
 

Chapter 2  
Active Vision Sensors 

This chapter presents the sensing fundamentals, measurement principles, and 3D 
reconstruction methods for active visual sensing. An idea of sensor reconfiguration 
and recalibration is also described which endows a robot with the ability of actively 
changing its sensing parameters according to practical scenes, targets, and 
purposes. These will be used in the next chapters in formulating the methods of 
sensor reconfiguration and sensor planning. 

2.1 3D Visual Sensing by Machine Vision 

Similar to human perception, machine vision perception is one of the most 
important ways for acquiring knowledge of the environment. The recovery of 
the 3D geometric information of the real world is a challenging problem in 
computer vision research. Active research in the field in the last 30 years has 
produced a huge variety of techniques for 3D sensing. In robotic applications, 
the 3D vision technology allows computers to measure the three-dimensional 
shape of objects or environments, without resorting to physically probing their 
surfaces. 

2.1.1 Passive Visual Sensing 

One class of visual sensing methods is called passive visual sensing where no other 
device besides cameras is required. These methods were usually developed at the 
early stage of computer vision research. By passive, no energy is emitted for the 
sensing purpose and the images are the only input data. The sensing techniques 
were often supposed to reflect the way that human eyes work. The limited 
equipment cost constitutes a competitive advantage of passive techniques compared 
with active techniques that require extra devices. 

Such passive techniques include stereo vision, trinocular vision (Lehel et al. 
1999, Kim 2004, Farag 2004), and many monocular shape-from-X techniques, 
e.g. 3D shape from texture, motion parallax, focus, defocus, shadows, shading, 
specularities, occluding contours, and other surface discontinuities. The problem 
is that recovering 3D information from a single 2D image is an ill-posed problem 
(Papadopoulos 2001). Stereo vision is still the single passive cue that gives 
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reasonable accuracy. Human has two eyes, and precisely because of the way the 
world is projected differently onto the eyes, human is able to obtain the relative 
distances of objects. The setup of a stereo machine vision system also has two 
cameras, separated by a baseline distance b. The 3D world point may be measured 
by the two projection equations, in a way that is analogous to the way the human 
eyes work. To interpret disparity between images, the matching problem must be 
solved, which has been formulated as an ill-posed problem in a general context 
and which anyway is a task difficult to automate. This correspondence problem 
results in an inaccurate and slow process and reduces its usefulness in many 
practical applications (Blais 2004). The other major drawback of this passive 
approach is that it requires two cameras and it cannot be used on un-textured 
surfaces which are common for industrially manufactured objects. The 
requirement of ambient light conditions is also critical in passive visual sensing. 
The advantage of stereo vision is that it is very convenient to implement and 
especially suitable for natural environments. A few applications are illustrated in 
Figs. 2.1 to 2.3. 

The structure-from-motion algorithms solve the following problem: given a set 
of tracked 2D image features captured by a moving camera, find the 3D positions 
and orientations of the corresponding 3D features (structure) as well as the camera 
motion. Pose estimation, on the other hand, solves the problem of finding the 
position and orientation of a camera given correspondences between 3D and 2D 
features. In both problems two-dimensional line features are advantageous 
because they can be reliably extracted and are prominent in man-made scenes. 
Taylor and Kriegman (1995) minimized a nonlinear objective function with 
respect to camera rotation, camera translation and 3D lines parameters. The 
objective function measures the deviation of the projection of the 3D lines on the 
image planes from the extracted image lines. This method provides a robust 
solution to the high-dimensional non-linear estimation problem. Fitzgibbon and 
Zisserman (1998) also worked towards the automatic construction of graphical 
models of scenes when the input was a sequence of closely spaced images. The 
point features were matched in triples of consecutive images and the fundamental 
matrices were estimated from pairs of images. The projective reconstruction and 
camera pose estimation was upgraded to a Euclidean one by means of 
auto-calibration techniques (Pollefeys et al. 1998). Finally, the registration of 
image coordinate frames was based on the algorithm of iterative closest points 
(Besl and Mckay 1992). 
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Fig. 2.1. Stereo vision for industrial robots 

 

 
Fig. 2.2. Mars Rover in 3D (NASA mission in 2003–2004) (Pedersen 2003, Miller 2003, 
Madison 2006, Deen and Lore 2005) 
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Fig. 2.3. MR-2 (Prototype of Chinese Moon Explorer in 2007–2008) 

2.1.2 Active Visual Sensing 

In contrast to passive visual sensing, the other class of visual sensing techniques is 
called active visual sensing. For the above cases of passive techniques (that use 
ambient light), only visible features with discernable texture gradients like on 
intensity edges are measured. For the example of the stereo setup, there is a 
corresponding problem. Matching corresponding points is easy if the difference in 
position and orientation of the stereo views is small, whereas it is difficult if the 
difference is large. However, the accuracy of the 3D reconstruction tends to be poor 
when the difference in position and orientation of the stereo views is small. To 
overcome the shortcomings of passive sensing, active sensing techniques have been 
developed in the recent years. These active systems usually do not have the 
correspondence problem and can measure with a very high precision. 

By active sensing, an external projecting device (e.g. laser or LCD/DLP 
projector) is used to actively emit light patterns that are reflected by the scene and 
detected by a camera. That is to say they rely on probing the scene in some way 
rather than relying on natural lighting. Compared with the passive approach, active 
visual sensing techniques are in general more accurate and reliable. 
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Generally active 3D vision sensors can resolve most of the ambiguities and 
directly provide the geometry of an object or an environment. They require minimal 
operator assistance to generate the 3D coordinates. However, with laser-based 
approaches, the 3D information becomes relatively insensitive to background 
illumination and surface texture. Therefore, active visual sensing is ideal for scenes 
that do not contain sufficient features. Since it requires lighting control, it is usually 
suitable for indoor environments and both camera and projector need to be 
pre-calibrated. 

Moire devices work on the principle that: effectively projecting a set of fringe 
patterns on a surface using an interference technique, tracking the contours of the 
fringes allows the range to be deduced. Systems that use point projection, line 
scanning, and moiré effect are highly accurate, but can be slow. Moire devices are 
best suited to digitizing surfaces with few discontinuities. 

Interferometers work on the principle that: if a light beam is divided into two 
parts (reference and measuring) that travel different paths, when the beams are 
combined together interference fringes are produced. With such devices, very small 
displacements can be detected. Longer distances can also be measured with low 
measurement uncertainty (by counting wavelengths). 

For laser range finders, the distance is measured as a direct consequence of the 
propagation delay of an electromagnetic wave. This method usually provides 
good distance precision with the possibility of increasing accuracy by means of 
longer measurement integration times. The integration time is related to the 
number of samples in each measurement. The final measurement is normally an 
average of the sample measures, decreasing therefore the noise associated to each 
single measure. Spatial resolution is guaranteed by the small aperture and low 
divergence of the laser beam (Sequeira et al. 1995, 1996, 1999). Basically laser 
range finders work in two different techniques: pulsed wave and continuous 
wave. Pulsed wave techniques are based on the emission and detection of a pulsed 
laser beam. A short laser pulse is emitted at a given frequency and the time 
elapsed between the emission and the received echo is measured. This time is 
proportional to the distance from the sensor to the nearest object. In a continuous 
wave laser ranging system, rather than using a short pulse, a continuous laser 
beam modulated with a reference waveform is emitted and the range is 
determined as a result of the comparison of the emitted and received laser beams. 
This type of system can use either amplitude modulation (e.g. sinusoidal signal) 
or frequency modulation. 

Among various 3D range data acquisition techniques in computer vision, the 
structured light system with coded patterns is based on active triangulation. A 
very simple technique to achieve depth information with the help of structured 
light is to scan a scene with a laser plane and to detect the location of the reflected 

Typically, properly formatted light, or another form of energy, is emitted in the 
direction of an object, reflected on its surface and received by the sensor; the distance 
to the surface is calculated using triangulation or time-of-flight (Papadopoulos 2001). 
Typical triangulation-based methods include single/multi-point projection, line 
projection, fringe and coded pattern projection, and moire effect (Figs. 2.4–2.6). 
Typical time-of-flight based methods are interferometers and laser range finders. 



16      Chapter 2 Active Vision Sensors 

 

stripe. The depth information can be computed out of the distortion along the 
detected profile. More complex techniques of structured light project multiple 

Therefore, although there are many types of vision sensors available to measure 
object models by either passive or active methods, structured-light is one of the 
most important methods due to its many advantages compared with other methods, 
and thus it is successfully used in many areas for recovering 3D information of an 
industrial object. This chapter considers typical setups of the structured light system 
for active visual sensing, using stripe light vision or color-encoded vision. Their 
system configurations and measurement principles are presented in the following 
sections. 

 
Fig. 2.4. Light spot projection 

 

p

stripes (Fig. 2.7) or a pattern of grids at once onto the scene. In order to distinguish 
between stripes or grids they are coded either with different brightness or different 
colors (Fig. 2.8) (e.g. Coded Light Approach (Inokuchi et al. 1984, Stahs and 
Wahl 1992) and unique color encoding method). The structured light systems, as 
well as laser range finders, map directly the acquired data into a 3D volumetric 
model having thus the ability to avoid the correspondence problem associated 
with passive sensing techniques. Indeed, scenes with no textural details can be 
easily modeled. A drawback with the technique of coded stripes is that because 
each projection direction is associated with a code word, the measurement 
resolution is low. Fortunately, when this approach is combined with a phase-shift 
approach, a theoretically infinite height resolution can be obtained. For available 
products, Fig. 2.9 illustrates some examples of 3D laser scanners and Fig. 2.10 
illustrates some examples of 3D Structured Light System. 
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Fig. 2.5. A stripe light scanning system (Intersecting the projection ray with an additional ray 
or plane will lead to a unique reconstruction of the object point.) 

 

 
Fig. 2.6. Single spot stereo analysis 
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Fig. 2.7. Stripe light vision system 

 
Fig. 2.8. Coded structured light vision: project a light pattern into a scene and analyze the 
modulated image from the camera 
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Fig. 2.9. Examples of 3D laser scanners 

 

  
Fig. 2.10. Examples of 3D structured light system (FastScan and OKIO) 

 

2.2 3D Sensing by Stereo Vision Sensors 

2.2.1 Setup with Two Cameras 

Binocular stereo vision is an important way of getting depth (3D) information about 
a scene from two 2-D views of the scene. Inspired by the vision mechanism of 
humans and animals, computational stereo vision has been extensively studied in 
the past 30 years, for measuring ranges by triangulation to selected locations 
imaged by two cameras. However, some difficulties still exist and have to be 

 

  

researched further. The figure illustrated below contains several examples of mobile 



20      Chapter 2 Active Vision Sensors 

 

Fig. 2.11. The mobile robots with stereo vision setup at the University of Hamburg 

2.2.2 Projection Geometry 

In a stereo vision system, the inputs to the computer are 2D-projections of the 3D 
object. The vision task is to reconstruct 3D world coordinates according to such 2D 
projected images, so we must know the relationship between the 3D objective world 
and 2D images (Fig. 2.12), namely the projection matrix. A camera is usually 
described using the pinhole model and the task of calibration is to confirm the 
projection matrix. As we know, there exists a collineation which maps the 
projective space to the camera’s retinal plane: P3  P2. Then the coordinates of a 
3D point X = [X, Y, Z]T in a Euclidean world coordinate system and the retinal 
image coordinates x = [u, v]T are related by the following (2.1). 

 

Fig. 2.12. The projection geometry: from 3D world to 2D image 
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robots that use stereo vision sensors for understanding the 3D environment, which are 
currently employed in our laboratory at the University of Hamburg (Fig. 2.11). 
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where  is a scale factor, c = [u0, v0]T is the principal point, fx and fy are focal lengths, 
s is the skew angle, and R and t are external or extrinsic parameters. R is the 3 × 3 
rotation matrix which gives axes of the camera in the reference coordinate system 
and t the translation in the X, Y and Z directions representing the camera center in 
the reference coordinate system (Henrichsen 2000). Of course, it is the same 
reference coordinate system in both views of the stereo couple. 
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t = [Tx  Ty  Tz]T. (2.3) 

Equation (2.1) can be expressed as 

 MXx , (2.4) 

where x = [u, v, 1]T and X = [X, Y, Z, 1]T are the homogeneous coordinates of 
spatial vectors, and M is a 3 × 4 matrix, called the perspective projection, 
representing the collineation: P3  P2

The first part of the projection matrix in the collineation (2.1), denoted by K, 
contains the intrinsic parameters of the camera used in the imaging process. This 
matrix is used to convert between the retinal plane and the actual image plane. In a 
normal camera, the focal length mentioned above does not usually correspond to 1. 
It is also possible that the focal length changes during an entire imaging process, so 
that for each image the camera calibration matrix needs to be reestablished (denoted 
as recalibration in a following section). 

2.2.3 3D Measurement Principle 

If the value of the same point in computer image coordinate shoot by two cameras 
can be obtained, the world coordinates of the points can be calculated through the 
projection of two cameras (Fig. 2.13). Then four equations can be obtained from the 
two matrix formulas and the world coordinates of the point can be calculated (Ma 
and Zhang, 1998). 

 

 (Henrichsen 2000). 
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Fig. 2.13. 3D measurement by stereo vision sensors 

For the two cameras, we have 
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The two uncertain numbers can be removed and (2.6) becomes 
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In this linear system (2.8), the only three unknowns (X, Y, Z) can be solved 
simply by: 

[X Y Z]T = (QTQ)-1QTB (2.9) 

In practice, correction of lens distortion and epipolar geometry for feature 
matching should be considered for improving the efficiency and accuracy of 3D 
reconstruction. The epipolar plane contains the three-dimensional point of interest, 
the two optical centers of the cameras, and the image points of the point of interest 
in the left and right images. An epipolar line is defined by the intersection of the 
epipolar plane with image planes of the left and right cameras. The epipole of the 
image is the point where all the epipolar lines intersect. More intensive technology 
for stereo measurement is out of the scope of this book, but can be found in many 
published contributions. 

2.3 3D Sensing by Stripe Light Vision Sensors 

Among the active techniques, the structured-light system features high quality and 
reliability for 3D measurement. It may be regarded as a modification of static 
binocular stereo. One of the cameras is replaced by the projector which projects 
(instead of receives) onto the scene a sheet of light (or multiple sheets of light 
simultaneously). The simple idea is that once the perspective projection matrix of 
the camera and the equations of the planes containing the sheets of light relative to a 
global coordinate frame are computed from calibration, the triangulation for 
computing the 3D coordinates of object points simply involves finding the 
intersection of a ray (from the camera) and a plane (from the light pattern of the 
projector). A controllable LCD (Liquid Crystal Display) or DLP (Digital Light 
Processing) projector is often used to illuminate the surface with particular patterns. 
It makes it possible for all the surfaces in the camera’s field of view to be digitized 
in one frame, and so is suitable for measuring objects at a high field rate. 

2.3.1 Setup with a Switchable Line Projector 

The active visual sensor considered in this section consists of a projector, which is a 
switchable LCD line projector in this study, to cast a pattern of light stripes onto the 
object and a camera to sense the illuminated area as shown in Fig. 2.14. The 3D 
measurement is based on the principle of triangulation. If a beam of light is cast, and 
viewed obliquely, the distortions in the beam line can be translated into height 
variations. The correspondence problem is avoided since the triangulation is carried 
out by intersecting the two light rays generated from the projector and seen by the 
camera. 
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Fig. 2.14. Setup of stripe light vision system 

The projector is controllable by a computer to select a specific light pattern. All 
the patterns are pre-designed with light and dark stripes and switchable during the 
operation. 

2.3.2 Coding Method 

In structured light systems, the light coding method is used as a technique to solve 
the correspondence problem (Batlle et al. 1998, Salvi et al. 2004). 3D measurement 
by structured lighting is based on the expectation of precise detection of the 
projected light patterns in the acquired images. The 3D coordinates can be 
triangulated directly as soon as the sensor geometry has been calibrated and the 
light pattern is located in the image.  

For such systems as shown in Fig. 2.14, a Coded Light Approach is most suitable 
for space-encoding and position detection when using a switchable LCD or mask. It 
is also an alternative approach for avoiding the scanning of the light and it requires 
only a small number of images to obtain a full depth-image. This can be achieved 
with a sequence of projections using a set of switchable lines (light or dark) on the 
LCD device. All the lines are numbered from left to right. 

In a so-called gray-coding (Inokuchi et al. 1984, Stahs and Klahl 1992), 
adjacent lines differ by exactly one bit leading to good fault tolerance. Using a 
projector, all lines (e.g. 512 switchable lines) may be encoded with several bits. 
This can be encoded in 10 projected line images. One bit of all lines is projected at a 
time. A bright line represents a binary ‘0’, a dark line a ‘1’. All object points 
illuminated by the same switchable line see the same sequence of bright and dark 
illuminations. After a series of exposures, the bit-plane stack contains the encoded 
number of the corresponding lines in the projector. This is the angle in encoded 
format. The angle  is obtained from the column address of each pixel. Thus all the 
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Fig. 2.15. An example of the coding method 

2.3.3 Measurement Principle 

 
Fig. 2.16. The measurement principle 

 

information needed to do the triangulation for each pixel is provided by the 
x-address and the contents of the bit-plane stack. Using look-up-tables can generate 
a full 3D image within a few seconds. With such a setup, the depth resolution can be 
further increased using the phase-shift method or the color-coded method. 

Figure 2.15 illustrates an example of the coding method. The lines are numbered 
from left to right. They are called Gray-Code, although they are in binary patterns. 
Using a controllable projector with 2n switchable lines, all lines may be encoded 
with n+1 bits, and projected with n+1 images. 
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Fig. 2.17. The coordinates in the system 

Figure 2.17 illustrates the measurement principle in the stripe light system and 
Fig. 2.18 illustrates the representation of point coordinates. For the camera, the 
relationship between the 3D coordinates of an object point from the view of the 
camera T]1[ cccc ZYXX  and its projection on the image 

T][ ccc yxx  is given by 

ccc XPx ,  (2.10) 

where Pc is a 3 4 perspective matrix of the camera: 
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Similarly, the projector is regarded as a pseudo-camera in that it casts an image 
rather than detects it. The relationship between the 3D coordinates of the object 
point from the vantage point of the projector T]1[ pppp ZYXX  and its back 
projection on the pattern sensor (LCD/DMD) T][ pp xx  is 

ppp XPx   (2.12) 

where Pp is a 2 4 inverse perspective matrix: 
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cp MXX , TRRRM , (2.14) 

in which R , R , R , and T are 4 4 matrices standing for 3-axis rotation and 
translation. 

Substituting (2.14) into (2.12) yields 

cpp MXPx . (2.15) 
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where r1 and r2 are 4-dimensional row vectors. Equation (2.15) becomes 

0)( 12 cpx Xrr . (2.17) 

Combining (2.10) and (2.17) gives 
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or 

cc xQX  (2.19) 

where Q is a 4 by 4 matrix. 
Then the three-dimensional world position of a point on the object surface can be 

determined by 

cc xQX 1  (2.20) 

From the above equations, the 3D object can be uniquely reconstructed if we 
know the matrix Q that contains 13 parameters from the two perspective matrices 
Pc and Pp and the coordinate transformation matrix M. This means, once the 
perspective matrices of the camera and projector relative to a global coordinate 
frame are given from calibration, the triangulation for computing the 3D 
coordinates of object points simply involves finding the intersection of a ray from 
the camera and a stripe plane from the projector. 

2.4 3D Sensor Reconfiguration and Recalibration 

Since the objects may be different in sizes and distances and the task requirements 
may also be different for different applications, a structure-fixed vision sensor does 
not work well in such cases. A reconfigurable sensor, on the other hand, can change 
its structural parameters to adapt itself to the scene to obtain maximum 3D 
information from the environment. If reconfiguration occurs, the sensor should be 
capable of self-recalibration so that 3D measurement can follow immediately. 

The relationship between the camera view and the projector view is given by 
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2.4.1 The Motivation for Sensor Reconfiguration and Recalibration 

In an active visual system, since the sensor needs to move from one place to another 
for performing a multi-view vision task, a traditional vision sensor with fixed 
structure is often inadequate for the robot to perceive the object features in an 
uncertain environment as the object distance and size are unknown before the robot 
sees it. A dynamically reconfigurable sensor can help the robot to control the 
configuration and gaze at the object surfaces. For example, with a structured light 
system, the camera needs to see the object surface illuminated by the projector, to 
perform the 3D measurement and reconstruction task. Active calibration means that 
the vision sensor is reconfigurable during runtime to fit in the environment and can 
perform self-recalibration in need before 3D perception. 

The concept of self-calibration in stereo vision and camera motion has been 
studied for more than ten years and there are many useful outputs. It is an attempt to 
overcome the problem of manual labor. For example, using the invariant properties 
of calibration matrix to motions, Dias et al. (1991) proposed an optimization 
procedure for recalibration of a stereo vision sensor mounted on a robot arm. The 
technique for self-recalibration of varying internal and external parameters of a 
camera was explored in (Zomet et al. 2001). The issues in dynamic camera 
calibration were addressed to deal with unknown motions of the cameras and 
changes in focus (Huang and Mitchell 1995). A method for automatic calibration of 
cameras was explored by tracking a set of world points (Wei et al. 1998). Such 
self-calibration techniques normally require a sequence of images to be captured via 
moving the camera or the target (Kang 2000). With some special setups, two views 
can also be sufficient for such a calibration (Seo and Hong 2001). All these are 
passive methods to calibrate the sensor with some varying intrinsic parameters. 

For structured light vision systems, most existing methods are still based on 
static and manual calibration. That is, during the calibration and 3D reconstruction, 
the vision sensor is fixed in one place. The calibration target usually needs to be 
placed at several accurately known or measured positions in front of the sensor 
(DePiero and Trivedi 1996, Huynh 1997, Sansoni et al. 2000). With these 
traditional methods, the system must be calibrated again if the vision sensor is 
moved or the relative pose between the camera and the projector is changed. For the 
active vision system working in an unknown environment, changes of the position 
and configuration of the vision sensor become necessary. Frequent recalibrations in 
using such a system are tedious tasks. The recalibration means that the sensor has 
been calibrated before installation on the robot, but it needs to be calibrated again as 
its relative configuration is changing. 

However, only a few related works can be found on self-calibration of a 
structured-light system. Furthermore, the self-calibration methods for a passive 
camera cannot be directly applied to an active vision system which includes an 
illumination system using structured light in addition to the traditional vision 
sensor. Among the previous self-calibration works on structured light systems, a 
self-reference method (Hébert 2001) was proposed by Hebert to avoid using the 
external calibrating device and manual operations. A set of points was projected on 
the scene and was detected by the camera to be used as reference in the calibration 
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of a hand-held range sensor. With a cubic frame, Chu et al. proposed a 
calibration-free approach for recovering unified world coordinates (Chu et al. 
2001). Fofi et al. discussed the problem in self-calibrating a structured light sensor 
(Fofi et al. 2001). A stratified reconstruction method based on Euclidean constraints 
by projection of a special light pattern was given. However, the work was based on 
the assumption that “projecting a square onto a planar surface, the more generic 
quadrilateral formed onto the surface is a parallelogram”. This assumption is 
questionable. Consider an inclined plane placed in front of the camera or projector. 
Projecting a square on it forms an irregular quadrangle instead of a parallelogram as 
the two line segments will have different lengths on the image plane due to their 
different distances to the sensor. Jokinen’s method (Jokinen 1999) of 
self-calibration of light stripe systems is based on multiple views. The object needs 
to be moved by steps and several maps are acquired for the calibration. The 
registration and calibration parameters are obtained by matching the 3D maps via 
least errors. The limitation of this method is that it requires a special device to hold 
and move the object. 

This chapter studies the problems of “self-calibration” and “self-recalibration” of 
active sensing systems. Here self-recalibration deals with situations where the 
system has been initially calibrated but needs to be automatically calibrated again 
due to a changed relative pose. Self-calibration refers to cases where the system has 
never been calibrated and none of the sensor’s parameters including the focal length 
and relative pose are known. Both of them do not require manual placements of a 
calibration target. Although the methods described later in this book are mainly 
concerned with the former situation, they can also be applied to the latter case if the 
focal lengths of the camera and the projector can be digitally controlled by a 
computer. 

The remainder part of this section investigates the self-recalibration of a 
dynamically reconfigurable structured light system. The intrinsic parameters of the 
projector and camera are considered as constants, but the extrinsic transformation 
between light projector and camera can be changed. A distinct advantage of the 
method is that neither an accurately designed calibration device nor the prior 
knowledge of the motion of the camera or the scene is required during the 
recalibration. It only needs to capture a single view of the scene. 

2.4.2 Setup of a Reconfigurable System 

For the stripe light vision system (Fig. 2.16), to make it adaptable to different 
objects/scenes to be sensed, we incorporated two degrees of freedom of relative 
motion in the system design, i.e. the orientation of the projector (or the camera) and 
its horizontal displacement. This 2DOF reconfiguration is usually adequate for 
many practical applications. Where more DOFs are necessary, the recalibration 
issues will be addressed in the next section. In Fig. 2.18, the camera is fixed 
whereas the projector can be moved on a horizontal track and rotated around the 
y-axis. The x-z plane is orthogonal to the plane of the projected laser sheet. The 3D 
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coordinate system is chosen based on the camera (or the projector) center and its 
optic axis. 

 

 

Fig. 2.18. A reconfigurable system 

For such a reconfigurable system, the two perspective matrices, which contain 
the intrinsic parameters such as the focal lengths (vc, vp ) and the optical centers 

formulation in the previous section, the dynamic recalibration task is to determine 
the relative matrix M in (2.14) between the camera and the projector. There are six 
parameters, i.e.  

][ 000 ZYXu  (2.21) 

Since the system considered here has two DOFs, only two of the six parameters 
are variable while the other four are constants which can be known from the initial 
calibration. If the X-Z plane is not perpendicular to the plane of the projected laser 
sheet, its angle  can also be identified at this stage. As the angle 0 =(90o – ) is 
small and the image can be rectified by rotating the corresponding angle 
accordingly during recalibration, it can be assumed that 0 = 0. The displacement in 
the y-direction between the camera center and the projector center, Y0, and the 
rotation angle 0 are also small in practice. They do not affect the 3D reconstruction 
as the projected illumination consists of vertical line stripes. Therefore, we may 
assume that Y0 = 0 and 0 = 0. Thus, the unknown parameters are reduced to only 
two ( 0 and b) for the dynamic recalibration. Here h is a constant and 0 and b have 
variable values depending on the system configuration. 

Camera  fc 
 Projector  fp 

     Object 

b 

0 
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Y 
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h 
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0 

Y0 

( xc0, yc0, xp0 ), can be determined in the initial calibration stage. Based on the 



2.4 3D Sensor Reconfiguration and Recalibration      31 

 

For such a 2DOF system, the triangulation (2.18) for determining the 3D position 
of a point on the object surface is then simplified as (see Fig. 2.18) 

 
[ Xc Yc Zc ] = 

cc xv
hb

)cot(
)cot(  [ xc  yc  vc], (2.22) 

where vc is the distance between the camera sensor and the optical center of the lens, 
 = ( ) = 0 + p(i) is the projection angle, and  

)
)(

(tan)( 1

p

p
p v

ix
i , (2.23) 

where i is the stripe index and xp(i) is the stripe coordinate on the projection plane 
xp(i) = i  stripe width + xp(0). 

If the projector’s rotation center is not at its optical center, h and b shall be 
replaced by: 

)sin( 00
' rhh  and )cos( 00

' rbb  (2.24) 

where r0 is the distance between the rotational center and the optical center (Fig. 
2.19). h and r0 can be determined during the initial static calibration. Figure 2.20 
illustrates the experimental device which is used to determine the camera’s rotation 
axis. 

 

 
Fig. 2.19. The case when the rotational center is not at the optical center 

For the reconfigurable system, the following sections show a self-recalibration 
method which is performed if and when the relative pose between the camera and 
the projector is changed. The unknown parameters are determined automatically by 
using an intrinsic cue, the geometrical cue. It describes the intrinsic relationship 
between the stripe locations on the camera and the projector. It forms a geometrical 
constraint and can be used to recognize the unknown parameters of the vision 
system. 
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Fig. 2.20. The device to calibrate the rotational center 

 

 Fig. 2.21. The spatial relationship in the system 
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2.4.3 Geometrical Constraint 

Assume a straight line in the scene which is expressed in the camera coordinate 
system and projected on the X-Z plane: 

Zc = C1 Xc + C2. (2.25) 

The geometrical constraint between projecting and imaging of the scene line is 
obtained by substituting (2.22) into (2.25): 

[b – hcot( )] (vc - C1 xc ) - C2 [vccot( ) + xc] = 0. (2.26) 

If h = 0, the above can be simplified as  

b(vc - C1 xc ) - C2[vccot( 0 + pi) + xc] =0. (2.27) 

For two point pairs (xci, pi) and (xcj, pj),  

]
)cot(
)cot(

[
0

0
1 ci

cjpjc

cipic
cj x

xv
xv

xC = ]1
)cot(
)cot(

[
0

0

cjpjc

cipic
c xv

xv
v . (2.28) 

Denote Fij = 
cjpjc

cipic

xv
xv

)cot(
)cot(

0

0 . The coordinates of four points yield 

1
1

kl

ij

ckklcl

ciijcj

F
F

xFx
xFx . (2.29) 

With (2.29), if the locations of four stripes are known, the projector’s orientation 
0 can be determined when assuming h = 0. 

If h  0, from (2.27), the parameters vc, h, and vp are constants that have been 
determined at the initial calibration stage. xc = xci = xc(i) and pi = p(i) are known 
coordinates on the sensors. Therefore, 0, b, C1, and C2 are the only four unknown 
constants and their relationship can be defined by three points. 

Denote A0=tan( 0) and Ai=tan( pi). The projection angle of an illumination stripe 
is (illustrated in Fig. 2.22) 

)tan()tan(
)tan()tan(1

)cot(
0

0
0

pi

pi
pi

= 
i

i

AA
AA

0

01 =
pp

pp

xAv
xAv

0

0 , (2.30) 

where xp = xp(i) is the stripe location on the projector’s LCD. The x-coordinate 
value of the i xp(i), can be determined by the light coding method. The 
stripe coordinate xp and the projection angle pi are illustrated in Figs. 2.21 and 
2.22. 

 

 th stripe, 
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Fig. 2.22. The projection angle 

Equation (2.27) may be written as 

cppc xvACAbChCvvhCbA )()( 0201120
+

pcpc xxAhCbCCxvhACAb )()( 0112020
=0 (2.31) 

or 

)(321 pcpc xxWxWWx , (2.32) 

where  

4

3

42

4132
1 V

V
VV

VVVVW , 
2

3
2 V

VW , and 
4

2
3 V

VW  (2.33) 

hCbAV 201 , (2.34) 

0202 hACAbV , (2.35) 

020113 ACAbChCV , (2.36) 

01124 AhCbCCV , (2.37) 

Equation (2.32) is the relationship between the stripe locations on the camera and 
the projector and is termed the geometrical constraint. 

2.4.4 Rectification of Stripe Locations 

Within a view of the camera, there can be tens or hundreds of stripes from the scene. 
The stripes’ coordinates (xc, xp) on the image and the projector should satisfy (2.32) 
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illumination 

lens 
p(i) 

xp(i) 

vp  
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in theory. In practice, however, the coordinates (xc) obtained from the image 
processing may not satisfy this constraint, due to the existence of noise. To reduce 
the effect of noise and improve the calibration accuracy, the stripe locations on the 
image can be rectified by using a curve fitting method. 

Let the projection error be 
m

i
ccerr ixixWWWQ

1

2'
321 )]()([),,( =

m

i
cpcp xxxWxWW

1

2
321 ])([ . (2.38) 

Then W1, W2, and W3 may be obtained by minimizing the projection error Qerr 
with respect to Wk  

0
k

err

W
Q ,  k = 1, 2, 3. (2.39) 

Using (2.38) in (2.39) gives 
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(2.40) 

Or GW = X, W = G-1X. (2.41) 

The stripe location on the camera coordinate is, thus, rectified as 

p

p
c xW

xWW
x

3

21

1
' . (2.42) 

2.4.5 Solution Using the Geometrical Cue 

Equation (2.31) can be written as 

04321 VxxVxvVxvVvv cppccppc
. (2.43) 

For an illumination pattern with n (n  3) stripes received on the image plane, 
(2.39) can be expressed as 
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, (2.44) 
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A V = 0, (2.45) 

where A is an n  4 matrix, Xi = xc(i) , Ai = xp(i), and V is a 4  1 vector formed from 
(2.34) to (2.37). The following theorem is used for solving (2.44). 

 
Theorem 2.1 (The rank of the matrix A) Rank( A ) = 3. 
 
Proof. Consider the 3 3 matrix Alt in the left-top corner of the n 4 matrix A. If 

det(Alt)  0 , then rank(A)  3 is true. 

33
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(2.46) 

With row operations, it may be transformed to 

Alt'=
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1212

11

)()(00

)(0
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AAXXvXXv
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XvAvvv

pp

ppc
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(2.47) 

With (2.32) and (2.33), we have 

2
4
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2
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212
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AhCbCC
hCbCCAvv pc . (2.48) 

Suppose that the observed line does not pass through the optical center of either 
the camera or the projector (otherwise it is not possible for triangulation), i.e.  

C2  0, and 0),0(21 bZhhCbC . (2.49) 

Hence U2  0. 
For any pair of different light stripes illuminated by the projector, i.e. Ai  Aj , 

from (2.32), 

ip
i AfU

UUX
3

2
1

 (2.50) 

we have Xi  Xj , and 

0)1,1(' pclt vvA , (2.51) 

0)()2,2(' 12 AAvcltA , (2.52) 

or  
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Hence, 3)'()()( ltlt rankrankrank AAA . 
On the other hand, rewrite the matrix A with four column vectors, i.e. 

][ 4321 mmmm ccccA , (2.54) 

where 
T

cpcpcpm vvvvvvc ]...[ 1
, (2.55) 

T
ncccm AvAvAvc ]...[ 212 , (2.56) 

T
npppm XvXvXvc ]...[ 213

, (2.57) 

T
nnm AXAXAXc ]...[ 22114 . (2.58) 

With the fourth column, 
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1
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p

X
f

UAU
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UUU  

={
ipicpc XvAvvv 321
} = 332211 mmm ccc . 

(2.59) 

This means that the matrix’s 4th column, cm4, has a linear relationship with the 
first three columns, cm1 - cm3 . So the maximum rank of matrix A is 3, i.e. rank(A)  

  
Now, considering three pairs of stripe locations on both the camera and the 

projector, {(Xi, Ai) | i = 1, 2, 3 }, (2.44) has a solution in the form of 

V = k [ v1 v2 v3 v4 ]T , k  R, (2.60) 

There exists an uncertain parameter k as the rank of matrix A is lower than its 
order by 1. Using singular value decomposition to solve the matrix equation (2.44) 
to find the least eigenvalue, the optimal solution can be obtained. In a practical 
system setup, the z-axis displacement h is adjusted to 0 during an initial calibration, 
and (2.60) gives a solution for the relative orientation: 
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(2.61) 

where bc = C2 / b. 

3.
Therefore, we can conclude that rank(A) = 3.   
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0 = tan-1 (A0 ) . (2.62) 

By setting b = 1 and solving (2.33) and (2.60), the 3D reconstruction can be 
performed to obtain an object shape (with relative size). If we need to obtain the 
absolute 3D geometry of the object, (2.60) is insufficient for determining the five 
unknowns, b, C1, C2, A0, and k. To determine all these parameters, at least one more 
constraint equation is needed. In our previous work (Chen 2003), the focus cue or 
the best-focused distance is used below for this purpose. 

2.5 Summary 

Compared with passive vision methods which feature low-cost and are easy to set 
up, the structured light system using the active lighting features high accuracy and 
reliability. The stripe light vision system can achieve a precision at the order of 0.1 
mm when using a high resolution camera and employing a good sub-pixel method. 
A specialized projector can be designed for achieving low cost and high accuracy. 
However, the limitation of the stripe light vision system is that it requires the scene 
to be of uniform color and static within the acquisition period. To reconstruct one 
3D surface, it needs about one second to capture 8–12 images and several seconds 
to compute the 3D coordinates. The two methods of stereo vision and stripe light 
vision have both been summarized in this chapter. 

To make the vision system flexible for perceiving objects at varying distances 
and sizes, the relative position between the projector and the camera needs to be 
changeable, leading to reconfiguration of the system. A self-recalibration method 
for such a reconfigurable system needs to be developed to determine the relative 
matrix between the projector and the camera, which is mainly concerned in this 
chapter. We thus presented a work in automatic calibration of active vision systems 
via a single view without using any special calibration device or target. This is also 
in the field of “self-calibration” and “self-recalibration” of active systems. Here 
self-recalibration deals with situations where the system has been initially 
calibrated but needs to be calibrated again due to a changed relative pose (the 
orientation and position) between the camera and projector. Self-calibration refers 
to cases where the system has never been calibrated and none of the sensor’s 
parameters including the focal length and relative pose are known. Although the 
method described in this chapter is mainly concerned with the former situation, it 
can also be applied to the latter case. Some important cues are explored for 
recalibration using a single view. The method will be applicable in many advanced 
robotic applications where automated operations entail dynamically reconfigurable 
sensing and automatic recalibration to be performed on-line without operators’ 
interference. 

 
 

The orientation of the projector is 


