
 

Chapter 3  
Active Sensor Planning – the State-of-the-Art 

The aim of sensor planning is to determine the pose and settings of a vision sensor 
for undertaking a vision task that usually requires multiple views. Planning for 
robot vision is a complex problem for an active system due to its sensing 
uncertainty and environmental uncertainty. This chapter describes the problem of 
active sensor planning formulated from practical applications and the 
state-of-the-art in this field. 

3.1 The Problem 

An active visual system is a system which is able to manipulate its visual 
parameters in a controlled manner in order to extract useful data about the scene in 
time and space. (Pahlavan et al. 1993) 

Active sensor planning endows the observer capable of actively placing the 
sensor at several viewpoints through a planning strategy. In the computer vision 
community, when active perception became an important attention to researchers, 
sensor planning inevitably became a key issue because the vision agent had to 
decide “where to look”. According to task conditions, the problem is classified into 
two categories, i.e. model-based and non-model-based vision tasks.  

About 20 years ago, Bajcsy discussed the important concept of active perception 
(Bajcsy 1988). Together with other researchers” initial contributions at that time, 
the new concept (compared with the Marr paradigm in 1982) on active perception, 
and consequently the sensor planning problem, was thus issued in vision research. 
The difference between the concepts of active perception and the Marr paradigm is 
that the former considers vision perception as the intentional action of the mind but 
the latter considers it as the procedural process of matter. 

Therefore, research of sensor planning falls into the area of active perception 
(Bajcsy 1988). It introduces the idea of moving a sensor to constrain interpretation 
of its environment. Since multiple 3D images need to be taken and integrated from 
different vantage points to enable all features of interest to be measured, sensor 
placement which determines the viewpoints with a viewing strategy thus becomes 
critically important for achieving full automation and high efficiency. 

The problem of sensor placement in computer vision was addressed by 
Tarabanis et al. (1995) as: “for a given information concerning the environment 
(object under observation, sensor available) and concerning the task that the system 
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Fig. 3.1. The roles of active sensor planning in autonomous robots 

3.2 Overview of the Recent Development 

The early work on sensor planning was mainly focused on the analysis of 
placement constraints, such as resolution, focus, field of view, visibility, and 
conditions for light source placement in 2D space (Lin et al. 1996). A viewpoint 
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Today, the roles of sensor planning can be widely found in most autonomous 
robotic systems. According to the task conditions, the planning scheme can be 
applied on different levels of vision perception as illustrated in Fig. 3.1. 

must achieve (detection of characteristics, object recognition, scene recons-
truction), to develop some automatic strategy to determine the sensor parameters 
(the position, the orientation and the optical parameters of the sensor) to carry out 
the task satisfying some criteria.”  
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has to be placed in an acceptable space and a number of constraints should be 
satisfied. The fundamentals in solving such a problem were established in the last 
decades. Tarabanis et al. (1995) presented an intensive survey on sensing 
strategies developed in the early stage, concentrated upon the period between 
1987 and 1991. Among them, Cowan (1988) gave detailed descriptions on 
computing the acceptable viewpoints for satisfying many requirements (sensor 
placement constraints). In Cowan (1988), lens aperture setting was also 
considered by computing the diffraction limit. The light position region was 
determined to achieve adequate illumination, mathematically through the light 
path, i.e. surface absorption, diffused reflectance, specular reflectance, and image 
irradiance. Abrams et al. (1999) also proposed to compute the viewpoints that 
satisfy the optical constraints, i.e. resolution, focus (depth of field), field-of-view, 
and detectability. Rosenfeld discussed some techniques and the relationship 
between object recognition and known or unknown viewpoints (Rosenfeld 1988). 
More extensive surveys of the early works can be found in Banta (1996), 
Marchand (1997, 1999), and Kelly et al. (2000). 

Here the scope is restricted to recently published approaches to view-pose 
determination and sensor optical settings in the robotics community. It does not 
include: attention, gaze control, foveal sensing, hand-eye coordination, autonomous 
vehicle control, localization, landmarks, qualitative navigation, path following 
operation, etc., although these are also issues concerning the active perception 
problem.  

Of the published literature in the recent years, Cowan (1988) is one of the earliest 
research on this problem in 1988 although some primary works can be found in the 
period 1985–1987. To date, there are more than two hundred research papers which 
mainly focus on sensor placement or viewpoint planning. At the early stage, these 
works were focused on sensor modeling, analysis of sensors” optical and 
geometrical parameters, and sensor placement constraints. From 1990 to 1995, 
most of these research works were CAD model-based and usually for applications 
in computer inspection or recognition. The generate-and-test method and the 
synthesis method are major contributions at that stage. From 1996 to 2000, while 
optimization was still necessary for model-based sensor placement, it is 
increasingly important to plan viewpoints for unknown objects or no a priori 
environment because this is very useful for many active vision tasks such as model 
reconstruction and autonomous navigation. In recent years, although researchers 
have to continue working on the theoretical formulation of active sensor planning, 
many works tend to combine the existing methods with specific application such as 
inspection, recognition, search, object modeling, tracking, exploration, navigation, 
localization, assembly and disassembly, etc. 

Two outstanding methods have been widely used previously. They are the 
weighted function and tessellated space. The former uses a function that includes 
several components standing for placement constraints, e.g. 

)max( 44332211 ggggh  (3.1) 
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Equivalently with constraint-based space analysis, for each constraint (such as 
visibility, resolution, field-of-view, and depth-of-field), the sensor pose is limited to 
a possible region. Then the viewpoint space is the intersection of these regions and 
the optimization solution is determined by the above function in the viewpoint 
space, i.e., 

4321 ggggplacement VVVVV  (3.2) 

This method is usually used in model-based planning (Trucco 1997) tasks, such 
as inspection, assembly/disassembly, recognition, and object search. 

The latter method tessellates a sphere or cylinder around the object to be 
modeled as a viewpoint space (or look-up array (Morooka et al. 1999)). Each grid 
point is a possible sensor pose for viewing the object. The object surface is 
partitioned as void surface, seen surface, unknown surface, and uncertain surface. 
The working space is also partitioned into void volume and viewing volume. 
Finally an algorithm is employed for planning a sequence of viewpoints so that 
the whole object can be sampled. This method is effective in dealing with some 
small and simple objects, but it is difficult to model a large and complex object 
with many concave areas because it cannot solve occlusion constraint. 

More precisely, a number of approaches have been applied in deciding the 
placement of the vision sensor, including: 

 geometrical/ volumetric computation  
 tessellated sphere/space -TS 
 generate-and-test approach (Kececi 1998, Trucco 1997) 
 synthesis approach 
 sensor simulation 
 expert system 
 rules (Liu and Lin 1994) 
 iterative optimization method (Lehel et al. 1999) 
 
 probabilistic reasoning (Roy 2000) 
 tree annealing (Yao 1995) 
 genetic algorithm (Chen et al. 2004). 

Out of these approaches, volumetric computation by region intersection is most 
frequently used by researchers, e.g. (Cowan 1988). For each constraint, it computes 
the region Ri of acceptable viewpoints. If multiple surface features need to be 
inspected simultaneously, the region Ri is the intersection of the acceptable regions 
Rij for each individual feature. Finally, the region of acceptable viewpoints is the 
intersection of all regions. 

 

Bayesian decision (Zhou and Sakane 2001, Kristensen 1997) 
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3.3 Fundamentals of Sensor Modeling and Planning 

Table 3.1 lists some fundamental works on sensor modeling and vision planning for 
robotic tasks. It provides an overview of typically used sensors, controllable 
parameters, proposed methods, and applied tasks. 

Table 3.1. Summary of typical works on fundamental sensor planning 

Reference Sensors Parameters Method Task 
Cowan 1988 Camera; 

Extension 
to laser 
scanner 

Resolution, focus (depth 
of field), field of view, 
visibility, view angle;  
6 extrinsic parameters of 
the sensor 

Geometrical 
computation 

General model 
based vision task 

Tarabanis 
1991 

Camera Optical constraints 
(resolution, focus/ 
depth-of-field, 
field-of-view, and 
detectability) 

Volume 
intersection 
method VIM 

General purpose 

Remagnino1
995 

Camera Position, look direction 
(pan/tilt), focal length 

Geometrical 
computation 

General task in 
partially known 
environment 

Giraud 1995 General 
sensors 

Perception number, 
sensor location 

Geometrical 
approach, 
Bayesian 
statistics 

Equipment 
design, general 
task 

Triggs 1995 Camera Task, camera, robot and 
environment 

Probabilistic 
heuristic search, 
combined 
evaluation 
function 

General model 
based vision task 

Yao 1995 Camera Generalized viewpoint, 
depth of field, field of 
view, resolution 

Tree annealing General model 
based vision task 

Tarabanis 
1995 

Camera Camera pose, optical 
settings, task constraints 

VIM Model based 
vision task 

Stamos1998 Camera Field-of-view, visibility Interactive General model 
based vision task 

Lehel et al. 
1999 

Trinocular 
sensor 
(CardEye) 

Relative intrinsic 
translation, pan, tilt, field 
of view angle 

Iterative 
optimization 

General vision 
tasks 

Li and Liu 
2003 

Structured 
light 

Reconfigured pose Geometrical Recalibration for 
active vision 

Zanne et al. 
2004 

Eye-in-hand 
camera 

Path Constraint-based 
control 

(Continued)

Visibility 
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Reference Sensors Parameters Method Task 
Farag 2004 Trinocular Center, zoom, focus and 

vergence 
SIFT algorithm Mobile vision 

system 

Mariottini 
2005 

Pinhole and 
panoramic 
cameras 

Camera intrinsic and 
relative parameters 

Geometrical 
modeling 

Camera models 
and epipolar 
geometry 

LaValle 2006 general NA Algorithms using 
information 
space, 
differential 
constraints, etc. 

Motion planning 

Hua et al. 
2007 

Panoramic 
Camera 

Wide FOV, 
high-resolution 

Mirror pyramid Maximize the 
panoramic FOV 

 
 
For active sensor planning, an intended view must first satisfy some constraints, 

either due to the sensor itself, the robot, or its environment. From the work by 
Cowan et al. (1988) who made a highlight on the sensor placement problem, 
detailed descriptions of the acceptable viewpoints for satisfying many requirements 
(sensor placement constraints) have to be provided. Cowan and Kovesi (1988) 
presented an approach to automatically generating camera locations (viewpoints), 
which satisfied many requirements (we term it sensor placement constraints) 
including resolution, in-focus, field-of-view, occlusion, etc. Shortly after that, they 
(Cowan and Bergman 1989) further described an integrated method to position both 
a camera and a light source. Besides determining the camera placement region to 
satisfy the resolution, field of view, focus, and visibility, lens aperture setting was 
also considered by computing the diffraction limit. The light position region was 
determined to achieve adequate illumination, mathematically through the light path, 
i.e. surface absorption, diffused reflectance, specular reflectance, and image 
irradiance. Similar concepts were also presented by Tarabanis et al. (1991) to 
compute the viewpoints that satisfy the sensing constraints, i.e. resolution, focus, 
field-of-view, and detectability. A complete list of constraints will be summarized 
and analyzed in Chap. 4. 

To better describe the sensor properties, Ikeuchi et al. (1991) presented a 
sensor modeler, called VANTAGE, to place the light sources and cameras for 
object recognition. It mostly proposed to solve the detectability (visibility) (Zanne 
et al. 2004) of both light sources and cameras. It determined the 
illumination/observation directions using a tree-structured representation and 
AND/OR operations. The sensor is defined as consisting of not only the camera, 
but multiple components (G-sources), e.g. a photometric stereo. It is represented 
as a sensor composition tree (SC tree), as in Fig. 3.2. Finally, the appearance of 
object surfaces is predicted by applying the SC tree to the object and is followed 
by the action of sensor planning. 

Table 3.1. (Continued)
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In some other typical works on constraint formulation, Remagnino et al. (1995) 
proposed to set the viewpoint, look direction, and focal length of a camera. With a 
partially known environment, it dealt with two problems: how to determine the 
sensor”s pose (in the bootstrap phase) and how to determine the next-look direction 
(in the run phase). It took into account errors in the object position stored in the 
memory and errors due to image segmentation. Rosenfeld et al. (1988) discussed 
some techniques and relationship between object recognition and known or 
unknown viewpoints. In fact, an intensive survey on sensing strategies developed in 
the first stage, i.e. the period from 1987 to 1992, was summarized by Tarabanis  
et al. (1995). 

To a relatively higher level, Giraud and Jouvencel (1995) addressed the sensor 
selection at an abstract level for equipment design and perception planning. It is 
formulated with (1) the number of uses of a sensor; (2) the selection of 
multi-sensors; (3) discarding useless sensors; and (4) the location of the sensors. It 
used an approach based on geometrical interaction between a sensor and an 
environment and Bayes reasoning to estimate the achieved information. Later, 
Kristensen et al. (1997) proposes the sensor planning approach also using the 
Bayesian decision theory. The sensor modalities, tasks, and modules were 
described separately and the Bayes decision rule was used to guide the behavior.  

The model-based sensor placement problem in fact is formulated as a nonlinear 
multi-constraint optimization problem. It is difficult to compute robust viewpoints 
which satisfy all feature detectability constraints. Yao and Allen (1995) presented a 
tree annealing (TA) method to compute the viewpoints with multi-constraints. They 
also investigated the stability and robustness while considering the constraints with 
the different scale factors and noises. Another way is done by Triggs and Laugier 
(1995) who described a planner to produce heuristically good static viewing 
positions. It combined many task, camera, robot and environmental constraints. A 
viewpoint is optimized and evaluated by a function which uses a probability-based 
global search technique. 

Fig. 3.2. The photometric stereo sensor and its SC tree (Ikeuchi and Robert 1991) 



46      Chapter 3 Active Sensor Planning – the State-of-the-Art 

 

Fig. 3.3. The CardEye trinocular vision sensor and its model (with the Computer Vision and 
Image Processing Lab (CVIP) at the University of Louisville (Farag 2004)) 

 

Fig. 3.4. The ATRV-2 based AVENUE mobile robot for automated site modeling (Blaer and 
Allen 2006) 

In a recent book by Steve LaValle (2006), many different kinds of planning 
algorithms can be found related to visibility and sensor-based planning, e.g. 
information space, differential constraints, decision-theoretic planning, 
sampling-based planning, combinatorial planning, etc. 

For active sensing purpose, many devices and systems have recently been 
invented for robotics, e.g. (Colin 2007, Hou et al. 2006). An ATRV-2 based 
AVENUE mobile robot is used by Blaer and Allen (2006) for automated site 
modeling (Fig. 3.4), at the Columbia University. Sheng et al. (2006) develop an 
automated, intelligent inspection system for these engineered structures, which 
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employs a team of intelligent climbing robots and a command robot to 
collaboratively carry out the inspection task. To support autonomous navigation, a 
miniature active camera (MoCam) module is designed, which can be used in the 
pose calibration of the robot. Farag (2004) solves the planning problem for a mobile 
active system with a trinocular vision sensor (Fig. 3.3). An algorithm is proposed to 
combine a closed-form solution for the translation between the three cameras, the 
vergence angle of the cameras as well as zoom and focus setting with the results of 
the correspondences between the acquired images and a predefined target obtained 
using the Scale Invariant Feature Transform (SIFT) algorithm. There are two goals. 
The first is to detect the target objects in the navigation field. The second goal is 
setting the cameras in the best possible position with respect to the target by 
maximizing the number of correspondences between the target object and the 
acquired images. The ultimate goal for the algorithm is to maximize the 
effectiveness of the 3D reconstruction from one frame. 

Fig. 3.5. The camera model for visual servoing (Mariottini and Prattichizzo 2005) 

 
For fast development of sensor modeling, Mariottini and Prattichizzo (2005) 

develop an Epipolar Geometry Toolbox (EGT) on MATLAB which is a software 
package targeted to research and education in computer vision and robotic visual 
servoing (Fig. 3.5). It provides the user with a wide set of functions for designing 
multicamera systems for both pinhole and panoramic cameras. Several epipolar 
geometry estimation algorithms have been implemented. They introduce the 
toolbox in tutorial form, and examples are provided to demonstrate its capabilities. 
The complete toolbox, detailed manual, and demo examples are freely available on 
the EGT Web site (http://egt.dii.unisi.it/). 
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3.4 Planning for Dimensional Inspection 

In many vision tasks, there exists an object model in the system. For example, in 
assembly (Nelson 1996), model-based recognition (Okamoto 1998), object 
searching, dimensional measurement, inspection, and semi-automated scene 
reconstruction, the object”s geometry and a rough estimate of its pose are known. 
Especially for the inspection tasks, using either range sensors (Prieto 1999) or 
intensity cameras (Gu et al. 1999, Abrams 1999), a nearly perfect estimate of the 
object”s geometry and possibly its pose are known and the task is to determine how 
accurately the object has been manufactured. Table 3.2 lists some typical works on 
sensor planning for automated inspection. 

Table 3.2. Summary of typical works on sensor planning for dimensional inspection 

Reference Sensors Parameters Method Task 
Tarabanis 
1995 

Camera Camera pose, optical 
settings, task constraints 

VIM Model based 
vision task 

Abrams 1996 Camera Detectability, in focus, 
field-of-view, visibility, 
and resolution 

VIM Inspection 

Trucco 1997 Generalized 
sensor 

Visibility, reliability, 
shortest path 

Generate-and-test, 
VIM, FIR, CCAO 

Inspection 

Prieto 1999 Range 
sensor 

Viewing distance, 
incident angle 

Direct 
computation 

Inspection 

Sheng et al. 
2003 

    

Hodge 2003 Multiple 
cameras 

Positions Agent-based 
coordination 

Inspection 

Chen et al. 
2004 

Camera, 
structured 
light 

Camera pose, settings, 
task constraints 

Genetic 
algorithm, graph 
theory 

Model-based 
inspection, 
robot path 

Rivera-Rios 
2005 

Stereo Camera pose Probabilistic 
analysis 

Dimensional 
measurements 

Bodor 2005 Cameras Internal and external 
camera parameters 

Analytical 
formulation 

Observability 

 

 
On object inspection, Yao and Allen argued that this problem in fact was a 

nonlinear multi-constraint optimization problem (Yao 1995). Triggs and Laugier 
(1995) described a planner to produce heuristically good static viewing positions. It 
combined many task, camera, robot and environmental constraints. A viewpoint is 
optimized and evaluated by a function which uses a probability-based global search 
technique. It is difficult to compute robust viewpoints which satisfy all feature 
detectability constraints. Yao and Allen (1995) presented a Tree Annealing (TA) 
method to compute the viewpoints with multi-constraints. They also investigated 
the stability and robustness while considering the constraints with the different 
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scale factors and noises. Elsewise, Olague and Mohr (1998) chose to use genetic 
algorithms to determine the optimal sensor placements. 

In order to obtain a quality control close to the accuracy obtained with a 
coordinate measuring machine in metrology for automatic inspection, F. Prieto et 
al. suggest improving the accuracy of the depth measurements by positioning the 
sensor”s head according to a strategy for optimum 3D data acquisition (Prieto 
1999). This strategy guarantees that the viewpoints found meet the best accuracy 
conditions in the scanning process. The proposed system requires the part”s CAD 
model to be in IGES format.  

Several sensor planning systems have been developed by researchers. For 
example, Trucco et al. (1997) developed a general automatic sensor planning 
(GASP) system. Tarbox and Gottschlich (1999) had an Integrated Volumetric 
Inspection System (IVIS) and proposed three algorithms for inspection planning. 
Tarabanis et al. (1995) developed a model-based sensor planning system, the 
machine vision planner (MVP), which works with 2D images obtained from a CCD 
camera. 

Compared with other vision sensor planning systems, the MVP system is notable 
in that it takes a synthesis rather than a generate-and-test approach, thus giving rise 
to a powerful characterization of the problem. In addition, the MVP system 
provides an optimization framework in which constraints can easily be incorporated 
and combined. The MVP system attempts to detect several features of interest in the 
environment that are simultaneously visible, inside the field of view, in focus, and 
magnified, by determining the domain of admissible camera locations, orientations, 
and optical settings (Fig. 3.6). A viewpoint is sought that is both globally admissible 
and central to the admissibility domain. 

Based on the work on the MVP system (Tarabanis 1995), Abrams et al. (1996) 
made a further development for planning viewpoints for vision tasks within a robot 
work-cell. The computed viewpoints met several constraints such as detectability, 
in-focus, field-of-view, visibility, and resolution. The proposed viewpoint 
computation algorithm also fell into the “volume intersection method” (VIM). The 
planning procedure was summarized as: (1) Compute the visibility volumes Vivis; 
(2) compute the volumes ViFR combined with field-of-view and resolution 
constraints; (3) compute the overall candidate volume Vc as the intersection of all 
ViFR and Vivis; (4) find a position within Vc; (5) find the orientation; (6) compute 
the focus and maximum aperture; (7) verify that the parameters are all valid. 

These is generally a straightforward but very useful idea. Many of the latest 
implemented planning systems can be traced back to this contribution. For example, 
Rivera-Rios et al. (2005) presents a probabilistic analysis of the effect of the 
localization errors on the dimensional measurements of the line entities for a 
parallel stereo setup (Fig. 3.7). The probability that the measurement error is within 
an acceptable tolerance was formulated as the selection criterion for camera poses. 
The camera poses were obtained via a nonlinear program that minimizes the total 
mean square error of the length measurements while satisfying the sensor 
constraints.
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Fig. 3.6. The admissible domain of viewpoints (Tarabanis 1995) 

 

Fig. 3.7. Stereo pose determination for dimensional measurement (Rivera-Rios 2005) 
 
The general automatic sensor planning system (GASP) reported by Trucco et al. 

(1997) is to compute optimal positions for inspection tasks using a known imaging 
sensor and feature-based object models. This exploits a feature inspection 
representation (FIR) which outputs an explicit solution off-line for the sensor 
position problem. A generalized sensor (GS) model was defined with both the 
physical sensor and the particular software module. The viewpoints are planned by 
computing the visibility and reliability. The reliability of the inspection depends on 
the physical sensors used and the processing software. In order to find a shortest 
path through the viewpoints in space, they used the Convex hull, Cheapest 
insertion, angle selection, Or-optimization (CCAO) as the algorithm to solve the 
traveling salesman problem (Fig. 3.8). 
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Fig. 3.8. The shortest path planned to take a stereo pair through the viewpoints (Trucco 1997) 

In order to obtain a more complete and accurate 3D image of an object, Prieto  
et al. (1999) presented an automated acquisition planning strategy utilizing its CAD 
model in IGES format. The work was focused on improving the accuracy of the 3D 
measured points which is a function of the distance to the object surface and of the 
laser beam incident angle. 

3.5 Planning for Recognition and Search 

In many cases, a single view of an object may not contain sufficient features to 
recognize it unambiguously. Therefore another important application of sensor 
planning is active object recognition (AOR) which recently attracts much attention 
within the computer vision community. Object search is also considered a 
model-based vision task concerned with finding a given object in a known or 
unknown environment. The object search task not only needs to perform the object 
recognition and localization, but also involves sensing control, environment 
modeling, and path planning. Sensor planning is very important for 3D object 
search since a robot needs to interact intelligently and effectively with the 3D 
environment. Table 3.3 lists the typical works on sensor planning for vision-based 
recognition and search. 
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Table 3.3. Summary of typical works on sensor planning for recognition and search 

Reference Sensors Parameters Method Task 
Ikeuchi and 
Robert 1991 

Light source, 
camera 

Illumination/ 
observation directions 

Tree-structured, 
logical operation 

Object 
recognition 

Ye 1995 Camera + 
range finder 

Sensing pose, search 
space 

Probability, 
tessellated  
sphere (TS) 

Object search 

Liu and Lin 
1994 
Lin et al. 1996 

Structured 
light 

View pose Rules, feature 
prediction, 
MERHR 

Recognition 

Madsen and 
Christensen 
1997 

Camera Viewing direction Direct 
computation 

Active object 
recognition 
(AOR) 

Borotschnig 
2000 

Camera, 
illuminant 

View pose Probabilistic 
object 
classifications, 
score ranking 

AOR 

Deinzer 2000 Camera Classification and 
localization 

Reinforcement 
learning 

AOR 

Roy 2000 Camera View pose, object 
features 

Probabilistic 
reasoning, Bayes 
rule 

AOR 

Sarmiento  
et al. 2005 

General 
sensor 

Sensing locations Convex cover 
algorithm 

Object search 

Xiao et al. 2006 Sonar and 
omni- 
directional 
camera 

Path Fuzzy logic 
algorithm 

Search 

 
In fact, two objects may have all views in common with respect to a given feature 

set, and may be distinguished only through a sequence of views (Roy 2000). 
Further, in recognizing 3D objects from a single view, recognition systems often 
use complex feature sets. Sometimes, it may be possible to achieve the same, 
incurring less error and smaller processing cost by using a simpler feature set and 
suitably planning multiple observations. A simple feature set is applicable for a 
larger class of objects than a model base with a specific complex feature set. Model 
base-specific complex features such as 3D invariants have been proposed only for 
special cases. The purpose of AOR is to investigate the use of suitably planned 
multiple views for 3D object recognition. Hence the AOR system should also take a 
decision on “where to look”. The system developed for this task is an iterative 
active perception system that executes the acquisition of several views of the object, 
builds a stochastic 3D model of the object and decides the best next view to be 
acquired. Okamoto et al. (1998) proposed such a method based on an entropy 
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measure. Liu and Lin (1994), Lin et al. (1996), and Madsen and Christensen (1997) 
proposed their sensor planning strategies for recognition using rules to 
automatically predict and detect object features and calculate the next sensor pose, 
and they applied the maximum expected rate of hypothesis reduction (MERHR) to 

Christensen 1997) was to determine the true angle on the object surface. It 
automatically guided a movable camera to a position where the optical axis is 
perpendicular to a plane spanned by any two intersecting edges on a polyhedral 
object, so that it could determine the true angle of a junction and align the camera. 
Ye and Tsotsos (1999) used a strategy for object search by planning the sensing 
actions on the sensed sphere or layered sensed sphere. It was based on a mobile 
platform, an ARK robot, equipped with a Laser Eye with pan and tilt capabilities. 
They combined the object recognition algorithm and the target distribution 
probability for the vision task. 

 Ikeuchi et al. (1991) developed a sensor modeler, called VANTAGE, to place the 
light sources and cameras for object recognition. It mostly solves the detectability 
(visibility) of both light sources and cameras. Borotschnig et al. (2000) also 
presented an active vision system for recognizing objects which are ambiguous 
from certain viewpoints. The system repositions the camera to capture additional 
views and uses probabilistic object classifications to perform view planning. 
Multiple observations lead to a significant increase in recognition rate. The view 
planning consists in attributing a score to each possible movement of the camera. 
The movement obtaining the highest score will be selected next (Fig. 3.9). It was 
based on the expected reduction in Shannon entropy over object hypotheses given a 
new viewpoint, which should consist in attributing a score sn( ) to each possible 
movement  of the camera. The movement obtaining the highest score will be 
selected next: 

n+1 := arg max sn( ) (3.3) 

Reinforcement learning has been attempted by Deinzer et al. (2000) for 
viewpoint selection for active object recognition and for choosing optimal next 
views for improving the classification and localization results. Roy et al. (2000) 
attempted probabilistic reasoning for recognition of an isolated 3D object. Both the 
probability calculations and the next view planning have the advantage that the 

Fig. 3.9. The framework of appearance-based active object recognition (Borotschnig 2000) 

minimize the sensing actions. Madsen and Christensen’s strategy (Madsen and 
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knowledge representation scheme encodes feature-based information about objects 
as well as the uncertainty in the recognition process. The probability of a class (a set 
of aspects, equivalent with respect to a feature set) was obtained from the Bayes rule 
(Roy 2000): 
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where P(Bi | E k) is the post-probability of the given subtask done by the action 
agent. 

In the next view planning, two possible moves may be followed from one view to 
another, i.e. primary move and auxiliary move. A primary move represents a move 
from an aspect, the minimum angle needed to move out of it. An auxiliary move 
represents a move from an aspect by an angle corresponding to the primary move of 
another competing aspect. 

3.6 Planning for Exploration, Navigation, and Tracking 

On sensor planning for exploration, navigation, and tracking, there is a similar 
situation that the robot has to work in a dynamic environment and the sensing 
process may associate with many noises or uncertainties. This issue has become the 
most active for many applications in recent years. For example, Bhattacharya et al. 
(2007), Gutmann et al. (2005), Kim (2004), Parker et al. (2004), Steinhaus et al. 
(2004), Giesler (2004), Yamaguchi et al. (2004), Wong and Jarvis (2004), and 
Bekris et al. (2004) are related to sensor planning for navigation; Yang et al. (2007), 
Deng et al. (2005), Chivilo et al. (2004), Harville and Dalong (2004), Thompson 
(2003), Nishiwaki (2003), and Saeedi et al. (2006) are related to sensor planning for 
tracking; Huwedi (2006), Leung and Al-Jumaily (2004), and Isler (2003) are related 
to sensor planning for exploration; Reitinger et al. (2007), Blaer (2006), Ikeda 
(2006), Park (2003), and Kagami (2003) are related to sensor planning for 
modeling; and Lim (2003) is for surveillance. Table 3.4 lists the typical works on 
sensor planning for these topics. 

Table 3.4. Some typical works on sensor planning for navigation and modeling 

Reference Sensors Parameters Method Task 
Remagnino 
1995 

Camera Position, look 
direction (pan/tilt), 
focal length 

Direct 
computation 

General vision task 
in partially known 
environment 

Kristensen 
1997 

General 
sensor/ 
actuator 

Sensor actions Bayesian 
decision 

Autonomous 
navigation in partly 
known environments 

Gracias 2003   Mosaic-based Underwater 
navigation 
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Reference Sensors Parameters Method Task 
Zhu 2004 Panoramic 

stereo 
Position, orientation Adaptive  Tracking and 

localization 
Chen et al. 
2005 

General Sensor pose Trend surface Object modeling 

Skrzypc- Cameras Position Landmarks Positioning, 
navigation 

Murrieta-Cid 
2005 

Range 
sensor 

Visibility, distance, 
speed 

Differential, 
system model 

Surveillance; 
maintaining 
visibility 

Hughes and 
Lewis 2005 

Cameras Camera placement, 
field of view 

Simulation Exploration 

Belkhouche 
and 
Belkhouche 
2005 

General Robot position and 
orientation 

Guidance laws Tracking, navigation 

Kitamura 
2006 

Camera, 
other sensor 

Human intervention Biologically 
inspired, 
learning 

Navigation 

Ludington  
et al. 2006 

Aerial 
camera 

Position Vision-aided 
inertial, 
probability 

Navigation, search, 
tracking 

Bhattacharya 
et al. 2007 

Camera Path, field of view, 
camera pan 

Region based Landmark-based 
navigation 

 

For navigation in an active way, a robot is usually equipped with a 
“controllable” vision head, e.g. a stereo camera on pan/tilt mount (Fig. 3.10). 
Kristensen (1997) presented the problem of autonomous navigation in partly 
known environments (Fig. 3.11). Bayesian decision theory was adopted in the 
sensor planning approach. The sensor modalities, tasks, and modules were 
described separately and Bayes decision rule was used to guide the behavior. The 
decision problem for one sensor was constructed with a standard tree for myopic 

Table 3.4. (Continued)

 

 
Fig. 3.10. The robot with an active stereo head (e.g. rotation, pan/tilt mount) (Parker et al. 
2004) 

 

zynski 2005 
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Fig. 3.11. The planning architecture with three levels of abstraction, illustrating that the 
planner mediates the sensors to the purposive modules (Kristensen 1997) 

Zhuang et al. (2004) developed an adaptive panoramic stereovision approach for 
localizing 3D moving objects at the department of computer science at the 
University of Massachusetts at Amherst. The research focuses on cooperative 
robots involving cameras (residing on different mobile platforms) that can be 
dynamically composed into a virtual stereovision system with a flexible baseline in 
order to detect, track, and localize moving human subjects in an unknown indoor 
environment. It promises an effective way to solve the problems of limited 
resources, view planning, occlusion, and motion detection of movable robotic 
platforms. Theoretically, two interesting conclusions are given: 

1. If the distance from the main camera to the target, D1, is significantly greater 
(e.g., ten times greater) than the size of the robot (R), the best geometric 
configuration is 

22
1

1
11 2

3cos  ,2
BD

BDRDB  (3.5) 

where B is the best baseline distance for minimum distance error and 1 is the main 
camera”s inner angle of the triangle formed by the two robots and the target. 

 

decision. Object search is also a model-based vision task which is to find a given 
object in a known or unknown environment. The object search task not only needs 
to perform object recognition and localization, but also involves sensing control, 
environment modeling, and path planning.  
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2. The depth error of the adaptive stereovision is proportional to 1.5 the power of 
the camera-target distance (D1.5), which is better than the case of the best 
possible fixed baseline stereo in which depth error is proportional to the square 
of the distance (D2). 

On the visual tracking problem, Belkhouche and Belkhouche (2005) pointed out 
that the traditional control algorithms based on artificial vision suffered from two 
problems: 

1. The control algorithm has to process in real time a huge flow of data coming 
from the camera. This task may be difficult, especially for fast tracking 
problems. Thus, the maximum computational power for image processing is an 
important issue. 

2. The target (or the lead car) is detected only when it appears in the camera”s field 
of view. Thus, the target must stay in the camera scope of the pursuer. This 
requirement is necessary to implement a vision-based algorithm. 

Therefore, they make a mathematical formulation for modeling and controlling a 
convoy of wheeled mobile robots. The approach is based on guidance laws strategies, 
where the robotic convoy is modeled in terms of the relative velocities of each lead 
robot with respect to its following robot. This approach results in important 
simplifications to the sensory system as compared to artificial vision algorithms. 

Concerning the surveillance problem, there is a decision problem which 
corresponds to answering the question: can the target escape the observer”s view? 
Murrieta-Cid et al. (2005) defined this problem and considered to maintain 
surveillance of a moving target by a nonholonomic mobile observer. The 
observer”s goal is to maintain visibility of the target from a predefined, fixed 
distance. The target escapes if 

(a) it moves behind an obstacle to occlude the observer”s view,  
(b) it causes the observer to collide with an obstacle, or  
(c) it exploits the nonholonomic constraints on the observer”s motion to increase 

its distance from the observer beyond the surveillance distance. 
An expression derived for the target velocities is: 
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where  and  are the observer”s orientation, u1 and u3 are moving speeds, and l is 
the predefined surveillance distance. 

To maintain the fixed required distance between the target and the observer, the 
relationship between the velocity of the target and the linear velocity of the observer is  

1)sin(2),( 2
3

2
31
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131 ulluuuuuf  (3.7) 

Equation (3.7) defines an ellipse in the u1–u3 plane and the constraint on u1 and u3 
is that they should be inside the ellipse while supposing 122

TT yx . They deal 
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specifically with the situation in which the only constraint on the target”s velocity is 
a bound on speed (i.e., there are no nonholonomic constraints on the target”s 
motion), and the observer is a nonholonomic, differential drive system having 
bounded speed. The system model is developed to derive a lower bound for the 
required observer speed. It”s also considered the effect of obstacles on the 
observer”s ability to successfully track the target. 

 

 
Fig. 3.12. The structure of six-layered consciousness-based architecture and an example of 
behavior track with intervention (right side) 

 

Biologically inspired, Kitamura and Nishino (2006) use a consciousness-based 
architecture (CBA) for the remote control of an autonomous robot as a substitute for 
a rat. CBA is a developmental hierarchy model of the relationship between 
consciousness and behavior, including a training algorithm (Fig. 3.12). This 
training algorithm computes a shortcut path to a goal using a cognitive map created 
on the basis of behavior obstructions during a single successful trial. However, 
failures in reaching the goal due to errors of the vision and dead reckoning sensors 
require human intervention to improve autonomous navigation. A human operator 
remotely intervenes in autonomous behaviors in two ways: low-level intervention 
in reflexive actions and high-level ones in the cognitive map. 

A survey has recently been carried out by Jia et al. (2006). It summarizes the 
developments of the last 10 years in the area of vision-based target tracking for 
autonomous vehicle navigation. It concludes that it is very necessary to develop 
robust visual target tracking based navigation algorithms for the broad applications 
of autonomous vehicles. Including the recent techniques in vision-based tracking 
and navigation, some trends of using data fusion for visual target tracking are also 
discussed. It is especially pointed out that through data fusion the tracking 
performance is improved and becomes more robust. 
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3.7 Planning for Assembly and Disassembly 

For the assembly/disassembly tasks (Table 3.5), a long-term aim in robot 
programming is the automation of the complete process chain, i.e. from planning to 
execution. One challenge is to provide solutions which are able to deal with position 
uncertainties (Thomas et al. 2007, Fig. 3.13). Nelson et al. (1996) introduced a 
dynamic sensor planning method. They used an eye-in-hand system and considered 
the resolution, field-of-view, depth-of-view, occlusions, and kinematic singularities. 
A controller was proposed to combine all the constraints into a system and resulted in 
a control law. Kececi et al. (1998) employed an independently mobile camera with a 
6-DOF robot to monitor a disassembly process so that it can be planned. A number of 
candidate view-poses are being generated and subsequently evaluated to determine an 
optimal view pose. A good view-pose is defined with the criterion which prevents 
possible collisions, minimizes mutual occlusions, keeps all pursued objects within the 
field-of-view, and reduces uncertainties. 

Fig. 3.13. Vision sensor for solving object poses and uncertainties in the assembly work cell 
(Thomas et al. 2007) 

Takamatsu et al. (2002) developed an “assembly-plan-from-observation” (APO) 
system. The goal of the APO system is to enable people to design and develop a 
robot that can perform assembly tasks by observing how humans perform those 
tasks. Methods of contact relations configuration space (C-space) are used to clean 
up observation errors. Stemmer et al. (2006) use a vision sensor, with color 
segmentation and affine invariant feature classification, to provide the position 
estimation within the region of attraction (ROA) of a compliance-based assembly 
strategy. An assembly planning toolbox is based on a theoretical analysis and the 
maximization of the ROA. This guarantees the local convergence of the assembly 
process under consideration of the geometry in part. The convergence analysis uses 
the passivity properties of the robot and the environment. 
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Table 3.5. Some typical works on sensor planning for assembly and disassembly 

Reference Sensors Parameters Method Task 
Nelson 1996 Camera Resolution, FOV, 

depth-of-view, 
occlusions, kinematics 

Controller 
(dynamic control 
law) 

Assembly 

Kececi 1998 Camera FOV, view pose, 
occlusion, uncertainties 

Generate-and-test, 
view-pose 
assessment/ 
evaluation 

Disassembly 

Molineros 
2001 

Camera Position Appearance- 
based 

Assembly 
planning 

Takamatsu 
2002 

General Spatial relation C-space Assembly, 
recognition 

Hamdi and 
Ferreira 2004 

Virtual Position Physical-based Microassembly 

Kelsey et al. 
2006 synthetic and tracking 
Thomas et al. 
2007 

Cameras Relative poses Multi sensor 
fusion  

Assembly 

 

3.8 Planning with Illumination 

Table 3.6. Summary of typical works on sensor planning with illumination 

Reference Sensors Parameters Method Task 
Cowan 1989 Camera, light 

source 
Camera, light 
position region 

Illumination 
computation via 
reflectance 

General model 
based tasks 

Ikeuchi and 
Robert 1991 

Light source, 
camera 

Illumination/ 
observation 
directions 

Tree-structured,
logical 
operation 

Object 
recognition 

Eltoft 1995    Enhancing 
image features 

Solomon 1995 Light source, 
camera 

Positions Model-based Lambertian 
polyhedral 
objects 

Racky and 
Pandit 1999 

Light source Position Physics Segmentation 

Xu and Zhang 
2001 

Light source Pose, intensity, and 
distribution of light 
sources 

Neural-network Surgical 
applications; 
general vision 
tasks 

 

Stereo Pose Model-based, Pose estimation 
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Reference Sensors Parameters Method Task 
Qu 2003     
Spence 2006 Photometric 

stereo 
Position Sensitivity 

analysis 
Surface 
measurement 

Yang and 
Welch 2006 

Light source Illumination 
variance 

Illumination 
estimation 

Tracking 

Chen et al. 2007 Light source Intensity, glares PID-controller General tasks 
Marchand 2007 Light, camera Positions Brightness, 

contrast 
Visual 
servoing 

 
The light source for a natural scene is its illumination. For many machine-vision 

applications, illumination now becomes the most challenging part of system design, 
and is a major factor when it comes to implementing color inspection. Table 3.6 
lists the typical works on sensor planning with illumination, recently carried out in 
the robot vision community. Here, when illumination is also considered, the term 
“sensor” has a border meaning “sensor/actuator/illuminant”. 

Eltoft and deFigueiredo (1995) found that illumination control could be used as a 
means of enhancing image features. Such features are points, edges, and shading 
patterns, which provide important cues for the interpretation of an image of a scene 
and the recognition of objects present in it. Based on approximate expressions for the 
reflectance map of Lambertian and general surfaces, a rigorous discussion on how 
intensity gradients are dependent on the direction of the light is presented. 
Subsequently, three criteria for the illumination of convex-shaped cylindrical surfaces 
are given. Two of these, the contrast equalization criterion and the max-min 
equalization criterion, are developed for optimal illumination of convex polyhedrons. 
The third, denoted shading enhancement, is applicable for the illumination of convex 
curved objects. Examples illustrate the merit of the criteria presented 

Xu and Zhang (2001) and Zhang (1998) apply a method of modeling human 
strategy in controlling a light source in a dynamic environment to avoid a shadow 
and maintain appropriate illumination conditions. Ikeuchi et al. (1991) investigate 
the illumination conditions with logical operations of illuminated regions. Their 
developed sensor modeler, VANTAGE, determines the illumination directions 
using a tree-structured representation and AND/OR operations (Fig. 3.14). 

 

 
Fig. 3.14. Set operations (“AND” and “OR”) among illuminated regions (Ikeuchi and Robert 
1991) 

Table 3.6. (Continued)
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Qu et al. (2003) discussed that irradiance distribution and intensity of the test 
object play a key role in accuracy and stability of the vision measuring system. They 
proposed a luminance transfer function to design the illumination so that it could 
adjust light radiation automatically by ways of Neural Networks and Pulse-Width 
Modulation switch power. They concluded that the illumination could greatly 
improve the accuracy and robustness of the vision measuring system. 

Marchand et al. (2007) recently proposed an approach to control camera position 
and/or lighting conditions in an environment using image gradient information. The 
goal is to ensure a good viewing condition and good illumination of an object to 
perform vision-based tasks such as recognition and tracking. Within the visual 
servoing framework, the solution is to maximize the brightness of the scene and 
maximize the contrast in the image. They consider arbitrary combinations of either 
static or moving lights and cameras. The method is independent of the structure, 
color and aspect of the objects. For examples, illuminating the Venus of Milo is 
planned as in Fig. 3.15. 

Fig. 3.15. En example of camera and light source position control 

With regard to the placement of the illumination vectors for photometric stereo, 
Drbohlav and Chantler (2005) discussed the problem of optimal light 
configurations in the presence of camera noise. Solomon and Ikeuchi proposed an 
illumination planner for Lambertian polyhedral objects. Spence and Chantler 
(2006) also found the optimal difference between tilt angles of successive 
illumination vectors to be 120°. Such a configuration is therefore to be 
recommended for use with 3-image photometric stereo. Ignoring shadowing, the 
optimal slant angle was found to be 90° for smooth surfaces and 55° for rough 
surfaces. The slant angle selection therefore depends on the surface type. 
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3.9 Other Planning Tasks 

Besides the tasks already presented in this chapter, there are some other interesting 
works related to active sensor planning (Table 3.7). For example, Navarro-Serment 
et al. (2004) describe a method for observing maneuvering targets using a group of 
mobile robots equipped with video cameras. The cameras seek to observe the target 
while facing it as much as possible from their respective viewpoints. The work 
considers the problem of scheduling and maneuvering the cameras based on the 
evaluation of their current positions in terms of how well can they maintain a frontal 
view of the target. Some contributions such as interactive planning, virtual 
placement, robot localization, attention and gaze are briefly introduced below. 

Table 3.7. Some other interesting works related to active sensor planning 

Reference Sensors Parameters Method Task 
Stamos 1998 Camera Visibility, FOV, task 

constraints 
Interactive General purpose 

Navarro- 
Serment 2004 

Cameras Positions Evaluation 
function 

Observation 

Zingaretti 
2006 

Cameras Relative intrinsic 
translation, pan, tilt, 
field of view angle 

Partially 
observable 
Markov decision 

Self-localization 

State 2006 Cameras Visibility, overlap, 
resolution 

Simulation 3D reconstruction 
in VR 

Lidoris et al. 
2006 

Camera Gaze direction Information gain SLAM 

 

3.9.1 Interactive Sensor Planning 

In cluttered and complex environments such as urban scenes, it can be very difficult 
to determine where a sensor should be placed to view multiple objects and regions 
of interest. Based on their earlier sensor planning results (Tarabanis 1995, Abrams 
1999), Stamos and Allen (1998) and Blaer and Allen (2006) extended to build an 
interactive sensor planning system that can be used to select viewpoints subject to 
camera visibility, field of view and task constraints. Given a description of the 
sensor”s characteristics, the objects in the 3D scene, and the targets to be viewed, 
the algorithms compute the set of admissible view points that satisfy the constraints. 
The system first builds topologically correct solid models of the scene from a 
variety of data sources. Viewing targets are then selected, and visibility volumes 
and field of view cones are computed and intersected to create viewing volumes 
where cameras can be placed. The user can interactively manipulate the scene and 
select multiple target features to be viewed by a camera. VRML graphic models and 
then solid CAD models are assumed as the site models of the scenes (Fig. 3.16). 
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Fig. 3.16. The scene model in which the user can interactively select the target for sensor 
planning (Stamos and Allen 1998) 

With similar tasks, a city model was generated from an incomplete graphics 
model of Rosslyn VA and was translated by the system to a valid solid model which 
the planner can use. Overlaid on the city model are the viewing volumes generated 
for different viewpoints on a selected target face in the scene. The object models 
and targets can be interactively manipulated while camera positions and parameters 
are selected to generate synthesized images of the targets that encode the viewing 
constraints. They extended this system to include resolution constraints (Tarabanis 
1995, Allen and Leggett 1995, Reed et al. 1997, Stamos 1998, Abrams 1999).  

3.9.2 Placement for Virtual Reality 

Interactive camera planning is sometimes also used for virtual reality or simulation. 
Typical examples can be found from Williams and Lee (2006) and State et al. 
(2006). For example, the work by State et al. is to simulate in real time multi-camera 
imaging configurations in complex geometric environments. The interactive 
visibility simulator helps to assess in advance conditions such as visibility, overlap 
between cameras, absence of coverage and imaging resolution everywhere on the 
surfaces of a pre-modeled, approximate geometric dataset of the actual real-world 
environment the cameras are to be deployed in. A simulation technique is applied to 
a task involving real-time 3D reconstruction of a medical procedure. It has proved 
useful in designing and building the multi-camera acquisition system as well as a 
remote viewing station for the reconstructed data. The visibility simulator is a 
planning aid requiring a skilled human system designer to interactively steer a 
simulated multi-camera configuration towards an improved solution. 

3.9.3 Robot Localization 

As a problem of determining the position of a robot, localization has been 
recognized as one of the most fundamental problems in mobile robotics. The aim of 
localization is to estimate the position of a robot in its environment, given local 
sensorial data. Zingaretti and Frontoni (2006) present an efficient metric for 
appearance-based robot localization. This metric is integrated in a framework that 
uses a partially observable Markov decision process as position evaluator, thus 
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allowing good results even in partially explored environments and in highly 
perceptually aliased indoor scenarios. More details of this topic are related to the 
research on simultaneous localization and mapping (SLAM) which is also a 

3.9.4 Attention and Gaze 

The general concept of active sensor planning should include attention and gaze. 
This book, however, does not place much emphasis on this issue. Some related 
works can be found from Bjorkman and Kragic (2004) and (Lidoris et al. 2006). 
Especially, Bjorkman et al. introduce a real-time vision system that integrates a 
number of algorithms using monocular and binocular cues to achieve robustness in 
realistic settings, for tasks such as object recognition, tracking and pose estimation 
(Fig. 3.17). The system consists of two sets of binocular cameras; a peripheral set 
for disparity-based attention and a foveal one for higher-level processes. Thus the 
conflicting requirements of a wide field of view and high resolution can be 
overcome. One important property of the system is that the step from task 
specification through object recognition to pose estimation is completely automatic, 
combining both appearance and geometric models. Experimental evaluation is 
performed in a realistic indoor environment with occlusions, clutter, changing 
lighting and background conditions. 

Fig. 3.17. The active vision system involving attention and gaze for action decision 
(Bjorkman and Kragic 2004) 

challenging problem and has been widely investigated (Eustice et al. 2006, Ohno  
et al. 2006, Lidoris et al. 2006, Herath et al. 2006, Zhenhe and Samarabandu 2005, 
Jose and Adams 2004, Takezawa et al. 2004, Prasser 2003). 
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3.10 Summary 

This chapter summarizes the recent development related to the active sensor 
planning problem. Typical works for inspection, recognition, search, exploration, 
navigation, tracking, assembly, and disassembly are listed for readers to have a 
general overview of the state-of-the art.  

In model-based tasks, the viewpoint planning is to find a set of admissible 
viewpoints in the acceptable space, which satisfy a set of the sensor placement 
constraints and can well finish the vision task. However, the previous approaches 
are normally formulated for a particular application and are therefore difficult to 
apply to general tasks. They mainly focus on modeling of sensor constraints and 
calculating a “good” viewpoint to observe one or several features on the object. 
Little consideration is given to the overall efficiency of a generated plan with a 
sequence of viewpoints. However, this method is difficult to apply in a 
multi-feature-multi-viewpoint problem as it cannot determine the minimum number 
of viewpoints and their relative distribution.  

Therefore a critical problem is still not well solved: the global optimization of 
sensor planning. When multiple features need to be observed and multiple 
viewpoints need to be planned, the minimum number of viewpoints needs to be 
determined. To achieve high efficiency and quality, the optimal spatial distribution 
of the viewpoints should be determined too. These are also related to the sensor 
configuration and environmental constraints. Furthermore, to make it flexible in 
practical applications, we need to deal with arbitrary object models without 
assumptions on the object features. These problems will be discussed in the 
following chapters. 




