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Preface

The problem of active sensor planning was firstly addressed about 20 years ago and 
attracted many people after then. Recently, active sensing becomes even more 
important than ever since a number of advanced robots are available now and many 
tasks require to act actively for obtaining 3D visual information from different 
aspects. Just like human beings, it’s unimaginable if without active vision even only 
in one minute. Being active, the active sensor planner is able to manipulate sensing 
parameters in a controlled manner and performs active behaviors, such as active 
sensing, active placement, active calibration, active model construction, active 
illumination, etc. Active vision perception is an essential means of fulfilling such 
vision tasks that need take intentional actions, e.g. entire reconstruction of an 
unknown object or dimensional inspection of an industrial workpiece. 

The intentional actions introduce active or purposive behaviors. The vision 
system (the observer) takes intentional actions according to its mind, the mind 
such as going to a specific location and obtaining the useful information of the 
target, in an uncertain environment and conditions. It has a strategic plan to finish 
a certain vision task, such as navigating through an unfamiliar environment or 
modeling of an unknown object. It is capable of executing the plan despite the 
presence of unanticipated objects and noisy sensors. 

A multi-view strategy is often required for seeing object features from optimal 
placements since vision sensors have limited field of view and can only “see” a 
portion of a scene from a single viewpoint. This means that the performance of a 
vision sensor depends heavily both on the type and number of sensors and on the 
configuration of each sensor. What important is that the sensor is active. Compared 
with the typical passive vision where it is limited to what is offered by the preset 
visual parameters and environmental conditions, the active planner can instead 
determine how to view by utilizing its capability to change its visual parameters 
according to the scene for a specific task at any time. 

From this idea, many problems have to be considered in constructing an active 
perception system and these important problems lead our motivation of the 
research on active sensor and sensing techniques. For many practical vision tasks, 
because, it is very necessary to develop a multiview plan of control strategy, and 
these viewpoints can be decided either offline or in run-time. 

The purpose of this book is to introduce the challenging problems and 
propose some possible solutions. The main topics addressed are from both 
theoretical and technical aspects, including sensing activity, configuration, cali-
bration, sensor modeling, sensing constraints, sensing evaluation, viewpoint 
decision, sensor placement graph, model based planning, path planning, planning for 



unknown environment, incremental 3D model construction, measurement, and 
surface analysis. 
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the Research Grants Council of Hong Kong, the Natural Science Foundation of 
China, and the Alexander von Humboldt Foundation of Germany. Several col-
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Chapter 1  
Introduction 

Active sensor planning is an important means for fulfilling vision tasks that require 
intentional actions, e.g. complete reconstruction of an unknown object or 
dimensional inspection of a workpiece. Constraint analysis, active sensor 
placement, active sensor configuration, and three-dimensional (3D) data acquisition 
are the essential steps in developing such active vision systems. This chapter 
presents the general motivations, ideas for solutions, and potential applications of 
active sensor planning for multiview vision tasks. 

1.1 Motivations 

The intentional actions in active sensor planning for visual perception introduce 
active behaviors or purposeful behaviors. The vision agent (the observer) takes 
intentional actions according to its set goal such as going to a specific location or 
obtaining the full information on an object, in the current environment and its own 
state. A strategic plan is needed to finish a vision task, such as navigating through 
an office environment or modeling an unknown object. In this way, the plan can be 
executed successfully despite the presence of unanticipated objects and noisy 
sensors. 

Therefore there are four aspects that need to be studied in developing an active 
observer, i.e. the sensor itself (its type and measurement principle), the sensor state 
(its configuration and parameters), the observer state (its pose), and the planner for 
scene interpretation and action decision. Although many other things have to be 
considered in constructing an active perception system, these important issues lead 
to the research on active visual perception and investigations on visual sensing, 
system reconfiguration, automatic sensor planning, and interpretation and decision. 

1.1.1 The Tasks 

A critical problem in modern robotics is to endow the observer with a strategic plan 
to finish certain tasks. The multi-view strategy is an important means of taking 
active actions in visual perception, by which the vision sensor is purposefully 
placed at several positions to observe a target.  
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Sensor planning which determines the pose and configuration for the visual 
sensor thus plays an important role in active vision perception, not only because a 
3D sensor has a limited field of view and can only see a portion of a scene from a 
single viewpoint, but also because a global description of objects often cannot be 
reconstructed from only one viewpoint due to occlusion. Multiple viewpoints have 
to be planned for many vision tasks to make the entire object (or all the features of 
interest) visible strategically. 

For tasks of observing unknown objects or environments, the viewpoints have to 
be decided in run-time because there is no prior information about the targets. 
Furthermore, in an inaccessible environment, the vision agent has to be able to take 
intentional actions automatically. The fundamental objective of sensor placement in 
such tasks is to increase knowledge about the unseen portions of the viewing 
volume while satisfying all the placement constraints such as in-focus, 
field-of-view, occlusion, collision, etc. An optimal viewpoint planning strategy 
determines each subsequent vantage point and offers the obvious benefit of 
reducing and eliminating the labor required to acquire an object’s surface geometry. 
A system without planning may need as many as seventy range images for 
recovering a 3D model with normal complexity, with significant overlap between 
them. It is possible to reduce the number of sensing operations to less than ten times 
with a proper sensor planning strategy. Furthermore, it also makes it possible to 
create a more accurate and complete model by utilizing a physics-based model of 
the vision sensor and its placement strategy. 

For model-based tasks, especially for industrial inspections, the placements of 
the sensor need to be determined and optimized before robot operations. Generally 
in these tasks, the sensor planning is to find a set of admissible viewpoints in the 
acceptable space, which satisfy all of the sensor placement constraints and can 
finish the vision task well. In most of the related works, the constraints in sensor 
placement are expressed as a cost function with the aim to achieve the minimum 
cost. However, previously the evaluation of a viewpoint has normally been 
achieved by direct computation. Such an approach is usually formulated for a 
particular application and is therefore difficult to be applied to general tasks. For a 
multi-view sensing strategy, global optimization is desired but was rarely 
considered in the past.  

In an active vision system, the visual sensor has to be moved frequently for 
purposeful visual perception. Since the targets may vary in size and distance and the 
task requirements may also change in observing different objects or features, a 
structure-fixed vision sensor is usually insufficient. For a structured light vision 
sensor, the camera needs to be able to “see” just the scene illuminated by the 
projector. Therefore the configuration of a vision setup often needs to be changed to 
reflect the constraints in different views and achieve optimal acquisition 
performance. A reconfigurable sensor can change its structural parameters to adapt 
itself to the scene to obtain maximum 3D information from the target.  

In practical applications, in order to reconstruct an object with high accuracy, it 
is essential that the vision sensor be carefully calibrated. Traditional calibration 
methods are mainly for static uses in which a calibration target with specially 
designed features needs to be placed at precisely known locations. However, when 
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the sensor is reconfigured, it must be re-calibrated again. To avoid the tedious and 
laborious procedures in such traditional calibrations, a self-recalibration method is 
needed to perform the task automatically so that 3D reconstruction can follow 
immediately without a calibration apparatus and any manual interference. 

Finally, 3D reconstruction is either an ultimate goal or a means to the goal in 3D 
computer vision. For some tasks, such as reverse engineering and constructing 
environments for virtual reality, the 3D reconstruction of the target is the goal of the 
vision perception. A calibrated vision sensor which applies the 3D sensing 
techniques is used to measure the object surfaces in the scene. Then the obtained 
local models are globally integrated into a complete model for describing the target 
shape. For some other vision tasks, such as object recognition and industrial 
inspection, the 3D reconstruction is an important means to achieve the goal. In such 
a case, the 3D measurement is performed at every step for making a decision or 
drawing a conclusion about the target.  

1.1.2 From a Biological View 

I move, therefore I see. (Hamada 1992) 
Active sensor planning now plays a most important role in practical vision systems 
because generally a global description of objects cannot be reconstructed from only 
one viewpoint due to occlusion or limited Field Of View (FOV). For example, in 
the case of object modeling tasks, because there is no prior information about the 
objects or environments, it is obviously very necessary to develop a multi-view plan 
of a controlling strategy, and these views can be decided either in run-time or 
off-line. 

To illustrate the strong relationship between active perception and multi-view 
sensor planning, we may begin the explanation with a look of human behaviors. In 
humans, the operations and informational contents of the global state variable, 
which are sensations, images, feelings, thoughts and beliefs, constitute the 
experience of causation. In the field of neuro-dynamics and causality, Freeman 

self-organizing dynamics. It explained how stimuli cause consciousness by 
referring to causality. An aspect of intentional action is causality, which we 
extrapolate to material objects in the world. Thus causality is a property of mind, 
not matter. 

In the biological view (Fig. 1.1), in a passive information processing system a 

into trains of impulses that signify the features of an object. Symbols are processed 
according to rules for learning and association and are then bound into a 
representation, which is stored, retrieved and matched with new incoming 
representations. In active systems perception begins with the emergence of a goal 
that is implemented by the search for information. The only input accepted is that 
which is consistent with the goal and anticipated as a consequence of the searching 
actions. The key component to be modeled in brains provides the dynamics that 
constructs goals and the adaptive actions by which they are achieved.  

(1999a) used circular causality to explain neural pattern formation by 

stimulus input gives information (Freeman 1999b), which is transduced by receptors 
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Fig. 1.1. The proprioceptive loop of human beings (Freeman 1999b) 

1.1.3 The Problems and Goals 

Many applications in robotics involve a good knowledge of the robot environment. 
3D machine vision is the technology which allows computers to measure the 
three-dimensional shape of objects or environments, without resorting to physically 
probing their surfaces. The object/environment model is constructed in three stages. 
First, apply a computer vision technique called “shape from X” (e.g. shape from 
stereo) to determine the shapes of the objects visible in each image. The second 
stage is to integrate these image-based shape models into a single, complete shape 
model of the entire scene. Third, finally the shape model is rendered with the same 
color of the real object. 

In developing such a technique, sensor planning is a critical issue since a typical 
3D sensor can only sample a portion of an object at a single viewpoint. Using a 
vision sensor to sample all of the visible surfaces of any but the most trivial of 
objects, however, requires that multiple 3D images be taken from different vantage 
points and integrated, i.e. merged to form a complete model (Fig. 1.2). An optimal 
viewpoint planning strategy (or next best view – NBV algorithm) determines each 
subsequent vantage point and offers the obvious benefit of reducing and eliminating 
the labor required to acquire an object’s surface geometry. 
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On the other hand, the performance of the vision perception of a robot, and thus 
the quality of knowledge learnt, can be significantly affected by the properties of 
illumination such as intensity and color. “Where to place the illuminants and how to 
set the illuminant parameters” for improving the process of vision tasks becomes an 
increasingly important problem that needs be solved. Drawing on the wide body of 
knowledge in radiometry and photometry will prove useful. For this purpose, this 
book also focuses attention on the topic of illumination planning in the robot vision 
system. Illumination planning can be considered as a part of the sensor planning 
problem for vision tasks. This book presents a study on obtaining the optimal 
illumination condition (or most comfortable condition) for vision perception. The 
“comfortable” condition for a robot eye is defined as: the image has a high 
signal-to-noise ratio and high contrast, is within the linear dynamic range of the 
vision sensor, and reflects the natural properties of the concerned object. 
“Discomfort” may occur if any of these criteria are not met because some scene 
information may not be recorded. This book also proposes appropriate methods to 
optimize the optical parameters of the luminaire and the sensor (including source 
radiant intensity, sensor aperture and focus length) and the pose parameters of the 
luminaire, with emphasis on controlling the intensity and avoiding glare. 

The proposed strategy to implement placements of vision sensors and light 
sources requires an eye-and-hand setup allowing the sensors (a pair of stereo 
cameras or a structure of projector+camera) to be moving around and 
looking/shining at an object from different viewpoints. The sensor or luminaire is 
mounted on the end-effector of a robot to achieve arbitrary spatial position and 
orientation. The purpose of moving the camera is to arrive at viewing poses, such 
that required details of the unknown object can be acquired by the vision system for 

Fig. 1.2. A sequence of sensor pose placements for object modeling (Banta and Abidi 1996), 
p1 p2 ... pn 
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reconstruction of a 3D model. This book ignores the problems of the relative 
orientation between cameras and manipulator coordinate systems, and how to 
control the sensor movement. 

Another goal of this book is to demonstrate the interdependence between a 
solution to the sensor planning problem and the other stages of vision image 
process, as well as the necessity and benefits of utilizing a model of the sensor when 
determining sensor setting and viewpoint. 

1.1.4 Significance and Applications 

The techniques described in this book may have outstanding significance in the 
many applications of computer vision. Using artificial vision for 3D object 
reconstruction and modeling is the technology which allows computers to obtain 
the three-dimensional shape of objects, without resorting to physically probing their 
surfaces. This is best suited for tasks where non-contact nature, a fast measurement 
rate and cost are of primary concern, especially for such applications as:  

medical applications,  
archeology,  
quality ensurance,  
reverse engineering,  
rapid product design,  
robotics, etc.
The technology of active sensor planning has its significance in both model 

based and non-model based applications of computer vision. Typical non-model 
based applications include:  

3D object reconstruction and modeling,  
target searching,  
scene exploration,  
autonomous navigation, etc.  
Model-based applications, where the object’s geometry and a rough estimate of 

its pose are known, are widely used in:  
product assembly/disassembly,  
feature detection,  
inspection,  
object recognition,  
searching,  
dimensional measurement,  
surveillance,  
target tracking,  
monitoring, etc.  
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1.2 Objectives and Solutions 

The general aim of this book is to introduce the ideas for possible solutions for the 
above-motivated problems in an active visual system. The objectives of the 
research include the following: 

To introduce the guideline for setting up typical active vision systems and 
applying it to 3D visual perception; 
To develop methods of active reconfiguration for purposive visual sensing; 
To investigate methodologies of automatic sensor planning for industrial 
applications;  
To propose strategies for sensor planning incorporation with illumination 
planning; 
To find solutions for exploring the 3D structure of an unknown target. 

Among all of the above, this book places its emphasis on the last three issues. In 
the study of sensor planning, previous approaches mainly focused on the modeling 
of sensor constraints and calculating a “good” viewpoint for observing one or 
several features on the object. Little consideration was given to the overall 
efficiency of a generated plan with a sequence of viewpoints. In model-based vision 
tasks, researchers have made efforts to find an admissible domain of viewpoints to 
place the sensor to look at one or several object features. However, this method is 
difficult to apply in a multi-feature-multi-viewpoint problem as it cannot determine 
the minimum number of viewpoints and their relative distribution. 

In non-model-based vision tasks, previous research efforts often concentrated on 
finding the best next views by volumetric analysis or occlusion as a guide. 
However, since no information about the unknown target exists, it is actually 
impossible to give the true best next view. It exists but can only be determined after 
the complete model has been obtained. Therefore a critical problem is still not well 
solved: the global optimization of sensor planning. When multiple features need to 
be observed and multiple viewpoints need to be planned, the minimum number of 
viewpoints needs to be determined. To achieve high efficiency and quality, the 
optimal spatial distribution of the viewpoints should be determined too. These are 
also related to the sensor configuration and environmental constraints. Furthermore, 
to make it flexible in practical applications, we need to deal with arbitrary object 
models without assumptions on the object features. 

In this book, ideas are presented to solve the relevant issues in active sensing 
problems. Novel methodologies are developed in sensor configuration, 3D 
reconstruction, sensor placement, and viewpoint planning for multiview vision 
tasks.

In setting up the active vision system for the study, both traditional stereo 
cameras and coded structured light systems are investigated. The coded light 
approach can be adopted for the digital projector to generate binary patterns with 
light and dark stripes which are switchable during the operation. This method 
features high accuracy and reliability. 
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The sensor planning presented in this book is an effective strategy to generate a 
sequence of viewing poses and corresponding sensor configurations for optimal 
completion of a multiview vision task. Methods are proposed to solve the problems 
for both model-based and non-model-based vision tasks. For model-based 
applications, the method involves the determination of the optimal sensor 
placements and the shortest path through the viewpoints for automatic generation of 
a perception plan. A topology of the viewpoints is achieved by a genetic algorithm 
in which a min-max criterion is used for evaluation. The shortest path is also 
determined by graph theory. The sensing plan generated by the proposed methods 
leads to global optimization. For non-model-based applications, the method 
involves the decision of the exploration direction and the determination of the best 
next view and the corresponding sensor settings. Some cues are proposed to predict 
the unknown portion of an object or environment and the next best viewpoint is 
determined by the expected surface. The viewpoint determined in such a way is 
predictably best. Information Entropy Based Planning, uncertainty-driven planning, 
and self-termination conditions are also discussed. 

Numerical simulations and practical experiments are conducted to implement the 
proposed methods for the active sensing in the multi-view vision task. The 
implementation results obtained in these initial experiments are only intended for 
showing the validity of proposed methods and the feasibility for practical 
applications. Using the active visual perception strategy, 3D reconstruction can be 
achieved without the constraints on the system configuration parameters. This 
allows optimal system configuration to be employed to adaptively sense an 
environment. The proposed methods will give the active vision system the 
adaptability needed in many practical applications. 

1.3 Book Structure 

This book is organized as follows.  

Chapter 2 presents the sensing fundamentals, measurement principles, and 3D 
reconstruction methods for active visual sensing. These will be used in the next 
chapters in formulating the methods of sensor planning. It also describes the 
methods for dynamic reconfiguration and recalibration of a stripe light vision 
system to overcome practical scene challenge.  
Chapter 3 summarizes the relevant works on 3D sensing techniques and 
introduces the active 3D visual sensing systems developed in the community. 
Both stereo sensors and structured light systems are mainly considered in this 
book, although extensions of other types of visual sensors such as laser scanners 
are straightforward.  
Chapter 4 presents the sensor models, summarizes the previous approaches to 
the sensor planning problem, formulates sensor placement constraints, and 
proposes the criteria for plan evaluation. The method for the model-based sensor 
placement should meet both the optimal sensor placements and the shortest path 
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through these viewpoints. The plan for such sensor placements is evaluated 
based on the fulfillment of three conditions: low order, high precision, and 
satisfying all constraints. 
Chapter 5 presents a method for automatic sensor placement for model-based 
robot vision. The task involves determination of the optimal sensor placements 
and a shortest path through these viewpoints. During the sensor planning, object 
features are resampled as individual points attached to surface normals. The 
optimal sensor placement graph is achieved by a genetic algorithm in which a 
min-max criterion is used for the evaluation. A shortest path is determined by 
graph theories. A viewpoint planner is developed to generate the sensor 
placement plan. 
Chapter 6 presents a sensing strategy for determining the probing points for 
achieving efficient measurement and reconstruction of freeform surfaces. The 
B-spline model is adopted for modeling the freeform surface. In order to obtain 
reliable parameter estimation for the B-spline model, we analyze the uncertainty 
of the model and use the statistical analysis of the Fisher information matrix to 
optimize the locations of the probing points needed in the measurements. 
Chapter 7 presents the issues regarding sensor planning for incrementally 
building a complete model of an unknown object or environment by an active 
visual system. It firstly lists some typical approaches to sensor planning for 
model construction, including the multi-view strategy and existing contributions. 
The standard procedure for modeling of unknown targets is provided. A 
self-termination judgment method is suggested based on Gauss’ Theorem by 
checking the variations of the surface integrals between two successive 
viewpoints so that the system knows when the target model is complete and it is 
necessary to stop the modeling procedure.  
Chapter 8 presents an information entropy-based sensor planning approach for 
the reconstruction of freeform surfaces of 3D objects. In the framework of 
Bayesian statistics, it proposes an improved Bayesian information criterion 
(BIC) for determining the B-spline model complexity. Then, the uncertainty of 
the model is analyzed using entropy as the measurement. Based on this analysis, 
the information gain for each cross section curve is predicted for the next 
measurement. After predicting the information gain of each curve, we can obtain 
the information change for all the B-spline models. This information gain is them 
mapped into the view space. The viewpoint that contains maximal information 
gain about the object is selected as the Next Best View. 
Chapter 9 also deals with the sensor placement problem, but for the tasks of 
non-model based object modeling. The method involves the decision of the 
exploration direction and the determination of the best next view and the 
corresponding sensor settings. The trend surface is proposed as the cue to predict 
the unknown portion of an object.  
Chapter 10 presents some strategies of adaptive illumination control for robot 
vision to achieve the best scene interpretation. It investigates how to obtain the 
most comfortable illumination conditions for a vision sensor. Strategies are 
proposed to optimize the pose and optical parameters of the luminaire and the 
sensor, with emphasis on controlling the image brightness. 



 

Chapter 2  
Active Vision Sensors 

This chapter presents the sensing fundamentals, measurement principles, and 3D 
reconstruction methods for active visual sensing. An idea of sensor reconfiguration 
and recalibration is also described which endows a robot with the ability of actively 
changing its sensing parameters according to practical scenes, targets, and 
purposes. These will be used in the next chapters in formulating the methods of 
sensor reconfiguration and sensor planning. 

2.1 3D Visual Sensing by Machine Vision 

Similar to human perception, machine vision perception is one of the most 
important ways for acquiring knowledge of the environment. The recovery of 
the 3D geometric information of the real world is a challenging problem in 
computer vision research. Active research in the field in the last 30 years has 
produced a huge variety of techniques for 3D sensing. In robotic applications, 
the 3D vision technology allows computers to measure the three-dimensional 
shape of objects or environments, without resorting to physically probing their 
surfaces. 

2.1.1 Passive Visual Sensing 

One class of visual sensing methods is called passive visual sensing where no other 
device besides cameras is required. These methods were usually developed at the 
early stage of computer vision research. By passive, no energy is emitted for the 
sensing purpose and the images are the only input data. The sensing techniques 
were often supposed to reflect the way that human eyes work. The limited 
equipment cost constitutes a competitive advantage of passive techniques compared 
with active techniques that require extra devices. 

Such passive techniques include stereo vision, trinocular vision (Lehel et al. 
1999, Kim 2004, Farag 2004), and many monocular shape-from-X techniques, 
e.g. 3D shape from texture, motion parallax, focus, defocus, shadows, shading, 
specularities, occluding contours, and other surface discontinuities. The problem 
is that recovering 3D information from a single 2D image is an ill-posed problem 
(Papadopoulos 2001). Stereo vision is still the single passive cue that gives 
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reasonable accuracy. Human has two eyes, and precisely because of the way the 
world is projected differently onto the eyes, human is able to obtain the relative 
distances of objects. The setup of a stereo machine vision system also has two 
cameras, separated by a baseline distance b. The 3D world point may be measured 
by the two projection equations, in a way that is analogous to the way the human 
eyes work. To interpret disparity between images, the matching problem must be 
solved, which has been formulated as an ill-posed problem in a general context 
and which anyway is a task difficult to automate. This correspondence problem 
results in an inaccurate and slow process and reduces its usefulness in many 
practical applications (Blais 2004). The other major drawback of this passive 
approach is that it requires two cameras and it cannot be used on un-textured 
surfaces which are common for industrially manufactured objects. The 
requirement of ambient light conditions is also critical in passive visual sensing. 
The advantage of stereo vision is that it is very convenient to implement and 
especially suitable for natural environments. A few applications are illustrated in 
Figs. 2.1 to 2.3. 

The structure-from-motion algorithms solve the following problem: given a set 
of tracked 2D image features captured by a moving camera, find the 3D positions 
and orientations of the corresponding 3D features (structure) as well as the camera 
motion. Pose estimation, on the other hand, solves the problem of finding the 
position and orientation of a camera given correspondences between 3D and 2D 
features. In both problems two-dimensional line features are advantageous 
because they can be reliably extracted and are prominent in man-made scenes. 
Taylor and Kriegman (1995) minimized a nonlinear objective function with 
respect to camera rotation, camera translation and 3D lines parameters. The 
objective function measures the deviation of the projection of the 3D lines on the 
image planes from the extracted image lines. This method provides a robust 
solution to the high-dimensional non-linear estimation problem. Fitzgibbon and 
Zisserman (1998) also worked towards the automatic construction of graphical 
models of scenes when the input was a sequence of closely spaced images. The 
point features were matched in triples of consecutive images and the fundamental 
matrices were estimated from pairs of images. The projective reconstruction and 
camera pose estimation was upgraded to a Euclidean one by means of 
auto-calibration techniques (Pollefeys et al. 1998). Finally, the registration of 
image coordinate frames was based on the algorithm of iterative closest points 
(Besl and Mckay 1992). 
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Fig. 2.1. Stereo vision for industrial robots 

 

 
Fig. 2.2. Mars Rover in 3D (NASA mission in 2003–2004) (Pedersen 2003, Miller 2003, 
Madison 2006, Deen and Lore 2005) 

 



14      Chapter 2 Active Vision Sensors 

 

Fig. 2.3. MR-2 (Prototype of Chinese Moon Explorer in 2007–2008) 

2.1.2 Active Visual Sensing 

In contrast to passive visual sensing, the other class of visual sensing techniques is 
called active visual sensing. For the above cases of passive techniques (that use 
ambient light), only visible features with discernable texture gradients like on 
intensity edges are measured. For the example of the stereo setup, there is a 
corresponding problem. Matching corresponding points is easy if the difference in 
position and orientation of the stereo views is small, whereas it is difficult if the 
difference is large. However, the accuracy of the 3D reconstruction tends to be poor 
when the difference in position and orientation of the stereo views is small. To 
overcome the shortcomings of passive sensing, active sensing techniques have been 
developed in the recent years. These active systems usually do not have the 
correspondence problem and can measure with a very high precision. 

By active sensing, an external projecting device (e.g. laser or LCD/DLP 
projector) is used to actively emit light patterns that are reflected by the scene and 
detected by a camera. That is to say they rely on probing the scene in some way 
rather than relying on natural lighting. Compared with the passive approach, active 
visual sensing techniques are in general more accurate and reliable. 
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Generally active 3D vision sensors can resolve most of the ambiguities and 
directly provide the geometry of an object or an environment. They require minimal 
operator assistance to generate the 3D coordinates. However, with laser-based 
approaches, the 3D information becomes relatively insensitive to background 
illumination and surface texture. Therefore, active visual sensing is ideal for scenes 
that do not contain sufficient features. Since it requires lighting control, it is usually 
suitable for indoor environments and both camera and projector need to be 
pre-calibrated. 

Moire devices work on the principle that: effectively projecting a set of fringe 
patterns on a surface using an interference technique, tracking the contours of the 
fringes allows the range to be deduced. Systems that use point projection, line 
scanning, and moiré effect are highly accurate, but can be slow. Moire devices are 
best suited to digitizing surfaces with few discontinuities. 

Interferometers work on the principle that: if a light beam is divided into two 
parts (reference and measuring) that travel different paths, when the beams are 
combined together interference fringes are produced. With such devices, very small 
displacements can be detected. Longer distances can also be measured with low 
measurement uncertainty (by counting wavelengths). 

For laser range finders, the distance is measured as a direct consequence of the 
propagation delay of an electromagnetic wave. This method usually provides 
good distance precision with the possibility of increasing accuracy by means of 
longer measurement integration times. The integration time is related to the 
number of samples in each measurement. The final measurement is normally an 
average of the sample measures, decreasing therefore the noise associated to each 
single measure. Spatial resolution is guaranteed by the small aperture and low 
divergence of the laser beam (Sequeira et al. 1995, 1996, 1999). Basically laser 
range finders work in two different techniques: pulsed wave and continuous 
wave. Pulsed wave techniques are based on the emission and detection of a pulsed 
laser beam. A short laser pulse is emitted at a given frequency and the time 
elapsed between the emission and the received echo is measured. This time is 
proportional to the distance from the sensor to the nearest object. In a continuous 
wave laser ranging system, rather than using a short pulse, a continuous laser 
beam modulated with a reference waveform is emitted and the range is 
determined as a result of the comparison of the emitted and received laser beams. 
This type of system can use either amplitude modulation (e.g. sinusoidal signal) 
or frequency modulation. 

Among various 3D range data acquisition techniques in computer vision, the 
structured light system with coded patterns is based on active triangulation. A 
very simple technique to achieve depth information with the help of structured 
light is to scan a scene with a laser plane and to detect the location of the reflected 

Typically, properly formatted light, or another form of energy, is emitted in the 
direction of an object, reflected on its surface and received by the sensor; the distance 
to the surface is calculated using triangulation or time-of-flight (Papadopoulos 2001). 
Typical triangulation-based methods include single/multi-point projection, line 
projection, fringe and coded pattern projection, and moire effect (Figs. 2.4–2.6). 
Typical time-of-flight based methods are interferometers and laser range finders. 
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stripe. The depth information can be computed out of the distortion along the 
detected profile. More complex techniques of structured light project multiple 

Therefore, although there are many types of vision sensors available to measure 
object models by either passive or active methods, structured-light is one of the 
most important methods due to its many advantages compared with other methods, 
and thus it is successfully used in many areas for recovering 3D information of an 
industrial object. This chapter considers typical setups of the structured light system 
for active visual sensing, using stripe light vision or color-encoded vision. Their 
system configurations and measurement principles are presented in the following 
sections. 

 
Fig. 2.4. Light spot projection 

 

p

stripes (Fig. 2.7) or a pattern of grids at once onto the scene. In order to distinguish 
between stripes or grids they are coded either with different brightness or different 
colors (Fig. 2.8) (e.g. Coded Light Approach (Inokuchi et al. 1984, Stahs and 
Wahl 1992) and unique color encoding method). The structured light systems, as 
well as laser range finders, map directly the acquired data into a 3D volumetric 
model having thus the ability to avoid the correspondence problem associated 
with passive sensing techniques. Indeed, scenes with no textural details can be 
easily modeled. A drawback with the technique of coded stripes is that because 
each projection direction is associated with a code word, the measurement 
resolution is low. Fortunately, when this approach is combined with a phase-shift 
approach, a theoretically infinite height resolution can be obtained. For available 
products, Fig. 2.9 illustrates some examples of 3D laser scanners and Fig. 2.10 
illustrates some examples of 3D Structured Light System. 
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Fig. 2.5. A stripe light scanning system (Intersecting the projection ray with an additional ray 
or plane will lead to a unique reconstruction of the object point.) 

 

 
Fig. 2.6. Single spot stereo analysis 
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Fig. 2.7. Stripe light vision system 

 
Fig. 2.8. Coded structured light vision: project a light pattern into a scene and analyze the 
modulated image from the camera 

 

 

 

 



2.2 3D Sensing by Stereo Vision Sensors      19 

 

 
Fig. 2.9. Examples of 3D laser scanners 

 

  
Fig. 2.10. Examples of 3D structured light system (FastScan and OKIO) 

 

2.2 3D Sensing by Stereo Vision Sensors 

2.2.1 Setup with Two Cameras 

Binocular stereo vision is an important way of getting depth (3D) information about 
a scene from two 2-D views of the scene. Inspired by the vision mechanism of 
humans and animals, computational stereo vision has been extensively studied in 
the past 30 years, for measuring ranges by triangulation to selected locations 
imaged by two cameras. However, some difficulties still exist and have to be 

 

  

researched further. The figure illustrated below contains several examples of mobile 
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Fig. 2.11. The mobile robots with stereo vision setup at the University of Hamburg 

2.2.2 Projection Geometry 

In a stereo vision system, the inputs to the computer are 2D-projections of the 3D 
object. The vision task is to reconstruct 3D world coordinates according to such 2D 
projected images, so we must know the relationship between the 3D objective world 
and 2D images (Fig. 2.12), namely the projection matrix. A camera is usually 
described using the pinhole model and the task of calibration is to confirm the 
projection matrix. As we know, there exists a collineation which maps the 
projective space to the camera’s retinal plane: P3  P2. Then the coordinates of a 
3D point X = [X, Y, Z]T in a Euclidean world coordinate system and the retinal 
image coordinates x = [u, v]T are related by the following (2.1). 

 

Fig. 2.12. The projection geometry: from 3D world to 2D image 
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robots that use stereo vision sensors for understanding the 3D environment, which are 
currently employed in our laboratory at the University of Hamburg (Fig. 2.11). 
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where  is a scale factor, c = [u0, v0]T is the principal point, fx and fy are focal lengths, 
s is the skew angle, and R and t are external or extrinsic parameters. R is the 3 × 3 
rotation matrix which gives axes of the camera in the reference coordinate system 
and t the translation in the X, Y and Z directions representing the camera center in 
the reference coordinate system (Henrichsen 2000). Of course, it is the same 
reference coordinate system in both views of the stereo couple. 
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t = [Tx  Ty  Tz]T. (2.3) 

Equation (2.1) can be expressed as 

 MXx , (2.4) 

where x = [u, v, 1]T and X = [X, Y, Z, 1]T are the homogeneous coordinates of 
spatial vectors, and M is a 3 × 4 matrix, called the perspective projection, 
representing the collineation: P3  P2

The first part of the projection matrix in the collineation (2.1), denoted by K, 
contains the intrinsic parameters of the camera used in the imaging process. This 
matrix is used to convert between the retinal plane and the actual image plane. In a 
normal camera, the focal length mentioned above does not usually correspond to 1. 
It is also possible that the focal length changes during an entire imaging process, so 
that for each image the camera calibration matrix needs to be reestablished (denoted 
as recalibration in a following section). 

2.2.3 3D Measurement Principle 

If the value of the same point in computer image coordinate shoot by two cameras 
can be obtained, the world coordinates of the points can be calculated through the 
projection of two cameras (Fig. 2.13). Then four equations can be obtained from the 
two matrix formulas and the world coordinates of the point can be calculated (Ma 
and Zhang, 1998). 

 

 (Henrichsen 2000). 
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Fig. 2.13. 3D measurement by stereo vision sensors 

For the two cameras, we have 
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The two uncertain numbers can be removed and (2.6) becomes 
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In this linear system (2.8), the only three unknowns (X, Y, Z) can be solved 
simply by: 

[X Y Z]T = (QTQ)-1QTB (2.9) 

In practice, correction of lens distortion and epipolar geometry for feature 
matching should be considered for improving the efficiency and accuracy of 3D 
reconstruction. The epipolar plane contains the three-dimensional point of interest, 
the two optical centers of the cameras, and the image points of the point of interest 
in the left and right images. An epipolar line is defined by the intersection of the 
epipolar plane with image planes of the left and right cameras. The epipole of the 
image is the point where all the epipolar lines intersect. More intensive technology 
for stereo measurement is out of the scope of this book, but can be found in many 
published contributions. 

2.3 3D Sensing by Stripe Light Vision Sensors 

Among the active techniques, the structured-light system features high quality and 
reliability for 3D measurement. It may be regarded as a modification of static 
binocular stereo. One of the cameras is replaced by the projector which projects 
(instead of receives) onto the scene a sheet of light (or multiple sheets of light 
simultaneously). The simple idea is that once the perspective projection matrix of 
the camera and the equations of the planes containing the sheets of light relative to a 
global coordinate frame are computed from calibration, the triangulation for 
computing the 3D coordinates of object points simply involves finding the 
intersection of a ray (from the camera) and a plane (from the light pattern of the 
projector). A controllable LCD (Liquid Crystal Display) or DLP (Digital Light 
Processing) projector is often used to illuminate the surface with particular patterns. 
It makes it possible for all the surfaces in the camera’s field of view to be digitized 
in one frame, and so is suitable for measuring objects at a high field rate. 

2.3.1 Setup with a Switchable Line Projector 

The active visual sensor considered in this section consists of a projector, which is a 
switchable LCD line projector in this study, to cast a pattern of light stripes onto the 
object and a camera to sense the illuminated area as shown in Fig. 2.14. The 3D 
measurement is based on the principle of triangulation. If a beam of light is cast, and 
viewed obliquely, the distortions in the beam line can be translated into height 
variations. The correspondence problem is avoided since the triangulation is carried 
out by intersecting the two light rays generated from the projector and seen by the 
camera. 
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Fig. 2.14. Setup of stripe light vision system 

The projector is controllable by a computer to select a specific light pattern. All 
the patterns are pre-designed with light and dark stripes and switchable during the 
operation. 

2.3.2 Coding Method 

In structured light systems, the light coding method is used as a technique to solve 
the correspondence problem (Batlle et al. 1998, Salvi et al. 2004). 3D measurement 
by structured lighting is based on the expectation of precise detection of the 
projected light patterns in the acquired images. The 3D coordinates can be 
triangulated directly as soon as the sensor geometry has been calibrated and the 
light pattern is located in the image.  

For such systems as shown in Fig. 2.14, a Coded Light Approach is most suitable 
for space-encoding and position detection when using a switchable LCD or mask. It 
is also an alternative approach for avoiding the scanning of the light and it requires 
only a small number of images to obtain a full depth-image. This can be achieved 
with a sequence of projections using a set of switchable lines (light or dark) on the 
LCD device. All the lines are numbered from left to right. 

In a so-called gray-coding (Inokuchi et al. 1984, Stahs and Klahl 1992), 
adjacent lines differ by exactly one bit leading to good fault tolerance. Using a 
projector, all lines (e.g. 512 switchable lines) may be encoded with several bits. 
This can be encoded in 10 projected line images. One bit of all lines is projected at a 
time. A bright line represents a binary ‘0’, a dark line a ‘1’. All object points 
illuminated by the same switchable line see the same sequence of bright and dark 
illuminations. After a series of exposures, the bit-plane stack contains the encoded 
number of the corresponding lines in the projector. This is the angle in encoded 
format. The angle  is obtained from the column address of each pixel. Thus all the 

 



2.3 3D Sensing by Stripe Light Vision Sensors      25 

 

 

 
Fig. 2.15. An example of the coding method 

2.3.3 Measurement Principle 

 
Fig. 2.16. The measurement principle 

 

information needed to do the triangulation for each pixel is provided by the 
x-address and the contents of the bit-plane stack. Using look-up-tables can generate 
a full 3D image within a few seconds. With such a setup, the depth resolution can be 
further increased using the phase-shift method or the color-coded method. 

Figure 2.15 illustrates an example of the coding method. The lines are numbered 
from left to right. They are called Gray-Code, although they are in binary patterns. 
Using a controllable projector with 2n switchable lines, all lines may be encoded 
with n+1 bits, and projected with n+1 images. 
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Fig. 2.17. The coordinates in the system 

Figure 2.17 illustrates the measurement principle in the stripe light system and 
Fig. 2.18 illustrates the representation of point coordinates. For the camera, the 
relationship between the 3D coordinates of an object point from the view of the 
camera T]1[ cccc ZYXX  and its projection on the image 

T][ ccc yxx  is given by 

ccc XPx ,  (2.10) 

where Pc is a 3 4 perspective matrix of the camera: 
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Similarly, the projector is regarded as a pseudo-camera in that it casts an image 
rather than detects it. The relationship between the 3D coordinates of the object 
point from the vantage point of the projector T]1[ pppp ZYXX  and its back 
projection on the pattern sensor (LCD/DMD) T][ pp xx  is 

ppp XPx   (2.12) 

where Pp is a 2 4 inverse perspective matrix: 
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cp MXX , TRRRM , (2.14) 

in which R , R , R , and T are 4 4 matrices standing for 3-axis rotation and 
translation. 

Substituting (2.14) into (2.12) yields 

cpp MXPx . (2.15) 
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where r1 and r2 are 4-dimensional row vectors. Equation (2.15) becomes 

0)( 12 cpx Xrr . (2.17) 

Combining (2.10) and (2.17) gives 
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or 

cc xQX  (2.19) 

where Q is a 4 by 4 matrix. 
Then the three-dimensional world position of a point on the object surface can be 

determined by 

cc xQX 1  (2.20) 

From the above equations, the 3D object can be uniquely reconstructed if we 
know the matrix Q that contains 13 parameters from the two perspective matrices 
Pc and Pp and the coordinate transformation matrix M. This means, once the 
perspective matrices of the camera and projector relative to a global coordinate 
frame are given from calibration, the triangulation for computing the 3D 
coordinates of object points simply involves finding the intersection of a ray from 
the camera and a stripe plane from the projector. 

2.4 3D Sensor Reconfiguration and Recalibration 

Since the objects may be different in sizes and distances and the task requirements 
may also be different for different applications, a structure-fixed vision sensor does 
not work well in such cases. A reconfigurable sensor, on the other hand, can change 
its structural parameters to adapt itself to the scene to obtain maximum 3D 
information from the environment. If reconfiguration occurs, the sensor should be 
capable of self-recalibration so that 3D measurement can follow immediately. 

The relationship between the camera view and the projector view is given by 
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2.4.1 The Motivation for Sensor Reconfiguration and Recalibration 

In an active visual system, since the sensor needs to move from one place to another 
for performing a multi-view vision task, a traditional vision sensor with fixed 
structure is often inadequate for the robot to perceive the object features in an 
uncertain environment as the object distance and size are unknown before the robot 
sees it. A dynamically reconfigurable sensor can help the robot to control the 
configuration and gaze at the object surfaces. For example, with a structured light 
system, the camera needs to see the object surface illuminated by the projector, to 
perform the 3D measurement and reconstruction task. Active calibration means that 
the vision sensor is reconfigurable during runtime to fit in the environment and can 
perform self-recalibration in need before 3D perception. 

The concept of self-calibration in stereo vision and camera motion has been 
studied for more than ten years and there are many useful outputs. It is an attempt to 
overcome the problem of manual labor. For example, using the invariant properties 
of calibration matrix to motions, Dias et al. (1991) proposed an optimization 
procedure for recalibration of a stereo vision sensor mounted on a robot arm. The 
technique for self-recalibration of varying internal and external parameters of a 
camera was explored in (Zomet et al. 2001). The issues in dynamic camera 
calibration were addressed to deal with unknown motions of the cameras and 
changes in focus (Huang and Mitchell 1995). A method for automatic calibration of 
cameras was explored by tracking a set of world points (Wei et al. 1998). Such 
self-calibration techniques normally require a sequence of images to be captured via 
moving the camera or the target (Kang 2000). With some special setups, two views 
can also be sufficient for such a calibration (Seo and Hong 2001). All these are 
passive methods to calibrate the sensor with some varying intrinsic parameters. 

For structured light vision systems, most existing methods are still based on 
static and manual calibration. That is, during the calibration and 3D reconstruction, 
the vision sensor is fixed in one place. The calibration target usually needs to be 
placed at several accurately known or measured positions in front of the sensor 
(DePiero and Trivedi 1996, Huynh 1997, Sansoni et al. 2000). With these 
traditional methods, the system must be calibrated again if the vision sensor is 
moved or the relative pose between the camera and the projector is changed. For the 
active vision system working in an unknown environment, changes of the position 
and configuration of the vision sensor become necessary. Frequent recalibrations in 
using such a system are tedious tasks. The recalibration means that the sensor has 
been calibrated before installation on the robot, but it needs to be calibrated again as 
its relative configuration is changing. 

However, only a few related works can be found on self-calibration of a 
structured-light system. Furthermore, the self-calibration methods for a passive 
camera cannot be directly applied to an active vision system which includes an 
illumination system using structured light in addition to the traditional vision 
sensor. Among the previous self-calibration works on structured light systems, a 
self-reference method (Hébert 2001) was proposed by Hebert to avoid using the 
external calibrating device and manual operations. A set of points was projected on 
the scene and was detected by the camera to be used as reference in the calibration 
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of a hand-held range sensor. With a cubic frame, Chu et al. proposed a 
calibration-free approach for recovering unified world coordinates (Chu et al. 
2001). Fofi et al. discussed the problem in self-calibrating a structured light sensor 
(Fofi et al. 2001). A stratified reconstruction method based on Euclidean constraints 
by projection of a special light pattern was given. However, the work was based on 
the assumption that “projecting a square onto a planar surface, the more generic 
quadrilateral formed onto the surface is a parallelogram”. This assumption is 
questionable. Consider an inclined plane placed in front of the camera or projector. 
Projecting a square on it forms an irregular quadrangle instead of a parallelogram as 
the two line segments will have different lengths on the image plane due to their 
different distances to the sensor. Jokinen’s method (Jokinen 1999) of 
self-calibration of light stripe systems is based on multiple views. The object needs 
to be moved by steps and several maps are acquired for the calibration. The 
registration and calibration parameters are obtained by matching the 3D maps via 
least errors. The limitation of this method is that it requires a special device to hold 
and move the object. 

This chapter studies the problems of “self-calibration” and “self-recalibration” of 
active sensing systems. Here self-recalibration deals with situations where the 
system has been initially calibrated but needs to be automatically calibrated again 
due to a changed relative pose. Self-calibration refers to cases where the system has 
never been calibrated and none of the sensor’s parameters including the focal length 
and relative pose are known. Both of them do not require manual placements of a 
calibration target. Although the methods described later in this book are mainly 
concerned with the former situation, they can also be applied to the latter case if the 
focal lengths of the camera and the projector can be digitally controlled by a 
computer. 

The remainder part of this section investigates the self-recalibration of a 
dynamically reconfigurable structured light system. The intrinsic parameters of the 
projector and camera are considered as constants, but the extrinsic transformation 
between light projector and camera can be changed. A distinct advantage of the 
method is that neither an accurately designed calibration device nor the prior 
knowledge of the motion of the camera or the scene is required during the 
recalibration. It only needs to capture a single view of the scene. 

2.4.2 Setup of a Reconfigurable System 

For the stripe light vision system (Fig. 2.16), to make it adaptable to different 
objects/scenes to be sensed, we incorporated two degrees of freedom of relative 
motion in the system design, i.e. the orientation of the projector (or the camera) and 
its horizontal displacement. This 2DOF reconfiguration is usually adequate for 
many practical applications. Where more DOFs are necessary, the recalibration 
issues will be addressed in the next section. In Fig. 2.18, the camera is fixed 
whereas the projector can be moved on a horizontal track and rotated around the 
y-axis. The x-z plane is orthogonal to the plane of the projected laser sheet. The 3D 
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coordinate system is chosen based on the camera (or the projector) center and its 
optic axis. 

 

 

Fig. 2.18. A reconfigurable system 

For such a reconfigurable system, the two perspective matrices, which contain 
the intrinsic parameters such as the focal lengths (vc, vp ) and the optical centers 

formulation in the previous section, the dynamic recalibration task is to determine 
the relative matrix M in (2.14) between the camera and the projector. There are six 
parameters, i.e.  

][ 000 ZYXu  (2.21) 

Since the system considered here has two DOFs, only two of the six parameters 
are variable while the other four are constants which can be known from the initial 
calibration. If the X-Z plane is not perpendicular to the plane of the projected laser 
sheet, its angle  can also be identified at this stage. As the angle 0 =(90o – ) is 
small and the image can be rectified by rotating the corresponding angle 
accordingly during recalibration, it can be assumed that 0 = 0. The displacement in 
the y-direction between the camera center and the projector center, Y0, and the 
rotation angle 0 are also small in practice. They do not affect the 3D reconstruction 
as the projected illumination consists of vertical line stripes. Therefore, we may 
assume that Y0 = 0 and 0 = 0. Thus, the unknown parameters are reduced to only 
two ( 0 and b) for the dynamic recalibration. Here h is a constant and 0 and b have 
variable values depending on the system configuration. 
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( xc0, yc0, xp0 ), can be determined in the initial calibration stage. Based on the 
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For such a 2DOF system, the triangulation (2.18) for determining the 3D position 
of a point on the object surface is then simplified as (see Fig. 2.18) 

 
[ Xc Yc Zc ] = 

cc xv
hb

)cot(
)cot(  [ xc  yc  vc], (2.22) 

where vc is the distance between the camera sensor and the optical center of the lens, 
 = ( ) = 0 + p(i) is the projection angle, and  

)
)(

(tan)( 1

p

p
p v

ix
i , (2.23) 

where i is the stripe index and xp(i) is the stripe coordinate on the projection plane 
xp(i) = i  stripe width + xp(0). 

If the projector’s rotation center is not at its optical center, h and b shall be 
replaced by: 

)sin( 00
' rhh  and )cos( 00

' rbb  (2.24) 

where r0 is the distance between the rotational center and the optical center (Fig. 
2.19). h and r0 can be determined during the initial static calibration. Figure 2.20 
illustrates the experimental device which is used to determine the camera’s rotation 
axis. 

 

 
Fig. 2.19. The case when the rotational center is not at the optical center 

For the reconfigurable system, the following sections show a self-recalibration 
method which is performed if and when the relative pose between the camera and 
the projector is changed. The unknown parameters are determined automatically by 
using an intrinsic cue, the geometrical cue. It describes the intrinsic relationship 
between the stripe locations on the camera and the projector. It forms a geometrical 
constraint and can be used to recognize the unknown parameters of the vision 
system. 
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Fig. 2.20. The device to calibrate the rotational center 

 

 Fig. 2.21. The spatial relationship in the system 
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2.4.3 Geometrical Constraint 

Assume a straight line in the scene which is expressed in the camera coordinate 
system and projected on the X-Z plane: 

Zc = C1 Xc + C2. (2.25) 

The geometrical constraint between projecting and imaging of the scene line is 
obtained by substituting (2.22) into (2.25): 

[b – hcot( )] (vc - C1 xc ) - C2 [vccot( ) + xc] = 0. (2.26) 

If h = 0, the above can be simplified as  

b(vc - C1 xc ) - C2[vccot( 0 + pi) + xc] =0. (2.27) 

For two point pairs (xci, pi) and (xcj, pj),  
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Denote Fij = 
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cipic
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)cot(

0

0 . The coordinates of four points yield 
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With (2.29), if the locations of four stripes are known, the projector’s orientation 
0 can be determined when assuming h = 0. 

If h  0, from (2.27), the parameters vc, h, and vp are constants that have been 
determined at the initial calibration stage. xc = xci = xc(i) and pi = p(i) are known 
coordinates on the sensors. Therefore, 0, b, C1, and C2 are the only four unknown 
constants and their relationship can be defined by three points. 

Denote A0=tan( 0) and Ai=tan( pi). The projection angle of an illumination stripe 
is (illustrated in Fig. 2.22) 

)tan()tan(
)tan()tan(1
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0

0
0
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= 
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i

AA
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01 =
pp

pp

xAv
xAv

0

0 , (2.30) 

where xp = xp(i) is the stripe location on the projector’s LCD. The x-coordinate 
value of the i xp(i), can be determined by the light coding method. The 
stripe coordinate xp and the projection angle pi are illustrated in Figs. 2.21 and 
2.22. 

 

 th stripe, 
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Fig. 2.22. The projection angle 

Equation (2.27) may be written as 

cppc xvACAbChCvvhCbA )()( 0201120
+

pcpc xxAhCbCCxvhACAb )()( 0112020
=0 (2.31) 

or 

)(321 pcpc xxWxWWx , (2.32) 
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0202 hACAbV , (2.35) 

020113 ACAbChCV , (2.36) 

01124 AhCbCCV , (2.37) 

Equation (2.32) is the relationship between the stripe locations on the camera and 
the projector and is termed the geometrical constraint. 

2.4.4 Rectification of Stripe Locations 

Within a view of the camera, there can be tens or hundreds of stripes from the scene. 
The stripes’ coordinates (xc, xp) on the image and the projector should satisfy (2.32) 
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in theory. In practice, however, the coordinates (xc) obtained from the image 
processing may not satisfy this constraint, due to the existence of noise. To reduce 
the effect of noise and improve the calibration accuracy, the stripe locations on the 
image can be rectified by using a curve fitting method. 

Let the projection error be 
m

i
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2
321 ])([ . (2.38) 

Then W1, W2, and W3 may be obtained by minimizing the projection error Qerr 
with respect to Wk  

0
k
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W
Q ,  k = 1, 2, 3. (2.39) 

Using (2.38) in (2.39) gives 
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Or GW = X, W = G-1X. (2.41) 

The stripe location on the camera coordinate is, thus, rectified as 
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2.4.5 Solution Using the Geometrical Cue 

Equation (2.31) can be written as 

04321 VxxVxvVxvVvv cppccppc
. (2.43) 

For an illumination pattern with n (n  3) stripes received on the image plane, 
(2.39) can be expressed as 
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A V = 0, (2.45) 

where A is an n  4 matrix, Xi = xc(i) , Ai = xp(i), and V is a 4  1 vector formed from 
(2.34) to (2.37). The following theorem is used for solving (2.44). 

 
Theorem 2.1 (The rank of the matrix A) Rank( A ) = 3. 
 
Proof. Consider the 3 3 matrix Alt in the left-top corner of the n 4 matrix A. If 

det(Alt)  0 , then rank(A)  3 is true. 
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With row operations, it may be transformed to 
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With (2.32) and (2.33), we have 
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Suppose that the observed line does not pass through the optical center of either 
the camera or the projector (otherwise it is not possible for triangulation), i.e.  

C2  0, and 0),0(21 bZhhCbC . (2.49) 

Hence U2  0. 
For any pair of different light stripes illuminated by the projector, i.e. Ai  Aj , 

from (2.32), 
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we have Xi  Xj , and 
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Hence, 3)'()()( ltlt rankrankrank AAA . 
On the other hand, rewrite the matrix A with four column vectors, i.e. 
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With the fourth column, 
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This means that the matrix’s 4th column, cm4, has a linear relationship with the 
first three columns, cm1 - cm3 . So the maximum rank of matrix A is 3, i.e. rank(A)  

  
Now, considering three pairs of stripe locations on both the camera and the 

projector, {(Xi, Ai) | i = 1, 2, 3 }, (2.44) has a solution in the form of 

V = k [ v1 v2 v3 v4 ]T , k  R, (2.60) 

There exists an uncertain parameter k as the rank of matrix A is lower than its 
order by 1. Using singular value decomposition to solve the matrix equation (2.44) 
to find the least eigenvalue, the optimal solution can be obtained. In a practical 
system setup, the z-axis displacement h is adjusted to 0 during an initial calibration, 
and (2.60) gives a solution for the relative orientation: 
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where bc = C2 / b. 

3.
Therefore, we can conclude that rank(A) = 3.   
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0 = tan-1 (A0 ) . (2.62) 

By setting b = 1 and solving (2.33) and (2.60), the 3D reconstruction can be 
performed to obtain an object shape (with relative size). If we need to obtain the 
absolute 3D geometry of the object, (2.60) is insufficient for determining the five 
unknowns, b, C1, C2, A0, and k. To determine all these parameters, at least one more 
constraint equation is needed. In our previous work (Chen 2003), the focus cue or 
the best-focused distance is used below for this purpose. 

2.5 Summary 

Compared with passive vision methods which feature low-cost and are easy to set 
up, the structured light system using the active lighting features high accuracy and 
reliability. The stripe light vision system can achieve a precision at the order of 0.1 
mm when using a high resolution camera and employing a good sub-pixel method. 
A specialized projector can be designed for achieving low cost and high accuracy. 
However, the limitation of the stripe light vision system is that it requires the scene 
to be of uniform color and static within the acquisition period. To reconstruct one 
3D surface, it needs about one second to capture 8–12 images and several seconds 
to compute the 3D coordinates. The two methods of stereo vision and stripe light 
vision have both been summarized in this chapter. 

To make the vision system flexible for perceiving objects at varying distances 
and sizes, the relative position between the projector and the camera needs to be 
changeable, leading to reconfiguration of the system. A self-recalibration method 
for such a reconfigurable system needs to be developed to determine the relative 
matrix between the projector and the camera, which is mainly concerned in this 
chapter. We thus presented a work in automatic calibration of active vision systems 
via a single view without using any special calibration device or target. This is also 
in the field of “self-calibration” and “self-recalibration” of active systems. Here 
self-recalibration deals with situations where the system has been initially 
calibrated but needs to be calibrated again due to a changed relative pose (the 
orientation and position) between the camera and projector. Self-calibration refers 
to cases where the system has never been calibrated and none of the sensor’s 
parameters including the focal length and relative pose are known. Although the 
method described in this chapter is mainly concerned with the former situation, it 
can also be applied to the latter case. Some important cues are explored for 
recalibration using a single view. The method will be applicable in many advanced 
robotic applications where automated operations entail dynamically reconfigurable 
sensing and automatic recalibration to be performed on-line without operators’ 
interference. 

 
 

The orientation of the projector is 



 

Chapter 3  
Active Sensor Planning – the State-of-the-Art 

The aim of sensor planning is to determine the pose and settings of a vision sensor 
for undertaking a vision task that usually requires multiple views. Planning for 
robot vision is a complex problem for an active system due to its sensing 
uncertainty and environmental uncertainty. This chapter describes the problem of 
active sensor planning formulated from practical applications and the 
state-of-the-art in this field. 

3.1 The Problem 

An active visual system is a system which is able to manipulate its visual 
parameters in a controlled manner in order to extract useful data about the scene in 
time and space. (Pahlavan et al. 1993) 

Active sensor planning endows the observer capable of actively placing the 
sensor at several viewpoints through a planning strategy. In the computer vision 
community, when active perception became an important attention to researchers, 
sensor planning inevitably became a key issue because the vision agent had to 
decide “where to look”. According to task conditions, the problem is classified into 
two categories, i.e. model-based and non-model-based vision tasks.  

About 20 years ago, Bajcsy discussed the important concept of active perception 
(Bajcsy 1988). Together with other researchers” initial contributions at that time, 
the new concept (compared with the Marr paradigm in 1982) on active perception, 
and consequently the sensor planning problem, was thus issued in vision research. 
The difference between the concepts of active perception and the Marr paradigm is 
that the former considers vision perception as the intentional action of the mind but 
the latter considers it as the procedural process of matter. 

Therefore, research of sensor planning falls into the area of active perception 
(Bajcsy 1988). It introduces the idea of moving a sensor to constrain interpretation 
of its environment. Since multiple 3D images need to be taken and integrated from 
different vantage points to enable all features of interest to be measured, sensor 
placement which determines the viewpoints with a viewing strategy thus becomes 
critically important for achieving full automation and high efficiency. 

The problem of sensor placement in computer vision was addressed by 
Tarabanis et al. (1995) as: “for a given information concerning the environment 
(object under observation, sensor available) and concerning the task that the system 
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Fig. 3.1. The roles of active sensor planning in autonomous robots 

3.2 Overview of the Recent Development 

The early work on sensor planning was mainly focused on the analysis of 
placement constraints, such as resolution, focus, field of view, visibility, and 
conditions for light source placement in 2D space (Lin et al. 1996). A viewpoint 
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Today, the roles of sensor planning can be widely found in most autonomous 
robotic systems. According to the task conditions, the planning scheme can be 
applied on different levels of vision perception as illustrated in Fig. 3.1. 

must achieve (detection of characteristics, object recognition, scene recons-
truction), to develop some automatic strategy to determine the sensor parameters 
(the position, the orientation and the optical parameters of the sensor) to carry out 
the task satisfying some criteria.”  
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has to be placed in an acceptable space and a number of constraints should be 
satisfied. The fundamentals in solving such a problem were established in the last 
decades. Tarabanis et al. (1995) presented an intensive survey on sensing 
strategies developed in the early stage, concentrated upon the period between 
1987 and 1991. Among them, Cowan (1988) gave detailed descriptions on 
computing the acceptable viewpoints for satisfying many requirements (sensor 
placement constraints). In Cowan (1988), lens aperture setting was also 
considered by computing the diffraction limit. The light position region was 
determined to achieve adequate illumination, mathematically through the light 
path, i.e. surface absorption, diffused reflectance, specular reflectance, and image 
irradiance. Abrams et al. (1999) also proposed to compute the viewpoints that 
satisfy the optical constraints, i.e. resolution, focus (depth of field), field-of-view, 
and detectability. Rosenfeld discussed some techniques and the relationship 
between object recognition and known or unknown viewpoints (Rosenfeld 1988). 
More extensive surveys of the early works can be found in Banta (1996), 
Marchand (1997, 1999), and Kelly et al. (2000). 

Here the scope is restricted to recently published approaches to view-pose 
determination and sensor optical settings in the robotics community. It does not 
include: attention, gaze control, foveal sensing, hand-eye coordination, autonomous 
vehicle control, localization, landmarks, qualitative navigation, path following 
operation, etc., although these are also issues concerning the active perception 
problem.  

Of the published literature in the recent years, Cowan (1988) is one of the earliest 
research on this problem in 1988 although some primary works can be found in the 
period 1985–1987. To date, there are more than two hundred research papers which 
mainly focus on sensor placement or viewpoint planning. At the early stage, these 
works were focused on sensor modeling, analysis of sensors” optical and 
geometrical parameters, and sensor placement constraints. From 1990 to 1995, 
most of these research works were CAD model-based and usually for applications 
in computer inspection or recognition. The generate-and-test method and the 
synthesis method are major contributions at that stage. From 1996 to 2000, while 
optimization was still necessary for model-based sensor placement, it is 
increasingly important to plan viewpoints for unknown objects or no a priori 
environment because this is very useful for many active vision tasks such as model 
reconstruction and autonomous navigation. In recent years, although researchers 
have to continue working on the theoretical formulation of active sensor planning, 
many works tend to combine the existing methods with specific application such as 
inspection, recognition, search, object modeling, tracking, exploration, navigation, 
localization, assembly and disassembly, etc. 

Two outstanding methods have been widely used previously. They are the 
weighted function and tessellated space. The former uses a function that includes 
several components standing for placement constraints, e.g. 

)max( 44332211 ggggh  (3.1) 
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Equivalently with constraint-based space analysis, for each constraint (such as 
visibility, resolution, field-of-view, and depth-of-field), the sensor pose is limited to 
a possible region. Then the viewpoint space is the intersection of these regions and 
the optimization solution is determined by the above function in the viewpoint 
space, i.e., 

4321 ggggplacement VVVVV  (3.2) 

This method is usually used in model-based planning (Trucco 1997) tasks, such 
as inspection, assembly/disassembly, recognition, and object search. 

The latter method tessellates a sphere or cylinder around the object to be 
modeled as a viewpoint space (or look-up array (Morooka et al. 1999)). Each grid 
point is a possible sensor pose for viewing the object. The object surface is 
partitioned as void surface, seen surface, unknown surface, and uncertain surface. 
The working space is also partitioned into void volume and viewing volume. 
Finally an algorithm is employed for planning a sequence of viewpoints so that 
the whole object can be sampled. This method is effective in dealing with some 
small and simple objects, but it is difficult to model a large and complex object 
with many concave areas because it cannot solve occlusion constraint. 

More precisely, a number of approaches have been applied in deciding the 
placement of the vision sensor, including: 

 geometrical/ volumetric computation  
 tessellated sphere/space -TS 
 generate-and-test approach (Kececi 1998, Trucco 1997) 
 synthesis approach 
 sensor simulation 
 expert system 
 rules (Liu and Lin 1994) 
 iterative optimization method (Lehel et al. 1999) 
 
 probabilistic reasoning (Roy 2000) 
 tree annealing (Yao 1995) 
 genetic algorithm (Chen et al. 2004). 

Out of these approaches, volumetric computation by region intersection is most 
frequently used by researchers, e.g. (Cowan 1988). For each constraint, it computes 
the region Ri of acceptable viewpoints. If multiple surface features need to be 
inspected simultaneously, the region Ri is the intersection of the acceptable regions 
Rij for each individual feature. Finally, the region of acceptable viewpoints is the 
intersection of all regions. 

 

Bayesian decision (Zhou and Sakane 2001, Kristensen 1997) 
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3.3 Fundamentals of Sensor Modeling and Planning 

Table 3.1 lists some fundamental works on sensor modeling and vision planning for 
robotic tasks. It provides an overview of typically used sensors, controllable 
parameters, proposed methods, and applied tasks. 

Table 3.1. Summary of typical works on fundamental sensor planning 

Reference Sensors Parameters Method Task 
Cowan 1988 Camera; 

Extension 
to laser 
scanner 

Resolution, focus (depth 
of field), field of view, 
visibility, view angle;  
6 extrinsic parameters of 
the sensor 

Geometrical 
computation 

General model 
based vision task 

Tarabanis 
1991 

Camera Optical constraints 
(resolution, focus/ 
depth-of-field, 
field-of-view, and 
detectability) 

Volume 
intersection 
method VIM 

General purpose 

Remagnino1
995 

Camera Position, look direction 
(pan/tilt), focal length 

Geometrical 
computation 

General task in 
partially known 
environment 

Giraud 1995 General 
sensors 

Perception number, 
sensor location 

Geometrical 
approach, 
Bayesian 
statistics 

Equipment 
design, general 
task 

Triggs 1995 Camera Task, camera, robot and 
environment 

Probabilistic 
heuristic search, 
combined 
evaluation 
function 

General model 
based vision task 

Yao 1995 Camera Generalized viewpoint, 
depth of field, field of 
view, resolution 

Tree annealing General model 
based vision task 

Tarabanis 
1995 

Camera Camera pose, optical 
settings, task constraints 

VIM Model based 
vision task 

Stamos1998 Camera Field-of-view, visibility Interactive General model 
based vision task 

Lehel et al. 
1999 

Trinocular 
sensor 
(CardEye) 

Relative intrinsic 
translation, pan, tilt, field 
of view angle 

Iterative 
optimization 

General vision 
tasks 

Li and Liu 
2003 

Structured 
light 

Reconfigured pose Geometrical Recalibration for 
active vision 

Zanne et al. 
2004 

Eye-in-hand 
camera 

Path Constraint-based 
control 

(Continued)

Visibility 
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Reference Sensors Parameters Method Task 
Farag 2004 Trinocular Center, zoom, focus and 

vergence 
SIFT algorithm Mobile vision 

system 

Mariottini 
2005 

Pinhole and 
panoramic 
cameras 

Camera intrinsic and 
relative parameters 

Geometrical 
modeling 

Camera models 
and epipolar 
geometry 

LaValle 2006 general NA Algorithms using 
information 
space, 
differential 
constraints, etc. 

Motion planning 

Hua et al. 
2007 

Panoramic 
Camera 

Wide FOV, 
high-resolution 

Mirror pyramid Maximize the 
panoramic FOV 

 
 
For active sensor planning, an intended view must first satisfy some constraints, 

either due to the sensor itself, the robot, or its environment. From the work by 
Cowan et al. (1988) who made a highlight on the sensor placement problem, 
detailed descriptions of the acceptable viewpoints for satisfying many requirements 
(sensor placement constraints) have to be provided. Cowan and Kovesi (1988) 
presented an approach to automatically generating camera locations (viewpoints), 
which satisfied many requirements (we term it sensor placement constraints) 
including resolution, in-focus, field-of-view, occlusion, etc. Shortly after that, they 
(Cowan and Bergman 1989) further described an integrated method to position both 
a camera and a light source. Besides determining the camera placement region to 
satisfy the resolution, field of view, focus, and visibility, lens aperture setting was 
also considered by computing the diffraction limit. The light position region was 
determined to achieve adequate illumination, mathematically through the light path, 
i.e. surface absorption, diffused reflectance, specular reflectance, and image 
irradiance. Similar concepts were also presented by Tarabanis et al. (1991) to 
compute the viewpoints that satisfy the sensing constraints, i.e. resolution, focus, 
field-of-view, and detectability. A complete list of constraints will be summarized 
and analyzed in Chap. 4. 

To better describe the sensor properties, Ikeuchi et al. (1991) presented a 
sensor modeler, called VANTAGE, to place the light sources and cameras for 
object recognition. It mostly proposed to solve the detectability (visibility) (Zanne 
et al. 2004) of both light sources and cameras. It determined the 
illumination/observation directions using a tree-structured representation and 
AND/OR operations. The sensor is defined as consisting of not only the camera, 
but multiple components (G-sources), e.g. a photometric stereo. It is represented 
as a sensor composition tree (SC tree), as in Fig. 3.2. Finally, the appearance of 
object surfaces is predicted by applying the SC tree to the object and is followed 
by the action of sensor planning. 

Table 3.1. (Continued)
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In some other typical works on constraint formulation, Remagnino et al. (1995) 
proposed to set the viewpoint, look direction, and focal length of a camera. With a 
partially known environment, it dealt with two problems: how to determine the 
sensor”s pose (in the bootstrap phase) and how to determine the next-look direction 
(in the run phase). It took into account errors in the object position stored in the 
memory and errors due to image segmentation. Rosenfeld et al. (1988) discussed 
some techniques and relationship between object recognition and known or 
unknown viewpoints. In fact, an intensive survey on sensing strategies developed in 
the first stage, i.e. the period from 1987 to 1992, was summarized by Tarabanis  
et al. (1995). 

To a relatively higher level, Giraud and Jouvencel (1995) addressed the sensor 
selection at an abstract level for equipment design and perception planning. It is 
formulated with (1) the number of uses of a sensor; (2) the selection of 
multi-sensors; (3) discarding useless sensors; and (4) the location of the sensors. It 
used an approach based on geometrical interaction between a sensor and an 
environment and Bayes reasoning to estimate the achieved information. Later, 
Kristensen et al. (1997) proposes the sensor planning approach also using the 
Bayesian decision theory. The sensor modalities, tasks, and modules were 
described separately and the Bayes decision rule was used to guide the behavior.  

The model-based sensor placement problem in fact is formulated as a nonlinear 
multi-constraint optimization problem. It is difficult to compute robust viewpoints 
which satisfy all feature detectability constraints. Yao and Allen (1995) presented a 
tree annealing (TA) method to compute the viewpoints with multi-constraints. They 
also investigated the stability and robustness while considering the constraints with 
the different scale factors and noises. Another way is done by Triggs and Laugier 
(1995) who described a planner to produce heuristically good static viewing 
positions. It combined many task, camera, robot and environmental constraints. A 
viewpoint is optimized and evaluated by a function which uses a probability-based 
global search technique. 

Fig. 3.2. The photometric stereo sensor and its SC tree (Ikeuchi and Robert 1991) 
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Fig. 3.3. The CardEye trinocular vision sensor and its model (with the Computer Vision and 
Image Processing Lab (CVIP) at the University of Louisville (Farag 2004)) 

 

Fig. 3.4. The ATRV-2 based AVENUE mobile robot for automated site modeling (Blaer and 
Allen 2006) 

In a recent book by Steve LaValle (2006), many different kinds of planning 
algorithms can be found related to visibility and sensor-based planning, e.g. 
information space, differential constraints, decision-theoretic planning, 
sampling-based planning, combinatorial planning, etc. 

For active sensing purpose, many devices and systems have recently been 
invented for robotics, e.g. (Colin 2007, Hou et al. 2006). An ATRV-2 based 
AVENUE mobile robot is used by Blaer and Allen (2006) for automated site 
modeling (Fig. 3.4), at the Columbia University. Sheng et al. (2006) develop an 
automated, intelligent inspection system for these engineered structures, which 
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employs a team of intelligent climbing robots and a command robot to 
collaboratively carry out the inspection task. To support autonomous navigation, a 
miniature active camera (MoCam) module is designed, which can be used in the 
pose calibration of the robot. Farag (2004) solves the planning problem for a mobile 
active system with a trinocular vision sensor (Fig. 3.3). An algorithm is proposed to 
combine a closed-form solution for the translation between the three cameras, the 
vergence angle of the cameras as well as zoom and focus setting with the results of 
the correspondences between the acquired images and a predefined target obtained 
using the Scale Invariant Feature Transform (SIFT) algorithm. There are two goals. 
The first is to detect the target objects in the navigation field. The second goal is 
setting the cameras in the best possible position with respect to the target by 
maximizing the number of correspondences between the target object and the 
acquired images. The ultimate goal for the algorithm is to maximize the 
effectiveness of the 3D reconstruction from one frame. 

Fig. 3.5. The camera model for visual servoing (Mariottini and Prattichizzo 2005) 

 
For fast development of sensor modeling, Mariottini and Prattichizzo (2005) 

develop an Epipolar Geometry Toolbox (EGT) on MATLAB which is a software 
package targeted to research and education in computer vision and robotic visual 
servoing (Fig. 3.5). It provides the user with a wide set of functions for designing 
multicamera systems for both pinhole and panoramic cameras. Several epipolar 
geometry estimation algorithms have been implemented. They introduce the 
toolbox in tutorial form, and examples are provided to demonstrate its capabilities. 
The complete toolbox, detailed manual, and demo examples are freely available on 
the EGT Web site (http://egt.dii.unisi.it/). 
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3.4 Planning for Dimensional Inspection 

In many vision tasks, there exists an object model in the system. For example, in 
assembly (Nelson 1996), model-based recognition (Okamoto 1998), object 
searching, dimensional measurement, inspection, and semi-automated scene 
reconstruction, the object”s geometry and a rough estimate of its pose are known. 
Especially for the inspection tasks, using either range sensors (Prieto 1999) or 
intensity cameras (Gu et al. 1999, Abrams 1999), a nearly perfect estimate of the 
object”s geometry and possibly its pose are known and the task is to determine how 
accurately the object has been manufactured. Table 3.2 lists some typical works on 
sensor planning for automated inspection. 

Table 3.2. Summary of typical works on sensor planning for dimensional inspection 

Reference Sensors Parameters Method Task 
Tarabanis 
1995 

Camera Camera pose, optical 
settings, task constraints 

VIM Model based 
vision task 

Abrams 1996 Camera Detectability, in focus, 
field-of-view, visibility, 
and resolution 

VIM Inspection 

Trucco 1997 Generalized 
sensor 

Visibility, reliability, 
shortest path 

Generate-and-test, 
VIM, FIR, CCAO 

Inspection 

Prieto 1999 Range 
sensor 

Viewing distance, 
incident angle 

Direct 
computation 

Inspection 

Sheng et al. 
2003 

    

Hodge 2003 Multiple 
cameras 

Positions Agent-based 
coordination 

Inspection 

Chen et al. 
2004 

Camera, 
structured 
light 

Camera pose, settings, 
task constraints 

Genetic 
algorithm, graph 
theory 

Model-based 
inspection, 
robot path 

Rivera-Rios 
2005 

Stereo Camera pose Probabilistic 
analysis 

Dimensional 
measurements 

Bodor 2005 Cameras Internal and external 
camera parameters 

Analytical 
formulation 

Observability 

 

 
On object inspection, Yao and Allen argued that this problem in fact was a 

nonlinear multi-constraint optimization problem (Yao 1995). Triggs and Laugier 
(1995) described a planner to produce heuristically good static viewing positions. It 
combined many task, camera, robot and environmental constraints. A viewpoint is 
optimized and evaluated by a function which uses a probability-based global search 
technique. It is difficult to compute robust viewpoints which satisfy all feature 
detectability constraints. Yao and Allen (1995) presented a Tree Annealing (TA) 
method to compute the viewpoints with multi-constraints. They also investigated 
the stability and robustness while considering the constraints with the different 
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scale factors and noises. Elsewise, Olague and Mohr (1998) chose to use genetic 
algorithms to determine the optimal sensor placements. 

In order to obtain a quality control close to the accuracy obtained with a 
coordinate measuring machine in metrology for automatic inspection, F. Prieto et 
al. suggest improving the accuracy of the depth measurements by positioning the 
sensor”s head according to a strategy for optimum 3D data acquisition (Prieto 
1999). This strategy guarantees that the viewpoints found meet the best accuracy 
conditions in the scanning process. The proposed system requires the part”s CAD 
model to be in IGES format.  

Several sensor planning systems have been developed by researchers. For 
example, Trucco et al. (1997) developed a general automatic sensor planning 
(GASP) system. Tarbox and Gottschlich (1999) had an Integrated Volumetric 
Inspection System (IVIS) and proposed three algorithms for inspection planning. 
Tarabanis et al. (1995) developed a model-based sensor planning system, the 
machine vision planner (MVP), which works with 2D images obtained from a CCD 
camera. 

Compared with other vision sensor planning systems, the MVP system is notable 
in that it takes a synthesis rather than a generate-and-test approach, thus giving rise 
to a powerful characterization of the problem. In addition, the MVP system 
provides an optimization framework in which constraints can easily be incorporated 
and combined. The MVP system attempts to detect several features of interest in the 
environment that are simultaneously visible, inside the field of view, in focus, and 
magnified, by determining the domain of admissible camera locations, orientations, 
and optical settings (Fig. 3.6). A viewpoint is sought that is both globally admissible 
and central to the admissibility domain. 

Based on the work on the MVP system (Tarabanis 1995), Abrams et al. (1996) 
made a further development for planning viewpoints for vision tasks within a robot 
work-cell. The computed viewpoints met several constraints such as detectability, 
in-focus, field-of-view, visibility, and resolution. The proposed viewpoint 
computation algorithm also fell into the “volume intersection method” (VIM). The 
planning procedure was summarized as: (1) Compute the visibility volumes Vivis; 
(2) compute the volumes ViFR combined with field-of-view and resolution 
constraints; (3) compute the overall candidate volume Vc as the intersection of all 
ViFR and Vivis; (4) find a position within Vc; (5) find the orientation; (6) compute 
the focus and maximum aperture; (7) verify that the parameters are all valid. 

These is generally a straightforward but very useful idea. Many of the latest 
implemented planning systems can be traced back to this contribution. For example, 
Rivera-Rios et al. (2005) presents a probabilistic analysis of the effect of the 
localization errors on the dimensional measurements of the line entities for a 
parallel stereo setup (Fig. 3.7). The probability that the measurement error is within 
an acceptable tolerance was formulated as the selection criterion for camera poses. 
The camera poses were obtained via a nonlinear program that minimizes the total 
mean square error of the length measurements while satisfying the sensor 
constraints.
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Fig. 3.6. The admissible domain of viewpoints (Tarabanis 1995) 

 

Fig. 3.7. Stereo pose determination for dimensional measurement (Rivera-Rios 2005) 
 
The general automatic sensor planning system (GASP) reported by Trucco et al. 

(1997) is to compute optimal positions for inspection tasks using a known imaging 
sensor and feature-based object models. This exploits a feature inspection 
representation (FIR) which outputs an explicit solution off-line for the sensor 
position problem. A generalized sensor (GS) model was defined with both the 
physical sensor and the particular software module. The viewpoints are planned by 
computing the visibility and reliability. The reliability of the inspection depends on 
the physical sensors used and the processing software. In order to find a shortest 
path through the viewpoints in space, they used the Convex hull, Cheapest 
insertion, angle selection, Or-optimization (CCAO) as the algorithm to solve the 
traveling salesman problem (Fig. 3.8). 
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Fig. 3.8. The shortest path planned to take a stereo pair through the viewpoints (Trucco 1997) 

In order to obtain a more complete and accurate 3D image of an object, Prieto  
et al. (1999) presented an automated acquisition planning strategy utilizing its CAD 
model in IGES format. The work was focused on improving the accuracy of the 3D 
measured points which is a function of the distance to the object surface and of the 
laser beam incident angle. 

3.5 Planning for Recognition and Search 

In many cases, a single view of an object may not contain sufficient features to 
recognize it unambiguously. Therefore another important application of sensor 
planning is active object recognition (AOR) which recently attracts much attention 
within the computer vision community. Object search is also considered a 
model-based vision task concerned with finding a given object in a known or 
unknown environment. The object search task not only needs to perform the object 
recognition and localization, but also involves sensing control, environment 
modeling, and path planning. Sensor planning is very important for 3D object 
search since a robot needs to interact intelligently and effectively with the 3D 
environment. Table 3.3 lists the typical works on sensor planning for vision-based 
recognition and search. 
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Table 3.3. Summary of typical works on sensor planning for recognition and search 

Reference Sensors Parameters Method Task 
Ikeuchi and 
Robert 1991 

Light source, 
camera 

Illumination/ 
observation directions 

Tree-structured, 
logical operation 

Object 
recognition 

Ye 1995 Camera + 
range finder 

Sensing pose, search 
space 

Probability, 
tessellated  
sphere (TS) 

Object search 

Liu and Lin 
1994 
Lin et al. 1996 

Structured 
light 

View pose Rules, feature 
prediction, 
MERHR 

Recognition 

Madsen and 
Christensen 
1997 

Camera Viewing direction Direct 
computation 

Active object 
recognition 
(AOR) 

Borotschnig 
2000 

Camera, 
illuminant 

View pose Probabilistic 
object 
classifications, 
score ranking 

AOR 

Deinzer 2000 Camera Classification and 
localization 

Reinforcement 
learning 

AOR 

Roy 2000 Camera View pose, object 
features 

Probabilistic 
reasoning, Bayes 
rule 

AOR 

Sarmiento  
et al. 2005 

General 
sensor 

Sensing locations Convex cover 
algorithm 

Object search 

Xiao et al. 2006 Sonar and 
omni- 
directional 
camera 

Path Fuzzy logic 
algorithm 

Search 

 
In fact, two objects may have all views in common with respect to a given feature 

set, and may be distinguished only through a sequence of views (Roy 2000). 
Further, in recognizing 3D objects from a single view, recognition systems often 
use complex feature sets. Sometimes, it may be possible to achieve the same, 
incurring less error and smaller processing cost by using a simpler feature set and 
suitably planning multiple observations. A simple feature set is applicable for a 
larger class of objects than a model base with a specific complex feature set. Model 
base-specific complex features such as 3D invariants have been proposed only for 
special cases. The purpose of AOR is to investigate the use of suitably planned 
multiple views for 3D object recognition. Hence the AOR system should also take a 
decision on “where to look”. The system developed for this task is an iterative 
active perception system that executes the acquisition of several views of the object, 
builds a stochastic 3D model of the object and decides the best next view to be 
acquired. Okamoto et al. (1998) proposed such a method based on an entropy 
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measure. Liu and Lin (1994), Lin et al. (1996), and Madsen and Christensen (1997) 
proposed their sensor planning strategies for recognition using rules to 
automatically predict and detect object features and calculate the next sensor pose, 
and they applied the maximum expected rate of hypothesis reduction (MERHR) to 

Christensen 1997) was to determine the true angle on the object surface. It 
automatically guided a movable camera to a position where the optical axis is 
perpendicular to a plane spanned by any two intersecting edges on a polyhedral 
object, so that it could determine the true angle of a junction and align the camera. 
Ye and Tsotsos (1999) used a strategy for object search by planning the sensing 
actions on the sensed sphere or layered sensed sphere. It was based on a mobile 
platform, an ARK robot, equipped with a Laser Eye with pan and tilt capabilities. 
They combined the object recognition algorithm and the target distribution 
probability for the vision task. 

 Ikeuchi et al. (1991) developed a sensor modeler, called VANTAGE, to place the 
light sources and cameras for object recognition. It mostly solves the detectability 
(visibility) of both light sources and cameras. Borotschnig et al. (2000) also 
presented an active vision system for recognizing objects which are ambiguous 
from certain viewpoints. The system repositions the camera to capture additional 
views and uses probabilistic object classifications to perform view planning. 
Multiple observations lead to a significant increase in recognition rate. The view 
planning consists in attributing a score to each possible movement of the camera. 
The movement obtaining the highest score will be selected next (Fig. 3.9). It was 
based on the expected reduction in Shannon entropy over object hypotheses given a 
new viewpoint, which should consist in attributing a score sn( ) to each possible 
movement  of the camera. The movement obtaining the highest score will be 
selected next: 

n+1 := arg max sn( ) (3.3) 

Reinforcement learning has been attempted by Deinzer et al. (2000) for 
viewpoint selection for active object recognition and for choosing optimal next 
views for improving the classification and localization results. Roy et al. (2000) 
attempted probabilistic reasoning for recognition of an isolated 3D object. Both the 
probability calculations and the next view planning have the advantage that the 

Fig. 3.9. The framework of appearance-based active object recognition (Borotschnig 2000) 

minimize the sensing actions. Madsen and Christensen’s strategy (Madsen and 
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knowledge representation scheme encodes feature-based information about objects 
as well as the uncertainty in the recognition process. The probability of a class (a set 
of aspects, equivalent with respect to a feature set) was obtained from the Bayes rule 
(Roy 2000): 
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)|EP(B  (3.4) 

where P(Bi | E k) is the post-probability of the given subtask done by the action 
agent. 

In the next view planning, two possible moves may be followed from one view to 
another, i.e. primary move and auxiliary move. A primary move represents a move 
from an aspect, the minimum angle needed to move out of it. An auxiliary move 
represents a move from an aspect by an angle corresponding to the primary move of 
another competing aspect. 

3.6 Planning for Exploration, Navigation, and Tracking 

On sensor planning for exploration, navigation, and tracking, there is a similar 
situation that the robot has to work in a dynamic environment and the sensing 
process may associate with many noises or uncertainties. This issue has become the 
most active for many applications in recent years. For example, Bhattacharya et al. 
(2007), Gutmann et al. (2005), Kim (2004), Parker et al. (2004), Steinhaus et al. 
(2004), Giesler (2004), Yamaguchi et al. (2004), Wong and Jarvis (2004), and 
Bekris et al. (2004) are related to sensor planning for navigation; Yang et al. (2007), 
Deng et al. (2005), Chivilo et al. (2004), Harville and Dalong (2004), Thompson 
(2003), Nishiwaki (2003), and Saeedi et al. (2006) are related to sensor planning for 
tracking; Huwedi (2006), Leung and Al-Jumaily (2004), and Isler (2003) are related 
to sensor planning for exploration; Reitinger et al. (2007), Blaer (2006), Ikeda 
(2006), Park (2003), and Kagami (2003) are related to sensor planning for 
modeling; and Lim (2003) is for surveillance. Table 3.4 lists the typical works on 
sensor planning for these topics. 

Table 3.4. Some typical works on sensor planning for navigation and modeling 

Reference Sensors Parameters Method Task 
Remagnino 
1995 

Camera Position, look 
direction (pan/tilt), 
focal length 

Direct 
computation 

General vision task 
in partially known 
environment 

Kristensen 
1997 

General 
sensor/ 
actuator 

Sensor actions Bayesian 
decision 

Autonomous 
navigation in partly 
known environments 

Gracias 2003   Mosaic-based Underwater 
navigation 



3.6 Planning for Exploration, Navigation, and Tracking      55 

 

Reference Sensors Parameters Method Task 
Zhu 2004 Panoramic 

stereo 
Position, orientation Adaptive  Tracking and 

localization 
Chen et al. 
2005 

General Sensor pose Trend surface Object modeling 

Skrzypc- Cameras Position Landmarks Positioning, 
navigation 

Murrieta-Cid 
2005 

Range 
sensor 

Visibility, distance, 
speed 

Differential, 
system model 

Surveillance; 
maintaining 
visibility 

Hughes and 
Lewis 2005 

Cameras Camera placement, 
field of view 

Simulation Exploration 

Belkhouche 
and 
Belkhouche 
2005 

General Robot position and 
orientation 

Guidance laws Tracking, navigation 

Kitamura 
2006 

Camera, 
other sensor 

Human intervention Biologically 
inspired, 
learning 

Navigation 

Ludington  
et al. 2006 

Aerial 
camera 

Position Vision-aided 
inertial, 
probability 

Navigation, search, 
tracking 

Bhattacharya 
et al. 2007 

Camera Path, field of view, 
camera pan 

Region based Landmark-based 
navigation 

 

For navigation in an active way, a robot is usually equipped with a 
“controllable” vision head, e.g. a stereo camera on pan/tilt mount (Fig. 3.10). 
Kristensen (1997) presented the problem of autonomous navigation in partly 
known environments (Fig. 3.11). Bayesian decision theory was adopted in the 
sensor planning approach. The sensor modalities, tasks, and modules were 
described separately and Bayes decision rule was used to guide the behavior. The 
decision problem for one sensor was constructed with a standard tree for myopic 

Table 3.4. (Continued)

 

 
Fig. 3.10. The robot with an active stereo head (e.g. rotation, pan/tilt mount) (Parker et al. 
2004) 

 

zynski 2005 
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Fig. 3.11. The planning architecture with three levels of abstraction, illustrating that the 
planner mediates the sensors to the purposive modules (Kristensen 1997) 

Zhuang et al. (2004) developed an adaptive panoramic stereovision approach for 
localizing 3D moving objects at the department of computer science at the 
University of Massachusetts at Amherst. The research focuses on cooperative 
robots involving cameras (residing on different mobile platforms) that can be 
dynamically composed into a virtual stereovision system with a flexible baseline in 
order to detect, track, and localize moving human subjects in an unknown indoor 
environment. It promises an effective way to solve the problems of limited 
resources, view planning, occlusion, and motion detection of movable robotic 
platforms. Theoretically, two interesting conclusions are given: 

1. If the distance from the main camera to the target, D1, is significantly greater 
(e.g., ten times greater) than the size of the robot (R), the best geometric 
configuration is 
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where B is the best baseline distance for minimum distance error and 1 is the main 
camera”s inner angle of the triangle formed by the two robots and the target. 

 

decision. Object search is also a model-based vision task which is to find a given 
object in a known or unknown environment. The object search task not only needs 
to perform object recognition and localization, but also involves sensing control, 
environment modeling, and path planning.  
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2. The depth error of the adaptive stereovision is proportional to 1.5 the power of 
the camera-target distance (D1.5), which is better than the case of the best 
possible fixed baseline stereo in which depth error is proportional to the square 
of the distance (D2). 

On the visual tracking problem, Belkhouche and Belkhouche (2005) pointed out 
that the traditional control algorithms based on artificial vision suffered from two 
problems: 

1. The control algorithm has to process in real time a huge flow of data coming 
from the camera. This task may be difficult, especially for fast tracking 
problems. Thus, the maximum computational power for image processing is an 
important issue. 

2. The target (or the lead car) is detected only when it appears in the camera”s field 
of view. Thus, the target must stay in the camera scope of the pursuer. This 
requirement is necessary to implement a vision-based algorithm. 

Therefore, they make a mathematical formulation for modeling and controlling a 
convoy of wheeled mobile robots. The approach is based on guidance laws strategies, 
where the robotic convoy is modeled in terms of the relative velocities of each lead 
robot with respect to its following robot. This approach results in important 
simplifications to the sensory system as compared to artificial vision algorithms. 

Concerning the surveillance problem, there is a decision problem which 
corresponds to answering the question: can the target escape the observer”s view? 
Murrieta-Cid et al. (2005) defined this problem and considered to maintain 
surveillance of a moving target by a nonholonomic mobile observer. The 
observer”s goal is to maintain visibility of the target from a predefined, fixed 
distance. The target escapes if 

(a) it moves behind an obstacle to occlude the observer”s view,  
(b) it causes the observer to collide with an obstacle, or  
(c) it exploits the nonholonomic constraints on the observer”s motion to increase 

its distance from the observer beyond the surveillance distance. 
An expression derived for the target velocities is: 
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where  and  are the observer”s orientation, u1 and u3 are moving speeds, and l is 
the predefined surveillance distance. 

To maintain the fixed required distance between the target and the observer, the 
relationship between the velocity of the target and the linear velocity of the observer is  
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Equation (3.7) defines an ellipse in the u1–u3 plane and the constraint on u1 and u3 
is that they should be inside the ellipse while supposing 122

TT yx . They deal 
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specifically with the situation in which the only constraint on the target”s velocity is 
a bound on speed (i.e., there are no nonholonomic constraints on the target”s 
motion), and the observer is a nonholonomic, differential drive system having 
bounded speed. The system model is developed to derive a lower bound for the 
required observer speed. It”s also considered the effect of obstacles on the 
observer”s ability to successfully track the target. 

 

 
Fig. 3.12. The structure of six-layered consciousness-based architecture and an example of 
behavior track with intervention (right side) 

 

Biologically inspired, Kitamura and Nishino (2006) use a consciousness-based 
architecture (CBA) for the remote control of an autonomous robot as a substitute for 
a rat. CBA is a developmental hierarchy model of the relationship between 
consciousness and behavior, including a training algorithm (Fig. 3.12). This 
training algorithm computes a shortcut path to a goal using a cognitive map created 
on the basis of behavior obstructions during a single successful trial. However, 
failures in reaching the goal due to errors of the vision and dead reckoning sensors 
require human intervention to improve autonomous navigation. A human operator 
remotely intervenes in autonomous behaviors in two ways: low-level intervention 
in reflexive actions and high-level ones in the cognitive map. 

A survey has recently been carried out by Jia et al. (2006). It summarizes the 
developments of the last 10 years in the area of vision-based target tracking for 
autonomous vehicle navigation. It concludes that it is very necessary to develop 
robust visual target tracking based navigation algorithms for the broad applications 
of autonomous vehicles. Including the recent techniques in vision-based tracking 
and navigation, some trends of using data fusion for visual target tracking are also 
discussed. It is especially pointed out that through data fusion the tracking 
performance is improved and becomes more robust. 
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3.7 Planning for Assembly and Disassembly 

For the assembly/disassembly tasks (Table 3.5), a long-term aim in robot 
programming is the automation of the complete process chain, i.e. from planning to 
execution. One challenge is to provide solutions which are able to deal with position 
uncertainties (Thomas et al. 2007, Fig. 3.13). Nelson et al. (1996) introduced a 
dynamic sensor planning method. They used an eye-in-hand system and considered 
the resolution, field-of-view, depth-of-view, occlusions, and kinematic singularities. 
A controller was proposed to combine all the constraints into a system and resulted in 
a control law. Kececi et al. (1998) employed an independently mobile camera with a 
6-DOF robot to monitor a disassembly process so that it can be planned. A number of 
candidate view-poses are being generated and subsequently evaluated to determine an 
optimal view pose. A good view-pose is defined with the criterion which prevents 
possible collisions, minimizes mutual occlusions, keeps all pursued objects within the 
field-of-view, and reduces uncertainties. 

Fig. 3.13. Vision sensor for solving object poses and uncertainties in the assembly work cell 
(Thomas et al. 2007) 

Takamatsu et al. (2002) developed an “assembly-plan-from-observation” (APO) 
system. The goal of the APO system is to enable people to design and develop a 
robot that can perform assembly tasks by observing how humans perform those 
tasks. Methods of contact relations configuration space (C-space) are used to clean 
up observation errors. Stemmer et al. (2006) use a vision sensor, with color 
segmentation and affine invariant feature classification, to provide the position 
estimation within the region of attraction (ROA) of a compliance-based assembly 
strategy. An assembly planning toolbox is based on a theoretical analysis and the 
maximization of the ROA. This guarantees the local convergence of the assembly 
process under consideration of the geometry in part. The convergence analysis uses 
the passivity properties of the robot and the environment. 
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Table 3.5. Some typical works on sensor planning for assembly and disassembly 

Reference Sensors Parameters Method Task 
Nelson 1996 Camera Resolution, FOV, 

depth-of-view, 
occlusions, kinematics 

Controller 
(dynamic control 
law) 

Assembly 

Kececi 1998 Camera FOV, view pose, 
occlusion, uncertainties 

Generate-and-test, 
view-pose 
assessment/ 
evaluation 

Disassembly 

Molineros 
2001 

Camera Position Appearance- 
based 

Assembly 
planning 

Takamatsu 
2002 

General Spatial relation C-space Assembly, 
recognition 

Hamdi and 
Ferreira 2004 

Virtual Position Physical-based Microassembly 

Kelsey et al. 
2006 synthetic and tracking 
Thomas et al. 
2007 

Cameras Relative poses Multi sensor 
fusion  

Assembly 

 

3.8 Planning with Illumination 

Table 3.6. Summary of typical works on sensor planning with illumination 

Reference Sensors Parameters Method Task 
Cowan 1989 Camera, light 

source 
Camera, light 
position region 

Illumination 
computation via 
reflectance 

General model 
based tasks 

Ikeuchi and 
Robert 1991 

Light source, 
camera 

Illumination/ 
observation 
directions 

Tree-structured,
logical 
operation 

Object 
recognition 

Eltoft 1995    Enhancing 
image features 

Solomon 1995 Light source, 
camera 

Positions Model-based Lambertian 
polyhedral 
objects 

Racky and 
Pandit 1999 

Light source Position Physics Segmentation 

Xu and Zhang 
2001 

Light source Pose, intensity, and 
distribution of light 
sources 

Neural-network Surgical 
applications; 
general vision 
tasks 

 

Stereo Pose Model-based, Pose estimation 
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Reference Sensors Parameters Method Task 
Qu 2003     
Spence 2006 Photometric 

stereo 
Position Sensitivity 

analysis 
Surface 
measurement 

Yang and 
Welch 2006 

Light source Illumination 
variance 

Illumination 
estimation 

Tracking 

Chen et al. 2007 Light source Intensity, glares PID-controller General tasks 
Marchand 2007 Light, camera Positions Brightness, 

contrast 
Visual 
servoing 

 
The light source for a natural scene is its illumination. For many machine-vision 

applications, illumination now becomes the most challenging part of system design, 
and is a major factor when it comes to implementing color inspection. Table 3.6 
lists the typical works on sensor planning with illumination, recently carried out in 
the robot vision community. Here, when illumination is also considered, the term 
“sensor” has a border meaning “sensor/actuator/illuminant”. 

Eltoft and deFigueiredo (1995) found that illumination control could be used as a 
means of enhancing image features. Such features are points, edges, and shading 
patterns, which provide important cues for the interpretation of an image of a scene 
and the recognition of objects present in it. Based on approximate expressions for the 
reflectance map of Lambertian and general surfaces, a rigorous discussion on how 
intensity gradients are dependent on the direction of the light is presented. 
Subsequently, three criteria for the illumination of convex-shaped cylindrical surfaces 
are given. Two of these, the contrast equalization criterion and the max-min 
equalization criterion, are developed for optimal illumination of convex polyhedrons. 
The third, denoted shading enhancement, is applicable for the illumination of convex 
curved objects. Examples illustrate the merit of the criteria presented 

Xu and Zhang (2001) and Zhang (1998) apply a method of modeling human 
strategy in controlling a light source in a dynamic environment to avoid a shadow 
and maintain appropriate illumination conditions. Ikeuchi et al. (1991) investigate 
the illumination conditions with logical operations of illuminated regions. Their 
developed sensor modeler, VANTAGE, determines the illumination directions 
using a tree-structured representation and AND/OR operations (Fig. 3.14). 

 

 
Fig. 3.14. Set operations (“AND” and “OR”) among illuminated regions (Ikeuchi and Robert 
1991) 

Table 3.6. (Continued)
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Qu et al. (2003) discussed that irradiance distribution and intensity of the test 
object play a key role in accuracy and stability of the vision measuring system. They 
proposed a luminance transfer function to design the illumination so that it could 
adjust light radiation automatically by ways of Neural Networks and Pulse-Width 
Modulation switch power. They concluded that the illumination could greatly 
improve the accuracy and robustness of the vision measuring system. 

Marchand et al. (2007) recently proposed an approach to control camera position 
and/or lighting conditions in an environment using image gradient information. The 
goal is to ensure a good viewing condition and good illumination of an object to 
perform vision-based tasks such as recognition and tracking. Within the visual 
servoing framework, the solution is to maximize the brightness of the scene and 
maximize the contrast in the image. They consider arbitrary combinations of either 
static or moving lights and cameras. The method is independent of the structure, 
color and aspect of the objects. For examples, illuminating the Venus of Milo is 
planned as in Fig. 3.15. 

Fig. 3.15. En example of camera and light source position control 

With regard to the placement of the illumination vectors for photometric stereo, 
Drbohlav and Chantler (2005) discussed the problem of optimal light 
configurations in the presence of camera noise. Solomon and Ikeuchi proposed an 
illumination planner for Lambertian polyhedral objects. Spence and Chantler 
(2006) also found the optimal difference between tilt angles of successive 
illumination vectors to be 120°. Such a configuration is therefore to be 
recommended for use with 3-image photometric stereo. Ignoring shadowing, the 
optimal slant angle was found to be 90° for smooth surfaces and 55° for rough 
surfaces. The slant angle selection therefore depends on the surface type. 
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3.9 Other Planning Tasks 

Besides the tasks already presented in this chapter, there are some other interesting 
works related to active sensor planning (Table 3.7). For example, Navarro-Serment 
et al. (2004) describe a method for observing maneuvering targets using a group of 
mobile robots equipped with video cameras. The cameras seek to observe the target 
while facing it as much as possible from their respective viewpoints. The work 
considers the problem of scheduling and maneuvering the cameras based on the 
evaluation of their current positions in terms of how well can they maintain a frontal 
view of the target. Some contributions such as interactive planning, virtual 
placement, robot localization, attention and gaze are briefly introduced below. 

Table 3.7. Some other interesting works related to active sensor planning 

Reference Sensors Parameters Method Task 
Stamos 1998 Camera Visibility, FOV, task 

constraints 
Interactive General purpose 

Navarro- 
Serment 2004 

Cameras Positions Evaluation 
function 

Observation 

Zingaretti 
2006 

Cameras Relative intrinsic 
translation, pan, tilt, 
field of view angle 

Partially 
observable 
Markov decision 

Self-localization 

State 2006 Cameras Visibility, overlap, 
resolution 

Simulation 3D reconstruction 
in VR 

Lidoris et al. 
2006 

Camera Gaze direction Information gain SLAM 

 

3.9.1 Interactive Sensor Planning 

In cluttered and complex environments such as urban scenes, it can be very difficult 
to determine where a sensor should be placed to view multiple objects and regions 
of interest. Based on their earlier sensor planning results (Tarabanis 1995, Abrams 
1999), Stamos and Allen (1998) and Blaer and Allen (2006) extended to build an 
interactive sensor planning system that can be used to select viewpoints subject to 
camera visibility, field of view and task constraints. Given a description of the 
sensor”s characteristics, the objects in the 3D scene, and the targets to be viewed, 
the algorithms compute the set of admissible view points that satisfy the constraints. 
The system first builds topologically correct solid models of the scene from a 
variety of data sources. Viewing targets are then selected, and visibility volumes 
and field of view cones are computed and intersected to create viewing volumes 
where cameras can be placed. The user can interactively manipulate the scene and 
select multiple target features to be viewed by a camera. VRML graphic models and 
then solid CAD models are assumed as the site models of the scenes (Fig. 3.16). 
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Fig. 3.16. The scene model in which the user can interactively select the target for sensor 
planning (Stamos and Allen 1998) 

With similar tasks, a city model was generated from an incomplete graphics 
model of Rosslyn VA and was translated by the system to a valid solid model which 
the planner can use. Overlaid on the city model are the viewing volumes generated 
for different viewpoints on a selected target face in the scene. The object models 
and targets can be interactively manipulated while camera positions and parameters 
are selected to generate synthesized images of the targets that encode the viewing 
constraints. They extended this system to include resolution constraints (Tarabanis 
1995, Allen and Leggett 1995, Reed et al. 1997, Stamos 1998, Abrams 1999).  

3.9.2 Placement for Virtual Reality 

Interactive camera planning is sometimes also used for virtual reality or simulation. 
Typical examples can be found from Williams and Lee (2006) and State et al. 
(2006). For example, the work by State et al. is to simulate in real time multi-camera 
imaging configurations in complex geometric environments. The interactive 
visibility simulator helps to assess in advance conditions such as visibility, overlap 
between cameras, absence of coverage and imaging resolution everywhere on the 
surfaces of a pre-modeled, approximate geometric dataset of the actual real-world 
environment the cameras are to be deployed in. A simulation technique is applied to 
a task involving real-time 3D reconstruction of a medical procedure. It has proved 
useful in designing and building the multi-camera acquisition system as well as a 
remote viewing station for the reconstructed data. The visibility simulator is a 
planning aid requiring a skilled human system designer to interactively steer a 
simulated multi-camera configuration towards an improved solution. 

3.9.3 Robot Localization 

As a problem of determining the position of a robot, localization has been 
recognized as one of the most fundamental problems in mobile robotics. The aim of 
localization is to estimate the position of a robot in its environment, given local 
sensorial data. Zingaretti and Frontoni (2006) present an efficient metric for 
appearance-based robot localization. This metric is integrated in a framework that 
uses a partially observable Markov decision process as position evaluator, thus 

 

  



3.9 Other Planning Tasks      65 

 

allowing good results even in partially explored environments and in highly 
perceptually aliased indoor scenarios. More details of this topic are related to the 
research on simultaneous localization and mapping (SLAM) which is also a 

3.9.4 Attention and Gaze 

The general concept of active sensor planning should include attention and gaze. 
This book, however, does not place much emphasis on this issue. Some related 
works can be found from Bjorkman and Kragic (2004) and (Lidoris et al. 2006). 
Especially, Bjorkman et al. introduce a real-time vision system that integrates a 
number of algorithms using monocular and binocular cues to achieve robustness in 
realistic settings, for tasks such as object recognition, tracking and pose estimation 
(Fig. 3.17). The system consists of two sets of binocular cameras; a peripheral set 
for disparity-based attention and a foveal one for higher-level processes. Thus the 
conflicting requirements of a wide field of view and high resolution can be 
overcome. One important property of the system is that the step from task 
specification through object recognition to pose estimation is completely automatic, 
combining both appearance and geometric models. Experimental evaluation is 
performed in a realistic indoor environment with occlusions, clutter, changing 
lighting and background conditions. 

Fig. 3.17. The active vision system involving attention and gaze for action decision 
(Bjorkman and Kragic 2004) 

challenging problem and has been widely investigated (Eustice et al. 2006, Ohno  
et al. 2006, Lidoris et al. 2006, Herath et al. 2006, Zhenhe and Samarabandu 2005, 
Jose and Adams 2004, Takezawa et al. 2004, Prasser 2003). 
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3.10 Summary 

This chapter summarizes the recent development related to the active sensor 
planning problem. Typical works for inspection, recognition, search, exploration, 
navigation, tracking, assembly, and disassembly are listed for readers to have a 
general overview of the state-of-the art.  

In model-based tasks, the viewpoint planning is to find a set of admissible 
viewpoints in the acceptable space, which satisfy a set of the sensor placement 
constraints and can well finish the vision task. However, the previous approaches 
are normally formulated for a particular application and are therefore difficult to 
apply to general tasks. They mainly focus on modeling of sensor constraints and 
calculating a “good” viewpoint to observe one or several features on the object. 
Little consideration is given to the overall efficiency of a generated plan with a 
sequence of viewpoints. However, this method is difficult to apply in a 
multi-feature-multi-viewpoint problem as it cannot determine the minimum number 
of viewpoints and their relative distribution.  

Therefore a critical problem is still not well solved: the global optimization of 
sensor planning. When multiple features need to be observed and multiple 
viewpoints need to be planned, the minimum number of viewpoints needs to be 
determined. To achieve high efficiency and quality, the optimal spatial distribution 
of the viewpoints should be determined too. These are also related to the sensor 
configuration and environmental constraints. Furthermore, to make it flexible in 
practical applications, we need to deal with arbitrary object models without 
assumptions on the object features. These problems will be discussed in the 
following chapters. 



 

Chapter 4  
Sensing Constraints and Evaluation 

The aim of sensor placement is to determine the pose and settings of a vision sensor 
for undertaking a vision task that usually requires multiple views. Planning sensor 
placements is a complex problem for an active visual system. To make each 
viewpoint practically feasible, a number of constraints have to be satisfied. An 
evaluation criterion should also be established for achieving an optimal placement 
plan. This chapter and the next chapter will be concerned with these problems and 
introduce the corresponding planning strategies. 

4.1 Representation of Vision Sensors 

The sensor model embodies the information that characterizes the operation of the 
sensor (Tarabanis 1995). In robotics and manufacturing applications, structured 
light and stereo systems are widely used. This chapter is concerned with the use of a 
structured light sensor for accurate acquisition of 3D surface information, whilst the 
developed method may also be extended to other sensors.  

Basically, a sensor has six spatial parameters, i.e. the three positional degrees of 
freedom of the sensor,  = (x, y, z), and the three orientational degrees of freedom of 
the sensor (the pan, tilt, and swing angles),  = ( , , ). For a stereo sensor, with 
the assumption that the two cameras are parallel and the baseline is fixed, the 
sensor’s state (viewpoint) may be modeled as a nine-dimensional vector: 

v = (x, y, z, , , , d, f, a),  

where  = (d, f, a) is the optical parameters, including the back principal point to the 
image plane distance, d; the entrance pupil diameter, a of the lens; and the focal 
length f of the lens. 

For a general 3D range sensor that operates according to the principle of 
triangulation, i.e. emission of a beam of light (incidental ray) followed by the 
analysis of the reflected ray, a viewpoint may be similarly defined as a vector of 
seven parameters (Prieto 1999):  

v = (x, y, z, , , , ),  

where the parameter  specifies the angle of the controlled sweep. 
For a structured light system as described in a previous chapter, a viewpoint may 

be defined as a vector of 9 parameters: 
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v = (x, y, z, , , , b, , a),  

where b is the baseline between the camera and the projector. The parameter  
specifies the relative angle between them, and the parameter a represents the 
illumination brightness of light projection. 

Sensor planning needs to search in such a high-dimensional space (e.g. 9D for 
structured light systems). A point in that space is defined as a “generalized 
viewpoint”. 

4.2 Placement Constraints 

While planning a viewpoint to observe an object, the parameters of the sensor 
position, orientation, and other settings need to be determined. The viewpoint 
should be planned at an optimal place where it is feasible in the practical 
environment. This section discusses the placement constraints considered for 
generating a feasible viewpoint. Usually these constraints include: (1) visibility, (2) 
resolution, (3) viewing distance or in-focus, (4) field of view, (5) overlap, (6) 
viewing angle, (7) occlusion, (8) kinematic reachability of sensor pose, (9) 
robot-environment collision, (10) operation time, etc. The objective of sensor 
placement is to generate a plan which satisfies all the constraints and has the lowest 
operation cost. The satisfaction of the placement conditions to constrain the sensor 
to being placed in the acceptable space is formulated below. 

4.2.1 Visibility 

The visibility constraint dictates that the admissible sensor pose is limited to regions 
from where the object surface points to be observed are visible and not occluded. 
Convex and concave freeform objects with or without holes usually have a visibility 
problem. A surface patch is said to be visible if the dot product of its normal and the 
sensor’s viewing direction is below 0 (Fig. 4.1a)  

G1:    n·va = || n || || va|| cos(180– ) < 0, (0<= <=180). (4.1) 

That gives  < 90 . To compute the normal direction of the viewpoints, consider 
a point A(x, y) on the parametric surface S. The normal direction is computed using 
(Prieto 1999): 
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where the pair [p, q] is a two-dimensional gradient space representation of the 
surface orientation 

[p, q]=[ 
y
z

x
z , ].  

4.2.2 Viewing Angle 

A point is visible if the angle ( ) is less than 90 . However, we should set a limit 
( max) for this angle as the sampling will not be reliable when it is close to 90 , i.e. 

G2:    
max

1

||||||||
cos

a

a

vn
vn . (4.2) 

The visibility constraint defines “what can be seen” from a specific viewpoint 
and the viewing angle constraint defines “where the sensor can be placed to look at 
the point”. They are illustrated in Fig. 4.1a and b respectively. 

 
(a) What can be seen from P        (b) Where the sensor can be placed to look at A 

Fig. 4.1. Visibility and viewing angle 

Vp - acceptable 
pose space 

sensor P– v  

object surface normal 
n  

visible 
surface 

The sensor’s acceptable pose space is a cone which has the maximum angle 
Vp= (2 max) . This space is called the surface point’s viewpoint space, which is a set 
of 3D locations where the used sensor can be placed to take its image. Given an 
object to be observed, it also has a viewpoint space around the object. 

4.2.3 Field of View 

A common CCD camera has a field-of-view (FOV) limited by the size of the 
sensor area and the focal length of the lens (Abrams 1999). A surface point 
beyond the sensor’s FOV will be projected outside the sensor area and will not be 
detectable. The locus, which satisfies the FOV constraint for a set of surface 
features, is given by: 

A
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G3:    avv  – |||||||| avv cos( /2)  0, (4.3) 

where  is the field-of-angle of the sensor (Fig. 4.2).  
Since sensor planning systems generally consider the image plane to be 

symmetrical about the optical axis for the purposes of FOV,  is computed based on 
the length of the smaller side of the sensor area, Imin. Therefore, =2 arctan(Imin/2d). 
For a structured light vision sensor, both the camera and the projector’s FOVs need 
be considered. 

 

   

 
 

< /2 

Fig. 4.2.  Field of view 

D1 

D2 

z 

Fig. 4.3. The depth of field 

4.2.4 Resolution 

Pixel resolution can be used to determine the minimum scene feature size 
resolvable by the vision system. That is, to ensure that every feature is resolvable, 
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one must ensure that there are at least two pixels on the image plane (Tarabanis 
1995, Canceroni and Kutulakos 1999, Abrams 1999). In machine vision tasks, it is 
required that a particular unit feature size on an object appear as the minimum 
number of image elements on a sensor. This feature resolution constraint can be 
satisfied by properly selecting the image sensor, as well as by carefully planning its 
placement and settings. The objective of sensor planning for the resolution 
constraint is to determine the sensor parameters that achieve this resolution. 

Simply, the spatial resolution is considered as the size of each pixel representing 
in the real world, and the constraint can be formulated as: 

G4:    
cos

1)1(
NNf

z
resol

 < acceptable    (mm/pixel), (4.4) 

where z is the distance between the lens and the object and  is the angle between 
the object surface normal and the optical axis. 

4.2.5 In Focus and Viewing Distance 

A camera is perfectly focused at a specific distance (measured along the optical 
axis) given by D=fd/(d–f). In practice, however, if a surface patch images into a blur 
circle of a given size c, it is considered sufficiently in focus for a given application. 
The system is then focused for a range of depths from D1, the far limit of the depth 
of field, to D2, the near limit. These limits are given by Abrams (1999): 

cffda
afdD

)(2,1
 (4.5) 

where a is the entrance pupil diameter, f is the intrinsic focal length, and d is the 
focus distance. 

Consider a digital image acquired by the vision sensor that has a size of N N and 
the blur radius is restricted in on-pixel length or (c=2a/N). The depth of field 
becomes: 

Nffd
fdD

/2)(2,1
 (4.6) 

Since these distances are measured along the optical axis, the corresponding 
constraints are given by: 

D1  (rf – rv) v  and  (rc – rv) v  D2,  

where rc is the feature point closest to rv and rf is the feature point farthest from rv. 
(D1–D2) is the depth of field (Fig. 4.3). 

If d is adjustable from dmin to dmax (f< dmin < dmax <2f), the object can be put 
between zmin and zmax: 

G5:    zmin < z < zmax (4.7) 
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where 

Nffd
fdz

/2)( max

max
min

, 
Nffd

fdz
/2)( min

min
max

.  

On the other hand, if the object is placed at the distance of z away from the 
sensor, the optimal focus distance is set to: 

fz
zfdopt

. (4.8) 

For a structured light vision sensor or other 3D range sensor, this placement 
constraint can be simply expressed with an allowable distance range, similarly to 
(4.7). 

4.2.6 Overlap 

During the 3D reconstruction, the overlap constraint ensures that the resampled part 
of the object surface is already partially seen. Because the best performing 
registration algorithms (Higuchi et al. 1995, Okamoto 1998) and many algorithms 
for integrating range data perform best when the range data overlaps, registration 
and integration impose an overlap constraint on the choice of the next viewpoint. 
The size of the overlap area is dependent on the image-merging algorithm. Here we 
assume that it needs a minimal width, 

G6:    w>wmin. (4.9) 

If the robot’s hand and eye are calibrated previously, wmin may be zero and the 
overlap constraint can be ignored. 

4.2.7 Occlusion 

Occlusion (Fig. 4.4) is an important scene attribute relative to the sensor planning 
process. The planning process relies on the construction of a visibility volume Vt for 
the target in which the sensor positions have an unoccluded view of the target. This 
can be computed by determining Vp, the visibility volume for the case where there 
are no occlusions, and subtracting Oi, the volume containing the set of sensor 
positions occluded from the target by model surface i, for each surface of the model 
(Reed et al. 1997): 
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Fig. 4.4. Occlusion 

 

pi
ipt OVV  (4.10) 

In another way, the target A is visible by the sensor if no other entities are located 
between them. Here the “entity” means any geometrical element ej, such as line, 
surface, or solid object. This yields 

G7:    

)))(((:

)))(((:

1

1
n

j
jPA

n

j
jPA

eLifoccluded

eLifvisible
A , (4.11) 

 
where A {ej}, j=1, 2, ... , n are total entities in the universe space; LPA is the line set 
from the sensor’s viewpoint to the target A;  means an empty set of the entities 
intersection. 

For freeform objects, the computation of occlusion constraints is very 
time-consuming. The next section will give a simple method to determine the 
occlusion for some simple entities. 

4.2.8 Image Contrast 

Contrast is a criterion of image quality. During the sensor planning, it may also 
affect the position and optical settings of the vision sensor, e.g. the diameter of the 
lens aperture and the illumination intensity of the projector. More details will be 
introduced in Chap. 10 (G8: equation 10.3). 

4.2.9 Robot Environment Constraints 

Kinematic reachability of sensor pose and robot-environment collision constraints 
should also be considered in a real robot system. Let the universal space be: 

,,  ,),,(  ),,,,,,( 3RzyxzyxVV , (4.12) 

occluded 
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and the reachable space of the robot be VzyxVV rr ),,,,,( . The three 
rotational angles are also included because some places are restricted with specified 
arm directions and the number of the robot’s DOF may be less than six. 

 
Definition 4.1 (collision free). Let p1 and p2 be two proposed sensor poses, p1, p2  
V. If there is a spatial path for the robot eye to move from p1 to p2, it is said to be 
collision-free from p1 to p2, and denoted as: 

)(,11221 TRUEpppp .  

Otherwise 

)(,01221 FALSEpppp . (4.13) 

Because 21 pp  always equals to 12 pp , both are denoted as 2,1p  for convenience. 
 

Definition 4.2 (shortest collision-free path). If p1 and p2 are both reachable by the 
robot eye, p1, p2  V, there must exist a path for the hand moving from p1 to p2, and 

2,1p . Denote the shortest path  

212,1 ,),,,,,,( ppzyxl endstart , (4.14) 

Here not only the sensor position but also the sensor orientation is considered 
because the orientation may also affect the path planning and cause additional cost 
for robot operation or motion. However, some other sensor optical parameters (a, d, 
f) are not necessary because they do not affect the path from one viewpoint pose to 
another and they can be simultaneously adjusted during the time of robot motion. 
The length of the shortest collision-free path is called viewpoint distance. 

Let }1, 2, ...,|{ iPGG ci  be a finite set of sensor poses related to each other 
for

 
a given vision task. With any pair i,j [1, n], if we have 

],1[,,1 njipp ji , (4.15) 

then G is a connected graph, denoted as (G) = 1 (TRUE). That is, for any pair of 
sensor poses, there exists a path connecting them.  

To satisfy the robot environment constraints, it is required to generate a 
connected graph G: 

G9:    (G)=1. (4.16) 
 

Definition 4.3 (distance of viewpoints). p1 and p2 are two planned viewpoints in 
the robot workspace. Define the viewpoint distance as: 

2

12,1 ),,,,,(
p

p
dzyxw  (4.17) 

Details of computing the viewpoint distance are about to be presented in Chap. 6. 

 n
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4.3 Common Approaches to Viewpoint Evaluation 

The viewpoint evaluation criterion is very important in the strategy for determining 
“where to look next” (Ye 1995), which decides the selection of view candidates for 
the next action. In most related works, sensor system limitations are expressed as a 
cost function and the aim of sensor planning is to reach the goal (vision task) with 
minimal cost. The cost function should have a value tending to infinity associated to 
the direction of a pose that the sensor cannot assume and a unitary value associated 
to the direction of a pose that is possible for the sensor to assume (Okamoto 1998). 

A common evaluation function has many adverse features to resolve, as 
described in Triggs (1995): (1) evaluation is relatively expensive owing to the large 
amount of geometric computation; (2) the evaluation function is highly nonlinear; 
(3) a search over all 3D sensor poses would be six-dimensional or nine-dimensional 
or even more; and (4) computation becomes more complex when overlap and 
illumination are considered. 

In Banta (1996), the term “best-next-view” is defined as the next sensor pose 
which will acquire the greatest amount of previously unseen three-dimensional 
information 

 
Mp(t+1) = max { Mp(k)}.  

With this definition, however, the final trajectory may be ineffective in dealing 
with the final distance covered by the camera. Furthermore, such a strategy does not 
take into account some problems like the manipulator kinematics constraints or 
geometric constraints. 

Some researchers (Tarabanis 1995, Gu et al. 1999) chose to formulate the 
probing strategy as a function minimization problem. This should define a function 
to be minimized which integrates the constraints imposed by the robotic system and 
evaluates the quality of the viewpoint. The optimization function is taken to be a 
weighted sum of several component criteria, each of which characterizes the quality 
of the solution with respect to each associated requirement separately. Thus the 
optimization function is written as: 

)max( 44332211 ggggh   

subject to gi 0, i=1, 2a, 2b, 3, 4 and g5=0, where g1 is the resolution constraint, g2a 
and g2b are the focus constraints, g3 is the field-of-view constraint, g4 is the visibility 
constraint, and g5 is an equality for the optimization constraint. 

In Marchand (1997), the strategy of viewpoint selection takes into account three 
problems: quality of a new position; displacement cost; and additional constraints. 
More precisely, it includes: the new observed area volume G( t+1), the cost function 
F in order to reduce the total camera displacement C( t, t+1), and the constraints to 
avoid unreachable viewpoints and to avoid positions near the robot joint limits B( ). 
The cost function Fnext to be minimized is defined as a weighted sum of the different 
measures: 
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)(),()()()( 312111 BaCaGaAF tttt .  

Zha et al. (1997, 1998) evaluated the suitability of all potential viewpoints of the 
NBV by using a rating function as 

),(),(),(),( ssoo fwfwfwf .  

where  and  are two parameters on the viewpoint sphere; fe, fo, fs are factor 
functions rating on some physical or heuristic constraints, and we, wo, ws are 
weighting coefficients. The viewpoint of the largest value of f ( , ) will be chosen 
as the NBV. The definitions of fe (extending constraints), fo (overlapping 
constraints), fs (smoothness constraints) and weighting coefficients can be found 
in Zha (1997, 1998). 

Ye et al. (1995) argued that the total cost for applying the searching effort 
allocation is: 

k

i
io ftFT

1
)(][ .  

where the cost to(f) gives the total time needed to (1) manipulate the hardware to the 
status specified by f; (2) take a picture; (3) update the environment and register the 
space; (4) run the recognition algorithm. Because (1)–(3) are constant, to(f ) is only 
influenced by (4). Let O be the set of all the possible operations that can be applied. 
The effort allocation F={f1, ... , fk} gives the ordered set of operations applied in the 
search. The next action is selected that maximizes the term 

)()(,
)(

)()( ftf
f

fPfE oT
T

.  

where P(f) is the probability of detecting the target.  
Triggs et al. (1995) gave a method of the optimization technique to minimize 

their viewpoint evaluation function. They divided the search space into a set of local 
regions and built a probabilistic function interpolation or subjective probability 
distribution for the function value. These distributions can be used to choose which 
region to refine and where to subdivide it. The goal is to optimize the function, so a 
sample only “succeeds” if it improves on the best currently known function value 
fbest. If the probability density for the function value at some point is p(f )df, the 
expected gain or improvement to fbest from a sample placed at that point is 

bestf

best dffpffgain )()( .  

However, in these previous methods, the constraints in sensor placement are 
expressed as a cost function with the aim to achieve the minimum cost and the 
evaluation of a viewpoint is usually achieved by direct computation. Such an 
approach is normally formulated for a particular application and is therefore 
difficult to be applied to general tasks. In this book, a lowest traveling cost is 

e e
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proposed to evaluate a sensor placement plan. It takes advantage of a minimum 
number of viewpoints and a shortest path through them. 

4.4 Criterion of Lowest Operation Cost 

As discussed in the previous section, for a feasible viewpoint, a number of the 
placement constraints have to be satisfied. Figure 4.5 illustrates a subset of the 
sensor placement constraints (G1, G2, G3, G5, G7). Considering the 6 points (A – F) 
on the object surface, only point A satisfies all the 5 constraints, while all other 
points violate one or more of the constraints. 

 
 

Fig. 4.5. An example of sensor placement constraints 
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On the other hand, since a viewpoint can be placed randomly in the acceptable 

viewpoint space, a cost function is usually used to evaluate its goodness, which 
leads to an optimal solution of the sensing plan in a certain vision task. The term 
“optimal” refers to a maximal benefit for image acquisition and subsequent image 
evaluation for robot control steps (Kececi 1998). However, a common evaluation 
function has many adverse features to resolve (Triggs 1995). Previous approaches 
to viewpoint evaluation have been summarized in a previous section. In this book, 
the lowest traveling cost is used as a criterion to evaluate the sensing plan.  



78      Chapter 4 Sensing Constraints and Evaluation 

 

For a task where there exists a priori model, the strategy is described as follows: 

1. Generate a number of viewpoints. 
2. For every feature point, test if there exist possible viewpoints in the acceptable 

space to observe it. If no viewpoint is possible, the feature point needs to be 
eliminated from the task. 

3. Construct a graph corresponding to the topology of viewpoints. Try to change 
the viewpoints’ parameters to satisfy all above-mentioned constraints. 

4. Try to reduce redundant viewpoints or the order of graph. 
5. Compute the lowest traveling cost to optimize robot operations, which 

corresponds an optimal Hamilton cycle in the graph for this problem. 

Generating a large number of viewpoints will most likely satisfy all constraints 
for the vision task, but it will also increase the operation cost. To achieve an optimal 
solution, it is necessary to eliminate all possible redundant viewpoints. Figure 4.6 
illustrates that the 2nd viewpoint is redundant because it does not increase any 
information on the object model, i.e. 0)( 3122 pppp MMMM . 

 Fig. 4.6. A redundant viewpoint 

 

 
Fig. 4.7. A sensor placement graph 
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Definition 4.4 (sensor placement graph). The plan of viewpoints is mapped to a 
graph ),),(),(( EG wGEGVG  with weight w on every edge E, where vertices Vi 
represent viewpoints, edge Eij represent the shortest collision-free path between 
viewpoint Vi and Vj, and edge weight wij represents their viewpoint distance. Such a 
graph is called as sensor placement graph G. 
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Figure 4.7 illustrates an example of the sensor placement graph. A practical 
solution of the sensor placement problem must provide the exact number of 
viewpoints and every viewpoint must be reachable to the robot. According 
Definition 4.1 and Definition 4.2, it is obvious that there must be a collision-free 
path between each pair of viewpoints, i.e. ],1[,,1, njip ji . A sensor 
placement graph G has the following characteristics: 

 
 G is a simple undirected graph, i.e. there are no loops and no paralleled edges; 
 G is a connected graph, i.e. there is at least a path from Vi to Vj ; 
 G is a complete weighted graph, i.e. every pair of vertices Vi to Vj is directly 

connected by a weighed edge; 
 G is a finite nontrivial graph, i.e. )(),(1 GGo ; 

 The order and size of G are )1(
2
1)(,)( nnGnGo , respectively. 

 
Later we will show that the shortest path for taking views is a Hamilton cycle 

which is a sequence of vertices: C = (x1, x2,…, xn, x1) where 
],1[

),(,
ni

GVxixjxi
. The length of the path is  

)(,),(),(
1

1
11 GVxixxwxxwl

n

i
iinc

.  

If we consider the time required for a plan of sensor placement, it may include: 
1. n*t1 – time needed to acquire the current view and transfer it to a depth image 

(3D local model), including image digitalization, coordinate system 
transformation, image preprocessing, corresponding (applied to stereo vision), 
3D surface reconstruction, and so on. 

2. n*t2 – time for fusion and registration, i.e. for merging the local model with the 
previous partial model. 

3. t3 – time needed to perform the strategy of viewpoints planning. The viewpoints 
and optical settings of the sensor are determined and a path is generated for the 
robot. Here we assume that the hand and eye of the robot have already been 
calibrated previously and there exist confirmed matrixes for coordinate system 
transformation. 

4. t4 – time needed for the robot to perform the task of moving from one viewpoint 
to another. 
Here t3 is subject to the following constraints: (“ ” means the constraint 

condition is satisfied.) 
  g1 0 (resolution constraint) 
AND  g2 0 (in-focus for stereo or viewing distance for range sensor) 
AND  g3 0 (field of view) 
AND  g4 0 (visibility) 
AND  g5 0 (viewing angle) 
AND  g6 0 (overlap for 3D reconstruction task) 
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AND  g7 0 (occlusion) 
AND  g8 0 (image contrast) 
AND  g9 0 (kinematic reachability of sensor pose). 
 
If n viewpoints/actions of image acquisition are needed to finish the whole task, 

the total needed time is 

43*)21( ttnttTaskTime . (4.18) 

Since the planning strategy can run offline, t3 can be omitted from the above 
equation because it is not considered during the robot operations. Assuming that t1 
and t2 are constants and t4 is proportional to the path length of robot the 
end-effector, we have 

ct lnTTT )21(cos  (4.19) 

where lc is the path length through all the viewpoints. 
It is obvious that reducing the number of viewpoints will improve the vision 

perception behavior. Therefore our first objective is to take the lowest traveling cost 
Tcost through the planned viewpoints. In fact, if both the object model and the robot 
environment are specified, the length of the shortest path of taking views will not 
vary very much and then the traveling cost is just proportional to the number of 
viewpoints. Hence the objective becomes minimizing the number of viewpoints and 
an optimal solution of sensor placement contains the least viewpoints and the 
corresponding graph has the lowest order, i.e. min)( nGo optimal  and loptimal = lcmin. 

4.5 Summary 

In this chapter, the frequently used sensor constraints were formulated to limit a 
viewpoint to be in the acceptable space feasible for robot execution. An evaluation 
criterion is used to achieve a good sensor placement plan. For model-based robot 
vision, the sensing plan is a graph spatially distributed around the object. For 
nonmodel-based object modeling tasks, the planning strategy determines where to 
look next.  

The method for model-based sensor placement achieves both the optimal sensor 
placements and the shortest path through these viewpoints. The plan for such sensor 
placements is evaluated with three factors: low order, high precision, and satisfying 
all constraints. 

 
 
 
 



 

Chapter 5  
Model-Based Sensor Planning  

This chapter presents a method for automatic sensor placement for model-based 
robot vision. Since the sensor is moved from one pose to another around the object 
to observe all features of interest, this allows multiple 3D images to be taken from 
different vantage viewpoints. The task involves determination of the optimal sensor 
placements and a shortest path through these viewpoints. During the sensor 
planning, object features are resampled as individual points attached with surface 
normals. The optimal sensor placement graph is achieved by a genetic algorithm in 
which a min-max criterion is used for the evaluation. One shortest path is 
determined by Christofides algorithm. A Viewpoint Planner is developed to 
generate the sensor placement plan. It includes many functions, such as 3D 
animation of the object geometry, sensor specification, initialization of the number 
of viewpoints and their distribution, viewpoint evolution, shortest path 
computation, scene simulation of a specific viewpoint, parameter amendment. 
Experiments are also carried out on a real robot vision system to demonstrate the 
effectiveness of the proposed method. 

5.1 Overview of the Method 

The following sections present a method of automatic sensor placement for 
planning model-based vision tasks, typically for industrial inspection, with both 
optimal viewpoint distribution and sensing sequence. The procedures for generating 
a sensing plan include 

 
1. Input the object’s geometric information from a model database; 
2. Give the specifications of the vision tasks and sensor configurations; 
3. Generate a sensor placement graph with the fewest viewpoints; 
4. Search for a shortest path for robot execution; and 
5. Output the sensing plan. 

 
Therefore, the problem of sensor placement for model-based vision tasks 

becomes the search for an optimal placement graph and a shortest path for 
achieving the sensing operations. In this chapter, the geometric information of the 
object is loaded from a 3D CAD data file. A strategy is developed to automatically 
determine a group of viewpoints for a specified vision-sensor with several 
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placement parameters such as position, orientation, and optical settings. Each 
viewpoint should satisfy multiple constraints due to the physical and optical 
properties of the sensor, scene occlusion, and robot reachability in the 
environment etc. 

As stated previously, reducing the number of viewpoints will improve the vision 
perception performance. In this chapter, the goal is to achieve the lowest traveling 
cost Tcost through the planned viewpoints, but not by a combined function as in 
traditional approaches. It will be achieved by (1) minimizing the number of 
viewpoints subject to task completion, (2) optimizing the viewpoint distribution, 
and (3) finding one shortest traveling path. 

5.2 Sensor Placement Graph 

5.2.1 HGA Representation 

Here the hierarchical GA is used to determine the optimal topology in the sensor 
placements which will contain the minimum number of viewpoints with the highest 
accuracy while satisfying all the constraints. The hierarchical chromosome can be 
regarded as the DNA that consists of the parametric genes and control genes. In this 
work, parametric genes (Vi) mean the sensor poses and optical settings, and control 
genes (ci) mean the topology of viewpoints. To show the activation of the control 
gene, an integer “1” is assigned to each control gene being enabled whereas “0” 
indicates a state of turning off. When “1” is signaled, the associated parameter 
genes associated with that particular active control gene are activated in the 
lower-level structure. 

Fig. 5.1. Hierarchical chromosome structure for sensor placement

 
For the sensor placement problem, a chromosome in GA represents a group of 

viewpoints with a specific topology. Figure 5.1 illustrates the structure of the 
hierarchical chromosome corresponding to the plan of viewpoints. Here Vi 
represents a variable viewpoint which is a vector of the sensor parameters. E.g., for 
the structured light system, ),,,,,,,,( abzyxVi , and for a stereo sensor, 

),,,,,,,,( dfazyxVi . The corresponding ci={0, 1} represents a control gene 
which is a binary variable. 

c1 c2
… … V1 V2

… … VnmaxVnmax

control genes – topology parametric genes – viewpoints
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5.2.2 Min-Max Objective and Fitness Evaluation 

A plan of sensor placements is evaluated by a min-max criterion, which includes 
three objectives and a fitness evaluation formula. The order of a graph G is 
equivalent to the number of occurrences of “1” in the control level genes. To plan a 
group of viewpoints with minimum order in the sensor placement graph, the first 
objective is given as:  

Objective 1:    minimize 
max

1
)(

n

i
icGo . (5.1) 

Assume that the accuracy of vision inspection is proportional to the surface 
resolution of the vision sensor and consider m features to be acquired. The second 
objective is to improve the average accuracy via 

Objective 2:    maximize 
m

j j

imagej

l
w

m
F

1

,1)(  (5.2) 

where wimage is the size of a feature on the sensor image and lj is its actual length. 
On the other hand, an admissible viewpoint is subject to some constraints in the 

sensor placement space, e.g. resolution, in-focus, field of view, visibility, viewing 
angle, overlap, occlusion, contrast, and reachability. A penalty scheme is set up to 
handle these constraints such that invalid chromosomes become low performers in 
the population. The constrained problem is then transformed to an unconstrained 
condition by associating the penalty with all the constraint violations. A vector of 
penalty coefficients combines the nine constraints (presented in Chap. 4): 

 = ),,,,,,,,( 987654321 . (5.3) 

where i is the constant weight representing the importance of that constraint. If the 
constraint does not need to be satisfied (e.g. G6-overlap), the weight is set to zero. 

Define a binary function 

 violatedis constraint  theif
satisfied is constraint  theif

,1
,0

i
 (5.4) 

and construct another vector of constraints: 

Q(l, V)= ),,,,,,,,( 987654321 , (5.5) 

where l is an object feature and V is a viewpoint. 
Therefore the third objective is to minimize the total penalties for the constraints: 

Objective 3:    minimize TQKpenalty . (5.6) 

If there are m features and n viewpoints, the average penalty for a viewpoint 
topology is: 
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penalty

1
], ...,2,1|),(min[1 . (5.7) 

Finally, the fitness function is derived by combining the penalty scheme with the 
two objective functions: 

Fitness:    f (G)= |)|( maxmax Kban  

TQK
F
bGao

)(
)( , 

(5.8) 

where 
m

i
iK

1
|| , |)|( maxmax Kban  is the maximum possible value that 

produces positive fitness, max is the maximum possible resolution, and a and b are 
two adjustable scaling factors. 

5.2.3 Evolutionary Computing 

According to the characteristics of the sensor placement problem, the following 
genetic parameters and operations are adopted for evolutionary computing: 
 
 Chromosome length:  
 2n, where n is the maximum number of viewpoints and determined according to 

the object size and sensor configurations,  
 Crossover method:  
 control level genes: one-point crossover if n n

probability of crossover pc = 0.25; 
 parametric level genes: Heuristic crossover with ratio=0.8. Here the parameters 

of the sensor pose and optical settings are real numbers. 
 Mutation method: 
 control level genes: bit-flip mutation; probability of mutation pm = 0.01. 
 parametric level genes: g = g + ( , ) where  is the Gaussian distribution 

function,  and  are the mean and variance, respectively. 
 Selection method: Roulette-Wheel selection method; 
 Replacement: Steady State without duplicates; 
 Population size: 30–100, based on the length of chromosome; 
 Initial population: randomly generated on a sphere around the object. 

 

 < 10, two-point crossover if  >= 10; 
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5.3 The Shortest Path 

5.3.1 The Viewpoint Distance 

For a sensor placement graph, there may exist more than one path with the shortest 
(or approximately shortest) length through all the viewpoints. To determine a 
shortest path, we firstly need to compute the distance, w(Vi, Vj), between each pair 
of viewpoints (Vi and Vj). The concept of viewpoint distance is defined in Chap. 4. 
With different types of robots and different control modes, the distance should be 
computed in different ways accordingly. 

5.3.1.1 Tool Level Control 

To achieve a robot-independent representation of the location of the robot tool or 
hand, the control program often defines the locations in terms of a Cartesian 
reference frame fixed to the base of the robot or workspace. If the robot moves at a 
constant speed, the execution time is proportional to the 3D position difference 
(Euclidean distance) or 3-axis orientation difference, i.e. 

),( ji VVw = max( |||| j
xyz

i
xyz VV / , |||| ji VV / ), (5.9) 

where  and  represent the translational speed and rotational speed respectively, 
xyzV and V are vectors for the three position and orientation components of V, 
respectively. 

5.3.1.2 Asynchronous Joint Control 

If the robot is controlled asynchronously in a joint space to change its pose, the 
distance is computed by 

),( ji VVw = 
dofn

t
j

t
i

t VV )/||(|| t
, (5.10) 

where ndof is the robot’s DOF number, t is the execution speed of joint t, and tV is 
the joint position at pose V. 

5.3.1.3 Synchronous Joint Control 

When the robot is controlled in a joint space with all joints moved simultaneously, 
the distance is determined by the maximum one 

),( ji VVw  = max ],1[},/||{|| t dofj
t

i
t ntVV . (5.11) 

If the sensor’s optical settings (e.g. zoom, focus, Iris, etc.) are under motorized 
control, it will also take time to change the sensor configuration from one viewpoint 
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to another. Then the viewpoint distance will be the larger of this distance (time 
equivalent) and the above robot pose distance. 

With n viewpoints obtained by generic algorithm, a symmetrical distance matrix 
can be generated by computing each pair of the viewpoints: W = {wij}, which will 
be used to determine the shortest path. 

5.3.2 Determination of a Shortest Path 

Assume that the robot should resume its initial state after completing a vision task 
(since it needs be ready for inspection of the next workpiece). Given a specified 
graph, now another fundamental task is to find an optimal closed chain that is the 
shortest (or approximately shortest) one of all the possible chains. Obviously a 
sensor placement graph satisfies the triangle inequality, i.e. 

},{\)(),,(),(),( jikjkkiji VVGVVVVwVVwVVw , (5.12) 

where the “=” holds if the position of Vk is on the path lij and the orientation of Vk is 
the middle angle between i and j. 

Because a sensor placement graph G is finite, connected, and complete, the 
optimal closed chain is the optimal Hamilton cycle. Furthermore, a complete graph 
must contain Hamilton cycles, i.e. there exist cycles which contain all the vertices 
once. In graph theory, it has been proved that if G is complete and satisfies the 
triangle inequality, the optimal chain C” in a connected and weighted graph G” 
corresponds to an optimal cycle C in its complete and weighted graph G. That is, 

)()"( and " CwCwCC , where w(X) is the length of chain or cycle X. 
To plan a sequence of robot operations or to find an optimal Hamilton cycle, we 

have to decompose Gn into the union of some edge-disjoint Hamilton cycles. There 
are totally n vertices and )1(

2
1)( nnG  edges in the graph Gn. A Hamilton cycle C 

must contain n edges too. Let a Hamilton cycle be a sequence of vertices: C=(x1, 
x2, …, xn) where ],1[),(, niGVxixjxi . The problem might be solved by 
enumerating all possible Hamilton cycles Ci in the graph, by comparing their 
summed weights w(Ci), and then finding out the smallest one cost = min[w(Ci)]. 
However, there are totally )!1(

2
1)( nCo  Hamilton cycles. When n is large, this will 

yield unacceptable computations, e.g. 16106)(Co  when n = 20. This is a 
non-deterministic polynomial complete (NPC) problem in graph theory and must 
be solved by an approximation algorithm. 

This chapter uses an approximation algorithm developed by Christofides. The 
procedure of this algorithm for finding an optimal Hamilton cycle is described as: 
 
 Step 1. Construct the distance matrix W from graph (G, w). 
 Step 2. Find the smallest tree T in W using Prim algorithm 
 Step 3. Find the odd degree set V in T and calculate the perfect matching M of 

the smallest weights in G[V] using Edmonds-Johnson algorithm. 
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Step 4. Find an Euler circuit C0=(x1, x2, x3, …, xn) in G*=T+M using Fleury
algorithm.
Step 5. Start from x1 and go along C0, remove each multi-occurrence vertex from 
C0 except for the last x1 and finally form a Hamilton cycle C of graph G. This 
gives the approximated optimal cycle. 

The resulting Hamilton cycle is an approximate solution. It has been proven that 
the error ratio does not exceed 0.5 even in the worst case. If L0 is the optimal 
solution (sum of weighs) and L is the approximate solution by Christofides 
algorithm, we have 5.1/1 0LL . In this algorithm, the total computation cost is 
O(n3). In contrast, using direct search method takes O(n!). 

5.4 Practical Considerations 

5.4.1 Geometry Scripts 

The object model is usually extracted from a CAD file. However, directly using 
these data may result in prohibitive computation for planning the sensor 
placements. For example, Prieto et al. (1999) chose to import the CAD model with 
IGES format, which contains the NURBS representation of object surfaces. This 
data format must be converted to 3D voxels so that they can search for a viewpoint 
set. Even with a very simple object, a large number of 3D voxels will result, making 
the computation too costly. 

This book defines a format of “Geometry Scripts” (GS) in which the whole 
object is constructed with some geometric primitives, such as surfaces, solid boxes, 
cylinders, spheres, etc. These primitives are used to build higher-level geometries 
by CSG (Constructive Solid Geometry) operations, such as AND (“*”), OR (“+”), 
and SUB (“–”). Using geometry scripts has two advantages: (1) it is intuitive and 
easy to understand. Users may directly write (instead of import from a CAD file) the 
scripts to describe what needs to be inspected. (2) The more important advantage is 
that it is very convenient for computing the sensor placements. A point can be 
checked as to whether it satisfies the placement constraints within a short period of 
time. 

5.4.2 Inspection Features 

Any geometry elements/entities, such as cylinders, freeform surfaces, curves, and 
individual points, can be specified as the features which need to be inspected in the 
vision task. However, for computation simplicity, all these features will firstly be 
converted into individual points. In this research, this is accomplished by a 
resampling method and usually the normal of each point can also be determined 
automatically. Figure 5.2 illustrates an object sampled with about one thousand 
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Fig. 5.2. Sampling of inspection features 

5.4.3 Sensor Structure 

For a 3D sensor with two components, e.g. a structured light system with a camera 
and a projector or a stereo vision sensor with two cameras, the sensor placement 
constraints should be satisfied by each individual component. To reduce the 
computation complexity, we may rebuild an equivalent 3D sensor.  

The projector can also be considered as a camera. Figure 5.3 illustrates a 3D 
sensor with a small angle between the two components. It is equivalent to a single 
camera placed at Oeh and with an effective field of angle Foveh= Fov+ r. More 
conveniently, it is equivalent to be placed at Oe with FOV: 

Fove = )]tan()1[(tan2 1
rFov

d
h  

= ]
)cos(22

)[tan(tan2 1

r
r Fovd

b
d
bFov  

(5.13) 

where r is the relative angle between the two components, b is the baseline length, 
and d is the viewing distance. This formulation assumes that the two components 
have the same field of view. If they are different, (5.13) should be revised 
accordingly. 
 

points. The sampling rate was determined automatically according to the sensor 
configuration and surface size. 
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Fig. 5.3. Equivalent sensor’s field of view 

5.4.4 Constraint Satisfaction 

In principle every constraint has to be satisfied for a viewpoint in a plan. If the 
viewpoint violates any of the constraints, it should be rejected (during the evolution 
it may also be kept according to the overall fitness). The calculation order of the 
constraints is important for improving the computation efficiency. This research 
uses the following computation order: visibility, field of view, viewing angle, 
in-focus, occlusion, and others. When one of them is violated, the other constraints 
will not be checked. Of all sensor placement constraints, the visibility has the lowest 
computation cost, just involving the calculation of NiVi < 0. It is thus checked as the 
first constraint. 

The occlusion constraint is the most complex one and takes most of the 
computation time. To test if a point is occluded by other geometry elements, we 
need to check if the line segment between the point and the sensor intersects with 
these elements. For some regular geometry elements, such as ball, circle, square, 

Right camera 
or projector 

Left camera 

)
2

tan(
2

Fovbh r

b O2
O1 

Oeh 

Optical axes 

Effective Fov:
Foveh= Fov+ r

Fov 

Oe

Equivalent Fove

Area in FOVs 

Relative angle r 

h 
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box, etc., this can be tested in a simpler way. Taking the example of squares, this 
can be achieved via the following steps: 
 
1) Assume:  

object point Q = (xq, yq, zq), with normal N = (lq, mq, nq); 
sensor position S = (xs, ys, zs), orientation T = (ls, ms, ns); 
square vertex Pi, i=1, 2, 3, 4. 

2) Translate the coordinate system to origin Q: 
Q’ = 0 
S’ = S – Q 
Pi’ = Pi Q (i=1, 4) 

3) Transform the z-axis to point it along QS: 
VQS = S’ / || S’|| = (a, b, c). 
Pi’’ = RPi’ ,  

where  

R = 

cba
cacb

ccbccac
01/1/

11/1/
22

222

. (5.14) 

4) Check the occlusion: 

bocc = ( 12 34 >0) AND ( 23 41 >0), (5.15) 

where ij = Pi’’(x) Pj’’(y) - Pi’’(y) Pj’’(x). 
For freeform geometries, the occlusion has to be determined by “object 

projection” with “depth test” or “bounding volume test”, which will be 
computationally expensive. 

5.4.5 Viewpoint Initialization 

A good initial population will improve the efficiency of the evolutionary 
computing. In this research, the initial guess of the maximum number of viewpoints 
and their space distribution is made via the following two steps. 

(1) Estimation of the viewpoint number 

We first compute the object’s geometric center and find a least sphere to surround it. 
The maximum number of viewpoints is estimated by: 

N = 
view

object

S
S2  = 

)
2

(tan

2
22

42

Fovd

R  
(5.16) 

 – 
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where Sobj is the object surface area, Sview is a single view size, R is the sphere radius, 
d is the average viewing distance. 

(2) Uniform distribution on a sphere 

Since a uniform distribution of an arbitrary number of viewpoints on a sphere 
cannot be described by a general mathematical formula, it needs to be handled by a 
special method. Here we adopt an artificial physics method to solve this problem. 
Take the viewpoints as particles with the same electric charge and randomly 
sprinkle them on the sphere. Each particle will repel every other particle. The 
system will lead to a stable (minimum energy) configuration where each particle is 
equidistant from all the others and each particle is maximally separated from its 
closest neighbors by the electric repulsive forces. 

The sensor orientation is set to look inward to the sphere center, which is 
described by two parameters,  and  based on the sphere coordinate system. They 
can be expressed as a unit direction vector: 

sin
sincos
coscos

   where),,,(
z

y
x

zyxPd kji . (5.17) 

Figure 5.4 illustrates an example of the initial distribution of viewpoints on a 
sphere. The maximum number is determined according to the object and sensor 
configuration. The distribution is uniform (with similar minimum distance) on the 
sphere, but the positions are still random. 
 

 
Fig. 5.4. Initial viewpoint distribution 
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5.5 Implementation 

5.5.1 The Viewpoint Planner 

In this work, a 3D animation system was developed, called Viewpoint Planner,
which includes the following functions: 

3D geometry input: using specially defined scripts with CSG logic operations; 
Selective display of the object, lighting effect, 3D grids, sampled inspection 
features, viewpoint distribution, etc.; 
Illustration of the shortest path through the viewpoints; 
Simulation of an arbitrary viewpoint to look through; 
Acquisition of the 3D map of the current view (simulation of a scene depth map); 
Configuration of sensor specifications; 
Configurable scene apparent effects: with lighting, texture, or color rendering; 
Amendment of the parameters of a specific viewpoint 
Initial estimation of the maximum number of viewpoints for an object (according 
to the object size and sensor configuration); 
Uniform generation of the initial viewpoints on a sphere around the object; 
Evolutionary Computation of an optimal sensor placement graph; 
Determination of a shortest path through the viewpoints; 
Viewpoint sequence export to a file. 

5.5.2 Examples of Planning Results 

This section presents several examples of sensor placements which were carried out 
with the Viewpoint Planner. In operations, the user only needs to give the object 
model scripts and sensor configurations. The system will automatically generate the 
initial guess, perform the evolutionary computation of optimal sensor placements, 
and determine one shortest path. 

5.5.2.1 The Structured Light Vision Sensor 

Figure 5.5 illustrates a structured light vision sensor to be used in the experiments 
for 3D acquisition. The sensor contains a DLP projector and CCD camera placed 
about 165 mm away. Figure 5.6 illustrates the sensor’s equivalent configuration. 
The projector has the FOV of about 23o and is larger than that of the camera (about 
15o). Since the camera’s visible volume is included by the projector, the sensor’s 
placement constraints are equivalent to the camera’s constraints and the 
computation is simplified to treat with a single camera. 
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Fig. 5.5. The structured light sensor 

 

 
Fig. 5.6. Equivalent configuration of the structured light sensor 

Three examples are given in this section. The first two examples have the same 
sensor configurations, but with different object models and inspection tasks. The 
third example has the same object as the first one, but with different sensor settings 
tasks. The planning results are given below. 

Example One 

 Target: Object 1 (shown in Fig. 5.14), 325 254 183 (mm), 
 Inspection task: Full observation of all surfaces except for the bottom, 
 Sensor configuration: Structured light sensor with a camera: 25 mm lens, 27.12 

mm focal length, 2/3” sensor, F2.8, 15.02  Fov; and the projector: 23 mm lens, 
24.22 mm focal length, 1024*768 DMD device, F3.0, 23  Fov. Equivalent 
sensor: 15  Fov, 424.4307–496.3449 mm field depth. 

Projection axis 

Perception axis 

Projector  P 

Camera  C 

Scene distance d= 458 mm 

b =165mm 

5º 15º Fov 

23º 
17.2º 
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 Initialization: 60 viewpoints,  
 Final optimized sensor placement plan: 28 viewpoints, 
 Naive path length: 304.5132, 
 The shortest path: 101.3038. 

Example Two 

 Target:  Object 2, 300 150 180 (mm); 
 Inspection task:  All surfaces except for the bottom, 
 Sensor configuration: Same as in Example One, 
 Initialization:  42 viewpoints,  
 Final optimized sensor placement plan: 25 viewpoints, 
 Naive path length:  128.491744, 
 The shortest path:  59.628443. 

Example Three 

 Target:  Object 1, 325 254 183 (mm); 
 Inspection task:  Full observation of all surfaces except for the bottom; 
 Sensor configuration:  Structured light sensor with a camera: 16 mm lens, 16.58 

mm focal length, 2/3” sensor, F2.8, 22.14  Fov; and the projector: 23 mm lens, 
24.22 mm focal length, 1024*768 DMD device, F3.0, 23  Fov. Equivalent 
sensor: 22  Fov, 422.9065–494.5624 mm field depth. 

 Initialization:  28 viewpoints,  
 Final optimized sensor placement plan: 16 viewpoints, 
 Naive path length:  207.6031, 
 The shortest path:  92.3486. 

 
The naive path length is an arbitrary path length not optimized for comparison 

with the shortest path found by the proposed method. These results were obtained 
on a PC with 750MHz CPU, 128MB RAM, under a Windows 2000 operation 
system. Figures 5.8–5.10 illustrate the results of viewpoint distributions and the 
shortest paths. 
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Fig. 5.7. The object to be inspected 

Fig. 5.8. Example 1: the viewpoint distribution and a shortest path 
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Fig. 5.9. View planning for example 2 

 
Fig. 5.10. Planning for example 3 
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sensor configurations (especially the field-of-angle). Every viewpoint can be 
observed and the corresponding 3D depth map can also be generated for 
comparison with real situations.  

Fig. 5.11. Scenes from viewpoint Nos. 26 and 28 in the example 1 

2 seconds. The above computation time is for reference only since the software was 
running in a debug mode. The actual speed should be higher. However, as the plans 
are generated off-line, this computation cost is not important here. 

5.5.3 Viewpoint Observation 

With the Viewpoint Planner, after evolutionary computing the user may check what 
can be seen from an individual viewpoint. Figure 5.11 shows the simulated scene 
observed from viewpoint Nos. 26 and 28 (in Example One), with the specified 

The computation time for finding the optimal view plan in the three examples was 
between 1 and 3 hours, whereas the time taken for finding the shortest path was about 
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5.5.4 Experiments with a Real System 

Experiments were also conducted on a real robot to verify the planning results. The 
system setup includes a 6DOF robot (STAUBLI RX-90B) with 0.02 mm 
repeatability, a high-speed vision system, the object (illustrated in Fig. 5.7), a light 
source, and a sensor. We assume that the sensor placement graph has been generated at 
the offline stage by the Viewpoint Planner. In this stage, the robot is controlled to move 
to the specified viewpoints and the scene images are captured by the vision sensor. 

Here we give the results of two typical viewpoints (Nos. 3 and 8 in Fig. 5.10) in 
Example 3. Figure 5.12 illustrates the view contents at viewpoint No. 3 in the 
Example 3. The left figure illustrates the expected scene generated by the Viewpoint 
Planner. With the structured light sensor, the 3D depth map of the view can be 
obtained directly. The right figure illustrates the 3D data obtained by the structured 
light sensor. Figure 5.13 illustrates that of viewpoint No. 8. 
 

Fig. 5.12. Scene at viewpoint No. 3 in example 3 (with structured light sensor) 
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Fig. 5.13. Scene at viewpoint No. 8 in example 3 (with structured light sensor) 

The experiments show that the results in real implementation match the 
simulation results well. Hence the sensor placement plan generated by the 
Viewpoint Planner and performed by the robot demonstrated satisfactory 
performance in real operations. However, the planning results may not represent 
the best plan. Here the results are considered acceptable or satisfactory if the 
viewpoints in the plan do not violate any sensor placement constraints and the 
redundant viewpoint number is sufficiently small. To achieve a more optimal 
plan in the result, longer time would be needed for the evolutionary 
computation. 

5.5 Implementation 



  

5.6 Summary 

Using conventional methods, it is difficult to achieve an optimal sensor placement 
graph because of the complex, large-scale, highly nonlinear characteristics of the 
problem. As a numerical optimizer, HGA generates the solutions that are not 
mathematically oriented, but possesses an intrinsic flexibility and the freedom for 
choosing desirable optima according to task specifications. The search for the 
shortest path through a number of viewpoints is an NP-Complete problem and an 
approximation algorithm has to be used for determining the viewing sequence. The 
Christofides algorithm is an effective one that can guarantee minimum error even in 
the worst case. 

Compared with the previous approaches, this proposed method can deal with 
complex objects with multiple inspection features and viewpoints, generate the 
minimum number of viewpoints, and lead to global optimization. It provides a 
stable and complete solution for model-based vision tasks, including viewpoint 
decision, constraint satisfaction, optimization of viewpoint distribution, planning of 
the robot operation sequence. All these techniques are integrated into the software, 
the Viewpoint Planner, to make it useful in practical applications. The experimental 
results show that the real situations match the planned results well. 

Therefore, the method can solve the problem of model-based sensor placement 
in which multiple features need to be inspected by multiple viewpoints, whilst 
previous researches only focused on the determination of a good viewpoint to 
observe a few features. However, further work can be carried out on this problem to 
improve the solution procedure. The GA used for determining the best viewpoint 
distribution usually takes a long time for searching the optimal solution. The speed 
is even much slower if the object is rather complex or we consider more constraints. 
It also cannot be guaranteed that it achieves the optimal solution. We are seeking for 
other optimization methods to determine the sensor placement graph for 
comparison. On the other hand, the Christofides algorithm can guarantee to obtain a 
short path within a certain error, but currently there is considerable progress in 
solving the shortest path problem in graph theory. Some new algorithms may be 
considered as alternatives to Christofides algorithm. 
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Chapter 6  
Planning for Freeform Surface Measurement 

In this chapter, we present a sensing strategy for determining the probing points for 
achieving efficient measurement and reconstruction of freeform surfaces. B-spline 
is adopted for modeling the freeform surface. In the framework of Bayesian 
statistics, we develop a model selection strategy to obtain an optimal model 
structure for the freeform surface. Based on the selected model structure, a set of 
probing points are then determined where measurements are to be taken. In order to 
obtain reliable parameter estimation for the B-spline model, we analyze the 
uncertainty of the model and use the statistical analysis of the Fisher information 
matrix to optimize the locations of the probing points needed in the measurements. 
Using a “data cloud” of a surface acquired by a 3D vision system, we implemented 
the proposed method for reconstructing freeform surfaces. The experimental results 
show that the method is effective and promises useful applications in multi-sensor 
measurements including vision-guided CMM for reverse engineering. 

6.1 The Problem 

Reconstructing the freeform surface from a set of discrete measurement data points 
is a problem important to many areas including reverse engineering, metrology, 
inspection by machine vision, computer-aided design (Song and Kim 1997, 
Thompson and Owen 1999, Wolovich et al. 2002, Weir et al. 2000). The first task in 
the reconstruction of a freeform surface is to obtain the measurement data. Among 
the various sensing techniques available, mechanical contact probes such as CMM 
(Coordinate Measuring Machine)’s touch probe, and 3D topography measuring 
systems using structured light or fringe illumination are widely used in practical 
applications. CMM with touch-triggered probes can provide high measurement 
accuracy at sub-micron level. However, the measurement speed is much lower than 
that of a 3D vision system. A vision system can acquire thousands of data points 
over a large spatial range in a snapshot (Li and Chen 2003). However, the 
achievable resolution is relatively low, at around 100–200 m. Therefore, in 
practical applications, using one of the techniques means that the user has to suffer 
from its limitations, e.g. the low speed with CMM.  

A way to overcome the limitations of individual sensing techniques lies in 
integrating multiple sensors in the measurement as conceptualized in Fig. 6.1. 
Research efforts have been made to achieve this. For example, Nashman et al. 



102      Chapter 6 Planning for Freeform Surface Measurement 

 

(1996) integrated vision in a touch-probe system, where a video camera with a laser 
triangulation probe and a 3D touch probe were used in a CMM. They presented a 
cooperative interaction method for the vision and touch-probe system that provided 
sensory feedback to the CMM for dimension inspection tasks. Chen and Lin (1997) 
presented a vision-aided reverse engineering approach (VAREA) to reconstruct 
free-form surface models from physical models, with a CMM equipped with a 
touch-triggered probe and a vision system. The VAREA integrated computer 
vision, surface data digitization and surface modeling into a single process. The 
initial vision-driven surface triangulation process (IVSTP) generated a triangular 
patch by using stereo image detection and a constrained Delaunay triangulation 
method. The adaptive model-based digitization process then refined the surface 
reconstruction using measurements from the CMM’s touch probe. Since the vision 
system in VAREA used a 3D stereo algorithm to detect 3D surface boundaries, only 
3D surface boundaries were reconstructed and geometrical information about the 
freeform surface could not be retrieved. Recently, Shen et al. (2000, 2001) 
presented a multiple-sensor coordinate measuring system for automated part 
localization and rapid surface digitization. The multiple-sensor system consists of a 
high-precision CMM equipped with a touch probe and a 3D active vision system. 
Their research focused on setting up a multiple-sensor system and processing the 
geometrical information from the vision system. In these systems, the CMM’s 
touch probe plays the role of accurately digitizing a surface, especially when 
high-precision is desired. The question of how to determine the set of measurement 
data, including the needed number of the measurement data points and their 
locations, for accurate reconstruction of freeform surfaces, remains untouched. 

CMM’s touch probe 

3D Active Vision 

Object 

CMM 

Fig. 6.1. Multiple-sensor coordinate measuring system 

Using a CMM for 3D measurements, only a finite number of discrete 
measurement data can be taken for a surface. From the statistical viewpoint, each 
measurement data point contains a certain amount of geometrical information about 
the surface, and the quantity of information contained in the set of measurement 
data points depends on the number and locations of the measurement points. 
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Considering the lengthy time needed in using a CMM to take a large number of 
measurement data points, we should select the locations of the data points to 
achieve an optimal measurement and reconstruction. Unfortunately, the current 
practice in using CMM mostly adopts random data point setting on a surface. In 
such a case, each data point has an equal probability of being picked for the 
measurement. For example, Woo et al. (1995) presented a sampling strategy based 
on Hammersley sequence to determine the number of discrete sample points and 
their locations on a machined surface (Woo and Liang 1993). Lee et al. (1997) 
proposed a feature-based method, which integrates Hammersley sequence and a 
stratified sampling method, to derive the sampling strategy for various surfaces 
such as circular, conic, cylindrical, rectangular and spherical surfaces.  

Unlike objects composed of simple geometric primitives, such as planes, lines, 
spheres and cylinders, freeform surfaces have no obvious features. Therefore, they 
are more difficult to define and model mathematically than simple geometric 
objects. In most cases, freeform surfaces are represented by the parametric 
equations such as Coons patches (Farin 2002), B-splines, or NURBS (non-uniform 
rational B-splines). A fundamental question then arises: can we find the parametric 
model to represent an unknown freeform surface and then select a minimal set of 
discrete measurement points to obtain these parameters, while controlling the 
uncertainty of model parameters within a specified tolerance. Here, the uncertainty 
describes the tolerance range within which the unknown true surface lies with some 
confidence levels. The lower the uncertainty of the model, the better the 
reconstructed surface is. In this chapter, we propose a method that allows for 
optimal measurements and reconstruction of freeform surfaces. Two issues need to 
be addressed here. The first is how to select the model structure using a cloud of 
low-precision data acquired by a 3D vision sensor. We use B-splines to represent a 
freeform surface and present a Modified BIC (Bayesian Information Criterion) 
approach for selecting an optimal model structure for surface representation. The 
second is how to determine the locations of a set of measurement data points for 
high-precision measurements e.g. by CMM’s touch probe. In our work, we analyze 
the uncertainty of the B-spline model and use the statistical analysis of the Fisher 
information matrix (Wang 1999) which measures the uncertainty of the parameters 
of the model, to optimize the locations of the measurement data points to minimize 
the uncertainty of the model. 

The rest of this chapter is organized as follows. Section 6.2 describes the 
B-splines approximation and model selection for the 3D reconstruction of freeform 
surface. In Sect. 6.3, the uncertainty of the B-spline surface is analyzed. Section 6.4 
presents the optimization of the locations of measurement data points. Section 6.5 
gives some experimental results in reconstructing the freeform surfaces of some 
real objects. Finally, conclusions of the work are given in Sect. 6.6. 
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6.2 B-Spline Model Representation 

6.2.1 B-Spline Representation 

A B-spline surface is defined by the following equation 

1
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where un and vn are the number of control points in u and v directions; 

ij ( 1,,1,0 uni , 1,,1,0 vnj ) are the n ( vu nnn ) control points;
)(, uB pi and )(, vB qj are the normalized B-splines of degree p and q for the 

u and v directions respectively which are defined over the knot vectors 
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Assume that (xk, yk, zk) are the coordinates of a measurement point rk on the 
surface, with location parameters (uk, vk). Let us further assume that the degrees of p 
and q and the complete knot vectors u and v for surface fitting are also determined. 
By introducing the measurement point rk with the corresponding location 
parameters [uk, vk] in (6.1), we have 

1

0

1

0
,,

1

0

1

0
,,

1

0

1

0
,,

)()(

)()(

)()(

u v

u v

u v

n

i

n

j
ijkqjkpik

n

i

n

j
ijkqjkpik

n

i

n

j
ijkqjkpik

zvBuBz

yvBuBy

xvBuBx

 (6.2) 

where ),,( ijijij zyx are the coordinates of the B-spline surface control points ij . 
(6.2) can be expressed as a linear combination of the control points in the 
B-spline representation,  
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If a total of m points on the surface are considered, we have 
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matrix consisting of the tensor products of the B-spline basis functions 
corresponding to each of the m measurement points on the surface: 
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where TT BBB 1][ is the pseudo-inverse matrix of B.  

6.2.2 Model Selection 

It is known that for a given set of measurement data, there exists a model of optimal 
complexity that has the smallest prediction/generalization errors for further data. 
For a B-spline surface, the model complexity is related to the number 
n )( vu nnn of control points (parameters) in the u and v directions in the 
parameter field (Yan et al. 1999). If the B-spline model contains too many control 
points, the approximated B-spline surface will tend to over-fit noisy measurement 
data. If the model does not have enough control points, then it will not be able to fit 
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the measurement data, causing the approximation to be under-fitted. In general, 
both over- and under-fitted approximation will have a poor generalization 
capability. Therefore, the problem of finding an appropriate model, referred to as 
model selection, is important for achieving a high level of generalization capability. 
The problem of model selection has been studied from various standpoints. 
Examples include information statistics (Sugiyama and Ogawa 2001), Bayesian 
statistics (Shwartz 1978, Torr 2002) and structural risk minimization (Cherkassky 

Given a set of models },,2,1,{ maxkkM k and data r, the Bayesian approach 
selects the model with the largest posterior probability. The posterior probability of 
model Mk is  
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where p(r | Mk) is the likelihood function of model kM and )( kMp is the prior 
probability of model Mk.  

If we assume that the models have the same likelihood a priori, that is 
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affected by p(Mk). This is also the case with max

1
)()|(

k

L LL MpMrp since it is not a 

function of kM . Therefore, the posterior probability )|( rkMp is proportional to 
p(r | Mk).  

To find the model with the largest posterior probability, that is 
)|(maxarg

max,,1,
rk

kkM
MpM

k

, we can evaluate the likelihood function 

)|( kMp r of model kM , 

)}|({maxarg
max,1, kkkM

MpM
k

r  (6.7) 

To calculate )|( kMp r , we need to calculate multidimensional integration (Torr 
2002) 

kkkkkk dMpMpMp
k

rr )|(),|()|(  

In most practical cases, calculating the multidimensional integration is hard, 
especially to obtain a closed form analytical solution. The research in this area has 
resulted in many approximation methods for achieving this. Schwarz (1978) and 
Torr (2002) used Laplace’s approximation method for the integration, and 
simplified p(r | Mk) to  

|)ˆ(|log
2
1),ˆ|(log)|(log kkkk HMpMp rr   

et al. 1999). The Bayesian approach is perhaps the most general and powerful 
method.  
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where k
ˆ is the maximum likelihood estimate of k , and )ˆ( kH is the Hessian 

matrix of ),|(log kk Mp r evaluated at k
ˆ , 
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kdm
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)log(3  of Hessian, we can obtain the Bayesian Information Criterion (BIC) 

(Torr 2002) for selecting the structure of the B-spline surface  

kkkkkM
dmMpM
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)log(3),ˆ|(logmaxarg

max,1,
r  (6.8) 

where dk is the number of control points for B-spline model Mk. 
Consider the likelihood function of the parameter of the B-spline model. The 

probability distribution function ),ˆ|( kk Mp r of the surface can be factorized into 
x, y, and z components as 

),ˆ|(),ˆ|(),ˆ|(),ˆ|( kkzkkykkxkk MzpMypMxpMp r   

Consider the x component. Assuming that the residual error sequence 
ixe ( kxiiix xe B , i=0,1,…, m–1) obeys Gaussion distribution with zero mean 

and variance 2
kx , the ),ˆ|( kkx Mxp can be calculated by 
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with ),ˆ(2
kkxkx M  estimated by 

1

0

22 ]ˆ[1)ˆ(ˆ
m

i
kxiikxkx x

m
B  (6.10) 

The ),ˆ|( kkx Myp  and ),ˆ|( kkx Mzp for y and z components can also be 
obtained in the similar way. Therefore, we can obtain the following BIC criterion 
for selecting a B-splines model 

By approximating 1 ˆlog | ( ) |2 H k by the asymptotic expected value 
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where m is the number of data points. As the first two terms in (6.11) measure the 
prediction accuracy of the B-spline model, the BIC criterion will increase as the 
complexity of the model increases. In contrast, the second term will decrease and 
act as a penalty for using additional parameters to model the data. However, since 
the predicted 2ˆ fk  ( f=x, y, z) depends only on the training data sampled for model 
estimation, they are insensitive when under-fitting or over-fitting occurs. In (6.11), 
only the second term prevents the occurrence of over-fitting. In fact, an honest 
estimate of 2

fk  ( f=x, y, z) should be based on a re-sampling procedure. Here, we 
can divide the available data into a training sample and a prediction sample. The 
training sample is used only for model estimation, whereas the prediction sample is 
used only for estimating the prediction data noise 2

fk  ( f =x, y, z). That is, the 

training sample is used to estimate the model parameter k
ˆ by (6.5), while the 

prediction sample is used to predict data noise 2
fk  ( f =x, y, z) by (6.10). In fact, if 

the model k
ˆ fitted to the training data is valid, then the estimated variance 2ˆ fk  

( f =x, y, z) from the prediction sample should also be a valid estimate of the data 
noise. If the variance 2ˆ fk  ( f =x, y, z) found from the prediction sample becomes 
unexpectedly large, we have grounds for believing that the candidate model fits the 
data badly. It is seen that the data noise 2ˆ fk  ( f =x, y, z) estimated from the 
prediction sample is more sensitive to the quality of the model than the one directly 
estimated from the training sample, as the 2ˆ fk  ( f =x, y, z) estimated from the 
prediction sample also has the capability of detecting the occurrence of 
under-fitting or over-fitting. 

6.3 Uncertainty Analysis 

Equation (6.5) produces the parameter estimation of a B-spline model. It should be 
noted that measurement data are normally contaminated by noise, and it is 
impossible to find an exact solution for the B-spline model. From here on in this 
section, we will ignore the k in fk

ˆ  ( f =x, y, z) and other symbols related to the 

selected model Mk for simplification. Since the residual sequence fe  ( f =x, y, z) 

obeys Gaussion distribution with zero mean and variance 2
f , and the B-spline 
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model in (6.4) is linear, the parameter errors ff
ˆ are also a Gaussian 

distribution with zero mean and covariance 
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f (f=x, y, z), which is based on the assumption that the residual 

sequence fe (f=x, y, z) has the same covariance. Denoting TT
z

T
y

T
x ],,[ , we 

consider the following quadratic form 

)(M)()(C)( T1T ˆˆ1ˆˆ
2

that defines the shape of the Gaussian distribution of the parameter error. In fact, the 
quadratic form defines a hyper-ellipsoid on which the true model parameters must 
lie. We do not know the position of the shape as we do not know the true value of .
However, we know the range within which the unknown true  value lies with a 
confidence interval. For a confidence level , we can find from the distribution a 
number 2 for which there is a probability for  so that 

2
2

ˆˆ1 )(M)( T . It follows that there is also a probability for  that 

yields the hyper-ellipsoid 
22ˆˆ )(M)( T (6.12) 

The true model will be contained in the above ellipsoid which is referred to as the 
ellipsoid of confidence. The ellipsoid of confidence gives us a useful visual image 
of the uncertainty of parameter  of the B-spline surface. In (6.12), M is also 
known as the Fisher information matrix (Wang 1999) which characterizes the 
uncertainty in the estimated parameters. Therefore, the problem of selecting an 
optimal set of measurement data for CMM’s high-precision measurement is to find 
the locations of the measurement data points for which the estimation uncertainty is 
minimized in some sense. Various criteria exist for optimizing the Fisher 
information matrix to achieve minimum estimation errors. The major criterions 
include Cond(M), Trace(M) (A-optimality), the maximum eigenvalue of M-1

(E-optimality), and |M| (D-optimality) (Wang 1999, Chio and Kurfess 1995). These 
criteria measure the amount of information contained in the probability distribution 
representing the parameter errors. Thus, ensuring that the important information 
and necessary information in the B-spline model is embodied in the measurement 
data set is the primary concern in selecting an optimal set of measurement data for 
CMM’s high-precision measurement. Here the optimal criterion adopted is the 
D-optimality, or the determinant criterion, for which the determinant of the Fisher 
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information matrix |M| is to be maximized. Geometrically, the volume of the 
ellipsoid is inversely proportional to the square root of the determinant |M|. A large 
|M| corresponds to a small volume of the model parameter space, indicating that the 
true parameters are well localized and that the knowledge or information we have 
about them is highly reliable (Wang 1999, Chio 1995, Whaite 1997). Here, we 
define |M| as the uncertainty measurement for the estimated parameter vector . 

6.4 Sensing Strategy for Optimizing Measurement 

As the uncertainty of a B-spline model is dependent on the number and locations as 
well as the variance of the measurement data, the sensing strategy plays a critical 
role in the measurement and reconstruction results. A sensing strategy should be 
able to determine the number of measurement data to sample and the locations to 
take the measurements, while keeping the uncertainty of the reconstructed B-spline 
model sufficiently low.  

6.4.1 Determining the Number of Measurement Data 

Since the reconstruction of a freeform surface is based on the measurements at 
discrete points to be sensed by a CMM’s touch probe, these discrete points must 
contain sufficient information that allows the freeform surface to be reconstructed. 
However, the number of measurement data has to be limited to achieve a reasonable 
speed in the measurement process. From the statistical point of view, the number of 
measurement data should be at least ten times the number of the parameters in the 
B-spline model to make the B-spline regression analysis statistically meaningful 
(Yang and Menq 1993). For example, for a bi-cubic B-spline surface with d (d = nu 

 nv) control points, at least 10 d measurement data are required. 

6.4.2 Optimizing the Locations of Measurement Data 

Since |M| is dependent not only on the number of measurement data, but also on the 
locations of the measurement data, we should also optimize the locations of the 
measurement data to maximize |M|. The parameter variables u and v of the 
measurement data in the parameter field of the freeform surface constitute the 
design variables. Each candidate measurement data point can vary its location (u, v) 
within a specified range. The coordinate (x, y, z) of the measurement data can be 
obtained from the parameter variables (u, v) by (6.4). Thus, optimizing the locations 
of the measurement data points for minimizing the uncertainty of a B-spline model 
can be stated as follows: 

||max , M
kk vu  (6.13) 

subject to: ],1,0[),( ii vu i=0,1, m–1.  



6.4 Sensing Strategy for Optimizing Measurement      111 

 

The problem is essentially a combinatory optimization problem. Since the 
objective function |M| is non-smooth and nonlinear, the existence of the derivations 
at all points is not guaranteed. This makes the optimization difficult if a standard 
optimization method is used. To simplify the problem, |M| can be evaluated with an 
existing discrete D-optimal design method called Fedorov exchange algorithm 
(Miller and Nguyen 1994). This algorithm implements an efficient neighborhood 
search for the maximum determinant of the Fisher information matrix M. 

Consider the incremental form of |M|. Each additional measurement data 
incrementally updates M, so that after i+1 measurements, its value becomes 

11)()1( i
T
i LLii MM . The corresponding determinant of M then is 

|)(|))(1(|)1(| 1
1

1 kLkLk T
ii MMM  (6.14) 

where ],,[ 1111 iiiiL BBB , Bi+1 is the basis function vector evaluated at 
location (ui+1,vi+1).  

If a point is to be removed from the set of sample points, all the plus and minus 
signs in (6.14) are reversed. To evaluate |M| by Fedorov exchange algorithm, each 
point in the set of measurement data is considered for exchange with each of the 
available candidate points. The pair of points chosen for exchange is the pair that 
maximizes the increase in the determinant of M. This process is repeated until no 
further increase in the determinant can be obtained by the exchange. 

If we denote the point to be added by L+, and the point to be replaced by L-, then 
by exchanging the pair of L+ and L-, the new determinant is 

)],(1[|||| LLLLLL TT MM  (6.15) 

where                      

21111 )()1(),( TTTT LLLLLLLLLL MMMM . (6.16) 

It is obvious from (6.16) and (6.16) that it is critical for the Fedorov exchange 
algorithm to find a candidate point to replace a point in the current measurement 
data set in turn, which maximizes (L+, L ). In this work, we used a simulated 
annealing algorithm to search the candidate point. Simulated annealing (SA) is a 
random search algorithm that is popular for solving both the continuous and the 
discrete global optimization problem. The optimal procedure using the discrete SA 
algorithm for optimization of the locations of the measurement data points can be 
stated briefly as follows: 

 Step 1  Select a measurement point Svur ii ),( , 1,,1,0 mi from the set 
of sample points. 

 Step 2  Generate a candidate point Svur ccc ),( according to a specified 
generator. 

–



112      Chapter 6 Planning for Freeform Surface Measurement 

 

( , ) ( , ) 0
( , ) ( , ) with probability if ( , ) 0

( , ) otherwise

c c c

i i i c c c

i i

r u v if L L
r u v r u v p L L

r u v
 

where p is the probability of accepting p when (L+, L-)<0. For simplicity, the 
probability p is set as constant. 
 Step 4  Repeat Step 2 and 3 until the stopping criterion is satisfied. 
 Step 5  Select another measurement data point from the sample set, and repeat 

step 1–4 until all measurement data in the selected measurement are exchanged. 

6.5 Experiments 

To demonstrate the effectiveness of the proposed sensor planning strategy for 
reconstructing freeform surfaces, experiments are conducted. In the current 
implementation, a uniform cubic B-spline model is used to represent these surfaces. 

One example is an object manufactured in our own laboratory. This object has a 
freeform surface contained in an area of 40 40 mm2 and a depth of 10 mm, as 
shown in Fig. 6.2a. 

 

Fig. 6.2. The experimental object 

To reconstruct the freeform surface, the first thing is to determine the control 
point number nu and nv of the B-spline model in the u and v parameter directions. A 
3D vision system was used to acquire a cloud of data points on an object surface. 
This vision system (Kreon/KLS51 by Kreon Technologies) consisting of a laser 
stripe projector and CCD camera measures 3D coordinates based triangulation. The 
measurement for the above example object is shown in Fig. 6.2b. We used our 
Modified BIC criterion to select the B-spline model structure (nu and nv) for 

 Step 3  Set 

(a) The object with a freeform surface  (b) The point cloud acquired by a 3D vision sensor 
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representing the freeform surface. To demonstrate the effectiveness of the modified 
BIC criterion, we compared it with the BIC and cross validation (CV) methods 
(Cherkassky et al. 1999, Mcquarrie and Tasi 1998) respectively. The two following 
performance indexes were used: 

1. Estimation accuracy, which is defined as the MSE (Mean Square Error) between 
the actual data points and the regression estimate chosen by a given model 
selection method;  

2. Model complexity, which refers to the number d (d = nu  nv) of control points of 
a B-spline model determined by a given model selection criterion.  

In this section, we use box plots of the MSE and model complexity of each 
method to test the performance of different model selection methods. The 
experiments with different sample sizes were designed to observe the differences 
between the different model selection methods. For each sample size, the sample 
points were selected randomly from the “data cloud” acquired by the 3D vision 
system, and then used to determine the model structured out of the B-spline model 
with a different model selection criterion. The above selection process was repeated 
100 times. The comparison results are presented in Box plots which give the 
empirical distribution of the comparison based on 100 iterations in the model 
selection. An evaluation result with a set of 300 sample points is shown as a box 
plot in Fig. 6.3. In this figure, the box represents the range of distribution of the 
quantity under study. The box stretches from the lower hinge (defined as the 25th 
percentile) to the upper hinge (the 75th percentile) and therefore contains the 
middle half of the scores in the distribution. The dark line (shown as across a box) is 
the median of the quantity. Therefore ¼ of the distribution of a box lies between this 
dark line and the top of the box, and ¼ of the distribution lies between this dark line 
and the bottom of the box. 

Fig. 6.3. Estimation Accuracy 
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Fig. 6.4. Model complexity (Results with 300 training samples and 200 prediction samples) 

 
The MSE box plot, in combination with the box plot of model complexity (i.e. 

the number of control points), provides visual judgment on the relative performance 
of various model selection methods. A lower value of MSE in the plot corresponds 
to a better model selection approach. The model complexity plot, together with the 
estimation accuracy plot, provides information on the over-fitting or under-fitting 
for a given method relative to the optimally chosen model complexity. The height 
of the bar in the plots of the estimation accuracy reflects the method’s sensitivity to 
random sample variations, which can be used as a measure of the variability in the 
error estimation. A short bar in the plot indicates that the method is insensitive 
(robust) to random variations in the data. In general, low model complexity is 
desired. As the number of parameters in a B-spline model is related to its 
uncertainty, the more the parameters of a B-spline model, the higher the uncertainty 
tends to be. For a model with high complexity, more measurement data would be 
needed to increase the reliability in the parameter estimation. In such a case, the 
time cost in the measurement and reconstruction would be high.  

From Figs. 6.3 and 6.4, the model selected by BIC provides a consistent model 
structure, which is insensitive to random variances in the data. However, the 
estimation accuracy is rather poor, compared with the CV and our modified BIC 
method (denoted as Modi_BIC) as can be seen in Fig. 6.3. In fact, in the BIC 
criterion, only the second term can prevent over-fitting. As a result, BIC is 
insensitive to over-fitting and a model with high complexity is selected. On the 
other hand, the re-sampling procedure in CV and our method has the capability of 
detecting the occurrence of over-fitting and under-fitting in time. Compared with 
CV, our criterion results in a similar level of estimation accuracy and provides a 
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lower complexity model with satisfactory consistence. We also compared the 
performance of the three model selection methods using a larger sample size of 
1200. It was observed that the models selected by the three methods had similar 
levels of estimation accuracy (about 0.012 mm), while the BIC and CV method 
seem to prefer a model with higher complexity (with the median of 80 for BIC, 69 
for CV, and 33 for our modified BIC), although BIC exhibited good consistency 
and insensitivity to random variances. With our criterion, a much lower model 
complexity was achieved, while keeping similar estimation accuracy. On the whole, 
our method achieved a good compromise between the selected model complexity 
and estimation accuracy.  

Then we further tested our method (modified BIC criterion) with different sized 
samples, where the number of prediction samples used was about 40% of that of the 
training samples. The results are given in Table 6.1. It can be seen that with the 
increase in the sample size, the estimation accuracy tends to improve while the 
model complexity tends to increase. Such an effect becomes less obvious when the 
sample size is bigger than 1200, where the model complexity and accuracy tend to 
be stabilized. In such a case, the corresponding model structure can be considered as 
converged to the true model of the freeform surface. In our system, since we can get 
a sample set with a sufficiently large size from a cloud of data obtained by the vision 
system, we can assume that the true model structure to describe the unknown 
freeform surface can be obtained. 

Table 6.1. Results of model selection by modified BIC with different sample sizes 

Sample 
size 200 300 500 800 1200 1600 2000 2500 

Accuracy 
(MSE) 0.075 0.019 0.022 0.019 0.015 0.015 0.015 0.015 

 
Model 

Complexity 
2 3 4 4 4 4 4 5 6 6 6 6 6 6 6 6 

 

Here, we used bi-cubic B-splines to model the freeform surface. Different 
B-spline models with different control points in u and v directions were evaluated 
by our modified BIC criterion. The result was a B-spline model with 6 control 
points in both u and v directions respectively (totally 36 parameters to be estimated) 
which had the highest scores of our modified BIC. This model is a result yielded by 
our method to represent the freeform surface to be reconstructed. 

Based on the selected B-spline model, the minimal set of 360 measurement data 
was used to estimate these parameters. As discussed in Sect. 3, high uncertainty in 
the estimated parameters indicates that the estimated values of ˆ  can deviate 
significantly from the true values of . In other words, the lower the uncertainty in 
the estimated parameters, the more reliable the estimation ˆ  is. Here, we use the 
log(|M|) as the indicator of the uncertainty in a B-spline model. The larger the 
log(|M|), the lower the uncertainty.  
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Fig. 6.5. The locations of the measurement data before optimization 

 

 
Fig. 6.6. The locations of the measurement data after optimization 

Next, we employed the Fedorov exchange algorithm to optimize the locations of 
the measurement data. The locations of the measurement data before and after the 
optimization are shown in Figs. 6.5 and 6.6. Before optimization, the measurement 
data were located randomly in the parameter space (u, v) of the B-spline surface, 
with the uncertainty of the B-spline model log(|M|) being –120. Using the Fedorov 
exchange algorithm, the locations of sample points were adjusted one by one, with 
the log(|M|) value of the B-spline model increased gradually to –94.5, which shows 
a significant decrease in the corresponding uncertainty of the B-spline compared 
with using random locations in the measurement data. On the other hand, increasing 
the sample size can also reduce the uncertainty of a B-spline model. To achieve the 
same level of uncertainty in the B-spline model with random locations in the 
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measurement data, about 470 more measurement data would be needed in the 
sample set. This shows that optimizing the locations of the measurement data point 
to be sensed by CMM’s touch probe can yield much more reliable model 
estimation, without increasing the number of measurements to be taken. We also 
compared our optimization results with a measurement of equidistant probing 
points. The uncertainty log(|M|) of the B-spline model using equidistant probing 
was found to be –220.1 which is much worse than our optimization result. 

Here an interesting phenomenon to note concerning the optimized locations of 
the measurement data is that after optimization, the measurement data are located in 
the neighborhood of each model parameter. These relocations allow for a more 
reliable model estimation in the parameterization space. The coordinates (x, y, z) of 
the measurement data can be mapped from the parameter variables (u, v) with 
appropriate coordinate transformations. Finally, the surface of the object in Fig. 6.2, 
reconstructed using our method, is shown in Fig. 6.7. Here, the mean deviation of 
the measured coordinates from the reconstructed surface is 0.012 mm, while the 
minimum deviation is 0.0011 mm and the maximum deviation is 0.028 mm. 

 

 
Fig. 6.7. The reconstructed freeform surface 

From the experiments, we observed that in the parameter space, the locations of 
the measurement data points are related to the structure of the B-spline model. For a 
uniform cubic B-spline model, the control points are distributed uniformly in the u 
and v directions, giving rise to some clusters in which the measurement data points 
are located. Therefore, we infer that the structure of a B-spline model determines 
the locations of the measurements and the model structure represents the 
geometrical feature of a surface, which can be extracted from the cloud of data 
acquired by a vision system. In addition, as there is a coordinate transformation 
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between the location parameters (u, v) and the corresponding spatial coordinates (x,
y, z), different parameterization methods can influence the optimization results. We 
further infer that if we locally modify the distribution of the control points 
according to the geometrical feature of a surface, the distribution of the 
measurement data will be changed accordingly. 

6.6 Summary 

In this chapter, we present a sensing strategy for optimal measurements for the 
reconstruction of freeform surfaces. We assume the availability of a vision system 
to quickly obtain the rough data of a surface for guiding the more accurate but much 
slower touch sensing such as the touch probing in CMM. We investigated the use of 
B-spline models to represent freeform surfaces and proposed the modified BIC 
method for selecting the optimal model structure from the cloud of data points 
acquired by a 3D vision system. Based on the model structure, the number of 
measurement data needed for the high-precision measurement is then determined. 
In order to obtain a more accurate model, the uncertainty of the model is analyzed. 
Then using the statistical analysis of the Fisher information matrix, the locations of 
the measurement data points are optimized to reduce the uncertainty in the model. 
Based on the results of the optimized measurements, a more accurate touch sensing, 
e.g. by CMM’s touch probe, can be used to obtain the accurate measurements for 
the reconstruction of the freeform surface more efficiently. The proposed method 
will allow the advantages of the high speed in vision sensing and the high accuracy 
in touch sensing to be utilized for efficient and accurate reconstruction of freeform 
surfaces. The experimental results show that the proposed method is effective and 
promises useful applications in integrated multi-sensor measurements such as 
vision-guided CMM for reverse engineering. When combined with an adaptive 
modeling scheme based on the features of a freeform surface, adaptive localization 
of the measurement data points can also be implemented. 



 

Chapter 7  
Sensor Planning for Object Modeling 

While sensor placement for model-based vision tasks has been discussed in the 
previous chapters, we are about to present a method of viewpoint planning for 
incrementally building the model of unknown objects or environments by an active 
visual system in the following three chapters. We firstly list some typical 
approaches to sensor planning for model construction, including the multi-view 
strategy and existing contributions. The standard procedure for modeling of 
unknown targets is provided. A self-termination judgment method is suggested 
based on Gauss’ Theorem by checking the variations of the surface integrals 
between two successive viewpoints so that the system knows when the target model 
is complete and it is necessary to stop the modeling procedure. 

7.1 Planning Approaches to Model Construction 

7.1.1 Model Construction from Multiple Views 

Multiple views are required to reconstruct a 3D model of a complete object or 
environment. Some single depth images are acquired from several views and 
merged together with geometric fusion techniques to produce a representation of 
the underlying 3D target. This is the basic idea in model-building tasks. 

Considerable relevant works have been conducted recently for constructing the 
model of a scene or building. Gimel’farb and Haralick (1997) conducted 
experiments in voxel-based multiple-view terrain reconstruction. They described 
the reconstruction of the RADIUS model-board scene from 40 pre-calibrated 
images collected by different cameras having different positions and orientations, 
under various illumination, and at different times. Bolter and Leberl (2000) studied 
the detection and reconstruction of buildings. The exploitation of the building 
becomes feasible by combining multiple views and multiple data types of the same 
scene. They used information from the interferometric height and coherence data to 
separate regions containing buildings from other objects in the scene. Shadow 
information from magnitude images was then used to delimit the exact boundaries of
the buildings further. Liebowitz and Zisserman (1999) also presented an approach
to combining scene and auto-calibration constraints. Calibration constraints
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were provided by imaged scene structure, such as vanishing points of orthogonal
directions, or rectified planes. 

The problem of 3D model construction was also addressed in Chen et al. (1999) 
for a free-form object from multiple range images using spherical harmonics. The 
relative phase of each pixel on the object surface was computed from five 
phase-stepped interferometry images. Phase unwrapping, which converts relative 
phase into absolute phase, was then applied to obtain a range view of the sensed 3D 
surface. Multiple range views were first aligned with one another and then 
integrated to form a 3D object model. Higuchi (1995) described an approach to 
building a 3D model from a set of arbitrary range images without initial estimate of 
the relative viewpoints. The approach was based on building discrete meshes 
representing the surfaces observed in each of the range images, mapping each of the 
meshes to a spherical image, and computing the transformations between the views 
by matching the spherical images. 

On direct surface reconstruction, recently Siddiqui and Sclaroff (2001) proposed 
a method for reconstruction of 3D rational B-spline surfaces from multiple views. 
Given corresponding features in multiple views, the surface was reconstructed. 
After 2D B-spline patches were fitted to each view, the 3D B-splines and projection 
matrices could then be extracted from the 2D B-splines using factorization 
methods. The surface fit was further refined via an iterative procedure. A hierarchal 
fitting scheme was proposed to allow modeling of complex surfaces by means of 
knot insertion. In a more complex method, (Shapiro 1995) presented a 
domain-model approach to reconstruction of 3D environments for virtual reality. 
The approach was to use domain knowledge to simplify and improve the 
model-acquisition process. It was knowledge-driven and attempted to understand 
the physical structure of the environment and of the individual objects in the 
environment. They proposed to develop physical domain models that would define 
the physical constraints of a particular domain. Such models would include such 
information as possible 3D surface classes, possible materials, surface relationships,

Before multiple views are integrated to form a complete 3D model, a registration 
step is necessary to find the transformation matrix between each pair of views. The 
view registration is to align the point sets of the different views, so that errors in the 
overlapping regions are minimized. If two sets of corresponding points have been 
identified, registering two range images can be done using a quaternion-based 
non-linear optimization method as described in Horn (1987), Besl and Mckay (1992). 
For integration of both range and intensity information in the registration process, 
Weik (1997) proposed to use the intensity information for point correspondences. 
Lucchese et al. (1997) proposed a method based on 3D Fourier transform, in which 
the intensity information is used only for the disambiguation of the shape-based 
registration results. Pottmann et al. (2002) presented an iterative algorithm which 
simultaneously registers all 3D image views. Ho and Chua (1999) presented to 
register surfaces using Point Signatures. Multiple range images were extracted from 
various unknown viewpoints and integrated to form a complete 3D representation of 
the model. A long list of other works on registration can also be found in the literature 
but will not be given here as it is not the focus of this research. 
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common 3D primitive solids, functional relationships among the 3D primitives,
primitives, and fixed or constrained lighting and sensor information. 

Gray et al. (2001) presented a model creation using multiple range and intensity 
image pairs of an object. All of the pairs were assumed to have been registered to a 
global coordinate system. The individual range images were used to create a surface 
mesh and the associated intensity images were applied to the surface mesh as a 
texture map. Some general representations of target surfaces have been considered 
in a bottom-up framework, where many small planar regions were fitted to an 
object. In particular, planar meshes were explored (Fua and Leclerc 1996). They 
further modeled the surfaces as oriented particles or tiny planes with associated 
texture (Fua 1997). While generally in practice, many facets are needed for these 
methods to successfully approximate a surface. In many cases objects intrinsically 
do not have very high complexity and more appropriate classes of models are 
sought. Shashua and Toelg (1997) proposed a method that can be used when objects 
are well approximated by quadric surfaces by examining the induced flow field. Lin 
et al. (2002) also proposed an approach to reconstructing an environment model by 
using a well-calibrated active binocular head. The reconstructed 3D points and their 
gray level values are stored in the inverse polar octree. An active control scheme has 
been used to minimize the ambiguity in stereo matching. 

To reconstruct a complete model of an unknown object, for which no priori 
information is available, it is insufficient to simply fuse several views from 
un-carefully planed positions. It is necessary to locate sensors in the environment 
strategically, since not all surfaces may be visible from a single point, nor will data 
be acquired at sufficient resolution. Mobility or sensor placement is therefore 
paramount to the 3D reconstruction. Sequeira et al. (1996, 1999) proposed the 
perception planning algorithms recently. The algorithms start by detecting the 
occlusions on the current 3D reconstructed environment, followed by the evaluation 
of the set of potential capture points from which all the occlusions can be resolved. 
This set is fed into an optimization procedure aiming at: (1) minimizing the number 
of capture points; (2) selecting those points from which the occlusions areas are 
captured, as much as possible, along the normal to the occluded plane, (3) selecting 
those points from which the distance to the occlusions leads to smaller errors on 
range acquisition, i.e., minimize depth error. 

An intensive survey of object reconstruction with view planning leads to the 
problem of sensor placement for observing unknown objects, which has been 
presented in the previous chapter. The author proposed an incremental method for 
complete object reconstruction. The next view is determined according to the trend 
surface which is proposed as the cue to predict the unknown portion of an object or 
environment. This method is target-driven and best suited for modeling large 
continuous objects or environments. The following sections present a cue to derive 
real dimensions and provide some experiments of surface reconstruction and 
complete object reconstruction. 
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7.1.2 Previous Planning Approaches for Modeling 

In some vision tasks of modeling and autonomous exploration, there is often no 
priori information provided, and even nearly nothing is known about the object’s 
geometry except that it has a certain extent. 

Since reconstruction of a model for a complete object surface requires images 
from multiple views (Banta 1996) and prior to data acquisition the number of views 
for an unknown object and their optimal positions is not known, techniques are 
required to select the next best view (NBV) based on the measurement of part of an 
object’s surface. The optimal set of views for capturing a complete object surface 
will depend on both the unknown surface shape and the known sensor geometry and 
degrees-of-freedom. 

In general, the following three steps are necessary to build a complete surface 

images from different viewpoints; (2) registering the images into a common 
object-centered coordinate system; (3) integrating the range views into a 
non-redundant model description. In primitive object reconstruction and depth 
estimation tasks using mobile intensity cameras, the problem is to choose 
camera motions which minimize error in the parameter estimation algorithms. 
In surface reconstruction tasks using intensity cameras (Kutulakos et al. 1994), 
the problem is to control the camera’s motion to guarantee local and hence 
global surface reconstruction. Finally, in scene reconstruction, the task is to 
build a model of an unknown scene, perhaps for path planning and potentially 
with unknown extent. 

The majority of work carried out in this sensor position planning is mainly 
concerned with finding the best views to digitize an object without missing zones, 
and with a minimum number of views. Varying the view parameters causes the 
observed features to undergo measurable local transformations which can be used 
to simplify and constrain the computation of unknown scene parameters. Kutulakos 
and Dyer (1994) exploited the differential properties of smooth surfaces to model 
local changes in the appearance of an occluding contour due to camera movement. 
This knowledge shows them how to position the camera, first to extract occluding 
contours from an edge map, and then to use the extracted contours to sweep out the 
complete 3D shape. 

With the visibility constraints, this sensor placement problem is addressed of 
deciding which areas of the viewing volume need to be scanned by identifying 
discontinuities either in each 3D image or in the model under construction (Maver 
et al. 1993, Zha 1997, Pito 1999). Compared with Ahuja and Veenstra (1989), who 
have considered the problem of the views needed to build an octree representation 
of a 3D scene, Banta et al. used uniformly sized voxels also tagged as either empty 
or not, to represent the viewing volume. The next best view was identified as the 
one that would sample the most nonempty voxels. Papadopoulos-Orfanos and 
Schmitt (1997) also utilized a volumetric representation, but concentrated on a 
solution to the next best view problem for a short field-of-view range scanner. Their 
work focused on collision avoidance because the reason of their small field of view 
causes the sensors to navigate closely to the object. The system digitizes n views, 

description of an object by using 3D images (Zha et al. 1998): (1) acquiring range 
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separated by an angle of 2 /n, where n is a parameter chosen by the operator. 
Tarabanis and Tsai (1991) have worked on a theoretical analysis of the best camera 
viewpoint for detecting a generic feature. 

Occlusion has been strongly associated with viewpoint planning in the modeling 
research literature for some time. Kutulakos et al. (1994) utilized the changes in the 
boundary between sensed surface and occlusion with respect to sensor position to 
recover shape. A similar histogram-based technique was used by Maver and Bajcsy 
(1993) to find the viewing vector that would illuminate the most edge features 
derived from occluded regions. Whaite and Ferrie (1997) used a sensor model to 
evaluate the efficacy of the imaging process over a set of discrete orientations by 
ray-casting: the sensor orientation that would hypothetically best improve the 
model is selected for the next view. The work by Pito (1999) removed the need to 
ray-cast from every possible sensor location by determining a subset of positions 
that would improve the current model. Pito (1999) presented a solution for the next 
best view problem (NBV) of a depth camera in the process of digitizing unknown 
parts. The system builds a surface model by incrementally adding range data to a 
partial model until the entire object has been scanned. No assumptions are made 
about the geometry or topology of the object. 

Thus NBV planning algorithm is an incremental model construction method 
composed of a number of observing-and-planning loops. Based on a partial model 
created thus far, this algorithm provides quantitative evaluations on the suitability 
of remaining viewpoints as the NBV. Zha et al. (1998) addressed two main issues to 
determine the next-best-viewpoint: (1) a uniform tessellation of the spherical space 
and its mapping onto the 2D array; (2) incremental updating computations from 
evaluating viewpoints as the NBV. They represented the un-scanned areas of the 
viewing volume with vectors “attached” to the boundaries of surface meshes, which 
is for creating a complete model of a curved object from multiple range images. Yu 
et al. (1996) proposed to determine the next pose of the range sensor by analyzing 
the intersections of planar surfaces obtained from the previous images, so that the 
unseen parts of the scene can be observed most. This does not depend on a priori 
geometrical information about the scene. They set up a sphere around the scene and 
the next view is selected for getting the largest unseen area. Arbel et al. (1999) 
showed how entropy maps can be used to guide an active observer along an optimal 
trajectory and how a gaze-planning strategy can be formulated by using entropy 
minimization as a basis for choosing a next best view. 

In 1996, Banta and Abidi described a system to automatically determine an 
optimized next range sensor position and orientation during the reconstruction of a 
three-dimensional model. The developed system reconstructs a model consisting of 
surfaces which have been viewed and volumes occluded from the camera’s view. 
Ideally, a sensor pose determined by a “best-next-view” system will reveal the 
greatest quantity of previously unknown scene information. The algorithm attempts 
to intelligently cluster the occluded data and orient the sensor on the centroid of the 
largest cluster. 

Maver and Bajcsy (1993) proposed to solve the next best view problem for a 
specific scanner and scanning setup consisting of an active optical range scanner 
and a turntable which rotated between scans. The unseen portions of the viewing 
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volume were modeled as 2.5D polygons where each edge of a polygon was given 
a height corresponding to the median of the heights of its pixels. The idea is to 
scan into these polygons from directions which are not occluded. The solid angles 
in [0, 2pi] which have an unobstructed line of sight into some un-scanned portion 
of the viewing volume were accumulated in a histogram and the next best view 
was chosen as the angle with the largest value. In a similar but more general 
solution, Reed and Allen (1999) determined the visibility volume, which is the 
volume of space within which a sensor has an unobstructed view of a particular 
target. 

For scene exploration, Birnbaum et al. (1993) presented a system which uses a 
generative causal semantics to control the visual exploration of arbitrarily stacked 
block structures. The system works by encoding the knowledge that the scene is 
stable under the force of gravity in a simple set of rules. The rules are used to direct 
visual attention to search for blocks which make an unstable stable. Marchand et al. 
(1999) also dealt with the 3D structure estimation and exploration of a scene using 
active vision (Bajcsy 1988), whose purpose is handled at two levels: a local aspect 
where active vision is used to constrain the camera motion in order to improve the 
quality of the reconstruction results, and a global aspect which is used to explore the 
unknown areas. The scene is assumed to be only composed of polyhedral objects 
and cylinders. The technique proposed to solve the “next best view” problem is a 
depth-first search algorithm and the strategy ensures the completeness of the scene 
reconstruction. 

As presented in Chap. 1, the fundamental objective of sensor placement in such 
nonmodel-based vision tasks is to increase knowledge about the unseen portions of 
the viewing volume while satisfying all the placement constraints such as in-focus, 
field-of-view, occlusion, collision, etc. The previous research efforts were often 
concentrated on finding the best next views by volumetric analysis or occlusion as a 
guide. However, since there does not exist any information about the unknown 
target, it is actually impossible to give the true best next view. In this work, the 
method involves the decision of the exploration direction and the determination of 
the best next view and the corresponding sensor settings. The trend surface is 
proposed as the cue to predict the unknown portion of an object or environment and 
the next best viewpoint is determined by the expected surface. The viewpoint 
determined in such a way is predictably best. These works will be further discussed 
in detail in Chaps. 8 and 9. 

7.2 The Procedure for Model Construction 

The modeling process is to explore and obtain the unknown portion of the 
object/environment, in which an incremental method is very common. It results in a 
sequence of viewing operations for local model acquisition. Each successive 
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During such a process, the first view is obtained at an arbitrary pose, a 3D depth 
map M0 is created, and then it is registered as the initial object model O0. At the 
same time, the sensor pose is recorded as P0. Then a next view pose Pi+1 (i=0, 1, …, 
n) must be determined so that the modeling process can continue until the whole 
object is reconstructed. 

 

 

Fig. 7.1. Multiple viewpoints for incremental modeling 

 

Figure 7.1 illustrates five viewpoints needed for acquisition of an object 
geometry, from P1 to P5. Since there is no prior information about the object, each 
viewpoint (from step 2 to 5) must be decided in run-time. The key problem in this 
task is to plan a most feasible viewpoint, called the Next-Best-Pose (Zha 1997) or 
Next-Best-View (Wong et al. 1999), for performing the successive vision 
perception, according to the partial model that has already been acquired. A next 
chapter is going to propose a strategy based on the trend surface for a viewpoint 
decision. Algorithms are developed to dynamically determine the sensor’s position, 
orientation, and optical settings. 

Generally, an entire object/environment model is constructed in three stages. 
First, the 3D sensing technique is applied to measure the shapes of the objects in the 
scene. Then these local shape models are integrated into a single global model to 
obtain the complete shape. Finally the shape model can be rendered.  

P1 

P2 P3 

P4 

P5 

sensing result with new information then is merged with the global model being 
built by proper registration. 
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Fig. 7.2. The procedures for 3D object reconstruction 

If we are only concerned with the acquisition of the object model, the 
reconstruction process can more precisely be described with six steps, as 
illustrated in Fig. 7.2.  First,  the vision sensor must have been carefully cali-
brated in advance. A first view is captured for scene analysis. Then, a partial 
model of the target is acquired by a view setting. A 3D reconstruction method is 
applied in this step for converting the 2D images into 3D information. Third, the 
3D local model is registered and fused with the global model. Here the model is 
checked to test if it is already finished. If not, a new viewpoint need be decided. 
The new viewpoint should be “best” so that the whole modeling task can be 
finished with the highest possible efficiency and accuracy. If a new viewpoint is 
decided (with methods to be proposed in a later chapter), the sensor will be 
moved to the corresponding pose (position and orientation) with proper settings. 
Since the sensor’s setting (configuration) may be changed, it has to be calibrated 

Sensor calibration and
first view acquisition

3D object measurement (a
single view)

3D model registration and
fusion

Next viewpoint decision

Sensor reconfiguration
and recalibration

Sensor placement
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by a self-recalibration method. Then the modeling cycle continues in the next 
view acquisition and model construction. 

7.3 Self-Termination Criteria 

To automatically construct a 3D model, a primary consideration is that of 
determining when planning is no longer needed and the modeling process is 
complete. The entire process consists of 5 repeated steps: determine the next best 
view and move the object/sensor system, acquire the object again, register the new 
range data and integrate the new range data with the partial surface, self-terminate 
the procedure of acquiring surface data.  

On self-termination criteria, Banta and Abida (1996) used a surface area at 
each new viewpoint. The system would terminate the reconstruction if the ratio 
of surface faces to occluded faces is large and the change in the surface face 
count is small or if the change in the occluded face count is small. Arbel and 
Ferrie (1999) used the entropy value in the termination condition. The system 
iteratively measures the entropy until it reaches a small enough convergence 
value. 

None of the above criteria are related to explicit requirements to be met by the 
reconstructed object model, and the threshold value used for the termination 
judgment can badly affect the measurements. Furthermore, the termination criteria 
only use measurement data from one viewpoint for the termination condition, 
whereas the previous measurement data are not taken into account. As a result, 
these termination criteria are not robust, especially when dealing with complex 
objects. 

In this section, we present a method that can automatically and efficiently 
acquire the 3D model of an object with self-termination, by calculating the volume 
encompassed by data from the available views and analyzing the variation in the 
volume in two successive viewpoints. 

7.3.1 The Principle  

Suppose we have a surface normal integral over a closed surface S, 

S
dSrfI )( ,  

and this surface is the surface of a volume V.  The surface normal points outwards 
from the enclosed volume. From Gauss theorem, the integral then becomes the flux 
of the volume V (see the figure below).  
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Fig. 7.3.  The principle of Gauss’ theorem 

Here, if 

f(r) = x i + y j + z k, (7.1) 

then 

SSV
zdxdyydzdxxdxdydSrfdVI
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(7.2) 

Following the measurements from the planned views, the volume encompassed 
by data points of the object surface will be convergent to a steady value. If this 
condition is satisfied, then the measurement can be terminated. In this way, the 
self-termination condition is converted to calculating the volume of the object. As 
the shape of the object surface can be arbitrary, it is difficult to calculate the object 
volume directly. Here, we will use a surface integral to replace the volume integral 

7.3.2 Termination Judgment 

As mentioned above, the volume encompassed by data points can be obtained by 
computing the surface integral. Here we present a method for computing surface 
integrals using triangular meshes. 

For a triangular mesh i  ),1,,2,1( nni , we can obtain its plane equation
equation, 

0iiii dzcybxa  (7.3) 

The normal vector of this triangular mesh plane is  
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based on Gauss’ theorem (Fig. 7.3). 
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Then, the volume integral can be defined as 

n

iV i

xdydzydxdzzdxdydvV (7.5) 

For such a triangular mesh, its surface is 
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Equation (7.6) is a vector function. To simplify its computation, we change the 
vector function surface integral to a scalar function via 
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where )( zyxA iii .                                                                                     

Here iD  is the projected area of i  in the coordinate plane. We choose the first 
area integral in (7.7), to explain the calculation. The equation of the triangular 

surface is 0dzcybxa iii .  If 0ii ba ,  then 
ic

dz . The triangular 

mesh is parallel to the X–Y plane. The projected area iD  of the triangular mesh iS  
is shown in Fig. 7.4. In such a case, the area integral can be given as  
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(7.8) 
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Fig. 7.4. Projection of triangular mesh Si 

If ai or bi  0, the triangular mesh surface integral is the sum of the three 
projected area integrals. The other area integrals are calculated in a similar way to 
the first and will not be detailed here.  

After all the triangular mesh surface integrals are calculated, if newly obtained 
data points do not bring obvious changes to the previous measurement value of the 
surface integral, i.e. 

11 ViViii dVdVVV
 

(7.9) 

then the process of measurement will be terminated. 
Here 1, ii VV  are the volume values at two successive viewpoints i and i+1 

respectively. 1iV  in (7.9) is the data points encompassed volume at the (i + 1)th 
viewpoint, and is given as  
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where 
i

j
ji VV

1
 is the data points encompassed volume from the previous 

viewpoint i. '
1iV  is the encompassed volume from data points acquired at the  

(i + 1)th viewpoint. 
1

1
1

i

j
DD jj

V  is the encompassed volume from data points of 

the overlapped areas at the (i + 1)th viewpoint and the previous viewpoints i. Each 
time a new triangle is generated, we will check for its possible intersection with the 
neighboring meshes. If it is possible, the current re-triangulation will be stopped 
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and instead a vertex of the intersected edge will be chosen to generate another new 
triangle. This will lead to a change in the volume integral in the overlapped areas. 

Equation (7.9) can be rewritten as  

1

1

'
11 1

i

j
DDiii jj

VVVV
 

(7.11) 

where  is the variation in volume between the (i + 1)th viewpoint and the 
re-integral volume value from the overlapped surface data at the (i + 1)th viewpoint 
and the preceding viewpoints i.  

Following (7.11), the termination condition is based on the difference between 
the surface integral of the newly acquired surface data and the overlapped area 
surface integral. In practical implementation, if there are no overlapping areas 
between viewpoints during the view planning, we skip the calculation of the surface 
integral. Otherwise, we only calculate the surface integral for new data obtained 
from the new viewpoint and the overlapped areas. With more views taken, the 
overlapped areas will increase, resulting in smaller and smaller variations in the 
volume (approaching zero if there are no calculation errors). In practice, there are 
always some errors including the matching errors, quantization errors and system 
calibration errors. All these errors would lead to some none-zero residue in the 
solution of (7.11). However, if the surface data acquired from a new viewpoint 
totally overlap those from the previous viewpoints, the above error residue will be 
very small, i.e. 

ViViii dVdVVV
1

1
 

 

When a set error tolerance is satisfied, the measurement and view planning 
process will be terminated. 

7.4 Experiments 

The view planning system was implemented as part of an automated surface 
acquisition system. Several experiments were carried out in our laboratory on the 
construction of object models. The acquisition process contains the following steps: 
scan, register the new data with the partial model available, integrate the new data 
with the partial model, judge if the measurement is to be continued, determine the 
NBV, and repeat the above until the termination condition is satisfied.  

The range sensing is achieved by using a camera and projector to form an active 
vision system (Li and Liu 2003). The sensor can move around the object. As the 
object is placed on a worktable, the movement of the sensor in space is constrained 
to the upper semi-sphere space. The system is illustrated in Fig. 7.5. A head model 
(shown in Fig. 7.6) was used as a typical example to illustrate the implementation of 
the developed view planning method for model construction. The first view was 
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assumed to be taken from an arbitrary viewpoint. The succeeding next views for the 
unseen part of the object were determined by the trend surface method (which will 
be further discussed in detail in Chap. 9). 

 

 

Fig. 7.5. A view of the scan setup 

 

 
Fig. 7.6. The test object: male head 

The object model was incrementally built by five views. At each view, a new 
surface part was acquired and integrated with the previously acquired data to form a 
partial model. The exploration direction and sensor pose were determined by the 
trend surface method. The planned views and the part of the surface acquired at 
each view is shown in Fig. 7.7 (a–e). The viewpoint vector has a format of [x, y, z, , 

, ], representing the six parameters of the 3D position and 3-axis rotation. 
 

 

Object 

Worktable 

Sensor Rotation 

Motion of sensor 
unit
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Fig. 7.7. The planned views for a head model 

(a) Viewpoint 1 (–329.39, –534.14, 24.268, –1.0182, –0.55259, 0.038653)

(b) Viewpoint 2 (414.4, –58.619, 4, 133.24, –1.4302, –0.14052, 0.22356)

(c) Viewpoint 3 (51.48, 43.19, 615.489, 0.8727, 0.6981, 0.994) 
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Fig. 7.7. (Continued)

(d) Viewpoint 4 (–58.219, 373.31, 280.85, –1.4161, 0.1105, 0.4889)

(e) Viewpoint 5 (–563.05, –399.39, 190.25, –0.953, –0.7093, 0.3249)

(f) The final point cloud of the male head 
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Fig. 7.7. (Continued)

In Fig. 7.7 (b–e), light blue represents the new data acquired from the planned 
next view. Dark blue represents the available data acquired from the previous 
view(s). At the same time, the self-termination judgment method was also tested in 
viewpoint planning. The results in the surface integral and computation time are 
given in Table 7.1 for each viewpoint. Here “#Views” refers to the number of 
viewpoints required to obtain the complete object surface. “Max time” is the time it 
takes for the system to calculate the surface integrals. Figure 7.8 shows the 
variations in the volumes between two successive viewpoints. Here, the sixth 
viewpoint is used only to show that the self-termination judgment method is 
convergent. This last viewpoint is not needed in a real implementation. As can be 
seen, the final variation in volume approaches approximately zero, indicating that 
the termination condition is satisfied. 

 

 

Fig. 7.8. The variation of volume between two successive viewpoints 
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 Table 7.1. Computation results in reconstructing the head model with self-termination 

View 
steps 

1 2 3 4 5 6 

CPU 
time(s) 16.621 46.102 78.23 98.34 113.75 128.34 

Surface 
integral 

(104mm3)  
2.2516 3.7583 5.86954 6.9974 8.1869 8.1898 

Volume 
change 

(104mm3) 
 1.5067 1.9371 1.3020 1.1895 0.0029 

 
In yet another test, a duck model (see Fig. 7.9) was used. Due to the complexity 

of this object, in some surface areas, the occlusion-guided method is used to 
continue the view planning and acquisition. The results are shown in Fig. 7.10. 

 

Fig. 7.9. The test object: Duck model 

The duck model was incrementally built by six views. During the view planning 
process, the sensor pose for Viewpoint2 could not be determined by the trend 
surface method. In Fig. 7.10a, the dark color represents the real surface data, and the 
dark blue represents the acquired data from viewpoint one. The light blue represents 
the trend surface. As can be seen, the prediction by the trend surface is invalid for 
the next view planning. This was identified by our algorithm. As a result, the 
occlusion-guided method was chosen automatically by the system to continue the 
view planning. 
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Fig. 7.10. The acquisition procedure of a duck model 

(a) Viewpoint1 (45.665, 405.41, 139.21, 0.079731, 89.92, –0.23819) 

(b) Viewpoint2 (481.27, –417.07, 14.332, 0.95439, 89.046, 0.024294)

(c) Viewpoint3 (93.497, 316.81, 383.88, 0.21023, 89.79, 0.70843) 
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  Fig. 7.10. (Continued)

(d) Viewpoint4 (–58.186, 405.47, 138.89, 0.10165, 89.898, 0.23764) 

(e) Viewpoint5 (–41.05, 61.126, 583.63, 0.49481, 89.505, 1.4238) 

(f) Viewpoint6 (–246.49, 348.26, 324.86, 0.52414, 89.476, 0.5831)
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Fig. 7.11. The variation of volume between two successive viewpoints in the duck model 

Fig. 7.10. (Continued)

The self-termination judgment method in viewpoint planning is tested on the 
duck model, with the result in volume changes given in Fig. 7.11. As observed in 
this case, although the trend surface method can be invalid for complex objects, the 
invalid areas can be identified by our method and then another method can be used 
to complete the next best view planning. In all the test cases, the view planning was 
successfully completed without knowing the object model and complete object 
models were automatically acquired without any human interference. 

It should be noted that in the above experiments, we assumed that no model of 
the object was available for the view planning. If we have the model of the target, 
careful planning will result in a minimum number of viewpoints via some 
optimization approaches, as each view including the first can be planned optimally. 
Take the head model for example, if we have the model, four views will enable us to 
acquire its surface, as shown in Fig. 7.12. Without an object model, however, the 

 
(g) The final point cloud of the duck model 
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Fig. 7.12. Acquisition of a known model 
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Fig. 7.12. (Continued)

To compare our method with a previous one, we implemented Maver’s 
algorithm [1993] for the duck model. Figure 7.13 shows some results. Here, it 
turned out that the first and second views were the same as our algorithm’s (i.e. Fig. 
7.13 (a),(b) are the same as Fig. 7.12 (a),(b)). At each viewpoint, there are a number 
of occlusion polygons, resulting in a number of new viewing directions. In this case, 
Maver’s algorithm yields a position from which the detected occluded area is 
maximal. The next viewpoints were estimated based on the occlusion information 
extracted from the previous images. 

first view is arbitrary in space and the information thus acquired is normally less 
than the former case. Therefore, when the target is unknown, more views will 
generally be needed than the case when it is known.  

Fig. 7.13. Acquisition with Maver’s algorithm 

 
(c) 
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Fig. 7.13. (Continued)

 
(d) 

 
(e) 

 
(f) 
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Fig. 7.13. (Continued)

Table 7.2. Computation results in reconstructing the duck model with Maver’s algorithm 

View steps 3 4 5 6 7 
CPU time(s) 93 132 187 213 265 

Surface 
integral 

(103mm3) 
2.398 3.761 4.97 6.533 8.185 

Integral 
change 

(103mm3) 
0.895 1.363 1.209 1.563 1.652 

 
Although Maver’s algorithm could be used to obtain a good model 

It should also be noted that our view planning method takes into account the 
surface trend without excessively considering the surface details. For example, the 
area of the ear in the head model has some complex and concave surface features 
(see the Fig. 7.14). This leads to some occlusions at certain viewpoints so that some 
features could be lost. However, these features are small and will not make 
contributions large enough to affect the view planning. In the example about the 
area of the ear, the un-scanned surface is normally less than 1% of the whole area 
seen in that particular view. On the other hand, if these features are big enough, e.g. 
with serious occlusions or large areas of abrupt changes in surface geometry as in 
the duck model, they will affect the algorithm via invoking an alternative 
occlusion-based method. Concave surfaces in general still present a challenging 
task for view planning with issues open for future research. 

 

 
(g) 

automatically, the number of needed viewpoints is larger than our algorithm’s 
(Table 7.2). This is because the viewpoints are acquired based on the occlusion 
information in Maver’s algorithm. The object surface information (the surface 
continuity or surface order) is not used in formulating the next view. Such 
information could improve the view planning. 
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(a) Real model        (b) Reconstructed model 

Fig. 7.14. Comparison in local surface features 

7.5 Summary 

For a system to be able to automatically reconstruct a 3D model, it not only needs to 
be able to plan the sensor viewpoints but also to terminate the reconstruction by 
itself during the model acquisition process. In this chapter, an approach to 
self-termination for measurement and digitalization of 3D objects of arbitrary 
shapes is presented. With this method, all measurement data acquired at each 
viewpoint are used in checking the termination condition. By calculating the 
volume encompassed by data points acquired at each view and analyzing the 
variation of the volume at two successive viewpoints, this method provides reliable 
judgment on whether the termination criterion is satisfied. During the process of 
measurement, as the surface data are not complete to form a closed shape, it is 
difficult to directly calculate the volume encompassed by the surface data. 
Nevertheless, the volume of a data cloud could be achieved via computing the 
surface integral of the triangular meshes. In this way, a measurement task will 
continue until the volume computed in this way no longer changes at a new 
viewpoint. 

The self-termination judgment method is based on Gauss’ Theorem by checking 
the variations of the surface integrals between two successive viewpoints. When the 
variation is smaller than a given threshold, the view planning and data acquisition 
process will be terminated. Based on this principle, the termination occurs only 
when no new surface data are acquired at a new viewpoint. With this method, all 
surface data acquired up to the current viewpoint are used to check the termination 
condition. This overcomes the limitations of previous methods in using only part of 
the available surface data in the termination condition. As a result, the proposed 
method is robust to shape variations of the object surface. The implementation 
results show that the proposed method is effective in automatic reconstruction of 
the surface models of unknown objects. 
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This chapter has mentioned the method of trend surface, which is a strategy for 
generating a sequence of viewing poses. The method involves decisions on the 
exploration direction and sensor poses by using trend surface as the cue to predict 
the unknown portion of an object surface. With the exploration direction 
determination, the unknown surface of an object is predicted by the trend surface. 
Then the pose of the next viewpoint is obtained by imposing the sensor placement 
constrains. More details regarding this technology are going to be presented in 
Chaps. 8 and 9 in detail. 

 



 

Chapter 8  
Information Entropy Based Planning 

In this chapter, we present an approach with information entropy based sensor 
planning for reconstruction of freeform surfaces of 3D objects. To achieve the 
reconstruction, the object is first sliced into a series of cross-section curves, with 
each curve to be reconstructed by a closed B-spline curve. In the framework of 
Bayesian statistics, we propose an improved Bayesian information criterion (BIC) 
for determining the B-spline model complexity. Then, we analyze the uncertainty of 
the model using entropy as the measurement. Based on this analysis, we predict the 
information gain for each cross section curve for the next measurement. After 
predicting the information gain of each curve, we obtain the information change for 
all the B-spline models. This information gain is then mapped into the view space. 
The viewpoint that contains maximal information gain about the object is selected 
as the Next Best View. Experimental results show successful implementation of the 
proposed view planning method for digitization and reconstruction of freeform 
objects. 

8.1 Overview  

This chapter presents an information entropy based viewpoint planning method 
for the digitization and reconstruction of a 3D freeform object. The object is sliced 
into a set of cross section curves and a closed B-spline curve is used to reconstruct 
each cross section curve by fitting to partial data points. An information criterion 
is developed for selecting the B-spline model structure. Based on the selected 
B-spline model, we use information entropy as the uncertainty measure of the 
B-spline model and analyze the uncertainty of each B-spline cross section curve 
to predict the information gain for new measurements to be taken. As a result, we 
can obtain the prediction of the information gain about the object. The 
information gain is then mapped to the view space. The view that has the maximal 
information gain on the object is then selected as the Next Best View (NBV). The 
proposed information entropy based viewpoint planning procedure is illustrated 
in Fig. 8.1. 
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Fig. 8.1. Information entropy based viewpoint planning 

 
This work is novel concerning the parameter estimation for the NBV problem. In 

contrast to Whaite’s method (1997), here we analyze and reconstruct a B-spline 
model in the framework of Bayesian statistics. The B-spline model is more 
powerful in describing objects than a super-ellipsoid. In addition, we introduce the 
principle of model selection by which the proposed improved BIC criterion makes 
the B-spline model adaptable when newly acquired data are available. The rest of 
this chapter is organized as follows. In Sect. 8.2, we describe the reconstruction of 
cross section curves with closed B-splines and introduce the modified BIC for 
selecting a B-spline model structure. In Sect. 8.3, we define the information entropy 
of B-spline model to analyze its uncertainty and predict the information gain on an 
object. In Sect. 8.4, we evaluate the visibility of candidate viewpoints for selecting 
NBV. Finally, we present the experimental results in implementing the proposed 
method in Sect. 8.5 followed by conclusions in Sect. 8.6. 

8.2 Model Representation 

For object surface reconstructions, the 3D shape can be divided into a series of 
cross section curves each representing the local geometrical feature of the object. 
These cross section curves can be described by a set of parametric equations. For 
reconstruction purposes using parametric equations, the most common methods 
include spline functions (e.g. B-splines) (Fernand and Wang 1994), implicit 
polynomials and superquadrics (e.g. superellipsoids) (Whaite 1997). Compared 



8.2 Model Representation      149 

 

with implicit polynomials and superquadrics, B-splines have the following main 
advantages:  
 Smoothness and continuity, which allows a curve to consist of a concatenation of 

curve segments, yet be treated as a single unit; 
 Built-in boundedness, a property which is lacking in implicit or explicit 

polynomial representation whose zero set can shoot to infinity; 
 Parameterized representation, which decouples the x, y coordinates to be treated 

separately. 

8.2.1 Curve Approximation  

Let a closed cubic B-spline curve consist of n+1 curve segments, defined by  

3

0
4, )()(

n

j
jj tBtp , (8.1) 

where )](),([)( tytxtp is a point on the B-spline curve with location parameter 
t. Bj,4(t) is the j
following uniform knots vector 
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The amplitude of Bj,4(t) is in the range of (0.0, 1.0), and the support region of 
Bj,4(t) is compact and nonzero for ],[ 4jj uut . 3

0)( n
jj  are the cyclical con-
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For a set of m data points m
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m
ii yx 11 ]),([)(rr , let d2 be the sum of the 

squared residual errors between the data points and their corresponding points on 
the B-spline curve, i.e.  

2

1

3

0
4,

1

22 )()(
m

i

n

j
jiji

m

i
ii ttd Brpr . (8.4) 

From the cyclical condition of control points in (8.3), there are only n+1 control 
points to be estimated. The LS estimation of the n+1 control points are obtained 
from the curve points by minimizing d 2 in (8.4) with respect to 

T
ynyxnx

TT
y

T
x ],,,,[],[ 00

. By factorization of the B-spline, two 
separate solutions are obtained in the matrix as follows 

 th  normalized  cubic  B-spline  basis  function  defined  over  the  
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Here, we adopt the chord length method, which is the most popular one, for the 
parameterization of the B-spline. The chord length L of a curve is calculated as 
follows 

1
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i
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where 11 rrm for a closed curve. The ti associated with the point qi is given as 

max
1
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L
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where t1 = 0 and tmax = n + 1.  

8.2.2 Improved BIC Criterion  

It is known that for a given set of measurement data, there exists a model of optimal 
complexity corresponding to the smallest prediction (generalization) error for 
further data. The complexity of a B-spline model of a surface is related to its control 
point (parameter) number (Fernand and Wang 1994). If the B-spline model is too 
complicated, the approximated B-spline surface tends to over-fit noisy 
measurement data. If the model is too simple, then it is not capable of fitting the 
measurement data, making the approximation results under-fitted. The problem of 
finding an appropriate model, referred to as model selection, is important for 
achieving a high level generalization capability. Model selection has been studied 
from various standpoints in the field of statistics, including information statistics, 
Bayesian statistics, and structural risk minimization. The Bayesian approach 
(Djuric 1998, Torr 2002) is perhaps the most general and most powerful model 
selection method. Based on posterior model probabilities, the Bayesian approach 
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estimates a probability distribution over an ensemble of models. The prediction is 
accomplished by averaging over the ensemble of models. Accordingly, the 
uncertainty of the models is taken into account, and complex models with more 
degrees of freedom are penalized.  

Given a set of models {Mk, k = 1, 2, …, kmax}and data r, the Bayesian approach 
selects the model with the largest posterior probability. The posterior probability of 
model Mk is 

max

1
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r
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where p(r |Mk) is the integrated likelihood of model Mk and p(Mk) is the prior 
probability of model Mk. To find the model with the largest posterior probability, 
we evaluate p(Mk | r) for max,,2,1 kk  and select the model that has the 
maximum p(Mk | r), that is 
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Here, we assume that the models have the same likelyhood a priori, so that p(Mk) 
= 1/kmax, (k = 1, 2, … , kmax). Therefore, the model selection in (8.8) will not be 

affected by p(Mk). This is also the case with max

1
)()|(

k

L LL MpMrp since it is 

not a function of Mk. Consequently, we can ignore the factors p(Mk) and 
max

1
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k

L LL MpMrp in computing the model criteria. Equation (8.9) then 

becomes 
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To calculate the posterior probability of model Mk, we need to evaluate the 
marginal density of data for each model p(r |Mk), which requires multidimensional 
integration 

kkkkkk dMpMpMp
k
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where k is the parameter vector for model Mk, p(r | k, Mk) is the likelihood and 
p( k | Mk) is the prior distribution for model Mk. 

In practice, calculating the multidimensional integration is very hard, especially 
for obtaining a closed-form analytical solution. The research in this area has 
resulted in many approximation methods for achieving this. The Laplace’s 
approximation method for the integration appears to be a simple one and has 

,k

,k

,k
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become a standard method for calculating the integration of multi-variable 
Gaussians (Torr 2002). This yields 
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where k
ˆ is the maximum likelihood estimate of k, dk denotes the number of 

parameters (control points for B-spline model) in model Mk, and )ˆ( kH is the 

Hessian matrix of ),|(log kk Mp r evaluated at k
ˆ , 
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This approximation is particularly good when the likelihood function is highly 
peaked around k

ˆ .  his  is  usually  the  case  when  T the  number  of  data  samples  is  

large. Neglecting the terms of )|ˆ( kk Mp and using log in the calculation, the 
posterior probability of model Mk becomes 
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The likelihood function ),ˆ|( kk Mp r of a closed B-spline cross section curve 
can be factored into x and y components as 

),ˆ|(),ˆ|(),ˆ|( kk ykkxkk MpMpMp yxr  (8.15) 

where kx
ˆ and ky

ˆ  can be calculated by (8.5) .  
Consider the x component. Assuming that the residual error sequence is zero 

mean and white Gaussian with variance )ˆ(2
kxkx ,  we have the following 

likelihood function 
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with ),ˆ(2
kkxkx M  estimated by 
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Similarly, the likelihood function of the y component can also be obtained. The 
corresponding Hessian matrix kĤ of ),|(log kk Mp r evaluated at k

ˆ  is  
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Approximating |)ˆ(|log
2
1

kH by the asymptotic expected value of Hessian 

)log()(
2
1 mdd kykx , we can obtain the Bayesian information criterion (BIC) for 

selecting the structure of the B-spline curve  
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where dkx and dky are the number of control points in the x and y directions 
respectively, m is the number of data points. 

 In the conventional BIC criterion as shown in (8.19), the first two terms measure 
the estimation accuracy of the B-spline model. In general, the variance 2ˆ k  
estimated from (8.17), tends to decrease with the increase in the number of control 
points. The smaller the variance value in 2ˆ k , the bigger the value of the first two 
terms (as the variance is much smaller than one) and therefore the higher the order 
(i.e. the more control points) of the model resulting from (8.19). However, if too 
many control points are used, the B-spline model will over-fit noisy data points. An 
over-fitted B-spline model will have a poor generalization capability. Model 
selection thus should achieve a proper tradeoff between the approximation accuracy 
and the number of control points of the B-spline model. With a conventional BIC 
criterion, the same data set is used for estimating both the control points of the 
B-spline model and the variances. Thus the first two terms in (8.19) cannot detect 
the occurrence of over fitting in the B-spline model selected. In theory, the third 
term in (8.19) could penalize over-fitting as it appears directly proportional to the 
number of control points used. In practice, however, we note from our experience 

,k
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that the effect of this penalty term is insignificant compared with that of the first two 
terms. As a result, the conventional BIC criterion is rather insensitive to the 
occurrence of over-fitting and tends to select more control points in the B-spline 
model to approximate the data point, which normally results in a model with poor 
generalization capability.  

The reason for the occurrence of over-fitting in a conventional BIC criterion lies 
in the way the variances kx

2 and ky
2 are obtained. A reliable estimate of kx

2 and 
ky

2 should be based on re-sampling of the data. In other words, the generalization 
capability of a B-spline model should be validated using another set of data points 
rather than the same data used in obtaining the model. To achieve this, we divide the 
available data into two sets: a training sample and a prediction sample. The training 
sample is used only for model estimation, whereas the prediction sample is used 
only for estimating the data noise kx

2 and ky
2. For a candidate B-spline model Mk 

with dkx and dky control points in x and y directions, the BIC in (8.19) is thus 
evaluated via the following two steps: 
1. Estimate the model parameter k

ˆ  using the training sample by (8.5); 
2. Estimate the data noise 2 using the prediction sample by (8.17).  

If the model k
ˆ fitted to the training data is valid, then the estimated variance 

2ˆ k from the prediction sample should also be a valid estimate of the data noise. If 
the variance 2ˆ k  found from the prediction sample is unexpectedly large, we have 
reasons to believe that the candidate model fits the data badly. It can be seen that the 
data noise 2ˆ k  estimated from the prediction sample will thus be more sensitive to 
the quality of the model than the one directly estimated from the training sample, as 
the variance k

2 estimated from the prediction sample also has the capability of 
detecting the occurrence of over-fitting. 

8.3 Expected Error 

In Sect. 8.2, we described our approach to model selection and parameter estimation 
in the framework of Bayesian statistics. In this section, we will discuss how the 
same framework for B-spline curve approximation relates to the task of selecting 
the NBV for acquiring new data. For simplification of the description, we will 
replace k by  to show that we are dealing with the selected “best” B-spline model 
with dkx and dky control points. To obtain the approximate B-spline model, we will 
predict the distribution of the information gain on the model’s parameter  along 
each cross section curve. A measure of the information gain will be designed whose 
expected value will be maximal when the new measurement data are acquired. The 
measurement is based on Shannon’s entropy whose properties make it a sensible 
information measure here. We will describe the information entropy of the B-spline 
model and how to use it to achieve maximal information gain on the parameters of 
the B-spline model . 

k
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8.3.1 Information Entropy of a B-Spline Model 

Given  and the data points m
ii 1)(rr  which are assumed to be statistically 

independent, with Gaussian noise of zero mean and variance 2, the joint 
probability of m

ii 1)(rr  is 
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Equation (8.20) has an asymptotic approximation representation defined by 
Subrahmonia et al. (1996) 
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where k
ˆ  is the maximum likelihood estimation of  given the data points and 

mH is the Hessian matrix of )|(log rp evaluated at ˆ  given data points  
m
ii 1)(rr . 

The posteriori distribution p(  | r) of the given data is approximately 
proportional to 
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2
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where the p( ) is the priori probability of the B-spline model parameters. If the 
priori has a Guassian distribution with mean ˆ  and covariance Hm

–1, we have 
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From Shannon’s information entropy, the conditional entropy of p(  | r) is 
defined by 

rr dppEm )|(log)|()(  (8.24) 

If p(  | r) obeys Guassian distribution, the corresponding entropy is Mackay 
(1991) 

)(detlog
2
1 1

mm HE  (8.25) 

where  is a constant. 
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The entropy in (8.25) measures the information about the B-spline model 
parameters, given data points ),( 1 mrr . The more information about , the 
smaller the entropy will be. In this work, we use the entropy in (8.25) as the 
measurement of the uncertainty of the model parameter . Thus, to minimize Em, 
we will make det(Hm

–1) as small as possible.  

8.3.2 Information Gain 

In order to predict the distribution of the information gain, we assume a new data 
point rm+1 collected along a contour. The potential information gain is determined 
by incorporating the new data point rm+1. If we move the new point rm+1 along the 
contour, the distribution of the potential information gain along the whole contour 
can be obtained. Now, we will derive the relationship between the information gain 
and the new data point rm+1.  

Assume that a new data point rm+1 has been collected. Let 
),,,|( 11 mmP rrr be the probability distribution of model parameter  after 

a new point rm+1 is added. Its corresponding entropy is )ˆ(detlog
2
1 1

11 mm HE .
 The information gain then is  
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From (8.18), the new data point rm+1 will incrementally update the Hessian 
matrix as follows 
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can be simplified to 
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Since HH det/1det 1 , (8.26) can be simplified to 
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Assuming that the new additional data point rm+1 travels along the contour, the 
resulting potential information gain of the B-spline model will change according to 
(8.29). In order to reduce the uncertainty of the model, we would like to have the 
new data point at such a location that the potential information gain attainable is 
largest. Therefore, after reconstructing the section curve by fitting partial data 
acquired from previous viewpoints, the Next Best Viewpoint should be selected as 
the one that senses those new data points which yield the largest possible potential 
information gain for the B-spline model. 

8.4 View Planning 

A view space is a set of 3D positions where the sensor (vision system) takes 
measurements. We assume that the 3D object is within the field of view and the 
depth of view of the vision system. The optical settings of the vision system are 
fixed. Based on these assumptions, the parameters of the vision system to be 
planned are the viewing pose of the sensor. In this section, the candidate viewpoints 
are represented in a spherical viewing space. The view space is usually a continuous 
spherical surface. To reduce the number of viewpoints used in practice, we 
discretize the surface by using the icosahedron method. In addition, we assume that 
the view space is centered around the object, and its radius is equal to an a priori 

 
The determinant of Hm+1  

specified distance from the sensor to the object. As shown in Fig. 8.2, since the 
optical axis of the sensor passes through the center of the object, the viewpoint can 
be represented by pan-tilt angles  ([–180 , 180 ]) and  ([–90 , 90 ]). 
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Fig. 8.2. Viewpoint representation 

According to the representation of the viewing space, the fundamental task in the 
view planning here is to obtain the visibility regions in the viewing space that 
contain the candidate viewpoints where the missing information about the 3D 
object can be obtained without occlusions. The NBV should be the viewpoint that 
can give maximum information about the object. 

With the above view space representation, we can now map the predicted 
information gain to the view space for viewpoint planning. For a viewpoint v( , ), 
we say one data point on the object is visible if the angle between its normal and the 
view direction is smaller than a breakdown angle  of the sensor. The view space Vk 
for each data point rk (k = 1, 2, …) is the set of all possible viewpoints that can see 
rk. The view space Vk can be calculated via the following procedure: 
1. Calculating the normal vector nk of a point rk (k = 1, 2, …) on the object, using a 

least square error fitting of a 3 3 local surface patch in its neighborhood. 
2. Extracting viewpoints from which rk is visible. These viewpoints are denoted as 

view space Vk. 
After the view space Vk (k = 1, 2, …) is extracted, we construct a measurement 

matrix M. The components mk,j of an l-by-w measurement matrix are given as  

otherwise
vtovisibleisif

m jkjk
jk 0,

rvn
 (8.30) 

where vj is the direction vector of viewpoint vj. 
Then, for each view v( , ), we define a global measure of the information gain 

I( , ) as the criterion to be summed over all visible surface points seen under this 
view of the sensor. I( , ) is defined by 

jRk
kjkjjj EmI ,),(  (8.31) 

where Ek is the information gain at surface point rk, which is weighted by mk,j. 
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Therefore, the Next Best View ( *, *) is one that maximizes the information 
gain function of I( , ) 

),(max),(
,

**
jjjI

jj

 (8.32) 

8.5 Experiments 

8.5.1 Setup 

The information entropy based viewpoint planning algorithm is implemented as 
part of the work for 3D object reconstruction. The setup of a general 3D shape 
measurement system is schematically shown in Fig. 8.3. The sensor mounted on a 
robot consists of a projector that projects structured light onto the object and a CCD 
camera that captures the image of the illuminated object surface (Li and Liu 2003). 
This range sensor can give depth information of the scanned surface of an object in 
the form of a “data cloud”. In the current implementation, the object is placed on a 
stationary platform. The robot has 6 DOF and is able to take a measurement of the 
object from any viewing pose specified within its work space. The modeling 
process for a 3D object consists of a sequence of four repeated steps: acquiring data 
on the object surface from a viewpoint, registering the acquired data, integrating the 
new data with a partial model and determining the NBV. This cycle will be repeated 
until the NBV terminates. 

 

 
Fig. 8.3. System setup 

To slice the acquired “data cloud”, we define an interval distance between cross 
section curves in a certain direction (e.g. the z direction) and project the data in the 
neighborhood of each cross section curve onto the plane on which the cross section 
curve lies. The preprocessing results of the 3D “data cloud” are shown in Fig. 8.4. 
Here the interval between two cross section curves was set at 1.5 mm and the 
neighborhood of each cross section curve is set at 0.2 mm.  
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Fig. 8.4. Cross section curves after preprocessing 

These points projected onto a cross section curve were distributed randomly. 
They need to be sorted out before the curve reconstruction can be performed. For 
each section curve, these projected points were transformed into the polar 
coordinate system. The phase angle was used to sort these points. To reconstruct 
these cross section curves via B-splines, we need to select an appropriate model 
structure first. The model selection is important for automated 3D modeling, to 
account for the data already acquired and to avoid over-fitting of the model. 

8.5.2 Model Selection 

In this section, the improved BIC criterion proposed will be used to select the 
B-spline model to represent the cross section curves. Two cross section curves from 
a series of sliced cross section curves will be used as examples to demonstrate the 
effectiveness of our approach. To evaluate the selected models, the following 
performance indexes are used: 
 Model complexity, which refers to the number of control points of the B-spline 

model; 
 Estimation accuracy, which is defined as the MSE (mean squared errors) 

between the actual data points and the reconstructed model chosen by a selection 
criterion. 
The model complexity and estimation accuracy provide insights into the 

appropriateness of model fitting (i.e. over-fitting or under-fitting). In the current 
implementation, a uniform B-spline is used for reconstructing the cross section curves 
whose control points are uniformly distributed in the interval between the two end 
points of the curve in the parameter space. In selecting the model for a cross section 
curve, the number of control points is iteratively incremented by one from the initial 
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minimum number, while the corresponding BIC value is evaluated using (8.19). The 
minimum number of control points of a B-spline model is normally set at six here. 

We first conducted experiments with only partial data of an object surface 
acquired by our range sensor from the first view. The object is the head of a statue 
as shown in Fig. 8.4. For each of the cross section curves, some data points were 
available for its reconstruction. Here we describe the modeling process via an 
example in reconstructing one cross section curve. To implement our improved 
BIC, the available data were first divided into two parts: a training sample set and 
a prediction sample set. The training sample set was used to estimate the 
parameters of a candidate B-spline model by (8.5), followed by the estimation of 
the variance kx

2 and ky
2 by (8.17) using the prediction sample set. The 

corresponding BIC value for each of the candidate B-spline models was evaluated 
by (8.19). The model with maximum BIC value was selected as the optimal one to 
approximate the data points, giving the resulting model complexity of 9. This 
model was then verified by using another set of data on the same cross section. 
The resulting curve is given in the second row in Table 8.1. The estimation 
accuracy, which is the mean squared errors between the actual data points and the 
reconstructed model, was found to be 0.0406 mm. As a comparison, the 
conventional BIC was also applied to the same curve. However, all the 240 data 

The second experiment was conducted with the one where complete data of a 
surface were available. The procedures in reconstructing the cross section curves 
were the same as those in the first experiment. For each section curve, verifications 
of the models reconstructed by the two methods (our improved BIC and 
conventional BIC) were again conducted using another set of data (different from 
that used for reconstructing the model) on the same curve, with the results listed in 
the second column in Table 8.1. From the results, it is observed that even with 
complete data for a curve, the conventional BIC still results in an over-fitted model 

points were used in selecting the model via evaluating the BIC value by (8.19), 
giving the selected model complexity of 150. Again using another set of data (the 
same set as used in the above verification), this model was verified, with the 
resulting curve given in the third row in Table 8.1. The estimation accuracy in this 
case was found to be 1.8015 mm. This large error shows that the conventional BIC 
results in over-fitted approximation for the whole curve via the partial data. This 
illustrates the limitation of the conventional BIC criterion: its insensitivity to 
over-fitting. Note that in Table 8.1, the scales of the figures are set differently, in 
order to show the resulting errors in the reconstructed curves by different criteria 
which are significantly different in magnitudes. Similar phenomena were 
observed for other cross section curves. Here only the results for one curve are 
given in Table 8.1. In practical implementation, some physical constraints need to 
be given. For example, due to self-occlusion, the back of the object will not be 
visible from the first view. Some points were thus defined between the two end 
points of the available cross section data to limit the range of the occluded part of 
the object. It is useful and reasonable to confine the occluded part of the object 
within the range of the two end points of the available data beyond which the part 
would actually become visible to the current view. These defined points are 
highlighted in the “blue box” in the figures in the first row in Table 8.1.  
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as seen in the large errors in the verification, while our improved BIC method can 
reconstruct these cross section curves satisfactorily. With more data available in 
this experiment, the complexities of the selected models increased using both 
selection criteria. Yet, the conventional BIC performed poorly with apparent 
over-fitting in its reconstructed models. 

Table 8.1. Comparison of the results of our improved BIC with conventional BIC 

 In the case of partial data available In the case of complete data available 
 
 

Cross 
section data 

 

 
 

 
 

Verification 
results by 
our 
improved 
BIC 

Model complexity: 9 
Estimation accuracy: 0.0406 
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x 

 

Model complexity: 53 
Estimation accuracy: 0.0049 

 

 
 
 

Verification 
results by 
conventiona
l BIC 

 
 

Model complexity: 150 
Estimation accuracy: 1.8015 

 

Model complexity: 147 
Estimation accuracy: 0.3811 
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8.5.3 Determining the NBV 

 In the above section, we showed how our improved BIC criterion selects the 
B-spline model for the reconstruction of cross section curves. In this section, we 
will analyze the uncertainty of the B-spline model selected by our improved BIC for 
each cross section curve, and predict the information gain of the model along each 
curve using (8.29). Based on this analysis, we then map the information gain onto 
the view space. The view with maximum information gain is selected as the NBV. 
Then the vision sensor can take another measurement from the NBV to update the 
B-spline model. We will take one cross section curve as an example to illustrate the 
process in determining the NBV. 

8.5.3.1 Determining the First NBV 

 First, we take the measurement from an arbitrary initial viewpoint to acquire the 
first part of data of the unknown object. The data points on one of the cross section 
curves are shown in Fig. 8.5a. The “blue box” in Fig. 8.5a contains the points to 
confine the range of the occluded part of the object. Since these points are few in 
number, their effects on the predicted information gain of the B-spline model can be 
ignored. Figure 8.5b is the reconstructed B-spline model using the partial data 
acquired from the first viewpoint. This model is a rough approximation for the 
whole cross section curve. Using this model, we predict the potential information 
along the reconstructed curve. As shown in Fig. 8.5c, the place on the curve where 
the data are missing (the missing part) corresponds to a high-potential information 
gain. This indicates that the occluded part should be given high priority in the next 
measurement. Note that the information gain (in Fig. 8.5c) is given in the parameter 
space of the B-spline curve here. 

 

 
Fig. 8.5. Reconstruction of cross section curve and predicted potential information gain 
under the first viewpoint 

 
(a) Data on a cross section curve acquired from the first view 



164      Chapter 8 Information Entropy Based Planning 

 

  

Fig. 8.5. (Continued)

 
Following the above procedure, each cross section curve is reconstructed in a 

B-spline model, with the corresponding information gain obtained. Here each cross 
section curve is considered to be equally important, so that we can normalize the 
predicted information gain for each of the cross section curves covered by the 
current view. Figure 8.6 shows all the cross section curves reconstructed from the 
3D data points taken from the first viewpoint. 

 
(b) Reconstructed B-spline Curve 

 

missing parts 

 
(c) The potential information gain 
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Fig. 8.6. The reconstructed cross section curves 

In the above reconstruction, since only the data points from the first viewpoint 
are available, the obtained B-spline model cannot describe the whole object 
accurately. Yet, it enables us to obtain a rough shape and the information gain 
about the object. Based on the reconstructed partial model, we then map the 
predicted information gain onto the view space. As a result, we can obtain the 
relationship between the predicted information gain about the object and the 
viewpoints, which is also referred to as “View Space Visibility”. As shown in Fig. 
8.7, the viewpoint at [–3.0 , 107 ] has the maximum information gain and is thus 
selected as the NBV.  

 

 
Fig. 8.7. “View Space Visibility” for the first NBV 
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8.5.3.2 Determining Further NBVs 

After the first NBV was selected, the robot was commanded to move the vision 
sensor to this viewpoint to take new measurements. The newly acquired data were 
then sliced and registered, to yield the data acquired from the first two viewpoints as 
shown in Fig. 8.8a.  

(a) Data acquired from the first two viewpoints after slicing 

(b) Data on a cross section acquired from the first two viewpoints 
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Fig. 8.8. The process of determining the second NBV 
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Fig. 8.8. (Continued)

 (c) Reconstructed B-spline Curve based on the first two viewpoints 
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 (d) The information gain based on the first two viewpoints 

 (e) “View Space Visibility” for determining the second NBV 



168      Chapter 8 Information Entropy Based Planning 

 

 
Using the available data, model selection and information gain prediction were 

performed following the same procedures as described above. For an example cross 
section shown in Fig. 8.8b, the newly reconstructed curve is given in Fig. 8.8c and 
the updated information gain is given in Fig. 8.8d. The predicted information gains 
for all the cross section curves were then mapped onto the view space, to give the 
updated view space visibility (shown in Fig. 8.8e) for determining the second NBV. 
From this view space visibility map, the second NBV was selected at [5 , 160 ]. 

The above described procedures in determining the NBV and acquiring new data 
are repeated for subsequent NBVs. The procedures and results in determining the 
third NBVs are given in Fig. 8.9. Each time when new data are available from the 
new viewpoint, the corresponding cross section curves (e.g. the curve in Fig. 8.5b) 

 

(a) Data acquired from the first three viewpoints 

(b) Reconstructed B-spline Curve based on the first three viewpoints 

are updated (as shown in Figs. 8.8c and 8.9b). The prediction of the information 
gain is also updated at each new viewpoint, as seen in Figs. 8.8d and 8.9c. As a 
result of the updated “View Space Visibility” evaluation at the second NBVs (see 
Fig. 8.9d), the third NBV was selected at [7 , –10 ]. 

Fig. 8.9. The process in determining the third NBV 
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Fig. 8.9. (Continued)

After the third NBV is determined, we obtained the complete data about the object 
as shown in Fig. 8.10a. The complete data points and final reconstruction result of a 
cross section curve are shown in Fig. 8.10b and c respectively.  

 

missing part

 (c) The information gain based on the first three viewpoints

 (d) “View Space Visibility” for determining the third NBV 

8.5.3.3 Complete Reconstruction 
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 (a) Data acquired from the first four viewpoints 

 (b) Data on a cross section curve acquired from the first four viewpoints 

 (c) Reconstruction result of a cross section curve based on the first four viewpoints 

Fig. 8.10. Reconstruction of a cross section curve and information gain 
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 (d) The information gain based on the first four viewpoints 

Fig. 8.10. (Continued)

As shown in Figs. 8.5c, 8.8d and 8.9c, the information gain has an outstanding 
peak on the part where the 3D data are missing. This peak will become less and less 
outstanding with the increase of the 3D data available from new viewpoints. When 
complete data on these cross section curves are obtained (as from the third NBV 
here), the peak in the information gain becomes non-apparent and appears more 
“noise” like (as seen in Fig. 8.10d), which indicates that there are no apparent 
missing data or occluded parts on the object surface. The disappearance of the peak 
(significant decrease in the peak value) in the information gain was used as the 
termination condition in automated planning of the NBVs. 

From the experiment results, it is observed that the reconstructed model 
complexity tends to increase with the availability of additional data, which indicates 
that the model can describe the previously unknown object in more and more details 
as new measurements are taken. At the same time, the uncertainty about the object 
decreases gradually. The results for a typical cross section curve are shown in Table 
8.2. The finally reconstructed model is visualized in Fig. 8.11. The final 
reconstruction accuracy evaluated using MSE between the actual data points and 
the reconstructed cross section B-spline curves was 0.0061, which is quite 
satisfactory. 

Table 8.2. The results of view planning for the statue 

Next best view 1st viewpoint 1st NBV 2nd NBV 3rd NBV 
Model complexity 7 11 22 26 
Entropy of B-spline 
model  

–15.81 –16.23 –18.95 –19.79 
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Fig. 8.11. The finial reconstruction result of the statue 

8.5.4 Another Example 

Another experiment was conducted using a model of a duck. For simplicity, we 
only give the results (in Fig. 8.12) to show the procedures of determining the first 
NBV.  

 

 
 (a) Data acquired from the first viewpoint of the duck model 

Fig. 8.12. Reconstruction of cross section curves and predicted information gain 
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  (b) Data on a cross section acquired from the first viewpoints 

   
(c) Reconstructed B-spline curve 

 

missing part 

 
 (d) The information gain 

Fig. 8.12. (Continued)
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 (e) “View Space Visibility” for the first NBV 

Fig. 8.12. (Continued)

 
The viewpoint [0 , 175 ] with maximum information gain was selected as the 

NBV. The procedures of determining other NBVs are the same as those described 
in the above section. In this example, three viewpoints in total were needed to 
reconstruct the duck model. The results in view planning for a typical cross section 
curve are shown in Table 8.3. The accuracy of the finally reconstructed object 
surface is 0.0076. The reconstructed object is shown in Fig. 8.13. It is observed that 

 
Table 8.3. The results in view planning for the duck model 

 

Next best view 1st viewpoint 1st NBV 2nd NBV 
Model complexity 7 35 68 
Entropy of B-spline 
model  

–14.26 –20.23 –30.56 

 

the model complexity for the finally reconstructed cross section curve (68) here is 
higher that that for the example curve (26) in the previous experiment. This is due to 
the difference in the shapes from the actual data points. The shape of the former 
curve (partly given in Fig. 8.12b) is simpler and smoother than the latter (Fig. 
8.10b). A higher complexity in the selected model indicates the higher level of 
confidence in the reconstruction for a simpler shape. For a complex shape, a lower 
complexity in the selected model gives it stronger ability in preventing over-fitting 
the data, which is of particular importance for NBV planning.  
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8.6 Summary 

In this chapter, we presented a novel viewpoint planning method by incrementally 
reducing the uncertainties of the reconstructed models. With this method, the 
object’s surface is first decomposed into a set of relatively simple cross section 
curves, with each to be reconstructed by a set of closed B-spline curves. Then the 
uncertainties of the B-spline models are analyzed with the information entropy as 
the measurement of the uncertainty for guiding the selection of the next best view. 
The information gain of the set of cross section B-spline models is predicted and 
mapped onto the view space. The viewpoint with maximum visibility is selected as 
the Next Best View. In addition, an improved BIC criterion is proposed for the 
model selection. With this new criterion, the acquired data points are divided into 
two parts: one for estimating the B-spline model parameters and the other for 
estimating the data noise. The re-sampling of the data enables a reliable estimate of 
data noise, since the generalization capability of a B-spline model should be 
validated using another set of data points rather than those used for the 
approximation. Compared with the conversional BIC criterion, the model selected 
with our improved BIC criterion is more sensitive to over-fitting and thus has a 
better generalization capability which is particularly important for NBV planning. 

 
 
 
 
 
 
 
 
 

 
Fig. 8.13. The finial reconstruction result of the duck model 



 

Chapter 9  
Model Prediction and Sensor Planning 

To increase the modeling efficiency, this chapter is about to present a method of 
viewpoint planning for incrementally building the model of an unknown object or 
environment. The proposed method is based on the model of the trend surface, 
which is the regional feature of a surface for describing the global tendency of 
change. Whilst previous approaches to trend analysis usually focused on generating 
polynomial equations for interpreting regression surfaces in three dimensions, this 
research proposes a new mathematical model for predicting the unknown area of 
the object surface. A unique surface model is established by analyzing the surface 
curvature. Furthermore, a criterion is given to determine the exploration direction. 
Algorithms are developed for determining the next view pose which needs to satisfy 
the sensor placement constraints such as resolution, focus, and field of view. 

9.1 Surface Trend and Target Prediction 

Multiple views are required to reconstruct a 3D model of a complete object or 
environment. Several single depth images are acquired from different views and 
merged together with geometric fusion techniques to produce a representation of 
the underlying 3D target. This is the basic idea in model-building tasks. 

9.1.1 Surface Trend 

In this research, the viewpoint is determined according to the surface trend of the 
known partial model. The Surface Trend describes the global shape of a surface and 
trend surface analysis is a global method for processing spatial data. 
Mathematically, a mapped surface can be separated into two components – that of 
the trend and the residuals from the trend. The trend is the regional feature of a 
surface, and the residuals are the local fluctuations of high-frequent features  
(Fig. 9.1a). 

Trend surface analysis is widely used for fitting and interpolating regression 
surfaces in three dimensions as a smoothed representation of area data. It is 
assumed that the spatial distribution of a particular phenomenon can be represented 
by some form of continuous surface, usually a defined geometric function. The 
observed spatial pattern can be regarded as the sum of such a surface and a 
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Fig. 9.1. The trend is the regional feature of a surface 

The function f (x, y) is usually expanded or approximated by various terms to 
generate polynomial equations. To develop complex, smoothed equations for 
geophysical data by expanding the summation term of the General Linear Model 
(Agocs 1951, Krumbein 1959), the relationship between standard multivariate 
regression analyses and trend methods can be defined. This expansion was 
performed by incorporating power terms and cross-products of the x and y 
coordinates. For an n-order three-dimensional surface, the form of the power series 
is given by 

n

i

i

j

jij
ij vubvuf

0 0
),( , (9.2) 

where u and v are the coordinates on an arbitrary orthogonal reference system, bij is 
the constant coefficient of the surface (b00 is the surface base). 

The trend part is very helpful for predicting the unseen part of an object or 
environment and is thus used for determining the next viewpoint in this research. 
The residuals (local features) do not affect viewpoint planning much, but they 
should be filtered out during the image processing.  

Here we split a single surface M into two parts, M1 and M2 (Fig. 9.1b and c), 

M = M1  M2. (9.3) 

If surface M changes smoothly, both the trends of M1 and M2 should be 
approximately equal to the trend of M, i.e. 

Trend(M)  Trend(M1)  Trend(M2). (9.4) 

“random”, or local, term. The surface is a function of two orthogonal coordinate 
axes which can be represented by 

z = f ( x , y) + e, (9.1) 

in which the variable z at the point (x, y) is a function of the coordinate axes, plus the 
error term e. This expression is the generalized form of the General Linear Model, 
which is the basis of most trend methods.  

 =  + 

(a) an arbitrary surface (b) the trend surface (c) local residuals 

1
0.9 0.9
0.8 0.8

0.8

0.7 0.7
0.6 0.6

0.6
0.50.8

0.80.6 0.6
0.4 0.4 0.4

0.1
0.05

0.2 0.2 0.2
0 0 0
–0.2 –0.2 –0.2

–0.4 –0.4 –0.4–0.2 –0.2 –0.2
0 0 0

0.2 0.2 0.2
0.4 0.4 0.4

X X X

Y Y Y

Z
Z

Z



9.1 Surface Trend and Target Prediction      179 

 

Suppose that the vision agent has already captured a part of the surface, say M1, 
and M2 is unknown. In the modeling task, by computing the surface trend of M1, the 
surface shape of M2 can be predicted. This research does not use (9.1) or (9.2) 
directly as the trend model for surface prediction, since it relies on interpreting 
regression of the known area. Instead, a new mathematical model is developed for 
describing the surface trend, thus emphasizing the prediction of the unknown area. 

9.1.2 Determination of the Exploration Direction 

Except for surface edges and object boundaries (that will be discussed later), since 
the curvature of a trend surface changes smoothly, the unknown part of the object 
surface can be predicted by analyzing the curvature tendency of the known surface. 
Assume that the known part is located in the center of the scene and its surrounding 
areas are unknown (Fig. 9.2). Since only one direction, called exploration direction, 
can be chosen for planning the next viewpoint, it may be determined as such an area 
that is most smoothed or with the lowest surface order. The surface order is 

Fig. 9.2. Exploration of object surface 

determined according to f (u, v) with the same fitting error. Figure 9.2 illustrates the 
selection criterion of the exploration direction.  

With the partially acquired model, we could obtain the curvature distribution of 
the known surface. The unknown part of the object surface can be predicted by 
analyzing the curvature tendency of the known surface. As the center area of the 
known model does not affect the exploration direction, it is only necessary to 
compute the surface curvature in the area near to the boundary of the known 
surface. As it is difficult to directly use polynomial equations to describe the known 
partial surface due to its unknown complexity, the known surface should be 
segmented according to the curvature distribution. Then the surface regions that 
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unseen environment 
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join smoothly at their common boundaries are merged to create the final surface 
region description. Here, to avoid surface fitting, we will compute the Gaussian 
curvature and the mean curvature from its adjacent triangles (Razdan and Bae 2003) 
to be later used to classify the surface type.  

The Gaussian curvature K at a vertex point is computed by 

,
A

K  with ,2
i

i
 and 

i
iAA   

where A is the total area of the adjacent triangles Ti, for i = 1, 2, 3, …, and  is a 
constant (3 here). Figure 9.3 shows an example of curvature approximation at 
vertex P0. 

 
Fig. 9.3. Approximation of Gaussian curvature at vertex P0 
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The mean curvature is defined by the divergence of the surface around the 
normal vector, nH . The mean curvature normal for a surface mesh is computed
as (Schneider and Kobbelt 2001) 

)(
))(cos(cos

4
1

iNj
ijjj PP

A
nH   

where N(i) is the vertex Pi’s adjacent polygon set, (Pj – Pi) is the edge eij, j and j 
are two angles in the (j +1)th and (j –1)th element in N(i) opposite to the edge eij , 
respectively. A is the sum of the areas of triangles in N(i). Figure 9.4 shows the 
approximation of the mean curvature at a vertex. 
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Fig. 9.4. Approximation of mean curvature at vertex Pi 

Suppose M is the mesh structure of object O, and M consists of two lists V and E. 

vi NivV ,,1  

qpiei vveNieE ,,,,1  
 

where vi are vertices, vNqp,1 and qp . V  is  a  list  of  all  vertices  vi  in  the 
mesh. E is a list of edges ei, which connect two vertices. Nv and Ne are the number of 
vertices and the number of edges in M, respectively.  

Besl and Jain (Massions and Fisher 1998) presented a technique which used the 
signs of the Gaussian curvature (K ) and the mean curvature (H ) to segment surfaces 
into patches which were labeled as belonging to one of the eight fundamental types 
as shown in Table 9.1. 

Table 9.1. Surface types and curvature signs 

iP  

j  

ije
 

j  

jP  

1jP
 

1jP  

    K > 0 K = 0 K < 0 

H < 0 Peak 
T

Ridge 
T

Saddle ridge 
T

H = 0 None 
 

Flat 
T

Minimal surface 
T

H > 0 Pit 
T

Valley 
T

Saddle valley 
T

 = 1  = 2  = 3 

 = 5 

 = 8  = 7 

 = 4 

 = 6 

The boundary area of the known surface can be divided into different surface 
types according to Table 9.1. In these areas, quadrics can be fitted to each patch. 
Patches containing similar fits are merged, with the exception of patches located on 
lines of high curvature. When the patch merging is finished, the boundary number 
of different surface areas is determined.  

Here, the next best view is defined as the next sensor pose which will acquire the 
greatest amount of data of the boundaries. Thus, after the number of boundaries is 
obtained, i.e. nmax = max{number(Surfaceboundaries)i}, the exploration direction is 
determined to be along the direction outside the unknown area. 
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9.1.3 Surface Prediction 
 
It is noted that there are different curvatures for a surface point along different 

directions, although the principal curvature and Gaussian curvature are the most 
frequently used. Without loss of generality, we may describe the mathematical 
formula along the horizontal direction. Using a vertical sectional plane which is 

)(xfz yvv . (9.5) 

The curvature of the curve is 

k = kyv (x) = zv" / [1+(zv')2]3/2 . (9.6) 

Let Xk = [x1, x2] be the domain of the known part of the surface curve. To predict 
the unseen surface, here we use a linear regression of x on k and a fitted curve Cv is 
obtained for approximating the curvature tendency on curve z v. Hence,  

cv(x) = a x + b, x [x1, x3], (9.7) 

where [x1, x3] is the whole domain including the known area and unseen area, i.e. 
[x1, x3] = [x1, x2]  [x2, x3]. The two parameters a and b are fitted by the known part 
of the surface curve, i.e., 
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x v

x

x v
, (9.8) 

parallel to the x-axis, at y = yv, to cut through the 3D surface, a surface curve (Fig. 
9.5) is obtained, 

 
Fig. 9.5. A surface curve 

unseen surface 

known surface 

z = z (x, yv) 

x1
 x2 x3 x4 
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Given a threshold kmax, the curvature in the unseen area is expected to be: 

   
maxmax
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kyxck
kyxcbax

yxc
v

v
v ,                   x [x2, x4], (9.10) 

where x2 < x4 < x3 is a domain for satisfying the constraint that the object surface will 
be in the Field-of-View of the sensor.  

Then the surface curve in the unseen part of the object will be a solution of the 
following equation: 

    ||z"|| / [1+(z')2]3/2 c(x, yv) =0. (9.11) 

The solution of this differential equation is: 

  22
1

2
1

2

)22(4
)22( Cdx

Cbxax
Cbxaxz , x < (kmax–b)/a,  (9.12) 

or  

4
2

3
2

max )( CCxkz ,   x (kmax–b)/a, (9.13) 

where Ci are the differential constants which can be determined according to 
boundary conditions, such as z(x2) = z2 and z'(x2) = z2'. The sign “+” or “–” can also 
be determined by the known part of the surface curve (convex or concave). Since 
the predicted curve is based on the analysis of the tendency of the known area, it is 
called the trend curve. 

9.2 Determination of the Next Viewpoint 

To determine the next viewpoint is to specify the sensor’s placement parameters as 
well as to satisfy the placement constraints. The placement parameters include the 
sensor’s position (x, y, z), the sensor orientation ( , , ), and some optical settings 
(c1, c2, …). The placement constraints usually include visibility, focus, field of 
view, viewing angle, resolution, overlap, occlusion, and some operational 
constraints such as the kinematic reachability of the sensor pose and 
robot-environment collision. 

Let the resolution constraint be 

Nyxzzxxr vppp /
2

tan)],([)(2 2
2

2
2

 < rmax , (9.14) 

and  

–
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where N is the pixel number on a scanning line of the digital image and  is the 
angle of view. 

To satisfy the constraints of sensor placement on the resolution and the 
Field-of-View, the parameter x4 in (9.10) can be determined by the following 
algorithm: 

 
1. Obtain the numerical solution of (9.12) or (9.13); 
2. Assign the z-value in an array Az[i], i=1, 2, 3,…, n, Az[1]=z(x2, yv); the 

corresponding x-value is Ax[i]=x2 + (i–1)*wx , where wx is the pixel length in 
x-direction; 

3. For (xp=x3, xp>x2, xp=xp–xstep), 
4. If rp satisfies the constraint (9.14), break; 
5. Let x4 =xp 

 
The mid-point of such a trend curve is: 

Qm,yv = ),,,( ,vmvv zyx
2

  ),,( 42
,

xxxyxfz vvvvm
. (9.15) 

By moving the V  plane to different positions, in the domain of 
fovvfov YyY , we get a series of surface curves. Connecting the mid-point of 

each such curve forms a new curve: 

Li+1 = L(Qm,yv , yv), fovvfov YyY . (9.16) 

Computing its centroid, the position of the reference point (i.e. the new scene 
center) is obtained: 
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where (i+1) denotes the next view pose. 
Now the position of the eye point and the viewing direction can be determined. 

To achieve the maximum viewing angle (i.e. the angle between the viewing 
direction and the surface tangent) for minimizing the reconstruction uncertainty, the 
viewing direction is the inverse of the average normal on the predicted surface, that 
is, 

Ii+1 = -
dxdy

dxdyyxN ),(
 =-

dxdy

dxdyyx ),)(,,( kji
 

= (– i+1i, –  i+1 j, –  i+1k), 

(9.18) 

V–
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where 
x
fyx ),( , 

y
fyx ),( , 1),( yx , and N(x, y) is the surface normal

on point (x, y, z). 
The sensor’s position Pi+1(x, y, z) for the next viewpoint is planned as a solution 

of the following set of equations: 
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where ccmp is a positive constant for compensation of the depth value range,  is the 

sensor’s Angle-of-View, 2
1

2
1

2
121 |||| iiiiI , and ||Oi+1 – Pi+1||2 is the  dis- 

tance between point Oi+1 and Pi+1. 
Using this method, the orientation of the sensor can be determined in such a way 

that it views perpendicularly downon the predicted object surface. The distance to 
the object is determined so that it enables the acquisition of the maximum volume of 
the unknown surface while satisfying some constraints such as resolution. Finally, 
the placement parameters of the vision sensor are described as a vector: 

Pi+1 = ),...,,,,,,,,( 1
2

1
1

1111111
n
iiiiii

P
i

P
i

P
i ccczyx , (9.20) 

where {ci+1
j} are the optical settings of the sensor for the next viewpoint, such as 

focus and diameter of aperture, which may be different depending on the types of 
vision sensor. Also this placement vector is based on the local coordinate system. It 
needs to be converted to the world coordinate system by multiplying a coefficient 
matrix. 

It should be noted that the surface predicted by the trend is only the possible 
surface shape. This research conducted an error analysis, under the assumption 
that the actual surface is composed of typical 1st or 2nd order curves. Results 
show that there is no error for predicting circular curves or linear curves and the 
errors are very slight (relative error is at the order of 10–7) for predicting other 2nd 
order curves, such as parabola, elliptic, hyperbola. Therefore we can accurately 
place the vision sensor for the next view pose to observe objects composed of 
such surfaces, when using the expected curve predicted by the uniform surface 
trend model (10–4). However, for each different curve the constants a, b, and C1 
are different and they can be dynamically determined according to the known part 
of the curves. 
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Fig. 9.6. The repetitive modeling process 

 
Finally the repetitive modeling process is illustrated in Fig. 9.6, where the six 

symbols Si (i = 1, 2, ..., 6) represent: 
 S1: Acquisition of a view 
 S2: Reconstruction of the 3D local model 
 S3: Registration and fusion with the global model 
 S4: Model analysis and check of complete conditions 
 S5: Computing trend surface and determining next view 
 S6: Moving the robot to the new viewpoint 

9.3 Simulation 

9.3.1 Practical Considerations 

9.3.1.1 Noise Filtering 

Since the curvature on the object surface is very sensitive to noise and the local 
features of a 3D image do not affect the surface trend very much, a low-pass filter is 
applied to the image so that we can obtain a smoothed surface. In this research, a 
5-point averaging filter is used to remove the local features of the image: 

H = [1 1 1 1 1]/5 or ones(5, 5)/25. (9.21) 

Applying this filter several times to the surface curve or image, the smoothed 
range image is used to compute the trend surface. 

9.3.1.2 Determining the Curvature 

The curvature of each point on the known part of the object surface should be 
calculated so that the surface trend can be determined for predicting the unknown 
part. Equation (9.6) is not suitable for computing the curvature on a digital image 
because the errors in computing z' and z'' will be significant. In this research, we 
determine the curvature of a point P(x(i), z(i)) by using three adjacent points 

S1 S2 S3 S4 

S5 S6 

start stop 
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(triplet), i.e P(x(i–1), z(i –1)), P (x(i), z(i)), and P(x(i +1), z(i +1)). Each triplet 
defines a circle and the curvature k(i) is the inverse of its radius. Referring to (9.5), 

1)])((*)([)])((*)([ 2
0

2
0 znzikxnxik , 

}1,,1{ iiin
 

(9.22) 

9.3.2 Numerical Simulation 

9.3.2.1 Next Viewpoint to Look at a Regular Object 

Figure 9.7 illustrates an object to be reconstructed by computer simulation. It is 
digitally generated by rotating a generatrix about the z-axis: 

]2.1  ,2.1[),cos(2 tty .  

Assume that the sensor’s field-of-view has an angle of  = 40  and the pixel 
number on a scan line is N = 1024. Given that the first view is located at P1= [3.4964    
1.6537    0.5417] and the resolution constraint is rmax = 0.85 mm. Then the surface 
trend is computed and the next viewpoint is determined. The result is:  
viewpoint_first = [x  y  z  ai  bj  ck]  

this is the solution of 

9.3.1.3 Determining Constants a and b 

Equations (9.8) and (9.9) are described as continuous functions. When applied to 
digital image processing, they may be written as, 
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where m is the number of total points of the known part of object surface. 

 

    = [ 3.4964    1.6537    0.5417    0.9040    0.4276        0 ], 

viewpoint_next  
    = [0.7691    3.7241    0.5417    0.1951    0.9808         0 ]. 



188      Chapter 9 Model Prediction and Sensor Planning 

 

 
Fig. 9.7. Planning the next viewpoint for modeling a regular object 

9.3.2.2 Planning Next Viewpoint for Freeform Objects 

To show that the method can also work well for the modeling of freeform objects or 
environments, an example is given to compute the next viewpoint for modeling a 
torso. The range data were acquired by a gray-encoded stripe-projection method. In 
this example, the sensor’s field-of-view has an angle of  = 40 , the pixel number 
on a scan line is N = 1024, and the resolution constraint is rmax=0.85 mm. Figure 9.8 
is a 3D image to be considered as the first view during the modeling process. To 
determine a next view for acquiring unseen information on the object, we used the 
trend surface method and developed a program to compute the expected surface 
curves. Thus the surface trend is computed and the next viewpoint is determined. 
The computation result is: 
viewpoint_first is at  

[429.0327  166.1754  500.0000    0.5211    0.8535       0 ], 
viewpoint_next is planned at  

[542.5648  –36.9134  500.0000    0.9963    0.0865       0 ]. 
Figure 9.9 illustrates a profile of the known partial model at y = 268.0. The red 

curve is the expected curve on the unknown part predicted by the surface trend model. 
Figure 9.10 illustrates the three-dimensional model at the first view and the next view. 
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Fig. 9.8. The first view of a torso 

 

 
Fig. 9.9. A profile of the partial model 

 

Fig. 9.10. The first view (a) and the next view (b) of the model 

(a) (b)
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9.3.2.3 Viewpoint Planning for Modeling Unknown Environments 

A computer simulation program was also developed for evaluating the vision 
performance. The user interface of the software is illustrated in Fig. 9.11. This 
simulation system enables a person to describe user-defined vision sensors, 
user-defined environments, 3D image acquisition, multi-view fusion, and 
viewpoint control. 

 

 
Fig. 9.11. The simulation system (IndoorViewer 1.0) 

Two models should be given before viewpoint planning. One is the vision 
sensor. The user may describe the characteristics of the 3D sensor in a script data 
file, including the initial position and the constraints of the viewing angle, focal 
length, zoom range, resolution, etc. A point light source may also be defined. In the 
current stage, this can only be fixed at a 3D point and its illumination intensity 
cannot be controlled. The other initial model is the environment. This may be 
imported from a 3D CAD file or described by scripts too. For scripts, the 
environment will be composed of many simple 3D objects, such as boxes, balls, 
cylinders, free-form 3D surfaces, etc. Bitmap texture may be assigned to “paint” on 
these object surfaces. 

The task description gives the required conditions, such as the overlap width for 

z). The current view generation is based on the current sensor position and 
orientation. It simulates the currently seen scene and generates a 3D image 
according to the vision sensor’s description. The left window in Fig. 9.11 illustrates 
a current view. The function of 3D reconstruction of the seen portion fuses all seen 
areas of the environment into a 3D partial model to illustrate what has been 
reconstructed (the mid-upper window in Fig. 9.11). The “manual viewpoint 
control” is used for debugging purposes. It enables the user to set the parameters of 
the sensor pose and shows the corresponding view. 

view merging and the required reconstruction resolution (e.g. 0.1 mm/pixel in x, y, 



9.4 Practical Implementation      191 

 

The other important function is the “autonomous exploration”. This is realized 
based on the trend surface method proposed in this research. In all stages, there is a 
stack to record what has been seen. By analyzing the reconstructed and fused global 
model, the planner automatically decides where to look next for exploring unseen 
areas. Finally after several steps, the whole environment (the mid-lower window) is 
reconstructed as a 3D model. The generated viewpoint list is illustrated in the right 
window in Fig. 9.11. 

9.4 Practical Implementation 

Several experiments were carried out in our laboratory on the construction of object 
models. The range data are obtained by a structured light system set up in this 
research, which mainly consists of a projector and a camera. The projector is a 
palm-sized digital projector, PLUS U3-1080. It is connected to a computer and is 
controlled to generate some gray-encoded stripe-light patterns for 3D 
reconstruction. The CCD camera (PULNIX TMC-9700) has a 1-inch sensor and a 
25 mm lens. A fixture is designed for mounting the structured light system on the 
end-effector of a 6DOF robot (STAUBLI RX-90B) with 0.02 mm repeatability. 
This enables the 3D sensor to be freely moved to an arbitrary position in the 
workspace. 

 

   
Fig. 9.12. The objects to be reconstructed 

Figure 9.12 illustrates two objects for the model construction in the experiment. 
In both cases, we set the resolution constraint to be rmax=0.85 mm. The first one is 
demonstrated with the procedure in more detail here. It was incrementally built by 
four views. The first view is assumed to be taken from the top view. To determine a 
next view for acquiring some unseen information on the object, we used the trend 
surface method and developed a program to compute the expected surface curves. 
Then the trend is computed and the next viewpoint is determined.  

The experimental results in the incremental construction of the first object are 
shown below to illustrate the computation at each step. A new surface was acquired 
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at each view and it was integrated with the existing ones to form a partial model. 
The exploration direction and sensor placement were determined by the proposed 
method. The placement parameters of each view are set with a viewpoint vector in 
the format of [x  y  z  ai  bj  ck], representing the six parameters of the 3D position 
and orientation. A registration vector also contains six parameters for the surface 
integration so that the range images are transformed and registered to a common 
coordinate system. The first three of the six parameters define the surface’s 
reference point and the other three define the surface orientation by 3-axis rotation. 
In this way, the model is improved by eliminating the overlapped/redundant points 
and stitching non-data areas. 

 

 
Fig. 9.13. The 3D surface obtained from the first view 

The corresponding placement parameters of the first view (Fig. 9.13) are 
Viewpoint1 = (0, 0, 457.9333, 0, 0, –1) 

Reg1 = Oglobal = (0, 0, 0, 0, 0, 0) 

where the viewpoint vector has a format of [x  y  z  ai  bj  ck], representing the six 
parameters of the 3D position and orientation. Regi contains some registration 
parameters for the surface integration so that the range images are transformed and 
registered to a common coordinate system. The first three of the six parameters 
define the surface’s reference point and the other three define the surface 
orientation by 3-axis rotation. In this way, the model is improved by eliminating the 
overlapped/redundant points and stitching non-data areas. 
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Fig. 9.14. The points were detected as the candidates of exploration directions. The decision 
was based on their rating values 

 

 
Fig. 9.15. An predictive trend curve 
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Based on the partial model, surface boundaries are detected to locate candidate 
points (Fig. 9.14), and the rating evaluation is performed to choose a best 
exploration direction. Along that direction, a trend curve (the dashed red curve in 
Fig. 9.15) is computed from the known 3D surface. The space under the curve and 
ground plane is marked as unreachable. 
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Fig. 9.16. Several trend curves are obtained to form a trend surface so that the decision of a 
next viewpoint will be more reliable 

 

Fig. 9.17. The planned next viewpoint 
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Fig. 9.18. The 3D surface was obtained from the second view (left) and integrated with the 
first view to form a partial model (right) of the object 

 

 
Fig. 9.19. Trend curves in the second step 

Similar to the situation in the first step, candidate points are selected to find an 
exploration direction. Along this direction, several trend curves are computed to 
predict the unknown part of the surface. 

 

The sensor position and looking direction are planned according to the predicted 
curves. The corresponding placement parameters are: 
Set_scene_center = [63.9950, –23.0346, 40.4942]. 
Viewpoint2 = (502.9636, –26.2364, 158.2319, –0.965838, 0.00704474, 
–0.259052). 
Reg2 = (–72.06, 0.00, 40.10, 32.01, –89.89, –30.80). 
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Fig. 9.20. One of the trend curves as in Fig. 9.19. Since the original curve is circular, the 
prediction is very accurate 

Fig. 9.21. The next viewpoint 
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Fig. 9.22. The 3D surface was obtained from the third view and integrated with all 
known views 

 

Fig. 9.23. The next viewpoint and 3D surface obtained 

The sensor pose is also determined according to the predicted curves. The 
corresponding placement parameters are: 
Set_scene_center = [–8.4859   60.0199   33.7807] 
Viewpoint3 = (21.7862, 366.7046, –228.8904, –0.0747589, –0.757378, 0.648683) 
Reg3 = (30.21, –116.07, 40.02, 89.83, 31.10, –89.92) 
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Set_scene_center = [16.3405, –10.1124, 35.0603] 
Viewpoint4 = (15.8901, 347.64, –251.11, 0.0009831, –0.780902, 0.624653) 
Reg4 = (–116.12, –120.01, 43.03, –90.00, 22.60, 89.31) 

 

Figures 9.16 to 9.21 illustrate two steps of sensing decisions with the trend 
surfaces. With the model in Fig. 9.22, it is necessary to take a further viewpoint 
decision and surface acquisition. These were done similarly to the previous steps. 
The sensor parameters for the fourth view are determined as (Fig. 9.23): 
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Fig. 9.24. The complete model and planned viewpoints 

 
Finally the complete model was obtained by integrating all the four views. Their 

relative distribution to the object model in 3D space is given in Fig. 9.24.  
The second example in this section is to show the 3D reconstruction of a head 

model. The entire reconstruction process was finished with 5 acquisitions. Figure 
9.25 illustrates the 3D image captured from the first view of the object. The first 
view was always assumed to be sensed at the top-view. Assume that the object 
model has the original pose and the first view is registered at the same pose as the 
global model, i.e. 

Oglobal = (x, y, z, a, b, c) = (0, 0, 0, 0, 0, 0). 

Reg1 = Oglobal = (0, 0, 0, 0, 0, 0).  

The sensor is placed at a viewpoint relative to the target and its pose is also 
represented by a six-dimensional vector (three for position and three for 
orientation). In this experiment, it is 

Viewpoint1 = (0, 0, 457.9333, 180, 0, 0).  

This indicates that the sensor was placed at the topside of the object with a 
distance z = 457.9333 mm, looking downon the target. The self-rotation angle is 
assumed to be c=0. 

 

 

1 

2 

3 

4 



9.4 Practical Implementation      199 

 

Fig. 9.25. The first view (top view) of the object 

With the partial model, the pose of a following view needs to be decided 
according to the known information. Here two steps are used. The first step is to 
determine the exploration direction and the second to determine the sensor pose in 
the space. 

With the description in Sect. 9.1.2, the exploration direction can be determined 
simply to be with the area where the surface is most smoothed or the surface order is 
lowest. The reason is that the trend surface can predict the unknown area accurately 
where the surface has a low order. The surface order is defined according to (9.2) 
with the same fitting error. To avoid computation of surface fitting, we may just 
compute the integral value of the curvatures in a small area, i.e. 

norder ( u, v ) = 
),(,
min ),(

vuSyx

dxdyyxk , (9.23) 

where S(u, v) is the neighborhood area of point (u, v) and kmin(x, y)= f" / [1+( f ')2]3/2 
is the minimum curvature at point (x, y). 

It is only necessary to compute the surface orders in the areas near to the 
boundary of the known surface. The surface order in the center area of the known 
model does not affect the exploration direction. After the minimum surface order is 
obtained, i.e. nmin = min{ norder ( u, v )}, the exploration direction is decided just to 
be along outside the direction to the unknown area. 

 

 

The exploration 
direction: along with the 
lowest surface order 
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Fig. 9.26. The 3D data of the first view and the distribution of local surface orders 

In this experiment, the 3D data of the first view was visualized in Fig. 9.26 (left) 
and the surface smoothness was computed as shown in Fig. 9.26 (right). The 
exploration for the second view was determined as shown in Fig. 9.25. Then the 
next viewpoint was determined according to the method as in Sect. 9.2, i.e. the 
surface was assumed with the trend model  
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and the sensor pose was determined according to (9.18) and (9.19). In this 
experiment, it is 

Viewpoint2 = (–128.41, 401.67, –364.82, 57.8349, 10.5665, –32.7017).  

Here we did not consider the environment constraints. Then a second view was 
captured. The 3D surface is illustrated in Fig. 9.27. The local model is registered 
with the parameters being 

Reg2 = (–44.43, 20.59, –125.17, –57.8349, –10.5665, 32.7017).  
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Fig. 9.27. The 2nd view of the object and merged from all knowns (the 1st and 2nd views) 

To merge it with the global model Oglobal, the surface is transformed by the 
following equation 

O2w = Tr O2 ,  

where the 3D transformation matrix Tr is computed from Reg 2  

Tr = 

1000
7871.90523333.0832163.0183376.0
2064.95659698.0531845.0531104.0

5397.27539493.0156990.0827225.0

.  

Figure 9.27(right) illustrates the global model merged from the first view and the 
second view. Then a next view needs to be decided on again. 

Figure 9.28 illustrates the third surface obtained and merged with previous 
known images. The viewpoint and model registration parameters are 

Viewpoint3 = (–414.33, 60.41, –172.36, –63.6737, 78.4519, 21.0845).

Reg3 = (34.33, 142.57, –131.70, 63.6737, –78.4519, –21.0845). 
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Figure 9.29 illustrates the fourth view of the object. The viewpoint and model 
registration parameters are 

Viewpoint4 = (531.43, 111.47, –130.98, 86.2575, –81.9966, –89.2484). 

Reg4 = (77.96, 47.85, –126.82, –86.2575, 81.9966, 89.2484). 

 

The known images were merged as illustrated in the right side of Fig. 9.29. By 
checking the occlusion status, it was found there was only a small uncertain area. 
Then the last viewpoint was determined directly toward on that area. 

         
Fig. 9.28. The new surface obtained and merged with the 3 known views 

  
Fig. 9.29. Model merged from four known views (the 1st – 4th views) 

The last viewpoint is 
determined directly toward 
the uncertain area 
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Fig. 9.30. The entire model merged from all known views and the traveled viewpoints 

Figure 9.30 shows the entire model obtained and all the five viewpoints traveled 
in the working space. In our experiments, the 3D surface acquisition was achieved 
by a structured light vision sensor. The computation time for planning a next 
viewpoint was about three to five seconds. It should be noted that the planning 
results are dependent on the first view. With different initial viewpoints, the results 
are also different and there may be one or two more views planned for each object. 

9.5 Discussion and Conclusion 

9.5.1 Discussion 

This chapter addresses the task of reconstructing a complete 3D object, which 
requires the sensor to be moved (or relatively the object to be replaced) at several 
different poses. It also requires the exploration strategies. We adopt the 
trend-surface approach to this problem. This is a target-driven approach that 

Viewpoint5 = (112.40, –286.57, –247.88, –75.5537, –9.3295, 52.5984).   
The last surface was obtained and the registration parameters are 

Reg5 = (38.16, 151.02, –135.15, 75.5537, 9.3295, –52.5984).  

Finally the entire object model was reconstructed from all known surfaces and 
illustrated in Fig. 9.30. 

 

   

1
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attempts to analyze the physical structure of the object and determine where to look 
at the next pose for efficient reconstruction of the entire object. 

For surface edges and object boundaries, as the curvature around these areas 
changes abruptly, there will be significant errors in computing the surface trend. For 
example, Fig. 9.31 illustrates that there is a surface edge located at x2 in the seen 
area. In such cases, the domain of the known part for determining constants a and b 
should be restricted to a smaller area that does not contain any edges, e.g. using 
domain [x2, x3] or [x2, x1] instead of the whole domain [x1, x3]. The exploration 
direction may also need to be changed by analyzing the seen object surface. 

Fig. 9.31. Avoid edges or boundaries in computing the trend 

On the other hand, when modeling a small-sized object (compared with the 
sensor’s field-of-view), the trend surface method may not work very well since the 
whole object will be contained in a single view and the surface trend will have a 
high order. That makes it unreliable in predicting the unknown area. In such cases, a 
sensor-based solution (Zha 1998, Pito 1999) instead of target-driven method may 
be used for the modeling task. 

The basic idea of this research is to find any possible cues on the object shape for 
predicting unknown areas. The surface trend is an option that is suitable for many 
objects. Here, the trend may not be computed by all areas of the known part. We 
only choose a suitable surface part usually without object boundaries or edges 
inside, so that the trend is reasonable and predictable. For example, for a polyhedral 
object, the surface trend will be a single surface plane. Only when the image 
boundary is on an edge of a polygonal plane, the next view can not be reasonably 
planned. This will certainly cause a not good viewpoint, but rarely happens in 
practice. Many cases are avoided by our selection method of the exploration 
direction. Of course, we do not expect that the trend method alone is enough to 
complete the whole modeling task. We have to integrate many other methods 
together so that the whole modeling process is executed in an “adaptive” way. That 
is also why we currently have difficulties to provide some complicated examples 
that are performed fully automatically. 

 

seen 

unseen 

x1 x2  x3 

edge or 
boundary 

exploration 
direction 
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9.5.2 Conclusion 

In this chapter, for the nonmodel-based object modeling tasks, a planning strategy 
was proposed to determine where to look next for a vision agent. A trend surface 
model was used to predict the unseen part of unknown objects or environments. In 
this way, the next viewpoint can be determined for on-line acquisition of the range 
data until the whole structure of the object or environment is reconstructed. The 
trend surfaces and trend curves were computed from the curvature tendency. While 
determining the next viewpoint, multiple sensor placement constraints were 
considered in this research, such as resolution, field-of-view, and viewing angle. 
The error analysis shows that the trend model can accurately predict the unknown 
surface of the object if the surface is composed of 1st-order and 2nd-order curves 
and surfaces. Numerical simulation and practical tests were carried out to 
demonstrate the technique presented in this research. 

The trend surface method works well in determining the next viewpoint for most 
smooth objects. However, this method alone is not adequate for efficient 
reconstruction. In real applications, other important techniques also have to be 
involved, e.g. the decision on the exploration direction should also consider surface 
uncertainties, occlusions, etc. 

A future work in this field may deal with reliable detection of the boundary 
positions on a complex partial model, so that they will be evaluated for selecting a 
best candidate of exploration directions. Other uncertain conditions will also be 
considered to make the reconstruction process more reliable so that an autonomous 
robot system can work without any human interference. 



 

Chapter 10  
Integrating Planning with Active Illumination 

The performance of the vision perception of a robot, and thus the quality of 
knowledge learnt, can be significantly affected by the properties of illumination 
such as intensity and color. This chapter presents strategies of adaptive illumination 
control for robot vision to achieve the best scene interpretation. It investigates how 
to obtain the most comfortable illumination conditions for a vision sensor. In a 
“comfort” condition the image reflects the natural properties of the concerned 
object. “Discomfort” may occur if some scene information is lost. Strategies are 
proposed to optimize the pose and optical parameters of the luminaire and the 
sensor, with emphasis on controlling the intensity and avoiding glare. 

10.1 Introduction 

Traditional methods for machine vision to better interpret scenes are usually 
focused on post- image processing (e.g. smoothing, filtering, masking, zooming, 
contrast stretching, pseudocoloring, etc.). However, post- image processing does 
NOT increase the inherent information content, but an originally better image 
contains more information of object surfaces. This facilitates further vision analysis 
and saves time-consuming enhancement processing, which is very important in a 
machine vision system, especially for real-time applications. 

The provision of adequate light for various human activities has been a matter of 
some importance since the emergence of civilization. The basic question that has 
faced the lighting designer is “how much light do we need to see”. The IES has dealt 
with this central problem since its beginning in 1906. In 1937, and again in 1959, a 
different approach was taken, based on improved understanding of the basic 
processes involved in vision, seeing, and performing visual tasks. The resulting 
work formed the basis of the illuminance recommendations of the CIE and for many 
years was the foundation of the IES method of prescribing illumination. 

Much in the same problem, in the computer vision field, while some of the vision 
systems mentioned by other researchers previously have explicitly dealt with the 
planning of lighting parameters, current work in illumination planning is quite 
restricted. It should be recognized, however, that the problem of planning general 
lighting for machine vision is extremely difficult. Most of the work has used point 
sources of light that are incident on convex Lambertian surfaces. These models, 
while useful, are not analogous to actual lighting conditions seen in current 
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applications. Higher-order lighting/reflecting models that include such phenomena 
as multiple sources (both point and extended), specularity, and interreflections from 
concave surfaces need to be found to properly plan lighting parameters. 

The light source for a natural scene is its illumination. As with any light, 
illumination has the properties of intensity and color, which significantly affect the 
performance of the robot vision perception as well as human perception. This 
chapter mainly considers the most widely used “robot eye” – the CCD camera. 

“As in real estate where the key to successful investments is location, location, 
location, in machine vision the key to value (equal to success) is lighting! lighting! 
lighting!” said Nello Zuech, the President of Vision Systems International. 

The principal reason for success in machine vision is the elimination of 
appearance variables and the consistent appearance that appropriate, 
application-specific lighting yields. Unlike the early days of machine vision when 
many of the entrepreneurial researchers in pioneering machine vision companies 
suggested, “We just need an image, our image processing and analysis algorithms 
will work for your application,” today people acknowledge the importance of 
lighting and scene consistency. 

The light source for a natural scene is its illumination. For many machine-vision 
applications, lighting now is the most challenging part of system design, and 
becomes a major factor when it comes to implementing color inspection. The 
uniformity and the stability of the incoming lighting are usually the common causes 
of an unsatisfactory and unreliable performance of machine-vision systems. As 
with any light, illumination has the properties of intensity and color, which 
significantly affect the performance of robot vision perception as well as human 
perception. 

The selection of light sources and vision sensors constitutes the first problem in 
vision design. There are many different kinds of sources, including incandescent 
filament lamps of many kinds, short arc lamps, gaseous and solid-state lasers, 
fluorescent lamps, high-intensity gaseous discharge lamps, electroluminescent 
lamps, light emitting diodes, carbon arc lamps, etc. Most CCDs have good red (long 
wavelength) response, but blue response can be a problem because of absorption in 
the polysilicon layer that covers the sensitive area. Using back-illuminated sensors 
may help to avoid this problem. Furthermore, a lot of camera series are ready for 
industrial use. It is important to select proper parameters, such as focal length, 
imager size, resolution, angle of view, etc. 

Then optical settings and geometrical placements of the light source and the 
vision sensor become another problem. To solve this, we must firstly analyze what 
“a perfect image for machine vision” is. A good image means that it contains 
maximum information about the scene so that the robot can easily understand it. 
The evaluation criteria of illumination conditions should be given and then the 
degree of “comfort” to the machine eye may be analyzed. 

Effort by Eltoft and de Figueiredo (1995) is one of the earliest important attempts 
in illumination control, and there is other literature with some relations to this 
problem (Gudrun 1990, Sato and Sato 1999, Ding et al. 2000). Recently, 
researchers have become more aware of the subject (Muehlemann 2000, Hartmann 
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et al. 2003, Qu 2003, Martinez-De-Dios and Ollero 2004). Their work discusses 
many factors of illumination conditions that affect the quality of the image. 

Although Chap. 3 has listed some typical works on illumination planning for 
active vision, this chapter further discusses many factors of illumination conditions 
that affect the quality of images seen by a robot. However, in our preliminary work, 
intensity control and glare avoidance are emphasized and fundamental sensing 
settings and spatial placements are proposed for active illumination setup in 
practical vision systems. 

10.2 From Human Vision to Machine Vision 

Currently CCD cameras are still the most commonly used machine eyes because 
of their many advantages, although CMOS cameras are also widely used 
nowadays. Apart from the apparent structure and working mechanism, a machine 
eye works very similar to a human eye with some comparable characteristics like 
resolution, bandwidth, luminosity, the ability to distinguish, adaptivity, and color 
vision. 

For resolution, the ability of human vision to perceive fine detail is called 
acuity that is expressed as the angle subtended by the smallest object he can 
discern. For gray-scale objects, this is typically about 1’ (minute of arc). A typical 
camera has an acuity of about 4’. To the human eye’s bandwidth, electromagnetic 
radiation in the wavelength range from 400 to 700 nm is what we know as visible 
light and has peak responsity at 555 nm. A typical CCD element (with 
photodiodes or photogates) is sensitive within a wavelength between 300 and 
1100 nm and has peak responsity at 800 nm. But it is practically cut off between 
400 and 700 nm using filters and is normalized to meet the human sensitivity 
curve. 

A human observer perceives the intensity (energy level) of light as the sensation 
called brightness. However, the perceived brightness varies depending on the color 
of the light. This is quantified by a luminosity curve. Usually a video camera is 
designed to have a spectral response that matches the similar luminosity curve. 
Humans can detect dozens of levels of intensity within a scene, which is referred to 
as gray-scale response, and thousands of colors. Present common cameras can 
detect 28=256 different gray levels and 224 true colors. 

Concerning adaptivity, it is well known that the human eye adapts to average 
scene brightness over an extremely wide range, as much as 1010 – 1. Video 
cameras are designed to deal with a similar brightness range and provide 
gray-scale reproduction pleasing to the eye. They use a serial of f-numbers to 
adapt to the brightness and at a certain f-number the dynamic range is only 
thousands of lux. 
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10.3 Evaluation of Illumination Conditions 

We will now give some quantitative criteria to evaluate the quality of illumination 
conditions in a specified vision task. These criteria reflect the factors of 
signal-to-noise ratio (SNR), linearity, contrast, and natural properties of the object. 

10.3.1 SNR 

SNR is one of the image fidelity criteria that is an important factor in considering 
illumination control and is measured by determining the amount of random noise on 
the visual signal in an area of the scene (object). A higher number of SNR produces 
a picture with enhanced sharpness or other attributes. 

The SNR is defined as 

dyxiyxi

dyxi
SNR
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log10  [dB] (10.1) 

where i(x, y) is the input signal (scene information) under certain illumination 
conditions, i(x, y) is the corresponding noised signal, and  is the whole field of 
view. 

However, noise measurement is affected by the use of aperture correction or 
image enhancement and may also be affected by the presence of shading or 
nonuniform illumination. 

Noise generation in CCD imagers has several sources. The fundamental noise 
level results from the quantum nature of the incident light – as the light on a pixel 
reduces, fewer light quanta and, thus, fewer electrons are involved, and the signal 
gets noisier. However, this is usually not a serious limit. More important is the dark 
current performance of the CCD; this is a small current that flows in the absence of 
light input. It depends on temperature and may vary from pixel to pixel. Random 
fluctuations of the dark current are visible as random noise. Another CCD noise 
source is reset noise, which originates in the readout circuit on the chip. 
Furthermore, the input amplifier is also a noise source. 

10.3.2 Dynamic Range 

A typical CCD sensor has a limited dynamic range of illumination intensity. That is, 
the image irradiance l must lie in the range:  

maxmin LlL .  (10.2) 

For example, a “SONY XC003P - 3 CCD Color Camera” has a minimum 
sensitivity of 31 lux (at F2.2, GAIN +18dB, 100% level) and a normal sensitivity 
of 2000 lux (at F5.6). The maximum sensitivity is usually not specified because 
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most cameras can automatically handle highlights using a knee slope and white 
clipping to compress the contrast. 

The contrast compression knee is usually at about 90% of the reference white 
level, over which it will cause nonlinearity and loss of scene information. Once the 
white clip level is reached, all color will be lost and the highlight will appear white. 

10.3.3 Linearity 

The above interval [Lmin, Lmax] is called the gray scale. Common practice is to shift 
this interval numerically to the interval [0, L] by looking it up in the quantization 
table. l=0 is considered black and l=L is considered white in the scale. However, the 
memory look-up table is not always linear because of transfer-characteristic 
processes of the camera, such as gain control, gamma correction, and highlight 
compression. Usually it has better linearity between 5% and 85% of total gray 
levels, which corresponds to 12 and 216 of 8-bit signal levels. 

10.3.4 Contrast 

Original contrast is important in machine vision tasks because it means obtaining 
clear object surface information. Although contrast can also be enhanced during 
post-processing (e.g. histogram equalization) of the acquired images, original 
contrast must be good enough so that it survives the quantization process. High 
original contrast may help the robot vision system to achieve a better interpretation 
of the scene. 

Considering two surface points A and B, the survival probability of contrast 
(apparent difference between A and B) is 

)||,1min( BA
s

llp , (10.3) 

where  is the length of the quantization step, lA and lB are illumination intensities 
of point A and B, respectively. 

10.3.5 Feature Enhancement 

The features of interest in machine vision include the geometrical object shape and 
optical surface properties, which both are represented through reflective responsity 
and the color vector. Therefore, another purpose of illumination control for feature 
enhancement is to: (1) improve the contrast of reflective responsity, (2) reflect the 
true color of the object surface. To achieve this purpose, we need to select the 
proper luminaire type and carefully control luminaire pose, radiant intensity, and 
color temperature. 
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10.4 Controllable Things 

10.4.1 Brightness 

The minimum light input is limited due to the dark current performance of the CCD, 
which depends on temperature and may vary from pixel to pixel. Most present 
CCDs can be sensitive from 2 to 20 (lx) at minimum. On the other hand, a brighter 
scene may bring higher SNR because it contains a larger signal with the same noise 
and higher image contrast.The basic nature of image brightness l(x, y) is usually 
characterized by two components: illumination i(x, y) and reflectance r(x, y): 

l(x, y) = i(x, y)r(x, y). (10.4) 

Under the same illumination condition, considering two surface points A and B, 
it is obvious that larger illumination implies a higher contrast between them 
because: 

Contrast = |lA – lB| = i(x, y)| rA(x, y) - rB(x, y)|. (10.5) 

However, too bright an illumination will result in the camera’s white balance 
clipping function and loss of object surface information (both discontinuities and 
colors). 

10.4.2 Color Temperature and Color Rendering Index 

The color in an image is derived from a complex combination of incoming 
illumination, material interaction, and detection parameters. The color temperature 
describes the appearance of a light source when someone looks at the light itself and 
the color rendering is given to surfaces when it shines on them. Generally, 
illumination in an ideal vision system should be white, which means it includes a 
broad spectrum of colors. But in a real environment, the light color depends on the 
types of light sources and their temperatures. Color temperature is the temperature 
of a blackbody radiator that produces a matching visual sensation to the illuminant. 
The color temperature of common white light sources ranges from approximately 
2700 to 6500 K. For example, incandescent illumination has a color temperature in 
the range of 3,000 K and is seen as “reddish”. Daylight usually is defined as a color 
temperature of 6,500 K. The locus of color temperatures shows on the CIE 
(http://www.cie.co.at) chromaticity diagram as a line beginning at the red end of the 
spectrum for low color temperatures, and curving out toward the center of the 
diagram for high temperatures. Video cameras have no natural ability to adapt to the 
illuminant. They must be told what color in the image to make “white” and then a 
white balancing procedure must be performed. 
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Practically, while the light from a lamp appears white to humans, a color 
CCD-camera produces a red rich image. This color variation is due to the imbalance 
of the lamp’s spectral output, and it is further exaggerated by the 
wavelength-dependent sensitivity of a standard silicon CCD sensor, which has 
stronger sensitivity to red photons than to blue photons. In many color applications, 
the use of a balanced white light source is preferred in combination with an 
off-the-shelf single-chip color camera, with RGB output and good long-term 
stability, providing an optimum balance between color quality and cost. 

The color rendering index expresses how a light source compares with natural 
light in its ability to make objects appear in their natural colors. It is a measure of the 
degree to which the colors of surfaces illuminated by a given light source conform 
to those of the same surfaces under a reference light. Perfect agreement is given a 
value of 100%. Common lamps have rendering indices ranging from 20% to 90%. 
For example, incandescent lamps – 90%, fluorescent tubes – 60%–90%, 
high-pressure mercury lamps – 40%–60%, low-pressure sodium lamps – 
20%–40%. 

Incandescent lamps or filament tungsten halogen lamps are stable, have a fairly 
long life time, good color rendering, relatively high efficiency, and are easy to 
install. Spectral irradiance can also be made more uniform by grinding the surface 
of a glass bulb. Therefore they are good options for machine vision use. A one-point 
light source is easy for lighting installations, but the disadvantage is non-uniform 
spatial distribution of illumination intensity. 

10.4.3 Glare 

High contrast between a luminaire and its background may produce glare. A 
machine eye may not be able to adapt to this situation because it exceeds the 
dynamic range of the cameras. It is a cause of visual discomfort because the 
machine eye must handle the highlight. The contrast is degraded when the highlight 
compression knee is reached and all color and contrast will be lost when white clip 
levels are reached. In this case, the robot may have difficulty to understand the 
scene. 

Two types of glare are distinguished: (1) discomfort glare or direct glare, 
resulting in physical discomfort; (2) disability glare or indirect glare, resulting in a 
loss in visual performance. They will be discussed in the next sections. 

10.4.4 Uniform Intensity 

Lighting with uniform spatial distribution is the most efficient solution for a vision 
system. If the intensity distribution is non-uniform and the pattern is uncalibrated, it 
will become an additional source of noise and the SNR is degraded. 

If the pattern of light source radiation is previously known (through the 
illumination calibration technique (CIBSE 1985)), we may obtain scene features 
using: 
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r(x, y) = l(x, y)/i(x, y), (10.6) 

where r(x, y) reflects the optical properties (edge discontinuities and colors) of the 
object. 

10.5 Glare Avoidance 

To the human eye, glare is a source of discomfort because the high contrast between 
a luminaire and its background exceeds its adaptive dynamic range. This is an even 
worse situation for the machine eye because the vision sensor has a smaller adaptive 
dynamic range. Too much illumination volume will automatically cause highlight 
compression or white clipping. Furthermore, glare usually causes loss of the 
object’s natural color. Hence, two types of glare, disability glare and discomfort 
glare, should be avoided as much as possible. 

There are at least two reasons for vision system to avoid glares. First, a vision 
sensor has a limited dynamic range. Too much illumination volume will 
automatically cause highlight compression or white clipping. Second, glare usually 
causes loss of an object’s natural color. 

10.5.1 Disability Glare 

Disability glare is usually caused by indirect glare and results in a loss of visual 
performance. Nayar et al. (1991) find that the image irradiance is a linear 
combination of three components, diffuse lobe Id, specular lobe Is1, and specular 
spike Is2
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Fig. 10.1. Diffuse reflection and specular reflection 
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Furthermore, Gudrun et al. (1990) concluded that the light color body reflection 
(diffuse reflection) is determined by intrinsic characteristics of surface materials 
and the fact that the light color of a surface reflection (specular lobe + specular 
spike) has the same color as the illumination. For example, a shiny red ball will 
have a specular highlight on its surface only at the position where the ball’s curved 
surface meets the normal reflection condition. The highlight has the same color as 
the illuminant (white) whereas, at all other positions on the ball, the reflection is 
diffuse and appears red. 

The disability glare light causes two problems. One is that the specular reflection 
contains only source color, which results in the loss of color rending, causing the 
robot to have possible difficulty in detecting natural features of its scene. The other 
is that the highlight usually has a large volume of illumination intensity, which 
results in highlight compression or white clipping. 

Practically, we can avoid the disability glare by presenting the target with light 
mostly from the side, so that the specularly reflected and hence brightest light is 
reflected off to the side and away from the field of view. 

10.5.2 Discomfort Glare 

In a lighting system for machine vision, although the main problem may be 
disability glare, in which the brightness of the luminaires may dazzle and prevent 
obstructions from being seen, we should also consider discomfort glare in the robot 
environment. It is usually caused by direct glare (due to the lighting installation) 
and results in physical discomfort. 

There are many criteria to evaluate the glare indices. For example, the IES 
Technical Report “Evaluation of Discomfort Glare” (CIBSE 1985) sets out the 
procedure for the evaluation of the glare index in the formula: 

Glare Index = ]
1B

constant5.0[log10 6.1

8.06.1
s
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. (10.8) 

Recently, the Commission Internationale de l’Eclairage (CIE) established a new 
glare rating procedure known as the Unified Glare Rating system (UGR) (Einhorn 
1998, Iwata and Tokura 1998) in the form of: 
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where p is the positional index: 
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These criteria are initially proposed for the purpose of human visual comfort. 
According to the comparison of the machine eye and the human eye, the CIE-UGR 
criterion may be adopted for the design of a lighting system in a robot environment. 
A glare index below UGR-19 is acceptable and above UGR-25 is uncomfortable. 

If the light source itself remains in the field of view and is bright, it can become a 
source of discomfort glare. Therefore it is best to position the light source behind 
the camera, either above or to the side. We can also reduce the effects of discomfort 
glare by increasing the task luminance relative to the luminance of the 
surroundings. Discomfort glare can also be reduced by: (1) decreasing the 
luminance of the light source, (2) diminishing the area of the light source, and (3) 
increasing the background luminance around the source if we can stop down the 
sensor aperture in this case. 

10.6 Intensity Estimation 

To satisfy the visual comfort of machine eyes, apart from selecting proper types of 
light sources and cameras, the key controllable parameters of a luminare are radiant 
intensity and geometrical pose in a practical vision system. The purpose of intensity 
control is to achieve proper image brightness which is in the range of the sensor, 
with linear property, and has contrast as high as possible. The purpose of pose 
control is to avoid possible glare and achieve uniform intensity distribution. 

To control the image intensity so that it will concentrate on an optimal point, 
firstly the sensor sensitivity must be considered, then the image irradiance is 
estimated from source radiation to image sensing, and finally the optimal control 
point is decided. 

10.6.1 Sensor Sensitivity 

The brightness that the camera perceived is the intensity (energy level) of light 
and varies depending on the light color (wavelength). The sensors usually have 
most sensitivity at the wavelength of 555 nm with the corresponding efficiency 
defined as 100%. The distribution is quantified by a curve of brightness sensation 
versus wavelength, called the luminosity curve. Figure 10.2a illustrates the sensor 
quantum efficiencies of back-illuminated CCD and front-illuminated CCD 
(Gilblom 1998). Since a video camera must have a spectral response that matches 
the human luminosity curve, the curves of sensor sensitivity have been normalized 
so their areas are equal, illustrated in Fig. 10.2b for 1-CCD and in Fig. 10.2c for 
3-CCD. The sensor sensitivity curves are expressed as: 

)(),(),( bbggrr . (10.10) 
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10.6.2 Estimation of Image Irradiance 

To estimate the image irradiance, we need to analyze five procedures, i.e. source 
radiation, source efficiency, surface irradiance, surface reflection, and sensor 
perception. First, the total output radiation of a light source at temperature T is 
proportional to four times the temperature: 

4TM e  (10.11) 

where 4281067051.5 KWm  and the emissivity  [0, 1] varies with 
wavelength. 

According to Planck’s radiation law, the spectral distribution of the radiation 
emitted by a blackbody can be described as a function of wavelength , 

1
1)( /5

1
2 TCe

CM  (10.12) 

where C1 and C2 are two radiation constants,  

2162
1 10741774.32 WmhcC

mK
k
hcC 01438769.02 . 

 

The peak wavelength, max, in nanometers, is given by 

4
1

2
6

6

max 108978.2108978.2
RiT

. (10.13) 

Equation (10.13) depicts the power output of the light source and the spectral 
distribution of intensity at different temperatures. As from Fig. 10.3, obviously we 
can find that with increasing temperature, more energy is emitted and the peak 
emission shifts toward the shorter wavelengths. 

 
  
 

 
   
 

 
 

( ) sensor quantum efficiencies   (  1-CCD curve         ( ) 3-CCD curve 

Fig. 10.2. Sensor sensitivity (Gilblom 1998) 

 

a b c)
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Fig. 10.3. Energy density vs spectral distribution and temperature 

Figure 10.4 illustrates the energy distribution of a 100 W incandescent lamp. 
However, consider that the vision sensor is sensitive only to a portion of the 
electro-magnetic wave, i.e. 380< <750 (nm). Due to the quantum efficiency of the 
vision sensor, the quantity of light as seen by the camera (illustrated as the grey area 
in Fig. 10.5.), is 

750

350 /5
1 )(

1
1)()(

2

2

1

d
e

CdMW TCe , (10.14) 

where We is the efficient light energy. 
 

   
Fig. 10.4. Distribution of source radiation 
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Fig. 10.5. Efficiency of light energy 

 
To control the quantity of source radiation, a dimmer is usually employed to 

adjust the phase of AC waveforms. Denote the input power rate ( ) and efficiency 
( ) at phase  controlled by the dimmer, then the visible efficient energy is: 

2

1

)()()()( dMWe . (10.15) 

In the case of a 3-CCD camera, since the color temperature of the light source 
varies as long as the input power changes, the visible efficient energy becomes: 
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On the other hand, we have 
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is defined as a coefficient function. 
The following algorithm is developed using numerical computation to solve 

(10.18), an example curve is illustrated in Fig. 10.6. Finally the luminous flux 
function (10.17) can be obtained.  
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Fig. 10.6. Temperature vs coefficient C (T) 

In most cases, the light emitted by a source is usually not uniformly distributed in 
all directions and the luminous intensity varies according to the position beneath the 
source. Manufacturers of luminaires usually provide intensity distribution diagrams 

“Algorithm for the solution of C(T)” 
C1=3.74174*(10^(-16)); 
C2=0.01438769; 
e=2.718281828459; 
func=zeros(1000,1); 
 
for jt=1:1000; 

T=200+jt*30; 
r1=380.0*T*(10^(-9)); 
r2=750.0*T*(10^(-9)); 
temp=0.0; 
for i=1:3000; 
 r=r1+i*(r2-r1)/3000.0; 
 temp=temp+((r2-r1)/3000.0)*C1/((r^5)*((e^(C2/r))-1)); 
end; 
func(jt)=temp; 

end; 
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for their products, which show the relationship between the luminous intensity and 
the angle to a reference position of 0o situated vertically below the source. The polar 
graph is often used for these purposes. It can also be calibrated using the techniques 
of luminaire photometry developed by Lewin and John (1999). Finally the efficient 
energy distribution is modeled as: 

),(),( ,, bgrWL , (10.19) 

where the function 0  ( , ) < 1 describes the spatial distribution of source 
radiation. 

Considering a point on the object surface, its irradiance is the integral of the 
whole angular distribution over a specified solid angle, i.e. 

2
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2/

0
sincos),( ddLLs . (10.20) 

The object surface then becomes another source and the image irradiance of the 
vision sensor can also be computed 

42 cos)(
4 sL

f
dE . (10.21) 

Since real objects are usually not Lambertians, three parts contribute to the 
surface reflection, that is Id (diffuse reflection), Is1 (gross specular reflection), and Is2 
(specular reflection). Then the image irradiance of an object illuminated by a source 
is represented by a function as in, (Nayar 1991, Laszlo 1999) 
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(10.22) 

where (x) is unit pulse function or Dirac delta function. 

10.7 Intensity Control 

10.7.1 The Setpoint 

A camera usually has the requirement of minimum illumination which is typically 2 
[lux] with high-gain operation. Theoretically, a camera’s sensitivity could be 
increased as much as desired simply by increasing the amplifier gain and operating 
the CCDs at a lower output level. Of course, the SNR will degrade when this is 
done. That is what happens in a camera’s “high gain” modes, which trade signal 
quality for sensitivity. On the other hand, the full-quality mode of a camera operates 
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the CCDs at the light level given in the sensitivity specification. This may be 
somewhat of a trade-off with highlight performance.  

 

Fig. 10.7. Optimal illumination setpoint 

 
The vision sensor often has best linearity between 15% and 90% of the output 

ndition below 20% is unacceptable 

ity because of gamma correction. An illumination 
condition above 90% output level is also unacceptable because of contrast 
compression of the knee slope and loss of color properties. Hence, the optimal 
setpoint of illumination intensity is at about 80% of the output level because of high 
SNR, linearity, and contrast. 

The illumination intensity can be controlled in two ways: (1) phase-control to 
adjust the electrical current intensity using a dimmer; (2) pose-control to adjust the 
distance between object and luminaire using a robot end-effector. Usually it is 
better to keep the luminaires far away from the object because the illumination will 
be more uniform in this case and will increase image SNR. It is also better to keep 
the luminaire in full-on state because it entails a higher color rending index in this 
condition and facilitates the obtaining of true surface information. 

Machine vision applications have a great need for feedback control. The 
vision-illumination system can be considered a closed-loop system in which the 
vision sensor plays a second role as the feedback channel. The pose and dimmer 
phase are determined by a controller according to the visual feedback, source 
model, and optimal setpoint. The energy magnitude of source radiation and image 
irradiance may be estimated using the techniques discussed above. 

level (Fig. 10.7). In fact, the illumination co
because: (1) low SNR for the existence of noise and dark current, (2) nonlinear quan- 
tization at this area, (3) nonlinear

 

noise, dark current 

linear 

optimal setpoint 
contrast compr. knee 

knee slope 
white clipping 

saturation level 
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10.7.2 System Design 

Figure 10.8 illustrates the overview of a typical system for illumination control, 
which includes a robot, manipulators of the light source and vision sensors, an 
image processor, a system controller, and an object in the scene. 

 

 
Fig. 10.8. System overview of illumination control 

 

 
Fig. 10.9. Block diagram of illumination control 
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Here we focus on the control of the energy magnitude of source radiation, 
although other parameters may be discussed in future. The block diagram of the 
illumination control system is illustrated in Fig. 10.9, where the symbols mean: 
 xe: the disturbance of the environment. It results from three reasons: the changing 

natural light, the dynamic environment, and the moving vision sensor; 
 xo: the sensed image (the output of vision preprocessing). 
 xr: the image irradiance after the displacement of the vision sensor and the 

illuminants. 
 ssi: the setpoint of parameters, the output value for setting the vision sensor’s 

parameters and illuminant’s parameters. It is a vector ssi=[ss, si]T. 

x
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 Ke: the gain which relates the image irradiance and the parameters of both vision 
sensor and illuminant (geometrical pose and optical settings). 

 V(z): the vision system. Generally, V(z)=kv/zn, which means the vision system 
introduces n unit delays. 

 C(z): the controller. It can be a fuzzy-controller or another robust and intelligent 
controller. It satisfies all above-mentioned constraints and keeps the image from 
becoming too dark or too bright. The control parameters are based on image 
irradiance distribution (a statistical value or vector based on the image 
histogram). 
 
It is an active system with visual feedback. The goal is to keep the object sensed 

in a good illumination condition to provide good results for further visual processes. 
In our simulation system, only for testing the principle, a fuzzy-PID controller is 
used to adjust the parameters of the illuminant. The closed-loop transfer function is: 
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where 
n
v

z
kzV )(  means that the vision system introduces n unit delays for 

acquiring an image and processing the data. Assume the mechanism (integrator, 
inverse kinematics, and servo, etc) also produce m unit delays, that is 
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10.8 Simulation 

A simulation system for illumination control was implemented with MATLAB 
(Fig. 10.10). The step response, sine response, zero input response, and random 
input response of the actively illuminated vision system have been observed, while 
we assume it has 10% environment light noise. Typically, step response happens 
when the robot stays in a dark room and a light is turned on at a certain time (Fig. 
10.11). Sine response happens when the robot walks in an environment with 
periodically installed lights (Fig. 10.12), for example, a robot moving on a road as 
in Fig. 10.13. Random input response happens usually in a general natural 
environment (Fig. 10.14). 
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Fig. 10.10. The simulation system for illumination control 

 

Fig. 10.11. Step response of the actively illuminated vision system, with 10% environment 
light noise. (It happens when the robot stays in a dark room and a light is turned on at a 
certain time) 
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Fig. 10.12. Sine response of the actively illuminated vision system. (It happens when the 
robot walks in an environment with periodically installed lights, e.g. on a road as in Fig. 
10.13) 

Fig. 10.13. A robot walking in a virtual environment with periodically installed lights 
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Fig. 10.14. Response of the actively illuminated vision system in a natural random 
environment, with 10% noise. (In a general environment) 

10.9 Implementation 

10.9.1 Design for Active Illumination 

With thermal light sources, such as electric light, we consider its input power M0: 

RiiuM 2
0   (watt/s) (10.25) 

Since Me = T 4 (10.11), we have 

T 4 = i2R or iRiT 4
12

)(  (10.26) 

where the coefficient 4
1

)( R  is a constant. 

In this way, the radiant intensity and source temperature can be adjusted using a 
dimmer for phase control.  The simplest way is to generate a PWM signal and 
compare the message signal to a triangular or ramp waveform (Fig. 10.15). The 
hardware of control module in our laboratory includes a controller board. The 
controller based on the Atmega16L processor provides several sensor channels, 
8.4-24 V input, serial ports (TTL and RS232), PWM mode outputs and on-off mode 
outputs. As can be seen, we built this module for lighting control. The generated 
luminance is further calibrated once for generating a control curve. 
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Fig. 10.15. A simple implementation for digital control of radiant intensity and spectral 
distribution 

10.9.2 Experimental Robots 

Currently, we are also working on setting up a robot system with active illumination 
control for testing in real environments (Fig. 10.16) at the University of Hamburg. 

 
Fig. 10.16. The mobile robot setup in our laboratory for dexterous manipulation 
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The mobile robot has an end-effector with 6DOFs for dexterous manipulation. An 
eye-in-hand camera is used to observe the scene and the active illumination device 
contains two light sources which can be controlled by a PWM module (Fig. 10.17). 
The robot works in many different environments and controls its illumination level 
automatically. Figure 10.18 illustrates an example of active sensing where the red 
curve is the brightness of the input image and the blue curve is the output of the 
lighting level (in percentage). It results in the image sequence being kept in a good 
range of brightness for scene understanding. A next step of our work is to equip a 
mobile robot with controllable illumination for active search and recognition tasks, 
which cannot only adjust the illumination level but also change the lighting 
direction and avoid glares (Fig. 10.19). 

 

Fig. 10.17. The active illumination device (one eye-in-hand camera and two light sources 
controlled by a PWM module) 
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Fig. 10.18. An example of illumination control for active sensing where the solid curve is the 
brightness of the input image and the dashed curve is the output of the lighting level (in 
percentage) 

 
Fig. 10.19. A robot equipped with controllable illumination for autonomous tasks of active 
search and recognition  
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10.10 Summary 

This chapter presented an idea of active illumination control for robot vision. 
Strategies are proposed to achieve optimal illumination conditions for vision 
sensors so that best-quality images can be obtained with high SNR, contrast, color 
rending, and linearity. The controllable parameters include optical parameters and 
pose parameters of luminaire and sensor. The characteristics of a robot eye and its 
“comfort” conditions have been analyzed. The image intensity is theoretically 
controlled at a good setpoint. Glare avoidance methods are proposed for treating 
two types of glare, disability glare and discomfort glare. The disability glare can be 
eliminated by placements of the light source, vision sensor, or targets. The 
discomfort glare is evaluated using the CIE-UGR criterion and can be diminished 
by control of the source position, radiant flux, or background luminance.  
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