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Numerical Computation of Model Prices

6.1 Overview

In this chapter we develop a new pricing algorithm to compute model prices for
the derivatives contracts previously discussed. Here, we distinguish, as before,
between contracts with unconditional and conditional exercise rights. The dis-
tinction is made because of the separate fundamental calculation procedure for
these prices. Whereas derivatives with unconditional exercise rights can be cal-
culated in terms of the general characteristic function ψ(xt, z, w0,w, g0,g, τ)
and in terms of the relevant moment-generating function128, respectively,
without evaluating any integral at all if the characteristic function is known in
closed form, we need for option-type contracts to apply a numerical integra-
tion scheme in order to calculate their model prices. Carr and Madan (1999)
showed in their prominent article a very convenient method to compute op-
tion prices for a given strike range, using the FFT. The advantage in applying
the FFT to option-pricing problems, is its considerable computational speed
improvement compared to other numerical integration schemes. Due to the
payoff transform methodology, we use another pricing algorithm, which shares
the same desirable, numerical properties of the FFT. Unfortunately, imple-
menting the pricing approach according to Lewis (2001), it is necessary to
impose the transform with respect to the strike. Therefore, one cannot use
the FFT any longer to obtain option prices in one pass for a strike range129.

128 See Section 5.2.
129 See Lee (2004), p. 61. However, comparing the structure in equation (4.21) it is

possible to obtain model prices with the help of a FFT procedure for different

levels of g (xt).
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In order to circumvent this problem within the payoff-transform pricing ap-
proach, we need an another numerical algorithm. Therefore, we incorporate in
our pricing algorithm the IFFT, to compute model prices for different strike
values130. Furthermore, to enhance the quality of results131, the fractional
Fourier Transform of Bailey and Swarztrauber (1994) is used. This refine-
ment was introduced by Chourdakis (2005) in pricing equity option prices
with the transformed option price methodology of Carr and Madan (1999).

However, we sometimes encounter the problem that ψ(xt, z, w0,w, g0,g, τ)
cannot be calculated in closed form132. For these cases, we implement a Runge-
Kutta solver in our IFFT pricing algorithm. This algorithm is then used to
compute the relevant values for different z in ψ(xt, z, w0,w, g0,g, τ) by solving
the ODEs (2.40) and (2.41) numerically and providing the procedure with the
needed values.

6.2 Contracts with Unconditional Exercise Rights

As explained in Section 5.2.2 all contracts with unconditional exercise rights
can be calculated as mere function evaluations of the general characteristic
function ψ(xt, z, w0,w, g0,g, τ), its first order derivative with respect to z, and
for integro-linear payoff functions with the help of the first order derivative
ψz

(
xt, z, w

A
0 (z),wA(z), 0,0M , τ

)
. As shown, these unconditional expectations

can be obtained by contour integration in closed form. Thus, we do not need
to develop a numerical integration routine at all in order to calculate the
relevant model prices. The calculations reduce in these cases to

E
Q


e−

T�
t

r(xs) ds


 = ψ(xt, 0, w0,w, g0,g, τ),

130 We find it natural to use the FFT and the IFFT algorithm to obtain the desired

Fourier Transformation. Other numerical integration schemes are also possible,

like for example the numerical integration via Laguerre polynomials as used in

Tahani (2004).
131 The ordinary IFFT pricing algorithm suffers, like the particular FFT algorithm,

from the fixed scale of increments of strike values and transformation variable,

which is discussed in Section 6.3.1.
132 This could be the case e.g. for some subordinated processes rt or for jump com-

ponents where EJ [ψ∗(z, w0,w, g0,g,J, τ )] cannot be solved explicitly.
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E
Q


e−

T�
t

r(xs) ds
g (xT )


 =

ψz(xt, 0, w0,w, g0,g, τ)
ı

,

and

E
Q


e−

T�
t

r(xs) ds
γ(T )


 =

ψz(xt, 0, wA
0 (0),wA(0), 0,0M , τ)

ı
,

for arbitrary times to maturity τ . For normal contracts, the discount rate
used in the characteristic function is based on the short rate r (xt) and is
zero for futures-style contracts. In case of an average-rate contract where the
underlying is the geometric average of the short rate, we have to use the
characteristic function with a modified discount rate rA (xt).

If the general characteristic function cannot be expressed in closed form
although defined by a system of ODEs, we apply a numerical algorithm to
evaluate the needed values. In this case we implement a Runge-Kutta solver
for the system of ODEs (2.40) and (2.41).

6.3 Contracts with Conditional Exercise Rights

6.3.1 Calculating Option Prices with the IFFT

We start with the integral representation of the general option valuation for-
mula (4.21). Since we are interested in calculating option prices in one pass for
a given strike range simultaneously with the IFFT, we have to reduce the pres-
ence of K in the integral to the expression eızα(K) for both exponential-linear,
linear, and integro-linear type payoff functions. In the case of coupon-bond
options and swaptions we have to divide the payoff function up into A separate
parts. The alternative representation of the valuation formula is

V (xt, t, T ) =
eα(K)d

π

∞∫

0

eızα(K)ĝ(z)ψ(xt,−z, w0,w, g0,g, τ) dz, (6.1)

with
Fg(xT ) [G (xT )] = e(d+ız)α(K)ĝ(z),

and α(K) = K for the case of a floating-rate based contract and an asian-type
contract, respectively, and α(K) = ln[K] for a yield-based contract133. The

133 See equation (5.21).
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parameter d is chosen in a way to eliminate all dependency of α(K) in ĝ(z),
which is crucial for the IFFT algorithm to work properly134. A first problem
might arise using multi-valued functions, e.g. the complex-valued logarithm,
square-root, and the confluent hypergeometric function KU(a; b; y). Thus, we
have to carefully keep track of the integration path to avoid any disconti-
nuities135. However, using a numerical algorithm to compute the particular
values of the characteristic function such as a Runge-Kutta algorithm we do
not encounter these problems136.

The first step in deriving the IFFT pricing algorithm is to truncate the
integration domain as

f(α(K)) ≈
ω∫

0

eızα(K)ĝ(z)ψ(xt,−z, w0,w, g0,g, τ) dz. (6.2)

Applying an U -point approximation with increment ∆ = ω
U , we discretize the

domain of the transform variable into

zu =
(
u− 1

2

)
∆+ ızi

with u = 1, . . . , U and zi corresponding to a fixed value for which the Fourier-
transformed payoff function exists. The integration interval [0,∞] is then re-
placed with a discrete, truncated region such that the integrand of f(α(K))
is negligible for zU . Hence, the discrete approximation to equation (6.2) is

f(α(K)) ≈
U∑

u=1

eızuα(K)ĝ(zu)ψ(xt,−zu, w0,w, g0,g, τ)∆

= ∆e−ziα(K)
U∑

u=1

eı(u−1) ∆α(K)e
ı ∆
2 α(K)ĝuψu,

(6.3)

134 Otherwise, the IFFT algorithm is not applicable to the valuation problem at

hand. Fortunately, we are able to reduce the dependency of K in the particular

integrals to the specific term eızα(K), for all contracts discussed in Chapter 3.
135 This topic is covered comprehensively in Nagel (2001), Appendix 4.
136 In case of the Fong and Vasicek (1991a) model, we made the same experience as

mentioned in Tahani (2004), Footnote 4, and compute values of the characteristic

function with help of an explicit Runge-Kutta algorithm in the first place. Thus,

besides the prevention of discontinuities, the Runge-Kutta algorithm can be more

efficient than the explicit computation of the confluent hypergeometric function.
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with
ĝu = ĝ(zu) and ψu = ψ(xt,−zu, w0,w, g0,g, τ).

The sum above is commonly referred to as a discrete inverse Fourier Trans-
formation137 of the function e

ı ∆
2 α(K)ĝuψu. We also want to mention that in

computing this sum we eventually obtain the option price for only one par-
ticular strike value K. Since we are interested in calculating option prices for
a strike range we also have to discretize α(K), which yields

αv = α(K1) + (v − 1)η,

with step size η and v = 1, . . . , U138. Thus, inserting the explicit expression
for αv inside the brackets of equation (6.3) gives

f(αv) = ∆e−ziαv

U∑
u=1

eı(u−1) ∆(α1+(v−1)η)e
ı ∆
2 (α1+(v−1)η)ĝuψu

= ∆e−ziαve
ı ∆η

2 (v−1)
U∑

u=1

eı(u−1)(v−1) ∆ηeı ∆α1(u− 1
2 )ĝuψu.

(6.4)

The form of f(αv) is almost ready to be inserted into the IFFT algorithm.

The IFFT algorithm is developed to calculate simultaneously the discrete
inverse Fourier Transformation for a range of values αv. The main advantage
is that it reduces the number of calculations from an order of U2 to the order
of U log2[U ], which makes a significant difference in computational speed139.
It efficiently computes the sum

f(v,h) =
1
U

U∑
u=1

eı(u−1)(v−1) 2π
U hu for v = 1, . . . , U. (6.5)

137 Although we defined the transform operations in Section 2.4 vice versa, in this

chapter we rely on the term discrete inverse transform, which belongs to en-

gineering disciplines and is in line with the expression used afterwards for the

IFFT.
138 We use the same discretization scheme for α(K) as used in Lee (2004). The

advantage, in contrast to the discretization schemes applied in Carr and Madan

(1999) and Raible (2000), is the possibility to adjust the numerical scheme for the

lower bound of the strike rates. Thus, one does not necessarily have to compute

option prices for negligible strike rates, which is a more efficient procedure.
139 See Cooley and Tukey (1965).
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Introducing the vectors

u = v =




1
2
...
U



,

equation (6.5) can be displayed in a more compact form, which is

f(h) = IFFT[h], (6.6)

with h ∈ CU .

By comparing equation (6.5) with (6.4), we obviously need the relation

∆η =
2π
U
,

in order to apply the IFFT algorithm properly to equation (6.4). Because 2π
U

remains constant for a fixed number of points U , we have only the freedom
to choose either ∆ or η independently. Thus, there is a tradeoff between
the accuracy of the calculated results and the coarseness of the strike-value
grid. According to these considerations, more accurate results of option prices
corresponding to specific strike rates have to be paid with more points in
the integration scheme due to the rule U × 2n. This rule ensures that the
algorithm computes option prices for specific strike values and illustrates the
exponential cost for more accurate results. Calculating the same number of
option prices, most of them outside a desired strike range, entails a substantial
waste of computational time140.

To give a more compact writing, we use henceforth the vectors α =
(αv)U

v=1, ĝ = (ĝu)U
u=1 and ψ = (ψu)U

u=1. Eventually, the vector V(xt, t, T )
containing the option values for different strikes, can be computed as

V(xt, t, T ) =
U ∆e(d−zi)α

π

� Re
[
e

πı
U (v−1) � IFFT[eı ∆α1(u− 1

2 ) � ĝ � ψ]
]
,

(6.7)

where the operator � denotes the vector-dot product of two arbitrary vectors
of the same length. This pricing algorithm is already capable of calculating

140 This particular problem is addressed in the next section.
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option prices. However, as stated before, equation (6.7) displays the problem
of computing option prices for many irrelevant strike rates, given a desired
level of accuracy.

6.3.2 Refinement of the IFFT Pricing Algorithm

The purpose of this subsection is to solve the problem of the inverse relation-
ship of ∆ and η mentioned in the last section. The numerical efficiency can
be enhanced by using a modified version of the ordinary IFFT algorithm to
ensure that all calculated option prices are at least within an interval of rele-
vant strike values. Bailey and Swarztrauber (1994) developed a method based
on the FFT to choose ∆ and η independently. Their method, called the frac-
tional Fourier Transformation, henceforth denoted as the FRFT, incorporates
a new auxiliary parameter ζ141, which successfully dissects the otherwise fixed
relation ∆η ≡ 2π

U . Chourdakis (2005) used this refined algorithm in pricing
European options on equities based on the Carr and Madan (1999) pricing
framework.

The FRFT was developed to efficiently compute the sum

f(v,h, ζ) =
U∑

u=1

e−2πı(u−1)(v−1)ζhu for v = 1, . . . , U. (6.8)

Thus, introducing the FRFT operator, we define the compact expression

f(h, ζ) = FRFT [h; ζ] .

Although, the parameter ζ is usually real-valued, it is not restricted to the set
of R. Obviously, the FRFT is strongly connected to the FFT and the IFFT.
For example, by comparing equation (6.5) with (6.8), we have the equivalence

IFFT [h] ≡ 1
U

FRFT
[
h;− 1

U

]
.

The key insight to compute the FRFT in terms of the FFT and the IFFT
algorithm, respectively, is to recognize that the product 2(u − 1)(v − 1) can
be expressed as

141 The fractional Fourier Transformation parameter ζ in this thesis corresponds to

α in the original article of Bailey and Swarztrauber (1994).
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(u− 1)2 + (v − 1)2 − (v − u)2.

Inserting this relation into equation (6.8), subsequently doing some algebraic
transformations and using the discrete version of the convolution theorem of
Fourier Transformations142, we are able to efficiently compute equation (6.8)
with the help of both the FFT and the IFFT algorithm as follows143. Defining
the vectors p and q with elements

pu =

{
hu

au
for 1 ≤ u ≤ U

0 for U < u ≤ 2U,

and

qu =

{
au for 1 ≤ u ≤ U

a(2U+2−u) for U < u ≤ 2U,

with
au = eıπζ(u−1)2 ,

we compute first the raw transformation as

f̂(h, ζ) = IFFT [FFT [p] � FFT [q]] .

The last U elements in f̂(h, ζ) can be discarded due to the zero padding made
in the vector p. Thus, we store the first half of the vector f̂(h, ζ) in a new
vector f̂−(h, ζ). The FRFT is then

f(h, ζ) = f̂−(h, ζ) � a−u. (6.9)

Obviously, by comparing the term inside the sum operator in equation (6.4)
with the corresponding term inside the sum in equation (6.8) we have to
establish the relation

ζ = − ∆η

2π
,

where both ∆ and η can be chosen arbitrarily144. Thus, our general option-
pricing formula (6.7), can be rewritten in terms of the FRFT as

142 See Proposition 2.4.3.
143 The detailed derivation of the FRFT algorithm is given in Bailey and Swarz-

trauber (1994).
144 Note that the factor 1

U
used in equation (6.4) is already included in ∆.
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V(xt, t, T )

=
∆e(d−zi)α

π
�

Re
[
e−πı(v−1)ζ � FRFT

[
eı ∆α1(u− 1

2 ) � ĝ � ψ;− ∆η

2π

]]
.

(6.10)

Although we have to compute two FFTs and one IFFT in order to ob-
tain one FRFT, there is a substantial improvement due to the now indepen-
dent choice of strike interval and integration domain, which saves in the end
computer time. This fact becomes more important for the computation of
characteristic functions for which no closed-form solutions exist and therefore
the system of ODEs (2.40) and (2.41) must be solved numerically for each
sampling point zu.

6.3.3 Determination of the Optimal Parameters for the Numerical
Scheme

As discussed in Lee (2004) and Lord and Kahl (2007), the choice of zi, deter-
mining the specific contour in the complex plane used for the numerical in-
tegration routine is crucial in computing option prices. Lee (2004) finds that
for different option payoff functions, for different strike values and driving
processes, respectively, the optimal value of zi, thus minimizing the numerical
error, varies substantially145. Furthermore, the parameter ω concerning the
truncation error is also of the utmost importance in a numerical option-pricing
scheme. Thus, both parameters influence the accuracy of numerical solutions.
This is illustrated in Figure 6.1 for zero-bond call options and the jump-
enhanced models of Vasicek (1977) and Cox, Ingersoll and Ross (1985b)146.
Obviously, setting ω too small results in a highly oscillating solution vector.
On the other hand choosing ω too high, the absolute error of the numerical so-

145 See Lee (2004) Table 2 and 3. The same observation is made in Lord and Kahl

(2007), Figure 1.
146 Both interest-rate models are enhanced with an exponentially distributed jump

component. The coefficients for the characteristic function of the jump-enhanced

Vasicek model are given in equations (8.6), (8.7), and (8.8). The particular coef-

ficients in case of the jump-enhanced CIR model are given in equations (8.11),

(8.12), and (8.13). A discussion of these models is given in Chapter 8.
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lutions increase exponentially. The opposite statement holds for zi. Therefore,
these parameters should be chosen to avoid minimize both effects.
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Fig. 6.1. Graphs in the first row depict absolute errors of 512 zero-bond call prices

for alternating values of ω. In the second row, the particular errors are depicted for

varying values of zi. An exponential-jump version of the Vasicek (CIR) model is used

in the left (right) column. The parameters are: rt = 0.05(0.03), κ = 0.4(0.3), θ =

0.05(0.03), σ = 0.01(0.1), η = 0.005(0.005), λ = 2(2), τ = 0.5(0.5), τ̂ = 2(2).

Since we want to price a vector of option prices with the computation of
one FRFT operation, thus considering one specific parameter setting for the
entire strike range, we are interested in finding the optimal parameter setting
for the pricing algorithm, (ω∗, z∗i ), which minimizes the overall numerical error
in equation (6.10). Hence, we need a criterion which measures the cumulative
error of both positive and negative deviations from the theoretical solutions.
Consequently, we apply in the following analysis the root mean-squared error
(RMSE), which is
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RMSE =

√
(VNum − VTrue)′(VNum − VTrue)

U
, (6.11)

where VNum denotes some numerical solution vector and VTrue represents
the corresponding vector of closed-form solutions. To give an idea of the error
behavior of the FRFT pricing algorithm, we first compare quasi closed-form
solutions computed with the QUADL integration routine in MATLAB147 ac-
cording to equation (6.1) and the corresponding values due to the FRFT
algorithm as defined in equation (6.10) for a fixed number of 512 different
strike rates. The particular natural logarithms of the RMSE for zero-bond
call option prices are depicted in Figure 6.2. We make two remarkable ob-
servations. Firstly, for differing values of ω and zi both models have a global
minimum of the RMSE of computed option prices. Secondly, the logarithmic
presentation of the RMSE implies a rapid and monotonic descent towards
this minimum, starting with small values of ω and zi

148. In case of the jump-
enhanced CIR model, the specific error-minimizing parameter couple is clearly
evident according to the contour plot of the logarithmic RMSE given in the
lower right graph of Figure 6.2. On the other hand, the particular contour plot
of the logarithmic RMSE for zero-bond call options under the jump-enhanced
Vasicek model also clearly indicates a region of parameter couples exhibiting
approximately the same RMSE magnitude.

Consequently, we exploit this monotonic decrease of the RMSE to develop
an algorithm, which is capable of finding an optimal parameter setting (ω∗, z∗i )
and simultaneously giving an estimate of the magnitude of errors of numerical
solutions even when the closed-form solutions are not known. The technique
we use for the approximation of the numerical error is based on the exponential
decreasing of the mean-squared error between two successive parameter values
in the numerical scheme. Thus, we define the approximate RMSE as

RMSEa =

√
(VNum − VNum(+))′(VNum − VNum(+))

U
, (6.12)

where VNum and VNum(+)
denote numerical solutions of two successive pa-

rameter values, whether in ω or in zi direction.
147 This integration routine uses an adaptive Lobatto quadrature scheme. In the

calculation of quasi closed-form solutions, we set its error tolerance to 10−15.
148 This phenomenon shows up for all interest-rate model/payoff combinations men-

tioned in this thesis.
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Fig. 6.2. Logarithmic RMSEs of 512 zero-bond call option prices. In the upper

(lower) row the underlying interest rate is modeled by a jump-enhanced Vasicek

(CIR) model. The parameters are: rt = 0.05(0.03), κ = 0.4(0.3), θ = 0.05(0.03), σ =

0.01(0.1), η = 0.005(0.005), λ = 2(2), τ = 0.5(0.5), τ̂ = 2(2) and a strike range of

K ∈ [60, 90].

In Figure 6.3, differences of the logarithmic RMSEa, for two successive
parameter values of zi, and the logarithmic RMSE according to equation
(6.11) are depicted for zero-bond call prices for varying zi values. Obviously,
the approximate and exact RMSEs show nearly the same magnitude until
the minimum RMSE is reached. Afterwards, the difference, still very small,
becomes oscillating in case of the Vasicek model and experiences a decrease
of its level in case of the CIR model, respectively. This characteristic behavior
of the RMSEa is used in our algorithm to find the optimal parameter couple
(ω∗, z∗i ) and enables the formulation of an approximate error bound for the
numerical solution vector.

As mentioned above, our algorithm to find the optimal parameter couple
(ω∗, z∗i ) utilizes a steepest descent technique on the logarithm of the RMSEa.
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Fig. 6.3. The dashed line represents the difference of the logarithmic RMSEa and

the exact RMSE of 512 zero-bond call option prices and increasing values of zi.

Both graphs are drawn for ω = 1400. The straight line depicts the logarithmic

RMSE in dependence of zi. The underlying model in the left (right) graph is a jump-

enhanced Vasicek (CIR) model with parameters: rt = 0.05(0.03), κ = 0.4(0.3), θ =

0.05(0.03), σ = 0.01(0.1), η = 0.005(0.005), λ = 2(2), τ = 0.5(0.5), τ̂ = 2(2) and a

strike range of K ∈ [60, 90].

Thus, initializing the algorithm, we first evaluate the numerical solution VNum

for some parameter values (ωo, z0
i )149. Subsequently, we compute two addi-

tional solution vectors for ascending parameter values in the direction of both
ω and zi which are then used to derive the particular first order finite dif-
ferences. Afterwards, if the slope in ω direction is smaller than the one in zi

direction, thus more negative, the next numerical solution is computed with
an exalted ω and vice versa. The next step in the numerical scheme is then
again to obtain the necessary numerical solution vectors in order to derive the
particular finite differences and so on. The algorithm aborts if the smallest
value of ln(RMSEa) is reached over some interval where the curve experienced
its reversal point. In Figure 6.4, the paths with an initial value of z0

i = 2 and
ω0 = 10 for the jump-enhanced Vasicek and CIR model are shown. Obviously,
the algorithm finds for both interest-rate models the optimal parameter set-
ting, which can be justified by the graphs in the left column of Figure 6.4. In
case of the optimal parameter couple using the jump-enhanced Vasicek (CIR)
model, we get a difference of exact and approximate RMSEs of 9.02924×10−14

149 Since we observe the steepest descent starting at the origin the initial value for

z0
i and ω0 has to be near the origin subject to the particular regularity conditions

of the Fourier-transformed payoff function.
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Fig. 6.4. Search for the optimal parameter couple (ω∗, z∗i ). In the first (second)

column particular graphs are shown for the Vasicek (CIR) model with the data

used in Figure 6.3. In the first row, the particular ln(RMSE) is depicted for the

search algorithm with increments (∆ω,∆zi) = (1, 1). In the second row the same

search is made with increments (100, 5). In the third row the dashed (dash-dotted)

line denotes the particular search path for small (high) increment values, where the

optimal choice is marked by a circle and cross, respectively.
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(8.27740×10−10), whereas the exact RMSE is 1.11766×10−13 (1.30453×10−9).
Thus, we have in both models a difference which is of smaller order than the
effective error according to the RMSE. Consequently, the RMSEa gives a good
prediction for the corresponding exact value, which justifies the application
of the approximate RMSE. In the first row of Figure 6.4, we used very small
increments for the search of the optimal parameter couple to give a detailed
impression of the search path and the particular logarithmic RMSE. Accord-
ing to the graphs in the second row of Figure 6.4, a comparable result is
achieved by running the algorithm with higher increments150. However, due
to the reduced number of iterations, the search algorithm with high incre-
ments is in case of the jump-enhanced Vasicek (CIR) model up to 71 (86)
times faster. Dealing with a characteristic function known in closed form to-
gether with a FRFT-based pricing algorithm, the search takes only a second
at all even for small increments. Thus, if the general characteristic function is
known in closed form, the step-size does not matter. However, if values of the
general characteristic need to be determined numerically via a Runge-Kutta
algorithm, we usually set the increments high enough to keep the overall num-
ber of iterations small.

Finally, we use the RMSEa to derive an upper error bound for the numer-
ical solutions contained in VNum. The first step in deriving this particular
error bound is to consider a hypothetical solution vector VNum, where all
elements equal their true solutions except the result given in the first position
of the solution vector, namely V Num

1 . Without loss of generality, we assume
the numerical error of this particular option price to be of magnitude |a|.
Therefore, solving equation (6.11) in this special case gives

a = RMSE
√
U. (6.13)

Additionally, we are also able to state the inequality
√

(VNum − VTrue)′(VNum − VTrue) ≥ |V Num
v − V True

v |, (6.14)

to hold for every element of the numerical solution vector VNum. According
to equation (6.13), the RMSE scaled by some constant

√
U states the value

150 The second run of the algorithm, with higher increments, gives an absolute error

for the optimal parameter couple (ω∗, z∗i ) for zero-bond calls under the jump-

enhanced Vasicek (CIR) model of 1.13911 × 10−13 (1.46601 × 10−9).
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of the maximum attainable error. Furthermore, this result together with the
inequality in (6.14) generally implies that the absolute error of one particular
numerical solution V Num

v cannot exceed the absolute value |a|. Therefore, the
RMSE can be used in formulating a boundary for the highest possible error.
Consequently, we use the quantity RMSEa, scaled by some constant

√
U , as

a conservative upper error bound for the results generated by the pricing
algorithm.




