this case, the movement priority is given to the car which is closer to
the crossing point. This car adjust its velocity as usual with its leading car.
On the contrary, the further car, which is the one that should yield, brakes
irrespective of its direct gap. The simplest way to take into this cautionary
braking is to adjust the gap with the crossing point itself. This implies that
the yielding car sees the crossing point as a hindrance. In this way, the model
is collision-free. Figure two illustrates the situation.
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Fig. 2. Two approaching cars to the intersection yield to each other. d1 > d2.

Let us now specify the physical values of our time and space units. The
spatial grid Δx equals to 4.5

Lcar
m. We take the time step Δt = 1 s. Further-

more, we adopt a speed-limit of 75 km/h. The value of vmax is so chosen to
give the speed-limit value 75 km/h or equivalently 21 m/s. In addition, each
discrete increments of velocity signifies a value of Δv = 4.5

Lcar
m/s which is also

equivalent to the acceleration. For Lcar = 5 this gives the comfort acceleration
0.9 m

s2 . Moreover, we take the value of random breaking parameter at p = 0.1.
In the next section, the simulation results of the above-described dynamics is
presented.

3 Monte Carlo Simulation

The streets sizes are equally taken as L1 = L2 = 1350 m and the system is
update for 106 time steps. After transients, two streets maintain steady-state
currents, defined as the number of vehicles passing from a fixed location per a
definite time interval, denoted by J1 and J2. They are functions of the global
densities ρ1 = N1×Lcar

L1
and ρ2 = N2×Lcar

L2
where N1 and N2 are the number

of vehicles in the first and the second street respectively. We kept the global
density at a fixed value ρ2 in the second street and varied ρ1. Figure 3 exhibits
the fundamental diagram of the first street i.e.; J1 versus ρ1.

It is observed that for small densities ρ2 up to 0.05, J1 rises to its maximum
value, then it undergoes a short rapid decrease after which a lengthy plateau
region, where the current is independent of ρ1, is formed. Intersection of two
chains makes the intersection point appear as a site-wise dynamical defective
site. It is a well-known fact that a local defect can affect the low dimensional
non-equilibrium systems on a global scale [10–13]. This has been confirmed
not only for simple exclusion process but also for cellular automata models
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Fig. 3. J1 vs ρ1 for various values of ρ2. Ds = 25 m and Lcar = 5 cells. The road
length is 1350 metre.

describing vehicular traffic flow. Analogous to static defects, in our case of
dynamical impurity, we observe that the effect of the site-wise dynamic defect
is to form a plateau region ρ ∈ [ρ−, ρ+] in which Δ = ρ+−ρ− is the extension
of the plateau region in the fundamental diagram. The larger the density in
the perpendicular chain is, the more strong is the dynamic defect. For higher
ρ2, the plateau region is wider and the current value is more reduced. After
the plateau, J1 exhibits linear decrease versus ρ1 in the same manner as in
the fundamental diagram of a single road. In this region which corresponds to
ρ1 > ρ+ the intersecting road imposes no particular effect on the first road.
Increasing ρ2 beyond 0.05 gives rise to substantial changes in the fundamental
diagram. Contrary to the case ρ2 < 0.05, the abrupt drop of current after
reaching its maximum disappears for ρ2 > 0.05 and J1 reaches its plateau
value without showing any decrease. The length and height of the plateau does
not show significant dependence for ρ2 ∈ [0.05, 0.8]. This marks the efficiency
of the non signalised controlling mechanism in which the current of each street
is highly robust over the density variation in the perpendicular street. When
ρ2 exceeds 0.8, the plateau undergoes changes. Its length increases whereas
its height decreases. We now consider the flow characteristics in the second
street. Although the global density is constant in street 2 its current J2 is
affected by density variations in the first street. In Figure 4 we depict the
behaviour of J2 versus ρ1.

For each value of ρ2, the current J2 as a function of ρ1 exhibits three
regimes. In the first regime in which ρ1 is small, J2 is a decreasing function
of ρ1. Afterwards, J2 reaches a plateau region (second regime) which is ap-
proximately extended over the region ρ1 ∈ [0.1, 0.8]. Eventually in the third
regime, J2 exhibits decreasing behaviour towards zero. Analogous to J1, the
existence of wide plateau regions indicates that street 2 can maintain a con-
stant flow capacity for a wide range of density variations in the first street.
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Fig. 4. J2 vs ρ1 for various values of ρ2. Ds = 25 m and Lcar = 5 cells. The road
length is 1350 metre.

The other feature is that in fixed ρ1, J2 is an increasing function for small
values of ρ2. This is natural since the current in street 2 has not reached its
maximal value. This increment persists up to ρ2 = 0.05. Beyond that, for
each ρ1, J2 saturates. In the plateau region, the saturation value is slightly
above 0.16. The current saturation continues up to ρ2 = 0.8 above which J2
again starts to decrease. We note that the behaviours depicted in J1− ρ1 and
J2 − ρ1 diagrams are consistent to each other. Due to the existence of 1⇀↽ 2
symmetry, the J2 − ρ2 diagram is identical to J1 − ρ1 and J1 − ρ2 is identical
to J2−ρ1. In order to find a deeper insight, it would be illustrative to look at
the behaviour of total current Jtot = J1 + J2 as a function of density in one
of the streets. Fig. 5 sketches this behaviour.

Fig. 5. Total current Jtot vs ρ1 for various values of ρ2. Ds = 25 m and Lcar = 5
cells.



292 M. Ebrahim Fouladvand and Somayyeh Belbasi

For ρ2 < 0.05, the maximum of Jtot lies at ρ1 = 0.1. However, for ρ2 > 0.05,
the maximum shifts backward to ρ1 = 0. According to the above graphs, after
a short increasing behaviour, Jtot enters into a lengthy plateau region. Evi-
dently for optimisation of traffic one should maximize the total current Jtot.
The existence of a wide plateau region in Jtot suggests that yielding mecha-
nism can be regarded as an efficient method in the plateau range of density in
the first street. Finally, we have also examined the effect of varying the safety
distance Ds. Our simulations do not show any significant dependence on Ds.
This is due to unrealistic deceleration in the NS model.

4 Summary and Concluding Remarks

We have explored the flow characteristics of a non signalised intersection
by developing a Nagel-Schreckenberg cellular automata model. Our findings
show yielding of cars upon reaching the intersection gives rise to formation
of plateau regions in the fundamental diagrams. This is reminiscent of the
conventional role of a single impurity in the one dimensional out of equilib-
rium systems. We remark that our approach is open to serious challenges.
The crucial point is to model the yielding braking as realistic as possible.
Empirical data are certainly required for this purpose. We expect the system
characteristics undergo substantial changes if realistic yielding declaration is
taken into account.

References

1. O. Biham, A. Middleton and D. Levine, Phys. Rev. A, 46, R6124 (1992).
2. T. Nagatani, J. Phys. Soc. Japan, 63, 1228 (1994).
3. S. Tadaki, Phys. Rev. E, 50, 4564 (1994).
4. D. Chowdhury and A. Schadschneider, Phys. Rev. E, 59, R 1311 (1999).
5. M.E. Fouladvand and M. Nematollahi, Eur. Phys. J. B, 22, 395 (2001).
6. S. Lämmer, H. Kori, K. Peters and D. Helbing, Physica A, 363, 39 (2006).
7. B. Ray and S.N. Bhattacharyya, Phys. Rev. E, 73, 036101 (2006).
8. C. Rui-Xiong, Bai Ke-Zhao and L. Mu-Ren, Chinese Physics, 15, July 2006.
9. S.-B. Cools, C. Gershenson and B.D. Hooghe, arXive: nlin.AO/0610040

10. S. Janowsky and J. Lebowitz, Phys. Rev. A, 45, 618 (1992).
11. G. Tripathy and M. Barma, Phys. Rev. Lett., 78, 3039 (1997).
12. A.B. Kolomeisky, J. Phys. A: Math, Gen., 31, 1153 (1998).
13. G. Lakatos, T. Chou and A.B. Kolomeisky, Phys. Rev. E, 71, 011103 (2005).

http://arxiv.org/abs/arXive: nlin.AO/0610040


Traffic Anticipation Effect in the Lattice
Hydrodynamic Model

Hong-xia Ge

Faculty of science, Ningbo University, Ningbo 315211, China
gehongxia@nbu.edu.cn

Summary. A lattice hydrodynamic model is proposed by incorporating the antici-
pation effect. The linear and nonlinear methods are used to analyze the model, and
the results show that considering “backward looking” effect leads to the stabilization
of the system. Numerical simulation confirms that our model is more reasonable for
describing the real traffic flow.

1 Introduction

Since the seminal work of Lighthill, Whitham and Richards (LWR model)
[1, 2] on kinematic waves in vehicular traffic flow, Payne [3] introduced a
high-order continuum traffic flow model including a dynamic equation in 1971,
which was derived from the car-following theory:

∂ρ

∂t
+
∂(ρv)
∂x

= 0, (1)

∂v

∂t
+ v
∂v

∂x
=
Ve(ρ)− v
τ

− μ
ρτ

∂ρ

∂x
, (2)

where ρ the traffic density, v the space mean speed, τ the relaxation time,
Ve(ρ) the equilibrium speed and μ = −0.5∂Ve/∂ρ the anticipation coefficient.
The first term on the right-hand side represents a relaxation to equilibrium
state. The second term is called the anticipation term, which reflects a driver’s
reaction to the preceding car. Recently, Nagatani [4, 5] first proposed the
simplified version of the LWR model for the convenient to analyze continuum
model. The governing equations are described as follows:

∂tρ+ ρ0∂x(ρv) = 0, (3)

∂t(ρv) = aρ0V (ρ(x+ δ))− aρv, (4)

where a = 1/τ the sensitivity of a driver, ρ0 the average density, ρ(x + δ)
the local density at position x + δ at time t, and δ the average headway,
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which means δ = 1/ρ0. Local density ρ(x + δ) is related with the inverse of
headway h(x, t): ρ(x+ δ) = 1/h(x, t). The idea is that a driver adjusts the car
velocity according to the observed headway h(x, t)(or density ahead ρ(x+δ)).
Equation (4) corresponds to Eq. (2), but the anticipation term is omitted for
simplicity.

According to real traffic, the anticipation term is essential. In this pa-
per, it will be included into the simplified continuum model, which leads to
the “backward looking” effect in the lattice hydrodynamic model. The lin-
ear stability theory is given and the neutral stability condition is obtained.
The analytical result shows that this model could stabilize the traffic flow.
The nonlinear analysis is given to derive the mKdV equation, which could
describe the propagation of density waves near the critical point. Numerical
simulation is conducted to validate the above fact.

2 The Anticipation Simplified Continuum Model

First we add the corresponding anticipation term of Eq. (2) into the right
hand of Eq. (4). The motion equation reads

∂t(ρv) = aρ0V (ρ(x+ δ))− aρv + ra
∂V (ρ(x+ δ))

∂x
. (5)

Here r is a constant, which equals 0.5 in the continuum model. As r = 0, it
recovers the original model Eq. (4). Then we modify the continuity Eq. (3)
with dimensionless space x. Let x̃ = x/δ, and x̃ is indicated as x hereafter. In-
cluding Eq. (3), the motion equation of the anticipation simplified continuum
model is given below:

∂t(ρv) = aρ0V (ρ(x+ 1))− aρv + raρ0[V (ρ(x+ 1))− V (ρ(x))]. (6)

The lattice version of the above system is rewritten as the following form.

∂tρj + ρ0(ρjvj − ρj−1vj−1) = 0, (7)

∂tρjvj = aρ0V (ρj+1)− aρjvj + raρ0[V (ρj+1)− V (ρj)], (8)

where j denotes site j on the one-dimensional lattice, and ρj(t), vj(t) represent
the local density and the local average velocity on site j at time t respectively.
So we call it anticipation lattice hydrodynamic (short for, ALH) model. As
r = 0, the model is called lattice hydrodynamic (short for, LH) model.

By eliminating velocity in Eqs. (7) and (8), one obtains the density equa-
tion of the ALH model as follows:

∂2t ρj + a∂tρj + aρ20[V (ρj+1)− V (ρj)]

+ raρ20[V (ρj+1)− 2V (ρj) + V (ρj−1)] = 0. (9)
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It is amazing that the anticipation effect in the continuum model changes into
“backward looking” effect in the lattice hydrodynamic model. The optimal
velocity is selected as that proposed by Nagatani [6], that is,

V (ρj) = tanh
(

2
ρ0
− ρj(t)
ρ20

− 1
ρc

)
+ tanh

(
1
ρc

)
, (10)

where ρc is the inverse of the safety distance hc in the optimal velocity model.
This function has the turning point at ρj = ρ0 = ρc. So we could derive the
modified Korteweg-de Vries equation (the mKdV equation, for short) near the
inflection point, that is, the critical point.

3 Linear and Nonlinear Analysis

We know that the uniform traffic flow with constant density ρ0 and constant
optimal velocity V (ρ0) is the steady state solution for Eqs. (7) and (8), given
as: ρj(t) = ρ0vj(t) = V (ρ0). Then suppose yj(t) to be a small deviation
from the steady state density of the jth vehicle: ρj(t) = ρ0 + yj . Substituting
them into Eq. (9), linearizing it, and expanding yj in the Fourier-modes:
yj(t) = exp(ikj + zt), where z = z1(ik) + z2(ik)2 + · · · . Finally, we have the
neutral stability condition:

a = −2ρ20V
′(ρ0)

1 + 2r
, (11)

where V ′(ρ0) = dV (ρj)/dρj |ρj=ρ0 . According to the linear stability theory,
the condition for instability is

a < −2ρ20V
′(ρ0)

1 + 2r
. (12)

The neutral stability lines according to different r in the parameter space
(ρ, a) are shown in Fig. 1 for the ALH model. It is obvious from Eq. (12) that
the region is unstable under the neutral stability lines. Figure 1 shows that
the critical points (the apexes of the neutral stability lines) and the neutral
stability lines decrease with increasing the value of r, that is to say, once the
anticipation effect is considered, the stable region is enlarged, and the traffic
flow is more stable. As r = 0, it reduces to the LH model.

Then we use the reductive perturbation method to derive the mKdV equa-
tion from the ALH model for describing the traffic jam around the critical
point (ρc, ac). We introduce slow scales for space variable j and time variable
t, and define the slow variables X and T [7, 8]

X = ε(j + bt) T = ε3t, 0 < ε� 1, (13)

where b is a constant to be determined. Let

ρj(t) = ρc + εR(X,T ). (14)
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Fig. 1. The phase diagram of the ALH model according to different parameter r.

Substituting Eqs. (13)–(14) into Eq. (9) and making the Taylor expansions to
the fifth order of ε lead to the expression:

ε2f1∂XR+ ε3f2∂2
XR+ ε4(∂TR+ f3∂3

XR+ f4∂XR3)

+ ε5(f5∂X∂TR+ f6∂4
XR+ f7∂2

XR
2) = 0, (15)

Table 1. The Coefficients fi of the Three Models

f1 f2 f3 f4 f5 f6 f7

b + ρ2
cV

′ b2/a+(1+2r)ρ2
cV ′

2

ρ2
cV ′

6

ρ2
cV ′′′

6
2b
a

(1+2r)ρ2
cV ′

24

(1+2r)ρ2
cV ′′′

12

where V ′ = dV (ρj)/dρj |ρj=ρc and V ′′′ = d3V (ρj)/dρ3j |ρj=ρc . V
′, V ′′′ corre-

spond to V ′(ρc), V ′′′(ρc) in the above equation and hereafter respectively.
Near the critical point a = (1 − ε2)ac, taking b = −ρ2cV ′ and eliminating
the second- and third-order terms of ε from Eq. (15) result in the simplified
equation:

ε4(∂TR+ g1∂3
XR+ g2R∂XR) + ε5(g3∂2

XR+ g4∂4
XR+ g5∂2

XR
3) = 0, (16)

where

Table 2. The Coefficients gi of the Three Models

g1 g2 g3 g4 g5

ρ2
cV ′

6

ρ2
cV ′′′

6

−(1+2r)ρ2
cV ′

2

−(1+2r)ρ2
cV ′

8

−(1+2r)ρ2
cV ′′′

4

We make the following transformations to obtain the standard mKdV
equation with higher order correction

T ′ = −g1T, R =
√
−g1
g2
R′.
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So we get the regularized mKdV equation with O(ε) correction term

∂T ′R′ − ∂3
XR

′ + ∂XR′3 + εM [R′] = 0, (17)

where
M [R′] =

−g3
g1
∂2

XR
′ − g4
g1
∂4

XR
′ +
g5
g2
∂2

XR
′3.

Analogously, we obtain the mKdV soliton solution

ρj(t) = ρc + ε

√
−5V ′

V ′′′ tanh

√
5
2

[
j +
(
−ρ2cV ′ +

5ρ2cV
′

6
ε3
)
t

]
. (18)

4 Numerical Simulation and Conclusion

For the convenience of simulation, Eq. (9) could be rewritten as the difference
equation by transforming time derivatives to asymmetric forward differences:

ρj(t+ 2τ)− ρj(t+ τ) + τρ20[V (ρj+1(t))− V (ρj(t))]

+ τrρ20[V (ρj+1(t))− 2V (ρj(t)) + V (ρj−1(t))] = 0. (19)

Computer simulation is performed for the difference ALH model described
by Eq. (19). The boundary condition selected is a periodic one. The initial
conditions are chosen as follows: ρj(0) = ρ0 = 0.3, ρj(1) = ρj(0) = 0.3 for
j �= 50, 51, ρj(1) = 0.3 − 0.05 for j = 50, and ρj(1) = 0.3 + 0.05 for j = 51,
where the total number of sites is N = 100, the safety density is ρc = 0.25
and the sensitivity τ = 0.5.

Figure 2 shows the space-time evolution of the density for various r at
a fixed time t = 10300 in the ALH model. The pattern (a) corresponds to
the original LH model. The patterns (b), (c) and (d) exhibit the density
profile as r = 0.15, 0.25, 0.5, respectively. In patterns (a) and (b), due to the
“backward looking” effect, the maximum value of density decreases, that is to
say, the degree of vehicles aggregation is reduced. In patterns (c) and (d), large
cluster disappears compared to the pattern (a)–(b), and the wide amplitude
congestion changes into stop-and-go traffic flow, which demonstrates that the
“backward looking” effect is important to describe the nature of density wave
near the critical point in the ALH model. It is obvious that, the stop-and-go
density wave appears more frequently than wide amplitude congestion in real
traffic, so our model is reasonable. Moreover, the bigger r, the stronger of the
density oscillation frequency, and the phenomena of the kink-anti-kink soliton
is not clear. The parameter r selected rightly will make the model describe
the traffic flow effectively.

We have proposed the ALH model of traffic flow for the purpose of con-
structing a cooperative driving system. Taking into account the anticipation
effect in the continuum model, we give a new motion equation, describing
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Fig. 2. Space-time evolution of the density at t = 10300 for the ALH model.

the “backward looking” effect in the lattice hydrodynamic model. The traffic
nature has been analytically analyzed by using the linear analysis. It has been
shown that consideration of “backward looking” effect could further stabilize
traffic flow. The simulation outcomes confirm that, on one hand, the stability
of the ALH model is improved compared to the LH model, on the other hand,
the model could describe the real traffic flow more accurately.
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Summary. In many cases complex systems are mapped onto more simple systems
with the only criteria of the nearest neighbor distribution similitude. Some of these
simplified systems are coalescing and interacting random walk, another common sim-
plification is the independent interval approximation. However, we found that the
nearest neighbor distribution does not contain enough information about the statis-
tics of the system: several different systems could share the same nearest neighbor
distribution.

1 Introduction

This article summarize the most important result presented in Ref. [1], where
the statistical behavior of many non equilibrium systems is studied. In par-
ticular, we study of the statistical behavior of two non-equilibrium systems.
The first one is a quasi one-dimensional gas introduced in Ref. [2]. There, the
authors studied the biased diffusion of two species in a fully periodic 2 × L
rectangular lattice half filled with two equal number of two types of parti-
cles (labeled by their charge + or −). An infinite external field drives the two
species in opposite directions along the x axis (long axis). The only interaction
between particles is an excluded volume constraint, i.e., each lattice site can
be occupied at most by only one particle. The authors map this system onto
two simplified models: the coalescing random walk (CRW) where the parti-
cles diffuse and interact with the reaction A + A → A, the other one is the
interacting random walk (IRW) where the particles additionally experiment
an interaction which decrease with the distance between particles. The sec-
ond system is a one-dimensional spin system introduced in Ref. [3], where the
authors consider a chain of L Ising spins with nearest neighbor ferromagnetic
interaction J . The chain is subject to spin-exchange dynamics with a driving
force E that favors motion of up spins to the right over motion to the left.

The gas and spin systems evolve in a similar way. For each system there
are two kind of domains: in the spin case, there are domains of up spins and
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domains of down spins and in the gas case, there are domains filled with
particles and empty domains. Both systems evolve with formation of domains
in such way that the average length of domains grow in time. For intermediate
times where the size of the domains is much smaller than the total size L of
the system, the domain size distribution exhibit a dynamic scaling. For later
times, in both systems, it is possible to find a non equilibrium steady state
(NESS). For the gas system, in this regime there is a only one macroscopic
domain with an approximate size of L/2. This macroscopic domain it is not
in equilibrium because there are particles (travellers) which leak out from one
end of this domain and travel along the lattice until reach the other end of this
domain. In the spin system, for later times there are two macroscopic domains.
One of them with up spins and the other one with down spins, because of the
external field, they move in opposite directions along the lattice.

We are interested in the statistical properties of these domains regardless
of their type (filled or empty, up or down) in the scaling regime. We use the
same definitions for the spacing distributions as Ref. [1], then, P (n)(S, t) is the
probability density function that the distance between the external borders
of n + 1 consecutive domains is S at time t, 〈S〉 is the average of S and the
relative spacing between borders is s = S/ 〈S〉. Finally, the scaling probability
density function is given by

p(n)(s) = 〈S〉P (n)(s 〈S〉 , t) , (1)

in particular p(0)(s) is the scaling nearest neighbor edges distribution, i.e. the
domain size distribution. In the scaling regime, p(n)(s) does not depend on
the time t. Several numerical simulations of both systems, see [1–4], show that
the scaling domain size distribution function for both systems in the scaling
regime is well fitted by

p(0)(s) =
π

2
s e−πs2/4 . (2)

This distribution also it appears in the random matrices theory, it is known
as the Wigner surmise, and it describes the spacing distribution between eigen-
values in the Gaussian and circular orthogonal ensembles (GOE and COE
respectively) [5]. The GOE and COE ensemble are equivalents to a system
of particles on a circle interacting through a log-potential. For more details
about these systems see [1–5].

2 The Nearest Neighbor Spacing Distribution

In order to verify the results obtained by [2–4], we performed simulations for
the gas, the spin, the CRW, the IRW and the circular orthogonal ensemble
(COE) of random matrices with the same parameters used in Ref. [1]. Figure 1
shows ours results for the scaling domain size distribution p(0)(s) of these
systems, in all cases the nearest neighbor distribution is well fitted by the
Wigner surmise. This fact poses a question: Are these systems equivalents for
n > 0, as occurs for n = 0?
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Fig. 1. Nearest neighbor spacing distributions for the gas, spin, IRW, CRW and
COE and Wigner surmise.

3 The Spacing Distributions for n > 0

From our simulations, we computed the other spacing distributions p(n)(s)
and the correlation function g(r) of all these systems in order to compare
them. The results are presented in the following subsections.

3.1 The Quasi One-Dimensional Gas and its Approximate Models:
the IRW and the CRW

The CRW and IRW were use in Ref. [2] as approximate models for the quasi
one-dimensional gas. We now compare the other spacing distribution functions
and the correlation function. The results are shown in figure 2. As we already
know, the CRW and IRW reproduce correctly the nearest neighbor distri-
bution, but they fail describing the other spacing distribution functions for
n > 0 and as consequence, they also fail describing the two-point correlation

Fig. 2. Spacing distributions and the pair correlation function in the gas system,
IRW and CRW for a lattice with N = 500 and N = 1000 sites respectively.
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function g (r). The most important difference it happens in the correlation
function g(r). In the gas system there is an oscillation around r = 1 (and
probably more for higher values of r) but in the CRW and IRW systems this
oscillation does not exist. The spacing distributions p(n)(s) for n ≥ 1 of the
IRW and CRW are somehow similar, but they are different from the ones
of the gas system. We conclude that the CRW and IRW systems are not
statistically equivalent to the quasi one-dimensional gas.

3.2 The Circular Orthogonal Random Matrix Ensemble (COE)
and the CRW and IRW

In figure 3(a), we compare the correlation functions and spacing distribution
functions of both the CRW and IRW systems with COE. The correlation func-
tion g(r) of the CRW and IRW differs from the one of the COE. Although
the three correlation functions have no oscillations, the correlation function
of the COE is smaller than the one of the IRW and the CRW. The first two
distribution functions p(0)(s) and p(1)(s) of these systems are very similar.
However from n ≥ 2, the COE spacing distributions p(n)(s) start to differ
from the corresponding ones of the CRW and the IRW. The most important
conclusion is that the CRW and the IRW systems are not statistically equiv-
alent to the COE. Additionally, the CRW and the IRW show a very similar
statistical behavior, therefore, the interaction proposed in Ref. [2] for the IRW
do not change considerably the statistical behavior of this system from the
CRW in the scaling regime.

3.3 The Gas and Spin Systems and the Circular Orthogonal
Random Matrix Ensemble (COE)

Now, in figure 3(b), we compare the spacing distributions p(n)(s) and the
correlation function g(r) of both the gas and spin systems with the ones for

Fig. 3. (a) Comparison between the CRW, IRW and COE for a lattice with N =
1000 sites. (b) Comparison between the gas, spin system (μ = 0.5) and COE for a
lattice with N = 1000 sites. In the COE we took 20000 matrices of 200 × 200.
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the random matrix COE. The statistical behavior of the gas and spin system
is very similar. In particular, the correlation functions of both systems are
almost identical and they have the oscillation near r = 1 mentioned above. The
spacing distributions are somehow similar for the gas and the spin system, with
some small differences between them. But both systems, gas and spin, have
a very different statistical behavior from the COE. It is possible to conclude
that the gas and spin systems have a similar statistical behavior but this
behavior is different from the COE. They only coincide in the nearest neighbor
distribution.

3.4 The Independent Interval Approximation (IIA)

The independent interval approximation is commonly used in this kind of sys-
tems in order to find analytical results, in this approximation, p(n)(s) is given
by the convolution product of n+1 nearest neighbor distribution factors. Be-
cause of that it is possible to calculate the distributions p(n)(s), for any n ≥ 1
and the pair correlation function g(r), see Refs. [1, 6, 7]. In figure 4, we com-
pare the gas and spin system correlation functions and spacing distributions
with the theoretical predictions from the independent interval approximation.
We notice that this approximation reproduce more closely the spacing distri-
butions and the correlation function. The IIA correlation function has an
oscillatory behavior near at r = 1 as it occurs in the gas and spin system. The
fact that the independent interval approximation reproduce much better the
correlation function and spacing distributions of the gas and the spin system
than the other approaches considered (CRW, IRW and COE), suggest that in
the gas and spin systems the domains are not strongly correlated.

Fig. 4. Comparison between the gas, spin system and IIA for a lattice with N = 1000
sites.
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4 Conclusion

We studied the statistical behavior of several equilibrium and non equilib-
rium systems, the last ones in the scaling regime. In all studied systems the
nearest neighbor distribution function p(0)(s) is well fitted by the Wigner sur-
mise, Eq. (2). However, by comparing the other spacing distribution functions
p(n)(s) for n > 0 and the correlation function g(r), we find that those systems
are not equivalents and have different statistical behaviors. This result show
us that the nearest neighbor distribution contains limited information about
the statistic of the system and the finer details and differences between them
are contained in the correlation function and the other spacing distributions.
Then we must be cautious when we map complex systems onto more simple
systems with the only criteria of the nearest neighbor distribution similitude.
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Summary. We investigate driven lattice gases with open boundary conditions in
presence of randomly distributed defect sites with reduced hopping rate [1]. These
systems can be used as models for intracellular transport systems impurified by
immobile blocking molecules. In contrast to equilibrium, even macroscopic quantities
in disordered non-equilibrium systems depend sensitively on the defect sample. We
show that the leading behaviour in the disordered system is determined by the
longest stretch of consecutive defect sites. Using results from extreme value statistics
[2] this single-bottleneck approximation gives accurate results for the expectation
values of the maximum current at small defect densities. Corrections from bottleneck
interactions can be taken into account systematically by a perturbative expansion.

1 Introduction

Driven diffusive systems play an important role in non-equilibrium statisti-
cal physics. They are used as models for transport processes like vehicular
traffic [3], and biological transport by motor proteins [4–7]. The paradigmatic
model is the totally asymmetric simple exclusion process (TASEP) which
was first introduced to describe protein polymerization in ribosomes [8]. The
TASEP exhibits some generic properties like boundary induced phase transi-
tions [9] that also occur in more complex driven systems. It was solved exactly
[10, 11] and results can be used for qualitative and quantitative approaches
to other systems.

In contrast to the homogeneous TASEP, the TASEP with site-dependent
hopping rates is not fully understood. There have been some numerical and
analytical approaches [1, 12–14], while exact solutions for even single sites
with lower hopping rates are still pending.

Here we consider systems with disorder, i.e. two possible hopping rates
randomly assigned to the sites. Sites with a lower hopping rate q are called
defect sites, while sites with the higher hopping rate p are non-defect sites.
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In open systems the main effect of defects is a decrease of the flow capac-
ity compared to the homogeneous system. In contrast to this, below critical
system parameters, the system seems rather unaffected by the disorder on a
macroscopic scale [15]. Nonetheless, there are small deviations from the ho-
mogeneous system even in the low current regimes if there are defects near the
boundaries [16]. If the system current reaches the maximum current, phase
separation occurs which marks the transition to a maximum current or phase
separated phase, which is larger than the corresponding phase of the pure
TASEP. Inside this phase, system properties are independent of the boundary
conditions.

The maximum current, which is a macroscopic quantity, depends sensi-
tively on microscopic details of the defect distribution. For applications to real
systems macroscopic parameters and quantities are most relevant. Therefore
we are mainly interested in determining statistical properties, e.g. probability
distributions and expectation values, of relevant quantities taking an ensemble
of systems rather than looking at single samples.

2 Model

We consider a TASEP consisting of L sites which can either be empty or
occupied by one particle. With each site i we associate a hopping rate pi
which corresponds to the rate at which a particle at this site will move to its
right neighbour i+ 1 if this is empty. At the boundary sites i = 1 and i = L
particles can be inserted and removed, respectively. If site 1 is empty a particle
will be inserted there with rate α. On the other hand, if site L is occupied this
particle will be removed with rate β. Here we will use a random-sequential
update corresponding to continuous-time dynamics.

The hopping rates pi can take two different values pi = p and pi = q with
q < p. Sites with hopping rate q are called defect or slow sites, while sites with
hopping rate p are non-defect or fast sites. In the following we will take p = 1
which can always be achieved by rescaling time. We consider systems with
randomly distributed defects by assigning hopping rates to sites according to

pi =
{
q with probability φ
p with probability 1− φ . (1)

We have simulated the TASEP with defects to illustrate some of the special
properties of the system. The results of the Monte-Carlo (MC) simulations
can be seen in fig. 1. A sketch of the phase diagram of a specific, randomly
chosen disorder realization can be seen in fig. 2.

3 Expectation Values of the Maximum Current

The crucial issue for treating disordered systems is the observation that in
the disordered TASEP with periodic boundary conditions the longest stretch
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Fig. 1. left: Current as function of the entry rate α for fixed exit rate β = 0.9
in the pure and disordered TASEP. Below the critical value α∗, the currents are
almost identical. For α > α∗ the current in the disordered TASEP saturates at the
maximum current J∗. right: Density profile of the disordered TASEP above the
critical entry rate α∗, here α = 0.8. One observes phase separation exhibiting a
macroscopic high density region on the left and a low density region on the right.

Fig. 2. Sketch of the phase diagram of the TASEP for one specific realization of
randomly distributed defects, compared with that of the pure TASEP. The maxi-
mum current phase is larger than in the pure TASEP (here denoted as PS because of
phase separation) due to decreased maximum current. The transition line between
high and low density phase is distorted due to defects near the boundaries [16].

of defects is the limiting factor for the current [1, 14]. This remains true for
open boundaries [17], as one can see in table 1. Here we call a stretch of l
consecutive defects a bottleneck of size (length) l. This leads to the Single
Bottleneck Approximation (SBA):

In a system with many defects, the maximum current is approximately
the same as in a system with a single bottleneck which has the same
size as the longest one.

The SBA reduces the problem to the much simpler one of a single bottleneck
in a TASEP. For such systems, efficient methods have been developed recently,
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namely the finite segment mean field theory (FSMFT) [18] and the interaction
subsystem approximation (ISA) [19].

The validity of the SBA is confirmed by results displayed in table 1. Thus
we can state that a macroscopic quantity (the maximum current) can de-
pend sensitively on microscopic details (the longest bottleneck), in contrast
to equilibrium systems. Since we are interested in macroscopic properties, and
we can control only macroscopic parameters like the defect density φ, we fo-
cus on disorder averages and obtain probability distributions and expectation
values.

Table 1. SBA results and Monte-Carlo-simulations for the maximum current in
the disordered TASEP for fixed slow hopping rate q = 0.6. Column 3: length of the
longest bottleneck. Columns 4 and 5: distance and length of the bottleneck next to
the longest one. Column 6: Results by MC-simulations. Column 7: SBA-results by
simulating a system with a single bottleneck whose size corresponds to the value in
column 3.

L φ l∗ next bn. length J∗
MC J∗

SBA

1000 0.05 2 2 1 0.2174 0.2294
1000 0.1 3 12 1 0.2080 0.2131
1000 0.2 3 2 2 0.1963 0.2131
3000 0.1 3 4 1 0.2048 0.2131
3000 0.2 5 5 1 0.1866 0.1925

Since the longest bottleneck is the dominant part of the system we need
the probability distribution P(l∗) of the length l∗ of the longest bottleneck as
a function of the defect density φ. Extreme value statistics provide the tools
to solve this problem [2]. The probability that a single bottleneck has size
l is given by P (l) = φl(1 − φ). This leads to a Gumbel-like extreme value
distribution for the probability of the longest bottleneck l∗ [17]

P(l∗) = −L(1− φ)φl∗+ 1
2 lnφ exp(−φl∗+ 1

2 (1− φ)L) . (2)

This distribution is plotted in fig. 3. It can be used to calculate the sample
averaged expectation value of the maximum current in SBA:

〈J∗SBA(q, φ)〉 =
∑∞

l∗=1 J
∗(q, l)P(l∗)∑∞

l∗=1 P(l∗)
(3)

Here J∗(q, l) is the maximum current in a system with a single bottleneck
of size l. This quantity can be obtained by computer simulations of the cor-
responding system or by analytical approximations [18, 19]. The results are
displayed in table 2. In practice, 〈J∗(q, φ)〉 is calculated by truncating the sum
at a value where P(l∗) becomes negligibly small.
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Fig. 3. Frequency of the longest bottleneck for 500 samples, system size L = 10000
defect density φ = 0.1. The average size of the longest bottleneck is 3.65, the
statistical standard deviation is 0.03. Using (3) one obtains the expectation value
〈l∗〉 = 3.70.

4 Perturbative Expansion

In order to improve the results and to control the error of the SBA we sys-
tematically take into account the effect of defects in the vicinity of the longest
bottleneck on the maximum current. For this purpose a kind of perturbative
series expansion is derived.

Fig. 4. Illustration of the vicinity of the longest bottleneck (length l∗). The distances
between defects to the left are denoted by l−1, l−2, . . . , and l1, l2, . . . to the right.

Consider the vicinity of the longest bottleneck as displayed in fig. 4. We
assume the defects on the left and right of the bottleneck being screened, i.e.
the perturbation by a defect on the right does not depend on the distribution
of defects on the right of the bottleneck. For a given longest bottleneck of size
l∗, the current in a system with N defects can then be decomposed as

J∗l∗(l1, l2, . . .) = J∗l∗ −
N∑

k=1

ΔkJ+
l∗ (l1, . . . , lk)−

N∑
k=1

ΔkJ−l∗ (l−1, . . . , l−k) (4)

where ΔkJ±l∗ (l1, . . . , lk) is the contribution of the k-th defect (“defect-defect
interaction”) on the left/right of the longest bottleneck to the decrease of the
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maximum current. This quantity still depends on the defects that are nearer
to the bottleneck than the k-th defect, as the arguments suggest.

Taking the expectation value over all defect distributions (length of bot-
tleneck fixed) yields a function of the defect density φ that can be expanded
formally into a Taylor series with a remainder term [17]. Investigation of
this remainder term reveals that the expansion converges if the functions
ΔkJ+

l∗ (l1, . . . , lk) decay faster than any power law. If these functions decay
not slower than l−3

i , at least a first order asymptotic expansion is possible,
while the expansion can be taken to higher orders if the decay is faster. This
confirms the validity of the SBA if the defect-defect interaction is weak enough.
Note that although the estimate is rather crude, MC simulations indicate a
wider range of validity of the expansion.

For illustration we explicitly expand the series up to second order

〈ΔJl∗〉 = φ

( ∞∑
l1=1

Δ1JX(l1)

)
+ φ2

(
−

∞∑
l1=1

l1Δ
1Jl∗(l1) +

∞∑
l1,l2=1

Δ2Jl∗(l1, l2)

)

+O(φ3) . (5)

The full expectation value is obtained by averaging over all l∗ analogous to (3).
In table 2, the results of the Taylor expansion are compared with numerical
results from MC simulations. The MC results of the SBA serve as reference
points.

Table 2. Results by SBA and pertubative expansion for the expectation value of
the maximum current compared with average values of MC simulations (q = 0.6).
Column 4: MC-results. Column 5: SBA-results. Columns 6 and 7: first and second
order perturbative expansion around the SBA solution (5).

L φ samples 〈J∗〉MC 〈J∗
SBA〉MC 1.order 2.order

500 0.1 200 0.2099 0.2244 0.2126 0.2077
1000 0.2 100 0.1918 0.2024 0.1922 0.1899
3000 0.1 100 0.2018 0.2110 0.2041 0.2025
3000 0.2 50 0.1866 0.1960 0.1884 0.1880
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Summary. With the application of intelligent transportation system (ITS), a mod-
ified coupled map car-following model is proposed to describe the dynamic charac-
teristics of one-way traffic flow and the control of traffic congestion. It is concluded
that the proposed control strategy is more effective in suppressing the formation of
traffic congestion.

1 Introduction

Traffic congestion (traffic jam) leads to not only traffic safety problems but
also the waste of considerable traffic transportation time and the pollution of
the environment. A variety of approaches have been applied to describe the
serious problem [1–11]. It is noticeable that when suppressing the congestion,
coupled map (CM) car-following model is important for it, as a discrete version
of car-following mode, not only explains many traffic phenomena but also
suits to describe complicated traffic control based on its simple arithmetic
in numerical simulation. Our investigations are based on a coupled map car-
following traffic model [12], which consists of a leading vehicle and following
vehicles, under open boundary condition. The dynamics of the ith vehicle can
be given as:

vi(n+ 1) = αi [vop
i (yi(n))− vi(n)] T + vi(n) (1)

yi(n+ 1) = v0T − vi(n)T + yi(n) (2)

where xi(n) > 0 is the position of the ith vehicle at time t = nT , T > 0 is
the sampling time, vi(n) is the velocity of the ith vehicle at time t = nT ,
N is the total number of vehicles, αi1 and αi2 are constants which denote
respectively the sensitivity to preceding and following vehicles of ith vehicle
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mailto:lxl326@163.com
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Fig. 1. Illustrations of car-following model.

driver. vop
i (yi(n)) is the optimal velocity (OV) function, yi(n) = xi−1(n) −

xi(n). p and q are non-negative constants which stand for the relative effect on
considered vehicle coming from the preceding and following ones, respectively,
as well as p + q = 1. Namely, q is the probability of yi+1(n) less than safety
distance hc. The OV function has been given by [12]

vop
i [yi(n)] =

vmax
i

2

[
1 + H̄sat(2

yi(n)− ηi
ξi

)
]

where the saturation function H̄sat is described as

H̄sat(ρ) =

⎧⎨
⎩

+1 if ρ > 1
ρ if − 1 ≤ ρ ≤ 1
−1 if ρ < −1

vmax
i > 0 is the maximum speed, ηi > 0 is the neutral headway distance, and
ξi > 0 is the parameter. The steady state of system (1)–(2) is

[v∗i y
∗
i ]T = [v0

v0
ri
− ξi

2
+ ηi]T (3)

where ri = vmax
i

ξi
.

By the control theory, Ref. [12] derived the no traffic congestion conditions
of (1)–(2). Then, they proposed a control scheme, which is called KKH model,
for suppression of traffic jam in the model. A decentralized delayed-feedback
control signal term is added to system (1), this term is ūi(n), which is given
as:

wi(n+ 1) = ka
i wi(n) + kb

i [vi(n)− vi(n− 1)]

ui(n+ 1) = kc
iwi(n) + kd

i [vi(n)− vi(n− 1)]

where ka
i ,kb

i ,k
c
i and kd

i ∈ R are the feedback gains.
Based on KKH model, Xiaomei Zhao and Ziyou Gao [13] modified ūi(n)

in the KKH model as

ūi(n) = k [vi−1(n)− vi(n)] , i = 1, 2, . . . , N

the feedback gain has only one, we call this model as ZG model.
In the next section, we will propose simpler control schemes to suppress

traffic jam.
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2 Delayed-Feedback Control Under ITS

We suppose all the vehicles are equipped with ITS (i.e. Intelligent Transporta-
tion System), and the ith vehicle can obtain the information’s of velocities of
all vehicles before it. Thence, we designate a feedback control signal term
ui(n) as follows:

ui(n) =
s∑

l=1

kl[vi−1(n)− vi(n)], s ≥ 2, i = 1, 2, . . . , N

where kl > 0(l= 1, 2, . . . , s) are the feedback gains. Let ȳi(n)=
s∑

l=1

klyi−l+1(n),

add the control signal term to (1), i. e.

vi(n+ 1) = αi[v
op
i (ȳi(n))− vi(n)]T + vi(n) + ui(n) (4)

In order to suppress the traffic jam in the system (1) and (4), we design
the feed back gains kl which satisfies: pi(z) is stable; and max

|z|=1|Gi(z)| ≤ 1, i =
1, 2, . . . , N .
where

Gi(z) = [(k1− k2)(z− 1)+αirik1T
2, (k2− k3)(z− 1), . . . , (ks−1− ks)(z− 1),

ks(z− 1), αiriTk2(z− 1), αiriTk3(z− 1), . . . , αiriTks−1(z− 1), αiriT

ks(z− 1)]/pi(z)

and pi(z) = z2 + aiz + bi, ai = αiT + k1 − 2, bi = 1− k1 − αiT + αirik1T
2.

We adopt all assumes of Ref. [12], and suppose that [9]

kl =
2
3l
R (l = 1, 2, . . . , s), ks =

1
3s−1

R, R > 0; 0 < T ≤ 0.5.

The following theorem provides one of the sufficient conditions of system
(1) and (4) for no traffic jams on how to design the feedback gains kl.

Theorem. Supposing the system (1) and (4) satisfies all of the above as-
sumptions, and 0 < αiriT

2 < 1, then there is no traffic jam, if A1 =
−2

9 + 7
9s + α2

i r
2
i T

4( 1
18 + 1

2×32s−2 )− 8
27αiriT

2 < 0, Δ2 > 0 and R satisfies

{R > R11orR < R12} ∩
{

max
{

3 (1− αiT )
2 (1− αiriT 2)

, 0
}
< R <

3 (4− 2αiT )
2 (2− αiriT 2)

}

(5)
where R21 = −B2−

√
Δ2

2A1
, R22 = −B2+

√
Δ2

2A1
, B2 = 2

3 (4−αiriT
2+α2

i riT
3−2αiT ),

C2 = −4 + 4αiT − α2
iT

2.



318 Han Xianglin, Ge Hongxia, Jiang Changyuan, Li Xingli, and Dai Shiqiang

3 Numerical Simulation Results

Our simulations are based on the CM car-following with ITS under open
boundary. The parameters of all vehicles are the same and set as Ref. [12],
the method of simulation is also same as Ref. [12]. We will compare our model
with KKH model and ZG model: How does the external disturbance effect on
the traffic jam by three method?

According to Ref. [9], s = 3 is the optimal value. Substituting all of the
parameters to (5), we can obtain: 1.23558 < R < 1.5944.

We chose R = 1.59, then we have
The second vehicle: k1 = 1.06, k2 = 0.53.
The ith (s ≥ i > 2) vehicle: k1 = 1.06, k2 = 0.286, k3 = 0.144.

Fig. 2(a), 3(a), 4(a) and 5(a) show the spatio-temporal pattern of the
traffic flow about uncontrolled system, KKH model, our model and ZG model
after nT = 90s, respectively. Fig. 2(b), 3(b), 4(b) and 5(b) show the temporal
velocity of the first, 25th, and 50th vehicles corresponding to Fig. 2(a), 3(a),
4(a) and 5(a), respectively. It should be noted that there is smaller oscillating
amplitudes in the system controlled by our method, compared with KKH
model and ZG model. The simulation results indicate that all of the above
three control models can be used to suppress the traffic jam, and our model
is better.

Fig. 2. (a).Spatio-temporal pattern of the traffic flow about uncontrolled system;
(b).Temporal velocity of the first, 25th, and 50th vehicles corresponding to Fig. 1(a).

4 Conclusions

In this paper, a modified coupled map car-following model for the suppression
of the traffic jam is proposed, based on the pioneering work of Ref. [1] and the
application of intelligent transportation system (ITS) to describe the dynamic
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Fig. 3. (a).Spatio-temporal pattern of the traffic flow about KKH model; (b). Tem-
poral velocity of the first, 25th, and 50th vehicles corresponding to Fig. 2(a).

Fig. 4. (a).Spatio-temporal pattern of the traffic flow about (4)–(5) model; (b).
Temporal velocity of the first, 25th, and 50th vehicles corresponding to Fig. 3(a).

Fig. 5. (a).Spatio-temporal pattern of the traffic flow about ZG model; (b).Temporal
velocity of the first, 25th, and 50th vehicles corresponding to Fig. 4(a).
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characteristics of one-way traffic flow. The stability criteria are given as the
speed of the lead vehicle changes. By theoretical analysis and simulations,
it can concluded that (i) the information on more leading vehicles of each
vehicle could lead to a stabilization effect for the traffic flow, that is, the
stability conditions could be considerably weakened, (ii) the corresponding
numerical simulations confirm the correctness of the theoretical analysis, (iii)
the proposed control strategy is more effective in suppressing the formation
of traffic congestion by applying and controlling the induction information
provided by the intelligent transportation system.
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Summary. In the last few decades, a number of driving models aiming at model-
ing the longitudinal and lateral driving tasks have been put forward based on the
analogy with self-driven many particle systems. Examples of such models are the
social-forces type models for car-following behavior [1], the IDM (Intelligent Driver
Model) and its modifications [2], and the MOBIL model [3] describing lane-changing
behavior. Although these models can describe many phenomena in motorway traffic
flow operations, a clear behavioral foundation has however been lacking so far.

This contribution puts forward a new generic theory of driving behavior, based
on the principle of least effort. In this theory, drivers are assumed to minimize the
predicted subjective perceived effort of their control actions, including for instance
acceleration towards the free speed, car-following and lane changing. In this game-
theoretic approach, drivers may or may not anticipate the reactions of the other
drivers on their control decisions. Also non-cooperative and cooperative driving rules
can be incorporated using the flexibility of the modeling approach.

In this contribution, we present the main behavioral assumptions, the model
derivation, and the resulting car-following and lane changing models for the non-
cooperative case. The workings of the model will be illustrated by means of a simple
example.

1 Introduction

Microscopic driver models aim to predict traffic flow operations using mathe-
matical models describing individual driving behavior. In general, these mod-
els distinguish between:

• the longitudinal driver tasks, such as choosing the free speed and acceler-
ating towards it, and car-following, and

• the lateral driver tasks, such as lane-changing and overtaking.

For an elaborate overview of driving tasks, we refer to [4].
This contribution generalizes many of these modeling approaches by adopt-

ing the concept of effort minimization: drivers are assumed to minimize the
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predicted subjective effort of their control actions, taking into account the
anticipated actions of the other drivers. This can be achieved in a cooperative
(working together to achieve some common goal) or a non-cooperative way
(possibly taking account expected counteractions of the ‘opponents’). The re-
mainder of this contribution considers the main behavioral principles that will
be used for model derivation.

2 Driving and Effort Minimization

Several authors (e.g. [5] and [6]) have proposed using a utility (or cost) opti-
mization model to conceptually model execution of the driving task. Clearly,
this process, its parameters, and the resulting control decisions will differ be-
tween drivers, due to differences in the control objectives, preferences, vehicle
characteristics, etc. Differences in driving style are reflected by different pref-
erences for the desired driving speed, desired comfortable deceleration levels,
minimum gap distances, etc.; some driver give priority to safe driving; others
prefer driving at a high speed, accepting smaller headways and increased risk.

In general, we assume that the objective of drivers will be a subset of the
following:

1. Maximize safety and minimize risks
2. Minimize lane-changing maneuvers
3. Maximize travel efficiency (restricting deviations from the desired driving

speed)
4. Maximize smoothness and comfort
5. Minimize stress, inconvenience, fuel consumption, accelerations, decelera-

tions, etc.

The importance of each of these objectives will vary among the individuals,
given the possibilities of their vehicle in terms of maximum speed, braking
capabilities, etc.

In the remainder of this contribution, we will derive an operational model
for driving behavior based on these conceptual notions. Effectively, this im-
plies that we formalize the control objectives into a cost function (predicted
disutility) a driver aims to minimize. Before doing so, let us briefly reflect on
the main behavioral assumptions made in this contribution.

2.1 Behavioral Assumptions

Underlying the mathematical model that will be derived in the ensuing is a be-
havioral theory, describing how we assume driver p to act and react to other
drivers q – referred to as the opponents – on the road. These assumptions
pertain to the way drivers scan their environment, and act upon these obser-
vations, given their control objectives. The following list provides an overview
of the main behavioral assumptions:
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1. Drivers minimize the generalized predicted costs of their control actions.
These generalized costs reflect the different (and subjective) control ob-
jectives (e.g. risk, travel time, stress, smoothness, etc.).

2. Drivers reconsider their operational control decisions at non-equidistant
discrete time instants tk based on a) observations of the prevailing traf-
fic conditions and b) predictions of the impacts of their control actions,
possibly including the expected reactions on the other drivers (see 4).

3. Car-drivers are to a large extent anisotropic, implying that they will gen-
erally only consider stimuli in front of them. Drivers will however not only
consider the driver directly ahead or only drivers on the same lane, but
may also take into account other drivers further downstream and on other
lanes.

4. Drivers anticipate on the behavior of other drivers by predicting their driv-
ing behavior according to either non-cooperative or cooperative strategies.

5. Drivers have limited prediction possibilities. This is reflected by discount-
ing the costs both over time and space.

6. Drivers will minimize the predicted cost stemming from: a) not driving at
the desired state, described by e.g. the free speed, the desired distance,
and the desired lane, b) driving too close to other drivers, c) acceleration
and braking and d) changing lanes (lane switching costs).

7. Observing, decision making, and maneuvering take time and are prone to
errors.

8. Control objectives may change over time (adaptation effects).

All these behavioral assumptions are supported by empirical evidence for dif-
ferent sources. It is beyond the scope of this contributions to provide a com-
plete overview of all literature providing evidence for these assumptions. In
the remainder, we will focus on the principle of least effort and how this can
be formalized to yield a microscopic driver model.

2.2 Driving as an Optimal Control Cycle

We assume that decisions to adapt speed or change lanes are made at discrete
time instants, say tk, with k = 1, 2, . . . ,K. Let us assume that at each of
these instants tk, driver i has information on the positions and speeds of all
cars influencing his or her behavior. This information stems from (erroneous)
observations made by the driver which are used in conjunction with the drivers
experience, mental model, etc., to form an estimate of the current state of the
system.

The estimate of the state of the system available at tk is used as the start-
ing conditions for the (conditional) predictions of the evolution of the system.
We assume that the driver has some mental model allowing him or her to
make such a prediction, given the candidate control decision (longitudinal ac-
celeration or changing lanes). He or she will then choose the control decision
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that minimizes the predicted effort (or cost, or disutility) and apply this con-
trol. The decision will be reconsidered when new information about the state
of the system becomes available (i.e. at tk+1).

3 Control Model Formulation

The presented model distinguishes two components, namely 1) the physical
model and 2) the control model. In this contribution, we focus on the latter
as this describes the most important component for the purpose of our study.

3.1 Conceptual Driving Task Model

A driver is assumed to use an internal mental model for determining appro-
priate control decisions. Experience and knowledge have skilled the driver in
performing the driving task, and hence the assumption of subjective optimal
behavior appears justified. The optimization however includes the limitations
of the driver in terms of observation, information processing, internal state es-
timation, as well as processing times and reaction times. Moreover, the process
includes the driving strategy.

3.2 Mental Model for State Predictions

For the longitudinal dimension, we will use the following kinematic equations
describing the dynamics of the location xi(t) of driver i at instant t:

d

dt
xi = vi and

d

dt
vi = ai = ui (1)

Driver i will use the same model to predict the behavior of the opponents j �= i
(the opponents). In particular the assumption driver i makes with respect to
the accelerations aj of the opponents are relevant, since this describes the
anticipated reaction of the opponents j to the actions of i.

For the lateral dimension, the variable yi(t) ∈ {1, 2, . . . ,m} denotes the
lane number. In the model, a lane change is modeled by an instantaneous
change in this variable. However, generalizations to continuous lane positions
are straightforward. Note that lane changes are assumed to happen instanta-
neously, and will be considered separately in the ensuing of the contribution.

3.3 Cost Specification

The principle of least effort stipulates that drivers minimize some cost func-
tion. We hypothesize that this cost can be described by the following cost
functional:
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J(tk, z(tk)) =

∞∫
tk

e−ηsL(z(s),u(s))ds (2)

s.t.
d
dt

z = f(z,u) (3)

In Eq. (2), z denotes the state of the system from the perspective of driver i:
it contains the locations xj , the speeds vj and the lane yj of all drivers j; u
denotes the control, including the acceleration and braking (denoted by ai(t)),
and the lane changing behavior. The parameter η > 0 denotes the so-called
discount factor (see [7]). Note that without loss of generality, we may assume
that tk = 0.

Note that the cost function J(tk, z(tk)) describes the expected cost given
the current state of the system z(tk) (as perceived by the driver), the control
actions of the driver and the evolution of the system, starting from time tk
onward. At time tk+1, the decision will be re-assessed using the most current
observations or estimates of the system state (at time tk+1).

In Eq. (2), L denotes the running costs. These costs include cost of accel-
eration, driving too close to the preceding vehicles, and the cost of not driving
at the desired speed v0. For now, we propose [7]:

L(z,u) =
1
2
a2i + l(z) =

1
2
a2i + c1

∑
j∈Oi

e−|xj−xi|/R0 +
c2
2

(v0 − v)2 (4)

where Oi denotes the set of opponents of driver i. Note that other, more
involved, specifications of the running costs are also possible (e.g. using speed
differences, etc.). Lane changes will be considered separately in the remainder
of the paper, based on the trade-off between expected costs of driving in either
of the lanes and lane changing costs.

4 Non-Cooperative Driving

In this section, we will present the optimal control model describing driving
acceleration, given that driver i remains on his / her current lane. We will
only consider driver strategies for the non-cooperative feedback case. More
specifically, we hypothesize that drivers predict the behavior of the other
drivers assuming that they maintain driving at the same speed. Furthermore,
we will calculate the perceived cost of driving on the current lane, which in the
next sections will be used to determine whether a lane change will take place or
not. The whole approach is based on two concepts for optimal control theory:
Pontryagin’s minimum principle and the Hamilton Jacobi Bellman equation
for the discounted cost problem. Let us first recall both of them.
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4.1 Dynamic Programming

Let us consider a control problem of the form (2). We can show that the so-
called value function V (tk, z) describing the cost functional J under optimal
control (i.e. the minimum cost) satisfies [8]:

V (tk, z) = e−ηtkW (z) (5)

where W (z) satisfies the so-called Hamilton Jacobi Bellman equation for the
discounted cost infinite horizon problem:

ηW (z) +H (z,u∗, ∂W/∂z) = 0 (6)

with the optimal control u∗ defined by

u∗ = arg min
u∈U

{H (z,u, ∂W/∂z)} (7)

and where the Hamilton function H is defined by:

H(z, u, λ) = L(z,u) + λ′f(z,u) (8)

We can easily show that when using the cost specification Eq. (4), the optimal
control (i.e. the acceleration of driver i) satisfies:

∂H

∂u
= 0 ⇒ u∗ = a∗i = −∂W/∂vi (9)

Let us note that:
λ =

∂W

∂z
(10)

are generally referred to as the co-states or the marginal costs of the state z.
Finally, let us note that the optimal cost W satisfies:

W (z) = −η−1H (z,u∗, ∂W/∂z) (11)

Eq. (11) shows how we can compute the incurred cost when applying the
optimal control u∗. This expression can be used to compare the perceived
costs on the different lanes and hence to decide whether a lane change is
beneficial or not.

4.2 Derivation of Optimal Acceleration Control Law

Suppose that driver i assumes that all other drivers j will not accelerate or
decelerate. I.e., we have aj = 0 for all j �= i. In this case, when driver i is
predicting the behavior of the other drivers, he assumes no direct reaction of
the other drivers until new information becomes available at the next decision
time instant tk+1.
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To determine the optimal control, Pontryagin’s minimum principles uses
the so-called Hamiltonian, defined by:

H(z,u,λ) = L(z,u) + λ′f(z,u) = L(z,u) + λv
i ai +

∑
j

λx
j vj (12)

where λ = (λx,λy) denotes the vector of marginal costs with respect to the
location and the speed.

The so-called stationary conditions allow computation of the optimal con-
trol:

∂H

∂ai
= 0 ⇒ a∗i = −λv

i (13)

Where λv
i denotes the marginal cost of the speed vi of vehicle i. The equation

states that when the marginal cost of the speed is negative, the driver will
accelerate (thus increasing the speed and reducing the cost). Vice versa, when
the marginal cost of the speed is positive, the driver will decelerate.

Pontryagin’s principle also allows us to determine an expression for the
marginal cost. It can be shown easily that:

ηλ =
∂H

∂z
(14)

Using this expression, it turns out that:

λx
i =

1
η

∂H

∂xi
=

1
η

∂L

∂xi
(15)

and that:

λv
i =

1
η

∂H

∂vi
=

1
η

(
∂L

∂vi
+ λx

i

)
=

1
η2

(
η
∂L

∂vi
+
∂L

∂xi

)
(16)

Combining these results, we get the following expression for the optimal
acceleration:

a∗i = − 1
η2

(
η
∂L

∂vi
+
∂L

∂xi

)
(17)

If we use the specification Eq. (4), we get:

a∗i =
v0 − v
τ

−Ai

∑
j∈Oi

e−|xj−xi|/R0 (18)

where:
1
τ

=
c2
η

and Ai =
c1
η2R0

(19)

Eq. (19) and the fact that λv
i = −a∗i show that the acceleration is determined

by two terms. One term describes the acceleration towards the free speed v0,
while the second term describes deceleration when a driver is driving too close
to the vehicles ahead.
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Expected Driving Costs

Using Eq. (11), we can now compute the expected cost of driving in the current
lane:

W (z) = −η−1H(z,−λv
i , λ) (20)

=
1
η

⎛
⎝1

2
(a∗i )

2 − l(z)− 1
η

∑
j

∂L

∂xj
vj

⎞
⎠ (21)

Now, note that under the assumptions of anisotropy, the running cost L is
only determined by drivers j ahead of i (as reflected by the set of so-called
opponents Oi). This implies that xj > xi for all j ∈ Oi, and that the running
cost decrease as the position xj is increased:

∂L

∂xi
> 0 and

∂L

∂xj
< 0 with j ∈ Oi (22)

Now, let us rewrite:

L =
1
2
a2i + l(z) =

1
2
a2i + μ(vi) +

∑
j∈Oi

σ(xj − xi) (23)

where σ = σ(r) denotes the running cost component due to the spacing r
between two vehicles j and i. Then, we find:

∑
j

∂L

∂xj
vj =

∑
j

vj
∂

∂xj

(∑
k∈Oi

σ(xk − xi)

)
=
∑
j∈Oi

(vj − vi)σ′(xj − xi) (24)

This expression shows nicely that when vj > vi, the contribution of this term
to the total cost Eq. (20) is (using the specification of the costs proposed in
Eq. (4)):

W (z) =
1
η

⎛
⎝1

2
(a∗i )

2 − c2
2

(v0 − v)2 −
(
c1 +

vj − vi
ηR0

) ∑
j∈Oi

e−
|xj−xi|

R0

⎞
⎠ (25)

Note that if we would compare the costs of two lanes, the middle term ex-
pressing the costs due to not driving at the free speed (at the current time
instant) is the same for all lanes.

4.3 Lane Changing Modeling

Using the expected cost of driving on a certain lane Eq. (25), decisions to
change from the current lane to another lane can be determined easily. We
assume that the lane change is a discrete decision, yielding a change from
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lane yi to lane y′i = yi ± 1 (i.e. to the left or right lane). Furthermore, we
assume that a driver changes lanes if the expected costs on the target lane is
substantially smaller than on the current lane.

For a lane change from the current lane to the left lane, we assume the
following criterion for a lane change

W (xi, yi + 1) < W (xi, yi)− δ+i (26)

In Eq. (26), δ+i denotes the costs of switching from lane yi to the lane yi+1 on
the left. In case of ‘keep your lane’ driving rules, an equivalent relation holds
for lane-changes to the right lane yi−1. For ‘drive on the right, overtake to the
left’ traffic rules, this will apply only for sufficiently small speeds. For larger
speeds, the switching costs δ−i may be zero or even negative, to ensure that
drivers have the natural tendency to drive on the rightmost lane.

Note that besides the costs of switching, the driver decides to change lanes
based on:

• The expected acceleration a∗i on the target lane
• The expected changes in the proximity costs.

The latter is expressed by the rightmost term in Eq. (25). Note that this term
in a decreasing function of the relative speeds vj − vi, implying that when the
vehicles on the target lane have a higher speed than the considered vehicle,
the expected costs are reduced (and vice versa). Note that this term is not
present in the MOBIL model [3].

Let us illustrate the workings of the model by means of a simple example
shown in Fig. 1 and Fig. 2. Consider a three lane motorway. On each lane of
the motorway, a platoon of 5 vehicles is present. The platoon leader of lane 1
(right lane), lane 2 and lane 3 respectively have desired speeds of 16 m/s, 24
m/s and 32 m/s. All other vehicles have a desired speed of 32 m/s. Initially,
driver 9 is driving on lane 3 without being disturbed by the fact that further
downstream, the platoon leader is driving at 16 m/s. However, once he / she
has caught up with this slow driving vehicle, driver 9 starts braking (round
140 s) and the cost of driving on lane 3 is increasing.

5 Summary and Outlook

In this contribution, we have put forward a microscopic theory of driving
behavior based on the concept of subjective effort minimization. More im-
portantly, we have shown how the theory can serve as a basis for advanced
driving model derivation. The approach is generic, and can be used to include
different kinds of driving, including cooperative and non-cooperative behav-
ior. In the example shown in the contribution, the theory was used to derive a
joint car-following and lane-changing model. The model turns out to behave
realistically.
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Fig. 1. Vehicle speeds (left) and positions (right) for platoon driving according to
optimal control law.

Fig. 2. Expected acceleration and costs (as a function of time) of vehicle 9, initially
starting on lane 1 (right lane).
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A Model for City Traffic
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Summary. We propose a simple cellular automaton to simulate city traffic. Vehicles
on road are treated as particles hopping on a lattice. In the morning rush hours,
downtown parking lots are taken as the sinks for vehicles moving from suburban; in
the afternoon rush hours, the parking lots become the sources for vehicles moving
out of town. The traffic is regulated by the operation of a series of traffic lights on
each street block. Both the traffic flow (from global perspective) and the travel time
(from personal perspective) are studied. It is found that even in maintaining the
same traffic flow, the tuning of traffic lights can significantly affect the travel time,
and correspondingly the duration of rush hours.

1 Introduction

In the time scale of most interest, traffic problem is intrinsically an inequilib-
rium problem. As a mean of transportation, vehicles move from one place to
another, and rarely did a roadway keep same traffic flow all day. The situation
is no more apparent than in city traffic, where large number of vehicles move
in and out of the city in relatively short rush hours according to the rhythm
of city life.

Cellular automaton has been widely used in the study of highway traffic
problems [1, 2]. The method proves very successful in simulating and explain-
ing various highway traffic patterns. There have been attempts to extend the
method to city traffic, with mixed results [3–9]. Unlike the highway traffic,
which is mostly determined by the vehicle density, city traffic pattern obvi-
ously is also influenced by other factors, such as operation of traffic lights and
the street layout. The highway traffic is characterized by the traffic flow, i.e.
the ability to move vehicles from one place to another in certain time. But for
city traffic, city itself is the destination, and the ability to absorb and dissipate
traffic is crucial, and that is determined not only by traffic flow but by travel
time as well.

To keep the essence of the city traffic characteristics with as few parameters
as possible, we propose a cellular automaton model for the city traffic. For

mailto:wnhuang@phys.cycu.edu.tw
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the rush hours in the morning, heavy traffic moves from suburban area to
downtown center. In the afternoon, the process is reversed. We study the
influence of the traffic light control to regulate the traffic. We suspect that
the optimization to achieve the highest traffic flow on road might not lead to
the shortest travel time for individual, and this in turn will affect the time it
takes to absorb or dissipate all the vehicles getting in or out of the city.

2 Model

We assume a symmetric city street layout, with equal block lengths and sim-
ilar traffic movements in all directions. The afternoon rush hours traffic is
considered the morning traffic in reverse direction. The system consists of a
single-lane roadway with open boundaries, as shown in Fig. 1.

Fig. 1. Configuration of the open system.

Vehicles move in one direction only, i.e. from left (suburban) to right
(downtown). Along the roadway, ten traffic lights are set up with equal dis-
tance L = 100 to simulate the layout of the downtown area. In between the
traffic lights, ten parking lots act as the destinations of the in-bound traffic.
The vehicles on road are mainly injected from the left boundary (suburban)
and prescribed by a stochastic rate α0. For each newly injected vehicle, one of
the ten parking lots is assigned randomly as its destination. The vehicle will
remain on the roadway until it reaches the designated parking lot, then it is
removed from the system. The traffic lights operate in alternating green and
red phases. To simulate the traffic turning in from the perpendicular direction,
new vehicles are also injected right at the intersection when the traffic light is
in the red phase. For example, at the intersection of the first traffic light, new
vehicles are injected with a rate α1 in the red phase, and their destinations
are randomly assigned from parking lot 1 to 10. Similarly, at the intersection
of the second traffic light, the injection rate is α2, and the destinations are
randomly assigned from parking lot 2 to 10. The vehicle injected from the
i-th intersection is forbidden to have a destination at the j-th paring lot with
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j < i, because it would be counted as part of the symmetric right-left traffic.
To simplify the parameterization, we assume α1/10 = α2/9 = α3/8 = · · · .
In summary, we have two parameters to prescribe the injection of vehicles:
α0 for the main road and α1 for the perpendicular direction. We also assume
that the ten traffic lights are operated at the same green phase and the same
red phase, and these two phases are set equal. Then the operation of traffic
lights can be characterized by two parameters: the period T and the delay δ,
which prescribed the time delay between two consecutive traffic lights.

The movement of vehicles is modeled by the well-known cellular automa-
ton, the Nagel-Schreckenberg traffic model [10, 11]. The dynamics is controlled
by two parameters: speed limit vmax and noise p. Comparing to the setting of
highway traffic at vmax = 5 and p = 0.5, we adopt a setting at vmax = 3 and
p = 0.1 for the city traffic. Both the speed limit and the noise are reduced.

3 Traffic Flow

First, we measure the traffic flow in the downtown area, i.e. the traffic flow
after the first intersection. In this simple model, a decreasing traffic flow along
the roadway can be expected. We observe that, when the perpendicular traffic
is absent, the average traffic flow is essentially not affected by the operation
of traffic lights. The typical results are shown in Fig. 2(a).

Fig. 2. Traffic flow j and travel time t as functions of injection α0. The perpendicular
traffic is cut off (α1 = 0). The period of traffic lights is fixed at T = 100. Different
bars at each α0 show the variation caused by different delay δ. (a) traffic flow, the
gray circles show the results when the traffic lights are absent; (b) travel time.

A traffic light only introduces local disturbance to the system. Not all the
vehicles were forced to stop when the lights turn red; only those approaching
the intersection will be blocked. When the vehicles are scarce on the road, it
is plausible that most vehicles will remain moving in the red phase of a traffic
light, thus the global traffic flow remains constant when the two parameters
T and δ are varied. When the traffic demand increases, which was prescribed
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by an increasing α0, the flow increases accordingly and then saturates to its
capacity. In this open system, the downtown traffic always remains in the
free flow regime in the absence of perpendicular traffic, because the possible
vehicle queuing is caused by the first traffic light.

As the perpendicular traffic is allowed to turn in, the global traffic flow
does respond to the operation of traffic lights. The typical results are shown
in Fig. 3(a) and 3(b).

Fig. 3. Traffic flow j as function of (T, δ). Parameters are fixed at (α0, α1) =
(0.3, 0.3). (a) 3D plot; (b) contour plot.

Such a traffic pattern can be associated with the emergence of congestion.
Basically, the radial structure can be understood as the repetition of a negative
delay at δ ∼ −110, which characterizes the backward propagation of traffic
jams [6]. To achieve a high flow, the parameters T and δ should be locked in
these radial wave.

4 Travel Time

Next, we study the influence of traffic lights to the travel time, which can
be taken roughly as a counter indicator of the traffic flow. Basically, a higher
traffic flow would imply a shorter travel time. However, these two measure-
ments can have different implications. While traffic flow reflects the global
perspective of how many vehicles are moving at an instant, which might be
the most concerned issue in traffic management, travel time, which measures
how soon one vehicle can go through its journey, can be much more relevant
from a personal perspective.

We record the travel time for those vehicles from suburban to downtown.
Specifically, a clock is turned on when the vehicle crossed the first intersection,
and the reading is registered as that vehicle went to its designated parking lot.
The travel time for those vehicles turning from the perpendicular direction is
not recorded. The typical results for the averaged travel time are shown in
Figs. 4(a) and 4(b), respectively for free flow and congestion.
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Fig. 4. Travel time t as function of (T, δ). (a) free flow regime at (α0, α1) = (0.3, 0.1);
(b) congestion regime at (α0, α1) = (0.3, 0.3).

Contrary to the traffic flow, the travel time shows a clear dependence on
the traffic lights in the free flow regime. Even when α1 = 0, the operation of
traffic lights still has a significant influence on the travel time. The typical
results are shown in Fig. 2(b). By adjusting the delay δ, the travel time can
vary by as much as a factor of 2. In contrast, the variation of traffic flow is
quite limited, as can be seen in Fig. 2(a).

In the congestion regime, both traffic flow and travel time are greatly af-
fected by the operation of traffic lights. The patterns for travel time and traffic
flow can be easily mapped into each other, and is observed to be inversely re-
lated.

From a driver’s perspective, the increased time it takes to reach destina-
tion is an indication of rush hours. By doubling α0 for a short period before
returning to its normal value, and observing the consequent rise and fall of
travel time, the duration of rush hours can be estimated. It is found that
longer travel time does prolong rush hours, a clear indication that more time
is needed to absorb all the traffic. A result is shown in Fig. 5.

Fig. 5. Travel time t for individual vehicles to reach first, fifth and tenth parking
lots. The setting used is (α0, α1) = (0.3, 0.1) and T = 200. Travel time and duration
of rush hours is influenced by the tuning of phase δ. (a) δ = 35; (b) δ = 120.
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5 Discussions

In this simple city traffic model with as few parameters as possible, we found
that the first traffic light acts as a regulator, only allowing limited number of
vehicles into the city, thus creating a congestion-free downtown, in the case
vehicles from perpendicular direction are cut off. When the perpendicular
traffic is allowed to turn in, congestion may arise, and the traffic pattern is
greatly affected by the operation of traffic lights. In the free flow regime, while
traffic flow remains more or less constant, the travel time may change by as
much as a factor of 2 by tuning of traffic lights. This seemingly uncorrelated
traffic flow and travel time indicates that the extra time is mostly caused by
the traffic light delay, i.e. the forced stop at most intersections. With same
traffic flow but longer travel time in the city, this also means that it takes
longer to absorb all the vehicles coming in from suburban area, resulting in
an extended rush hours. In the congestion region, the traffic flow and travel
time are almost inversely related; the maintenance of a high traffic flow would
yield a shorter travel time, and can be achieved by proper tuning of traffic
lights.

We conclude that in city traffic, the operation of traffic lights is most
important in achieving a high traffic flow and low travel time. And while they
may be related, the traffic flow is not the sole indicator of city traffic. The
ability to absorb or dissipate all the vehicles quickly is crucial, and is directly
related to travel time.
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Summary. In this paper, the traffic behaviors of mixed bicycle flow are investigated
by using the multi-value cellular automata (CA) model. Two types of bicycles with
different maximum speed are considered in the system. The system of mixed bicycles
is investigated under both periodic and open boundary conditions. As to periodic
boundary condition, it is shown that under the deterministic case there appear
multiple states both in congested flow and free flow regions. Analytical analysis is
carried out and is in good agreement with the simulation results. In the stochastic
case, the multiple states effect disappears only when both slow and fast bicycles
are randomized. As to open boundary condition, the flux in saturated state will
not change with different proportion of slow bicycle if only the slow bicycle has
randomization effect, but in other cases, they decrease as the proportion of slow
bicycle increasing. Spacetime plots are presented to show the evolution of mixed
bicycle flow.

1 Introduction

In the past few decades, traffic problems have attracted much attention [1–3].
Traffic flow is a kind of many-body system of strongly interacting vehicles, and
it can exhibit very complex behavior. In order to understand the mechanisms
in traffic flow, many theoretical models have been proposed [4–9]. Among
them we will focus on Cellular automata (CA) models. CA has become an
efficient tool for simulating traffic flow, for it is conceptually simple and can
be easily implemented on computers for numerical investigations.

The rule-184 [10] CA is a prototype of all CA models for traffic flow. In
1992, Nagel and Schreckenberg proposed the well-known Nagel-Schreckenberg
(NS) model [7]. As an extension of rule-184 CA, higher speeds are allowed in
the NS model. The NS model is the minimal model to reproduce the basic
properties of real traffic flow. It can simulate some basic phenomena, such
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as spontaneous jams, stop-and-go wave. However, it cannot explain such em-
pirically observed phenomena as metastable states, capacity drop and syn-
chronized flow. Therefore, several improved versions of the NS model were
proposed, such as the anticipation model [8], the slow-to-start model [9], etc.

Recently, Nishinari and Takahashi proposed a family of multi-value CA
models [11–13]. Different from previous cases, in these models each site is
assumed to hold L vehicles at most. The basic version of the family is obtained
from an ultradiscretization of the Burgers equation, so it is called the Burger
cellular automata (BCA). Its evolution equation is

Uj(t+ 1) = Uj(t) + min(Uj−1(t), L− Uj(t))−
min(Uj(t), L− Uj+1(t))

(1)

where Uj(t) represents the number of vehicles at site j and time t. If it is
assumed that the road is an L-lane freeway, then the model can describe the
multi-value traffic without explicitly considering the lane-changing rule.

The maximum speed of vehicles in BCA is 1. Nishinari and Takahashi
had extended BCA for the case of maximum speed 2 and presented extended
BCA (EBCA) models [13]. Matsukidaira and Nishinari have investigated the
Euler-Lagrange correspondence of cellular automata models for traffic flow
[14, 15] and proposed the generalized BCA (GBCA) model with high speed
and long perspective [16]. In our previous work [17], the EBCA models were
used to model bicycle flow, and stochastic randomization was introduced into
the models.

In real traffic, bicycles do not have the same maximum velocity due to
differences in the personalities of riders. For example, young riders always
tend to ride at high speed, while old riders usually ride at low speed.

In this work, mixed bicycle flow is investigated using the EBCA model.
There are two kinds of bicycles: slow bicycles with maximum speed 1 and fast
bicycles with maximum speed 2. Both the periodic and open boundary condi-
tions are considered. As to periodic boundary condition, it is found under the
deterministic case that the multiple states effect occurs both in the free flow
and congested flow regions. In the stochastic case, the multiple states effect
disappears only when both slow bicycles and fast bicycles are randomized. As
to the open boundary condition, the flux in saturated state keep the same
value with different proportion of slow bicycle if only the slow bicycle has
randomization effect, but in other cases, the flux in saturated state decreasing
as the proportion of slow bicycle increasing.

This paper is organized as follows: the model for mixed bicycle flow is
proposed in section 2. Next the simulation results are presented and analyzed
in section 3. The conclusion is given in section 4.
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2 The Multi-Value CA Model for Mixed Bicycle Flow

In the EBCA model4, bicycle movement from t to t+1 consists of the following
two successive procedures:

(a) bicycles move to their next site if the site is not fully occupied;
(b) only bicycles which moved in procedure (a) can move a further one site if

their next site is not fully occupied after procedure (a).

Therefore, the evolution equation of the EBCA is given by:

Uj(t+ 1) = Uj(t) + bj−1(t)− bj(t) + cj−2(t)− cj−1(t). (2)

Here bj(t) = min(Uj(t), L−Uj+1(t)) represents the number of moving bicycles
at site j and time t in procedure (a); cj(t) = min(bj(t), L−Uj+2(t)−bj+1(t)+
bj+2(t)) represents the number of bicycles that can move in procedure (b).

To investigate mixed bicycle flow, two kinds of bicycles, slow bicycles with
maximum speed 1 and fast bicycles with maximum speed 2, are considered in
the system. The number of slow bicycles and fast bicycles at site j and time
t are Us

j (t) and Uf
j (t) respectively. The updating procedures are changed to:

(1) all bicycles move to their next site if the site is not fully occupied, and
the fast bicycles have priority over slow bicycles;

(2) only the fast bicycles moved in procedure (1) can move a further one site
if their next site is not fully occupied after procedure (1).

The number of fast and slow bicycles that move one site at site j and time t
in procedure (1) are bfj (t) and bsj(t) respectively. cj(t) represents the number of
fast bicycles that move two sites at site j and time t. The randomization effect
of slow bicycles is introduced as: bsj(t+1) decreases by 1 with probability ps if
bsj(t+ 1) > 0. The randomization effect of fast bicycles is: cj(t+ 1) decreases
by 1 with probability pf if cj(t+ 1) > 0. The updating rules are as follows:

Step 1: calculation of bfj (t+ 1), bsj(t+ 1) and bj(t+ 1) (j = 1, 2, . . . ,K):
bfj (t+ 1) = min(Uf

j (t), L− Uj+1(t));
bsj(t+ 1) = min(Us

j (t), L− Uj+1(t)− bfj (t+ 1)),
if rand() < ps, bsj(t+ 1) = max(bsj(t+ 1)− 1, 0);
bj(t+ 1) = bfj (t+ 1) + bsj(t+ 1).
bfj (t + 1) is calculated first because the fast bicycles have priority over slow
bicycles.

Step 2: calculation of cj(t+ 1):
cj(t+ 1) = min(bfj (t+ 1), L− Uj+2(t)− bj+1(t+ 1) + bj+2(t+ 1));
if rand() < pf , then cj(t+ 1) = max(cj(t+ 1)− 1, 0).

4 Here we consider only the EBCA1 model, the extension of the EBCA2 model to
mixed bicycle flow will be carried out in a future study.
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Step 3: updating Uj(t+ 1), Us
j (t+ 1) and Uf

j (t+ 1):
Uf

j (t+ 1) = Uf
j (t)− bfj (t+ 1) + bfj−1(t+ 1)− cj−1(t+ 1) + cj−2(t+ 1);

Us
j (t+ 1) = Us

j (t)− bsj(t+ 1) + bsj−1(t+ 1);
Uj(t+ 1) = Uf

j (t+ 1) + Us
j (t+ 1).

Here rand() is an uniformly distributed random number between 0 and 1.
In the simulations, L = 4 and K = 100 are selected, where K is the length

of the road. Let ρ represents the density and R is the proportion of slow
bicycles.

Under periodic boundary condition, slow bicycles and fast bicycles are
randomly distributed on the road in the initial state. The number of fast
(slow) bicycles in the system is Nf = (1 − R)ρLK (Ns = RρLK). We note
that the new model with R = 0.0 is equivalent to the stochastic EBCA1
model, and that with R = 1.0 corresponds to the stochastic BCA model. The
average density ρ and flow Q over all sites are defined by

ρ =
1
KL

K∑
j=1

Uj(t) Q(t) =
1
KL

K∑
j=1

(bj−1(t) + cj−2(t)) (3)

Under open boundary condition, we check the first cell at each time step.
If the first cell is not full filled with bicycles, a bicycle is inserted with the
probability (inflow rate) α, and the bicycle is a slow one with probability
R. This procedure should be done (L − n) times at each time step. Here n
represents the number of bicycles at the first cell. The bicycles with positions
larger than K are deleted. The flow Q is defined by the average number of
bicycles driving out of the system per time step per lane.

3 Simulation Results

3.1 Periodic Boundary Condition

Deterministic Case

In this subsection, we focus on the deterministic case, i.e., ps = 0.0 and
pf = 0.0. The fundamental diagrams are shown in Fig. 1. In the case of
R = 0.0, the multiple states effect is observed only in the congested flow
region (Fig. 1(a)). In other words, there is only one branch with positive slope
but there are several branches with negative slope. The detailed analysis of
the multiple states has been given in Ref. [13].

When 0 < R < 1, the multiple states effect occurs both in the congested
flow and free flow regions, i.e., there are several branches with positive slope as
well as several branches with negative slope. With increasing R, the number
of branches with positive slope decreases. Simultaneously, the multiple states
effect in the congested flow region is also suppressed. WhenR = 1, the multiple
states effect disappears.
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Fig. 1. The fundamental diagrams in the case of (a) R = 0.0 (b) R = 0.2 (c)
R = 0.5 (d) R = 0.8 (e) R = 1.0. The red lines correspond to the analytical values.
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Next we focus on the branches with positive slope. Our simulations show
that in the free flow region, every slow bicycle can move in each time step.
Therefore, the average velocity of the system is given by

v̄ =
Ns × 1 +Nf × v̄f
Ns +Nf

.

Here Ns and Nf are the number of slow and fast bicycles respectively; v̄f is
the average velocity of the fast bicycles. Since L = 4 is used in the simulations,
next four subcases are classified:

1. There exist four slow bicycles that occupy one site. In this case, these
four slow bicycles form a moving bottleneck by moving side by side. Fast
bicycles cannot overtake them and have to follow behind them. As a result,
v̄f = 1 and v̄ = 1. The flow rate is, therefore, Q = ρ. This gives the lowest
free flow branch in Figs. 1(b)–(e).

2. There exist at most three slow bicycles at each site. In this case, there will
be one fast bicycle overtaking the moving bottleneck formed by the three
slow bicycles at each time step. Due to the parallel update rule, this allows
at most K/2 fast bicycles to move with velocity 2. As a result,

v̄f =
(Nf −K/2)× 1 +K/2× 2

Nf
for Nf > K/2

and
v̄f = 2 for Nf ≤ K/2.

Therefore, the flow rate is

Q = ρ
[
Ns × 1 +Nf × 2
Ns +Nf

]
for Nf ≤ K/2 (4)

and

Q = ρ

⎡
⎣Ns × 1 +Nf × (Nf−K/2)×1+K/2×2

Nf

Ns +Nf

⎤
⎦ for Nf > K/2. (5)

Substituting Ns = ρKLR and Nf = ρKL(1 − R) into Eqs. (4) and (5),
one has

Q = ρ(2−R) for ρ ≤ 1
2L(1−R)

(6)

and
Q = ρ+

1
2L

for ρ >
1

2L(1−R)
. (7)

Eq. (7) gives the second lowest free flow branch in Figs. 1(b) and (c), and
Eq. (6) gives the high free flow branch in Fig. 1(d).
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3. There exist at most two slow bicycles at each site. In this case, there will
be two fast bicycle overtaking the two slow bicycles each time step. This
allows at most K/2×2 = K fast bicycles to move with velocity 2. Similarly
to case 2, we have

Q = ρ(2−R) for ρ ≤ 1
L(1−R)

(8)

and
Q = ρ+

1
L

for ρ >
1

L(1−R)
. (9)

Eq. (9) gives the second highest free flow branch in Fig. 1(b), and Eq. (8)
gives the high free flow branch in Fig. 1(c).

4. There exists at most one slow bicycle in each site. Similarly to cases 2 and
3, we have

Q = ρ(2−R) for ρ ≤ 3
2L(1−R)

(10)

and
Q = ρ+

3
2L

for ρ >
3

2L(1−R)
. (11)

Eq. (10) gives the highest free flow branch in Fig. 1(b). The states deter-
mined by Eq. (11) are unstable and will transit into congested states.

From Fig. 1, we can see that the simulation results are consistent with the
analytical results, except that some high flux states are not reached in the
simulation. In real bicycle flow, a group of cyclists may ride together because
that they are class mates, friends or colleagues. They will occupy a large part
of the cycle lane, thus the bicycles that follow are blocked. We argue that the
multiple states effect in the free flow region surely occurs in real bicycle flow.

Stochastic Case

In this subsection, we investigate the effect of randomization in the mixed
bicycle flow. To this end, two typical values of R are chosen: R = 0.2 and
R = 0.5.

Firstly we study the case that only slow bicycle has randomization effect,
i.e., pf = 0 and ps > 0. Fig. 2 shows that the multiple states effect does not
occur in the free flow region but still exists in the congested region. This is
because with the consideration of the randomization effect of slow bicycles, a
stationary moving bottleneck will not exist. A large moving bottleneck may
split into several small ones and several small moving bottlenecks may merge
into one large one. This breaks the mechanism of multiple branches shown in
the previous subsection.

The fundamental diagram only slightly depends on the value of ps when
the ratio of slow bicycles is small (Fig. 2(a)). However, when the ratio of slow
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Fig. 2. The fundamental diagrams with different values of ps when pf = 0.0.
(a) R = 0.2 and (b) R = 0.5.

Fig. 3. The fundamental diagrams with different values of pf when ps = 0.0.
(a) R = 0.2 and (b) R = 0.5.

bicycles increases, the maximum flow rate notably decreases with the increase
of ps (Fig. 2(b)).

Next we consider the case pf > 0 and ps = 0. In Fig. 3, one can see that
the multiple states effect does not occur in the congested flow region. However,
there always exist two branches in the free flow region. The branch Q = ρ
(the low branch) exists because once four slow bicycles appear in one site,
this moving bottleneck will not dissolve since no randomization is exerted on
slow bicycles. The high branch exists in the situations that four slow bicycles
never appear in one site. When the ratio of slow vehicles is small, the chance
that four slow bicycles appear in one site is small. As a result, the data points
on the low branch are sparse (Fig. 3(a)).
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The value of pf only affects the high branch. As pf increases, the flux in
the free flow region decreases. We also note that there is a gap between the
high branch and the congested branch in the case of R = 0.5. This is because
in the intermediate range of density, the appearance of four slow bicycles in
one site will always occur sooner or later. When four slow bicycles accumulate
on one site, a moving bottleneck forms and it will not dissolve, so it hinders
the movement of fast bicycles. Consequently, a flow rate drop appears.

In contrast, the probability that four slow bicycles appear in one site is
small in the intermediate range of density in the case of R = 0.2. Therefore,
there is not a gap between the high branch and the congested branch.

Fig. 4. The fundamental diagrams with different values of ps and pf . (a) R = 0.2
and (b) R = 0.5. The solid line corresponds to the case of R = 1.0 with ps = 0.0.

Figs. 4(a) and (b) show the results with randomization parameter ps > 0
and pf > 0. One can see that the multiple states effect disappears even if
ps and pf are slightly larger than zero. As ps and pf increase, the maximum
flow rate decreases and the density corresponding to the maximum flow rate
increases.

We note that the properties of mixed bicycle flow are different from that of
mixed vehicle flow. In mixed vehicle flow, the flux is constrained by the plug
formed by slow vehicles [18, 19]. The fundamental diagram will be essentially
the same as in the case of R = 1.0 even if only a small number of slow vehicles
are introduced into the system. However, in mixed bicycle flow, introducing
a small proportion of slow bicycles will not affect the flow rate so much. This
can be seen from Fig. 4, in which the flow rate in the case of R = 0.2 is
significantly larger than in the case of R = 1.0. We believe this difference is
mainly because the bicycle lanes are not so clearly separated from each other
as vehicle lanes.
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3.2 Open Boundary Condition

Under open boundary condition, the bicycle enters into the road from the
left edge with inflow rate α, and drives off the road from the right edge with
probability 1. The flux as a function of α with different R are shown in Fig. 5.
Fig. 5(a) corresponds to the deterministic case, in which we choose ps = 0.0
and pf = 0.0. We know that the fast bicycle has velocity expectation effect
in procedure (2), because the fast bicycles moved in procedure (1) can move
to a further one site if their next site is not fully occupied after procedure
(1). When R = 0.0, all the fast bicycles can move with velocity 2, and there
is a linear relationship between Q and α. When R > 0, the liner relationship
remains at small values of α, because the number of slow bicycles is so small
that bottlenecks can not be formed and the fast bicycles can move freely. As
α increasing, the curve bends down, because some bottlenecks formed and the
flux is saturated. We note that the maximum flux decreasing as R growing.

Figs. 5(b), (c) and (d) show the results with stochastic cases. In Fig. 5(b),
we choose ps = 0.3 and pf = 0.0. When R = 0.0, it is equivalent to deter-
ministic case. When R > 0, the maximum flux become smaller in comparison
with deterministic case, because the slow bicycles have randomization effect.
In Fig. 5(c), the parameters are ps = 0.0 and pf = 0.3. When R = 0.0, the
bicycle also becomes saturated with large α for randomization effect. When
R > 0, the bottlenecks with 4 slow bicycles always happen in saturated flow,
but they could not dissolve because the slow bicycles have no randomization
effect. Thus the flux are the same with different R in saturated flow. Fig. 5(d)
corresponds the case ps = 0.3 and pf = 0.3. We note that as R increasing,
the flux in saturated flow decreasing.

4 Conclusion

In this paper, mixed bicycle flow is investigated using the multi-value CA
model. Both the periodic and open boundary condition are studied.

As to periodic boundary condition, the fundamental diagrams and the
spacetime plots are analyzed in detail.

In the deterministic case, the multiple states effect exists both in the free
flow and congested regions. The site which contains the largest number of slow
bicycles forms a moving bottleneck to the system and the flux is constrained
by this bottleneck. The simulation results are consistent with the analytical
ones.

In the stochastic case, the multiple states effect disappears in the free
flow region when ps > 0.0, and it disappears in the congested region when
pf > 0.0. The multiple states effect disappears when both slow bicycles and
fast bicycles are randomized.

As to the open boundary condition, the flux in saturated state keep the
same value with different R if only the slow bicycle has randomization effect,
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Fig. 5. The flux as a function of α with different R. (a) ps = 0.0, pf = 0.0;
(b) ps = 0.3, pf = 0.0; (c) ps = 0.0, pf = 0.3; (d) ps = 0.3, pf = 0.3.

but in other cases, the flux in saturated state decreasing as the proportion of
slow bicycle increasing.

In our future work, we will extend the EBCA2 model to study mixed
bicycle flow and compare the results of the two models. The calibration and
verification of the models using real bicycle flow data will also be performed.
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Summary. Insight into traffic flow characteristics is often gained using local mea-
surements. To determine macroscopic flow characteristics, time aggregation of mi-
croscopic information is required.

Usually, a data collection system stores values averaged over time. However, it
is well known that a time mean average overestimates the influence of faster vehi-
cles, and consequently overestimates the mean speed. As a direct result, densities,
computed from flow and speed, are underestimated.

This paper compares the time mean speed and space mean speed, using data of
individual car passages on a motorway road stretch. We show that the differences
between time mean and space mean averages are substantial, up to a factor four. In
particular in the lower speed regions the error is big. We indicate the considerable
consequences for the jam density and shock wave speed. Finally, a fundamental
diagram based on correctly averaged microscopic data can be fitted much better.

1 Introduction

The most common data available are aggregated (dual) loop detector counts.
The loop detects the passage of a vehicle and its speed. The data are usually
presented in aggregated values for a time period, for instance, 1 or 15 minutes.

It has been known that there is a difference between the space mean speeds
and the time mean speeds [1, 2]. In studies, usually mean speeds are used, as
opposite from space mean speeds. Helbing discusses the use and meaning of
both mean speeds [3]. It is well known that traffic density is better computed
from a space mean speed (e.g., [4]).

Rakha and Zhang [5] discuss the difference and possible conversions be-
tween the two mean speeds. Under the assumption of stationary road way
conditions, the space mean speed equals the harmonic average of the time
mean speed [6], which always is higher than the arrhythmic mean. This raises
the question how large the differences are between these two averages in real-
ity. Van Lint [7] discusses the topic and finds:
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vT =
σ2

M

vM
+ vM (1)

In this equation, vT is the time mean speed, vM the space mean speed and
σ2

M the variance of the space mean speed. Note that it does not give a rule to
compute space mean speeds out of time-mean measurements: σ2

M is unknown
if one has local measurements.

The next section explains how space mean speeds can be approximated
using speeds of individual vehicles. We apply this technique on a dataset,
thus getting space mean speeds and time mean speeds. Then, we analyze the
differences of applying both averaging techniques. We found that the averaging
method has a big impact on the mean speeds, up to a factor 4. Using this in
calculations to find the density, the difference becomes more important; we
also show the consequences for the speed of the propagation of a traffic jam,
and the shock wave speed.

2 From Dual Loop Counts to Density

There are many possibilities to measure road traffic. One of the most common
methods uses induction loops that are situated in the road surface. Generally,
the output of the detectors state the flow and speed aggregated per time
period. The flow q and the vehicle density ρ are calculated from the number
of passages n and the time interval tagg using the equations:

q =
n

tagg
(2)

ρ =
q

v
(3)

Eq. 3 will yield the correct, space averaged, density if the space mean speed
is used. However, averaging the speed of vehicles i = 1..n at one location will
give the local mean speed vL:

vL = 〈v〉L =
1
n

n∑
i=1

vi (4)

Assuming stationary conditions, we can compute the space mean speed from
local measurements, using a harmonic mean of the measurements [4]:

vM = 〈v〉M =
1

1
n

n∑
i=1

1
vi

=
1〈
1
v

〉
L

(5)

In this paragraph, we will indicate why this formula will give the space mean
speed under stationary assumptions. A detector lies at location xdet. Now, let
us reconstruct which vehicles will pass in the time of one aggregation period.
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For this, the vehicle must be closer to the detector than the distance it travels
in the aggregation time tagg:

xdet − xi ≤ tagg · vi (6)

In this formula, x is the vehicle position on the road. For faster vehicles,
this distance is larger. Therefore, Eq. 4 overestimates the influence of the
faster vehicles. This holds for every property of traffic, including speed. The
computed average speed vL, being biased to the property of the faster cars,
is therefore higher than the space mean speed vM . To compensate, one could
attach a weight of 1/vi to each measurement. This is stated below. After
rewriting, it states the same as Eq. 5.

vL = 〈v〉L =

n∑
i=1

1
vi
vi

n∑
i=1

1
vi

=

n∑
i=1

1

n∑
i=1

1
vi

=
n

n∑
i=1

1
vi

=
1

1
n

n∑
i=1

1
vi

(7)

3 Data Collection and Analysis

This paper shows the differences in magnitude between the local mean speed
and the space mean speed. It also gives the error for the density, which is
derived from the speed. Finally, it discusses the consequences of taking the
wrong mean for jam density and shock wave speed.

For this research, a dataset of individual vehicle passages was used. The
loop detectors are placed at the ring road of Amsterdam, a three lane motor-
way with a 100 km/h speed limit. Time and speed of each individual vehicle
were recorded in the period 16 June 2005 to 11 July 2005. From these data
we compute both the local mean speed, vL, using Eq. 4 and the space mean
speed vM using Eq. 5. The speeds are aggregated over the lanes.

We used different aggregation times (10 and 20 seconds and 1, 2, 5 and 15
minutes) to see the influence of the aggregation time. The necessary assump-
tion that the speed profile does not change over time is more likely to hold
over a shorter time. In order not to be influenced by changing traffic states,
the aggregation periods both before and after a change were removed. We
used 2 possible states (congested, uncongested), which were distinguished by
the mean speed (under and over 70 km/h). When within 5 aggregation inter-
vals the traffic state would change again, all intermediate aggregation periods
were discarded.

3.1 Computed Densities for the Roadway

Fig. 1 reads the quotient of the time mean speed compared and the space
mean speed for different speeds. It thus shows for different speeds how large
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the difference is between the two averages. We see for lower speeds, the two
averages are more distinct. Using Eq. 1, this can only be explained by a low
variation of speeds in the higher speed regions. For the same reason, the
speed variation in congestion must be higher. Higher aggregation times make
the differences grow, so the speed variation grows.

Fig. 1. (left) average speed difference (middle) densities, 10 s aggregation time
(right) densities, measurements.

We use flow q and sequentially speeds, vL and vM , in Eq. 3 to compute two
different densities: ρL = q/vL and ρM = q/vM . Fig. 1 shows both densities
(ρM and ρL). The deviations from the line x = y show the differences between
the averaging methods.

The flows (Eq. 2) and densities given here are summed over the three
lanes. When the aggregation time equals 10 seconds, the density q/vS can
be much (up to fourfold) higher than the estimation q/vM . This is much
higher than the results stated by Rakha and Zhang [5]. They already stated
that the results differ per location. Since their measurements were performed
in the USA, lower speed differences between trucks and cars are expected,
and a lower variation causes a lower difference between time mean speed and
space mean speed. Besides, in Europe overtaking is allowed only at the left,
so vehicles in the left lane are faster than the right lane. Aggregation over the
lanes causes than larger variations. Finally, the number of measurements (4
weeks in our case) results in more points, and therefore more extreme points.

In Fig. 2 we plot the flow versus the density (as illustration the one-minute
data), both calculated using the time mean speed and calculated using the
space mean speed. The figures show the cloud of measured points. The red line
is fit to that cloud (the red line connecting them), according to the shape Wu
proposed [8]. Each of the measured points is assigned to one of the branches
[9]. It sometimes is unclear to which branch a point belongs, especially for the
lower time intervals. This confusion causes a bad fit for the time mean speed.
The green line, the shock wave speed, will be discussed in section 3.2.

For each time period, we determine the flow that would be related to the
computed density, according to the fit parameters. The errors between these
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Fig. 2. (top) The fundamental diagrams constructed using time mean speed and
space mean speed.

flows and the measured flows are squared and averaged. The errors, stated in
Tab. 1, show that using the space mean speed improves the fit.

Table 1. Results of fits of the fundamental diagrams for different aggregation times

Aggregation time Error on fit Error on fit Jam Density Jam Density
time mean space mean time mean space mean

(s) ((km/h)2) ((km/h)2) (veh/km/lane) (veh/km/lane)

10 112 85 118 166
20 90 66 145 525
60 70 48 158 107
120 65 41 113 249
300 56 39 99 113
900 40 37 87 131

3.2 Consequences for Macroscopic Traffic Models

Two different average speeds lead to two different densities, but the flows are
equal. Consequently, the speed of the propagation of traffic jams, the shock
wave speed (ω), is calculated differently, since Stokes law states:

ω =
Δq

Δρ
(8)

The shock wave speed can also be derived directly from the measurements.
The speed of the shockwave is approximately 20 km/h. According to Eq. 8,
this speed should equal the slope of the congested branch of the fundamental
diagram. The green line in the left plots of Fig. 2 illustrates this speed; note
that the line can be shifted and still indicate the same shockwave speed. It
fits much better with the fundamental diagram using the space mean speed.

Furthermore, the buffer capacity of a road stretch is estimated completely
different, see Table 1. Due to fit a wide cloud of points, outliers can occur



356 Victor Knoop, Serge P. Hoogendoorn, and Henk van Zuylen

(e.g., 525 veh/km, 249 veh/km). When disregarding the outliers, we see an
underestimate of the jam density in almost all cases if a time-mean average
is made. Using the space mean speed also gives more consistent results.

3.3 Conclusions and Future Research

In this contribution, we discussed two ways to average the speeds of passing
vehicles: a local time mean average and a harmonic average, approximating
the space-mean averages. Theory says that the space mean speed is to be used
in the fundamental relation. Using empirical data, we showed from that the
two different mean speeds might differ up to a factor 4.

We show that the space mean speed gives a better fit for a fundamental
diagram. The estimates for both jam density and shock wave speed differ
considerably between the two mean speeds. A better knowledge of these values
can improve traffic models.

This paper assumes stationary traffic conditions. Using reliable trajectory
data, one could compare the two mean speeds presented in this paper to
a directly observed space mean speed. Aggregation times and aggregation
lengths then are an interesting aspect.
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Summary. Two extended cooperative driving lattice hydrodynamic models are
proposed by considering the backward looking effect in traffic flow. The stability
conditions for the two models are investigated with the linear stability theory and it
is found that new consideration leads to the improvement of the stability of traffic
flow. The modified Korteweg-de Vries equations (the mKdV equation, for short)
near the critical point are derived by using the nonlinear perturbation method to
show that the traffic jam could be described by the kink-antikink soliton solutions
for the mKdV equations. Moreover, the anisotropy of traffic flow is further discussed
through examining the negative propagation velocity as the effect of following vehicle
is involved.

1 Introduction

Over the past decades, traffic problems, especially traffic congestions, have
attracted considerable attention. Various traffic models have been suggested,
such as the car-following models, cellular automaton models and hydrody-
namic models, etc. [1]. Here we focus on the lattice hydrodynamic model,
which was proposed by Nagatani [2, 3] in 1998. Its basic idea is that the
traffic current can be optimized by the product of the optimal velocity and
average density. Using this model, Nagatani obtained a series of important
results. After that, many improvements have been made, and accordingly, a
lot of relative more reasonable models have been put forward [4–9].

The above models are related to the forward looking effect, but only a few
models studied the backward looking effect which has been studied only by
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employing the car-following models [10–12]. However, all the work only vali-
dated the fact that considering the effect of following vehicles could strength
the stability of traffic flow based on linear stability analysis and did not
perform the nonlinear analysis near the critical points, yet. Especially the
anisotropy of traffic flow [13–15] caused by from the effect of following car has
not been involved. In this paper, we try to present two cooperative driving
lattice hydrodynamic models with the consideration of arbitrary number of
preceding vehicles and one following vehicle on a single-lane highway. Further-
more, through the linear and nonlinear stability analysis, we will discuss the
stabilization and anisotropy of traffic flow.

2 Brief Description of the Models

Two extended cooperative driving lattice hydrodynamic models are proposed
by taking into account an arbitrary number of vehicles ahead and one following
vehicle on a single-lane highway. The basic equations are as follows:

∂tρj + ρ0(ρjvj − ρj−1vj−1) = 0 (1)

ρj(t+ τ)− ρj(t) + τρ0(ρjvj − ρj−1vj−1) = 0 (2)

ρj(t+ τ)vj(t+ τ) = ρ0VB(ρj−1)(1− p) + ρ0VF (ρj+1, ρj+1, . . . , ρj+n)p (3)

We can obtain two models, called model A (Eqs. (1) and (3)) and model B
(Eqs. (2) and (3)), respectively. The density equations for them are

∂tρj(t+ τ) + ρ20

(
[VB(ρj−1(t))− VB(ρj−2(t))](1− p)

+

[
VF

(
n∑

l=1

βlρj+l

)
− VF

(
n∑

l=1

βlρj+l−1

)])
p = 0 (4)

ρj(t+ 2τ)− ρj(t+ τ) + τρ20

(
[VB(ρj−1(t))− VB(ρj−2(t))](1− p)

+

[
VF

(
n∑

l=1

βlρj+l

)
− VF

(
n∑

l=1

βlρj+l−1

)])
p = 0 (5)

where p stands for the acting fraction of the two optimal velocity functions and
the other notations follow the convention. The two optimal velocity functions
are chosen as

VB(ρj−1(t)) = − tanh
(

2
ρ0
− ρj−1(t)

ρ20
− 1
ρc

)
+ tanh

(
1
ρc

)
(6)
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VF (ρj+1(t), ρj+1(t), . . . , ρj+n(t))= tanh

⎛
⎜⎜⎝ 2
ρ0
−

n∑
l=1

βlρj+l(t)

ρ20
− 1
ρc

⎞
⎟⎟⎠+ tanh

(
1
ρc

)

(7)

where βl is the weighting function which is same to those in ref. [9].

3 Linear Stability Analysis

We apply the linear stability analysis method to the models A and B described
by Eqs. (4) and (5). The neutral stability conditions are given, respectively as

τ = −
pV ′

F

n∑
l=1

βl(l − 1/2) + 3/2(1− p)V ′
B

ρ0(V ′)2
(8)

τ = −
pV ′

F

n∑
l=1

βl(2l − 1)− 3(1− p)V ′
B

3ρ0(V ′)2
(9)

where V ′
B(ρ0) = dVB(ρj−1)

dρ |ρj−1=ρ0 , V
′
F (ρ0) = dVF (ρj)

dρ |ρj=ρ0 .

Fig. 1. The neutral stability lines for model A at two cases: the optimal velocity
functions (6) and (7) are chosen (left) and the optimal velocity functions are not
distinguished (right).

The neutral stability lines of model A in the parameter (ρ, a) space are
shown in Fig. 1. There exist critical points (ρc, ac) for neutral stability lines,
such that uniform states with any density are always linearly stable for a > ac.
From Fig. 1, we can see clearly that considering the backward looking effect
will help to strengthen the stability to a certain extent. Besides, we find that



360 Li Xingli, Li Zhipeng, Han Xianglin, and Dai Shiqiang

the stability decrease greatly when VB is selected as VB(ρj−1(t)) = tanh( 2
ρ0
−

ρj−1(t)

ρ2
0
− 1

ρc
)+tanh( 1

ρc
), which validates that an unreasonable conclusion that

considering the following vehicle can weaken the stability of traffic flow in
ref. [8] was resulted from have not distinguished VB from VF .

4 Nonlinear Analysis

Using the reductive perturbation method to Eqs. (4) and (5) to analyze the
system behavior near the critical point (ρc, ac), we find that the nature of
kink-antikink solitons can be described by the following mKdV equations:

∂T ′R′ = ∂3
XR

′ − ∂XR′3 − εM1[R′] (10)

∂T ′R′ = ∂3
XR

′ − ∂XR′3 − εM2[R′] (11)

After some deduction, we obtain the propagation velocity c for the two models.

c1 =
5
3
(2p− 1)3τc

{
2
3
(2p− 1)

[
− 5(2p− 1)4τ3c

6
− 7(2p− 1)(1− p)τc

3

+
(2p− 1)pτc

3

n∑
l=1

βl(3l2− 3l+1)− 15(1− p)
24

− p
24

n∑
l=1

βl(4l3 − 6l2 + 4l − 1)
]

+3
[
1− p

2
− 2(2p− 1)2τc

3
+
p

6

n∑
l=1

βl(2l − 1)
]

[
(2p− 1)3τ2c

2
+

7(1− p)
6

− p
6

n∑
l=1

βl(3l2 − 3l + 1)
]}−1

(12)

c2 =
5
2
(2p− 1)3τc

{
2
3
(2p− 1)

[
− 23(2p− 1)4τ3c

8
− (2p− 1)(1− p)τc

2

+
(2p− 1)pτc

2

n∑
l=1

βl(3l2− 3l+ 1)− 15(1− p)
24

− p
24

n∑
l=1

βl(4l3− 6l2 + 4l− 1)
]

+3
[
1− p

2
− (2p− 1)2τc +

p

6

n∑
l=1

βl(2l − 1)
]

[
7(2p− 1)3τ2c

6
+

7(1− p)
6

− p
6

n∑
l=1

βl(3l2 − 3l + 1)
]}−1

(13)



Anisotropy and Stabilization of Traffic Flow 361

5 Results Analysis and Discussion

If we adopt the explicit forms (5) and (6) of the optimal velocity (−ρ2cV ′ =
2p − 1, ρ6cV

′′′ = 2(2p − 1)), we can obtain the critical density (ρc, ac) and
propagation velocities c1, c2 of the kink-antikink solution for models A and B
(see table 1). In the following, we discuss the results from four aspects.

Table 1. ac and c in models A and B for p = 0.8, 0.9, 1, respectively

n 1 2 3 4

A ac 0.514286 0.442105 0.433415 0.432202
c1 -0.793283 -0.804063 -0.813698 -0.81684

B ac 0.771429 0.663158 0.650123 0.648302
c2 -0.96888 -0.988985 -1.00223 -1.00679

n 1 2 3 4

A ac 1.06667 0.874381 0.856831 0.853831
c1 -2.74286 -2.95832 -3.13782 -3.17641

B ac 1.6 1.31765 1.28525 1.28075
c2 -3.63636 -3.94645 -4.25826 -4.32755

n 1 2 3 4

A ac 2 1.55556 1.50769 1.50109
c1 24 10.6586 9.0225 8.84629

B ac 3 2.33333 2.26154 2.25164
c2 27 11.6053 9.7383 9.53980

(1) The effect of looking backward on traffic. In both models, ac
decreases with the increase of n, and the stability regions are enlarged when
the looking backward effect is considered. It is also found that the informa-
tion from two preceding vehicles and one following vehicle plays the most
important role in the stability. We may consider this state as the optimal one.

(2) Comparison of propagation velocity with that in ref. [10].
From Table 1, it can be seen that the propagation velocities decrease as the
increase of n in both models for the case p = 1, which is different from the
conclusion in Ref. [10], where the propagation velocities are constant for model
A or increase with the increasing of n for model B. It is well known that in
real traffic, when considering the information of more vehicles is employed,
the stability of traffic system will increase, and as a result, the propagation
velocities of density wave will decrease. The reason why the conclusion in
ref. [10] is contrary to the real traffic is that there existed an error in deriving
the mKdV equation.

(3) The negative propagation velocity when the looking back-
ward effect is involved. The occurrence of the negative propagation veloc-
ity when the effect of following vehicle is involved constitutes the anisotropy
of the models. According to the definition of VB as the following vehicle is
very close to the considered vehicle, the considered one has to accelerate to
avoid collision, so in the unstable region, as the following vehicle has a slight
density (or headway) fluctuation, if the considered vehicle cannot accelerate
on time, collision easily appears. Meanwhile, because both the preceding and
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following vehicles are considered, the absolute value of propagation velocity
is smaller than that in the case of only considering forward vehicles.

(4) The variation of propagation velocity under different inclu-
sions of backward looking effect. It is found that the absolute value of
propagation velocity at p = 0.8 is smaller that at p = 0.9 under other same
conditions, which means that more inclusion of backward effect leads to slower
propagation of fluctuation, in other words, once the driver pays more attention
to the following vehicle, the accelerating probability of considered vehicle in-
creases so as to decrease collision probability. In addition, in the same model,
under the constant probability, the absolute value of propagation velocity in-
creases with the increase of n, but the propagation velocity hardly changes
as n rises to a certain value. This can be explained by the fact that the fol-
lowing vehicle could influence the considered vehicle, which, corresponding
to the nearest-neighbor vehicle, can be as the following vehicle, so when the
considered vehicle cannot accelerate on time to avoid collision, the influence
will extend to the nearest-neighbor vehicle,and the rest may be deduced by
analogy, up to the next-nearest-neighbor vehicle, etc., but the influence will
weaken with increasing n. This result can also account for the collision ac-
cidents, especially the considered car is pasted on by the following car and
several cars are pasted on along a highway.

6 Conclusions

We have proposed two lattice hydrodynamic models involving the effect of
looking forward on traffic flow through defining the different optimal veloc-
ity functions for forward and backward looking cases. The traffic nature has
been analytically investigated by using the linear stability theory and through
the nonlinear wave analysis. Furthermore, the negative propagation velocity
caused by the effect of backward looking on traffic is analyzed in detail.
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Summary. The fundamental diagram for tunnel traffic is constructed based on
the empirical data collected during the last two years in the deep long branch of
the Lefortovo tunnel located on the 3rd circular highway of Moscow. This tunnel of
length 3 km is equipped with a dense system of stationary radiodetetors distributed
uniformly along it chequerwise at spacing of 60 m. The data were averaged over
30 s. Each detector measures three characteristics of the vehicle ensemble; the flow
rate, the car velocity, and the occupancy for three lanes individually. The conducted
analysis reveals an original complex structure of the fundamental diagram.

1 Traffic Flow in Long Tunnels

The properties of traffic flow in long highway tunnels has been under individ-
ual consideration since the middle of the last century (see, e.g., Refs [1, 2]).
Interest to this problem is caused by several reasons. The first and, may be,
main one is safety. Jams in long tunnels are rather dangerous and detect-
ing the critical states of vehicle flow leading to the jam formation is of the
prime importance for the tunnel operation. Second, the tunnel traffic in its
own right is an attractive object for studying the basic properties of vehicle
ensembles on highways. On one hand, it is due to the individual car motion
being more controllable inside tunnels with respect to velocity limits and lane
changing. On the other hand, long tunnels typically are equipped with a dense
system of detectors, which provides a unique opportunity to receive a detailed
information about the spacial-temporal structures of traffic flow.

The present work continues the investigation of tunnel traffic properties
reported previously [3]. The analysis is based on empirical data collected dur-
ing the last time in the Lefortovo tunnel located on the 3rd circular highway of
Moscow (Fig. 1). It comprises two branches and the upper one is a deep linear
three lane tunnel of length about 3 km. Exactly in this branch the analyzed
data were collected. The tunnel is equipped with a dense system of station-
ary radiodetectors (Remote Traffic Microwave Sensor, X model) distributed

mailto:ialub@fpl.gpi.ru
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Fig. 1. Structure of the Lefortovo tunnel and the system of car motion detectors.

uniformly along it chequerwise at spacing of 60 m. Because of the technical
features of the detectors traffic flow on the left and right lanes is measured at
spacing of 120 m whereas on the middle lane the spacial resolution is 60 m.
The data were averaged over 30 s.

Each detector measures three characteristics of vehicle ensemble; the flow
rate q, the car velocity v, and the occupancy k for three lanes individually.
The occupancy is analog to the vehicle density and is defined as the total
relative time during witch vehicles were visible in the view region of a given
detector within the averaging interval. It is measured in percent. The detectors
themselves and their records were analyzed initially to justify the reliability
of the collected data.

2 Fundamental Diagram

The fundamental diagram under consideration was constructed as follows.
The phase space {k, v, q} was divided into cells of size about 1 %× 1 km/h×
0.01 car/s. Each 30 seconds a detector contributes unity to one of the cells.
Taking into account a certain rather long time interval of traffic flow obser-
vation, all the detectors, and then dividing the result by the total number of
records we obtain the three-dimensional distribution P (k, v, q) of fixed traffic
flow states over this phase space. In order to elucidate the obtained result
we present the projection of P (k, v, q) on three phase planes {kq}, {kv}, and
{vq}. Besides, in projecting onto the given phase planes some layers can be
singled out, for example, the expression

PDV (k, q) ∝
∫

v∈DV

dv P (k, v, q)
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Fig. 2. Projection of the fundamental diagram onto the plane {k, q} as well as its
slices parallel to this plane.

specifies the projection of the layer DV = (vmin, vmax) onto the plane {kq}
within a constant cofactor normalizing it to unity. Such distributions will be
also referred to as slices of the fundamental diagram.

Figure 2 presents the projection of the whole fundamental diagram onto
the plane {k, q} (the upper left frame) as well as its slices parallel to this
plane. In the frame of the whole projection two branches are singled out by
the relation v ≶ 21 km/h × k/kc2, where the critical occupancy kc2 = 31%
according the results to be demonstrated further. The two branches with a
small degree of overlap are separated actually by the transition from light
to heavy synchronized traffic (see below). The given slices of fixed velocity
demonstrate the fact that, at least, three different states of heavy congested
traffic were observed. It reflects in the existence of three branches visible well
for v = 19, 13, 7 km/h. Their additional analysis demonstrated us that these
branches are characterized individually by different mean lengths of vehicles.
In particular, the higher is a branch in Fig. 2, the shorter, on the average,
vehicles forming it. The distribution of the traffic flow states becomes rather
uniform for very low velocities matching the jam formation. On the whole
fundamental diagram the jammed traffic is described by the region looking
like a certain “beak”.
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Fig. 3. Projection of the fundamental diagram onto the plane {k, v} as well as its
slices parallel to this plane that are made up by projecting the noted layers.

Figure 3 depicts a similar projection of the fundamental diagram onto the
plane {k, v}. For low values of the traffic flow rate two states of traffic flow
are clearly visible, the free flow and jam. The slice of 0.3 < Q < 0.4 (car/s)
shows actually the light and heavy phases of synchronized traffic flow, with
the latter phase splitting into several branches. The final slice corresponding
to large values of the traffic flow rate exhibits the phase transition between
the two light and heavy states of traffic flow at the critical value of occupancy
kc2 = 31%, where the velocity drop about 15 km/h is clearly visible. It should
be pointed out that the traffic flow states are distributed with the comparable
intensity on both the sides of the phase transition at k = kc2, which enables
us to assume that this phase transition proceeds in the both directions. The
whole projection of the fundamental diagram on the plane {k, v} also shows
this phase transition as well as the existence of two accumulation points of
traffic flow states in the region of light synchronized traffic and in the vicinity
of phase transition between the two states of synchronized traffic. The latter
feature poses a question about the possibility of phenomena like “stop-and-go
waves” but based on transitions between different states of the synchronized
traffic.
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Fig. 4. Projection of the fundamental diagram onto the {q, k}-plane as well as its
several slices parallel to this plane.

Figure 4 exhibits the projection of the fundamental diagram onto the plane
{q, v} and evolution of its slices for fixed values of the occupancy. In this figure
the four different phase states of the analyzed tunnel traffic are visible. The
free flow where the overtaking manoeuvres are most feasible corresponds to the
three branches that can be related to trucks, passenger cars, and high-speed
cars. As the traffic flow rate grows with the occupancy k the three branches
terminate and are followed by a structureless two-dimensional domain via
a certain phase transition. Then this phase state in turn is followed by a
structural domain which itself converts again into the structureless beaked
region corresponding to jam.
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3 Obtained Results and Conclusion

The paper is devoted to constructing the fundamental diagram for tunnel
traffic based on the empirical data collected in the linear higher branch of the
Lefortovo tunnel located on the 3rd circular highway of Moscow in 2004–2005.
It is the three lane tunnel of length 3 km equipped with radiodetectors mea-
suring the traffic flow rate (q, in car/s), the vehicle velocity (v, in km/h), and
the road occupancy (k, in %) averaged over 30 s. The detectors are distributed
chequerwise at spacing 60 m along the tunnel. Because of the detector tech-
nical characteristics the traffic flow parameters are fixed at 60 m spacing on
the middle lane and 120 m spacing on the left and right ones.

The fundamental diagram is treated as the traffic flow state distribu-
tion and has been constructed using the relative number of records per
1 % × 1 km/h × 0.01 car/s cells in the phase space {k, v, q}. Analyzing the
three projections of this 3D field and its different slices we have demonstrated
the fundamental diagram to be complex in structure. Four possible traffic
flow states are found, the free flow, light synchronized traffic, heavy synchro-
nized traffic, and jam. The free flow state as well as the heavy synchronized
traffic has a substructure, whereas the light synchronized traffic and jam are
structureless.

The free flow comprises three branches related to trucks, passenger cars,
and high-speed cars. These branches exist while the occupancy is less then a
certain critical value, k < kc1 ≈ 3 % and are clearly visible in the projection
onto the phase plane {q, v}. As the occupancy grows the light synchronized
traffic appears which is characterized by the structureless region of widely scat-
ted states. When the occupancy exceeds the next critical value kc2 ≈ 31 % the
heavy synchronized traffic changes the previous phase state. This transition is
accompanied by some jump in the mean velocity. In the projections onto the
phase planes {k, q}, {k, v}, and {q, v} it looks like widely scatted states uni-
formly distributed inside a certain region. However the corresponding slices of
the fundamental diagram demonstrate a substructure of the given phase state.
It again comprises, at least, three different branches. The conducted analysis
demonstrated that the given branches are characterized, on the averaged, by
different lengths of vehicles. The jam phase, as should be expected, can be
ascribed with a certain relationship between the traffic flow rate q, the mean
velocity v, and the occupancy k, in particular, it is possible to write down a
certain function v = v(k).

In addition we should note the following. In spite of the complex structure
of the fundamental diagram and the existence of four different phase states
the distribution of the detected states is, roughly speaking, bimodal. One
its maximum is located at the beginning of the region matching the light
synchronized traffic. The other maximum drops on the region corresponding
to the transition between the two phases of the synchronized traffic.
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Summary. The airborne traffic monitoring system forms a novel technology of
detecting vehicle motion. An optical digital camera located on an airborne platform
produces a series of images which then are processed to recognized the fixed vehicles.
In this way the video data are converted into the time sequence of frames containing
the vehicle coordinates. In the present work a three-frame algorithm is developed
to identify the succeeding vehicle positions. It is based on finding the neighboring
points in the frame sequence characterized by minimal acceleration. To verify and
optimize the developed algorithm a “Virtual Road” simulator was created. Finally
available empirical data are analyzed using the created algorithm.

1 Introduction

The traditional techniques of traffic flow measurements are based on local
detectors mounted at fixed places of a road network. Such detectors provide
adequate information about traffic flow only for road fragments of a rather
simple structure. However in cities there are a large number of complex road
intersections, where vehicles moving on different branches interact strongly
with one another. To measure appropriately traffic flow features on such “hot
areas” the information supplied by the stationary detectors should be com-
plemented at least with the detailed information about the spatial structure
of traffic streams on these hot areas. Currently the novel technology of air-
borne monitoring and detecting the main characteristics of traffic flow is under
development. The German Aerospace Center (DLR) with its department of
Transportation Studies and department of Optical Information Systems has
developed an airborne traffic monitoring system which was successfully used
during the Soccer World Championship 2007 in Germany [1–3]. In particular,
these and some other DLR airborne datasets are used in the present paper.
This system is based on an optical sensor placed on an airborne platform.
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The optical sensor produces a series of images of area under. The empirical
airborne traffic data obtained by recognizing these images form a set of the
frames with individual vehicle coordinates. To use these data and to calculate
the main parameters of traffic flow trajectories of individual vehicle motion
have to be reconstructed. In this way it becomes possible to measure the traffic
flow rate, the mean velocity of vehicles, and their density simultaneously.

2 Vehicle Trajectory Reconstruction

The airborne traffic data under consideration are the time series F of frames
{Ft} with the coordinates of recognized vehicles, F = {Ft = {xα, yα}}. The
problem is to construct a collection of trajectories P = {x(t), y(t)}t passing
through the points {{xα, yα}} at the corresponding time moments {t = nτ},
where n is integer and τ is the time span between successive frames. Some con-
straints should be imposed on the vehicle trajectories P to make them smooth.
There are several ways to do this, in particular, to bound the “acceleration”
(the used approach)

√(
d2xα

dt2

)2

+
(
d2yα
dt2

)2

≤ amax (1a)

or to bound the “velocity”

√(
dxα

dt

)2

+
(
dyα
dt

)2

≤ vmax . (1b)

We note that the acceleration and velocity thresholds, amax and vmax, are not
the real characteristics of car motion but internal algorithm parameters whose
choice is determined by its efficiency being highest.

To explain the crux of the algorithm implementing these constrains let
us assume that the preceding frames {. . . , Fn−2, Fn−1} have been analyzed
and the vehicle trajectories are reconstructed at the previous time moments
{. . . , n− 2, n− 1}. Then a car {xn

α, y
n
α} in the frame Fn will be incorporated

into the trajectory ω = ∪m{xm
ω , y

m
ω } if

√
(xn−2

ω − 2xn−1
ω + xn

α)2 + (yn−2
ω − 2yn−1

ω + ynα)2 ≤ amax τ
2 . (2)

Figure 1 illustrates the given three-frame algorithm based on (1a) as well as
the relative two-frame algorithm based on (1b) mentioned for comparison only.

Let us discuss the possible errors of the car identification algorithm caused
by errors in the car coordinate measurements. There are two main types of
the latter ones; the errors of individual vehicle positions, ξ1, and the errors in
the frame reference to GPS, ξ2. According to the pilot airborne monitoring
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Fig. 1. Illustration of the car identification algorithms. Within the two-frame speed
limitation algorithm (left fragment) new objects {xn, yn} are sought in the circle of
radius r = vmaxτ centered at the point {xn−1

ω , yn−1
ω }. In the three-frame algorithm

bounding acceleration (right fragment) new objects {xn, yn} are sought in the circle
of radius r = amaxτ2 centered at the point {2xn−1

ω − xn−2
ω , 2yn−1

ω − yn−2
ω }.

Fig. 2. The main errors of the car identification algorithm.

system (Institute for Traffic Research, DLR, Berlin) [1, 2] the error values
can be estimated as ξ1 ∼ 0.5 m and ξ2 ∼ 1–2 m. The caused errors of the
car identification algorithm, i.e. the object loss (type A) and the trajectory
mixing (type B) illustrated in Fig. 2 will be quantified in units of

A(B) =
The number of lost(mixed) objects

Total number of objects
· 100%

To analyze the feasibilities of the identification algorithm, first, the follow-
ing kinematic simulator has been used (Fig. 3, upper fragment). The motion
of cars is specified by the shown equations where the parameters x0i, y0i,
bxi etc. are random and some addition constraints are imposed to prevent
the collisions. The noise components ξx(y)i = (ξ1 + ξ2)x(y)i imitate the errors
in the measurements of the car coordinates xi and yi at the time moments
t = nτ . The system parameters and the number of cars are specified so that
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Fig. 3. Airborne data simulator, “Virtual Road”, used to verify the vehicle identi-
fication algorithm (upper fragment) and the corresponding results of the car iden-
tification routine (lower fragment). The subscript M at the noise components ξiM

stands for their amplitudes.

the virtual car ensemble imitate the real characteristics of traffic flow, at least
semiquantitatively. The lower fragment in Fig. 3 exhibits the net value of the
identification errors, A+B, vs. the acceleration threshold amax. As could be
expected, the present results demonstrate the fact that the car identification
algorithm attains its maximal efficiency when

amax =
4(ξ1M + ξ2M )

τ2
, (3)

and, in particular, for ξ1M = 0.5 m and ξ2 = 1.5 m the optimal acceleration
threshold is about amax ∼ 50 m/s2.

Second, the developed algorithm has been verified using the available air-
borne traffic data collected during Soccer Championship 2006 in Stuttgart
within the DLR project “Soccer” [3]. These data undergone manual process-
ing, so initially we had a collection of vehicle trajectories regarded as real
keeping in mind the human abilities. The vehicle identification algorithm has
given the result depicted in Fig. 4. For these data, again, the optimal value
of the acceleration threshold meets relation (3). Figure 4 presents also the
efficiency of the car identification algorithm for different values of the veloc-
ity threshold vmax. As seen the imposition of the additional speed limitation
constraint reduces the algorithm efficiency. In other words, constraints (1)
interfere with each other and, thus, should be used separately. As should be
expected the measurement errors and the optimal acceleration threshold are
again related by expression (3).
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Fig. 4. The airborne data collected during the Soccer Championship 2006 in
Stuttgart. Typical example of the analyzed video data (left fragment) and the results
of car identification routine vs. the acceleration threshold (right fragment).

Fig. 5. Time-mean speed (green) and space-mean speed (red) reconstructed using
the smoothed vehicle trajectories (left fragment) and the same data obtained using
the neighboring points directly. The airborne data of pilot flights in Berlin, 2004,
the LUMOS project.

3 Mean Velocity of Traffic Flow and Fundamental
Diagram

Because of the considerable errors in the vehicle coordinates the found suc-
cessive positions of a car cannot be used directly to calculate its velocity.
However, the reconstructed trajectories enable one to overcome this problem
by fitting a rather smooth trajectory to the found data. In this way we have
analyzed the empirical data collected during pilot flights of an airplane in
Berlin, 2004 (DLR, LUMOS project). The mean velocity of traffic flow was
calculated, first, by smoothing the reconstructed vehicle trajectories via the
Savitzky-Golay filter and, then, averaging the velocities over the observed car
ensemble. The results are illustrated in Fig. 5. As seen the time pattern of
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Fig. 6. Fundamental diagram (right fragment) and an example of the analyzed
video data (left fragment). The NGSIM “First Prototype” dataset [4].

traffic flow speed obtained by smoothing the reconstructed vehicle trajectories
gives much more adequate description of traffic flow.

Using the developed technique we have analyzed also the NGSIM “First
Prototype” dataset consisting of vehicle trajectories on a half-mile section
of Interstate 80 in Emeryville, California, for one half of hour [4]. The sys-
tem portrait on the phase plane “traffic flow rate – car density” was drawn
using the mean car velocity calculated via the developed technique and car
density obtained by just counting the detected objects (Fig. 6). No widely
scatted states are visible, instead, branching is fixed. This result again poses
the question about the necessity to single out the vehicle flow discreteness in
analyzing the states of traffic flow [5]. It should be noted that the developed
approach depresses this discreteness effect.

4 Conclusion

We have developed the three-frame-algorithm of reconstructing vehicle tra-
jectories from airborne traffic data, which evaluates the proximity of objects
in the neighboring frames in terms of acceleration. The acceleration thresh-
old amax is determined by the car measurement accuracy. Using the “Virtual
Road” simulator and the dataset collected within the project “Soccer” (DLR,
Stuttgart, 2006) the value of amax ∼ 40–50 m/s2 is found and the possibility
of decreasing the identification error down to 5–30 % is shown.

Using one of the NGSIM datasets it has been demonstrated that for the
observed congested traffic the fundamental diagram splits into two branches
when the car density exceeds some value rather than exhibits the widely scat-
ted states. This result again poses a question whether the discreteness of traffic
flow could be responsible for the appearance of widely scatted states on the
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fundamental diagrams. Naturally, the unambiguous answer requires special
and detailed investigation.
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1 Rostock University, Institute of Physics, D–18051 Rostock, Germany
christof.liebe@uni-rostock.de; reinhard.mahnke@uni-rostock.de

2 Institute of Mathematics and Computer Science, University of Latvia,
LV–1459 Riga, Latvia kaupuzs@latnet.lv

3 Lule̊a University of Technology, Department of Physics, SE–97187 Lule̊a, Sweden
Hans.Weber@ltu.se

Summary. Microscopic traffic models based on follow–the–leader behaviour are
strongly asymmetrically interacting many–particle systems. The well–known Bando’s
optimal velocity model includes the fact that (firstly) the driver is always looking
forward interacting with the lead vehicle and (secondly) the car travels on the road
always with friction. Due to these realistic assumptions the moving car needs petrol
for the engine to compensate dissipation by rolling friction. We investigate the flux
of mechanical energy to evaluate the energy balance out of the given nonlinear dy-
namical system of vehicular particles. In order to understand the traffic breakdown
as transition from free flow to congested traffic we estimate the total energy per car
at low and high densities and observe the energy of jam formation.

1 Introduction

The formation and growth of clusters is a widely known phenomenon in
physics, e.g. condensation of liquid droplets in a supersaturated vapour [1].
The formation of car clusters (jams) at overcritical densities in traffic flow is
an analogous phenomenon in the sense that cars can be considered as many
asymmetrically interacting particles [2, 3], and the clustering process can be
described by similar equations. In particular, the probability that the system
has a given cluster distribution at a certain moment in time can be described
by the stochastic Langevin equation in both cases. The spontaneous emer-
gence of car clusters has been studied by different authors (see Proceedings
Traffic and Granular Flow (TGF) for an overview) based on different models
and approaches. In spite of the complexity of real traffic, we believe that some
general properties of traffic flow, such as headway and velocity importance,
exist which can be described and understood by relatively simple models.

In continuation of our contribution to TGF 03 [4] we concentrate again
on the microscopic optimal velocity traffic model, first proposed by Bando

mailto:christof.liebe@uni-rostock.de
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et al. [5, 6]. Based on investigations about the stability of traffic flow sum-
marized as critical curves in a density c over Bando parameter b diagram [4]
we are now evaluating the energy balance as relationship between kinetic and
potential energy and incoming and outgoing energy fluxes in different regions
of stability [7].

2 Dynamics of Vehicular Particles

Having in mind (from textbooks) the one–particle Newton’s equation

m
dv

dt
= Fcons(x) + Fdiss(v) ;

dx

dt
= v (1)

the energy balance out of the given dynamics (1) reads

d

dt
(Ekin + Epot) + Φ = 0 (2)

with Ekin = mv2/2 as kinetic energy, Epot = −
∫
Fcons(x) dx as potential

energy and flux term Φ = −v Fdiss(v) as transformation rate (dissipation or
creation) of mechanical energy.

Extending the one–particle case to the many–vehicle system under consid-
eration (N cars moving on a rotary of given length L) the equations of motion
(in dimensionless form) are given as follows (i = 1, . . . , N)

d

dt̃
ṽi = F̃cons(Δx̃i) + F̃diss(ṽi) ; Δx̃i = x̃i+1 − x̃i (3)

d

dt̃
x̃i =

1
b
ṽi with control parameter b > 0 . (4)

Defining the potential energy of particle i via gradient by

F̃cons(Δx̃i) = −1
b

dẼpot(Δx̃i)
dx̃i

= +
1
b

dẼpot(Δx̃i)
dΔx̃i

(5)

and the kinetic energy of particle i as Ẽkin(ṽi) = ṽ2i /2 the energy balance
becomes

d

dt̃
Ẽkin(ṽi) +

d

dt̃
Ẽpot(Δx̃i) = F̃cons(Δx̃i) ṽi+1 + F̃diss(ṽi) ṽi , (6)

where the r.h.s. represents the (negative) overall flux term similar to (2).
Leaving the general Newton–like dynamics (3, 4) to be more specific we

choose the following forces known from Bando’s optimal velocity model

F̃diss(ṽi) = 1− ṽi ≥ 0 (7)

F̃cons(Δx̃i) = ṽopt(Δx̃i)− 1 ≤ 0 with ṽopt(Δx̃i) =
(Δx̃i)2

1 + (Δx̃i)2
, (8)
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which can be also interpreted as accelerating (moving fast) and decelerating
(avoid collisions) forces.

Taking into account (7, 8) we are able to calculate the potential energy
from (5)

Ẽpot(Δx̃i) = b
∫ Δx̃i

F̃cons(y)dy = b
(π

2
− arctanΔx̃i

)
(9)

with normalization (fixing integration constant) to Ẽpot(Δx̃i →∞) = 0.
Figure 1 illustrates the time evolution in state space and the behaviour of

kinetic and potential energy as well as energy fluxes in time for one particular
car (in an ensemble of N = 60 vehicles) at low density for two different initial
conditions.

Fig. 1. Numerical integration of equations of motion (3, 4) with forces (7, 8)

for N = 60 cars on a rotary of dimensionless length L̃ = 100 (at low density

c̃ = N/L̃ = 0.6) and control parameter b = 1.1. Upper picture: Evolution in state
space for one particular car i for two different initial conditions (zero speed and
homogeneous spacing by dashed line; zero speed and heterogeneous spacing by full
curve). The cross on the optimal velocity function (dotted curve) indicates the stable
steady state as free flow solution. Left picture: Kinetic energy (starting from zero)
and potential energy over time for both given initial situations. Right picture: Inflow
(positive values) and outflow of energy over time for same initial conditions.
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In the following we refer to the whole ensemble consisting ofN cars defining
overall quantities Ẽ = Ẽkin + Ẽpot and Φ̃ = Φ̃in + Φ̃out with

Ẽkin =
N∑

i=1

Ẽkin(ṽi) =
N∑

i=1

1
2
ṽ2i (10)

Ẽpot =
N∑

i=1

Ẽpot(Δx̃i) = b
N∑

i=1

(π
2
− arctanΔx̃i

)
(11)

Φ̃in = −
N∑

i=1

F̃cons(Δx̃i) ṽi+1 ≥ 0 (12)

Φ̃out = −
N∑

i=1

F̃diss(ṽi) ṽi ≤ 0 (13)

and showing energies and fluxes per particle in Fig. 2.

Fig. 2. Temporal development of overall energies (10, 11) (left) and energy flows
(12, 13) (right) divided by number of cars N at low density 0.6. Same situation as
in previous figure.

3 Traffic Breakdown from Free Flow to Congestion

The steady state solution is given by zero acceleration in (3) characterized by
equal velocities and headways for all cars. This homogeneous solution reads

Δx̃st =
L̃

N
=

1
c̃

; ṽst = ṽopt(Δx̃st) =
(1/c̃)2

1 + (1/c̃)2
(14)

and is called vehicular free flow which is stable at low densities c̃. For the values
c̃ = 0.6, b = 1.1 the long–time results (14) are x̃st = 1.667, ṽst = 0.735, Ẽkin =
0.270, Ẽpot = 0.594, Φ̃in = −Φ̃out = 0.195 in agreement with the numerical
calculations presented in Figs. 1 and 2.
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Fig. 3. Numerical integration of equations of motion (3, 4) with forces (7, 8)

for N = 60 cars on a rotary of dimensionless length L̃ = 35 (at large density

c̃ = N/L̃ = 1.714) and control parameter b = 1.1. Upper picture left: Evolution
in state space for one particular car i for given initial condition (zero speed and
homogeneous spacing by full curve). The cross on the optimal velocity function
(dotted curve) indicates the unstable steady state. Upper picture right: Total energy
inflow (positive values) and outflow per car vs. time. Bottom picture: Overall kinetic
energy (thick curve starting from zero) and overall potential energy per car vs. time.

Figure 3 shows the situation after traffic breakdown as transition from free
flow (independent particles with weak interaction) to congested flow where the
cars form a dense phase called vehicular cluster. The homogeneous solution
(14) becomes unstable and a limit cycle (left upper picture) appears. At large
density c̃ = 1.714 (and always b = 1.1) the cluster size is ncl = 30 vehicles with
x̃cl = 0.2, ṽcl = 0.04, nfree = 20 free particles with x̃free = 1.1, ṽfree = 0.55
and nbl = 10 cars in the boundary layer (interface between both phases) as
long–time limit. Comparing low and high density results presented in Figs. 2
and 3 it is shown that the mean kinetic energy is decreasing from 0.270 to
0.061 whereas the mean potential energy is increasing from 0.594 to 1.206,
therefore the total energy per car is changing from 0.864 (c̃ = 0.6) to 1.267
(c̃ = 1.714) summarized in Fig. 4 (left) for the density range 0 ≤ c̃ ≤ 5.
The region of congested traffic with a breakdown from homogeneous flow is
marked in Fig. 4 (right) by a dashed curve (at b = 1.1 from 1.12 to 2.90),
whereas the solid curve shows traffic breakdown from heterogeneous flow.
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Fig. 4. Left: Total energy per car as sum of kinetic and potential energies over
vehicular density c̃ and fixed control parameter b = 1.1 Dotted lines mark the region
of unstable free flow 1.00 < c̃ < 3.66. Right: Region of congested traffic below the
critical point (c̃cr 
 1.714, bcr 
 1.295) bounded by lines of traffic breakdown from
heterogeneous flow (solid curve) or homogeneous flow (dashed curve).

4 Appendix: Relationship to Bando’s OV Model

Dimensionless variables are original quantities devided by scale units: x̃ =
x/x0, ṽ = v/v0, t̃ = t/t0 and Ẽ = E/E0 with E0 = mv20 as well as F̃ = F/F0

with F0 = E0/(t0v0) and Φ̃ = Φ/Φ0 with Φ0 = E0/t0 and control parameter
b = x0/(t0v0).

Dynamics (3, 4)

m
dvi
dt

= Fcons(Δxi) + Fdiss(vi) ; Δxi = xi+1 − xi (15)

dxi

dt
= vi with control parameter m > 0 (16)

and forces (7, 8)

Fdiss(vi) =
m

t0
(v0 − vi) (17)

Fcons(Δxi) =
m

t0
(vopt(Δxi)− v0) with vopt(Δxi) = v0

(Δxi)2

x20 + (Δxi)2
. (18)

Energies (9) or (10, 11)

Ekin(vi) =
m

2
v2i (19)

Epot(Δxi) =
∫
Fcons(Δxi)d(Δxi) =

mx0v0
t0

(
π

2
− arctan

(
Δxi

x0

))
(20)

and balance with energy flux (6) or (12, 13)

d

dt
(Ekin(vi) + Epot(Δxi)) + Φi = 0 (21)

Φi = − (Fcons(Δxi) vi+1 + Fdiss(vi) vi) (22)
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with interpretation of parameters: vehicular mass m; maximum speed v0 ≡
vmax; interaction distance x0 ≡ D defined by vopt(Δx = D) = vmax/2 and
relaxation time t0 ≡ τ .
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7. R. Mahnke, J. Kaupužs, J. Hinkel, H. Weber: Eur. Phys. J. B 57, 463, 2007.



Detailed Data of Traffic Jam Experiment

Akihiro Nakayama1, Minoru Fukui2, Katsuya Hasebe3, Macoto Kikuchi4,
Katsuhiro Nishinari5, Yuki Sugiyama6, Shin-ichi Tadaki7, and
Satoshi Yukawa8

1 Department of Physics, Meijo University, Nagoya 468-8502, Japan
2 Nakanihon Automotive College, Sakahogi 505-0077
3 Faculty of Business Administration, Aichi University, Aichi 470-0296
4 Cybermedia Center, Osaka University, Toyonaka, Osaka 560-0043
5 Department of Aeronautics and Astronautics, University of Tokyo, Tokyo

113-8656
6 Graduate School of Information Science, Nagoya University, Nagoya 464-8601
7 Computer and Network Center, Saga University, Saga 840-8502
8 Department of Earth and Space Science, Osaka University, Toyonaka, Osaka

560-0043

Summary. We show detailed data of two traffic jam experiments on a circuit. In
the experiments, a traffic jam emerges spontaneously without any bottlenecks. We
found the power law nature in time series of average velocity, and also found the
homogeneous flow with large velocity is temporarily made before a jam cluster is
formed.

1 Traffic Jam Experiment

It is widely believed that the origin of traffic jam on highways is bottlenecks
and the jam never appears without bottlenecks. However the recent theories
of traffic flow indicate the traffic jam always appears if the car density is
sufficiently large [1]. We have carried out a traffic jam experiment to prove
that the traffic jam appears without any bottlenecks [2].

The experiment has done on a flat ground and cars run along a circle with
the circumference 230m. The drivers are indicated to follow the preceding car
with suitable velocity and headway. We consider the maximum velocity in
this circuit will be 30 ∼ 40km/h. From this value, we can estimate the critical
density by use of the optimal velocity (OV) model [3]. The car number on
a circuit is decided by this critical density and is roughly 20. Then we have
carried out several runs by changing car number from 20 to 25 (see Fig. 1a).

The experimental data is extracted from the video record which is taken by
360 degree video camera at the center of the circuit (see Fig. 1b). We obtain
positions of each car every 1/3 second (10 frame steps) and other quantities
are calculated from this data.
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Fig. 1. (a) Snapshot of the experiment. (b) One frame of video records.

Fig. 2. Spacetime plots of (a) the run of 23 cars and (b) the run of 22 cars. Graphs
(a) and (b) show the data during 500 and 250 seconds around the time of jam
emergence, respectively. Each dot shows a position of each car.

2 Data of Experiment

In our experiment, no traffic jam emerges in the case that the car number is
20. But a traffic jam emerges if the car number is 22 or 23. Figure 2 shows
spacetime plots of such two runs. One is the run of 23 cars (Fig. 2a), and
the other is that of 22 cars (Fig. 2b). In both case, a traffic jam emerges
spontaneously several minutes after the start. In the former run, a traffic jam
is erased by a slow car temporarily, but it reemerges soon. This fact suggests
the jam is unavoidable nature of traffic flow, if the density is large. In the latter
run, the emergence process of traffic jam is clearly observed, and the details
of this run will be shown in section 3. The spacetime plots are quite similar
to that of real highway traffic [4]. Also, the velocity of jam cluster moving
backward is roughly 20km/h, which is almost the same as the observed value
in real traffic. Then it can be considered that the experiment reveals the
feature of real traffic.
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Figure 3 shows the average velocity and the variance of velocity. In the
first run (Fig. 3a), the fluctuation is relatively large and the transition to
congested flow is not clear. On the other hand, the transition is clear in the
second run (Fig. 3b). The traffic jam is characterized by the small average
velocity and the large variation.

Fig. 3. (a) and (b) show the data corresponding to those of Fig. 2a and Fig. 2b.
Solid and dotted lines represent the average velocity and the variance of velocity,
respectively. Dashed line indicates the time of jam emergence.

Figure 4 shows the power spectrum of average velocity. We can find the
power law nature and some periodicities due to the cyclic boundary condition.
It is interesting the experiment has a similar power law nature to the observed
one in real highway traffic [5].

We can fix the OV function from the observed data. Figure 5 shows the
observed headway-velocity relation and an estimated OV function. We can
guess some reasons why the maximum speed of two runs is different each
other, for example, the drivers changes their OV function depending on the
situation, or the drivers can drive better as they run more times.

3 Jam Formation Process

Here we discuss the details of the jam formation process shown in Fig. 2b. Fig-
ure 6 shows the average velocity and headway-velocity relations for three stage
of the flow. In the first stage the fluctuation of the velocity is relatively large.
A high density area appears many times but disappears soon. In the middle
stage the fluctuation becomes small and the average velocity is maintained
at a large value. In other words, high density and almost homogeneous flow
is realized. The high density area appeared in the homogeneous flow grows
up to a true traffic jam cluster. In this experiment the emerges jam cluster is
small and can be erased by a single slow car (see Fig. 2a). But the stability
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Fig. 4. Power spectrum of average velocity. (a) and (b) show the data corresponding
to those of Fig. 2a and Fig. 2b. Solid and dashed lines represent the spectrum and
its reference line, respectively. Down arrow indicates the lowest periodicity due to
the cyclic boundary condition.

Fig. 5. (a) and (b) show the data of headway-velocity relation corresponding to
those of Fig. 2a and Fig. 2b. Gray dots represent the observed data and solid line
represents an estimated OV function.

of a jam cluster shown in Fig. 2b indicates that a large cluster as real traffic
jam never disappears.

We show the motion of each car in the formation process. Figure 7 shows
the motion of three typical cars, (a) fast, (b) standard, and (c) slow cars. Right
three graphs show the motion of each car in the three stage corresponding to
Fig. 6. In the first and last stages, the difference among the motions of three
cars is relatively large. In the middle stage, three cars move at the almost
same speed with different headways. Exactly speaking, the flow is in a steady
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Fig. 6. Clear example of jam formation process. Upper graph is the same as Fig. 3b,
and lower three graphs are extracted from Fig. 5b for each period.

state. It may be a necessary condition of the spontaneous emergence of traffic
jam in experiment.

4 Summary

We have shown the detailed data of traffic jam experiment on a circuit without
any bottlenecks. A traffic jam emerges spontaneously if the car density is large.
This fact proves that the density of cars play an essential role of the emergence
of traffic jam. It can be considered that the role of bottleneck is to increase
the density.

The observed data of real traffic shows a power law in a wide range of time
scale. We found the power law nature of average velocity. It suggests that we
can experimentally investigate the origin of the power law nature of traffic
flow at least at a short time scale.

We also found the homogeneous or steady-state flow with large velocity is
temporarily made before a jam cluster emerges. When the irregularity of the
density is large, the creation of a traffic jam is prevented by low density part
of the flow. A certain length of high density region seems necessary to create
a spontaneous traffic jam. It may have a relationship to the property that a
small jam cluster is unstable, which is found in numerical simulation.
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Fig. 7. Motion of each car in headway-velocity plane. The motions of fast, standard,
and slow cars are shown in (a), (b) and (c), respectively. Left graph is the plot of
all data, and right three graphs are the plots corresponding to three stages of jam
formation. Solid and dashed lines represent the motion of car and the reference OV
function, respectively.
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Summary. Evaluation and optimization of emergency systems can be done by
means of several engineering methods, which are entirely different: macroscopic hy-
draulic models, which can be calculated by hand (so called handcalculation meth-
ods), and microscopic computer simulation methods. Both allow forecasting of
evacuation-times for various settings. The authors compare results of four commer-
cial software-tools (ASERI, buildingEXODUS, PedGo, Simulex) and some macro-
scopic handcalculation models with a real evacuation-trial in a high-rise building.
Furthermore evacuation times for simple layouts of room and floor are calculated
and the results are compared against each other.

1 Analysis of a High-Rise Building

The real evacuation-trial which we compare with results of commercial soft-
ware-tools was performed [1] in the middle of the 1970 at the Mannesmann-
Building, which was built in 1959 in Germany. It consists of three basements,
one ground floor, one mezzanine floor and 22 top floors. During the evacuation
trial one staircase was closed, thus all people had to use the same staircase.
In total, 427 people stayed in the top floors and were evacuated by using the
evaluated staircase. A floorplan with measurements is shown in Figure 1, a
detailed overview about walking velocity and distribution of people inside the
building can be found in [2]. As pre-movement-time we choose 50 sec ± 20
sec, this time based upon the original study [1].

1.1 Results of Commercial Software-Tools

The results show, that commercial software are able to predict a total evacu-
ation time for a high-rise building (see Table 1). If one takes a closer look at
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Fig. 1. Floorplan of the Mannesmann-Building [1].

the calculated evacuation times for selected floors, it appears that they dif-
fer considerably from the real times (see Table 1). Because of this results we
calculate this high-rise buidling with different macroscopic handcalculation
methods. These methods should also be able to predict total evacuation times
for a high-rise building.

1.2 Results of Macroscopic Handcalculation Methods

The results shown in this section (see Table 2) based upon calculations of ten
different macroscopic handcalculation methods. As we can see, some of these
handcalculation methods are able to predict “correct” evacuation times for a
total building.



Prediction Accuracy of Evacuation Times for High-Rise Buildings 397

Table 1. Comparison of calculated evacuation times with a real evacuation-trial.
At selected floors the table shows the first and last person moving into the staircase

Evacuation-trail ASERI buildingEXODUS PedGo Simulex

Total Building 8.78 min Ca. 9 min ca. 8.5 min ca. 8 min ca. 8 min

2nd floor 50–149s 40–82s 38–74s 44–94s 44–82s
4th floor 45–75s 35–86s 49–73s 50–82s 41–86s
5th floor 61–101s 36–87s 35–83s 42–89s 42–90s
6th floor 31–102s 42–82s 35–78s 41–95s 42–85s
7th floor 67–132s 43–96s 37–77s 39–96s 43–95s
10th floor 51–102s 33–117s 41–83s 39–92s 43–90s
15th floor 48–155s 38–83s 38–81s 45–88s 42–80s

Table 2. Comparison of calculated evacuation times by macroscopic handcalcula-
tion methods with a real evacuation-trial

Macroscopic handcalculation method 427 people (19 in each floor)
with 0.8 min response-time

Predtechenskii and Milinskii,
standard method [3]

9,10 min

Predtechenskii and Milinskii,
simplified method [4]

9,15 min

SFPE/NFPA-Handbook [5] 14.78 min
Method of W. Müller [6–9] 14.58 min
Method of K. Togawa [10] 5.65 min
Method of M. Galbreath [11] 6.52 min
Effective-Width Model by J. Pauls [12] 7.84 min
Method of Melinek and Booth [13] 7,67 min
Method of E. Kendik [14] 7.98 min
Method of Seeger and John [1] 8.83 min

Real evacuation-trial [1] 8,78 min (without 0.8 min
response time: 7.98 min)

2 Analysis of Simple Geometries

We compare the calculation of three different simple geometries (scenarios)
against each other. Results are shown in Figure 2 and Figure 3. The results
show, that the commercial software-tools are not able tor predict the same
evacuation time for such simple geometries. The results differ round about a
factor of two at a simple room (Figure 3) and by calculating a linear move-
ment (Figure 2) they might have problems to reproduce a relationship be-
tween density and walking velocity. Different boundary conditions (like mod-
elling an extra-room) have also a large influence of the calculated results. At
one simulation (without extra-room) people disappear after reaching the time
measurement, with extra-room they walk through the extra-room before they
disappear at the right door.
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Fig. 2. Linear (left picture; narrow floor, no overtaking is possible) and planar (right
picture; floor 2m wide, overtaking is possible) movement of people.

Fig. 3. Evacuation of a simple room with different boundary conditions.

3 Discussion of the Results

The analysis shows that chosen software tools are able to predict total evac-
uation times for high-rise buildings. However by taking a closer look at evac-
uation times for selected floors, calculated results differ from the results of
the trials. This differences are probably based on the very low density, which
is inside each floor (ca. 19P/floor as an arithmetic mean), thus there is no
large congestion at the entrance of the staircase. At very low densities like in
this case, the response time and the human behaviour has a large influence
on the evacuation times for selected floors, thus the people walk “directly”
into the staircase without any or only a small congestion, in other words: peo-
ple are moving with almost free walking velocity through the building. If we
have larger densities in these floors, the congestion at the staircase entrance
will be still alive when people with high response time reach the staircase.
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That means, that human behaviour and response time would have an inferior
influence of the evacuation at higher density situations. But this discussion
points to another interesting part of pedestrian modelling: the density. If we
compare the software-tools about their maximum density there are also large
discrepancies: PedGo is able to simulate a maximum density of 6.25P/m2 but
buildingEXODUS can only simulate a maximum density of 4P/m2, thus it is
quite difficult to say that a congestion will appear or not.

To get a deeper insight we decided to proof the software tools by means of
simple geometries, thus compensation effects are excluded and it is possible
to recognize weak points of the software and the implemented algorithm. The
comparison of the evacuation times of simple geometries reveals differences
up to a factor of four among the tools for a linear movement, a problem which
is probably based upon the update algorithm used for description of individ-
ual movement of pedestrians. The differences at the simple room geometry
between buildingEXODUS and PedGo may depend on the different densities
which can be simulated by the models. Moreover we found problems in the
definition of boundary conditions. Due to the simulation of a simple room ge-
ometry with different boundary conditions we achieved results differing up to
20%. Thus it is possible, that only compensation effects provide the correspon-
dence between calculated evacuation times for high-rise buildings and times
obtained at the trials. In particular it is obvious that simulated pedestrian
flow inside the building is affected by non-negligible uncertainties. It is also
obvious that simple macroscopic handcalculation models for the prediction
of total evacuation times are as good as more detailed computer simulation
tools. But we should not forget that it is very difficult to verify or validate
software-tools or models because we do not have very much reliable empirical
data, a fact, that we should change as soon as possible in the future.
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sigen Gebäuden. Unser Brandschutz - wissenschaftlich-technische Beilage, 4:93–
96, 1966. continuation from 3/1966.
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Summary. Statistical mechanics of a small system of cars on a single-lane road is
developed. The system is characterized by a conditional probability of a velocity of
a car for a given velocity and distance of the car ahead. Distribution of car velocities
for various densities of a group of cars is derived as well as probabilities of density
fluctuations of the group for various velocities. Free-flow phase, congested phase,
and formation of platoons of cars were found.

1 Introduction

In classical equilibrium statistical mechanics Hamiltonian plays a decisive role
in determination of statistical properties of a system of interacting particles.
It represents energy as a function of momenta and spatial coordinates of the
particles. The system may be treated microcanonically or canonically. In a
microcanonical ensemble all the states are equally probable and the number
of states of a given energy yields the entropy of the system. In a canonical en-
semble the probability of states of a subsystem depends on its energy and their
sum is called partition function and determines thermodynamic properties of
the system.

In our approach, we do not start from the Hamiltonian of a system of
particles, which is not even introduced, but from the knowledge of conditional
probabilities of velocities and coordinates of each particle. It is assumed that
the conditional probability depends only on the state of the neighbouring
particles, and it can be determined from the behaviour of a small system
experimentally.

This non-Hamiltonian approach is applied to a system of cars on a single-
lane road while the behaviour of the cars is described by conditional proba-
bilities of the velocity of each car depending on the distance and velocity of
the car ahead.

Traffic flow of a system of identical cars on a single-lane road has been
intensively studied in recent decade using dynamical or kinetic description
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of car behaviour [1, 2]. The models used were continuous (fluid dynamical
models), car-following models, or discrete particle hopping models related to
cellular automaton models with stochastic behaviour.

In the approach of Mahnke et al. [3] the group of cars is represented by a
grandcanonical ensemble, number of cars in which is not fixed, and its chemical
potential is a function of parameters of a master equation.

In the last years we could observe a revival of the microcanonical approach
to the problems of statistical mechanics [4]. One of the reasons for that was
identification of the region where the entropy of a finite system is convex,
instead of the standard concave shape of it, with a point or line in the phase
space where the first-order phase transition in the corresponding infinite sys-
tem takes place. As the number of observed cars in normal traffic is not too
large, the techniques developed in statistical physics for small systems are
convenient in this case. The term “phase transition” in this paper is used in
the sense of the above-cited works.

2 Statistical Mechanics of 1 D Non-Hamiltonian Systems

A single-lane road represents a one-dimensional system so we shall further
confine ourselves to 1D systems of particles with nearest neighbour interac-
tions. The conditional probability that the particle has velocity vi and coor-
dinate ri while the velocity and coordinate of its neighbouring particles are
vi±1 and ri±1, respectively, will be denoted as p(vi, ri|vi−1, ri−1, vi+1, ri+1) ≡
p(vi−1, ri−1, vi, ri, vi+1, ri+1)/p(vi−1, ri−1, vi+1, ri+1) and taken as an input to
the theory.

The probability of velocities and coordinates of all n particles of the system
can be easily calculated from slightly different conditional probabilities

p(v1, r1, . . . , vn, rn) = p(v1, r1|v2, r2) . . . p(vn−1, rn−1|vn, rn)p(vn, rn) (1)

where p(vi, ri|vi+1, ri+1) = p(vi, ri, vi+1, ri+1)/p(vi+1, ri+1). Probabilities
p(vi, ri|vi+1, ri+1) are generally unknown, but they are closely related to the
probabilities p(vi, ri|vi−1, ri−1, vi+1, ri+1) characterizing our system [5].

In the system of cars on a single-lane road, the driver behaviour is assumed
to depend only on the previous car. In such a system the conditional prob-
ability of velocity and coordinate of particle 1 depends only on the velocity
and coordinate of particle 2 ahead of it, p ≡ p(v1, r1|v2, r2), and the probabil-
ities of the whole system are given directly by (1). These probabilities will be
used for calculations of the sum of probabilities of the system as a function of
certain global quantities.

The terms microcanonical and canonical will be used in the case of non-
Hamiltonian systems as well, but they will be related rather to the length of
the system than to its energy, which is not even introduced.

In the canonical ensemble of a Hamiltonian system the usually calculated
quantity is the partition function, which is sum of the probabilities of all
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possible states of the system. In the microcanonical ensemble, the probability
to find the system in a state is same for all of them. Logarithm of their sum
for some fixed quantities is called entropy. In our non-Hamiltonian approach
we calculate sum of the probabilities of states (SPS) for given length of the
system and sum of velocities of the particles.

In the microcanonical approach to traffic flow, the length of a group of cars
is fixed, and it is influenced by the reservoir only through boundary conditions.
The properties of the group are given by the sum of the probabilities of states
with the same total velocity.

In the canonical approach, the group of cars represents only a subsystem
of a large system whose remaining part is a reservoir. The length of the whole
system is constant, and the length of the subsystem is changed only at the
expense of the length of the reservoir. The properties of the subsystem are
given by sum of the probability of states of the whole system having the same
total velocity of the cars in the subsystem. The canonical approach is able to
describe fluctuations of the length of the subsystem around its mean value.

3 Model

The cars are further represented by dimensionless points moving on a discrete
one-dimensional lattice and are characterized by 2 quantities: discrete velocity
vi in the interval 〈0, vmax〉 and a discrete coordinate (site number) xi ∈ 〈1, X−
1〉. vmax is the maximum velocity given by the construction of the car and
X is the length of the observed group (subsystem) of cars. The coordinate of
each car is measured with respect to the last car of the group. Its coordinate
is always 0, i.e., the origin of the coordinate system is moving with it. As the
length of the group is X, the coordinate of the last car of the group ahead is
also X. Number of cars in the group is N . (The lattice constant is related to
the car length). Car velocities and coordinates acquire only integer values.

Kinetics of the system of cars is given by reaction of each driver on the car
ahead moving with velocity vi+1 at the distance xi,i+1. As the driver directly
influences only velocity of his car, his reaction is characterized by a conditional
probability of a car velocity vi parametrized by velocity and distance of the car
ahead: p ≡ p(vi|xi,i+1, vi+1). The probability could be found experimentally
by long observation of two cars at all possible situations. Since such data are
not available yet, the probability is calculated from a simple model behaviour
of a driver.

The probability distribution is assumed to be peaked around an optimal
velocity vopt, which is further chosen as 90% of maximal safe velocity vm. The
maximal safe velocity is determined from the requirement that two neighbour-
ing cars, which start to decelerate at the same time with the same deceleration
rate a, would stop without crash. Moreover, vm must not be greater than the
maximum possible velocity of the car vmax, i.e., for every car



404 Anton Šurda

vopt(v2, x1,2) = 0.9vm(v2, x1,2),

vm(v2, x1,2) = −aτ +
{

+
√

((aτ)2 + 2ax1,2 + v22 if vm ≤ vmax

vmax if vm > vmax
(2)

where x1,2 and v2 are the distance (headway) and velocity of the car ahead,
respectively, τ is the reaction time of the driver of the car 1. As we use
only integer values of velocities, the nearest integer value to vopt from 2 is
taken for the actual optimal velocity in our further calculations. For very high
densities, when discreteness of the lattice is not negligible, another condition
v1 < v2 + x1,2 must be imposed.

The way of driving of the observed drivers is characterized by distribution
of probabilities of car velocities around the optimal velocity. Here we use an
extremely simple distribution, in which the probability of optimal velocity is
p0, the probabilities of the velocities vopt±1 are p1, while the probability of the
car to have any other permitted velocity is p2. The values of the probabilities
for velocities higher then the maximal safe velocity are equal to 0. The sum
of all probabilities for each car is equal to 1. The parameters p0, p1 and p2 are
the same for every car, and the distribution depends on the headway only by
means of the value of optimal velocity.

4 Microcanonical and Canonical Description

The sum of probabilities of states (SPS) with total velocity V of a group of
N cars and length X will be denoted as W (V,X). It can be calculated, using
(1), recurrently

W1(V1, X1; v2) = p(V1|X1, v2)
...
Wi(Vi, Xi; vi+1) =

∑
vi,xi,i+1

Wi−1(Vi − vi, Xi − xi,i+1; vi)p(vi|xi,i+1, vi+1)

for i = 2, N − 1
... (3)
WN (V,X; vN+1) =

=
∑

vN ,xN,N+1

WN−1(V − vN , X − xN,N+1; vN )p(vN |xN,N+1, vN+1)

W (V,X) =
∑
vN+1

WN (V,X; vN+1)p(vN+1)

where 0 ≤ vj ≤ vmax, 0 ≤ Vj ≤ jvmax, j ≤ xj,j+1, Xj ≤ X − j. Probability
p(vN+1) in the last line of (3) is the velocity probability of the last car of a
large group ahead (reservoir of length Lr) of the studied group with the same
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Fig. 1. Probability of the total velocity of a microcanonical ensemble of 5 cars as
a function of its total velocity V and length X for a = 4.0, p2 = 0.025, τ = 0. The
density of the system varies from 0.033 to 1.

Fig. 2. SPS of a canonical ensemble of 5 cars as a function of its total velocity V
and length X for a = 4.0, p2 = 0.025, τ = 0, and mean length 〈X〉 = 50, i.e., mean
density ρ = 0.1. W (V, X) is proportional to the probability of fluctuations of length
the group around its mean value.

car density, and it can be calculated using again (1) [5]. In microcanonical ap-
proachW (V,X) as a function of V is normalized for each X and the resulting
probability P (V,X) of a group of cars to have a total velocity V is shown in
the figures below.
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In the canonical approach SPS of the whole system with fixed length
Ls = X + Lr is calculated, which, after normalization, gives the probability
of fluctuations of the length X of the subsystem around its mean value given
by the total length Ls. Now, in the last line of Eq. (3), instead of p(vN+1),
appears SPS of the reservoir of length Lr = Ls −X, with velocity of the last
car vN+1, summed over velocities of all other cars.

In Figs. 1–3 probability distribution of total velocity and probabilities of
length fluctuations of a group of 5 cars are depicted. In Fig. 1 free-flow and
congested phases, with first-order phase transitions between them are shown.
In a group of cars with inefficient brakes, a = 0.5, platoons of cars with the
same velocities are formed for small X (high densities) as shown in Fig. 3.

Fig. 3. Probability of the total velocity of a microcanonical ensemble of 5 cars as
a function of its total velocity V and length X for a = 0.5, p2 = 0.005, τ = 0. The
density of the system varies from 0.033 to 1. Maxima at velocities which are integer
multiples of 5 show formation of platoons of cars.
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Summary. A new Public Conveyance Model (PCM) applicable to buses and trains
is proposed in this study by using stochastic cellular automaton. We apply our PCM
to the bus system and measure the efficiency of the system. By using mean field
analysis, we estimate the average velocity and the waiting passengers in the low
density limit. We have obtained the theoretical results which are in good agreement
with numerical simulations. It is also observed clustering of vehicles which is caused
by the time delay effect of passengers when they get on a vehicle. We have found that
the big cluster of vehicles is divided into small clusters, by incorporating information
of the number of vehicles between successive stops.

1 Introduction

The totally asymmetric simple exclusion process (ASEP) [1–3] is the simplest
model of non-equilibrium systems of interacting self-driven particles. Various
extensions of this model have been reported in the last few years for capturing
the essential features of the collective spatio-temporal organizations in wide
varieties of systems, including those in vehicular traffic [4–8]. Traffic of buses
and bicycles have also been modeled following similar approaches [9, 10].

In this study, by extending the model in [9], we suggest a new public
conveyance model (PCM) [11]. Although we refer to each of the public vehicles
in this model as a “bus”, the model is equally applicable to train traffic on
a given route. In this PCM we can set up arbitrary number of bus stops on
the given route. The hail-and-ride system in Ref. [9], that is, the passengers
could board the bus whenever and wherever they stopped a bus by raising
their hand, turns out to be a special case of the general PCM. Moreover, in
the PCM the duration of the halt of a bus at any arbitrary bus stop depends
on the number of waiting passengers. As we shall demonstrate, the delay in
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the departure of the buses from crowded bus stops leads to the tendency of
the buses to cluster on the route. Furthermore, we also introduce a traffic
control system that exploits the information on the number of buses in the
“segments” in between successive bus stops; this traffic control system helps in
reducing the undesirable tendency of clustering by dispersing the buses more
or less uniformly along the route.

2 A Stochastic Cellular Automaton Model for Public
Conveyance

In this section, we explain the PCM in detail. For the sake of simplicity,
we impose periodic boundary conditions. Let us imagine that the road is
partitioned into L identical cells such that each cell can accommodate at
most one bus at a time. Moreover, a total of S (0 ≤ S ≤ L) equispaced
cells are identified in the beginning as bus stops. Note that, the special case
S = L corresponds to the hail-and-ride system. At any given time step, a
passenger arrives with probability f to the system. Here, we assume that a
given passenger is equally likely to arrive at any one of the bus stops with a
probability 1/S. Thus, the average number of passengers that arrive at each
bus stop per unit time is given by f/S. In contrast to this model, in ref. [12, 13]
the passengers were assumed to arrive with probability f at all the bus stops
in every time step.

The symbol H is used to denote the hopping probability of a bus entering
into a next cell. In contrast to most of all the earlier bus route models [9], we
assume that the maximum number of passengers that can get into one bus at
a bus stop is Nmax. Suppose, Ni denotes the number of passengers waiting at
the bus stop i (i = 1, . . . , S) at the instant of time when a bus arrives there.
We assume the form

H =
Q

min(Ni, Nmax) + 1
(1)

where min(Ni, Nmax) is the number of passengers who can get into a bus which
arrives at the bus stop i at the instant of time when the number of passengers
waiting there is Ni. The form (1) is motivated by the common expectation
that the time needed for the passengers boarding a bus is proportional to their
number. If H equals to Q(= const .), this systems is reduced to ASEP. Fig. 1
depicts the hopping probabilities schematically.

Fig. 1. Schematic illustration of the PCM. The hopping probability to the bus stop
depends on the number of waiting passengers.
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When a bus arrives at the i-th bus stop cell, the corresponding number
Ni of waiting passengers is updated to max(Ni −Nmax, 0) to account for the
passengers boarding the bus. Every bus stop has information Ii which is the
number of buses in the segment of the route between the stop i and the next
stop i + 1 at that instant of time. This information is updated at each time
steps. When one bus leaves the i-th bus stop, Ii is increased to Ii + 1. On the
other hand, when a bus leaves (i+ 1)-th bus stop, Ii is reduced to Ii− 1. The
desirable value of Ii is I0 = m/S, where m is the total number of buses, for all
i so that buses are not clustered in any segment of the route. We implement
a traffic control rule based on the information Ii: a bus remains stranded at a
stop i as long as Ii exceeds I0. This rule restricts the size of such clusters to
a maximum of I0 buses in a segment of the route in between two successive
bus stops.

We use the average speed 〈V 〉 of the buses and the number of the waiting
passengers 〈N〉 at a bus stop as two quantitative measures of the efficiency of
the public conveyance system under consideration; a higher 〈V 〉 and smaller
〈N〉 correspond to an efficient transportation system.

3 Computer Simulations of PCM

In the simulations we set L = 500, Q = 0.9 and Nmax = 60. Typical space-time
plots are given in Fig. 2. If no information-based traffic control system exists,
the buses have a tendency to cluster; this phenomenon is very simular to that
observed in the ant-trail model [12, 13]. These quantitative features of the
coarsening of the clusters have strong similarities with coarsening phenomena
in many other physical systems.

Fig. 2. Space-time plots for the parameter values f = 0.6, S = 5, m = 30. The left
figure correspond to the case where no traffic control system based on the informa-
tion is operational. The right figure correspond to the case where the information
based bus-traffic control system is operational.
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Fig. 3. The plot of 〈V 〉 and 〈N〉 without information (S = 5, f = 0.3, 0.6 and 0.9).

In the Fig. 3 and Fig. 4, we plot 〈V 〉 and 〈N〉 against the density of
buses for several different values of f , where the density of buses is defined by
ρ = m/L. These figures demonstrate that the average speed 〈V 〉, which is a
measure of the efficiency of the bus traffic system, exhibits a maximum at low
density. As f increases in the system without information, 〈V 〉 is lower by bus
clustering. Whereas with information, 〈V 〉 is higher than without information,
since the clustering has been resolved. Furthermore, the density corresponding
to the peak of 〈V 〉 shifts to lower values when the information-based traffic
control system is switched on. The average number of waiting passengers 〈N〉,
whose inverse is another measure of the efficiency of the bus traffic system,
is vanishingly small in the region 0.3 < ρ < 0.7. This is because, in the case
with information, bus clustering is occurred and buses do not move smoothly.

The data shown in Fig. 4 establish that implementation of the information-
based traffic control system does not necessarily always improve the efficiency
of the public conveyance system. In fact, in the region 0.3 < ρ < 0.7, the
average velocity of the buses is higher if the information-based control system
is switched off. Comparing 〈V 〉 and 〈N〉 in Fig. 4, we find that information-
based traffic control system can improves the efficiency by reducing the crowd
of waiting passengers. But, in the absence of waiting passengers, introduction
of the information-based control system adversely affects the efficiency of the

Fig. 4. The comparing plots between with information and without information
(S = 5 and f = 0.9).
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public conveyance system by holding up the buses at bus stops when the
number of buses in the next segment of the route exceeds I0.

4 Mean Field Analysis

Let us estimate 〈V 〉 theoretically in the low density limit where m buses run
practically unhindered and are distributed uniformly in the system without
correlations, that is, this situation are equivalent to ρ → 0. The average
number of passengers N waiting at a bus stop, just before the arrival of the
next bus, is

N =
f

S

(
L
S − 1
Q

+
1
q

)
S

m
. (2)

The first factor f/S on the right hand side of the equation (2) is the probability
of arrival of passengers per unit time. The second factor on the right hand
side of (2) is an estimate of the average time taken by a bus to traverse one
segment of the route, i.e. the part of the route between successive bus stops.
The last factor in the same equation is the average number of segments of the
route in between two successive buses on the same route.

Suppose, T is the average time taken by a bus to complete one circuit of
the route. The number of hops made by a bus with probability q during the
time T is S, i.e. the total number of bus stops. Therefore the average period
T for a bus and the hopping probability q is well approximated by

T =
L− S
Q

+
S

q
, q =

Q

N + 1
(3)

respectively. Then, we have

〈V 〉 =
L

T
= Q− f

m
. (4)

As long as the number of waiting passengers does not exceed Nmax, i.e.
we take sufficiently small f , we have observed reasonably good agreement
between the analytical estimates (4) and the corresponding numerical data
obtained from computer simulations. However, our mean field analysis breaks
down when a bus can not pick up all the passengers waiting at a bus stop.

5 Concluding Discussions

In this study, we have proposed a public conveyance model (PCM) by using
stochastic CA. We have obtained quantitative results by using both computer
simulations and analytical calculations. In particular, we have introduced two
different quantitative measures of the efficiency of the public conveyance sys-
tem. We have found that the bus system works efficiently in a region of mod-
erate number density of buses; too many or too few buses drastically reduce
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the efficiency of the bus-transport system. If the density of the buses is lower
than optimal, not only large number of passengers are kept waiting at the
stops for longer duration, but also the passengers in the buses get a slow ride
as buses run slowly because they are slowed down at each stop to pick up the
waiting passengers. On the other hand, if the density of the buses is higher
than optimal, the mutual hindrance created by the buses in the overcrowded
route also lowers the efficiency of the transport system. Moreover, we have
found that the average velocity increases, and the number of waiting pas-
sengers decreases, when the information-based bus traffic control system is
switched on. However, this enhancement of efficiency of the conveyance sys-
tem takes place only over a particular range of density; the information-based
bus traffic control system does not necessarily improve the efficiency of the
system in all possible situations.
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Modelling and Simulating Several Time-Delay
Mechanisms in Human and Automated Driving

Martin Treiber and Arne Kesting

Technische Universität Dresden, Institute for Transport & Economics,
Andreas-Schubert-Straße 23, D-01062 Dresden, Germany

Summary. In vehicular traffic, reactions to new traffic situations are subject to
several mechanisms of time delay. Besides the reaction time of the drivers (or sen-
sors), the finite acceleration capabilities lead to a nonzero “velocity adaptation time”
to perform the action itself (e.g. changing the velocity). The commonly used ex-
plicit integration schemes for simulating the models introduce the update time as a
third delay parameter. By means of numerical simulations with a time-continuous
car-following model, we investigate how these times interplay with each other. We
show that the three delay times give rise to two types of instabilities: The long-
wavelength string instability is mainly driven by the velocity adaptation time while
short-wavelength local instabilities arise for sufficiently high reaction and update
times. We show that, with respect to stability, there is an ‘optimal’ adaptation
time as a function of the reaction time and draw implications for human vs. semi-
automated driving.

1 Introduction

An essential feature of human (in contrast to automated) drivers is a con-
siderable reaction time of the order of 1 s. Additional delays in reaching the
velocity appropriate for the current traffic situation (and driving style) are
due to the finite acceleration and deceleration capabilities. The time step of
the numerical update schemes gives rise to a third source of delays. Although
of different nature, these sources of delay are often combined. For example,
in the car-following models of Newell [1] and Gipps [2], the velocities of each
time step are calculated as a function of the situation in the past time step,
i.e., the velocity adaptation time is set equal to the numerical update time.
Moreover, this time is often denoted as a “reaction time”, or as a “safe time
gap” (in fact, the time gap to the leading vehicle is a forth characteristic
time which is equal to the other times in the models mentioned above). In
this work, we investigate the effects of the different delay times separately,
thereby clarifying the role of each of the associated mechanisms on stability.
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2 Framework and Models

As basis, we consider time-continuous car-following models having an instan-
taneous acceleration function of the following general form:

dvα
dt

= amic (sα, vα, Δvα) , (1)

i.e., the acceleration of the considered vehicle α is a function of its velocity
vα, the spatial gap sα, and the approaching rate Δvα to the leader.

A reaction time Tr is easily introduced into these models by taking the
right-hand side of (1) at the past time t− Tr resulting in a coupled system of
delay-differential equations [3]. For the numerical update (fixed timestep Δt),
we use following modified Euler scheme:

vα(t+Δt) = vα(t) + amicΔt,
sα(t+Δt) = sα(t) + vα(t)Δt+ 1

2amic(Δt)2,
(2)

where amic denotes the acceleration (1) of the micromodel at the delayed time
t− Tr. If Tr is not a multiple of Δt, additional interpolation techniques have
been used [3].

Finally, we assume that the drivers are aware of their finite reaction capa-
bilities and adopt temporal anticipation strategies based on constant-velocity
and constant-acceleration heuristics, as well as “multi-anticipation” by con-
sidering a total of four leaders, see [3] for details. From the point of view of
feedback control (Fig. 1), the presented set of models gives rise to three delay
mechanisms characterized by the reaction time Tr, the numerical update time
Δt, and the adaptation time scale τv for reaching a certain target velocity for
the actual traffic situation. The latter time (typical values are 5-10 s for city
traffic and 10-20 s for freeway traffic) increases with decreasing acceleration
and deceleration capabilities.

Fig. 1. The acceleration reaction of the general car-following model with delay from
the perspective of feedback control.
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For the specific implementation of this concept, a specific car-following
model of the class given by Eq. (1) has to be selected. In this paper, we use
the intelligent-driver model (IDM) [4] which, in relation to its simplicity, shows
a good agreement with observations [5], and has intuitive model parameters.
The acceleration equation of the IDM for vehicle α is given by

dvα
dt

= a

[
1−
(
vα
v0

)4

−
(
s∗(vα, Δvα)

sα

)2
]
, (3)

where the “desired” spatial gap that is appropriate for the actual dynamical
situation is given by

s∗(v,Δv) = s0 + vT +
vΔv

2
√
ab
. (4)

The IDM parameters and the values used in this paper are the following:
Desired velocity v0 = 120 km/h, desired time gap in car-following situations
T = 1.5 s, minimum spatial gap (for a complete standstill) s0 = 2 m, the com-
fortable deceleration b = 2 m/s2, and the acceleration a in the range between
0.3 m/s2, and 2.5 m/s2. To investigate the influencing factors for stability, we
will furthermore vary the reaction time Tr, and the numerical update time Δt
in the range between 0 s and 2 s.

3 Numerical Investigation of the Stability Regimes

We investigate the stability of traffic flow by simulating two scenarios, (i) a pla-
toon of vehicles following an externally controlled lead vehicle, and (ii) a more
realistic open system with a flow-conserving bottleneck.

3.1 Platoon Scenario

In this scenario, a platoon of n vehicles follows an externally controlled vehicle.
Initially, the leader drives at vlead(0) = 25 m/s, and all following vehicles are
in equilibrium, i.e., vα(0) = vlead(0), and sα(0) = se(vα(0)) where se(v) is
defined by amic(se(v), v, 0) = 0. At time t = 1000 s, the leading vehicle reduces
its velocity to 19 m/s by decelerating for three seconds with v̇lead(t) = −2 m/s2

before continuing with 19 m/s. All platoon vehicles have the same set of IDM
parameters and the same values for Tr and Δt.

Figure 2 shows trajectories of selected platoon vehicles for Tr = 0.9 s,
Δt = 0.1 s, and two values of the acceleration parameter. For a = 0.3 m/s2 (left
column), we observe the classical collective string instability, i.e., each vehi-
cle is locally stable (the perturbation caused by the leading vehicle eventually
dies away), but the perturbation grows with increasing vehicle index. Further-
more, the instability is of a long-wavelength type, i.e., the typical wavelengths
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Fig. 2. Trajectories of several vehicles in the platoon for low accelerations (left
column, a = 0.3 m/s2), and high accelerations (right column, a = 2.5m/s2). Here,
“car n” denotes the n-th vehicle behind the leader inducing the perturbation.

Fig. 3. (Left) Average amplitude of the acceleration changes (logarithmic presenta-
tion) as measure of the instability as a function of the reaction time Tr and the IDM
acceleration a. (Right) Optimum value for a (upper limit: 5 m/s2) as a function of
the reaction time.

2π/k of the growing perturbation satisfy 2π/k � se(v). For a = 1.0 m/s2, the
platoon is string stable (not shown). However, on further increasing the accel-
eration, the platoon becomes unstable again (right column for a = 2.5 m/s2),
but the instability starts with short wavelengths that are of the same order
of magnitude as the equilibrium gap.

Since this second type of instability does not occur for zero reaction time
Tr, it is instructive to investigate its dependence on Tr. Figure 3 (left) displays
a continuous measure for the degree of instability (the average acceleration
variance) as a function of the acceleration a for several values of Tr. As a
remarkable result, the stable range of accelerations is limited from above, and
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Fig. 4. Phase diagram for the different stability regimes in the space spanned by
the IDM acceleration a and the reaction time Tr.

Fig. 5. (Left) stability thresholds in the space spanned by the reaction time Tr

and the numerical update time Δt; (right): Visualization of the effective delay time
caused by Tr and Δt.

the critical acceleration decreases with increasing reaction time. In contrast,
the lower limit is essentially independent from Tr (Fig. 4). Consequently, the
“optimal” acceleration with respect to stability decreases with growing values
of Tr (Fig. 3 right).

We also compared the destabilizing effects of the reaction time in relation
to the effects caused by long update time intervals Δt of the modified Euler
integration scheme (2) (Figure 5 left). Remarkably, the destabilizing effect of
Tr is comparable to that of 2Δt, i.e., the stability is approximatively constant
along the line defined by Tr + 2Δt = C = const. This can be explained by
observing that, depending on the actual time t, the update time Δt induces
effective delays T ′ between zero andΔt, i.e.,Δt/2, on average (Figure 5 right).
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3.2 Bottleneck Scenario

We have simulated an open 15 km long single-lane road section. The traffic
demand at the upstream boundary of the initially empty system has been
increased from 0 vehicles/h to 1700 vehicles/h in the first half hour and re-
mained at this level, afterwards. A flow-conserving bottleneck was introduced
by increasing the time gap parameter T by a factor of 1.5 (i.e. from 1.5 s to
2.25 s) for 10.5 km ≤ x ≤ 11.5 km thereby locally decreasing the capacity.
This can be caused, e.g., by a more defensive driving style adopted on nar-
row road sections or when encountering increased velocity differences or other
perturbations near junctions or intersections [6]. The delay parameters were
set to Tr = 0.6 s and Δt = 0.5 s. Figure 6 shows spatiotemporal velocity plots

Fig. 6. Spatiotemporal dynamics of the congestion in the “bottleneck” scenario for
three values of the IDM acceleration parameter a.

of the simulations. For a = 0.3 m/s2, the collective instability displays itself as
stop-and-go waves emanating from a permanently congested region at the bot-
tleneck (which is sometimes called the “pinch effect”). The short-wavelength
instability at a = 2.5 m/s2 also leads to oscillatory congested patterns, but
with shorter typical wavelengths. Moreover, the propagation velocity of the
perturbations (against the traffic direction) is increased.

4 Discussion and Conclusion

Relevant mechanisms for delays in vehicular traffic dynamics include the reac-
tion time, the velocity adaptation time, and, in the case of automated driving
or computer simulations, a finite update time. By separately modelling and
simulating each of these delays, we found two qualitatively different instabil-
ity mechanisms. Besides the common long-wavelength string instability caused
mainly by low acceleration capabilities, another short-wavelength instability
has been found for finite reaction times and sufficiently high accelerations.
As a consequence, there is an optimal acceleration that decreases with the
reaction time, i.e., people with long reaction times should not accelerate too
much, and vice versa. Furthermore, it has been found that the reaction and
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numerical update times are essentially interchangeable, but the update time
step corresponds effectively to only half of the reaction time.
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1 Introduction

Modeling and predicting traffic conditions (speeds, travel times, flows, etc)
in a heterogeneous traffic network is one of the main research areas in traffic
and transport science. Many authors acknowledge that traffic heterogeneity
constitutes a significant if not dominant factor in accurately modeling free-
way traffic flow operations [1, 2]. For example, high truck percentages may
induce congestion at much lower volumes than low percentages, and conse-
quently may result in very different network traffic dynamics and hence traffic
conditions. This implies that traffic models for real time decision support sys-
tems in traffic management centers should provide the means to account for
traffic heterogeneity. In this paper we propose a new analytical macroscopic
network traffic flow model FASTLANE (FAST multicLass mAcroscopic NEt-
work simulation model) which specifically addresses the heterogeneity of net-
work traffic. FASTLANE differs from earlier multi-class models (see e.g. [4] in
that it calculates traffic dynamics (of the total heterogeneous traffic flow) in
terms of so-called person car equivalents (pce’s). The main innovation is that
these pce values are state-specific, that is, they are a function of the prevailing
class-specific speeds. The next section will first mathematically describe the
FASTLANE model. The section thereafter will present some numerical results
on a real traffic network to illustrate the main concepts. The paper closes with
conclusions and directions for further research.

2 Mathematical Model

Below we briefly describe both the mathematical formulation of FASTLANE
as well as a numerical solution to these equations. In this paper a traffic
network is described by a directed graph G = (N,A) of nodes n ∈ N and arcs
a ∈ A.
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2.1 Traffic Dynamics at a Homogenous Link

Similar to earlier LWR based multiclass traffic flow models (see e.g. [4] for an
overview), the core of the FASTLANE traffic flow model is the class-specific
conservation of vehicle equation 1. In the ensuing, the subscript u will denote
the user-class (e.g. person-cars, trucks). For each class u we have (for each
link a)3:

∂ku
∂t

+
∂qu
∂x

= 0 (1)

In equation 1, ku = ku(t, x) denotes the class-specific density and qu =
qu(t, x) = ku(t, x) · vu(t, x) denotes the class-specific flow at time instant t
and location x. The boundary conditions (inflow at the entry of the link and
the outflow at the link exit) are determined respectively by the upstream and
the downstream links, expect for the case where a is an origin or a destination
link. The class-specific speed is defined by vu(t, x) = Vu(K(t, x)),K(t, x) =
κ(k1(t, x), . . . , kU (t, x)) where Vu denotes the class-specific equilibrium speed
as a function of the effective density K. K(t, x) is described by a function of
the class-specific densities

K(t, x) =
U∑

u=1

pceu(t, x)ku(t, x) (2)

in which the person-car equivalents pceu, are state specific and specified by:

pceu(t, x) =
su + TuVu(t, x)
su0 + Tu0Vu0(t, x)

(3)

In equation 3, su denotes the class-specific gross stopping distance, and Tu

denotes the class-specific minimum headway. The equilibrium speed Vu is cho-
sen such that for effective densities K larger than some critical density Kc,
the speeds of all classes u are equal to the critical speed vc. In free-flow con-
ditions, different classes move with different average speeds. More specifically,
we have:

Vu(K) =

⎧⎨
⎩

v0u −K
(v0

u−vc)
Kc

,K < Kc

vcKc

K

(
1− K−Kc

Kjam−Kc

)
,K ≥ Kc

(4)

in which the parameter Kjam denotes the effective jam density. Clearly, the
parameters Kc and vc, and the vehicle composition (e.g. percentage of trucks)
determine the effective capacity of a link.

2.2 Traffic Dynamics at the Nodes

In the network description, three node types are considered: link-to-link nodes,
merges and diverges (Fig. 1a, b and c). A link-to-link node (Fig. 1a) depicts a
3 We omit the link index a to keep notation simple
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Fig. 1. Normal nodes, merges and diverges.

simple interface between two network links a and b, describing a discontinuity,
such as a lane drop, or a change in speed limits. To determine the resulting
traffic dynamics, the class-specific demands Da

u of an incoming link a are
compared to the mixed-class supply Sb of the outgoing link b. Put simply,
traffic demand is transferred from link a to link b proportional to the traffic
composition on link a, and constraint by the maximum possible (total) flow
which can enter in link b. This is modeled by means of class-specific shares
(proportions) λu, which are calculated as follows

λu(t, x) =
pceu(t, x) · qu(t, x)∑

u
pceu(t, x) · qu(t, x)

(5)

At the origins, these shares are equal to the traffic composition (e.g. truck
percentage) set by the user. As a result, we get the following expression for
the class-specific flow between link a and b:

qa→b
u =

1
pceau

min
(
Da

u, λ
a
uS

b
)

(6)

Merge nodes (Fig. 1b) are more complex. Assuming that we have two incoming
links a and a′ and one outgoing link b, we need to determine how the supply
(so the amount of traffic able to enter outgoing link b) is distributed not only
across the classes u through shares λa

u, but also across the incoming links a
and a′ through proportions κa

u. In the current version of the model, we make
the (rough) assumption that the available supply is distributed according to
the effective capacity of the incoming links, that is

qa
′→b

u =
1
pcea′

u

min
(
Da′

u , κ
a′
λa′

u S
b
)

(7)

with

κa′
=

Ca′

Ca + Ca′ , κ
a = 1− κa′

Furthermore, if the demand of one of the incoming links is less than the as-
signed supply, the remaining supply will be assigned to the other link. Finally,
the traffic dynamics at a diverge or bifurcation node (Fig. 1c) are described
by the turnfractions γb

n, which depict the distribution of the total flow over
the outgoing links. As a result, for merges we have

qa→b
u =

1
pceau

min
(
γb

nD
a
u, λ

a
uS

b
)

(8)
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2.3 Discretization of the Equations and Numerical Solution
Approach

To numerically approximate solutions of the resulting first-order scheme, a
new numerical solution approach was developed based on the generalization of
the well-known Godunov scheme [3]. As with most numerical solution schemes,
each link a is divided into a number of cells i of typically 100–200m. For each
cell, the scheme determines a class-specific demand and a mixed-class supply,
according to equations 6–8. The mixed-class supply is then distributed over
the classes according to the shares in the demands of the upstream cells. The
same approach is used to handle the dynamics of the network nodes.

3 Example Application

3.1 Experimental Setup, Network and Parameters

To illustrate multiclass traffic operations produced by FASTLANE under dif-
ferent truck percentages below a testcase is presented. Fig. 2 shows the 15 km
A20/A12 freeway corridor, which connects the northern part of the urban
beltway around Rotterdam to the A12 freeway corridor from The Hague to
Utrecht at the height of the city of Gouda. In this example, two classes of
vehicles, trucks and person cars are defined according to the following param-
eters: For person cars we used: v0u = 120 km/h, su = 7.5m, Tu = 1.2s, and for
trucks: v0u = 85 km/h, su = 15m, Tu = 1.8s. The other mixed-class parameters
were chosen as follows: vc = 85 km/h, Kc = 25 pce/km and Kjam = 1000/7.5
pce/km. As a result, the capacity of a single lane equals 2125 (pce/h!). The de-
mand scenario and the set of turnfractions (at the off-ramps) used are derived
from real traffic data obtained from inductive loops spaced approximately
every 500 meters along this route. We varied the percentage trucks (at the
origins) from 0, 5, 10, to 15% respectively.

3.2 Results

Fig. 3 shows the resulting traffic speeds along the 15.8 km route from Rotter-
dam to Gouda under 4 different truck percentages. In all cases congestion sets
in almost simultaneously (a little after 6:15AM) at the onramp “Nieuwerk-
erk” and the merge between the A20 and A12 motorways further downstream.
Clearly, Fig. 3a–d show that both queue length as well as queue duration in-
crease significantly under growing truck percentages. In the (unlikely) case of
0% trucks, congestion resolves around 8 AM (Fig. 3a), while in case of 10%
trucks congestion resolves more than an hour later (Fig. 3c). The rationale
behind this is intuitive, since in the multi-class case (percentages > 0%), the
capacity in veh/h is a (decreasing) function of the percentage of trucks, due
to the fact that trucks occupy relatively more space than person cars with
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Fig. 2. Network: A20/A12 between Rotterdam and Gouda.

Fig. 3. Resulting speeds under different truck percentages.
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decreasing speeds (see 3). A second observation is that the resulting traffic
patterns in Fig. 3 exhibit more realistic features than one might expect from
first order traffic flow theory. Even in the 0% case (Fig. 3a), a clear back-
ward moving jam is visible which propagates from Gouda (around 6:45AM)
to Nieuwerkerk (7AM) and further upstream. These patterns are predomi-
nantly the result of using demands, and turnfractions estimated from real
data. In this sense, deterministic multi-class first order theory applied on a
real traffic network under real (stochastic) demands and turnfractions, is able
to reproduce some of the higher order phenomena (e.g. parallel backward mov-
ing jams and - to a degree - stop-and-go-traffic) claimed to be reproducible
by higher order approaches only.

4 Conclusions

This paper introduced a new multi-class first order traffic flow model FAST-
LANE. Its main innovation lies in the fact that the dynamics are described
in terms person car equivalents, which are state-specific. From results on a
realistic test network it appears that the model produces intuitive results.
Higher truck percentages yield longer and more severe congestion, which is
due to the fact that in congestion, larger vehicles occupy relatively more space
(gross distance headway). Currently, a first version of the FASTLANE model
is developed in the decision support environment BOSS-offline (of the Dutch
Ministry of Transport, Public Works and Watermanagement), in which de-
mands, turn fractions and link quantities such as critical speeds and densities
are estimated. This system will be rolled out in the five highway traffic man-
agement centers in the course of 2008. Further research includes incorporating
destination specific flows (OD estimation) and real-time application.
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Summary. Application of thermodynamics to traffic flow is discussed. On a mi-
croscopic level, traffic flow is described by Bando’s optimal velocity model in terms
of accelerating and decelerating forces. It allows us to introduce kinetic, potential,
as well as a total energy, which is the internal energy of the car system in view
of thermodynamics. The total energy is however not conserved, although it has a
certain value in any of the two possible stationary states corresponding either to a
fixed point or to a limit cycle solution in the space of headways and velocities.

On a mesoscopic level of description, the size n of a car cluster is considered as
a stochastic variable in the master equation for the system. Here n = 0 corresponds
to the fixed point solution with no cluster of the microscopic model, whereas the
limit cycle is represented by the coexistence of a car cluster with n > 0 and a free
flow phase.

The stationary solution obeys a detailed balance condition, which allows us to
describe some properties of the model by equilibrium thermodynamics in analogy
to the liquid–vapour system. We define the free energy and the chemical potential
of the car system. In this sense the behaviour of traffic flow can be described by
equilibrium thermodynamics in spite of the fact that it is a driven system.

1 Introduction

It has already been manifested by Mahnke et al. [1] that the thermodynamic
approach can be applied to such a many–particle driven system as traffic
flow. Investigations of the complex system called vehicular traffic can be done
on the microscopic level (dynamical equations like Bando’s optimal velocity
model), on the mesoscopic level by stochastic equations [2] as well as macro-
scopically applying equilibrium statistical physics [3]. Recently Krbálek [4]
uses the one–dimensional thermodynamical traffic gas to predict clearance
(also called spacing or headway) comparing with empirical traffic data. It has
been stated that the derived exact formula for thermal–equilibrium spacing
distribution of a traffic gas with a short–range repulsive two–body potential
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V (Δx) = 1/Δx is in successful agreement with highway traffic clearance dis-
tributions. Depending on vehicular density c the temperature T (or its inverse
β), which acts as a fit parameter, changes its value.

2 Bando’s Optimal Velocity Model: Dynamics

The dynamical system called Bando’s optimal velocity model [5, 6] is a set of
2N coupled differential equations acting on a microscopic level, i. e. each car
i = 1, . . . , N has its own position x and velocity v equation. The ensemble of
cars is subjected to periodic boundary conditions, see Fig. 1.

Fig. 1. One–dimensional circular road of length L with periodic boundary condi-
tions. The cars are represented by filled circles, their velocities are marked by arrows
and a headway distance is indicated by Δx. Taken from [3].

Denoting headway by Δxi = xi+1 − xi and optimal velocity function by
vopt(Δx) = vmax(Δx)2/(D2 + (Δx)2), the well–known Bando model [5, 6]
reads

m
d

dt
vi =

m

τ
{(vmax − vi) + (vopt(Δxi)− vmax)} ;

d

dt
xi = vi , (1)

where m (mass), vmax (maximal velocity), τ (reaction time) and D (in-
teraction distance) are control parameters. The average density of cars on
the rotary is c = N/L. The corresponding dimensionless version of Bando’s
model (1) has been investigated in these Proceedings by Liebe et al. [7]. Nu-
merical results showing free flow and car cluster motion (limit cycle regime)
at large density c > ccr are presented in Fig. 2.

3 Bando’s Optimal Velocity Model: Energetics

The acceleration of cars (1) is split into two contributions

m
d

dt
vi = Facc(vi) + Fdec(Δxi) , (2)

where Facc(vi)= m
τ (vmax− vi)≥ 0 and Fdec(Δxi)= m

τ (vopt(Δxi)− vmax)≤ 0.
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Fig. 2. Numerical integration of (dimensionless) equations of motion (1) for N = 60

cars on a rotary of dimensionless length L̃ = 35 (at large density c̃ = N/L̃ = 1.714)
and control parameter b = D/(τvmax) = 1.1. All pictures show one period (Δt̃ =
116.75) in the limit cycle regime for one single car. Upper pictures: Evolution of
acceleration and velocity of a particular car i. Lower pictures: Evolution of the
spatial distance (headway) and the velocity-difference between car i and i + 1.

Defining kinetic (multiplying (2) by vi) and potential energy (gradient of
headway dependent force),

Ekin(vi) =
m

2
v2i (3)

Epot(Δxi) =
∫
Fdec(Δxi)d(Δxi) =

mDvmax

τ

(
π

2
− arctan

(
Δxi

D

))
(4)

the energy balance [1, 7, 8] reads

d

dt
(Ekin(vi) +Epot(Δxi)) + Φi = 0 , (5)

Φi = − (Fdec(Δxi) vi+1 + Facc(vi) vi) . (6)

It is evident that the total energy E = T + V is not conserved in traffic flow.
Due to the energy balance dE/dt + Φ = 0 (compare (5,6) for a single car)
there is always power from the engine necessary to compensate dissipation.
The performance of a vehicular engine is about 50 kW (= 68 PS [horse power])
or more. The calculated dimensionless energy flux within the Bando model is
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about Φ̃ = 0.134, also known from Fig. 3 (upper picture right) in [7]. Using the
following exemplary values, for vehicular mass m = 1 ton = 103 kg, maximal
speed vmax = 100 km/h = 102·103

3.6·103 m/s and reaction time τ = 2 s, we get for
the original energy current (with units)

Φ = Φ̃ Φ0 = Φ̃
E0

t0
= Φ̃

mv2max

τ
= 51.7 kW (7)

which is in the order of the power of a passenger car.
Depending on the density c = N/L the vehicular system ends up in one

of the two possible states which is either the fixed point Δxi = Δxhom, vi =
vopt (Δxhom) or the limit cycle. Fig. 3 shows the evolution of total energy for
both cases.

Fig. 3. Left picture: Fixed points (circles) and limit cycle (solid line) in the space
of headways Δx and velocities v of cars. The solid circle represents the stable fixed
point at the car density c = 0.0303 m−1. The empty circle is the unstable fixed
point at a larger density c = 0.0606 m−1, where the long–time trajectory for any car
is the limit cycle. The fixed points lie on the optimal velocity curve (dotted line).
Right picture: Evolution of total energy E (measured in units of mv2

max/2) for both
cases (solid curve: limit cycle; dashed line: fixed point). The parameters are chosen
as N = 60, D = 33 m, vmax = 20 m/s, τ = 1.5 s, and m = 1000 kg. Taken from [1].

4 Mesoscopic Stochastic Model of Traffic Flow

On higher level of description we will no longer follow individual car trajec-
tories only the number of cars in a jam is of interest. In the simplest model
only one cluster on a circular road is considered, and the probability p(n, t)
that it contains n cars at time t is given by one–step master equation

dp(n, t)
dt

= w+(n− 1) p(n− 1, t) + w−(n+ 1) p(n+ 1, t)

− [w+(n) + w−(n)] p(n, t) : 0 < n < N , (8)

where w+ and w− are transition rates. For n = 0 (no congestion) and n = N
(all cars in one queue) the equations are different. Terms with p(−1, t) and
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p(N +1, t) will be absent in this case. Choices for transition rates w+ and w−
are:

a) w−(n) = 1/τ is the rate to leave the queue,
b) w+(n) = vopt (Δxfree(n)) /Δxfree(n) is the rate to enter the queue.

Δxfree(n) = L/(N − n) is the mean headway distance in the free flow phase.
Some properties of the model, for the above choice of transition rates w+

and w− are: (1) No large stable cluster forms at low densities of cars, this
corresponds to the fixed point solution of the Bando model. (2) Above a
certain critical density a macroscopic fraction of cars are condensed into
the cluster, this corresponds to the limit cycle in the Bando model. (3)
The stationary solution dp(n, t)/dt = 0 obeys the detailed balance condi-
tion pst(n)w+(n) = pst(n + 1)w−(n + 1). (4) It allows us to describe some
properties of the model by equilibrium thermodynamics in analogy to the
liquid–vapour system, in spite of the fact that the traffic flow model is a
driven nonequilibrium system.

5 Free Energy of Liquid–Gas System

Taking the relation between transition rates w+ and w− and free energy F (if
the number of particles is large)

ln
[
w+(n)
w−(n)

]
= − 1
kBT

∂F

∂n
=⇒ F = F0 − kBT

n∫
0

ln
[
w+(n′)
w−(n′)

]
dn′ (9)

we get for given ratio of the transition rates w+ and w− (see [2]) the following
free energy function

F = kBT (N − n)
[
ln
(
λ30(T )

N − n
V

)
− 1
]

+ fn(T ). (10)

This is a well known expression for the free energy of liquid–gas system under
isothermal and isochoric conditions. We can calculate the transition rates ratio
w+(n)/w−(n) and the normalised free energy difference (F − F0)/(Ṽ kBT ) =
f − f0 for three dimensionless densities ρ̃ = Dρ = DN/L as function of n/N
density of liquid phase [1], see Fig. 4.

6 Free Energy of Traffic Flow

The ratio of transition rates in this case reads (where ρ = N/L)

w+(n)
w−(n)

= τ
vopt(Δxfree)
Δxfree

= vmaxτρ
1− n/N

1 + ρ2D2(1− n/N)2
, (11)
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Fig. 4. Calculated w+(n)/w−(n) and (F −F0)/(Ṽ kBT ) = f −f0 for dimensionless
densities ρ̃ = 5 · 10−7 (dot–dashed line), ρ̃ = 10−5 (dashed line), and ρ̃ = 1.2 · 10−5

(solid line).

where vopt is the optimal velocity function and Δxfree = L/(N − n) is the
headway distance in the free flow phase. After some steps we arrive at the free
energy for traffic flow:

F − F0

L̃ T ∗
= ρ̃
{(

1 − n

N

)
ln
(
1 − n

N

)
− n

N
− n

N
ln
(

ρ̃

b̃

)
+ ln

(
1 + ρ̃2

)

−
(
1 − n

N

)
ln

(
1 + ρ̃2

[
1 − n

N

]2)}
+ 2arctan ρ̃ − 2 arctan

(
ρ̃
[
1 − n

N

])
, (12)

where L̃ = L/D is the dimensionless length of the road, b̃ = D/(vmaxτ),
ρ̃ = ρD is a dimensionless density, F0 is the ideal free energy with no clus-
ters: F0 = −T ∗ [N ln (L/λ0(T ∗))− lnN !] � T ∗N [ln (ρλ0(T ∗))− 1] where
λ0(T ∗) = h/(2πmT ∗)1/2 and T ∗ = kBT .

Fig. 5. Transition rates ratio w+(n)/w−(n) and normalised free energy difference

(F −F0)/(Ṽ kBT ) = f−f0 depending on the number of congested n/N cars for three
dimensionless densities. ρ̃ = 0.1 (dotted line), ρ̃ = 1 (dot–dashed line), ρ̃ = 3.186
(dashed line) and ρ̃ = 5 (solid line). D = 24 m, vmax = 42 m/s and τ = 2 s.

• We have shown how thermodynamics can be applied to such a many–
particle system as traffic flow, based on a microscopic (car–following) as
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well as a mesoscopic (stochastic cluster) description, in analogy to equilib-
rium physical systems like supersaturated vapour forming liquid droplets.

• Distinguishing features between the traffic flow and equilibrium physical
systems have been outlined. In particular, we have found that the third
Newton’s law (action/reaction) is does not hold on the level of “micro-
scopic” equations of motion for individual cars.

Acknowledgements

We would like to thank the German Science Foundation (DPG) for finan-
cial support through grant MA 1508/8-2. H. W. acknowledges support from
Swedish Research Council Contract No. 621–2001–2545.

References
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Summary. An asymmetric exclusion process with periodic boundary conditions is
investigated. During each time-step a randomly chosen particle moves one site and
if possible two sites. This dynamics leads to different gap distributions depending
on the parity of the number of holes. Despite the simplicity of the model on a ring
there is a phase transition that separates two regimes with different density profiles.
For a generalization of the process the steady state is given for two particles on a
ring.

1 Introduction

The asymmetric exclusion process (ASEP) has been used to model for example
vehicular and pedestrian traffic, granular flow and biological processes. It is
generically defined on a discrete one-dimensional lattice comprising exclusive
diffusing particles. In its simplest form a particle moves one site to the right if
this target site is empty (see e.g. [1] for a review). The steady state for open
boundary conditions (injection of particles at the one end and rejection at the
other end of the lattice at certain rates) is known to be of the matrix-product
form [2] and one observes so-called boundary-induced phase transitions [3].
On the other hand the model with periodic boundary conditions is known to
have a uniform stationary measure and of course no phase transitions occur.

However there are some generalizations of the ASEP with periodic bound-
ary conditions with phase transitions: For example, if each of the particles
has an individual fixed hopping rate one might observe a phase transition
from a fluid into a condensed phase [4]. Another example is the ASEP with
a single defect particle with lowered hopping rate that can be overtaken by
normal particles at some rate [1, 5]. Finally phase transitions have been stud-
ied in asymmetric exclusion models in which the hopping rate depends on
the empty space ahead. This models can be related to zero-range processes
and the interactions are normally long-ranged when condensation transitions
appear [6, 7].
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The starting point for this article was to construct a very simple (con-
serving) process on a ring with one species of particles, no overtaking and
short-range interactions that remains exactly solvable beyond a simple factor-
ization and that is on the other hand capable to produce a phase transition.
The question is what physical origin this transition might have. In the model
to be considered particles have an increased maximum speed (as it is generic
for traffic models for example). Under this dynamics all particles tend to have
a desired fraction of empty space in front. However if the total amount of
empty space is such that not every particle can support this desired fraction
finally one particle per time step has a different fraction in front and some-
times his movement rate is decreased. Then this is a sort of defect that might
induce phase transitions similarly as in the defect-ASEP mentioned above.

2 Model Definition and Structure of the Steady State

To be precise the model is an asymmetric exclusion process defined on a 1d
lattice with L sites, labelled i = 1, 2, . . . L and periodic boundary conditions
(site L + 1=site 1) as well as N particles labelled μ = 1, 2, . . . N . Due to the
exclusion rule each site i can be in either of two different states: τi = 1, if
it is occupied by a particle and τi = 0 if it is empty. The system evolves in
continuous time (random sequential dynamics) with respect to the following
rules:

100 −→ 001, at rate 1, (1)
101 −→ 011, at rate β. (2)

It turns out that the stationary distribution of probabilities for the possible
configurations depends strongly on the parity of the number L − N of holes
(unoccupied sites). In connection with this an important quantity is the num-
ber of holes to the right of each particle. We refer to this quantity as the ‘gap’
to the next particle ahead. The model dynamics is such that odd-numbered
gap lengths can not evolve, however they can disappear through transitions
in which a configuration C(. . .[any odd number of 0s]101 . . .) turns with rate
β to a configuration with two odd gaps less. This processes appear again and
again until there rest either no odd gap (L−N even) or exactly one odd gap
(L−N odd). So only a certain (absorbing) subspace of the configuration space
is visited in the steady state. In the following we are going to consider this
two cases separately.

• The model with even number of holes:
In this case it turns out that all stationary configurations are equally
likely what can easily be verified by looking at the master equation for
the process what is omitted here. Stationary configurations are those in
which the number of holes in front of any particle μ is an even number. A
simple argument is that on replacing all gaps by the half then one recovers
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the usual ASEP with uniform steady state. Expressing a configuration by
the set of occupation numbers leads to the factorization:

P (n1, n2, . . . , nN ) = Z−1
L,N

N∏
μ=1

δnμmod2,0. (3)

where the normalization factor ZL,N was introduced to ensure the proba-
bility conservation and δij denotes the Kronecker delta. Note that the gap
distribution p(n) ∝ δn mod2,0 oscillates between zero (for odd-numbered
gap lengths) and a constant value (for even gaps).
Denote the total number of holes by 2M . Then the normalization is easily
obtained combinatorially: For the first particle to place on the lattice there
are L possible ways. One can then think of distributing N − 1 particles
and M hole pairs into N +M − 1 boxes to obtain:

ZL,N =
L(L−M − 1)!
N !M !

δL−N,2M . (4)

Then it is straightforward to calculate correlation functions as

〈τi〉 =
N

L
, 〈τiτi+1 . . . τi+m〉 =

N

L

(N − 1)(N − 2) . . . (N −m)
(L−M − 1) . . . (L−M −m)

. (5)

• The model with odd number of holes:
In this case one finds that the stationary configurations are of the matrix-
product form. This configurations are those in which exactly one particle
has an odd number of holes in front (all other particles have an even
number of holes in front). Thus the only non-vanishing probabilities are:

P (2n1, . . . , 2nN−1, 2nN + 1) = Z−1
L,N 〈W |En1DEn2 . . . DEnN |V 〉. (6)

Of course similar relations hold if the odd gap is not in front of the Nth
particle but in front of any of the others. Here the vectors 〈W |, |V 〉 and ma-
trices D, E are the well-known operators from the open-boundary problem
and the defect-ASEP on a ring [1, 5] but they have a different meaning:
Detect the odd-numbered gap and begin with its rightmost hole. Write this
hole together with the following particle as the matrix product E|V 〉〈W |.
Continue to the right on representing all hole pairs by a matrix E (nor-
mally the matrix E represents single holes) and represent all particles by
a matrix D. Taking finally the trace over the whole word can be rewrit-
ten as (6). In fact this is a sort of mapping onto the ASEP with a single
defect [1, 5]. The unit 01 corresponds to the defect ‘2’ and hole pairs 00
correspond to usual holes ‘0’ in the defect ASEP. Then the transitions (1)
turn into 10→ 01 at rate 1, 12→ 21 at rate β.
A formal proof of the steady state will be given elsewhere [9], the expres-
sions should here just be made plausible.
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Also in the odd case the gap-length distribution oscillates because even
gaps are preferred. In fact in the thermodynamic limit the probability for
odd gaps goes to zero as in the even case. As for the defect-ASEP [5] the
partition function can be derived:

ZL,N =
L

N

(
N +M
N − 1

) ∞∑
m=1

m

(
N +M − 1
N −m

)(
1− β
β

)m−1

δL−N,2M+1 (7)

and equivalently a phase transition takes place. The critical density is
ρc = 2β/(1 + 2β). In the following let us in analogy refer to the 01-pair as
the defect.
– For ρ < ρc the defect behaves as the other particles. In front of the

defect the density profile decreases exponentially to its bulk value ρ.
The density behind is constant.

– For ρ > ρc the defect is similar to a second-class particle [8] that
lowers the average speed of the other particles. The density profile
decays algebraically to the bulk value. Behind the defect the density is
decreased and the profile increases in the same way to its bulk value
as in front.

In both cases (even and odd number of holes) the velocity of particles is given
by

v = 2
1− ρ
1 + ρ

+O
(

1
L+N

)
. (8)

Just the special form of the correction differs for even and odd number of
holes.

3 Generalization of the Model

An interesting generalization of the model is the following:

100 → 010, with rate p1 = 1,
→ 001, with rate p2,

101 → 011, with rate β.

This process is in general ergodic what makes it more interesting as the model
of the previous section (corresponding to the choice p1 = 0 and p2 = 1). On
the other hand here the fully analytical treatment becomes more difficult.
The parallel-update version1 of this general model was considered in [10]. By
comparison with the chipping model [11] (for further references see [10]) it was
argued that in general no phase transitions should occur for non-deterministic

1 The random-sequential update in fact is a special limit of the parallel update
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rates. For the general process here we considered the solvable case of only two
particles on a ring and found the following solution (for m ≥ n and m ≥ 1)

P (m,n) = Z−1
m+n+2,2

[
c(p2, β,m+ n) + (−1)n−1(1− β)pn2 ym−n

]
. (9)

The function yn is given by yn := 21−n
∑

k

(
n
2k

)
(1 + 4p2)k. The first term

c(p2, β,m+ n) = βym+n + (2p2 + 1− β)ym+n−1 is constant for given system
size. The pre-factor (−1)n−1 of the second term indicates that there are in
general oscillations except for β = 1 and/or p2 = 0. This two cases turn out
to lead to a simple factorized steady state for arbitrary particle number and
have already been studied [12]. However it would be interesting to study the
model for other parameter choices and to determine the form of their cluster
distributions.

4 Conclusion and Outlook

This article deals with a simple totally asymmetric exclusion process with
three-site interaction on a ring. Depending on the parity of the number of holes
the steady state takes either a simply factorized form or the matrix-product
form. In the latter case the dynamics evolves into an absorbing subspace and
a phase transition takes place. This transition separates two regimes with
different density profiles. Their forms can be obtained from a relation to the
defect-ASEP [1, 5]. An interesting fact is that the gap-length distribution
oscillates since even gaps have a higher probability than odd ones. To our
knowledge phase transitions and matrix states in such simple asymmetric
exclusion processes on a ring (conservative dynamics, one particle species and
short-range interactions) are not yet known.

Section 3 generalizes the process to ergodic dynamics by introduction of
additional hopping rates. The transition in the non-ergodic process of section 2
is due to the reduction of the configuration space. By a relation to the chipping
model it was already argued in [10] that for arbitrary stochastic rates no phase
transitions occur. The exact expression for the steady state in the two-particle
sector that we obtained shows that the oscillations in the gap distribution
remain also in the general process. They seem to be generic for this type of
models (with velocity larger than one).

Following related topics are under progress and will soon be published else-
where [9]: The process under parallel dynamics is perhaps even more interest-
ing than the continuous-time case. For this process we observed qualitatively
the same results. The steady state depends on the parity of the number of
holes and has a factorized state and matrix-product state, respectively. How-
ever it takes a more complicated form. All these models are special cases of
a generalized zero-range process (GZRP) - see the review [7] and references
therein. They can be mapped by letting the particles become sites in the
GZRP that are occupied by the gap to the right of the corresponding particle
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in the ASEP. While the focus has previously been on deriving a necessary
and sufficient condition for GZRPs to have a factorized steady state [7], the
process considered here is an example for a GZRP with matrix-product state
and factorized steady state depending on the choice of L and N . In fact the
factorization condition can be generalized to non-ergodic processes [9]. Finally
we have obtained the matrix-product solution for a related two-species zero-
range process (ZRP). Particles of species 1 can always move (irrespective of
a possible presence of particles of species 2 at the site). Species-2 particles
move only (with some other rate) if there is no species-1 particle present at
the site. The steady state of the present model in this article corresponds to
the steady state of the ZRP with a single particle of species 2. As far as we are
aware this are the first matrix-product solutions for GZRPs and two-species
zero-range processes.
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Summary. Floor field model is a cellular automaton model, which reproduces char-
acteristics of pedestrian dynamics such as an arch phenomenon and lane formation.
In the floor filed model, pedestrians move similarly whether they are near an exit
or not in egress processes. In reality, pedestrian move fast if they are far from the
exit, but move slowly around the exit since they try to avoid conflicts with other
pedestrians. The new parameter which represents this phenomenon is introduced to
the floor field model. We study egress processes by simulation and cluster approxi-
mation and obtained an expression of an average flow of pedestrians going out from
the exit when they move to the exit directly. The suitable pedestrian mood and the
optimal exit position are also discovered by our analysis.

1 Introduction

Pedestrian dynamics has received growing interest over the last decades from
physicists since it shows new collective behaviors such as dynamical phase
transitions and spontaneous symmetry breaking [1, 2]. In this paper, we study
the floor field (FF) model which is a cellular automaton model, introducing
two kinds of FFs, i.e., Static FF (SFF) and Dynamic FF (DFF), to move
pedestrians from one cell to another [3–7].

Most of the studies of pedestrian dynamics are based on simulations and
there are few analytical results because of the complexity of rules of motion
and two-dimensionality. In this paper we present an analytical result on out-
flow through an exit, which is one of the most important index in evaluating
evacuation dynamics. We newly introduce the bottleneck parameter β which
makes pedestrian behaviors around the exit more realistic. We have succeeded
to calculate the average flow 〈Q〉 as a function of β, μ, and the width of an
exit door w by cluster approximation. As far as we know, the analytical ex-
pression of the average flow through the exit with arbitrary width is derived
for the first time. We also consider how the mood of the pedestrians and a
wall beside the exit influence the average flow.

mailto:tt66421,tknishi@mail.ecc.u-tokyo.ac.jp
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Fig. 1. A schematic view of an evacua-
tion simulation by the FF model. Pedes-
trians proceed to the exit by one cell at
most by one time step.

Fig. 2. Static floor field constructed by
the exit E. The numbers in each cell rep-
resent the Euclidean distances from the
exit cell.

2 Floor Field Model

We consider a situation that every pedestrian in a room moves to the same
exit. The room is divided into cells as given in Fig. 1. Man shaped silhouettes
represent pedestrians, an alphabet E and alphabets O represent the exit cell
and obstacle cells, respectively. Each cell contains only a single pedestrian at
most. Every time step pedestrians choose which cell to move from 5 cells:
a cell which the pedestrian stands now ((i, j) = (0, 0)) and the Neumann
neighboring cells ((i, j) = (0, 1), (0,−1), (1, 0), (−1, 0)). FFs determine the
probability of which direction to move. SFF Sij is the shortest distance to the
exit cell given by the L2 norm (Fig. 2). However, when there is an obstacle on
the way to the exit, SFF is calculated by making detour of it [6]. Pedestrians
move to a cell that has smaller SFF than a cell they occupy and hence go to
the exit. We consider only the effect of SFF and ignore DFF for simplicity
in this paper. The effect of DFF is written in Ref. [3] in detail. Therefore in
this model, the transition probability pij for a move to a neighbor cell (i, j) is
determined by the expression pij = Nξij exp(−ksSij). Here the values of the
FFs Sij at each cell (i, j) are weighted by a sensitivity parameter ks with the
normalization N . There is a minus sign before ks since pedestrian move to a
cell which SFF decreases. ξij returns 0 for an obstacle or a wall cell and returns
1 for other kinds of cells. Note that in our paper a cell occupied by a pedestrian
is not regarded as an obstacle cell, thus it affects the normalization N .

Due to the use of parallel dynamics it happens that two or more pedestri-
ans choose the same target cell in the update procedure. Such situations are
called conflicts in this paper. To describe the dynamics of a conflict in a quan-
titative way, friction parameter μ ∈ [0, 1] was introduced in Refs. [4, 5]. This
parameter describes clogging and sticking effects between the pedestrians. In
a conflict situation, movement of all involved pedestrians remain at their cell
with probability μ. One of them is randomly allowed to move to the desired
cell with probability 1− μ.
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3 Introduction of a New Parameter Near the Exit

In real evacuation situations there are few pedestrians near the corner of the
room, while there are many pedestrians gathering around the exit. Therefore,
pedestrians often conflict with each other around the exit and an arch of
pedestrians is likely to be formed in front of the exit due to a friction between
them. Since pedestrians know this fact by experience, they walk fast when
they are far from the exit, while they walk slowly or give way to each other
around the exit. To take into account this situation, we introduced a new
parameter β ∈ [0, 1] which we call the bottleneck parameter. The transition
probability of pedestrians who occupy one of the Neumann neighboring cells
of the exit cell is described as follows:{

pij = βN̄ξij exp(−ksSij) ((i, j) �= (0, 0))
p0,0 = (1− β) + βN̄ exp(−ksS0,0),

(1)

where N̄ =
[∑

i,j ξij exp(−ksSij)
]−1.

When ks is large, pedestrians at neighboring cells of the exit move to the
exit cell with the probability β and stayed their cells with the probability 1−β.
This simplification enables us to analyze the pedestrian behavior theoretically.

4 Cluster Approximation

In this section we focus on the exit cells and the neighbor cells of them and
calculate an analytical expression of the average pedestrian flow through the
exit by cluster approximation. The flow is defined as the number of evacuated
persons per 1 time step thorough an exit. We suppose that a big jam is formed
around the exit. This enables us to simplify a situation that only SFF affect
pedestrians’ motion.

First, we calculate the flow when the width of the exit w = 1. The tran-
sition probability are defined in Fig. 3. Since we assume a big jam exists at
the exit, pedestrians enter into three neighboring cells of the exit with the
probability 1. The probability of getting out from the exit cell is set as 1. We
define pt(0) as the probability that a pedestrian is not at the exit cell at time
step t and pt(1) as the probability that a pedestrian is at the exit cell at time
step t. The master equations are described as follows:[

pt+1(0)
pt+1(1)

]
=
[

1− r 1
r 0

] [
pt(0)
pt(1)

]
. (2)

Here r represents the probability that a pedestrian enter into the exit cell
from the three Neumann neighboring cells, which is described as follows:

r = β1(1− β2)(1− β3) + β2(1− β3)(1− β1) + β3(1− β1)(1− β2)
+ (1− μ){β1β2(1− β3) + β2β3(1− β1) + β3β1(1− β2) + β1β2β3}. (3)
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Fig. 3. Cluster approxima-
tion at the exit with one cell.
1, β1, β2, β3 represent transi-
tion probability.

Fig. 4. The three special cases of Fig. 3. We as-
sume that the arrow with transition probability 0
is interpreted as the existence of a wall that blocks
pedestrians’ motion.

By using (2) and (3) with the normalization condition pt(0) + pt(1) = 1,
we obtain the stationary solution, and the average pedestrian flow through an
exit is described as

〈Q(β1, β2, β3, α, μ)〉 = αp∞(1) =
r

1 + r
. (4)

Next we specify (4) by substituting 0 and β for β1, β2, β3 as (a) 〈q1(β)〉,
(b) 〈q2(β, μ)〉 and (c) 〈q3(β, μ)〉, which describe average flows through an exit
with the configuration described in Fig. 4 respectively.

Finally we calculate the average flow of pedestrians through an exit with
arbitrary w ∈ N width. We represent the average flow through the exit with
w cell’s width by linear sum of 〈q1〉, 〈q2〉, and 〈q3〉. Here we consider two
types of exits: an exit at the center of the wall (Ce-exit) and an exit at the
corner of the room (Co-exit). Ce-exit (w ≥ 2) is divided into 〈q1〉-exits, and
〈q2〉-exits, and an average flow through an exit with w cell’s width 〈Qcenter,w〉
is described as:

〈Qcenter,w〉 =

{
〈q3〉 (w = 1)
2〈q2〉+ (w − 2)〈q1〉 (w ≥ 2).

(5)

In a similar way, 〈Qcorner,w〉 is described as follows:

〈Qcorner,w〉 = 〈q2〉+ (w − 1)〈q1〉 (w ≥ 1). (6)

We also define the average flow per 1 cell as 〈qcenter〉 = 〈Qcenter,w〉/w and
〈qcorner〉 = 〈Qcorner,w〉/w.

The average flow calculated by analysis and simulation is described in
Fig. 5. It shows average pedestrian flows at the exit as a function of β for
various μ values. We see that the simulations agree with the analytical results
very well. Surprisingly, for μ = 0.9, we clearly find that a maximum flow is
attained at a value of β in both simulations and analytical results. For μ→ 1
the number of unsolved conflicts increases as β grows. As a result, pedestrians
stick and the average pedestrian flow decreases.
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Fig. 5. Average flow 〈q〉 as a function of β for different μ, exit width w, and exit
location in the case ks = 10. For μ = 0.9 we clearly see a maximum of flow at an
optimal β.

5 The Effect of Mood and a Wall

Here we consider how the mood of pedestrians influenced the flow. The pa-
rameters are set at β = 1.0, μ = 0.6 for the competitive situation and β = 0.4,
μ = 0.0 for the cooperative situation. Figure 6 (a) shows the average flows for
variable door width w. Clearly we can observe the crossing of the two curves
at a critical door width wc ≈ 3 in Fig. 6 (a). This means that we should
cooperate with each other to increase the average pedestrian flow when the
width of the exit is narrow. On the contrary, when the width of the exit is
wide, we should go through the exit aggressively.

The Japanese building standards law [8] gives an average pedestrian flow
1.5[persons/(m·s)] if an exit is directly connected to the ground. We find
that this value significantly changes by the pedestrians’ moods, i.e., compet-
itive and cooperative. From Fig. 6 (a) we obtain the values of the average
flow through Ce-exit i.e., 1.5[persons/(m·s)] in the competitive situation and
2.0[persons/(m·s)] in the cooperative situation. The values are calculated by
defining the cell size as 50[cm]×50[cm] and using a pedestrian velocity 1.3[m/s]
which is according to the Japanese building standards law.

Next we compare the average flows of Ce-exit and Co-exit, and discuss
how the wall has an effect on them. We obtain βc which is the value of β that
〈Qcenter,w〉 equals 〈Qcorner,w〉 as βc = 1/(1+2μ) for w = 1 and βc = 1/(1+μ)
for w ≥ 2. The curves of βc is drawn in Fig. 6 (b). They divide the β−μ plane
into two regions. In the lower left region, the Ce-exit flow is larger and in the
upper right region the Co-exit flow is larger. We also plot the competitive and
cooperative situation. The figures show that the Co-exit flow is larger in the
competitive situation since the wall prevents pedestrians rushing to the exit
at the same time, but the Ce-exit flow is larger in the cooperative situation.
From this result, we can say that an exit should be at the center of a wall
when pedestrians are in the cooperative mood, and should be at the corner
of the room when people are in the competitive mood.
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Fig. 6. (a) Average flow for various exit door width w (Ce-exit). (b) The curves of
βc on β − μ plane (w ≥ 2).

6 Conclusion

We have introduced it to the FF model that the effect of slowing down of
pedestrians around an exit, and obtained the analytical expression of the
average flow through an exit with arbitrary w cells by employing cluster ap-
proximation. It turns out that the theoretical results agree quite well with the
simulations. The effects of pedestrians’ mood, a width of an exit, and wall
effect are also studied. The critical exit door width, which was first obtained
experimentally and was reproduced by simulations in Ref. [4], is also analyti-
cally obtained in this paper. We find that an exit should be at the center of
a wall in the cooperative situation whereas it should be at the corner of the
room in the competitive situation for smooth evacuation.
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Summary. The traffic flow controlled by a traffic light on a single-lane roadway
is studied by using a modified NaSch model proposed by the authors, in which
the randomization is dependent on the local density of the preceding time step.
The flow-density diagrams are obtained and three different traffic density regions,
i.e., undersaturated traffic, saturated traffic and oversaturated traffic, are observed.
While in the small cycle time four traffic density regions appear. Further it is found
that mean traffic flow and mean velocity strongly depend on the cycle time of traffic
lights. An application of the signal model on optimizing traffic lights in order to
enhance the global throughput is studied. All the results indicate that the presented
model is reasonable and has realistic meaning.

1 Introduction

Traffic light is an essential element for managing urban transportation net-
works. Given its importance, the research on traffic light control is by no
means complete. A number of traffic light control models have been proposed
in the past few years [1–4], among which some were based on the NaSch model.
The NaSch model is a minimal model in the sense that any further simplifi-
cation of the model leads to unrealistic behavior. For the description of more
complex situations (e.g. multi-lane traffic, ramp) or for a proper modeling of
the fine-structure of traffic flow, additional rules have to be added and the
basic rules have to be modified. Then many cellular automaton traffic models
have been proposed [5–9]. And the basic NaSch model is described as follows:

There are N vehicles moving in a one-dimension lattice of L cells with
periodic boundary conditions. The number of vehicles is fixed. Each cell may
either be empty or be occupied by one vehicle. Each vehicle has an integer
velocity between 0 and the speed limit vmax. This speed limit can be different
depending on the kind of vehicles under consideration. Let vn and xn denote
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the current velocity and position of the nth vehicle respectively. And let dn
be the empty sites in front of the nth vehicle, dn(t) = xn+1−xn−1. Then the
state of the system at the time t+ 1 could be obtained from the state at the
time t by applying the following set of rules: (1)Acceleration, vn → min(vn +
1, vmax); (2) Deterministic deceleration to avoid accidents, vn → min(vn, dn);
(3) Randomization with probability p, vn → max(vn − 1, 0); (4) Update of
positions, xn(t+1) → xn +vn. These four update rules are applied in parallel
to all vehicles. Iteration over these simple rules has given realistic results such
as the spontaneous occurrence of traffic jams.

2 Outline of the Model

The rules for traffic flow controlled by a traffic light using the DDR model at
time t+ 1 are defined as follows:

Step 1: Determination of p : pn = ρrn.
Step 2: Acceleration: vn → min(vn + 1, vmax).
Step 3: Braking due to other vehicles or traffic light state:
Case 1: The traffic light is red in front of the nth vehicle: vn →

min(vn, dn, sn).
Case 2: The traffic light is green in front of the nth vehicle: vn →

min(vn, dn).
Step 4: Randomization with probability p : vn → max(vn − 1, 0).
Step 5: Movement: xn(t+ 1)→ xn + vn.

where, vn, xn and dn have been defined above; sn is the empty sites between
the nth vehicle and the traffic light ahead; pn is randomization probability of
the nth vehicle; ρn is the local vehicle density and expressed as 1

dn+1 , here dn
is the empty sites in front of the nth vehicle of the preceding time step t; r is
a parameter denoting the relationship between ρn and pn, and in this paper
its value is taken as 7.0 [8].

It has been shown that investigating the simpler problem of a single-lane
road with one traffic light operating as a defect is sufficient to give appropriate
results concerning the overall network behavior. The results can be used as a
guideline to adjust the optimal traffic light periods [1]. So for simplicity, we
just study a single-lane road with one traffic light using one-dimension lattice
of L cells with periodic boundary conditions, considering only one kind of
vehicles moving along one direction. The traffic light is set up at the one end
of the road without occupying a cell. The length of a single cell is set to be
7.5m in accordance to the NaSch model. The maximal velocity of vehicles is
set to be vmax = 5, corresponding to a typical speed limit of 67.5km/h in
cities when 1 time step approximately corresponds to 2s in real time. And
the value of velocity is between 0 and vmax. We simulate a system of length
L = 200, which corresponds to the length of actual road around 1.5km.

Throughout the paper, we will always assume that the duration of green
light phase is equal to the duration of the red light phase and the yellow light
period is ignored. The light is chosen to switch at regular time intervals T/2.
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Initially, the vehicles are distributed randomly and their velocities are also set
randomly. In the numerical simulation, the first 1 × 105 time-steps are put
away in order to remove the transient effects, and then the data are recorded
in successive 1× 105 time-steps for averaging.

3 Simulation and Results

In Fig. 1, we show the simulation results of traffic flow controlled by a traffic
light based on the DDR model, together with the fundamental diagrams of
the DDR model and the NaSch model. The further study on the DDR model
has been carried out and some meaningful results have been presented [8],
among which there appears the metastable state and synchronized flow.

Fig. 1. The fundamental diagrams of traffic flow.

There are two fundamental diagrams of signal model with T = 30 and
T = 60 (time steps) in Fig. 1. First we investigate the diagram with T = 60.
The qualitative feature of a flat plateau (i.e., a density-independent current)
has been obtained which appears in real traffic and three phases are rec-
ognized. As we know, when the state of the traffic light is red, it can be
considered as the defect, just as a bottleneck on the road. Below density c1,
vehicles move forward freely and they will not aggregate much in front of the
traffic light according to the cycle time presented in the diagram. The local
increase of density will compensate for the reduced local velocity at the site of
traffic light so that the flow around the site is identical to that below it. Then
in this region traffic flow increases with the increase of density and the region
is usually called undersaturated traffic [3]. In an interval of density [c1, c2],
traffic flow shows an approximate flat plateau, just as the feature of the fun-
damental diagram in the NaSch model with a single defect. The nontrivial
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phenomenon is that the mean flow J is maximum and independent of density.
The traffic light has global effects whereby the traffic exhibits macroscopic
phase segregation into high-density and low-density regions. This is because
when the global density exceeds c1, piling up of vehicles during the transient
period leads to the phase-segregated steady state. And this region is called
saturated traffic. In the high density, the traffic flow decreases linearly with
the increase of vehicle density owing to lower velocity, also like that of the
NaSch model. This region is called oversaturated traffic.

Then we investigate the diagram with T = 30, and four phases appear.
Traffic flow increases linearly with the increase of density until the critical
density cc, then decreases sharply from the maximum flow and reaches the
flat plateau. This phenomenon has already been observed in the study of car
accidents as defects on traffic flow [5], but does not appear in the NaSch
model with traffic lights. The difference should be ascribed to the fact that
the probability in the DDR model applied in this simulation is dependent on
local density, while it is a constant in the NaSch model.

The relationship between traffic light periods and aggregated dynamical
quantities such as mean flow and mean velocity is also studied. The mean
velocity vmean is plotted against the cycle time T in which the density is set
to be 0.06, i.e., a free-flow case (see Fig. 2(a)). The curve shows that mean
velocity depends on the cycle time and reaches its maxima and minima at
regular distances. The shape of the curve is similar to that obtained from the
NaSch model [1].

Fig. 2. The mean velocity and mean traffic flow against the cycle time T.

Fig. 2(b) shows the typical relationship between the time periods of the
traffic light and the mean flow in the system. For low densities (0.06) and very
high densities (0.70), we found a strongly oscillating curve with maxima and
minima at regular distances. Low densities denote the free-flow densities, and
then vehicles are not constricted by jamming due to the model dynamics, but
rather by the red traffic light. Hence, the mean flow oscillates with switch of
the traffic light and the free-flow density region shows the great potential for
flow optimization. The fact that a strong dependence of the mean flow on the
chosen cycle time for high densities is similar to the free-flow case was found
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in simulation. And this dependence is due to the movement of clusters. Since
the dynamics of the system are completely determined by the movement of a
jam at high densities, part of this jam is ascribed to the traffic lights, and part
is ascribed to the fluctuation parameter in the model, i.e., the randomization
probability p. In the DDR model, p is dependent on the local density of
preceding timestep, and when local density is large p is large too. Then jams
are obvious and oscillating of the mean flow against the cycle time is observed.

For densities slightly above the free-flow density (c = 0.20) the mean flow
increases slightly with the increase of cycle time T and no characteristic max-
ima or minima in the mean flow is observed. The reason is that the duration of
remaining jams in the system are small at this cycle time. Furthermore, when
cycle time decreases large jams are divided into smaller ones by the short-
cycle times and more vehicles stand. Thus the mean flow increases slightly
with increasing cycle time because the number of standing vehicles decreases.

At intermediate densities (see the case of c = 0.50 in Fig. 2(b)) a similar
phenomenon is observed as c = 0.20 in the smaller cycle time region. But
flow breaks down at a certain higher cycle time value and grows back again
to the original tendency. This is because only one jam remains in front of
the light at higher cycle times. When the vehicles have to wait considerably
longer than they are able to move, the breakdown finally occurs. Moreover
when cycle time further increases and reaches a certain value, vehicles can all
move across the traffic light in the green light phase. Then the variation of
curve shows the original tendency.

Through the simulation, we want to optimize the cycle time of traffic light.
The time a free-flowing vehicle requires moving from one intersection to the
succeeding one (one full turn on the periodic street) is equal to:

Tfree =
D

vfree
(1)

where Tfree = Tgreen + Tred, vfree = vmax − p is the free-flow velocity of
the underlying NaSch model [6]. That is to say, the situation that vehicles
organized in a cluster can move ahead all the time in the free-flow region
is possible only if Eq. (1) is satisfied. Obviously, this case corresponds to
a maximum in flow whereby the green light period (or red light period) is
Tfree/2. Additionally, there are further maxima when Tfree = n(Tgreen+Tred)
with n = 0, 1, 2, . . . .

According to the DDR model, p is dependent on the local density and is
very small in the free-flow region. So we assume: vfree ≈ vmax. As 1 time
step in the simulation approximately corresponds to 2s in real time, then
Tfree = L/vmax ≈ 40 (time step) = 80s in this case. From Figs. 2(a) and 2(b),
we find that the mean velocity in the free-flow case and the mean flow in
different density region are stable when T ≤ 50. In addition, taking account
the fact that the bearing limit of human to the red light is 60s, we select
T = 80s(Tgreen = Tred = 40s) as the appropriate cycle time in the presented
situation.
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This is an application of the signal model on optimizing the traffic light
in order to enhance the global throughput. It can provide some theoretical
reference for traffic engineering.

4 Conclusions

Traffic flow controlled by a traffic light on a single-lane roadway has been
studied by using a modified NaSch model in which the randomization is de-
pendent on the local density of the preceding time step. A single light situation
is selected on account of the fact that investigating the simpler problem of a
single road with one traffic light is sufficient to give appropriate results and
to adjust the optimal traffic light periods. Simulation results show that this
signal model is able to capture the characteristic features of traffic flow with
a traffic light, i.e., there are three different traffic density regions in the flow-
density diagrams when cycle time is large and four traffic density regions when
cycle time is small. This phenomenon is different from that using the NaSch
model and the underlying mechanism of these phenomena has been analyzed.
Further it is found that mean traffic flow and mean velocity strongly depend
on the cycle time of traffic light. On the basis of above investigations an ap-
plication of the signal model on optimizing traffic lights in order to enhance
the global throughput is studied. All the results indicate that the presented
model is reasonable and has realistic meaning.
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Summary. Suspensions of motile bacteria such as Bacillus subtilus or E. coli form
a dynamical state exhibiting extended spatio-temporal organization at concentra-
tions near the maximum allowed by steric repulsion. The viscous liquid into which
locomotive energy of individual microorganisms is transferred also carries interac-
tions that drive the self-organization. The concentration dependence of collective
swimming state correlation length is probed here with a novel technique (bacterial
crowd control) that herds bacteria into condensed populations of adjustable concen-
tration. For the free-standing thin-film geometry employed, the correlation length
varies smoothly and monotonically through the transition from individual to collec-
tive behavior. Using insights from these experiments, we develop a specific model
incorporating hydrodynamic interactions in thin-film geometries and show by nu-
merical studies that it displays large scale persistently recurring vortices, as actually
observed.

1 Introduction

The dynamical properties of interacting, self-propelled organisms, such as
motile bacteria, sperm cells, fish, marching locusts, molecular motors [1–6]
are now recognized as legitimate fundamental problem of nonequilibrium sta-
tistical physics [6] and nonlinear dynamics [7–11]. An intriguing issue is the
nature of possible transitions to collective motion and its relation with highly
simplified “flocking” or Vicsek-type models [8, 10], which are based on local
interactions between elements and the phenomenon of collective swimming in
which non-local hydrodynamic interactions are obviously important.

Concentrated suspensions of motile (swimming) bacteria such as Es-
cherichia coli or Bacillus subtilus may serve as model systems. Experiments on
soap-like free-standing thin liquid films [1] showed that small whorls and jets
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of cooperative swimming exceeding scale of individual bacterium produced
greatly-enhanced diffusion and even superdiffusion [12] of passive tracers.
More recent experiments [2–4, 13], continuum theory [14], and simulations [15]
have demonstrated that the correlation length of collective swimming state
can exceed the size of individual cells by more than an order of magnitude,
and the collective flow speed (of the order 50-100 μm/sec) similarly exceed
the speed of individual bacterium (about 15-20 μm/sec). This collective swim-
ming is found at sufficiently high number density (or volume fraction) of the
microorganisms; dilute suspensions show no collective flow and the correlation
length is comparable to the size of a bacterium (of the order of 5 μm).

Two key questions involving the onset of collective swimming dynamics
arise in this context. How does spatio-temporal correlation depend on the
concentration of microorganisms? How can their concentration be managed
as a control parameter? In our previous works [13, 14] we presented experimen-
tal and theoretical studies of collective swimming dynamics in a free-standing
thin-film geometry based on a novel technique to adjust the number density
of bacteria in a given experiment (bacterial crowd control). This approach
allows detail investigation of the correlation length and the mean swimming
speed over a range of densities with a single bacterial colony, greatly reducing
statistical fluctuations due to the inherent physiological differences between
colonies. Our theoretical studies revealed only a gradual increase of the cor-
relation length with the increase of number density, and no sharp transition.
We propose that this can be explained as a noise-induced smearing of a dy-
namical phase transition, with the main source of noise being that due to
strong fluctuations in the orientation of individual bacteria. Here we extend
our theoretical and experimental studies of collective swimming states and
present additional results not included in early publications [13, 14].

2 Experiment

2.1 Description of Experimental Setup

Experiments were conducted on suspensions of strains 1085 and YB886 of
Bacillus subtilis, a peritrichously flagellated rod-shaped bacterium ∼4 μm
long and with a diameter of ∼0.7 μm. Spores stored on agar or sand were
used to inoculate nutrient medium (T5574 from Sigma). The suspension of
grown cells was then washed and centrifuged. Our experimental setup, shown
in Fig. 1, is similar to that used in Ref. [1], but has a number of important
modifications.

A small drop of bacterial suspension is placed between four supporting,
movable fibers: two Platinum (Pt) wires (to exclude contamination of the
film) and two dielectric fibers, 0.3 mm diameter. The drop was then stretched
between the fibers up to the necessary thickness (about 1 micron) by simulta-
neously pulling all four fibers apart with a control screw. The film was placed
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Fig. 1. Schematics of experimental setup. A thin film containing bacteria spans two
adjustable Pt wires and two dielectric fibers and is stretched by a control screw.
Electric current is transmitted between the Pt wires and a small Pt ring lowered
onto the film.

in a controlled humidity chamber to minimize evaporation. Unlike previous
experiments on E. coli [1], no additional surfactant was used to stabilize the
liquid film. Instead, the metabolic products secreted by B. subtilis created
the necessary surface tension and elasticity to maintain the film during the
course of an experiment, typically several minutes. After that, the film either
ruptured, or the secreted products solidified and motion ceased to exist. Im-
ages were obtained with a video camera operating at 100 frames/s framerate,
equipped with a high-resolution, long working distance microscope objective.
Image processing was performed by custom-designed software based on Mat-
lab toolboxes. Working with a monolayer film of bacteria allows identification,
counting and tracking each and every cell in the field of view.

2.2 Response of Bacteria on Electric Current: pH-Taxis

In order to concentrate bacteria, we applied a small electric voltage (≤ 2.6 V)
between two platinum wires, thus creating the electrolysis, and, consequently,
a change of pH level (i.e the acidity or concentration of ions) in the vicinity
of electrodes. The change of pH in turns triggers chemotactic response in
motile bacteria [16, 17]: these bacteria tend to swim away from the electrodes,
towards the areas with a more comfortable pH level (∼7.2) in the center of
cell. Due to diffusion of ions, the areas of elevated/decreased pH levels expand
gradually towards the middle of the experimental cell. If the applied voltage
exceeds a certain threshold (∼2.4V), the expansion rate of the pH level front
becomes comparable with the average speed of bacteria (about 20 μm/sec),
resulting in an avalanche-like accumulation and directed migration of bacteria
(Fig. 2, a,b). This avalanche-like accumulation of bacteria at the pH-front is
related to the fact that the bacteria begin to swim away from the front (to
the center of the cell) only when the local pH gradient becomes large enough
to trigger the chemotactic response. Remarkably, this technique stimulates
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nontrivial chemotactic response only among motile bacteria; dead or otherwise
non-motile cells remain stationary and are left behind the front of congregating
bacteria.

Fig. 2. (a) Formation of high bacterial density layer (seen as red) during directed
migration of bacteria. (b) Total number of bacteria vs time in the region of interest
(100× 400 μm2) at the distance 0μm–100μm from electrode (red) and the distance
100μm–200μm (black) after the voltage 2.4 V between platinum wires was applied.

2.3 Density Adjustment: Bacterial Crowd Control

In order to adjust the density of bacteria (the “filling fraction” ρ) and keep
it almost uniform in the field of view of microscope over the entire course of
one experiment, a small thin platinum ring (ring diameter ∼1 mm, Pt wire
diameter 0.03 mm) was gently lowered onto the stretched film containing the
bacteria, and a small voltage (∼2.0 V) was applied between the ring and two
external Pt wires. The change of the pH level was monitored by the addition
of indicator fluid Bromothymol blue to the solution. The evolution of the pH
level as a function of time is illustrated in Figs. 3 a–c, in which the blue re-
gions, corresponding to lower pH levels, expand on both sides of the ring after
application of electrical current. This characteristic expansion of low pH-level
region occurs due to diffusion of ions produced in the course of electrolysis.
Uncomfortable with the change of pH at the ring’s perimeter, bacteria in-
side the ring tend to swim towards the ring’s center (see Fig. 2d). However,
since the applied voltage was small (< 2.4 V), the migration of bacteria was
relatively slow, and, therefore, only gradual concentration of bacteria at the
middle of the ring was observed, while the density distribution was fairly ho-
mogeneous in the field view of the microscope (area 230 × 230 μm2 in the
middle of the ring). Using this technique (aka “bacterial crowd control”) we
able to change the number density of bacteria by a factor exceeding 5.
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Fig. 3. Images illustrating decrease of the pH level near the electrodes as a result
of transmission of electric current during 3 sec (a), 20 sec (b) and 80 sec (c). Con-
centrated bacteria (central part of the image), square indicates the field of view of
microscope (d).

2.4 Large-Scale Collective Behavior

Representative snapshot of collective bacterial swimming pattern for filling
fractions ρ ∼0.4 is shown in Fig. 4 (here, the density 0 < ρ < 1 is measured as
a fraction of full surface coverage by bacteria). Large-scale collective swimming
of bacteria, characterized by recurring whirls and reversing currents, occurs
at the values of density ρ above 0.3–0.35. Corresponding evolution of bacterial
density ρ in the course of experiment is shown in Fig. 5a.

The velocity field of the collective swimming state V was extracted from
consecutive images by the Particle Imaging Velocimetry (PIV); bacteria them-
selves serving as tracers (resolution about 2 μm/sec). Since we are working
with rather high bacterial filling fractions, traditional methods of flow visu-
alization relaying on passive tracer particles are rather ineffective: the trac-
ers tend to adhere to the bacteria. In addition to the velocity field, we also
analyzed from the experimental images the (reconstructed) vector field of
bacterial orientations τ . This was done by extracting from the images the
director n by finding in the small subimage the angle of maximal projection
of a bacterium on a certain direction. Then, assuming that the absolute value
of the angle difference between the orientation vector τ and the bacterial flow
velocity field is smaller than π/2, (τ · V) > 0 (since bacteria swim in the
direction of their orientation), one may extend the definition of the director
n and reconstruct uniquely the vector field τ .
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Fig. 4. Representative pattern of collective swimming in the colony of Bacillus
subtilis confined in a thin free-suspended fluid film. Bacteria are seen as blue short
stripes on grey background of the image. The instantaneous velocity field was ob-
tained by the particle-image velocimetry, and is shown in the image by arrows (the
longest arrow represents velocity of 100 μm/sec).

Fig. 5. (a) Evolution of bacterial density in the course of experiment; (b) Alignment
coefficient C between velocity and orientation fields, see Eq. (1), as function of
threshold k for different values of density ρ.

2.5 Cross-Correlation Between Velocity and Orientation

In the regime of well-developed large-scale flows (Fig. 4), the cross-correlation
between the vector fields τ and V over the entire span of the image yields a
rather puzzling result: the correlation coefficient was smaller than 8%! How-
ever, this seeming contradiction of the fact that bacteria swim in the direction
of their orientation can be resolved: for the case of well-developed chaotic flow
the bacteria are advected by the fluid velocity field vf created by all bacte-
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ria. Since each bacterium swims in the direction of its orientation only in
the local frame moving with fluid velocity vf , one should not expect strong
correlation between V and τ as long as the fluid velocity field is chaotic. In
contrast, there is significant correlation between the maximal values of these
fields, since more oriented patches of bacteria create faster flow. In order to
demonstrate this, we characterize the alignment between these two fields by
the alignment coefficient C,

C =
〈cosφ〉 − 2/π

1− 2/π
(1)

where φ is the angle between V and τ (note that −π/2 < φ < π/2 due to our
choice of the direction of τ ). If the directions between V, τ were random, then
the value of 〈cosφ〉 = 2/π and C = 0, whereas perfectly aligned fields yield
C = 1. To amplify contributions from large-amplitude regions of the fields τ
and V we used the following method: in the averaging procedure we excluded
those points of both fields where the amplitudes were below certain variable
thresholds Vs = k〈|V|〉 or τs = k〈|τ |〉, where the threshold k measures the
fraction of the mean value of each field. The alignment coefficient C vs k is
shown in Fig. 5b, and one sees there that the alignment indeed decreases with
the density ρ due to the effect of large-scale flow discussed above. Since at low
concentrations the bacteria swim exactly in the direction of their orientation,
one obtains C → 1. With the increase in k the alignment coefficient C indeed
increases, supporting the statement that more aligned regions are also moving
faster.

2.6 Autocorrelation Functions

In order to characterize the properties of collective flow over a range of bac-
terial number density ρ, we independently extracted spatial autocorrelation
functions of the velocity and the orientation fields. We also calculated the
typical bacterial velocity V̄ =

√
〈V2〉 − 〈V〉2, the magnitude of orientation

field τ , and the radial correlation functions for velocity KV (r) and orientation
Kτ (r), defined as

KA(r) =
∫
dr′
∫ 2π

0

dθ
[
〈A(r′) ·A(r + r′)〉 − 〈A(r′)〉2

]

where θ is a polar angle, A = V, τ .
The corresponding correlation length LA was then extracted from the func-

tions KA(r) by a fit to an exponential, KA(r) ∼ exp(−x/LA)+B,B = const.
It appears that the correlation length for orientation field τ was typically of
the order of bacterium size (see Fig. 6) whereas the velocity correlation length
was much bigger and increased with the increase of bacterial density. In the
most of experiments the constant B was rather small, however near the on-
set of collective swimming the function KV (r) appears to exhibit oscillations,
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Fig. 6. Typical autocorrelation functions. Black curves depict velocity KV (r) (left)
and orientation Kτ (r) (right) autocorrelations for well-developed turbulent state.
Red curve shows velocity autocorrelation function near the onset of large-scale col-
lective motion, oscillations in KV (r) tail signal the presence of large-scale vortex
structure.

likely due to intermittent large-scale vortex motion. The results are shown in
Fig. 6. While the form of the correlation functions KV (r) and the value of
correlation length L are in agreement with previous measurements in Ref. [3],
our results have the added benefit of not being contaminated by boundary
effects and large-scale oxygen concentration gradients. Our measurements are
performed in a film of constant thickness, whereas in previous works [2, 3] the
film thickness variations were significant.

The dependence of the velocity correlation length L and the typical swim-
ming velocity vs density ρ is shown in Fig. 7a,b. As one sees from Fig. 7, no
sharp transition occurs with the increase in density; we find only a smooth
(although steep) increase of the velocity V̄ and the correlation length L. The
overall changes in these quantities were about a factor of five. For even higher
density (ρ → 1, i.e. close 90% surface coverage) we notice complete termina-
tion of motion and the formation of a biofilm.

2.7 Fluctuations-Broadened Transition

Absence of well-defined phase transition with the increase in density ρ does
not agree with the predictions of simplified Vicsek-type models of collective
motion in systems of self-propelled particles [7–10]. We interpret our obser-
vation as a smearing of a phase transition by noise which can arise from a
number of sources, such as spontaneous orientation fluctuations of individ-
ual bacteria due to tumbling, small-scale hydrodynamic fluctuations due to
flagellum rotation, size distribution of bacteria, etc. While we did not pin-
point the primary cause for the noise, its effect appears to be very robust and
qualitatively independent on the specific nature of fluctuations. To support
this observation, we compared our experimental data for V̄ vs ρ with those
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Fig. 7. Experiment: velocity correlation length L (a) and typical velocity V̄ (b)
vs bacterial number density ρ. Dashed line shows fit of V̄ to solution Eq. (2) with
ρc ≈ 0.28. Model: velocity correlation length L (c) typical velocity V̄ (d) vs average
density ρ0 for three different level of noise S and for parameters of Fig. 10.

obtained from the normal form equation for generic noisy second order phase
transition

∂tV = (ρ− ρcr)V − V 3 + ζ(t) (2)

where ζ is Gaussian white noise with the intensity S, and ρcr is critical density.
In the absence of noise one obtains the mean-field result V̄ ∼ √ρ− ρcr. With
the noise one obtains a smearing of the transition point ρcr. Figure 7 shows
that the fit of a solution to Eq. (2) is consistent with the experimental data
shown in Fig. 7.

3 Model

The experiments [1–3, 13] have demonstrated that concentrated suspensions
of swimming bacteria exhibit an intriguing collective dynamics reminiscent of
high Reynolds number hydrodynamic “turbulence”. Various theoretical mod-
els [11, 18, 19] have predicted that a state of true long-range order of swimming
orientation, suggested by simplified models of self-propelled particles [7, 8, 10],
is linearly unstable if the long-range interactions between particles are taken
into account. The fate of the system beyond that instability has not been well
studied within the context of those models.

On the other hand, a proposed [3] analogy with sedimenting suspensions,
in which transient and recurring vortices and jets are commonly observed,
suggested that the structures seen in our experiment might arise purely from
hydrodynamic interactions. Direct numerical simulations [15] of ensembles of
self-propelled particles, whose interactions are given solely by the hydrody-
namic flow fields they generate, confirm this notion, showing large-scale swirls
beyond a critical volume fraction.

Motivated in particular by these experiments on thin films of bacterial
suspensions with controllable density, we proposed a continuum model de-
scribing self-propelled swimmers [14]. The model is formulated in terms of a
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two-dimensional master equation for the probability density P (r, φ) of finding
a bacterium at a particular orientational angle φ at position r = (x, y), derived
from microscopic interaction rules. The master equation links the scale of in-
dividual bacterium to the macroscopic scale of collective motion, described
by continuum coarse-grained equations for local bacterial density and orien-
tation. The system is supplemented by the Navier-Stokes equations for the
fluid velocity with the forcing term due to swimming of oriented bacteria. In
the nonlinear regime, the model reveals a scale selection mechanism associated
with deflection of bacterial swimming by the shear flow, and is in qualitative
agreement with experiment.

Fig. 8. Sequence of experimental images illustrating an “inelastic collision” between
swimming Bacillus subtilis in a thin film. Colliding bacteria (highlighted) swimming
from left to right begin misaligned in (a), reorient during collision (b) and swim off
parallel afterwards (c).

Following previous works [14, 20], we model the bacteria as polar rods
of length l, diameter d0, subject to two rules: (i) bacteria swim at velocity
v0 with respect to the liquid in the direction of their unit orientation vector
n = (cosφ, sinφ); (ii) in a collision of two bacteria with the angles φ1,2 the
pair swims off in the direction of the average orientation φ̄ = (φ1 +φ2)/2 from
a location r̄ = (r1 + r2)/2, the average of their immediate post-collisional
locations. By analogy with the physics of granular matter, we call this a
fully inelastic collision, and it arises from the quadrupole velocity field of
swimmers [15]. It is readily seen in experiment (Fig. 8). It is well-known that
inelastic collisions, resulting in build-up of spatial correlations, are precursors
of collective behavior [21].

Bacteria are also subject to rotational and translational diffusion due to
tumbling and small-scale hydrodynamic flows, and are advected by the fluid.
The master equation is [14]

∂tP + ∇ · [(v0n + v)P ] +
1
2
Ω∂φP = Dr∂

2
φP + ∂iDij∂jP

+
∫ ∫
dr1dr2

∫ π

−π

dφ2W (r1, r2)P (r1, φ1)P (r2, φ2)

×
[
δ
(
r̄− r, φ̄− φ

)
− δ (r2 − r, φ2 − φ)

]
− γ
(
E · n · ∂P

∂n

)
. (3)
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The second and third terms on the l.h.s. of (3) account for the hydro-
dynamic advection of bacteria and their rotation by the flow, whose vor-
ticity is Ω = (∂yvx − ∂xvy) ẑ. The first two terms in the r.h.s. of (3) de-
scribe angular and translational diffusion of rods with the diffusion ten-
sor Dij =

(
D‖ninj +D⊥(δij − ninj)

)
. Dij are known in polymer physics:

D‖ = kBTe/ξ‖, D⊥ = kBTe/ξ⊥, and Dr = 4kBTe/ξr, where ξ‖, ξ⊥, ξr
are corresponding viscous drag coefficients. For rod-like molecules, they are
ξ‖ = 2πηsl/ log(l/d0), ξ⊥ = 2ξ‖, and ξr ≈ πηsl3/3 log(l/d0), where ηs is
shear viscosity and Te is effective temperature [22]. The effective tempera-
ture Te is understood here to arise from small-scale hydrodynamic flows and
bacterial tumbling, and can exceed considerably the thermodynamic temper-
ature. The last term in Eq. (3) describes the coupling to strain rate tensor
E (Exy = ∂xvy + ∂yvx) [23, 24]. Our further analysis shows that while this
term has some quantitative effect, e.g. on the instability threshold, it does not
change the qualitative conclusions. Thus, for simplicity we set the coupling
constant γ = 0 and neglect contribution of E.

The last term of (3) describes short-range binary interactions of rods. The
two δ-functions in the collision integral describe “annihilation” of a particle
with the angle φ1 and “creation” of particle with the angle φ̄. The interac-
tion kernel W is localized in space, and for the sake of simplicity we neglect
the anisotropy of the kernel (the kernel anisotropy appears to be important,
however, for self-organization of microtubules [20]). We set

W =
(
g/b2π

)
exp
[
− (r1 − r2)

2
/b2
]

with b � l and g the interaction cross-section. This form of the kernel implies
that only nearby bacteria interact effectively. While hydrodynamic interac-
tions usually decay algebraically (e.g. inversely proportional to separation
distance in three dimensions), exponential screening for shear perturbations
occurs, for example, in the thin film geometry when the film is in contact with
a frictional walls. For the free-standing thin-film geometry of our experiment,
one may expect the free-slip boundary condition for the velocity on the top
and the bottom surface of the film. However, as we discussed above, it appears
that a layer of surfactant (produced by bacteria themselves) which quickly ac-
cumulates on both top and bottom surfaces of the film, plays the role of a
frictional walls, effectively implying the non-slip condition for hydrodynamic
velocity.

Now we introduce the coarse-grained density ρ and orientation τ :

ρ(r) =
∫ π

−π

dφP, τ = (1/2π)
∫ π

−π

dφn(r)P

As it was shown in [14, 20], the spatially-homogeneous limit of (3) exhibits
onset of an oriented state above the critical density ρc = (Dr/g)/(4/π − 1).
Near this threshold, (3) can be simplified significantly by means of a standard
bifurcation analysis, yielding a pair of coupled equations for ρ and τ . Also
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near threshold, P depends slowly on the variable r, so we keep only leading
terms in the expansion in spatial gradients. With proper rescalings r → r/l,
t→ Drt, and ρ→ gρ/Dr, we obtain

∂tρ + ∇ · (ρv) = D0∇2ρ− v0π∇ · τ (4)

∂tτ + v ·∇τ +
1
2
Ω × τ = (ερ− 1)τ

−A0|τ |2τ +D1∇2τ +D2∇∇ · τ − v0
4π

∇ρ . (5)

Eq. (4) describes advection of the bacteria by hydrodynamic velocity v and
diffusive spreading with the diffusion coefficient D0. Here D1 = (D‖ +
D⊥/2)/2Drl

2, D2 = (D‖ − D⊥)/2Drl
2. In the rigid rods limit D1 = 5/192,

D2 = 1/96 [20]. For small density ρ and for the case of pure thermal diffu-
sion of particles, the diffusion coefficients obey D0 = (D‖ + D⊥)/2Drl

2. In
the present context, this connection is not clear, especially for larger densi-
ties due to diffusive-type contributions from the collision integral in (3). In
experiments, there are no significant density fluctuations observed, so we can
treat D0 � D1,2 as an independent parameter in order to suppress density
variations. In Eq. (5) the first term on the r.h.s. describes the orientation
instability, with ε = 0.276, A0 = 2.81 for fully inelastic particles [20]. Terms
proportional to v0 arise from bacterial swimming with respect to the fluid.

The in-plane fluid velocity v obeys the Navier-Stokes equation with forcing
due to bacterial swimming

∂tv + v ·∇v = ν∇2v −∇p− βv + ατ , (6)

with ∇ · v = 0 by incompressibility. In Eq. (6), ν = ν0/Drl
2 is renormalized

viscosity, where ν0 is the fluid kinematic viscosity, p is the pressure, and ατ ,
with α ∼ v0, models the forcing due to bacterial swimming. While our ex-
periments, along with earlier ones [1], are performed in the free-standing thin
film geometry, the surfactant accumulated on both surfaces of the liquid film
play the role of semi-flexible walls, resulting in a nontrivial velocity profile
across the film, and, consequently, viscous dissipation. The forcing term in
Eq. (6) is formally different from that for the self-propelled particles proposed
in Ref. [11], where the force is represented by the divergence of certain three-
dimensional stress tensor σij , but integration of that stress tensor over the
film’s cross-section produces a contribution ∼ τ due to boundary effects. The
damping term βv is generated by the thin film surface elasticity resulting in
the partial slip condition for the velocity on the surface of the film

To eliminate the pressure p and satisfy continuity equation we introduce
the stream function ϕ, with vx = ∂yϕ, vy = −∂xϕ, and Ω = ∇2ϕ. Then
Eq. (6) yields

∂tΩ + v ·∇Ω = ν∇2Ω − βΩ + α (∂yτx − ∂xτy) . (7)

Eqs. (4), (5), and (7) form a closed system. For flows with vanishingly small
Reynolds numbers Re (as we deal with) the advection term v ·∇Ω can be
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neglected relative to the viscous dissipation ν∇2Ω, but we keep it since a sim-
ilar term is included in Eq. (8). While Re for individual swimming bacterium
is exceedingly small, for the collective flows Re can grow significantly. To sim-
plify the analysis we consider the constant density approximation ρ = ρ0 valid
for a large D0 values. Then Eq. (5) yields

∂tτ + v ·∇τ +
Ω × τ

2
(8)

= (ερ− 1)τ −A0|τ |2τ +D1∇2τ +D2∇∇ · τ

Eqs. (5), (7) have a steady-state solution corresponding to a homogeneous
stream of bacteria in a certain direction (e.g. along x): τx = τ0 = ((ερ −
1)/A0)1/2, τy = vy = 0, vx = V = ατ0/β. The most unstable modes in
the problem are longitudinal, and we examine stability of this state with
perturbations of the form (τ , Ω) ∼ exp[λt + ikx], where λ is the growthrate
and k is the modulation wavenumber. Linearization of (5) and (7) shows that
the equation for τx splits off, with a growth rate having a strictly negative
real part, λ = −ikV − 2τ20 − (D1 +D2)k2, while τy, Ω are coupled:

λτy = −ikV τy −
1
2
Ωτ0 −D1k

2τy (9)

λΩ = −ikV Ω − νk2Ω − βΩ − ikατy (10)

They yield the two growthrates λ:

λ1,2 =
1
2

(
−(D1 + ν)k2 − β − 2ikV

±
√

((D1 − ν)k2 − β)2 − 2ikτ0α
)

(11)

The instability occurs if the product ατ0 exceeds a critical value, whose
value can be deduced by examining the limit k → 0. An expansion in powers
of k of Re(λ) yields

Re (λ) �
(
α2τ20
β3

−D1

)
k2 +O(k4). (12)

Clearly, there is a long-wave instability if (ατ0)
2
> β3D1, see Fig. 9. The

threshold density for this instability ρp always exceed critical density of the
orientation transition ρc = 1/ε. However, ρp − ρc is small due to relative
smallness of the diffusion D1 ≈ 0.026. Since V = ατ0/β is the collective
steady-state swimming velocity, we can re-express the instability criterion
simply as V > Vd, where Vd =

√
βD1. Moreover, since β ∼ ν/d2, where d is

the film thickness, we find Vd =
√
νD1/d. The selected wavenumber km can

be obtained in the limit of large collective swimming speed V . Expanding (11)
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Fig. 9. Real part of growthrate, Re(λ), vs modulation wavenumber k for represen-
tative values of parameters.

for ατ0 � 1 we obtain

Re (λ) ≈ 1
2

(
−(D1 + ν)k2 − β +

√
|k|τ0α

)
+ · · · (13)

Then from (13) one finds (for (D1 + ν)k2 � β) the optimal instability
wavenumber:

k3/2
m =

√
τ0α/4(D1 + ν) . (14)

Correspondingly, a typical scale of spatial patterns arising at the threshold of
instability is given by Lm ∼ 1/km. We expect that this scale will be roughly
of the order of correlation length L.

We have conducted numerical studies of the full system (4), (5), and (7)
over a range of densities ρ, with periodic boundary conditions. A typical flow
pattern and distribution of orientation vectors |τ | is shown in Fig. 10. Re-
markably, over the entire computational domain the correlation between the
fields τ and v is close to zero, in agreement with experiment. However, there
is always local correlation between τ and v through Eq. (7).

As in experiment, the typical hydrodynamic velocity V̄ =
√
〈v2〉 − 〈v〉2,

and the velocity correlation length L was calculated. The results are shown
in Fig. 7c,d. The emerging picture of the transition has a strong resemblance
to a second order phase transition: the typical velocity V̄ ∼ √

ρ− ρc, and
the correlation length diverges at ρ → ρc, consistent with the prediction of
Eq. (14). In order to include effect of fluctuation, we added to the orientation
equation (5) a random force ζ(x, y, t), with correlation 〈ζ(x, y, t)ζ(x′, y′, t′)〉 =
2Sδ(x−x′)δ(y−y′)δ(t−t′), where S is the noise amplitude. Results for various
noise strengths are shown in Fig. 7c-d, where even a relatively small noise
(S = 1.2 × 10−7) smears the transition and removes the divergence of the
correlation length. For strong enough noise (S ∼ 10−5), one observes only a
gradual increase of the correlation length with the density, in agreement with
experiment in thin film.
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Fig. 10. Representative flow patterns obtained by solution of Eqs. (4), (5), (7) for
ρ0 = 3.8, D0 = 50, ν = 3, v0 = 0.2, α = 3, β = 0.5 in the periodic domain of 200×200
units. (a) magnitude of orientation field τ superimposed with the velocity field v.
Red color corresponds to maximum of |τ |, and blue to |τ | = 0. Arrows depict the
flow velocity v field. (b) Vertical vorticity field Ω shown instead of orientation τ .

4 Conclusions

We have studied collective bacterial swimming in thin free-standing liquid
films where the dynamics is essentially two-dimensional and the concentra-
tion can be adjusted continuously. Our results provide a strong support for a
pure hydrodynamic origin of collective swimming, rather than some chemo-
tactic mechanisms of pattern formation (chemotactic interaction, relevant for
slow “crawling” bacteria on substrate, does not play any significant role in
our experiment due to very fast mixing rates in the collective flow state) [25].
For instance, the primary chemoattractant (Oxygen) would be expected to be
highly uniform because of the thin film geometry with air on both side and
fast stirring of fluid by the bacteria. Swimming of bacteria in the direction of
their orientation is the underlying reason for the onset of large-scale chaotic
flows. The technique of “bacterial crowd control” utilized for the concentra-
tion and separation of bacteria by an electric field may find interesting future
applications for bioanalysis and miniaturized medical diagnostic devices. The
proposed model for the large-scale flows generated by ensembles of swimming
bacteria in thin films shows that the onset of coherence is attributed to the col-
lective hydrodynamic interaction between individual objects. This work was
supported by DOE grant W-31-109-ENG-38, and NSF PHY-0551742 (JOK
& REG).
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Summary. When particles pass through an orifice, jamming can occur. The ques-
tion is whether a jammed structure can be considered a new state of matter, and if
the flow behaves differently when approaching jamming. An experiment, consisting
of a silo filled with grains and an orifice at the base, is presented here. The jamming
probability is measured, and it is shown that above a certain orifice size no jamming
can occur. A power law divergence is found when that value is approached. Besides,
the flow rate is different for small and large orifices. For large orifices, the Beverloo
equation states that the flow depends on the diameter to the 5/2 power. But this
relation breaks down for small orifices. A new functional dependence is proposed, in
agreement with the experiments and the numerical simulations. Furthermore, the
statistical analysis of the fluctuations for small orifices shows anomalous behavior.

1 Introduction

Jamming has been recognized as a distinctive feature of granular matter [1].
A granular material (an assembly of a large number of solid particles, or grains,
among which only contact forces are relevant) is just a paradigm of a system
in which a flow can be arrested due to a jamming event. Glass-forming liquids,
colloids and foams, among others, share many features with granular matter
when their constituent elements get fixed and jammed, forming an amorphous
phase [2, 3]. Traffic and pedestrian flow, insofar as it can be considered a
current of solid particles, would also belong in this category.

We will focus on a particular granular flow that can get jammed, namely,
the outpouring of grains, driven by gravity, through an orifice at the base of a
silo. By choosing this system, we are restricting ourselves to a particular case
where some variables such as the compaction fraction –which is of utmost
relevance in many situations– are left to evolve freely. But at the same time
this allows us to explore methodically the features of the flow by changing just
one parameter, which is the size of the outlet orifice. This opens interesting
conceptual avenues to explore, such as the question of whether jamming can
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be defined as a phase transition. The wealth of knowledge amassed about
phase transitions could then be used to predict, control, avoid, undo or just
describe jamming.

Although we all have an intuitive idea of jamming, arising maybe from
our everyday experience with fragmented solids, it is not easy to provide a
rigorous definition of it. Despite the fact that jamming is in some aspects
similar to a liquid-solid phase transition, one of the key concepts involved is
the fact that the constituent particles are kept in place by external mechanical
stresses, instead of internal bonds between them. The mechanically stabilized
structures involve long chains of grains, some of them forming arches that are
sustained by the external forces [4]. When these forces are changed or cease
to act, the structures loose their stability. The formulation of this idea has led
to the definition of “fragile matter” [5], which in many cases is suitable for
the physical systems that can get jammed.

The experiments begin with the grains pouring freely from the aperture
at the base of the silo. Eventually, if the opening is not big (we will later
address the meaning of ‘big’ in this context) the flow will stop due to the
formation of an arch spanning over the opening. If the arch is broken the flow
will resume. Then an avalanche can be defined as the event developed between
the breakage of an arch and the spontaneous formation of another one that
interrupts the flow. The most readily available measurement is the size of the
avalanche (the number of grains fallen) and its duration. The data obtained
from a large number of avalanches allow us to describe the statistics of the
jamming events. From the size of the avalanche and its duration, the mean
flow rate can be obtained and analyzed depending on the size of the outlet
orifice.

Three questions will be addressed in this paper. The first one is whether
there are or not two different regimes, i.e. a regime in which the flow will be
arrested by arches of grains, and another regime in which the outpouring of
grains will never stop, and if a well defined transition separates them. We
will also look into the law for the mass flow rate. Indeed, for large orifices an
equation can be obtained that gives the number of beads fallen per unit time
as a function of the size of the orifice. It is reasonable to ask if this relation
is valid for small orifices, when jamming can occur, or if it fails, indicating
that the features of the flow are different in this case. And finally, we will
investigate if the grains move unusually when they are going to get jammed,
by paying attention to their displacement fluctuations. This knowledge could
eventually be used to devise strategies to avoid jamming. Before we proceed,
we will briefly describe our experimental devices. Finally, we will gather some
conclusions at the end of the paper.
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2 Experimental Set-Up and Numerical Procedures

The basic assembly we use in our experiments is a scaled cylindrical silo with a
circular orifice at the base. Beneath it, a scale is placed to measure the weight
of the grains. The number of grains in an avalanche can then be calculated.
We also measure its duration by means of a microphone that detects the sound
of the falling grains.

The filling procedure of the silo is always the same, so as to begin with the
same initial conditions in every run. The avalanche is started by means of an
air jet aimed from below at the exit orifice. The air jet produces just a local
perturbation that breaks the arch blocking the orifice, keeping the bulk of the
silo undisturbed. Moreover, due to the Janssen effect [6], the pressure at the
bottom of the silo does not change much –provided that the height reached by
the grains is more than twice the diameter of the silo. We have also checked
that the silo is wide enough so that the lateral walls do not influence the
results.

The experimental set-up has previously been described, so we refer the
interested reader to a previous paper [7] for additional details. A sketch is
provided in Fig. 1.

Fig. 1. Sketch of the experimental setup for the cylindrical silo. S: silo; M: micro-
phone; A: compressed air; O: oscilloscope; V: valve; W: scales.

Experiments have also been conducted in a two dimensional silo. This
container consists of two glass panes between which a gap slightly larger than
the bead diameter is left. Again, a scales beneath the opening at the base is
used to measure the size of the avalanche. Its duration is obtained in this case
through a photodetector that registers the time that a light beam has been
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blocked by falling grains. The experimental procedures are therefore much
similar to those in the cylindrical silo. In order to track the beads inside the
silo we have used a high-speed camera (Photron model Fastcam 1024, capable
of recording a window of 512x512 pixels at 3000 frames per second). In this
way, we have obtained the velocity profile of the grains inside the silo, we have
studied the fluctuations of grains as they move towards the outlet and we have
also measured the instantaneous flow rate. This device will be described in
more details in a forthcoming article [8].

In order to keep the experiment as simple as possible, we have used smooth
monodisperse spherical beads most of the time (see Table 1). As the beads
are big enough, we can safely ignore cohesive forces (arising from humidity,
electrostatic charge, etc.). In some runs, other kinds of beads have been used
to test the robustness of our results: polydisperse beads, rough spheres, and
irregular granular materials, such as sand, rice, lentils and others. It will be
indicated when needed. Most of the results presented in the following do not
depend on the bead material or size (otherwise it will be specifically stated).
In fact, the relevant parameter is R = D

φ , the ratio between the diameter of
the outlet orifice D and the diameter of the beads φ. We have checked this in
a variety of situations [9].

Table 1. Beads used in the experiments

Material Nominal diameter Diameter Density

(mm) (mm) (g/cm3)

glass 0.5 0.42 ± 0.05 2.2 ± 0.1

glass 1 1.04 ± 0.01 2.4 ± 0.1

glass 2 2.06 ± 0.02 2.2 ± 0.1

glass 3 3.04 ± 0.02 2.4 ± 0.1

lead 2 1.98 ± 0.06 11.4 ± 0.5

lead 3 3.0 ± 0.1 10.9 ± 0.5

Delrin 3 3.00 ± 0.02 1.34 ± 0.05

Stainless steel 1 1.00 ± 0.01 7.6 ± 0.3

We have also carried out computer simulations of disks in two dimen-
sions using soft particle molecular dynamics [10]. The details of the repulsive
forces and the dissipative terms used in the model can be found in [11]. The
numerical experiment involves about 5000 disks (compared with more than
two hundred thousands in real experiments), but it allows us to enlarge the
range of parameters in which we can obtain data, and to increase the spatial
resolution.
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3 Jamming Probability

The first set of results from which we start is the statistics of avalanches.
For each adimensional size of the orifice R we recorded typically about 3000
avalanches, although in a few cases ten times more were registered. The his-
togram for the number of beads s in the avalanche is shown in Fig. 2, where
the number of occurrences of the avalanche of size s for an orifice of size R is
called nR(s). The histograms for other orifice sizes are similar; the only con-
spicuous difference are the number of very small avalanches (i.e. the portion
of the histogram to the left of the maximum). If we ignore these few points
–which are not relevant unless the outlet orifice is of a size comparable to
the bead diameter– the histogram shows an exponential decay, as evidenced
in the inset of Fig. 2. This means that the phenomenon under study has a
characteristic magnitude –such as, for instance, the mean avalanche size, the
mean avalanche duration, or others, as long as they are related.

Fig. 2. Histogram of the avalanche size s (number of beads fallen) for an orifice
R = 3. The inset shows the same data in semilogarithmic scale with a linear fit
(solid line).

The existence of a characteristic parameter allows us to rescale the his-
tograms, using for example the mean avalanche size 〈s〉. As expected, all the
histograms collapse now in a single curve (see Fig. 3), except for very small
values of s/〈s〉, as noted before.

A simple model to describe the statistics of avalanches can be built from
this ground [12], and it will lead to a simple mathematical expression of the
jamming probability. The starting point is to assume that the probability
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Fig. 3. Normalized histogram for a series of openings R as indicated in the legend, in
semilogarithmic scale. The rescaling has been performed dividing in each histogram
the avalanche size s by the mean avalanche 〈s〉 corresponding to that particular R.

of a bead to get jammed when passing through the outlet orifice does not
depend on the probability that nearby beads get jammed. This amounts to
consider that the events consisting of a bead passing through the orifice are
independent. In this simple model, we can represent the outflow as a linear
series of events, each one corresponding to a bead that either passes through
the orifice without getting jammed, with probability p, or it gets jammed at
the orifice with probability 1− p (and the flow stops). Then, the probability
of finding an avalanche of size s for a given R is equal to the probability of s
beads falling through the orifice followed by a bead that gets jammed, i.e.

nR(s) = ps (1− p) ⇒ log (nR(s)) = s log(p) + log(1− p) (1)

This expression allows us to obtain p from the linear fit of the histogram
as displayed in the inset of Fig. 2: the slope of the straight line is just log(p).
Note that p is also related to the mean avalanche size, because p is the total
number of beads fallen in a series of avalanches divided by the number of
fallen beads plus the number of jamming events, and then p = 〈s〉/(〈s〉+ 1).

Let us now define the jamming probability J as the probability that the
flow gets arrested before N beads fall. Obviously, the jamming probability
depends on N and on the size of the outlet orifice R. We can write

JN (R) = 1−
∞∑

s=N

nR(s) (2)

which is just the statement leading to the definition of J , i.e. the probability
that the avalanche is smaller than N .
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If the avalanche size is rescaled by 〈s〉, so that

s∗ = s/〈s〉 (3)
n∗R(s∗) = 〈s〉 nR(s) (4)

Considering orifices large enough, so that 〈s〉 � 1, substituting p in terms of
〈s〉 we get

n∗R(s∗) =
(
1 + 〈s〉−1

)−1
exp
[
−s∗ 〈s〉 ln

(
1 + 〈s〉−1

)]
→ e−s∗

(5)

and

JN (R) = 1− pN = 1− exp
[
−N ln

(
1 + 〈s〉−1

)]
→ 1− e−N/〈s〉 (6)

Equation (5) is just the expression of an exponential tail as presented in
Fig. 3. We will now turn to (6) and see how it compares to the experimental
values obtained for J . In order to do this, we have collected data for about
fifty different R. If we fix N at some particular value, we can calculate from
the data JN for each R. For instance, in Fig 4(a) we plot J for N = 100 beads
in a range of outlet orifices going from about R = 1.3 to R = 4.3. If we look
at small R, say R = 2, the value of J100 is almost 1, meaning that for such a
small orifice the probability that a jam occurs before 100 beads have fallen is
very high. For large orifices (say, R = 4) J is almost 0, so that there is a small
probability that the outpouring of beads will get arrested before 100 beads
fall. At about R ≈ 3 the jamming probability is 1/2. The solid line is the fit
provided by (6). Note that there are no free parameters in the fit, as 〈s〉 is
also obtained experimentally.

Fig. 4. The jamming probability J as a function of R. (a) J(R) for N = 100.
(b) J(R) for N = 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000
(color changes from orange to red as N increases). The solid lines are the fits given
by (6).

The same can be done for different values of N , which are displayed with
the corresponding fits given by (6) in Fig 4(b). Let us remark that the agree-
ment between the model and the experimental data does not validate the
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model; it merely indicates that the model can be used as a good approxima-
tion. There are indeed other more complicated models, with some theoretical
foundations, that also agree with the experimental data [13].

One interesting feature that can readily be observed in Fig 4(b) is that
J tends to a step function as N increases. Note that the series of N used in
the plot is not a linear progression, so this tendency is really marked. The
same idea can be staten in a different way. For a very large number of beads
(N →∞), there are only two possibilities: either the orifice gets blocked, with
probability very close to one, for small R, or the flow will never jam, even after
waiting for very long times, if the size of the orifice is big.

The value of R separating the two situations is called the critical radius
Rc because it is found that the mean avalanche size diverges as a power
law as this value is approached [9]. Remark that although this divergency is
found in some phase transitions, the inverse is not true, i.e. its existence does
not warrant to conclude the presence of a phase transition. It is nevertheless
enough to show the existence of two different regimes, one of them where the
flow will eventually stop, and another in which it will never jam.

The value of Rc can be calculated from the mean avalanche size:

〈s〉 =
A

(Rc −R)γ (7)

where A, Rc and γ are free fitting parameters. Both of them depend on the
shape of the grains, but not on other characteristics such as the roughness or
the density of the particles. For spherical grains, it has been obtained [7] that
Rc = 4.94± 0.03.

Even though A, Rc and γ depend on the shape of the grains, the power
law is always observed (see Fig. 5), so even in these cases the existence of a
critical radius can be asserted. The value of γ is usually much higher than in
“typical” phase transitions; for instance, the fit gives γ = 6.9 ± 0.2 for glass
spheres.

4 The Flow Rate at the Outlet

In this section we will address the question of the mass flow rate at the outlet
of the orifice. In particular, we investigate whether there are differences on
the flow rate law between big and small orifices (‘small’ meaning R � Rc, as
explained in the previous section).

The most widely accepted expression for the mass flow rate of particles
is commonly called Beverloo’s law [14, 15]. This equation is valid for the
outpouring of grains through an orifice due to gravity, and it can be obtained
from a dimensional analysis of the problem. Earlier experiments had shown
that if the dimensions of the silo, the size of the beads and the diameter of
the outlet orifice fulfilled certain geometrical conditions, then the flow rate is
independent on the details of the container. Let us then suppose that the mass
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Fig. 5. The dependency of the mean avalanche size 〈s〉 on R for rice (triangles),
lentils (diamonds), spherical glass beads (squares) and irregular pasta grains (cir-
cles).

flow rateW depends on the density of the granular material $, the acceleration
due to gravity g, the orifice diameter D and the friction coefficient μ. A
simple dimensional analysis leads to the conclusion that the only permissible
relationship is the following:

W = C(μ) $
√
g D5/2 (8)

There is an alternative line of reasoning leading to the same formula. The
flow rate must be proportional to the product of the velocity v times the area
of the orifice. If it is assumed that the grains fall freely from a height D/2,
then W ∝ v D2 and therefore W ∝ √g D5/2. Note that the relationship for a
two dimensional silo with a slit at the base is W ∝ D3/2.

However, the scaling law D5/2 is at odds with experimental results. In an
attempt to rescue it, the concept of “empty annulus” [16] was taken in the
formula. It means that the grains in fact do not use the whole orifice, but an
effective exit aperture given by D − kφ, where k is a free parameter. Using
values of k between 1 and 3, many experimental results have been fitted with
this equation:

W = C(μ) $
√
g (D − kφ)5/2 (9)

which is generally known as the Beverloo law.
This formula, however, has only been checked for a small range of outlet

sizes, and for big values of R. We present for the first time the mass flow
rate values for a large range of R. In order to combine in a single graph data
from different materials, we divide the flow by the mass of one bead, so Wb is
now the flow rate in number of beads per unit time. Our data are shown in
Fig. 6.
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Fig. 6. The flow rate as a function of R for different spherical grains, in logarithmic
scale: glass (circles), lead (triangles) and Delrin (squares). The solid line is a fit
with (9).

As expected, there is a small dependency of Wb on the material proper-
ties, probably due to the friction coefficient, but surely not to $ (Delrin is
lighter than glass while lead is heavier, and for both Wb is smaller than for
glass).

It turns out that it is not possible to fit these data with Beverloo’s equation
(9). The only possible way to retain the scaling W ∝ R5/2 in agreement with
the data for big R is to take k = 1 [8], which is the fit shown in Fig. 6. But
then the flow rate predicted by (9) for small R depart noticeably from the
experimental results.

The reason why Beverloo’s formula (9) enjoys such a wide acceptance is
because it can fit the data if only a small enough range of R is considered.
This fact is more readily observed if we plotW 2/5

b vs. R (Fig. 7). The intercept
of a linear fit on the axis gives the value of k. In Fig. 7 we show such a fit for
the data corresponding to R > 50, which is clearly unsatisfactory for small
R. Any small interval of R can be reasonably fit with a straight line, and
the fitting parameters provide the values for C and k. If a large interval is
considered, however, a linear fit is not acceptable.

It is clear that (9) must be modified to agree with the experimental results.
We have calculated the deviation of the prediction given by this formula with
respect to the experimental result, and we have shown that it has the form
of a negative exponential [8]. We therefore propose a new expression for the
flow rate:

Wb = C ′
(

1− 1
2
e−b·(R−1)

)
(R− 1)5/2 (10)

The fit obtained with this equation is shown in Fig. 8.
In summary, we have proved that the parameter k, which was introduced

arbitrarily in the equation for the mass flow rate, is not a valid option in the
sense that it does not give an acceptable result for a large range of orifice
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Fig. 7. W
2/5
b as a function of R for small outlet sizes (only data for glass beads is

shown). The dashed line is a linear fit taking only the data for R > 50.

Fig. 8. The data for glass beads (same as in Fig. 6) fitted with (10). The values of
the constants are C′ = 64 and b = 0.05.

sizes. The only value that makes sense is k = 1, as Wb must tend to zero as
R→ 1. The scaling with R5/2 must be considered an asymptotic limit for big
orifices, where a continuous picture of the granular flow becomes valid.

5 The Movement of Particles Inside the Silo

In this section the movement of individual grains inside the silo will be de-
scribed. In previous works, several models have been proposed to reproduce
the velocity field inside the silo . Despite the fact that these models are based
on different assumptions and hypothesis, most of them end with the same
expression for the mean vertical velocity. Let us follow the line of reasoning
proposed by Nedderman and Tüzün [17] to derive their “kinematic model”.
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The simplest relation that makes sense between the horizontal and vertical
components of the velocity (u and v, respectively) is

u = −B ∂v
∂x

(11)

which means that the particles tend to be dragged to those zones where the
vertical velocity is higher. Justifications to this formula have been offered in
terms of the Reynolds dilatancy principle or from statistical arguments [18,
19], but its theoretical foundation remains precarious. Remark that therefore
the meaning of the parameter B is unclear.

Coupling this with the assumption that the continuity equation holds for
granular media, an expression for the vertical velocity is obtained:

v = − Q√
4πBy

exp
(
− x

2

4By

)
(12)

where Q is the flow rate through the exit orifice, and x and y are respectively
the horizontal and vertical coordinates, taking the center of the orifice as the
origin.

We have measured this profile by tracking the grains inside the silo. As
we need visual access to the particles, we turned to the two dimensional silo
described above, in which the beads can be tracked with high resolution. In
order to avoid temporal or spatial short-range correlations, which are prone
to appear in two dimensional silos, we have performed 24 runs, every one
involving the tracking of at least 3000 particles, to obtain each velocity profile.
Our results are shown in Fig. 9, which are the vertical velocities across the
silo at four different heights measured for an orifice size R = 15.8.

It can be seen that the formula (12) reproduces quite well the experimental
results. This is only true, however, for the mean velocity profile: there is a large
dispersion of the velocity around its mean value. Further agreement comes
from the fact that the variable Q (which was a free parameter of the fit) and
the measured flow rate at the outlet differ by 10% at most.

It is interesting to study the behavior of the parameter B (sometimes
called the kinematic parameter) as a function of the height above the orifice
(see Fig. 10). This relationship had previously been reported, and while some
authors propose an exponential growth [20] compatible with our data, others
have found otherwise [21, 22].

There have been some attempts to provide a physical meaning for the
parameter B. By assuming that there are characteristic time and length scales
in the movement of the particles, B can be identified with a diffusive length
[18, 19]. However, the predicted value is way off the experimental results. In
order to correct this disagreement, an alternative model was proposed in terms
of diffusion of voids inside the granular material. The idea is that a void is
“shared” among several grains that move collectively, forming an ensemble
called a “spot” [23]. By adjusting the size of the spot, a value of B compatible
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Fig. 9. Vertical velocity profiles inside the silo at different heights: (a) y = 355 mm;
(b) y = 155 mm; (c) y = 65 mm; (d) y = 30 mm. All the plots are at the same
scale. Solid lines are fits using (12). The diameter of the orifice is D = 15.8 mm and
the diameter of the beads is φ = 1 mm.

with experiments can be found. Nevertheless, there is no sound reason for
assigning a size to the spot other than recovering the experimental result.
This issue remains still unclear.

We have paid special attention to the fact that there is a large dispersion of
velocities around its mean local value. All the above cited models in some way
or another lead to the prediction of Gaussian fluctuations and normal diffusion
for the particles as they move downwards inside the silo. Some recent results,
however, do not agree with this picture [24].

We have found, both experimentally and numerically [11, 25], that the
displacement fluctuations are not Gaussian. This happens for both large and
small R, although we do not know whether there are differences between both
situations. We show an example of these fluctuations in Fig. 11.

It is clear that anomalous behavior (in the sense of non-Gaussian fluctu-
ations and diffusion departing from normal) is present. The extent to which
this influences jamming is being actively studied.
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Fig. 10. The value of the parameter B (divided by the bead diameter to make it
dimensionless) as a function of the height for three different orifice sizes: R = 4.8
(squares), R = 9.5 (circles) and R = 15.8 (triangles).

Fig. 11. The histogram for the fluctuations of the particle positions. They corre-
spond to the fluctuations in the horizontal coordinate (a) and the vertical coordinate
(b), for R = 15.9. They are at the same scale and normalized by the standard de-
viation. The solid lines are the Gaussian best fits.

6 Conclusions

In this paper we have addressed the issue of jamming in a granular flow,
driven by gravity, through an orifice. In this simple system, some conclusions
can be reached. As they are quite general, it would be interesting to check
their validity in other situations beyond the one presented here. Recall that in
our experiments we cannot change at will the density of the granular material
(i.e. the compaction fraction).
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We have shown that the jamming phenomenon is governed by a character-
istic parameter. As there exist a relationship among several relevant variables,
one of them can be chosen without lack of generality. We have singled out the
mean avalanche size 〈s〉. It has been found that 〈s〉 tends to infinity as a
given value of the orifice size Rc is approached. We call this value critical
radius because a power law divergency is found. Therefore, there are two dis-
tinct possibilities: either a jamming will appear eventually if the orifice size is
smaller than Rc, or a jamming will never take place –even after waiting for
a very long time– if R > Rc. This fact is universal and does not depend on
the material properties of the grains, such as density, roughness, and so on.
On the contrary, the particular value of Rc does depend on the shape of the
grains [26].

The behavior of the mass flow rateW through the exit orifice has also been
studied. We have shown that the scaling W → R5/2 is asymptotically valid
for big orifices (big meaning R � Rc). Nevertheless, the correction usually
introduced in Beverloo’s equation (stemming from the notion of an effective
aperture, and its reduction in the shape of an “empty annulus”) is not valid
in the sense that it cannot reproduce the experimental results spanning over a
large range of R. We instead propose another formula that corrects the value
of W for small orifices, by a multiplicative term involving an exponential. We
cannot offer at the moment a meaning for the parameters in this correction
term; this issue must be explored further.

The motion of individual particles inside the container also reveals inter-
esting features. At long time scales, the shape of the mean velocity profile is
correctly described by diffusive models. But the behavior of individual par-
ticles at short time scales shows non-Gaussian fluctuations and anomalous
diffusion, which is at odds with the mentioned models. We have shown that
for small R there exist particular features of the flow rate, and jamming can
appear, blocking the flow. We do not know if there are specific characteristics
of the motion of particles at small time scales when the exit orifice is small;
we are looking into this issue, because it can give hints on how to prevent the
occurrence of jamming.
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10. Schäfer J, Dippel S, Wolf DE (1996) J. Phys I(France) 6:5–20.
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Summary. We address the slow, dense flow of granular materials as a continuum
with the incompressible Navier-Stokes equations plus the fluctuating energy bal-
ance for granular temperature. The pseudo-fluid is given an apparent viscosity, for
which we choose an Arrhenius-like dependence on granular temperature; the fluctu-
ating energy balance includes a ‘mobility enhancing’ term due to shear stress and a
jamming, dissipative term which we assume to depend on the isotropic part of the
stress tensor and on shear rate. After having proposed a ‘chemical’ interpretation
of the phenomenology described by the model in terms of reaction rates, we report
results for some 2-D standard geometries of flow, which agree semi-quantitatively
with experimental and DEM observations. In particular, our model well reproduces
the formation of stagnant zones of a characteristic shape (e.g. wedge-shaped static
zones in a silo with flat bottom) without prescribing them a-priori with erosion
techniques.

1 Introduction

Granular media exhibit a wide range of flow regimes [1], as well as a plethora of
dynamical instabilities [2]. Focusing on gravity (or shear) driven flows, three
regimes have been pointed out: (1) the collisional (gas-like) regime, where
energy is dissipated by the inelasticity of the collisions, (2) the dense flowing
(liquid-like)regime, in which particles undergo long lasting contacts, and dissi-
pation occurs through dynamic friction, and (3) the static (solid-like) regime,
which is capable to maintain structures due to the threshold, non-linear na-
ture of static friction. These regimes were studied with both experiments and
discrete models, the latter having experienced a great advance in the last
years, starting from the work of Cundall and Strack [3].

Reliable continuum models would be of great advantage in simulating gran-
ular media, particularly when dealing with complex geometries or flows; in fact
a unifying theory is still lacking. In this perspective, regimes (1) and (3) have
been worked out with some success in a variety of theoretical studies, respec-
tively with the kinetic theory of granular gases and with continuum critical

mailto:riccardo.artoni@unipd.it


488 Riccardo Artoni, Andrea Santomaso, and Paolo Canu

state soil mechanics. For the dense regime, various theoretical approaches have
been developed (and extensively reviewed in [4]); the last, more attractive one,
is that proposed by the GDR MiDi based on the inertial number I (see [5–8]),
the importance of which was already stated by Goddard [9].

In the following we will present our theory, which is based on conservation
laws and constitutive relations for transport and dissipative terms. Then we
apply the model developed to some standard configuration, and compare its
results with experimental findings.

2 Conservation Laws

Following the notation of Babic [10], the macroscopic space-time weighted
balance equations for mass, linear momentum and translational kinetic energy
have the following form (where we have changed the convention for the stress
tensor and the energy flux):

∂t (ρ̂) +∇ · (ρ̂v̄) = 0 (1)
∂t (ρ̂v̄) +∇ · (ρ̂v̄v̄) = −∇ · T̂ + ρ̂g + tF (2)
∂t
[
ρ̂
(
εT +ET

)]
+∇ ·

[
ρ̂
(
εT + ET

)
v̄
]

= −∇ ·
(
T̂ · v̄ + q̂T

)
+ ρ̂g · v̄ − zT + tF · v̄ +DTF (3)

We neglect the equation for the angular momentum, based on the assumption
that Cosserat effects are negligible, in the absence of external couples, even if
particles roll on the particle scale, as demonstrated by Goddard [11].

In most situations it is possible to neglect the transport terms arising
from the coupling with the interstitial fluid, i.e. tF and DTF ; recalling that
ET = (v̄ · v̄)/2, while εT = (ṽ · ṽ)/2 (where v̄ is the average velocity while ṽ is
the fluctuating part), taking the product of v̄ and equation 2, and considering
the tensorial relation ∇ ·

(
T̂ · v̄

)
− v̄ · ∇ · T̂ = T̂†: ∇v̄ for the stress tensor T̂,

where the superscript † stands for “transpose”, we can arrive to the equation:

∂t
(
ρ̂εT
)

+∇ ·
(
ρ̂εT v̄

)
= −T̂†: ∇v̄ −∇ · q̂T − zT (4)

where the energy flux vector qT and the energy dissipation rate zT appear,
that have a fundamental importance in this study.

With the help of the definition of granular temperature θ =< ṽ2 > /3 [12]
this turns to:

3
2
∂t (ρ̂θ) +

3
2
∇ · (ρ̂θv̄) = −T̂†: ∇v̄ −∇ · q̂T − zT (5)

Splitting the stress tensor as T̂ = pI+Π, being p its trace, and Π its deviatoric
part, Eq. 2 becomes:

∂t (ρ̂v̄) +∇ · (ρ̂v̄v̄) = −∇p−∇ ·Π + ρ̂g (6)
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Assuming the stress tensor to be symmetric, as a consequence of the absence
of couple stresses, Eq. 5 becomes:

3
2
∂t (ρ̂θ) +

3
2
∇ · (ρ̂θv̄) = −p∇ · v̄ −Π: ∇v̄ −∇ · q̂T − zT (7)

As a next step, let’s assume that the flow is nearly incompressible, so that
ρ̂ ≈ const. The continuity equation reduces to ∇· v̄ = 0; the linear momentum
balance changes into:

ρ̂∂t (v̄) + ρ̂v̄ · ∇v̄ = −∇p−∇ ·Π + ρ̂g (8)

As we argued in a recent paper [13], taking into account the dilatancy effects
assuming a compressible medium would be of great importance both for the
physical coherence of the model and for final applications. As a matter of fact,
in some geometries the solid fraction ν varies by more than 10% (for exam-
ple, in the discharge zone of a silo); this issue is important for applications in
which a gas flow is involved, in order to predict preferred paths and residence
time distributions of the gas. However, for the sake of simplicity, whenever ν
is known to vary less than 10%, we simplify the equations with the incom-
pressibility hypothesis; on the other hand, when the ν field is important and
its variations are not negligible in their magnitude, we shall use Eq. 7 which
is more general.

Making use of this approximation, the pressure term in Eq. 7 is multiplied
by ∇ · v̄ = 0, thus Eq. 7 becomes:

3
2
ρ̂∂t (θ) +

3
2
ρ̂v̄ · ∇θ = −Π: ∇v̄ −∇ · q̂T − zT (9)

3 Constitutive Relations

With the assumptions pointed out above, we arrived at three equations in
which the stress tensor T̂, the energy flux vector qT and the energy dissipation
rate zT are unknown. In order to solve our system of equations, we need now
to express some constitutive hypothesis for these variables. It is worthy to note
that the equations derived here come out only from conservation principles,
without taking into account the physical nature of the medium. This must be
done by providing the appropriate constitutive relations.

3.1 Stress Tensor and Energy Flux

Typically we shall assume that granular temperature can propagate by a
diffusion-like mechanism, thus proportional to its gradient [12],

qT = K · ∇θ (10)



490 Riccardo Artoni, Andrea Santomaso, and Paolo Canu

where K is the θ diffusivity tensor; hereafter we will suppose K = kI, so that:

qT = k∇θ (11)

Dense granular flows seem to exhibit a viscous-like character, whose origin
is a matter of debate; Savage [12] used previous results by Hibler [14] to
demonstrate that if a plasticity framework was applied to the instantaneous
stress field, with the hypothesis that the fluctuations were Gaussian, the av-
erage stress tensor had a viscous-like dependence on the average strain rate
tensor.

In this case, let’s suppose that a general relation holds of the form:

Πij = −η
(
∂vi
∂xj

+
∂vj
∂xi

)
(12)

such that the ‘granular liquid’ can be treated as a generalized Newtonian fluid.
Note that only the bulk viscosity appears due to the usual approximations and
the incompressibility condition.

The constitutive relations above have shifted the problem to determining
the constitutive coefficients k and η, which will be, in general, functions of all
the dependent and independent variables and their derivatives.

To represent the usual scaling of the flow profiles on particle diameter and
on bulk density, k and η must depend on ρ̂ and dp in the following way (primes
indicate functions of the remaining variables):

k = ρ̂d2pk
′ η = ρ̂d2pη

′ (13)

Granular materials are often considered to belong to the family of glassy sys-
tems, in which a transition between flowing and non-flowing behaviour can
be characterized by a sharp increase in viscosity. The liquid-glass transition
has been extensively studied, both experimentally and theoretically. The em-
pirical equation proposed long ago by Doolittle [15] for the fluidity (i.e. the
reciprocal of viscosity, η−1) of a glass is φ = φ0exp

(
−γ vm

vf

)
, where vm and vf

are the volume of the molecule and the free volume respectively. This relation
has been justified within a free volume approach [16].

A fully satisfactory description of granular flows in terms of a pseudocon-
tinuum is still lacking; consequently, we attempt a semi-theoretical approxima-
tion constructing an analog of the free volume of Doolittle equation. In doing
so, we could choose solid fraction (forgetting at the moment the incompres-
sibility assumption), that is the quantity with the closest physical meaning.
In fact, this analogy does not explain several aspects: solid fraction is more
a static than a dynamic measure of the free volume, while we need an ex-
pression of the local ‘mobility’ (a dynamic measure of the free volume) of the
medium. The role of mobility could be played by granular temperature, that,
being a measure of the amplitude of velocity fluctuations, is indeed related
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to the local capability to move. To solve this problem for packings, Edwards
[17] introduced the compactivity X, which is related to the capability of the
free volume to fluctuate, but not to the fluctuations of velocity. We think that
fluctuations of both the free volume and the velocity of the particles are im-
portant to describe the dynamics of granular assemblies, but at the moment
we suppose that for nearly stationary, dense flows, the fluctuations in the free
volume can become unimportant. With this in mind, we tentatively express
the viscosity of the granular medium as:

η′ = η0exp
(
E

θ

)
(14)

In the expression for η′ we have neglected a direct dependence on the history
of deformation (though it acts in some way through θ): while this hypothesis
is useful to work with simple equations, it could be an over-simplification
restricting the validity of the approach to the steady state.

For what concerns k′, we do not follow Savage who suggested k/η ≈ const,
extrapolating a result of Jenkins’ kinetic theory, which is not valid in the dense
regime under study. We consider at this moment k constant.

3.2 Energy Dissipation Rate

If we consider an over-simplified example, a pile of infinitesimal blocks sliding
one above the other in the absence of gravity and subjected to constant vertical
pressure, we can formulate the rate of dissipation of the specific energy:

ε̇diss =
dĖdiss

dV
= μP

dv

dz
(15)

Obviously, when applied to granular flows, this situation is quite simplistic; the
original network of forces of granular materials under shear together with the
bi/tri-dimensional arrangement of the particles and the threshold behaviour of
microscopic friction generate a tricky problem for the analyst. We will use Eq.
15 in a phenomenological way, just to say that the specific energy dissipated
per unit time is proportional to normal stresses and to the spatial gradients of
the velocity, which are related to a fundamental time scale of the system. We
will extend this result to higher-dimensional cases recalling that a measure
of the spatial velocity gradients is clearly the shear rate |γ̇|, and taking the
isotropic part of the stress tensor p as a measure of normal stresses, we can
write:

zT = μp |γ̇| (16)

where μ is now an effective coefficient (different from the microscopic friction
coefficient).
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3.3 A ‘Chemical’ Interpretation

The model developed here belongs to the class of hydrodynamic models, be-
cause it makes use of the balance equations, with a particular care for the
fluctuating energy equation. A significant difference between our model and
previous attempts [12, 18–20] lies in the different phenomenological closures,
which we have developed specifically for the intermediate regime, without
extrapolating results from the rapid flow regime.

Analysing the fluctuating energy balance equation with the help of the
constitutive relations, we see that it becomes:

3
2
ρ̂∂t (θ) +

3
2
ρ̂v̄ · ∇θ = −kΔθ + Q̇ (17)

where
Q̇ = −Π: ∇v̄ − zT (18)

The viscous heating term can be represented in Cartesian notation as:

η

(
∂vi
∂xj

+
∂vj
∂xi

)
∂vi
∂xj

= η |γ̇|2 (19)

Thus, the entire heating and cooling term can be formulated as:

Q̇ = |γ̇| (η |γ̇| − μp) = |γ̇| (|τ | − μp) (20)

One can see that the total net production (or consumption) of fluctuating
energy is expressed in a way that involves the timescale |γ̇|−1 and the difference
between the shear stress and a modified Coulomb criterion. Shear rate plays
the role of a kinetic constant, while the distance from the modified yield
criterion sounds more like an activity. If the material is not sheared, nothing
changes its potential mobility, because |γ̇| = 0⇒ Q̇ = 0. In addition, one can
easily see that for the case of plane shear (where the shear stress is constant,
and equal, say, to τ0), the shear rate resembles a kinetic constant with an
Arrhenius dependence on granular temperature:

|γ̇| = τ0
η
∼ exp

(
−E
θ

)
(21)

3.4 On Boundary Conditions

Given the system of equations and the closure relations, we can use our model
to simulate dense granular flows once boundary conditions are provided.

Focusing on the momentum balance, we are especially interested in dis-
cussing the typical BC to apply at proximity of a wall. It is a common practice
to assume a no-slip boundary condition at the walls, supported by the exper-
imental practice of gluing particles at the walls to control friction. At first,
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a question comes up about the physical consistence of such a hypothesis: are
we sure that the continuum, averaged interaction of mesoscopic grains is the
same in the bulk and between free and glued particles at the walls, provided
their totally constrained position? As a second consideration, we want to point
that most of the applications of our interest (industrial, geophysical, . . .) deal
with walls where both slip and no-slip (and, of course, intermediate behav-
iors) occur. Depending on the application, one would like to favour one or the
other limiting behaviour; in this perspective, a rigorous characterization of
wall friction in presence of a certain wall roughness has to be done, in order
to apply any model to a real situation.

A characterization of wall friction could be made with a Coulomb criterion,
or within a slip-length approach. The first corresponds to impose at the wall
the relation τ = μwσ between shear and normal stress (μw is a wall friction
coefficient), while the second (also called Navier slip condition) relates the
wall tangential velocity ut and its gradient computed on the normal to the
surface with the formula ut = λ∂ut

∂n , where λ is a so-called slip length. We are
convinced that investigating the influence of these (and possibly other) BCs on
the prediction of models could be a useful task, as we recently demonstrated
for mixing-length models in the vertical chute geometry [13].

For the fluctuating energy equation, basic research on BCs at the walls is
strongly needed; in this paper we use, for simplicity, either a constant wall-
temperature or an “insulation” condition (no flux of fluctuating energy).

4 Results for Some Standard Geometries

The paper by GDR MiDi [5] suggests the necessity to validate granular flow
models in a number of standard geometries, for which flow patterns are known.
We decided to focus our attention on 2 or 3-D geometries, following the idea
that some original features (formation of static zones, hourglass effect) of
granular flows are essentially 2 or 3-D and cannot be captured by 1-D reduc-
tions of the model. In this work we investigate the predictions of our model
concerning flow and stress fields, in silos with flat and tilted bottom walls; the
system of PDE was solved with a standard finite-element code.

4.1 Silo with Flat Bottom

In this section we present results for an axisymmetric silo with flat bottom,
800 particle diameters high and with a radius of 50 particle diameters dp.
A simple first choice for the parameters invoked by the model is resumed in
table 1. Flowrate is fixed at the orifice, no slip is assumed at the walls, together
with insulation for θ (i.e. k ∂θ

∂n = 0). Figure 1 summarizes the development of
the velocity profiles along the silo, from Bessel-like profiles near the orifice to a
plug flow with shear bands at the walls higher up the bin. In the higher part of
the silo shear bands are of order 10 diameters thick. The temperature profile
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Table 1. Parameters of the model

μ .3 adim
E 10 s2m−2

η0 1 s−1

k0 1 s−1

ρ 103 kg/m3

Fig. 1. Silo with flat bottom (all lengths are in dp units): (a) Velocity profiles
at different heights (b) Temperature profile far from the orifice (rescaled with the
average value) (c) (Rescaled) temperature map (d) Normal stresses (grey lines) and
Janssen equation (black lines) (σw = A [1 − exp (−B z)]).

is qualitatively approaching data, with a peak at the wall, where material is
sheared. Imposing a low temperature at the wall, we were able to reproduce
the fast decaying of θ close to the wall as observed in DEM simulations [5].
Looking at velocity maps and profiles near the orifice, we can see that our
model predicts well-defined static zones in the corners; this behavior can be
explained by analysing temperature maps. A narrow zone at higher θ develops
from the orifice to high up in the silo, finally positioning itself close to the
wall. In the framework of this model, this layer has a lower viscosity that
allows the two zones that it delimits to move independently one from another,
thus insulating the corner, which ‘cools’ due to pressure rearranging action.
Moreover, the map of granular temperature reveals that the flow pattern is
very similar to that proposed by Brown and Hawksley [21].
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Fig. 2. Silo with converging hopper: (a) Simulation of wall normal stresses (b)
Comparison between the model and a tracer.

As a next step, wall normal stresses as predicted by the model are shown
in figure 1d. Perhaps surprisingly, profiles follow qualitatively Janssen’s be-
haviour.

Finally, recent numerical simulations developed for non-stationary flow in
the silo, discharging freely, show that the model predicts a constant flowrate,
another original feature of dense granular flows.

5 Silo with Converging Hopper

If we tilt the flat bottom, usually for the purpose of eliminating the stagnant
zones, flow and stress profiles change dramatically, as shown in Fig. 2. At first,
the experimental stress field is different, with a peak close to the beginning
of the converging part. Our model predicts qualitatively also this behaviour.
About the flow field, stagnant zones have disappeared and a comparison be-
tween our own experimental data (for particles of size dp ≈ 3mm) and the
prediction of the model shows that a good agreement exists between calcu-
lated and experimental results. A Navier slip condition was imposed and the
slip length was fitted on the data, ending with a value of approximately ten
particle diameters.

6 Conclusions

In this work we derived a hydrodynamic model for dense granular flow, based
on conservation equations for mass, momentum and fluctuating energy, plus
constitutive relations based on phenomenological analyses and intuitions. Af-
ter having discussed some interpretation of the phenomenological picture in
terms of reaction rates, we presented results for a silo with flat bottom and
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with a converging hopper. Both stress and velocity profiles in the two cases
were analysed and showed to be in good agreement with the expected behav-
ior [5]. Furthermore, a good prediction on the formation of stagnant zones was
probed, giving insight on the possibility of modeling the jamming-to-flowing
transition within a continuum approach. Future efforts will be devoted to
parameter evaluation, in order to make quantitative predictions, and in this
perspective some general criterion to determine the parameters is needed.
Moreover, we plan to apply the model to other configurations, possibly be-
longing to the GDR MiDi [5] framework, to validate the model comparing the
predictions with experimental results.
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Summary. We analyze the contact and force networks in a dense confined packing
of pentagonal particles simulated by means of the contact dynamics method. The
particle shape effect is evidenced by comparing the data from pentagon packing and
from a packing with identical characteristics except for the circular shape of the
particles. A surprising observation is that the pentagon packing develops a lower
structural anisotropy than the disk packing. We show in this work that this weakness
is compensated by a higher force anisotropy that leads to enhanced shear strength
of the pentagon packing. With the polygonal shape of the particles, the strong force
chains are mostly composed of edge-to-edge contacts with a marked zig-zag aspect.

1 Introduction

The microstructure of granular materials is generically anisotropic in two re-
spects: 1) The contact normal directions are not random; 2) The force average
as a function of contact normal direction is not uniform. The corresponding
fabric and force anisotropies in shear are responsible for mechanical strength
at the scale of the packing [1–4]. The shear stress is fully transmitted via a
“strong” contact network, materialized by force “chains” and the stability is
ensured by the antagonist role of “weak” contacts which prop strong force
chains [4, 5]. These features have, however, been mostly part investigated in
the case of granular media composed of isometric (circular or spheric) parti-
cles.

In this paper, we consider one of the simplest possible shapes, namely reg-
ular pentagons. Among regular polygons, the pentagon has the lowest number
of sides, corresponding to the least roundedness in this category, without the
pathological space-filling properties of triangles and squares. We seek to iso-
late the effect of edge-to-edge contacts on shear stress and force transmission
by comparing the data with a packing of circular particles that, apart from
the particle shape, is fully identical (preparation, friction coefficients, particle

mailto:azema@lmgc.univ-montp2.fr
mailto:gilles.saussine@sncf.fr
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size distribution) to the pentagon packing. Both packings are subjected to bi-
axial compression simulated by means of the contact dynamics method. The
presence of edge-to-edge contacts affects both quantitatively and qualitatively
the microstructure and the overall behavior during shear. These contacts do
not transmit torques, but they are able to accommodate force lines that are
usually unsustainable in packings of disks.

2 Numerical Procedures

The simulations were carried out by means of the contact dynamics (CD)
method with pentagonal particles. The CD method is based on implicit time
integration of the equations of motion and a nonsmooth formulation of mutual
exclusion and dry friction between particles [6–8]. This method requires no
elastic repulsive potential and no smoothing of the Coulomb friction law for
the determination of forces. For this reason, the simulations can be performed
with large time steps compared to molecular dynamics simulations. We used
LMGC90 which is a multipurpose software developed in our laboratory, capa-
ble of modeling a collection of deformable or undeformable particles of various
shapes by different algorithms [9].

We generated two numerical samples. The first sample S1, is composed of
14400 regular pentagons of three different diameters: 50% of diameter 2.5 cm,
34% of diameter 3.75 cm and 16% of diameter 5 cm. The second sample S2,
is composed of 10000 discs with the same polydispersity. Both samples were
prepared according to the same protocol. The gravity was set to zero in order
to avoid force gradients in the samples. The coefficient of friction was set to
0.4 between grains and to 0 with the walls. At equilibrium, both numerical
samples were in isotropic stress state. The solid fraction was φ0 = 0.80 for S1
and φ0 = 0.82 for S2. The aspect ratio was h/l ≈ 2, where h and l are the
height and width of the sample, respectively. Figure 1 displays snapshots of
the two packings at the end of isotropic compaction.

Fig. 1. Snapshots of a portion of the samples S2 (a) and S1 (b) composed of circular
and pentagonal particles, respectively.
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The isotropic samples were subjected to vertical compression by down-
ward displacement of the top wall at a constant velocity of 1 cm/s for a
constant confining stress σ0 acting on the lateral walls. Since we are inter-
ested in quasistatic behavior, the shear rate should be such that the kinetic
energy supplied by shearing is negligible compared to the static pressure. This
can be formulated in terms of an “inertia parameter” I defined by [10]

I = ε̇
√
m

p
, (1)

where ε̇ = ẏ/y is the strain rate, m is the total mass, and p is the average
pressure. The quasistatic limit is characterized by the condition I � 1. In our
biaxial simulations, I was below 10−3.

3 Shear Stress

In this section, we compare the stress-strain behavior between the packings of
polygons (sample S1) and disks (sample S2). For the calculation of the stress
tensor, we consider the “tensorial moment” M i of each particle i defined by
[5, 11]:

M i
αβ =

∑
c∈i

f c
αr

c
β , (2)

where f c
α is the α component of the force exerted on particle i at the contact

c, rcβ is the β component of the position vector of the same contact c, and
the summation is run over all contacts c of neighboring particles with the
particle i (noted briefly by c ∈ i). It can be shown that the tensorial moment of
a collection of rigid particles is the sum of the tensorial moments of individual
particles. The stress tensor σ for a packing of volume V is simply given by
[5, 11]:

σ =
1
V

∑
i∈V

M i =
1
V

∑
c∈V

f c
α�

c
β , (3)

where 
c is the intercenter vector joining the centers of the two touching
particles at the contact c. We extract the mean stress p = (σ1 + σ2)/2, and
the stress deviator q = (σ1−σ2)/2, where σ1 and σ2 are the principal stresses.
The major principal direction during vertical compression is vertical, we then
define the volumetric strain by:

εp =
∫ V

V0

dV ′

V ′ = ln
(

1 +
ΔV

V0

)
, (4)

where V0 is the initial volume and ΔV = V − V0 is the cumulative volume
change.

Figure 2 shows the normalized shear stress q/p for the samples S1 and S2
as a function of shear strain εq ≡ ε1 − ε2. For S2, we observe a hardening
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behavior followed by (slight) softening and a stress plateau corresponding to
the residual state of soil mechanics [12]. For S1, we observe no marked stress
peak. The residual stress is higher for polygons (� 0.35) than for disks (�
0.28). The higher level of q/p for the polygon packing reflects the organization
of the microstructure and the features of force transmission that we analyze
in more detail below.

Fig. 2. Normalized shear stress q/p as a function of cumulative shear strain εq for
the samples S1 and S2.

4 Fabric Anisotropy

The shear strength of dry granular materials is generally attributed to the
buildup of an anisotropic structure during shear due to friction between the
particles and as a result of steric effects depending on particle shape [13–15].

The probability density function Pθ(θ), where θ is the orientation of the
contact normal n, provides the basic orientational statistical information
about the granular fabric. It is π-periodic in the absence of an intrinsic po-
larity for n. Most lowest-order information is generally given by the second
moment of Pθ, called fabric tensor [16]:

Fαβ =
1
π

∫ π

0

nα(θ)nβ(θ)Pθ(θ)dθ ≡
1
Nc

∑
c∈V

nc
αn

c
β , (5)

where α and β design the components in a reference frame and Nc is the
total number of contacts in the control volume V . By definition, tr(F ) = 1.
The anisotropy of the contact network is given by the difference between the
principal values F1 and F2. We define the fabric anisotropy a by

a = 2(F1 − F2). (6)
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Figure 3 displays a polar representation of Pθ(θ) for the samples S1 and
S2 at εq = 0.3. We observe a nearly isotropic distribution for the pentagon
packing in spite of shearing whereas the disk packing is markedly anisotropic.
This is a surprising observation in view of the higher shear strength of the
pentagon packing.

The evolution of a is shown in Fig. 4 as a function of εq for S1 and S2.
The anisotropy stays quite weak in the pentagon packing whereas the disk
packing is marked by a much larger anisotropy, increasing to � 0.3 and then
relaxing to a slightly lower value in the residual state. The low anisotropy
of the pentagon packing results from a particular organization of the force
network in correlation with the orientations of edge-to-edge and vertex-to-
edge contacts in the packing [17]. This leads us to consider the contributions
of force and texture anisotropies to average shear stresses.

Fig. 3. Polar representation of the
probability density function Pθ of the
contact normal directions θ for the
samples S1 and S2 in the residual state.

Fig. 4. Evolution of the anisotropy a with
cumulative shear strain εq for the samples
S1 and S2.

5 Force Anisotropy

The angular distribution of contact forces in a granular packing can be rep-
resented by the average force 〈f〉(n) as a function of the contact normal
direction n. We distinguish the average normal force 〈fn〉(θ) from the average
tangential force 〈ft〉(θ). As P (θ), these two functions can be represented by
their Fourier expansions truncated beyond the second term [1–4]:

{
〈fn〉(θ) = 〈f〉{1 + an cos 2(θ − θn)}

〈ft〉(θ) = 〈f〉at sin 2(θ − θt)
(7)

where 〈f〉 is the average force, an and at represent the anisotropies of the
normal and tangential forces, respectively, and θn and θt are their privileged
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directions. It is convenient to estimate the anisotropies from the following
“force tensors”: ⎧⎪⎪⎨

⎪⎪⎩
H

(n)
αβ =

π∫
0

〈fn〉(θ)nαnβdθ,

H
(t)
αβ =

π∫
0

〈ft〉(θ)nαtβdθ.

(8)

Then, we have tr(H(n)) = 〈f〉, and

⎧⎪⎨
⎪⎩
an = 2H

(n)
1 −H

(n)
2

H
(n)
1 +H

(n)
2

,

at = 2 H
(t)
1 −H

(t)
2

H
(n)
1 +H

(n)
2

,

(9)

where the subscripts 1 and 2 refer to the principal values of the tensors.

Fig. 5. Evolution of force anisotropies an (a) and at (b) as a function of cumulative
shear strain εq in samples S1 and S2.

Figure 5 shows the evolution of an and at with εq in samples S1 and S2. We
see that, in contrast to fabric anisotropies (Fig. 4), the force anisotropies in the
pentagon packing remain always above those in the disk packing. This means
that the aptitude of the pentagon packing to develop large force anisotropy
and strong force chains is not solely dependent on the global fabric anisotropy
of the system. Indeed, due to the geometry of the pentagons, i.e. the absence of
parallel sides, the strong force chains are mostly of zig-zag shape, as observed
in Fig. 6, and the stability of such structures requires strong activation of
tangential forces. This explains, in turn, the large value of at for pentagons,
very close to an, whereas in the disk packing at is nearly half of an.

The anisotropies a, an and at are interesting descriptors of granular mi-
crostructure and force transmission as they underlie the shear stress. Indeed,
it can be shown that the general expression of the stress tensor Eq. (3) under
some approximations leads to the following simple relation [3, 15]:

q

p
� 1

2
(a+ an + at), (10)
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Fig. 6. Snapshots of normal forces in samples S2 (a) and S1 (b). Line thickness is
proportional to the normal force.

where the cross products ana and ata between the anisotropies have been
neglected compared to the anisotropies, and it has been assumed that the
stress tensor is coaxial with the fabric tensor Eq. (5) and the force tensors
Eq. (8). Fig. 7 shows that Eq. (10) holds quite well both for pentagons and
disks. This equation provides an amazingly good estimate of the shear stress
from the anisotropies under monotonic shearing.

Fig. 7. Evolution of the normalized shear stress q/p for the samples S1 and S2 with
εq together with the corresponding predictions from its expression as a function of
fabric and force anisotropies Eq. (10).

A remarkable consequence of Eq. (10) is to reveal the distinct origins of
shear stress in pentagon and disk packings. The fabric anisotropy provides a
major contribution to shear stress in the disk packing (Fig. 4) whereas the
force anisotropies are more important for shear stress in the pentagon packing
(Fig. 5). In this way, in spite of the weak fabric anisotropy a, the larger force
anisotropies an and at allow the pentagon packing to reach higher levels of
q/p compared to the disk packing.
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6 Conclusion

The objective of this paper was to isolate the effect of particle shape on shear
strength in granular media by comparing two similar packings with different
particle shapes: pentagons vs. disks. We observed enhanced shear strength and
force inhomogeneity in the pentagon packing. But, unexpectedly, the pentagon
packing was found to develop a lower structural (fabric) anisotropy compared
to the disk packing under shear. This low fabric anisotropy, however, does not
prevent the pentagon packing from building up a strong force anisotropy that
underlies its enhanced shear strength compared to the disk packing.

This finding is interesting as it shows that the force anisotropy in a gran-
ular material depends on the particle shapes. This mechanism may be the
predominant source of strength for “facetted” particles that can give rise to
edge-to-edge (in 2D) contacts allowing for strong force localization along such
contacts in the packing. Since the fabric anisotropy is low in a pentagon pack-
ing, the role of force anisotropy and thus the local equilibrium structures
are important with respect to its overall strength properties. With pentagon
packings, we were able to demonstrate the nontrivial phenomenology resulting
from the specific shape of particles as compared to a disk packing. We found
a similar behaviour for other regular polygons (hexagons and higher number
of sides) as well as polyhedral particles in three dimensions.
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Summary. We measured simultaneously the drag force on a cylindrical object (in-
truder) induced by the flow of a dense 2D bidisperse granular material around it,
and the displacements of the individual grains. This type of experiment provides a
way to examine the local rheological properties of the material. We found that the
measured drag force increases sharply with the packing fraction near φ∗ = 82.35%,
indicating a transition to jamming. The dependence of the drag force on φ is clearly
related to a decrease in the area of the empty cavity that forms behind the intruder.

1 Introduction

The flow of granular materials and the possible clogging and jamming around
a solid object are of great importance in many engineering applications and
natural phenomena, e.g., the flow of avalanches around obstacles, pile driving
for deep foundations, and penetrometer measurements in sandy soils. From a
fundamental point of view, measuring the drag force on an immersed object is
a key method for characterizing the rheological properties of the surrounding
medium, analogous to the Stokes experiment for viscous fluids. This type of
experiment should lead to a better understanding of yielding in granular media
by observing directly the structural and dynamical features of the transition
between rest and flow and, more generally, provide insight into the mechanisms
of plasticity in dense and disordered materials. While many studies have char-
acterized flow and jamming in granular materials by applying a macroscopic
shear or global vibration, only a few experiments (e.g., [1–4]) or numerical
studies [5–7] directly tested the local rheological properties by considering
slow, dense granular flow in the presence of an immersed obstacle. Albert et
al. [1] studied the drag force on a rod immersed in a slowly rotating granular
bed; due to the 3 dimensional (3D) geometry they could not visualize the
flow of grains around the rod. They measured the fluctuations observed in the
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drag force and explained them using a stochastic failure model describing the
formation and breaking of force chains between the grains and the immersed
object [6]. These force chains were observed experimentally in a similar exper-
iment on a 2D system by Geng and Behringer [3], in which they measured the
drag force on a cylindrical object immersed in a packing of photoelastic par-
ticles, which enabled the visualization of the formation and collapse of force
chains. They also analyzed the force fluctuations as a function of the packing
fraction and flow velocity; however, they did not track the motion of the indi-
vidual grains. Chehata et al. [2] studied the flow of dense, frictional granular
matter around a cylinder in a quasi-2D vertical chute. They measured the flow
field around the cylinder directly using a PIV (Particle Image Velocimetry)
technique, and related it to the drag force for different flow velocities (without
controlling the packing fraction). In other drag experiments, the translation
(e.g., [8–11]) or rotation [12] of the obstacle was imposed, instead of that of
the surrounding granular medium. Similar drag experiments and simulations
were also performed in 2D [13, 14] and 3D [15] foams, as well as in colloidal
suspensions [16] and viscoelastic micellar fluid [17]. The main novelty of the
present work is the simultaneous measurement of the drag force on a rather
small obstacle (“intruder”) and the trajectories of the individual grains for
different packing fractions of the surrounding medium.

2 Experimental Setup

The 2D granular material used in the experiments consists of about 6700
nickel-coated brass cylinders (see, e.g., [18]). In order to obtain a disordered
packing, we use a mixture of cylinders of outer diameters d1 = 4 mm and d2 =
5 mm with an equal mass ratio. The cylinders are placed on a horizontal glass
plate delimited by four brass walls which form a rectangular frame of constant
width W = 269.5 mm (54d2) and an adjustable length L between 457.5 mm
(91d2) and 470.5 mm (94d2). The intruder is a brass cylinder of diameter
D = 20 mm (4d2) whose center is placed at an equal distance from the two
lateral walls (see Fig. 1). The total number of cylinders is kept constant, but

Fig. 1. The experimental setup.



Motion of an Intruder Through a 2D Granular Medium 509

the total surface W × L is varied to control the packing (area) fraction φ, in
the range between φ = 80.13% and φ = 82.41% (the maximum corresponding
to a nearly jammed state). The intruder is attached to a rigid transverse arm
whose two extremities are connected to identical force sensors. The equivalent
stiffness of the measurement device is Keff = 86000 N/m, large compared to
the maximum measured effective stiffness of the packing. The vertical position
of the intruder is fixed slightly above the horizontal glass plate, to ensure there
is no friction between the intruder and the plate. The coefficient of friction
between the intruder and the other grains, as well as among the grains, is
μgrain-intruder = μgrain-grain = 0.32. The grains are in frictional contact with
the bottom glass plate (μgrain-bottom = 0.30); the intruder is fixed in the
laboratory frame, while the bottom plate is translated, inducing a motion
of the grains relative to the intruder. Before each run, the grains are mixed
carefully to prepare a homogeneous packing. The intruder is initially located
at a distance of 110 mm from the back wall. In each run, the plate is moved
using a high-torque motor at a constant speed V0 = 1.666 mm/s until the
intruder reaches a distance of 110 mm from the front wall. We performed 10
independent runs for each of the packing fractions studied.

The drag force on the grains is recorded at intervals of 1/6 mm (d2/30)
displacement of the plate. A CCD camera of 768 × 576 pixels placed above
the setup records images at intervals of 1 mm (d2/5), and covers a frame of
150 mm× 113mm (30d2 × 22d2).

3 Results

3.1 Force Measurements

Figure 2 presents typical force signals obtained for different packing fractions
φ. The force exhibits large fluctuations, reaching values as high as 35 N (which
is larger than the maximum static friction between the grains and the plate,
i.e., the force is transferred to the walls). The precision in the force measure-
ment (corresponding to the noise level measured in the absence of grains)
is 0.11 N. As shown in Fig. 2, both the mean force and the fluctuation am-
plitude increase with the packing fraction, exhibiting a very sharp increase
for the largest packing fractions. In addition, the envelope of local minima
and maxima of the force becomes wider as the intruder approaches the front
wall; this effect appears similar to the increase in the force on a vertically
penetrating rod observed in [8] when it approaches the floor of a container.

In order to quantify the dependence of the force on the intruder on the
packing fraction, we smooth the signal by calculating a running average (with
a width of 0.83D) of the force averaged over an ensemble of 10 indepen-
dent realizations. Figure 3 shows the dependence on the packing fraction of
the initial drag force, 〈F0〉r, calculated by further averaging the force over a
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Fig. 2. Measured drag force on the intruder as a function of the plate displacement.
For clarity curves for different packing fractions are shifted vertically. From bottom
to top: φ = 81.17% with a shift of the base line of −15 N (black curve); φ = 81.88%
with a shift of −7.5 N (red curve); φ = 82.05%, unshifted (green curve); φ = 82.41%
with a shift of 25 N (blue curve).

displacement interval of one intruder diameter starting with the initial dis-
placement. This mean initial force increases with the packing fraction, with
a very sharp rise near φ = 82.5%. Note that the random close packing of
hard disks was estimated in simulations by various authors to be in the range
φ = 82− 85% [19].

Fig. 3. Ensemble averaged and smoothed initial drag force, 〈F0〉r, as a function of
the packing fraction.

3.2 Displacement Measurements

As mentioned above, in parallel to the force measurements we record images
of the grains. We use an image analysis technique based on the correlation
of gray levels, as described in [18, 20], which determines the positions of the
centers of the grains with a precision of about 5 · 10−2 pixels, corresponding
to about 0.01 mm, or 2 ·10−3d2. We note that the deformation of the contacts
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between grains for the typical measured forces are of the order of a fraction
of micrometer, i.e., below our experimental resolution. A typical plot of the
displacements of grains between two successive images is shown in Fig. 4a
(in the laboratory frame) and in Fig. 4b (in the plate frame, subtracting the
plate displacement between two successive images, U0 = 1 mm). The displace-
ment field is quite inhomogeneous. Its principal features are similar to those
observed in previous experiments using a slightly different setup [18, 20]: the
motion of the intruder induces displacements rather far in front of it, and
a recirculating flow on both sides of the intruder. In the laboratory frame,
a stagnation zone is visible ahead of the intruder, while a wake empty of
particles usually forms behind it.

In order to characterize the mean flow, the displacements were averaged
over the entire translation of the intruder, in square boxes of side length 1.2d2
and over an ensemble of 10 independent runs. The mean flow field obtained is
presented in Fig. 5, for two different packing fractions. For the mean flow, the
recirculation rolls are symmetrical, as expected. The displacement amplitude
is largest along the vertical line X = 0 and decays with the distance from the
intruder. Interestingly, the mean flows obtained for different packing fractions
are quite similar, even though the mean initial drag force changes by a factor
of almost 20 for the same range of φ. Figure 6 presents a more detailed com-
parison of the displacement fields shown in Fig. 5: the main effect of increasing
the packing fraction is that the recirculation rolls are more pronounced. In
particular, the Y-component of the displacements of the grains right behind
the intruder are larger for the larger packing fraction. This observation em-
phasizes the importance of investigating the flow behind the intruder.

Fig. 4. Displacements of the grains between two successive images (corresponding
to a plate displacement of 1 mm), multiplied by 5, for packing fraction φ = 82.23%:
a. in the laboratory frame, in which the intruder is fixed and the plate moves at a
constant velocity V0 = 1.666 mm/s in the positive Y direction; b. in the plate frame,
in which the intruder moves at a constant velocity V0 in the negative Y direction
through a medium initially at rest.
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Fig. 5. Time and ensemble averaged displacement field in the plate frame, multiplied
by 10, for two different packing fractions φ, averaged over boxes of side length 1.2d2;
a. φ = 80.13%, b. φ = 82.05%.

Fig. 6. Close-up view of the mean displacement field around the intruder in the
plate frame, multiplied by 10; black arrows: φ = 80.13%, red arrows: φ = 82.05%.

3.3 Analysis of the Flow Behind the Intruder

Following each run, as described in Sec. 2, the particles in the packing were
mixed again, and the plate was translated in the opposite direction with the
same velocity, in order to image the flow behind the intruder. The images
(Fig. 7) clearly show an empty wake (cavity) behind the intruder. The area of
the cavity increases as the motion is started, but once established, it fluctuates
around a mean value which does not vary much with the plate displacement.
For the lowest packing fraction used (Fig. 7a), the cavity is long and ta-
pered. The size of the cavity decreases with increasing packing fraction. The
recirculation rolls merge behind the intruder, forming a more rounded cav-
ity closed by a dynamic arch (Fig. 7b). At the largest packing fraction used,
this arch forms right behind the intruder, and the cavity almost disappears
(Fig. 7c).
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The mean area of the cavity is controlled by the effective free area (which in
this confined geometry is determined by the mean packing fraction). Figure 8
shows the dependence on the packing fraction of the mean area, Aw, obtained
by averaging over the entire translation (except for the initial stage in which
the cavity is formed) and over ten runs. The data are fit rather well by a linear
dependence: Aw

Ad2
= a (φ∗ − φ), with a = 1140± 50 and φ∗ = 82.35%± 0.05%.

According to this fit, the mean area of the cavity goes to zero for a packing
fraction φ∗ = 82.35%, the same packing fraction for which we observe a sharp
increase in the force on the intruder (Fig. 3). The observation of the cavity
behind the intruder therefore seems to provide a good criterion for determining
the onset of jamming, which is associated with the decrease of the effective free
area. We note that a similar cavity has been observed both in a 2D rotational
flow of photoelastic disks [3] and in a granular chute flow (for which the length
of the cavity was measured as a function of the flow velocity) [2]; however, the
effect of the packing fraction on the size of the cavity was not investigated.

Fig. 7. Images of the packing behind the intruder for different packing fractions: a.
the lowest packing fraction used, φ = 80.13%; b. φ = 81.70%; c. the highest packing
fraction used, φ = 82.23%. The dark area in front of the intruder (at the bottom
center of the figure) is a shadow cast by the arm holding the intruder.

Fig. 8. The mean area of the cavity formed behind the intruder (normalized by the
area of a large grain, Ad2 = πd2

2/4) as a function of the packing fraction φ. The
line corresponds to a linear fit over the first nine points, as the area for the largest
packing fraction is overestimated due to a cutoff used during image processing.
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3.4 Analysis of the Fluctuations

As mentioned, the area of the cavity behind the intruder fluctuates around the
mean value. These fluctuations correspond to successive partial buildup and
collapse of the cavity. These events are apparently related to the fluctuations
observed in the force on the intruder, and to the fluctuations of individual
particle displacements compared with the time and ensemble averaged flow
described above. The fluctuations in the force can be decomposed into ele-
mentary events of successive jamming (force increase: Fig. 9a) and unjamming
(force decrease: Fig. 9b). The large force drops (Fig. 9b) are associated with
large recirculation rolls (Fig. 9d) around the intruder, i.e., large displacements
of grains into the space of the cavity which (at least partially) collapses.

To analyze the fluctuations in the particle displacements, we use a coarse
graining method developed in [21] (for a recent application and further details,
see [22]). This method yields the following expression for the coarse grained
(CG) displacement field, to leading order in the local strain:

U(R) =
∑

imiuiφ[R− r0
i ]∑

jmjφ[R− r0
j ]

(1)

Fig. 9. The force on the intruder as a function of the plate displacement during a
jamming event (a) and an unjamming event (b) and the displacements of individual
grains in front of the intruder (multiplied by 10), in the plate frame (c,d). The large
dots on the force curves indicate the times at which the pictures used for obtaining
the displacement fields presented in the corresponding bottom panels were taken.
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wheremi, r0
i ,ui are the mass of particle i, its position in a given frame, and its

displacement between that frame and the next one, respectively, and φ(R) is a
coarse graining function, chosen here to be a Gaussian, φ(R) = 1

πw2 e
−(|R|/w)2 .

We use a rather small CG scale w, equal to the mean particle diameter [22].
The displacement fluctuations are defined as u′

i(r) ≡ ui−U(r). It is useful to
consider, as in Fig. 10a, the displacement fluctuations at the particle positions,
defined by u′

i ≡ u′
i(r

0
i ). A corresponding scalar “noise” field (formally similar

to the kinetic temperature) can be defined by: η(r) ≡
∑

imi|u′
i(r)|2φ[r− ri].

In Fig. 10 we present the CG displacement and corresponding fluctua-
tions, as well as the noise field, obtained from two successive frames in an
experiment with φ∗ = 82.23%. As discussed above, the displacement field is
inhomogeneous; this inhomogeneity is captured quite well by the CG field.
However, the fluctuations (i.e., the deviations from a smooth displacement
field) are rather localized, mostly close to the intruder. The regions of large
fluctuations vary with time, and correspond to larger local rearrangements
of the packing. This kind of analysis may therefore enable the identification
of “plastic events”, analogous to those observed in the plastic deformation of
amorphous solids [23] or the T1 events observed in foams (see, e.g., [24]).

Fig. 10. a. Coarse grained displacements, U(ri), multiplied by 10 (black) and dis-
placement fluctuations at the particle positions, u′

i (red); b. The noise field, η(r),
for the same two frames, in an experiment with φ∗ = 82.23%. The length unit used
in this figure is the mean diameter.

4 Concluding Remarks

The described experiment enables the characterization of both the mean flow
behavior and the fluctuations in an inhomogeneous flow geometry. The drag
force and the area of the cavity that forms behind the intruder change con-
siderably with the packing fraction near jamming, while the mean flow in
front of the intruder changes only slightly. The force, the area of the cavity
and the particle displacements all exhibit considerable fluctuations with re-
spect to their mean behavior, i.e., the average over the plate displacement,
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an ensemble of experiments, and space (for the displacements). This suggests
that fluctuations play an important role in the flow of dense granular materi-
als. The correlations between the fluctuations of these different quantities are
currently being studied in detail.
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Summary. The purpose of this experimental work is to develop some basic insight
into the pre-buckling behavior and the buckling transition toward plastic collapse
of a granular silo by studying different patterns of deformation generated on thin
paper cylindrical shells during granular discharge. We study the collapse threshold
considering the influence of the bed heights, flow rates and grain sizes. We compare
the patterns that appear during the discharge of spherical beads, with those obtained
in the axially compressed cylindrical shells. When the height of the granular column
is close to the collapse threshold, we observe a ladder like pattern that rises around
the cylinder surface in a spiral path of diamond shaped localizations, and develops
into a plastic collapsing fold that grows around the collapsing silo.

1 Introduction

Cylindrical shells are used in many industrial processes to store fluids or
grains; they are also used in chimneys, aircrafts and rockets. Thin shells are
prone to buckle leading to their collapse. There is a vast engineering literature
on empty shells [1–4], rigorous studies of cylindrical shells filled with fluids
have been carried to some extent [5], and there are fewer investigations of the
physics of shells filled with grains. Janssen and Vereins made a continuum
model for a silo in 1895 [6]. They addressed the observation that the mean
pressure at the bottom of the silo is generally significantly smaller than the
hydrostatic pressure that a liquid would produce. This implies that an im-
portant part of the load is taken by the walls. This important formulation is
still addressed, and has caught the attention of the physics community [7–13].
The problem of silos has gone to the physics laboratories posing new chal-
lenges to physicist. We are interested in the way thin walls of a cylindrical
silo are affected by the load produced during the discharge of the grains. Thin
walls become unstable and deform, sometimes globally and other times locally.
These localizations and the different patterns that grow during the buckling
and collapse are interesting from a fundamental point of view. We focus on
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the diamond shaped defects that appear on the surface of cylindrical paper
shells when the silo is under discharge of the grains. This localized buckling
grow into patterns similar to the ones observed in cylindrical empty shells
subjected to axial compression. In our work the compression of the silo is due
to the friction produced by the grains sliding down the internal wall of the
shell, during the discharge by gravity through a central hole at the bottom.
In section 2 we describe the experimental setup. In section 3 we indicate the
parameters chosen to quantify the experimental observations. In section 4 we
show our results. In section 5 we compare the patterns observed in our exper-
iments with those due to axial compression of cylindrical shells. In section 6
we state the conclusion.

2 Experimental Set Up

In Fig. 1(a) we show a photograph of the experimental setup. We make the
silos with tissue paper of thickness t = 0.04mm and nominal surface density
ρs = 20g/m2. The paper is wrapped around a long metal tube and glued
along a narrow band to form the paper tube of diameter D = 4cm. The shell,

Fig. 1. (a) The photograph shows a paper silo with diameter D = 4cm, taped to
a metal base. The silo is open at the top and a Plexiglas cylinder with an external
diameter less than D is introduced from above to feed the grains. (b) A transparent
plastic silo is shown; a perforated metal plate at the bottom of the Plexiglas internal
tube can be seen through the walls of the silo. The level of this plate is varied to
fix the effective height of the grain column. (c) The metal base shown has a center
hole of depth l = 3.8cm. (d) Sketch of the experimental apparatus introducing the
height of the granular bed acting on the silo walls, when the internal Plexiglas tube
is used.
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inserted into a small aluminum cylindrical base, shown in Fig. 1(c), is taped
so that the thin shell is fixed at the base and open at the top. The aluminum
base has a center hole of diameter a (3mm,4.5mm,6mm,8mm and 10mm). A
rubber plug is inserted in the bottom hole in order to be able to fill the silo
with the grains. For the initial measurements the internal tube was left inside
the shell until the grains had been poured from the top and then the metal
tube was carefully extracted so as to fill the silo without deforming the shell.
For later measurements the long tube was extracted before pouring the grains
and then a Plexiglas tube of diameter smaller than D, attached to a movable
support, was inserted from above down to the desired height, as can be seen in
the transparent silo shown in Fig. 1(b). The bottom of this Plexiglas tube has
a metal circular plate with holes of diameter greater than a. The grains were
fed from the top of the Plexiglas cylinder until it was completely filled. The
plug is removed to produce the granular discharge. With the internal tube the
grains can flow from it to the silo during the discharge, increasing the time the
silo wall is subjected to the force produced by the grains during the discharge.
The position of the internal Plexiglas tube determines the effective height of
the granular bed (see fig. 1(d)). We used glass beads of different diameters d
(0.2–0.3mm, 0.3–0.4mm, ≤ 0.63mm, 1mm, 1.5mm, 1.6mm). A CCD camera
registered the transition to buckling and the collapse of the silo.

3 Control Parameters for the Column Collapse

When the plug is released and the granular flow starts, the solid friction
forces on the grains are essentially polarized upward, due to the sliding on
the wall. This corresponds to the condition for pressure screening as derived
classically in Janssen’s theory. It means that the confining pressure inside the
granular bed saturates with the column height instead of growing linearly as
for a fluid. The physical reason is that the walls carry the remaining load
and the effective force acting on the walls has a vertical component directed
downward that grows with the column height. Therefore, if we consider the silo
walls as a solid cylindrical shell, we may experience buckling of the structure
if the force is large enough. Along those lines, the height of the granular
bed would be a simple candidate for a collapse control parameter. However
the situation may not be as “simple” since we have a possible non-trivial
interaction between the granular flow and the material structure. Note that
the outward pressure may eventually help to stabilize the shell; the effective
granular stiffness next to the wall could also change the effective rigidity of
the structure. And moreover, the stress fluctuations due to the granular flow
could play an important role in changing the position of the collapse onset.
In this paper, which is a preliminary study, we only consider the influence
of the column height, mean flow rate and granular size as possible control
parameters.
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From the work of Beverloo [14] and simple scaling argument, we know
that when the opening radius a at the bottom of a silo is changed, the mean
flow J varies as: J = αg1/2(a− κd)5/2 where α and κ are constants that only
depend on the actual coupling between the grains and the opening. For non
cohesive grains κ is about 4. Thus, we decided to change the opening size and
the grain size to control the granular flux and the fluctuations.

4 Experimental Results

We performed experiments in two ways. First we filled the granular column
up to a given initial height, and then we started the flow abruptly by taking
the plug off at the center hole on the bottom of the silo. Second, we kept a
constant height using the device described in fig. 1 (b) and (d). The existence
of a threshold height Lc was recorded. The second method has the advantage
that we can fix an important parameter, but in terms of the actual force on the
wall the situation is less simple since we do not have a well define free surface,
and we must consider an extra offset pressure to account for the junction with
the inner tube.

For spherical beads with diameter d < 0.63mm changing the size of the
bottom hole from a = 4mm to a = 8mm, keeping everything else the same, did
not cause a change in the collapse threshold Lc. This occurred at Lc ≈ 20cm.
For the larger diameter a, the discharge is just faster and the collapse occurs
sooner. We note that small fluctuations on the shell surface are observed when
L is close to the collapse threshold. With the same conditions used above and
for smaller particles (0.2–0.3mm) and a diameter of the hole a = 3mm, we
obtained a threshold Lc ≈ 21cm. For these smaller particles precursor fluctua-
tions could not be observed when L was close to the height for which buckling
occur. For particles of diameter d = 1.5mm and hole size a = 10mm, the
threshold also occurs close to Lc = 20cm. For the above cases, the cylindrical
shell was free at the top and no internal Plexiglas tube was used. In Fig. 2 we

Fig. 2. Ratio of the collapse threshold to the diameter of the silo, as a function of
the diameter of the bottom hole divided by the size of the glass beads.
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plot the threshold value Lc divided by the diameter D of the silo as a function
of the diameter a of the bottom hole divided by the grain size. For this graph
we took the particle diameters d, by considering their highest nominal values,
and the threshold Lc is obtained for the granular beds measured without using
the internal Plexiglas tube.

For the small particles with diameters between 0.2–0.3mm, and hole size
a = 8mm, and for big particles of size d = 1.5mm, we used a Plexiglas internal
tube to feed more grains from above while the silo discharges (see Fig. 1(b)).
With the internal tube, the threshold occurs when the tube is at a height L ≈
16cm. If the threshold is taken to be around 20cm, it is possible that the tube
contributes for an effective offset of 4cm. However, for particles of diameter
d = 1.6mm the threshold obtained was Lc ≈ 11cm, significantly lower than
for all the other particles. This case was anomalous in the sense that huge
fluctuations of the deformations on the surface of the shell appeared for L as
low as 9cm. These huge fluctuations can cause local curvatures that surpasses
a local threshold value so that effectively a sufficiently large deformation is
created, producing a large local defect that triggers the buckling and causes
a collapse at a lower value of L. Further measurements have to be made in
order to investigate the effect of these large fluctuations.

Therefore, these preliminary measurements suggest that for spherical par-
ticles and smooth walls in the ranges of particle diameters used, the threshold
for collapse, for a silo which is free at the top, seems to be weakly depen-
dent on particle diameter and the flux. The larger particles exhibit observable
fluctuations of the silo surface when L is close to the collapse threshold. The
precursor fluctuations in the elastic deformation of the surface of the cylin-
drical shell, was observed to increase with the particle size. The precursor
fluctuations will be discussed in a future work. The results displayed in Fig. 2
indicate that the main factors determining the buckling and subsequent col-
lapse of the silo is dominated should correspond essentially to a threshold in
applied vertical force on the shell and should be determined at the first order
by its mechanical characteristics. The presence of a granular material flowing
inside could also have an influence on the value of the threshold via the effec-
tive elastic coupling or via other parameter still to be discovered. This could
be explored by changing the geometrical and elastic characteristic of the silo.

5 Buckling Patterns

The focus of this section is on the different buckling patterns that were ex-
perimentally observed just prior or during collapse (see Fig. 3).

The type of buckling localizations that developed close to the threshold
of collapse was common to all the cases that we measured. We observed that
when the initial height L of the granular bed is sufficiently small, no change
was observed at the lateral surface of the silo. For L sufficiently large some
elastic fluctuations of the surface appear. Close to the collapse threshold some
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Fig. 3. The photographs show successive pictures of a collapsing silo during the
discharge of small grains. (a) The buckling appears as a pattern of small diamond
shaped elastic deformations occurring just before the collapse; (b) We can see the
growth of bigger plastic deformations in a sequence like a spiral ladder around the
cylinder; (c) During the collapse the paper folds in along a spiral that grows out of
the chain of diamond shaped localizations.

persistent diamond shaped buckling occurs. This diamond shaped localized
deformations are similar to the ones observed in real steel silos after damage.
Some of the diamonds appear isolated and others form clusters similar to
those observed in Fig. 3. During the discharge, when the Plexiglas column
runs out of grains and the granular bed becomes sufficiently small these elastic
deformations disappear so they seem to display some reversibility. When L is
at the threshold value Lc and the collapse occur, the deformations propagate
at an angle forming an “anticrack” that grows around the cylinder surface
and eventually folds producing a catastrophic collapse. Very often (but not
always), the first deformation appeared close to the silo bottom, in the vicinity
of the boundary between the grains that remain fixed in the stagnant zone
(forming a cone close to the bottom hole) and the grains that move down the
wall.

6 Conclusion

We have observed different buckling patterns during the discharge of differ-
ent size grains, from a central hole at the bottom of a cylindrical paper silo.
These patterns are similar to the ones observed in axially symmetric com-
pressed cylindrical empty shells. The height of the granular bed was changed
to approach the threshold height Lc for different size particles and for different
diameters of the discharging hole. It was found that the threshold was weakly
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dependent on the diameter of the discharge hole divided by the particle size.
Precursor fluctuations were observed below the collapse threshold. These were
found to increase with particle diameters. More experiments need to be made
to fully characterize the above observations.
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Summary. We have investigated stresses on rough cylindrical objects confronted
with a granular stream of inelastic hard disks. The roughness of cylindrical objects
is created via covering their surfaces with hard disks of given size and material. We
have employed event-driven simulations using restitution coefficients dependent of
the impact velocity in a collision. We report the effect of material property (resti-
tution coefficient) on development of granular shock wave around the object with
corresponding stresses exerted on it. The role of the roughness of the object in re-
sulting flow is also studied. Moreover, simulations are performed in two conditions
with gravity and without it.

1 Introduction

Individual solid grains constituting granular materials interact through con-
tacts or collisions. Granular materials display strange behaviors with multiple
features resembling solids, liquids and gases in different conditions [1]. Certain
obstacles may be put ahead of granular streams that has significant practi-
cal applications. For instance, circular pipes for heat transfer purposes are
immersed in fluidized beds in contact to solid grains [2]. The formation of
density shock wave around the pipe has a major role in changing the heat
transfer quality to the pipe. As another example, arranging a series of solid
obstacles ahead of granular streams can prevent flow jamming and arching
[3]. The presence of such obstacles may also facilitate mixing of grains needed
for handling and processing of powders.

Amarouchene et al. [4] performed simple experiments in two-dimensional
granular flows around different obstacles. They observed shock waves forming
in front of obstacles with different thicknesses depending on material prop-
erties, particles and object size and shape. Computer simulations were also
performed before [5] and after [6, 7] the experiments of Amarouchene et al.
in which the formation of triangular core in the upstream of the obstacle was
poorly captured. The study of the dune anatomy leads to better understand-
ing of the role of energy dissipation in the formation of the dune. The obstacle

mailto:pjalali@lut.fi
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dissipates kinetic energy resulting in a steady flow. The surface roughness has
also a significant effect on the dynamics of flow as it can change the overall
interaction between the object and the granular stream. This paper presents
some results from computer simulations obtained for dilute granular streams
of finite width intercepting with circular objects having rough surfaces. The
anatomy of the shock wave and the downstream flow is presented along with
the analysis of the energy dissipation pattern due to the interception. The
results of this paper shed some light into the physics of dilute granular flows
confronting with rough objects. Moreover, the results have great impact on
advanced designs of industrial facilities.

2 Geometry and Computer Simulations

In this section, we will describe the geometry and the method of simulations
in two separate parts.

2.1 System Geometry

The granular stream is created as a rectangular domain of finite dimensions.
The width of stream (H ) has a predetermined value while its length is optional
depending how long simulations are to be performed. Figure 1 demonstrates
how the geometry of simulated system is built up.

Fig. 1. Schematic of initial configuration of granular stream and a cylindrical object.

The cylindrical obstacle is initially located very close to the edge of the
stream. N monodisperse hard disks are randomly distributed inside the rect-
angular domain (L× H) resulting in an average packing fraction of 0.40. Ini-
tially, the velocity of each disk is assigned along the negative direction of
y-axis. It is equal for all particles, denoted by V 0

y . The surface of obstacle
is covered with hard disks as the same size and material as the particles in
the stream. The diameter of hard disks is denoted by dp. The direction of
gravitational acceleration (g) is also in the negative direction of y-axis.
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2.2 Simulation Method

Simulations are based on an event-driven algorithm [8] in which successive
instantaneous binary collisions are determined. In each collision, the rules for
inelastic collision of hard disks are implemented by noting that the restitution
coefficient depends on the impact velocity [9, 10] as:

e(Vn) = 1− (1− e0)
(
Vn

V0

)0.2

. (1)

Here, e0, Vn and V0 represent the characteristic restitution coefficient, impact
velocity magnitude and characteristic impact velocity, respectively. The value
of V0 is set to 0.5m/s. It is worth mentioning that unlike the traditional
quadratic characteristic equation for finding the collision time between any
pair of particles, the characteristic equations are the fourth degree polynomial
for particle-particle collisions (in the presence of gravity) and a combined
polynomial with trigonometric functions for particle-wall collisions [10, 11].
These algebraic equations are solved using numerical techniques.

3 Results and Discussions

We present our results through different parts. The presented results demon-
strate the effect of restitution coefficient on the basic features of the flow and
the distribution of local packing density and velocity under different condi-
tions. Moreover, the energy dissipation characteristics of the developed flow
are introduced.

3.1 Flow Field Appearance

Simulations were performed using 25495 hard disks initially distributed in
a region of the dimensions L/dp = 525 and H/dp = 100 with the average
solid area fraction of φ = 0.40. The radius of the object is 0.5 and 1.0 in our
simulations. The surface of the object is either smooth or rough (covered with
particles of the same size of free-stream particles). Figure 2 demonstrates
the appearances of the flow using two different materials corresponding to
the coefficients of restitutions e0 = 0.99 in part (a) and e0 = 0.90 in part
(b). The highly-dissipative granular material (e0 = 0.90) results in higher
agglomeration of particles with less possibility of their scattering. Thus the
shock wave becomes thinner (while denser) as the characteristic restitution
coefficient decays. In addition, the highly-dissipative material leads to smaller
scattering angles, which are defined as the angles between the vertical direction
and the average lines through scattered branches of the flow. Note that the
scattering angles might not be equal in the case of rotating obstacle.
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Fig. 2. View of the shock wave developed around the object with rough surface.
The roughness is created by covering the surface of the obstacle by particles of the
same size of the flow particles. (a) e0 = 0.99 (b) e0 = 0.90. Other variables are:
D/dp = 50, dp = 4cm, g = 10m/s2 and V 0

y = 1m/s.

3.2 Local Distribution of Packing Density

To reveal the anatomy of the shock wave developed in front of the obstacle,
we perform Voronoi tessellation for any given configuration of the system at a
certain time. Figure 3 demonstrates the Voronoi tessellation in a configuration
after the development of the shock wave is completed. The Voronoi cells are
colored based on the packing density of each cell which is the ratio of the
particle surface area to the total area of the Voronoi cell. Black cells represent
those with packing densities (φ) larger than 0.60 and white cells for those
with φ < 0.15. One can see that the dense cells (identified by black color) are
concentrated mostly in the front region of the obstacle. However, the dense
region appears as dispersed areas within the loose background though it shows
more continuity at the tip of the object.

The simulated case in Fig. 3 represents a low-dissipative material with
e0 = 0.99 whose packing density distribution is shown by the solid line with
circles in Fig. 4. The probability density function (PDF) of φ has its maximum
in the range of 0.10 < φ < 0.20 with nearly a Gaussian distribution. This is
directly an indication of the scattering (expansion) of the granular branches in
the downstream of the obstacle. The PDF of φ decays almost linearly for φ >
0.30 so that the probability of finding cells with packing densities larger than
0.80 becomes extremely low. In contrast, the PDF of φ is completely different
for a high-dissipative material such as that shown by dash line with squares
in Fig. 4. In the latter, we observe two maximum values of PDF(φ) occurring
at φ = 0.40 and φ = 0.75 with Gaussian distributions around each point. This
result clearly indicates that lower restitution coefficient prevents scattering
of particles in the downstream, which is obviously due to the coherence of
particles induced by higher inelasticity [1].
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Fig. 3. Visualization of Voronoi cells colored based on the cell packing density φ
in a configuration at steady state. As indicated in color bar, colors vary from red
(φ = 0.15) to cyan (φ = 0.60). The cells with packing densities lower than 0.15 and
higher than 0.60 are marked by white and black, respectively. Other parameters in
simulations are e0 = 0.99, D/dp = 25, dp = 4cm, g = 10m/s2 and V 0

y = 1m/s.

Fig. 4. Probability density function (PDF) of the packing density (φ) of Voronoi
cells in two simulations corresponding to e0 = 0.99 (fitted solid line to circles) and
e0 = 0.90 (fitted dash line to squares). Other parameters are as described in Fig. 3.
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Fig. 5. (a) Particles trajectories around the object with rough surface within a
dimensionless time of δt∗ = 2δtV 0

y /H = 0.5. (b) A zoomed area of the same config-
uration near the rough surface. Simulation parameters are: e0 = 0.90, D/dp = 50,
dp = 4cm, g = 10m/s2 and V 0

y = 1m/s.

3.3 Displacement of Particles

In this section, we will demonstrate typical displacement field of particles
around the rough obstacle. Figure 5 shows the lines of displacement (trajecto-
ries) for particles nearby the obstacle within a dimensionless time window of
0.5. It is clearly seen through Fig. 5(a) that there is a triangular static region
at the tip of the obstacle. No considerable displacement is observed within
the static region. This numerical observation is in good qualitative agreement
with the experimental observations of Amarouchene et al. [4]. Specifically,
Fig. 5(a) is comparable to Fig. 1(e) of the aforementioned reference [4]. Fig-
ure 5(b) represents a zoomed area of the configuration shown in Fig. 5(a),
which magnifies the displacement of particles in the vicinity of the obstacle
surface.

We can see that the surface roughness slows down the motion of particles
next to the surface so that their displacements become very small. In other
words, particles are driven by diffusion mechanism in the layer next to the
surface rather than by convection. Also, one can see that there is a transitional
zone between the triangular static region and the convecting zone of the flow
according to Fig. 5(a).
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3.4 Variation of Kinetic Energy

The shock wave developed in front of the obstacle can be characterized by the
local variation of normalized kinetic energy defined as,

κ =
Ey,δ

Es

, (2)

where Ey,δ represents the average particle kinetic energy at position y within
the bin δ, and Es is the instantaneous kinetic energy of a particle in the
free stream. In the presence of gravity, the latter will grow in time. However,
κ is normalized so that its corresponding value in the free stream remains
unity at any instant. Figure 6 demonstrates the variation of κ along the flow
direction for a simulation with e0 = 0.99. The value of κ sharply drops to a
minimum from the shock front to the triangular static region that is called
κmin. Thereafter it increases to reach a downstream value called κst. The
value of κst is 0.89 for the restitution coefficient of e0 = 0.99. Meanwhile,
κmin is equal to 0.51 in the same case.

Fig. 6. Variation of normalized mean kinetic energy of particles (κ) along the flow
direction, y. The circular object (with the diameter of 2R = 50) is symbolically
shown to understand its effects on the flow. Dots represent the values of κ in different
averaging bins. The simulated case corresponds to e0 = 0.99, D/dp = 50, dp = 4cm,
g = 10m/s2 and V 0

y = 1m/s.

Note that the value of κ gradually increases in far downstream so that it
finally passes unity which corresponds to the initial encounter of the stream
with the obstacle. However, there is a stationary shape for the variation of κ
versus y in front of the object and within a certain distance of downstream,
which is not changing in time.

The values of κst and κmin characterize the dissipative behavior of the flow,
which are expected to be related to the mechanical properties of grains as well
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as the geometry and other conditions of the flow. Figures 7(a) and 7(b) display
the dependence of κst and κmin on e0, respectively, for simulations with rough
and smooth surfaces of obstacle in the presence and the absence of gravity
(totally 4 cases).

Fig. 7. Variation of (a) κst versus e0, and (b) κmin versus e0 for four different sim-
ulations corresponding to rough and smooth objects in the presence and the absence
of gravity. Symbols are introduced in the legend. Other simulation parameters are:
D/dp = 50, dp = 4cm, and V 0

y = 1m/s.

From Fig. 7, one can see that κst strongly depends on e0 as it may vary
from 0.75 to 0.90 corresponding to the variation of e0 from 0.90 to 0.99. In
contrast, κmin varies at most between 0.48 and 0.55. It can be also observed
that gravity has negligible effect on κst for rough objects, where κst in the
presence of gravity is slightly lower than that of simulations without gravity
using smooth obstacle. The effect of surface roughness is considerable through
the entire range of e0 in the absence of gravity. As generally expected, smooth
objects introduce indices of dissipation lower than those of rough objects.

4 Conclusions

In the present work, some basic features of granular shock waves around a
circular object (rough or smooth) are presented along with some analyzing
methods applied in the simulation results using hard disk model. In this con-
text, the coefficient of restitution for particles is found to be an effective
parameter which not only alters the basic look of the developed flow, but
also plays a significant role in the topological and physical characteristics of
the flow. The anatomy of the shock wave from our simulations resembles the
experimental observations in this regard.

The granular shock wave in front of the obstacle is characterized by a
normalized index for kinetic energy. It is the ratio of the local kinetic energy
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to the kinetic energy of free stream at any instant. We have presented the
values of this index corresponding to two key points on the stationary graph
of κ−y. One point represents the minimum value of κ occurring in front of the
object, namely κmin, and the second point shows the downstream value of κ
called as κst. Our simulations revealed that κst is far more sensitive than κmin

with respect to the characteristic restitution coefficient e0. The roughness of
the object decreases the indices that implies to a higher dissipation than in the
case of smooth obstacle. More investigations are required to understand the
effects of geometric parameters of the system on the dissipative characteristics
of the system.
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Summary. Dry granular matter is modelled as a graph of grains linked by purely
repulsive contacts. Its stability (jamming) is insured by odd circuits that prevent
the grains from rolling on each other. A topological dynamical matrix is associated
with the graph; it has a spectrum of low-energy excitations characteristic of dry,
disordered granular matter. In the limit of large stiffness-to load ratio, dry granular
matter has two possible dynamical states, dry fluid and jammed, rigid but fragile
solid.

1 Introduction. Dry Granular Matter as a Graph

Dry granular matter is described naturally by a graph [1]: Two grains in
repulsive contact are vertices connected by an edge. There are no attractive,
cohesive forces between grains and the packing is held together by external
forces (gravity or boundaries).

Hard dry granular materials (granular materials in the limit of large
stiffness-to-load ratio, with infinite tangential friction between grains) can
be simplified further: Two grains in contact can only roll without slip on each
other, or disconnect by pulling apart. Edges represent therefore a scalar and
boolean interaction between the two vertices. The grains i = 1, . . . , n are
modelled as spheres of radius Ri, that must roll on each other to remain in
contact. The two possible states of disordered granular matter, dry fluid [2–4],
and jammed, rigid but fragile solid [5–7] are direct results of the topological
dynamics of the graph, where the elements responsible for the jammed state
are odd circuits, circuits with an odd number of grains in contact.

A topological dynamics can be associated with a graph, through the eigen-
values and eigenvectors of a dynamical matrix that is the adjacency matrix A
modified by a diagonal matrix (Eq. (1) below). Odd circuits impose a non-
zero lowest eigenvalue of the dynamical matrix [1], that, in disordered granular
matter, scales as 1/L with the linear size L of the material. This role of parity
explains why there can be no continuous, qualitative description of granular
matter. Granular matter is the material equivalent of rational numbers.
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By representing a hard granular materials as a graph, we have linearized
a highly non-linear problem The nonlinearities are in the constraints, that
are geometric (the edges are boolean, scalar and of constant length if they
apply: they represent struts that transmit purely repulsive forces) inequalities
(contacts can be broken up), with näıve number theory combinatorics (odd
circuits are non trivial). The dynamics of the material is reduced to linear
algebra (eigenvalues and eigenvectors) of the adjacency matrix of the graph,
which contains all its generic features: contact, odd circuits and disorder.

2 Edges, Arches, Odd Circuits and Jamming

As regards statics and stability, hard granular materials differ in three ways
from the classic (Maxwell) structural rigidity analysis of elastic networks as a
function of the number of edges |E|, from floppy to overconstrained, through
isostatic at the rigidity percolation threshold [8, 9].

a) Stresses carried by edges have a sign constraint. It follows that (repulsive)
self-stresses cannot be sustained in an overconstrained network: the two
grains connected by a redundant edge pull apart, |E| decreases, and the
network becomes isostatic. On the other hand, a floppy network will, if it
can, rearrange and add edges, to become isostatic [10, 11].

b) But hinges in a floppy network can only buckle through grains rolling on
each other, a motion blocked by odd circuits.

c) Odd circuits do not occur in isolation, but surround closed loops (odd
vorticity is a line defect), called R-loops for short [12]. In disordered gran-
ular materials, the largest R-loop extends across the entire material. By
contrast, the R-loops are much smaller, of the order of the period, in a
periodic granular packing.

Thus, as a function of the increasing number of edges, a disordered, hard
granular material ranges from a dry fluid (underconstrained network without
odd circuits) to the unrestricted, isostatic network of rigidity percolation,
through the jammed phase [7] of underconstrained, but rigid networks with
odd circuits (Fig. 1). This intermediate phase has a constant, excess density
of low-energy normal modes, close to the jamming transition, as observed in
(soft-sphere, but still with repulsive interactions) computer simulations [5, 6]
and explained recently by a scaling analysis [7]. The essential role of disorder
in the jamming transition, emphasized by Nagel et al., most eloquently in the
title of their paper [6]: “Jamming at zero temperature and zero applied stress:
The epitome of disorder”, will be elucidated here.

By plotting the number of odd circuits c as a function of the number of
edges |E|, we obtain the phase diagram for hard granular matter (Fig. 1), in
the limit of large stiffness to load. |E| ranges between the values DF and I. The
material is unstable, both above I where it is overconstrained, and below DF
where it is floppy and free to rearrange in the absence of odd circuits. At DF,
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Fig. 1. The order parameter for the jammed phase, the number of odd circuits c, as
a function of the number of edges |E|. A hard granular material is only stable in the
interval between DF (dry fluid) and I (isostatic point), in the limit of large stiffness-
to-load ratio. For |E| above DF, the material is a jammed, fragile solid, stabilized
by the odd circuits (the “arches” of the Janssen effect). At DF, the material is a dry
fluid [1].

the material behaves as a dry fluid or bearing, that does not resist shear, whose
constituents roll without slip on each other or on any boundary or inclusion
(the point of contact between any two grains has zero velocity, even though
it changes all the time). It only feels hydrostatic pressure, i.e. forces normal
to any plane inside the material on any scale larger than a few grains; a solid
inclusion is subject to Archimedean pull only; arches can buckle freely and
make ripples [13]. Between DF and I, the material is a fragile, jammed solid,
stabilized by odd circuits. The odd vorticity forms (R-) loops that are large
in disordered granular solids, where the jamming transition is a true scaling
phase transition, with the number of odd circuits c as an order parameter
measuring geometric frustration of the jammed grains (precisely, the ratio c/n
scales as 1/L with the linear size of the material L at the jamming transition).1

1 The word frustration is technical [15] and jamming has little to do with traffic
jam, although this is a conference on traffic and granular flow, with lectures on
phase transition in traffic (Y. Xue) and on the drivers behaviour from a psy-
chologists point of view (F. Saad). The jamming transition (F “blocage”) is a
collective transition, involving long ranged arches (odd circuits), that are specific
of disordered, hard granular matter. The eigenvectors describing the deforma-
tion of a jammed material subjected to shear or to uniaxial stress are extended
(approximated by j or a), whereas a traffic jam (F: “bouchon”) has more to do
with the (lack of) motion of individual cars packed bumper-to bumper. A more
descriptive word would be bottleneck, which is probably the source of the French
word “embouteillage” – more sophisticated than, but synonymous to “bouchon”.
(See also the introduction of [16]) The traffic inside biological cells, also discussed
at the conference, is of the traffic jam type. On the other hand, a multi-lane free-
way may exhibit a collective jamming transition similar to jamming of granular
materials, as different lanes are prevented to flow independently by reckless lane
change.
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This is in complete contrast with ordered granular solids where the R-loops
are small and c/n remains finite. Note the essential roles of disorder and grains
(in the guise of odd numbers).

2.1 Even Circuits Only: Dry Fluid

In two dimensions, disks can roll on each other without slip if and only if there
are no odd circuits of disks in contact. In three dimensions, spheres can roll
on each other without slip if there are no odd circuits (sufficient condition)
even though the axes of rotations are no longer colinear, and the centres of the
spheres not coplanar [2]. This remains true when the centres of the spheres are
mobile [13]. A hard granular materials without odd circuits behaves as a dry
fluid, and not only as a ball bearing. The lowest eigenvalue of its dynamical
matrix is zero, as we shall see.

Non-slip rotation of one sphere on another constitutes a connection, that
can be extended from one grain to any other along a path of grains in contact.
If there are no odd circuits, the connection is pure gauge, that is independent
of the path [2, 13, 14].

3 Topological Dynamics of Graphs. Adjacency and
Dynamical Matrices

A graph with n vertices and |E| edges is described algebraically by the ad-
jacency matrix A (contact matrix in protein folding [17]), an n × n matrix
Aij = 1 if i, j in contact, 0 otherwise. A is related to the n × |E| incidence
matrix D, through

Q = DDt = Δ−A, (1)

where Δ is a diagonal matrix Δij = ziδij , with zi =
∑

j Aij , the valency
(degree) of vertex i [18].

The matrix Q is the dynamical matrix of a physical system on the graph,
where the vertices are particles of the same mass, and the edges are springs
with the same stiffness. That is, the interaction between two vertices connected
by an edge can have either sign.2 The rank of Q is n − 1 for a connected
graph, so that its lowest eigenvalue is zero with corresponding “Woodstock”
eigenvector j = (1, 1, 1, 1, . . . , 1)t. (A matrix with all its elements Jij = 1 is
called Woodstock matrix, because that is how Snoopy’s friend speaks).

2 Topological dynamics of a graph where the edges are identical springs: The po-
tential energy of the graph is V = (1/2)k

P

(ij)(xi −xj)
2, where the sum is taken

over all the edges (ij). The stress-free translation corresponds to (xi − xj) = 0,
and the force can have either sign. The system of Euler-Lagrange equations of
motion of the graph, [−λ1 + (Δ − A)]x = 0, is the eigenvalue equation of the
dynamical matrix Q = Δ − A, with the eigenvalues λ = mω2/k related to the
frequencies ω of the normal modes of oscillation.
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By contrast, the dynamical matrix of a hard granular system, where the
vertices are grains with the same momentum of inertia, and the edges are
struts, representing the non-slip rotation of the grains on each other, is K =
Δ + A = 2Δ−Q. Interaction has one sign only (sign constraint).3

3.1 Importance of the Sign Constraint

Because of the sign difference, the spectrum of eigenvalues of Q and K, and
their respective eigenvectors, are essentially different, and this difference is
associated with odd circuits. In the absence of odd circuits, the dynamical
matrix K is changed into OKO−1 = Δ−A = Q by an unitary transformation
O that changes the sign of odd rows and columns.

Consider first a connected bichromatic graph (see [19] for an example)
without odd circuits (grains in contact have different colors). Let (−1)i be the
color of vertex i. The adjacency matrix has a non-zero entry Aij = 1 only if i
and j have opposite colors. The unitary transformationOij = (−1)iδij changes
the sign of odd rows and columns, A′

ij = (−1)iAij(−1)j and transforms the
dynamical matrix K = Δ + A into K′ = OKO−1 = Δ − A = Q, that is
the dynamical matrix for an elastic network. Now, the lowest eigenvalue of Q
is zero with the corresponding Woodstock eigenvector j. It is nondegenerate
since (rankQ) = n− 1 for a connected graph. Transforming back, the lowest
eigenvalue of the dynamical matrix K of the bichromatic packing is zero, one
soft mode with the alternating eigenvector

a = (1,−1, 1,−1, . . .)+ = Oj. (2)

A granular material without odd circuit is indeed a bearing of grains rotating
without slip on each other [2].

3 Topological dynamics of a graph where the edges are identical struts: The poten-
tial energy of the graph is V = (1/2)k

P

(ij)(|θi + θj |)2. The opposite rotations of

two grains in contact |θi + θj | = 0 is stress-free, and the force is always repulsive,
as indicated by the redundant | . . . |. The system of Euler-Lagrange equations of
motion of the graph, [−λ1 + (Δ + A)]x = 0, is the eigenvalue equation of the
dynamical matrix K = Δ + A = 2Δ − A. The sign + is crucial. It is associated
with the sign constraint in the forces, characteristic of granular matter. This sim-
plified, topological dynamics is set up only to obtain the elementary excitations
of the system: even circuits are soft modes with zero eigenvalues, each odd circuit
constitutes an extended constraint (an arch) with a finite eigenvalue, that can be
eliminated by breaking one contact.

(The potential energy V is not a quantitative measure of a force, but only
the statements that grains i and j are in contact, and with opposite stress-free
rotations. If the tangential friction is infinite, the contact force is a scalar. For
an odd circuit of grains in contact, the contact force is necessarily finite, and
applying shear will break the circuit by disconnecting two grains.)
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3.2 Graph with Odd Circuits

Any graph containing odd circuits can be bi-colored, simply by removing one
edge – (ab), say – from every odd circuit. That is, for each odd circuit, set
Aab = 0 between the two vertices a and b with the same color (−1)a = (−1)b

to be separated. The original graph is thus partitioned A = A0 + A∗ into
a bichromatic, vertex-spanning, edge subgraph described by the adjacency
matrix A0, and the few, removed edges A∗

ab = 1 between same color vertices,
called critical edges hereafter. The valency (connectivity) zi =

∑
j Aij of

all vertices is z0i =
∑

j A
0
ij except for the vertices that have been separated

za = z0a + 1.
Under the unitary transformation O, A0′ = −A0 changes sign, whereas

A∗′ = A∗ remains unchanged because it connects vertices with the same
color. Thus, the dynamical matrix K = (Δ+A0) + (1∗ +A∗) is transformed
into

K′ = (Δ−A0) + (1∗ + A∗) = Q0 + J∗, (3)

where (1∗ + A∗) = J∗ is a very sparse matrix with non-zero entries 1 for the
vertices a, b with the same color connected by a critical edge. J∗ is the direct
sum over all odd circuits of the matrix whose entries J∗ij = 1 if i, j = a, b, and
zero elsewhere.

The lowest eigenvalue of Q0 is zero, with eigenvector j. Thus, the color
transformation Oij = (−1)iδij is a local, gauge transformation that sorts
out even circuits by softening them. One obtains an upper bound for the
lowest eigenvalue of the full dynamical matrix K or K′ from the Rayleigh-
Ritz variational principle,

0 < λ1 ≤ 〈j|K′|j〉/〈j|j〉 = 〈a|K|a〉/〈a|a〉
= 〈j|J∗|j〉/〈j|j〉 =

∑
odd circuits

(4/n) = 4c/n, (4)

where c is the number of odd circuits (the number of disconnected contacts)
and n the number of vertices in the graph.

The bichromatic network with even circuits, represented by A0 can itself
be partitioned into c disconnected components or “blobs”, by removing a few
contacts R. Each blob is connected to the next by one single critical edge, so
that the set {A\R}, represented by A–R, forms a chain of blobs. Each blob k
has only even circuits, with a zero-eigenvalue eigenvector (exp[−iμ�])jk, where
jki = 1 if vertex i belongs to component k = 0 otherwise, with a phase μ�. It
is then easy to construct explicitly an orthonormal set of c “Bloch functions”
to generalize (4) to the ∼c/4 lowest eigenstates [14].

4 Odd Circuits. R-Loop. Frustration

So far, so good: Odd circuits are the (extended) arches holding the material
together and preventing it to flow. The lowest eigenvalue λ1 ≈ 4c/n is a
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measure of the frustration generated by the odd circuits, diluted into the whole
connected network. It is also the order parameter of the jammed phase (Fig. 1).
The granular material is rigid, but fragile (stresses concentrate on paths – odd
circuits – that form a sparse network and can be locally disconnected). To
unjam the material, it is sufficient to break one contact per odd circuit. Under
an applied shear stress, the disconnection is done efficiently and systematically
by the motion (climb) of a topological defect line, the odd vorticity line or
R-loop. The mechanism is similar to the glide of a dislocation that controls
the plasticity of metals [20]. The location of odd circuits and their density are
given by an old result [12]:

Odd circuits do not occur individually, but, like the pearls in necklaces,
they are traversed by continuous lines of odd vorticity that close as loops
or terminate at the surface of the material. These odd lines or R-lines are
topological defects and sources of frustration in granular materials as well as
in covalent glasses, where they were originally introduced.

Theorem ([12]). R-lines close as loops, or terminate at the surface of the
material, without passing through any irreducible even circuit. (A circuit in
a graph is irreducible if there is no shorter path between any two vertices on
the circuit than a path on the circuit itself. The naive picture of a reducing
shortcut holds without ambiguity in granular materials. In covalent (network-)
glasses, Wooten has developed an algorithm to draw the network of R-lines,
based on partitioning the covalent network into cells bounded by irreducible
circuits [21, 22].)

4.1 Unjamming Under Shear

A granular material subjected to shear will, if it can, break its frustrating
odd circuits, with often spectacular consequences (soil liquefaction, sliding
tectonic plates, dilatancy, etc.). This is done by breaking c contacts, one per
odd circuit, pulling apart the two grains. Since all odd circuits cut across once
the surface(s) bounded by the set of R-loops, such a surface is the locus of all
the critical contacts to be broken, and c is its area. It is therefore sufficient,
and most economical, to separate those contacts located on the (minimal)
film(s) attached to the R-loops of the material.

In an ordered granular material (e.g. close packed), the R-loops are small,
of a size bounded by the period of the structure. Both c and the number of
grains n scale as L3, and the frustration λ1 is finite. In disordered granular
materials, the R-loops can have the size L of the material, and c scales as L2, so
that the frustration λ1 (scaling as 1/L) is small and vanishes at the unjamming
transition.

The separation of the critical contacts requires a little space: the unfrus-
trated packing has less contacts than the original. In practice, this can be done
by aerating gently the granular material before the start of the experiment [3],
or by applying shear from a boundary [4], as happens naturally in geological
faults with sliding tectonic plates or in the phenomenon of dilatancy.
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This contact removal is done specifically on the c ∼ L2 specific edges
traversing the minimal film attached to the largest R-loops of size ∼L. It is
essential that the largest R-loop has a large size L; the best contact removal
process and the partition of the graph are then (nearly) unique and realisable
experimentally by shearing [3]. The contacts broken first are the ones nearest
to the R-loop, which thereby shrink. The motion of the R-loop is perpendicular
to the critical contact, that serves as the Burgers vector for an odd circuit.
Thus, the R-loops climb under shear, unlike the dislocations in metals or in
foams that glide under shear (their motion is parallel to the Burgers vector)
[20]. Moreover, because the R-loops are large in disordered granular material,
the climb surface is smooth, and unjamming is easy, certainly easier than in
ordered granular materials where the R-loops are small and contact must be
broken individually. This is in complete contrast to metals or foams, where
disorder roughens the glide plane.

4.2 Generic Density of Eigenstates Near Jamming

The jamming transition reveals a large number ∼c/4 of low-energy nor-
mal modes, besides the lowest frequency one λ1 [5–7]. These modes can be
constructed explicitly, as we have seen [14]. They give rise, in disordered
granular materials, to a constant density of states at the jamming transi-
tion, independent of the space dimension D and of the size L of the ma-
terial. Indeed, the number of odd circuits c equals the area of the films
bounded by the R-loops, scaling as ∼LD−1. There are c/4 ∼ LD−1 low-
energy normal modes (Bloch waves), of energy λ ≈ 4c/n ∼ 1/L given by (4)
that vanishes in the thermodynamic limit L ∼ ∞. The density of states
D(λ) = #modes/vol/energy ∼ LD−1/LD/(1/L) ∼ L0 remains finite [7, 14].

The plateau in the density of states at low energies is responsible for the
high entropy of the granular packing, and for a large specific heat linear in the
temperature (considerably higher at low temperatures than the Debye specific
heat that increases like T 3). The elementary excitations remain extended (the
eigenvectors, approximated by the Bloch functions have long wavelength) but
the stress is concentrated on the frustrating odd circuits responsible for the
plateau.

Moreover, the plateau provides the large specific heat (increasing linearly
with the temperature) and entropy necessary to absorb the (free) energy and
bring about jamming in a hard material without energy sink.

Periodic granular materials do not jam; they crystallize, with R-loops of
the size of the period. Indeed, the face-centered cubic packing of spheres (filling
space with tetrahedra and octahedra) is periodic, with only small trigonal
circuits and small R-loops with one contact each to be broken.
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5 Conclusions

Hard granular materials are described by a graph, and their physical behavior
(stability, jamming) is obtained generically from the adjacency matrix. Their
stability is caused by odd circuits that prevent the grains from rolling on
each other. Odd circuits form linear defects (R-loops) that are large in disor-
dered materials. The elastic behavior of isostatic, disordered granular matter
is generic: the stresses (contacts to be disconnected) are localized on the odd
circuits, but the displacements (soft modes) are felt on the entire network [11].
The material with only even circuits of grains in contact is a dry fluid that
does not resist to shear. The jammed phase in disordered granular materials
is an intermediate phase between liquid and isostatic solid, that is rigid but
fragile.

Hard spheres have infinite repulsive interactions, so that both jamming
and crystallisation [23] transitions are caused by the entropy carried by a
large number of soft modes. But in the jamming transition, these modes are
extended uniformly over the entire material. By contrast, in (fcc or bct) crys-
tallisation, the spheres are rattling independently inside cages of small, trigo-
nal R-loops, the packing is overconstrained and the transition is not a scaling
one..

That the jamming transition is a classic, second-order phase transition
dominated by scaling has been put forward by Wyart, Nagel and Witten [7],
but without the odd circuits (the size of the R-loop) as the mechanism.
S. Alexander [24] first pointed out the generic importance of disorder. Odd
circuits are the mechanism of the jamming transition: Their density is the
order parameter for the jammed phase, and the size of the R-loop, large in
disordered granular materials, is the scaling agent.

Discussions with, and suggestions from J.-M. Luck, J.-F. Sadoc, M. Mi-
coulaut, H. Crapo, S. Nagel, V. Pierron-Bohnes and C. Moukarzel are grate-
fully acknowledged.
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21. F. Wooten, Acta Cryst. A58, 346 (2002).
22. N. Rivier, F. Wooten, MATCH-Comm. in Math. and Computer Chem. 48, 145

(2003).
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Summary. We present an experimental study of the collective motion of grains
inside a U shaped tube undergoing vertical oscillations, and we develop a very sim-
ple quantitative model that captures relevant features of the observed behavior.
The height difference between the granular columns grows exponentially with time
when the system is shaken at sufficiently low frequencies. In vacuum the exponential
growth is suppressed.

1 Introduction

Vertical vibration is widely used to excite a granular system, inducing inter-
esting phenomena as pattern formation [1], segregation [2], internal collective
motion of the grains, among others [3]. The flow of granular materials through
different container geometries is crucial for the improvement of several indus-
trial processes. Tubular containers enhance the role of the walls in the inter-
change of energy and are extremely important from the industrial point of
view. Many industrial processes involve the transport of grains through pipes
and are unavoidably affected by mechanical vibrations, therefore their relia-
bility can be greatly affected by the knowledge of the physics of vibrationally
induced granular bulk flow [4]. An interesting example of vibrationally in-
duced granular transport in a pipe can be realized in a partially filled U-tube.
In this system vertical vibrations can cause the rise of one of the columns of
grains until the other one is emptied, a phenomenon often referred to as the
U-tube instability. The U-tube instability was first mentioned by Gutman in
1976 [5]. He pointed out that the increase of the difference in level was due
to the air pressure difference acting across the bottom of the vibrated tube.
Rajchenbach [6], mentioned the U-tube instability and proposed a convection

mailto:ijsanche@ivic.ve
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based mechanism to explain it. Ohtsuki et al. [7] investigated the change in
the level difference for grains in two different size vessels connected at the
bottom, with experiments, simulations and a theoretical model. They found
that the conditions favoring the achievement of a level difference were: low fre-
quencies, low accelerations, large difference in chamber widths, small particles,
large bed heights and large wall friction. Akiyama et al. [8] studied a similar
system as [7], but with compartments of equal size in a rectangular vessel
linked at the bottom. They concluded that two mechanisms were behind the
level difference achieved: the dissipative structure of the granular system and
the formation of a pressure gradient between the bottom of the two sections.
Recently King et al. [9] discussed the formation of an instability in U-tubes
and partitioned containers and proposed a similar mechanism as Gutman’s.
All the previously mentioned works are not conclusive, more research needs
to be done to elucidate the mechanisms responsible for these instabilities and
many open questions are being investigated [9–12].

Here we present an experimental study of a U-shaped tube partially filled
with grains, submitted to vertical oscillations. To our knowledge this is the
first systematic experimental study of the instability in a U-tube geometry,
accompanied by a quantitative model. We discuss the effects of a small hori-
zontal component in the oscillation. We present a simple model based on the
idea of cyclic fluidization which captures the dynamics of the height difference
between the branches of the tube.

2 Experimental Setup

In Fig. 1 we sketch the experimental setup. We used a glass U-shaped tube
whose vertical arms were linked at the top and connected to a vacuum system
through two outlets. The tube was fixed with plastic straps to a Plexiglas
plate with a base attached to an electromagnetic shaker VTS-150. A function
generator provided a sinusoidal excitation signal ay sin(ωt) with ω = 2πf ,
where f is the frequency, ay is the vertical amplitude and t is time. The signal
was fed to an amplified connected to the shaker.

To follow the height difference Δh defined in Fig. 1(b) between the levels
of the granular columns, we used a digital video camera and a stroboscopic
light tuned at the same frequency as the shaker. Changing the phase difference
between the frequencies of the shaker and the strobe we could choose to take
the videos at the phase in which the surface of the grains was clearly defined
(this phase corresponds to the portion of the oscillation cycle in which the
granular system is in contact with the bottom of the tube). A critical point
in this study is controlling any horizontal component in the oscillations, due
to the mechanical interaction of the system, understanding horizontal as the
direction normal to the vertical direction and parallel to the central axis of
the bottom of the tube. For that purpose, we used a counterweight at the
back of the Plexiglas base, in the form of a pendulum as shown in Fig. 1(b).
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Fig. 1. (a) Dimensions of the glass U-tube (in millimeters). (b) Sketch of the experi-
mental setup used to study the transport of grains in a vibrated U-tube, and position
of the movable counterweight used to align the system and maximize the verticality
of the oscillations. (c) Definition of the height difference Δh and quantities used in
the model.

The angular position of the counterweight could be changed (to change the
center of mass of the system) to cancel any parasite horizontal push. Once
found the position that maximizes verticality, the counterweight was fixed for
each experiment. To monitor the verticality of the vibrations we filmed the
vibrating tube while a stroboscopic light was flashed at a frequency slightly
lower than the frequency of vibration of the shaker (this was performed right
after each experiment). In the majority of the cases, there was a sinusoidal
horizontal component in the motion, with the same frequency of the vertical
forcing (cases with a non-cyclic horizontal component were not considered
since they were non-reproducible). Following a dot marked on the vessel we
were able to obtain Lissajous figures for the motion of the container. In this
way we could conveniently measure the horizontal amplitude ax and the phase
shift φ between the vertical and horizontal displacements. Besides the use of
the counterweight, the weight of the base (≈ 1 Kg) was 1 order of magnitude
greater than the weight of the granular medium in the tube (≈ 50 g), to
avoid any misalignment due the unbalance of the arms. The shaker was firmly
attached to a sand casted aluminum base with 3 aligning screws resting on a
heavy wooden base on an optical table.

The grains used were spherical glass beads of different diameters d, between
0.18 mm and 0.36 mm, with bulk static bed density ρ = (1.44± 0.04) g/cm3,
and plastic balls with d = 5 mm, ρ = (0.61 ± 0.02) g/cm3. We performed
experiments at different values of Γ between 1–12, with frequencies between
6–60 Hz and amplitudes lower than 10 mm. Typically, the initial static value
of L was 110 mm.
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Fig. 2. Behavior of Δh with time, for glass spheres with d = (0.25–0.36) mm,
vibrated at f = 8 Hz, vertical amplitude ay = 8.5 mm and different horizontal
amplitudes. Lissajous’s figures of the motion of the container corresponding to each
curve, are shown at right (position measured in millimeters).

3 Results

We found an exponential growth of Δh with time, for the glass beads vibrated
at low frequencies (lower than 30 Hz) and specific values of amplitude (the
actual limits depend on grain characteristics and the frequency of oscillation,
but there were always minimum (maximum) values of amplitude under (over)
which we could not observe the instability). For the cases in which we did not
observe an instability we could see small fluctuations around zero of Δh when
starting experiments with the columns leveled or exponential decreasing of
Δh when starting the experiments with an initial height difference (this was
the case for plastic balls through all the range of parameters studied). This
exponential decrease is the expected behavior of a completely fluidized system
(since it is the behavior of a viscous fluid).

In Fig. 2 we show the effect of the horizontal component in the behavior of
Δh as a function of time, for glass beads with d = (0.25–0.36) mm, vibrated
at f = 8 Hz and ay = 8.5 mm. Different curves are produced changing the
position of the movable counterweight shown in Fig. 1(b). For the most vertical
case, in which ax/ay = 0.013, the growth of Δh is exponentially divergent
in the region between A and B. As the decreasing column becomes empty,
the curve deviates from exponential growth and eventually flattens (region B
to C). In Fig. 3 we show the robustness of the exponential behavior. The curves
corresponding to cases in which ax/ay > 0.03, showed a linear dependence of
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Fig. 3. The same plot as figure 2 in semi log scale, showing the robustness of the
exponential behavior for the case of ax = 0.11 mm. The inset shows a detail of the
three cases in which there is horizontal component in the oscillation, showing that
a straight line fits them well.

Fig. 4. When the horizontal amplitude is 2% of the vertical one, he curve of Δh
with time is well fitted by the sum of an exponential plus a linear term in time.

Δh with time as can be appreciated in the inset of Fig. 3. In Fig. 4, we present
an intermediate case corresponding to a rate ax/ay = 0.02. In this case the
dependence of Δh with time is well fitted by an exponential plus a straight
line. The curve shows a linear dominant zone at the beginning which soon
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Fig. 5. The role of air is shown for glass spheres with d = (0.255–0.350) mm. (a) Ex-
ponentially divergent growth at low frequencies and ambient pressure. (b) Exponen-
tial decay of Δh at the same parameters of vibration but with reduced pressure.
Here the initial height difference is only of a couple of centimeters, but the decay is
also exponential for higher initial height differences. If the experiment begins with
arms leveled, there is no growth of Δh.

changes to an exponential dominant behavior until the decreasing column
empties.

A clear way to check if the increase inΔh is due to an horizontal component
is starting the shaking at a given initial height difference Δh0 to one side,
perform the experiment and repeat it with the same initial difference to the
other side. If the growth occurs to the same side in both cases then there is a
preferred direction clearly related to an horizontal push (as can be seen from
the Lissajous’s figures of the tube’s displacement). If the growth happens
to the higher side in both cases then the horizontal push is beaten by the
instability. Even in this case, the time to reach the maximum Δh can be
different, due to the fact that one side is being helped while the other is being
slowed down by the horizontal component. For a given ax there is a critical
Δhc

0 below which one sees the preferred side and above which, the system
increases. Except for the data in Figs. 2, 3 and 4, we report experiments for
values of ax such that Δhc

0 is very small (i.e. ax/ay ≤ 0.02). In this way,
starting with the arms leveled, one has to wait sometimes several minutes in
order for a fluctuation to trigger the increase of Δh, which can occur to any
of the branches of the tube.

The presence of air is necessary for the instability to occur. When columns
of small grains are set at different levels, and the air is evacuated, Δh decays
exponentially to zero instead of growing (see Fig. 5). This confirms the findings
of [8]. Air, or more precisely, the interstitial fluid, plays an important role in
many other vertically vibrated granular phenomena [13–20], and is a key factor
in the Faraday tilting, a phenomenon that is related to instabilities as the one
studied here.
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4 Simple Model for Exponential Growth

The exponential growth of one of the grain columns described here, can be
thought of as analogous to the draining of a viscous fluid through one of the
branches of an inverted static U-tube. If the granular medium were contin-
uously fluidized (as when shaken at sufficiently large frequencies), we would
expect a typical fluid behavior: no growth when starting with leveled arms
and exponential decrease of Δh when starting with unbalanced arms. This is
in agreement with our findings. But at lower frequencies the granular medium
does not remains continuously fluidized. It changes from an expanded to a
condensed state as it slightly detaches from the container bottom. If we as-
sume that during the expanded phase of the oscillation the system is fluidized,
then we have a cyclic fluidization. With this in mind, we can describe the in-
stability with a simple model similar to the one developed to describe the
phenomenon of reverse buoyancy by Gutiérrez et al. [14].

The granular package inside the tube can only flow during the fluidized
part of the oscillation, during the rest of the cycle it remains blocked. When
the system is fluidized we describe it as a liquid. We assume, for simplicity, that
the granular bed fluidizes during an interval of time τ that coincides with the
portion of the period in which the acceleration given by the container points
upward with a magnitude greater than the acceleration of gravity4. If we define
gef = ayω2 cos(ωt) − g as the effective acceleration of the system, then we
assume that the system is fluidized while gef ≥ 0. This effective acceleration
will be approximately equal to the one felt by the granular columns, as long
as the bed does not separate significantly from the bottom of the tube. The
latter assumption holds for fine grains, at low frequency, in the presence of
air.

The U-tube, partially filled with grains, has cross sectional area A =
πD2/4. The total mass of the granular bed is Mg = ρAL where ρ is the static
bed density. The vertical position of the tube is given by w = ay cos(ωt). We
take y in the growing side of the bed Fig. 1(c) as the only degree of freedom
necessary to describe the motion of the fluidized bed. In the reference frame
of the container, the 1D equation of motion for the evolution of y(t) is given
by:

Mg ÿ = m(y)gef − νẏ, (1)

where m(y) = 2yAρ is the mass of the unbalanced section (striped zone in
Fig. 1(c)) and we have included a dissipative term to account for friction
losses. We integrate this equation over one period of oscillation to get the
average displacement ȳ, assuming, for this simplified case, that the integral is
zero if evaluated outside the interval [−τ/2, τ/2], where τ = 2

ω cos−1(Γ−1).
This gives us a simple differential equation for ȳ. If we consider a vertically
vibrated U-tube with diameter D, partially filled with a granular medium of

4 This assumption could be relaxed to consider the actual time that the system
fluidizes.
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Fig. 6. Exponential growth rate of Δh, as a function of the adimensional acceler-
ation, for glass spheres with d = (0.18–0.21) mm. Three realizations at each value
of Γ at a fixed frequency f = 12 Hz, changing the amplitude of the vibration. The
solid line represents the model approximation Eq. (2), using the friction coefficient
ν as a free parameter.

effective density ρ, solving equation (1), we obtain an exponential dependence
of y with time, for Γ ≥ 1, with a growing rate γ given by:

γ =
gρD2

2ν

[
Γ sin

(
cos−1

(
1
Γ

))
− cos−1

(
1
Γ

)]
. (2)

Using the friction coefficient ν as the only free parameter we obtain fair
agreement between experiment and model as can be seen in Fig. 6. The de-
pendence on the adimensional acceleration Γ of the growing rate γ given by
equation (2) appears only within the square brackets, but ρ depends on the
adimensional acceleration. This dependence can be incorporated by correcting
for the expansion of the granular bed as a function of Γ . Some complications
may arise for some configurations because the expansion is not the same in
the columns and in the link between them. The friction coefficient may also
depend on Γ . The dotted lines in Fig. 6 were introduced to account for a 10%
percent variation in the density that occur when the granular bed is shaken
according to measurements we performed using a fast camera. In our simpli-
fied model, we are not taking into account the fact that the actual fluidization
time deviates from τ with increasing Γ 5. At higher Γ the bed tends to remain
fluidized even when gef < 0, lowering ȳ in each cycle, consequently lowering
the value of γ.

The model proposed is crude and could be improved by considering Gut-
man’s model to incorporate the contribution of the pressure difference across
5 This can be seen in a rectangular vessel using a simple model like Kroll’s to

determine the flight time of the granular bed. See [13] for a discussion.
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the bottom of the tube [5]. It seems plausible that the pressure difference
across the bottom contributes to the transfer of grains between the two
columns but it is not at all clear how it can act as a force to drive the larger
column up in such a way that the growth of Δh is exponentially divergent. Al-
though the pressure difference across the bottom grows with the height of the
rising granular bed, the mass of the same column also grows linearly with Δh,
and the resultant forces oppose each other. In our model the force due to an
effective gravity points upward and increases with increasing mass, producing
an exponential growth. Although the interstitial air does not appear directly
in our model, it appears in the basic assumption that the fluidized part of
the cycle occurs when gef > 1. In the absence of air, the granular package
expands and flights during a longer time than in the presence of air, resulting
in a drift of the fluidization time so it does not coincides with the part of
the cycle in which gef > 1. The mechanism responsible for the exponential
growth of Δh will not be as effective in vacuum as it is in the presence of air.

The fact that the range of parameters for which reverse buoyancy was
reported [14] (fine grains, small frequencies and large amplitudes) is the same
for which exponentially diverging growth was observed, together with the fact
that the assumption of cyclic fluidization was successfully used to model both
phenomena, gives support to the idea that cyclic fluidization is playing a key
role in the dynamics of these interesting instabilities.

5 Conclusions

We have reported an experimental study of a U-tube partially filled with
grains undergoing vertical oscillations. The evolution of the height difference
between the levels of the granular material in each side of the tube shows an
exponential growth in time when fine grains and low frequencies are used in the
presence of air. The growth was modeled assuming cyclic fluidization, showing
that this simple mechanism can be responsible for the instability regardless
of the fact that wall friction and the formation of a pressure gradient at the
bottom of the tube are important parameters, as shown by previous studies
and by our own work. Further research is being done, both experimental and
computational, to determine the effect of parameters as wall friction in the
occurrence of the instability, specially for the case of grains coarser than those
used here, in which air effects should not be very important. An extension of
the model to include a more realistic fluidization time, and a systematic study
of the effect of a small horizontal component in the oscillation are also being
carried out.
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Summary. Collective motion of self-driven particles is a non-equilibrium dissipa-
tive system with asymmetric interaction. Optimal Velocity Model is a minimal model
formulated with Newtonian equation of particles in nonlinear asymmetric interac-
tion with dissipative (viscous) term. Through the investigations of OV model we
show the general properties in such systems: The inseparable relation between the
asymmetry and dissipation. The particle-number N (or density) is a control param-
eter for the instability of a system. The small-N is large enough degree of freedom
in such many-particle systems. They contrast sharply with the energy-momentum
conserved systems.

1 Introduction

Dynamics of self-driven particles covers the wide fields in phenomena of dy-
namical pattern formation of physical, chemical and biological systems. Inves-
tigations of such kind of systems can be applied to traffic flow, molecular mo-
tors, urban network, internet, river-winding, pedestrians, evacuations, granu-
lar media, and collective bio-motions. From the physical viewpoint, they are
non-equilibrium dissipative systems with asymmetric nonlinear interaction.
A self-driven particle moves by self-driven force, which is not an external force,
meaning that such a force breaks ‘the action-reaction principle’, which results
in non-conservation of the total momentum. The inflow of energy provides a
self-driven force and the energy flows out from a particle as dissipation. In the
many-body system of such particles, a non-trivial macroscopic phenomenon
appears in the non-equilibrium balance due to the effect of collective motions.

The general characteristic properties of such systems are, i) dynamical
phase transition (bifurcation) to a non-trivial phase, ii) emergence of macro-
scopic scale (pattern formation), iii) emergence of macroscopic time-scale
(rhythm), iv) power law behavior of fluctuations, etc. These aspects fully
appear in the mathematical model, so called Optimal Velocity Model [1, 2].

mailto:sugiyama@phys.cs.is.nagoya-u.ac.jp
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OV model is a minimal 1-dimensional Newtonian system of particles in non-
linear asymmetric interaction with dissipative (viscous) term, which is first
introduced as a traffic flow model.

2 Asymmetric Interaction in Dissipative System

In such systems, the inseparable relation between the asymmetry of interac-
tion and dissipation in non-equilibrium system is well understood in compari-
son with the energy and momentum conserved systems of interacting particles.
For this purpose we investigate the “general asymmetric OV model” as the
following formula.1

d2xn

dt2
= a

{
V (Δxn)−W (Δxn−1)− ε

dxn

dt

}
, (1)

where xn is the position of the nth particle, and Δxn = xn+1 − xn is the
headway distance. a is a control parameter, which dimension is the inverse of
time, called a sensitivity constant. V (Δxn), so called OV-function, determines
the interaction with a particle moving ahead. In addition,W (Δxn−1) is intro-
duced as the interaction with a particle moving behind. In general they are
not the same function. IfW = V , the system is ordinary nonlinear-interacting
particle system, where the action-reaction principle is satisfied and the total
momentum is conserved. The parameter ε is put on the dissipative (viscous)
term for the study of the case switching off the dissipation when ε = 0. If
W �= V and ε �= 0, the model (1) is the expression of the simplest dissipative
system with asymmetric interaction, where neither momentum nor energy is
conserved. In the case that W = 0 and ε = 1, the model is reduced to the
original OV model (the extremely asymmetric model). In another case that
W = V and ε = 0, the model is reduced to the system of both momentum
and energy conservation, such as nonlinear-interacting oscillator systems (e.g.
Toda Lattice).

We investigate the stability of trivial solution for the model (1), where
particles are distributed uniformly with the same distance b (or the average
density of particles), and they are stationary or moving with the same velocity.
For this purpose we derive the dispersion relation for the linear equation of
motion for small deviation yn = exp(ink + zt) beyond the trivial solution,
where z(k) = ikz1 + (ik)2z2 + o(k)3 by long wave-length (small k) expansion.
The result is

z(k) = ik
{V ′(b)−W ′(b)}

ε

+ k2
{

2{V ′(b)−W ′(b)}2
a{V ′(b) +W ′(b)}ε2 − 1

}
{V ′(b) +W ′(b)}

2ε
+ o(k3), (2)

1 The model of this type was introduced as the forward-backward looking OV model
for traffic flow [3].
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where V ′,W ′ are the derivatives of V,W , and supposed to be positive. The
positive/negative value of the coefficient of k2-term determines whether the
solution is unstable/stable, which is controlled by a, b. In general the stability
increases for W �= 0 [3] in comparison with the original OV model (W = 0).
For the symmetric interaction with dissipation (W = V, ε �= 0) it is absolutely
stable for arbitrary b. Inversely say, the asymmetry of interaction induces the
instability controlled by b. If we switch off the dissipation keeping with the
asymmetry (W �= V, ε = 0), the behavior becomes singular, indicating that the
asymmetric interaction is meaningful as long as coexisting with dissipation.
The coexistence can lead to a non-trivial dynamical behavior for a dissipative
system. If we tune the limit that W → V, ε → 0 with the ratio fixed as
Eq. (3), k2-term vanishes and the dispersion of harmonic-oscillator chain is
reproduced. In this sense, a symmetric interaction with no dissipation (both
momentum and energy conserved system) is a special system defined at the
singular point in the space of general systems.

z(k) = ±ik
√
aV ′(b) + o(k3) (3)

3 Dynamics of OV Model

3.1 Dynamical Phase Transition and Emergence of Moving Cluster

Here we investigate the original OV model for the purpose of studying the
general properties of non-equilibrium dissipative system with asymmetric in-
teraction. The model has the homogeneous flow solution, in which particles
are moving uniformly distributed with the same velocity V (b), where b = L/N
is the average particle-density−1 (N is the number of particles and L is the
length of a circuit). The homogeneous flow is linearly unstable under the con-
dition [1, 2]

2V ′(b) > a, (4)

which is derived from Eq. (2) with W = 0, ε = 1. In this case, the cluster
(jam) is spontaneously formed as shown in Fig. 1 (Left). After relaxation the
cluster flow solution is stable. All clusters are moving backward with the same
velocity opposed to the direction of the particle-motion.

3.2 Profile of Cluster Flow Solution and Induced Time-Delay

We recognize the profile of cluster flow solution by the trajectory of particles
in the phase space of headway and velocity (Δxn, vn) in Fig. 1 (Right). In the
cluster flow solution all particles are moving along the specific closed curve,
which is a kind of limit cycle [1, 2]. The limit cycle shows the non-equilibrium
balance of in-and-out flow of particles through a cluster. Particles move as the
same way with the time-delay τ , which is a characteristic time-scale induced
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Fig. 1. (Left): The evolution of cluster formation N = 100 on periodic boundary
condition on a lane. (Right): The profile of cluster flow solution. ‘Free’ and ‘Jam’
denote smoothly driving region and jam cluster, respectively. All vehicles move along
the closed loop in the direction of arrow. A dotted curve represents OV-function.

by the effect of collective motions. It determines any characteristic behavior
of moving cluster. As the result, a macroscopic object (cluster) is formed and
moves with its own velocity, vc = −Δxc/τ , where Δxc is the particle-distance
in a cluster as Fig. 1 (Right).

3.3 Power-Law Behavior

Clusters generated in OV model have various sizes. Figure 2 shows the proba-
bility distribution of cluster-size, which is defined by the number of particles in
a cluster. P (x) denotes the probability for the existence of cluster size larger
than x. In the simulations of N = 500 ∼ 3000 we observe the power-law
behavior as P (x) ∝ x−γ , where γ ∼ 1.

Fig. 2. The vertical axis is a log-plot of P (x), and the horizontal axis is the size of
cluster. A Straight line denotes a power-law, comparing with the reference curve of
Gaussian distribution. (Left): N = 500 ∼ 900. (Right): N = 1000 ∼ 3000.
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4 N -Body Problem in OV Model

The N -body problem for the emergence of moving cluster is studied both an-
alytically and numerically. The investigation for N = 2, 3, 4, . . . , provides the
general information for the dependence of the particle-number N in dynamical
behaviors of non-equilibrium dissipative system.

4.1 Instability Condition

The instability of the trivial solution (the uniform flow solution) is analyzed
in detail for each mode of longitudinal wave of density. The condition whether
a mode makes the trivial solution unstable is

a < 2V ′(b) cos2
k

2
, k =

2π
N
n, (n = 0, 1, 2, . . . , N − 1), (5)

where k is a wave number (a mode of wave-length−1 for a frequency of density).
The solution is unstable even if only one mode exists (except zero-mode) in
the unstable region (shaded region) in Fig. 3 (Left).

Fig. 3. (Left): Each mode is presented in the polar coordinates (r, θ) = (1/a, k),
in N = 3 for two different values of a, for example. The critical curve is 1/r =
2V ′(b) cos2 θ. A mode within the shaded region makes the solution unstable. Remark
that zero-mode (k = 0) has no relation to instability. (Right): Phase diagram of
stable/unstable region in the parameter space (a, b) for the trivial solution for give
N . Critical curve is derived from the condition for the existence of unstable mode.

For N = 2 it is impossible for any mode satisfying the condition. In con-
trast if N ≥ 3 such a mode can exist for taking a small enough value of
sensitivity parameter a (large radius). The instability can occur in the system
that consists of only three particles, N = 3 as Fig. 3. The unstable region
in control-parameter space (a, b) extends as N increases. We point that the
difference for N shrinks rapidly. (Compare the cases for N = 10 and 50.) For
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large N even a tiny k ∼ 0 (the long wave-length) plays a role of unstable
mode, then the limit k → 0 for Eq. (5) provides the instability condition as
Eq. (4).

4.2 Emergence of Moving Cluster for N = 3

The instability of a uniform flow of particles emerges even for N = 3. In this
case the system transits to the other state, which is a non-trivial stable state
in non-equilibrium system, the state of cluster flow. Actually, we observe the
“cluster” flow in Fig. 4. The profile of the solution is clearly shown as a limit
cycle, as essentially the same as the cluster flow for the system of large-N
particles in Fig. 1.

Fig. 4. (Left): A snapshot of a two-particle cluster moving backward opposed to
the direction of particle movement. (Right): A limit cycle profile of a cluster flow
solution in N = 3, together with OV-function.

4.3 Exact Solution of Moving Cluster Flow

Moreover, the N -body problem for the emergence of moving cluster is exactly
solved in N = 2, 3, 4, . . . , for choosing the Heavyside step-function as OV-
function, such that V (Δx) = 0 for Δx < d and V (Δx) = vmax for Δx ≥ d.
We skip the derivation of exact cluster-flow solutions, which is presented in
another paper [5]. Here, we provide the several important results as follows.

Figure 5 shows the trace of each particle in cluster flow solution in N = 3
for given a and b. Three particles behave just the same way with the induced
time-delay τ , which is the most important value for cluster flow solution.
We clearly observe a cluster propagating backward opposed to the motion of
particles. The solution of trajectory of a particle has to be calculated one by
one for each N . However, the τ in arbitrary N is obtained as the solution of
aτ (dimensionless value) for the following general equation,

aτ(1 + e−
N
2 aτ ) = 2(1− e−aτ ). (6)
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Fig. 5. The trace of each particle after relaxation in N = 3. The bold part of each
trace represents the interval for Δx < d. The moving cluster is clearly observed.

If we put the limit N → ∞, the equation (6) is reduced to the result of
the previous work, which solution is aτ = 1.59.. [4]. In general the solution aτ
depends on N as shown in Fig. 6. For N = 10 the value aτ is nothing different
from N = ∞. Thus, N = 10 is large enough number for quantitatively the
same behavior as the system of infinite-number of particles.

Fig. 6. N -dependence of the solution aτ of Eq. (6)

The backward-velocity of a cluster vc is obtained by using the value of τ
for given a as

vc = −
d− 1

2vmaxτ

τ
. (7)

The formula Eq. (7) is just the same as the previous result [4].
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Fig. 7. The dependence of the number of particles N for limit cycle in the case for
b = d. Heavyside step-function as OV-function is drawn together.

Figure 7 shows the limit cycles for given N . We remark that the shape
of limit cycle is dependent on the number of particles N and the density b.2

The difference among limit cycles shrinks rapidly as N increases. Actually
the limit cycle for N = 10 is nothing different from N =∞, which is already
obtained in the previous work [4]. For large enough N the limit cycle is unique
for given a, not depends on b.3 We recognize that N = 10 is already large
enough in the OV model by Fig. 7 as well as Fig. 6. The dynamical behaviors
of the system of OV model for “small” number of particles are the same as
many-body system.

5 Summary and Discussion

Summarizing the results of investigating OV model in previous sections, we
can guess and provide the characteristic properties for a non-equilibrium dis-
sipative system with asymmetric interaction in general, comparing with an
equilibrium system with symmetric interaction (an energy-momentum con-
served system). There exists the inseparable connection between the asym-
metry of interaction and dissipation. If the dissipation is switched off and
only the asymmetry of interaction exists, the system is singular. While, the

2 The qualitative difference depends on b > d, b = d, b > d for a given N . Any
difference vanishes for infinite N .

3 We remark that the stability of limit cycle depends on b.
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dissipation with symmetric interaction leads the behavior of a system to a
stationary state, which is not interesting for non-equilibrium dynamics. If and
only if both the asymmetry of interaction and dissipation coexist, the system
shows a non-trivial dynamics in non-equilibrium physics.

In the dissipative system with the asymmetry of interaction, a particle-
density or a number of particles in the system is a control parameter, in
contrast it is not in the conserved system. Instability of a trivial state and dy-
namical phase transition emerge even in small-N particle system (e.g. N ≥ 3
in OV model). In contrast, in the equilibrium and conserved system, phase
transition appears in large-N , strictly say, in the system with infinite degree of
freedom. A small number of particles in the system investigated in this paper,
is large enough number of particles in the meaning of quantitatively the same
behavior for the system of infinite-number of particles. The phenomenon is
characteristic for the dynamics of dissipative non-equilibrium system, which
is a sharp contrast comparing with equilibrium systems. These basic proper-
ties are very important as new physical aspects appeared in non-equilibrium
dissipative system with asymmetric interaction.
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Summary. This paper presents numerical findings on rapid 2D and 3D granular
flows on a bumpy base. In the supported regime studied here, a strongly sheared,
dilute and agitated layer spontaneously appears at the base of the flow and supports
a compact packing of grains moving as a whole. In this regime, the flow behaves like
a sliding block on the bumpy base. In particular, for flows on a horizontal base, the
average velocity decreases linearly in time and the average kinetic energy decreases
linearly with the travelled distance, those features being characteristic of solid-like
friction. This allows us to define and measure an effective friction coefficient, which
is independent of the mass and velocity of the flow. This coefficient only loosely
depends on the value of the micromechanical friction coefficient whereas the influence
of the bumpiness of the base is strong. We give evidence that this dilute and agitated
layer does not result in significantly less friction. Finally, we show that a steady
regime of supported flows can exist on inclines whose angle is carefully chosen.

1 Introduction

Granular flows can display a wide variety of behaviors ranging from solid-
like to gas-like and a great deal of work has been devoted to steady and
fully-developed dense flows [1–4]. Here, using 2D and 3D molecular dynamics
simulations we study transient granular flows on a horizontal base as well as
the steady regime obtained on inclines. We focus on the supported regime,
in which a strongly sheared, dilute and agitated layer spontaneously forms at
the base of the flow and supports a compact packing of grains moving as a
whole. This regime has been described in the geophysical literature [5–8] and
in the kinetic theory framework [9], but these authors did not study either
the dynamical properties of the flow or the arrest of the flow. Moreover, the
influence of the bumpiness and inclination of the base remains unexplored both
experimentally and numerically. The density inversion observed in supported
flows is similar to the Leidenfrost effect observed when a drop of water is
poured onto a hot plate. A thin layer of gas develops underneath the drop
and considerably reduces the apparent friction between the drop and the plate.
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Therefore, one can wonder if supported granular flows are self-lubricated. Let
us mention that a density inversion has also been observed in the case of
vertically shaken granular media [10, 11].

Note that an impressive number of parameters (among which grain mass,
size, density, shape, polydispersity, Young modulus, restitution and friction
coefficients as well as total number of grains, initial velocity direction and
amplitude, initial granular temperature, initial packing fraction, bumpiness,
polydispersity, order/disorder and inclination of the base) are expected to have
a crucial role on the properties of the flow. Hence, it seems rather difficult
to plot the simultaneous influence of all parameters. As a consequence, we
decided to keep most of these parameters constant while varying those of
highest interest (namely friction coefficient, total number of grains, initial
velocity, bumpiness of the base and inclination).

The outline of this paper is as follow: first, the numerical method is de-
scribed. Second, we present the properties of supported flows (namely the
amplitude of initial velocity, packing fraction and granular temperature pro-
files). The temporal evolution of the supported regime is then presented and
the dynamics of the arrest of the flow studied. We study the influence of the
micromechanical friction and of the bumpiness of the base. Finally, we present
results on inclined flows.

2 Numerical Method

This study uses 2D and 3D soft-grain molecular dynamic simulations which
include friction and rotation. We model N spheres (ranging from a few up to a
few tens of thousands) slightly polydisperse spheres of mean diameter, d, (size
dispersion ±20% with constant density) and mass,m. The spring-dashpot and
regularized Coulomb schemes [12] are used for the forces acting between two
colliding grains. The following values of the parameters are used both in 2D
and 3D: d = 8 mm, mass = 0.16 g, spring constant kn = 40 000 N.m−1, viscous
damping γn = 1.2 kg.s−1, viscous regularization constant γt = 5 kg.s−1 and
unless otherwise mentioned, friction coefficient μ = 0.3, leading to a coefficient
of restitution of en = 0.9. The equations of motion for the translational and
rotational degrees of freedom are integrated with a velocity-Verlet scheme
with a time step δt = 1.5 10−6 s [12].

The simulated system consists of a cell which can be inclined with an
angle θ, with periodic boundary conditions in the x (flow) direction, y being
perpendicular to the base. The length of the cell along x is chosen to be
L = 25 d on Fig. 1 but is set to L = 250 d for more accurate measurements in
the rest of the paper. The 3D simulations have periodic boundary conditions
both in the flow and depth direction, and the depth of the cell,W , is also set to
25 d. We observed that the value of L andW does not affect the results as long
as they are greater than a few particle diameters. We define the normalized
number of grains, Ñ = N/(L/d) for 2D simulations and Ñ = N/(LW/d2)



Leidenfrost Granular Flows 567

Fig. 1. Snapshots from the 2D simulation for different values of Ñ and V0 on a
horizontal bumpy base. a) Quasi-static regime, Ñ = 6.4 and V0 = 0.2 m/s. b) dense
flow, Ñ = 24 and V0 = 4 m/s. c) gaseous regime, Ñ = 2.4 and V0 = 100 m/s.
d) supported regime, Ñ = 24 and V0 = 16 m/s.

for 3D simulations, which is a measure of the initial height of the packing.
The bumpy base of the cell consits of cylinders oriented perpendicularily to
the flow direction. Their diameter d is the average diameter of the grains and,
unless otherwise mentioned, the gap between the centers of two consecutive
cylinders is set to δ = 1.25 d. The interactions between the flowing grains and
the bumpy base are treated in the same fashion as the grain/grain interactions,
i.e. using the same values of friction coefficient and energy restitution. The
grains are initially placed on a compact square (2D) or cubic (3D) grid in the
cell and given an initial velocity V0, which is identical for all the grains and
is parallel to the bottom of the cell (i.e. to the x direction).

As mentioned above, many parameters can drastically affect the properties
of the flow and a comprehensive study of the inter-correlated influences of all
parameters seems unfeasible. The properties of individual grains (mass, size,
shape, Young modulus, energy restitution, polydispersity) are kept constant
with the exception of their friction coefficient μmicro. The initial velocity is
always parallel to the base of the flow and uniform among the grains (i.e.
no initial agitation) and the initial packing fraction always corresponds to
a compact cubic (or square) grid. The bumpiness of the base is crucial in
this study but once again it requires a very large number of parameters to
be characterized. The base can consist of spheres or cylinders (or any other
shape), can be ordered or disordered (with different degrees of disorder), can
be monodisperse or polydisperse (with an infinite variety of size distribution),
can be bumpy or flat (with different degrees of bumpiness) etc. Therefore, for
simplicity’s sake, the only parameter varied regarding the base is the distance
between two consecutive cylinders δ. In summary, the only parameters that
were varied in our simulations are the number of grains, Ñ , the initial velocity,
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V0, the friction coefficient, μmicro, the bumpiness of the base, δ, and the
inclination of the cell, θ.

3 Flow Structure and Kinematics

In this section, the cell is kept horizontal in order to study the arrest of the
flow. In this case there is no source of energy (gravity being perpendicular
to the bottom) and the initial energy of the packing dissipates during the
flow through friction and inelastic collisions. Therefore, the flow is bound to
come to a rest after some time. Depending on the initial kinetic energy of the
flow, K0, we observed four transient regimes in our numerical simulations, as
illustrated by Fig. 1 for 2D flows. For extremely low values of the initial kinetic
energy, the system rapidly comes to a rest and a dense and static pile of grains
is observed (Fig. 1a). For slightly higher values of the initial kinetic energy,
dense flows that are similar to those studied by Prochnow [13] and Silbert et
al. [4] are found (Fig. 1b). The packing fraction of such flows is found to be
constant throughout the whole medium [4, 13]. On the contrary, for very large
values of the initial kinetic energy the flows are extremely agitated and dilute
(Fig. 1c). For intermediate values of K0 (roughly 10 m/s < V0 < 50 m/s in 2D
for μmicro = 0.3, en = 0.9 and Ñ = 24), a remarkable regime can be observed.
Since the initial packing is loose, the medium compacts when the simulation is
started. This initial vertical speed creates a bouncing motion which is visible
on Fig. 6. However, the bumpy base can cause a strong agitation (if the
velocity of the grains is high enough) at the base of the flow. The flow then
consists of a compact layer of grains supported by a very agitated gaseous one
(Fig. 1d). This regime is thus extremely heterogenous, both structurally (the
packing fraction is not uniform and depends on the position) and kinematically
(contrary to the rest of the flow, the basal layer is extremely sheared and
agitated). After the flow has slowed down, the basal layer vanishes and the
flow becomes dense. Note that a high value of en is necessary to obtain the
supported regime. This value is set to 0.9 in this paper but previous work has
investigated lowers values [8].

Among the characteristics of a granular flow, the packing fraction, velocity
and velocity fluctuations are the most commonly studied. Figure 2 displays
instantaneous profiles of those quantities averaged over the x direction for 2D
flows and figure 3 shows a snapshot and velocity and packing fraction for a 3D
flow. Regarding the velocity (Fig. 2a, Fig. 3b), the first observation is that an
important sliding velocity exists at the base, whereas in the case of dense flows,
such a sliding velocity does not exist (except for flat bottoms). This profile
also clearly demonstrates that the basal layer is extremely sheared. Above
this layer, a plug flow, characterized by a uniform velocity, is observed. As
expected, the packing fraction is high and almost constant in the latter region
and its value is close to the packing fraction of the random close packing [14]
(see Fig. 2b). With decreasing y, the packing fraction vanishes in the sheared
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Fig. 2. Instantaneous velocity (a), packing fraction (b) and granular temperature
(c) profiles for 2D flows on a horizontal base with Ñ = 40 and V0 = 20 m/s, taken
after 1.5 s of running time and averaged over x.

Fig. 3. Snapshot (a) and instantaneous velocity (b) and packing fraction (c) profiles
for 3D flows on a horizontal base with Ñ = 40 and V0 = 20 m/s, taken after 1.5 s
of running time and averaged over x. The color represents the velocity along the x
direction.

layer to an almost zero value at the bottom. Another quantity of interest is
the fluctuation of the velocity along x, measured by the granular temperature,
T = 〈(Vx−〈Vx〉)2〉, which is a measure of the agitation in the flow. Note that in
the kinetic theory, the correct definition of the granular temperature involves
all three directions and has a 1/2 prefactor but for simplicity, we will use
the afore-mentioned definition. The profile reported on Fig. 2c confirms that
the basal layer, contrary to the top one, is indeed agitated. The system is
“heated” by the bumpy bottom and the dense part of the flow serves as a
cold source. Note that the gaseous layer does not propagate through the flow:
a pseudo-equilibrium can be found between the cold and the hot source (i.e.
the height of the gaseous layer remains constant during a few seconds, see
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Fig. 5). In the next section we will show how the velocity profile evolves as
the flow slows down on a horizontal.

4 Time Evolution of the Flow Structure

Let us now study the dynamical properties of the arrest of supported flows on
a horizontal base. Figure 4 shows velocity profiles obtained at different times
for a 3D flow on a horizontal base with Ñ = 40 and V0 = 16 m/s. Initially,
the flow is a plug flow but the basal layer appears rapidly. As the grains slow
down, the velocity profile are more and more curved (a to e) and eventually
the basal layer disappears and the flow becomes dense (f) until it completly
stops (i).

Fig. 4. Velocity profiles at different times for a 3D flow with Ñ = 40 and V0 =
16 m/s.

An interesting way to track the history of the supported regime is to
define the height of the gaseous layer hc. The packing fraction of a disordered
2D compact granular packing is always close to 0.82 [14]. The height hc can
then be defined as the height for which the packing fraction deviates from
this universal value. In our simulations, hc is defined as the height for which
the packing fraction is less than 0.75. This value is arbitrary but the use of
other reasonable critical values (namely 0.65 and 0.7) gave similar qualitative
results. Figure 5 reports the evolution of the height of the basal layer, hc,
in time and the corresponding average velocity evolution for a 2D flow with
Ñ = 48 and V0 = 50 m/s. One can observe that hc first decreases until
it reaches a plateau corresponding to about hc ≈ 13 d. After some time (a
few seconds), the basal layer disappears, and the flow, no longer supported,
becomes dense. Note again that the transition between the supported and
dense regime is rather abrupt.
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Fig. 5. Time variation of the height of the gaseous layer hc and of the average
velocity for a 2D flow with Ñ = 48 and V0 = 50 m/s. The basal layer disappears
after roughly 8 s and the flow goes from supported to dense. The velocity decreases
linearly in time for as long as the flow is supported (the dashed line is a linear fit to
this part of the curve).

5 Energy Dissipation and Effective Friction Coefficient

5.1 Sliding-Block Analogy

One can observe on Fig. 5 that for as long as the flow is supported the velocity
decreases linearly in time. The linear decrease of the velocity in time indicates
that the flow behaves like a sliding block interacting with the base through
solid friction. One can then define an effective friction coefficient μeff by:
dV/dt = −g μeff , where V is the average velocity per grain and g the accel-
eration due to gravity. When the flow becomes dense, the velocity no longer
varies linearly in time, indicating that the interaction between the flow and
the bumpy base is no longer sliding block-like. In conclusion, in the supported
regime, and not in the dense regime, the flow behaves like a sliding block
and one can define a constant effective friction coefficient. Note that this last
statement is true for both 2D and 3D flows. Moreover, if supported flows be-
have like sliding blocks, the kinetic energy must decrease linearly with respect
to the travelled distance, and the decrease rate must be independent of the
initial energy: dK/dD = −μeff mg, where m is the mass of the sliding block.

The average travelled distance, D, is obtained by integrating the velocity:
D(t) =

∫ t

0
V (t)dt. In our simulations, most grains belong to the supported part
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of the flow. Indeed, the basal layer is rather thin and very dilute. The average
travelled distance is therefore the distance that most grains have actually
travelled. This allows us to plot the spatial evolution of the kinetic energy:
K(D). Figure 6 shows such plots for various values of the initial velocity and
number of grains (i.e. total mass). The energy is made dimensionless by mgd
and the travelled distance by d so that the slope of the curve is directly equal
to the effective coefficient of friction.

Fig. 6. (in color online) Spatial evolution of the total kinetic energy of 2D flows with
various values of Ñ (i.e. total mass of the flow) and V0. a) Ñ = 40 and V0 = 16 m/s,
b) Ñ = 60 and V0 = 16 m/s, c) Ñ = 40 and V0 = 20 m/s, d) Ñ = 40 and
V0 = 26 m/s, e) Ñ = 60 and V0 = 26 m/s.

Several conclusions can be drawn from Fig. 6. First, it confirms what was
inferred from Fig. 5, that is that supported flows exhibit solid-like frictional
properties since the various curves are straight lines. Second, the various lines
are parallel, i.e. all slopes are identical, which means that, as in the case of a
sliding block, the friction coefficient is independent of the velocity and mass.
This is an important result since in the case of dense flows, the frictional
properties strongly depend on the flow thickness [2]. Third, the oscillations
that can be seen correspond to a bouncing motion of the dense packing on
the supported layer. Note that these oscillations disappear for lower values
of en. Finally, the value of μeff can be computed and one finds from Fig. 6,
μeff � 0.41. This value seems rather high considering that the micromechan-
ical friction coefficient was set to μmicro = 0.3.

5.2 Influence of the Micromechanical Friction Coefficient

The effective friction coefficient is a measure of the loss of kinetic energy per
unit length (or velocity per unit time). Two mechanisms contribute to the
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dissipation of the kinetic energy in our simulations: on one hand, the sliding
friction between individual grains (including those of the bumpy bottom),
on the other hand, the inelasticity of the collisions. One way to identify the
contributions of these two mechanisms to the overall loss of energy is to vary
one while keeping the other constant. We chose to vary the value of μmicro

while keeping en = 0.9. The results are presented on Fig. 7 for 2D and 3D
flows.

Fig. 7. Effective coefficient of friction versus the micromechanical grain-grain coef-
ficient of friction for 2D (circles) and 3D (squares) flows.

The influence of μmicro on the effective coefficient of friction is rather poor
both in 2D and 3D. Even for the non-physical case of μmicro = 0, one ob-
tains a non-zero effective coefficient of friction. Although it slightly increases
with increasing μmicro, μeff remains around the rather high value of 0.4. This
shows that the energy loss is caused more by inelastic collisions than by fric-
tion, which is an indication that most of the dissipation occurs in the basal
layer where the grains interact through inelastic collisions. Note that the ki-
netic theory applied to 3D supported flows of frictionless grains predicts an
effective friction coefficient of

√
1− en ≈ 0.32 [15], which is very close to that

found here (see figure 7). Note also that the effective friction remains rather
high (typically 0.4) which indicates that the existence of the agitated basal
layer does not lead to a lubrication of the flow.

5.3 Influence of the Bumpiness of the Base

Since we have established that the collisional properties of the grains are cru-
cial, one can expect the bumpiness of the base to be an important parameter.
Let us recall here that the base of the cell consists of cylinders of diameter d
(disks in 2D) regularly placed every δ perpendicularly to the main direction of
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the flow. The bumpiness in measured by the angle α defined on figure 8. The
distance between two consecutive centers, δ, can vary from 0 (corresponding
to a flat base and α = 0) to 2d (maximum bumpiness, α = π/2). Note that
because of the small polydispersity of the flowing grains, the value δ = 2d can
not be reached since the smallest grains would then fall through the base.

Fig. 8. Sketch of the bumpy base: the gap δ between the centers of the grains can
range from 0 to 2d. The bumpiness is measured by the angle α, where sin α = δ/2d.

Fig. 9. Effective coefficient of friction as a function of the roughness of the base for
Ñ = 40 and V0 = 16 m/s for 2D and 3D flows.

The first remark is that a minimum bumpiness is required to observe
supported flows. For Ñ = 40, V0 = 16 m/s, θ = 0 and μ = 0.3, no supported
flows can be observed for sin α < 0.2. In this case, the surface is rather smooth
and no agitation can be triggered by the base. Note that the critical value of
α below which the flow is dense is not universal and is expected to depend
on θ. Figure 9 is a plot of the effective friction coefficient as a function of the
bumpiness. As expected, μeff is an increasing function of α, meaning that
the bumpier the base, the higher the effective friction. One can see that the
2D and 3D simulations produce very similar values of the effective friction
coefficient. Note also that the range of values of μeff is wider than on Fig. 7.
Yet, its value remains relatively high (above 0.3) in both 2D and 3D cases.
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This again indicates that the effective friction is not reduced when the flow is
in the supported regime (i.e. there is no lubrication effect).

6 Discussion and Conclusion

We have studied rapid flows of granular material over a bumpy base through
2D and 3D discrete elements simulations. We show that the regime of sup-
ported flows can exist, in 2D and 3D, as a transient on a horizontal base or
as a steady state on an incline. In all cases, the flow behaves like a sliding
block, which allows one to define and compute an effective friction coefficient,
μeff . Our results indicate that (i) this effective friction coefficient is indepen-
dent of total mass and initial velocity of the packing, (ii) it depends loosely
on the micromechanical friction between individual grains and (iii) increases
with increasing bumpiness of the base. We also give evidence that the steady
state can be reached for one unique value of the inclination above (respec-
tively below) which the flow accelerates (respectively decelerates). Because of
the weak dependence of μeff on the micromechanical friction coefficient, for
low values of the micromechanical friction coefficient one finds μeff > μmicro

whereas for higher values one finds μeff < μmicro. Therefore, it may seem
difficult to conclude whether the supported regime is a source of lubrication.
Note however that μeff remains relatively high, even in the case of frictionless
grains (see figures 7 and 9).

One hypothesis to explain the existence of long-runout avalanches ob-
served in nature (that is natural landslides that may travel many times their
initial drop height) is to invoke supported flows [16]. Our work indicates that
although such a regime can indeed exist, it does not yield an effective fric-
tion as low as 0.1 (instead it remains relatively high, μeff � 0.4). Therefore, it
seems unlikely that long-runout avalanches can be accounted for by supported
granular flows. Note however that the applicability of our results to geologi-
cal events and direct comparison with field data are questionable. First, the
range of parameters that is explored in this paper is rather small compared
to that encountered in the field. It would be particularly interesting to vary
the total mass of the flow over several decades. Secondly, our system is ideal
and consists of an almost monodisperse assembly of spheres or disks with no
interstitial fluid. These remarks leave several questions open and we hope will
stimulate further work in the topic.

The authors would like to thank J.T. Jenkins and P. Eshuis for fruitful
discussions.
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Summary. A granular instability driven by gravity is studied experimentally and
numerically. The instability arises as grains fall in a closed Hele-Shaw cell where a
layer of dense granular material is positioned above a layer of air. The initially flat
front defined by the grains subsequently develops into a pattern of falling granu-
lar fingers separated by rising bubbles of air. A transient coarsening of the front is
observed right from the start by a finger merging process. The coarsening is later sta-
bilized by new fingers growing from the center of the rising bubbles. The structures
are quantified by means of Fourier analysis and quantitative agreement between ex-
periment and computation is shown. This analysis also reveals scale invariance of
the flow structures under overall change of spatial scale.

1 Introduction

Improved understanding of granular flows would be of essential importance to
a range of industrial applications, to the study of geological pattern forming
processes, and, in general, to the theoretical description of disordered media.

As grains become smaller the effect of the interstitial fluid becomes more
important. The result is a combination of dry granular dynamics and the
hydrodynamics of the fluid. These systems give rise to a variety of exotic and
most often poorly understood phenomena such as fluidization [1] and bubble
instabilities [2], quicksand and jet formation [3], and sandwich structures in
systems where different particle types segregate [4]. While the study of dry
granular media has been extensive over the past decades, the exploration of
fluid-granular systems has been of more limited scope.

A wide range of granular instabilities where various structures form along
fluid-grain interfaces have been reported the last few years [2, 7]. Notably,
the patterns formed by grains falling in a highly viscous liquid were inves-
tigated experimentally and theoretically by Völtz et al. [8]. The instability
reported by Völtz shares its main qualitative characteristics with the classical
Rayleigh-Taylor instability, i.e. a single dominating wavelength growing right
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from the start. In contrast, the instability discussed here arises along an
air-grain interface where falling granular fingers and rising air-bubbles form
[9, 10]. A coarsening of the finger-bubble pattern is observed right from the
start of the instability. The coarsening subsequently stabilizes due to the con-
tinuous formation of new fingers at the centers of the rising and growing
bubbles. Our experimental and numerical data compare favorably both quali-
tatively and quantitatively, despite the simplifications of the numerical model:
Only two spatial dimensions, zero interparticle friction, no gas inertia, and a
resolution of the gas-grid of 2.5 grain diameters. The finger-bubble structures
further exhibit scale invariance under change of particle size, a feature which
is supported both by observations and theoretical considerations.

The experiment is presented in Sec. 2, and the numerical model is outlined
in Sec. 3. The analysis and the consistency check are presented in Section 4,
together with the scale invariance observed when the grain diameter increases.
The conclusion is given in Section 5.

2 Experiment

The experimental setup, illustrated in Fig. 1, consists of a closed Hele-Shaw
cell mounted on a hinged bar which enables the cell to rotate approximately
130 degrees from a lower to an upper vertical position (from A to B in Fig. 1).
The Hele-Shaw cell is made of a 1 mm thick silicone frame sandwiched between
two 8 mm thick glass plates. The internal dimensions of the cell are 56 mm ×

Fig. 1. Front and side view of the experimental setup. Two cell positions are su-
perimposed in the side view to illustrate the manual rotation from position A to B.
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86 mm × 1 mm, and it is filled with polystyrene beads and air at atmospheric
pressure. The cell is rotated manually and it takes about 0.2 seconds to bring
the cell to an upright, vertical position. The off-center pivot of the cell causes
the rotation to slow down the falling motion of the grains due to centrifugal
forces. A bar is mounted at position B in order to have some control of the
final vertical position of the cell. The evolution of the instability is recorded
by a high speed digital camera (Photron Fastcam-APX 120K) taking images
with a resolution of 512× 512 pixels at a rate of 500 frames per second.

Monodisperse polystyrene beads of 140 μm in diameter (Microbeads®

Dynoseeds TS 140-51) are used in the experiments. The filling of the cell is
performed with one glass plate lying down horizontally with the silicone frame
adhered on top. Small portions of beads are carefully deposited on the plate
and leveled with the frame before the upper plate is attached and fasted with
clamps. The cell is flipped a few times after closure to allow the grains to form
a random loose packed configuration before the cell is rotated.

The humidity in the lab is important in order to keep the electrostatic
and cohesive properties of the grains at a suitable level to prevent the grains
from clustering or sticking to the glass plates. During the filling of the cell and
throughout the experiment the humidity was kept constant at about 30%.

A series of images from the experiment is shown in Fig. 2. Due to ex-
perimental imperfections the initial air-grain interface in Fig. 2(a) is not a
well-defined, horizontal front. This is mainly caused by three factors: (1) Os-

Fig. 2. Experimental images of the granular Rayleigh-Taylor instability where a
layer of monodisperse polystyrene beads of 140 μm in diameter (black) displaces air
(white) in a Hele-Shaw cell of dimensions 56 mm × 86 mm × 1 mm.
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cillations in the cell caused by the abrupt stop as it reaches the vertical (and
hits the bar), (2) the falling of grains during the rotation, and (3) the granular
Boycott effect during rotation (i.e. grains and air pass each others in layers
parallel to the plates) caused by the fact that up to 7 layers of beads may fit
between the plates. However, all these experimental effects are non-persistent
and in Fig. 2(b) the first finger-bubble structures are clearly visible. As the
instability evolves a coarsening of the structures is observed. However, new
fingers emerging from the center of the rising bubbles (see Fig. 2(c)) prevent
the size of the structures to grow indefinitely and gives rise to a characteris-
tic bubble-size. The coarsening is driven by fingers merging and forming an
inverted Y as is indicated in Fig. 2(c).

3 Simulation

The numerical model, first introduced by McNamara et al. [11, 12], combines
a continuum description of the air with a discrete description of the granu-
lar phase. The granular phase is a collection of rigid spheres that constitute
a deformable porous media described by coarse grained solid fraction ρ(x, y)
and granular velocity u(x, y) fields on the grid where (x, y) are the two dimen-
sional space coordinates. The continuous fields ρ(x, y) and u(x, y) are obtained
from the positions and velocities of the individual grains by means of a linear
smoothing function: To calculate u(x, y) a fraction of vi is distributed to each
of the four neighbouring grid-nodes of grain i. This is illustrated in Fig. 3.

The continuum gas phase is described solely by its pressure P (x, y). The
inertia of the gas, and hence its velocity field, is not considered. This is justified
for small particle Reynolds numbers as is the case for our system. The pressure
is governed by the equation [11, 12]

φ
(∂P
∂t

+ u ·∇P
)

= ∇ ·
(
P
κ(φ)
μ

∇P
)
− P∇ · u , (1)

where φ(x, y) = 1 − ρ(x, y) is the porosity, κ(x, y) the permeability, u(x, y)
the granular velocity field, and μ the gas viscosity. This equation is derived

Fig. 3. Illustrating the smoothing function: A single grain i and its four neighbouring
grid-nodes are shown. The four subdivisions of the cell-volume (i.e. the area between
the stapled lines) correspond to the fraction of vi (or mi) that contributes to the
continuous u(x, y) (or ρ(x, y)) fields at the opposite nodes. The gray-scale of the
subdivisions indicates which node they belong to.
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from the conservation of air and grain mass, using Darcy’s law [16] to obtain
the pressure drop over a volume with permeability κ. The Carman-Kozeny
relation [17] is assumed for the permeability, and the isothermal ideal gas law
is assumed for the compressible gas. See Refs. [11, 12] for a detailed derivation.
The empirical Carman-Kozeny relation is given by

κ(ρ, d) =
d2

180
(1− ρ)3
ρ2

, (2)

where ρ is the local solid fraction, and d is the diameter of the grains, and
1/180 is an empirical constant valid for a packing of beads.

The grains are governed by Newton’s second law

m
dv
dt

= mg + FI −
V∇P
ρ
, (3)

where m, v, and V are respectively the mass, velocity, and volume of the
grain. Contact dynamics [18] is used to calculate the interparticle force FI

which keeps the grains from overlapping. The dynamics of the grains are
simplified by neglecting particle-particle and particle-wall friction. A lower
cutoff is imposed on the solid fraction because the Carman-Kozeny relation
is not valid as the solid fraction drops below 0.25 [19]. This cutoff causes the
permeability of the most dilute regions of the system to be slightly lower than
the true permeability. The effect is a slight overestimation of the pressure
forces acting on the grains in the dilute regions.

Figure 4 shows a series of snapshots from a simulation with the same grain
diameter, grain density, and cell dimensions (except for the cell thickness since

Fig. 4. Snapshots from a simulation where the input parameters are determined by
the experiment in Fig. 2. The grain density is 1.05 g/cm3, grain diameter is 140 μm,
and the cell dimensions are 56 mm × 68 mm.
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the simulation is 2D) as in the experiment shown in Fig. 2. A qualitative
comparison of the image-series in Figs. 2 and 4 renders the simulation and
experiment consistent in many respects: The sizes of the bubbles and the
fingers are comparable, and the dynamical processes of finger merging and
finger nucleation are observed in both cases. Nevertheless, some discrepancies
are observed, particularly at the start and toward the end of the instability.
The initial differences are mainly attributed to imperfections of the experi-
mental setup: In the experiments the instability start from a homogeneous
sheet of grains rather than from a sharp air-grain interface as in the simula-
tions. Further differences are observed toward the end of the instability: In the
numerical snapshots bigger bubbles reach the upper surface before the smaller
bubbles (see e.g. Fig. 4(f)). In the experiment, however, the row of bubbles
stays more or less horizontally aligned from start to finish. We believe this is
an effect of the zero grain-wall and grain-grain friction used in the simulation.

4 Results

To study the coarsening of the observed structures quantitatively we use
the Fourier spectrum of the solid fraction field to obtain a characteristic
average wave number 〈k〉 by the following procedure. The discrete Fourier
transform and the power spectrum of each horizontal line of ρ(x, y) is cal-
culated. The averaged power spectrum, S̄(k), is then obtained by averaging
over all these horizontal power spectra. An average wave number is defined
as 〈k〉 =

∑
k S̄(k) · k/

∑
k S̄(k), where 1/k is the wavelength. Likewise, we

define the squared standard deviation σ 2
k =

∑
k S̄(k) · k2/

∑
k S̄(k) − 〈k〉2.

For the experimental data the image pixel values are used to estimate the
solid fraction. Figure 5(a) shows ρ(x, y) for t = 0.09 s and three power spectra

Fig. 5. (a) Power spectra superposed on the solid fraction field from which they are
obtained. (b) The averaged power spectrum of the solid fraction field shown in (a)
with the mean wave number 〈k〉 indicated.
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Fig. 6. Mean wave number 〈k〉 and standard deviation σk (inset) for two experi-
ments and one simulation, all using polystyrene beads of 140 μm in diameter.

obtained at different vertical positions (indicated by black lines). Figure 5(b)
shows the averaged power spectrum S̄(k) and mean wave number 〈k〉 of the
solid fraction field in Fig. 5(a).

Figure 6 shows the temporal evolution of 〈k〉 and σk (inset) for the numer-
ical and experimental data. An additional set of experimental data is added
to the plot. The numerical curve starts out with a significantly higher wave
number than the experimental curves. This behaviour is however expected
given the difference in initial conditions. After about 0.2 seconds the experi-
mental and numerical data coincide and continue to show a similar coarsening
behavior. The fluctuations of 〈k〉 and σk are associated with the continuous
nucleation of new fingers and merging of existing fingers.

We further investigate the behavior of the system as the overall spatial
scale is changed: Keeping all length ratios and the particle number fixed,
the size of the system will scale according to the diameter d of the grains. We
measure the characteristic inverse length scale 〈k〉 as d is changed and observe
a scale invariance of the evolution. A series of seven simulations are performed
where d varies from 70 μm to 490 μm in steps of 70 μm. The dimension of
the numerical cell confining grains of 70 μm in diameter is 28 mm × 34 mm.
To compare, a series of experiments using polystyrene beads of 80, 140, 230,
and 570 μm in diameter, confined in Hele-Shaw cells that scale proportionally
with d in all directions, are performed.

In these simulations we have introduced the larger density of glass, rather
than polystyrene in order to minimize the numerical artifacts associated with
the solid fraction cutoff in the permeability. As the inertia of the grains de-
creases the overestimated pressure forces in the dilute regions of the system
will act even stronger on the falling granular fingers.
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Fig. 7. Data-collapse plot of d〈k〉 for a series of (a) simulations using glass beads,
and (b) experiments using polystyrene beads. The grain diameters d are given in
the legend box. The inset shows the evolution of the unscaled 〈k〉.

Data-collapse plots of the rescaled mean wave number d〈k〉 are shown in
Figs. 7(a) (simulation) and 7(b) (experiment). These plots indicate that the
characteristic size of the structures is invariant when size is measured in units
of d; the number of grains that spans the width of the bubbles is the same for
a wide range of grain sizes.

Theoretically, the scale invariance of the product d〈k〉 may be interpreted
as follows: Compared to the other terms of Eqs. (1) and (3) the mdv/dt,
FI and P∇ · u terms may be shown to be small [20]. For that reason, these
equations exhibit an approximate invariance under system size scaling. If we
take δP to be the pressure deviation from the background pressure, express
the velocity of grain i as vi = δvi + u0 and the locally averaged granular
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velocity as u = δu + u0, where u0 is the constant sedimentation velocity of
a close packed system, this scaling may be expressed as x→ λx, δP → λδP ,
u0 → λ2u0, δu→ λδu and κ→ λ2κ, where λ is a scale factor. The structure
formation of the system is governed by δu and, since this velocity scales the
same way with λ as the length scales themselves, the evolution of any structure
measured in units of d will be scale invariant. In particular this is true for
the structures measured by the length 1/〈k〉, and so d〈k〉 is scale invariant.
However, the invariance deteriorates both when particle size is increased, and
when it is decreased. In the first case, the relative effect of granular inertia is
increased, in the second, the relative effect of the P∇ · u term is increased.

The convergence of the numerical data-collapse in Fig. 7(a) is quite good.
The deviation of the 70 μm curve for small t is probably explained by the
increase in the relative importance of the P∇ ·u-term. The divergences of the
350, 420, and 490 μm curves for greater t in the same plot arise because the
bubbles in the coarser packings disappear before they reach the surface due to
the increase of u0 with λ2 [20]. The experimental data in Fig. 7(b) have a wider
distribution but collapses satisfactorily given the standard deviation error
bars. The experimental data are obtained by averaging over three experiments
for each diameter d. The standard deviation is calculated over a time window
of 0.3 seconds. The accuracy of the experiments is at its lowest during the
initial coarsening of the structures, but as the mean wave number stabilizes
around 0.2 seconds the accuracy improves. Nevertheless, the data points are,
with a few exceptions, within a distance of one standard deviation from one
another. The loss of precision for small times is most likely caused by the
inaccuracy involved with the manual rotation.

5 Conclusion

In conclusion, we have presented experimental and numerical results of a
gravity-driven granular flow instability which is significantly different from its
classical hydrodynamic analog. The simulations reproduce the characteristic
shape and size of the experimentally observed structures and provide fine
patterns in the early phase of the process that are not resolved experimentally.
Data-collapse plots of the mean wave number 〈k〉 indicate that the flow and
the resulting structures are invariant when measured on a scale proportional
to the grain diameter d for a range of diameters that spans from 70 μm to
570 μm.
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7. Ø. Johnsen, R. Toussaint, K. J. Måløy, and E. G. Flekkøy. Pattern formation
during air injection into granular materials confined in a circular Hele-Shaw cell.
Phys. Rev. E, 74(1):011301, 2006.
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Summary. We investigate the morphology and space-filling properties of polydis-
perse densely-packed granular media in 2D. A numerical procedure is introduced
to generate collections of circular particles with size distributions of variable size
span. This particle generation procedure is used with a geometric deposition pro-
tocol in order to build large close-packed samples of prescribed polydispersity. The
solid fraction is a strongly nonlinear function of the size span, and the highest levels
of solid fraction occur for the uniform distribution by volume fractions. A transi-
tion occurs from a regime of topological disorder where the packing properties are
governed by particle connectivity to a regime of metric disorder where pore-filling
small particles prevail. The polydispersity manifests itself in the first regime through
the variability of local coordination numbers. In the second regime, the material is
homogeneous beyond only a few average particle diameters. We also show that the
fabric anisotropy declines with size span.

1 Introduction

Granular materials in nature and industry often involve wide distributions of
particles sizes. There are few studies reported in literature concerning poly-
disperse granular media. Numerical studies have been performed for simple
size distributions (e.g. bi-disperse, power law) [1–3] but dynamic simulations
are deficient in the number of particles.

Two aspects have been more extensively considered in relation to poly-
disperse granular media: space-filling properties, on one hand, and packing
structure in terms of connectivity and structural order, on the other hand.
The space-filling issue corresponds mainly to the highly polydisperse regime
where numerous particles of sufficiently small size can fill the pore space be-
tween larger particles [1, 2]. The question of packing structure is often associ-
ated with the weakly polydisperse regime where structural order is drastically
altered due to a weak polydispersity. This is the case in 2D where long-range
order in a monodisperse packing disappears due to a narrow size distribution
of particles [4, 5].

mailto:voivret@lmgc.univ-montp2.fr
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In this paper, we introduce a numerical procedure to generate collections of
circular particles with a prescribed cumulate volume distribution (CVD), also
called grading curve [6], and statistical representativity. Although this proce-
dure is quite general, we will use the β-function to represent CVDs. This size
generation procedure is then used within a ballistic deposition algorithm in
order to build very large close-packed samples of desired polydispersity [7–9].
The close-packed samples produced by the generation procedure together with
a deposition protocol allow us to investigate various descriptors of granular
microstructure as a function of polydispersity parameters. We focus on how
particle size distribution affects the space-filling properties and how deviation
from the monodisperse limit affects structural order.

2 Size and Packing Generation Method

2.1 Size Generation

We assume that the CVD of the particles is represented by a continuous
function h(d) of particle diameters d varying in the range [dmin, dmax]. By
definition, we have

h(d) =

∫ d

dmin
V (x)N(x)dx∫ dmax

dmin
V (x)N(x)dx

, (1)

where N(d) is the particle size distribution and V (x) = (π/4)x2 is the 2D
volume of a particle of diameter d. We have h(dmin) = 0 and h(dmax) = 1.
Since the CVD represents volume cumulate of the particles, we first discuss
here how the corresponding cumulative distribution function F (d) of particle
diameters can be obtained.

The CVD defined over the interval [dmin, dmax] is first discretized into Nc

“classes” defined over subintervals [dimin, d
i
max] of widths Δdi ≡ dimax − dimin

and i ∈ [1, Nc]. Then, the CVD is decumulated over each interval in order to
obtain the volume fraction f i

v for each class i:

f i
v = h(dimax)− h(dimin). (2)

We require that the following two “representativity” conditions be satisfied:

1. The number of particles in each class is above a minimum N ′
p/c

min.
2. The volume of each particle in a class i is small compared to the total

volume fv
i of the class.

We note that these two conditions are equivalent for a quasi-monodisperse
distribution.

We further assume that the CVD is linear over each class i. This condition
implies that the cumulative distribution function F i(d) of particle diameters
over the class i is a normalized uniform distribution by volume fractions of
particles defined over the interval [dimin, d

i
max]:



Morphology of Polydisperse Granular Media 589

F i(d) =
dimax

dimax − dimin

d− dimin

d
. (3)

Then, the mean diameter dim = (F i)−1(0.5) of the class can be estimated.
This information allows us to determine the amount ni of the particles in the
class for a unit total volume:

ni =
4fv

i

π(dim)2
. (4)

Each ni is then rescaled by a factor N ′
p/c

min
/Min{ni} and its integer part

corresponds to the temporary number of particles N ′i in the class i:

N ′
i = int

{
N ′

p/c
min

Min{ni} n
i

}
, (5)

where int is the integer part. This procedure ensures that each class will
contain at least N ′

p/c
min particles as required by the first representativity

condition.
The total number of particles N ′

p =
∑

iN
′i obtained at this stage is de-

pendent on the parameters Nc and N ′
p/c

min. But, N ′
p may be deficient for the

construction of a representative packing. Let Nmin
p be the minimum number

of particles required for the construction of the packing. We impose that the
number Np of particles should be above Nmin

p . If N ′
p < N

min
p , we rescale the

N ′
i by Nmin

p /N ′
p to get the number of particles N i in each class i:

N i = int

{
Nmin

p

N ′
p

N ′i

}
. (6)

From the number of particlesN i in each class i, the probability distribution
function P i(d) of particle diameters d for each class i is given by

P i(d) =
N i

Np
, (7)

and the cumulative distribution function F (d) is obtained by summing up
the P i over all diameters ≤ d. Given the population N i in each class i, we
generate the N i diameters d in the class by inverse transform sampling of
F i(d) given by Eq. (3).

2.2 Packing Generation

In order to generate polydisperse packings we need a model for the CVD.
This model should be simple, i.e. involving a small number of parameters,
contain particular distributions such as power laws, and be defined over a finite
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interval. A distribution that satisfies these requirements is the cumulative β
distribution defined as [9]

β(x) =
1

B(a, b)

∫ x

0

ta−1(1− t)b−1 dt, (8)

where a > 0 and b > 0 are the parameters of the distribution and

B(a, b) = Γ (a)Γ (b)/Γ (a+ b), (9)

where Γ is the Gamma function. This β distribution is defined and normalized
over the interval [0, 1], so that β(0) = 0 and β(1) = 1.

For using the cumulative β distribution as a model of CVD for the par-
ticle diameters d over the interval [dmin, dmax], we replace x by the reduced
diameter dr defined as

dr(d) =
d− dmin

dmax − dmin
. (10)

Then, the CVD is defined by setting x = dr in Eq. (8):

h(d) = β(x = dr(d); a, b). (11)

Since only the relative particle diameters are relevant for space filling prop-
erties, we will use throughout this paper the reduced diameter dr instead of d.
In the same way, the span s of the distribution h(d) in Eq. 11 will be defined
as

s =
dmax − dmin

dmax + dmin
. (12)

The case s = 0 represents a monodisperse packing whereas s = 1 corresponds
to “infinite” polydispersity. In practice, the limit dmin = 0 never happens,
and hence the span s is always strictly below unity.

In terms of reduced diameters dr, the shape of the CVD is controlled
by the parameters a and b and allows to obtain well-known distributions
such as power laws or bi-disperse. Figure 1a displays several plots of CVD
as defined by Eq. 11 as a function of dr for several values of a and b. The
case a = b = 1 corresponds to uniform distribution by volume fractions. The
uniform distribution by particle diameters is obtained for a = 3 and b = 1.

For the construction of polydisperse packings we use a deposition protocol.
It consists of layer-by-layer deposition of rigid particles on a substrate (a rough
or smooth plane in 3D or line in 2D) according to simple geometrical rules. We
determine for each particle (to be deposited) the lowest position at the free
surface as a function of its diameter. In order to avoid wall effects, periodic
boundary conditions were implemented in the horizontal direction. Figure 1b
shows an example of small scale sample.
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Fig. 1. (a) Cumulate volume distribution as a function of the relative diameter dr

for several values of the distribution shape parameters a and b according to Eq. 11.
(b) Example of small-scale packing.

3 Solid Fraction and Radial Distribution

We consider two different space-filling properties: solid fraction ρ, and a radial
volume distribution function ρ(r) which describes the correlations of solid
fractions. All the data presented below were obtained for samples prepared
with Nc = 10, Nmin

p/c = 10, Nmin
p = 3.104 and Nmax

p = 105. The span s will
be varied from 0.02 to 0.97.

3.1 Solid Fraction

The solid fraction ρ is shown in Fig. 2a as a function of size span s for different
shape parameters a and b. Except from the distribution by uniform volume
fraction, we observe three regimes in variation of ρ. At very low values of s (s <
0.1) ρ decreases. It corresponds to the well-known order-disorder transition
observed in 2D monodisperse granular media due to the perturbation of an
initially triangular lattice in the presence of a small amount of polydispersity
[5]. Then, it increases slowly with s in the range 0.1 < s < 0.4. In this range,
the values of ρ are sensibly the same independently of shape parameters and its
value is near to that for a quasi monodisperse random close packing. Beyond
s � 0.4, ρ increases faster for distributions favoring the number of small
particles (a = 1, b = 3; a = 2, b = 4) than those favoring the number of large
particles (a = 3, b = 1; a = 4, b = 2). s � 0.4 corresponds to a geometrical
transition when the smallest particles can fit into the pores between largest
particles. For each value of s, the solid fraction ρ for the uniform distribution
by volume fractions (a = b = 1) is higher than those for all other values of
shape parameters.

Two conditions are required to fill efficiently the pores: 1) a broad size
distribution, which corresponds to higher values of s (s > 0.4 in our simula-
tions), 2) a large number of smaller particles, controlled in our model by the
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Fig. 2. (a) Solid fraction ρ as a function of size span s for several values of shape
parameters a and b. (b) Average solid fraction ρ as a function of radial distance
r from given particle center normalized by the average diameter 〈d〉 for uniform
distribution by volume fractions and three values of size span s.

shape parameters a and b. According to Fig. 2a, these conditions appear to
be optimally fulfilled for uniform distribution by volume fractions. In other
words, equal volume fractions provide the best match between the volumes of
particles and pores.

3.2 Spatial Order

To characterize spatial order, one uses classically the radial distribution func-
tion of the radial positions r of particle centers. Using particle centers is natu-
ral for molecular systems or monodisperse granular media where the particles
have all nearly the same volume. In polydisperse granular media, we need to
account for particle volumes. It seems thus more natural to consider the solid
fraction ρ(r) as a function of radial positions r of the particles. In practice, the
solid fraction ρ(r) can be calculated inside circular shells of increasing radius
r centered on particle centers. Figure 2b shows ρ(r) for uniform distribution
by volume fractions for three values of size span s. In all cases, ρ(r) is equal to
1 for r ≤ dmin/2 and tends to the packing solid fraction ρ at large values of r.
The long range order manifest itself through the oscillation of ρ with a period
of nearly 〈d〉 at low values of s. At larger polydispersities, one mainly observes
a marked valley following the initial plateau and a nearly constant increase
towards ρ. This valley represents the void space between a particle and its first
neighbors. In the pore-filling regime (s > 0.4), the material can be considered
as homogeneous beyond almost two average diameters. It should be, however,
borne in mind that the average diameter in this regime corresponds to many
small particle diameters dmin.
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4 Connectivity and Anisotropy

The solid fraction and radial distribution function account for the metric
disorder depending on particle size distributions. However, most mechanical
properties of granular media, such as force transmission and dilatancy, result
from the topological disorder of the contact network. In this section, we study
the influence of size distribution on the connectivity and angular ordering of
the contact network.

4.1 Connectivity

Monodisperse particles can, in principal, assemble to form triangular pack-
ings with coordination number z = 6. However, this upper limit can never be
reached without fine adjustment of particle positions due to geometrical mis-
matches related to steric exclusions and numerical precision. In the presence
of slightest perturbation of the assembly, the coordination number collapses
to z = 4. For example, at weak polydispersity (s = 0.02) we get z = 4, see
Fig. 3a. Below a certain limit of s depending on shape parameters, z is con-
stant and equal to 4. Beyond this limit z decreases. To explain this, we know
that each deposited particle, by construction, is supported by two particles.
Its implies that the decrease of z is due to particles with 2 and 3 contacts.

Fig. 3. (a) Coordination number z as a function of size span s for several values
of distribution shape parameters a and b. (b) The connectivity functions Pk for
different values of k as a function of size span s for uniform distribution by volume
fractions.

In order to characterize the variations of local coordination numbers, we
consider here the “connectivity function” Pk defined as the proportion of
particles inside a sample with exactly k contacts. We have

∑
k Pk = 1 and∑

k k Pk = z. Figure 3b shows the plots of Pk for different values of k as a
function of size span s for uniform distribution by volume fractions. At very
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narrow spans, we have P4 � 0.8 and P3 = P5 � 0.1. As s increases, P3 and
P5 increase together at the expense of P4 which declines to 0.6 at s = 0.2.
In the range s < 0.2, Pk = 0 for all k except k = 3, 4, and 5. The evolution
of topological disorder in this range is thus governed by the growth of two
populations of particles with 3 and 5 contacts.

The populations of particles with 6 and 2 contacts appear at s = 0.2 and
increase with s. The particles with 2 contacts are the small particles which are
supported by two particles but which support none. Hence, P2 represents the
importance of geometrical arching which leads to the screening of smallest
particles. This population grows rapidly with polydispersity and does not
seem to saturate at highest values of s. A consequence of the growth of this
population is to reduce the coordination number below 4; see Fig. 3a.

4.2 Fabric Anisotropy

The anisotropy of the contact network is known as a major mechanism of shear
strength in granular media [10, 11]. This anisotropy can be expressed through
the probability density function P (θ) of the orientations θ of normals n to
the contact planes. Figure 4 displays P (θ) for uniform distribution by volume
fractions for several values of s. This is a bimodal symmetric distribution
with two peaks at θ = 45◦ and θ = 135◦ for low values of s. The peaks
flatten with s and tend to the center of the distribution at θ = 90◦. Angular
distributions of bimodal feature have also been observed in experiments and
dynamic simulations of granular beds prepared by random deposition [12].

Fig. 4. Polar representation of the probability density function P (θ) of the orienta-
tions θ of contact normals for uniform distribution by volume fractions and several
values of particle size span s.

The anisotropy of P (θ) can be extracted from the fabric tensor Fij defined
by [10]

Fij =
∫ π

0

ni(θ)nj(θ)P (θ)dθ. (13)

The anisotropy of the distribution P (θ) is given by ac = 2(F1 − F2), where
F1 and F2 are the principal values of Fij . However, this definition applied to
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Fig. 5. Fabric anisotropy ac over a quarter as a function of size span s for several
values of shape parameters a and b.

the distributions observed in Fig. 4 yields low values of ac as a result of the
symmetry of these distributions. It is thus reasonable to restrict the definition
of the fabric tensor in Eq. (13) to the sub-interval [0, π/2]. The corresponding
anisotropy ac then represents the importance of the peak in each sub-interval.
Figure 5 shows this half-interval anisotropy as a function of s for several values
of shape parameters. We see that ac falls off with s from 0.85 for s � 0 to
values below 0.5 for s � 1 in the case of uniform distribution by volume
fractions. This behavior does not depend crucially on the shape parameters,
the lowest anisotropies being observed for a = b = 1. We also remark that,
the rate of variation of ac with s involves two transitions occurring at s � 0.2
and s � 0.8.

5 Conclusion

In this paper, we presented a systematic investigation of microstructure in
densely-packed polydisperse granular media. A model of cumulate volume dis-
tributions of the particles, based on β-distribution, was proposed. This model
accounts both for size span (or the width) and the shape of size distributions.
These cumulate volume distributions can be simple- or double-curved, and
well-known size distributions such as monodisperse, bi-disperse, and power
laws are particular instances of this function.

We then addressed in this framework two major aspects of polydisperse
media: 1) space-filling properties in terms of solid fraction and radial distri-
bution functions and 2) contact network in terms of connectivity disorder
and anisotropy. The solid fraction increases in a strongly nonlinear manner
with size span and a transition occurs from a basically “topological disorder”
regime to a “metric disorder” regime around a particular value of size span
depending on shape parameters.
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In the first regime, the particle size distribution manifests itself mainly
through the variability of local coordination numbers. In this regime, short-
range correlations of particle positions prevail, and the solid fraction evolves
slowly with size span. The metric disorder regime is governed by the aptitude
of the small particles to fill the pores left by larger particles. The positions of
neighboring particles are no more correlated, the only local order being the
presence of a low-density region around each particle. We find that the solid
fraction increases considerably with size span in this regime and the highest
values of solid fraction are obtained with the uniform distribution by volume
fractions. The orientational ordering of the contact network was investigated
by means of the fabric anisotropy. The contact orientations define a bimodal
distribution induced by the deposition protocol. The concentration of contact
normals in each mode can be characterized by a fabric anisotropy. We showed
that the fabric anisotropy in each mode decreases with size span. In particular,
the uniform distribution by volume fractions is practically isotropic at high
degrees of polydispersity.
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Summary. We present an experimental realization of a 2D vibrated granular pack-
ing. The new agitation method allows a spatially non synchronized influx of energy
and the study of the vibrated packing at steady state. By image analysis of fast-
camera movies, we obtain the velocity fluctuation spectra at different vertical levels
and then, we separate the agitation velocities from the velocity fluctuations corre-
sponding to the “thermalized” degrees of freedom. By measuring the corresponding
particle diffusivities, we show that, in spite of a large heterogeneity and anisotropy
of the vibration, a relation between diffusivity and fluctuating kinetic energy can be
identified.

1 Introduction

In the recent decades, there were a tremendous amount of work dealing with
vibrated granular matter either from numerical, theoretical or experimental
points of view (see for example all refs in bibliography and refs inside). The
phenomenology is very rich as vibrated packing were found to bear the form
of dissipative gases [1–4], liquids [5–8] or even a “glassy like” material [10,
12–14]. From an experimental point of view and for granular packing under
gravity, the vibration procedure usually goes two ways i) an harmonically
driven bottom plate [4–6, 8] or ii) successive taps separated by quiescent
periods [7, 10, 12, 14]. In the case of harmonically driven packing, one has
to go to very high frequencies in order to achieve desynchronization between
the energy injection and the packing response [4]. Thus, in general, one gets
an unsteady flux of energy (strongly modulated in time and synchronized
in space). Here we present a novel mode of energy injection that breaks the
spatial synchronization and allow to reach at moderate injection energy a
steady state. We study a 2D model packing of cylinders and we investigate
the relation between kinetic fluctuations and diffusivity of a particle.
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Fig. 1. Experimental set-up; (a) Picture of the cell of size L = 275mm, H = 200mm
with the 24 electromagnetic activators at the bottom; (b) Close up on the vibrating
chain driven by the electromagnetic pistons; (c) 2D packing in the visualization
frame of size Lx = 118mm, Lz = 90mm.

2 Experimental Setup

The packing is made of a 2D binary mixture of acrylic cylinders d1 = 4mm
and d2 = 5mm which are hollow in the middle. Overall, we have 1680 small
grains and 1016 large ones, mixed randomly in a cell of size L = 279mm large
and 4mm width. The packing height at rest is H0 = 171mm. To input energy
we inspire from what is done currently in numerical simulations [1, 3, 9], where
the granular packing is in contact with a “temperature reservoir” uncoupled
in space. Of course this is difficult to achieve in practice, but we tried to
break as much as possible the spatial synchronization of energy transfer by
the use of a vibrating chain at the bottom of the cell. The chain is activated
by 24 pistons separated by 12mm. Two neigboring pistons are vibrated at
a driving frequency fD with a phase shift of π plus a small random phase
shift that can be set manually. This is not exactly a “pure thermal” wall but
as we will see in the following, it allows to reach easily a steady-state where
a clear separation between energy of agitation and “thermalized” degrees of
freedom can be achieved. The visualization of the packing was made by a
high resolution and fast CCD camera. The spatial resolution is 1632 × 1200
pixel2 which allows a visualisation field of about 38 grains horizontally and
26 grains vertically (about 44 pixel per small grain). For each picture, one
uses a pattern recognition technique to locate the center of the hollow circle.
This allows an individual tracking of about 900 grains at the same time. For
the present report, the pistons were driven at fD = 20Hz and the camera was
run at 1000 im/s during 3 seconds in order to obtain the velocity fluctuations.
Thereafter, the camera was run at 1 im/s during 3000 seconds in order to
obtain the long time diffusivity of the grains. To analyze the data, we choose
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to separate the visualization field into 6 horizontal levels and to average over
boxes containing about 150 grains.

3 Velocity Agitation and Velocity Fluctuations

The fast movie acquisition allows to access the true velocity for each grain and
not just the average displacements. We first compute the average quadratic
velocity fluctuations at each level. The results are displayed on fig. 2(a). We
observe that the driving induces a very inhomogeneous and anisotropic ag-
itation state. The vertical degrees of freedom are much more agitated than
the horizontal ones as already noticed in earlier work [15]. We also observe
a strong decay of agitation from the wall to the free surface. A look at the
velocity fluctuation spectrum shows that the agitation energy can be sepa-
rated into two distinct parts: the input kinetic energy and the “thermalized”
kinetic energy. The inset of fig. 2(b) illustrates this point. We observe that the
velocity fluctuation spectrum is made of two pieces: the fundamental and the
harmonics of the driving frequency (the very spiky features) and the “ther-
mal” fluctuations with a specific wide band structure. We found that once the
driving part is filtered, we could fit the velocity fluctuation spectrum S(f) for
each direction with a very good accuracy by the three parameters function:

Sfit(f) = S0
β2(1 + (f/f0)2)2

(f/f0)2(1 + (f/f0)2)2 + β2
(1)

with S0, f0 and β, are the 3 fitting parameters. This relation yields a “reso-
nance frequency”: f∗ = f0

(
21/3β2/3 − 1

)1/2
, corresponding to the curve maxi-

mum. The “width” of the curve increases linearly with f∗. The velocity spectra

Fig. 2. (a) Vibration profiles at a piston driving frequency fD = 20Hz. The black
squares (red circles) are the horizontal (vertical) direction. Fig. 2(a) velocity fluctu-
ation profiles: < V 2

x > (z) and < V 2
z > (z). (b) Velocity fluctuation profiles: δV 2

x (z)
and δV 2

z (z). On the inset, we display the average velocity fluctuation spectrum S(f)
for the horizontal velocity Vx at z = 57(±9)mm. The solid line is the best fit using
equ. (1) with S0 = 6(±0.6)10−5mm2/s, f0 = 7.2(±0.4)Hz and β = 15.5(±1.5).
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are normalized in such a way that the quadratic fluctuations can be obtained
via the Parseval identity: δV 2 = 1

N2

∑
Sn, where Sn is the nth mode of the

velocity spectrum identified with his fitted value. On fig. 2(b) the quadratic
velocity fluctuations for the horizontal and vertical degrees of freedom, δV 2

x

and δV 2
z , are displayed. We also observe anisotropy as well as a vertical profile

for the quadratic velocity fluctuations.

4 Diffusivity

The second experiment (1 image per second) allows to follow the mean square
displacements for each particle over much longer time. On fig. 3(a), we present
the mean square displacements for time lags τ ranging from 10−3s to 102s.
At very short time scales, we observe a ballistic dynamics then a pseudo-
plateau over which the driving oscillations are visible. For longer times, we
get a diffusive behavior. For each direction x or z and for each of the 6 levels,
we measure the diffusivity Di over the direction i by a linear fit of σ2

i =
Ai + 2Diτ . The results for the corresponding diffusivities Dx(z) and Dz(z),
are displayed on the inset of fig. 3. We also observe slightly anisotropic and
spatially inhomogeneous variations of diffusivity.

For a simple thermalized fluid, close to equilibrium, the self-diffusion co-
efficient of a particle of diameter d and mass m, is related to temperature
by the fluctuation-dissipation relation: D = kT

m τD, where k is the Boltzman

Fig. 3. Self diffusivity at a driving frequency fD = 20Hz. Mean quadratic displace-
ment < σ2

x > (z) at short and long time for z = 57(±9)mm. On the inset, we display
the diffusivity profiles. The black squares (red circles) are the horizontal (vertical)
direction.
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Fig. 4. Self diffusivity in horizontal (black squares) and vertical (red circles) direc-

tions as function of the rescaled frequency

√
δV 2

i
P/ρ

f∗. The solid black line corresponds

to equ. (2) with ξ = d/30.

constant, T the temperature and τD a dissipative time scale. For a Newtonian
fluid this time scale is related to viscosity η by the relation τ−1

D = 3πηd/m. For
granular gases such relations were derived rigorously [1] but for dense packing,
early experimental works have tried to establish such a relation [6, 11] and
essentially failed. We also tried such a rescaling for the diffusivity coefficients
identifying the ratio kT

m with the velocity fluctuations δV 2
i . Then, we obtained

dissipative times τD = Di/δV
2
i with typical values around 10−6s, much lower

than any time scale a priori present in this system. However, we found a fair
rescaling of our data when the diffusivities were plotted as a function of the
dimensionless number

√
δV 2

P/ρ , where P = ρgz is the confining pressure. Fur-
thermore, the anisotropy between the x and z directions, can significantly be
reduced if one uses for the diffusivity time scale, the “resonance” frequency
f∗ extracted from the fit of the thermalized background. On fig. 4, we display
for the directions x and z, the corresponding diffusivities as a function of the
rescaled frequencies

√
δV 2

P/ρf
∗. We observe a fair collapse of the data onto a

single linear curve that goes through zero. Therefore, this study suggests a
relation between diffusivity and thermal activation, valid for every degree of
freedom and of the type:

Di =

√
δV 2

i

P/ρ
ξ2f∗ (2)
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where ξ is a typical length scale with a value ξ = d/30. Note that this scale
is the order of the typical distance of approach between two grains (besides
contact) in the dense compacted phase.

5 Conclusion

We presented an experimental study of a vibrated 2D granular packing of
grains driven at a steady-state. In spite of the large anisotropy between the
horizontal and the vertical degrees of freedom, we could extract a unique
relation linking the thermal agitation and the particle diffusivity. This relation
involves the confining pressure which depends on the depth below the free
surface. Note that this relation also suggests in the framework of a fluctuation-
dissipation theorem, an effective “viscous” drag force. Such a relation can be
tested directly by observing the motion in the vibrated packing. Furthermore,
it will be of great interest to study how this result holds in the limit of low
agitation energy where a dense “glassy” dynamics is obtained. These are on
going projects in our laboratory.
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Summary. Experiments on granular-fluid systems in confined geometries have been
shown to produce labyrinth patterns. This is the case when the fluid from a par-
ticle/fluid dispersion in a Hele-Shaw cell is slowly withdrawn, resembling a drying
process. Based on a model of capillary and friction forces, we present a simulator
that reproduces the experimental behaviour.

1 Introduction

In systems driven out of equilibrium spontaneous formation of pattern and
form is known to emerge in virtually every discipline of science. This can often
be traced back to competing forces that govern some instability [1]. A particu-
lar pattern, governed by the competition between capillary forces and friction
forces, is the labyrinthine residue of grains in confined geometries after drying
out a fluid/grain mixture [2, 3]. This has been studied in a Hele-Shaw cell,
where glass beads of diameter 50–100μm immersed in a water/glycerol mix-
ture were first rapidly injected into the cell. Thereafter the fluid was pumped
out again at a very low rate. Here, we emphasise the modelling of the process
and its implementation into a simulator, while the experimental system and
results are treated in a parallel report [4].

Fig. 1. A typical experiment of the draining process.

mailto:hak@fys.uio.no
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2 Experiment

As the fluid is gradually drained from the cell, the fluid/air interface at the
perimeter of the circular disc starts to recede. The capillary forces between the
wetting fluid and the grains gradually compile a growing layer of close-packed
grains ahead of the interface as it moves. After an initial transient period
where a compact layer of grains is formed all along the circular perimeter, an
instability develops whereby the fluid-grain disc is slowly invaded by fingers
of air. Figure 1 shows four consecutive images of this process, see [4] for more
details.

3 Simulations

At every point on the interface capillary pressure and friction forces must be
overcome to allow the front to move. The expression for the forces have been
derived and reads [3]

γ

Rc
+
gρΔz

2κ

[
(κμ+ 1) exp

(
2μκL
Δz

)
− 1
]
, (1)

where γ is the interfacial tension, 1/Rc the in-plane curvature of the front
at that point, g the acceleration of gravity, ρ the relative density difference
between grains and fluid, Δz the plate separation, κ the proportionality con-
stant between vertical and horizontal stress in the front, μ the friction coeffi-
cient, and L the front thickness at that point. In the simulations the air-liquid
pressure force is increased until somewhere along the interface it exceeds the
threshold force given in Eq. (1). The front is then moved a tiny step in the
normal direction at that point, and the procedure is repeated.

The model is based on a one-dimensional representation of the inter-
face, where thousands of consecutive points discretize the perimeter of the
fluid/grain area. In Fig. 2(a) five of these points are shown at some typical
situation. Motion is from the air side towards the fluid side. Technically speak-
ing, the fundamental information that needs to be stored at each point is the
co-ordinates and the accumulated particle mass. All other quantities may be
derived from these, as will be explained in the following.

The accumulated particle mass in a segment of the front is for convenience
handled as a volume, the total volume of fluid and particles, which is filled by a
dense packing of these particles. Numerically this corresponds to normalising
the particle fraction to one in the dense region within the front. We denote
the volume of the point with index i by Vi. Further, we denote the distance
between neighbouring points, which is easily calculated, by lij , where i and
j are neighbours. The plate separation Δz is fixed and thus the width of the
front in a point can be calculated. For point no. 3 in Fig. 2(a), the front width
becomes
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L3 =
V3

Δz
(

l23
2 + l34

2

) , (2)

where the front length associated with the point is the sum of the two half-
distances to its two neighbours. The resulting front width is illustrated with
a vector pointing towards the fluid side in the Figure. The orientation of the
vectors is always normal to the front. In the case of point 3, one sees how the
vector is aligned along the dashed line. This line divides the angle � 234=2β
exactly in two equal angles β.

The curvature is also evaluated locally, only using the nearest neighbours,
and it is approximated by, again for point no. 3,

κc,3 =
1
Rc,3

=
π − 2β

l23
2 + l34

2

. (3)

Recall that the curvature, equal to the inverse radius of curvature, is change
in tangential orientation (angle change) per arc length.

The information calculated so far suffices to evaluate all points in a given
configuration and to select the point which yields first. Once selected, the
point in question is moved a tiny step Δs inwards, normal to the front. This
step has been chosen to be much smaller than the initial spatial resolution of
the line: neighbour point distance linit=1.5mm, which again is small enough
to resolve the final structure of the pattern.

3.1 Moving Points

The moved point gathers volume on its way. Although the front is represented
as a line, we keep in mind the fact that it is the inner side of the actual front
that gathers particles. The increase in volume, again for point 3 in Fig. 2(a),
becomes

ΔV =
φlocal

1− φlocal
Δs

(
l23
2

+
l34
2

)
, (4)

where φlocal is the local volume fraction associated with the position of the
point, to be defined below. Note that when point 3 is moved to give the
situation in Fig. 2(b), only its own mass is changed. However, the front lengths
of the points 2, 3, and 4 are changed, from which the front widths L of these
points must be recalculated. The same is true for orientation and curvature
of these three points. The simulation is implemented with an average spatial
volume fraction of mass that represents the filling of grains in the Hele-Shaw
cell. Disorder is included by locally allowing the volume fraction of mass to
fluctuate around the average value. To estimate the local fraction, the average
fraction is multiplied by a number within I=(1− ε, 1 + ε). We have placed a
120× 120 virtual lattice of random numbers, which are elements in I, on top
of the initial disk. The number of a given point in space is then taken as the
linear interpolation between its four nearest lattice points.
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Fig. 2. (a-b) Five points on the front are shown. For each point the direction normal
to the front is drawn as a vector of length corresponding to front thickness L. The
orientation, the curvature, and the front thickness change after a move. For clarity in
the drawing the displacement in a single move is exaggerated. (c) Inserting a point:
The angles α0 and β0 refer to the configuration before the insertion of point 5. The
angles α1 and β1 are the ones that best preserve the curvature of the points 2 and 3,
respectively.

3.2 Inserting Points

In order to maintain a constant spatial resolution, new points are added to
the interface as it stretches. Numerically, a limit is set at 1.1 × linit. When-
ever two neighbours come further apart a new point is inserted in-between,
equally distant from each point. See Fig. 2(c) where a new point 5 is inserted
between the points 2 and 3. Along the line of possible points of equal distance
(dashed vertical line), the one point is chosen which conserves the curvature.
Conservation of curvature is preserved for the left and right side, respectively,
when

α1 =
l12 + l23/2
l12 + l23

α0 , and β1 =
l34 + l23/2
l34 + l23

β0 . (5)

Generally, this means that the best one can do is to take a middle value, here
expressed in terms of the angle χ between the lines l23 and l25,

χ =
1
2

(α0 − α1 + β0 − β1) . (6)

Volume must also be preserved upon insertion of new points. Volume from
the two neighbours is transferred to the new point. Again referring to the
numbering in Fig. 2(c), the volume transfer from the points 2 and 3 to 5
becomes

V5 = −ΔV2 −ΔV3 =
1
2
V2l23
l12 + l23

+
1
2
V3l23
l23 + l34

. (7)

Now, the front thickness L, the orientation and curvature is calculated anew
for the points 2, 3, and 5.

3.3 Detection of Front Contact

The process of moving points and gathering mass continues as long as there
are points left that are allowed to move. Points whose extended front of mass
comes in mutual contact are immobilised as this represents the formation
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Fig. 3. (a) Snapshot of a section of a simulation. The mesh is not a part of the
physical system, but merely an illustration of a numerical tool. The white area is
air, the shaded area is fluid/particles. The thicker line towards the air side is the
numerically stored line. A branch of grains is formed when the inside of two front
segment come in contact with each-other. (b) A typical simulation of the draining
process. At four different times the structure is shown, white area means air and
shaded area means fluid/particles. The fourth image depicts the final structure when
the whole structure is drained, numerically speaking when all points are immobilised.

of a branch of close-packed grains. Figure 3(a) shows a section of the front
during the formation of a branch. The white area is air and the shaded area
is fluid/particles. Note how the small pocket of isolated fluid/particles within
the particle branch resemble the experimental situation. This area will be
drained later when all easier parts are drained, and the pressure difference
between fluid and air increases.

The numerical detection of contact is somewhat tricky in that one has
to check if the line segments, representing the inside of the front of the last
point moved, are crossing any other line segment along the front. In order to
do this efficiently, a square grid of cells as depicted in Fig. 3(a) is used. To
every cell a list of points currently inside the cell is stored. These lists are
maintained upon moving and inserting points. Since collisions only need to be
checked for locally, only the points in the cell belonging to last point moved
and its eight neighbours must be checked. In this way the check for collisions
represents a roughly constant computational cost, independent of system size
and perimeter length.

4 Results and Discussion

The success of the modelling and the simulator of the process has been val-
idated by means of visual inspection and measures of the final structure. In
Fig. 3(b) for otherwise typical parameters, a simulation is shown, where the
plate separation is Δz=0.4 cm and the initial volume fraction of grains is
φ=0.15. The final structure should be compared with the final experimental
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structure of Fig. 1. One sees how a typical length scale appears in the struc-
ture. As a measure of this so-called wavelength we use Λ=2A/S, where A is
the initial area of the disc and S is the measured final perimeter of the struc-
ture. In Fig. 4 the final structure is shown as a function of plate separation
and particle fraction, and as one can see, the typical length scale varies much.
We refer to a parallel work [4] for a detailed comparison with experiments.
Here we conclude that we have, based on modelling of the dominant forces in
the problem, presented a simulator that captures the essential behaviour of
the process.

Fig. 4. Final structure as a function of: particle fraction in columns from left to
right – 10%, 15%, 20%, 25%, and 30%. Plate separation in rows from top to bottom –
0.2 cm, 0.4 cm, 0.6 cm, and 0.8 cm.
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1 Motivations

Civil engineers are often expected to build larger and larger constructions;
the ground needs assistance in supporting such works. This paper focuses on
a particular process: TexSolTM. It is a soil reinforcement process created in
1984 by Leflaive, Khay and Blivet from the LCPC (Laboratoire Central des
Ponts et Chaussées) [1, 2]. Its originality lies in combining the soil (sand) with
wires. Although the wire volume is negligible compared to that of the sand,
the wire becomes a strong reinforcement when it tangles up inside the geoma-
terial. They lead this mixed material friction angle to be larger than sand by
0◦ to 10◦ [2]. In the literature, we find two different continuous modellings.
The model suggested in [3] is non local and includes remote interactions, but
requires identification of their parameters using macroscopic experiments. Vil-
lard proposes a simpler local model in [4]. It couples a standard model of sand
and an equivalent unilateral elastic stiffness contribution corresponding to
the wire network. This last contribution is activated only on the tension di-
rections because of the unilateral behavior of wire. This study interest lies in
multi-scale theoretical contributions of unilateral structures with long internal
length. Thus, we propose to clearly define thermo-dynamical potentials of the
Villard local model. Such a stage is useful before carrying out a homogeniza-
tion procedure applied to an untypical material. In the absence of physical
experiments, the identification of macroscopic model will be performed using
discrete numerical experiments. Those allow to study in detail the microstruc-
ture and reinforcement interactions on a microscopic scale.

2 Thermodynamical Modelling in a Local Formalism

The local model proposed by Villard couples an elastic-plastic model with an
isotropic and kinematic hardening combination for the sand phase, with an
equivalent unilateral elastic stiffness for the wire network phase. The unilateral
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characteristic of this feature means that stiffness is only activated in tensile
directions. To “superpose” the elasto-plastic model of the sand and the unilat-
eral elastic model of the wire network, some mechanical assumptions have to
be considered: the strain rates equalities ε̇s = ε̇w = ε̇ and the stress additivity
σ = σs +σw. Those two assumptions on the two phases are quite restrictives
and they would have to be verified by discrete simulations before carrying out
an identification procedure. We choose ε as the state variable combined with
the internal variables εp, α and p describing the plasticity, kinematic and
isotropic hardening respectively. The model elastic parameters are the sand
elasticity tensor Ks, depending on the sand elasticity modulus Es and νs, and
the wire network coefficients of Lamé λw and μw. The hardening ones are Hi

and Hk the isotropic and kinematic hardening respectively. The TexSolTM free
energy is written as,

ψ(ε, εp,α, p) = ψs(ε, εp,α, p) + ψw(ε)

ψs(ε, εp,α, p) = 1
2 (ε− εp) : Ks (ε− εp) + Hk

2 α : α + Hi
2 p

2

ψw(ε) = λw

2 〈tr(ε)〉2 + μwε≥ : ε≥ ,

(1)

where 〈.〉 = max(., 0). The operator (.≥), described more precisely in [5], is
define by ε≥ = P 〈diag(ε1, ε2, ε3)〉P T , where ε1, ε2, ε3 and P are the principle
values and the passage matrix of ε respectively. The wire network model is non
dissipative, consequently the TexSolTM and the sand dissipation potentials are
the same. We thus write the Legendre – Fenchel transform of the dissipation
potential as,

ϕ∗(σir,A,χ, R) = I{0}(σir
s ) + IΩ(χ,R)(A) , (2)

where σir, A, χ and R are thermodynamical forces associated to ε, εp, α and
p respectively. The indicative function of a D domain is noted ID(.). In the
principle stresses space, Ω represents the elastic domain which is bound by
a Drucker – Prager criterion depending on the internal friction angle θf and
the cohesion C0, as mentioned previously. The state laws and complementary
laws associated to potentials (1) and (2) have been implemented and tested
in the finite element software Cast3MTM. Three different models are tested:
a sand alone called “sand”, a sand bilaterally reinforced called “reinforced
sand” and a sand unilaterally reinforced called “texsol”. A test is carried
out to highlight the repartition of the wire network stress. We thus simulate
a crushing test of 0.1% on a cylinder meshed by 400 linear elements. The
equivalent Von-Mises stress σeq map on a axial/radial section of the sample
(σeq =

√
J2(S) is considered as the pseudo norm of the deviatoric stress

tensor S). The wire network equivalent stress level of the “texsol” is bounded
by the two other models but the repartition is close to that of “reinforced
sand”. The wire network pressure map is shown in Figure 1 and we remark
that the “texsol” generates only negative pressure in the wire network phase,
due to its unilateral definition.
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Fig. 1. Wire network pressure.

3 Numerical Discrete Investigations

In our approach, the measured fields, which are used to update continuous
parameters, are replaced by discrete numerical experiments. Thus, all the par-
ticle displacements and contact forces can be extracted from the sample. By
locally averaging the previous fields, the equivalent stress and strain tensors
of the granular material are built up [6]. These provide more accurate infor-
mation than the experimental method.

3.1 A Discrete Modelling of the TexSolTM

The NSCD is a discrete element method used in the LMGC90 code which
simulates multibody vs. multicontact problems, privileging velocity fields [7].
For a single contact α problem, the NSCD evaluates the external forces and
dynamic effects on the contactor point. To make such a transformation, Hα

and HT
α are used to move variables from the local contact frame to the global

body and vice-versa. For a time step i + 1, a linear relation between the
relative velocity uα

i+1 and the averaged impulse pαi+1 over [ti, ti+1] is found;
this is associated to a contact condition. In this way, for a frictionless problem
with a Signorini contact condition, this system reveals to be a standard Linear
Complementarity Problem (LCP). For a frictional contact problem, tangential
reactions and tangential velocities have to verify a similar non smooth relation.
A Gauss – Seidel loop computes all contact reactions until convergence.

In the NSCD framework, the wire network must be discretized. So, it is
broken up into a collection of equidistant material points, with the wire mass
equal to the sum of all point masses. All these points must be connected by
a behavior law which accounts for a small segment of wire. The wire must
keep its free flexion and unilaterality properties. Consequently, a wire contact
law concerns only the normal direction and there is no constraint on the
tangential directions. Thus, four laws, supported by contactor points, can be
implemented in LMGC90, corresponding to four different wire behaviors:

• “Rigid rod”: this couples the normal velocity of both candidate and
antagonist particles.
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• “Elastic rod”: this law adds regularisation (due to elasticity k) to the
contact problem in both compression and tensile directions.

• “Rigid wire”: this is a unilateral law which couples the normal velocity
of both particles only if the element strain tend to be positive.

• “Elastic wire”: this includes unilaterality and the wire stiffness param-
eter k; “elastic rod” and “rigid wire” are coupled into this law.

An advantage of the “unilateral” laws is that the returned reaction on the
contact element is only tensile, better accounting for the wire behavior.

3.2 Numerical Experiments

Once the TexSolTM sample clearly generates as a granular media, mechanical
tests can be carried out. Large vs. small strain tests are distinguished to em-
phasize the differences in reinforcement mechanisms. A qualitative test on a
TexSolTM slope consists in depositing a geometrically densified sample on a
rubber plane. The initial sample includes a wire network, quasi-equiprobably
distributed, discretized by beads which are connected with an “elastic wire”
contact law. The simulation is carried out by LMGC90 until sample kinetic
energy is close to zero. Indeed the reinforcement structure was mobile and sub-
sided following the sand particles. But this transformation leads the wire to
form horizontal “stoppings” around the divergent particle flow which prevent
sand circulation under gravity. The wire network becomes orthotropic. The
slope friction angle of the TexSolTM become higher than the sand one; numer-
ical and experimental values coincided [2]. This test dealt with reinforcement
mechanisms in large transformations. But with a small strain background the
wire network is not as mobile and may not generate long distance interactions
as previously. Therefore, a triaxial test was carried out on a box-shaped sam-
ple. We also define a tool which is able to emphasize the interaction length
inside a material (i.e. the characteristic length discriminating the local or non
local behavior).

Definition. We call λ
m

the length of a wire segment with a tension higher
than mpavg, where pavg is the average tension of the wire network and m ∈ R

+.
Moreover we use the maximum length λ

m

max such as,

λ
m

max = sup
s1,s2

{∫ s2

s1

ds

∣∣∣∣ ∀s ∈ [s1, s2] with s1, s2 ∈ [0, L], |p(s)| ≥ mpavg

}
,

where s, s1 and s2 are curvilinear coordinates. m = 3 gives a good compromise
to vanish weak segments and to highlight strong segments.

We compare in Figure 2 the characteristic length, assimilated to λ
3

max, of the
two tests; we also give in Table 1 the number of mid-ray particles of the gran-
ular media which is equal to this characteristic length. The test implying
large transformations, leads to changes of the reinforcement structure which
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Fig. 2. Active wire segments distributions for both small and large strain assump-
tions.

Table 1. Characteristic length comparison for different tests

Tests λ
3
max

Equivalence number
of mid-ray particles

Slope deposit 21.56 mm 54
Triaxial test 4.29 mm 4

tend to linearize itself. This transformation is not alleviating, since it supports
the propagation of the tension and then increases the remote effects. Quite
contrary, the loading applied on triaxial test induces small strains which in-
volve the reinforcement quasi-staticity and generate several small wire active
elements. Consequently, this test is considered as a local one and dimensions
of a representative elementary volume of TexSolTM must be, at least, higher
than the characteristic length. The parameters of the wire discrete model may
also have an influence on reinforcement mechanisms, especially the diameter
of the wire beads. We simulate triaxial tests where the wire beads diameter
are decreasing and we observe that the average strains of both phases diverge
when wire beads are too small. The related physical phenomenon is the sudden
large sliding of the wire with respect to the sand. This sliding occurs in the
same direction leading to a non symmetry of the two horizontal wire strains.
The thinner the wire, the more it slips. These relative slidings conflict with
the assumptions of the continuous model. Thus, if an identification approach
is performed using discrete element investigations, the validity limits can be
so defined. During the triaxial process, the wire network stress level increases
linearly as shown in Figure 3. The reinforcement is considered as a linear elas-
tic structure for both “elastic” and “rigid” contact laws, which is surprising
for the rigid network. The first has a stress shift due to the sample preparation
above. This increases with wire stiffness but a strain shift appears, especially
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Fig. 3. Wire equivalent stress vs. strains plots for TexSolTM samples.

for the “rigid wire”. From the very start of the triaxial test, wire behavior is
disturbed by a brutal contracting reorganization amplified for “rigid wire”.
The slope of the (εzz, σ

eq
w ) plot may represent a macro-stiffness. This one in-

creases with the micro-stiffness k but not linearly. Indeed, it tends to stabilize
around a limit macro-stiffness corresponding to that of “rigid wire”.
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Summary. We performed numerical simulations of the impact of a bead on a ro-
tating vane. Considering different realistic contact laws at the collision chosen from
experiments, we define a typical trajectory as a bouncing regime followed by a
sticking regime. We show that there exists a critical friction coefficient between the
particle and the wall for which the particle rolls without any significative sliding in
a second phase. We deduce that the friction of the grains with the vane may have a
minor effect because the bead rolls without any sliding after a transient stage. This
may have important outcomes in spreading applications.

1 Introduction

The rheology of dilute granular flows is mostly unknown because of the lack of
knowledge of the laws of interaction between the constitutive particles. This is
however through collisions that the energy is transmitted and a prerequisite is
necessary to explore the different modes of transmission of the energy through
the shocks. We would like here to analyze the motion of a spherical bead that
enters in collision with a rotating plate. This is the usual way in particular
in agricultural applications to spread a granular material in the field (Fig. 1).
One wishes to understand the physical mechanisms of the granular flow on a
spreader. Actually, the dynamic friction coefficient is regarded as the parame-
ter influencing more the trajectory. We deduce from our numerical study that
the dynamic friction coefficient influences the dynamics of the sphere (rolling
with sliding (R+S) regime or rolling without sliding (R-S) regime) i.e. it is
possible that friction induced segregation in a flow of various particles. We ad-
dress different issues following this numerical study which may have a strong
relevance in the context of granular spreading technologies.

mailto:aurelie.le-quiniou@cemagref.fr
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Fig. 1. Schematic view of the spreader.

2 D.E.M. Modelling

The model is developed on the discrete element method under the quasi-static
assumption (Cundall and Strack (1979) [1]). We suppose that the material
goes through a succession of steady states following Hertzian Contact theo-
ries. Within the quasi-static assumption, Kuwabara and Kono 1987 [2] and
Brillantov and Pöschel 1999 [3] generalized the Hertzian theories (in the elas-
tic case) to viscoelastic materials. This assumption has to be checked because
the particles can reach high speeds and undergo fast deformations, dependent
on the speed of request (∼ 10m/s). The particles are PVC beads with as
characteristics a mass m of 0.2g, a radius R of 3mm, a Young’s modulus E
of 2.8GPa, a coefficient of normal restitution r of 0.5 and a dynamic friction
coefficient μ of 0.523 (obtained with rheometric measurements). For low flow
rates, the particles are distant one from another after the collision stage so it
is possible to use the single particle approximation along the vane.

For a sake of simplicity in this problem, we will model the interaction by
the widely used model introduced by P.A. Cundall and O.D.L. Strack [1]: it
represents the linear viscoelastic interaction between the particle and the vane
by a linear spring in parallel with a dashpot for the normal component (N).
The tangential component (T) is modelled with a spring and a dashpot with
Coulomb friction limit.

N = Knδn − bnδ̇n (1)
T+1 = min(T +KtΔδt − btδ̇t, μN) (2)

K and b are respectively the contact stiffness and the damping parameter:
Kn = 109N/m, Kt = 2(1−ν)

2−ν Kn with ν = 0.3 the Poisson ratio (Vu-Quoc et

al 2000 [4]), bn = 2 ln r
√

mKn√
π2+ln r2 and bt = 2 ln r

√
mKt√

π2+ln r2 (Ting et al 1989 [5]).
δn is the normal contact displacement also termed the overlap of the con-

tacting bodies. The increment of tangential contact displacement Δδt is found
by integrating the projection on the contact plane of the relative contact ve-
locity.
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Dimensionless numbers of the problem:
The important parameters are:

• the dynamic friction coefficient μ,
• the coefficient of normal restitution r between the bead and a static vane,
• and the centrifugal number Ni.

This centrifugal number is defined by the ratio between the velocity of the
vane at the position of impact equal to XiΩ and the velocity of the particle
after the impact which can be written as R/τ :

Ni =
XiΩ

R/τ
(3)

The collision time τ is expressed as a function of the previous mechanical
parameters for the Cundall model and a static vane: τ2 = m

(π2+(ln r)2

Kn

)
(Ting

et al 1989 [5]). With our PVC beads, the centrifugal number is about 0.01. This
number almost does not influence the phase of the particle. In this case, the
coefficient of normal restitution controls the possibility for the bead to bounce
on the plane. With particle with smaller contact stiffness (Ammonium Nitrate
K = 3 ∗ 105N/m−3/2) the centrifugal number is close to 1. The possibility for
the bead to bounce on the plane is thus controlled by the centrifugal number.
Hence if Ni � 1, the particle will not be able to bounce on the rotating wall
and remains in contact with the wall. On the contrary, for Ni < 1, the effect
of the rotating plate on the characteristics of the impact is negligible. In this
study we consider particle with very small centrifugal number.

3 Dynamics of a Particle Along the Vane

We suppose a spherical bead impacting a rotating vane without any significant
initial spin. We neglect the component of initial vertical velocity. We explore

A typical trajectory (Fig. 2) con-
sists firstly in the succession of
jumps along the vane. At each
impact, the particle gains some
spin through the shocks. The
particle then reaches a sticking
regime where it remains in con-
tact with the vane. Fig. 2. A typical trajectory.

the influence of the friction coefficient in the bouncing regime and then in the
sticking regime.
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3.1 The Bouncing Regime

The bouncing distance:
We represent the bouncing distance for different angular velocities of the vane
Ω, initial radial positions of the particle X0 and friction coefficients μ as a
function of the restitution coefficient r (See Fig. 3): The bouncing distance

Fig. 3. The bouncing distance as a function of the control parameters.

increases linearly with X0 and exponentially with the coefficient of normal
restitution r. The phase of rebound Ls is very high for a coefficient of resti-
tution of 1. For given mechanical parameters, the bouncing distance can be
expressed directly as:

Ls = X0 ∗ α ∗ exp(βr) (4)

with α and β some constants of value 0.12 and 5.4. This shows that the bounc-
ing distance is independent of the friction coefficient. Ls is controlled mainly
by the coefficient of restitution.

The spin gained during the impacts:
The spin gained Δθ̇ is defined by:

Δθ̇ =
R

I
ΔT (5)

with I = 2
5mR

2 the moment of inertia for a sphere about its central axis
and T the tangential contact force between the particle and the vane. One
measures the spin gained during impacts and the tangential velocity Vi of the
particle as a function of the radial position for different friction coefficients
(See Fig. 4): The friction increases the amount of spin gained by the particle
through an impact and decreases the amount of the tangential velocity of the
center of mass Vi during an impact.
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3.2 The Sticking Regime

One studies the sliding velocity along the vane defined by:

Vg = Vi −R
∣∣θ̇∣∣ (6)

with Vi the tangential velocity of the center of mass, as a function of μ with the
Cundall model (Fig. 5). Two distinct phases appear. If the dynamic friction

Fig. 4. Velocities as a function of the
radial distance of the particle.

Fig. 5. Sliding velocity as a function of
the radial distance of the particle.

coefficient μ is higher than a critical value μ∗, the sliding velocity is null after
the bouncing regime: a rolling without sliding (R-S) regime is predicted. But
if the dynamic friction coefficient μ is lower than this critical value μ∗, the
sliding velocity increases after the bouncing regime: it is a rolling with sliding
(R+S) regime (Fig. 5). One can explain this: at the beginning of the vane,
the spin is zero: Vi > R

∣∣θ̇∣∣, it is the (R+S) regime. Then the dynamic friction
increases the amount of spin gained by the particle and decreases the amount
of radial velocity through an impact. At μ = μ∗, Vi = R

∣∣θ̇∣∣, it is the (R-S)
regime. The radial position of the particle increases so the sliding velocity is
always positive or null. At μ > μ∗, the spin and the radial velocity remain
constant, it is always a (R-S) regime.

We also show below in a phase diagram, the dependence on this critical
friction parameter as a function of Ω, r and the initial position X0 (see Fig. 6).
The two possible modes for the particle appear clearly: Rolling and sliding
(R+S), Rolling without sliding (R-S). This critical friction parameter increases
linearly with the initial radial position. For a ratio between X0 and the length
of the vane which is higher to a critical value L∗, the particle always rebounds.
L∗ is also dependent on the coefficient of restitution. We also show that Ω
and r may have a minor effect on this critical friction parameter.
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Fig. 6. Dynamic friction coefficient as a function of the initial radial distance.

4 Conclusion

The study carried out on the influence of the dynamic friction coefficient shows
that there is a critical value μ∗ for which the acquired spin is sufficient to have
a (R-S) regime. With a flow of different particles, the friction may induce
segregation in the flow between the particles which roll with sliding and the
particles which roll without sliding. The dynamic friction coefficients, obtained
with rheometric measurements for materials used in spreading, are μ = 0.552
for Ammonium Nitrate: NH4NO3, μ = 0.466 for Potassium Chloride: KCl and
μ = 0.523 for PVC used in pilot experiments. One notices that these particles
have a coefficient higher than the critical value μ∗. For these values, the model
would predict that our particles roll without sliding. This is interesting for
spreading applications: the friction is not the parameter which provides the
ejection characteristics of the particle because the friction coefficient may have
a minor effect. A great care has to been taken to the influence of the other
parameters of the problem such as the coefficient of restitution.
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Summary. We study experimentally the interfacial stability of a polystyrene par-
ticle suspension sheared harmonically by an upper flow free of particles. The sus-
pension is confined in a rectangular Hele-Shaw cell and initially sedimented. The
suspension can be made almost no buoyant by addition of salt in water. When an
oscillating flow is applied to the upper flow, we monitor as a function of the am-
plitude and frequency, the interfacial dynamics. We observe at increasing shear, the
interface going from compaction to expansion, and at higher shear, up to ripple for-
mation. We show that the amplitude threshold for ripple formation decreases with
frequency. We also study the effect of the buoyancy when tilting the cell or by adding
salt.

1 Introduction

When two simple fluids form an interface and move with respect to each other,
a Kelvin-Helmholtz instability may occur. The theory developed indepen-
dently by Kelvin and Helmholtz allows to predict the onset of the instability
and the transition to a turbulent flow. If one of the fluids is a gravitationally
settled suspension and the other the clear fluid on the top, a similar phe-
nomenon of wavy instability can be observed when the sediment suspension is
sheared by a continuous or an oscillatory flow [1, 2]. An important feature for
the interface is a resuspension process due to shear, first described by Leighton
and Acrivos [3]. In the case of an erodible bed of dense and buoyant granular
material, like a sand-bed, the resuspension process is almost invisible but a
ripple instability may occur as one observes currently along the beaches and
on the river beds. This ripple instability is also present for either steadily [4]
or oscillatory shearing flows [5]. Different experimental geometries have been
used to study these instabilities: a Couette geometry [6], the plane Couette [7]
and an annular channel [8, 9]. Here we try to bridge these two approaches by
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studying the interfacial motion of an initially sediment suspension confined in
an Hele-Shaw cell. The buoyancy contrast is much lower that for usual beds of
granular materials and can be set to almost zero by the progressive addition
of salt in the fluid.

2 Experimental Setup

The Hele-Shaw cell is made of two parallel plexiglass plates separated by a
distance s = 400μm. The suspension is confined in a rectangular area with
length L = 30cm and width W = 5cm. At the upper ends of the rectangu-
lar cell, two inlet/outlet 8mm diameter holes are connected to rigid tubes.
The suspension is made of water or a water/salt solution and of polystyrene
spheres with a diameter d = 80μm, a density of ρ0 = 1.06g/cm3 and an initial
volume fraction of νsusp = 9%. The suspension is injected in the cell via one
of the tubes. Then, the cell is put vertically to let the polystyrene beads sedi-
ment at the bottom and form a dense packing around ν0 ≈ 55% over an initial
height H0 = 8mm. Then the tubes are half filled with water or the water/salt
solution. One of the tubes connects the cell to a syringe, and the other one is
open at the atmospheric pressure. The syringe is attached to a loud-speaker
that can be vibrated at different frequencies and amplitudes. Therefore, the
syringe pumps the air into the tube and creates an oscillating flow inside the
Hele-Shaw cell. The available frequency f range is 1.5–10Hz. Movies of the
oscillating suspension are taken with a CCD camera and by image analysis
based on the contrast between the suspension and the clear flow, the average
sediment height H is extracted. The flow amplitude is obtained by putting
a narrow pipe on the free tube and filming it. Therefore, the volume of the
liquid displaced during each oscillation cycle is then obtained and we divide
this volume by the thickness of the cell and by the height of the liquid above
the sediment layer to obtain a control parameter: A, describing the mean
flow displacement amplitude in the upper free fluid layer. The advantage of
the Hele-shaw geometry if that in the upper layer the flow if homogeneous
vertically and the active shear of the suspension by the pure fluid only oc-
curs in the vicinity of the interface at distances lower or equal to the plate
separation s.

3 Interfacial Dynamics

Figure 1 shows the relative changes in sediment height (H − H0)/H0 as a
function of the rescaled time (tf) for different driving amplitudes A and at a
frequency of oscillation f = 2Hz. The liquid is pure water (buoyancy contrast
6%). As it can be seen from this figure, the amplitude of the upper flow drives
two different dynamics for the interface motion: compaction (A < 0.6mm)
and expansion (A > 0.6mm). We noticed that when the sediment layer start



Interfacial Instability of a Confined Suspension Under Oscillating Shear 623

Fig. 1. Relative changes in height (H −H0)/H0 of the sediment layer as a function
of the rescaled time tf for different driving amplitudes A. The liquid is water and
the particles are polystyrene beads of diameter 80μm. The frequency of oscillation
is f = 2Hz. The solid lines are the fits according to equation 1.

to be sheared, the grains at the interface start to move and thereafter, the
motion penetrates inside the granular layer. For very low driving amplitudes
A, the small oscillations of the grains result in a compaction process but for
larger amplitudes, the grains need more space in order to move relatively to
each others and then, the layer expands possibly due to dilatancy effects and
hydrodynamic resuspension forces. The interface average motion over time
can be simply described by an equation of the type:

ΔH/H0 = B(1− exp(−(t/τ)β)) (1)

with τ being the time scale for the compaction/expansion process, B repre-
sents the relative average expansion for long times (t� τ) and the exponent β
characterizes a deviation from a typical first order process when β < 1 (stretch
exponential). These parameters extracted from a fit are displayed on Fig. 2.
Note that we see on this figure that the expansion process is in competition
with a compaction process which seems to overcome at low shearing rate. This
defines a clear threshold for the onset of expansion. The compaction process
is very well characterized by a simple exponential but for the expansion, it
seems that we have a radical change of dynamics. We see a slow stretched
exponential dynamics with a typical time scale τ ≈ 10(±2)s and an exponent
β ≈ 0.67± 0.05.

Ripple formation – Actually, there is another threshold of shear above
which the interface becomes longitudinally unstable and ripples start to form.
The ripple formation threshold is about Ac = 1.5mm. It can be seen that
above Ac, the average expansion B increases more rapidly with the driving
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Fig. 2. Fit parameters of equation (1) as a function of the flow driving amplitude A.
Left: expansion amplitude B. The height is defined the for ripple formation regime
as the mean height of the layer. Up-right: stretched exponential exponent β. Down-
right: expansion time scale τ .

amplitude A but interestingly, the typical time scale τ and the stretch expo-
nential exponents β stay of about of the same values.

Fig. 3. a) The sediment layer before shearing; b) ripple formation; c) coarsening.
The frequency is f = 3Hz and the amplitude is A = 2.6mm. Fig. 3(d), initial
wavelength (empty circles) and wavelength after 10min (full circles) in the same
driving conditions.

The ripples evolve in time and a coarsening process happens in which
the wavelength of the pattern increases and then saturates to a final value
(Figure 3(a,b,c)). The initial and final wavelength of the ripples λ increase with
the shearing amplitude A. Figure 3(d) shows the initial and final wavelengths
as a function of the driving amplitude A. Here, the final wavelength is taken
after 10min. The initial wavelength first increases with the amplitude and then
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remains almost constant, but the final value is always an increasing function
of the amplitude.

Fig. 4. Left- The threshold amplitude for ripple formation as a function of fre-
quency. Right- The initial wavelength of the ripples at the threshold as a function
of frequency.

We also measured the threshold amplitude Ac of ripple formation at differ-
ent frequencies. The result is shown in Fig. 4(left). The threshold amplitude
is a decreasing function of the frequency of oscillation and can be fitted with
a power-law curve Ac = af b with b = −1.6 ± 0.2 (dashed line in Figure 4).
We measured the initial wavelength of the ripples at the threshold and we ob-
served that the wavelength is also a decreasing function of the frequency. The
result is shown in Figure 4(right). The data can be fitted with a power-law
λ0 = af b with b = −0.8± 0.1.

4 Effect of Buoyancy

Two forces act on the grains: buoyancy and the hydrodynamic forces. The hy-
drodynamic force includes the drag force of the liquid, and the hydrodynamic
interaction between the grains. To study the effect of the buoyancy force,
we proceed in two ways. The first procedure consists in dissolving different
amounts of salt in the water in order to obtain a fluid with different densities
and approach very closely to the polystyrene value. The effect of the density
on the ripple formation threshold can be seen in Figure 5(left). As we expect,
the threshold increases with density difference Δρ between the grains and the
solution.

The other way to change the buoyancy force on the grains is by tilting
the cell and by using an effective value of the gravity (g sin θ) as the actual
restoring mechanism for sedimentation. As we change the angle θ between the
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Fig. 5. Left- The ripple formation threshold as a function of density difference for
f = 3Hz (squares) and f = 5Hz (circles). Right- The ripple formation threshold
as a function of the angle for f = 2Hz (squares) and f = 3Hz (circles).

cell and the horizontal surface before shearing, the ripple formation threshold
is measured. The result is shown in Figure 5(right). The behavior in this case is
complex, with a sudden decrease in the threshold when deviating a little from
the vertical position. The other important feature is that there is a non-zero
threshold even for the horizontal case (sin θ = 0).

5 Conclusion

We present a preliminary study of the interface dynamics of a sediment sus-
pension confined in a Hele-Shaw cell. The suspension interface is destabilized
under oscillating shear and we evidence a competition between a compaction
process and a resuspension. In both cases (compaction and expansion), a
steady state is reached for low shearing amplitude. However, if the shearing
amplitude is too large a ripple instability occurs which shows coarsening dy-
namics. We have studied the initial wavelength selection which was found to
decrease with the driving frequency. Also, we have shown that at low buoy-
ancy contrast, the expansion and the instability processes were still present.
This opens the way to a systematic study of this interfacial instability as well
as a observation of the granular motion in the bulk of the sediment.
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Summary. We present a new pattern formation process where labyrinthine struc-
tures emerge during slow drainage of a confined granular-fluid mixture. Capillary
and frictional forces govern the process, and the resulting pattern has a character-
istic wavelength that is a function of both the initial volume fraction of granular
material in the mixture, and also the system thickness.

1 Introduction

There are many examples of pattern formation in granular systems driven
out of equilibrium: ripples in wind-blown sand, segregation of grains in gran-
ular flows [1], the Rayleigh-Taylor instability in falling grains [2], and various
patterns in vertically and horizontally vibrated granular layers [3].

Here we present a new pattern formation process where the central in-
gredients are a granular medium submerged in a Newtonian fluid [4–6]. The
granular-fluid system is confined between the parallel glass plates of a Hele-
Shaw cell, and as the cell is gradually drained, the receding fluid-air interface
gathers and pushes the grains ahead of it as fingers of air invade the system.
When the cell is fully drained, all the granular material that was originally uni-
formly distributed in the cell has been reorganized into a branching labyrinth
structure of compacted grains.

From a combination of experiments, simulations and theory we character-
ize the governing forces in the system, and show that a well defined wavelength
develops as a compromise between capillary forces and friction. Emphasis is
here placed on the experimental system and results, while the simulations are
given a similar treatment in a parallel report [7].

mailto:bsand@fys.uio.no
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Fig. 1. a) Picture of the experimental setup. b) Illustration of a cross-section of the
Hele-Shaw cell including outlet and height adjustment mechanism.

2 Experimental Setup

Figure 1a) shows a picture of the experimental setup including the Hele-Shaw
cell, a syringe pump (to the left in the picture), and a Nikon D100 camera
placed underneath the cell acquiring images in time lapse mode. A schematic
drawing of the cell is shown in Fig. 1b). The dimensions of each of the two
glass plates are 50×50×1 cm, and they are kept separated by metal spacers of
well defined thickness. The cell is mounted in a frame with three adjustment
screws resting on a table such that the cell can be leveled accurately. A square
“window” is cut in the table allowing imaging from underneath where no tubes
or other equipment blocks the view.

A small hole, approximately 5 mm diameter, is drilled through the top
glass plate, and a brass tube connector is glued on. This serves as both inlet
during loading of the granular-fluid mixture into the cell, and as outlet when
the fluid is subsequently withdrawn. A plastic tube connects the cell to the
syringe pump.

In the experiments reported here we use a granular medium consisting
of poly-disperse glass beads with diameters in the range of 50–100 μm. The
beads are weighed up and added to a 50% glycerol/water mixture in a large
syringe such that the total volume of the mixture is measured. The syringe is
shaken vigorously and attached to the inlet hole of the cell, and the mixture is
then injected into the cell at a high rate while the beads remain suspended in
the viscous fluid. As a result of the fast injection, the granular-fluid mixture
spreads out in a circular disc in the gap between the plates, where the radius
depends on the volume of the injected mixture. Example: 10 g of glass beads
are dispersed in 50% glycerol/water such that the total volume is 40 ml and the
volume fraction of beads is 20%. After injection, the circular disc of granular-
fluid mixture measures 35 cm in diameter in a cell where the glass plates are
separated by 0.4 mm thick spacers.

Shortly after the granular-fluid medium is loaded into cell, the grains sedi-
ment out, and fall to rest on the surface of the lower glass plate. An additional
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small amount of beads are deposited around the outlet hole in order to pre-
vent any fingers of air sweeping past the outlet channel. We are now ready to
proceed with the drainage experiment. The syringe pump is set to withdraw
fluid from the interior of the cell at an extremely low rate such that viscous
forces are negligible and also so that we are able to drain fluid through the
developing granular branches. At a typical withdrawal rate of 0.01 ml/min,
the experiment in the above described example takes close to 2.5 days to
complete.

3 Pattern Formation

As the fluid is gradually drained from the cell the under-pressure with respect
to the ambient air increases, and the fluid-air interface starts to recede. The
granular material at the perimeter is pushed ahead of the slowly moving in-
terface by capillary forces, and soon the beads start to stack up, building up
a layer of compacted grains that span the gap between the two plates. Due to
the low flow rate, the advancement of the front occurs in a creeping fashion,
and only a small section of the front is in motion at any one time. Initially the
interface contracts all along the circular perimeter, but after a while, when a
layer of compacted grains has been compiled all along the perimeter, the in-
terface becomes unstable and air proceeds to invade the granular-fluid system
in a slow fingering process (Fig. 2).

The invading air fingers move the grains ahead of them, and reorganize the
granular material locally into thin branches of close-packed beads (Fig. 3a)
and b)). The initially circular interface deforms and stretches, but no pinch-
off of the interface occurs during the experiment, and consequently, the fi-
nal labyrinth structure is simply-connected. The invading fingers have a well
defined width, which results in a uniform characteristic wavelength in the
labyrinth pattern that is perceivable to the eye as an average distance be-
tween the grain branches.

Fig. 2. Time series of pictures taken from underneath the cell during the pattern
formation process. The elapsed time is 3, 11, 28 and 42 hours for the first four
pictures (left to right) and the last picture is taken some time after the cell was
fully drained. The residue of granular material has been compiled into a branching
labyrinthine structure seen as the bright pattern in the final picture. The initial
granular-fluid disc is approximately 35 cm in diameter.
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Fig. 3. a) Top view of an air finger invading the granular-fluid system. The layer
of compacted grains is visible as a bright zone ahead of the interface. b) Sketch of a
cross-section of the air-fluid-grain front. The length of the compact layer is L, and
the plate spacing is Δz. c) Schematic representation of the dominant forces in the
system plotted against finger curvature radius: surface tension (solid), friction (long-
dashed) and the total force required to move the interface at that specific location
along the front (short-dashed). The dotted line shows the pressure required to move
the front, the yield pressure.

4 Physical Mechanisms

The pattern formation develops as a result of a competition between two
forces: surface tension and friction. The surface tension is responsible for mov-
ing the collected mass by imposing a force on the wetting beads that perturb
the interface. But capillary forces also have a more profound influence on
the pattern formation since surface tension acts to minimize surface area and
thereby also minimize curvature during the fingering process. Surface tension
alone therefore favors wide fingers of invading air as this minimizes the total
creation of fluid/air surface.

Friction, on the other hand, opposes the inwards displacement of granular
material as the interface recedes. A wide finger would gather mass from a
large area and build up a thick layer of compacted granular material ahead of
it, resulting in a high frictional dissipation. Friction therefore favors narrow
fingers that gather less mass.

The pattern formation is driven by the pressure difference across the menis-
cus as fluid is continuously drained from the system. Movement of the front
requires that this pressure overcomes the local yield pressure set up by in-
terfacial and frictional forces, and since the process is slow, we can assume
that movement occurs only at small segments of the front at any one time.
The balance of forces for a front segment that is set in motion can to a first
approximation be written ΔP = aγ/R + σ, where aγ represents an effective
surface tension for the air/fluid/grains interface, R is the local in-plane curva-
ture of the interface, and σ is the frictional stress from the granular packing
ahead of the moving interface [4, 5].

Figure 3c) shows the forces plotted against radius of curvature for an in-
vading finger. Capillary forces dominate for small radius of curvature (narrow
fingers) and friction dominates for large (wide fingers). Since the dynamics of
the fingering process is governed by a selection of lowest yield pressure any-
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Fig. 4. a) Raw picture of granular labyrinth. b) Black/white bitmap of isolated
simply-connected grain cluster. c) The circumference of the cluster is measured.

where along the front (minimizing the pressure plotted in Fig. 3c)), this also
results in a selection of a characteristic length. The theoretical results quoted
below are based on this mimimization of yield pressure.

5 Analysis of Length Scale

The labyrinth pattern is random, simply-connected, and has a well defined
characteristic length scale. In this first study, we focus on the perhaps most
visually pronounced feature of the pattern, the wavelength, loosely defined as
the average separation between neighboring branches.

Figure 4 illustrates the method we have used to measure characteristic
lengths in the patterns. An image of a fully developed labyrinth is calibrated
and, using the Matlab image analysis toolbox, thresholded to a bitmap array.
The simply-connected cluster of granular material is identified and isolated,
and using built in Matlab functions we measure a series of parameters includ-
ing the circumference of the branching cluster and the area of the cluster. The
average branch thickness, W , is simply the cluster area, Acluster, divided by
half the circumference S: W = 2Acluster/S. The wavelength, or what the eye
perceives as the “density” of the pattern, is given by Λ = 2Adisc/S, where
Adisc is the area of the circular granular-fluid disc that initially filled the cell.

6 Characteristic Lengths

Figure 5 shows pictures of the final granular structures obtained in exper-
iments where the initial volume fraction of granular material, ϕ, increases
from left to right as labeled. (ϕ is defined as 1 for the close packed granular
branches.) Figure 6 shows the characteristic wavelengths measured for these
patterns plotted as a function of the volume fraction of grains for experi-
mental data points (filled squares), data obtained from simulations (circles)
and also predictions from an analytical model (solid line) [4, 5]. As the eye
perceives and the measurements show: the characteristic wavelength of the
pattern decreases with increasing amounts of granular material in the initial
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Fig. 5. Granular labyrinths in experiments where the initial filling fraction of gran-
ular material increases from left to right as labeled.

mixture. Likewise, the inset in Fig. 6 shows that the wavelength increases with
increasing plate separation (ϕ = 20%). The close match between experiments,
simulations and theory shows that the physical mechanisms outlined above
capture the essence of the problem, and that the pattern formation process is
well described incorporating only capillary and frictional forces.

Fig. 6. Measured characteristic wavelengths as a function of volume fraction grains
for experiments (filled squares), simulations (circles) and theoretical predictions
(solid line). The inset shows wavelengths for different plate separations (constant
volume fraction of 20%).
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Summary. When a droplet of silica particles suspended in water dries out on a
horizontal surface, one can observe an emerging pattern of interconnected stripes of
sedimented mass. From experimental observations and numerical simulations we find
that the mechanism for the pattern formation is a combination of meniscus shape
perturbations caused by pinned particles and a reorganization of the evaporation
driven flow.

1 Introduction

Many types of patterns occur in thin film flows of complex fluids [1–4]. One
fascinating class of such patterns are drying patterns in fluid-particle mix-
tures. Driven by evaporation of the fluid component, the pattern is usually
a result of the accumulation of the solid particles at temporarily pinned
fluid contact lines. For instance, when a spilled drop of coffee dries out on
a horizontal surface, most of the dissolved coffee particles accumulate at the
edge of the droplet, leaving a ring-shaped stain after the remaining fluid has
evaporated [1]. The ring deposit forms as the contact line of the drop be-
comes pinned to the substrate while ongoing evaporation generates a radially
outward-directed flow, carrying with it particles that are subsequently de-
posited at the pinned droplet edge.

In this paper we describe the formation of stripe patterns during the evap-
oration of a thin film suspension of silica particles deposited on a substrate.
The silica particles, carried by the evaporation driven flow, aggregate at so-
called pinning points, which are formed when the largest particles sediment
out under the influence of gravity, at random locations within the flow. Con-
sequently, pattern formation occurs throughout the entire area of the flow, in
contrast to coffee-ring patterns and related processes where the deposition of
particles occurs at the pinned contact line. Indeed, the mechanism of pattern
formation described here is, in its essential features, similar to the physics
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of pattern formation in thin film particulate suspensions draining down an
inclined surface, as described by Buchanan et al. [4]. By means of experimen-
tal observations and numerical simulations we show here that the mechanism
for evaporation driven pattern formation is a combination of meniscus shape
perturbations and reorganization of the flow caused by the compiled mass of
arrested particles, where a self-organized focusing of the flow through gradu-
ally smaller channels induces the growth of stripes perpendicular to the overall
direction of the flow.

2 Evaporating Thin Film Suspensions

2.1 Experiments

A dispersion of silicon dioxide powder in water was prepared by adding 0.05 g
silicon dioxide particles (Aldrich) sieved with mesh size −325 (maximum par-
ticle diameter 44 μm) to 20 ml purified water (capillary length Lc = 0.0027 m).
The sample was sonicated for 45 minutes prior to the experiments in order to
break up particle aggregates within the mixture. 1 ml of the dispersion was
spread out on a horizontally placed (or slightly inclined) hydrophilic micro-
scope glass slide (8× 8 cm), and left undisturbed under ambient temperature
and humidity conditions. The subsequent evaporation process was imaged us-
ing a digital Nikon D200 camera mounted on a Zeiss Stemi 2000-C microscope.
Images were acquired at regular time intervals (5 or 10 s). For each magni-
fication setting, the spatial dimensions were calibrated by imaging an object
micrometer.

2.2 Observed Process

The non-Brownian particles sediment out and fall to rest on the substrate
surface. Initially, evaporation sets in from the fluid surface with no observable
effects on the particles. After a while, the thickness of the fluid film becomes
comparable to the diameter of the largest particles sedimented out onto the
substrate. The fluid wets the particles, and the meniscus is therefore per-
turbed; pulled up the sides of the particle like water in a capillary tube. The
meniscus then acts with a force on the particle, pinning it to the substrate
where it is immobilized by friction. Once the interface becomes curved locally,
a pressure difference builds up across the meniscus; the Laplace pressure given
by ΔP = γ(1/r1 + 1/r2), where γ is the surface tension and r1 and r2 are
the radii of curvature in orthogonal planes. If the film thickness, and hence
local curvatures, varies over the area due to differences in evaporation rates,
pressure gradients are set up within the fluid film generating internal fluid
flows. This flow carries with it those particles that are not pinned to the sub-
strate by the meniscus or are otherwise too heavy to be moved by the flow.
Evaporation rates are higher at the perimeter of the fluid film, and therefore
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Fig. 1. Time sequence (left to right) of the pattern formation. The evaporation
driven flow has an overall direction as indicated by the arrow in the first image. The
height of each image is 15 mm, and the time period from first to last image is 18
minutes.

Fig. 2. A close-up of the nucleation and growth of stripes. The overall flow direc-
tion is from right to left in these images. The aggregated bands of particles form
obstacles for the fluid flow which in turn transports new particles to their vicinity.
The arrows drawn into image 2 illustrates the reorganization of flow into gradually
smaller channels as more mass becomes deposited onto already formed stripes. Nat-
urally, the stripes grow in thickness on the upstream side as more material becomes
deposited here. Height of images: 1.9 mm, time period: 6 minutes.

one typically has an overall flow direction, which is radially outwards from
the center towards the edges of the droplet.

As the evaporation progresses, one can after a while observe emerging
stripes, first towards the edges, then gradually closer to the center of the
droplet, following the thinning of the fluid film (Fig. 1). The pinned large par-
ticles act like nucleation centers where the growth of particle aggregates starts.
Gradually smaller particles, brought to the vicinity of the pinned particles by
the internal flow in the fluid film, start to aggregate on to already immobilized
particles. These clusters form obstacles for the flow which becomes deflected
to their sides, and the shape of the meniscus becomes perturbed by the hy-
drophilic particles and the flow within the film. A pressure bulge develops on
the upstream side of an immobile particle cluster, and, likewise, a through
develops on the downstream side, significantly altering the film surface. The
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Fig. 3. Time sequence (left to right) of pattern formation in the numerical model.
Snapshots of the particle concentration ranging from low (black) to high (white)
are shown. The mean flow is from right to left in each image. Height of images: one
capillary length.

change in the film surface allows additional, smaller particles to get trapped,
leading to a self organized process where particles carried within the flow ag-
gregate onto trapped clusters, and where the clusters reorganize the flow to
their sides into gradually narrower channels (Fig. 2). Thus, immobile parti-
cle clusters nucleate, grow and coalesce together until the final stripe-pattern
emerges. Naturally, the stripes show considerable local variation though they
have an overall orientation orthogonal to the mean flow direction.

3 Numerical Simulations

Preliminary simulations of the particle concentration field in a film segment
are shown in Fig. 3. We compute the evolution of both the free film surface
and a scalar particle concentration, a strongly nonlinear system equations, as
detailed in a forthcoming publication [5]. Pinning of particles is mimicked by a
locally diverging mixture viscosity, which, in turn, alters local flow rates (the
reorganization process). Starting from an initial field with a critical film thick-
ness and a few, randomly distributed pinning points (left-most image), clear
structures develop, oriented roughly perpendicular to the mean flow direction.
The system is driven by an imposed uniform velocity field (from right to left in
the images), mimicking the evaporation driven flow. However, once the largest
band structures have formed, the mean flow is blocked completely. The asso-
ciated capillary number, defined as the squared ratio between film thickness
and the capillary length, equals Ca = 0.001; the number of gridpoints is 200
by 100.
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4 Conclusion

Evaporation generates flow in a thin fluid film held up by the capillary ac-
tion of pinned silica particles. A pressure bulge develops on the upstream
side of an immobile particle cluster, and, likewise, a through develops on the
downstream side, significantly altering the film surface. The change in the
film surface allows additional, smaller particles to get trapped, leading to a
self organized process where particles carried within the flow aggregate onto
trapped clusters, and where the clusters reorganize the flow to their sides into
gradually narrower channels. Thus, immobile particle clusters nucleate, grow
and coalesce together until the final stripe-pattern emerges. The stripes show
considerable local variation, but have an overall orientation orthogonal to the
flow direction.
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1 Introduction

Ballast is widely employed for the construction of railway track because of its
mechanical properties and its flexibility from the point of view of construction
and maintenance. This granular material, produced by crushing of hard rocks,
is confined between concrete sleepers supporting the rails and the platform.

The ballast layer needs to be raised from time to time because of its
cumulative settlement under repeated loading [1, 2]. The increasing of cost of
such operations with the advent of high speed trains has motivated a number
of studies on physical origins of settlements.

The ballast layer is a thin granular interface with a thickness that is below
the correlation length of contact forces. These correlations are expected to
be long ranged because ballast grains are faceted and angular, and there is
strong wall effect due to the confinement of ballast between the sleepers and
the sublayer.

In this paper we investigate the mechanical behaviour of a model portion
of railway track submitted to 60000 loading cycles. The aim of this study is
to characterize the stabilisation phase and to propose a settlement model.

2 Numerical Procedure

In order to take into account the angular shape of ballast grains, we use
polygonal grains in a two-dimensional space with a number of sides between
5 and 7. The grains are confined in an open box of length L with deformable
base composed of polygons with a square shape supported by visco-elastic
springs. In order to take into account the specific configuration of railway
track, we have modeled the sleeper with a polygon. Numerical samples are
composed of approximately 1000 grains with specific distribution size: 50% of
diameter equal to 2.5 cm, 34 % of diameter equal to 3.75 cm, 16% of diameter
equal to 5 cm. The friction coefficient between grains is μg = 0.6 and equal to
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0.6 or 0 between the top and bottom side walls. The simulations were carried
out by means of the Contact Dynamics method which is based on implicit
time integration of the equation of motion and a nonsmooth formulation of
mutual exclusion and dry friction between particles [3–6].

Fig. 1. Sample after deposit (color represent the pressure).

Grains first fall freely under gravity onto the sublayer until they reach an
equilibrium state (Fig. 1). After this deposit phase, 10 vertical loading cycles
are applied on the sleeper in order to obtain a better connectivity with the
ballast grains.

F (Q,V, t) =
Q

2
(X(

(V t−a)
d )2 +X(

(V t−a−L)
d )2) (1)

When the sample has reached an equilibrium state, loading cycles are
applied in order to simulate the running of trains. The applied signal has the
form presented in the equation 1 [7], with is axle load, V the velocity, X a real
number which characterize the soil properties.

3 A Settlement Model

In general it is considered that the main source of settlement which occurs on
railway track is due to ballast. In our case the settlement represents the sum of
each vertical increment after one loading cycle of the sleeper. In experimental
case, it is possible to distinguish two evolution phases [8]:

From the numerical computations presented in this article, we can identify
two average behaviours:

• one between 0 and 10000 cycles, where the size increment and the total
settlement represent more than 60% of the final settlement,

• one between 10000 and 60000 cycles, where the cumulative settlement
evolves slightly.

The evolution of settlement samples are extremely sensible to the initial
configuration of grains under the sleeper. However we obtain for the different
samples after 60000 loading cycles a cumulative settlement about 80 mm. This
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value is more important than in reality because we never impose compaction
under the sleeper to restore its initial vertical position like in maintenance
operations.

Fig. 2. Evolution of the cumulated settlement of the sleeper.

From these numerical computations, it is possible to propose a curve fit in
order to predict settlement evolution. We can propose as a first approximation:

τf = (τ0)
Q

Q+Q0 (2)

with Q, the cumulative total load apply on the system, and Q0 a reference
value. The total load is more representative because it depends on the kind of
train. τ0 andQ0 are evaluated from the linear regression of the curve (Q, Q

Ln(τ) )
with value obtained from numerical simulations. It is important to notice that
for all linear regressions, we obtain a correlation coefficient of about 99%.

Fig. 3. Comparison between result of numerical simulations and proposed fit.

The proposed model describe very well the evolution of settlement, and
allows us to predict the settlement by considering the evolution of the sample
only for 10000 loading cycles. This model is proposed only for samples which
have not been submitted to a high number of loading cycles.
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4 Characterisation of the Stabilisation Phase

The characterisation of the stabilised phase is very important in order to
decrease computation effort by preparing sample with properties of this phase.
In real case the evolution of track settlement is governed by the properties of
the subballast layer, the ballast state and maintenance operation employed to
restore the initial geometry of the track. In general, the ballast has been always
submitted to a very large number of circulations, and we have to identify the
origins of track defects in this conditions.

From our numerical simulations, it is possible to characterise the ballast
properties in the stabilisation phase in order to prepare sample with these
properties.

Fig. 4. Evolution of the coordination number.

The connectivity of the particles is described at lowest order by the aver-
age number z of contact neighbours per grains. The large value of z presented
in figure 4 characterizes a sample of angular particles which reflects the en-
hanced arching effect [9]. In our case, the coordination number under the
sleeper increase slightly to an average value 4.1 with large fluctuations. These
fluctuations characterize the lost of stability of the system due to the creation
and destruction of rigid paths identified in previous studies (localised rigid
structures) [2].

It is important to notice that the average motion of grains under the
sleeper is very small. At the time scale of one loading cycle we can propose
that the grains follows a quasi-static solid motion depending on the sublayer
deformations and the contact network follows a dynamic.

The organisation of simple and double contacts enhances the arching ef-
fects and a high heterogeneity of the sample. In the stabilisation phase it is
important to notice that the strong double contact represent 30% of the con-
tact set (fig. 5). The double contact are strongly involved in the stability of the
system submitted to a vertical solicitation but these rigid paths are strongly
influenced by shear solicitations which can be induced by the deformations of
the sublayer.
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Fig. 5. Evolution of the fraction of double and simple contacts from strong and
weak network.

The figure 5 presents a repartition of double contact in weak and strong
force network which is different from classical VER analysis [9]. This state
characterize a thin granular layer with angular particles.

5 Conclusion

The objective of this paper was to characterise the stabilisation of ballast
layer by means of numerical simulations in order to propose a settlement
model and identify the properties of stabilised sample. The identification of
these properties allows to decrease the computational effort for further study
on ballast which is mostly in stabilised state in real case.

From the numerical simulations we observed that it is possible to find a
settlement model which allows to predict final settlement through the simu-
lation of only 10000 loading cycles. It will be possible to evaluate the total
settlement with an error less then 10%, which is an acceptable result.

The stabilised state of ballasted track model is characterized by a high
value of the coordination number which reflects the angular shape of the grains
and the history of loading cycles applied on the system. From our results, the
average value of the coordination number in this phase is 4.1.

In this phase we observed a particular organisation of the force network:
the double contact, side/side particle contact represent 30% of the strong force
network. It is the second most important force network after the weak simple
contact. This important role implies a strong heterogeneity of the thin layer
with a high probability to create localised rigid structures.

From this work, it is possible to decrease our computational effort to create
sample with stabilised properties and investigates the influence of increase of
speed for example.

We thank Frédéric Dubois for assistance with the LMGC90 [10] platform
used for simulations and Réseau Ferré de France which funded this project.
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Summary. When a solid sphere drops in a granular medium, an impact crater is
created. The penetration of the projectile in the granular bed as a function of the
impact energy is evaluated theoretically using a simple model including a friction
law between the projectile and the grains, a viscous dissipation in the bed and a force
from the collisions between the projectile and the granular material. This model is
observed to be in agreement with our quasi-2D experimental results and suggests
that the penetration depth is a power law of the total drop distance.

For millions of years, meteorites have crashed on Earth, ejecting rocks at
huge velocity and creating enormous craters. Although these collisions hap-
pened during a short time, they may have biological and geophysical after-
maths. That is why the knowledge of the projectile and the impacted medium
is significant. The creation of impact craters is an intricate dynamics and the
penetration of a projectile needs to be modelled with conservation law to re-
produce the behavior of a granular medium. When a solid projectile impacts
a granular layer, a crater is created and the projectile stops at a penetration
depth δ. The morphology and the scaling of this crater depend on the granu-
lar medium and many features of the impacting projectile (diameter, density,
impact velocity. . . ) [1].

Recent experiments have brought out the dependance of the penetration
depth δ with experimental parameters such as the projectile diameter d and
density ρ, and the drop height [2, 3]. For a spherical projectile impacting a
3D granular layer, the evolution of the penetration δ with these parameters
is usually described by power laws. Introducing the free fall height h and the
total drop distance H = h+ δ, the depth is generally adjusted by a power law
of the form δ ∝ H1/3. In a recent work, Katsuragi and Durian [4] propose that
the total force on the projectile results from the sum of three contributions:
the gravity, a Coulomb solid friction and an inertial drag, such as

m
dv

dt
= mg − Ff − αcv

2. (1)
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From their experimental measurements, they suggest that the friction force
Ff can be reduced to a simple linear behavior, Ff = αf |z|, where αf mainly
depends on the projectile diameter d and density ρ, and the friction coefficient
in the granular medium.

Otherwise, experiments and numerical simulations have been undertaken
in a two-dimensional case, to study more specifically the dynamics of the pro-
jectile during a crater formation [5–7]. In particular, they show that the time
taken for a projectile to slow to a stop in the granular medium is independent
of its impact velocity. Moreover, the mean drag force on the projectile dropped
into the granular medium is observed to be constant during most of the pro-
jectile’s trajectory and proportional to the impact velocity v suggesting that
fluid-like properties might be important.

In this paper, we chose to focus on the penetration dynamics of a projectile
in a granular medium in a quasi-2D experiment. Here we are going to expose
an other model which describes our results.

1 Experimental Setup and Procedure

A packing of 1 mm glass beads (density ρg = 2.5×103 kg m−3) is confined into
a vertical Hele-Shaw cell consisting of two parallel glass plates separated by a
gap of 15mm. In order to have reproducible measurements, the initial grain
piling of height 56mm is gently stirred with a thin rod before each experiment,
allowing us to consider that a random close packing has been reached (we
checked that measurements are well reproducible in our experiments).

A cylindrical steel projectile (density ρ = 7.7×103 kg m−3, massm � 8.9 g)
of diameter d = 10 mm is hold initially by a magnet at a distance h above
the granular surface. This apparatus allows us to drop the projectile without
any initial velocity and spinning motion. The length of the projectile is a
little smaller than the gap width to reduce the friction with the plates, and to
prevent beads to be wedged between the glass plates and the projectile during
the collision process. The impact speed is tuned by varying the drop height
h from 75 to 305 mm corresponding to impact velocities ranging from 1.2 to
2.5m s−1.

The dynamical properties of the impact are analyzed by means of a high
speed video camera at a frame rate of 2000Hz. Using image analysis, the
position of the projectile is then extracted during the free fall stage and as it
penetrates inside the granular medium. In the following, the presented results
correspond to an average over ten experiments to reduce the fluctuations of
the measurements.

2 Experimental Results

Figure 1(a) displays the position of the projectile as a function of time for
three different drop heights h (note that t = 0 corresponds to the beginning
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Fig. 1. (a) Position z and (b) velocity v of the projectile versus time for three
different drop heights: (· ·) h = 75 mm, (– –) h = 215mm, (—) h = 305mm.

of the penetration phase). Despite the fact that the projectile undergoes two
very different phases – the free fall motion in the air and the penetration
inside the granular layer – the transition does not appear clearly regarding
the position z. As observed in Fig. 1(a), z tends towards a finite value δ (the
penetration depth), all the more higher than the drop height is important.
The curve is then derived numerically to get the variation of the velocity v as
a function of time [Fig. 1(b)]. After a first stage where the velocity increases
linearly during the free fall phase with a slope equals to gravity acceleration g,
the velocity decreases abruptly with a discontinuity in acceleration as soon as
the projectile hits the granular surface. These behaviors are in agreement with
those observed both in two and three dimensional experiments reported else-
where [4, 5]. Does the model proposed by Katsuragi and Durian [see Eq. (1)]
to describe the forces at work during the impact reproduce the behaviors
observed in our 2D experiment?

3 Modelling

We did not succeed to fit our results with the model of Katsuragi and Durian
[4] as if something missed. So we add another friction force of viscous type so
that the equation of the projectile during the penetration phase is

m
d2z

dt2
= mg − αf |z| − αvv − αcv

2. (2)

The term αf |z| represents a solid friction, without which the projectile would
not stop at a finite penetration depth. The term αcv

2 can be representative
of a dynamic frictional force which includes collision of the grains, as already
presented in Katsuragi and Durian’s work [4]. The term αvv has been used in
the pioneering work of Allen et al. for the penetration of a bullet in sand [8]
and is now justified by the recent dense granular rheology where the friction
coefficient increases linearly with the velocity [9].
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Fig. 2. Position z and velocity v of the projectile as a function of time for (a) h =
75 mm, (b) h = 215mm, (c) h = 305 mm. (—) Best fit of experimental data with
numerical values αf = 6 kg s−2, αc = 0.7 kg s−1 and αv = 0.58 kg m−1. (- -) Time
at which the impact occurs.

The solution of this model obtained with a numerical solver is displayed in
Fig. 2 and compared with our experimental measurements for three different
drop heights. The numerical coefficients corresponding to the best fit of the
experimental curves for the position and the velocity are αf = 6 kg s−2, αc =
0.7 kg m−1 and αv = 0.58 kg s−1. We can directly compare these values with
the ones of Katsuragi and Durian [4]; in their 3D experiment, they estimate
αf = 7.2 10−3 kg s−2 and αc = 0.79 kg m−1 using a spherical projectile of
mass 62.9 g and a granular layer composed of spherical glass beads (diameter
ranges from 250 to 350 μm). We obtain the same order of magnitude for αc,
whereas the value of αf is completely different. The differences might be
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Fig. 3. Penetration depth δ versus the total drop distance H. (�) Experimental
measurements; (◦) numerical values; (—) the adjustment is a power law of the form
δ = AHλ with λ 
 1/4 and A 
 4.3 S.I..

explained by the differences in the experimental conditions – such as the bead
and projectile diameters or the 2D/3D nature of the experiment.

Note that each parameter has its own action field. At the beginning of
the penetration, where the projectile velocity is important, the term αcv

2

dominates the other terms. At the end of the penetration, the projectile slows
down and both terms αcv

2 and αvv become negligible compared with αf |z|.
Our model fits the experimental results reasonably even if small differences
are still existing. Note also that αf , αv and αc depend on many physical
parameters (such as density, geometry. . . ) but the study of such dependencies
is far from the scope of this paper.

Moreover, our model allows one to extract the penetration depth δ for
a given drop height h. The plot of the penetration depth versus the total
drop distance H (where H = h + δ), show that the numerical results can be
adjusted by a power law δ = AHλ with λ � 1/4 and A � 4.3 S.I. (Fig. 3).
These results display the same behavior as the 3D experimental results of
Ambroso, De Bruyn and coworkers [2, 3], but with a smaller exponent, as
they found λ � 1/3 in 3D. This may be attributed to confinement effects in
our Hele-Shaw cell.

4 Conclusion and Outlook

In summary, we have presented the penetration of a projectile impacting in
a granular layer in a quasi-2D experiment. First, we succeed to find that
the penetration depth δ follows a scaling law similar to the 3D experimental
results of the form δ = AHλ but with a smaller exponent λ probably due to
confinement effects. Then, the dynamics of penetration is well adjusted by a
model where many forces act: the gravity, a solid friction force αf |z|, a viscous
force αvv and a dynamic frictional force αcv

2.
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Ultimately, additional experiments will be realized by modifying the gran-
ular layer and modifying the projectile (with different diameters d and densi-
ties ρ) in order to test the validity of the model and to observe the dependance
of the three coefficients αf , αv and αc on these parameters.
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Summary. The planar shearing of a two-dimensional system of bidisperse, non-
cohesive discs at constant shear velocity is simulated using Contact Dynamics. The
granular medium is confined between two parallel walls, which are pushed inwards
by constant normal forces. The flow as a function of the shear velocity shows char-
acteristics of a first order phase transition. The order parameter, the center of mass
velocity in units of the shear velocity, undergoes a spontaneous symmetry breaking
below a certain shear velocity, which does not depend on the distance between the
walls.

1 Introduction

The simplest geometry to study the rheology of a granular material is planar
shear. In simulations one can use Lees-Edwards boundary conditions [1] to
shear the system without any walls [2]. However the walls are important in
an experimental setup and can lead to shear localization [3]. In this work we
always use walls to shear the system and investigate the dependence of flow
properties on shear velocity and system size.

Using Contact Dynamics [4] we simulate a two dimensional bidisperse
system, in which the particles are hard discs interacting by Coulomb friction
forces parallel to, and volume exclusion forces perpendicular to the contact
surfaces. The microscopic friction coefficient is μ = 0.5, and the collisions are
totally inelastic.

The particles are confined between two walls perpendicular to the y-axis,
which are smooth but have friction. They are pushed inwards with normal
forces of magnitude Fy and move in x-direction with the same constant shear
velocity V in opposite directions. In order to satisfy these boundary conditions
an anisotropic mass is assigned to the walls,

M =
(
Mxx Mxy

Myx Myy

)
=
(
∞ 0
0 Myy

)
.
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In order to preserve the symmetry of the system, care had to be taken dur-
ing the preparation of the initial configuration. The distance Ly between the
walls was fixed, and the system was closed by an additional wall perpendicu-
lar to the x-axis. Then a given number of frictionless particles settled under
gravity parallel to the x-axis. The right surface of the filling was smoothed
by means of a piston, determining Lx. Then the left wall and the piston were
replaced by periodic boundary conditions, gravity was switched off, friction
was switched on, Lx was kept fixed, and Ly was allowed to evolve, result-
ing in fluctuations with a small amplitude depending on the force Fy and the
shear velocity V . Particles were given a linear velocity profile at the beginning,
which extrapolated to the wall velocities on both sides.

The diameter of the large particles is taken as length unit (dmax = 1[L]).
Similarly the mass density of the particles is set to unity (ρ = 1[M ]/[L]2).
The time unit is chosen such that the normal forces applied to the walls have
a value Fy[T ]2/[M ][L] = 5. A time step in the simulation is equal to 0.008[T ].

2 High and Low Velocity Regimes

Figure 1(a) shows the time evolution of the velocity profile of a system of
initial height Ly = 40 as it is sheared with a velocity V = 0.5. One sees,
that after a short transient the velocity profile adopts a symmetric s-shape
with only weak fluctuations in time. There is symmetric shear localization
at both walls including slip. In contrast, if the system is sheared with low
velocities (e.g. V = 0.03, see Fig. 1(b)), the velocity profile fluctuates strongly
and is generally asymmetric. Shear is still localized at the walls, but no longer
symmetric. In particular it happens that most of the filling moves together
like one block with one wall. In the following we address the question, how to
characterize this symmetry breaking transition, when one goes from high to
low velocities.

3 Behavior of Center of Mass Velocity

3.1 Order Parameter

We propose to take the center of mass velocity VS divided by V , m = VS/V ,
as an order parameter to describe the symmetry breaking. For a symmetric
profile m is zero, whereas for the block-like motion described above it is close
to ±1.

Note that for a finite system a spontaneously broken symmetry is restored
dynamically, i.e. the order parameter switches back and forth between m ≈ 1
and m ≈ −1 with a characteristic switching time τ that should diverge with
system size. As a consequence, 〈m〉 → 0 also in the symmetry broken phase,
if one averages over long enough times t � τ , and even more so, if one
averages over the ensemble of equivalently prepared random samples as well
(〈.〉 denoting both averages).
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Fig. 1. Velocity profiles at different times for shear velocities (a) V = 0.5 and
(b) V = 0.03.

3.2 Order Parameter Fluctuations

Figure 2 shows the order parameter fluctuation χ = 〈m2〉−〈m〉2 as a function
of shear velocity V for different system sizes Ly. The averaging was done over
a time t = 20000 and 10 different runs so that 〈m〉 ≈ 0 in all cases. This
explains why in the low velocity regime χ approaches a constant value which
should be approximately 〈|m|〉2.

Interestingly, for increasing system size the fluctuations decrease for ve-
locities V > Vc ≈ 0.1, while they increase below Vc. This behavior indicates
a phase transition at Vc ≈ 0.1. Furthermore, right at Vc the order parameter
fluctuation does not depend on system size noticeably.

3.3 Order Parameter Histograms

Figure 3 shows four histograms of the order parameter m(t), accumulated
over a long time. For large velocities (Fig. 3 a)) the order parameter values
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Fig. 2. Order parameter fluctuation vs. shear velocity for systems of different initial
heights Ly = 20, Ly = 40 and Ly = 80.

Fig. 3. Histograms of the order parameter of a system of height Ly = 40 with shear
velocities a) V = 0.5, b) V = 0.12, c) V = 0.1 and d) V = 0.05.

are concentrated at m = 0. For small velocities (Fig. 3 d)) one has two peaks
close to m = ±1. They are symmetric as a result of ensemble averaging.
For large systems the histograms for individual runs remained asymmetric,
because the reversal of the order parameter became too rare to restore the
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symmetry within the recording time. Close to the transition the central peak
widens and decreases, while the outer peaks grow in place, i.e. without mov-
ing continuously outwards from the center. This is the phenomenology of a
first order phase transition. With increasing system size the interval of shear
velocities, for which the histogram shows three peaks, becomes narrower.

4 Ergodic Time τ

The ergodic time τ is the average time until a jump between the two outer
histogram peaks (from positive to negative side and vice versa) happens. This
quantity is plotted against shear velocity for different system sizes in fig. 4. τ is

Fig. 4. Ergodic time against shear velocity for systems of different heights Ly = 20,
Ly = 40 and Ly = 80.

likely to grow to infinity for an infinite system below the critical shear velocity,
which corresponds to symmetry breaking in the thermodynamic limit.

5 Shear Localization

According to Fig. 2 the shear velocity Vc at the transition seems to be inde-
pendent of Ly. This means that the transition is not governed by the global
shear rate γ̇global = 2V/Ly. Another length scale must be relevant, which we
identify with the width of the shear zone, as shown in figure 5. There we
selected velocity profiles in the symmetry broken phase, where the whole sys-
tem moves together with one of the two walls, apart from a shear zone at the
other wall. Obviously the width of this shear zone, W , does not depend on
Ly. Hence, when describing the transition in terms of a dimensionless param-
eter, the inertial number I [5], it is the shear rate γ̇ = 2V/W which must be
employed.
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Fig. 5. Velocity profiles of systems with heights Ly = 20, Ly = 40 and Ly = 80
sheared with the shear velocity of V = 0.05 proofing the Ly-independence of the
shear band height.
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of cohesive granular media. Europhysics Letters, 74(4):644–650, 2006.

3. E. Aharonov and D. Sparks. Shear profiles and localization in simulations of
granular materials. Physical Review E, 65:051302, 2002.

4. L. Brendel, T. Unger, and D. E. Wolf. Contact dynamics for beginners. In
H. Hinrichsen and D. E. Wolf, editors, The Physics of Granular Media, pages
325–343, Berlin, 2004. Wiley-VCH.

5. F. da Cruz, S. Emam, M. Prochnow, J.-N. Roux, and F. Chevoir. Rheophysics
of dense granular materials: Discrete simulation of plane shear flows. Physical
Review E, 72:021309, 2005.



Stress Transmission in a Multi-Phase Granular
Packing

Vincent Topin1,2, Jean-Yves Delenne1, Farhang Radjäı1, and Frédéric
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Summary. We analyze stress transmission in granular media involving an inter-
stitial cementing matrix of variable volume fraction. We rely on a lattice-type dis-
cretization of both the particles and cemented matrix. We show that the stress
chains are essentially guided by the cementing matrix in tension and by the particu-
late backbone in compression. The signature of granular structure appears clearly on
the probability density functions of node stresses. We can discern large, intermediate
and weak stresses. The stress distributions are increasingly wider for a decreasing
matrix volume fraction in tension. Finally, we compare the contact force network
computed from stresses localized at the matrix bridges between particles with that
computed by means of the discrete element method with cohesive interactions and
for the same configuration of the particles. We show that the two methods yield
similar force patterns at low matrix volume fraction.

1 Introduction

Cemented granular materials (CGMs) form a wide class of materials encoun-
tered in various fields of science and engineering. Some examples are mor-
tars, concrete and asphalt (aggregates of various sizes glued to each other
by a cement paste) [1], solid propellants and high explosives (large volume
of energetic particles in a polymeric binding matrix) [2], sedimentary rocks
(sandstones, conglomerates and breccia) [3], and some biomaterials such as
the wheat endosperm (starch granules forming a compact structure bound to-
gether by a protein matrix) [4, 5]. These materials have a similar microstruc-
ture consisting of densely packed particles and a solid matrix filling the inter-
stitial space and sticking to the particles.

In this paper we analyze stress transmission in CGMs by means of a lattice-
type discretization of both the particles and cementing matrix . We are inter-
ested in stress transmission under different loadings and for different matrix
volume fractions. A detailed comparison of the contact force network between
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particles observed from the lattice model and from a discrete element method
with cohesive interactions will be presented.

2 Numerical Method

Lattice-type discretization has been extensively used for the statistical me-
chanics of fracture in disordered media [6], and applied to study the fracture
properties of concrete [7], ceramics [8] and biomaterials like wheat endosperm
[5]. The space is discretized as a grid of points (nodes) interconnected by one-
dimensional elements (bonds). Each bond can transfer normal force, shear
force and bending moment up to a threshold in force or energy. When sev-
eral phases are present as in a cemented granular medium, each phase and
its boundaries are materialized by lattice elements sharing the same prop-
erties and belonging to the same portion of space. For a cemented granular
material, there are three bulk phases; the particles, the matrix and the voids,
denoted respectively here ‘p’, ‘m’; and ‘v’, and two kinds of interface phases;
particle-particle interface, denoted ‘pp’, and particle-matrix interface, denoted
‘pm’.

We use linear elastic-brittle elements, each element characterized by a
Hooke constant and a breaking force threshold. The bonds transmit only
normal forces between the lattice nodes and thus the strength of the lat-
tice in shear and distortion is ensured only by the high connectivity of the
nodes. A sample is defined by its contour and the configuration of the phases
in space. The samples are deformed by imposing displacements or forces to
nodes belonging to the contour. The initial state is the reference (unstressed)
configuration. The total elastic energy of the system is a convex function of
node displacements and thus finding the unique equilibrium configuration of
the nodes amounts to a minimization problem. Performing this minimization
for stepwise loading corresponds to subjecting the system to a quasistatic
deformation process. The method used here can be found in more detail in
reference see [9].

3 Stress Transmission

The Cauchy stress tensor σ makes sense only for a sufficiently large number of
material points inside a control volume such that the surface density of forces
is well defined. Following a general framework, first introduced by Moreau, we
can attribute a stress tensor σi to each node i of the lattice network [9, 10].
The physical content of this tensor remains the same whether applied to a
node i or to a portion of space including several nodes, and it tends to the
Cauchy stress tensor at large scales. In order to analyze the stress distributions
in our numerical samples, we use these “node stresses” whose components are
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represented by a proportional color intensity or grey level over the elementary
hexagonal cell centered on each node.

We first focus on the vertical stresses for a simple uniaxial compression
test. We use a large dense packing of rigid disk-like particles compressed
isotropically by a discrete element method. A rectangular portion of this two-
dimensional packing containing about 500 particles is then discretized on a
triangular lattice. The matrix volume fraction ρm � 0 here, corresponding to
dry cohesive granular media.

Figure 1 shows the vertical stress fields σyy in the undamaged state. The
strong stress paths that we observe in this map are reminiscent of force chains
observed both in cohesive and cohesionless granular media [11, 12].

Fig. 1. Vertical stresses represented in levels of color intensity. Blue and red colors
represents compressive and tensile stresses, respectively.

The probability density function (pdf) of the vertical stresses is shown in
Fig. 2 a). The stresses are normalized by the total stress σyy of the lattice.
From the shape of the pdf, we distinguish three parts: 1) Large stresses fall
off exponentially as observed for large contact forces in dry granular media
[11, 12]; 2) Weak stresses have nonzero probability reflecting the arching effect;
3) Intermediate stresses are centered on the mean and define a Gaussian dis-
tribution. Figure 2 b) shows a typical map of vertical stresses where strong,
weak and intermediate stresses are represented by different colors. We see
that the large stresses do mostly concentrate at the contact zones and they
form well-defined chains that cross the particles. The intermediate stresses are
almost fully localized inside the particles.

We now consider the influence of loading for the same configuration of
particles as but for ρm = 0.12. Our studies show that, due to the presence of
the granular backbone, the stress chains are essentially guided by the cement-
ing matrix in tension and by the particulate backbone in compression. The
probability density functions (pdf) are shown in Fig. 3 a). It is remarkable
that, for the same matrix volume fraction, the distribution of large stresses is
broader in compression than in tension. In the same way, the weak stresses
are far more numerous in compression than in tension. This means that stress
distribution is far more inhomogeneous in compression than in tension. The
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Fig. 2. a)Probability distribution function of vertical bond stresses normalized by
the average stress; b)Tricolor map of vertical stresses in compression with weak,
intermediate and strong stresses represented in yellow, orange and red, respectively.

range of large stresses corresponds to stress chains or, more precisely, to a
“strong network” as in dry granular media where a well-defined subset of
contact forces (the strong force network) transmits nearly the whole stress
deviator sustained by the system.

Fig. 3. a) Probability distribution function of vertical bond stresses normalized by
the average stress in compression and tension. b) Probability distribution functions
of vertical node stresses in tension for three values of the matrix volume fraction.

The effect of the matrix content is to redistribute more homogeneously
the node stresses. Figure 3 b) shows the pdf’s of vertical stresses for different
values of ρm in tension and for identical stiffness between the particles and the
matrix. The pdf is increasingly wider for decreasing matrix content so that
the stresses are more and more concentrated in the binding bridges between
the particles. On the other hand, at the limit where the pores are filled with
the matrix, the distribution is peaked on the mean stress. Since there is no
contrast in stiffness and the pores are filled, the only source of inhomogeneity
in this limit is the presence of non cohesive zones between particles.
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4 Force Distribution: Comparison with DEM

We compare here the contact force network between particles computed from
the lattice method with that computed by means of the discrete element
method (DEM) with cohesive interactions. A sample of 5000 particles is sim-
ulated both by lattice method at very low matrix volume fraction ρm � 0
and DEM. In the lattice-based model, the particles are bonded together by
the matrix bridges which provide the mechanical integrity of the structure.
Forces between particles are calculated by evaluating the total stress localized
in the matrix bridges projected on the normal direction, see Fig. 4 a) and b).
Concerning the DEM simulations, cohesive interaction between two particles
implies resistance to relative motion (normal displacement dn, tangential dis-
placement dt, and angular displacement γ) of two edge points belonging, re-
spectively, to the two particles and coinciding initially with the contact point;
see Fig. 4 c). The corresponding contact actions are the normal force fn, the
tangential force ft, and the contact torque M . Details of the contact cohesion
model used for the present studies can be found in [13].

Fig. 4. a) Vertical stresses represented in levels of color intensity, b) Forces be-
tween particles calculated from stresses localized in the matrix bridges, c) Relative
displacements between two edge points belonging to two particles and coinciding
initially with their contact point.

The pdf’s of normal forces from lattice method and DEM are shown in
Fig. 5. We observe that the two pdf’s coincide over nearly the whole range of
forces. This agreement between the two methods is all the more interesting
that in DEM the particles are assumed to be rigid and the stresses inside the
particles are not involved in the calculation of contact forces. The pdf has well-
known features of force distributions in dry granular media. Indeed, we note
that the data for forces lower than the mean seem to have a nearly uniform
distribution whereas the data for forces larger than the mean represent a
nearly exponential decay. Note that the pdf’s of normal forces contain no
Gaussian peak as that observed in Fig. 2 for intermediate forces. This indicates
that the Gaussian peak corresponds to the stresses inside the particles.

Our results suggest that lattice discretization can be used for the simula-
tions of dense granular materials with or without a solid matrix. In particular,
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Fig. 5. Probability distribution function of positive normal forces normalized by
the average normal force with lattice method and discrete element method with
cohesion.

the forces at the contact zones compare well with discrete element simulations.
The contact force distribution from the lattice model can be considered as a
validation of that obtained from discrete element simulations.
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Summary. Intracellular motion driven by motor proteins on cytoskeletal filaments
provides an interesting example for studying non-equilibrium transport phenomena.
We will discuss a 3-dimensional lattice gas model, based on the generalization of a
totally asymmetric exclusion process with non conserved dynamics (TASEP coupled
with Langmuir Kinetics). In particular, we will focus on emergent physical proper-
ties, specific to the three-dimensional geometry, concerning traffic jam and phase
separation phenomena, with interesting biological implications for real intracellular
transport processes.

1 Physical Properties of Intracellular Transport

In recent years, progress in monitoring and measuring in vitro and in vivo
properties of biological systems has stimulated as never before the interest
of the physics community toward biology. Characterized by a multitude of
molecular machines and constituents that continuously assemble, operate and
communicate in a controlled and coordinated manner, the complexity of living
matter is a result attained on evolutionary time scales. This is a genuine chal-
lenge for disciplines like condensed matter and statistical mechanics, for such
organization originates in a strongly fluctuating environment like the world at
“room temperature, but at nanometer scales”. The physico-chemical descrip-
tion of small systems, their non-equilibrium thermodynamics and how they
organize collectively are some fundamental questions in statistical mechanics
which find in biology a field to be systematically explored.

Intracellular transport (IT) is one of the “amazing” phenomena we are
used to discuss and study as physicists involved in biology, taking advantage
of an unprecedented possibility of analysis by using, for example, fluorescent
microscopy or single molecule techniques. IT provides the main mechanism in
order to transport matter, energy and information through and outside cells.
Among the different processes involving translocation of cellular material, we
discuss here IT of cargos driven by motor proteins in eukaryotic cells [1].

mailto:andrea.parmeggiani@univ-montp2.fr
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More particularly, for the sake of brevity, we shall focus on transport driven
by conventional kinesins over microtubule filaments [1, 2].

In the first place, we shall investigate how many of these motor proteins
dynamically organize their collective transport on a single filament, through
their stochastic and off-equilibrium stepping walk. We shall see how predic-
tions on traffic jams, based on a simple one-dimensional (1D) model, can be
useful to learn some physics about this phenomenon.

We shall then study the role of viscosity for motor jam formation on the
filament by considering the cytoplasm around the filament and the diffusion
of motors in it. We shall show how stochastic modeling, in a three-dimensional
(3D) version of the 1D model, describes counterintuitive traffic jam phenom-
ena, possibly relevant to cell physiology.

Recently, efforts in this direction have revealed interesting physics, bridg-
ing biological transport description to other transport phenomena like in ve-
hicular/pedestrian traffic or in complex fluids-materials [3]. The origin of jam
formation is, indeed, one key topic for research fields such as intracellular
traffic, traffic sciences and granular materials. In biology, in particular, jams
represent phases in which transport of cellular components is no longer ef-
ficient, thus representing a danger for cell integrity and life. Hypotheses in
this sense have been invoked to explain neuro-degenerative pathologies like
Alzheimer’s Disease, for example, [4].

Some Notion About IT. Transport of matter inside a cell takes place essen-
tially via two kinds of mechanisms. On a short scale in space, from nanometers
up to one micrometer and when the cytoplasm is locally homogeneous and
isotropic, Brownian diffusion [2, 5, 6] allows an efficient process for distribut-
ing and targeting cytoplasm components. On larger scales or when the inter-
nal organization of the cytoplasm becomes more complex, directed transport
driven by specialized motor proteins along a network of biopolymers, the cy-
toskeleton, becomes necessary to assure efficient displacement and addressing
of cargos in the cell [2].

The cytoskeleton is essentially a cellular scaffold embedded in the cyto-
plasm, connecting nodal regions for cell life, development and division [1].
Together with actin and intermediate filaments, microtubules are the major
“quasi-linear” protein assemblies (biopolymers) forming the cytoskeleton. Mi-
crotubules are periodic and helical hollow cylinders made by parallel arrange-
ments of linear protofilaments of αβ-tubulin dimers. They have an intrisic
polarity, a consequence of the αβ-tubulin dimer structural asymmetry.

Kinesins are motor proteins, nanomachines which convert the free energy
of the ATP-hydrolysis reaction1 into directed mechanical motion and force.
Due to their high bending rigidity, microtubules are molecular “highways”
crossing the cytoplasm. Their structural polarity makes kinesin motors moving
along them from the center to the periphery of the cell (anterograde motion),
while dynein motors execute the transport in the opposite direction (retrograde

1 Adenosin-Tri-Phosphate → Adenosin-Di-Phosphate + inorganic Phosphate.
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motion). Indeed, filament polarity imposes a preferential orientation in the
attachment of the motor to the filament, and fixes the direction of the motor
stochastic stepping (approximately, a 1D biased-like Brownian walk [2, 7]).

Kinesin Moving on a Microtubule: Generic Properties. From enzy-
mology, structural biochemistry and in vitro single molecule experiments [2]
we know that conventional kinesin is a double-headed motor of typical size
(hydrodynamic radius) rh ∼ 10–20 nm. It alternates a 1D directed walk phase
of hundred steps along microtubule protofilaments with unbinding and binding
events between microtubules and the cytoplasm. During the detached phase,
the motor performs essentially a 3D Brownian walk in the cytoplasm.

Each motor step is the result of very complex mechanochemical processes
such as ATP hydrolysis-induced conformational changes. That way, the motor
hydrolyses in average one hundred molecules per second, i.e. at a frequency
ωs = 100 s−1, at saturating (high) ATP concentration. Experiments have
shown that for each hydrolysis event and different values of applied external
forces, the protein steps by ls � 8 nm in length [8], i.e. the same microtubule
periodicity imposed by the αβ-tubulin dimer size. A kinesin, in vitro and at
room temperature, then moves with a typical average speed v ∼ 1 μm/s.

The 3D diffusional search is in principle a complex process, considering
that it takes place in a complex environment like the cytoplasm [5]. In first
approximation, we can consider the cytoplasm as a medium with an average
effective viscosity ηm. A change of ηm implies a change of the translational
diffusion constantD of the motor, estimated by using the Stokes-Einstein rela-
tion D = kT/6πηmrh (where k is the Boltzmann constant, T the temperature
of the medium, ηm the medium viscosity, and rh the protein hydrodynamic
radius). Typical diffusion constants in cytoplasm can vary depending on the
effective viscosity ηm and on the protein size rh (plus eventually the size of the
cargo attached). For a protein size of 10 nm, D ranges approximately between
0.1 and 10 μm2/s, the higher value for aqueous environment, the lower one
for more viscous media such as membrane-like or crowded cell compartments.

The stepping rate ωs is associated with a (rather) slow event once com-
pared with the typical rate ω of the motor to diffuse in water over a typical
distances like the step size ls. The rate ω can be 3–4 orders of magnitude
larger than ωs. This can be estimated by using the classical formula of the
mean square displacement of a 3D Brownian walk: ω � 6D/l2s � 106 s−1.

However, from the Stokes-Einstein relation, ω depends also on the medium
viscosity ηm. For example2, for a medium viscosity ηm hundred times higher
than water viscosity, ηw � 1 mPa.s, ω will be only 1–2 times larger than ωs.

Depending on the kinesin double-head structure and its specific biochem-
istry, processivity is another (complex) property of this motor protein to con-

2 A similar argument applies in case of micrometer-sized organelles attached to the
motor. In this case, the hydrodynamic radius of the complex “motor-cargo” is
ten/hundred times bigger than the motor: the diffusion rate ω decreases accord-
ingly to the formula used above.
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sider. A processive kinesin at saturating ATP concentration is able to hydrol-
yse in average hundred ATP molecules per second without detaching from the
microtubule [2]. This implies an average “residence” time, during the kinesin
walk on the filament, of about 1 s, i.e. a detachment frequency of ωd � 1 s−1.

These rates are average values that depend not only on the continuous
action of the thermal kicks of the surrounding fluid, but also on the external
force applied to the motor [9, 10]. In general, the motor mechanochemical
coupling implies that an external mechanical force can affect directly the
motor biochemistry, thus also speed and processivity, too. For our purposes,
it is useful to know that the maximal force produced by the motor before
detachment, the so-called “stall force”, is of the order of fs = 6–7 pN [2, 8, 9].

Motor Ability to Move in Viscous Environments. Motor proteins are
powerful nanoscopic devices for transport in viscous media. To make the point,
a simple argument can be inferred by the Stokes relation, which defines the
friction of a bead of hydrodynamic radius rh in a medium of viscosity ηm as
ξ = 6πηmrh. For typical values of water viscosity, the viscous load on a bead
of 1 μm of diameter and moving in water at a speed v = 1 μm/s is negligible:
fv ∝ ξv ∼ 0.01 pN . A bead of 100 μm in diameter would produce a viscous
drag on the motor which is about only 20% of its stall force fs!

A rigorous analysis was performed by Hunt and collaborators [11]. By
using motility assay experiments on microtubules driven by kinesins (fixed
on a glass surface), they provided experimental evidence that the speed of a
10–20 μm microtubule long, driven by one or few kinesins, decreases only by
a factor 2 after a 100-fold increase in medium viscosity. In this respect, speed
and processivity of motor proteins like kinesins are practically insensitive to
changes in medium viscosity, up to 3 order of magnitude greater than ηw.

This fact is biologically meaningful. Cytoplasm is a highly dynamic and
heterogeneous medium, made up of active elements moving and mutually
interacting (specifically or non-specifically). Its effective viscosity ηm ranges
spatially and temporally from water value ηw up to a hundred or a thousand
times ηw (depending also on the zone of the cell considered). Reasonably,
motor activity should not be particularly sensitive to most of the viscosity
changes. On the contrary, motor activity and speed should be more strongly
affected by biochemical regulation or sources of stalling like the action of other
motors, mechanical constraints, crowding of materials, et cetera.

2 TASEP Coupled to LK: A New Driven Lattice Gas

Generic properties of motor protein collective transport can be mathemati-
cally described in terms of driven lattice gases at low dimensionality. These
models have a rich phenomenology, which can be analyzed through computer
simulations and different analytical methods [12–14].

Recently, we have studied the non-equilibrium properties of the flow of a
collection of motors (particles) on a single filament (N-sites lattice), in contact
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with the cytoplasm (particle reservoir) [15, 16]. Over the lattice, particles move
with microscopic dynamical rules inspired by the essential features of motor
protein motion, see Figs. 1(a),(b):

• unidirectional and stochastic stepping of fixed length at a given rate ωs;
• binding/unbinding dynamics between lattice and reservoir with rates ωa,
ωd, respectively;

• “hard sphere interaction”: a site can be occupied by one particle only
(exclusion);

• at the left (right) boundaries particles can enter (exit) with rate α (β).

Fig. 1. (a) Sketch of kinesin transport over a microtubule; (b) Related TASEP+LK
1D model. (c) ρsim is the average density profile along the filament coordinate
x = i/N obtained from MC simulations. ρα, ρβ are the analytic mean field solutions,
respecting boundary conditions, in the thermodynamic limit N → ∞. (d) jsim is
the average current related to ρsim. The DW equilibrium position is located at the
maximum of the current profile, i.e. when left and right currents match, jα = jβ .

The model generalizes the well-known Totally Asymmetric Simple Exclusion
Process (TASEP) [13, 14] to a non-conserved on-lattice dynamics. Indeed,
binding/unbinding events break particle current conservation on the lattice.

Originally proposed to investigate ribosome traffic on messenger-RNA [17],
TASEP has been extensively studied by physicists in the last decade because
of its richness in non equilibrium phenomena like phase transitions and phase
coexistence [13, 14]. For example, an interface between regions of low and high
density, i.e. a Domain Wall (DW), can form because of the on site-exclusion
of particles (hard-spheres) during their directed motion on the lattice. Such
“mesoscopic” structure, in general, performs a (biased) random walk on the
lattice with specific boundary conditions and effective rates, which depend on
the model microscopic dynamics [18–20].
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Mesoscopic Limit, Phase Separation and Coexistence. The simple
but fundamental difference of our model compared with TASEP is the parti-
cle binding/unbinding dynamics in the lattice bulk, i.e. a Langmuir Kinetics
(LK). Non-conservation of particle current on the lattice implies a completely
new dynamics in the configuration space of the system and, therefore, new
properties in the model phase diagram [16]. When TASEP and LK are com-
peting processes, one can observe DW formation and, in particular, its spatial
localization (phase separation and coexistence of low and high density do-
mains) despite a completely homogeneous microscopic dynamics on the lattice
[15, 16]. “Competing”, here, means that the particle fluxes, at the filament
boundaries and in the bulk, become comparable: since currents at the bound-
aries are not extensive quantities, attachment/detachment currents in the bulk
should scale with the lattice size N as 1/N . In this condition and for large
system sizes (mesoscopic limit), conservation of particles is assured for long
times only locally, defining a quasi-conserved dynamics on the whole lattice.

Interestingly, this regime naturally occurs in IT: processive kinesins walk
over distances which are comparable to microtubule typical sizes, 10 μm, in a
cell. In this regime, processive motion implies that motors on the filament are
in mutual interaction for a lag of time long enough to form a (localized) DW
before detachment. This feature can be understood by looking at the average
density and current profiles along the lattice, Figs. 1(c),(d). The average cur-
rent j is given by a left and a right components, jα and jβ , each depending on
their relative boundary condition. Local particle conservation forces the DW
to be localized on the current maximum. Any other position, indeed, would in
average imply a predominance of jα or jβ . Excess of one of these two currents
would displace the DW to the maximum where jα and jβ match again.

Questions Arising from the 1D Model. The 1D model does not consider
the role of the motor Brownian diffusion in the cytoplasm surrounding the
filament: it neglects fluctuations in the particle density around the filament,
thus implying homogeneous binding and unbinding rates along the lattice.

Intuitively, 3D diffusion in volume should destroy phase separation on the
filament as observed in TASEP+LK. For example, whenever a particle de-
taches from a high density region, it will have a much higher probability to
reattach in the back of the lattice, at the left of the DW, where filament density
is low and binding is more probable. This is even more true when the motion
occurs in a closed volume. In this case the total current of motor along the fil-
ament longitudinal direction should be zero. If motors walk on the filament in
one direction at some speed, in volume an opposite backward current should
arise, thus increasing the probability of attachment in front of the DW. In
general, as our first intuition would tell, diffusion works against concentration
gradients like the DW generated by particle interactions and directed trans-
port over the lattice. The faster is the diffusion in volume compared to the
motor dynamics on the filament (stepping), the more difficult it should be to
build density gradients on the filament. In conclusion, one might suppose that
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the appearance/localization of the DW is unique to the 1D model TASEP +
LK, while it disappears once diffusion dynamics in volume is introduced.

Different models have considered the transport of motors along filament
and their mutual exchange between filament and cytoplasm [21–24]. To answer
the previous “paradox”, we extend the 1D model to 3D by introducing the
diffusion of motor in volume and performing numerical simulations in the
context of the model recently introduced by Klumpp et al. [23, 24].

Coupling Diffusion with Directed Transport. The microtubule is placed
in the middle of the experimental chamber, Fig. 2. Motors can diffuse freely
in the volume, binding or unbinding, and move unidirectionally along the fil-
ament once attached. For simplicity, we consider that the motor-microtubule
binding rate has the same value of Brownian diffusion rate ω with no prefer-
ential binding sites on the filament (no specific entry or exit sites). Moreover,
the motor leaves the filament end with step rate ωs (“open end”). Space is dis-

Fig. 2. Scheme of the 3D model implementing TASEP on filament with Langmuir
binding kinetics of particles on the filament and 3D Brownian diffusion in the volume
surrounding the filament (cytoplasm).

cretized with lattice size corresponding to the motor step ls ∼ 10 nm. We con-
sider a closed box with size comparable to typical scales in cells: Lx = 10 μm
along the axis (1000 sites) for a filament of 8 μm in length (800 sites), while
Ly = Lz = 1 μm (100 sites). Motor concentration cm varies from 1 nM
(nanomolar) up to 40 nM , typical values for in vitro experiments (6 up to
250 motors in the volume chosen). The diffusion rate ω is estimated by the
mean square displacement for a 3D Brownian motion and the Stokes-Einstein
relation ω ∼ kT/πηmrhl2s , while all other parameters are those typical for
kinesins as defined above: stepping rate ωs ∼ 100 s−1 and detachment rate
ωd ∼ 1 s−1 (at room temperature). In cytoplasm, viscosity can increase up to
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10–100 times water viscosity, while motor speed and processivity essentially
remain constant, both being practically viscous drag independent.

Some Result from MC Simulations. We performed kinetic Monte-Carlo
simulations implementing a random sequential updating technique [25]. Fig-
ure 3(a) shows the kymograph of the distribution of motors along the filament
in time, for cm = 40 nM and medium viscosity equal to water viscosity,
ηm = ηw.

Fig. 3. (a) Kymograph of the particle distribution for ηm = ηw and cm = 40 nM .
A jam forms on the filament bulk, ∼ 6.1 μm, after a transitory time. Line slopes
on left of the jam correspond to 1 μm/s, the typical average speed for conventional
kinesins. (b) Average density profiles of particles on the filament and (c) average
currents, for different concentrations of motors in volume and ηm = ηw. Phase sepa-
ration occurs at typical concentrations of in vitro experiments. The jam is localized
around the maximum of the average current as predicted by TASEP+LK. What
changes considerably from the 1D model are the density profile and the shape of the
region between the low and high density domains [25].

After a transitory time, a jam occurs at around 6.1 μm of the filament
coordinate. Interestingly, the kymograph displays a jammed region localized
in space with strong fluctuations of the front profile due to the reattachment
of particles at the left of the jam. The analysis of the average density profile
along the filament shows the presence of a transition region (with exponential
profile [24]) connecting low and high density phases and localized around
the maximum of the average current. The principle of localization of the DW
found in TASEP+LK is valid also for this 3D model, although the front profile
is different and fluctuations due to the particle dynamics in volume have to
be taken specifically into account [24, 25].

Even more surprising is the jam behavior when medium viscosity increases
by 10 or 100 times, see Figs. 4(a),(b). The jam moves toward the right end
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of the filament, respectively at ∼ 7.1 μm for ηm = 10ηw and ∼ 8.8 μm for
ηm = 100ηw. Contrary to what one would expect, diffusion influences jam
formation, but fast diffusion clearly promotes jams in the filament bulk.

Fig. 4. Kymographs for cm = 40 nM and medium viscosity (a) ηm = 10ηw and
(b) ηm = 100ηw. Contrary to our intuition, localized jams shift to the filament right
end (fixed by the motor directed of motion) when medium viscosity increases.

This is a new outcome specific to this 3D model. Brownian diffusion here
couples with stepping and detachment processes. When diffusion is fast, also
the attachment of particles to the filament will be fast. Due to the small
detachment rate (processivity), the filament then behaves as a “trap” for
the particles during a time lag, which is long when compared to the time
necessary for finding the filament via 3D diffusion in volume. Once many of
the particles are bound to the filament and move, they can mutually interact
and form jams. On the contrary, at higher viscosity, particles attach to the
filament more slowly (at lower frequency). On average they populate less the
filament, which never reaches transport saturation and jams are avoided.

Biological Consequences. This result can be relevant also from a phys-
iological perspective: typical cell viscosities seem to prevent jam formation,
allowing motors to transport cargos at maximal speed on the filament.

Moreover, from the analysis of the kymographs in Fig. 4, another inter-
esting feature appears: as medium viscosity increases, microtubule sites are
in general not crowded by motors. Since it is known that microtubules play
multiple roles in cell life and organization, binding a multitude of specific
and non-specific agents and proteins, a microtubule “congested” by transport
would be unavailable for these kinds of interactions.

Specific experiments in controlled conditions as well as more theoretical
modeling are needed to test these results. It is evident that jams can form as
soon as the volume is excessively crowded with motors, but our simulations
show that this should not be the usual situation for transport on microtubules
in a “healthy” cell for typical values of cytoplasmic viscosity. Only anomalies in
overexpressing transporters or cargos, in some specific pathological condition,
should be a possible reason for intracellular jams on cytoskeletal filaments.
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3 Conclusions

We have presented some principles describing the physical properties of intra-
cellular transport (IT). We have shown how simple driven lattice gas models
in one and three dimensions can be used to understand and predict features of
intracellular traffic phenomena. In particular, we have discussed the formation
and the stability of jammed phases of motors, as they might occur in eukary-
otic cells. Beyond these kinds of description, many efforts have already been
made to consider: complex events related to IT like inter-filament force pro-
duction [26] or microtubule depolymerization driven by motor proteins [27];
or motor specific features like their internal mechano-chemical coupling [28] or
the number of motor units forming a single transporter (not only monomers,
but dimers) [29] and configurations like competing k-mers moving a cargo
on the filament [30]; not to mention the need for studying and modeling the
number of “cofactors” regulating the motor activity.

The physics of intracellular transport is a fast-developing field due to
progress made in single molecule experiments in vitro and now also in cel-
lulo [31, 32]. It is a challenging research field for it aims at describing the
collective nature of non equilibrium processes that involve complexity at two
different scales: one concerning complex molecular objects like motor proteins,
the other concerning the collective behavior of such molecular machines.
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Traffic of Molecular Motors: From Theory to
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Summary. Intracellular transport along microtubules or actin filaments, powered
by molecular motors such as kinesins, dyneins or myosins, has been recently modeled
using one-dimensional driven lattice gases. We discuss some generalizations of these
models, that include extended particles and defects. We investigate the feasibility
of single molecule experiments aiming to measure the average motor density and to
locate the position of traffic jams by mean of a tracer particle. Finally, we comment
on preliminary single molecule experiments performed in living cells.

1 Introduction

Living cell is a highly organised structure that constantly needs to move its
constituent parts from one place to another. It is therefore provided with a
complex and accurate distribution system: the cytoskeleton, the network of
biopolymers (actin, microtubules and intermediate filaments) that gives the
cell its structural and mechanical features, functions as road system for the
transport of organelles and vesicles; the motion of these objects is entrusted to
motor proteins moving along these filaments. These motors are enzymes that
convert the energy obtained by hydrolysis of an ATP (adenosin-triphosphate)
molecule into a work (displacement of their cargo). Myosin V (on actin fila-
ment) and kinesin or dynein (on microtubules) are well known examples of
these so called processive motors [1, 2].

It has been observed that these motors can act cooperatively or interact
with each other giving rise to collective phenomena. In particular, in some
phase of the cell cycle, the motors can be expressed in high concentrations: it
seems therefore natural to investigate analogies and differences with the traffic
observed in a city. Experimental techniques as single molecule and fluorescence
imaging have just started giving some hints on the complex behaviour of
this system, but are still far from giving quantitative description of traffic
situations. While waiting for experimental data some theoretical models have
been developed to physically describe intracellular transport.

mailto:pierobon@curie.fr
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2 Driven Lattice Gases: Models for Intracellular
Transport

A simple model to capture the behavior of many motors on a filaments needs to
include three fundamental features: (i) the motors move in a step-like fashion
on a one dimensional track and bind specifically to the monomer constituting
the cytoskeletal filaments; (ii) cytoskeleton filaments present a specific po-
larization: the chemical properties of the track guarantee that the motion is
always directed towards one of the two ends of the filament; (iii) the particles
move according to a stochastic rule, i.e. they move upon a chemical reaction,
the hydrolysis of ATP, which occurs randomly with a typical rate.

The Total Asymmetric Simple Exclusion Process (TASEP) is a stochas-
tic process first introduced to describe the motion of ribosomes on mRNA
substrate [3] and encodes all these features. It rapidly became a paradigm of
non-equilibrium statistical mechanics and one of the few example of exactly
solvable systems [4, 5]. In this model each particle occupies a site on a one di-
mensional lattice and advances stochastically and in one direction. The most
obvious observable is the average density profile of particles along the lattice.

The system with open boundaries where particles enter the lattice with
rate α at one end and leave with rate β at the other, shows a non trivial
phase diagram where three distinct non-equilibrium steady states appear: a
low density phase controlled by the left boundary, a high density phase con-
trolled by the right boundary and a maximal current phase, independent of
the boundaries.

Fig. 1. Schematic representation of the TASEP with Langmuir kinetics in the case
of (a) monomers and (b) dimers. The allowed moves are: forward jump (with rate
τ = 1), entrance at the left boundary (with rate α), exit at the right boundary (with
rate β), attachment (with rate ωA), and detachment (with rate ωD) in the bulk.

In a first attempt to construct a minimal model for molecular intracellu-
lar transport, one needs to add to the TASEP the fact that the tracks are
embedded in the cytosol with a reservoir of motors in solution. This allows
the motors to attach to or detach from the track. This led to the construc-
tion of the TASEP with Langmuir (i.e. attachment/detachment) kinetics or
TASEP/LK model [6, 7] depicted in Fig. 1a. According to this model, in addi-
tion to the TASEP properties, particles enter (leave) the system with rate ωA

(ωD) also in the bulk. All over the lattice they obey exclusion: two particles
cannot occupy the same site.



Traffic of Molecular Motors: From Theory to Experiments 681

According to the rules described above, the rate equation in the average
density at site i = 2 . . . N , 〈ni〉 can be written as:

∂t 〈ni〉 = 〈ni−1 (1− ni)〉 − 〈ni (1− ni+1)〉+ [ωA(1− 〈ni〉)− ωD 〈ni〉] . (1)

The first two brackets describe the average current and the second one the
on-off kinetics (source and sink terms). At the boundaries this equation reads:

∂x 〈n1〉 = α (1− 〈ni〉)− 〈n1 (1− n2)〉 , (2)
∂x 〈nN 〉 = 〈nN−1 (1− nN )〉 − β 〈nN 〉 . (3)

Equation (1) shows a non-closed hierarchy in the correlation functions
(i.e. 〈ni〉 depends on 〈ninj〉 and so on): this suggests the use of the mean field
approximation 〈nini+1〉 ≈ 〈ni〉 〈ni+1〉. In the stationary state, the leading
term of the continuum limit (N →∞, 〈ni〉 → ρ(x)) of Eq. (1) reads:

− ∂x [ρ(1− ρ)] + [ΩA(1− ρ)−ΩDρ] = 0 , (4)

supplemented by two boundary conditions: ρ(0) = α and ρ(1) = 1 − β [6].
When the solution of Eq. (4) cannot be matched continuously with the left
and right boundaries, the density profile displays a localized discontinuity (or
shock) in the bulk (Figs. 2b–c). This translates into the emergence of mixed
phases that were not present in the simple TASEP. For some sets of parameters
the phase diagram can exhibit up to 7 kinds of coexistence (see Fig. 2a).

A key point in the study of TASEP/LK is the introduction of a mesoscopic
limit where local adsorption-desorption rates ωA,D have been rescaled in the
limit of large but finite systems ωA,D = ΩA,D/N , such that the macroscopic
rates are comparable to the injection-extraction rates at the boundaries [6].
Far from being only a simple mathematical trick that allows the competition
of the directed motion with the on-off kinetics, this limit captures the fact that
the motors explores a significant fraction of the track before detaching. This
is precisely the limit of highly processive motors that biologically motivated
our studies. Surprisingly only in the mesoscopic limit the density profiles show
the shock.

3 Extending the Model: Dimers and Defects

3.1 Dimers

Many processive molecular motors (kinesins, dyneins and myosin V) are com-
posed of two heads that bind specifically each to a subunit of the molecular
track. A natural extension of the previous model towards a more realistic one
consists in introducing non-pointlike particles in the system such as dimers
(see Ref. [8] and Fig. 1b). There are several challenging aspects in this problem:
(i) the TASEP of particles of size � (or �-TASEP) is known to have a non-
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Fig. 2. (a) Phase diagram of TASEP/LK for ωA = ωD. One recognizes seven phases:
in addition to the TASEP low density (LD), high density (HD) and maximal current
(MC) phases; there are four more coexistence phases, namely the LD/HD, LD/MC,
MC/HD and LD/MC/HD phases. The shaded region highlights the LD/HD coex-
istence where a localized domain wall appears. (b) Typical density profile in the
LD/HD phase and (c) the corresponding current profile. At the matching point xw

between the left (jα) and right (jβ) currents a domain wall develops and connects
the left (ρα) and right (ρβ) density profile.

trivial current-density relation j(ρ), different from the model with monomers
[3, 9, 10]; (ii) even the simple on-off kinetics of dimers exhibits non-trivial
dynamics, for example the stationary state is reached from an empty sys-
tem through a double step relaxation process [11, 12]. The coupling of an
equilibrium process with two intrinsic relaxation regimes (on-off kinetics) to
a genuine driven process (the �-TASEP) suggests interesting dynamical phe-
nomena likely to result in new phases and regimes.

In absence of exact solution, the main challenge has been to construct a
refined mean field theory, based on probability theory, and to prove the con-
sistency of the approximation for the two competing process (TASEP and the
on-off kinetics). We have solved the mean field equation within the mesoscopic
limit in the stationary state:

− ∂x
[
ρ(1− 2ρ)

1− ρ

]
+
[
ΩA

(1− 2ρ)2

(1− ρ) −ΩDρ

]
= 0 . (5)

The complete equation is formally similar to the one for pointlike particles
(Eq. 4): the current term (first bit in square brackets) must be balanced by
the on-off term (second part).
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Exploiting the analytical properties of the solution of the mean field equa-
tion and the local continuity of the current, we constructed the global density
profile. We have performed extensive stochastic simulations and the agree-
ment with the mean field solution is excellent. As in the case of TASEP/LK
of monomers a new phase coexistence region appears for some parameters.
The main effect of extended nature of dimers on the phase behavior of the
system is related to the breaking of the (particle-hole) symmetry of the model.
This does have quantitative but not qualitative consequences on the density
profile and on the phase diagram, which remains topologically unchanged.
The origin of the robustness of the picture found for monomers can be traced
back to the form of the stationary density profile which depends exclusively
on the form of the current-density relation and of the isotherm of the on-off
kinetics. In both the monomer and the dimer case the current-density relation
is concave and presents a single maximum, while the isotherm is unique and
constant: these two features are enough to determine the topology of the phase
diagram. This robustness suggests that the TASEP dynamics washes out the
interesting two-step relaxation dynamics that characterizes the on-off kinetics
of dimers: the non-trivial outcome is that, in these systems, the diffusion (yet
asymmetric) always dominates the large time-scale relaxation.

3.2 Defect

Another question that often arises in the study of these models concerns
the role of some kind of randomness: the motion of the particles can be al-
tered by structural defects of the track or by microtubule associated proteins
(MAP). A good modeling requires to introduce some sort of disorder in the
system: site-related or particle related, quenched or annealed. While disorder
in TASEP has been treated with exact and approximated methods [13–15],the
role of bottlenecks was never coupled to the TASEP/LK. As a preliminary
study of the role of quenched disorder, it becomes particularly interesting to
investigate the influence of an isolated defect (i.e. point-wise disorder) on the
stationary properties of the TASEP/LK. In Ref. [16] we extensively studied
this model where the defect has been characterized by a reduced hopping rate
q < 1 (see Fig. 3).

As a consequence of the competition between the TASEP and LK dynam-
ics, the effects of a single bottleneck in the TASEP/LK model are much more
dramatic than in the simple TASEP [17] (or the TASEP for extended objects
[18]), where a localized defect was shown to merely shift some transition lines
in the phase-diagram, but do not affect its topology. Here, new and mixed
phases induced by the bottleneck have been obtained.

As a key concept of our analysis, we have introduced the carrying capac-
ity, which is defined as the maximal current that can flow through the bulk
of the system. In contrast to the simple TASEP the spatial dependence of the
current, caused by the Langmuir kinetics, makes the carrying capacity non-
trivial: the defect depletes the current profile within a distance that we called
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screening length. This quantity increases with the strength of the defect and
decreases with the attachment-detachment rates. The competition between
the current imposed at the boundaries and the one limited by the defect deter-
mines the density profiles and the ensuing phase-diagram. When the boundary
currents are dominant, the phase behavior of the defect-free system is recov-
ered. Also, above some critical entrance and exit rates, the system transports
the maximal current, independently of the boundaries. Between these two ex-
treme situations, we have found several coexistence phases, where the density
profile exhibits stable shocks and kinks. Indeed, above some specific parame-
ter values the phase-diagram is characterized by bottleneck phases. Depending
on the screening length imposed by the defect, which can cover the entire sys-
tem or part of it, different phase-diagrams arise. The latter are characterized
by four, six or even nine bottleneck phases, which have been quantitatively
studied within the mean-field theory introduced in Sec. 2: in fact for entrance
and exit rates that exceed the critical value q/(1 + q) (for which the bottle-
neck becomes relevant) the system can be split in two sublattices that can be
treated as independent TASEP/LK with effective exit/entrance rates at the
junction (Fig. 3a).

Our results were checked against numerical simulations, which brings fur-
ther arguments in favor of the validity of mean-field approaches for studying
the TASEP/LK-like models (Figs. 3b–c). The somewhat surprising quantita-
tive validity of this approximate scheme can be traced back to the current-
density relationship, which is correctly predicted by the mean-field theory.

Fig. 3. (a) Cartoon representing the TASEP/LK with a bottleneck: above a
threshold density the system can be divided into two lattices where the results
of TASEP/LK are valid. (b) Density and (c) current in a case where the bottleneck
is relevant and competes with the boundaries leading to the formation of a dou-
ble domain wall, theoretical results (dashed lines) are superimposed to numerical
simulations (bold line).
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Eventually, we think that this study showed clearly that the presence of
disorder in the TASEP/LK model, even in its simplest form, generally gives
rise to quite rich and intriguing features and should motivate further studies
of more ‘realistic’ and biophysically relevant situations, as in the presence of
clusters of competing defects or quenched site-wise randomness (where the
motors are slowed down at several points in the system).

4 Towards the Experiments

4.1 Tracer Dynamics

All the models described so far would be rather useless without the possibility
to measure quantitatively the density and to localize the shock. To this aim,
simple bulk fluorescence imaging would be difficult to apply to quantitative
experiments: single molecule analysis are far more promising. We proposed
hence a method, based on single particle tracking, to measure the density
of the system [19]. The idea is to use the simple TASEP (exact) results to
reconstruct the density from the velocity or the diffusion constant of the tracer.
It is known that the average velocity v ≡ d〈x(t)〉

dt is related to the density ρ
through the relation ρ = 1 − v. Exact results on a ring show that the same

relation holds for the diffusion constant D ≡ 〈x2〉−〈x〉2

t = 1− ρ [20].
Since the rates scales with the size of the system, according to the meso-

scopic limit, we suppose that the influence of attachment detachment on this
relation to be negligible and the density to be locally continuous. We simu-
lated the system TASEP/LK and measured the position x as a function of
the time for several particles, in order to construct the probability density
function P (x, t, |0, 0) to find a tracer particle at site x after a time t from
its entrance in the system at site 0. From this function we can measure the
velocity and the diffusion constant. As shown in Fig. 4, the shock is localized
within a 10% precision through both the indicators. While the density is well
reconstructed from the information on the velocity (Fig. 4a), the hypothesis
ρ = 1−D works well only in the low density phase before the particle arrives
at the shock. Once the particle has passed through the shock the hypothesis
on the continuity of the density breaks down and the relation is not valid
anymore while the loss of particles in the high density phase makes the sys-
tem subdiffusive. Yet, the quantity 1−D can be used to localized the shock
(Fig. 4b).

Numerical simulations show that, on system of realistic size (i.e. 1μm,
roughly 100 sites), analysing the trajectories of a hundred particles is enough
to reconstruct the density profile and localize the shock (after a time mov-
ing average resulting on a smoothing of the data). This suggests that single
molecule experiments observing local features could give information on the
global scale.
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Fig. 4. (a) Density profile of TASEP/LK derived from the analysis of 100 tracer
particles: wiggly line match rather well the theoretical prediction (dashed line). (b)
Superposition of the first two moments of P (x, t), 〈x〉 (t) (dashed) and V ar[x(t)]
(wiggly) in time: according to the simple TASEP results the two quantities should
be the same; this is true only until the particles have reached the shock, afterwards
the variance deviates.

4.2 Single Molecule in the Cell

So far much information concerning processive molecular motors was provided
by single molecule experiments. Typically a latex bead is attached to the
motor to make it visible and to manipulate it: this allowed us to measure not
only velocity and processivity of the motors, but even the forces they exert,
the steps and (in some lucky cases) substeps [21–24]. In-vitro observations
can be quite controversial: some experiments did not show any difference
upon increasing the concentrations of motors, as if traffic effects were not
relevant [25]. However the situation in the overcrowded environment of the
cell is hardly reproducible in vitro and could reserve more surprises.

Since single molecule experiments have often been criticized because of
their distance from the real systems, many groups are cautiously moving the
single molecule experiments directly into the cell [26–29]. In this situation the
main problem is to have a good signal-noise ratio which is hardly achievable
with the usual fluorescent probes. Recently a method to mark and observe sin-
gle molecule in vivo by using quantum dots (QDs) has been proposed [28, 30].
In contrast with the usual fluorescent probes, the QDs do not bleach, are
excitable on all the visible spectrum and show a very narrow emission band.
The only drawback is that they blink without a typical timescale: this incon-
venient can be avoid by taking longer series of images. In Ref. [30] kinesins
are biotinilated to bind to a streptavidinated QD. The conjugated particles
so obtained are introduced in Hela cell by pinocytosis followed by osmotic
shock and the motion of the QDs is observed with a customized fluorescence
microscopy setup and a fast CCD camera. The QDs signal on 25 pixels is fit
with a Gaussian to obtain sub-pixel resolution (FIONA [31]). The blinking of
moving QDs is taken as an evidence that we are working in single molecule.
The results on kinesin speed (570 ± 20nm/s) and processivity (1.73 ± 0.06s,
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Fig. 5. Histograms of the speed (A) and processivity (B) of kinesin in Hela cells. The
results confirmed in vitro measurements. (C) Picture of the trajectories (arrows) of
a QD labeled Kinesins: image obtained choosing the maximal intensity over many
frames of a movie with long integration time (100ms).

i.e.∼ 1μm in space) are compatible to the ones known from in-vitro experi-
ments (Fig. 5a–b)1.

5 Conclusion

In this proceeding we have reviewed a model introduced to describe intracel-
lular transport [6] and its possible extensions towards a more realistic picture:
we investigated how the introduction of dimers [8] and the presence of disorder
on the track [16] would affect the known results. These theoretical approaches
while aiming to a realistic description of the traffic phenomena, are inspiring
statistical models interesting in its own right (see e.g. [32, 33]). The latest
experimental successes in tracking individual motors in living cells combined
with an appropriate analysis, presented in the last section, could not only
confirm the theories but also provide ispiration for a complete picture of the
cell logistic.

Acknowledgements

I would like to thank the coauthors of Refs. [8, 16, 24]. I benefit from useful
discussions with A. Parmeggiani, S. Achouri, A. Dunn and L. Sengmanivong.

References

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular
Biology of the Cell. Garland Science, New York, NY, USA, 4th edition, 2002.

1 Additional experiments, using drugs, were carried out to ensure that the motion
was actually due to motors.



688 Paolo Pierobon

2. J. Howard. Mechanics of motor proteins and the cytoskeleton. Sinauer Asso-
ciates, Inc., Sunderland, MA, USA, 2001.

3. C.T. MacDonald, J.H. Gibbs, and A.C. Pipkin. Biopolymers, 6:1–25, 1968.
4. B. Derrida, E. Domany, and D. Mukamel. J. Stat. Phys., 69:667–687, 1992.
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Summary. Recently, the coupling of driven diffusive process with other processes
has attracted the interests of physicists. In this paper, we investigate the coupling
of asymmetric exclusion process (ASEP) with zero range process (ZRP) in a closed
ring system consisting of two equally sized compartments. In one compartment, the
dynamics is governed by an ASEP and in the other compartment, the dynamics is
governed by a ZRP. The particle exchange is allowed both at the two ends and in
the bulk. It is found with the increase of exchange rates, the moving direction of the
domain wall changes several times.

1 Introduction

In recent years, the driven diffusive system has attracted the interests of physi-
cists because it shows a variety of nonequilibrium effects [1, 2]. A very promi-
nent example is the asymmetric simple exclusion processes (ASEPs), which
are discrete non-equilibrium models that describe the stochastic dynamics
of multi-particle transport along one-dimensional lattices. Each lattice site
can be either empty or occupied by a single particle. Particles interact only
through hard core exclusion potential. ASEPs were introduced in 1968 as the-
oretical models for describing the kinetics of biopolymerization [3] and have
been applied successfully to understand polymer dynamics in dense media [4],
diffusion through membrane channels [5], gel electrophoresis [6], dynamics of
motor proteins moving along rigid filaments [7], the kinetics of synthesis of
proteins [8], and traffic flow analysis [9, 10]. The simplest limit of ASEP is that
particles can only move in one direction. This is called the totally asymmetric
simple exclusion process (TASEP).
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The zero-range process (ZRP) is another particular driven diffusive system
[11]. In the ZRP, particles hop from site to site with a hop rate which depends,
most generally, on the site from which it hops and the number of particles
at the departure site. It has been widely applied as a model for the dynam-
ics of avalanches, granular systems, interface growth, polymer dynamics, and
various transport processes.

The coupling of TASEPs with other processes has led to many unusual
and unexpected phenomena. For example, Parmeggiani et al. investigated the
interplay of TASEP with the creation and annihilation of particles (Lang-
muir kinetics, LK) [12]. The phenomenon of localized density shocks was
produced and was explained by applying a phenomenological domain wall
theory [13–16]. Pierobon et al. studied the bottleneck-induced transitions in
the TASEP coupled with LK, where a localized point defect acts as a bottle-
neck [17]. Evans et al. considered the disordered effect in the TASEP coupled
with LK, in which creation and annihilation of particles occur on randomly
selected sites [18].

The coupling of TASEPs with symmetric diffusive process has also been
studied by Hinsch and Frey [19] in periodic boundary conditions and Klumpp
and Lipowsky [20] in open boundary conditions. It is shown in open bound-
ary conditions, a diffusive bottleneck at the boundary of the system leads to
the absence of a maximal current phase, while a diffusive bottleneck in the
interior of the system leads to a new phase characterized by different densi-
ties in the two active compartments adjacent to the diffusive one and to a
maximal current defined by the bottleneck [20]. In periodic boundary con-
ditions, an interesting correlation effect is observed and phenomenologically
explained [19].

Inspired by the previous works, we study the coupling of TASEPs with
ZRP in this paper. Our model is defined in a closed ring system consisting
of two equally sized compartments. Each compartment is a lattice of N sites
(Fig. 1). For the lower compartment, the dynamics is governed by TASEP; for
the upper compartment, the dynamics is governed by ZRP. Moreover, parti-

Fig. 1. The sketch of the coupling of ASEP with ZRP.
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cle exchange happens between the two compartments in both ends and in the
bulk. We employ Monte Carlo (MC) simulations to characterize the emerg-
ing nonequilibrium steady states, and various interesting nonlinear effects are
revealed.

2 Model

We introduce an occupation variable τi where τi = 1 (or τi = 0) indicates that
the state of the ith site in the lower compartment is occupied (or vacant).
A second variable yi is introduced to denote the number of particles in the
ith site in the upper compartment and ymax the maximum value of yi.

We apply the following dynamical rules. For each time step, a site i in the
lower compartment is chosen at random.

• If i = N . If τN = 1, the particle enters the Nth site of the upper compart-
ment with probability β = 1− yN/ymax.

• If 1 ≤ i < N . If τi = 1, the particle firstly jumps to site i in the upper
compartment with probability ωout if yi < ymax. If it does not jump to the
upper compartment, it moves into site i+1 if τi+1 = 0. If τi = 0, a particle
enters the site from site i in the upper compartment with probability ωin

if yi > 0.

Then a site i in the upper compartment is chosen at random.

• If i = 1. If y1 > 0 and τ1 = 0, a particle enters the 1st site of the lower
compartment with probability α = 1/y1.

• If 1 < i ≤ N . If yi > 0 and yi−1 < ymax, then with probability 1/yi,
yi → yi − 1, yi−1 → yi−1 + 1.

3 Simulation Results

In our simulations, the parameters are set N = 1000, ymax = 100. The density
profiles in both compartments are investigated in the space of ωin and ωout,
and various kinds of density profiles are identified. Firstly, we consider the case
that the total number of particles is Np = 30000 and focus on the density in
the bulk (i.e., far from the boundaries). Four thresholds for ωout are identified.
In the upper compartment, the density in the left bulk is high and the density
in the right bulk is very small when ωout = 0. The different densities are
separated by a domain wall. With the increase of ωout, the density increases in
the right bulk and the domain wall moves left (Fig. 2(a)). At the first threshold
ωout = ωout,1, the domain wall reaches the left boundary. For ωout > ωout,1,
a very small density appears in the left bulk. With the increase of ωout, the
domain wall moves right and the density in the right bulk continues to increase
(Fig. 2(b)). When ωout is larger than a second threshold ωout,2, a zero density
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will appear in the left bulk and the density in the right bulk reaches one (for
example, ωout = 0.1 in Fig. 2(b)). The state remains if ωout is smaller than
a third threshold ωout,3. When ωout > ωout,3, the density begins to increase
with ωout in the left bulk and the domain wall moves right. The density in the
right bulk is still one (Fig. 2(c)). At the fourth threshold ωout,4, the domain
wall reaches the right boundary. When ωout > ωout,4, a zero density appears
in the right bulk. The domain wall moves left and the density in the left bulk
still increases with the increase of ωout until ωout = 1 (Fig. 2(d)).

Fig. 2. Density profile in the upper compartment. Here ωin = 0.5.

In the lower compartment, the density is very high when ωout < ωout,1,
despite a small density jump exists in the bulk (Fig. 3(a)). When ωout,1 <
ωout < ωout,2, the density is monotonically increasing with x in the left bulk
and it is high in the right bulk (Fig. 3(b)). When ωout,2 < ωout < ωout,3,
a zero density is reached in the left bulk and density one is reached in the
right bulk as in the upper compartment (see ωout = 0.1 in Fig. 3(b)). Then
similar results as in upper compartment is observed with the increase of ωout

(Figs. 3(c) and (d)).
Our simulations show the above results remain qualitatively the same pro-

vided the total number of particles is in the range 10000 < Np < 80000. The
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Fig. 3. Density profile in the lower compartment. Here ωin = 0.5.

results from Np > 80000 and Np < 10000 are different and will be reported
in future work. Similarly, the results remain qualitatively the same provided
ymax is not very small or very large. We will also investigate the situations
arising from very small and very large ymax in future work. We also observe
the fluctuation of densities on both compartments when ωout = 0.9. This will
also be investigated in future work.

4 Conclusion

ASEP and ZRP are two typical nonequilibrium driven diffusive systems. In
this paper, we have investigated the coupling of ASEP with ZRP. We study a
closed ring system consisting of two equally sized compartments. In one com-
partment, the dynamics is governed by a TASEP and in the other compart-
ment, the dynamics is governed by a ZRP. The particle exchange is allowed
both at the two ends and in the bulk. It is shown that the moving direction
of domain wall changes several times, depending on the exchange rates Ωin

and Ωout. A more detailed investigation will be reported elsewhere [21].
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Summary. Molecular motors transport various cargos along cytoskeletal filaments,
analogous to trucks on roads. In contrast to vehicles, however, molecular motors do
not work alone but in small teams. We describe a simple model for the transport of
a cargo by one team of motors and by two teams of motors, which walk into opposite
directions. The cooperation of one team of motors generates long-range transport,
which we observed experimentally in vitro. Transport by two teams of motors leads
to a variety of bidirectional motility behaviour and to dynamic instabilities remi-
niscent of spontaneous symmetry breaking. We also discuss how cargo transport by
teams of motors allows the cell to generate robust long-range bidirectional trans-
port.

1 Introduction: Traffic of Molecular Motors and the
Need for Motor Teams

Molecular motors are protein molecules which power various transport pro-
cesses in cells [1]. Their traffic is in many ways similar to car traffic. While cars
drive on roads, molecular motors walk along tracks provided by cytoskeletal
filaments. While cars consume petrol, molecular motors use energy from the
hydrolysis of adenosine triphosphate (ATP) in order to perform mechanical
work. Prominent examples are the kinesin and dynein motors traveling along
filaments called microtubules which form a ‘highway network’ inside the cell.
These are ‘one-way highways’: dynein motors walk preferentially to one end of
the microtubules (called ‘minus’ end) while most kinesins walk to the oppo-
site microtubule ‘plus’ end. Just like cars, motors can walk backwards, but are
rather bad at it: they usually do so only slowly and if forced. Of course, there
are also important differences between cars and motors. An obvious difference
is the length scale: While cars are several m in size and travel km distances,
molecular motors are only about 100 nm in size and travel μm distances. As
a consequence, molecular motors work in an environment dominated by ther-
mal noise, which for a car would be comparable to permanently driving in a
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hurricane. This leads to another interesting feature of molecular motors: they
can ‘fly’, i.e. unbind from their track. However, upon unbinding they lose their
ability to perform directed motion and randomly diffuse in the surrounding
solution until they finally rebind to a filament. Due to these unique features,
the traffic of molecular motors has become an attractive problem for traffic
modeling and studies of non-equilibrium transport [2–4].

In this paper we address another aspect of cargo transport by molecular
motors. While in road traffic a single truck usually suffices to carry its cargo,
in cellular traffic this is not so. As mentioned, due to thermal noise molecular
motors unbind from their track from time to time. For the molecular motor
kinesin this happens on average after a ‘run length’ of about 1μm. A cel-
lular cargo, however, must accomplish distances of tens of μm, and in some
extremely large cells like neurons even up to a meter [5]. Furthermore, the
cellular surrounding is very viscous, leading to high frictional forces which
can become too large for a single motor. A third problem for the cell is bidi-
rectional transport. In a cell, the ‘one-way’ microtubule tracks are usually
arranged in an isotropic way, pointing from the cell center to the cell periph-
ery [6]. A single motor walks in only one direction along these tracks. However,
many cellular cargos travel bidirectionally [7, 8], as has to be the case in order
not to accumulate cargo at either the cell periphery or the cell centre [9, 10].

The cell solves all three problems by using several molecular motors rather
than a single motor to transport a cargo. In order to obtain large run lengths
and forces, several motors of the same species can work together as ‘one team’.
In order to accomplish bidirectional transport, motors with different direc-
tionalities transport a single cargo as ‘two teams’. The number of motors in
a team is small, typically between 1 and 10 [11, 12]. In this paper we review
recent theoretical analyses [13, 14] and in vitro experiments [15] performed in
our group that studied the cooperation of small teams of molecular motors
pulling a single cargo along a unidirectional filament network. After defining
our model, we will first examine the transport by one cooperating team of
molecular motors of the same species and then the transport by two antago-
nistic teams of molecular motors that walk into opposite directions.

2 Theoretical Modelling: From One to Many Motors

We consider a cargo which is transported by fixed numbers of N+ plus and N−
minus motors. Because of thermal fluctuations, a motor stochastically unbinds
after some time. Therefore the cargo is pulled by a fluctuating number of
motors, see Fig. 1(b). The state of the cargo is determined by the numbers n+

and n− of pulling plus and minus motors. In the simplest case, the motors work
independently of each other, and one can deduce the cargo behaviour from the
behaviour of a single motor. A single motor can bind to the filament with the
binding rate π0, walk along it with the forward velocity vF , and unbind from it
with rate ε0. If the motor has to work under a force F , which can be caused by



Traffic by Small Teams of Molecular Motors 697

Fig. 1. Transport by small teams of motors. (a) A cargo with N = 3 motors is pulled
by a fluctuating number of motors. (b) A cargo with N+ = 2 (black) plus motors
and N− = 2 (white) minus motors is pulled by a fluctuating number of plus and
minus motors. States with only plus motors bound (+), only minus motors bound
(−) and both types of motors bound (0) correspond to fast plus, fast minus and slow
motion, respectively. (c) Motility diagram for the symmetric tug-of-war of 4 against
4 motors with the same single-motor parameters (except their preferred direction).
Depending on the single-motor force ratio f = Fs/Fd of stall and detachment force
and desorption constant K = ε0/π0, the cargo is in one of three motility states (0),
(−+) or (−0+) as explained in the text. For high desorption constants, the cargo is
unbound.

opposing motors, Stokes friction, or an optical trap, these rates become force-
dependent. The unbinding rate increases exponentially with the forces [16] as
ε(F ) = ε0 exp(F/Fd), where the force scale is set by the detachment force Fd.
The velocity decreases linearly [17], v(F ) = vF (1−F/Fs) until it reaches zero
at the stall force Fs. For higher loads, the motor walks backwards [17] with
the velocity v(F ) = −vB(1− F/Fs), with a very small backward velocity vB.

3 Transport by One Team of Motors

We first consider a cargo transported by N = N+ plus motors and no minus
motors, N− = 0. The number n = n+ of motors which are bound to the
filament fluctuates between 0 and N , see Fig. 1(a). As the motors work inde-
pendently, the unbinding and binding rates for one motor in the cargo state
with n pulling motors are simply nε0 and (N − n)π0 with the single motor
unbinding rate ε0 and binding rate π0. This leads to a Markov process on
the states n = 1, . . . , N , for which we have obtained a number of analytical
results [13].
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In particular, the average run length, i.e. the distance a cargo moves along a
filament before it unbinds from it, increases essentially exponentially with the
motor number N . This is because the cargo particle continues to move along
the filament unless all N motors unbind simultaneously. When the cargo is
transported by the molecular motor kinesin, 3 kinesins suffice to cross a cell of
50μm diameter, and 7–8 kinesins lead to average run lengths in the centimeter
range [13]. The corresponding run length probability distribution is a sum of
exponentials, which develops fat tails for large motor numbers N .

The increase of run length with increasing motor number has been ob-
served in vitro [18–20], but it has been difficult to determine the number of
motors pulling the cargo. To overcome this limitation, we have recently used a
combination of dynamic light scattering (DLS) and a comparison of measured
and theoretical run length distributions to determine the number of pulling
motors [15]. In our experiments, latex beads were incubated in solutions with
different concentrations of kinesin motors. The kinesins bound stochastically
to the beads and pull them along an array of immobilized isopolar micro-
tubules within a glass channel [21]. In such an assay, the maximal number
of motors which are available for binding to the microtubule and pulling the
cargo is not constant, but varies from bead to bead. The theoretical run
lengths were therefore weighted with a truncated Poissonian distribution [15],
and then fitted to the measured run length distributions for 9 different kinesin
concentrations using only 2 fit parameters. The agreement of theory and ex-
periment allowed to calculate the maximal number N of motors which were
available for bead transport. This result was found to correspond well to the
motor number independently estimated from the DLS measurement.

4 Transport by Two Teams of Motors

Next we consider a cargo with N+ plus and N− minus motors attached. The
numbers n+ and n− of bound plus and minus motors, change stochastically
as shown in Fig. 1(b). As the motors are assumed to act independently, the
rates for unbinding and binding of a single motor when the cargo is in the
state (n+, n−) can be deduced from the corresponding single motor rates. The
opposing motors exert force on each other, so that each plus motor feels the
force F+ and each minus motor the force F−. Newton’s third law requires
n+F+ = n−F−. Furthermore, as both motor types are bound to the same
cargo, the velocity of each plus motor under force F+ must equal the velocity
of each minus motor under force F−. The force and velocity balance determine
the motor forces F+ and F− and therefore the motor binding and unbinding
rates and the cargo velocity [14].

It is instructive to consider the symmetric tug-of-war of N+ = N− plus
and minus motors which have the same single motor parameters and differ
only in their preferred direction. In this case the direction of motion in each of
the cargo states shown in Fig. 1(b) is simply given by the majority motor type
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and is indicated by (+), (-) or (0) for plus motion, minus motion and slow
motion, respectively. The probability p(n+, n−) that the cargo is in the state
with n+ bound plus and n− bound minus motors can have either 1, 2 or 3
maxima, depending on the single motor parameters, see Fig. 1(c). As the cargo
spends most of its time in configurations with high probability, these maxima
characterize the large-scale cargo motion. For ‘weak’ motors with a low ratio
f = Fs/Fd of stall force to detachment force, the probability distribution
p(n+, n−) has only one maximum at a configuration with n+ = n−, which
corresponds to no motion [no motion motility state (0)]. When the motors
have a high force ratio f , on the contrary, the motor number probabilities
exhibit two maxima at (n, 0) and (0, n). In this parameter range, the cargo
switches stochastically between fast plus and fast minus motion [(−+) motility
state]. In an intermediate range of f , all three types of maxima appear, and
the cargo switches between fast plus motion, fast minus motion and pauses
[(−0+) motility state].

For large force ratios f , the appearance of two maxima at (n, 0) and (0, n)
in a situation symmetric with respect to plus and minus motors is reminiscent
of spontaneous symmetry breaking during continuous phase transitions. The
reason for its appearance is a dynamic instability caused by the nonlinearity in
the force-dependence of the single motor unbinding rate. The time for switch-
ing between the two non-symmetric maxima increases exponentially with the
motor number N+ = N−, indicating a non-equilibrium phase transition in the
infinite system.

If the tug-of-war is non-symmetric, the dynamic instability persists, and
the cargo switches stochastically between fast plus motion, minus motion
and / or pauses. However, now the plus-minus motor symmetry is lost, biased
plus or minus motion is possible. Thus, even though the motors are engaged
in a tug-of-war, fast motion into plus or minus direction can be generated.

5 Discussion: Robustness and Regulation

Why should cells use a team of motors instead of one strong motor which
rarely unbinds from the filament? And why should cells use two teams en-
gaged in a tug-of-war instead of one team only which is substituted by a team
of opposite-directional motors when appropriate? The reasons may be robust-
ness and sensitivity to regulation. A team of motors is more robust against
failure of a single motor. And a team can be easily regulated by simply regu-
lating the number of motors involved in the team. Two teams of motors can
carry a cargo into two directions instead of only one. A bidirectionally moving
cargo can search for its target, bypass obstacles and correct targeting errors.
Furthermore, a cargo with two teams of motors engaged in a tug-of-war is
very sensitive to regulatory mechanisms: because of the dynamic instability,
small changes in the molecular properties (or of the number) of one or both
motor types can qualitatively change the characteristics of cargo motion. The
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cargo can move into one direction faster or for a longer time and it may show
net plus or net minus motion. In this way the cell can easily target its cargos
as appropriate.

In summary, we have described a simple model for cargo transport by one
or two teams of molecular motors. Despite its simplicity, the model exhibits
a rich variety of motility behaviours and explains how the cell might satisfy
its need for long-range bidirectional transport.
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Summary. We present empirical results for traffic flow on ant trails. The observed
spatio-temporal organization of the ants as well as quantitative results for the fun-
damental diagram and headway distributions are compared with predictions of a
cellular automaton model. In sharp contrast to highway traffic, no jammed phase is
observed and the average velocity is almost independent of the density of ants.

1 Introduction

Ants form large trail systems [1] that share many features with human trans-
portation networks. Belonging to the class of eusocial insects ants exhibit
cooperation to a very high degree [1, 2] and one can assume that evolution
has in some sense lead to an optimization of the transport processes in ant
colonies. Nevertheless, collective properties of traffic on ant trails have not
been studied empirically with the exception of [3, 4]. We therefore apply tools
from traffic engineering (e.g. [5, 6]) to collect quantitative empirical data for
traffic on unidirectional trails which have striking similarities with highway
traffic.

2 Empirical Ant-Traffic Data

Unlike in vehicular traffic all ‘vehicles’ in our field study are of the same size
and have the same properties. This is ensured by choosing the monomorphic
species Leptogenys processionalis for investigations [1, 7]. Generally we avoid
manipulations of the natural situation in order to focus on the generic effects.
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Fig. 1. Left: Photography illustrating the observed trail section. The nth ant en-
tering is also the nth one leaving. Right: Space-time plot obtained from simulating
our unidirectional ant-trail model is shown. Platoons of ants (black) are followed by
a trace of pheromone marks (grey). Due to evaporation this trace has finite length.

2.1 Material and Methods

The observed trail section exhibits a constant shape for the period of observa-
tion (several hours) and has no intersections or branchings that could strongly
influence the dynamics. To reduce the effect of boundaries and external dis-
turbances, we focus on a data set recorded at a bulk section of one specific
trail over a continuous time interval of about 13 minutes. Based on compar-
isons with ten other trails of the same type we believe that the observations
described here are generic [8] for trails of the species.

The length L of the observed section (Fig. 1 left) has been measured
by tracing one single ant passing through the section. Putting marks to a
transparency on the video screen we obtained L = 17 bl in units of the body-
length (1 bl ≈ 18 mm) of a single ant.

The most surprising qualitative observation is the absence of overtaking.
Although ants temporarily left the trail and were passed by succeeding ones
we never observed an ant speeding up in order to overtake. This observation
can be used to extract ‘single vehicle’ data by cumulative counting (by hand
[8]) based on video recordings of the observed section.

2.2 Extraction of Traffic Data

Since no overtaking takes place, ants can uniquely be specified by the order
n in which they enter the observation section at A at time t+(n) (Fig. 1
left). They will leave the section at B in the same order at times t−(n).
An efficient tool for analyzing such data is the cumulative plot (Fig. 2 left)
showing the numbers n+(t) and n−(t) of ants that have passed the point A
and B, respectively, up to time t. The two resulting curves (arrival function
and departure function) can be obtained by inverting t±(n).

Based on cumulative counting the travel time 〈ΔT (n)〉 and the average
velocity v(n) of the nth ant can be extracted (Fig. 2, lower inset):

〈ΔT (n)〉 = t+(n)− t−(n) ; v(n) =
L

〈ΔT (n)〉 (1)
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Fig. 2. Left: Schematic figure illustrating the technique employed for collecting
empirical data. Generally one obtains a pairwise structure of datapoints for entering
(•) and leaving (�) ants. The lower inset shows the travel time 〈ΔT 〉 for the 79th ant.
On the upper inset the time headway of the 77th ant is shown. Right: Also distance
headways were calculated, indicating a characteristic headway of d̄ ≈ 1.8 bl.

The density of ants is determined by the number N(t) of ants within the
observed section at time t.N(t) only changes if ants enter or leave the observed
section (Fig. 2, lower inset), i.e. at times ti ∈ {t±(n)}. Then

〈Nav(n)〉 =
1

〈ΔT (n)〉

i−−1∑
i=i+

N(ti)(ti+1 − ti) with ρ(n) =
〈Nav(n)〉
L

. (2)

Here i+ and i− are defined by ti+ = t+(n) and ti− = t−(n). So the sum is
over all ‘events’ during the time the nth ant is in the observed trail section.

The flow is then calculated using the hydrodynamic relation F (n) =
ρ(n)v(n) which gives the fundamental diagram (Fig. 3).

The time headway of two succeeding ants is obtained easily for example
at the entrance point (Fig. 2, upper inset) as Δt+(n) = t+(n) − t+(n − 1).
Assuming a constant velocity throughout the observed section, the distance
headway (Fig. 2 right) for entering ants is Δd(n) = Δt+(n)v(n− 1).

2.3 Empirical Results

As seen in the cumulative count, the arrival- and departure function show
clustering of datapoints at small time headways (Fig. 2 left). Similarly, the
time-series of distance headways shows clustering for small distances (Fig. 2
right). This is in accordance with the observation that ants tend to move in
platoons. Small distance headways are equivalent to intra-platoon distances
whereas larger ones correspond to inter-platoon distances.

The density-dependence of the average velocity (Fig. 3 left) observed here
is quite different from vehicular traffic. The jammed branch, characterized
by a monotonic decrease of flow with increasing density, is completely missing
and flow F = ρv is linearly increasing over the whole observed density regime.
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Fig. 3. Fundamental diagrams from empirical observations (left) and from computer
simulations (right). Both exhibit a nearly constant average velocity for small to
intermediate densities. The empirical fundamental diagram neither exhibits a sharp
increase nor a monotonic decrease at high densities. Nevertheless depending on the
evaporation rate f the sharp increase can be suppressed completely.

Effects like mutual blocking which usually are expected to become dominant
for larger densities are strongly suppressed. Also additional effects known from
highway traffic like hysteresis or synchronized flow [6] are not observed.

3 CA-Modelling Approach

The empirical data presented allow a direct comparison to a simple cellular
automaton model. This model is based on the well known TASEP. The quasi-
one-dimensional movement of ants is mapped to the hopping of particles along
a one-dimensional lattice.

At each update-step a site i is chosen at random. If site i is occupied with a
particle, ants in our case, and site i+1 is not blocked by another ant hopping
is possible. If site i+1 is additionally marked with a pheromone hopping takes
place at rate Q and at rate q otherwise (with q < Q).

An ant hopping from site i to i + 1 leaves a pheromone mark at site i. If
a marked site is chosen for updating the pheromone is removed at rate f . For
more details of the model definition, see [9–11].

3.1 Theoretical Results

As a consequence of employing two different hopping-rates depending on the
presence or absence of pheromone marks, so-called particle-wise disorder is
induced dynamically. Each ant or particle is followed by a trace of pheromones
which is of finite length (see Fig. 1 right) depending on the evaporation rate
f . A succeeding ant perceiving that trace catches up to the preceding one
since Q > q. Like in case of static particle-wise disorder [12, 13] clusters or
platoons of ants are formed (see Fig. 1 right).



Traffic Flow on Ant Trails: Empirical Results vs. Theoretical Predictions 705

Biologically this mechanism is quite speculative as the complex pheromone
system is very difficult to access experimentally. Like already applied in case
of pedestrians dynamics also the interpretation as some kind of distance-
dependent interaction mediated by virtual pheromones is possible.

The fundamental diagram exhibits features very similar to those known
from the case of static disorder (see Fig. 3 right). The average velocity stays
constant at V = q for small to intermediate densities. But unlike in the
static case a sharp increase is observed beyond a critical density. Obviously a
TASEP-like regime is attained. This is a direct consequence of the dynamic
disorder caused by the pheromones. At sufficiently large densities the average
distance between the ants is of the order of magnitude of the pheromone-
trace. Therefore nearly all ants are affected by the pheromones and hopping
predominantly takes place at rate Q. Obviously the corresponding TASEP-
case with p = Q is recovered. The evaporation rate determines the critical
density for the transition to the TASEP-case.

3.2 Empirical Results vs. Theory

On a qualitative level platoons of ants are found on the real as well as for
the simulated trail (see Fig. 1). In accordance to that pattern one finds the
same qualitative features in the fundamental diagrams (see Fig. 3). For an
appropriate density regime the average velocity stays constant.

Nevertheless also differences are found. The empirical fundamental dia-
gram exhibits no transition to a jammed phase (see Fig. 3 left). Typically one
would expect this to occur near bottlenecks. The single-ant velocities show a
density dependent scattering which can be interpreted as a consequence of two
intrinsic velocities. The average velocity corresponds to q whereas a second
and higher one would be equivalent to Q. At low densities the initial distance
headway of two succeeding ants is quite large. So an up catching ant could
pass the observed section nearly without being slows down by a slower pre-
ceding one. Depending on the initial distance headway one finds a continuum
of measured average velocities v(n) ∈ [q,Q]. Nevertheless the mechanism of
assigning the two intrinsic velocities and hence the particular kind of disorder
is unclear.

4 Summary and Conclusions

We presented empirical and simulation results for ant-traffic flow on a unidi-
rectional single lane trail. Drawing analogies between vehicular- and ant-traffic
we apply tools from traffic engineering to an ant trail. The extracted funda-
mental diagram basically shows a free-flow state. Despite the striking absence
of overtaking, no jamming transition even at large densities ρ ≈ 0.8 is ob-
served. This is a result of the spatial distribution of ants along the trail. In
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accordance with direct observations one finds that ants predominantly tend
to move in platoons.

The experimental data presented give no conclusive picture about the par-
ticular mechanism of platoon formation although the data are in accordance
with the existence of two different intrinsic velocities.

One possible explanation is based on the fact that the pheromone trace
following each ant or platoon basically introduces a characteristic length scale.
This interaction-range should in principle be reflected in the scattering: at
very low densities (large distance headways) movement would predominantly
take place at v = q. In contrast, very high velocities are mainly found for
this density regime. As pointed out this could be a consequence of the finite
length of the observed section so that most catching-up events occur outside
of it. Ants will predominantly move at v = Q but without being slowed down
to v = q within the observed section. Nevertheless an alternative explanation
based on a static assignment of intrinsic velocities due to some behavioral
pattern is also conceivable.
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Summary. We present results of a survey of public transport networks (PTNs)
of selected 14 major cities of the world with PTN sizes ranging between 2000 and
46000 stations and develop an evolutionary model of these networks. The structure
of these PTNs is revealed in terms of a set of neighbourhood relations both for the
routes and the stations. The networks defined in this way display distinguishing
properties due to the constraints of the embedding 2D geographical space and the
structure of the cities. In addition to the standard characteristics of complex net-
works like the number of nearest neighbours, mean path length, and clustering we
observe features specific to PTNs. While other networks with real-world links like
cables or neurons embedded in two or three dimensions often show similar behavior,
these can be studied in detail in our present case. Geographical data for the routes
reveal surprising self-avoiding walk properties that we relate to the optimization of
surface coverage. We propose and simulate an evolutionary growth model based on
effectively interacting self-avoiding walks that reproduces the key features of PTN.

1 Introduction

Urban public transport networks (PTNs) share general features of other trans-
portation networks like airport, railroad networks, power grids, etc. [1]. The
most obvious common features are their embedding into a 2D space, evolu-
tionary growth, and optimization. The evolution of specific local transporta-
tion networks is closely related to that of the town or region in which they
are embedded. However, statistically, some general overall features such as
their fractal dimensions have been observed [2]. Modeling different aspects
of transportation network structure and functioning helps to understand and
optimize various processes that occur on these networks as well as to improve
their planning. In this paper, we will consider a PTN from the point of view
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of complex network theory [1, 3–5] quantifying statistical features of their
structure and proposing a model that reproduces their key features. To ex-
emplify these, we survey the empirical analysis of PTNs of 14 major cities of
the world (see Refs. [13, 16] for more details). While the empirical analysis of
PTNs of different cities has been subject of several studies [6–13, 15] (see Sec.
2), we are not aware of previous attempts to specifically model the network
evolution of a PTN in the way we propose here. The set-up of the paper is
as follows: in the next section we discuss common features of PTNs and list
some numbers that quantify these features; section 3 we describe our model
for PTN evolution and give supporting arguments; in section 4 we compare
some characteristics of real and simulated PTNs; conclusions and an outlook
are given in section 5.

2 Empirical Analysis of PTNs: Statistical Properties

A distinct feature of our study is that we interpret the PTN as a network of
all means of public transport (buses, trams, subway, etc.) offered in a given
city. Several previous studies have analyzed specific sub-networks of PTNs.
The Boston [6–9] and Vienna [9] subway networks may serve as examples.
However, each particular sub-network (e.g. the network of buses, trams, or
subways) is not a closed system: it is a subgraph of a wider transportation
system of a city, or as we call it here, of a PTN. Therefore to understand and
describe the properties of transport in a city it is important to deal with the
complete PTN, not restricting the analysis to specific parts. Indeed, extending
the restricted subway network to the “subway + bus” network drastically
changes the network properties, as it was shown for Boston [7, 8].

Another important quantity that certainly restricts the reliability of gen-
eralizations drawn from trends observed for specific PTNs of different cities is
the statistics, i.e. the size of the observed PTNs. The numbers of stations N
in the PTNs analyzed so far ranged from several decades (subway networks
of Boston, N = 124 [8], and Vienna, N = 76 [9]) to several thousands as
in the PTN analysis of 22 Polish cities with up to 2811 stations [11] or bus-
transport networks of three Chinese cities with up to N = 3938 stations. In
our sampling [10, 13] we have chosen PTNs of 14 major cities of the world of
various size with N ranging from 1544 (Düsseldorf) to 46244 (Los Angeles),
see Table 1.

Here, we define different graph representations (‘spaces’) for a given PTN
in terms of nodes (vertices) and links (edges) as illustrated in Fig. 1. The pri-
mary network topology is defined by a set of routes each servicing an ordered
series of given stations, see the sketch labeled L

′ in Fig. 1 Based on this we
define a graph (L-space) representing each station by a node and linking any
two that are served consecutively by at least one route. More generally linking
any two stations serviced by a common route we define the P-space [11, 17]
representation. The interrelation of the routes in turn is described by a com-
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Fig. 1. Different representations of a PTN. L
′-space: nodes correspond to stations,

links show different routes. L-space: the same as L
′ but multiple links are reduced to

single ones. P-space: any two stations (nodes) are connected when they are serviced
by a common route. B-space: routes (open discs) are linked to those stations (filled
discs) that they service. C-space: nodes correspond to routes, links show that two
routes share a common station. Note that by keeping multiple links in P and C one
may also define P

′ and C
′-spaces.

plementary C-space representation where now the nodes represent routes and
linking any two that service a common station. From Fig. 1 it is easy to ver-
ify, that the last two representations correspond to one-mode projections of a
bipartite B-space represenation with nodes of two types, representing either
a station or a route linking each route with all stations it services.

Table 1. PTN characteristics in L- and P- representations, see text for definitions.
N : number of stations, M : number of routes, the scale k̂ or the exponent γ of fits
to the node degree distribution p(k) to the laws (1) or (2) respectively, C: ratio of
the mean clustering coefficient to its random graph value, maximal �̂, and mean �
shortest path length. Characteristics in P-space representations are indicated by a
subscript ‘p’. See Refs. [13, 16] for more data and sources.

City N M C Cp �̂ � �̂p �p

Berlin 2996 218 k̂ = 1.24 k̂p = 38.5 52.85 42.03 68 18.61 5 2.93

Dallas 6571 131 γ = 4.99 k̂p = 76.9 17.26 63.00 269 85.84 10 3.78

Düsseldorf 1544 124 k̂ = 1.12 k̂p = 58.8 22.45 20.97 56 13.18 5 2.58

Hamburg 8158 708 k̂ = 1.47 k̂p = 55.6 262.92 133.99 158 39.74 11 4.79

Hong Kong 2117 321 k̂ = 2.60 k̂p = 125.0 58.98 12.51 60 11.11 4 2.26

Istanbul 4043 414 γ = 4.04 k̂p = 71.4 41.40 41.54 131 29.69 6 3.09
London 11012 2005 γ = 4.58 γp = 4.39 326.17 90.00 107 26.68 6 3.26
Los Angeles 46244 1893 γ = 4.88 γp = 3.92 588.44 427.06 247 43.55 14 4.60

Moscow 3755 679 k̂ = 2.12 k̂p = 50.0 128.23 41.93 28 7.08 5 2.52
Paris 4003 232 γ = 2.61 γp = 3.70 85.90 71.75 47 7.22 5 2.79

Rome 6315 681 γ = 4.39 k̂p = 45.5 68.61 76.93 93 29.64 8 3.58

São Paolo 7223 998 γ = 2.72 k̂p = 200.0 268.83 38.32 33 10.34 5 2.66

Sydney 2034 596 γ = 3.99 k̂p = 38.5 81.62 34.92 35 12.76 7 3.03

Taipei 5311 389 k̂ = 1.75 k̂p = 200.0 186.23 15.38 74 20.86 6 2.35
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In our analysis, we are interested in different features of the PTN as mea-
sured when represented in the above defined spaces. It is worth to mention
here, that these standard network characteristics measured in different spaces
turn out to be specific of practical value in judging about the quality of public
transport in a given city. The particular quantities we analyze here are the
maximal and mean shortest path length �̂ and �, the clustering coefficient C,
and the betweenness CB ; for definitions see Ref. [14] in this volume. Table 1
gives some of these quantities for the cities analyzed in L- and P- representa-
tions. One can see that the above networks are highly clustered small worlds
characterized by small shortest path lengths and large ratios C of the mean
clustering coefficient relative to its value CER = 2M/N2 on a random graph
with the same numbers of nodes N and links M .

To classify the node degree distributions p(k) we performed fits to both
an exponential function

p(k) = Ae−k/k̂, (1)

as well as to a power law:
p(k) = Bk−γ . (2)

The result of the better fit together with the value of the fit parameters k̂ or
γ are shown in table 1. One can see that the L-space node degree distribution
of a part of these PTNs (8 out of 14) is governed by power laws, indicating
scale-free properties. For the PTNs of several cities, this fact has also been
described in Refs. [10, 11]. The remarkable feature of the data shown in table 1
is that some PTNs (3 out of 14) show scale-free behavior even in P-space. As
examples compare the degree distributions p(k) of the PTNs of Paris and
Sydney in Fig. 2. Whereas the Paris PTN is scale-free both in L- and P-space,
the PTN of Sydney is scale-free in L-space only. Note that to reduce the noise
in the data we plot the P-space cumulative degree distribution

P (k) =
∞∑

q=k

p(q). (3)

In Fig. 3 plot the mean betweenness value CB(k) (see [14] in this volume)
as function of the node degree k in L, P, C, and B-spaces (similar behaviour
is found for the networks of other cities). One definitely sees a pronounced
correlation and a tendency for power-law behaviour: a phenomenon observed
previously for several other networks [11, 18, 19].

In addition to the standard characteristics of complex networks discussed
above, one can introduce some characteristics which are specific to PTNs. One
of them is due to the fact that very often several routes go in parallel and pass
L consecutive stations. In particular, the notion of harness was introduced in
Ref. [13] to quantify this behaviour. In Fig. 4 we show the harness distribution
P (L,R): the number of sequences of L consecutive stations that are serviced
by R parallel routes for the PTNs of Paris (a) and of Sydney (b). The log-log
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Fig. 2. Node degree distributions for Paris (first row) and Sydney (second row)
PTNs. Left column: degree distributions p(k) in L-space. Right column: cumulative
degree distributions (3) in P-space.

Fig. 3. Betweenness-degree correlations for Paris PTN in different representations.
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Fig. 4. Harness distribution for Paris (a), for Sydney (b), and for a simulated
city (c).

plot indicates scale free properties of this distribution. We have found similar
behaviour for the majority of the cities under consideration.

Following this analysis of PTNs of different cities of the world and having
at hand the numerical data on different features of these networks, let us
propose a model, that may reproduce most of these features. In particular, the
model should be capable to discriminate between different types of behaviour
observed so far in PTNs (an example may be the exponential and power-law
node degree distributions for p(k) observed for different cities).

3 Evolutionary Model of PTNs

To model the properties of PTNs we have proposed [13] an evolutionary
growth model for these networks along the following lines: We model the
grid of streets by a square lattice and allow every lattice site r (street corner)
to be a potential station visited by say k(r) routes. The routes are modeled
as self-avoiding walks (SAWs) on this lattice. The rules of our model are the
following:

1. First route: construct a SAW of length n starting at an arbitrary site.
2. Subsequent routes:

– (i) choose a terminal station on lattice site r with probability q ∝
k(r) + a;

– (ii) choose a subsequent station of this route at a neighboring site r′

with probability q ∝ k(r′) + b;
– (iii) repeat step (ii) until the walk has reached n stations, in case of

self-intersection discard the walk and restart with step (i).
3. Repeat step 2 until M routes are created.

The above rules resemble the preferential attachment growth rule [20] fa-
voring high-degree nodes when linking new nodes to a network. The principal
difference of our algorithm is that at each step (2ii) we link an existing station
to a neighboring site which does not need to be empty. New stations are then
only added at the frontier of the PTN cluster while high degree nodes (hubs)
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Fig. 5. Different simulated PTN maps of ‘cities’ of size 300 × 300 with M = 500
routes of n = 50 stations each. a): a = 0.0001, b = 1, b): a = 0.001, b = 1, c): a = 0,
b = 0.1, d): a = 0, b = 0.5.

accumulate at its center. The choice of a SAWs to model the routes may seem
odd at first sight. however, the fractal dimensions measured in PTNs [2, 13]
are compatible with 2D SAW behaviour for the routes and it is obvious that
a single PTN route very seldom intersects itself. Moreover, the scaling prop-
erties of SAWs on disordered lattices do not change, provided the disorder
is short-range correlated [21]. In our application this means, that even the
presence of certain geographical constraints and deviations from the square
lattice still allow for a SAW description of a PTN route.

The above described generating procedure results in a simulated PTN of
M routes, each consisting of n stations. In Fig. 5 we show several typical
PTN configurations of simulated cities on a 300 × 300 square lattice with
M = 500, n = 50 and different values of a and b. The parameters a and
b allow to discriminate between different regimes of the network evolution.
Setting a = 0 limits every new route to start from an already existing station.
On the contrary, for a �= 0, the terminal station of a new route may be situated
at any lattice site. Therefore, increasing a allows for PTNs that consist of more
than one component (c.f. Figs. 5a and 5b). The parameter b on the other
hand tunes the evolution of the routes: a small value of b forces the routes
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to propagate in parallel (harnessed) while increasing b results in routes that
cover more sites of the lattice (see Figs. 5c, 5d correspondingly). In the next
section we will investigate how the numerical characteristics of the modeled
PTNs correspond to those observed for real cities.

4 Simulation Results

Postponing a more detailed analysis of the numerical simulations based on
the model of section 3 to a separate publication [16], we focus here on several
principal features of PTNs and demonstrate how they are reproduced by our
model. One of them is the behaviour of the node degree distribution p(k).
As it was shown in section 2, the behaviour of this function varies for PTNs
of different cities. In L-space one often observes p(k) to be of a power-law
type (2) [10–13], however sometimes it is governed by an exponential decay
(1). Moreover, recently these two types of behaviour were also observed in
P-space [13]. A distinguished feature of our model is that depending on the
values of the evolution parameters a, b it discriminates between a power-law
and an exponential p(k) in P-space. Note that on the square lattice the L-
space degrees are limited to k ≤ 4 ruling out such an analysis. As an example,
in Fig. 6 we show the cumulative node degree distribution P (k), see Eq. 3, for
PTNs of two simulated cities in the P-space. Changing the value of parameter
b for fixed a one passes from an exponential (a straight line in the log-linear
plot in Fig. 6a) to a power-law regime (a straight line in the log-log plot in
Fig. 6b).

Fig. 6. P-space cumulative degree distribution P (k) for different simulated cities of
300× 300 sites with M = 500 and n = 50. a) a = 0, b = 0.5: exponential in P-space,
b) a = 0, b = 0.1: power law in P-space.

Another specific feature of real world PTNs that is nicely reproduced by
our model is the harnessing effect. In Fig. 3c we show the harness distribution
P (L,R) for the PTN of a simulated city on 300 × 300 sites with M = 500
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and n = 50 at a = 0, b = 0.5 in comparison with the same quantity for the
PTNs of Paris (Fig. 3a) and of Sydney (Fig. 3b). Again, as in the case of real-
world PTNs one may speculate about power-law behaviour. Note however,
that neither for the node degree nor for the harness distribution we so far
find a simple relation between the exponents that may govern the scaling and
the model evolution parameters a, b. Finally, let us compare the betweenness-
degree correlation. In the same way as for the PTN of Paris (Fig. 3), we
plot this function in Fig. 7 for different representations for a simulated city
of 300 × 300 sites with M = 500 and n = 50 for the evolution parameters
a = 0, b = 0.5. One can see an overall qualitative agreement between the
behaviour observed for the real-world network and the simulated one (for L see
discussion above). In this context it is worth to mention that the simultaneous
use of different representations (spaces) serves as a useful tool to quantify
the correspondence and differences between real word networks as well as
simulated ones.

Fig. 7. Betweenness-degree correlation for the simulated city of 300×300 sites with
M = 500 and n = 50 in C-, L-, P-, and B-spaces. a = 0, b = 0.5.

5 Conclusions and Outlook

The small-world properties of public transport networks are an everyday ex-
perience: it is easy to reach almost any given place in a city with only a small
number of changes of transport (from table 1 it follows e.g. that the connection
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between any two stations in Paris implies on average �p−1 = 1.8 changes), the
scale-free properties of these networks are not that evident. Even more, scale
free properties for these networks have sometimes been doubted. The results
of our empirical analysis of PTNs of 14 major cities of the world [13, 15, 16]
together with the empirical data for several other cities [6–12] however give a
strong evidence of the fact that scale-free behaviour emerges in many PTNs.
Apart from our model we currently cannot give more general arguments for
this behaviour. Furthermore, not all PTNs seem to exhibit power-law node
degree distributions, as some display rather an exponential decay of p(k), see
Table 1. Inspired by this observation we developed an evolutionary model of
self-avoiding walks on 2D lattice which discriminates between the above types
of behaviour and recovers a number of other basic features of the PTNs. The
model applies the idea of the preferential attachment scenario [20], however
with specific differences to that standard scenario: as far as the PTNs consti-
tute an example of ever evolving networks, such a mechanism is not unlikely
to play a role in their growth. In more general terms, scale-free networks have
been shown in certain situation to minimize both the effort for communication
and the cost for maintaining connections [22, 23]. Similar optimization was
shown to lead to the small world properties [24] and used to explain the ap-
pearance of power laws [25]. Therefore one may expect the observed scale-free
behaviour of PTNs to naturally emerge from obvious optimization objectives
followed in their design.

One of the specific features of the PTNs we have analyzed is the harness-
ing effect: very often several routes go in parallel and pass together several
consecutive stations. While other networks with real-world links like cables
or neurons embedded in two or three dimensions often show similar behavior,
these can be studied in detail in our present case. Our empirical analysis of
the harness distribution that quantifies this behavior indicates power-law be-
haviour. The same behaviour is inherently recovered by our model. We found
that a useful tool to classify PTNs as well as to find correspondence between
real-world and simulated PTNs is a comparison of the observables in different
representations (‘spaces’). Furthermore, the standard network characteristics
as represented in different spaces turn out to be natural measures for the
quality of public transport in a city.

Of the many interesting further questions that are related to this study let
us only mention the vulnerability of PTNs to random failures and targeted
attacks (see our contribution [14] on this subject in this volume) as well as the
correlation between the topological properties of a PTN and its geographical
embedding.
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Summary. The behavior of complex networks under attack depends strongly on
the specific attack scenario. Of special interest are scale-free networks, which are
usually seen as robust under random failure or attack but appear to be especially
vulnerable to targeted attacks. In a recent study of public transport networks of 14
major cities of the world we have shown that these networks may exhibit scale-free
behaviour [Physica A 380, 585 (2007)]. Our further analysis, subject of this report,
focuses on the effects that defunct or removed nodes have on the properties of public
transport networks. Simulating different attack strategies we elaborate vulnerability
criteria that allow to find minimal strategies with high impact on these systems.

1 Introduction

A number of different phenomena related to complex networks [1] may be
described in terms of percolation theory [2]. Take for example a network built
following given construction rules. Then, how should the rules be tuned such
that an infinite connected component is constructed with finite probability
and what are the properties of this class of networks when the parameters
reach the corresponding percolation threshold? Taken that percolation is in
general seen as a critical phenomenon one may expect to find power laws in
the vicinity of this point. The network (class) being described by more than
one parameter, there are also many scenarios to cross the threshold exhibiting
different behavior of the observables. Related questions are: how do infections
spread on a network and are there optimal immunization strategies? These and
similar questions are best formulated within percolation theory [2] generalized
from its original formulation for regular grids to general network graphs.

mailto:C.vonFerber@coventry.ac.uk
mailto:hol@icmp.lviv.ua
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In this paper we intend to apply concepts of complex network theory [1]
to analyze the behaviour of urban public transport networks (PTNs) under
successive removal of their constituents. In particular, continuing our recent
study of PTNs of 14 major cities of the world [3, 4], we analyse their resilience
against targeted attacks following different scenarios.

It has been observed before that the behaviour of a complex network under
an attack that removes nodes or links may drastically differ from that of
regular lattices (i.e. from the classical percolation problem). Early evidence of
this fact was found analysing real world scale-free networks: the www and the
internet [5, 6], as well as metabolic [7], food web [8], and protein [9] networks.
In these studies, the interest was in the robustness of these networks subject
to the removal of their nodes. It appeared that these networks display an
unexpectedly high degree of robustness under random failure. However, if
the scenario is changed towards “targeted” attacks, the same networks may
appear to be especially vulnerable [10, 11].

To check the attack resilience of a network, different scenarios of attacks
have been proposed: e.g. a list of vertices ordered by decreasing degree may
prepared for the unperturbed network and the attack successively removes
vertices according to this original list [12, 13]. In a slightly different scenario
the vertex degrees are recalculated and the list is reordered after each removal
step [5]. In initial studies only little difference between these two scenarios were
observed [11], however further analysis showed [14, 15] that attacks according
to recalculated lists often turn out to be more harmful than the attack strate-
gies based on the initial list, suggesting that the network structure changes
as important vertices or edges are removed. Other scenarios consider attacks
following an order imposed by different ‘centralities’ of the nodes, e.g. the
so-called betweenness centrality [15]. In particular for the world-wide airport
network, it has been shown recently [16, 17] that nodes with higher between-
ness play a more important role in keeping the network connected than those
with high degree.

As it turns out, the behavior under attack of different real-world networks,
even if they are scale-free differ considerably; e.g. computer networks behave
differently than collaboration networks, see [15]. Therefore, it is important
to investigate in how far the behaviour under attack of different real-world
networks is consistent or shows strong variations. Below we present some
results of our analysis for the PTNs of 14 major cities of the world (see Ref.
[3] and chapter [4] of this volume for a detailed description of the included
PTNs). A more complete survey will be a subject of a separate publication [18].

2 Observables and Attack Strategies

In the analysis presented below we consider the PTNs of the following cities:
Berlin (number of stations N = 2996, number of routes M = 218), Dallas
(N = 6571, M = 131), Düsseldorf (N = 1544, M = 124), Hamburg (N =
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8158, M = 708), Hong Kong (N = 2117, M = 321), Istanbul (N = 4043,
M = 414), London (N = 11012, M = 2005), Los Angeles (N = 46244, M =
1893), Moscow (N = 3755, M = 679), Paris (N = 4003, M = 232), Rome
(N = 6315, M = 681), São Paolo (N = 7223, M = 998), Sydney (N = 2034,
M = 596), Taipei (N = 5311, M = 389). This sampling includes cities from
different continents, with different concepts of planning and different history
of the evolution and growth of the city and its PTN. For the purpose of this
paper let the PTN of a given city be given by the routes offered in this network.
Each route services a given ordered list of stations. Representing the PTN in
terms of a graph, we apply the following mapping: each station is represented
by a node; any two nodes that are successively serviced by at least one route
are connected by a single link. We note that there are several other ways to
represent a PTN as a graph [3, 4, 19, 20]. The particular representation that
we use here is referred to as a L-space in Refs. [3, 4, 20].

The importance of a node i of a given network N may be measured by
calculating a number of graph theoretical indicators. Besides the node degree
ki, which in our representation equals the number of nearest neighbours z1(i)
of a given node i, different centralities of the node may be defined as follows
(see e.g. [21]):

closeness centrality CC(i) =
1∑

t∈N �(i, t)
, (1)

graph centrality CG(i) =
1

maxt∈N �(i, t)
, (2)

stress centrality CS(i) =
∑

s�=i �=t∈N
σst(i), (3)

betweenness centrality CB(i) =
∑

s�=i �=t∈N

σst(n)
σst

. (4)

In Eqs. (1)–(4), �(i, t) is the shortest-path length between a pair of nodes i, t
that belong to a network N , σst is the number of shortest paths between two
nodes s, t ∈ N , and σst(i) is the number of shortest paths between nodes s
and t that go through the node i. When observing a network under attack we
will also record the next nearest neighbours z2(i) and the clustering coefficient
C(i) of all remaining nodes n. The latter is the ratio of the number of links
Ei between the ki nearest neighbours of i and the maximal possible number
of mutual links between them:

C(i) =
2En

ki(ki − 1)
. (5)

Note that the mean values of all the above introduced quantities are well-
defined for a connected network N . However, some of the analysed PTNs
consist of several disconnected components even before any perturbation is
applied. Moreover, the number of components naturally increases when nodes
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are removed. Therefore, we restrict averages of the observables to the largest
network component GCC ⊂ N . We will indicate these averages by an over-
line. Nevertheless, some of quantities are also well defined for the whole net-
work, the corresponding average will be denoted by angular brackets. An
example we note the inverse shortest path length:

〈�−1〉 =
2

N(N − 1)

∑
i>j

�−1(i, j) (6)

where the summation spans over all N sites of the (possibly disconnected)
network and defining �−1(i, j) = 0 if nodes i, j are disconnected. Note that in
this case 〈�〉 is obviously ill-defined.

In what follows, we will pursue a number of different attack strategies or
selection rules and criteria to remove the nodes (vertices). In particular, the
scenarios are the following. “Random vertex” (RV): vertices (nodes) are re-
moved in random order. “Random neigbour” (RN): one by one, a randomly
chosen neighbour of a randomly chosen node is removed. This scenario ap-
pears to be effective for immunization problems [22] and it is based on the
fact, that this way nodes with a high number of neighbors will be selected with
higher probability. In further scenarios nodes are removed according to the
lists prepared in the order of decreasing node degrees (k), centralities (C(C),
C(G), C(S), C(B)), the number of their second nearest neighbours (z2), and
increasing clustering coefficient (C). The latter seven scenarios can be either
implemented according to lists prepared for the initial PTN before the at-
tacks (we indicate the corresponding scenario by a subscript i, e.g. Ci(C)) or
the list is built by recalculating the order of the remaining nodes after each
step. This way we follow sixteen different strategies in attacking the networks.
The observed changes of the properties of the PTN under these attacks are
described in the next section.

3 Numerical Results

The theory of complex networks is concerned with the properties of ensembles
of networks (graphs) that are characterized e.g. by common construction rules.
Such an ensemble is said to be in the percolation regime if even the infinite
graphs in this ensemble have a connected component that contains a finite
fraction of their nodes. This component is referred to as the giant connected
component GCC. If the ensemble properties are controlled by some parame-
ter, e.g. the concentration of active nodes, then the percolation threshold in
terms of this parameter is defined as the value at which the network ensemble
enters the percolation regime. In the present case of finite networks we denote
by GCC the largest connected component of a given network. For the finite
networks defined by the PTN we analyze the behaviour of the their largest
component that contains NGCC nodes. We introduce the normalized largest
component size S by:



Attack Vulnerability of Public Transport Networks 725

S =
NGCC

N
× 100%. (7)

In Fig. 1 we show the behavior of S for the attack strategies described above
for the PTNs of Dallas and Paris. At each step of the attack 1% of the nodes

Fig. 1. Attacks on PTNs of (a) Dallas and (b) Paris. Each curve corresponds to a
different attack scenario as indicated in the legend, see text. Horizontal axis: percents
of removed nodes, Vertical axis: normalized size S of the largest component.

is successively removed following the selection criteria of the given scenarios.
The effectiveness of the attack scenarios may be judged by their impact on the
value of S. As it is clearly seen from Fig. 1, the least effective is the scenario
of removing random nodes (RV): it is characterized by the slowest decrease of
S. Another obvious conclusion is that scenarios based on lists calculated for
the initial network (marked by a subscript i) appear to be less harmful than
those, that are based on recalculated lists. Note however that the difference
between ‘initial’ and ‘recalculated’ scenarios is less evident in the strategies
based on the local characteristics, as e.g. the node degree or the number of
second nearest neighbours (c.f. curves for k, ki and z2, z2i, respectively). The
above difference is even more pronounced for the centrality-based scenarios.
A principal difference between attacks on the highest degree nodes on the one
hand, and on the highest betweenness nodes on the other hand is that the
first quantity is a local, i.e. is calculated from properties of the immediate
environment of each node, whereas the second one is global. Moreover, the
first strategy aims to remove a maximal number of edges whereas the second
strategy aims to cut as many shortest paths as possible. Our analysis shows
that the most effective are those scenarios that are either targeted at nodes
with the highest values of the node degree k, the betweenness centrality CB ,
the next nearest neighbour number z2, or the stress centrality CS recalculated
after each step of the attack. Figures 2, 3 show that the order of destructiveness
of these scenarios differ for PTNs of different cities. However, among the
scenarios analyzed so far these four appear to be the most effective ones.
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Fig. 2. Four attack scenarios for different PTNs (with recalculation): attacks tar-
geted at nodes of the highest (a) degree k, (b) number of second neighbours z2, (c)
betweenness centrality CB , or (d) stress centrality CS . Vertical and horizontal axis
as in Fig. 1.

Another interesting quantity that we may deduce from Fig. 2 is the vul-
nerability of the network in terms of the level of destruction at which the
largest network component breaks down. We observe that this is strongly cor-
related to the initial value of the so called Molloy-Reed parameter κ = z2/z1
of the unperturbed network. Considering model networks that are randomly
built from sets of nodes with given degree distributions it has been shown
that the value of κc = 1 represents the percolation threshold in such networks
[22, 23]. A value much larger than κc then indicates a significant distance
from the threshold. The values of this parameter for the PTN studied here
are: Dallas (κ = 1.28), Istanbul (1.54), Los Angeles (1.59), Hamburg (1.85),
London (1.87), Berlin (1.96), Düsseldorf (1.96), Rome (2.02), Sydney (2.54),
Hongkong (3.24), São Paolo (4.17), Paris (5.32), Moscow (6.24). Comparing
in particular with Fig. 2 a) we find indeed that the higher the initial κ value
the less vulnerable the network appears to be.

To more precisely define the threshold region for the concentration of re-
moved nodes we observe the behaviour of the maximal �max and mean � short-
est path lengths under attack, as shown in Fig. 3. We focus on the recalculated
degree scenario (k). Both maximal and average path lengths display similar be-
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haviour: initial growth and then an abrupt decrease when a certain threshold
is reached. Obviously, removing the nodes initially increases the path lengths
as deviations from the original shortest paths need to be taken into account.
Further removing nodes then at some point leads to the breakup of the net-
work into smaller components on which the paths are naturally limited by the
boundaries which explains the sudden decrease of their lengths. For the PTN
of Paris we observe that this threshold is reached for both lmax and � at the
same value of csegm � 13%. The average shortest path on all components of
the network, 〈�〉, also possesses a maximum in the same region (for the PTN
of Paris it occurs at c � 13%). However, the values of csegm differ for different
cities (see Fig. 3b) and obviously strongly depend on the attack scenario.

Fig. 3. Highest degree scenario. Horizontal axis as in Fig. 1. (a) Behavior of the
maximal and mean shortest path lengths for the Paris PTN calculated for the largest
component (�max, �) and for the whole network (�max,f , 〈�〉f). Note a sharp maximum
occurs at 13 % of removed nodes (stations) for �max, �, �max,f . (b) Behavior of the
maximal shortest path length �max for the PTNs of different cities.

As discussed the observed maximum in �max (or in �) appears to be a
suitable criterion to identify the values of c (or at least the region in c),
where the segmentation of a network occurs. Other observables which resemble
an ‘order parameter’, are the above described largest connected component
size S, Eq. (7), or the average value of the inverse shortest path 〈�−1〉 (6)
are less suitable for this purpose because of their rather smooth behaviour. In
Fig. 4 we show for PTNs of fourteen cities the behavior of 〈�−l〉 under attacks
following the four most harmful scenarios, i.e. the recalculated highest k, CB

z2 and CS scenarios. Comparing the impact of different attack scenarios (as
seen in particular in Fig. 3, 4) one notices that the apparent relative impact
strongly depends on the choice of the observable (e.g. S or 〈�−l〉).

It is worth to note the statistical origin of the data exposed so far. Different
instances of the same scenario may differ to some extent. This is obvious for
the random RV or RN scenarios, where the nodes are removed according to a
random procedure. However, it remains true even for the attacks following pre-
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ordered lists of nodes. Obviously, several nodes may have the same value with
respect to a given characteristic (e.g. k, z2, or one of the centrality indices).
Then, the choice between these nodes is random. To check the dispersion of
the results, Figs. 5, 6 show the results of 10 complete attack sequences for the
same scenario. Figure 5 shows the change in the largest connected component
S of the PTNs of Dallas (a), Hongkong (b), and Paris (c) for the random
vertex (RV) scenario. The scatter of the curves in each figure provides an

Fig. 4. Behaviour of 〈�−l〉 for PTNs of different cities under attack following four
different scenarios, see text: a) highest k, b) highest CB , c) highest z2, d) highest
CS . Horizontal axis as in Fig. 1.

idea about the deviations between individual samples. The figures also clearly
show that even attacked randomly, PTNs of different cities may display a
range of different behaviour: from the comparatively fast decay of the largest
connected component (as in the case of Dallas, Fig. 5a) to very slow, nearly
linear decay (as in the case of Paris, Fig. 5c).

The dispersion in the largest connected component size S is much less for
sequences of targeted attacks. In Fig. 6 we show the behavior of the largest
cluster size and the maximal and mean shortest path lengths for the Paris
PTN for ten complete attack sequences following the recalculated degree (k)
scenario. Besides a rather narrow scattering of the data for S one notes, that
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Fig. 5. Impact and variance of the random vertex (RV) scenario on the normalized
size S of the largest component for the PTNs of (a) Dallas, (b) Hongkong, and (c)
Paris. Ten curves of different colour indicate different instances of the same scenario
for each city. Vertical and horizontal axis as in Fig. 1.

within the current resolution the locations of the maxima in �max and � are
very robust.

To give an idea for the numerical values of different characteristics of the
PTN as monitored during our analysis we display in Table 1 some data for
the PTN of Paris for the recalculated degree scenario for some points of the
sequence between the unperturbed network and the vicinity of the threshold
(maximum of the shortest path lengths).

Fig. 6. Ten instances of the recalculated highest degree scenario for the PTN of
Paris, observing: a) the largest connected component size S, b) the maximal shortest
path length �max, c) the mean shortest path length �. Horizontal axis as in Fig. 1.

4 Conclusions

In this paper we reported on some results concerning the behavior of PTNs un-
der attacks. Similar to other real-world and model complex networks [5–9, 15],
the PTNs manifest very different behaviour under attacks of different scenar-
ios. With some notable exceptions they appear to be robust to random attacks
but more vulnerable to attacks targeted at nodes with particular importance
as measured by the values of certain characteristics (the most significant be-
ing the first and second neighbour numbers, as well as the betweenness and
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Table 1. PTN of Paris during an attack sequence following the recalculated degree
scenario. c: % of removed nodes; N : number of remaining nodes; k = z1: mean
node degree; z2/z1: ratio of the mean second to the mean first nearest neighbour
number; �max: maximal shortest path length; �: mean shortest path length; 〈�−1〉:
mean inverse shortest path length (for all of the remaining network); CC , CG, CS ,
CB : mean closeness, graph, stress, and betweenness centralities; C: mean clustering
coefficient; S: normalized largest component size.

c N k = z1 z2/z1 �max � 〈�−1〉 CC CG CS CB C S

0 3728 3.73 5.32 28 6.41 0.17 0.004 5.47 38167 10062 0.079 99.87
1 3691 3.25 3.40 34 8.08 0.13 0.003 4.64 40419 12912 0.073 97.85
5 3543 2.52 2.05 41 13.35 0.07 0.002 3.60 50496 20439 0.062 88.81
10 3358 2.00 1.43 70 24.84 0.03 0.002 2.02 53654 30406 0.044 68.45
12 3284 1.84 1.25 93 39.44 0.01 0.001 1.42 56218 36097 0.036 50.40
13 3247 1.77 1.19 115 41.49 0.01 0.003 1.21 31803 18404 0.039 24.41
14 3210 1.70 1.13 67 29.69 0.00 0.008 1.90 11915 6598 0.022 12.37

stress centralities). The observed difference between attack scenarios based on
the initial and the recalculated distributions shows that the network structure
changes essentially during the attack sequence. This is necessarily to be taken
into account in the construction of efficient strategies for the protection of
these network.

As a suitable criterion to identify the level of resilience, i.e. the number of
removed nodes that leads to segmentation it is useful to observe the behaviour
of the maximal shortest path length �max. For the majority of PTNs networks
we have analyzed here this observable displays a sharp maximum as function
of the removed node concentration which indicates the breakup of the network.
Other ‘order-parameter-like’ variables like the largest connected component
size S or the average value of the inverse shortest path 〈�−1〉 are less suitable
for this purpose because of their smooth behaviour. Another observation is
that in the recalculated highest-degree attack scenario for the segmentation
often occurs at a value of κ = z2/z1 ∼ 1 (see e.g. Table 1 for Paris). Al-
though the PTNs are correlated structures, the above estimate resembles the
Molloy-Reed [23] criterion for randomly built uncorrelated networks. Further
investigation is needed to understand the mechanisms that lead to higher re-
silience against random failure as observed e.g. for the Paris network and how
this behavior is related to the network architecture.

As mentioned in the introduction, there are different graph representa-
tions, also called ‘spaces’, for a given PTN [3, 4, 19, 20]. These will also lead
to different connectivity relations and path lengths between nodes. The re-
silience of PTNs in these more general ‘spaces’ will be discussed elsewhere [18].



Attack Vulnerability of Public Transport Networks 731

Acknowledgements

Yu.H. acknowledges financial support of the Austrian Fonds zur Förderung
der wissenschaftlichen Forschung under Project P19583. C.v.F. was supported
in part by the EC under the Marie Curie Host Fellowships for the Transfer of
Knowledge MTKD-CT-2004-517186.

References

1. M. E. J. Newman: SIAM Review 45, 167 (2003); R. Albert, A.-L. Barabási:
Rev. Mod. Phys. 74, 47 (2002); S. N. Dorogovtsev, S. N. Mendes: Evolution of
Networks, (Oxford University Press, Oxford, 2003); Yu. Holovatch, A. Olemskoi,
C. von Ferber et al.: J.Phys. Stud. 10, 247 (2006).

2. J. W. Essam: Rep. Prog. Phys. 43, 833 (1980); D. Stauffer, A. Aharony: Intro-
duction to Percolation Theory, (Taylor & Francis, London, 1991).

3. C. von Ferber, T. Holovatch, Yu. Holovatch, V. Palchykov: Physica A 380, 585
(2007).

4. C. von Ferber, T. Holovatch, Yu. Holovatch, V. Palchykov: Modeling Metropolis
Public Transport. In Traffic and Granular Flow ’07. Springer (2007).

5. R. Albert, H. Jeong, A.-L. Barabási: Nature (London) 406, 378 (2000).
6. Y. Tu: Nature (London) 406, 353 (2000).
7. H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, A.-L. Barabási: Nature (London)

407, 651 (2000).
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Summary. In this paper, the traffic flow on weighted scale-free networks is inves-

tigated based on local routing strategy using link weights: Pl→i =
wα

li∑
j

wα
lj

. The

capacity of links is controlled by max(βwlj , 1). It is shown by simulations that two
critical threshold βc1 and βc2 exist. When β > βc1, both the network capacity and
the corresponding αc value remain unchanged. When βc1 > β > βc2, the network
capacity decreases and the critical value of αc increases with the decrease of β. When
β < βc2, αc decreases with the decrease of β. The behaviour can be explained by
investigating the average number of packets on nodes and delivered through links.

1 Introduction

Traffic flow problem is of great importance for modern society and for the
safety and convenience of metropolitans. And due to the importance of large
communication networks such as the Internet and WWW, many investigations
have been focused on ensuring free traffic flow and avoiding traffic congestion
on networks [1–7].

Recently, empirical evidences show that many traffic systems can be de-
scribed by complex networks with the small world [8] and/or scale-free prop-
erties [9]. A wide range of systems in nature and society can be related to
complex networks. The prototypes include urban road [10], bus route [11, 12],
railway [13] and airline transport systems [14]. The traffic flow can be modelled
by introducing packets generating rate R and random origin and destination
(OD) for each packet [5–7, 15–17]. And the capacity of networks are mea-
sured by a critical generating rate Rc. At this critical rate, a continuous phase
transition from free flow state to congested state occurs. The free flow state
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corresponds to the case that the numbers of created and delivered packets
are balanced. While the jammed state means that the number of accumulated
packets increases with time due to the limited delivering capacity or finite
queue length of each node. And packets are forwarded following the random
walking [15, 18], the shortest path [16], the efficient path [17], the nearest-
neighbor search strategy [19–21], the next-nearest-neighbor search strategy
[22], the local information [19–21] or the integration of local static and dy-
namic information [23]. These routing methods are more or less similar to the
real cases in engineering.

In most of the real cases, the networks are often associated with a large het-
erogeneity in the capacity and intensity of the connections, i.e., most networks
are weighted networks. The traffic load is often represented by the weight of
links also [24]. However, the traffic dynamics have been investigated only in
unweighted networks up to now. And the previous traffic routing strategies
have been focused on how to navigate the packets by using local or global
node information (mainly by using node degree). In this paper, a study of
traffic dynamics in a weighted scale-free network is carried out with a new
traffic model in which packets are guided based on local link information with
a single tunable parameter α. To maximize the capacity of the networks which
can be measured by the critial packet generating rate Rc, the optimal αc is
sought out. And the traffic load distribution among nodes and links are also
studied to give an explanation for the optimal α value.

2 Network and Traffic Model

To generate the underlying network infrastructure, this paper uses the weighted
scale-free network model proposed by Wang et al [25], in which the power-law
distributions of degree, weight, and strength are all in good accordance with
real observation of weighted technological networks. In this model, starting
from m0 nodes fully connected by links with assigned weight w0, the sys-
tem is driven by two mechanics: (1) the strength dynamics: the weight of
each link connecting i and j is updated as wij → wij + 1, with probability
Pij =W × pij =W × sisj∑

a<b
sasb

; (2) the topological growth: a new node n is

added with m links that are randomly attached to a node i according to the
strength preferential probability Πn→i = si∑

j
sj

, where j runs over all existing

nodes.
The traffic dynamics is modelled as follows. At each time step, R packets

are generated homogeneously on the nodes in the system. We treat all the
nodes as both hosts and routers and assume that node i can deliver at most
si packets per time step towards their destinations, where si denotes strength
of node i, i.e., the capacity of the nodes are set to Ci = si. To navigate the
packets, all the nodes perform a parallel local search among their immediate
neighbours. If a packet’s destination is found within the searched area of
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node l, i.e. the immediate neighbours of l, the packets will be delivered from
l directly to its target and then removed from the system. Otherwise, the
packet will be delivered to a neighboring node i with link weight preferential
probability:

Pl→i =
wα

li∑
j w

α
lj

, (1)

where wli is the weight of the link connecting nodes l and i, the sum runs
over the immediate neighbours of the node l, and α is an introduced tunable
parameter characterizing the preferential probability in chosing links to for-
ward packets. The capacity (or bandwidth) of the link connecting nodes l and
i is set to Bli = max(βwli, 1), i.e., the link can handle at most Bli packets
from each end per time step. When the link capacity is reached, the delivery
of packets will be delayed and wait for next time step. During the evolution
of the system, the FIFO (first-in-first-out) rule is applied on the nodes.

Fig. 1. (a) The order parameter η versus R for weighted scale-free networks with
different routing parameter α. Other parameters are networks size N = 1000, m0 =
m = 5, W = 2 and β = 1. (b) Overall network traffic capacity characterized by the
critical value of Rc with fixed W = 2 and different β values. The optimal values of
αc corresponding to the maximum Rc are sought out.

3 Simulation and Results

To characterize the network capacity, we investigate the order parameter:

η(R) = lim
t→∞

1
R

〈ΔNp〉
Δt

. (2)

Here ΔNp = Np(t + Δt) − Np(t), 〈. . .〉 denotes taking the average over a
time window of width Δt, and Np(t) is the number of packets in the system
at time t. As shown in Fig. 1(a), when R < Rc, 〈ΔN〉 = 0 and η(R) = 0,
corresponding to the case of free-flow state, in which the numbers of added
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and removed packets are balanced; while η(R) increases suddenly from zero
at R = Rc. Therefore a phase transition occurs at R = Rc when congestion
emerges and spreads in the system, and packets will continuously accumulate
in the system. Hence, the system overall handling and delivering capacity can
be measured by the critical value of Rc.

Our simulations show that when β →∞, i.e., when the capacity of every
link is very large, the maximum network capacity is reached when α is slightly
larger than 1.0. Figure 1(b) shows the overall traffic capacity measured by Rc

vs α with different β values. One can see that both the network capacity
and the value of αc remain unchanged provided β is larger than a threshold
βc1 ≈ 5. The maximum capacity always appears at αc = 1.2 with Rc ≈ 313.
This behaviour implies that when β > βc1, the links are operating efficiently
under their maximum capacity, and the network capacity is mainly controlled
by the node capacity. When βc1 > β > βc2 ≈ 1, the system’s overall capacity
decreases rapidly, and the αc value increases with the decrease of β. This is
because the capacity of some links will be reached from time to time, and
thus the delivery of some packets are delayed, and accordingly the network
capacity decreases. Nevertheless, when β becomes smaller than the second
threshold βc2 ≈ 1, αc begins to decrease with the decrease of β. As we can see
in Fig. 1(b), when β = 0, i.e., all links have the same capacity that is equal
to one, the system’s maximum capacity appears at αc = 0.1 with Rc = 25.

In addition, simulations also show that Rc tends to be a constant with the
decrease of α. This constant decreases with the decrease of β for βc2 < β < βc1.
When α < 0 and |α| is very large, the probability that links with large weight
are chosen to deliver packets is very small.

Recently, it was found that in a typical Barabasi-Albert network, the max-
imum traffic capacity appears at αc = −1.0 when the node capacity is set to
C = const [19]. This means to repel the packets from the central nodes and to
make them move along the periphery of the network. When considering the
heterogeneity of node capacity, they found that αc = 0.0 when C = k [19].
This means that random walk is the best strategy for the packets. Different
from previous results, it is shown here that using links with large value of
weight is better for the navigation of packets on weighted networks.

In the following, we give a heuristic explanation for the optimal αc value
by investigating the traffic load distribution on the network. In Fig. 2(a), we
investigate the average visits per node divided by the node strength (denoted
as ω) which can be useful to analyze the traffic load distribution among the
nodes. When α < 1.2, ω self-organizes to a power law, which implies that
the traffic burden of high-degree nodes is alleviated, while when α > 1.2, ω
is an increasing function with respect to S, which may lead to the collapse of
hub-nodes. When α = 1.2, ω essentially remains constant with respect to S.
At this point, the balance of node capacity with traffic load is achieved for
all nodes. This balance is useful as in this state no node will be more easy to
jam than others and thus the optimal traffic capacity will be achieved. This
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Fig. 2. (a) Average visits per node divided by the node strength, (b) Average
visits per link divided by the link weight. The other parameters are N = 1000,
m0 = m = 5, W = 2, R = 20 and β = 1.

conclusion is confirmed by our previous simulation result that the optimal αc

value is always located at 1.2 when β ≥ 5.
To explain why αc > 1.2 for low β value, we investigate the average visits

per link divided by the link weight (denoted as ζ) which reflects the traffic
load distribution along the links. Figure 2(b) shows ζ vs w (link weight) for
different α values. One can see that when α ≈ 2.0, ζ is roughly constant for all
the link weights. Thus we can see that the capacity of the links will be more
fully used when α is set to the value close to 2.0 for the case of β = 1, and
therefore the overall capacity of the system will be maximized. We also note
that ζ remains almost at the same value for links with weight w = 1. As in our
network model, the weights of most of the links in the system (≈ 95% links
in the simulation) are equal to one, this behaviour explains why the system’s
capacity will remain constant for negative α value.

Finally, we briefly introduce the effect of link weight growth rateW on the
packet traffic capacity. In general, the system’s overall capacity will increase
with the increase of W . Another interesting phenomenon is the optimal value
of routing parameter remains at the same value for different W values.

4 Conclusion and Discussions

In conclusion, the traffic on weighted scale-free network is studied with a
routing strategy based on local weight information. The study reveals some
new characteristics on weighted scale-free networks, which are different from
the traffic on well-organized lattice, on regular or random networks, and on
unweight scale-free networks. In general, the overall capacity decreases when
the bandwidth parameter of links (β) is below a critical value βc1. In most
cases, the optimal value of local routing parameter α appears at αc > 1.0.
And the αc value also depends on the bandwidth parameter. We give expla-
nations for the variation of αc by investigating the average visits per node and
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average visits per link, which are also important for studying the traffic load
distribution among the nodes and links.

Due to the many new features mentioned above, we can conclude that the
traffic dynamics on weighted networks is worthwhile to be explored by further
efforts of physics community. And the results reported here may be useful for
the design of traffic systems and the navigation of drivers.
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Summary. Vehicle-to-vehicle communication has become a very challenging topic
in recent years. Vehicles equipped with devices capable of short-range wireless con-
nectivity can form a mobile ad hoc network, called a Vehicular Ad-hoc NETwork
(VANET). In such networks, two vehicles which are not in the radio range of each
other can communicate by using other vehicles as relay.

Our work focuses on the efficiency of routing algorithm in VANET. A routing
algorithm is a distributed algorithm used by the nodes to learn the route to potential
destinations. There exists standardized routing protocols designed for ad-hoc net-
works. VANET is a particular ad hoc network where the nodes (vehicles) move very
fast. This introduces a high dynamism in the network topology which is difficult to
manage. So, we compare the performances of different existing routing protocols in
this context. We use two different simulators. The first is a traffic simulator which
emulates the vehicular traffic on a highway. It uses microscopic simulations. The sec-
ond is a network simulator (NS2) which simulates all the protocols (wifi, IP, UDP
and the routing protocols) used by the nodes to communicate. The simulations show
that reactive protocols are most efficient compared with geographical routing in a
VANET.

The remainder of the paper is organized as follows. In Section 1, we present
the microscopic traffic simulator. We present the network simulator and simulation
parameters in Section 2. Different routing protocols are presented in Section 3. The
simulation results are discussed in Section 4.

1 Traffic Simulator

The objective of our study is to analyze and evaluate the performance of ad
hoc routing protocols with a realistic simulation of traffic. The simulator we
use to model the traffic is a microscopic simulator. It emulates the individual
behaviour of vehicles taking into account the interaction between them.

We use a microscopic model in our simulations because we are interested
about the impact of individual characteristics (speed, geographical location,
. . . ) of vehicles on the performance of routing protocols. The location of vehicle
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is defined by the co-ordinates x, y, where the parameter y represents the lane
of vehicle.

The model we use is presented in [1]. The trajectory of a vehicle is deter-
mined by two models: lane changing model and a car-following model. The
car-following model includes three modes: emergency model, car-following and
free flow regime. If the time of contact with the vehicle ahead is smaller them
a certain threshold, the vehicle is in the emergency regime. The acceleration
an is given by:

an =

{
min

(
a−n , an−1 − 0.5 (vn−vn−1)

2

gn

)
, vn > vn−1;

min(a−n , an−1 + 0.25a−n ), vn ≤ vn−1.

If the time of contact with the vehicle ahead is larger than another threshold,
the car is in free flow regime. In this regime, the vehicle is not obstructed by
other vehicle. So, it tries to reach a certain desired speed. The acceleration an
is then given by:

an =

⎧⎪⎨
⎪⎩
a+n , if vn < v

target
n ;

0, if vn = vtarget
n ;

a−n , if vn > v
target
n .

When the time of contact is between the two thresholds, the vehicle is in car-
following regime. The acceleration is calculed by: an = α+−.

vβ+−
n

1 (vn−1− vn).
The other component of microscopic traffic simulator is the lane changing

model [1]. The location of vehicle in the lane and the changing of the lane
influences the traffic. The drivers take into account the vehicles on their lane
and on adjacent lane to improve their displacement.

The lane changing of a vehicle is modeled in the following way:

• The vehicle checks, whether it is satisfied with the condition of traffic on
its current lane,

• If it is satisfied, it stays in its lane,
• If not, it checks, if the conditions are more satisfactory, on the adjacent

lanes,
• If the conditions in the left lane are satisfactory, it examines the various

positions, which separate it from the vehicles which are behind and in front
on the target lane,

• If these distances do not allow displacement, then it continues its move-
ment on current lane.

2 Network Simulator

We use NS-2 (Network Simulator version 2) [2] for simulations. The result of
simulation is a trace which lists the various events. For the mobility of nodes,
we use a microscopic simulator of traffic to generate the movement of nodes.
The movements are inserted in NS2.
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For the data traffic, we assume that each vehicle is equipped with a wifi
card in ad hoc mode. The number of packets per second are defined, which
makes it possible to determine the arrival interval of packets. In the MAC
layer, each vehicle transmits using 802.11 characteristics with data rate of
2 Mbit/s and radio range of 250 meters. The mechanism RTS/CTS is sup-
ported. The RTS/CTS (Request to Send/Clear to Send) is broadcasted be-
tween a source and destination before sending data. RTS is a request to use
of the medium and CTS is the favorable answer. We use Two-Ray ground
propagation reflection model, which takes into account, the direct way and
reflection of the ground. The connections are etablished between vehicles ran-
domly chosen in the highway. For each connection a constant bit rate traffic
is generated.

The NS-2 simulations generate a trace file, containing the list of events
(sending, receptions of the packets). We use these files to analyze the perfor-
mance of routing protocols in terms of:

• Packet delivery Ratio (PDR) is the ratio of the amount of data received
by the destination and sent by the source.

• Delay is a time between the emission of data by the source and its reception
at the destination.

• Overhead routing load is the total number of control packets transmitted
by the nodes.

The overhead allows us to observe the scalability of a protocol. A protocol
which has a large number of routing packets has a higher probability of colli-
sions which decreases the capacity of the network.

Packet Delivery Ratio allows us to observe the ability of the protocols to
find a route to the destination.

3 Presentation of Protocols

We evaluate the performance of DSR, GPSR and AODV. GPSR (Greedy
Perimeter Stateless Routing protocol) [3] is a geographical routing protocol.
In GPSR, nodes are supposed to know their geographical location. The nodes
know their geographical location by using a geolocalization system like GPS.
The data packets are marked by the source to geographical location of destina-
tions obtained by a location service protocol [4]. A source or an intermediate
node forwards the packet in the greedy mode. The choice of next hop is the
neighbour geographically closest to the destination. The process is repeated
until the destination is reached. DSR (Dynamic Source Routing protocol) and
AODV (Ad Hoc On demand Distance Vector) are two reactive routing pro-
tocol. In DSR, when a node has data to send to another node, it checks in its
cache if it has a route to reach the destination. If it has, it uses this path to
forward the data packet, otherwise, it broadcasts a request packet. The de-
tailed description of DSR can be found in [5]. In AODV (Ad hoc On demand
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Distance Vector), when a source node wants to transmit a packet, it checks if
it has a route to the destination in the routing table. If it doesn’t have route,
it broadcasts a route request (RREQ) packet. Nodes receiving this request
check if they have a route to reach the destination. If any node has a route, it
unicasts a RREP back to the source. Otherwise, it rebroadcasts the RREQ.

4 Results

We simulate a highway of 14 km with 3 lanes (only one direction is taken
into account). The duration of each simulation is 150 second. Each point of
the figure represents values obtained from 50 samples. On all the graphs, the
vertical bars correspond to 95% confidence interval.

In Figure 1, we compare PDR of DSR, AODV and GPSR. The three
protocols DSR, AODV and GPSR show similar results. The losses in the case
of these three protocols are due primarily to the fact that the network is not
dense enough. The traces show that in DSR, AODV and GPSR the losses are
due mainly to the fact that there is no path between source and destination.
When densities of vehicle are high, the connectivity in network is significantly
better.

Fig. 1. PDR as a function of number of vehicle per lane and per km.

In Figure 2, we examine the average delay of data packets. DSR has the
highest delay with nearly all simulated data traffic. Its is due to the fact that
its route discovery process takes a long time compared to AODV and GPSR,
when we compare it with protocol GPSR without service of localization. When
a service of localization is added, we notice that the delay is more significant
in GPSR.

In Figure 3, we vary the number of connections. We notice that Packet
delivery ratio of all protocols decreases with number of connections. AODV,
DSR and GPSR generates a lot of control packets which cause congestion in
the network.
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Fig. 2. Delay as a function of the number of connections.

Fig. 3. PDR as a function of the number of connections.

In Figure 4, we plot the routing overhead with number of connections. DSR
demonstrates significantly lower routing overhead than AODV and GPSR.
AODV and DSR routing is stable with the number of connections which is
a favorable scalability property. In case of GPSR however, the increase in
routing packets is linear with the number of connections.

Fig. 4. Overhead in function of number of connections.
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5 Conclusion

A comparison between AODV, DSR and GPSR shows that reactive protocols
offer better performances than the geographical protocol. DSR and AODV not
only a very low overhead but also show a better rate of reception of packets.
The delay is always better with GPSR. The explanation of our results comes
owing to the fact that we use GPSR without service of localization but when
a service of localization is added, the end to end delay increases.
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Summary. The Internet has been reported to have scale-free structures in some
features. Its dynamical properties also have been reported to obey a power law.
The power-law fluctuations can be observed in longer time-scale than some days.
A scale-free structure of a network can not affect power-law behavior with simple
processes.

1 Introduction

The Internet is one of the most important media for modern communication.
On the contrary to the importance of the Internet, it has no global centers for
controlling the global structure and the data transmission. It is an autonomous
evolving network supported by modern technologies. The structure and trans-
port properties of the Internet have been attracting scientific interests from
the viewpoints of statistical physics [1].

One of the interesting features in the Internet is its scale-free structure in
physical and logical features. The degree distribution in IR (Internet Router)
or AS (Autonomous Systems) levels has been reported to obey a power law
[2]. The power-law degree distribution of web links also has been reported [3].

Internet traffic had been thought to be modeled by a Poisson process.
The validity of this assumption has clearly lost on the basis of various exper-
imental measurements [4]. Power-law properties of Internet traffic have been
investigated instead [5, 6].

The Internet is a man-made communication system. So the traffic on the
Internet is affected by human social activities. It contains daily periodicity
reflecting ones of social activities. To avoid the effect of the daily periodicity,
previous works have focused their attention to the time scale shorter than a
day. Can we find the power-law fluctuation in the longer time scale than a
day?

The power law fluctuations can be found in various observations. The
origins of such fluctuations have not be discussed clearly. We do not know
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that the scale-free structure of the Internet is an origin of the power-law
fluctuations in packet flow. Some simulation results will be shown in this
report.

2 Detrended Fluctuation Analysis

Power-law fluctuations have been discussed also in expressway traffic flow since
the pioneering work by Musha and Higuch [7]. The power-law fluctuations
have been analyzed in the longer range than a day by using the Detrended
Fluctuation Analysis (DFA) [8].

DFA is one of methods for analyzing non-stationary time series. It was
first developed for analyzing the long-range correlations in deoxyribonucleic
acid (DNA) sequences [9, 10].

The simplest form of the method applied to flow data is as follows. First
the profile y(t) of the flow q(t) at time t is defined:

y(t) =
T−1∑
τ=0

[q(τ)− 〈q〉] , (1)

where 〈q〉 = (1/T )
∑T−1

t=0 q(t) is the time average of the flow and T is the
length of the time sequence.

The entire sequence of length T is divided into T/l non-overlapping seg-
ments of length l. In the n-th segment the local trend ỹn(t) is defined by fitting
the profile y(t) in the segment. We employ the linear least-squares method to
fit the profile. This is called first-order DFA. For the entire sequence, the
detrended profile yl(t) is defined as the deviation of the profile y(t) from the
local trend ỹn(t):

yl(t) = y(t)− ỹn(t), if nl ≤ t < (n+ 1)l. (2)

The standard deviation of the detrended sequence is defined as the mean
square of the detrended profile:

F 2(l) =
1
T

T−1∑
t=0

y2l (t). (3)

We find the long-range correlations in the sequence by analyzing the depen-
dence of the deviation F (l) on the segment length l. If the deviation F (l)
behaves obeying a power law of l,

F (l) ∼ lα, (4)

the power spectrum P (k) of the sequence q(t) also obeys the power law

P (k) ∼ k−β , β = 2α− 1. (5)
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3 Internet Packet Flow

We observe Internet packet flow at a gateway of Saga University to Kyushu
University [11]. There we connect out university local area network (LAN)
to the science information network (SINET), the Japanese backbone network
for academic organizations. The bandwidth of the line is 100 MBps. The
data set was collected by a multi router traffic grapher (MRTG) system from
September 2005 to May 2006. The beginning part of the data is shown in the
left of Fig. 1.

Fig. 1. The packet flow observed by MRTG (left) and its profile (right).

Fig. 2. The standard deviation F (l) of MRTG data.

As discussed in Sect. 2, first we calculate the profile y(t) as shown in the
right of Fig. 1. Steep decreasing parts correspond to weekend inactiveness.
The standard deviation F (l) is shown in Fig. 2.
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The deviation F (l) shows a typical dependence on the segment length l.
This is the typical feature of periodic time sequences with power-law fluc-
tuations [12]. The bending point at one day long corresponds the dominant
periodicity.

Fig. 3. The profile of the modified packet flow.

The modified flow data q′(t) is defined by extracting the daily periodicity
from the raw flow data q(t). The profile for the modified data is shown in
Fig. 3. The daily periodicity almost vanishes. By applying DFA to the modified
data, the standard deviation is obtained as shown in Fig. 4. The exponent is
obtained as α ∼ 0.96. Namely the fluctuations around the daily periodicity
obey the power-law with α.

Fig. 4. The standard deviation F (l) of modified MRTG data.
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4 Random Walk in Networks

As shown in the previous section, the packet flow in the Internet shows the
power-law fluctuations. Power-law fluctuations can be observed in various
systems. We do not know any systematic explanation of the origins of power-
law fluctuations.

For Internet packet flow, there are some exclusion and queuing mechanisms
such as queuing in routers and exclusion in Ethernets. These mechanisms are
pointed to be a key feature of power-law behavior [6].

On the contrary, the relation between the scale-free structure and power-
law behavior in the Internet has not been discussed well. In this section, very
simple simulation results are shown.

A Barabási-Albert scale-free network is prepared [3]. As the Initial state
of a network growth process, the network has two nodes connected with two
links. Every time step of the growth a new node is created. The new node
selects one of existing nodes with probability proportional to its degree. The
growing process continues till the number of nodes reaches to the fixed size N .
For comparison, a regular two-dimensional lattice network is also prepared.

At the Initial state of the dynamics, every node has ten packets in it. Every
time step, each packet selects one of neighboring nodes as the next hop. All
packets hop to their next node simultaneously. Namely the simulation neglects
effects of finite queue size of routers, routing and source-destination data of
packets, which are fundamental features of the Internet. So the simulation
results reflect the network structure.

Ik Ik

k k

Fig. 5. Power spectrum of the load of a central node for Barabási-Albert (left) and
regular lattice (right) networks.

The number of packets stored at a central node is observed as the load of
the node. Its power spectrum is shown in Fig. 5. We can not observe power-law
features in both networks. Namely scale-free structure can not simply affects
its dynamical properties.
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5 Summary

Long-term power-law fluctuations are observed at a gateway to the Internet.
This report shows the DFA result for the in-going packet flow. The out-going
packet flow also shows the power-law fluctuations. So the power-law behavior
seems to be universal in the Internet packet flow.

There are some possible candidates as the origin of power-law fluctuations
in the Internet. This report provides limited results with simulations. The
simulations show that a scale-free structure of a network can not simply induce
power-law dynamical properties.
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CNRS (UMR 8627)
Université Paris-Sud 11
Bâtiment 210
F-91405 Orsay Cedex
France
Cecile.Appert-Rolland@
th.u-psud.fr

Igor S. Aranson
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439
USA

Riccardo Artoni
Dipartimento di Principi e Impianti
di Ingegneria Chimica “I. Sorgato”
Università di Padova
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2 avenue du GénéralMalleret Joinville
F 94114 Arcueil
France
lebacque@inrets.fr

Ludovic Leclercq
Laboratoire Ingénierie Circulation
Transports
ENTPE / INRETS
Université de Lyon
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