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A General Multi-Factor Model of the Term

Structure of Interest Rates and the Principles

of Characteristic Functions

2.1 An Extended Jump-Diffusion Term-Structure Model

The evolution of the yield curve can be described in various ways. For instance,
it is possible to use such quantities as zero-bond prices, instantaneous forward
rates and short interest rates, respectively, to build the term structure of
interest rates. If the transformation law from one quantity to the other is
known, the choice of the independent variable is just a matter of convenience.

In this thesis, we attempt to model the dynamics of the instantaneous
interest rate, denoted hereafter by r(xt), in order to construct our derivatives
pricing framework. This instantaneous interest rate r(xt) is also often referred
to as the short-term interest rate or short rate, respectively, and character-
izes the risk-free rate for borrowing or lending money over the infinitesimal
time period [t, t + dt]. Since we model the dynamics in a continuous trading
environment, the relevant processes are described via stochastic differential
equations.

The economy we consider has the trading interval [0, T ]. The uncertainty
under the physical probability measure is completely specified by the filtered
probability space (Ω,F,P). In this formulation Ω denotes the complete set of
all possible outcome elements ω ∈ Ω. The information available in the econ-
omy is contained within the filtration (F)t≥0, such that the level of uncertainty
is resolved over the trading interval with respect to the information filtration.
The last term, completing the probability space, is called the real-world prob-
ability measure P on (Ω,F), since it reflects the real-world probability law of
the data.
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We model the dynamic behavior of the term structure in the spirit of
Duffie and Kan (1996) and Duffie, Pan and Singleton (2000), to preserve
an exponential-affine structure of the characteristic function. However, we
extend the framework in Duffie and Kan (1996) to allow forN different trigger
processes6, which offers more flexibility. The term structure is then modeled by
a multi-factor structural Markov model ofM factors, represented by a random
vector xt, which solves the multivariate stochastic differential equation,

dxt =




dx(1)
t

dx(2)
t

...
dx(M−1)

t

dx(M)
t




= µP(xt) dt+ Σ(xt) dWP
t + J dN(λPt). (2.1)

The coefficient vector µP(xt) has the affine structure

µP(xt) = µP
0 + µP

1 xt (2.2)

with (µP
0 ,µ

P
1 ) ∈ RM×RM×M and the variance-covariance matrix Σ(xt)Σ(xt)′

suffices the relation
Σ(xt)Σ(xt)′ = Σ0 + Σ1xt, (2.3)

where Σ0 ∈ RM×M is a matrix and Σ1 ∈ RM×M×M is a third order tensor.
The vector WP

t in equation (2.1) represents M orthogonal Wiener processes.
Thus, we have7

EP( dWP
t dWP′

t ) = IM dt

with IM as the M ×M identity matrix.

As mentioned above, we extend the ordinary diffusion model8 with N in-
dependent Poisson processes, condensed in the vector N(λPt). This vector
process acts with constant and positive intensities9 λP. We allow for every
6 Chacko and Das (2002) model also the term structure with help of different

Poisson processes. However, their approach consider a subordinated short rate.
7 If not indicated otherwise, we subsequently use the shorthand notation E[ · ] for

the expression E[ · |Ft].
8 This would be the original model approach presented in Duffie and Kan (1996).
9 This exponential-affine model can be easily extended to stochastic jump intensi-

ties of the form λP(xt) = λP
0 + λP

1 xt. See Chapter 10.
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particular factor in xt an amount of N different jumps drawn from a jump
amplitude matrix J ∈ RM×N . Hence, the distribution functions of the par-
ticular jump amplitudes are given within the matrix ν(J). Finally, all jump
amplitudes in J are independent of the state of the vector xt

10.

To preserve the exponential-affine structure of any derivatives contract
based on r(xt) and xt, respectively, all random sources, the Brownian motions
WP

t , intensities λP and jump amplitudes J are mutually independent. As a
direct consequence of the independence of J and xt, there is no chance to
generate an arbitrage opportunity according to available information before
the particular jump occurs. Hence, given a jump time t∗, we have formally
J ∈ Ft∗− . Therefore, if a jump occurs at time t∗, nobody is able to predict
the exact jump amplitude and cannot gain an arbitrarily large profit with
certainty.

In this thesis, the choice of jump amplitudes in J can draw on three dif-
ferent types of distribution. These are:

• Exponentially distributed jumps.
• Normally distributed jumps.
• Gamma distributed jumps.

These jump distributions and the resulting jump transforms, which are used
in our pricing mechanism, are covered in Chapter 7.

Basically, we prefer to model the term structure in terms of the instanta-
neous short interest rate r (xt)11, because in this framework all fundamental
quantities are properly defined as the expectation of some functionals on the
underlying process r (xt). Accordingly, we are able to construct an arbitrage-
free economy and simultaneously guarantee a consistent pricing methodol-
10 From a technical point of view, it is either possible to introduce a dependence on

xt for the jump intensity together with independent random jump amplitudes or a

dependence on xt for the jump amplitude together with constant jump intensities.

See Zhou (2001), p. 4.
11 Other approaches are possible, e.g. the direct approach as used in Schöbel (1987)

and Briys, Crouhy and Schöbel (1991) or modeling the forward-rate process as

done in Heath, Jarrow and Morton (1992).
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ogy12. The drawback of this approach is that we might not be able to explain
perfectly the entire term structure extracted from observed bond market prices
and therefore must content ourselves with a best fit scenario.

The literature distinguishes between two approaches in modeling the short
interest rate in a multidimensional framework. Firstly, we can identify a strat-
egy, which we call henceforth the subordinated modeling approach. Here, the
short rate is modeled as

r (xt) = w0 + w1x
(1)
t (x(2)

t , . . . , x
(M)
t ).

Consequently, the other M − 1 stochastic factors are subordinated loadings,
containing e.g. a stochastic volatility and/or a stochastic mean13. Apart from
the stochastic variable x(1)

t , we also consider the deterministic parameters w0

and w1 in modeling the short rate. Indeed, there are other factors, which
can possibly have some other economic meaning worth to be included in the
interest-rate model.

The second method in modeling short rates, which we call the additive
modeling approach, is to represent rt as a weighted sum over xt, formally
given by

r (xt) = w0 + w′xt,

12 This means that all derivative prices are based on the same price of risk. See

Culot (2003), Section 2.1.
13 In Brennan and Schwartz (1979), Brennan and Schwartz (1980), and Brennan and

Schwartz (1982) the short-rate process is subordinated by a stochastic long-term

rate. Beaglehole and Tenney (1991) discuss a two-factor interest-rate model with a

stochastic long-term mean component and Fong and Vasicek (1991a) introduce a

short-rate model with stochastic volatility. A model where the short rate depends

on a stochastic inflation factor is modeled in Pennacchi (1991). Kellerhals (2001)

analyzes an interest-rate model with a stochastic market price of risk component.

In Balduzzi, Das, Foresi and Sundaram (1996), the authors present a short-rate

model with a stochastic mean and volatility component.
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where w is a M × 1 vector containing separate weights for the correspond-
ing factor loadings in xt

14. However, this model approach possibly entails
difficulties in explaining the economic meaning of the variables xt

15.

2.2 Technical Preliminaries

Before we proceed any further, we have to discuss some general results and
principles of stochastic analysis, which are commonly used in financial engi-
neering, namely the prominent Itô’s Lemma and the equally famous Feynman-
Kac Theorem. These two principles play a major role in diffusion theory and
are well connected. Since we consider discontinuous jumps in our model setup,
we have to use extended versions of these two results. At first we have to state
some regularity conditions on the jump-diffusion process, in order to guarantee
their application.

Definition 2.2.1 (Regularity Conditions for Jump-Diffusion
Processes). If the vector process xt represents a multivariate jump-diffusion,
the parameter coefficients µ(xt),Σ(xt) have to satisfy the following technical
conditions16 for all t ≥ 0

• ‖µ(xa
t ) − µ(xb

t)‖ ≤ A1‖xa
t − xb

t‖
• ‖Σ(xa

t )) − Σ(xb
t)‖ ≤ A2‖xa

t − xb
t‖

• ‖µ(xa
t )‖ ≤ A1 (1 + ‖xa

t ‖)
• ‖Σ(xa

t ))‖ ≤ A2 (1 + ‖xa
t ‖)

where xa
t ,x

b
t ∈ RM are two vectors containing different realizations of xt and

the constants A1, A2 <∞ denote some scalar barriers. Additionally, we need
14 Langetieg (1980) models the short rate as an additive process consisting of two

correlated Ornstein-Uhlenbeck processes. In Beaglehole and Tenney (1991) an

additive, multivariate quadratic Gaussian interest-rate model is given. Longstaff

and Schwartz (1992) and Chen and Scott (1992) model the interest-rate process

as the sum of two uncorrelated Square-Root processes.
15 A comprehensive discussion on this topic is given in Piazzesi (2003).
16 The first two conditions are known as the Lipschitz conditions, the latter two

represent the growth or polynomial growth conditions. See, for example, Karlin

and Taylor (1981).
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for the jump components the integral
∫
R

ecJmn dν(Jmn) to be well defined for

every Jmn ∈ J and some constant c ∈ C.

If the conditions posed above are met, we are able to apply both Itô’s
Lemma and the Feynman-Kac Theorem.

We start with Itô’s Lemma. This lemma enables us to determine the
stochastic process driving some function f(xt, t, T ), depending on time t and
a stochastic (vector) variable, e.g. the process xt given in equation (2.1). The
variables t and xt, respectively, are hereafter denoted as the independent vari-
ables. The coefficients µ(xt) and λ used in this section have no superscripts,
because the principles introduced here hold in general.

Theorem 2.2.2 (Itô Formula for Jump-Diffusion Processes17). As-
sume the function f(xt, t, T ) is at least twice differentiable in xt and once
differentiable in t. Then the canonical decomposition of the stochastic differ-
ential equation for f(xt, t, T ) is given by

df(xt, t, T ) =
(
∂f(xt, t, T )

∂t
+ µ(xt)′

∂f(xt, t, T )
∂xt

+
1
2

tr
[
Σ(xt)Σ(xt)′

∂2f(xt, t, T )
∂xt∂x′

t

])
dt

+
∂f(xt, t, T )

∂x′
t

Σ(xt) dWt

+ (f(xt,J, t, T )′ − f(xt, t, T )) dN(λt),

(2.4)

where the function f (xt,J, t, T ) contains all jump components with elements
(f (xt,J, t, T ))n = f(xt + jn, t, T ) and jn ∈ RM contains as mth element Jmn

of the amplitude matrix J.

Another key result which we use extensively is the Feynman-Kac theo-
rem. This theorem provides us with a tool to determine the system of partial
differential equations (PDEs), given an expectation.

17 See, Kushner (1967), p. 15, for the jump-extended version of Itô’s lemma.
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Theorem 2.2.3 (Feynman-Kac). If the restrictions in definition 2.2.1 hold,
we have the expectation

f(xt, t, T ) = E


e−

T�
t

h(xs,s) ds
f(xT , T, T )


 , (2.5)

solving the partial differential equation

∂f(xt, t, T )
∂t

+ µ(xt)′
∂f(xt, t)
∂xt

+
1
2

tr
[
Σ(xt)Σ(xt)′

∂2f(xt, t, T )
∂xt∂x′

t

]

+ EJ [f(xt,J, t, T )′ − f(xt, t, T )]λ = h(xt, t)f(xt, t, T ),
(2.6)

with boundary condition18

f(xT , T, T ) = G (xT ) (2.7)

and f (xt,J, t, T ) as defined in theorem 2.2.2.

In diffusion theory, the function h(xt, t) is commonly addressed to as the
killing rate of the expectation19 and can be interpreted as some short rate.
Since we use equivalently as killing rate a short rate characterized by the time
constant coefficients w0 and w we set the relation

h(xt, t) = r (xt) .

As we will see, these two principles are the fundamental tools in obtaining
the solutions for our upcoming valuation problems, especially in calculating
the general characteristic function of a stochastic process, which is discussed
in the next sections.

2.3 The Risk-Neutral Pricing Approach

So far, the stochastic behavior of the state vector xt was assumed to be mod-
eled under the real-world probability measure P. This probability measure
depends on the investor’s assessment of the market and therefore cannot be
18 The operator EJ[ · ] denotes the expectation with respect to the jump sizes J.
19 See, for example, Øksendal (2003), p. 145.
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used in calculating unique derivatives prices20. However, for valuation pur-
poses we need to derive contract prices under the condition of an arbitrage-free
market21, which will be shown in this section.

According to the seminal papers of Harrison and Kreps (1979) and Harri-
son and Pliska (1981), it is a well known and rigorously proved fact, if one can
find at least one equivalent martingale measure with respect to P, then the
observed market is arbitrage-free and therefore a derivatives pricing frame-
work can be established. Thus, we establish the link between this equivalent
martingale measure Q, also known as the risk-neutral probability measure22,
and the probability measure P in this section.

Since we are dealing with M stochastic factors, primarily integrated in
the short rate r (xt), which are all non-tradable goods, we are confronted
with an incomplete market. In contrast to other model frameworks in which
factors represent prices of tradable goods, we encounter a somewhat more
difficult situation to end up in a consistent arbitrage-free pricing approach23.
Foremost, we need to introduce for every source of uncertainty a market price
of risk reflecting the risk aversion of the market. The common procedure in
this case is to choose a particular equivalent martingale measure, sometimes
also called the pricing measure which determines the appropriate numeraire
to be applied24. Having chosen the numeraire, which has the function of a
denominator of the expected contingent claim and determines the martingale
condition for the expectation, we afterwards have to extract yields for different
maturities of zero-bond prices. In the next step the model prices of zero bonds
20 See, for example, Musiela and Rutkowski (2005), p. 10.
21 The arbitrage-free approach is also known as the partial equilibrium approach.

Including preferences of investors, i.e. working with utility functions would be a

general equilibrium approach. Schöbel (1995) gives a detailed overview of both

approaches.
22 The terminology can be justified, since in a risk-neutral world, where all market

participants act under a risk-neutral utility behavior, the probability measures P

and Q coincide. See, for example, Duffie (2001), p. 108.
23 This statement holds only for tradable goods modeled by pure diffusion processes.

Otherwise, due to the jump uncertainty one has again to implement some variable

compensating jump risk. See Merton (1976).
24 This can be for example the money market account or zero-coupon bond prices.

See Dai and Singleton (2003), pp. 635-637.
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are calibrated with respect to this empirical yield curve. In the calibration
process for these parameters, two separate approaches can be utilized25. In
the first approach one computes the particular model parameters under the P

measure together with the different market prices of risk. The other method
would be to calibrate the model onto the parameters under the objective
measure Q. A problem which is common to all model frameworks, where the
instantaneous interest rate r(xt) is used to describe the term structure of
interest rates is that in general the given yield curve is not matched perfectly.
Hence, we rather want an arbitrage-free model, which might not be able to
explain perfectly all observed yields, but to state a model with an internally
consistent stochastic environment.

In the upcoming subsections, we will first give an outline how the risk-
neutral measure is defined and how the particular coefficients under this prob-
ability measure Q can be derived for our affine term-structure model. Due to
the jump-diffusion framework, we also focus on the topic that our martingale
measure should consider for discontinuous price shocks.

2.3.1 Arbitrage and the Equivalent Martingale Measure

Before we start with the formulation of our option-pricing methodology, we
need to ensure the existence of an arbitrage-free pricing system. A very useful
insight for this delicate matter is given in the above mentioned work of Harri-
son and Kreps (1979) and Harrison and Pliska (1981). Using measure theory,
they judge the market to be arbitrage free enabling the consistent calculation
of derivative prices if at least one equivalent martingale measure can be found,
corresponding to the physical measure P. Hence, using the money market ac-
count as numeraire in order to derive Q, the price of a derivative contract
would be just the discounted expectation of its terminal payoff G (xT )26. So
our first step is to define the relevant conditions for an equivalent martingale
measure.

25 See Duffie, Pan and Singleton (2000), p. 1354.
26 See, for example, Geman, Karoui and Rochet (1995) and Dai and Singleton

(2003), p. 635.
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Definition 2.3.1 (Equivalent Probability Measure). Two probability
measures P and Q are equivalent, if for any event A, P(A) > 0 if and only if
Q(A) > 0.

According to definition 2.3.1, the equivalent probability measure Q must
only agree on the same null sets given by P. The next property we need, in
order to obtain the probability measure Q, is the martingale property.

Definition 2.3.2 (Martingale Property). A stochastic process f(xt, t) is
a martingale under the probability measure Q if and only if the equality

f(xt, t, T ) = E
Q [f(xT , T, T )] (2.8)

holds for any t ≤ T .

This last definition ensures the fair game ability of our interest-rate mar-
ket. Combining definitions 2.3.1 and 2.3.2 lead us to the equivalent martingale
measure Q with respect to P. Thus, to be a fair game, respectively a martin-
gale, the probability measure Q transforms the probability law for xt, leaving
the null sets of P untouched. In the next subsection we show the transition of
the probability law from the real-world measure P to the risk-neutral measure
Q.

2.3.2 Derivation of the Risk-Neutral Coefficients

Having found the formal conditions of an equivalent martingale measure, we
now want to derive the transformation rule from measure P to Q. This rule,
also called the Radon-Nikodym derivative ξ(xt, t, T ), is represented by

dQ
dP

∣∣∣∣
Ft

=
ξ(xT , T, T )
ξ(xt, t, T )

. (2.9)

In order to derive the risk-neutral coefficients, we adopt the corresponding
pricing-kernel methodology. Doing this, the pricing kernel or Radon-Nikodym
derivative ξ(xt, t, T ), belongs itself to the class of exponential-affine functions
of xt

27. The principle of risk-neutrality implies for the state-price kernel an
27 See, for example, Dai and Singleton (2003), p. 642.
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expected discount rate equal to the instantaneous risk-free rate r (xt). Thus,
we need the equation

EP

[
dξ(xt, t, T )
ξ(xt, t, T )

]
= −r (xt) dt, (2.10)

to hold. Using this type of state-price kernel, we have the discounted expecta-
tion of an interest-rate derivatives price to fulfill the definition of a martingale
as described in theorem 2.3.2. Consequently, ensuring the expectation made
above holds and considering the systematic risk factors, we choose the specific
form of ξ(xt, t, T ) to satisfy

dξ(xt, t, T )
ξ(xt, t, T )

= −r (xt) dt−ΛΣ (xt)
′ dWP −Λ′

λ

(
dN(λPt) − λP dt

)
. (2.11)

The vectors ΛΣ (xt) and Λλ compensate the sources of risk under the risk-
neutral measure Q for the vector of Brownian motions and the vector of
Poisson processes, respectively. The vector ΛΣ (xt) is characterized by the
two relations28

ΛΣ (xt)
′ ΛΣ (xt) = l0 + l′1xt

Σ (xt)ΛΣ (xt) = s0 + s1xt

with l0 ∈ R, l1, s0 ∈ RM , and s1 ∈ RM×M . Defining ΛΣ (xt) like this,
we ensure the exponential-affine structure in the pricing kernel ξ(xt, t, T ).
In contrast to the constant, N -dimensional vector Λλ, we need to establish
in ΛΣ (xt) a dependence on the state vector xt because of a possibly non-
zero matrix Σ1

29. Thus, if a particular factor x(m)
t has a constant volatility

coefficient, meaning its volatility does not depend on any element in xt, there
is either no dependence on xt for the respective element in the the vector
ΛΣ (xt) and vice versa. Since λP is the vector of expected arrival rates, we
have with

E
P
[
dN(λPt) − λP dt

]
= 0N ,

a P-martingale, representing a vector of compensated Poisson processes30.
28 Compare, for example, with Duffie, Pan and Singleton (2000), Culot (2003), and

Dai and Singleton (2003).
29 Dealing with a Square-Root process, we cannot set the particular market price of

risk to a constant value, see Cox, Ingersoll and Ross (1985b), Section 5.
30 A compensated Poisson process can be roughly seen as a discontinuous equivalent

of a Brownian motion. See, for example, Karatzas and Shreve (1991), p. 12.
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As a consequence of this incomplete market, the vectors ΛΣ (xt) and Λλ

are not uniquely defined. Therefore, the pricing kernel itself is not uniquely
defined either and we have to determine these risk price vectors with a cali-
bration of yields generated by the model to the empirical yield curve as men-
tioned earlier. We assume this calibration to depend on the yields of traded
zero-coupon bonds P (xt, t, T ) with different times to maturities31. Suppress-
ing unnecessary notations for convenience and applying Itô’s Lemma, we get
the following SDE for the P-dynamics of a zero-coupon bond

dP (xt, t, T ) = µP dt+ σ′
P dWP + JP dN(λPt) (2.12)

with drift, diffusion and jump components32

µP =
∂P (xt, t, T )

∂t
+ µP(xt)′

∂P (xt, t, T )
∂xt

+
1
2
tr
[
Σ(xt)Σ(xt)′

∂2P (xt, t, T )
∂xt∂x′

t

]
,

(2.13)

σP = Σ(xt)
∂P (xt, t, T )

∂xt
, (2.14)

JP = P(xt,J, t, T )′ − P (xt, t, T ) . (2.15)

On the other hand, we impose the martingale condition for traded contracts,
which is due to the chosen numeraire,

P (xt, t, T ) =E
Q


e−

T�
t

r(xs) ds
P (xT , T, T )




=E
P

[
ξ(xT , T, T )
ξ(xt, t, T )

P (xT , T, T )
]
.

(2.16)

Multiplying this last equation with ξ(xt, t, T ), which is known at time t and
therefore a certain quantity, we consequently have ξ(xt, t, T )P (xt, t, T ) to be
a martingale and the infinitesimal increment d (ξ(xt, t, T )P (xt, t, T )) to be a
local martingale33. According to Theorem 2.2.2 we have
31 Since coupon bonds are commonly traded, zero-bond values can be synthetically

generated by coupon stripping.
32 P(xt,J, t, T ) has the equivalent definition as f(xt,J, t, T ) with all calculations

made with respect to P (xt, t, T ). See Theorem 2.2.2.
33 The existence of a local martingale under the new measure Q is sufficient for

the no-arbitrage condition. See Delbaen and Schachermayer (1995) and Øksendal

(2003) Section 12.1., respectively.
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d(ξ(xt, t, T )P (xt, t, T ))

= ξ(xt, t, T ) dP (xt, t, T ) + P (xt, t, T ) dξ(xt, t, T )

+ dP (xt, t, T ) dξ(xt, t, T )

= ξ(xt, t, T )µP dt+ ξ(xt, t, T )σ′
P dWP

+ ξ(xt, t, T )JP N(λP)

− P (xt, t, T ) ξ(xt, t, T )r (xt) dt

− P (xt, t, T ) ξ(xt, t, T )ΛΣ (xt)
′ dWP

− P (xt, t, T ) ξ(xt, t, T )Λ′
λ

(
dN(λPt) − λP dt

)

− ξ(xt, t, T )σ′
PΛΣ (xt) dt− ξ(xt, t, T )JP IλP

N Λλ dt.

(2.17)

In the last equation, we used for the infinitesimal time increments the relation

dt dt = 0,

and for the vector of uncorrelated Brownian motions

dWP dWP
′
= IM dt.

Similarly, the corresponding expression for the vector of independent Poisson
processes is

dN(λPt) dN(λPt)′ = IλP

N dt,

where IλP

N represents a matrix consisting of the diagonal elements

diag
[
IλP

N

]
= λP,

and zeros otherwise. In the next step, we divide for notational ease all coef-
ficients of the zero-bond SDE (2.12) by P (xt, t, T ). Hence, we use hereafter
the normalized coefficients,

µ̃P =
µP

P (xt, t, T )
,

σ̃P =
σP

P (xt, t, T )
,

J̃P =
JP

P (xt, t, T )
.

Combining condition (2.16) and equation (2.17), and keeping in mind that
under P-dynamics, the Brownian motions and the compensated Poisson pro-
cesses in equation (2.11) are martingales, we get for the expectation
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E
P

[
d (ξ(xt, t, T )P (xt, t, T ))
ξ(xt, t, T )P (xt, t, T )

]
= µ̃P dt+ EJ

[
J̃P

]
λP dt

− r (xt) dt− σ̃′
PΛΣ (xt) dt

− EJ

[
J̃P

]
IλP

N Λλ dt ≡ 0.

(2.18)

If we now solve equation (2.18) for the modified drift coefficient µ̃P , subse-
quently eliminating all dt terms, we eventually end up with the relation

µ̃P = r (xt) + σ̃′
P ΛΣ (xt) + EJ

[
J̃P

] (
IλP

N Λλ − λP
)
, (2.19)

which means that the rate of return of a zero bond must be equal to the risk
free short rate plus some terms reflecting the particular risk premiums of the
different sources of uncertainty.

We are now ready to identify the corresponding formal expressions under
Q-dynamics of the coefficient parameters µP and λP. Comparing equation
(2.13) with (2.19) lead us to the fundamental partial differential equation for
zero-bond prices34

∂P (xt, t, T )
∂t

+
∂P (xt, t, T )

∂x′
t

(
µP − Σ(xt)ΛΣ (xt)

)

+
1
2
tr
[
Σ(xt)Σ(xt)′

∂2P (xt, t, T )
∂xt∂x′

t

]

+ EJ [JP ]
(
λP − IλP

N Λλ

)
= r (xt)P (xt, t, T ) .

(2.20)

According to equation (2.20), together with Itô’s Lemma, and the Feynman-
Kac representation, we are able to express the risk-neutral parameters as

µQ = µP − Σ(xt)ΛΣ (xt) = µQ
0 + µQ

1 xt, (2.21)

λQ = λP − IλP

N Λλ. (2.22)

Since the jump intensities λQ have to be positive, we need Λλ small enough to
ensure the positiveness of the jump intensities under the risk-neutral measure
Q given the intensity vector λP. The constant coefficients in the variance-
covariance matrix (2.3) remain unchanged under the new measure Q. This
34 Once the risk-neutral coefficients for the interest-rate process are determined,

equation (2.20) can be used to price any European contingent claim by exchang-

ing the terminal condition and replacing P (xt, t, T ) with the particular function

representing the price of the derivative security to be calculated.
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phenomenon is often referred to as the diffusion invariance principle, although
this terminology is not completely correct. We want to emphasize that the
variations of the Brownian motions only coincide under both measures P

and Q, if the variance-covariance matrix exclusively exhibits constant coeffi-
cients35. Otherwise, we are implicitly dealing with a different time-dependent
variance-covariance matrix, since the vector xt experiences a drift correction
and therefore affects the relation given in equation (2.3). Consequently, the
probability transformation law of the process xt from P to Q does not only
contain a drift compensation. Moreover, besides the jump intensity correc-
tion, the very shape of the probability density itself can be changed, due to
the implicitly altered variations of the diffusion terms.

Hence, calibrating the theoretical term-structure model to zero-bond
yields, whether estimating the parameters of the left or the right sides of
equations 2.21 and 2.22, results in the following SDE governing the particular
factors under risk-neutral dynamics

dxt = µQ(xt) dt+ Σ(xt) dWQ
t + JdN

(
λQt

)
, (2.23)

which we use in the subsequent sections as starting point for our calculations.

2.4 The Characteristic Function

In this section, we first give a brief overview of the abilities of character-
istic functions and show afterwards how the characteristic function of an
exponential-affine process, as given in equation (2.1), can be derived. We
generalize the principle of building characteristic functions for some scalar
process g(xt), which is essential for our derivatives pricing technique. Since
characteristic functions play a major part in our derivation of semi closed-form
solutions for interest-rate derivatives, we discuss also some of their fundamen-
tal properties.

Before we introduce the characteristic function itself, we first need to state
a definition of Fourier Transformations of some deterministic variable x36.
35 In this case, we would deal with the matrix Σ(x)Σ(x)′ = Σ0.
36 In the literature, there seems to exist various definitions for this type of transfor-

mation. Thus, we want to clarify the issue by giving a straightforward definition
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This concept belongs to the field of integral transformations37 and is a widely
used tool in engineering disciplines, especially in signal processing.

Definition 2.4.1 (General one-dimensional Fourier Transformation
and its Inversion). We define the Fourier Transformation Fx[ · ] of some
function f(x) with respect to the independent variable x as

Fx[f(x)] =

∞∫

−∞
eızxf(x) dx = f̂(z), (2.24)

where z ∈ C denotes the transform variable in Fourier space, satisfying the
restriction Im(z) ∈ (χ, χ) with χ and χ denoting some lower and upper bound-
aries guaranteeing the existence of the Fourier Transformation, ı =

√−1
as the standard imaginary unit, and f̂(z) as the shorthand notation for the
Fourier Transformation of f(x) with respect to its argument x.

Accordingly, the inverse transformation operator F−1[ · ] is then defined by

F−1[f̂(z)] =
1
2π

∞∫

−∞
e−ızxf̂(z) dz = f(x). (2.25)

Due to the exponential character of the Fourier Transformation, we need
to establish in equation (2.25) a normalization factor of 2π. The terminology
general one-dimensional Fourier Transformation, in contrast to an ordinary
one-dimensional Fourier Transformation, is used because we do not limit the
transformation variable z to be on the real line38. Thus, we allow z to be
complex-valued, which makes equation (2.24) and (2.25) a line integral, per-
formed parallel to the real line. Note that both the transform and its inverse

in this section. In financial studies our definition according to equation (2.24) of

a Fourier Transformation seems to be commonly accepted. See, for example, Carr

and Madan (1999), Bakshi and Madan (2000) and Raible (2000). On the other

hand in engineering sciences, the opposite definition of a Fourier Transformation

and its inverse operation does exist. See, for example, Duffy (2004).
37 Other popular integral transformations are e.g. the Laplace transformation or the

z-transformation. A comprehensive discussion of the Laplace Transformation is

given in Doetsch (1967).
38 Hence, the equivalent expression complex Fourier Transformation is sometimes

used in the literature.
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operation have to take place on the same strip going through Im(z), in order
to reconstruct the original function f(x).

The advantage in performing this general Fourier Transformation is the
possibility to derive image functions in cases where the ordinary transform ap-
proach would fail, e.g. for functions which are unbounded39. However, in these
cases, the general approach enables us to derive solutions for their Fourier
Transformations. For example, if we want to compute the Fourier Transfor-
mation of a function40

G(x) = max(ex −K, 0),

the ordinary transformation approach appears to be useless, since

Fx[G(x)] → ∞.

Performing a general transformation, in this case within the strip Im(z) ∈
(1,∞), we get41

Fx[G(x)] =
K1+ız

ız(1 + ız)
, (2.26)

where Im(z) can be fixed at every value within the above mentioned strip to
derive the original function by applying the inverse Fourier Transformation.
The different contours in Fourier space of the transformed payoff function
given in equation (2.26) are depicted in Figure 2.1. Having derived the funda-
mental technique to compute Fourier Transformations, which is an essential
part in this thesis, we go further and have a look at Fourier Transformations
of density functions of stochastic variables, which are commonly known as
characteristic functions.

Definition 2.4.2 (Scalar Characteristic Functions). We define the scalar
characteristic function ψx(m)

(xt, z, w0,w, t, T ) as the expected value of the ter-
minal condition G (xT ) = eızx

(m)
T , given the state xt at time t ≤ T . This can

be expressed more formally as
39 This is the case for most payoff structures of option contracts, e.g. plain vanilla

call or put options.
40 This function represents, for instance, the payoff function of a plain vanilla call

option in an asset pricing environment, where x is the natural logarithm of the

underlying asset price.
41 In Section 5.3, Fourier Transformations are derived in detail for different types of

payoff functions.
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Fig. 2.1. Different contours of the Fourier transform in equation (2.26) for a strike

of 90 units.

ψx(m)
(xt, z, w0,w, t, T ) =E


e−

T�
t

r(xs) ds+ızx
(m)
T




=
∫

RM

eızx
(m)
T p(xt,xT , w0,w, t, T ) dxT ,

(2.27)

for all m = 1, . . . ,M . In the last equality of equation (2.27), the function
p(xt,xT , w0,w, t, T ) represents the (discounted) transition probability density,
starting with an initial state xt and ending up in time T at xT . The continuous
discounting is conducted with respect to r (xt∗) for t > t∗ ≥ T .

Obviously, if the stochastic process consists only of one variable xt, the
characteristic function ψx(xt, z, 0, 0, t, T ) is then just the Fourier Transforma-
tion of the particular transition density function p(xt, xT , 0, 0, t, T ). Although
the transform operation in equation (2.27) is performed with respect to the
terminal state of one single random variable x(m)

T , we have to consider the
state of the vector xt as an argument of the characteristic function. In fact,
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since we are looking at the overall expectation, equation (2.27) is generally
built as the M -dimensional integral over the entire state vector xT

42. There-
fore, we are also able to apply the definition presented above of building a
characteristic function for the more general case

g (xT ) = g0 + g′xT (2.28)

with g0 ∈ R and g ∈ RM . This implies, as long as g (xT ) is a linear com-
bination of the elements in xT that only one single transformation variable
z necessary. Hence, if we are able to build the characteristic function for the
scalar g (xT )43, there is only a one-dimensional integral for the inverse opera-
tion to be performed, independent of the number of state variables included in
g (xT ). Note, this powerful result will be used in our multi-factor framework.
Equipped with these definitions we state next some general and important
properties of Fourier Transformations on which we rely in our thesis.

Proposition 2.4.3 (Important Properties of Characteristic Functions
and Fourier Transformations). Let α, β, x, y ∈ R, and f(x), g(y) some
real-valued functions with Fourier transforms f̂(z), ĝ(z) and Fourier Trans-
formation variable z ∈ C. Then the following relations hold:

1. Linearity:
Fx[αf(x) + βg(x)] = αf̂(z) + βĝ(z).

2. Differentiation:

Fx

[
dαf(x)

dxα

]
= (ız)αf̂(z).

3. Convolution:
Fx[f(x) ∗ g(x)] = f̂(z)ĝ(z).

4. Symmetry:

πf(x) =

∞∫

0

e−ızxf̂(z) dz =

0∫

−∞
e−ızxf̂(z) dz.

42 If x
(m)
t would be no subordinated process and independent from all other

state variables, equation (2.27) could still utilize the joint density function

p(xt,xT , w0,w, t, T ) due to the possible discount factor including r(xt).
43 For example, calculating the general characteristic function for the short rate

r (xt) itself, we set g (xT ) = r (xT ).
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5. Relation of the Moment-Generating and the Characteristic Function:

E [xα] = (−ı)α dαψx(xt, z, 0,0M , t, T )
dzα

∣∣∣∣
z=0

.

Taking a second glance at Figure 2.1, we are able to justify the symme-
try of the Fourier Transformation (2.26) of a real-valued function, mentioned
in Proposition 2.4.3. Furthermore, one can clearly identify the dampening
property of the characteristic function which is essential in developing a nu-
merical algorithm to compute derivative prices. In the following, we show
how the characteristic function for a scalar function g (xT ) is derived within
the exponential-affine framework. Following Bakshi and Madan (2000), we
interpret the characteristic function as a hypothetical contingent claim. Tak-
ing more elaborated payoff structures into account, we have to extend the
list of permissible arguments for the characteristic function. The more gen-
eral representation of the characteristic function, which we use hereafter is
ψg(x)(xt, z, w0,w, g0,g, t, T ) with the complex-valued payoff representation at
maturity T ,

ψg(x)(xt, z, w0,w, g0,g, T, T ) = eızg(xT ). (2.29)

As discussed in the last section, we have to consider that all contingent claims
need to be priced under the risk-neutral probability measure Q. Hence, all
prices are derived as discounted expectations. Consequently, the discounted
expectation of the general form of the terminal condition can be represented
as

ψg(x)(xt, z, w0,w, g0,g, t, T ) = E
Q


e−

T�
t

r(xs) ds+ızg(xT )


 . (2.30)

However, we need to compute discounted expectations, e.g. for vanilla zero-
bond calls, or undiscounted expectations, e.g. in the case of futures instru-
ments. Hence, for futures-style contracts, w0 equals zero and w is a zero
valued vector44.

In calculating European derivative prices, we rather need the general char-
acteristic function ψg(x)(xt, z, w0,w, g0,g, t, T ) than the special case of the

44 The characteristic marking to market for standardized futures-style contracts

results in the non-existence of a discount factor in the pricing formula and the

relevant PDE, respectively, of such a contract under the risk-neutral measure Q.
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characteristic function without considering any discount factor, which is just
ψg(x)(xt, z, 0,0M , g0,g, t, T ), where 0M represents a M × 1 vector containing
exclusively zeros. Applying Theorem 2.2.3 to our hypothetical claim with a
solution according to equation (2.30), we take advantage of the Feynman-Kac
representation to derive the partial differential equation. Simplifying and sup-
pressing unnecessary notation, we write henceforth ψ(xt, z, w0,w, g0,g, τ) ≡
ψg(x)(xt, z, w0,w, g0,g, t, T ) and then get the partial differential equation

∂ψ(xt, z, w0,w, g0,g, τ)
∂t

+ µQ(xt)′
∂ψ(xt, z, w0,w, g0,g, τ)

∂xt

+
1
2
tr
[
Σ(xt)Σ(xt)′

∂2ψ(xt, z, w0,w, g0,g, τ)
∂xt∂x′

t

]

+ EJ [ψ(xt, z, w0,w, g0,g,J, τ)′ − ψ(xt, z, w0,w, g0,g, τ)]λQ

= ψ(xt, z, w0,w, g0,g, τ)r (xt) ,

(2.31)

where the complex-valued vector ψ(xt, z, w0,w, g0,g,J, τ) contains all jump
components with particular elements (ψ(xt, z, w0,w, g0,g,J, τ))n = ψ(xt +
jn, z, w0,w, g0,g, τ). The vector jn ∈ RM contains as mth element the random
variable Jmn of the amplitude matrix J. Every contingent claim or function
dependent on xt, an arbitrage-free environment presupposed, has to satisfy
the same Partial differential equation structure as given in equation (2.31). For
example, the corresponding risk-neutral transition density for the character-
istic function ψ(xt, z, w0,w, w0,w, τ), with g (xT ) = r (xT ), which is actually
p(r(xt), r(xT ), w0,w, t, T ) need to satisfy the same partial differential equa-
tion as the characteristic function itself45. The only difference between them
would be the particular terminal payoff condition. Hence, solving the above
partial differential equation for p(r(xt), r(xT ), w0,w, t, T ), we would impose
the Dirac delta function as the relevant terminal condition, having its den-
sity mass exclusively concentrated in an infinite spike for r(xT ) at time T .
Solving equation (2.31) together with this type of boundary condition can be
quite challenging and is in many cases just impossible46. Thus, it is feasible
to first solve equation (2.31) for the general characteristic function, with its
smooth and continuous boundary function at T , and afterwards do some sort
45 See Heston (1993), p. 331.
46 A prominent example is given with the stochastic volatility model of Heston

(1993), for which no closed-form representation of the transition density of the

underlying equity log-price variable exists.
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of normalized integration, the inverse Fourier Transformation, probably in a
numerical manner, to get the desired result. Proceeding like this is a very
elegant way to find some semi-analytic solution. In contrast, if we want to
interpret the terminal payoff function in equation (2.29) as a hypothetical
futures-style contract, with solution

ψ(xt, z, 0,0M , g0,g, τ) = E
Q
[
eızg(xT )

]
, (2.32)

we have a slightly different partial differential equation. In this case the dy-
namic behavior of ψ(xt, z, 0,0M , g0,g, τ) is described by the slightly altered
PDE

∂ψ(xt, z, 0,0M , g0,g, τ)
∂t

+ µQ(xt)′
∂ψ(xt, z, 0,0M , g0,g, τ)

∂xt

+
1
2
tr
[
Σ(xt)Σ(xt)′

∂2ψ(xt, z, 0,0M , g0,g, τ)
∂xt∂x′

t

]

+ EJ [ψ(xt, z, 0,0M , g0,g,J, τ)′ − ψ(xt, z, 0,0M , g0,g, τ)]λQ

= 0,

(2.33)

Hence, the only difference to PDE (2.31) is that the right hand side is now
equal to zero to contribute the missing discount rate. Moreover, we can use
this futures-style characteristic function ψ(xt, z, 0,0M , g0,g, τ) to obtain the
particular values of the undiscounted transition density function. Thus, to
compute the probability density function of the short rate r (xt), we use this
futures-style solution of the characteristic function together with the identity
g (xt) = r (xt).

Consequently, using a separation of variables approach, the partial differ-
ential equations in (2.31) and (2.33) can be decoupled into a system of ordi-
nary differential equations. Therefore, we assume for ψ(xt, z, w0,w, g0,g, τ)
the exponential-affine structure

ψ(xt, z, w0,w, g0,g, τ) = ea(z,τ)+b(z,τ)′xt+ızg0 , (2.34)

with the scalar and complex-valued coefficient function a(z, τ) and

b(z, τ) =




b̃(1)(z, τ)
b̃(2)(z, τ)

...
b̃(M)(z, τ)




+ ız




g(1)

g(2)

...
g(M)




= b̃(z, τ) + ızg,
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denotes some complex-valued coefficient vector. In the next step we plug the
required expressions of the candidate function (2.34) into equation (2.31).
Starting with the time derivative, we get

∂ψ(xt, z, w0,w, g0,g, τ)
∂t

= − (a(z, τ)τ + b(z, τ)′τxt)ψ(xt, z, w0,w, g0,g, τ),
(2.35)

where a(z, τ)τ and b(z, τ)τ are the first derivatives with respect to the time
to maturity variable τ . The gradient vector with respect to the state variables
xt is given by

∂ψ(xt, z, w0,w, g0,g, τ)
∂xt

= b(z, τ)ψ(xt, z, w0,w, g0,g, τ), (2.36)

the Hesse matrix is

∂2ψ(xt, z, w0,w, g0,g, τ)
∂xt∂x′

t

= b(z, τ)b(z, τ)′ψ(xt, z, w0,w, g0,g, τ), (2.37)

and the jump component in equation (2.31) can be derived as

EJ [ψ(xt, z, w0,w, g0,g,J, τ)′ − ψ(xt, z, w0,w, g0,g, τ)] =

EJ [ψ∗(z, w0,w, g0,g,J, τ)′ − 1]ψ(xt, z, w0,w, g0,g, τ),
(2.38)

with the normalized vector

ψ∗(z, w0,w, g0,g,J, τ) =
ψ(xt, z, w0,w, g0,g,J, τ)
ψ(xt, z, w0,w, g0,g, τ)

=




eb(z,τ)′J1

eb(z,τ)′J2

...
eb(z,τ)′JN



.

(2.39)

In this affine framework, it can be easily checked that the normalized
amplitude vector ψ∗(z, w0,w, g0,g,J, τ) is independent of the actual state of
xt, which results in the special form given by equation (2.39). Therefore, we
are able to express the system of ODEs resulting from equations (2.31) and
(2.33), respectively, and the affine form proposed in (2.34) in terms of the
risk-neutral coefficients derived in Section 2.3.2. According to Theorem 2.2.3,
the ODE which has to be solved for the scalar coefficient a(z, τ) is then
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a(z, τ)τ = −w0 + µQ
0
′b(z, τ) +

1
2
b(z, τ)′Σ0b(z, τ)

+ EJ [ψ∗(z, w0,w, g0,g,J, τ)′ − 1]λQ,
(2.40)

whereas for the vector coefficient b(z, τ) we have to solve

b(z, τ)τ = −w + µQ
1
′b(z, τ) +

1
2
b(z, τ)′Σ1b(z, τ), (2.41)

with boundary conditions a(z, 0) = 0 and b(z, 0) = ızg, respectively. The
parameters w0 and w, determine whether we consider a discount rate or not
for the characteristic function. The mth element of b(z, τ)′Σ1b(z, τ) can be
computed as

∑
i,j b(z, τ)i (Σ1)ijm b(z, τ)j

47. Moreover, we want to emphasize
that the trace operator is circular, meaning the equality

tr [Σ(xt)Σ(xt)′b(z, τ)b(z, τ)′] = tr [b(z, τ)′Σ(xt)Σ(xt)′b(z, τ)] (2.42)

holds. Obviously, the right hand side of this last equation represents a scalar
and therefore we are able to neglect the trace operator in equation (2.40) and
equation (2.41), respectively.

In order to calculate derivatives prices, the coefficients a(z, τ) and b(z, τ)
need not exhibit closed-form solutions in any case. There are several scenarios
conceivable, e.g. the time integrated expectations of the jump amplitudes have
no closed-form representations, or the processes themselves have such com-
plicated structures that there simply does not exist a closed-form solution of
the coefficients a(z, τ) or b(z, τ) of the characteristic function. However, if
we are able to represent a(z, τ) and b(z, τ) in terms of their ordinary differ-
ential equations (2.40) and (2.41), solutions can be efficiently obtained via a
Runge-Kutta solver and appropriately integrated within our numerical pric-
ing procedure, such that time consuming Monte-Carlo studies for the pricing
of European interest-rate derivatives can be avoided.

47 See Duffie, Pan and Singleton (2000), p. 1351.




