
 

Chapter 6  
Planning for Freeform Surface Measurement 

In this chapter, we present a sensing strategy for determining the probing points for 
achieving efficient measurement and reconstruction of freeform surfaces. B-spline 
is adopted for modeling the freeform surface. In the framework of Bayesian 
statistics, we develop a model selection strategy to obtain an optimal model 
structure for the freeform surface. Based on the selected model structure, a set of 
probing points are then determined where measurements are to be taken. In order to 
obtain reliable parameter estimation for the B-spline model, we analyze the 
uncertainty of the model and use the statistical analysis of the Fisher information 
matrix to optimize the locations of the probing points needed in the measurements. 
Using a “data cloud” of a surface acquired by a 3D vision system, we implemented 
the proposed method for reconstructing freeform surfaces. The experimental results 
show that the method is effective and promises useful applications in multi-sensor 
measurements including vision-guided CMM for reverse engineering. 

6.1 The Problem 

Reconstructing the freeform surface from a set of discrete measurement data points 
is a problem important to many areas including reverse engineering, metrology, 
inspection by machine vision, computer-aided design (Song and Kim 1997, 
Thompson and Owen 1999, Wolovich et al. 2002, Weir et al. 2000). The first task in 
the reconstruction of a freeform surface is to obtain the measurement data. Among 
the various sensing techniques available, mechanical contact probes such as CMM 
(Coordinate Measuring Machine)’s touch probe, and 3D topography measuring 
systems using structured light or fringe illumination are widely used in practical 
applications. CMM with touch-triggered probes can provide high measurement 
accuracy at sub-micron level. However, the measurement speed is much lower than 
that of a 3D vision system. A vision system can acquire thousands of data points 
over a large spatial range in a snapshot (Li and Chen 2003). However, the 
achievable resolution is relatively low, at around 100–200 m. Therefore, in 
practical applications, using one of the techniques means that the user has to suffer 
from its limitations, e.g. the low speed with CMM.  

A way to overcome the limitations of individual sensing techniques lies in 
integrating multiple sensors in the measurement as conceptualized in Fig. 6.1. 
Research efforts have been made to achieve this. For example, Nashman et al. 



102      Chapter 6 Planning for Freeform Surface Measurement 

 

(1996) integrated vision in a touch-probe system, where a video camera with a laser 
triangulation probe and a 3D touch probe were used in a CMM. They presented a 
cooperative interaction method for the vision and touch-probe system that provided 
sensory feedback to the CMM for dimension inspection tasks. Chen and Lin (1997) 
presented a vision-aided reverse engineering approach (VAREA) to reconstruct 
free-form surface models from physical models, with a CMM equipped with a 
touch-triggered probe and a vision system. The VAREA integrated computer 
vision, surface data digitization and surface modeling into a single process. The 
initial vision-driven surface triangulation process (IVSTP) generated a triangular 
patch by using stereo image detection and a constrained Delaunay triangulation 
method. The adaptive model-based digitization process then refined the surface 
reconstruction using measurements from the CMM’s touch probe. Since the vision 
system in VAREA used a 3D stereo algorithm to detect 3D surface boundaries, only 
3D surface boundaries were reconstructed and geometrical information about the 
freeform surface could not be retrieved. Recently, Shen et al. (2000, 2001) 
presented a multiple-sensor coordinate measuring system for automated part 
localization and rapid surface digitization. The multiple-sensor system consists of a 
high-precision CMM equipped with a touch probe and a 3D active vision system. 
Their research focused on setting up a multiple-sensor system and processing the 
geometrical information from the vision system. In these systems, the CMM’s 
touch probe plays the role of accurately digitizing a surface, especially when 
high-precision is desired. The question of how to determine the set of measurement 
data, including the needed number of the measurement data points and their 
locations, for accurate reconstruction of freeform surfaces, remains untouched. 

CMM’s touch probe 

3D Active Vision 

Object 

CMM 

Fig. 6.1. Multiple-sensor coordinate measuring system 

Using a CMM for 3D measurements, only a finite number of discrete 
measurement data can be taken for a surface. From the statistical viewpoint, each 
measurement data point contains a certain amount of geometrical information about 
the surface, and the quantity of information contained in the set of measurement 
data points depends on the number and locations of the measurement points. 
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Considering the lengthy time needed in using a CMM to take a large number of 
measurement data points, we should select the locations of the data points to 
achieve an optimal measurement and reconstruction. Unfortunately, the current 
practice in using CMM mostly adopts random data point setting on a surface. In 
such a case, each data point has an equal probability of being picked for the 
measurement. For example, Woo et al. (1995) presented a sampling strategy based 
on Hammersley sequence to determine the number of discrete sample points and 
their locations on a machined surface (Woo and Liang 1993). Lee et al. (1997) 
proposed a feature-based method, which integrates Hammersley sequence and a 
stratified sampling method, to derive the sampling strategy for various surfaces 
such as circular, conic, cylindrical, rectangular and spherical surfaces.  

Unlike objects composed of simple geometric primitives, such as planes, lines, 
spheres and cylinders, freeform surfaces have no obvious features. Therefore, they 
are more difficult to define and model mathematically than simple geometric 
objects. In most cases, freeform surfaces are represented by the parametric 
equations such as Coons patches (Farin 2002), B-splines, or NURBS (non-uniform 
rational B-splines). A fundamental question then arises: can we find the parametric 
model to represent an unknown freeform surface and then select a minimal set of 
discrete measurement points to obtain these parameters, while controlling the 
uncertainty of model parameters within a specified tolerance. Here, the uncertainty 
describes the tolerance range within which the unknown true surface lies with some 
confidence levels. The lower the uncertainty of the model, the better the 
reconstructed surface is. In this chapter, we propose a method that allows for 
optimal measurements and reconstruction of freeform surfaces. Two issues need to 
be addressed here. The first is how to select the model structure using a cloud of 
low-precision data acquired by a 3D vision sensor. We use B-splines to represent a 
freeform surface and present a Modified BIC (Bayesian Information Criterion) 
approach for selecting an optimal model structure for surface representation. The 
second is how to determine the locations of a set of measurement data points for 
high-precision measurements e.g. by CMM’s touch probe. In our work, we analyze 
the uncertainty of the B-spline model and use the statistical analysis of the Fisher 
information matrix (Wang 1999) which measures the uncertainty of the parameters 
of the model, to optimize the locations of the measurement data points to minimize 
the uncertainty of the model. 

The rest of this chapter is organized as follows. Section 6.2 describes the 
B-splines approximation and model selection for the 3D reconstruction of freeform 
surface. In Sect. 6.3, the uncertainty of the B-spline surface is analyzed. Section 6.4 
presents the optimization of the locations of measurement data points. Section 6.5 
gives some experimental results in reconstructing the freeform surfaces of some 
real objects. Finally, conclusions of the work are given in Sect. 6.6. 
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6.2 B-Spline Model Representation 

6.2.1 B-Spline Representation 

A B-spline surface is defined by the following equation 
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where un and vn are the number of control points in u and v directions; 

ij ( 1,,1,0 uni , 1,,1,0 vnj ) are the n ( vu nnn ) control points;
)(, uB pi and )(, vB qj are the normalized B-splines of degree p and q for the 

u and v directions respectively which are defined over the knot vectors 
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Assume that (xk, yk, zk) are the coordinates of a measurement point rk on the 
surface, with location parameters (uk, vk). Let us further assume that the degrees of p 
and q and the complete knot vectors u and v for surface fitting are also determined. 
By introducing the measurement point rk with the corresponding location 
parameters [uk, vk] in (6.1), we have 
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where ),,( ijijij zyx are the coordinates of the B-spline surface control points ij . 
(6.2) can be expressed as a linear combination of the control points in the 
B-spline representation,  
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If a total of m points on the surface are considered, we have 
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where TT BBB 1][ is the pseudo-inverse matrix of B.  

6.2.2 Model Selection 

It is known that for a given set of measurement data, there exists a model of optimal 
complexity that has the smallest prediction/generalization errors for further data. 
For a B-spline surface, the model complexity is related to the number 
n )( vu nnn of control points (parameters) in the u and v directions in the 
parameter field (Yan et al. 1999). If the B-spline model contains too many control 
points, the approximated B-spline surface will tend to over-fit noisy measurement 
data. If the model does not have enough control points, then it will not be able to fit 
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the measurement data, causing the approximation to be under-fitted. In general, 
both over- and under-fitted approximation will have a poor generalization 
capability. Therefore, the problem of finding an appropriate model, referred to as 
model selection, is important for achieving a high level of generalization capability. 
The problem of model selection has been studied from various standpoints. 
Examples include information statistics (Sugiyama and Ogawa 2001), Bayesian 
statistics (Shwartz 1978, Torr 2002) and structural risk minimization (Cherkassky 

Given a set of models },,2,1,{ maxkkM k and data r, the Bayesian approach 
selects the model with the largest posterior probability. The posterior probability of 
model Mk is  
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where p(r | Mk) is the likelihood function of model kM and )( kMp is the prior 
probability of model Mk.  

If we assume that the models have the same likelihood a priori, that is 
max/1)( kMp k , ),,1( maxkk , the posterior probability )|( rkMp will not be 
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p(r | Mk).  

To find the model with the largest posterior probability, that is 
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To calculate )|( kMp r , we need to calculate multidimensional integration (Torr 
2002) 
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In most practical cases, calculating the multidimensional integration is hard, 
especially to obtain a closed form analytical solution. The research in this area has 
resulted in many approximation methods for achieving this. Schwarz (1978) and 
Torr (2002) used Laplace’s approximation method for the integration, and 
simplified p(r | Mk) to  
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2
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et al. 1999). The Bayesian approach is perhaps the most general and powerful 
method.  
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where dk is the number of control points for B-spline model Mk. 
Consider the likelihood function of the parameter of the B-spline model. The 

probability distribution function ),ˆ|( kk Mp r of the surface can be factorized into 
x, y, and z components as 
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The ),ˆ|( kkx Myp  and ),ˆ|( kkx Mzp for y and z components can also be 
obtained in the similar way. Therefore, we can obtain the following BIC criterion 
for selecting a B-splines model 

By approximating 1 ˆlog | ( ) |2 H k by the asymptotic expected value 
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where m is the number of data points. As the first two terms in (6.11) measure the 
prediction accuracy of the B-spline model, the BIC criterion will increase as the 
complexity of the model increases. In contrast, the second term will decrease and 
act as a penalty for using additional parameters to model the data. However, since 
the predicted 2ˆ fk  ( f=x, y, z) depends only on the training data sampled for model 
estimation, they are insensitive when under-fitting or over-fitting occurs. In (6.11), 
only the second term prevents the occurrence of over-fitting. In fact, an honest 
estimate of 2

fk  ( f=x, y, z) should be based on a re-sampling procedure. Here, we 
can divide the available data into a training sample and a prediction sample. The 
training sample is used only for model estimation, whereas the prediction sample is 
used only for estimating the prediction data noise 2

fk  ( f =x, y, z). That is, the 

training sample is used to estimate the model parameter k
ˆ by (6.5), while the 

prediction sample is used to predict data noise 2
fk  ( f =x, y, z) by (6.10). In fact, if 

the model k
ˆ fitted to the training data is valid, then the estimated variance 2ˆ fk  

( f =x, y, z) from the prediction sample should also be a valid estimate of the data 
noise. If the variance 2ˆ fk  ( f =x, y, z) found from the prediction sample becomes 
unexpectedly large, we have grounds for believing that the candidate model fits the 
data badly. It is seen that the data noise 2ˆ fk  ( f =x, y, z) estimated from the 
prediction sample is more sensitive to the quality of the model than the one directly 
estimated from the training sample, as the 2ˆ fk  ( f =x, y, z) estimated from the 
prediction sample also has the capability of detecting the occurrence of 
under-fitting or over-fitting. 

6.3 Uncertainty Analysis 

Equation (6.5) produces the parameter estimation of a B-spline model. It should be 
noted that measurement data are normally contaminated by noise, and it is 
impossible to find an exact solution for the B-spline model. From here on in this 
section, we will ignore the k in fk

ˆ  ( f =x, y, z) and other symbols related to the 

selected model Mk for simplification. Since the residual sequence fe  ( f =x, y, z) 

obeys Gaussion distribution with zero mean and variance 2
f , and the B-spline 
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model in (6.4) is linear, the parameter errors ff
ˆ are also a Gaussian 

distribution with zero mean and covariance 
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that defines the shape of the Gaussian distribution of the parameter error. In fact, the 
quadratic form defines a hyper-ellipsoid on which the true model parameters must 
lie. We do not know the position of the shape as we do not know the true value of .
However, we know the range within which the unknown true  value lies with a 
confidence interval. For a confidence level , we can find from the distribution a 
number 2 for which there is a probability for  so that 

2
2

ˆˆ1 )(M)( T . It follows that there is also a probability for  that 

yields the hyper-ellipsoid 
22ˆˆ )(M)( T (6.12) 

The true model will be contained in the above ellipsoid which is referred to as the 
ellipsoid of confidence. The ellipsoid of confidence gives us a useful visual image 
of the uncertainty of parameter  of the B-spline surface. In (6.12), M is also 
known as the Fisher information matrix (Wang 1999) which characterizes the 
uncertainty in the estimated parameters. Therefore, the problem of selecting an 
optimal set of measurement data for CMM’s high-precision measurement is to find 
the locations of the measurement data points for which the estimation uncertainty is 
minimized in some sense. Various criteria exist for optimizing the Fisher 
information matrix to achieve minimum estimation errors. The major criterions 
include Cond(M), Trace(M) (A-optimality), the maximum eigenvalue of M-1

(E-optimality), and |M| (D-optimality) (Wang 1999, Chio and Kurfess 1995). These 
criteria measure the amount of information contained in the probability distribution 
representing the parameter errors. Thus, ensuring that the important information 
and necessary information in the B-spline model is embodied in the measurement 
data set is the primary concern in selecting an optimal set of measurement data for 
CMM’s high-precision measurement. Here the optimal criterion adopted is the 
D-optimality, or the determinant criterion, for which the determinant of the Fisher 
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information matrix |M| is to be maximized. Geometrically, the volume of the 
ellipsoid is inversely proportional to the square root of the determinant |M|. A large 
|M| corresponds to a small volume of the model parameter space, indicating that the 
true parameters are well localized and that the knowledge or information we have 
about them is highly reliable (Wang 1999, Chio 1995, Whaite 1997). Here, we 
define |M| as the uncertainty measurement for the estimated parameter vector . 

6.4 Sensing Strategy for Optimizing Measurement 

As the uncertainty of a B-spline model is dependent on the number and locations as 
well as the variance of the measurement data, the sensing strategy plays a critical 
role in the measurement and reconstruction results. A sensing strategy should be 
able to determine the number of measurement data to sample and the locations to 
take the measurements, while keeping the uncertainty of the reconstructed B-spline 
model sufficiently low.  

6.4.1 Determining the Number of Measurement Data 

Since the reconstruction of a freeform surface is based on the measurements at 
discrete points to be sensed by a CMM’s touch probe, these discrete points must 
contain sufficient information that allows the freeform surface to be reconstructed. 
However, the number of measurement data has to be limited to achieve a reasonable 
speed in the measurement process. From the statistical point of view, the number of 
measurement data should be at least ten times the number of the parameters in the 
B-spline model to make the B-spline regression analysis statistically meaningful 
(Yang and Menq 1993). For example, for a bi-cubic B-spline surface with d (d = nu 

 nv) control points, at least 10 d measurement data are required. 

6.4.2 Optimizing the Locations of Measurement Data 

Since |M| is dependent not only on the number of measurement data, but also on the 
locations of the measurement data, we should also optimize the locations of the 
measurement data to maximize |M|. The parameter variables u and v of the 
measurement data in the parameter field of the freeform surface constitute the 
design variables. Each candidate measurement data point can vary its location (u, v) 
within a specified range. The coordinate (x, y, z) of the measurement data can be 
obtained from the parameter variables (u, v) by (6.4). Thus, optimizing the locations 
of the measurement data points for minimizing the uncertainty of a B-spline model 
can be stated as follows: 

||max , M
kk vu  (6.13) 

subject to: ],1,0[),( ii vu i=0,1, m–1.  
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The problem is essentially a combinatory optimization problem. Since the 
objective function |M| is non-smooth and nonlinear, the existence of the derivations 
at all points is not guaranteed. This makes the optimization difficult if a standard 
optimization method is used. To simplify the problem, |M| can be evaluated with an 
existing discrete D-optimal design method called Fedorov exchange algorithm 
(Miller and Nguyen 1994). This algorithm implements an efficient neighborhood 
search for the maximum determinant of the Fisher information matrix M. 

Consider the incremental form of |M|. Each additional measurement data 
incrementally updates M, so that after i+1 measurements, its value becomes 

11)()1( i
T
i LLii MM . The corresponding determinant of M then is 

|)(|))(1(|)1(| 1
1

1 kLkLk T
ii MMM  (6.14) 

where ],,[ 1111 iiiiL BBB , Bi+1 is the basis function vector evaluated at 
location (ui+1,vi+1).  

If a point is to be removed from the set of sample points, all the plus and minus 
signs in (6.14) are reversed. To evaluate |M| by Fedorov exchange algorithm, each 
point in the set of measurement data is considered for exchange with each of the 
available candidate points. The pair of points chosen for exchange is the pair that 
maximizes the increase in the determinant of M. This process is repeated until no 
further increase in the determinant can be obtained by the exchange. 

If we denote the point to be added by L+, and the point to be replaced by L-, then 
by exchanging the pair of L+ and L-, the new determinant is 

)],(1[|||| LLLLLL TT MM  (6.15) 

where                      

21111 )()1(),( TTTT LLLLLLLLLL MMMM . (6.16) 

It is obvious from (6.16) and (6.16) that it is critical for the Fedorov exchange 
algorithm to find a candidate point to replace a point in the current measurement 
data set in turn, which maximizes (L+, L ). In this work, we used a simulated 
annealing algorithm to search the candidate point. Simulated annealing (SA) is a 
random search algorithm that is popular for solving both the continuous and the 
discrete global optimization problem. The optimal procedure using the discrete SA 
algorithm for optimization of the locations of the measurement data points can be 
stated briefly as follows: 

 Step 1  Select a measurement point Svur ii ),( , 1,,1,0 mi from the set 
of sample points. 

 Step 2  Generate a candidate point Svur ccc ),( according to a specified 
generator. 

–
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where p is the probability of accepting p when (L+, L-)<0. For simplicity, the 
probability p is set as constant. 
 Step 4  Repeat Step 2 and 3 until the stopping criterion is satisfied. 
 Step 5  Select another measurement data point from the sample set, and repeat 

step 1–4 until all measurement data in the selected measurement are exchanged. 

6.5 Experiments 

To demonstrate the effectiveness of the proposed sensor planning strategy for 
reconstructing freeform surfaces, experiments are conducted. In the current 
implementation, a uniform cubic B-spline model is used to represent these surfaces. 

One example is an object manufactured in our own laboratory. This object has a 
freeform surface contained in an area of 40 40 mm2 and a depth of 10 mm, as 
shown in Fig. 6.2a. 

 

Fig. 6.2. The experimental object 

To reconstruct the freeform surface, the first thing is to determine the control 
point number nu and nv of the B-spline model in the u and v parameter directions. A 
3D vision system was used to acquire a cloud of data points on an object surface. 
This vision system (Kreon/KLS51 by Kreon Technologies) consisting of a laser 
stripe projector and CCD camera measures 3D coordinates based triangulation. The 
measurement for the above example object is shown in Fig. 6.2b. We used our 
Modified BIC criterion to select the B-spline model structure (nu and nv) for 

 Step 3  Set 

(a) The object with a freeform surface  (b) The point cloud acquired by a 3D vision sensor 
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representing the freeform surface. To demonstrate the effectiveness of the modified 
BIC criterion, we compared it with the BIC and cross validation (CV) methods 
(Cherkassky et al. 1999, Mcquarrie and Tasi 1998) respectively. The two following 
performance indexes were used: 

1. Estimation accuracy, which is defined as the MSE (Mean Square Error) between 
the actual data points and the regression estimate chosen by a given model 
selection method;  

2. Model complexity, which refers to the number d (d = nu  nv) of control points of 
a B-spline model determined by a given model selection criterion.  

In this section, we use box plots of the MSE and model complexity of each 
method to test the performance of different model selection methods. The 
experiments with different sample sizes were designed to observe the differences 
between the different model selection methods. For each sample size, the sample 
points were selected randomly from the “data cloud” acquired by the 3D vision 
system, and then used to determine the model structured out of the B-spline model 
with a different model selection criterion. The above selection process was repeated 
100 times. The comparison results are presented in Box plots which give the 
empirical distribution of the comparison based on 100 iterations in the model 
selection. An evaluation result with a set of 300 sample points is shown as a box 
plot in Fig. 6.3. In this figure, the box represents the range of distribution of the 
quantity under study. The box stretches from the lower hinge (defined as the 25th 
percentile) to the upper hinge (the 75th percentile) and therefore contains the 
middle half of the scores in the distribution. The dark line (shown as across a box) is 
the median of the quantity. Therefore ¼ of the distribution of a box lies between this 
dark line and the top of the box, and ¼ of the distribution lies between this dark line 
and the bottom of the box. 

Fig. 6.3. Estimation Accuracy 
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Fig. 6.4. Model complexity (Results with 300 training samples and 200 prediction samples) 

 
The MSE box plot, in combination with the box plot of model complexity (i.e. 

the number of control points), provides visual judgment on the relative performance 
of various model selection methods. A lower value of MSE in the plot corresponds 
to a better model selection approach. The model complexity plot, together with the 
estimation accuracy plot, provides information on the over-fitting or under-fitting 
for a given method relative to the optimally chosen model complexity. The height 
of the bar in the plots of the estimation accuracy reflects the method’s sensitivity to 
random sample variations, which can be used as a measure of the variability in the 
error estimation. A short bar in the plot indicates that the method is insensitive 
(robust) to random variations in the data. In general, low model complexity is 
desired. As the number of parameters in a B-spline model is related to its 
uncertainty, the more the parameters of a B-spline model, the higher the uncertainty 
tends to be. For a model with high complexity, more measurement data would be 
needed to increase the reliability in the parameter estimation. In such a case, the 
time cost in the measurement and reconstruction would be high.  

From Figs. 6.3 and 6.4, the model selected by BIC provides a consistent model 
structure, which is insensitive to random variances in the data. However, the 
estimation accuracy is rather poor, compared with the CV and our modified BIC 
method (denoted as Modi_BIC) as can be seen in Fig. 6.3. In fact, in the BIC 
criterion, only the second term can prevent over-fitting. As a result, BIC is 
insensitive to over-fitting and a model with high complexity is selected. On the 
other hand, the re-sampling procedure in CV and our method has the capability of 
detecting the occurrence of over-fitting and under-fitting in time. Compared with 
CV, our criterion results in a similar level of estimation accuracy and provides a 
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lower complexity model with satisfactory consistence. We also compared the 
performance of the three model selection methods using a larger sample size of 
1200. It was observed that the models selected by the three methods had similar 
levels of estimation accuracy (about 0.012 mm), while the BIC and CV method 
seem to prefer a model with higher complexity (with the median of 80 for BIC, 69 
for CV, and 33 for our modified BIC), although BIC exhibited good consistency 
and insensitivity to random variances. With our criterion, a much lower model 
complexity was achieved, while keeping similar estimation accuracy. On the whole, 
our method achieved a good compromise between the selected model complexity 
and estimation accuracy.  

Then we further tested our method (modified BIC criterion) with different sized 
samples, where the number of prediction samples used was about 40% of that of the 
training samples. The results are given in Table 6.1. It can be seen that with the 
increase in the sample size, the estimation accuracy tends to improve while the 
model complexity tends to increase. Such an effect becomes less obvious when the 
sample size is bigger than 1200, where the model complexity and accuracy tend to 
be stabilized. In such a case, the corresponding model structure can be considered as 
converged to the true model of the freeform surface. In our system, since we can get 
a sample set with a sufficiently large size from a cloud of data obtained by the vision 
system, we can assume that the true model structure to describe the unknown 
freeform surface can be obtained. 

Table 6.1. Results of model selection by modified BIC with different sample sizes 

Sample 
size 200 300 500 800 1200 1600 2000 2500 

Accuracy 
(MSE) 0.075 0.019 0.022 0.019 0.015 0.015 0.015 0.015 

 
Model 

Complexity 
2 3 4 4 4 4 4 5 6 6 6 6 6 6 6 6 

 

Here, we used bi-cubic B-splines to model the freeform surface. Different 
B-spline models with different control points in u and v directions were evaluated 
by our modified BIC criterion. The result was a B-spline model with 6 control 
points in both u and v directions respectively (totally 36 parameters to be estimated) 
which had the highest scores of our modified BIC. This model is a result yielded by 
our method to represent the freeform surface to be reconstructed. 

Based on the selected B-spline model, the minimal set of 360 measurement data 
was used to estimate these parameters. As discussed in Sect. 3, high uncertainty in 
the estimated parameters indicates that the estimated values of ˆ  can deviate 
significantly from the true values of . In other words, the lower the uncertainty in 
the estimated parameters, the more reliable the estimation ˆ  is. Here, we use the 
log(|M|) as the indicator of the uncertainty in a B-spline model. The larger the 
log(|M|), the lower the uncertainty.  
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Fig. 6.5. The locations of the measurement data before optimization 

 

 
Fig. 6.6. The locations of the measurement data after optimization 

Next, we employed the Fedorov exchange algorithm to optimize the locations of 
the measurement data. The locations of the measurement data before and after the 
optimization are shown in Figs. 6.5 and 6.6. Before optimization, the measurement 
data were located randomly in the parameter space (u, v) of the B-spline surface, 
with the uncertainty of the B-spline model log(|M|) being –120. Using the Fedorov 
exchange algorithm, the locations of sample points were adjusted one by one, with 
the log(|M|) value of the B-spline model increased gradually to –94.5, which shows 
a significant decrease in the corresponding uncertainty of the B-spline compared 
with using random locations in the measurement data. On the other hand, increasing 
the sample size can also reduce the uncertainty of a B-spline model. To achieve the 
same level of uncertainty in the B-spline model with random locations in the 
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measurement data, about 470 more measurement data would be needed in the 
sample set. This shows that optimizing the locations of the measurement data point 
to be sensed by CMM’s touch probe can yield much more reliable model 
estimation, without increasing the number of measurements to be taken. We also 
compared our optimization results with a measurement of equidistant probing 
points. The uncertainty log(|M|) of the B-spline model using equidistant probing 
was found to be –220.1 which is much worse than our optimization result. 

Here an interesting phenomenon to note concerning the optimized locations of 
the measurement data is that after optimization, the measurement data are located in 
the neighborhood of each model parameter. These relocations allow for a more 
reliable model estimation in the parameterization space. The coordinates (x, y, z) of 
the measurement data can be mapped from the parameter variables (u, v) with 
appropriate coordinate transformations. Finally, the surface of the object in Fig. 6.2, 
reconstructed using our method, is shown in Fig. 6.7. Here, the mean deviation of 
the measured coordinates from the reconstructed surface is 0.012 mm, while the 
minimum deviation is 0.0011 mm and the maximum deviation is 0.028 mm. 

 

 
Fig. 6.7. The reconstructed freeform surface 

From the experiments, we observed that in the parameter space, the locations of 
the measurement data points are related to the structure of the B-spline model. For a 
uniform cubic B-spline model, the control points are distributed uniformly in the u 
and v directions, giving rise to some clusters in which the measurement data points 
are located. Therefore, we infer that the structure of a B-spline model determines 
the locations of the measurements and the model structure represents the 
geometrical feature of a surface, which can be extracted from the cloud of data 
acquired by a vision system. In addition, as there is a coordinate transformation 
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between the location parameters (u, v) and the corresponding spatial coordinates (x,
y, z), different parameterization methods can influence the optimization results. We 
further infer that if we locally modify the distribution of the control points 
according to the geometrical feature of a surface, the distribution of the 
measurement data will be changed accordingly. 

6.6 Summary 

In this chapter, we present a sensing strategy for optimal measurements for the 
reconstruction of freeform surfaces. We assume the availability of a vision system 
to quickly obtain the rough data of a surface for guiding the more accurate but much 
slower touch sensing such as the touch probing in CMM. We investigated the use of 
B-spline models to represent freeform surfaces and proposed the modified BIC 
method for selecting the optimal model structure from the cloud of data points 
acquired by a 3D vision system. Based on the model structure, the number of 
measurement data needed for the high-precision measurement is then determined. 
In order to obtain a more accurate model, the uncertainty of the model is analyzed. 
Then using the statistical analysis of the Fisher information matrix, the locations of 
the measurement data points are optimized to reduce the uncertainty in the model. 
Based on the results of the optimized measurements, a more accurate touch sensing, 
e.g. by CMM’s touch probe, can be used to obtain the accurate measurements for 
the reconstruction of the freeform surface more efficiently. The proposed method 
will allow the advantages of the high speed in vision sensing and the high accuracy 
in touch sensing to be utilized for efficient and accurate reconstruction of freeform 
surfaces. The experimental results show that the proposed method is effective and 
promises useful applications in integrated multi-sensor measurements such as 
vision-guided CMM for reverse engineering. When combined with an adaptive 
modeling scheme based on the features of a freeform surface, adaptive localization 
of the measurement data points can also be implemented. 


