
 

Chapter 8  
Information Entropy Based Planning 

In this chapter, we present an approach with information entropy based sensor 
planning for reconstruction of freeform surfaces of 3D objects. To achieve the 
reconstruction, the object is first sliced into a series of cross-section curves, with 
each curve to be reconstructed by a closed B-spline curve. In the framework of 
Bayesian statistics, we propose an improved Bayesian information criterion (BIC) 
for determining the B-spline model complexity. Then, we analyze the uncertainty of 
the model using entropy as the measurement. Based on this analysis, we predict the 
information gain for each cross section curve for the next measurement. After 
predicting the information gain of each curve, we obtain the information change for 
all the B-spline models. This information gain is then mapped into the view space. 
The viewpoint that contains maximal information gain about the object is selected 
as the Next Best View. Experimental results show successful implementation of the 
proposed view planning method for digitization and reconstruction of freeform 
objects. 

8.1 Overview  

This chapter presents an information entropy based viewpoint planning method 
for the digitization and reconstruction of a 3D freeform object. The object is sliced 
into a set of cross section curves and a closed B-spline curve is used to reconstruct 
each cross section curve by fitting to partial data points. An information criterion 
is developed for selecting the B-spline model structure. Based on the selected 
B-spline model, we use information entropy as the uncertainty measure of the 
B-spline model and analyze the uncertainty of each B-spline cross section curve 
to predict the information gain for new measurements to be taken. As a result, we 
can obtain the prediction of the information gain about the object. The 
information gain is then mapped to the view space. The view that has the maximal 
information gain on the object is then selected as the Next Best View (NBV). The 
proposed information entropy based viewpoint planning procedure is illustrated 
in Fig. 8.1. 
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Fig. 8.1. Information entropy based viewpoint planning 

 
This work is novel concerning the parameter estimation for the NBV problem. In 

contrast to Whaite’s method (1997), here we analyze and reconstruct a B-spline 
model in the framework of Bayesian statistics. The B-spline model is more 
powerful in describing objects than a super-ellipsoid. In addition, we introduce the 
principle of model selection by which the proposed improved BIC criterion makes 
the B-spline model adaptable when newly acquired data are available. The rest of 
this chapter is organized as follows. In Sect. 8.2, we describe the reconstruction of 
cross section curves with closed B-splines and introduce the modified BIC for 
selecting a B-spline model structure. In Sect. 8.3, we define the information entropy 
of B-spline model to analyze its uncertainty and predict the information gain on an 
object. In Sect. 8.4, we evaluate the visibility of candidate viewpoints for selecting 
NBV. Finally, we present the experimental results in implementing the proposed 
method in Sect. 8.5 followed by conclusions in Sect. 8.6. 

8.2 Model Representation 

For object surface reconstructions, the 3D shape can be divided into a series of 
cross section curves each representing the local geometrical feature of the object. 
These cross section curves can be described by a set of parametric equations. For 
reconstruction purposes using parametric equations, the most common methods 
include spline functions (e.g. B-splines) (Fernand and Wang 1994), implicit 
polynomials and superquadrics (e.g. superellipsoids) (Whaite 1997). Compared 
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with implicit polynomials and superquadrics, B-splines have the following main 
advantages:  
 Smoothness and continuity, which allows a curve to consist of a concatenation of 

curve segments, yet be treated as a single unit; 
 Built-in boundedness, a property which is lacking in implicit or explicit 

polynomial representation whose zero set can shoot to infinity; 
 Parameterized representation, which decouples the x, y coordinates to be treated 

separately. 

8.2.1 Curve Approximation  

Let a closed cubic B-spline curve consist of n+1 curve segments, defined by  
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where )](),([)( tytxtp is a point on the B-spline curve with location parameter 
t. Bj,4(t) is the j
following uniform knots vector 
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The amplitude of Bj,4(t) is in the range of (0.0, 1.0), and the support region of 
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squared residual errors between the data points and their corresponding points on 
the B-spline curve, i.e.  
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From the cyclical condition of control points in (8.3), there are only n+1 control 
points to be estimated. The LS estimation of the n+1 control points are obtained 
from the curve points by minimizing d 2 in (8.4) with respect to 
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. By factorization of the B-spline, two 
separate solutions are obtained in the matrix as follows 

 th  normalized  cubic  B-spline  basis  function  defined  over  the  
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Here, we adopt the chord length method, which is the most popular one, for the 
parameterization of the B-spline. The chord length L of a curve is calculated as 
follows 
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where 11 rrm for a closed curve. The ti associated with the point qi is given as 
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where t1 = 0 and tmax = n + 1.  

8.2.2 Improved BIC Criterion  

It is known that for a given set of measurement data, there exists a model of optimal 
complexity corresponding to the smallest prediction (generalization) error for 
further data. The complexity of a B-spline model of a surface is related to its control 
point (parameter) number (Fernand and Wang 1994). If the B-spline model is too 
complicated, the approximated B-spline surface tends to over-fit noisy 
measurement data. If the model is too simple, then it is not capable of fitting the 
measurement data, making the approximation results under-fitted. The problem of 
finding an appropriate model, referred to as model selection, is important for 
achieving a high level generalization capability. Model selection has been studied 
from various standpoints in the field of statistics, including information statistics, 
Bayesian statistics, and structural risk minimization. The Bayesian approach 
(Djuric 1998, Torr 2002) is perhaps the most general and most powerful model 
selection method. Based on posterior model probabilities, the Bayesian approach 
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estimates a probability distribution over an ensemble of models. The prediction is 
accomplished by averaging over the ensemble of models. Accordingly, the 
uncertainty of the models is taken into account, and complex models with more 
degrees of freedom are penalized.  

Given a set of models {Mk, k = 1, 2, …, kmax}and data r, the Bayesian approach 
selects the model with the largest posterior probability. The posterior probability of 
model Mk is 
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where p(r |Mk) is the integrated likelihood of model Mk and p(Mk) is the prior 
probability of model Mk. To find the model with the largest posterior probability, 
we evaluate p(Mk | r) for max,,2,1 kk  and select the model that has the 
maximum p(Mk | r), that is 
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Here, we assume that the models have the same likelyhood a priori, so that p(Mk) 
= 1/kmax, (k = 1, 2, … , kmax). Therefore, the model selection in (8.8) will not be 

affected by p(Mk). This is also the case with max

1
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To calculate the posterior probability of model Mk, we need to evaluate the 
marginal density of data for each model p(r |Mk), which requires multidimensional 
integration 
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where k is the parameter vector for model Mk, p(r | k, Mk) is the likelihood and 
p( k | Mk) is the prior distribution for model Mk. 

In practice, calculating the multidimensional integration is very hard, especially 
for obtaining a closed-form analytical solution. The research in this area has 
resulted in many approximation methods for achieving this. The Laplace’s 
approximation method for the integration appears to be a simple one and has 
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become a standard method for calculating the integration of multi-variable 
Gaussians (Torr 2002). This yields 
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where k
ˆ is the maximum likelihood estimate of k, dk denotes the number of 

parameters (control points for B-spline model) in model Mk, and )ˆ( kH is the 

Hessian matrix of ),|(log kk Mp r evaluated at k
ˆ , 
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This approximation is particularly good when the likelihood function is highly 
peaked around k

ˆ .  his  is  usually  the  case  when  T the  number  of  data  samples  is  

large. Neglecting the terms of )|ˆ( kk Mp and using log in the calculation, the 
posterior probability of model Mk becomes 
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The likelihood function ),ˆ|( kk Mp r of a closed B-spline cross section curve 
can be factored into x and y components as 
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where kx
ˆ and ky

ˆ  can be calculated by (8.5) .  
Consider the x component. Assuming that the residual error sequence is zero 

mean and white Gaussian with variance )ˆ(2
kxkx ,  we have the following 

likelihood function 
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with ),ˆ(2
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Similarly, the likelihood function of the y component can also be obtained. The 
corresponding Hessian matrix kĤ of ),|(log kk Mp r evaluated at k

ˆ  is  
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Approximating |)ˆ(|log
2
1

kH by the asymptotic expected value of Hessian 
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2
1 mdd kykx , we can obtain the Bayesian information criterion (BIC) for 

selecting the structure of the B-spline curve  
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where dkx and dky are the number of control points in the x and y directions 
respectively, m is the number of data points. 

 In the conventional BIC criterion as shown in (8.19), the first two terms measure 
the estimation accuracy of the B-spline model. In general, the variance 2ˆ k  
estimated from (8.17), tends to decrease with the increase in the number of control 
points. The smaller the variance value in 2ˆ k , the bigger the value of the first two 
terms (as the variance is much smaller than one) and therefore the higher the order 
(i.e. the more control points) of the model resulting from (8.19). However, if too 
many control points are used, the B-spline model will over-fit noisy data points. An 
over-fitted B-spline model will have a poor generalization capability. Model 
selection thus should achieve a proper tradeoff between the approximation accuracy 
and the number of control points of the B-spline model. With a conventional BIC 
criterion, the same data set is used for estimating both the control points of the 
B-spline model and the variances. Thus the first two terms in (8.19) cannot detect 
the occurrence of over fitting in the B-spline model selected. In theory, the third 
term in (8.19) could penalize over-fitting as it appears directly proportional to the 
number of control points used. In practice, however, we note from our experience 
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that the effect of this penalty term is insignificant compared with that of the first two 
terms. As a result, the conventional BIC criterion is rather insensitive to the 
occurrence of over-fitting and tends to select more control points in the B-spline 
model to approximate the data point, which normally results in a model with poor 
generalization capability.  

The reason for the occurrence of over-fitting in a conventional BIC criterion lies 
in the way the variances kx

2 and ky
2 are obtained. A reliable estimate of kx

2 and 
ky

2 should be based on re-sampling of the data. In other words, the generalization 
capability of a B-spline model should be validated using another set of data points 
rather than the same data used in obtaining the model. To achieve this, we divide the 
available data into two sets: a training sample and a prediction sample. The training 
sample is used only for model estimation, whereas the prediction sample is used 
only for estimating the data noise kx

2 and ky
2. For a candidate B-spline model Mk 

with dkx and dky control points in x and y directions, the BIC in (8.19) is thus 
evaluated via the following two steps: 
1. Estimate the model parameter k

ˆ  using the training sample by (8.5); 
2. Estimate the data noise 2 using the prediction sample by (8.17).  

If the model k
ˆ fitted to the training data is valid, then the estimated variance 

2ˆ k from the prediction sample should also be a valid estimate of the data noise. If 
the variance 2ˆ k  found from the prediction sample is unexpectedly large, we have 
reasons to believe that the candidate model fits the data badly. It can be seen that the 
data noise 2ˆ k  estimated from the prediction sample will thus be more sensitive to 
the quality of the model than the one directly estimated from the training sample, as 
the variance k

2 estimated from the prediction sample also has the capability of 
detecting the occurrence of over-fitting. 

8.3 Expected Error 

In Sect. 8.2, we described our approach to model selection and parameter estimation 
in the framework of Bayesian statistics. In this section, we will discuss how the 
same framework for B-spline curve approximation relates to the task of selecting 
the NBV for acquiring new data. For simplification of the description, we will 
replace k by  to show that we are dealing with the selected “best” B-spline model 
with dkx and dky control points. To obtain the approximate B-spline model, we will 
predict the distribution of the information gain on the model’s parameter  along 
each cross section curve. A measure of the information gain will be designed whose 
expected value will be maximal when the new measurement data are acquired. The 
measurement is based on Shannon’s entropy whose properties make it a sensible 
information measure here. We will describe the information entropy of the B-spline 
model and how to use it to achieve maximal information gain on the parameters of 
the B-spline model . 

k



8.3 Expected Error      155 

 

8.3.1 Information Entropy of a B-Spline Model 

Given  and the data points m
ii 1)(rr  which are assumed to be statistically 

independent, with Gaussian noise of zero mean and variance 2, the joint 
probability of m

ii 1)(rr  is 
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Equation (8.20) has an asymptotic approximation representation defined by 
Subrahmonia et al. (1996) 
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where k
ˆ  is the maximum likelihood estimation of  given the data points and 

mH is the Hessian matrix of )|(log rp evaluated at ˆ  given data points  
m
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The posteriori distribution p(  | r) of the given data is approximately 
proportional to 
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where the p( ) is the priori probability of the B-spline model parameters. If the 
priori has a Guassian distribution with mean ˆ  and covariance Hm

–1, we have 
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From Shannon’s information entropy, the conditional entropy of p(  | r) is 
defined by 

rr dppEm )|(log)|()(  (8.24) 

If p(  | r) obeys Guassian distribution, the corresponding entropy is Mackay 
(1991) 
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where  is a constant. 
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The entropy in (8.25) measures the information about the B-spline model 
parameters, given data points ),( 1 mrr . The more information about , the 
smaller the entropy will be. In this work, we use the entropy in (8.25) as the 
measurement of the uncertainty of the model parameter . Thus, to minimize Em, 
we will make det(Hm

–1) as small as possible.  

8.3.2 Information Gain 

In order to predict the distribution of the information gain, we assume a new data 
point rm+1 collected along a contour. The potential information gain is determined 
by incorporating the new data point rm+1. If we move the new point rm+1 along the 
contour, the distribution of the potential information gain along the whole contour 
can be obtained. Now, we will derive the relationship between the information gain 
and the new data point rm+1.  

Assume that a new data point rm+1 has been collected. Let 
),,,|( 11 mmP rrr be the probability distribution of model parameter  after 

a new point rm+1 is added. Its corresponding entropy is )ˆ(detlog
2
1 1

11 mm HE .
 The information gain then is  
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From (8.18), the new data point rm+1 will incrementally update the Hessian 
matrix as follows 
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can be simplified to 
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Since HH det/1det 1 , (8.26) can be simplified to 

)][1log( 1
1

1
T
m

T
m BBE BB  (8.29) 

Assuming that the new additional data point rm+1 travels along the contour, the 
resulting potential information gain of the B-spline model will change according to 
(8.29). In order to reduce the uncertainty of the model, we would like to have the 
new data point at such a location that the potential information gain attainable is 
largest. Therefore, after reconstructing the section curve by fitting partial data 
acquired from previous viewpoints, the Next Best Viewpoint should be selected as 
the one that senses those new data points which yield the largest possible potential 
information gain for the B-spline model. 

8.4 View Planning 

A view space is a set of 3D positions where the sensor (vision system) takes 
measurements. We assume that the 3D object is within the field of view and the 
depth of view of the vision system. The optical settings of the vision system are 
fixed. Based on these assumptions, the parameters of the vision system to be 
planned are the viewing pose of the sensor. In this section, the candidate viewpoints 
are represented in a spherical viewing space. The view space is usually a continuous 
spherical surface. To reduce the number of viewpoints used in practice, we 
discretize the surface by using the icosahedron method. In addition, we assume that 
the view space is centered around the object, and its radius is equal to an a priori 

 
The determinant of Hm+1  

specified distance from the sensor to the object. As shown in Fig. 8.2, since the 
optical axis of the sensor passes through the center of the object, the viewpoint can 
be represented by pan-tilt angles  ([–180 , 180 ]) and  ([–90 , 90 ]). 
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Fig. 8.2. Viewpoint representation 

According to the representation of the viewing space, the fundamental task in the 
view planning here is to obtain the visibility regions in the viewing space that 
contain the candidate viewpoints where the missing information about the 3D 
object can be obtained without occlusions. The NBV should be the viewpoint that 
can give maximum information about the object. 

With the above view space representation, we can now map the predicted 
information gain to the view space for viewpoint planning. For a viewpoint v( , ), 
we say one data point on the object is visible if the angle between its normal and the 
view direction is smaller than a breakdown angle  of the sensor. The view space Vk 
for each data point rk (k = 1, 2, …) is the set of all possible viewpoints that can see 
rk. The view space Vk can be calculated via the following procedure: 
1. Calculating the normal vector nk of a point rk (k = 1, 2, …) on the object, using a 

least square error fitting of a 3 3 local surface patch in its neighborhood. 
2. Extracting viewpoints from which rk is visible. These viewpoints are denoted as 

view space Vk. 
After the view space Vk (k = 1, 2, …) is extracted, we construct a measurement 

matrix M. The components mk,j of an l-by-w measurement matrix are given as  

otherwise
vtovisibleisif

m jkjk
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where vj is the direction vector of viewpoint vj. 
Then, for each view v( , ), we define a global measure of the information gain 

I( , ) as the criterion to be summed over all visible surface points seen under this 
view of the sensor. I( , ) is defined by 

jRk
kjkjjj EmI ,),(  (8.31) 

where Ek is the information gain at surface point rk, which is weighted by mk,j. 
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Therefore, the Next Best View ( *, *) is one that maximizes the information 
gain function of I( , ) 
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 (8.32) 

8.5 Experiments 

8.5.1 Setup 

The information entropy based viewpoint planning algorithm is implemented as 
part of the work for 3D object reconstruction. The setup of a general 3D shape 
measurement system is schematically shown in Fig. 8.3. The sensor mounted on a 
robot consists of a projector that projects structured light onto the object and a CCD 
camera that captures the image of the illuminated object surface (Li and Liu 2003). 
This range sensor can give depth information of the scanned surface of an object in 
the form of a “data cloud”. In the current implementation, the object is placed on a 
stationary platform. The robot has 6 DOF and is able to take a measurement of the 
object from any viewing pose specified within its work space. The modeling 
process for a 3D object consists of a sequence of four repeated steps: acquiring data 
on the object surface from a viewpoint, registering the acquired data, integrating the 
new data with a partial model and determining the NBV. This cycle will be repeated 
until the NBV terminates. 

 

 
Fig. 8.3. System setup 

To slice the acquired “data cloud”, we define an interval distance between cross 
section curves in a certain direction (e.g. the z direction) and project the data in the 
neighborhood of each cross section curve onto the plane on which the cross section 
curve lies. The preprocessing results of the 3D “data cloud” are shown in Fig. 8.4. 
Here the interval between two cross section curves was set at 1.5 mm and the 
neighborhood of each cross section curve is set at 0.2 mm.  
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Fig. 8.4. Cross section curves after preprocessing 

These points projected onto a cross section curve were distributed randomly. 
They need to be sorted out before the curve reconstruction can be performed. For 
each section curve, these projected points were transformed into the polar 
coordinate system. The phase angle was used to sort these points. To reconstruct 
these cross section curves via B-splines, we need to select an appropriate model 
structure first. The model selection is important for automated 3D modeling, to 
account for the data already acquired and to avoid over-fitting of the model. 

8.5.2 Model Selection 

In this section, the improved BIC criterion proposed will be used to select the 
B-spline model to represent the cross section curves. Two cross section curves from 
a series of sliced cross section curves will be used as examples to demonstrate the 
effectiveness of our approach. To evaluate the selected models, the following 
performance indexes are used: 
 Model complexity, which refers to the number of control points of the B-spline 

model; 
 Estimation accuracy, which is defined as the MSE (mean squared errors) 

between the actual data points and the reconstructed model chosen by a selection 
criterion. 
The model complexity and estimation accuracy provide insights into the 

appropriateness of model fitting (i.e. over-fitting or under-fitting). In the current 
implementation, a uniform B-spline is used for reconstructing the cross section curves 
whose control points are uniformly distributed in the interval between the two end 
points of the curve in the parameter space. In selecting the model for a cross section 
curve, the number of control points is iteratively incremented by one from the initial 
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minimum number, while the corresponding BIC value is evaluated using (8.19). The 
minimum number of control points of a B-spline model is normally set at six here. 

We first conducted experiments with only partial data of an object surface 
acquired by our range sensor from the first view. The object is the head of a statue 
as shown in Fig. 8.4. For each of the cross section curves, some data points were 
available for its reconstruction. Here we describe the modeling process via an 
example in reconstructing one cross section curve. To implement our improved 
BIC, the available data were first divided into two parts: a training sample set and 
a prediction sample set. The training sample set was used to estimate the 
parameters of a candidate B-spline model by (8.5), followed by the estimation of 
the variance kx

2 and ky
2 by (8.17) using the prediction sample set. The 

corresponding BIC value for each of the candidate B-spline models was evaluated 
by (8.19). The model with maximum BIC value was selected as the optimal one to 
approximate the data points, giving the resulting model complexity of 9. This 
model was then verified by using another set of data on the same cross section. 
The resulting curve is given in the second row in Table 8.1. The estimation 
accuracy, which is the mean squared errors between the actual data points and the 
reconstructed model, was found to be 0.0406 mm. As a comparison, the 
conventional BIC was also applied to the same curve. However, all the 240 data 

The second experiment was conducted with the one where complete data of a 
surface were available. The procedures in reconstructing the cross section curves 
were the same as those in the first experiment. For each section curve, verifications 
of the models reconstructed by the two methods (our improved BIC and 
conventional BIC) were again conducted using another set of data (different from 
that used for reconstructing the model) on the same curve, with the results listed in 
the second column in Table 8.1. From the results, it is observed that even with 
complete data for a curve, the conventional BIC still results in an over-fitted model 

points were used in selecting the model via evaluating the BIC value by (8.19), 
giving the selected model complexity of 150. Again using another set of data (the 
same set as used in the above verification), this model was verified, with the 
resulting curve given in the third row in Table 8.1. The estimation accuracy in this 
case was found to be 1.8015 mm. This large error shows that the conventional BIC 
results in over-fitted approximation for the whole curve via the partial data. This 
illustrates the limitation of the conventional BIC criterion: its insensitivity to 
over-fitting. Note that in Table 8.1, the scales of the figures are set differently, in 
order to show the resulting errors in the reconstructed curves by different criteria 
which are significantly different in magnitudes. Similar phenomena were 
observed for other cross section curves. Here only the results for one curve are 
given in Table 8.1. In practical implementation, some physical constraints need to 
be given. For example, due to self-occlusion, the back of the object will not be 
visible from the first view. Some points were thus defined between the two end 
points of the available cross section data to limit the range of the occluded part of 
the object. It is useful and reasonable to confine the occluded part of the object 
within the range of the two end points of the available data beyond which the part 
would actually become visible to the current view. These defined points are 
highlighted in the “blue box” in the figures in the first row in Table 8.1.  
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as seen in the large errors in the verification, while our improved BIC method can 
reconstruct these cross section curves satisfactorily. With more data available in 
this experiment, the complexities of the selected models increased using both 
selection criteria. Yet, the conventional BIC performed poorly with apparent 
over-fitting in its reconstructed models. 

Table 8.1. Comparison of the results of our improved BIC with conventional BIC 

 In the case of partial data available In the case of complete data available 
 
 

Cross 
section data 

 

 
 

 
 

Verification 
results by 
our 
improved 
BIC 

Model complexity: 9 
Estimation accuracy: 0.0406 

y 

x 

 

Model complexity: 53 
Estimation accuracy: 0.0049 

 

 
 
 

Verification 
results by 
conventiona
l BIC 

 
 

Model complexity: 150 
Estimation accuracy: 1.8015 

 

Model complexity: 147 
Estimation accuracy: 0.3811 

 

 

x 
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8.5.3 Determining the NBV 

 In the above section, we showed how our improved BIC criterion selects the 
B-spline model for the reconstruction of cross section curves. In this section, we 
will analyze the uncertainty of the B-spline model selected by our improved BIC for 
each cross section curve, and predict the information gain of the model along each 
curve using (8.29). Based on this analysis, we then map the information gain onto 
the view space. The view with maximum information gain is selected as the NBV. 
Then the vision sensor can take another measurement from the NBV to update the 
B-spline model. We will take one cross section curve as an example to illustrate the 
process in determining the NBV. 

8.5.3.1 Determining the First NBV 

 First, we take the measurement from an arbitrary initial viewpoint to acquire the 
first part of data of the unknown object. The data points on one of the cross section 
curves are shown in Fig. 8.5a. The “blue box” in Fig. 8.5a contains the points to 
confine the range of the occluded part of the object. Since these points are few in 
number, their effects on the predicted information gain of the B-spline model can be 
ignored. Figure 8.5b is the reconstructed B-spline model using the partial data 
acquired from the first viewpoint. This model is a rough approximation for the 
whole cross section curve. Using this model, we predict the potential information 
along the reconstructed curve. As shown in Fig. 8.5c, the place on the curve where 
the data are missing (the missing part) corresponds to a high-potential information 
gain. This indicates that the occluded part should be given high priority in the next 
measurement. Note that the information gain (in Fig. 8.5c) is given in the parameter 
space of the B-spline curve here. 

 

 
Fig. 8.5. Reconstruction of cross section curve and predicted potential information gain 
under the first viewpoint 

 
(a) Data on a cross section curve acquired from the first view 
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Fig. 8.5. (Continued)

 
Following the above procedure, each cross section curve is reconstructed in a 

B-spline model, with the corresponding information gain obtained. Here each cross 
section curve is considered to be equally important, so that we can normalize the 
predicted information gain for each of the cross section curves covered by the 
current view. Figure 8.6 shows all the cross section curves reconstructed from the 
3D data points taken from the first viewpoint. 

 
(b) Reconstructed B-spline Curve 

 

missing parts 

 
(c) The potential information gain 
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Fig. 8.6. The reconstructed cross section curves 

In the above reconstruction, since only the data points from the first viewpoint 
are available, the obtained B-spline model cannot describe the whole object 
accurately. Yet, it enables us to obtain a rough shape and the information gain 
about the object. Based on the reconstructed partial model, we then map the 
predicted information gain onto the view space. As a result, we can obtain the 
relationship between the predicted information gain about the object and the 
viewpoints, which is also referred to as “View Space Visibility”. As shown in Fig. 
8.7, the viewpoint at [–3.0 , 107 ] has the maximum information gain and is thus 
selected as the NBV.  

 

 
Fig. 8.7. “View Space Visibility” for the first NBV 
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8.5.3.2 Determining Further NBVs 

After the first NBV was selected, the robot was commanded to move the vision 
sensor to this viewpoint to take new measurements. The newly acquired data were 
then sliced and registered, to yield the data acquired from the first two viewpoints as 
shown in Fig. 8.8a.  

(a) Data acquired from the first two viewpoints after slicing 

(b) Data on a cross section acquired from the first two viewpoints 
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Fig. 8.8. The process of determining the second NBV 
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Fig. 8.8. (Continued)

 (c) Reconstructed B-spline Curve based on the first two viewpoints 
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missing part

 (d) The information gain based on the first two viewpoints 

 (e) “View Space Visibility” for determining the second NBV 
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Using the available data, model selection and information gain prediction were 

performed following the same procedures as described above. For an example cross 
section shown in Fig. 8.8b, the newly reconstructed curve is given in Fig. 8.8c and 
the updated information gain is given in Fig. 8.8d. The predicted information gains 
for all the cross section curves were then mapped onto the view space, to give the 
updated view space visibility (shown in Fig. 8.8e) for determining the second NBV. 
From this view space visibility map, the second NBV was selected at [5 , 160 ]. 

The above described procedures in determining the NBV and acquiring new data 
are repeated for subsequent NBVs. The procedures and results in determining the 
third NBVs are given in Fig. 8.9. Each time when new data are available from the 
new viewpoint, the corresponding cross section curves (e.g. the curve in Fig. 8.5b) 

 

(a) Data acquired from the first three viewpoints 

(b) Reconstructed B-spline Curve based on the first three viewpoints 

are updated (as shown in Figs. 8.8c and 8.9b). The prediction of the information 
gain is also updated at each new viewpoint, as seen in Figs. 8.8d and 8.9c. As a 
result of the updated “View Space Visibility” evaluation at the second NBVs (see 
Fig. 8.9d), the third NBV was selected at [7 , –10 ]. 

Fig. 8.9. The process in determining the third NBV 
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Fig. 8.9. (Continued)

After the third NBV is determined, we obtained the complete data about the object 
as shown in Fig. 8.10a. The complete data points and final reconstruction result of a 
cross section curve are shown in Fig. 8.10b and c respectively.  

 

missing part

 (c) The information gain based on the first three viewpoints

 (d) “View Space Visibility” for determining the third NBV 

8.5.3.3 Complete Reconstruction 
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 (a) Data acquired from the first four viewpoints 

 (b) Data on a cross section curve acquired from the first four viewpoints 

 (c) Reconstruction result of a cross section curve based on the first four viewpoints 

Fig. 8.10. Reconstruction of a cross section curve and information gain 
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 (d) The information gain based on the first four viewpoints 

Fig. 8.10. (Continued)

As shown in Figs. 8.5c, 8.8d and 8.9c, the information gain has an outstanding 
peak on the part where the 3D data are missing. This peak will become less and less 
outstanding with the increase of the 3D data available from new viewpoints. When 
complete data on these cross section curves are obtained (as from the third NBV 
here), the peak in the information gain becomes non-apparent and appears more 
“noise” like (as seen in Fig. 8.10d), which indicates that there are no apparent 
missing data or occluded parts on the object surface. The disappearance of the peak 
(significant decrease in the peak value) in the information gain was used as the 
termination condition in automated planning of the NBVs. 

From the experiment results, it is observed that the reconstructed model 
complexity tends to increase with the availability of additional data, which indicates 
that the model can describe the previously unknown object in more and more details 
as new measurements are taken. At the same time, the uncertainty about the object 
decreases gradually. The results for a typical cross section curve are shown in Table 
8.2. The finally reconstructed model is visualized in Fig. 8.11. The final 
reconstruction accuracy evaluated using MSE between the actual data points and 
the reconstructed cross section B-spline curves was 0.0061, which is quite 
satisfactory. 

Table 8.2. The results of view planning for the statue 

Next best view 1st viewpoint 1st NBV 2nd NBV 3rd NBV 
Model complexity 7 11 22 26 
Entropy of B-spline 
model  

–15.81 –16.23 –18.95 –19.79 
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Fig. 8.11. The finial reconstruction result of the statue 

8.5.4 Another Example 

Another experiment was conducted using a model of a duck. For simplicity, we 
only give the results (in Fig. 8.12) to show the procedures of determining the first 
NBV.  

 

 
 (a) Data acquired from the first viewpoint of the duck model 

Fig. 8.12. Reconstruction of cross section curves and predicted information gain 
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  (b) Data on a cross section acquired from the first viewpoints 

   
(c) Reconstructed B-spline curve 

 

missing part 

 
 (d) The information gain 

Fig. 8.12. (Continued)
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 (e) “View Space Visibility” for the first NBV 

Fig. 8.12. (Continued)

 
The viewpoint [0 , 175 ] with maximum information gain was selected as the 

NBV. The procedures of determining other NBVs are the same as those described 
in the above section. In this example, three viewpoints in total were needed to 
reconstruct the duck model. The results in view planning for a typical cross section 
curve are shown in Table 8.3. The accuracy of the finally reconstructed object 
surface is 0.0076. The reconstructed object is shown in Fig. 8.13. It is observed that 

 
Table 8.3. The results in view planning for the duck model 

 

Next best view 1st viewpoint 1st NBV 2nd NBV 
Model complexity 7 35 68 
Entropy of B-spline 
model  

–14.26 –20.23 –30.56 

 

the model complexity for the finally reconstructed cross section curve (68) here is 
higher that that for the example curve (26) in the previous experiment. This is due to 
the difference in the shapes from the actual data points. The shape of the former 
curve (partly given in Fig. 8.12b) is simpler and smoother than the latter (Fig. 
8.10b). A higher complexity in the selected model indicates the higher level of 
confidence in the reconstruction for a simpler shape. For a complex shape, a lower 
complexity in the selected model gives it stronger ability in preventing over-fitting 
the data, which is of particular importance for NBV planning.  
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8.6 Summary 

In this chapter, we presented a novel viewpoint planning method by incrementally 
reducing the uncertainties of the reconstructed models. With this method, the 
object’s surface is first decomposed into a set of relatively simple cross section 
curves, with each to be reconstructed by a set of closed B-spline curves. Then the 
uncertainties of the B-spline models are analyzed with the information entropy as 
the measurement of the uncertainty for guiding the selection of the next best view. 
The information gain of the set of cross section B-spline models is predicted and 
mapped onto the view space. The viewpoint with maximum visibility is selected as 
the Next Best View. In addition, an improved BIC criterion is proposed for the 
model selection. With this new criterion, the acquired data points are divided into 
two parts: one for estimating the B-spline model parameters and the other for 
estimating the data noise. The re-sampling of the data enables a reliable estimate of 
data noise, since the generalization capability of a B-spline model should be 
validated using another set of data points rather than those used for the 
approximation. Compared with the conversional BIC criterion, the model selected 
with our improved BIC criterion is more sensitive to over-fitting and thus has a 
better generalization capability which is particularly important for NBV planning. 

 
 
 
 
 
 
 
 
 

 
Fig. 8.13. The finial reconstruction result of the duck model 


