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1 Introduction

Companies such as Google, Yahoo and Microsoft maintain extremely large data
repositories within which searches are frequently conducted. In an article entitled
“Data-Intensive Supercomputing: The case for DISC” Randal Bryant describes
such data repositories and suggests an agenda for appying them more broadly to
massive data set problems of importance to the scientific community and society
in general.

Large-scale data repositories have become feasible because of the low cost of
disc storage. For $10,000 one can buy a processor with 1012 bytes of disc storage,
divided into blocks of capacity 64, 000 bytes. A typical repository (far from the
largest) might contain 1000 processors, each with 1012 bytes of storage.

It is of interest to develop streaming algorithms for basic information process-
ing tasks within such data repositories. In this paper we present such algorithms
for selecting the elements of given ranks in a totally ordered set of n elements and
for a related problem of approximate sorting. We derive bounds on the storage
and time requirements of our algorithms.

Such data repositories support random access to the disc blocks. Therefore, it
is reasonable to assume that the stream of input data to our sorting and selection
algorithms is a random permutation of the disc blocks.

We also consider parallel algorithms in which the data arrives in several inde-
pendent streams, each arriving at a single processor. Since all the processors of
such a repository are co-located, we assume that interprocessor communication
is not a bottleneck.

2 Streaming Algorithms

The input to a streaming algorithm is a sequence of items that arrive over time.
The output of the streaming algorithm on a given sequence is specified by a
function from sequences into some range. The algorithm processes each item in
turn and produces an output after the last arrival. The streaming algorithm may
be of three types:
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1. In a basic streaming algorithm the length of the input is specified in advance.
2. In an anytime streaming algorithm the input may end at any time, but an

upper bound on the length of the input is given.
3. In an everytime streaming algorithm an upper bound on the length of the

input is given, and the algorithm is required to produce a correct output for
every prefix of the input.

The working storage of a streaming algorithm is a buffer of limited capacity.
We are interested in the following measures of complexity: the capacity of the
buffer and the time, or amortized time, to process an item.

In our case the items are keys drawn from a totally ordered set. We assume
that the keys arrive in a random order, and the algorithm is required to be
correct with high probability. If, more realistically, we assumed that the input
consists of blocks of N keys, where the allocation of keys to blocks is arbitrary
but the blocks arrive in a random order, then our results would still hold, except
that the storage requirement would be multiplied by N .

We restrict attention to deterministic or randomized algorithms that gain
information about the arriving keys solely by performing comparisons, and we
measure time complexity by the number of comparisons.

We often make statements of the form “The algorithm is correct with high
probability when provided with O(f(n)) units of the computational resource.
(such as storage or time).” The precise meaning of such a statement is: “For
every δ > 0 there exist constants c and n0 such that, for all n > n0, the algo-
rithm is correct with probability ≥ 1 − δ when provided with cf(n) units of the
computational resource..” An algorithm is optimal within a factor c if, for n
sufficiently large, its resource requirement is within a factor c of a lower bound
that holds for every algorithm for the problem.

3 Results

The α-quantile of a totally ordered set of n keys is the �αn�th smallest element.
We present optimal algorithms (simultaneously for time and storage), under the
random arrivals assumption, for the following problems:

1. Selection: Compute an α-quantile for a given α.
2. Multiple selection: Compute α-quantiles for many given values of α.
3. Parallel selection: In which the input is divided into streams, each with

its own buffer, and the different streams communicate by message passing.
4. Approximate selection: Given α and ε, find a key whose rank differs from

αn by at most εn.
5. Approximate sorting: Given a small positive constant ε, compute an or-

dering of the keys in which the rank assigned to each key agrees with its
rank in the true ordering, within a relative error of ε.

The algorithm for selection is an everytime algorithm. The algorithms for mul-
tiple selection and parallel selection are anytime algorithms. The algorithm for
approximate sorting requires two passes over the data.
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Finally, as a byproduct of our analysis of approximate sorting, we give an ele-
gant method for computing the expected number of comparisons for Quicksort,
Quickselect and Multiple Quickselect (see [6]).

There is a large literature on streaming algorithms for sorting and selection.
Our work differs from most of this literature because of the random arrivals
assumption, and because we simultaneously optimize both storage and time,
whereas most of the work on streaming algorithms considers only storage.

4 Selection

4.1 Previous Work on Randomized Algorithms for Selection

Among its many interesting results, the seminal paper of Munro and Paterson [5]
presents a streaming algorithm with optimal storage O(

√
n) for the computation

of the median assuming random arrival order. Their key observation, and one
that we build upon, is that it is possible to maintain a buffer of O(

√
n) keys, such

that, with high probability, at any stage in the sequence of arrivals, the median
of every subsequent prefix of the entire arrival sequence of length n either lies in
the buffer or has not arrived yet.

The paper [4] by Floyd and Rivest gives an algorithm for computing an α-
quantile with high probability using (1+min(α, 1−α))n+o(n) comparisons.This
result matches a simple lower bound derived as follows: let q be the α-quantile.
Every key x except q must be compared with some key that is either q or lies
strictly between x and q, and the first comparison involving x has probability at
least min(α, 1 − α) of failing to fulfill this condition.

The Floyd-Rivest algorithm is not presented as a streaming algorithm but can
be adapted under the random arrivals assumption to a basic streaming algorithm
with the original number of comparisons that requires storage n2/3 log n.

We present an everytime streaming algorithm for computing an α-quantile
under the random arrivals assumption with optimal storage O(

√
n) and optimal

execution time O(m) + O(
√

n log2 n) to process the first m arrivals.
Let q(t) denote the α-quantile of the prefix of length t. By straightforward

random walk arguments we establish the following claims:

1. With high probability the following holds for all t and t′ with t < t′: if key
q(t′) lies within the prefix of length t, its rank within that prefix differs from
αt by at most O(

√
n).

2. With high probability the cardinality of the set {q(t), t = 1, 2, · · · , n} is at
most

√
n log n; i.e., the number of distinct medians of prefixes is small.

We assume that 1−α
α = a/b where a and b are small integers. This assumption

is not essential, but simplifies exposition.
The algorithm makes deductions based on the assumption that the input

stream satisfies the above two assertions. It is divided into stages. In the first
stage (a + b)

√
n + 1 keys arrive, and in each subsequent stage a + b keys arrive.

At the start of any stage, after t keys have arrived, the algorithm maintains the
following information.
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1. The current α-quantile q(t);
2. An interval (L, U) within which every future α-quantile must lie;
3. A set HIGH of bc

√
n keys greater than q(t) and a set LOW of ac

√
n keys

smaller than q(t) such that every future α-quantile that has already arrived
is contained in HIGH ∪ LOW ∪ {q(t)}.

In the first stage (a+b)c
√

n+1 keys arrive. The ac
√

n smallest keys are placed
in LOW, the bc

√
n largest keys are placed in HIGH, and the remaining key is

designated q((a + b)
√

n). U is set to +∞ and L is set to −∞. Each subsequent
stage has the following phases:

1. a + b keys arrive. Each arriving key greater than U is reassigned the value
+∞ and placed in HIGH, and each arriving key less than L is reassigned
the value −∞. Of the remaining arriving keys, those greater than q(t) are
placed in HIGH and those less than q(t) are placed in LOW.

2. A rebalancing process is carried out in which, depending on the number of
newly arriving keys that entered HIGH , a new α-quantile is determined, and
at most max(a, b) keys are transferred between HIGH and LOW to achieve
the properties that HIGH is of cardinality bc

√
n + b, LOW is of cardinality

ac
√

n + a, every key in HIGH is greater than the current α-quantile and
every key in LOW is less than the current α-quantile.

3. The b largest elements of HIGH and the a smallest elements of LOW are
discarded.

4. L is set to the largest value that has ever been discarded from LOW, and U
is set to the smallest value that has ever been discarded from HIGH.

The algorithm uses three mechanisms to achieve efficiency:

1. It keeps a count of the number of keys greater than U and the number of
keys less than L that have not yet been discarded, but does not explicitly
store those elements. The computational cost of identifying and discarding
each such key is O(1).

2. It stores the remaining elements of the sets HIGH and LOW in min-max
priority queues, implemented as lazy binomial queues, which perform the
insertkey, findmin and findmax operations in amortized time O(1) and the
extractmin and extractmax operations in time O(log n).

3. It maintains a doubly-linked linear list containing those keys that have ever
becom the α-quantile or been transferred between HIGH and LOW. Once a
key has entered this list, the computation time for each subsequent transfer
of the key is O(1). The computation time for the first transfer of any key is
O(log n), the time for an extractmin or extractmax operation.

4. The computation time to discard an element that has not been determined
to lie outside [L, U ] is O(log n), the time for an extractmin or extractmax
operation.

For all k, the conditional probability that the kth arriving key is not immedi-
ately assigned the value +∞ or −∞, given the sequence of previous arrivals, is
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at most (a+b)c
√

n+2
k . It follows that, with high probability, the total number of

such arriving keys is O(
√

n log n). Hence, for all m, the time required to process
the first m arrivals is O(m) + O(

√
n log2 n).

5 Multiple Selection

In this section we present an anytime streaming algorithm for the following
problem. Let α1, α2, · · · , αk be an increasing sequence of numbers in (0, 1). Given
a stream of n keys arriving in a random order, find the α1, α2, · · · , αk-quantiles
of every prefix of the stream.

Let α0 = 0, αk+1 = 1 and pi = αi+1 − αi, for i = 1, 2, ..., , , k + 1. We
observe that any comparison-based algorithm to determine the given quantiles
must determine the relation of each of the n keys to each of the quantiles.
The number of such joint relations is slightly greater than n!

πk+1
i=1 (npi)!

. It follows
that the expected number of comparisons for any deterministic or randomized
algorithm is at least the logarithm base-2 of this quantity, which, by Stirling’s
approximation, is nH(p1, p2, · · · , pk+1) + o(n) where H(p1, p2, · · · , pk+1) is the
entropy function −

∑k+1
i=1 −pi log2 pi.

Our streaming algorithm is based on a binary search tree: a rooted ordered
binary tree with k internal nodes labeled in one-to-one correspondence with
the αi, such that the label of the left child of a node is less than the label of the
node, and the label of the right child of the node is greater than the label of the
node. If the root of the tree is labeled α then the process starts by computing
the α-quantile of the set of n keys. The keys less than the α-quantile flow to
the left child of the root and the keys greater than the α-quantile flow to the
right child of the root. Recursively, the left subtree of the root processes the
keys it receives to compute the αi quantiles of the set of n keys for all αi < α,
and the right subtree of the root processes the keys it receives to compute the
αi-quantiles of the set of n keys. for all αi > α. A standard construction from
information theory (the Shannon-Fano code) constructs a binary search tree such
that, as the keys flow down the tree, the sum of the cardinalities of the sets of
keys arriving at the k internal nodes is at most (H(p1, p2, · · · , pk+1) + 1)n. A
slight variant of that construction ensures that the height of the tree is O(log k)
while increasing the sum of the cardinalities by an arbitrarily small factor 1 + ε.
If each of the k selection problems is solved using the randomized algorithm of
Floyd and Rivest the total number of comparisons will be within a factor of
1.5(1 + ε) of the information-theoretic lower bound (with high probability).

We will convert this binary search algorithm to an anytime streaming algo-
rithm with storage requirement O(

√
nk) and amortized time O(1) per key (whp),

on the assumption that the keys arrive in a random order. To do so, we must
reconcile two conflicting requirements:

1. To ensure that the keys arrive at each node in a random order, we require
that the keys flowing into each node arrive in their original order;
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2. To ensure that the process terminates within time O(n), we require that, as
a key flows down the tree, it must dwell at each node only for O(1) time
steps.

At first sight, this is an unsolvable dilemma. At each node, a key must be
immediately routed to the left child or right child according to whether it is less
than or greater than the quantile being computed at that node; but the quantile
cannot be known until all the keys have arrived at the node. To resolve the
dilemma, we run our everytime streaming algorithm for selection at each node,
and route each arriving key immediately to the left child if it is less than the
current α-quantile (rather than the unknown eventual α-quantile of the entire
input stream), and to the right child if it is greater than or equal to the current
α-quantile. Since the everytime selection algorithm processes the first m arriving
keys in time O(m+

√
n log n) there will be an excess delay of at most O(

√
n log n)

at each node and, since our binary search tree has height at most O(log k), a
total excess delay of at most O(

√
n log n log k. However, a key will be misdirected

if its relation to the current α-quantile is different from its relation to the final
α-quantile. Fortunately, the keys that could potentially be misdirected are the
ones that get transferred out of HIGH or out of LOW during the computation
of the quantile at the node. These are precisely the keys that get placed in
the doubly-linked list maintained by the algorithm, and the number of such
keys is O(

√
n log n) (whp). Thus, after the computation of the final α-quantile,

the selection algorithm can scan this list and send each of its children a list of
all the misdirected keys. Each child can make appropriate corrections in time
O(log n) per misdirected key. The correction computed at each child can affect
its list of misdirected keys, and so on down the tree. The total delay incurred
by the ripple effect of these misdirections is O(

√
n log2 n log2 k). Thus the time

required to compute all k α-quantiles is O(n). The storage required at each node
is proportional to the square root of the number of arriving keys; thus the total
storage requirement is O(

√
nk).

6 Parallel Selection

In this section we consider the problem of selecting the α-quantile of a sequence of
n keys, assuming that the keys arrive in k streams of length n/k to be processed
in parallel by k processors. We assume that the keys arrive in a random order; i.e.,
that all n! assignments of the set of arriving keys to positions in the streams are
equally likely. We give a parallel anytime algorithm based on the serial selection
algorithm of Section 4. As before, we assume for convenience that α = a

a+b where
a and b are small integers.

The algorithm starts by filling the buffers with arriving keys. It then goes
through a series of stages, each of which (except the last) starts with all the
buffers full. In each stage it is determined that the final α-quantile lies in an
interval (L, U) (whp). As many keys less than L or greater than U as possible
are then discarded from the buffers, subject to the requirement that the ratio
between the numbers of discarded keys greater than U and less than L must
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be exactly b/a.The buffers are then replenished with keys from the streams.
The processes of determining L and U and discarding high and low keys require
communication and transfer of keys among the processors.

These processes are based on a parallel algorithm to compute an approximate
β-quantile of the set of sk keys in the union of the k buffers. We begin by
presenting such an algorithm for the case β = 1/2.Let 3t be the largest power of
3 less than or equal to sk. The computation goes through t rounds of thinning,
starting with 3t keys from the union of the buffers. in each round the surviving
keys are grouped randomly into sets of 3, and the median of each set of 3 keys
survives to the next round.Analysis of this process shows that, with probability
at least .96, the final surviving key is a γ-quantile, where |γ−1/2| < 2/3(11/8)−t.

During the thinning process some groups must be composed of nodes from
different processors. For this purpose the processors configure themselves into
a virtual linked list. Initially, each node performs the thinning process on the
groups formed within its own buffer. Then, in subsequent rounds of thinning, the
surviving keys are transferred to nodes whose addresses in the list are multiples
of 3, then 32, 33 etc.

For any β, the determination of an approximate β-quantile can be reduced to
the determination of an approximate median by executing a special initial round
of thinning. We present the details for the case β < 1/2. Let m be the greatest
integer such that (1 − β)m > 1/2. Let p ∈ (0, 1) be such that p(1 − β)m) + (1 −
p)(1−β)m+1) = 1/2. Then, in the special round, the keys are grouped randomly,
where the size of each group is m with probability p and m + 1 with probability
1−p, and the smallest key in each group survives. Throughout the special round
and the subsequent thinning rounds, any rule for grouping the surviving keys
can be used, as long as it depends on the positions of keys within the buffers,
but not on their values. since the assignment of the keys to input streams, and
hence the assignment of keys to positions in the buffers, is random.

The processors use the thinning algorithm to find keys L and U such that all
future a

a+b -quantiles lie in the interval (L, U) (whp). This claim holds provided
that L is of of rank A and U is of rank sk − B in the set of sk keys contained
in the buffers of the k processors, such that A ≤ a(( sk

a+b − c
√

n) and sk − B ≤
b(( sk

a+b −c
√

n) To achieve this, the thinning algorithm is used to find approximate
β and γ-quantiles, where β = (1− ε)a( sk

a+b −c
√

n) and γ = (1+ ε)b(( sk
a+b −c

√
n).

L is set to the approximate β-quantile and U , to the approximate γ-quantile.
Here ε is a small positive constant, and the factors 1 − ε and 1 + ε are safety
factors to ensure that A and B are likely to satisfy the required inequalities even
though the thinning algorithm only produces approximate β and γ-quantiles.

After L and U have been determined each processor counts the number of keys
less than L and the number of keys greater than U in its buffer. The processors
organize themselves into a virtual rooted binary tree and, aggregate their counts
by passing messages toward the root. After O(log k) parallel message-passing
steps the root contains the aggregate counts A and B of the numbers of keys
less than L and greater than U . In the unlikely event that A and B fail to
satisfy the required inequalities the randomized thinning algorithm is invoked to
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recompute L and U . If A and B do satisfy the inequalities then using message
passing along edges directed away from the root, the processors are directed to
discard ra of the packets less than L and rb of the packets greater than U , where
r = min(�A/a�, �B/b�. Each processor then receives keys from its input stream
until its buffer is full.

The running time of the parallel algorithm is dominated by O(n/k), the time
required by each processor to read its input stream. In addition, each of the
O(n/sk) stages requires time O(log(sk) time for the parallel communication
required in computing L, U , A and B.

7 Approximate Selection

We begin with the following problem of computing an approximate median:
given an array of n keys, choose a key x such that, with probability at least
1 − δ, the rank of x differs from n/2 by at most εn. Vitter [7] has given the
following solution: set x equal to the median of a random sample of O( 1

ε2 log(1
δ ))

keys. If the stream of keys arrives in a random order then we can use a prefix of
the stream as the sample. By applying our streaming algorithm to this prefix,
we obtain an approximate median using O( 1

ε2 log(1
δ )) comparisons and storage

O(1
ε

√
log(1/δ)).

Here we note that an approximate median can be computed by a streaming
algorithm using a slightly larger number of comparisons but only two storage
locations. The algorithm considers a series of arriving keys as candidates for
the ε-approximate median.Each candidate in turn is compared to a sequence
of arriving keys, and the algorithm keeps track of the lead of the candidate,
defined as the number of times the candidate is larger than the arriving key,
minus the number of times it is smaller. If the lead remains in the interval
(−a, a) for s steps then the candidate is declared to be an ε-approximate median.
Otherwise it is dismissed and the next arriving key becomes the new candidate.
Here s = O( 1

ε2 ln(1
δ )) and a = 0.4sε. Using Chernoff bounds we establish the

following:

1. If the rank of the candidate differs from n/2 by at most ε
8 then, with prob-

ability at least 1 − δ, the candidate will be accepted.
2. If the rank of the candidate is np, where ε

8 < |p−1/2| < ε then the candidate
may or may not be accepted, but the number of comparisons performed on
it will not exceed s;

3. If the rank of the candidate is np, where |p − 1/2| > ε, then the probability

of incorrectly accepting the candidate is O(e−
s(|2p−1|−4ε)2

6p ) and the expected
number of comparisons until it is rejected is at most .4nε

|2p−1| . Since |2p − 1| is
uniformly distributed over the interval (2ε, 1),we find by integrating over this
interval that the expected number of comparisons performed on a candidate
with |p − 1/2| > ε is O(1

ε ln 1/ε).
4. The number of candidates considered will be a geometric random variable

with expectation O(1
ε ) and the number of candidates considered with |p −

1/2| < ε will be a geometric random variable with expectation O(1).
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5. The probability that the accepted candidate is not an ε-approximate median
is bounded above by a constant times δ;

6. The number of comparisons performed by the algorithm is
O( n

ε2 max(ln 1/δ, ln(1
ε )) (whp).

The computation of an approximate α-quantile can be reduced to the com-
putation of an approximate median using the reduction based on thinning given
in Section 5.

8 Approximate Sorting

In certain applications it suffices to sort a set of elements approximately rather
than exactly. For example, in ranking candidates for adnmission to an academic
department it may be important to rank the best candidates exactly, but an
increasingly rough ranking may be adequate as we go down the list. We formu-
late the problem of approximate sorting in terms of a parameter ε > 0. Our
requirement is that, for all r, a candidate of rank r is assigned a rank that differs
from r by at most εr.

Let ε be a positive constant. Let x1, x2, · · · , xn be a linearly ordered set of
keys and let π be the unique permutation of {1, 2, · · · , n} such that xπ(1) <
xπ(2) < · · · < xπ(n). Let σ be a permutation of {1, 2, · · · , n}. Then σ is said to
ε-sort the keys if, whenever π(i) = σ(j), (1 − ε)i ≤ j ≤ (1 + ε)i. In other words,
σ ε-sorts the keys if, for all r, the key of rank r in the true ordering has rank
between (1 − ε)r and (1 + ε)r in the ordering σ.

We shall derive a lower bound on the number of comparisons required to ε-
sort a set of n keys. Call a permutation θ of {1, 2, · · · , n} an ε-permutation if,
for all i, (1 − ε)i ≤ θ(i) ≤ (1 + θ)i. If π is the true ordering of the keys, then
permutation σ ε-sorts the keys if and only if σ ◦ π−1 is an ε-permutation. Let
V (n, ε) be the number of ε-permutations of {1, 2, · · · , n} Then, if an ε-sorting
algorithm returns the permutation σ, then there are only V (n, ε) possibilities
for the true permutation. Since a priori there are n! possible true permutations,
the program must be able to output at least n!/V (n, ε) permutations and,by
a standard argument, the worst-case number of comparisons performed by any
comparison algorithm for ε-sorting is at least the base-2 logarithm of this num-
ber of permutations. This lower bound also holds for the expected number of
comparisons in a randomized algorithm when the true permutation is drawn
uniformly at random from the set of all permutations.

V (n, ε) is the permanent of the n × n 0 − 1-matrix A whose i − j element is
1 if and only if (1 − ε)i ≤ j ≤ (1 + ε)i.Bregman’s Theorem [1] states that if ai

is the number of 1’s in the ith row of a n × n 0 − 1-matrix then the permanent
of the matrix is bounded above by πn

i=1(ai!)
1

ai . For the matrix A , ai ≤ �2εi�. A
short calculation based on Stirling’s Inequality yields : log2

n!
V (n,ε) ≥ n lg( e

2ε).
We shall give a two-pass streaming algorithm for ε-sorting. The first pass

computes elements of all ranks of the form � nε
(1+ε)i � for all positive integers i

using the multiple selection algorithm of Section 5. In this case the entropy term
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H(p1, p2, · · · , pk+1)) is lg(1
ε + (1+ε) lg(1+ε)

ε ), which is less than lg(1
ε + (1 + ε) lg e.

Thus the execution time of phase 1 is at most 1.5(1 + lg(1
ε + (1 + ε) lg e)n.

In the second pass a binary search is executed on each key x to determine an
i such that ri ≤ x < ri+1, and an approximate rank is assigned to x accordingly.
The number of comparisons performed in the second pass is at most (1 + lg(1

ε +
(1 + ε) lg e)n.

We present an alternative algorithm for the first pass in the spirit of the well-
known algorithms Quicksort and Multiple Quickselect [6]. We first describe the
algorithm in a setting where the keys to be approximately sorted are presented
in random order in an array. We then modify the algorithm to obtain an anytime
streaming algorithm.

The array extends from address 0 to address n + 1. The actual keys are in
locations 1 to n; location 0 contains a sentinel key equal to −∞ and location n+1
contains a sentinel key equal to +∞. At a general step the array contains a set S
of occupied locations. Initially, locations 0 and n+1 are considered occupied and
the other locations are considered unoccupied.The following invariant properties
hold at every step:

1. The n original keys occur in locations 1, 2, · · · , n in some order;
2. If location i is occupied then the key it contains has rank i in the original

set of keys, locations 1, 2, ..., · · · , i − 1 contain the keys of rank less than i,
and locations i + 1, · · · , n contain the keys of rank greater than i.

If locations i and j are occupied, and all intervening locations are unoccupied,
then the interval [i, j] is considered splittable if j − 1 > (1 + ε)(i + 1). The
computation terminates when no splittable intervals remain. At that point the
array is ε-sorted.

Initially [0, n + 1] is a splittable interval. At each step, a random location
within a splittable interval is chosen and each of the other keys in the interval
is compared with the key x∗ in that location. Based on those comparisons, the
keys within the interval are rearranged such that x∗ is preceded by the keys less
than x∗ and precedes the keys greater than x∗.

Next we calculate the expected number of comparisons for this algorithm.
Define the length of the interval [i, j] to be j − i + 1. Interval [i, j] is potentially
splittable if (j − 1) > (1 + ε)(i + 1). A potentially splittable interval becomes
splittable if and only if the two end positions of the interval become occupied
before any of the internal positions become occupied. If a potentially splittable
interval of length t becomes splittable in the course of the algorithm then it will
be split at the cost of t − 3 comparisons.

For each t we characterize the potentially splittable intervals of length t and
the probability that they will be split. The conditions for an interval [i, j] of
length t to be potentially splittable are as follows:

– t ≥ 4;
– i ≤ n + 2 − t

– i < t−1+ε
ε
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The probability of a potentially splittable interval i, j] of length t becoming
splittable is 1 if i = 0 and j = n + 1; 1

t−1 if i = 0 and j ≤ n or i ≥ 1 and
j = n + 1; and 1

(t
2)

if i ≥ 1 and j ≤ n.

Using these results we can compute the expected number of comparisons
performed to split intervals of length t and, summing over t, we find that the
expected number of comparisons performed by the algorithm is asymptotic to
n(2+3ε

1+ε + ln(1+ε
ε )).

Incidentally, by varying the definition of a potentially splittable interval, this
approach also gives remarkably simple expected-time analyses of some classical
randomized interval-splitting comparison algorithms such as Quicksort, Quicks-
elect and Multiple Quickselect.

We now modify this algorithm to obtain an anytime streaming algorithm for
the first phase. As the keys arrive we designate certain keys as landmarks; these
play the same role as the keys occurring in occupied positions in the foregoing
array-based algorithm. The landmarks are maintained in a self-balancing binary
search tree such as a splay tree. Each arriving key is routed to a leaf of the tree
(corresponding to an interval between consecutive landmarks) by comparing it
with landmarks according to the usual insertion algorithm for a self-balancing
binary search tree. The main difference from the array-based algorithm is that,
because of storage limitations, we cannot retain all the keys that have arrived
at a leaf. Instead, the algorithm counts the arriving keys, and also applies the
thinning algorithm of Section 6 to compute an approximate median to be used
in splitting the interval.The thinning algorithm can be implemented to run in
working storage logarithmic in the number of arriving keys.

We also associate with each node (including both landmarks and leaves) an
estimate of the number of keys that have arrived in the subtree rooted at that
node. When a key arrives the estimate for each node along its insertion path is
incremented by 1.

Let x and y be two consecutive landmarks. The interval between x and y is
split when the estimate of the number of keys in that interval exceeds ε times
the estimate of the number of keys less than or equal to x (the latter estimate
is obtained from the estimates for nodes along the insertion path to x). In that
case z, the approximate median computed by the thinning algorithm for the
interval [x, y], becomes a landmark; the leaf associated with that interval is
replaced by a 2-leaf subtree rooted at z, and the estimate ascribed to each of the
newly created intervals is set to half the estimate for the interval between x and
y.To compensate for the inaccuracy of the approximate median provided by the
thinning algorithm, the entire algorithm is run for a value of ε slightly smaller
than the required tolerance.

With high probability,the following hold for any fixed ε: the number of land-
marks created is O(log n), the storage requirement of the algorithm is O(log2 n),
and no interval between consecutive landmarks is splittable (i.e., the actual
number of keys in that interval does not exceed ε times the actual number of
keys preceding that interval). The number of comparisons performed in the first
phase is O(n log 1

ε ) (whp).
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In the second pass each arriving key is inserted into the binary search tree
created in the first pass, and a count of the exact number of keys in each interval
is maintained. Then in a third pass, each key is reinserted and assigned its
approximate rank according to the interval into which it falls.
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