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Abstract. For many types of graphs, including directed acyclic graphs,
undirected graphs, tournament graphs, and graphs with bounded inde-
pendence number, the shortest path problem is NL-complete. The longest
path problem is even NP-complete for many types of graphs, including
undirected K5-minor-free graphs and planar graphs. In the present pa-
per we present logspace algorithms for computing shortest and longest
paths in series-parallel graphs where the edges can be directed arbitrar-
ily. The class of series-parallel graphs that we study can be characterized
alternatively as the class of K4-minor-free graphs and also as the class of
graphs of tree-width 2. It is well-known that for graphs of bounded tree-
width many intractable problems can be solved efficiently, but previous
work was focused on finding algorithms with low parallel or sequential
time complexity. In contrast, our results concern the space complexity of
shortest and longest path problems. In particular, our results imply that
for directed graphs of tree-width 2 these problems are L-complete.

Keywords: Series-parallel graphs, logspace algorithms, distance prob-
lem, longest path problem, bounded tree-width, K4-minor-free graphs.

1 Introduction

Series-parallel graphs form an extensively-studied class of graphs that has appli-
cations both in theory and in practice. Different types of series-parallel graphs
have been studied in the literature; in the present paper we study their most gen-
eral form, namely series-parallel graphs with an arbitrary number of terminals
and with edges having arbitrary directions. There are two well-known alternative
characterization, see for instance [5,13], of this class of graphs: First, it is also
the class of directed graphs of tree-width at most 2. Second, it is also the class
of directed graphs whose underlying undirected graph is K4-minor-free.

For this class of graphs we study the longest and the shortest path problems.
We are given an element G of the class as input together with two nodes s and t
and we are asked to output a path (which may consist only of distinct nodes)
of minimal or maximal length from s to t in G. For general graphs, the shortest
path problem is well-known to be NL-complete, while the longest path problem is
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Table 1. The complexity of path problems for different graph classes. In this present
paper we investigate series-parallel graphs, which are the same as directed graphs of
tree-width 2, and prove the results shown in bold. By “open” we mean that no nontrivial
upper bounds are known.

Graph class Reachability Distance Longest Number
path of paths

Digraphs of tree-width 1 L-compl. L-compl. L-compl. L-compl.
Digraphs of tree-width 2 L-compl. L-compl. L-compl. L-compl.
Digraphs of tree-width k, k ≥ 3 open open ∈ AC1 ∈ AC2

Planar digraphs ∈ UL open NP-compl. #P-compl.
Tournament graphs ∈ AC0 NL-compl. open open
Undirected graphs L-compl. NL-compl. NP-compl. #P-compl.
Acyclic digraphs NL-compl. NL-compl. NL-compl. #L-compl.
Digraphs NL-compl. NL-compl. NP-compl. #P-compl.

NP-complete even for planar graphs. The different characterizations of the class
of series-parallel graphs yields different insights into the complexity of the longest
and shortest path problems for this particular class. Results from the theory of
bounded tree-width tell us that the shortest path problem lies in the class NL
and that the longest path problem lies in AC1. Unfortunately, since it is only
known that NC1 ⊆ L ⊆ NL ⊆ AC1, this does not tell us whether these problems
can be solved in deterministic logspace. Results from the theory of series-parallel
graphs tell us that conceptually simpler problems, like the reachability problem
for directed two-terminal series-parallel graphs, lie in L.

The main result of the present paper, Theorem 5, lowers the upper bound
on the complexity of shortest and longest path problems in directed graphs of
tree-width 2 to L. At the same time, this result extends the previous complex-
ity bounds on the reachability problem in directed two-terminal series-parallel
graphs to the shortest and longest path problems in general multiple-terminal
series-parallel graphs. Table 1 shows how these results relate to the complexity
of shortest and longest path problems in other kinds of graphs. As can be seen
in the table, for many types of graphs the distance problem is still NL-complete,
including undirected graphs [7,23], directed acyclic graphs, tournament graphs
[21], and graphs with bounded independence number [21].

Recently, it has been shown that the reachability problem is in L even for
single source multiple sink planar DAGs [1]. If we restrict ourselves to planar
digraphs, it is only known that the reachability problem lies in unambiguous
logspace (i.e. UL∩ co-UL) [8].

Our formulation of the main result does not treat shortest and longest paths
separately. Rather, we allow input graphs to be equipped with integer edge
weights coded in unary (negative weights are indicated by a flag). We present
a deterministic logspace algorithm with the following properties: On input of
a directed graph with integer weights coded in unary and two nodes s and t,
it either determines that the graph is not a multiple-terminal series-parallel
graph or it determines that there is no path from s to t or it outputs a path
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from s to t of maximum total edge weight. Setting all edge weights to 1 makes a
maximum-weight path a longest path and setting all edge weights to −1 makes
a maximum-weight path a shortest path.

Graphs of tree-width 2. The tree-width of a graph is a measure of how close
the graph is to being a tree and graphs of tree-width 1 are, indeed, trees. For
a graph G of tree-width k there must exist a tree T whose nodes are labeled
with so-called bags, which are just sets of up to k + 1 nodes of the graph G. For
each edge of the graph at least one of the bags must contain both endpoints of
the edge, and the set of all bags containing any given graph node must form a
connected subtree of T .

Certain intractable graph problems become tractable if we restrict ourselves
to graphs with small tree-width, see for instance [4,25], and the problem of con-
structing tree decompositions of small tree-width is a well-studied topic, see
[3,6,20]. For graphs of bounded tree-width one can construct a tree decomposi-
tions of constant width in AC1, as shown in [6], and using such a decomposition
one can determine the distance and the longest path length between two nodes
efficiently in parallel [10,11,17]: In detail, Chaudhuri and Zaroliagis [10,11] have
presented sequential linear-time algorithms and an erew-pram algorithm work-
ing in time O(T (t, n) + log n) for finding a shortest path, where T (t, n) denotes
the time for computing a tree-decomposition of digraphs of n nodes of tree-
width t. In [6] Bodlaender and Hagerup presented an erew-pram algorithm
using O(log2 n) time that generates a tree decomposition of constant width.
They also show that all graph properties of a finite index can be decided by an
O(log n log∗ n) time erew-pram. While many problems, including Hamiltonic-
ity and the reachability problem, are of finite index, distance and longest path
problems are not. For example, the problem of deciding whether the distance
between two given nodes is at most n/2 in a graph of size n does not have a
finite index.

It is well known that parallel time complexity and space complexity are re-
lated: NC1 ⊆ L and all languages in L can be decided by an erew-pram in time
O(log n) with a polynomial number of processors. If we replace L by NL, we must
replace erew-pram by crcw-pram. It is also known that NL ⊆ LOGCFL =
SAC1. However, it is not known whether O(log n)-time-bounded erew-prams
can be simulated by O(log n)-space-bounded DTM.

K4-minor-free graphs. Directed graphs of tree-width 2 can also be character-
ized as graphs whose underlying undirected graph does not contain the K4 as a
minor. This means we cannot obtain K4 by forgetting the direction of the edges
and then repeatedly contracting and deleting edges and deleting isolated nodes.

Defining classes of graphs by forbidden minors is a powerful tool in graph the-
ory. For example, the undirected K3-minor-free graphs are exactly the forests
(every cycle in a graph can be contracted down to a K3). Planar graphs can be
characterized as the graphs that are both K5- and K3,3-minor-free. We prove
results for graphs that are K4-minor-free. A next major algorithmic step for-
ward would be a logspace algorithm for the distance problem in graphs whose
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underlying undirected graph is K5-minor-free. Such an algorithm would settle
the challenging question of whether there is a logspace algorithm for the distance
problem in planar graphs.

Series-parallel graphs. The third characterization of the graphs studied in
this paper is the class of mixed multiple-terminal series-parallel graphs. More re-
stricted versions are studied in the literature and we make use of these restricted
versions in our proofs: In the proof of the main result we establish the existence
of logspace algorithms for computing maximum-weight paths in more and more
general forms of series-parallel graphs.

The simplest form are directed two-terminal series-parallel graphs. They are
defined inductively, starting with the graph that consists of a single directed
edge whose endpoints are called source terminal and sink terminal. Graphs can
be composed in two ways: A serial composition fuses the sink of one graph with
the source of another, a parallel composition fuses the two sources and also
the two sinks of two graphs. Multiple-terminal series-parallel graphs are formed
by taking a set of two-terminal series-parallel graphs and repeatedly fusing a
terminal node with some node in one of the graphs.

For series-parallel graphs we can consider different possibilities for the direc-
tion of edges. For directed series-parallel graphs, once we choose a source and a
sink terminal, the direction of all edges is also implied. Our algorithms do not
only work for directed series-parallel graphs and for undirected series-parallel
graphs, but also for the graphs obtained by arbitrarily redirecting the edges of
a series-parallel graph. To distinguish the resulting type of graphs from directed
series-parallel graphs, we will call them mixed series-parallel graphs.

The space complexity of problems related to series-parallel graphs has been
analyzed in [19], where logspace algorithms for the recognition problem and
for the reachability problem for directed two-terminal series-parallel graphs are
presented. Furthermore, in the paper the problem of decomposing series-parallel
graphs is studied. In [18], Jakoby and Lískiewicz focus on the recognition, the
reachability, and the decomposition problem for undirected series-parallel graphs
and show that these problems can be solved in deterministic logspace using an
SL oracle for reachability, which shows that decompositions can be computed in
logspace. However, since reachability in directed graphs is NL-complete rather
than SL-complete, the techniques presented in [18,19] fail for the mixed multiple-
terminal series-parallel graphs that we consider in the present paper.

The time complexity of the recognition problem for series-parallel graphs has
also been investigated in detail. An optimal linear-time sequential algorithm
for this problem has been developed by Valdes, Tarjan, and Lawler [24] and fast
parallel algorithms have been published. He and Yesha have presented an erew-

pram algorithm working in time O(log2 n) while using n + m processors [15].
Eppstein has reduced the time bound by constructing an algorithm that takes
only O(log n) steps on the stronger crcw-pram model and requires C(m, n)
processors [14], where C(m, n) denotes the number of processors necessary to
compute the connected components of a graph in logarithmic time. Finally, the
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erew-pram algorithm by Bodlaender and Antwerpen-de Fluiter [5] mentioned
earlier also solves this problem in time O(log n log∗ n) using O(n+m) operations.

2 Basic Definitions

A graph is a pair G = (V, E) consisting of a node set V and an edge set E. A
graph G is called a directed graph (or digraph for short) if E ⊆ V × V is a set of
directed edges, G is called an undirected graph if E ⊆ {{u, v} | u, v ∈ V, u �= v} is
a set of undirected edges, and G is called a mixed graph if E ⊆ V × V ∪

{
{u, v} |

u, v ∈ V, u �= v
}

is a set of edges, such that we do not have both (u, v) ∈ E
and {u, v} ∈ E for any pair u, v ∈ V . A weighted mixed graph is a mixed graph
(V, E) together with an edge weight function w : E → Z.

Given two nodes u, v ∈ V of a mixed graph G, we write u →G v if either
(u, v) ∈ E or {u, v} ∈ E. Given a mixed graph G = (V, E), its undirected
underlying graph uug(G) is obtained by replacing every directed edge by an
undirected edge, that is, uug(G) =

(
V, {{u, v} | u →G v, u �= v}

)
.

A path in a graph G is a sequence (v0, . . . , v�) of distinct nodes such that
v0 →G v1 →G · · · →G v�. The number � is the length of the path. We write
v0 →∗

G v� to indicate that there exists a path from v0 to v� in G. Given a weighted
mixed graph G and a path, the weight of the path is the sum of the weights of
the edges along this path. Given two nodes u, v ∈ V we write mG(u, v) for the
maximum weight of any path from u to v or −∞ if there is no path between
them. Note that if all weights are 1, then mG(u, v) is the length of a longest
path from u to v; and if all weights are −1 then mG(u, v) is the negated distance
from u to v. An undirected graph is 1-connected if there is a path between any
two nodes. An undirected graph is k-connected if we must remove at least k
nodes (along with all pending edges) so that the resulting graph is no longer
1-connected.

We use the notation 〈X〉 to denote a standard binary encoding of the object X .
For example, for a graph G let 〈G〉 denote the binary encoding of the adjacency
matrix of G. When we code weighted mixed graphs, the weights are always coded
in unary.

An arithmetic tree is a tree whose leaves are labeled with integers and whose
inner nodes have two children and are labeled with functions that maps pairs
of integers to integers, like addition, maximization, or multiplication. We will
call such functions binary operators. For a set O of operators, an O-tree is an
arithmetic tree in which only operators from O are used. For example, a {+, ×}-
tree is, in essence, an arithmetic formula. Given an O-tree, we recursively assign
integers to the inner nodes by applying the operator of a node to the values of the
children. We call the integer assigned to an inner node its value and the integers
assigned to the root is the value of the tree. Given a set O of operators, the tree
value problem for O-trees is the problem of computing the value of O-trees. The
integers at the leaves are coded in binary or in unary; we always indicate the
coding explicitly.
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2.1 Definition of Series-Parallel Graphs

We now define different types of series-parallel graphs, abbreviated s-p-graphs
in the rest of the paper. We start with two-terminal s-p-graphs.

Definition 1. We define directed two-terminal s-p-graphs inductively. Syntac-
tically, they are triples (G, a, b) consisting of a directed graph G = (V, E), a
source terminal a ∈ V , and a sink terminal b ∈ V . The following graphs are
directed two-terminal s-p-graphs:

1. (G, a, b) where G is a single directed edge from a to b, that is, V = {a, b}
and E = {(a, b)}, is a directed two-terminal s-p-graph.

2. Given two directed two-terminal s-p-graphs (G1, a, c) and (G2, c, b), their se-
rial composition is a directed two-terminal s-p-graph with the terminals a
and b. It is obtained by taking the disjoint union of G1 and G2 and identi-
fying the two copies of the node c.

3. Given two directed two-terminal s-p-graphs (G1, a, b) and (G2, a, b), their
parallel composition is a directed two-terminal s-p-graph, again with the ter-
minals a and b. It is obtained by taking the disjoint union of G1 and G2 and
identifying the two copies of a and also the two copies of b.

Definition 2. An undirected two-terminal s-p-graph is a triple (G, a, b) such
that there exists a directed two-terminal s-p-graph (G′, a, b) with G = uug(G′).

Definition 3. A mixed two-terminal s-p-graph is a triple (G, a, b), where G is
a mixed graph, for which

(
uug(G), a, b

)
is an undirected two-terminal s-p-graph.

The last definition can be rephrased as follows: Mixed two-terminal s-p-graphs
are obtained from directed two-terminal s-p-graphs by arbitrarily redirecting
some or all of the edges.

Definition 4. We define undirected multiple-terminal s-p-graphs inductively.
Syntactically, they are pairs (G, ω) where ω ⊆ V is the set of terminals. The
following graphs are undirected multiple-terminal s-p-graphs:

1. For every undirected two-terminal s-p-graph (G, a, b), the pair (G, {a, b}) is
an undirected multiple-terminal s-p-graph.

2. Given two undirected multiple-terminal s-p-graphs (G1, ω1) and (G2, ω2),
their tree composition is also an undirected multiple-terminal s-p-graph. It
is obtained by taking the disjoint union of G1 and G2 and identifying one
terminal f ∈ ω2 with an arbitrary node of G1. The terminal set of the tree
composition is ω1 ∪ (ω2 − {f}) and we call f a fusion node.

Definition 5. A mixed multiple-terminal s-p-graph is a pair (G, ω), where G
is a mixed graph and

(
uug(G), ω

)
is an undirected multiple-terminal s-p-graph.

2.2 Decomposition Trees

Decomposition trees reflect the building process of series-parallel graphs. A par-
allel composition results in a “parallel node” in the tree, a serial composition
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yields a “serial node,” and single edges correspond to leaves. Note that the de-
composition tree of an s-p-graph is typically not unique.

Definition 6. A decomposition tree of a mixed two-terminal s-p-graph (G, a, b)
is defined as follows. Syntactically, it consists of a directed binary tree T (“bi-
nary” meaning that inner nodes have exactly two children, a left and a right
one), whose node set is the disjoint union of the three type sets Tl, Ts, and Tp,
a terminal-pair information function terminals : Tl ∪ Ts ∪ Tp → V × V , and an
edge information function edge: Tl → E. The set Tl contains exactly the leaves
of T . The elements of Ts are called serial nodes, the elements of Tp are called
parallel nodes.

Having fixed the syntax of decomposition trees, we next inductively describe
which trees are decomposition trees. In all cases, terminals(r) = (a, b) must hold
for the root r of the tree.

1. If G consists of a single edge e between the two nodes a and b, then T consists
of a single node r ∈ Tl and edge(r) = e. Note that the edge e may point from
b to a for arbitrary mixed two-terminal s-p-graphs, but will always point from
a to b if (G, a, b) is a directed two-terminal s-p-graph.

2. If G is the parallel composition of two mixed two-terminal s-p-graphs (G1, a, b)
and (G2, a, b) and if T1 and T2 are their tree decompositions, respectively,
then T consists of a root node r whose children are the roots of T1 and T2
and r ∈ Tp.

3. If G is a serial composition of two mixed two-terminal s-p-graphs (G1, a, c)
and (G2, c, b), we do exactly the same as in the parallel case, only r ∈ Ts.

We now extend the definition of decomposition trees to encompass multiple-
terminal s-p-graphs. We then have a fourth type of nodes: “tree nodes”, corre-
sponding to tree compositions.

Definition 7. Let (G, ω) be a mixed multiple-terminal s-p-graph. Its decompo-
sition tree T is defined similarly to the decomposition tree in Definition 6, but
with the following addition: There is a fourth type set Tt, together with the fu-
sion information function fusion: Tt → V . If Tt is not empty, its elements must
form a connected component of T and it must contain the root. The tree T is de-
fined recursively according to the same rules as in Definition 6 with the following
addition:

4. If G is the tree composition of two mixed multiple-terminal s-p-graphs (G1, ω1)
and (G2, ω2) and if T1 and T2 are their decomposition trees, respectively, then
T consists of a root node r whose children are the roots of T1 and T2. We
have r ∈ Tt and fusion(r) is the fusion node of the tree composition.

2.3 Facts from the Literature Used in Our Proofs

We now list facts from the literature on s-p-graphs that will be used in our
proofs.
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Fact 1 ([19]). There exists a logspace machine that on input of a directed
graph G decides whether G is a directed two-terminal s-p-graph and, if this is
the case, outputs a decomposition tree for it.

Fact 2 ([19]). There exists a logspace machine that on input of a directed two-
terminal s-p-graph G and two nodes s and t decides whether there is a path from
s to t.

The following fact follows from the results in [18] and the fact that L = SL,
see [22].

Fact 3 ([18]). There exists a logspace machine that on input of an undirected
graph G decides whether there is a terminal set ω such that (G, ω) is an undi-
rected multiple-terminal s-p-graph and, if this is the case, outputs a decomposi-
tion tree T for it. Furthermore, every node n of T that is not an element of Tt,
but whose parent is an element of Tt, has the following property: The undirected
two-terminal s-p-graph described by the subtree of T rooted at n is 2-connected.

The following fact is a conclusion of Lemma 8 and Theorem 6 from [18].

Fact 4. There exists a logspace machine that on the input of an undirected 2-
connected two-terminal s-p-graph (G, a, b) and a node a′ ∈ V computes a node
b′ ∈ V such that (G, a′, b′) is an undirected two-terminal s-p-graph.

Essentially, this fact states that we can “choose” the source terminal arbitrarily.
But we cannot also choose the sink terminal arbitrarily at the same time.

3 Computing Maximum-Weight Paths in Logspace

In the present section we prove the central result of the paper, Theorem 5 below.
Recall that weights are given in unary.

Theorem 5. There is a logspace algorithm whose inputs are codes of weighted
mixed graphs G = (V, E) together with two nodes s, t ∈ V and whose output is
one of the following:

1. The algorithm determines that G is not a mixed multiple-terminal s-p-graph.
2. The algorithm determines that there is no path from s to t in G.
3. The algorithm outputs a path from s to t of maximal weight.

The first step in the proof is an algorithm for computing a maximum-weight path
in a weighted directed two-terminal s-p-graph from the source to a given node.
Instead of writing down an explicit algorithm, we establish a series of reductions
that ends with a problem that is known to be solvable in logspace.

The second step is an algorithm for computing maximum-weight paths be-
tween the terminals in weighted mixed two-terminal s-p-graphs. The main idea
is to obtain a directed version of the mixed graph and to put a heavy penalty
on all edges that “point in the wrong direction.” We can then use the algorithm
for weighted directed two-terminal s-p-graphs.
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The third step is an algorithm for computing a maximum-weight path from
the source a to an arbitrary node t in weighted mixed two-terminal s-p-graphs. A
recursive algorithm is used to compute the maximum weight of a path from s to
t by keeping track of smaller and smaller “intervals” (which are just subgraphs)
that contain t and, at the same time, keeping track of the maximum weight of
paths from a to the two “endpoints” of the intervals.

The fourth and last step is to consider weighted mixed multiple-terminal
s-p-graphs G.

3.1 Terminal-to-Node Paths in Directed Two-Terminal S-P-Graphs

Theorem 6. There exists a logspace machine that on input of any weighted
directed two-terminal s-p-graph (G, a, b, w) and a node t outputs a maximum-
weight path from a to t.

Recall once more that weights are coded in unary. The algorithm internally uses
an oracle Mat and the main task is to prove that Mat lies in the class L. The
oracle is the decision version of the path construction problem:

Mat = {〈G, a, b, w, t, d〉 | (G, a, b, w) is a weighted directed two-terminal
s-p-graph in which there is a path from a to t
of weight at least d}

To prove Mat ∈ L, we establish a line of reductions. Note that the difficulty
lies in computing the maximum weight of paths, not in checking whether the
input graph is, indeed, a directed two-terminal s-p-graph, see Fact 1. The first
reduction reduces Mat to Mab, which is the restricted version of Mat where
only inputs with t = b are allowed. If we consider only the subset of nodes
V ′ = {v | v →∗

G t} of the input graph G, we can show that:

Lemma 1. Mat reduces to Mab via a logspace many-one reduction.

We next reduce Mab to M+
ab, which is the same problem, only all weights must

be positive.

Lemma 2. Mab reduces to M+
ab via a logspace many-one reduction.

Lemma 3. M+
ab reduces to the tree value problem for {+, max}-trees whose

leaves are labeled with positive integers coded in unary via a single-query logspace
reduction.

The last step is to reduce the tree value problem for {+, max}-trees whose leaves
are labeled with positive integers coded in unary to the tree value problem for
{+, ×}-trees, which is known to lie in logspace [9,2,12,16].

Lemma 4. The tree value problem for {+, max}-trees whose leaves are labeled
with positive integers coded in unary reduces to the tree value problem for {+, ×}-
trees whose leaves are labeled with integers coded in binary via a single-query
logspace reduction.

Using Mat as an oracle, we can construct a maximum-weight path node by node.
This proves Theorem 6.
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3.2 Terminal-to-Terminal in Mixed Two-Terminal S-P-Graphs

Theorem 7. There exists a logspace machine that on input of any weighted
mixed two-terminal s-p-graph (G, a, b, w) outputs a maximum-weight path from
a to b or determines that no path exists.

To prove the theorem, we introduce the notion of green edges, which are edges
that “point in the right direction.”

Definition 8. Let (G, a, b) be a mixed two-terminal graph and let T be a de-
composition tree for it. We color the edges of G according to the following rules:
Let e be an edge of G and let n be the leaf node of T with edge(n) = e. Then,
if e = (x, y) ∈ V × V but terminals(n) = (y, x), we color the edge red; other-
wise, namely when e = (x, y) and terminals(n) = (x, y) or when e = {x, y} is
undirected, we color it green.

Let (G, a, b) be a mixed two-terminal s-p-graph and let T be a decomposition
tree for G. Then every path from a to b uses only green edges. The key idea
in proving Theorem 7 is to turn mixed s-p-graphs into directed s-p-graphs by
redirecting all red edges while assigning large negative weights to them. We can
then apply the algorithm from Theorem 6 to the resulting graph.

3.3 Terminal-to-Node Paths in Mixed Two-Terminal S-P-Graphs

Theorem 8. There exists a logspace machine that on input of any weighted
mixed two-terminal s-p-graph (G, a, b, w) and a node t outputs a maximum-weight
path from a to t or determines that no such path exists.

For the proof we introduce the notion of “intervals,” which contain t and which
get smaller and smaller. We will keep track of the maximum weights of paths
from the source to the two endpoints of the intervals.

Definition 9. Let (G, a, b) be a mixed two-terminal s-p-graph and let T be a
decomposition tree. Given a node n of T , let (Gn, an, bn) denote the mixed two-
terminal s-p-graph that is described by the subtree of T rooted at n. We call
(Gn, an, bn) the interval described by n.

For a node n of T we write G−Gn for the graph obtained from G by deleting all
edges of the graph Gn and the resulting isolated nodes. The weight record for n is
the tuple

(
m¬via bn

a→an
, mvia bn

a→an
, m¬via an

a→bn
, mvia an

a→bn

)
where m¬via bn

a→an
is the maximum

weight of a path in G − Gn from a to an that does not contain bn, while mvia bn
a→an

is the maximum weight of a path in G − Gn from a to an that does contain bn.
Similarly, m¬via an

a→bn
is the maximum weight of a path in G−Gn from a to bn that

does not contain an, while mvia an

a→bn
is the maximum weight of a path in G − Gn

from a to bn that does contain an.

Lemma 5. There exists a logspace machine that on input of any weighted mixed
two-terminal s-p-graph (G, a, b, w) and a node t outputs mG(a, t).
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Proof (Sketch of proof). To compute mG(a, t), we generate the decomposition
tree T of (G, a, b). Let r be the root of T and let n1, . . . , nk be the path in T
that leads from n1 = r to a leaf nk where one endpoint of edge(nk) is t. We
compute for successive i = 1, . . . , k the weight records for each ni, using only
the weight record of the previous ni−1 as a guide. ��

To construct an path of maximum length we repeatedly apply the algorithm
from Lemma 5 as a “guide” that tells us how we must extend the path as we
descend. This proves Theorem 8.

3.4 Node-to-Node Paths in Mixed Multiple-Terminal S-P-Graphs

We first compute the tree decomposition of G. The tree decomposition allows
us to identify components of G, each of which is a two-terminal s-p-graph, such
that every path from s to t must go through a unique sequence of these com-
ponents. Inside each component we can compute maximum-weight paths using
the algorithms we obtained in the previous steps. Stringing together the paths
yields the overall path. This proves Theorem 5.

4 Conclusion

In this paper we presented a logspace algorithm for computing paths of maximum
weight in mixed multiple-terminal s-p-graphs. As mentioned in the introduction,
little is known in comparison about the space complexity of the shortest and
longest path problems for graphs with higher, but still constant tree-width. It
is neither known whether one can solve the reachability problem for directed
graphs of tree-width 3 in logspace nor whether the reachability problem for
directed graphs of tree-width k is hard for the class NL for some constant k ≥ 3.

On the positive side, a closer analysis of our approach shows that one can
use the algorithm to count the number of self-avoiding paths in mixed multiple-
terminal s-p-graphs using a logspace algorithm. Also, the existence of an efficient
algorithm for computing longest paths implies further results like an efficient
algorithm for computing topological sortings. Another application is the com-
putation of s-t-enumerations.
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