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Non-Affine Term-Structure Models and

Short-Rate Models with Stochastic Jump

Intensity

10.1 Overview

Although the model setup proposed in this thesis is of the exponential-affine
class, we can also extend the framework to allow for certain non-affine mod-
els and models with state-dependent jump intensities λQ(xt). Moreover, op-
tion prices under these more sophisticated model dynamics can be priced in
our numerical scheme without greater effort, due to an exponential separable
structure of the governing characteristic function. However, working with a
non-affine model, we have to abandon jump components for those particular
non-affine factors. A stochastic jump intensity in the general exponential-
affine model framework is introduced in Duffie, Pan and Singleton (2000).
Consequently, the jump transform is no longer independent of the coefficient
function a(z, τ), and therefore a complicated system of ODEs has to be deter-
mined numerically anyway. Since both approaches need to establish further
restrictions, they are only discussed as possibilities for extending and modi-
fying the base model, respectively.

10.2 Quadratic Gaussian Models

Non-Affine exponential separable models are characterized by a non-affine
structure of the factors in the relevant moment-generating function, as well
as the general characteristic function, while preserving the separability of co-
efficient functions for different powers of the particular factors included in the
model. Thus, the essential system of ODEs can be derived. Prominent repre-
sentatives of this model class are in an equity context the stochastic volatility
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model of Schöbel and Zhu (1999), which is a generalized version of the Stein
and Stein (1991) model. In case of interest rates, we have, e.g. the Double
Square-Root model of Longstaff (1989), the quadratic Gaussian model ap-
proach of Beaglehole and Tenney (1991)203, and the general linear-quadratic
jump-diffusion model of Cheng and Scaillet (2004)204.

Although the quadratic Gaussian and the Double Square-Root model seem
quite attractive to implement, it is impossible to compute theoretical model
prices within the Fourier-based pricing framework if jumps are incorporated,
while Monte-Carlo pricing approaches might still work. This stems from the
fact that in equation (2.39), for the nth jump Jmn in the non-affine fac-
tor x(m)

t , there would be a corresponding term (x(m)
t + Jmn)2 resulting in a

mixed expression. Hence, the exponential separation approach will no longer
be available in deriving the general characteristic function. Since none of the
non-affine interest-rate models are capable of exhibiting any jump component
we completely ignored these models in our base setup according to Section
2.1.

The one-factor quadratic Gaussian approach models the short rate under
the risk-neutral measure, as the square of some factor xt governed by an
Ornstein-Uhlenbeck process according to equation (8.5). In order to price
interest-rate derivatives for this particular process, we need to have the general
characteristic function to consider both the state variable xt and its square
x2

t . Thus, for the squared Gaussian interest-rate model we use the following
form of the general characteristic function

ψ (yt, z, 0,w, g0,g, τ) = ea(z,τ)+b(z,τ)′yt+ızg0 ,

with

yt =

(
xt

x2
t

)
and w =

(
0
1

)
.

For convenience, we use again the time-dependent coefficient functions205

203 Ahn, Dittmar and Gallant (2002) give a good overview of general multi-

dimensional linear-quadratic Gaussian interest-rate models.
204 Linear-quadratic in this context means all factors contained in the state vector

xt are allowed to enter the interest rate both in a linear and quadratic fashion.
205 The constant parameter g0 is represented by the term Ā.
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a(z, τ) = A(z, τ),

and

b(z, τ) =

(
B(z, τ)
C(z, τ)

)
+ ız

(
B̄

C̄

)
.

Inserting the above characteristic function in equation (2.33) and applying
the separation approach result again in a system of coupled ODEs206

A(z, τ)τ =κθ(B(z, τ) + ızB̄) + σ2(C(z, τ) + ızC̄)

+ 2σ2(B(z, τ) + ızB̄)2,

B(z, τ)τ =(B(z, τ) + ızB̄)(σ2(C(z, τ) + ızC̄) − κ)

+ 2κθ(C(z, τ) + ızC̄),

C(z, τ)τ = − 2κ(C(z, τ) + ızC̄) + 2σ2(C(z, τ) + ızC̄)2 − 1,

which can be solved successively. The advantage of this modeling approach lies
in its tractability while describing a more elaborated interest-rate behavior.
Additionally, the short rate in this approach is always positive, compared to
possible negative short rates using the Vasicek model. In the Double Square-
Root model according to Longstaff (1989), we encounter a very similar sit-
uation, since we are able to transform the model into a quadratic Gaussian
model and vice versa but with additional restrictions on the parameter set207.

Cheng and Scaillet (2004) introduce a linear-quadratic jump-diffusion
model. Here, the diffusion part of some random variable, for example the
short rate r(xt) or the payoff characteristic function g(xt), is built similarly to
the multivariate quadratic Gaussian model in Beaglehole and Tenney (1991),
as the sum of linear and quadratic terms of the state vector xt containing
correlated Ornstein-Uhlenbeck processes. To gain a closed-form solution for
the general characteristic function, additional jump parts only occur in the
affine terms of xt. Therefore, we can think of this interest-rate model as a
simple combination of an additive multivariate Ornstein-Uhlenbeck model
augmented with jump components and an additive multivariate quadratic
Gaussian model.

206 Although the vector yt occurs in the characteristic function, derivatives remain

still to be taken with respect to the unique state variables which is in this one-

dimensional model just the factor xt.
207 See Beaglehole and Tenney (1992), pp. 346-347.
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10.3 Stochastic Jump Intensity

Another possibility for extending the base model setup stated in Section 2.1
is to implement stochastic jump intensities. Duffie, Pan and Singleton (2000)
introduced, with their affine jump-diffusion model, a vector of stochastic jump
intensities where the stochastic component is affine in the state variable xt.
Thus, they implement stochastic intensities without overly aggravating their
solution technique. Defining the vector of jump intensities as208

λQ(xt) = λQ
0 + λQ

1 xt,

with (λQ
0 ,λ

Q
1 ) ∈ RM × RM×M , we therefore get a slightly modified system of

ODEs for the vector coefficient b(z, τ) compared to equation (2.41), which is

b(z, τ)τ = − w + µQ
1
′b(z, τ) +

1
2

b(z, τ)′Σ1b(z, τ)

+ λQ
1 EJ [ψ∗(z, w0,w, g0,g,J, τ) − 1] .

Obviously, in implementing this type of jump intensity, values of the coeffi-
cient vector b(z, τ) must be determined numerically due to the complicated
structure of the relevant ODE. Subsequently, the same statement holds also
for the coefficient function a(z, τ), which depends on b(z, τ). Although this
type of jump specification enriches the modeling capabilities of the short-
rate dynamics, it is infrequently implemented in interest-rate models because
of the numerical difficulties mentioned above. However, our FRFT algorithm
presented in Chapter 6 can be easily modified to handle this type of stochastic
jump intensity.

208 To stay conform with our base model setup in equation (2.1), we suggest to

include N Poisson processes with stochastic intensities.




