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ABSTRACT: The advancement of feature recognition and advanced 
image analysis techniques facilitates the extraction of thematic informa-
tion, for policy making support and informed decisions. As a strong driver, 
the availability of VHSR data and the ever increasing use of geo-
information for all kinds of spatially relevant management issues have 
catalyzed the development of new methods to exploit image information 
more ‘intelligently’. This chapter highlights some of the recent develop-
ments from both technology and policy and poses a synthetic view on an 
upcoming paradigm in image analysis and the extraction of geo-spatial in-
formation. It starts from a review of requirements from international initia-
tives like GMES (Global Monitoring of Environment and Security), fol-
lowed by a discussion the possible answers from OBIA including a 
detailed portrait of the methodological framework of class modeling. The 
chapter closes with a short reflection on the required adaptation of standard 
methods of accuracy assessment and change detection, as well as on the 
evaluation of delineated and classified objects against the ultimate bench-
mark, our human perception. 



4       S. Lang 

1 Monitoring needs in a dynamic world 

There is an ever increasing demand for regularly updated geo-spatial in-
formation combined with techniques for rapid extraction and targeted pro-
vision of relevant information. The need for timely and accurate geo-
spatial information is steadily increasing, trying to keep pace with the 
changing requirements of the society at a global dimension. International 
initiatives strive for standardized solutions, as examples like cooperative 
effort of Global Earth Observation System of Systems (GEOSS) or the 
European initiative Global Monitoring for Environment and Security 
(GMES) impressively show. These initiatives strive to provide holistic, yet 
operational answers to global conventions or trans-national directives and 
agendas to halt uncontrollable change of physical parameters or loss of 
lives both potentially human-induced by unlimited growth (e.g. UN 
Framework Convention on Climate Change, FCCC or the UN Convention 
on Biological Diversity, CBD or the UN Convention to Combat Desertifi-
cation, CCD1; EC Water Framework Directive, WFD or the EC Flora-
Fauna-Habitat-Directive, FFH).  

GMES: various applications – one approach 

Beyond these more environmental aspects, the EC-ESA conjoint initiative 
GMES2 follows the idea, that environmental integrity and societal stability 
both play together and may reinforce each other under certain conditions. 
The ‘S’ stands for security, and – next to environmental risks or potential 
hazards – the scope of observed treaties and conventions also comprises 
terrorism, critical infrastructure, refugees and weapons of mass destruc-
tion, to name just a few topics. Both GEOSS and GMES rely on remote 
sensing (RS) technology as a powerful and ubiquitous data provider, and 
both initiatives promote the integration of RS with in-situ data technology 
for the development of operational monitoring systems and integrated ser-
vices, based on earth observation (EO) data. The scope is wide covering 
areas ranging from environmental integrity to human security, and the idea 
of serving this range of applications with a profound, ubiquitous set of 
pooled data and adaptive methods is compelling. And more than this, the 
approach is concept-wise sustainable, both in terms of its scientific 
strength and its operational capability. Operational services, delivered as 

                                                      
1 http://www.unccd.int/ 
2 www.gmes.info 
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fast-track core services (FTCS)3 and such in preparation4 provide status ob-
servations of highly complex systems with relevance to treaties and politi-
cal agreements of different kinds. However, dealing with such advanced 
integrated tasks may no longer keep valid the monitoring of single com-
partments, but an integrated high-level approach (see 2). 

Monitoring systems as required in the GMES context (Zeil et al., in 
press; Blaschke et al., 2007; Tiede & Lang; 2007) need to be capable of 
transforming complex scene content into ready-to-use information. The 
advancement in feature recognition and advanced image analysis tech-
niques facilitates the extraction of thematic information, for policy making 
support and informed decisions, irrespective of particular application 
fields. The availability of such data and the increasing use of geo-
information for sustainable economic development and protection of the 
environment have catalyzed the development of new methods to exploit 
image information more efficiently and target-oriented. Global commit-
ments, directives and policies with their pronounced demand for timely, 
accurate and conditioned geo-spatial information, ask for an effective an-
swer to an ever increasing load of data collected from various monitoring 
systems. It is obvious, yet maybe not consciously thought of, that – along 
with ever improved sensor technology – a technically and spatially literate 
user community asks for ever more advanced geo-spatial products, and ex-
presses their needs accordingly. With an increased level of consciousness 
of prevailing problems the need for targeted information is rising double, it 
seems. The remote sensing community has to react and must deliver. 
When industry primarily highlights achievements in sensor developments, 
the efforts taken to analyze these data and to generate added value from 
these can hardly be underlined too much. 

The upcoming paradigm of object-based image analysis (OBIA) has 
high potential to integrate different techniques of processing, retrieval and 
analyzing multi-resolution data from various sensors. By bridging techni-
cal and sector-oriented domains from remote sensing and geoinformatics 
we may significantly enhance the efficiency of data provision for policy 
making and decision support.  

New data and increasing complexity: OBIA as the answer?  

Recent years’ advances in sensor technology and digital imaging tech-
niques, along with ever increasing spatial detail, have challenged the re-

                                                      
3 FTCS on land, sea, and emergency 
4 Pre-operational services on security and atmosphere 



6       S. Lang 

mote sensing community to strive for new methods of exploiting imaged 
information more intelligently. The word ‘intelligence’ in this context has 
several facets: (1) an advanced way of supervised delineation and categori-
zation of spatial units, (2) the way of how implicit knowledge or experi-
ence is integrated, and (3) the degree, in which the output (results) are con-
tributing to an increase of knowledge and better understanding of complex 
scene contents.  

New earth observation (EO) techniques and concepts from GIScience 
have led to the emerging field of OBIA5. The main purpose of OBIA in the 
context of remote sensing applications is to provide adequate and auto-
mated methods for the analysis of very high spatial resolution (VHSR) im-
agery by describing the imaged reality using spectral, textural, spatial and 
topological characteristics. OBIA offers a methodological framework for 
machine-based interpretation of complex classes, defined by spectral, spa-
tial and structural as well as hierarchical properties (Benz et al., 2004; 
Burnett & Blaschke, 2003; Schöpfer et al., in press; Niemeyer & Canty, 
2001; Hay et al., 2003). OBIA has been pushed by the introduction of fine 
resolution image data that for a broad range of application domains pro-
vides an h-res situation (Strahler et al., 1986). In h-res situations, the pixel 
size is significantly smaller than the average size of the object of interest. 
In this constellation, segmentation as a means of regionalization is an effi-
cient means of aggregation the high level of detail and producing usable 
objects. Therefore, segmentation is a crucial methodological element in 
OBIA, but not an exclusive or isolated one (see 3). 

VHRS satellite imagery is widely available now and gained popularity 
in research, administration and private use. If not the ‘real’ data, so at least 
the ‘natural color’ products can be easily accessed through web-based vir-
tual globes like Google Earth, NASA World Wind, MS Virtual Earth and 
the like. Globes have penetrated daily life information exchanges, and sat-
ellite data in a ‘this-is-my-house-resolution’ have become the staple diet to 
feed people’s greed for immediate contextual spatial information6.  

From a scientific point of view satellite-mounted sensors and air-borne 
scanners have now reached the level of detail of classical aerial photogra-
phy. For decades, fine-scaled (i.e. larger than 1:10,000) environmental as 
well as security-related applications were relying on aerial photography 
and visual inspection as a primary means to extract relevant information. 

                                                      
5 The scientific community discusses to use the term GEOBIA to emphasize (1) 

the strong contribution of GIScience concepts and (2) the focus on space re-
lated applications (see Castilla & Hay in this volume). 

6 See Tiede & Lang (2007) for a discussion how the presence of familiar spatial 
context can be utilizing for communicating complex analytical contents. 
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On the other hand, medium to low resolution satellite sensors were mainly 
used for coarse-scaled mapping and multi-spectral classification, with a 
probabilistic, yet limited set of classes being targeted at (Lang, 2005). This 
quite dichotomous gap has been separating two application domains and 
the respective methods applied, e.g. in landscape-related studies which had 
to choose between either of them (Groom et al, 2004).  

Closing this gap, but embarking on another class of problem: with the 
advent of digital data from airborne and satellite-borne sensors we return 
to the very challenge of air-photo interpretation: how do we deal with the 
enormous detail? Looking back to several decades of computer technology 
we trust in automated methods for analysis and interpretation, even of 
complex imaged contents. While a several problems remain a challenge, a 
range of tangible solutions have been developed by successfully combin-
ing GIS and remote sensing techniques for reaching closer at the photo-
interpreter’s capacity. 

As briefly mentioned before, the need for highly accurate and regularly 
updated geo-spatial information cannot be met by advancements of sensor 
technology alone. New sensors and new kinds of data may do provide a 
wealth of information, but this ‘information overload’ needs to be condi-
tioned, in order to fit the communication channels of the addressees.  Thus, 
advanced methods are required to integrate single information packages. It 
is necessary to both synchronize technologies and harmonize approaches. 
The first is related to the acquisition, pre-processing, and retrieval of multi-
sensor, multi-spectral, multi-resolution data from various sensors. The sec-
ond deals with the integration of spatial analysis techniques into image 
processing procedures for addressing complex classes in a transparent, 
transferable and flexible manner.  

The guiding principle of OBIA is likewise clear as it is ambitious: to 
represent complex scene content in such a way that the imaged reality is 
best described and a maximum of the respective content is understood, ex-
tracted and conveyed to users (including researchers). The realization, 
therefore, is not trivial, as the ultimate benchmark of OBIA is human per-
ception (see 3.3). This, our visual sense of the environment is a common 
experience, easy to share yet difficult to express in words or even rule sets. 
Indeed, the challenge is to make explicit the way how we deal with imaged 
information in various scales, how we manage to relate recognized objects 
to each other with ease, how we understand complex scene contents read-
ily. To this end, OBIA utilizes concepts from spatial thinking, which again 
is influenced by cognitive psychology. 
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2 A plurality of solutions – conditioned information and 
geons 

An increasing detail of data and complex analysis tasks opens the door for 
a plurality of solutions. Often, there is no longer a single valid choice of 
e.g. a distinct land cover class. Rather, there is a user-driven set of classes; 
not necessarily restricted to extractable features, but expressed according 
to the very demand. Fine-scaled representations of complex real world 
phenomena require means for modeling the underlying complexity, for 
mapping the dynamics and constant changes. Automated techniques mak-
ing effective use of advanced analysis methods help understanding com-
plex scene contents and try to match the information extraction with our 
world view.  

But OBIA is more than feature extraction (see chapter 3). It provides a 
unifying framework with implications for policy-oriented delivery of con-
ditioned information. By this, it also enables monitoring of system-driven 
meta-indicators like vulnerability or stability.  

 

 
Fig. 1. High-level indicators for monitoring 

 
From this point of view, a broad concept of manageable units makes 

sense. The author proposes the term geon (Lang & Tiede, 2007) to de-
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scribe generic spatial objects that are derived by regionalization and ho-
mogenous in terms of a varying spatial phenomenon under the influence 
of, and partly controlled by, policy actions. A geon7 (from Greek gé = 
Earth and on = part, unit) can be defined as a homogenous geo-spatial ref-
erencing unit, specifically designed for policy-related spatial decisions. 
The geon concept (see figure 2) can be seen as a framework for the region-
alization of continuous spatial information according to defined parameters 
of homogeneity. It is flexible in terms of a certain perception of a problem 
(policy relevance/scope). It employs a comprehensive pool of techniques, 
tools and methods for (1) geon generation (i.e. transformation of continu-
ous spatial information into discrete objects by algorithms for interpola-
tion, segmentation, regionalization, generalization); (2) analyzing the spa-
tial arrangement, which leads to emergent properties and specific spatial 
qualities; and (3) monitoring of modifications and changes and evaluation 
of state development. The latter, characterizing spatio-temporal variability 
require appropriate means to distinguish noise or slight modifications from 
real changes. In addition, there is the possibility of recovering objects in 
the presence of ‘occlusions8’ (i.e. data errors, measure failures, lack of 
data, mismatch of data due to bad referencing). 

 

                                                      
7 The term geon (for geometric ions) was initially used by Biederman (1987), who 

hypothizes that cognitive objects can be decomposed into basic shapes or com-
ponents. Geons in Biederman’s view are basic volumetric bodies such as cubes, 
spheres, cylinders, and wedges. The concept used here is related, but not identi-
cal to this view. 

8 This term, again, is borrowed from Biederman (1987) 
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Fig. 2. The Geon Concept 

 
Within the spatial extent in which a certain policy applies (policy scope, 

PS), a group of geons makes up a spatially exhaustive set (geon set). PS 
comprises the spatio-temporal extent in which a certain policy is valid. 
This extent usually coincides with administrative units, but not necessarily 
does: in the context of the EC Water Framework Directive, catchments 
function as reference units. In cases when PS is defined by legal bounda-
ries, the spatial limit of the geon set, as derived functionally, may not fully 
coincide with PS. As policies address various scale domains and their im-
plications apply to particular domains, a geon set is scale-specific and 
adapted to the respective policy level. Several geon sets may exist, alto-
gether forming in a spatial hierarchy. Using geons, we are capable of trans-
forming singular pieces of information on specific systemic components to 
policy-relevant, conditioned information. Geons are of dynamic nature. 
Monitoring the spatio-temporal development of geons is critical for assess-
ing the impact of policies and the compliance with obligations or commit-
ments attached to those. The ‘fate’ of a geon is monitored using the fair 
state concept, which takes into account the natural dynamics (improvement 
or deterioration in regard to an optimum or average state). Management ac-
tions have to be taken, when a certain threshold is reached.  
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Irrespective of the very concept applied for naming delineated units, and 
irrespective of the different fields of use, OBIA aims at the delineation and 
the classification of relevant spatial units. The way to perform this task is 
an integrated, cyclic one, and in the following section this will be dis-
cussed, under the heading ‘class modeling’. 

3 Class modeling 

From a methodological point of view, one may observe a convergence of 
various techniques from formerly distinct GIS and remote sensing em-
bankments; aiming at the aforementioned purpose, OBIA is trying to 
bridge these. OBIA rests upon two interrelated methodological pillars, i.e. 
(1) segmentation / regionalization for nested, scaled representations; (2) 
rule-based classifiers for making explicit the required spectral and geomet-
rical properties as well as spatial relationships for advanced class model-
ing. We speak of ‘image analysis’ and not merely of ‘image classification’, 
since the process of OBIA is iterative rather than a linear and strict subse-
quent one. The process of OBIA is a cyclic one. It is usually not enough to 
think of (a) delineation and (b) labeling9. By its iterative nature, the process 
is highly adaptive and open for accommodating different categories of tar-
get classes, from specific domains, with different semantics, etc. Class 
modeling (Tiede et al., 2006; Tiede & Hoffmann, 2006) enables operators 
to tailoring transformation of scene contents into ready-to-use information 
according to user requirements. It supports data integration and the utiliza-
tion of geo-spatial data other than images (e.g. continuous data like altitude 
or data representing administrative units).  
  

                                                      
9 To underline this, Baatz et al. (this volume) propose the term “object-oriented” to 

be used instead of “object-based”, because the former is more target-oriented, 
teleological, whereas the latter may be misleading and implying a more static 
concept. However, since the term “object-oriented” is strongly occupied by 
computer scientists, the author stays with “object-based”. 
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Fig. 3. Class modeling: the symbology marks the move from distinct realms of 
segmentation and classification towards an interlinked concept 

 
Class modeling (as for example realized by the modular programming 

language CNL, cognition network language), provides flexibility in pro-
viding problem-oriented solutions for advanced analysis tasks. Examples 
are scene-specific high-level segmentation and region-specific multi-scale 
modeling (Tiede et al., this volume) or the composition of structurally de-
fined classes as proposed by Lang & Langanke (2006). The latter was suc-
cessfully realized in a study on semi-automated delineating biotope com-
plexes (Schumacher et al., 2007, see figure 9a).  

 

 
Fig. 4. Class modeling – a cyclic process. The example of modeling biotope com-
plexes  
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From pixels (via image regions) to image objects 

In object-based image analysis, the ‘image object’ is the central methodo-
logical element and as an object of investigation, it resides somewhere be-
tween application-driven plausibility and technology-driven detectability. 
To this end, we conjoin image segmentation with knowledge-based classi-
fication. Image segmentation decreases the level of detail, reduces image 
complexity, and makes image content graspable. Segmentation produces 
image regions, and these regions, once they are considered ‘meaningful’, 
become image objects; in other words an image object is a ‘peer reviewed’ 
image region; refereed by a human expert. A pixel as a technically defined 
unit can be interpreted in terms of its spectral behavior, in terms of the ag-
gregation of spectral end-members, or in terms of its neighborhood. A 
pixel cannot be assigned a valid corresponding real-world object, but an 
image object can. Overcoming the pixel view and providing image objects 
that ‘make sense’ opens a new dimension in rule-based automated image 
analysis; image objects can be labeled directly using a range of characteris-
tics, including spatial ones, or they can be used for modeling complex 
classes based on their spatial relationships. Coupled with e.g. a rule-based 
production system we can make expert knowledge explicit by the use of 
rules (see below).  

Hierarchical, multi-scale segmentation  

Multi-scale segmentation has often been linked with hierarchy theory 
(Lang, 2002). This is an appealing concept, and the comparison seems ob-
vious as both hierarchy theory and multi-scale segmentation deal with hi-
erarchical organization. Still we need to be careful: hierarchy theory pro-
poses the decomposability of complex systems (Simon, 1973), but imagery 
is just a representation of such systems. An imaged representation is in 
several aspects reductionism: it is a plane picture only revealing reflection 
values. So hierarchy theory forms a strong conceptual framework, rather 
than a methodological term for multiple segmentation cycles. What we de-
lineate, needs to be assigned a function first (image regions – image ob-
jects – (geons) – classes, see above). We should be aware that hierarchical 
segmentation at first hand produces regions of increasing average size (or 
number of pixels, respectively). But hierarchy theory is not about size, it 
deals with increasing degree of organization (Laszlo, 1972; Szaramovicz, 
2004). What makes a strong link to hierarchy theory is not multiple seg-
mentation alone, but the way we approach complexity, how we model and 
decompose it, and how we integrate our knowledge about it.  
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When fitting image complexity into hierarchical levels, it does not hap-
pen independently from human perception (Lang 2005). Allen & Starr 
(1982) point out that “discrete levels need to be recognized as conven-
ience, not truth” and levels would emerge “as device of the observer” 
(ibid.). While drastically expressed, we should be aware that instead of 
questioning the ontological truth of scaled representations, we should 
rather focus on their epistemological relevance for target objects. Human 
perception is a complex matter of filtering relevant signals from noise, a 
selective processing of detailed information and, of course, experience. To 
improve automated object extraction we therefore seek for mimicking the 
way how human perception works (see 3.3 and Corcoran & Winstanley, 
this volume). 

Is there one single set of multiple segmentations applicable ‘horizon-
tally’ over the entire scene? The multi-scale option does not always lead to 
satisfying results. This applies in scenes, where multiple scales occur in 
different domains. Tiede et al. (this volume) discuss an application of re-
gionalized segmentation (Lang, 2002). 

Nested scaled representations need to consider scale. While this state-
ment is somewhat tautologically, there is no single solution to this and dif-
ferent approaches exist to address this. One, aiming at a strict hierarchical 
representation, performs multi-scale segmentation with coinciding bounda-
ries. In other words: a super-object gets assigned exactly n sub-objects 
(Baatz & Schäpe, 2000). The advantage is a clear 1:n relationship between 
super- and sub-object. On the other hand, since boundaries are ‘cloned’ up 
the scaling ladder (Wu, 1999), boundaries will not be generalized. It is 
scale-adapted, but not scale-specific. On the other hand, scaled representa-
tions are scale-specific, if there is – as in visual interpretation – a match 
between average size and generalization of boundaries. This is for example 
realized in the software SCRM (Castilla, 2004). The drawback is, how-
ever, boundaries do not coincide and cannot be used for ‘direct’ modeling 
(but see Schöpfer et al., Weinke et al., this volume). 

Knowledge representation and cognition networks 

Knowledge plays a key role in the interpretation-focused, value-adding 
part of the remote sensing process chain (Campbell, 2002). We have at our 
disposal a huge store of implicit knowledge and a substantial part of it is 
used in image interpretation (ibid.). By training we subsequently comple-
ment implicit knowledge with a more formalized knowledge obtained 
through formal learning situations (e.g. the specific spectral behavior of 
stressed vegetation) and experience. From an artificial intelligence (AI) 



Object-based image analysis for remote sensing applications      15 

perspective two components of knowledge can be distinguished, proce-
dural and structural knowledge. Procedural knowledge is concerned with 
the specific computational functions and is therefore represented by a set 
of rules. Structural knowledge implies the way of how concepts of e.g. a 
certain application domain are interrelated: in our case that means, in how 
far links between image objects and ‘real world’ geographical features is 
established. Structural knowledge is characterized by high semantic con-
tents and it is difficult to tackle with. A way to organize structural knowl-
edge is the use of knowledge organizing systems (KOS), either realized by 
graphic notations such as semantic networks (Ibrahim, 2000; Pinz, 1994; 
Liedtke et al., 1997; Sowa, 1999) or and more mathematical theories like 
formal concept analysis (FCA, Ganter & Wille, 1996). Within image 
analysis semantic nets and frames (Pinz, 1994) provide a formal frame-
work for semantic knowledge representation using an inheritance concept 
(is part of, is more specific than, is instance of). As semantic nets need to 
be built manually, they allow for controlling each and every existing con-
nection once being established. With increasing complexity the transpar-
ency and operability will reach a limit. Bayesian networks are manually 
built, but the weighting of the connections can be trained, though it has to 
be trained for every connection. 

 

 
Fig. 5. Colour, form and arrangement evoke certain parts of our knowledge and 
experience (from Lang, 2005) 
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Over several decades techniques were developed to group pixels into 
spectrally similar areas and link spectral classes – if possible – to informa-
tion classes. The pixel based approach is considered intrinsically limited 
(Blaschke & Strobl, 2001; Benz et al., 2004; Schöpfer et al., in press), 
since only spectral properties of (geographic) features are taken into ac-
count. The ‘picture element’ as a technical driven smallest unit integrates 
signals but does not reflect spatial behavior in a sufficient manner. Even if 
direct neighborhood is considered by applying kernel-based techniques, 
the ‘environment’ remains a square or any other predefined regular geo-
metric shape. Modeling in this case is confined to spectral characteristics 
and related statistical behavior (texture, etc.). Spatial explicit characteris-
tics are left aside.  

The process of OBIA is supported by the use of so-called cognition 
networks (Binnig et al., 2002) or related concepts of KOS that provides the 
framework for modeling user-oriented target classes and their composition 
by spatial components. A cognition network controls the system of target 
classes and the class definitions as well as the mode of representation (e.g. 
regionalized segmentation or one-level vs. multi-level representation, see 
Tiede et al., this volume; Weinke et al., this volume). It provides the basis 
for a rule-based production system, which is controllable and transferable, 
as well transparent to both operators and users. Even if there are means 
and techniques to formalize knowledge and to encapsulate it into rule 
bases, the vast intuitive knowledge of a skilled interpreter operative for 
many years is hard to encapsulate in a rule system. Transferring existing 
experience effectively into procedural and structural knowledge remains a 
challenge of AI systems, especially taking into consideration the user-
oriented plurality of solution, as discussed above. Cognition Network Lan-
guage (CNL, Baatz et al., this volume), the meta-language to set up rule 
sets in Definiens software10 offers a range of tools and algorithms to even 
address complex target classes. Establishing a rule set is often time-, labor- 
and therefore cost-intensive. But once a system is set up, and proved to be 
transferable, the effort pays off. The application of it to like scenes does 
not imply linear effort, as visual interpretation does. Therefore, in terms of 
operability one needs to distinguish between establishing a cognition net-
work, and its, mostly scene-depending, parameterization. 

OBIA can play a key role for image understanding (Lang & Blaschke, 
2006). The entire process of image analysis is characterized by the trans-
formation of knowledge. Finally, a scene description representing the im-
age content should meet the conceptual reality of an interpreter or user. By 
establishing a body plan for the classes targeted at, knowledge is stepwise 

                                                      
10 See www.definiens-imaging.com 
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adapted through progressive interpretation and class modeling. By this, 
knowledge is enriched through analyzing unknown scenes and transferring 
knowledge will incorporate or stimulate new rules. A particularity with 
spatial characteristics is related to the notion that parameters for spatial 
characteristics are difficult to determine. Whereas spectral reflectance can 
be measured directly by spectrometers on the ground, spatial or hierarchi-
cal properties are often ill-defined, less explicit and therefore difficult to be 
used as distinctive rules. Fuzzification of ranges (e.g. “rather small in size” 
or “rather compact”) is one way to tackle this problem, but it is often not 
the range as such that is ambiguous, but the very spatial property itself. 

Pro-active classification  

Operators applying methods of object-based image analysis must be ready 
for taking over responsibilities. Isn’t that contradictory? In most publica-
tions we read about ‘automated’ or at least ‘semi-automated’ analysis. 
Automation, of course, is the overall aim of using this approach – like with 
any other computer-based technique. However, with increasing complexity 
of the scenes and the classes or features to extract, we need to carefully 
feed the system with our experience, in a usable form. The approach to-
wards this goal must be interdisciplinary: modeling complex target classes 
using spatial and structural characteristics not only requires computational 
skills, but also a wealth of knowledge about the area and the composition 
of the imaged setting.  

Maybe it sounds provokingly, but it may be stated that a standard super-
vised multi-spectral classification is mechanistic. The machine is fed with 
samples, which we assume to be correct, and then provides a correspond-
ing result. The process involves a certain level of probability but highly 
controllable. Class modeling, in contrast, is not mechanistic, but systemic. 
It not only requires ‘supervision’, but pro-active engagement from the op-
erator. The combination of existing techniques incorporate know-how and 
existing experience in the different areas: (1) the modeling stage of the 
classes relies on expert knowledge that can build upon manual interpreta-
tion skills; (2) users that practice pixel-based statistical approaches can 
utilize their understanding in machine based classifications; (3) experi-
ences in semi-automatically detecting and delineating features on high 
resolution data can be used for the classification process as such. Therefore 
object-based methods will integrate the existing remote sensing know how 
rather than replacing prevailing classification practices.  
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Fig. 6.  OBIA as an integrated approach (from Lang, 2005, modified) 

4 Object assessment and evaluation  

Introducing new ways of image analysis is not free of challenges in terms 
of adapting both core and complementary methods (Lang & Blaschke, 
2006). Among others, this applies for object-based accuracy assessment 
and object-based change detection. ‘Object-based’ in this case means that  
accuracy or changes are assessed in such a way that spatial properties are 
unambiguously reflected.  Both spatial-explicit assessment techniques are 
facing similar challenge of comparing data sets according to criteria, which 
are hardly reducible to binary decisions of true or false. Possible solutions 
are discussed in this volume and preceding studies under different aspects 
(Schöpfer et al, this volume; Schöpfer & Lang, 2006; Lang et al., in press; 
Castilla & Hay, 2006; Weinke et al; this volume; Weinke & Lang, 2006). 
Thus, in the following two sections only key aspects are summarized. 

Then, touching briefly at the strands of cognitive psychology, the chap-
ter concludes with a note on object evaluation, for our results need to be 
proven at the ultimate benchmark, our human perception.  
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Object-based accuracy assessment 

Quantitative site-specific accuracy assessment (Congalton & Green, 1999) 
using error matrices and specific assessment values (such as error of com-
mission, error of omission, kappa ^) is widely used for evaluating the 
probability of correct class assignments and the overall quality or reliabil-
ity of a classification result. Within OBIA, point-based accuracy assess-
ment only gives indication on thematic aspects (labeling). Thematic as-
sessment can be checked by generating random points within objects and 
comparing the labels against a ground truth layer. Alternatively, a set of 
objects can be selected in advance and be used as reference information. 
The decision of being thematically correct may not be a binary one: in 
fuzzy-based systems, the assessment of class membership is rather quali-
fied by a confidence interval. Still, thematic accuracy assessment may be 
dubbed ‘1-dimensional’: there is one specific label, i.e. the most likely 
classification result, to be checked on one specific site. Note that also 
checking an entire object in terms of its label is a point-based approach11. 
Spatial accuracy instead requires different ways of assessment. There are 
at least two aspects to be considered: (1) the appropriateness of an object’s 
delineation (match of extend and shape with real situation) and (2) the pre-
cision of boundary delineation (match with scale applied). 

In smaller test areas with a limited number of larger objects, every sin-
gle object may be assessed individually: classified image objects can be 
visually checked against manual delineation (e.g. Koch et al., 2003). Still, 
a quantitative assessment requires at least some basic GIS overlay tech-
niques. But performing hard intersections implies operational problems of 
producing sliver polygons and the like. A solution of ‘virtual overlay’ has 
been proposed by Schöpfer & Lang (2006) (see also Schöpfer et al., this 
volume), looking at specific object fate. This comprises object transition 
(fate in time) and object representation (fate in terms of different ways of 
delineation). Generally speaking, we encounter difficulties in performing 
object-based accuracy assessment, which satisfies the needs as being dis-
cussed by Congalton & Green (1999): (1) a 100% geometrical fit between 
reference and evaluation data is usually not given due to the issue of scale 
and the different ways of delineation; (2) the thematic classes are not mu-
tually exclusive when using fuzzified rule bases. In other words, the accu-
racy is also a matter of geometrical and semantic agreement (Lang, 2005).  

                                                      
11 This can be considered a special case of ecological fallacy (Openshaw, 1984), or 

better: individualistic fallacy, as we assume correctness for an entire area based 
on point-based observation. See also the discussion about polygon heterogene-
ity Castilla & Hay, 2006. 
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Object-based change detection and analysis 

Monitoring is about detecting, quantifying and evaluating changes. With-
out proper change assessment, any decision making process is vague, and 
any management measure to be taken is ill-posed. Changing objects (or 
geons, see the discussion about fair state above) do not only change in 
terms of label, but also – and usually more often – in terms of their spatial 
properties. A habitat under observation may not have changed its class 
over time, given that is was measured on a specific point located e.g. in the 
centre of the habitat area, where there have no changes occurred. On the 
other hand, it may have been substantially shrinked through activities 
around it. So its function of providing living space for certain organisms 
may not be further fulfilled. In terms of its spatial component, object-based 
change detection faces a similar class of problems as object-based accu-
racy assessment. Common image-to-image or map-to-map comparisons 
(Singh, 1989) are site-, but not object-specific, i.e. they refer to pixels. Any 
aggregated measure based on this, becomes spatially implicit. Object-
based change analysis needs to specifically compare corresponding ob-
jects. Methodological frameworks have been discussed by Blaschke, 2005; 
Niemeyer & Canty, 2001; Straub & Heipke, 2004; Schöpfer & Lang, 
2006; Schöpfer et al., this volume. Like with object-based accuracy as-
sessment, vector overlays (intersections) produce very complex geometry, 
which is later on difficult to handle and critical in terms of post-processing. 
Visual inspection is subjective and time-intensive and therefore of limited 
operational use.  

In GIScience there are generic concepts available to describe the spatial 
relationships among spatial objects (e.g. Mark, 1999 or Hornsby and 
Egenhofer, 2000) which are built upon sets of spatial relationships. The re-
lationships among spatial objects are built on basic topological principles 
like containment, overlap, and proximity. In addition to topology, the in-
crease or decrease in size are two further qualities describing temporal dy-
namics, with presence or absence of objects form the extremes. While 
these basic categories for describing mutual spatial relationships are con-
ceptually clearly distinguishable, in reality a combination or any kind of 
transition may occur. The problem is usually reinforced by the effects of 
generalization. Spatial changes may get completely averaged by applying 
smaller scales of representations (figure 7). 
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Fig. 7. Substantial changes that may only occur in fine-scaled representation. Left: 
Habitat next to a road in state t0. Right: state t1b - the habitat is split by a small 
road that (1) is not reflected in coarser scale and (2) only slightly decreases habitat 
area; state t1b: the habitat has been influenced in terms of its boundaries; functional 
properties have changed substantially (the core area, indicated in white, has 
shrinked), but area has remained the same.  

Object evaluation – the ultimate benchmark  

It is recommendable, in the entire process of OBIA, not to forget the ulti-
mate benchmark, i.e. our (visual) perception. The machine is supportive – 
it reacts on parameters, though the expert has to decide (figure 8). 
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Fig. 8. Object delineation: the expert filter and the orchard problem (from Lang, 
2005; Lang & Langanke, 2006, modified) 

 
Region-based segmentation algorithms, like the name indicates, produce 

regions according to a certain criterion of homogeneity (spectral similarity, 
compactness, etc.). Due to their bottom-up nature, they are limited in pro-
viding delineations of aggregates that consists of high contrast, but regu-
larly appearing (sub-)objects. These kinds of structural arrangements, such 
as an orchard (Lang & Langanke, 2006) or a mire complex with pools and 
hummocks (Burnett et al., 2003), are readily delineated by humans, though 
hard to grasp by a machine. This is a different kind of homogeneity: regu-
larity in structure (repetitive patterns) or conformity (i.e. constancy) in 
change.  

The orchard problem and related problems (Lang & Langanke, 2006) 
arises when addressing geographical features that exhibit conceptual 
boundaries rather than ‘real’ ones. Consider an orchard, which is deline-
ated on an aerial-photograph with ease, because of the specific arrange-
ment of fruit trees in a matrix of grass. Even, if the orchard is situated next 
to a meadow with the same spectral behavior as the matrix, humans would 
draw the boundary line somewhere in between. Reasons for that can be 
found in the human way to deal with heterogeneity according to the gestalt 
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laws (Wertheimer, 1925) and other principles of human vision. Both the 
factor of good gestalt and the factor of proximity and continuation explain 
why humans would delineate an object on a higher level. As found out by 
Navon (1977), a scene is rather decomposed than built-up: if segmentation 
routine start from pixels, it can hardly mimic the way of visual processing, 
namely to start from a global analysis of the overall pattern and then to 
proceed subsequently to finer structures.  

The limitations as pointed out above may require coping strategies like 
the introduction of hybrid techniques. This means in this context the com-
plementary usage of machine-based automated delineation of basic units 
and high-level aggregation by a human interpreter (see figure 9).  

 

 

 
Fig. 9.  Delineation of habitat complexes: full automated class modeling vs. hy-
brid approach.   

 
Recent advances in visual intelligence research have found further ex-

planatory rules for the interpretation of geometrical (or spatial) structures 
(Hofman, 1998), and some of these provide valuable hints for the short-
comings of the difficulties we are facing when trying to automate the in-
terpretation of complex scenes. There are rules concerning the way how 
something is interpreted in a constructive way, e.g. how lines in 2D are in-
terpreted in 3D (straight lines, coinciding lines, collinear lines). But when 
dealing with satellite image data or air-photos these rules are less impor-
tant, since the perspective is always vertical and requires abstraction, any-
way. Others make us favor constellations which likely exist, and neglect 
theoretical, unlikely ones. This implies utilizing certain ‘world views’, e.g. 
the rule of regular views, which excludes some constellations to be very 
unlikely, is based on the concept of regularity; and this is a matter of ex-
perience. The Gestalt law of symmetry, though being powerful in explain-
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ing this phenomenon in part, is not capable to cover all cases (ibid.). But 
subjectively perceived structures based on constructed boundaries can be 
very complex. 

6 Conclusion 

This chapter has highlighted ‘drivers’ for object-based image analysis as 
well as some of the ‘responses’ as they became key characteristics of 
OBIA. The aim of the opening chapter for the first book section asking 
“Why object-based image analysis?” was to put forward profound ideas 
and basic concepts of this new approach, as it was to discuss the tasks 
challenging it. Both motivation and requirements for OBIA were presented 
in the light of a world of increasing complexity to be addressed by multiple 
solutions for global monitoring issues. Conceptual elements of this new 
approach were discussed considering spatial as well as perceptual aspects. 
Drawing from those, methodological implications have been pointed out in 
terms of adaptations and further development of traditional methods, em-
powered by a successful integration of GIS and remote sensing techniques. 
The subsequent chapters of this section will complement these views with 
many additional aspects presented from various angles and backgrounds.  
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