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To Sabine



Foreword

In a hypothetical conversation between a trader in interest-rate derivatives
and a quantitative analyst, Brigo and Mercurio (2001) let the trader answer
about the pros and cons of short rate models: ”... we should be careful in
thinking market models are the final and complete solution to all problems in
interest rate models ... and who knows, maybe short rate models will come

back one day...”

In his dissertation Dr. Markus Bouziane contributes to this comeback of
short rate models. Using Fourier Transform methods he develops a modu-
lar framework for the pricing of interest-rate derivatives within the class of
exponential-affine jump-diffusions. Based on a technique introduced by Lewis
(2001) for equity options, the payoffs and the stochastic dynamics of interest-
rate derivatives are transformed separately. This not only simplifies the ap-
plication of the residue calculus but improves the efficiency of numerical eval-
uation schemes considerably. Dr. Bouziane introduces a refined Fractional
Inverse Fast Fourier Transformation algorithm which is able to calculate thou-
sands of prices within seconds for a given strike range. The potential of this

method is demonstrated for several one- and two-dimensional models.

As aresult the application of jump-enhanced short rate models for interest-
rate derivatives is on the agenda again. I hope, Dr. Bouziane’s monograph will

stimulate further research in this direction.

Tiibingen, November 2007 Rainer Schébel
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1

Introduction

1.1 Motivation and Objectives

In the last few years the demand for sophisticated term-structure models, ca-
pable of reflecting the market behavior more realistically, e.g. models which
can reproduce the feature of market shocks, has dramatically increased. For
example, according to the results of their empirical study, Brown and Dybvig
(1986) and Ait-Sahalia (1996) question among others the use of pure diffu-
sion models, such as the popular interest-rate models of Vasicek (1977) and
Cox, Ingersoll and Ross (1985b), to describe the behavior of interest rates.
Moreover, recent studies support the assumption of jump components in the
term structure of interest rates. In the study of Hamilton (1996), Fed Funds
rates on a daily base are analyzed. The author finds that settlement days
and quarter-ends induce statistically significant jumps in the term structure
of interest rates. Das (2002) analyzed Fed Funds rates on daily bases over the
period 1988-1997. As a result of this study, the proposed jump models show
a substantially better fit of the empirical data compared to the pure diffusion
model. Durham (2005) also examined Fed Funds rates for the period 1988-
2005. The model-generated yields of zero-bond prices are then calibrated to
the Fed Funds Rate and one- and three-month U.S. Treasury bill rates. The
author concludes that the so-called jump-diffusion models produce more ac-

curate estimates of the interest-rate curves than the pure diffusion model®.

! Additional studies examining the empirical performance of jump-diffusion models
are given in, e.g. Lin and Yeh (1999), Zhou (2001), Wilkens (2005), and Chan
(2005).
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Thus, the ability of a term-structure model to reproduce these discount rate
shocks, based e.g. on the adjustment of the discount rate by the European
Central Bank, on an economic crisis, and quarter-end effects, is highly ap-
preciated. Accordingly, jump-diffusion interest-rate models were developed to
cover this issue. Ahn and Thompson (1988) introduced one of the first jump-
diffusion models for the term structure of interest rates. In their study, the
interest-rate dynamics are derived within an equilibrium framework similar
to the one used in Cox, Ingersoll and Ross (1985b) and particular approxi-
mate closed-form zero-bond prices are obtained. Das and Foresi (1996) also
derived zero-bond prices for a jump-enhanced Vasicek (1977) model. The au-
thors apply an exponentially distributed jump component, where the absolute
value of the jump sign is drawn from a Bernoulli distribution. An alternative
jump specification for the mean-reverting normally distributed short rate is
given in Baz and Das (1996)2. In their approach, the jump-size distribution
is given by a normal distribution and approximate zero-bond prices are de-
rived. An empirical test of a Square-Root interest-rate model enhanced with
uniformly distributed jumps is given in Zhou (2001). The author fits the par-
ticular jump-diffusion model to weekly three-month Treasury bill yields. In
Durham (2005), the author states an alternative approximation technique for
zero-bond prices when the short rate follows the same dynamics as in Baz
and Das (1996). Additionally, a bimodal normally distributed jump version of
the Vasicek (1977) model together with a jump-enhanced two-factor model is
presented?.

In addition, for derivatives research purposes, an important feature such
interest-rate models should exhibit is the ability to generate analytical solu-
tions for the derivatives contracts to be priced. If this can be accomplished, the
interest-rate instrument can be examined in depth, e.g. doing some sensitivity
analysis. However, dealing with jump components, we often have to rely on
time-consuming Monte-Carlo methods in order to price interest-rate deriva-
tives. Thus, more ambitious pricing approaches are needed. Recently, integral
transformations have been found to be reliable in deriving semi closed-form

2 The same model specification is used in Das (2002).
3 The approximation technique is also discussed in depth in Durham (2006) for

the bimodal normally and exponentially distributed jump extension of a Vasicek
(1977) short-rate model.
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solutions of derivatives contracts under more complicated stochastic dynam-
ics. The term semi closed-form solutions in this case refers to closed-form
solutions in the image space, according to the particular transformation rule.
Especially the subclass of Fourier Transformations have been proven to be
useful for pricing problems in financial disciplines*. Basically, the main ad-
vantage of this transform technique consists in providing distribution inde-
pendent pricing formulae. However, even semi closed-form pricing formulae
are hard to obtain, dealing with jump-size distributions such as the normal

and the gamma.

Accordingly, it is our objective to derive an efficient and accurate pricing
tool for interest-rate derivatives within a Fourier-transform pricing approach,
which is generally applicable to exponential-affine jump-diffusion models. This
objective can be achieved within four steps. Firstly, we want a flexible short-
rate process, which is able to integrate both diffusion and jump components.
Thus, we extend the exponential-affine model presented in Duffie and Kan
(1996) by introducing jump components. The second step is to refine the con-
cept of a modular option pricing as proposed in Zhu (2000) by applying the
pricing methodology explained in Lewis (2000) and Lewis (2001)°. Therefore,
we want to formulate a distribution-independent pricing framework, where the
particular interest-rate contract price can be clearly separated into stochastic
and payoff specific parts. Apart from the pricing theory, we also need a tool to
obtain numerical values of the contracts to be priced. A very popular strategy
to price derivatives is the Monte-Carlo approach. However, being generally
applicable, this numerical pricing approach suffers from its time-consuming
calculations and its poor convergence to true solutions. The third objective of
this thesis is to develop an algorithm, which appropriately computes option
prices in the Lewis (2001) pricing approach. In contrast to the Fast Fourier
Transformation (FFT), as used in Carr and Madan (1999) for the pricing of

4 Heston (1993) is the seminal paper on this topic, where semi closed-form solutions
for options on equities in a stochastic volatility model are derived for the first time.
Among others, we mention the influential work of Bakshi and Madan (2000)
and Duffie, Pan and Singleton (2000) in deriving option prices using Fourier

Transformations.
® Even though this pricing method is mentioned for the first time in Lewis (2000),

we henceforth refer to Lewis (2001) as the source, because of the detailed discus-

sion and derivation of the pricing methodology.
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equity options, we base our computations on the Inverse Fast Fourier Trans-
form (IFFT). Consequently, we introduce in this thesis a new, IFFT-based
pricing algorithm, which is able to calculate thousands of option prices within
fractions of a second and is a straightforward application to option pricing in
the Lewis (2001) framework. The last step is then to examine density functions
and contract prices of some popular interest-rate diffusion models enhanced

with three different jump candidates.

1.2 Structure of the Thesis

This thesis is organized as follows. We start in chapter two with the formu-
lation of a general term-structure model, which is governed by a multivariate
jump-diffusion process. After introducing some general concepts in stochas-
tic calculus we demonstrate how the relevant risk-neutral coefficients of the
instantaneous interest-rate process can be obtained. Afterwards, we discuss
the technique of performing a Fourier Transformation and its inverse and
state the system of ordinary differential equations the general characteristic
function has to solve. In chapter three we discuss a representative collection of
some interest-rate derivative contracts which can be solved within the Fourier-
based pricing mechanism. We distinguish between contracts with conditional

and unconditional exercise rights, because of the different pricing procedure.

Subsequently, in chapter four we discuss three Fourier-based pricing ap-
proaches. We begin our summary with the pricing technique using Fourier-
transformed Arrow-Debreu state prices. Since this type of valuation was first
applied by Heston (1993) and further discussed by Bakshi and Madan (2000),
we henceforth refer to this approach as the Heston transform approach. Sub-
sequently, we discuss the pricing procedure introduced by Carr and Madan
(1999). In this thesis the authors exploit the Fourier Transformation applied
not only to the state price densities but to the entire option price. They
introduce a valuation approach where theoretical option prices can be sub-
sequently recovered applying a highly efficient algorithm, namely the Fast
Fourier Transform, hereafter denoted as FFT. Finally, we discuss the valu-
ation methodology applied by Lewis (2001). This approach features several
advantages. Firstly, its composition is highly modularized. Secondly, employ-
ing Cauchy’s residue theorem, the approach can be consistently used both for
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interest-rate derivatives with unconditional and conditional exercise rights.
Fortunately, this methodology enables the application of an refined IFFT al-

gorithm which we implement in our pricing procedure.

In chapter five, we derive the particular Fourier Transformations of payoff
functions needed in pricing the contract forms previously presented. Addition-
ally, we derive in case of a one-factor term-structure model the Fourier repre-
sentation of a swaption and a coupon-bond option, respectively. Chapter siz
gives an outline of the numerical algorithm used for pricing purposes. Again,
we distinguish between the computation of derivatives with conditional and
unconditional exercise rights. Subsequently, we present a further refinement of
the pricing algorithm for option contracts by the application of the Fractional
Fourier Transformation according to the article of Bailey and Swarztrauber
(1994). The last part of the chapter discusses the issue of finding the optimal

parameter constellation of the numerical algorithm.

In chapter seven we briefly discuss three different jump-size specifications
and derive their general jump transforms. In chapters eight and nine we ex-
amine both jump-enhanced one-factor and two-factor interest-rate models and
focus on the impact of different jump specifications. The particular one-factor
models we enhance with jump components are the prominent interest-rate
models introduced in Vasicek (1977) and Cox, Ingersoll and Ross (1985b). For
the class of two-factor models we exemplarily discuss an additive model used
in Schébel and Zhu (2000) and a subordinated model according to Fong and
Vasicek (1991a). To our knowledge, in case of the Fong and Vasicek (1991a)
model, option prices are presented for the first time.

In chapter ten, we give a perspective of model extensions for which the
pricing procedure is also capable in deriving numerical solutions. The first
extension is to consider a special model class of non-affine interest-rate models.
Another extension of our interest-rate model is to consider stochastic jump
intensities. Since it fits into the exponential-affine model setup of Duffie, Pan
and Singleton (2000), the implementation in our pricing procedure presents no
greater difficulties. However, due to the non-existence of closed-form solutions
in any case, we briefly discuss these extensions. In the last chapter, we review
the results of our study and give some concluding remarks.



2

A General Multi-Factor Model of the Term
Structure of Interest Rates and the Principles

of Characteristic Functions

2.1 An Extended Jump-Diffusion Term-Structure Model

The evolution of the yield curve can be described in various ways. For instance,
it is possible to use such quantities as zero-bond prices, instantaneous forward
rates and short interest rates, respectively, to build the term structure of
interest rates. If the transformation law from one quantity to the other is

known, the choice of the independent variable is just a matter of convenience.

In this thesis, we attempt to model the dynamics of the instantaneous
interest rate, denoted hereafter by r(x;), in order to construct our derivatives
pricing framework. This instantaneous interest rate r(x;) is also often referred
to as the short-term interest rate or short rate, respectively, and character-
izes the risk-free rate for borrowing or lending money over the infinitesimal
time period [t,t + dt]. Since we model the dynamics in a continuous trading
environment, the relevant processes are described via stochastic differential

equations.

The economy we consider has the trading interval [0, T']. The uncertainty
under the physical probability measure is completely specified by the filtered
probability space (2, §,P). In this formulation 2 denotes the complete set of
all possible outcome elements w € 2. The information available in the econ-
omy is contained within the filtration (§)¢>0, such that the level of uncertainty
is resolved over the trading interval with respect to the information filtration.
The last term, completing the probability space, is called the real-world prob-
ability measure IP on (2, ), since it reflects the real-world probability law of
the data.
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We model the dynamic behavior of the term structure in the spirit of
Duffie and Kan (1996) and Duffie, Pan and Singleton (2000), to preserve
an exponential-affine structure of the characteristic function. However, we
extend the framework in Duffie and Kan (1996) to allow for N different trigger
processes®, which offers more flexibility. The term structure is then modeled by
a multi-factor structural Markov model of M factors, represented by a random

vector x;, which solves the multivariate stochastic differential equation,

dxil)
dx,(f)
dx, = : = pP (xp) dt + 2(x;) AW} + T AN(AF). (2.1)
(M-1)
dx;

da:iM)
The coefficient vector u¥ (x;) has the affine structure
¥ (xe) = pg + pyxe (2.2)

with (uf, ut) € RM xRM*M and the variance-covariance matrix 3(x; ) (x;)’
suffices the relation
S(x)S(x:) = o + Sixe, (2.3)

where 3¢ € RM*M ig 3 matrix and 3; € RMXMXM ig 4 third order tensor.
The vector WY in equation (2.1) represents M orthogonal Wiener processes.

Thus, we have”
EP(dWF dWF') =1, dt

with In; as the M x M identity matrix.

As mentioned above, we extend the ordinary diffusion model® with N in-
dependent Poisson processes, condensed in the vector N(AFt). This vector
process acts with constant and positive intensities? AF. We allow for every

6 Chacko and Das (2002) model also the term structure with help of different
Poisson processes. However, their approach consider a subordinated short rate.

7 If not indicated otherwise, we subsequently use the shorthand notation E[-] for
the expression E[- |F¢].

8 This would be the original model approach presented in Duffie and Kan (1996).

9 This exponential-affine model can be easily extended to stochastic jump intensi-
ties of the form AF(x;) = Af + ATx;. See Chapter 10.
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particular factor in x; an amount of N different jumps drawn from a jump

IRMXN

amplitude matrix J € . Hence, the distribution functions of the par-

ticular jump amplitudes are given within the matrix v(J). Finally, all jump
amplitudes in J are independent of the state of the vector x,'°.

To preserve the exponential-affine structure of any derivatives contract
based on r(x;) and x;, respectively, all random sources, the Brownian motions
WP intensities A¥ and jump amplitudes J are mutually independent. As a
direct consequence of the independence of J and x;, there is no chance to
generate an arbitrage opportunity according to available information before
the particular jump occurs. Hence, given a jump time t*, we have formally
J € F—. Therefore, if a jump occurs at time t*, nobody is able to predict
the exact jump amplitude and cannot gain an arbitrarily large profit with
certainty.

In this thesis, the choice of jump amplitudes in J can draw on three dif-

ferent types of distribution. These are:

e Exponentially distributed jumps.
e Normally distributed jumps.
e Gamma distributed jumps.

These jump distributions and the resulting jump transforms, which are used

in our pricing mechanism, are covered in Chapter 7.

Basically, we prefer to model the term structure in terms of the instanta-
neous short interest rate r (x;)!!, because in this framework all fundamental
quantities are properly defined as the expectation of some functionals on the
underlying process 7 (x;). Accordingly, we are able to construct an arbitrage-

free economy and simultaneously guarantee a consistent pricing methodol-

10 From a technical point of view, it is either possible to introduce a dependence on
x¢ for the jump intensity together with independent random jump amplitudes or a
dependence on x; for the jump amplitude together with constant jump intensities.

See Zhou (2001), p. 4.
1 Other approaches are possible, e.g. the direct approach as used in Schébel (1987)

and Briys, Crouhy and Schoébel (1991) or modeling the forward-rate process as
done in Heath, Jarrow and Morton (1992).
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ogy'?. The drawback of this approach is that we might not be able to explain
perfectly the entire term structure extracted from observed bond market prices

and therefore must content ourselves with a best fit scenario.

The literature distinguishes between two approaches in modeling the short
interest rate in a multidimensional framework. Firstly, we can identify a strat-
egy, which we call henceforth the subordinated modeling approach. Here, the

short rate is modeled as

r(x¢) = wo + wlx,gl)(xf), ceey xEM)).
Consequently, the other M — 1 stochastic factors are subordinated loadings,
containing e.g. a stochastic volatility and/or a stochastic mean'3. Apart from
the stochastic variable xil), we also consider the deterministic parameters wg
and w; in modeling the short rate. Indeed, there are other factors, which
can possibly have some other economic meaning worth to be included in the

interest-rate model.

The second method in modeling short rates, which we call the additive
modeling approach, is to represent r, as a weighted sum over x;, formally
given by

r(x¢) = wo + W'xy,

2 This means that all derivative prices are based on the same price of risk. See

Culot (2003), Section 2.1.
'3 Tn Brennan and Schwartz (1979), Brennan and Schwartz (1980), and Brennan and

Schwartz (1982) the short-rate process is subordinated by a stochastic long-term
rate. Beaglehole and Tenney (1991) discuss a two-factor interest-rate model with a
stochastic long-term mean component and Fong and Vasicek (1991a) introduce a
short-rate model with stochastic volatility. A model where the short rate depends
on a stochastic inflation factor is modeled in Pennacchi (1991). Kellerhals (2001)
analyzes an interest-rate model with a stochastic market price of risk component.
In Balduzzi, Das, Foresi and Sundaram (1996), the authors present a short-rate

model with a stochastic mean and volatility component.
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where w is a M x 1 vector containing separate weights for the correspond-
ing factor loadings in x;'*. However, this model approach possibly entails

difficulties in explaining the economic meaning of the variables x;'°.

2.2 Technical Preliminaries

Before we proceed any further, we have to discuss some general results and
principles of stochastic analysis, which are commonly used in financial engi-
neering, namely the prominent It6’s Lemma and the equally famous Feynman-
Kac Theorem. These two principles play a major role in diffusion theory and
are well connected. Since we consider discontinuous jumps in our model setup,
we have to use extended versions of these two results. At first we have to state
some regularity conditions on the jump-diffusion process, in order to guarantee

their application.

Definition 2.2.1 (Regularity Conditions for Jump-Diffusion
Processes). If the vector process X represents a multivariate jump-diffusion,
the parameter coefficients p(x), X(x¢) have to satisfy the following technical
conditions'® for all t >0

u(xp)l < Arllxg — x|
) = 2(x))|| < Aoflxf — x|
o fux)Il < A (14 [Ix¢)
o [EEII< Az (14 [Ix¢)

o [lp(xf

o || X(x¢

) -
(x7)
(x7)
)
where x¢,x? € RM are two vectors containing different realizations of x; and

the constants A1, As < 0o denote some scalar barriers. Additionally, we need

14 Langetieg (1980) models the short rate as an additive process consisting of two
correlated Ornstein-Uhlenbeck processes. In Beaglehole and Tenney (1991) an
additive, multivariate quadratic Gaussian interest-rate model is given. Longstaff
and Schwartz (1992) and Chen and Scott (1992) model the interest-rate process

as the sum of two uncorrelated Square-Root processes.
A comprehensive discussion on this topic is given in Piazzesi (2003).
The first two conditions are known as the Lipschitz conditions, the latter two

15
16

represent the growth or polynomial growth conditions. See, for example, Karlin
and Taylor (1981).
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for the jump components the integral fec‘]"m dv(Jmn) to be well defined for
R
every Jmn € J and some constant ¢ € C.

If the conditions posed above are met, we are able to apply both Itd’s

Lemma and the Feynman-Kac Theorem.

We start with It6’s Lemma. This lemma enables us to determine the
stochastic process driving some function f(x;,t,T), depending on time ¢ and
a stochastic (vector) variable, e.g. the process x; given in equation (2.1). The
variables ¢ and x;, respectively, are hereafter denoted as the independent vari-
ables. The coefficients p(x;) and A used in this section have no superscripts,

because the principles introduced here hold in general.

Theorem 2.2.2 (Ité Formula for Jump-Diffusion Processes'”). As-
sume the function f(x,t,T) is at least twice differentiable in x; and once
differentiable in t. Then the canonical decomposition of the stochastic differ-
ential equation for f(x¢,t,T) is given by

A7t ) = (LD oy 2L LT)

,82f(xt,t,T)]> gt

1
+ 5 tr |:E(Xt)2(xt) 8xt8xé

(2.4)
L Af(xt,T)

!/
ox;

+ (E(xe, 3,4, T) — f(x1,t,T)) AN(AL),

> (Xt) th

where the function f(x¢,J,t,T) contains all jump components with elements
(f(xt, I, 6, 7)) = f(X¢ + jn,t, T) and j, € RM contains as mth element Jp,,

of the amplitude matriz J.

Another key result which we use extensively is the Feynman-Kac theo-
rem. This theorem provides us with a tool to determine the system of partial

differential equations (PDEs), given an expectation.

7 See, Kushner (1967), p. 15, for the jump-extended version of Ité’s lemma.
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Theorem 2.2.3 (Feynman-Kac). If the restrictions in definition 2.2.1 hold,

we have the expectation

—}:h(xs,s) ds
f(xhtaT) =E e ¢ f(XTaT7 T) ) (25)

solving the partial differential equation

/af(xtvt) 1 ,82f(xt7t,T)
+ /.L(Xt) 7{9)(25 + 5 tr E(Xt)E(xt) 78)(158)(2 (26)

+ ]EJ [f(xtuJath)/ - f(Xt?t’T)] A= h(xtat)f(xtvtuT)v

Of (x¢,t,T)
ot

with boundary condition'
f(XT7 T, T) =G (XT) (27)

and f(x¢,J,t,T) as defined in theorem 2.2.2.

In diffusion theory, the function h(x¢,t) is commonly addressed to as the
killing rate of the expectation!® and can be interpreted as some short rate.
Since we use equivalently as killing rate a short rate characterized by the time

constant coefficients wy and w we set the relation
h(x¢,t) =7 (x¢) -

As we will see, these two principles are the fundamental tools in obtaining
the solutions for our upcoming valuation problems, especially in calculating
the general characteristic function of a stochastic process, which is discussed

in the next sections.

2.3 The Risk-Neutral Pricing Approach

So far, the stochastic behavior of the state vector x; was assumed to be mod-
eled under the real-world probability measure IP. This probability measure
depends on the investor’s assessment of the market and therefore cannot be

18 The operator Ej[-] denotes the expectation with respect to the jump sizes J.
19 See, for example, @ksendal (2003), p. 145.
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used in calculating unique derivatives prices?’. However, for valuation pur-
poses we need to derive contract prices under the condition of an arbitrage-free

t21

market<", which will be shown in this section.

According to the seminal papers of Harrison and Kreps (1979) and Harri-
son and Pliska (1981), it is a well known and rigorously proved fact, if one can
find at least one equivalent martingale measure with respect to IP, then the
observed market is arbitrage-free and therefore a derivatives pricing frame-
work can be established. Thus, we establish the link between this equivalent
martingale measure Q, also known as the risk-neutral probability measure??,

and the probability measure IP in this section.

Since we are dealing with M stochastic factors, primarily integrated in
the short rate r (x¢), which are all non-tradable goods, we are confronted
with an incomplete market. In contrast to other model frameworks in which
factors represent prices of tradable goods, we encounter a somewhat more
difficult situation to end up in a consistent arbitrage-free pricing approach?3.
Foremost, we need to introduce for every source of uncertainty a market price
of risk reflecting the risk aversion of the market. The common procedure in
this case is to choose a particular equivalent martingale measure, sometimes
also called the pricing measure which determines the appropriate numeraire
to be applied?*. Having chosen the numeraire, which has the function of a
denominator of the expected contingent claim and determines the martingale
condition for the expectation, we afterwards have to extract yields for different
maturities of zero-bond prices. In the next step the model prices of zero bonds
mxample7 Musiela and Rutkowski (2005), p. 10.

21 The arbitrage-free approach is also known as the partial equilibrium approach.
Including preferences of investors, i.e. working with utility functions would be a
general equilibrium approach. Schébel (1995) gives a detailed overview of both

approaches.
22 The terminology can be justified, since in a risk-neutral world, where all market

participants act under a risk-neutral utility behavior, the probability measures P

and Q coincide. See, for example, Duffie (2001), p. 108.
23 This statement holds only for tradable goods modeled by pure diffusion processes.

Otherwise, due to the jump uncertainty one has again to implement some variable

compensating jump risk. See Merton (1976).
24 This can be for example the money market account or zero-coupon bond prices.

See Dai and Singleton (2003), pp. 635-637.



2.3 The Risk-Neutral Pricing Approach 15

are calibrated with respect to this empirical yield curve. In the calibration
process for these parameters, two separate approaches can be utilized?®. In
the first approach one computes the particular model parameters under the IP
measure together with the different market prices of risk. The other method
would be to calibrate the model onto the parameters under the objective
measure Q. A problem which is common to all model frameworks, where the
instantaneous interest rate r(x;) is used to describe the term structure of
interest rates is that in general the given yield curve is not matched perfectly.
Hence, we rather want an arbitrage-free model, which might not be able to
explain perfectly all observed yields, but to state a model with an internally

consistent stochastic environment.

In the upcoming subsections, we will first give an outline how the risk-
neutral measure is defined and how the particular coefficients under this prob-
ability measure Q can be derived for our affine term-structure model. Due to
the jump-diffusion framework, we also focus on the topic that our martingale

measure should consider for discontinuous price shocks.

2.3.1 Arbitrage and the Equivalent Martingale Measure

Before we start with the formulation of our option-pricing methodology, we
need to ensure the existence of an arbitrage-free pricing system. A very useful
insight for this delicate matter is given in the above mentioned work of Harri-
son and Kreps (1979) and Harrison and Pliska (1981). Using measure theory,
they judge the market to be arbitrage free enabling the consistent calculation
of derivative prices if at least one equivalent martingale measure can be found,
corresponding to the physical measure IP. Hence, using the money market ac-
count as numeraire in order to derive Q, the price of a derivative contract
would be just the discounted expectation of its terminal payoff G (x7)?5. So
our first step is to define the relevant conditions for an equivalent martingale

measure.

25 See Duffie, Pan and Singleton (2000), p. 1354.
26 See, for example, Geman, Karoui and Rochet (1995) and Dai and Singleton

(2003), p. 635.
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Definition 2.3.1 (Equivalent Probability Measure). Two probability
measures P and Q are equivalent, if for any event A, P(A) > 0 if and only if
Q(A) > 0.

According to definition 2.3.1, the equivalent probability measure @ must
only agree on the same null sets given by IP. The next property we need, in

order to obtain the probability measure Q, is the martingale property.

Definition 2.3.2 (Martingale Property). A stochastic process f(x:,t) is

a martingale under the probability measure Q if and only if the equality
f(xtv ta T) = ]EQ [f(XT7 Ta T)] (28)

holds for any t <T.

This last definition ensures the fair game ability of our interest-rate mar-
ket. Combining definitions 2.3.1 and 2.3.2 lead us to the equivalent martingale
measure Q with respect to IP. Thus, to be a fair game, respectively a martin-
gale, the probability measure @ transforms the probability law for x;, leaving
the null sets of IP untouched. In the next subsection we show the transition of
the probability law from the real-world measure IP to the risk-neutral measure

Q.

2.3.2 Derivation of the Risk-Neutral Coefficients

Having found the formal conditions of an equivalent martingale measure, we
now want to derive the transformation rule from measure P to Q. This rule,

also called the Radon-Nikodym derivative &(xy, ¢, T), is represented by

@ _ g(XTvTa T)

dP |, E(xet,T) (2:9)

In order to derive the risk-neutral coefficients, we adopt the corresponding
pricing-kernel methodology. Doing this, the pricing kernel or Radon-Nikodym
derivative £(x¢,t,T"), belongs itself to the class of exponential-affine functions

of x,%7. The principle of risk-neutrality implies for the state-price kernel an

2T See, for example, Dai and Singleton (2003), p. 642.
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expected discount rate equal to the instantaneous risk-free rate r (x;). Thus,

we need the equation

P {dg(xht,T)
g(Xht,T)

to hold. Using this type of state-price kernel, we have the discounted expecta-

] = —r(x¢) dt, (2.10)

tion of an interest-rate derivatives price to fulfill the definition of a martingale
as described in theorem 2.3.2. Consequently, ensuring the expectation made
above holds and considering the systematic risk factors, we choose the specific
form of £(x¢,t,T) to satisfy

dg(xta t7 T)
S(Xtu tv T)

The vectors As; (x¢) and Ax compensate the sources of risk under the risk-

= —r(x;) dt — Ag (x;) dWP — A4 (AN(ATE) — AP dt). (2.11)

neutral measure Q for the vector of Brownian motions and the vector of
Poisson processes, respectively. The vector Ax (x;) is characterized by the

two relations?®

As (x¢) As (x¢) = lo + 11
¥ (x¢) Axs (x¢) = sp + s1X¢

with Ip € R, 1,80 € RM, and s; € RM*M, Defining As (x;) like this,
we ensure the exponential-affine structure in the pricing kernel &(xq,t,T).
In contrast to the constant, N-dimensional vector Ay, we need to establish
in As (x¢) a dependence on the state vector x; because of a possibly non-
zero matrix 312%. Thus, if a particular factor acgm) has a constant volatility
coefficient, meaning its volatility does not depend on any element in x;, there
is either no dependence on x; for the respective element in the the vector
As (x¢) and vice versa. Since A¥ is the vector of expected arrival rates, we
have with
EP [AN(AFt) — AF dt] = 0w,

a P-martingale, representing a vector of compensated Poisson processes’.

28 Compare, for example, with Duffie, Pan and Singleton (2000), Culot (2003), and

Dai and Singleton (2003).
2 Dealing with a Square-Root process, we cannot set the particular market price of

risk to a constant value, see Cox, Ingersoll and Ross (1985b), Section 5.
30 A compensated Poisson process can be roughly seen as a discontinuous equivalent

of a Brownian motion. See, for example, Karatzas and Shreve (1991), p. 12.
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As a consequence of this incomplete market, the vectors As; (x;) and Ay
are not uniquely defined. Therefore, the pricing kernel itself is not uniquely
defined either and we have to determine these risk price vectors with a cali-
bration of yields generated by the model to the empirical yield curve as men-
tioned earlier. We assume this calibration to depend on the yields of traded
zero-coupon bonds P (x;,t,T) with different times to maturities®'. Suppress-
ing unnecessary notations for convenience and applying It6’s Lemma, we get

the following SDE for the P-dynamics of a zero-coupon bond
dP (x4, t,T) = ppdt + o’ AWF + Ip AN(AF?) (2.12)

with drift, diffusion and jump components>?

OP t, T oP t, T
pp = (i;ta ) ) + /L]P(Xt)l (Xt7 ) )
t 8xt (2 13)
1 /azp (Xtath) .
+ itr E(Xt)E(Xt) T@){% y
OP (x¢,t,T
op= E(xt)i(g;t ) (2.14)
Jp=P(x,J,t,T) — P (x:,t,T). (2.15)

On the other hand, we impose the martingale condition for traded contracts,

which is due to the chosen numeraire,

T
— [r(xs)ds
P (i ,T) =E@ [ TP (xp, 1, 7)
(2.16)
f(XT,T,T)
=EF |22~/ p T.T)| .
f(Xt, t, T) (XTa Y )

Multiplying this last equation with &(x¢,t,T"), which is known at time ¢ and
therefore a certain quantity, we consequently have §(x¢,t,T)P (x¢,t,T) to be
a martingale and the infinitesimal increment d (§(xq,t, T)P (x¢,¢,T)) to be a
local martingale®3. According to Theorem 2.2.2 we have

31 Since coupon bonds are commonly traded, zero-bond values can be synthetically

generated by coupon stripping.
32 P(x4,J,t,T) has the equivalent definition as f(x;,J,t,T) with all calculations

made with respect to P (x¢,t,T). See Theorem 2.2.2.
33 The existence of a local martingale under the new measure Q is sufficient for

the no-arbitrage condition. See Delbaen and Schachermayer (1995) and Dksendal
(2003) Section 12.1., respectively.
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d(€(xt,t, T)P (x1,1,T))
=&(x¢t,t, T)dP (x4, t,T) + P (x¢,t,T) d&(xy,t,T)
+ dP (x¢,t,T) d&(x¢,t,T)
=&(xe, t, T)pp dt + &(x,t, T)o’p dAWP
+ &(x¢,t, T)IpN(AY) (2.17)
— P (x¢,t,T)&(x¢,t, T)r (x¢) d
— P (x4, t,T) &(x4,, T)As (%) dW]P
— P (x4, t,T) &(x¢,t, T)AN (AN(ATE) — AP dt)
— &(xe,t, T)opAs (x;) dt — E(xe,t, T)I pIX Ay dt.
In the last equation, we used for the infinitesimal time increments the relation
dtdt =0,
and for the vector of uncorrelated Brownian motions

AWP dWP =1, dt.

Similarly, the corresponding expression for the vector of independent Poisson

processes is
AN(XFt) AN(AFt) = I dt,

where Iﬁ) represents a matrix consisting of the diagonal elements
diag {Iﬁp] =P

and zeros otherwise. In the next step, we divide for notational ease all coef-
ficients of the zero-bond SDE (2.12) by P (x¢,t,T). Hence, we use hereafter

the normalized coefficients,

~ np
He = Pl t,T)
. op
TP P, LT
= JP

P P, t,T)

Combining condition (2.16) and equation (2.17), and keeping in mind that
under P-dynamics, the Brownian motions and the compensated Poisson pro-

cesses in equation (2.11) are martingales, we get for the expectation
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d (g(xtata T)P (Xtata T))

EIP
g(xta t7 T)P (Xta tv T)

] = apdt+Ey [Jp} AP at
— 7 (x) dt — pAs (x,) dt  (2:18)
~E; [jp} Y Axdt = 0.

If we now solve equation (2.18) for the modified drift coeflicient fip, subse-

quently eliminating all dt¢ terms, we eventually end up with the relation
fip = r(x¢) + &pAs (x¢) + Eg [jp} (I?VPAA - )\IP) : (2.19)

which means that the rate of return of a zero bond must be equal to the risk
free short rate plus some terms reflecting the particular risk premiums of the

different sources of uncertainty.

We are now ready to identify the corresponding formal expressions under
Q-dynamics of the coefficient parameters u* and AF. Comparing equation
(2.13) with (2.19) lead us to the fundamental partial differential equation for

zero-bond prices®*

oP (Xt,t,T) + opP (Xt,t,T)
ot ox}

(1" = 2(x)As (x1))

/82P (Xtvth) (220)
axtﬁxg

+Ey[Jp] ()\IP - IQPAA) = r(x¢) P (x0,,T) .

+ %tr {E(xt)E(xt)

According to equation (2.20), together with It6’s Lemma, and the Feynman-
Kac representation, we are able to express the risk-neutral parameters as

p® = p® — B(x)As (x0) = pg + pexe, (2.21)
AQ = AF Y A, (2.22)

Since the jump intensities A® have to be positive, we need A small enough to
ensure the positiveness of the jump intensities under the risk-neutral measure
Q given the intensity vector A¥. The constant coefficients in the variance-

covariance matrix (2.3) remain unchanged under the new measure Q. This

34 Once the risk-neutral coefficients for the interest-rate process are determined,
equation (2.20) can be used to price any European contingent claim by exchang-
ing the terminal condition and replacing P (x¢,t,T) with the particular function

representing the price of the derivative security to be calculated.



2.4 The Characteristic Function 21

phenomenon is often referred to as the diffusion invariance principle, although
this terminology is not completely correct. We want to emphasize that the
variations of the Brownian motions only coincide under both measures P
and Q, if the variance-covariance matrix exclusively exhibits constant coeffi-
cients®®. Otherwise, we are implicitly dealing with a different time-dependent
variance-covariance matrix, since the vector x; experiences a drift correction
and therefore affects the relation given in equation (2.3). Consequently, the
probability transformation law of the process x; from P to Q does not only
contain a drift compensation. Moreover, besides the jump intensity correc-
tion, the very shape of the probability density itself can be changed, due to
the implicitly altered variations of the diffusion terms.

Hence, calibrating the theoretical term-structure model to zero-bond
yields, whether estimating the parameters of the left or the right sides of
equations 2.21 and 2.22, results in the following SDE governing the particular

factors under risk-neutral dynamics
dxy = pQ(x;) dt + B(x,) AW + JdN (A%%) (2.23)

which we use in the subsequent sections as starting point for our calculations.

2.4 The Characteristic Function

In this section, we first give a brief overview of the abilities of character-
istic functions and show afterwards how the characteristic function of an
exponential-affine process, as given in equation (2.1), can be derived. We
generalize the principle of building characteristic functions for some scalar
process g(x¢), which is essential for our derivatives pricing technique. Since
characteristic functions play a major part in our derivation of semi closed-form
solutions for interest-rate derivatives, we discuss also some of their fundamen-

tal properties.

Before we introduce the characteristic function itself, we first need to state
a definition of Fourier Transformations of some deterministic variable 2:3¢.

35 In this case, we would deal with the matrix (x)X(x)" = 3.
36 Tn the literature, there seems to exist various definitions for this type of transfor-

mation. Thus, we want to clarify the issue by giving a straightforward definition
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This concept belongs to the field of integral transformations3” and is a widely

used tool in engineering disciplines, especially in signal processing.

Definition 2.4.1 (General one-dimensional Fourier Transformation
and its Inversion). We define the Fourier Transformation F*[ -] of some
function f(x) with respect to the independent variable x as
oo
Fli@) = [ e p) o = o), (2.24)
—o0
where z € C denotes the transform wvariable in Fourier space, satisfying the
restriction Im(z) € (x,X) with x andX denoting some lower and upper bound-
aries gquaranteeing the existence of the Fourier Transformation, 1 = +/—1
as the standard imaginary unit, and f (z) as the shorthand notation for the

Fourier Transformation of f(x) with respect to its argument x.

Accordingly, the inverse transformation operator F~1[-] is then defined by

oo

/ e f(2)dz = f(x). (2.25)

— 00

1

T

FUIR)]

Due to the exponential character of the Fourier Transformation, we need
to establish in equation (2.25) a normalization factor of 27r. The terminology
general one-dimensional Fourier Transformation, in contrast to an ordinary
one-dimensional Fourier Transformation, is used because we do not limit the
transformation variable z to be on the real line®®. Thus, we allow z to be
complex-valued, which makes equation (2.24) and (2.25) a line integral, per-

formed parallel to the real line. Note that both the transform and its inverse

in this section. In financial studies our definition according to equation (2.24) of
a Fourier Transformation seems to be commonly accepted. See, for example, Carr
and Madan (1999), Bakshi and Madan (2000) and Raible (2000). On the other
hand in engineering sciences, the opposite definition of a Fourier Transformation

and its inverse operation does exist. See, for example, Duffy (2004).
37 Other popular integral transformations are e.g. the Laplace transformation or the
z-transformation. A comprehensive discussion of the Laplace Transformation is

given in Doetsch (1967).

38 Hence, the equivalent expression complez Fourier Transformation is sometimes

used in the literature.
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operation have to take place on the same strip going through Im(z), in order

to reconstruct the original function f(z).

The advantage in performing this general Fourier Transformation is the
possibility to derive image functions in cases where the ordinary transform ap-
proach would fail, e.g. for functions which are unbounded®’. However, in these
cases, the general approach enables us to derive solutions for their Fourier
Transformations. For example, if we want to compute the Fourier Transfor-

mation of a function?®
G(r) = max(e” — K, 0),

the ordinary transformation approach appears to be useless, since

FPG(z)] — oo.
Performing a general transformation, in this case within the strip Im(z) €
(1,00), we gett!
G K1+zz
Fe = — 2.26
0] = iy (2.26)

where Im(z) can be fixed at every value within the above mentioned strip to
derive the original function by applying the inverse Fourier Transformation.
The different contours in Fourier space of the transformed payoff function
given in equation (2.26) are depicted in Figure 2.1. Having derived the funda-
mental technique to compute Fourier Transformations, which is an essential
part in this thesis, we go further and have a look at Fourier Transformations
of density functions of stochastic variables, which are commonly known as

characteristic functions.

Definition 2.4.2 (Scalar Characteristic Functions). We define the scalar
characteristic function wz(m) (xt, 2, wo, w,t,T) as the expected value of the ter-

(m)
12T

minal condition G (x1) =€ , given the state x; at time t < T. This can

be expressed more formally as

39 This is the case for most payoff structures of option contracts, e.g. plain vanilla

call or put options.
40 This function represents, for instance, the payoff function of a plain vanilla call

option in an asset pricing environment, where x is the natural logarithm of the

underlying asset price.
41 In Section 5.3, Fourier Transformations are derived in detail for different types of

payoff functions.
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Re(f(z))

Im(z) -6

Re(z)

Fig. 2.1. Different contours of the Fourier transform in equation (2.26) for a strike
of 90 units.

T
(m)
(m) — [ r(xs) dstrzay
(Xt,Z,UJO,W,t,T) =E |e ¢

wf
(2.27)
(m)
= / e p(xta X1, W0, W, tv T) dXTv
RM

for all m = 1,..., M. In the last equality of equation (2.27), the function
p(x¢, X7, w0, W, t, T') represents the (discounted) transition probability density,
starting with an initial state x; and ending up in time T at Xp. The continuous

discounting is conducted with respect to r (x+) fort > t* > T.

Obviously, if the stochastic process consists only of one variable x;, the
characteristic function ¥* (x4, 2,0,0,¢,T) is then just the Fourier Transforma-
tion of the particular transition density function p(x¢, z7,0,0,¢,7T"). Although
the transform operation in equation (2.27) is performed with respect to the
terminal state of one single random variable x(Tm), we have to consider the

state of the vector x; as an argument of the characteristic function. In fact,
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since we are looking at the overall expectation, equation (2.27) is generally
built as the M -dimensional integral over the entire state vector x;*2. There-
fore, we are also able to apply the definition presented above of building a

characteristic function for the more general case

g(xr) = go + g'xr (2.28)

with go € R and g € RM. This implies, as long as g (x7) is a linear com-
bination of the elements in x7 that only one single transformation variable
z necessary. Hence, if we are able to build the characteristic function for the
scalar g (x7)*3, there is only a one-dimensional integral for the inverse opera-
tion to be performed, independent of the number of state variables included in
g (x7). Note, this powerful result will be used in our multi-factor framework.
Equipped with these definitions we state next some general and important

properties of Fourier Transformations on which we rely in our thesis.

Proposition 2.4.3 (Important Properties of Characteristic Functions
and Fourier Transformations). Let o, (,z,y € R, and f(x),g(y) some
real-valued functions with Fourier transforms f(z),§(z) and Fourier Trans-

formation variable z € C. Then the following relations hold:

1. Linearity:
Frlaf(x) + Bg(x)] = af (2) + B4(2).

e[

dxe

2. Differentiation:

(12)*f (2)-

3. Convolution:

Fr1f () * g(2)] = f(2)3(2)-

4. Symmetry:
9] 0
rf(z)= [ e f(2)dz= [ e " f(2)dz.
[t

271f azim) would be no subordinated process and independent from all other
state variables, equation (2.27) could still utilize the joint density function

p(x¢, X1, wo, W, t,T) due to the possible discount factor including r(x:).
43 For example, calculating the general characteristic function for the short rate

r (x¢) itself, we set g (xr) = r (x71).
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5. Relation of the Moment-Generating and the Characteristic Function:

o da¢m(mta Z, 07 OMa tv T)
dze

E[2%] = ()

Taking a second glance at Figure 2.1, we are able to justify the symme-
try of the Fourier Transformation (2.26) of a real-valued function, mentioned
in Proposition 2.4.3. Furthermore, one can clearly identify the dampening
property of the characteristic function which is essential in developing a nu-
merical algorithm to compute derivative prices. In the following, we show
how the characteristic function for a scalar function g (xr) is derived within
the exponential-affine framework. Following Bakshi and Madan (2000), we
interpret the characteristic function as a hypothetical contingent claim. Tak-
ing more elaborated payoff structures into account, we have to extend the
list of permissible arguments for the characteristic function. The more gen-
eral representation of the characteristic function, which we use hereafter is
P9 (x¢, 2, wo, W, go, 8, t, T) with the complex-valued payoff representation at
maturity 7',

wg(x) (xt, 2, wo, W, go,8,T,T) = e?9(xT) (2.29)

As discussed in the last section, we have to consider that all contingent claims
need to be priced under the risk-neutral probability measure Q. Hence, all
prices are derived as discounted expectations. Consequently, the discounted
expectation of the general form of the terminal condition can be represented
as

T
— [ r(xs)ds+rzg(x7)
¢g(X)(Xt7zawOaWag()7g7taT) = ]EQ (& ‘tf o . (230)

However, we need to compute discounted expectations, e.g. for vanilla zero-
bond calls, or undiscounted expectations, e.g. in the case of futures instru-
ments. Hence, for futures-style contracts, wg equals zero and w is a zero

valued vector®?.

In calculating European derivative prices, we rather need the general char-
acteristic function ¥99(x;, z, wo, W, go, g, t,T) than the special case of the

4 The characteristic marking to market for standardized futures-style contracts
results in the non-existence of a discount factor in the pricing formula and the

relevant PDE, respectively, of such a contract under the risk-neutral measure Q.
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characteristic function without considering any discount factor, which is just
P9 (xt,2,0,0as, 90, 8,t,T), where Oy represents a M X 1 vector containing
exclusively zeros. Applying Theorem 2.2.3 to our hypothetical claim with a
solution according to equation (2.30), we take advantage of the Feynman-Kac
representation to derive the partial differential equation. Simplifying and sup-
pressing unnecessary notation, we write henceforth ¥ (x¢, z, wo, w, go, 8, 7) =

P9 (xt, 2, w0, W, go, 8, t, T) and then get the partial differential equation

8¢(Xt,z,wo,w,go,g,7') aw(Xt,Z,’UJ(hW,go,g,T)

Q /
315 +u (Xt) th
1 ,82¢(X1§,Z,1U07W,go,g,7—)

+ ]EJ [w(xh Z7w0aw7907g7']77-)/ - ¢(Xt’ Z, ’lUO,W,Q(),g,T)] AQ

= ’l/J(Xt, Z,Wo, W, Jdo, 8, T)T (Xt) )

where the complex-valued vector (X, z, wo, W, go, &, J, 7) contains all jump
components with particular elements (¢ (x¢, 2z, wo, W, g0,8,J,7))n = ¥(x; +
Jn, 2, W0, W, go, &, 7). The vector j, € RM contains as mth element the random
variable Jp,, of the amplitude matrix J. Every contingent claim or function
dependent on x;, an arbitrage-free environment presupposed, has to satisfy
the same Partial differential equation structure as given in equation (2.31). For
example, the corresponding risk-neutral transition density for the character-
istic function ¥ (x¢, z, wo, W, wo, W, 7), with g (x7) = r (xr), which is actually
p(r(x¢), r(xr), wo, w,t,T) need to satisfy the same partial differential equa-
tion as the characteristic function itself*>. The only difference between them
would be the particular terminal payoff condition. Hence, solving the above
partial differential equation for p(r(x;),r(xr),w, w,t,T), we would impose
the Dirac delta function as the relevant terminal condition, having its den-
sity mass exclusively concentrated in an infinite spike for r(xr) at time 7.
Solving equation (2.31) together with this type of boundary condition can be
quite challenging and is in many cases just impossible*S. Thus, it is feasible
to first solve equation (2.31) for the general characteristic function, with its
smooth and continuous boundary function at T', and afterwards do some sort
%5 Gee Heston (1993), p. 331.
46 A prominent example is given with the stochastic volatility model of Heston
(1993), for which no closed-form representation of the transition density of the

underlying equity log-price variable exists.
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of normalized integration, the inverse Fourier Transformation, probably in a
numerical manner, to get the desired result. Proceeding like this is a very
elegant way to find some semi-analytic solution. In contrast, if we want to
interpret the terminal payoff function in equation (2.29) as a hypothetical
futures-style contract, with solution

(%0, 2,0, 001, g0, 8,7) = E® [5900)] (2.32)

we have a slightly different partial differential equation. In this case the dy-
namic behavior of ¥ (x¢, z,0,0.7, go, 8, 7) is described by the slightly altered
PDE

aw(Xt,Z,0,0M,g(),g,T) aw(Xt,Z,0,0M,g(),g,T)

Q /
ot +'u (Xt) 8Xt
1 /82¢(Xtaz5070M7907g77—)
+ ]EJ ['l/J(Xtv 2 07 OM7 90, 8, J7 T)/ - ¢(Xta Z, 07 0M7 90, 8, T)] AQ

Hence, the only difference to PDE (2.31) is that the right hand side is now
equal to zero to contribute the missing discount rate. Moreover, we can use
this futures-style characteristic function (%, 2,0, 0xr, go, &, 7) to obtain the
particular values of the undiscounted transition density function. Thus, to
compute the probability density function of the short rate r (x;), we use this

futures-style solution of the characteristic function together with the identity

g (x¢) =7 (x¢).

Consequently, using a separation of variables approach, the partial differ-
ential equations in (2.31) and (2.33) can be decoupled into a system of ordi-
nary differential equations. Therefore, we assume for ¢ (xy, z, wo, W, go, g, T)

the exponential-affine structure
w(xh Z,Wo, W, go, 8, T) = ea(Z’T)+b(Z’T)IXt+ZZQO7 (234)
with the scalar and complex-valued coefficient function a(z,7) and

0GEn\ o

5(2)(2’7) g®? ~
b(z,7) = ) + 1z ) = b(z,7) + 128,

i00(zm) g0



2.4 The Characteristic Function 29

denotes some complex-valued coefficient vector. In the next step we plug the
required expressions of the candidate function (2.34) into equation (2.31).

Starting with the time derivative, we get

8¢<Xta Z,Wo, W, go, 8, T)
ot (2.35)
= - (G“(Z? T)T + b(Z, T)frxt) w(xh Z,Wo, W, go, 8, T)7

where a(z,7), and b(z,7), are the first derivatives with respect to the time
to maturity variable 7. The gradient vector with respect to the state variables
X; is given by

8¢(Xt, Z,Wo, W, go, 8, T)
3xt

= b(Z,T)w(XhZ,?llo,W,g(),g,T), (236)

the Hesse matrix is

327/’(7% Z,Wo, W, go, 8, T)
8xt8xg

= b(zn')b(z,T)’i/)(xt7z7w07w,go,g,7), (237)
and the jump component in equation (2.31) can be derived as

EJ [w(xtazaw07wa90aga’]a7—), - w(xt7z7w07wa90aga7—)} =

(2.38)
]EJ [1/]*(’27 Wo, W, 4o, 8, J7 T), - ]'] /(/)(Xtv Z,Wo, W, Jdo, 8, T)a
with the normalized vector
* '(p(Xt7Z7UJ0,W7gO7g7J7T)
’lp 27 w ) W7 ) g7 J7 T =
( 0 g0 ) w(xtazawmwv.gngvT)
eb(zv‘r)/']l
eb(z7) T2 (2.39)
eb(zﬂ—)/JN

In this affine framework, it can be easily checked that the normalized
amplitude vector ¥*(z, wo, W, go, g, J, 7) is independent of the actual state of
X, which results in the special form given by equation (2.39). Therefore, we
are able to express the system of ODEs resulting from equations (2.31) and
(2.33), respectively, and the affine form proposed in (2.34) in terms of the
risk-neutral coefficients derived in Section 2.3.2. According to Theorem 2.2.3,
the ODE which has to be solved for the scalar coefficient a(z, 7) is then
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1
a(z,7); = —wo + ,ué)Q’b(z, T) + ib(z, 7)' Zob(z,T)

(2.40)
+ Ej [¢* (2, wo, W, go, &, J,7)" — 1] AC,
whereas for the vector coefficient b(z,7) we have to solve
1
b(z,7), = —w + u¥'b(z,7) + 5P(z:7)Tib(z, 7), (2.41)

with boundary conditions a(z,0) = 0 and b(z,0) = 2zg, respectively. The
parameters wy and w, determine whether we consider a discount rate or not
for the characteristic function. The mth element of b(z,7)'X1b(z,7) can be
computed as >, ; b(2,7)i (1),
that the trace operator is circular, meaning the equality

b(z,7);4". Moreover, we want to emphasize

tr [E(x)2(x¢)'b(2,7)b(2,7)] = tr [b(z,7) E(x4)2(x:)'b(2,7)]  (2.42)

holds. Obviously, the right hand side of this last equation represents a scalar
and therefore we are able to neglect the trace operator in equation (2.40) and

equation (2.41), respectively.

In order to calculate derivatives prices, the coefficients a(z,7) and b(z,7)
need not exhibit closed-form solutions in any case. There are several scenarios
conceivable, e.g. the time integrated expectations of the jump amplitudes have
no closed-form representations, or the processes themselves have such com-
plicated structures that there simply does not exist a closed-form solution of
the coefficients a(z,7) or b(z,7) of the characteristic function. However, if
we are able to represent a(z,7) and b(z,7) in terms of their ordinary differ-
ential equations (2.40) and (2.41), solutions can be efficiently obtained via a
Runge-Kutta solver and appropriately integrated within our numerical pric-
ing procedure, such that time consuming Monte-Carlo studies for the pricing

of European interest-rate derivatives can be avoided.

47 See Duffie, Pan and Singleton (2000), p. 1351.



3

Theoretical Prices of European Interest-Rate

Derivatives

3.1 Overview

In this section, we want to give a representative selection of different interest-
rate contracts for which the pricing framework used in this thesis is able to
produce semi closed-form solutions*®. In doing this we distinguish, for didac-
tical purposes, between contracts based on the short rate r(x;) and contracts
based on a simple yield Y (x¢,t,T") over a specified time period 7. These yields
to maturity are often referred to as simple compound rates, e.g. LIBOR rates,
and denote the constant compounding of wealth over a fixed period of time

7, which is related to a zero bond with corresponding time to maturity.

Definition 3.1.1 (Simply-Compounded Yield to Maturity). The sim-
ple yield to maturity Y (x¢,t,T) of a zero bond P (x4,t,T), maturing after the
time period T, is defined through the equality

1

=P (x,t,T). 3.1
14+ 7Y (x4,t,7T) (% ) (3.1)
Therefore the simple yield to maturity can be derived as

P(x;,t,T)"' =1 1-P(x,t,T)
T TP (x,t,T)

Y (x¢,t,T) = (3.2)

In the following sections, we generally distinguish in the derivation of
theoretical prices of contingent claims between contracts based on the in-
stantaneous interest rate r(x;) and contracts depending on the simple yield

48 A comprehensive summary of different valuation formulae of fixed-income securi-
ties is given, e.g. Brigo and Mercurio (2001) and Musiela and Rutkowski (2005).
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Y (x¢,t,T). Moreover, we differentiate between contracts with unconditional
and conditional exercise rights. This distinction is introduced because of the
different mathematical derivation of the particular model prices. For contracts
with unconditional exercise, we obtain pricing formulae, which bear strong re-
semblance to moment-generating functions of the particular underlying state
process whereas contracts with conditional exercise rights, i.e. option con-
tracts, need an explicit integration due to the natural exercise boundary. All
derivative prices for which we derive the corresponding pricing formulae are
European-style derivatives, meaning that the exercise can only be performed

at maturity 7.

3.2 Derivatives with Unconditional Payoff Functions

This derivatives class is characterized by the trivial exercise of the contract at
maturity. This means that the contract is always exercised, no matter if the
holder suffers a loss or make a profit as consequence of the exercise. Although
trivially exercised, a zero-coupon bond is a special case of this class since it

pays at maturity a predefined riskless quantity of monetary units.

Definition 3.2.1 (Zero-Coupon Bond). A zero-coupon bond maturing at
time T guarantees its holder the payment of one monetary unit at maturity.
The value of this contract at t < T is then denoted as P (x¢,t,T), which is
the expected value of the discounted terminal condition G(xr) = 1. This can
be formally expressed as,

T
— [r(xs)ds
P(x,t,T) =E® |e { (3.3)

It is easily seen that the payoff function G (x7) used in equation (3.3) is
independent both of the time variable and the state variables in xp. Using
the formal definition in equation (3.3), a zero-coupon bond, or as shorthand
a zero bond, is just the present value of one monetary unit paid at time T.
Hence, we are able to interpret P (xy,t,7T) as the expected discount factor
relevant for the time period ¢ up to T'. Due to this intuitive interpretation,
these contracts are often used in calibrating interest-rate models to empirical
data sets.
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A slightly more elaborated contract is given by the combination of certain
payments at different times. We denote this contract then as a coupon-bearing
bond.

Definition 3.2.2 (Coupon-Bearing Bond). A coupon-bearing bond guar-
antees its holder a number of A deterministic payments ¢, € ¢ at specific
coupon dates T, € T fora =1,...,A. Typically, at maturity Ty, a nominal
face value C' is included in c4 in addition to the ordinary coupon. The present

value of a coupon bond CB(x¢,c,t, T) is then given as

A — ?ar(xs) ds A
CB(x4,c,t,T) = E EQ |e ¢ Ca| = E P (x¢,t,T4) cq. (3.4)
a=1 a=1

Obviously, a coupon-bearing bond, or as shorthand a coupon bond, is just the
cumulation of payments ¢, discounted with the particular zero-bond prices
P (Xt7 t, Ta) .

If a firm is requiring a hedge position for a risk exposure in the form of a
future payment of interest, due to an uncertain floating interest rate, we are

able to conclude a forward-rate agreement.

Definition 3.2.3 (Forward-Rate Agreement). A forward-rate agreement
concluded in time t guarantees its holder the right to exchange his variable
interest payments to a fixed rate K, scaled upon a notional principal Nom.
The contract is sold in t. The interest payments exchanged relate then to the
time period, say [T, T] witht < T < T. We distinguish the cases, where
the forward-rate agreement refers to the short rate r(x) and to the yield
Y (x¢,t,T). Hence, for a contract based on the short rate, the relevant time
interval is then [T,T] = [T, T + dT). The price of this contract is given as

FRA,(x¢, K, Nom,t,T)

T
7frsds
t

=E® |e (K —r(xr))| Nom

7frsds
= | KP(x:,t,T)—E® |e * r(X7) Nom.
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The price for a forward-rate agreement over a discrete time period of length

F=T— T, written on a yield Y (XT,T, T) and paid in arrears, can be rep-

resented as*®

FRAy (x¢,K,Nom,t,T,T)

= 7E® e_fT(XS)dS (K -Y (xT,T, T)) Nom

T
— [r(xs)ds A\ —1
_ge | ! <%K—P(XT,T,T) +1> Nom

~ fr(xa)ds N 1 30
—E? ¢ (P(XT,T,T) (TK+1)—1) Nom

T
— [r(xs)ds ~ ~ N
_pe e ! (P (xT,T,T)—K) IO{

N - N
- (P (xt,t,T) —KP(xt,t,T)) If’(m,

|
wzthK—fKH,

To give a more illustrative example, we consider a firm, which has to make a
future payment subject to an uncertain, floating rate of interest. Reducing the
immanent interest-rate risk exposure, this firm wants to transform this pay-
ment into a certain cash-flow, locked at a fixed rate K. This can be achieved
by contracting a forward-rate agreement, therefore exchanging the floating
interest rate to the fixed rate K. Thus, the firm is, in its future calculation,

independent of the evolution of the term structure.

49 Here we use the fact that the exponential-affine model exhibits the Markov

T
— [ r(xs) ds:|
t

ability. Thus, the expectation E® |:e = P (xt,t,T) can be rep-

T T
— [r(xs)ds — [ r(xs)ds
resented as the iterated expectation E® |:e t EQT |:e T }} =

T
— [ r(xs)ds
e t

E® P (XT, T, T) , where the inner expectation is made with respect

to time T'.
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Another point, we want to mention is the special strike value K = Kpga
for which the yield-based forward-rate agreement becomes a fair zero value at
time ¢. This value is commonly referred to as the forward rate and corresponds

then to the simply-compounded rate

— [r(xs)ds A\ —1
Ee | ! <P(XT,T,T) —1>

Krra =

+P (xht,T)
P(x,t,T) — P (xt,t,T) (3.7)
- +P (xt,tj“)
1 PeatT)
T\p (xt,t,T)

Most of the time a firm does not want to insure itself against a floating
interest payment for only one time period. For example, the firm has to serve
a debt contract, which is linked to a LIBOR interest rate. In this case, the
firm possibly wants to reduce its risk exposure due to the floating interest
accrues over time and it is desired to make an exchange of interest payments
for several successive time periods, where in each period the payment for the
relevant floating rate is exchanged with a fixed rate K. This task can be

achieved buying a receiver swap contract.

Definition 3.2.4 (Swap). A forward-starting interest-rate receiver swap is
defined as a portfolio of forward-rate agreements for different time periods
Tor1 — Ty withTy, € T andt < T, fora=1,...,A on the same strike rate
K. The payments of the contract are made at dates Ty, ..., T, whereas the
contract is said to reset the floating rate at dates Ty, ..., Ta_1.

Due to the instantaneous character of the floating rate based swap contract,
the payment and reset dates coincide. Hence, the swap contract in this case,
with mominal principal Nom and A payment dates contained in the vector T,

can be represented as
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SW A, (x¢,K, Nom,t,T)

A e
= E® Ze i (K —r(xgp,))| Nom
a=1
A Ta
— [ r(xs)ds
= Nom Y E |e { (K — 7 (x7,))
= (3.8)

a=1
A Ta
— [ r(xs)ds
— Z E® |e [ r(xr,)
a=1

The equivalent representation for a swap contract, exchanging a yield-based

floating rate at A — 1 payment dates paid in-arrears is then

SW Ay (x¢, K, Nom, t, T)

A-1 “f“ (x2)d
=E%| Y e * T (K-Y(xg,,TuTat1)) Fas1| Nom
a=1
= Nomx
Tq
A-1 Q — [ r(xs)ds ~
Y E%|e (K#a41 + 1)P (x1,, Ta, Tag1) — 1)
a=1 (3.9)
A—1
=Nom Y ((K#at1+1) P (x¢,t, Tuy1) = P (x1,t,Ta))
a=1

= Nom (P (x¢,t,Ta) — P (x¢,t,T7)

A-1
+K Z 7A_a+1p(xt7t7Ta+1)> )

a=1

with 7A'a+]_ = Ta+1 — Ta.

In contrast to the total number of A swap payments in equation (3.8), where
these payments refer merely to specific time dates, for the yield-based swap
contracts we have to consider A — 1 time periods, which explains the result-
ing summation term in equation (3.9). Subsequently, a swap contract can be

interpreted as the sum of successive forward-rate agreements.
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Similar to forward-rate agreements we are able to introduce the terminol-
ogy of a special strike Kg, which makes the yield-based swap contract a fair
zero valued contract. This special strike is then denoted as the swap rate and

can be represented in the case of a yield-based swap as

K _ Zfz_ll (P (Xt7t7Ta) - P(Xtvt;Ta+1))
5= A1
Za:l T0«+1P(Xt7taTa+1)
o P(Xt7t,T1) —P(Xt7t,TA)
Zj:_ll 7:a+1P (Xtatha+l) .

(3.10)

The last contract with unconditional exercise right which we include in the
pricing methodology used is an Asian-type average-rate contract based on the
floating rate r (x;). These contracts do not belong to the class of traded deriva-
tives in any exchange. However, this type of interest-rate derivative seems to
be quite popular in over-the-counter markets®®. Asian contracts belong to the
field of path-dependent derivatives. Thus, the payoff consists not only of the
terminal value of the underlying rate at maturity but of the complete sample
path over the averaging period.

Definition 3.2.5 (Unconditional Average-Rate Contract). An uncon-
ditional average-rate agreement concluded in time t guarantees its holder the
right at maturity T to exchange the continuously measured average of the
floating rate r (x¢) over the period T — t against a fized strike rate K. The
value of this difference is then scaled by a nominal principal Nom. Hence, the

price of this contract is given as

UARC, (x¢, K, Nom,t,T)
[ r
— Jr(xs)ds 1
=E® |¢ ¢ K—m r(xs)ds | | Nom

/ (3.11)

T T
1 — [r(xs)ds
=Nom | P(x;,t,T) K — =E® |e * /r(xs)ds
T
t

Consequently, in contrast to the forward-rate agreement according to equation

(3.5), where the sole expectation of r(xr) played the major part, we are

50 See Ju (1997).



38 3 Theoretical Prices of European Interest-Rate Derivatives

interested in the discounted expectation of the integral of r(x;) over the time

to maturity at this point.

3.3 Derivatives with Conditional Payoff Functions

In the last subsection, we considered the pricing formulae for contracts with
unconditional exercise at maturity under the risk-neutral measure Q. Obvi-
ously, these contracts can be expressed e.g. in terms of zero bonds and some
constants. In this section we want to derive general pricing formulae for con-
tracts with conditional or optional exercise rights at maturity. These deriva-
tives contracts are therefore often referred to as option contracts. Basically,
we are interested in calculating the particular option prices with underlying
contracts of the form (3.5), (3.6), and (3.9) with optional exercise rights. Ba-
sically, the particular pricing formulae can be separated into zero bond and
coupon-bond options, respectively, can be seen as a portfolio of several zero-
bond options in case of a yield-based swap contract. Hence, we begin the

introduction with option contracts written on a zero bond.

Definition 3.3.1 (Zero Bond Option). We define a zero-bond call (put)
option as a contract giving its holder the right, not the obligation, to buy
(sell) a zero bond P (Xt,t, T) for a strike price K at time T. The remaining
time to maturity of this zero bond at the exercise date of the option is then

giwen as 7. Formally, the price of a zero-bond call can be obtained as

ZBC (xt, K. t,T, T)

r(xs)ds

s—n

=E® |e max (P (XT,T,T) —K,O)

(3.12)

RN

_gQ | T (P(XT,T,T)—K)+ ,

whereas a zero-bond put option can be calculated as

~ o) ds
R

~ N +
ZBP(xt,K,t,T,T):EQ e K—P(XT,T,T)) . (3.13)
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Zero bond options can be used to price two contracts commonly used to hedge
interest-rate risk. Namely, we want to introduce cap and floor contracts. In
this terminology, a cap contract is meant to hedge upside interest-rate risk
exposure. This is often required for a firm which holds some debt position
with interest payments on a floating rate base and fears that future interest
rates are rising. So it wants the interest rate capped at some fixed level, in
order to limit its risk position due to this fixed rate. In contrast to the above
introduced forward-rate agreement or swap, a firm can now both participate
on advantageously low interest rates and simultaneously cap its interest pay-
ments against high rates. The opposite effect can be observed, if an institution
or firm has outstanding loans based on a floating rate. In this case the firm
is interested in limiting the downside risk, since low floating rates correspond
to low interest payments. The contract with the desired properties is then a

floor, where interest payments are exchanged under an agreed fixed rate.

Definition 3.3.2 (Cap and Floor Contract). A cap (floor) contract is
defined as a portfolio of caplets (floorlets) for different time periods Tyy1 — T,
with T, € T and t < T, for a = 1,..., A on the same strike rate K. The
payments of the contract are made at dates Ty, ..., Ta, whereas the contract
is said to reset the floating rate at dates Ty, ..., Ta—1.

Due to the short rate, the character of the floating rate based swap contract,
the payment and reset dates coincide. Hence, the model price of a caplet with
nominal principal Nom and A payment dates contained within the vector T,

is then given by

Tq
Q — [ r(xs)ds 4
CPL, (x¢, K,Nom,t,T,) =E~ |e * (r(xr,) — K)"| Nom. (3.14)

The price of a cap contract, as a simple summation of caplets for different

times T, € T, can then be represented as

CAP, (x¢, K, Nom,t,T)
A
= CPL(x,K,Nom,t,T,)
a=1 (315)
A Ta
— [ r(xs)ds
’ (r (xr,) = K)*

a=1
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Subsequently, we have for a floor the pricing formula

FLR, (x¢, K, Nom,t,T)

Tq

A Q — [ r(xs)ds +
=Nom Y E®|e * (K —r(x7,))

a=1

(3.16)

The particular yield-based cap and floor options, exchanging, if exercised, ar-

bitrary yields with a fized rate K at A — 1 payment dates, are given by

CAPy (x¢, K, Nom,t,T)

A-1 Ta
— [ r(xs)ds / ~ +|1 N
= ZEQ e tf (Ka_P(XTaaTaaTaJrl)) *Om
a=1

K, (3.17)
A—-1
~ N
- zBp (xt, Ka,t,Ta,TaH) om
a=1 Ka

and

FLRy (x¢, K, Nom,t,T)

A-1 Ta
— [ r(xs)ds - \t| N
=Y EQ e { (P (s T Tayn) = Ka) | =
a=1

K, (3.18)
A-1
~ N
-3 zBC (xt,Ka,t,Ta,TaH) om
a=1 Ka
. - 1
with Ka = m

Definition 3.3.2 shows that a cap or floor contract is just the summation
of their legs, the caplets and floorlets, respectively. Especially for the more
realistic case of yield-based contracts, we can identify the similarity to zero-
bond options, since contract prices can be obtained as the summation of these

options.

The yield-based options are said to be at the money if the modified strike
rate K, is equal to equation (3.10). A cap is therefore in the money if the
modified strike rate is less than Kg, and for K, > Kg it is out of the money.
The opposite results hold for a floor contract. Furthermore, we can conclude
that holding a cap contract long and a floor contract short, both with the
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same contract specifications, we are able to replicate a swap contract. This
can be easily justified comparing the payoff of such a portfolio given for a
yield Y (7,+1), which is then

(Y (XTa7Ta7Ta+1) - K)+ - (K -Y (XTa7TaaTEL+1))+

(3.19)
=Y (XTaaTL‘HTa-‘rl) - K7

and the corresponding swap payment. Taking the discounted expectation of
the sum of terms in equation (3.19) for all periods, we have the equivalent

swap contract.

A more challenging contract in calculating model prices is a coupon-bond
option. This option is only exercised if the coupon-bond price at maturity
exceeds the strike K. Hence, we have to apply the maximum operator to the
discounted sum of all outstanding coupon payments and the strike price. This
is in contrast to the other option contracts mentioned above, where we applied

the maximum operator to each term of the sum separately.

Definition 3.3.3 (Coupon-Bond Option). A coupon-bond call (put) op-
tion is defined as the right but not the obligation to buy (sell) a coupon bond
CB(xr,c,t, T) with payment dates T, € T, withT, >T fora=1,..., A and

strike price K. The price of a coupon-bond call option is given by

Q —fr(xs)ds +
CBC (x4,¢, K,t,T,T) =E"* |e (CB (x7,¢,T,T) — K)
f e B N (3.20)
=EQ|e * (ZP(XT7T,TQ)CQ—K> ,
a=1
and the corresponding coupon-bond put option is given by
T
Q — [r(xs)ds +
CBP (x¢,¢, K, t,T,T)=E" |e (K — CB(xr,c,T,T))
(3.21)

a=1

Fried A i
—EQ|e ¢ (K—ZP(XT,T,TQ)CQ>

Since the maximum operator is not distributive with respect to sums, the

term inside the maximum operator in equation (3.20) and (3.21) cannot be
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decomposed easily without making further assumptions. Another popular op-
tion we want to discuss is an option on a swap contract or as shorthand often
referred to as a swaption. With a swaption one can choose at the maturity
of the option if it is advantageous to enter the underlying swap contract or

otherwise leave the option unexercised.

Definition 3.3.4 (Swaption). We define a forward-starting swaption as a
contract conferring the right, but not the obligation to enter a forward starting
recetver swap at maturity T. The particular underlying receiver swap contract
is defined according to definition 3.2.4, with Ty > T. Formally, the yield-based
forward-starting receiver swaption for an underlying swap with A—1 payment
periods is given as

SW Py (x¢, K, Nom,t,T,T)

T

— [r(xs)ds
e | (SW Ay (xr, K, Nom, T, T))"*
,fr(x ) ds = (3:22)
—EQle ¢ <K <Z P(xp,T, Ta+1)fa+1>
a=1

+
+ P(xp,T,T4) — P(xp,T, T1)> Nom.

Typically, the swaption maturity coincides with the first reset date of the
underlying swap contract. Thus, a yield-based receiver swaption with 77 =T,

can be equivalently represented as a coupon-bond call option

SWPy (x¢, K, Nom,t, Ty, T*) = CBC (x¢,cswp,1,t,T1,T*),  (3.23)

with
K7y
K7
cswp = . x Nom,
14+ K7a
and new time dates
T
T3

T =

Ta
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Subsequently, we reduce the valuation problem of a swaption to the calculation
of an equivalent coupon-bond option with strike one, a coupon vector cgw p

and a vector with payment dates T*.

According to the unconditional contract defined in equation (3.11), we are
also able to price an average-rate option contract. The definition of the model

price of an average-rate option is given below.

Definition 3.3.5 (Average-Rate Option). An average-rate cap option
gives its holder the right, but not the obligation to exchange at expiration
a fized strike rate K, over the period T —t, against the continuously measured
average of the short rate r (x¢). Formally, the price of an average-rate cap

option can be obtained as

ARC, (x¢, K, Nom,t,T)

frcoas (17 : (3.24)
=EQ |e * — /r(xs) ds — K Nom.
T
t
Consequently, we have for an average-rate floor the pricing formula
ARF, (x¢, K, Nom,t,T)
T T +
— [ r(xs) ds 1 (3.25)
=E® |e ! K- - /r(xs) ds Nom.
T

t

Asian options show the advantageous ability to exhibit reduced risk positions
in comparison to ordinary options because of the time-averaging of the under-
lying price process. Moreover, asian option contracts are more robust against
price manipulations since the option payoff includes the sample path over a
finite time period. These options are not standard instruments traded on ex-
changes. However, they are popular over-the-counter contracts used by banks
and corporations to hedge their interest-rate risk over a time period®!.

For all theoretical option prices presented in this section, we give in Section

5.3 the corresponding pricing formulae which have to be used in a numerical

51 See, for example, Ju (1997).
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scheme. Thus, we distinguish between the calculation of a portfolio of options,
e.g. used for the pricing of cap and floor contracts and as a special case for
zero-bond options, respectively, and the computation of options on a portfolio
which is the case for coupon-bond options and swaption contracts. This is
done because only in case of a one-factor interest-rate process semi closed-

form solutions for swaptions and coupon bonds can be calculated.



4

Three Fourier Transform-Based Pricing

Approaches

4.1 Overview

Interest-rate derivatives are widely used instruments to cover possible interest-
rate risk exposures. However, to model the term structure more realistically,
sophisticated models are required. One way to enhance the capability of the
term-structure model is to incorporate more stochastic factors, by, for in-
stance, incorporating a stochastic mean and/or a stochastic volatility, or
modeling the term structure with help of an additive interest-rate process.
Another way, which would especially enrich the model with the ability to
reflect price shocks, lies in implementing jump components in the shape of
different Poisson processes with arbitrary stochastic jump amplitudes. Unfor-
tunately, in most cases the pricing of derivatives securities, while incorporating
for the underlying interest-rate process both features mentioned above, can
only be accomplished with inefficient Monte-Carlo simulations. Hence, more
efficient methods are needed to circumvent these time-consuming calculations.
As shown in the prominent work of Heston (1993), a way out of this dilemma
is achieved by using Fourier Transformation techniques. Doing this, we only
need to solve one standardized inversion integral to evaluate the distribution
function and then compute the desired derivative prices. The astonishing fact
of the approach applied by Heston (1993) is that this Fourier-based valuation
technique is independent of the underlying stochastic dynamics of the short-

rate process and can be applied as long as the particular characteristic function
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exists®?. Bakshi and Madan (2000) generalized this method to interpret the
characteristic function itself as a derivative contract with a trigonometric pay-
off>3. Zhu (2000) derived various pricing formulae for options with underlying
stock prices, where stochastic interest rates, volatilities and jumps were in-
cluded in a modularized manner. There, the stochastic factors are integrated
by parts and the author ends up with a system of ordinary differential equa-
tions, which then has to be solved. In this thesis, we go a step further and,
by using the transform methods of Lewis (2001), are able to generalize the
modular aspect of Fourier-based derivatives pricing into parts of the under-
lying stochastic behavior and the contract type. This enables us to present
valuation techniques, which can be adapted to every desired European-style
contract without greater effort, assuming that the generalized Fourier Trans-

formation of the payoff function exists in closed form.

We consider the general exponential-affine model introduced in Section 2.1
for the short rate r (x;) and derive a flexible valuation procedure according to
the approach given in Lewis (2001). Although we focus in our thesis on the
exponential-affine setup, we are also able to extend the framework to incorpo-
rate non-affine term-structure models®*, such as the Longstaff (1989) model
or the class of quadratic Gaussian models as discussed in Beaglehole and Ten-
ney (1992)5 and Filipovic (2001), respectively. All we need in the underlying
model specification is the exponential separability of the coefficients in the
general characteristic function. However, in applying these non-affine model
specifications, we have to ignore the possibility of jumps for non-affine factors
in order to avoid mixture terms in the fundamental partial differential equa-

tion, which would subsequently render the pricing procedure unattainable®®.

52 Due to our pricing framework we can relax this restriction to the existence of a

system of ordinary differential equations.
5% This methodology is covered in Section 4.2.
54 See Chapter 10.
55 In fact, the model of Longstaff (1989) can be represented as a quadratic Gaussian

model as shown in Beaglehole and Tenney (1992).
56 The same holds for the term-structure model in Cheng and Scaillet (2004) where

the terminology of a linear-quadratic jump-diffusion model is introduced. Despite
the name, jump parts are only valid for linear factors, whereas the quadratic part

is not allowed to bear jump parts. This issue is discussed in Section 9.3.
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The outline of this chapter is as follows. We start with the comparison of
three state of the art Fourier Transformation methodologies used in derivatives
research. The Fourier-transformed Arrow-Debreu securities pricing approach
is based on the work of Heston (1993)°7. Afterwards, we present the transform
methodology as proposed by Carr and Madan (1999) and then discuss the gen-
eralized derivatives pricing setup of Lewis (2001), which display similarities in
the derivation of the model price of a contingent claim. Both approaches focus
on the Fourier Transformation of the payoff function, whereas Carr and Madan
(1999) apply the transform for the strike value, Lewis (2001) does a Fourier
Transformation with respect to the state variable. Nevertheless, we provide
an extension of the work in Lewis (2001), since we consider a multi-factor
environment. One important difference between the pricing approach utiliz-
ing Fourier-transformed Arrow-Debreu securities, according to Heston (1993),
the Carr and Madan (1999) methodology, and the method of Lewis (2001) is
that the latter two approaches do not need to invoke Fourier Transformations
for every single term in the pricing formula. Therefore, the transformation is
applied on the entire contingent claim, which in a numerical sense is more ef-
ficient. Additionally, the these two approaches provide a more stable solution
due to the freedom of choosing a contour path for the integration parallel to

the real axis in the inversion formulae®®.

Generally, the derivatives we want to price are written on some functional
of the underlying stochastic vector process x¢, say ¢g(x;). Contingent claims on
the short rate and on the yield are European-style derivatives and therefore
pay only at maturity T a payoff G (xr). The solution of the pricing problems

we seek then takes the following form.

Definition 4.1.1 (General Valuation Problem for European-Style
Derivatives). We define the general valuation problem of a contract V (x¢,t,T)
as the time T expectation of some (discounted) payoff function G (xr) under

the risk-neutral probability measure Q, formally defined as

57 Recent work with further development and unification was made in Duffie, Pan
and Singleton (2000), Bakshi and Madan (2000) and especially on the field of

interest-rate derivatives in Chacko and Das (2002).
%8 See Carr and Madan (1999) and Lewis (2001).



48 4 Three Fourier Transform-Based Pricing Approaches

T
— [r(xs)ds
V(x,t,T) =E? |e { G (x1)

(4.1)
= G(XT)p(XtaXTawo,W,t,T)dXT.
M

R

The contract can only be exercised at maturity T.

Apart from the underlying stochastic dynamics, the solution to equation
(4.1) depends on how x7 is incorporated within the payoff function G (xr).
Thus, we follow Chacko and Das (2002) and distinguish for didactical purposes
between payoff functions which can be either linear, exponential-linear or
integro-linear in x;. These idealized payoff types are illustrated in Table 4.1

below®?.

Table 4.1. Idealized call option payoff functions

Payoff type ‘ G (xr) ‘
Linear G (x7) = (9 (x7) — K)*
+
Exponential-linear G (xr) = (eg(xT) — K)
. T +
Integro-linear G (xr) = (ft g (xs) ds — K)

In contrast to option-pricing models written on equities, where constant in-
terest rates are often assumed, in calculating equation (4.1), we are confronted
with a more difficult situation. Since both the discount factor and the payoff
function G (x7) depend on the same stochastic process, we are not able to eval-
uate these expectations separately and multiply them afterwards®®. We have

59 In case of unconditional payoff functions, we use the same classification.
60 This is a direct consequence of the choice of numeraire made in Section 2.3.
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to consider that both expressions are obviously not independent and there-
fore have to derive the solution of equation (4.1) under their joint stochastic
dynamics. However, thanks to the fact that the discount factor itself has an
exponential-affine representation®!, we are still able to use the general charac-
teristic function v (x¢, z, wo, W, go, &, 7) in derivatives pricing. Consequently,
equation (4.1) is the starting point for all of the following derivatives pricing

approaches.

4.2 Heston Approach

Pricing derivatives, using Fourier-transformed Arrow-Debreu securities and
state prices, respectively, was introduced in Heston (1993). Since then, several
articles utilizing Fourier Transformations in derivatives pricing have been pub-
lished. Among others we want to mention, because of their relevance, Duffie,
Pan and Singleton (2000) and Bakshi and Madan (2000). In the article of
Duffie, Pan and Singleton (2000), a comprehensive survey is provided as to
how this Fourier inversion methodology can be used to solve derivative prices
for general stochastic dynamics. On the other hand, Bakshi and Madan (2000)
offer a rigorous survey, of how Fourier-transformed Arrow-Debreu securities
can be used to span the underlying market and to price derivative prices. In

principle, both articles use the same pricing mechanism, shown below%2.

The basic principle behind the pricing approach with transformed Arrow-
Debreu securities is that all derivatives based on the interest rate r(x;) de-
scribed by equation (4.1) have to solve the same partial differential equations
(2.31) and (2.33) for futures-style contracts, respectively. The only difference
between them is that they need to satisfy different terminal conditions. This
statement holds also for the discounted probability density and the character-
istic function of the interest-rate process. Therefore, they can be interpreted
as hypothetical contingent claims solving the above-mentioned partial differ-

ential equations. Whereas derivative prices and probability densities are often

61 One can easily validate this statement by solving equation (2.30) and (2.34) and

setting z equal to zero.
2 In the context of interest-rate derivatives, Chacko and Das (2002) used this

methodology to price the different payoff structures as given in Table 4.1.
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hard to obtain, due to their discontinuous terminal conditions%?, the solu-
tion for the particular general characteristic function can be recovered, even if
jump components are encountered in the stochastic vector process x;. This is
due to a special ability of characteristic functions; their terminal condition is
infinitely differentiable and smooth, which make them, from a mathematical

point of view, more tractable.

Definition 4.2.1 (Arrow-Debreu Security). We define an Arrow-Debreu
security as a contingent claim paying one unit of money at maturity T if and
only if a specified state A occurs. The value AD(x¢,t,T) of an Arrow-Debreu

security under probability measure Q. at time t is then given by
AD(x4,t,T) = E® [14]. (4.2)

The expression 1 4 denotes the indicator function for the event A in time T,

which is unity if the state A occurs and zero otherwise.

To demonstrate the pricing methodology, we consider the following ex-
ample of a European call option with a linear payoff function G (xr) =
(9 (xr) — K)* and g (xr) is given in equation (2.28)%%. The solution for this
option can then be represented as

T
— [r(xs)ds
e t

V(xt,t,T) = E? (9 (xr) — K)*

T
— [r(xs)ds
e t

= EQ g (XT) ]lg(xT)ZK (43)

T
— [r(xs)ds
—KEQ e t ]lg(XT)ZK s

53 For many underlying stochastic dynamics, the solutions cannot be calculated in

closed form.
54 The derivation of option-pricing formulae for exponential-linear and integro-linear

payoff structures differs slightly from the derivation of the theoretical option price
formula of a linear payoff function as given in this section. The derivation of the
particular solutions for these payoff functions can be looked up in Chacko and
Das (2002), Sections 2 and 3.
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where the expectation is separated into parts. However, the expectations in
equation (4.3) are not yet Arrow-Debreu securities in the sense of definition
4.2.1. These expressions still lack some sort of standardization to guarantee
the outcome of one monetary unit. Thus, we need to apply the unconditional
expectations®®
T

— [r(xs)ds —
E® |e ¢ g (x7) and E® |e

Sy

r(xs)ds
= P(Xt, t, T)

Expanding the terms in equation (4.3) with their particular unconditional

counterparts, we get

B T
— [r(xs)ds
V(xs,t,T) =E® |e { g (xp)| %
Jrxad
ge | ¢ g (x0) L)z
T
— [r(xs)ds
EQ |e { g (x7) (4.4)

T
— {'r(xs) ds

e Lyxr)>K

— KP(x4,t, T)E®
(Xt7 ’ ) P(Xtat7T)

= H()(XhtaT)Hl(XhtaT) - KP(Xtat7T)H2(Xt7taT)'

Obviously, the normalized functions II; (x¢, ¢, T) and I (x¢,t,T") are two con-
tingent claims and can be interpreted as Arrow-Debreu securities®. On the
other hand, Iy (x¢,¢,T) can be interpreted as the discounted forward price of
the underlying contract. Introducing two artificial changes of measure defined
through the Radon-Nikodym derivatives, we get

*}T(xs)ds 7}T(xs)ds
Qe ) A e
dQ HO(XtvtﬂT) dQ P(XtvtaT) .

Consequently, we express the above call option price in terms of the particular
Arrow-Debreu prices, which is

55 See Chacko and Das (2002), p. 205.
66 In the last equation of (4.4), we adopted the notation given in Chacko and Das

(2002).
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V(Xta tv T) :HO (Xt7 ta T)]EQl I:]lg(xT)ZK:I

(4.5)
— KP(x4,t, T)E®* [Ly(x)> k] -

Obviously, in calculating the option price in equation (4.5), we need only
the general characteristic function with terminal condition e**9*7) and its
derivative with respect to z, respectively. However, calculations within this
pricing framework for the particular functions II;(x¢, ¢, T') are quite different
for linear, exponential-linear and integro-linear payoff versions of G (x1)%".
Thus, only P(xq,t,T) remains unchanged, since this quantity is completely

independent of the characteristic payoff part g (x7).

Recalling the formal structure of the general characteristic function in
(2.30) and the connection between the moment-generating and characteristic
function®®, we are able to express ITo(xy,t,T) with the help of the derivative
of the general characteristic function with respect to the frequency parameter

z, evaluated at z = 0, which is given by®%’

T
— [r(xs)ds
Ho(xt,t,T):EQ e tf g (x7)
T
LA |0 g (4.6)
7 dz

2=0

¢Z(Xt7 07 Wo, W, 9o, 8, T)
1

Here, the subscript denotes partial differentiation with respect to 270, Tak-
ing into account the exponential-affine structure of the general characteristic

function in (2.34), we are able to write equation (4.6) alternatively as

57 See Chacko and Das (2002).

68 See Proposition 2.4.3.

9 Compare with Theorem 1 (c) in Bakshi and Madan (2000).

7 The result in equation (4.6) is always real, see e.g. Bakshi and Madan (2000).

Therefore, the operator Re[...] in this calculation is not necessary at all, which
can be justified by checking that all imaginary parts in this equation cancel out

except in the term g (x7).
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/wz(xtaovw()uwngvgvT) 'l/J(Xt,07’(U0,W7g()7g7T) %

2 ?
d
(5 In [¢(Xt727w07wvg()7g77—)]>

¢(Xt, 07w0;w7907g77—) ¢z(

z=0

Xt705 Wo, W, 4o, 8, T)'

In the last equation, we used the function ¢(x¢,z,wo, W, go, 8, 7), which is
just the natural logarithm of 9 (x¢, z, wo, W, go, g, 7) in our exponential-affine
model setup. Thus, the derivative with respect to z of the exponent of the
characteristic function is then

¢Z(Xt7 Z,Wo, W, Jdo, 8, T) = (J,Z(Zﬂ') + bZ(ZvT)/Xt +g (Xt) .

Using the same technique as before, we obtain the value of an ordinary zero
bond as
T T
P (x4, t,T) =E T R I B ey
(4.7)

z=0

:¢(Xt70’ Wo, W, 4o, 8, T)'

Finally, we are left with the calculation of the Arrow-Debreu prices. As men-
tioned before, these functions Il; (x¢,t,T') and Ils(x¢,t,T) can also be inter-
preted as probabilities. Hence, we apply a tool to determine probabilities from
characteristic functions. This can be done with a Fourier inverse transform as
proposed in Gil-Pelaez (1951).

Theorem 4.2.2 (Inversion Theorem of Gil-Pelaez). If ¢ (x4, 2,t,T)
is the characteristic function of a one-dimensional stochastic variable x; then
the probability Pr(xr > K), given some state xy and some constant K, can

be calculated as

/me (‘rta 2 tv T)eizZK
(74

Pr(zr > K) = % + = /Re [ dz, (4.8)
71'
ot

with z € R.

The expression 0% in equation (4.8) denotes the right-sided limit to the
origin. Obviously, the integrand is not defined for a zero-valued transformation
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variable z7!. Note that the inversion theorem in 4.2.2 is not limited to recover
only probabilities for the case of symmetric probability density functions,
which might be implicated due to the term % Equation (4.9) holds for general
probability distributions. The only condition to be satisfied is the existence of
the characteristic function or its system of ODEs. Moreover, we are also able
to use Theorem 4.2.2 for the linear combination g(x;), as long as the outcome

is a scalar random variable.

As long as we are able to obtain the general characteristic functions
Y1(Xy, 2, wo, W, go, 8, 7) and Vo (xy, 2, wo, W, go, &, T) corresponding to the par-
ticular measures Q; and Q2, we are able to compute the values of Iy (x¢,¢,T")
and Ia(x¢,t,T). In analogy to equations (4.6) and (4.7), and keeping the
normalization made in (4.4) in mind, we therefore have

_ L/)Z(Xta Z,Wo, W, 4Jo, 8, T)
L/)l(xtvsz()aw7907g77—) - ZHQ(Xt,t,T) ’

and
w(xh Z,Wo, W, go, 8, T)
p (Xtvta T)

Subsequently, the values of the required Arrow-Debreu securities can be cal-

¢2(Xt7 Z,Wo, W, go, 8, T) =

culated as™

1 1 o] —1zK
/Re |:1/)1,2(Xt,zaw07wag()7ga7-)e dz. (49)

M2, 8, T) = 2 + T 12
0+

Although the derivation of option prices within this methodology is compre-
hensible, this technique does entail some drawbacks. Firstly, a general advan-
tage which holds for all pricing methodologies based on Fourier Transforma-
tion techniques is that we are not restricted to simple stochastic dynamics
of the underlying short-rate process, where the probability density function
p(X¢, X7, wo, W, t,T) is explicitly known in closed form™. With the continuum
of characteristic functions at hand, we are able to calculate option prices for
a much broader class of stochastic dynamics. Despite the apparent elegance
of this approach, there are also some issues to discuss. Since we expressed the
mhis topic and residue calculus is discussed in Section 4.3.

™ Compare with the general result in Bakshi and Madan (2000), Theorem 1.
™ However, there exist density functions for which no characteristic function exists,

e.g. a log-normal distributed random variable.



4.3 Carr-Madan Approach 55

option price as a decomposition of probabilities multiplied with their normal-
ization factors, we have to calculate for a sum of N terms in G (xr) the same
number of separate Fourier inversions and therefore to perform N numeri-
cal integrations. Especially in one-factor interest-rate models, this fact can be
avoided using a Fourier transform with respect to r77*. From a computational
point of view, this can be very time consuming and therefore inefficient com-
pared to the pricing approaches of Carr and Madan (1999) and Lewis (2001).
Additionally, the denominator in the integrand of equation (4.9) decays only
linearly for the idealized payoff functions, compared to the payoff-transform
approaches discussed in the subsequent sections’®. Another matter we want
to address is the integration procedure itself. In equation (4.8), we need to
consider carefully the pole at the origin. Sometimes, this can lead to rather
unstable results. Another point to mention is that the structure of the op-
tion contract dictates the calculation procedure of the particular function
IT;(x¢,t,T). Hence, it first has to be determined whether the payoff function
G(x7) exhibits linear, exponential-linear or integro-linear terms of g (x7)7,
which result in different valuation formulae for the option price. This can
complicate unnecessarily the computation of option prices in contrast to the
approaches discussed in the following sections, where Fourier Transformations

of the payoff function are used.””.

4.3 Carr-Madan Approach

Carr and Madan (1999) develop a different method for retrieving option prices
using characteristic functions. Instead of applying general characteristic func-
tions to obtain the exercise probabilities and the Arrow-Debreu security prices

™ See, for example, the pricing of coupon bonds in Section 5.3.3.
7 The denominator in the payoff transforms of the interest-rate option contracts in

table 4.1 are quadratic and therefore have a higher rate of convergence. Compare

with the particular transformations given in Section 5.3.
76 See Chacko and Das (2002) for a comprehensive discussion and classification of

payoff functions and derivation of the particular option prices in this transformed

Arrow-Debreu security framework.
" See Bakshi and Madan (2000), pp. 218-220, cases 1-3, on how to derive the par-

ticular ¥;(x¢, z, wo, W, go, g, 7) for general payment structures. Chacko and Das

(2002) also derive the respective valuation algorithms for these payoff structures.
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under the particular probability measures Q1 2 as done in the last section, they
propose an alternative approach. The intention behind this framework is to
formulate a valuation procedure, that can incorporate the FFT, a very efficient
tool in deriving Fourier Transformations for different values of the underly-
ing random variable. However, they first perform a Fourier Transformation
on the payoff function with respect to the strike variable K. Afterwards, in-
terchanging the order of integration, they are able to compute the desired
fair price of the option as an inverse Fourier Transformation, thus applying
the relevant characteristic function, an example is given below. Obviously, a
first advantage of this strategy is that, since we deal with only one trans-
form operation on the option price, in order to compute model price we need
only one inverse transformation. As the authors mention, a closed-form solu-
tion of the option price in Fourier space is presupposed’®. Since option prices
commonly have at least two terms in the payoff function G (x7), numerical
calculations with this method are approximately twice as fast. A problem in
this approach mostly arises if a Fourier transform on the payoff function with
a real-valued frequency variable z € R is applied. As mentioned in Bakshi and
Madan (2000), the transformed payoff function would not exist at all, due to
the unbounded option payoff functions™. To circumvent this issue, Carr and
Madan (1999) introduce an artificial dampening parameter o and derive a
modified transformed option price, upon which they apply the inverse trans-
formation procedure. In the following presentation of this methodology we do
not refer to an artificial dampening parameter a; rather we want to introduce
a general Fourier Transformation as defined in definition 2.4.1 with z € C.
Moreover, we show that the dampening parameter coincides with the negative
fixed imaginary part z; of the frequency variable z = z, + 12;. Following this
trail, we get a more intuitive concept of the nature of the dampening factor o
used by Carr and Madan (1999).

Demonstrating the pricing technique, we rely on the same contract type

as in (4.3) with G (x7) = (¢ (xr) — K)¥ to maintain the comparability to

8 See Carr and Madan (1999), p. 61. We extend this methodology to allow for char-
acteristic functions with no closed-form representations. This topic is discussed

in Chapter 6.
™ See Bakshi and Madan (2000), p. 215. An exception would be a contract which

is bounded on two sides, e.g. a butterfly contract.
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previously obtained solutions of our example in equation (4.5). Starting with

a Fourier Transformation on the payoff function with respect to K, we have

FEIG (x7)] = / K@ (xr) dK = / K (g (xr) — K)" dK
g(xT)
— 1z K - K dK
] € (9 (xr) ) (4.10)
e L (g Ger) = Kaz] 707
pr79(xr)

The restriction in equation (4.10) upon the imaginary part of z guarantees
the finiteness of the transformed payoff function. Thus, we are able to in-
terpret (4.10) as a line integral, which is evaluated parallel to the real axis
going through 2z;. Apart from considerations about the regularity of the pay-
off transform, the value of z; can also be used to optimize numerical accuracy
of the valuation algorithm®’. Exploiting the symmetry of real-valued Fourier
transforms, the payoff function G (x7) for our specific example, can be ex-
pressed by the following inverse transformation problem

oo

129(xr)
/e L P (4.11)

0

e

Carrying out this inverse operation, we need z; to be fixed on the same strip
used for the transformation. Otherwise, the original function and its image

function in dual space would not correspond to each other®!

The essential part, in expressing the valuation formula as an inverse
Fourier-style problem, is the interchanging of the integration order. Further-

more, we have in equation (4.11) an exponential term for both the underlying

80 See Lee (2004), for a comprehensive analysis of the effect of z; on the accuracy
of the computational result. Note, the derived error bounds in this article are
only valid for one particular strike. These results have to be treated carefully for
algorithms, where option prices for different strike rates, such as ITM, ATM, and

OTM options, are computed simultaneously.
81 This fact is discussed in Section 2.4.
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stochastic variable and the strike rate enabling the application of the char-
acteristic function methodology and afterwards to calculate prices with the
FFT. Denoting our exemplary valuation problem of (4.3) in terms of (4.11),
we get the following integral representation

V(XtataT) = / (g (XT) - K)+p(xt7XT7w07W7taT) dXT

RM
- 4.12
1 Kezzg(xT) ( )
=2 [ [ e ploxr wo w7 dxr
RM 0

Due to Fubini’s theorem, the order of integration can be interchanged®?.
Therefore, we are able to use the alternative representation

1 X —1zK
V(Xt7t7T) = _; / c 2 / elzg(XT)p(XtaxTawOawatJT) dXT dz
0 M

z
R
eqn. (2.30) (4.13)
] oo
_ __/efzsz(XtaZ7w072vv7907g77—) dz.
™ z
0

Eventually, we get the Fourier-style valuation formula for the price at time ¢ of
a European call option, based on the payoff function G (xr) = (9(xr) — K)*.
The relationship between the artificial dampening factor « in Carr and Madan
(1999) and z; becomes apparent if we substitute z = z,.+12z; in equation (4.13),
which gives

o0

V(Xt,t, T) _ _l /e—z(zT+zzi)K ¢(Xta Zr + 124, wOawvgﬂvgvT) dz
T (zp +12;)2

T

0 (4.14)

o0
i K
e efzzTK ¢(Xt7 Zr + 123, W0, W, Go, 8, T) dz
-
T 22+ Nz, — 22
0

Obviously, compared to the corresponding option price formula in Lee (2004),

it can easily be verified that the identity z; = —a holds®3.

82 GSince all parts of the integral are real-valued, we are able to change the order of

integration without any problems.
8% The modified transformed option price for our example is also given in Lee (2004)

Theorem 4.2 as éa,q, (u), where u matches z,. Also compare this result with the

general Fourier-style valuation formula in Carr and Wu (2004), p. 136.
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In contrast to the Heston pricing approach, the Carr-Madan methodology
provides an additional degree of freedom, since we are no longer limited to the
case of a real-valued transformation variable z. This is of major importance
in a numerical scheme for computing derivative prices®*. Furthermore, we are
able to shift the integration contour around any existing pole. However, in
these cases the residue of the particular pole must be taken into account®.
Proceeding like this, the accuracy of the valuation algorithm can be drastically
increased®. Nevertheless, we are also free to choose the imaginary part in
(4.14), such that the contour integrals have to be performed right through a
pole. Doing this we first consider the residuals of the poles and then evaluate
the integral due to Cauchy’s theorem®”.

Generally, the advantage in this approach lies in the availability of a fast
numerical integration routine, the FFT algorithm. A properly set procedure,
based e.g. on our example in (4.14), can calculate a vast number of derivative
prices for alternative strike rates in fractions of a second. On the other hand,
Fourier-style solutions in this framework cannot be properly decomposed into
parts of the general characteristic function and the transformed payoff func-
tion®8. Thus, we needed a specific payoff function in the derivation of the
transformed option price. It would be more convenient and from a numerical
perspective more desirable if the integral in (4.14) could be clearly separated
into a part of the general characteristic function, which depends on the un-
derlying stochastic dynamics, and a part determined by the contract we want
to price. Moreover, there seems to exist a problem for particular models with
specific parameter constellations®®. Finally, we do not prefer this methodol-
ogy in the first place because it cannot be properly applied for coupon-bond
84 The choice of the optimal value of z; is discussed in Section 6.3.3.

85 See Lee (2004) equations (6) and (7).

86 This can be validated by Tables 2 and 3 in Lee (2004). The error bounds presented
there are up to a thousand times lower, if the integrals are evaluated on contours
with no existing poles.

87 In the next section, we derive valuation formulae using different values of z;.

8 For example, the transformed option price in equation (4.13) is
_ bxezwo wg0.8.7)

89 Ttkin (20025) analyzed the FFT method of Carr and Madan (1999) for the case
of an underlying Variance-Gamma process and reports some numerical issues for

different lengths of time to maturity .
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options and swaptions, respectively, with an underlying one-factor interest-
rate process. The reason for this is that we need the exercise boundary to be
explicit in 77 in order to present the valuation formula in terms of the charac-
teristic function. If this is not the case, we lose characteristics of the stochastic
process, which are relevant in the valuation formula and therefore have to be
considered within the integration. For example, in the case of coupon-bond
options, we encounter the problem of determining numerically a critical value
7590 thus making it impossible to compute the particular option prices. These
problems can be circumvented with the approach discussed in the following

section.

4.4 Lewis Approach

Lewis (2001) presented in his work an alternative way to retrieve not only
option prices, but general derivatives prices?'. The approach is similar to the
previously discussed methodology of Carr and Madan (1999), but can be ap-
plied to a wider area of pricing problems. Thus, we are able to calculate all
derivatives prices presented in Chapter 3 with a single general valuation for-
mula. Fortunately, within this framework, it is also possible to use an efficient
numerical tool to compute derivative prices with comparable speed to the
FFT algorithm, namely the IFFT algorithm. In contrast to the approach in
Carr and Madan (1999), Lewis (2001) introduced a derivatives pricing frame-
work starting with a Fourier Transformation of the payoff function, but this
time with respect to the underlying stochastic variable, where the frequency
parameter z € C is also supposed to be complex-valued. Thus, the advantages
discussed in the last section still hold.

As before, our starting point is the payoff function G (xr) of a derivatives
contract. As in the previous section, the Fourier Transformation is performed
on the payoff function, in this case with respect to the scalar g (x7). Accord-
ingly, the transformed payoff function is

9 See Jamshidian (1989).
91 As mentioned before, the methodology was firstly used in Lewis (2000). However,

we refer to Lewis (2001) because of the more detailed derivation and comprehen-

sive discussion of this pricing framework.
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FI&T) [G(xrp)] = / eI Q(xr) dg (x7) - (4.15)

— 00

To guarantee the finiteness of the integral in equation (4.15) and the existence
of F9&1) [G (x7)], respectively, the imaginary part of z has to be restricted,

where its domain depends on the specific contract.

Continuing with our example in pricing an interest-rate cap of the form
G (x1) = (9 (x7) — K)T, we first calculate the transformed payoff function

with respect to g (xr) as

(oo}

Fo(xr) (G(xr)] = / ezzg(xr)(g (x7) — K)+ dg (x1)
. (4.16)

with
Im(z) > 0.

Although this formula bears a strong resemblance to equation (4.10), one
remarkable difference between them is the interval of z;, for which the Fourier
transform of the particular payoff function exists®?. Another point we would
like to mention is that the transformed payoff function displays the strike rate
K in the exponential function instead of g (x1), according to the methodology
of Carr and Madan (1999).

Representing the time t option price with the help of the transformed

payoff function, we have at the general valuation formula®

Vi(x¢,t,T) Z% / /eﬂzg(xT)}'g(xT) [G (x7)] dz | x
2\ (4.17)

p(xt7XT7w0aw7taT) dXTa

which is for our specific example of an interest-rate cap

92 Tn comparison to equation (4.10), z; has to be negative.
93 Again, we take advantage of the symmetry of Fourier Transformations for real-

valued functions.
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1 i 1z K
:——/ /e’”g(xﬂe 5 dz | p(x¢t, X7, wo, w,t,T) dxr. (4.18)
z

™
RM 0

Again, we apply Fubini’s theorem, implicating the possibility of interchanging
the order of integration in (4.17). Thus, for general payoff functions we obtain

1 o0
Vixi 1) = = / FI&) (G ()]
0 (4.19)
/e*lzg(xT)p(Xt,XT,woawath)dXT dz.
RM

Firstly, we focus on the inner integral. In line with the formal definition of the
characteristic function, according to equation (2.27), we are able to establish

the relation

/ el(_z)g(xT)p(Xt, XT,Wo,W, tv T) dXT
A (4.20)

:w(xh —Z,Wo, W, Jo, 8, T)'

Inserting this result into equation (4.19), we eventually get the general version

of the Fourier-style valuation formula
1 o0
V(Xt7 ta T) = ; /Fg(XT) [G (XT)] ¢(Xt7 —Zz,Wo, W, Jo, 8, T) dZ, (421)
0

which is for our example of a call contract with underlying variable g (x7),

1 ezzK
__/ 2'2 ¢(Xt7_27w07w7907g77_)d2

with
Im(z) > 0.

In contrast to the pricing procedure introduced by Carr and Madan (1999),
we have a strict separation of functionals, which depend either on the contract
type or on the underlying stochastic dynamics. The respective part for the con-
tract type is therefore represented by the transformed payoff function, whereas
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the stochastic dynamics of the underlying process is implemented in terms of
the characteristic function. Hence, we have a real modular pricing framework,
in which each part in (4.21) can be exchanged without greater effort. More-
over, we can apply this methodology consistently to contracts, whether they
are unconditionally exercised or bear an optional exercise right®*. In particu-
lar, for one-factor models with multiple jump components, we are able to take
advantage of the fact that for most contracts the domains of z; are overlapping.
This means that z; can be chosen arbitrarily, subject to compliance with nu-
merical accuracy”®. Thus, we usually have to evaluate v (x;, —z, wo, W, go, &, T)
only once for different values of z,.. Afterwards, these precomputed values can
be used for all relevant contract types needed. This drastically improves the

efficiency of the numerical valuation scheme.

The payoff-transform approach according to Lewis (2001) is extremely
versatile. For example, with this pricing technique, we can also derive the
quantities Iy (x¢,¢,T) and Ia(x¢,t,T'), without need of any derivative func-
tion ¥, (X, 2, wo, W, go, 8, 7), as done in formula (4.9). Although the numerical
integration on a line integral (partly) including a pole exhibits the undesirable
numerical properties discussed earlier, we want to show the derivation of the
Gil-Pelaez style valuation formulae for IIs(xy,t,T), as given in Theorem 4.2.2
within the Lewis methodology”®, for demonstration purposes. Recalling that
the payoff of an Arrow-Debreu security can be formally represented by the
indicator function, we apply a Fourier Transformation on this special func-
tion in order to calculate Iy (x¢,¢,T). Under the probability measure Qg, the
simple payoff representation is then given by the incomplete Fourier Trans-
94 This is demonstrated in the next chapter.

95 In addition to the restrictions for z;, due to the validity for the transformed payoff
function, in some cases we need to restrict the domain for the imaginary part of
the transformation variable further to ensure the regularity of the characteristic
function. One example, where z; has an additional constraint due to this issue is
the characteristic function for the variance gamma process which is discussed in
Itkin (2005).

% In contrast to equation (4.9), we would get an alternative representation
for T4 (x¢,t,T), without needing any derivative of (x¢, z,wo, W, go, g, 7) and

o(x¢, z, w0, W, go, &, T), respectively.
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formation®”

ezzK

F9(xr) []lg(xT)>K} = _ (4.22)

1z
with
Im(z) > 0.

Using this formula, together with z; in the appropriate domain, we are almost
ready to calculate Ila(xy, ¢, T). In fact, we consider the residue theorem and
apply a suitable closed-contour integral to recover the exact formula according
to equation (4.9). Hence, evaluating the integral including the pole at z; = 0

gives the desired result, which is demonstrated below.

We start with a slightly modified function IIy(¢,T) to compensate for the
influence of the probability law Q2°®, which is defined as

o (x4, 8, T) = (x4, t, T)P (x4, £, T). (4.23)

Inserting the transformed payoff function (4.22) into our general valuation
formula (4.21) gives

B 1 1zK
Hg(Xt,t,T) = —;/ ezz ¢(Xt;_27w07wa90ag77_) dZv (424)
0

with
Im(z) > 0.

Equation (4.24) can already be used for valuation purposes. Since we want to
show the similarity of this formula to the transformed Arrow-Debreu security
pricing approach, we encounter the problem of integrating through a pole,

and therefore must apply Cauchy’s residue theorem for analytic functions®.

Theorem 4.4.1 (Cauchy’s Residue Theorem). Assume the function f(z)

is analytic within a closed, counter-clockwise performed integration contour C,

97 One-sided Fourier Transformations are commonly referred to as incomplete
Fourier Transformations.

9 This has to be done, since we use the general characteristic function
(Xt 2, W0, W, g0, 8, T)-

99 This means, the function has to satisfy the Cauchy-Riemann equations. See Duffy
(2004), p. 16.
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except at points zq € C, where f(z4) encounters singularities. Then the value

of the closed contour integral for this function can be calculated as

%f(z) dz = QZﬂ'ZReS [f(2)]|z = z4] - (4.25)
& d

The residues at the singularities corresponding to points zq can be derived as

Res [£(2)]2 = 2] = lim ——— 4"
e = 2 = (n—1)! den—t

[(z = za)" f(2)] - (4.26)

The parameter n represents the order of the pole.

Hence, if we want to evaluate the integral in (4.24) for Im(z2) = 0, we have
to deal with a simple pole of order n = 1. To facilitate the calculations, we
first introduce the original, two-sided integral representation for ﬂQ(Xt7 t,T)
in the manner of equation (2.25), which is simply

9]
~ 1 ezzK

HQ(Xt7 tv T) =

- — dz. 4.27
o 1z 7/’(Xta va()vwngag?T) Z ( )

— 00

Proceeding like this, we add to the former line integral, which has to be eval-
uated parallel to the real axis with distance Im(z), several additional integral
paths to build a rectangular shape on the upper imaginary half-plane'®®. This
gives us a contour C, which is performed, as illustrated in Figure 4.1.

Setting

o (x¢,t,T) = / f(2)dz, (4.28)

with K
e w(xtu —Z,Wo, W, Jo, 8, T)

f(z)=— 7

2mz

we are able to express the contour integral as

[EOLES
C

100 In manipulating equation (4.27), we could also have chosen the lower half-plane.

6

6
> /f(z) dz=> I (4.29)
j=1

Jj=1 C;

Subsequently, we would then have to be careful about the direction, how the
pole is encircled, making its contribution to the integration either in a positive

or negative sense.
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Im
oA
(Rz) (Rz)
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Fig. 4.1. Clockwise performed integral path for the derivation of Il (x¢,t,T) in

equation (4.27) on the real line. The cross represents the pole.

Referring to Figure 4.1, the integral part Iy forms a half arc around the pole
of the meromorphic function'®! with radius e. Thus, excluding the pole, we
can state, due to Cauchy’s integral theorem,

ff@yuzo. (4.30)
C

In the next step, we need to determine the values of the specific integrals
I;. Starting with I, we have just the value of Ia(x,t,T) given in equation
(4.27). Recognizing that for 0 < Im(z) < oo, we have REI:EOO F(R+12;) =0,
we immediately obtain

I + 1 = 0. (4.31)

Subsequently, we are left with the computation of the remaining integral parts
I3, I, and I5. According to Theorem 4.4.1, if we consider an arc performed in a
counter-clockwise fashion around a pole, we would have to take into account
the entire contribution of the pole. Therefore, by assuming the radius e of
the half arc I, to be infinitesimally small, we eventually obtain half of the
particular contribution. Thus, we have to consider the residue

101 A function f(z) is said to be meromorphic, if it only has some isolated singu-

larities. This means that such a function is analytic everywhere, except at these
poles. See Duffy (2004), p. 16.
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I, = wRes[f(2)]z=0] = lin%) z2f(z)
_7/1(Xt7 07 Wo, W, 40, 8, T) _ P(Xtv t? T)

2 2

(4.32)

Likewise, assuming the distance to the origin for integrals I3 and I5 to be

infinitesimally small, we are able to represent them in the limit as'%?

0" —0o0
Ig+I5:/f(z) dz + / f(z)d=. (4.33)
o] 0—

Having derived the required expressions for all integral parts I; in equations
(4.31), (4.32) and (4.33), additionally using equation (4.30), we eventually end

up with an alternative representation for I, (x¢,t,T), which is given by

Mo (x¢,t,T) = — (I + Iy + I5)

:p&JT /f m+/f (4.34)

:P&JT /f

In equation (4.34), the symmetry of characteristic functions for real-valued
functions is exploited, due to Proposition 2.4.3. Therefore, the two integrals

in the above equation can be aggregated. In a last step, we reinsert the detailed

expression of f(z) and substitute z* = —z. This results in the relation
~ P t, T
HZ(Xt7 ta T) :%
1 < —1z"K * (435)
—/Re |:6 1/1(Xtaz 7;wovwagoug77-) dZ*,
™ 12
0+
with
Im(2*) = 0.

Dividing equation (4.35) by P(x¢,t,T) and considering only the relevant real

part of the solution, we obtain the Heston-style solution of equation (4.9),

102 Here, we use again the convention 0% denoting the right- and left-hand sided limit

towards zero.
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which we intentionally wanted to reproduce with the payoff-transformation

approach of Lewis (2001).

In contrast to the Fourier-transform approach introduced in Carr and
Madan (1999), the methodology discussed above is not that popular. One
reason might be that the FFT algorithm cannot be applied to the valuation
formula. Albeit, simply using an IFFT algorithm provides equivalent func-
tionality and efficiency in solving derivatives prices. On the other hand, we
prefer the method of Lewis (2001) because of the clear separation of different
valuation components in the pricing formula. Additionally, this framework
enables us to consistently use the valuation formula presented in equation
(4.21) for both unconditional and conditional derivatives contracts by using
residue calculus. Moreover, with this methodology even swaptions and options

on coupon bonds can be priced in case of one-factor interest-rate models.



5

Payoff Transformations and the Pricing of

European Interest-Rate Derivatives

5.1 Overview

In this chapter we derive semi closed-form solutions of European interest-rate
derivatives in terms of their transformed payoff functions, for all contracts
given in Chapter 3. Equipped with this frequency representation of the pay-
off function, the contract can be priced with the general valuation formula
according to equation (4.21). This procedure, combined with a standardized
numerical integration routine, can then be used to compute the desired quan-
tities. Apart from the generality of this method, we observe that all call and
put option contracts exhibit identical payoff representations in Fourier space.
The difference between them are the different strips in the imaginary plane,
parallel to the real axis, on which the transform operation is valid for the

particular contract.

As before, we distinguish between contracts with unconditional and condi-
tional exercise rights. The reason for this separation of the payoff-transformed
formulae is that contracts with unconditional exercise rights can be calculated
as simple unconditional expectations. Using the residue theorem, solutions for
the underlying contracts can be computed in terms of the general character-
istic function, without evaluating numerically any integral at all. However, if
the characteristic function is not known in closed form but can be represented
as a system of ODEs, theoretical prices have to be numerically obtained via a
Runge-Kutta algorithm. On the other hand, contracts with optional exercise

rights are computed by numerical integration in every case.
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5.2 Unconditional Payoff Functions

This section is organized as follows. First we compute some fundamental
Fourier Transformations for functionals containing g (x7)!%3, henceforth re-
ferred to as building blocks. These blocks, combined with the particular char-
acteristic function, can then be used to compute the contract prices of Section
3.2 in the form of Fourier-style valuation formulae via equation (4.21). In cal-
culating the payoff transform, we do not have to pay attention to the question
of whether the derivative to be priced is a normal or futures-style contract.
This is captured by the choice of the relevant characteristic function, which

can be either ¢(Xt,z,w0,w,go,g,7) or w(xt727070M7g07g77—)'

At first sight, a problem arises in pricing unconditional interest-rate deriva-
tives, due to the unbounded integration range of the expectation. As shown in
the option-pricing example in Sections 4.3 and 4.4, the imaginary part of z can
be used to ensure the existence of the payoff transform by sufficiently damp-
ening the integral on one side, which could be either the upper or lower. Un-
fortunately, the dampening effect cannot be accomplished simultaneously on
both integration boundaries. Thus, we need additional considerations in order
to derive an appropriate representation of the valuation formula in frequency
space. Nevertheless, after some manipulation of the transformed payoff, we

derive in the upcoming section the particular valuation formulae.

5.2.1 General Results

We begin with two basic interest-rate derivatives, the zero-bond contract
as defined in equation (4.7) and the expectation of g(xr) as given by
equation (4.6). According to Section 4.2, the value of a zero bond equals
Y(x¢,0,wo, W, go, 8, 7) whereas the latter quantity can be obtained via the
calculation of its first derivative. These general results hold for arbitrary lin-
ear combinations ¢ (x;). In contrast, the payoff-transformation technique as
presented in Section 4.4 seems at first sight to have difficulties in recover-
ing these particular expectations, due to the unbounded integration domain.
Hence, the first step in this subsection is to prove the former results obtained
103 Although not explicitly displaying the variable ¢ (xr) in the payoff function, we

also interpret in the following the Fourier Transformation of a constant as en-

countered in zero-bond contracts as a building block.



5.2 Unconditional Payoff Functions 71

in equations (4.6) and (4.7) and therefore show that the payoff-transform

methodology can be applied without exceptions.

If we set G(xr) = 1, which represents the riskless return of one unit money
at maturity, it seems at first that the ordinary payoff transform is no longer
finite. Unfortunately, with help of the imaginary part of the transformation
variable z, we are only able to dampen the integrand on one side, which can be
either in the direction of the positive or the negative real half-plane. Thus, we
cannot dampen the underlying payoff function for both sides simultaneously,
and consequently cannot perform the inverse Fourier Transformation on the
same strip in the imaginary plane. However, performing the integration on
different strips in the imaginary plane, we are again able to use the payofi-
transform methodology. Dividing the integration domain (—oo,00) into two
separate subdomains (—oo, ) and (g, 0o) with arbitrary ¢ € R, we end up with
two frequency functions defined on different strips in the imaginary plane. At
first glance, this seems to complicate the situation. In fact, with the help of

Cauchy’s residue theorem, the calculations are rather simplified.

The payoff transform of an ordinary zero bond can be calculated as'4,
£ oo
_ el#e ezEe
FID) [1] = / €901 dg (xr) + / eFI0T) dg (xr) = “— -, (5.1)
12 1Z
— 00 €
with
Im(z) < 0,

and Z representing the complex conjugate of 219, Working with this trans-
formed payoff function, we are already able to recover the zero-bond price due

to the integral representation

1 ooe
Pl t.T) =5 [ S

— 00

1€

w(xtu —Zz,Wo, W, 4go, 8, T) dz
o
1 ez?s

21 1z
— 00

w(xh _27 Wo, W, 9o, 8, T) dz.

104 Obviously, in pricing a zero bond, the choice of g (xr) is irrelevant. In fact, g (xr)

can be set to any value, since the payoff function itself is independent of g (xr).
105 We make this assumption for convenience. Generally, the imaginary part of the

transform variable used in the latter integral can be independently chosen on the

positive half-axis.
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Interchanging the integration boundaries of the latter integral in equation
(5.2) and closing the contour with two additional paths from points (R,z;)
to (R, —uz;) for R — oo, thus forming a closed contour integral with the
resulting four integrals, we are able to use Cauchy’s residue theorem again.
The rectangular contour including the singularity is shown in Figure 5.1.

Due to the direction of the path, we have to consider a counter-clockwise
encircled simple pole at z = 0, which is completely inside the contour. Con-
sequently, the contour integral equals 2miRes [f(z)|z = 0] with

1Z€
(&

/()

= 27T7,Z¢(Xt’ —Z,Wo, W, Jo, 8, T)a

and the value of a zero bond is!%6
o0 — 00

P(xt,t,T):/f(z)dz—i—/f(z)dE:ZMRes[f(zﬂz:O] )

:d](xta 07 wo, W, g0, 8, T)'
Here, the calculations for the residue are analogous to the ones made in equa-

tion (4.32), but this time considering the entire residue.

The same result would have been obtained using the Dirac Delta function

d(2) in the transformed payoff function. It is a well-known result that

oo

FI&r) (1] = / e#90X1) dg (x7) = 2m(2), (5.4)
with
Im(z) = 0.
Hence, the fair value of a zero bond can be alternatively calculated as'%”
1 o0
P(Xta tv T) =5- / 2776(Z)1/)(Xt, —Z,Wo, W, go, 8, T) dz
2 ) (5.5)

:w(xh 07 wo, W, go, 8, 7-)7
106 Starting from here, all zero-valued integrals are ignored.
107 Obviously, for arbitrary real-valued w, the relation J 0(z —w)f(2)dz = f(w)

holds.

—o0
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Im
'\
¢Rz) - B (Rz)
Y A
{:} = Re
y A
(R =) - - R )

Fig. 5.1. Closed contour integral path for the derivation of P(x¢,t,T) in equation

(5.2). The pole is completely encircled in a counter-clockwise manner.

which justifies the above statement.

So far, we have shown the result of one important building block, the model
price of a zero bond, with the help of the payoff-transform methodology. In
order to price interest-rate contracts bearing unconditional exercise rights, we
also need the expected value of the payoff function G (x7) = g (xr) as given
by equation (4.6). In the following, we want to prove this general result within

the payoff-transform methodology.

Starting our calculations, we assume a linear payoff function based on
g (x7) and then apply two incomplete Fourier Transformations, this time with
an artificial integration boundary e for the particular integrals. Hence, the

transformed payoff function of G (xr) = g (xr) can be calculated as
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€

FIxT) [g (x7)] = / eIX1) g (x7) dg (x7)

— 00

o0

N / e=900) g (xr) dg (x7)

£
e (1 —1ze)  €°(1 —ze)

= — )
22

(5.6)

22
with

Im(z) < 0.
This time, we build a rectangular integration path, performed in a clockwise

manner which is depicted in Figure 5.2. Hence, we get for the discounted

expectation!®®
[
— [r(xs)ds
E®Q |e g (x7

1 e (1 —1z¢)

= _% Td](xt,_Z,U}O,W,gO,g,T)dZ
oo
® Es( )
1 e (1 —1ze _ -
- % Tw(xta_zawOaW7907gvT) dz
—o0
(1 —aze
= —2mRes [_% ¢(Xt7 _Z,U}O,W,go,g,T) z = 0:| .

(5.7)

Using again Cauchy’s residue theorem, the contribution of the pole at the

109 can be derived as

origin
108 According to the clockwise performed integration path, the contribution of the

pole in this case is —2m2 times the residue.
109" According to a removable singularity, we have in fact at z = 0 two different poles,

a simple and a second order pole.



5.2 Unconditional Payoff Functions 75

Im
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(Rz) - - Rz)
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f“\ -
%5 > Re
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(R =) b h (R -z)

Fig. 5.2. Closed contour integral path for the discounted expectation of g (x7). The

pole is completely encircled in a clockwise manner.

Res _GZZE(]. — ’LZE)¢ (Xt7 —Z,Wo, W, Jgo, 8, T) =0
2722
12€ _
—Res _e w(xh ZawOaw7g()7g7T) 2=0
2722
12€ _
+ Res |:_€ ¢(Xta Z7w0aw7907ga7—)6 Z:():l
2miz
— lim i _ezzs,w (Xtv_zuw()uwngvgvT)
2—0 dz 2m (58)
+ lim _elze’l/} (Xtu_sz()awngugﬂT)E
z—0 2m
:wz (Xta 07 Wo, W, 90, 8, T) - “ﬂ (Xta 07 Wo, W, 4o, 8, T) €
27
. ¢ (Xta 07 Wo, W, 90, 8, T) €

2
:¢z (Xta 07 Wo, W, 90, 8, T)
2 '
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Inserting this result in equation (5.7), we eventually obtain the general ex-

pression for the expected value of g (x7), which is

T
— [r(xs)ds
EQ e ! g (XT) = _Z¢Z (Xt7 07 Wo, W, 4o, 8, T)

(5.9)

¢z (Xt7 07 Wo, W, 40, 8, T)
2

Thus, we have also derived the result in equation (4.6) within the payoff-

transform methodology.

The remaining building block represents the unconditional expectation

under the risk-neutral measure of an integro-linear variable where the payoff
T
function satisfies G(xr) = [ g(x,)ds. Because of the integrated expression

t
in the payoff function, this quantity has to be treated differently. Pricing an
unconditional contract, including such an integrated term, we are interested

in the expected value

T
— [r(xs)ds
E® |e { /g(xs) ds| . (5.10)

t

In the following, we first want to show how equation (5.10) can be recov-
ered manipulating the expectation itself, as done in equations (4.6) and (4.7).
Obviously, the calculations are very similar compared to equation (4.6). Af-
terwards, we show that the payoff-transform methodology replicates the same

result without any problems.

Making the same considerations as for the derivation of the expected value
of g (xr), we compute (5.10) as the derivative with respect to the transform
variable, evaluated at z = 0. Note that the characteristic function itself con-
sists only of one sole exponential discounting term, since we have

Jr(xa)ds o= [ gxa)d Fr(xs)—1zg(x.))d
EQ|e + e ) I =E®Q |¢ ¢t : e . (5.11)

Obviously, this particular characteristic function is equivalent to the value of

a zero-bond contract, but with a hypothetical complex-valued short rate of

A (%, 2) = 1 (%) — 129 (x¢) = (wo — 2290) + (W' — 128" )% (5.12)
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In the last equation we considered that both the instantaneous interest rate
r (x¢) and the payoff-characterizing function g (x;) are linear combinations
of x;. Since we deal with a zero bond like contract, the solution for this
model price also exhibits an exponential-affine form. Thus, in analogy to the
considerations made for zero bonds, we are able to represent the solution as
an exponential-affine function. Introducing new parameters characterizing the

modified short rate, we have
wi (2) = wo —12g0 and wh(z) = w —12g.

The resulting characteristic function for pricing average-rate derivatives is
then

¢ (Xt7Z7w64<2)7WA(Z)7OaOMaT) )

and the relevant payoff function for this modified characteristic function is
G(XT) =1.

As mentioned above, this characteristic function exhibits a strong resem-
blance compared to the Fourier-style zero-bond representation in equation
(5.3), where the original characteristic function was evaluated at some point
z = 0. This can be traced back to the fact that both payoff functions are
independent of the Fourier Transformation variable. The difference between
them is that the function ¥ (x¢, z, w¢' (2), w(2), 0,047, T) generates zero-bond
prices with respect to the modified short rate r4(x;, z), independently of the
value of the transformation variable z. Thus, the coefficient functions in this
particular case, a(z,7) and b(z,7) solve again the system of ordinary dif-
ferential equations (2.40) and (2.41), with terminal conditions a(z,0) = 0,
b(z,0) = 0,7. The hypothetical discount rate is defined by wg'(z) and w4 (z),

respectively, whereas the terminal value is given by

) (xt, z,wé‘(z),w’q(z), 0, OM,O) =1.

Having found the characteristic function for this special case, the same
considerations can be applied as for the expected value of g (x7). Using the

technique of Fourier-transformed prices, we eventually express equation (5.11)
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T T T

EQ 'r(xs /g —diEQ . — [(r(xs)—12g9(xs)) ds
z

o~

o (5.13)

L/)z (Xta 07 w(I)A(O)v WA(O)a 07 0M7 T)
) .

Alternatively, we are also able to obtain this result using the payoff-
transform methodology together with the contour integration technique. For

convenience, we first set up the substitution

T
7)= [gx) as,

and afterwards perform the Fourier Transformation with respect to this
new variable v(7"). Thus, the transformation of the particular payoff func-
tion is the same as the one used in deriving equation (5.6). Therefore, we
can immediately adopt the result of equation (5.9) by exchanging the gen-
eral characteristic function v (x¢, z, wo, W, go, g, 7) with its modified pendant
0 (Xt, z,wit(2), w(2),0,04, 7)111. Afterwards, we get the desired result ac-
cording to equation (5.13).

In this section we proved the general results of unconditional expectations
for zero bonds, and linear and integro-linear payoff functions, respectively,
obtained within the payoff-transform framework!''2. Moreover, apart from the

traditional formulae, where the desired value is derived by manipulation of the

19 Obviously, the values of the functions . (X, 2, wo,W,go,g,7) and
¥ (x¢,2,w5' (), w?(2),0,00,7) are equal for z = 0. However, the deriva-
tives with respect to z evaluated at this point, do not share this similarity.
This is the reason why we make the dependence of z in the modified short rate
explicit, although wg (0) = wy and w*(0) = w.

11 The path of the contour integral and the location of the pole is given in Figure
5.2.

12 The particular derivation for the exponential-linear case was not derived in this
section since it is not needed in this work. However, the calculations are straight-
forward using the integration-by-parts methodology, where the relevant pole is at

zZ =1.
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expectation itself, as shown in Section 4.2, we have with the payoff-transform
approach the freedom to choose among a set of infinite solution formulae due
to the contour integration in the complex plane. This fact becomes especially
important in computing the expectation E®![1] and the expectation for the
unconditional average-rate contract where the derivative of the characteristic
function with respect to the transformation variable z has to be used. In these
cases we are provided with the alternative to use the simple payoff transform

and apply equation (4.21) on the appropriate strip in the imaginary plane.

Hence, using the building blocks above, we are able to price all interest-rate
derivatives introduced in Section 3.2 with Fourier-style formulae. According
to the results in equations (5.5), (5.9) and (5.13) we arrive at completely

closed-form pricing formulae, which are illustrated in the next subsection!'3.

5.2.2 Pricing Unconditional Interest-Rate Contracts

So far, the three building blocks for general unconditional payoff functions
have been derived. In this section, these blocks are translated into the val-
uation formulae for the particular yield-based and level-based interest-rate
contracts discussed in Section 3.2.

Starting with yield-based contracts, we need first a translation of yields

into Fourier-style solutions. This is easily done as follows

'l/](Xt, 07’LU07W7g(), g, T)_l -1

Y(Xt, t7 T) =
T

(5.14)

The model price for zero bonds can then be obtained by using equation (5.5),

whereas prices of coupon bonds can be calculated as

A
CB(Xt7 C, ta T) = Z w(xh Oa Wo, W, 4o, 8, Ta)Ca. (515)

a=1
The price of a forward-rate agreement is given as

13 This statement is valid if the characteristic function or its derivative with respect
to z can be displayed in closed form. In cases where the characteristic function
cannot be explicitly expressed, but its coefficient functions a(z,7) and b(z, 7) are
solutions to the system of ordinary differential equations according to (2.40) and

(2.41), a Runge-Kutta algorithm can be used to obtain the relevant values.
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FRAy (x¢, K, Nom,t,T,T)

—Nom <1f/) (Xt7 07 wO[l(Wag(b g, 72)

(5.16)

- L/)(Xtv 07 Wo, W, 4o, 8, T)) )

and a yield-based swap can be similarly computed in terms of the general

characteristic functions as

SW Ay (x¢, K, Nom,t,T)

—Nom gw(xtvoawﬂvi)v7907ga7-a+l)
K, (5.17)

a=1

A—-1
- Z 1/) (Xtv Oa Wo, W, o, 8, Ta)) .

a=1

On the other hand, pricing contracts linearly based on the function
g (x7), we foremost need the derivative of the general characteristic function
¥ (x¢, 2, W0, W, go, &, T) with respect to z. Hence, a level-based forward-rate
agreement defined in equation (3.5) is represented by

FRA,(x¢, K, Nom,t,T)

. wz(xtaovaawvgﬂvgvT)
=Nom (Kw(XhO;wOawagOagﬂT) - ) (5.18)
=Nom (K — ¢Z(Xt’0’wol’w’g0’g’7)) P(x¢,0, w0, W, go, &, 7).

Accordingly, the corresponding swap contract in this framework can be ob-

tained as

SW A, (x¢, K, Nom,t,T)

a=1

A
=Nom <KZL/) (Xtv 07 Wo, W, 490, 8, Ta)

7

A
_Z 1/)2 (Xt,07w0,w,gng7Ta)> (519)

a=1

A
=Nom Z (K _ ¢Z (Xt707w07wag07g77—a)) %
(3
a=1

¢ (Xta va()awvgﬂvgvTa) .
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The last unconditional contract to be priced is the average-rate contract.
Here, the integro-linear payoff function can be interpreted as an interest-rate
contract based on the short rate itself. According to equation (3.11) and (5.13),
the price of this contract can be calculated as

UARC,(x¢, K, Nom,t,T)
=Nom (Kw(Xt,O7w0,W7go7g77-) (520)

wz(xta 07w64(0)7WA<0)a 07 0M7T)>
) .

For the special case g (x7) = 7 (x7), we use the simplified versions wg'(2) =

(1 —22)wy wA(2) = (1 — 12)w, respectively.

5.3 Conditional Payoff Functions

So far, we derived closed-form solutions for contracts with unconditional exer-
cise rights. In contrast to the calculations in the last section, where contracts
merely depended on the simple evaluation of the terms v (x¢, 0, wo, W, go, g, 7),
V. (x¢,0, w0, W, go, 8, 7) and 1 (x4, 0, w§ (0), w?(0), 0,04, 7), respectively, the
option-pricing problem confronts us with a different situation. The integration
by parts method is not of use anymore due to a natural integration boundary,
characterized by some strike value K. Including this optional exercise right
within the payoff-transform methodology, we end up with some semi closed-
form solutions, which means we have to solve a standardized Fourier integral
in order to compute the desired model prices of interest-rate options. Al-
though the payoff-transform methodology enables us to price consistently the
option prices with payoff functions according to Table 4.1, without adapting
the valuation formula (4.21) to the different cases, we distinguish for conve-
nience between linear, exponential-linear and integro-linear payoff functions.
As before, we first derive some basic payoff transforms for general g (x7) and
afterwards take into account the interest-rate options discussed in Chapter
3. Eventually, we develop as a special case the Fourier-transformed payoff
function of a coupon-bond option for the case of a one-factor interest-rate

1114

mode with x; = rq.

114 The term one-factor model refers to the fact that only one Brownian motion is

incorporated in the model.
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5.3.1 General Results

Besides the elementary payoff functions, we also differentiate between call
and put options, because of the conditional exercise property of the contracts.
The transformed payoff functions for call and put contracts display a strong
resemblance, which is demonstrated in this section, allowing a more general
implementation of the valuation algorithms. Due to the exercise boundary and
the different ways of incorporating g (xr) and its integro-linear counterpart,

respectively, in the payoff function G(xr), we introduce the critical value

a(K) = {ln[K] Exponential-linear Case. (5.21)

K Linear and Integro-linear Case,

for which the option payoff is exactly at the money. The Fourier Transforma-
tion for different call payoff structures can be generally represented as
I (Glxr)] = [ NG )i do (xr)

— 00

(5.22)

oo

/ e G (xr) dg (xr)
a(K)

whereas the particular put payoff transform in its general form is given by
o0

/ 2900 G (%) Ly ey <a(x) g (X7)

— 00

a(K)
e*IXT) (%) dg (x7) -

FIn) (Glxr)

(5.23)

— 0o

In deriving the solution for the exponential-linear case, we have to use the

transform
Fa(xr) [(eg(xT) _ K) +] _ / ev#9(x1) (eg(XT) _ K) dg (x1)
a(K)
e(l+zz)g(xT) Kelzg(xT) o (524)
_[ T+iz 2 L(K)

6(1+zz)a(K) K1tz

az(1412) - 12(1 +12)
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Due to the exponential-linear dependence of the payoff-characterizing variable
we set a(K) = In[K]| and obtain the equivalent transformation as given in
equation (2.26). Since the frequency representation of a call option payoff
only exists on a strip with

Im(z) > 1,

a general Fourier Transformation is needed. Although exhibiting different pay-
off structures the corresponding payoff transform of a put option has the iden-
tical formal structure as given in equation (5.24). This can be easily proved
by

a(K)
fg(xT) [(K _ eg(xT)>+:| _ / ezzg(XT) (K _ eg(XT)) dg (XT)
J, (5.25)
K1+zz
az(1+2)’

but with
Im(z) < 0.

Based on this result, both call and put option prices can be recovered using the
same payoff transform and as a direct consequence, only one single program
code is needed for evaluating values for both interest-rate option contracts.
The only difference are the different sets and strips on which Im(z) is valid
for the inverse operation. Whereas the condition for the call contract assured
the dampening of the integrand on the positive half-axis, we need for the put

option the condition to guarantee the same on the negative equivalent.

An interesting feature of the payoff-transform methodology is, due to the
equivalent transformed payoff functions of calls and puts, the applicability of a
closed contour integral to obtain in a very elegant way the particular put-call
parity'!®. Without loss of generality, we set

f( ) K1+Zzw(xt7_ZawOaW7907g7T)
Z =
2miz(1 4 1z2)

(5.26)

Thus, we have

15 The relevant integration path is depicted in Figure 5.3.
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Fig. 5.3. Closed contour integral path for the derivation of the put-call parity in
equation (5.27). The poles at z = 0 and z = ¢ are completely encircled in a clockwise

manner.

T T
EQ e—{r(xs)ds (eg(XT) - K)+ - EQ e—{f’(Xg)ds (K _ eg(XT))-i-

/Oo F(z)dz + /oof(z) dz (520

o0

—2mi (Res [f(2)|z = 0] + Res [f(2)|z =1]),
with
Im(z) > 1.

The imaginary part of the Fourier variable z in equation (5.27) can be chosen

arbitrarily as long as the existence of the payoff transformations is guaran-
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teed!6. Obviously, this clockwise performed contour integral now encircles
two simple poles of the function f(z), one at the origin and the other one
located at z = 2. Due to the closed contour, we only have to calculate the
residues of all included poles in order to obtain the desired put-call parity.
Comparing equation (5.26) with (5.5), the residue of f(z) at the origin is just

w(xhoa Wo, W, 4o, 8, T)

Res[f(z)|z=01=K 5

)

whereas the residue at z = ¢ is

¢(Xt7 —t,Wo, W, 40, 8, T)
2m '

Res[f(2)]z = 1] = —

Hence, equation (5.27) equals
T T
EQ e_{T(XS)dS (eg(xT) B K>+ _E@ e—{'r(xs)ds (K B eg(xT)>+
(5.28)
= ¢(Xt7 —1, Wo, W, 9o, 8, T) - Kw(Xu Oa Wo, W, 4o, 8, T)'

According to the result in equation (4.7), the term (x¢,0,wo, W, go, &, T)
simply represents the price of a zero bond with maturity 7. The other term,

the quantity ¥ (x:, —t, wo, W, go, 8, 7) equals the discounted forward price of

the exponential of the variable g (x;)!'7. Therefore, setting z = —1, we get
T
EQ | { riacs) dseg(xT)

For a call option, linearly based on g (xr), we get

1+22(K —g(x1)]™

FIxT) | (g (x7) — K)+] = [ezzg(xT)

22 a(K)
1za(K) 12z K (529)
o € o €
D

with
16 For convenience, we work with the complex conjugate for the latter integral.
In fact, due to the exponential-linear payoff function the restriction for the put

option transform can be independently chosen according to equation (5.25).
17 See, for example, Bakshi and Madan (2000), p. 212. There, this quantity is alter-

natively denoted as the scaled-forward price.
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Im(z) > 0.

Similar to the call representation in Fourier space, the put option transform
is
(x7) 4 ezzK
Foon) [(K — g (x1)) } = (5.30)

The only difference between the call and put option transform is that equation
(5.30) is defined on the opposite imaginary half-plane. Consequently, we use

the complex conjugate of the Fourier variable in equation (5.29). The put-call

parity for the linear case can be derived as''®
[ re)d Jrie)d
E® e 7 (g(xr) —K)T| ~E® e T (K — g (xr))"
— JRes e”Kiﬁ(Xta _272007W7907g77—) y = 0:| (531)
z

X 7O,w 7W7 9 Y
_ ¥ (%t 0Z 90,8,7) — K ¢(x¢,0,wo,w, go, 8, 7).

Due to the payoff similarities of the linear and integro-linear case, the payoff
transformations are equivalent for both cases in Fourier space. Hence, to com-
pute the average-rate option prices (3.24) and (3.25), equations (5.29), (5.30)

and (5.31) can be used together with the modified characteristic function.

Although not directly applicable for tradable option contracts, but nev-
ertheless important for theoretical issues is the Fourier-transformed payoff
function of a hypothetical contingent claim according to the Dirac delta func-
tion, which is 6(¢g (x7) —a(K)). As mentioned before, the Dirac delta function
has an infinite spike for g (x7) = a(K). The Fourier Transformation of the

Dirac delta function can be simply expressed as
FI&D) [§(g (x7) — a(K))] = e, (5.32)

with no need to set up any restriction on the imaginary part of the transform
variable z. Since the Dirac delta function states the terminal condition of
a probability density function, equation (5.32) may be used to recover the
relevant transition density function. Especially for illustrating the behavior of
a particular stochastic process g(x;), the transition density function is useful

to explain its characteristics. The other special function we want to derive, is

118 The relevant integration path is depicted in Figure 5.2.
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the Fourier Transformation of the cumulative probability function Pr(g(xr) <
a(K)). The payoff corresponding to this terminal condition is given by the
indicator function of the event g(x7) < (k). Thus, the transformed payoft

can be expressed as'?

ezza(K)

FIN [y catre)] = —— (5.33)

with
Im(z) < 0.
Accordingly, we plug (5.33) into our general valuation formula (4.21) or al-
ternatively use a slightly modified version of the Gil-Pelaez formula'?° which
is
Pr(g(xr) < K)

1 w(mtvz*vw()uwv.gngvT)e_w (K * (534)
—— | Re
™
0+

dz",
12"

| =

with
Im(z*) = 0.

5.3.2 Pricing of Zero-Bond Options and Interest-Rate Caps and

Floors

In this section valuation formulae for the specific interest-rate contracts in Sec-
tion 3.3 are derived. Since the transformed payoff functions are independent
of the variable g (x7), most of the contracts share a similar payoff transform.
According to the previous section, differences between the various pricing
formulae lay in the particular characteristic function to be used. Therefore,
we focus on the general forms of the characteristic function and refer only
to the relevant payoff transformations, constructed in the previous section.
Like contracts with unconditional exercise rights, we start with yield-based
option contracts and discuss afterwards the particular level-based contracts.
We exclude in this section the Fourier-style pricing formulae for coupon-bond
options and swaptions, respectively, because these special contracts can only
19 See equation (5.1).

120 Since Pr(g(xr) < K) 4 Pr(g(xr) > K) = 1, equation (5.34) can be immediately

derived from equation (4.8).
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be priced in a one-factor environment, due to the more complicated exercise
boundary!?!. Thus, we give for these contracts the specific valuation formulae

in the next section.

Beginning with zero-bond options, we use for the transformed payoff func-
tion of a call option the equation (5.24) and equation (5.25) for a put option.
Taking into account the terminal condition at expiration of the option con-
tract of a zero bond with remaining time to maturity 7 = T — T, we set the
relation

go = a(0,7) and g =b(0,7).

The relevant characteristic function is then
¢(Xt, Z,Wo, W, Cl(O, 7:)7 b(oa 72)3 T)a

and option prices can be calculated by plugging the relevant payoff transform
and the characteristic function into the general valuation formula (4.21), which

gives for a call option

ZBC (xt, K.t,T, T)

1 K1+zz . .
= ;/m1/)(Xt,—Z,w(),Waa(OaT)vb(OvT)aT) dz,
with

Im(z) > 1.

In contrast, a zero-bond put option price can be derived via equation (5.35)
but with the restriction
Im(z) < 0.

According to equation (3.17) and (3.18), a yield-based cap and floor con-
tract can be immediately expressed as the summation over the particular

]\%m. Hence, the model price of

zero-bond options, scaled with some quantity

a yield-based cap contract is

121 However, there exist some articles which derive approximated values for these
contracts in a multi-factor framework, see e.g. Singleton and Umantsev (2002) or
Collin-Dufresne and Goldstein (2002).
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CAPy (x¢, K, Nom,t,T)
Nom T f;
= —% _x (5.36)
0

Y(x¢, —2z,wo, W, a(0,74), b(0,74), 7q) dz,

with
Im(z) > 0,

Ta = Toy1 — T4, and 7, = T, — t. Subsequently, a yield-based floor contract
can be priced using equation (5.36) with

Im(z) < 0.

Next, we derive the particular pricing formulae of level-based interest-
rate contracts and interest-rate options written on the short rate r (x¢) itself.
Starting with a cap contract according to equation (3.15), we use the payoff
transform (5.29) with

go=wo and g=w,
and therefore apply the characteristic function
¢(Xt7 Z,Wo, W, Wo, W, Ta)-

Thus, the cap contract can be priced as

CAP, (x¢, K, Nom,t,T)

A o0
N 1zK 537
_ _Nom Z/e . Y(xe, —2, Wo, W, Wo, W, o) dz, ( )
™ z
a=1

=19
with
Im(z) > 0.
Hence, the model price of a floor contract with equivalent input parameters

can be recovered using equation (5.37) again but evaluating the integrals on

the negative imaginary half-plane with

Im(z) < 0.
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The last option contracts for which we want to give a payoff-transformed
solution are the average-rate options due to equation (3.24) and (3.25). Thus,
the payoff of the average-rate cap option contract at expiration can be ex-

pressed as
T +

K [rixods)

t

Nom

T

with K* = 7K. Taking the same considerations into account as done for the

unconditional average-rate contract, the relevant characteristic function for

T
W) = [ 1) ds,

is given by

w(xta Z,’LUE?(Z),WA(Z), Oa OMa T)'

Together with the payoff transform in equation (5.29), we are able to postulate

the model price of an average-rate cap as
ARC, (x4, K, Nom,t,T)

Nom [ e#K* (5.38)
== |~ v,z wp (—2), wh(=2), 0,00, 7) dz,

with
Im(z) > 0.

The respective average-rate floor contract can be priced, using equation (5.38)
with
Im(z) < 0.

5.3.3 Pricing of Coupon-Bond Options and Yield-Based Swaptions

So far, we have excluded the valuation formulae for coupon-bond options
and yield-based swaptions, respectively. In contrast to the option contracts
discussed in the last section, where we computed only a single option price
and a portfolio of different option prices, respectively, we deal here with a
option on a portfolio of future cash flows. Consequently, the determination of
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a unique critical exercise value «(K) in a multi-factor setting is not possible
anymore'?2. However, dealing with a one-factor interest-rate model setup with
r(xy) = 7'?3, we are able to circumvent this issue. Hence, we follow the
technique proposed in Jamshidian (1989) to derive the theoretical price of a
coupon-bond option using the payoff-transform methodology in pricing this

derivative contract, which is shown below.

Setting x; = 7, we are able to exploit the coefficient structure of the affine
term-structure model. The special form of the characteristic function is of the
form
— ‘frs ds+izrp

Y(re, 2,0,1,0,1,7) =EQ |e = (=) (2T

Because a yield-based swaption can be interpreted as an option on a coupon

d124

bon , we focus on the valuation of the particular coupon-bond option.

In a one-factor setup the coupon-bond call option payoff is given by

A +
(CB(rr,e,T,T) - K)" = (ZP(r;mT, To)ca — K)

a=1

A +
— (Z ea(O,‘ra)+b(O,‘ra)7"Tca _ K) )

a=1

In the last equation, we inserted the particular Fourier-style zero-bond prices
generated by the exponential-affine model. The above presented payoff func-
tion is then a continuous and strictly decreasing function in r712°. In these

models we have!26

OP(r,t,T)

=b vV T>t.
o (0,7) <0 >

Consequently, the payoff function exhibits a unique zero value for the critical

short rate r} for which the coupon-bond call is exercised. However, dealing

122 See, for example, Singleton and Umantsev (2002).

123 Without loss of generality, we set in the following wo = 0 and w; = 1.

124 See the alternative presentation of a swaption payoff in Section 3.3.

125 The particular characteristic functions are derived in Chapter 8.

126 See e.g. Duffie and Kan (1996) for the properties of (0, 7) in common one-factor

interest-rate models.
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with a single-factor environment, we cannot explicitly express this critical
value 77} in closed form, which is due to the sum of exponentials in the payoff
function. Thus, the critical exercise value has to be computed numerically.
Having determined the value of 7., the Fourier Transformation of a coupon-

bond call payoff can be calculated as'27

Fr {(CB(rT,c,t,ﬂ T) - K)’L}

*

TT A
_ w21 a(0,74)+b(0,70)rT . _
= /6 <Ze Ca K) drr (5.39)

N a=1
A .
. a(0,74)+b(0,74)7 K
— ¥TT Z ; Ca—— |,
= b(0,70) +12 12

with
Im(z) < min [b(0, )] .

a
Note that in contrast to the valuation formula a zero-bond call option, where
the Fourier Transformation of the payoff function was made with respect to
g(x7), we now perform the transform operation with respect to r7. Therefore,
we need a different restriction for the imaginary part of the transform variable
z. Because the coefficient b(0,7,) is generally negative, we take the smallest
value of b(0,7,) as an upper bound for the domain of valid values for Im(z),
which is due to the monotonicity simply b(0, 74). Eventually, using the general
valuation formula (4.21), we are able to compute the price of a coupon-bond

call option as

CBC (ry, ¢, K,t,T,T)

00 A .
1 . e@(0,7a)+b(0,7a) 71 K
_ 12T § _
i /e ( b(0,74) + 22 Tz (5.40)
0

a=1

¥(ry, —2,0,1,0,1,7) dz.
As before, the payoff transform of the particular put option is also given by
equation (5.40), but with the slightly modified restriction
Im(z) > 0.

127 Since the integration variable is no longer g (x), we have to switch the integration

boundaries, due to the negativeness of b(0, 7).
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Having derived the proper Fourier Transformation of a coupon-bond op-
tion payoff, the equivalent expression for a yield-based swaption contract is
given by the alternative representation of a swaption contract according to
equation (3.23), with coupon payment vector cgy p and payment dates con-
tained in T*. On the other hand, the particular forward-start payer swaption
can be interpreted as a coupon-bond put option with strike one and the same
coupon payment vector and the same payment dates as used before. Hence,
for the transformed payoff function to be existent, we have to ensure that the
inequality Im(z) > 0 holds.



6

Numerical Computation of Model Prices

6.1 Overview

In this chapter we develop a new pricing algorithm to compute model prices for
the derivatives contracts previously discussed. Here, we distinguish, as before,
between contracts with unconditional and conditional exercise rights. The dis-
tinction is made because of the separate fundamental calculation procedure for
these prices. Whereas derivatives with unconditional exercise rights can be cal-
culated in terms of the general characteristic function ¥ (x¢, z, wo, W, go, g, T)

8, respectively,

and in terms of the relevant moment-generating function!?
without evaluating any integral at all if the characteristic function is known in
closed form, we need for option-type contracts to apply a numerical integra-
tion scheme in order to calculate their model prices. Carr and Madan (1999)
showed in their prominent article a very convenient method to compute op-
tion prices for a given strike range, using the FFT. The advantage in applying
the FFT to option-pricing problems, is its considerable computational speed
improvement compared to other numerical integration schemes. Due to the
payoff transform methodology, we use another pricing algorithm, which shares
the same desirable, numerical properties of the FFT. Unfortunately, imple-
menting the pricing approach according to Lewis (2001), it is necessary to
impose the transform with respect to the strike. Therefore, one cannot use
the FFT any longer to obtain option prices in one pass for a strike range'2°.
128 See Section 5.2.
129 See Lee (2004), p. 61. However, comparing the structure in equation (4.21) it is
possible to obtain model prices with the help of a FFT procedure for different

levels of g (x:).
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In order to circumvent this problem within the payoff-transform pricing ap-
proach, we need an another numerical algorithm. Therefore, we incorporate in
our pricing algorithm the IFFT, to compute model prices for different strike
values'30. Furthermore, to enhance the quality of results'3!, the fractional
Fourier Transform of Bailey and Swarztrauber (1994) is used. This refine-
ment was introduced by Chourdakis (2005) in pricing equity option prices
with the transformed option price methodology of Carr and Madan (1999).

However, we sometimes encounter the problem that ¢ (x¢, z, wo, W, go, &, 7)
cannot be calculated in closed form'32. For these cases, we implement a Runge-
Kutta solver in our IFFT pricing algorithm. This algorithm is then used to
compute the relevant values for different z in ¥ (x¢, 2, wo, W, go, g, 7) by solving
the ODEs (2.40) and (2.41) numerically and providing the procedure with the
needed values.

6.2 Contracts with Unconditional Exercise Rights

As explained in Section 5.2.2 all contracts with unconditional exercise rights
can be calculated as mere function evaluations of the general characteristic
function ¥ (x¢, z, wo, W, go, &, T), its first order derivative with respect to z, and
for integro-linear payoff functions with the help of the first order derivative
Y, (xt, z,wi (2), wA(2), 0,04, T). As shown, these unconditional expectations
can be obtained by contour integration in closed form. Thus, we do not need
to develop a numerical integration routine at all in order to calculate the
relevant model prices. The calculations reduce in these cases to

T
— [r(xs)ds
]EQ e t :w(xt,O,wo,W,go,g,T)a

130 We find it natural to use the FFT and the IFFT algorithm to obtain the desired
Fourier Transformation. Other numerical integration schemes are also possible,

like for example the numerical integration via Laguerre polynomials as used in

Tahani (2004).
131 The ordinary IFFT pricing algorithm suffers, like the particular FFT algorithm,

from the fixed scale of increments of strike values and transformation variable,

which is discussed in Section 6.3.1.
132 This could be the case e.g. for some subordinated processes r; or for jump com-

ponents where Ej [¢*(z, wo, W, go, g, J, 7)] cannot be solved explicitly.
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T
— [r(xs)ds V. (x¢,0, w0, W, go, 8, T)
]EQ Y — )y Yy ) ) IR-X)
¢ g (xr) : :
and
T
RO effr(x5>d57(T) _ % (%4, 0,0 (0), w™(0),0,0n1,7)

7

for arbitrary times to maturity 7. For normal contracts, the discount rate
used in the characteristic function is based on the short rate r (x;) and is
zero for futures-style contracts. In case of an average-rate contract where the
underlying is the geometric average of the short rate, we have to use the

characteristic function with a modified discount rate 74 (x;).

If the general characteristic function cannot be expressed in closed form
although defined by a system of ODEs, we apply a numerical algorithm to
evaluate the needed values. In this case we implement a Runge-Kutta solver
for the system of ODEs (2.40) and (2.41).

6.3 Contracts with Conditional Exercise Rights

6.3.1 Calculating Option Prices with the IFFT

We start with the integral representation of the general option valuation for-
mula (4.21). Since we are interested in calculating option prices in one pass for
a given strike range simultaneously with the IFFT, we have to reduce the pres-
ence of K in the integral to the expression e***(5) for both exponential-linear,
linear, and integro-linear type payoff functions. In the case of coupon-bond
options and swaptions we have to divide the payoff function up into A separate
parts. The alternative representation of the valuation formula is

cx(K
‘/(Xt7 t T

/ 'Lza(K (Xt,_Z7UJO,W7go,g,T) dZ? (61)
0

with
F9xr) G (x7)] = e(d+w)a(K)g(Z)7
and a(K) = K for the case of a floating-rate based contract and an asian-type

contract, respectively, and «(K) = In[K] for a yield-based contract?3. The

133 See equation (5.21).



98 6 Numerical Computation of Model Prices

parameter d is chosen in a way to eliminate all dependency of «(K) in g(z),
which is crucial for the IFFT algorithm to work properly'34. A first problem
might arise using multi-valued functions, e.g. the complex-valued logarithm,
square-root, and the confluent hypergeometric function KU(a;b;y). Thus, we
have to carefully keep track of the integration path to avoid any disconti-
nuities'3®. However, using a numerical algorithm to compute the particular
values of the characteristic function such as a Runge-Kutta algorithm we do
not encounter these problems'6.

The first step in deriving the IFFT pricing algorithm is to truncate the

integration domain as
falB) ~ [0, —2 w0 w,gng ) Az (62)
0

Applying an U-point approximation with increment A = #, we discretize the

domain of the transform variable into

1
Zy = <u—§) A+ 1z

with w =1,...,U and z; corresponding to a fixed value for which the Fourier-
transformed payoff function exists. The integration interval [0, oo] is then re-
placed with a discrete, truncated region such that the integrand of f(a(K))

is negligible for z;;. Hence, the discrete approximation to equation (6.2) is

U
fla(K)) Yy e T g(z,) (%, =2, wo, w, g0, 8,7) A
vt ; (6.3)
_ Aefzia(K) Z ez(ufl) Aa(K)ele oz(K)guwu7
u=1

134 Otherwise, the IFFT algorithm is not applicable to the valuation problem at
hand. Fortunately, we are able to reduce the dependency of K in the particular

1zQ

integrals to the specific term e <K), for all contracts discussed in Chapter 3.

135 This topic is covered comprehensively in Nagel (2001), Appendix 4.
136 In case of the Fong and Vasicek (1991a) model, we made the same experience as

mentioned in Tahani (2004), Footnote 4, and compute values of the characteristic
function with help of an explicit Runge-Kutta algorithm in the first place. Thus,
besides the prevention of discontinuities, the Runge-Kutta algorithm can be more

efficient than the explicit computation of the confluent hypergeometric function.
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with
gu = g(zu) and ¢u = ¢(Xt7—zu,w0,W7907g77)~

The sum above is commonly referred to as a discrete inverse Fourier Trans-

formation!37

of the function e '3 @(K) Guty. We also want to mention that in
computing this sum we eventually obtain the option price for only one par-
ticular strike value K. Since we are interested in calculating option prices for

a strike range we also have to discretize a(K'), which yields
ay = a(K1) + (v = 1),

with step size n and v = 1,...,U'38. Thus, inserting the explicit expression

for o, inside the brackets of equation (6.3) gives

U
f(av) — Ae 7 Z ez(ufl) A(a1+(v71)n)612A(a1+(v71)n)gu,¢u
u=1
. (6.4)
- A efziome%(vfl) Z ez(ufl)(vfl) Anez Aal(ufé)guwu.
u=1

The form of f(a,) is almost ready to be inserted into the IFFT algorithm.

The IFFT algorithm is developed to calculate simultaneously the discrete
inverse Fourier Transformation for a range of values a,,. The main advantage
is that it reduces the number of calculations from an order of U? to the order
of Ulog,[U], which makes a significant difference in computational speed!3?.

It efficiently computes the sum
1< 2
f(v,h) = i Z = D=DFp, for v=1,...,U. (6.5)
u=1

137 Although we defined the transform operations in Section 2.4 vice versa, in this
chapter we rely on the term discrete inverse transform, which belongs to en-
gineering disciplines and is in line with the expression used afterwards for the
IFFT.

138 We use the same discretization scheme for a(K) as used in Lee (2004). The

advantage, in contrast to the discretization schemes applied in Carr and Madan
(1999) and Raible (2000), is the possibility to adjust the numerical scheme for the
lower bound of the strike rates. Thus, one does not necessarily have to compute

option prices for negligible strike rates, which is a more efficient procedure.
139 See Cooley and Tukey (1965).
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Introducing the vectors

equation (6.5) can be displayed in a more compact form, which is
f(h) = IFFT[h], (6.6)
with h € CY.

By comparing equation (6.5) with (6.4), we obviously need the relation

27
An = U
in order to apply the IFFT algorithm properly to equation (6.4). Because 2%
remains constant for a fixed number of points U, we have only the freedom
to choose either A or 7 independently. Thus, there is a tradeoff between
the accuracy of the calculated results and the coarseness of the strike-value
grid. According to these considerations, more accurate results of option prices
corresponding to specific strike rates have to be paid with more points in
the integration scheme due to the rule U x 2". This rule ensures that the
algorithm computes option prices for specific strike values and illustrates the
exponential cost for more accurate results. Calculating the same number of
option prices, most of them outside a desired strike range, entails a substantial
waste of computational time°.
To give a more compact writing, we use henceforth the vectors a =
(@)Y 1, & = (§u)%; and ¥ = (¥u)Y_,. Eventually, the vector V(x;,t,T)

containing the option values for different strikes, can be computed as

U Acd—se

T (6.7)
® Re [e 7 V"D @ IFFT[e" 2 ("~2) ¢ g ® ]|,

V(Xta tv T) =

where the operator ® denotes the vector-dot product of two arbitrary vectors

of the same length. This pricing algorithm is already capable of calculating

140 This particular problem is addressed in the next section.
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option prices. However, as stated before, equation (6.7) displays the problem
of computing option prices for many irrelevant strike rates, given a desired

level of accuracy.

6.3.2 Refinement of the IFFT Pricing Algorithm

The purpose of this subsection is to solve the problem of the inverse relation-
ship of A and 7 mentioned in the last section. The numerical efficiency can
be enhanced by using a modified version of the ordinary IFFT algorithm to
ensure that all calculated option prices are at least within an interval of rele-
vant strike values. Bailey and Swarztrauber (1994) developed a method based
on the FFT to choose A and 7 independently. Their method, called the frac-
tional Fourier Transformation, henceforth denoted as the FRFT, incorporates
a new auxiliary parameter (™!, which successfully dissects the otherwise fixed
relation An = 22. Chourdakis (2005) used this refined algorithm in pricing
European options on equities based on the Carr and Madan (1999) pricing

framework.

The FRFT was developed to efficiently compute the sum
U
flo,h, ) => e D=, for v=1,...,U. (6.8)
u=1

Thus, introducing the FRFT operator, we define the compact expression
£(h,) = FREFT [h; ().

Although, the parameter ( is usually real-valued, it is not restricted to the set
of R. Obviously, the FRFT is strongly connected to the FFT and the IFFT.

For example, by comparing equation (6.5) with (6.8), we have the equivalence

IFFT [h] = % FRFT {h; —%] .

The key insight to compute the FRFT in terms of the FFT and the IFFT
algorithm, respectively, is to recognize that the product 2(u — 1)(v — 1) can
be expressed as

141 The fractional Fourier Transformation parameter ¢ in this thesis corresponds to

« in the original article of Bailey and Swarztrauber (1994).
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(u—1)72%+ (v —1)% = (v —u)*

Inserting this relation into equation (6.8), subsequently doing some algebraic
transformations and using the discrete version of the convolution theorem of
Fourier Transformations'42, we are able to efficiently compute equation (6.8)
with the help of both the FFT and the IFFT algorithm as follows*3. Defining

the vectors p and q with elements

Qo - -

B oy for 1<u<U
Pu=30  for U<u<ow,

and

) ay for 1<u<U
u a(2uU-2—u) for U <u<2U,

with

12
Ay = ezrr{(u 1) ,

we compute first the raw transformation as
f(h,¢) = IFFT [FFT [p] © FFT [q]].

The last U elements in f(h, ¢) can be discarded due to the zero padding made
in the vector p. Thus, we store the first half of the vector f'(h, ¢) in a new
vector £~ (h,¢). The FRFT is then

f(h,) =1 (h,¢)® a_,. (6.9)

Obviously, by comparing the term inside the sum operator in equation (6.4)
with the corresponding term inside the sum in equation (6.8) we have to

establish the relation
(=21
o2
where both A and 7 can be chosen arbitrarily!44. Thus, our general option-

pricing formula (6.7), can be rewritten in terms of the FRFT as

142 Qee Proposition 2.4.3.
143 The detailed derivation of the FRFT algorithm is given in Bailey and Swarz-
trauber (1994).

144 Note that the factor & used in equation (6.4) is already included in A.
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V<Xtat7T)
A e(d—zi)a
=——0 (6.10)
A
Re |e"™("DC @ FRFT [e' 41 (=3) 0 g o o, —2—77” .
™

Although we have to compute two FFTs and one IFFT in order to ob-
tain one FRF'T, there is a substantial improvement due to the now indepen-
dent choice of strike interval and integration domain, which saves in the end
computer time. This fact becomes more important for the computation of
characteristic functions for which no closed-form solutions exist and therefore
the system of ODEs (2.40) and (2.41) must be solved numerically for each

sampling point z,.

6.3.3 Determination of the Optimal Parameters for the Numerical

Scheme

As discussed in Lee (2004) and Lord and Kahl (2007), the choice of z;, deter-
mining the specific contour in the complex plane used for the numerical in-
tegration routine is crucial in computing option prices. Lee (2004) finds that
for different option payoff functions, for different strike values and driving
processes, respectively, the optimal value of z;, thus minimizing the numerical
error, varies substantially'#>. Furthermore, the parameter w concerning the
truncation error is also of the utmost importance in a numerical option-pricing
scheme. Thus, both parameters influence the accuracy of numerical solutions.
This is illustrated in Figure 6.1 for zero-bond call options and the jump-
enhanced models of Vasicek (1977) and Cox, Ingersoll and Ross (1985b)46.
Obviously, setting w too small results in a highly oscillating solution vector.

On the other hand choosing w too high, the absolute error of the numerical so-

145 See Lee (2004) Table 2 and 3. The same observation is made in Lord and Kahl

(2007), Figure 1.
146 Both interest-rate models are enhanced with an exponentially distributed jump

component. The coefficients for the characteristic function of the jump-enhanced
Vasicek model are given in equations (8.6), (8.7), and (8.8). The particular coef-
ficients in case of the jump-enhanced CIR model are given in equations (8.11),
(8.12), and (8.13). A discussion of these models is given in Chapter 8.



104 6 Numerical Computation of Model Prices

lutions increase exponentially. The opposite statement holds for z;. Therefore,

these parameters should be chosen to avoid minimize both effects.

absolute error

600 60 1000 60

absolute error
absolute error

10 60 o . 10 60

Fig. 6.1. Graphs in the first row depict absolute errors of 512 zero-bond call prices
for alternating values of w. In the second row, the particular errors are depicted for
varying values of z;. An exponential-jump version of the Vasicek (CIR) model is used
in the left (right) column. The parameters are: r» = 0.05(0.03), x = 0.4(0.3),6 =
0.05(0.03), o = 0.01(0.1), 7 = 0.005(0.005), A = 2(2), 7 = 0.5(0.5), 7 = 2(2).

Since we want to price a vector of option prices with the computation of
one FRFT operation, thus considering one specific parameter setting for the
entire strike range, we are interested in finding the optimal parameter setting
for the pricing algorithm, (w*, z}), which minimizes the overall numerical error
in equation (6.10). Hence, we need a criterion which measures the cumulative
error of both positive and negative deviations from the theoretical solutions.
Consequently, we apply in the following analysis the root mean-squared error
(RMSE), which is
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RMSE — \/(VNum _ VTrue)/(VNum _ VTrue)
U ’

where V%™ denotes some numerical solution vector and V7"%¢ represents

(6.11)

the corresponding vector of closed-form solutions. To give an idea of the error
behavior of the FRFT pricing algorithm, we first compare quasi closed-form
solutions computed with the QUADL integration routine in MATLAB'" ac-
cording to equation (6.1) and the corresponding values due to the FRFT
algorithm as defined in equation (6.10) for a fixed number of 512 different
strike rates. The particular natural logarithms of the RMSE for zero-bond
call option prices are depicted in Figure 6.2. We make two remarkable ob-
servations. Firstly, for differing values of w and z; both models have a global
minimum of the RMSE of computed option prices. Secondly, the logarithmic
presentation of the RMSE implies a rapid and monotonic descent towards
this minimum, starting with small values of w and z;'48. In case of the jump-
enhanced CIR model, the specific error-minimizing parameter couple is clearly
evident according to the contour plot of the logarithmic RMSE given in the
lower right graph of Figure 6.2. On the other hand, the particular contour plot
of the logarithmic RMSE for zero-bond call options under the jump-enhanced
Vasicek model also clearly indicates a region of parameter couples exhibiting

approximately the same RMSE magnitude.

Consequently, we exploit this monotonic decrease of the RMSE to develop
an algorithm, which is capable of finding an optimal parameter setting (w*, z})
and simultaneously giving an estimate of the magnitude of errors of numerical
solutions even when the closed-form solutions are not known. The technique
we use for the approximation of the numerical error is based on the exponential
decreasing of the mean-squared error between two successive parameter values

in the numerical scheme. Thus, we define the approximate RMSE as

(VNum _ VNum(+))I(VNum _ VNum(+))
RMSEa = )
| .

(6.12)

o) . . .
where VN and VN¥*™"" denote numerical solutions of two successive pa-

rameter values, whether in w or in z; direction.

147 This integration routine uses an adaptive Lobatto quadrature scheme. In the

calculation of quasi closed-form solutions, we set its error tolerance to 10715,
148 This phenomenon shows up for all interest-rate model/payoff combinations men-

tioned in this thesis.
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Fig. 6.2. Logarithmic RMSEs of 512 zero-bond call option prices. In the upper
(lower) row the underlying interest rate is modeled by a jump-enhanced Vasicek
(CIR) model. The parameters are: r+ = 0.05(0.03), x = 0.4(0.3), 6 = 0.05(0.03), 0 =
0.01(0.1), 7 = 0.005(0.005), A = 2(2),7 = 0.5(0.5),7 = 2(2) and a strike range of
K € [60,90].

In Figure 6.3, differences of the logarithmic RMSE?, for two successive
parameter values of z;, and the logarithmic RMSE according to equation
(6.11) are depicted for zero-bond call prices for varying z; values. Obviously,
the approximate and exact RMSEs show nearly the same magnitude until
the minimum RMSE is reached. Afterwards, the difference, still very small,
becomes oscillating in case of the Vasicek model and experiences a decrease
of its level in case of the CIR model, respectively. This characteristic behavior
of the RMSE? is used in our algorithm to find the optimal parameter couple
(w*,z¥) and enables the formulation of an approximate error bound for the

numerical solution vector.

As mentioned above, our algorithm to find the optimal parameter couple
(w*, z¥) utilizes a steepest descent technique on the logarithm of the RMSE?.
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Fig. 6.3. The dashed line represents the difference of the logarithmic RMSE® and
the exact RMSE of 512 zero-bond call option prices and increasing values of z;.
Both graphs are drawn for w = 1400. The straight line depicts the logarithmic
RMSE in dependence of z;. The underlying model in the left (right) graph is a jump-
enhanced Vasicek (CIR) model with parameters: 7 = 0.05(0.03), k = 0.4(0.3),6 =
0.05(0.03), c = 0.01(0.1),» = 0.005(0.005), A = 2(2),7 = 0.5(0.5),7 = 2(2) and a
strike range of K € [60, 90].

Thus, initializing the algorithm, we first evaluate the numerical solution V¢
0

for some parameter values (w°,2?)'49. Subsequently, we compute two addi-
tional solution vectors for ascending parameter values in the direction of both
w and z; which are then used to derive the particular first order finite dif-
ferences. Afterwards, if the slope in w direction is smaller than the one in z;
direction, thus more negative, the next numerical solution is computed with
an exalted w and vice versa. The next step in the numerical scheme is then
again to obtain the necessary numerical solution vectors in order to derive the
particular finite differences and so on. The algorithm aborts if the smallest
value of In(RMSE®) is reached over some interval where the curve experienced
its reversal poin