
Symbolic Bisimulation for the Applied Pi Calculus�

Stéphanie Delaune1,2,3, Steve Kremer2, and Mark Ryan3

1 LORIA, CNRS & INRIA, France
2 LSV, ENS Cachan & CNRS & INRIA, France

3 School of Computer Science, University of Birmingham, UK

Abstract. We propose a symbolic semantics for the finite applied pi calculus,
which is a variant of the pi calculus with extensions for modelling cryptographic
protocols. By treating inputs symbolically, our semantics avoids potentially infi-
nite branching of execution trees due to inputs from the environment. Correctness
is maintained by associating with each process a set of constraints on terms. We
define a sound symbolic labelled bisimulation relation. This is an important step
towards automation of observational equivalence for the finite applied pi calculus,
e.g. for verification of anonymity or strong secrecy properties.

1 Introduction

The applied pi calculus [2] is a derivative of the pi calculus that is specialised for mod-
elling cryptographic protocols. Participants in a protocol are modelled as processes, and
the communication between them is modelled by means of channels, names and mes-
sage passing. The main difference with the pi calculus is that the applied pi calculus
allows one to manipulate complex data, instead of just names. These data are generated
by a term algebra and equality is treated modulo an equational theory. For instance
the equation dec(enc(x, y), y) = x models the fact that encryption and decryption with
the same key cancel out in the style of the Dolev-Yao model. Such complex data re-
quires the use of a special kind of processes called active substitutions. As an example
consider the following process and reduction step.

νa, k.out(c, enc(a, k)).P
νx.out(c,x)−−−−−−−→ νa, k.(P | {enc(a,k)/x}).

The process outputs a secret name a which has been encrypted with the secret key k
on a public channel c. The active substitution {enc(a,k)/x} gives the environment the
ability to access the term enc(a, k) via the fresh variable x without revealing a or k.
The applied pi calculus also generalizes the spi calculus [3] which only allows a fixed
set of built-in primitives (symmetric and public-key encryption), while the applied pi
calculus allows one to define a variety of primitives by means of an equational theory.

One of the difficulties in automating the proof of properties of systems in the ap-
plied pi calculus is the infinite number of possible behaviours of the attacker, even in

� This work has been partly supported by the RNTL project POSÉ, the EPSRC projects
EP/E029833, Verifying Properties in Electronic Voting Protocols and EP/E040829/1, Verifying
anonymity and privacy properties of security protocols, the ARA SESUR project AVOTÉ and
the ARTIST2 NoE. We also thank M. Johansson and B. Victor for interesting discussions.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 133–145, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

134 S. Delaune, S. Kremer, and M. Ryan

the case that the protocol process itself is finite. When the process requests an input
from the environment, the attacker can give any term which can be constructed from
the terms it has learned so far in the protocol, and therefore the execution tree of the
process is potentially infinite-branching. To address this problem, researchers have pro-
posed symbolic abstractions of processes, in which terms input from the environment
are represented as symbolic variables, together with some constraints. These constraints
describe the knowledge of the attacker (and therefore, the range of possible values of
the symbolic variable) at the time the input was performed.

Reachability properties can be verified by deciding satisfiability of constraint sys-
tems resulting from symbolic executions of process algebras (e.g. [16,4]). Similarly,
off-line guessing attacks coded as static equivalence between process states [5] can
be decided using such symbolic executions, but this requires one to check the equiv-
alence of constraint systems, rather than satisfiability. Decision procedures for both
satisfiability [11] and equivalence [5] of constraint systems exist for significant families
of equational theories. Observational equivalence properties, which can be character-
ized as a bisimulation, express the inability of the attacker to distinguish between two
processes no matter how it interacts with them. These properties are useful for mod-
elling anonymity and privacy properties (e.g. [12]), as well as strong secrecy. Symbolic
methods have also been used for bisimulation in process algebras [14,9]. In particular,
Borgström et al. [10] define a sound symbolic bisimulation for the spi calculus.

In this paper we propose a symbolic semantics for the applied pi calculus together
with a sound symbolic bisimulation. To show that a symbolic bisimulation implies the
concrete one, we generally need to prove that the symbolic semantics is both sound and
complete. The semantics of the applied pi calculus is not well suited for defining such a
symbolic semantics. In particular, we argue in Section 2 that defining a symbolic struc-
tural equivalence which is both sound and complete seems impossible. The absence of
sound and complete symbolic structural equivalence significantly complicates the proof
of our main result. We therefore split it into two parts. We define a more restricted se-
mantics which will provide an intermediate representation of applied pi calculus pro-
cesses. These intermediate processes are a selected (but sufficient) subset of the original
processes. One may think of them as being processes in some kind of normal form. We
equip these intermediate processes with a labelled bisimulation that coincides with the
original one. Then we present a symbolic semantics which is both sound and complete
with respect to the intermediate one and give a sound symbolic bisimulation. To keep
track of the constraints on symbolic variables we associate a separate constraint system
to each symbolic process. Keeping these constraint systems separate allows us to have
a clean separation between the bisimulation and the constraint solving part. In particu-
lar we can directly build on existing work [5] and obtain a decision procedure for our
symbolic bisimulation for a significant family of equational theories whenever the con-
straint system does not contain disequalities. This corresponds to the fragment of the
applied pi calculus without else branches in the conditional. For this fragment, one may
also notice that our symbolic semantics can be used to verify reachability properties
using the constraint solving techniques from [11]. Another side-effect of the separa-
tion between the processes and the constraint system is that we forbid α-conversion
on symbolic processes as we lose the scope of names in the constraint system, but al-

Symbolic Bisimulation for the Applied Pi Calculus 135

low explicit renaming when necessary (using naming environments). We believe that
the simplicity of our intermediate calculus (especially the structural equivalence) and
the absence of α-conversion is appealing in view of an implementation. Finally, one
may note that as in [10,8], our technique for deciding bisimulation is incomplete (see
Section 5.1). However, we argue that our technique works for many interesting cases.
The intermediate semantics and proofs are omitted, but can be found in [13].

2 The Applied Pi Calculus

The applied pi calculus [2] is a language for describing processes and their interactions.
We only consider the finite applied pi calculus which does not have process replication.
Details about syntax and semantics of the original applied pi calculus may be found
in [2]. We briefly recall them for the convenience of the reader.

Terms are defined as names, variables, and function symbols applied to other terms
(of base type). We denote by N (resp. X) the set of names (resp. variables) and dis-
tinguish the set Nch (resp. Xch) of channel names (resp. variables) and the set Nb

(resp. Xb) of names (resp. variables) of base type. We define the equations which hold
on terms as an equational theory E. We denote =E the equivalence relation induced
by E. A typical example of an equational theory is dec(enc(x, y), y) = x.

Plain processes (P , Q, R) are built up in a similar way to processes in the pi calculus,
except that messages can contain terms (rather than just names). Extended processes
(A, B, C) add active substitutions {M/x}, and restriction on variables. An evaluation
context C[] is an extended process with a hole instead of an extended process.

As usual, names and variables have scopes, which are delimited by restrictions and
by inputs. We write fv(A), bv(A), fn(A) and bn(A) for the sets of free and bound
variables (resp. names). In an extended process, there is at most one substitution for
each variable, and exactly one when the variable is restricted. An extended process is
closed if all its variables are either bound or defined by an active substitution. Active
substitutions allow us to map an extended process A to its frame φ(A) by replacing
every plain process in A with 0. The domain of a frame ϕ, denoted by dom(ϕ), is the
set of variables for which ϕ contains a substitution {M/x} not under νx.

Throughout the paper we always suppose that substitutions are cycle-free. Given
substitutions σ1 and σ2 with dom(σ1) ∩ dom(σ2) = ∅, we write σ1 ∪ σ2 to denote the
substitution whose domain is dom(σ1) ∪ dom(σ2) and that is equal to σ1 on dom(σ1)
and to σ2 on dom(σ2). We write σ1σ2 for the substitution σ whose domain is dom(σ1)
and such that xσ = (xσ1)σ2. We define img(σ) to be {xσ | x ∈ dom(σ)}. We write σ�

to emphasize that we iterate the substitution until obtaining idempotence.

Semantics. Structural equivalence, noted ≡, is the smallest equivalence relation on ex-
tended processes that is closed under α-conversion on names and variables, application
of evaluation contexts, and some other standard rules such as associativity and com-
mutativity of the parallel operator and commutativity of the bindings. In addition the
following three rules are related to active substitutions and equational theories:

νx.{M/x} ≡ 0, {M/x} | A ≡ {M/x} | A{M/x}, and {M/x} ≡ {N/x} if M =E N

136 S. Delaune, S. Kremer, and M. Ryan

As mentioned in the introduction, it seems difficult to define symbolic structural
equivalence (≡s) which is sound and complete in the following (informal) sense:

– Soundness: Ps ≡s Qs implies for any valid instantiation σ, Psσ ≡ Qsσ;
– Completeness: Psσ ≡ Q implies there exists Qs such that Ps ≡s Qs and Qsσ = Q.

To see this, consider the process P = in(c, x).in(c, y).out(c, f(x)).out(c, g(y)) which
can be reduced to P ′ = out(c, f(M1)).out(c, g(M2)) where M1 and M2 are two ar-
bitrary terms provided by the environment. In the case that f(M1) =E g(M2), we
have P ′ ≡ νz.(out(c, z).out(c, z) | {f(M1)/z}), but this structural equivalence does
not hold whenever f(M1) �=E g(M2). The aim of our symbolic semantics is to avoid
instantiating the variables x and y: the process P would reduce to P ′

s = out(c, f(x)).
out(c, g(y)). In this case we need to keep auxiliary information that allows us to in-
fer that x and y may take arbitrary values. The process P ′

s represents the two cases
in which x and y are equal or distinct. Hence, the question of whether the sym-
bolic structural equivalence P ′

s ≡s νz.(out(c, z).out(c, z) | {f(x)/z}) is valid cannot
be decided, as it depends on the concrete values of x and y. Therefore, our notion
of symbolic structural equivalence is sound but not complete in the sense above
(we will give a weaker completeness result). This seems to be an inherent prob-
lem and it propagates to internal and labelled reduction, since they are closed under
structural equivalence. In this example, the control flow is not affected by whether
f(x) =E g(y). When control flow is affected by conditions on input variables, we
maintain those conditions as a set of constraints.

Internal reduction → is the smallest relation on extended processes closed under struc-
tural equivalence and application of evaluation contexts such that

COMM out(a, M).P | in(a, x).Q → P | Q{M/x}
THEN if M = N then P else Q → P where M =E N
ELSE if M = N then P else Q → Q where M, N are ground and M �=E N

Note that the presentation of the internal reduction slightly differs from the one given
in [2], but it is easily shown to be equivalent.

The operational semantics is extended by a labelled operational semantics enabling
us to reason about processes that interact with their environment. Below, a and c are
channel names whereas x is a variable of base type.

IN in(a, x).P
in(a,M)
−−−−−→ P{M/x}

OUT-CH out(a, c).P
out(a,c)
−−−−−→ P

OPEN-CH
A
out(a,c)
−−−−−→ A′ c �= a

νc.A
νc.out(a,c)
−−−−−−−→ A′

OUT-T out(a,M).P
νx.out(a,x)
−−−−−−−→ P | {M/x}
x �∈ fv(P) ∪ fv(M)

SCOPE
A
α
−→ A′ u does not occur in α

νu.A
α
−→ νu.A′

bn(α) ∩ fn(B) = ∅

PAR
A
α
−→ A′ bv(α) ∩ fv(B) = ∅

A | B
α
−→ A′ | B

STRUCT
A ≡ B B

α
−→ B′ A′ ≡ B′

A
α
−→ A′

Symbolic Bisimulation for the Applied Pi Calculus 137

Our rules differ slightly from those described in [2], although we prove in [13] that
labelled bisimulation in our system coincides with labelled bisimulation in [2].

Equivalences. In [2], it is shown that observational equivalence coincides with labelled
bisimilarity. This relation is like the usual definition of bisimilarity, except that at each
step one additionally requires that the processes are statically equivalent.

Definition 1 (static equivalence (∼)). Two closed frames ϕ1, ϕ2 are statically equiva-
lent if ϕ1 ≡ νñ.σ1 and ϕ2 ≡ νñ.σ2 for some names ñ and substitutions σ1, σ2 s.t.

(i) dom(ϕ1) = dom(ϕ2),
(ii) ∀M, N such that (fn(M) ∪ fn(N)) ∩ ñ = ∅, Mσ1 =E Nσ1 ⇔ Mσ2 =E Nσ2.

Example 1. Let ϕ0 = νk.σ0 and ϕ1 = νk.σ1 where σ0 = {enc(s0, k)/x1, k/x2},
σ1 = {enc(s1, k)/x1, k/x2} and s0, s1 and k are names. Let E be the theory de-
fined by the axiom dec(enc(x, y), y) = x. We have dec(x1, x2)σ0 =E s0 whereas
dec(x1, x2)σ1 �=E s0, thus ϕ0 �∼ ϕ1.

Definition 2 (labelled bisimilarity (≈)). Labelled bisimilarity is the largest symmetric
relation R on closed extended processes, such that A R B implies

1. φ(A) ∼ φ(B),
2. if A → A′, then B →∗ B′ and A′ R B′ for some B′,
3. if A

α→ A′ and fv (α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B →∗ α→→∗ B′

and A′ R B′ for some B′.

3 Constraint Systems

The idea of symbolic semantics is to avoid infinite branching due to inputs from the
environment. This is achieved by inputting a variable rather than one of infinitely many
possible terms, and maintaining constraints on what value the variable may take.

Definition 3 (constraint system). A constraint system C is a set of constraints where
every constraint is either

– a deducibility constraint of the form ϕ � x where ϕ is a frame and x a variable, or
– a constraint of the form M = N , M �= N or gd(M) where M, N are terms.

The constraint ϕ � x is useful for specifying the information ϕ held by the environ-
ment when it supplies an input x. The constraint gd(M) means that M is ground. We
denote by names(C) (resp. vars(C)) for the names (resp. variables) of C. We define
cv(C) = {x | ϕ � x ∈ C} to be the constraint variables of C, and assume that those
constraint variables do not appear in the domain of any frame in C. The constraint sys-
tems that we consider arise while executing symbolic processes. We therefore restrict
ourselves to well-formed constraint systems, capturing the fact that the knowledge of
the environment always increases along the execution: we allow it to use more names
and variables (less restrictions) or give it access to more terms (larger substitution).

138 S. Delaune, S. Kremer, and M. Ryan

More formally, φ1
def
= νũ1.σ1 � νũ2.σ2

def
= φ2 if ũ1 ⊇ ũ2, and dom(σ1) ⊆ dom(σ2)

and ∀y ∈ dom(σ1). yσ1 = yσ2.

Definition 4 (well-formed constraint system). A constraint system C is well-formed
if its deducibility constraints can be written φ1 � x1, . . . , φ� � x� such that φ1 � φ2 �
. . . � φn and ∀i. 1 ≤ i ≤ �, ∀x ∈ vars(img(φi)) ∩ cv(C), ∃j < i. x = xj .

The second condition corresponds to the way in which variables are bound: each time
a symbolic message M (which may contain variables) is put in the frame the variables
in vars(M) have to have been previously instantiated. Hence, those variables have to
appear on the right of a smaller deducibility constraint. Given a constraint system C we
write Ded(C)={φ1 � x1, . . . , φ� � x�}. Two well-formed constraint systems C and C′

with Ded(C) = {φ1 � x1, . . . , φ� � x�} and Ded(C′)={φ′
1 � x′

1, . . . , φ
′
� � x′

�} have
same basis if xi = x′

i and dom(φi) = dom(φ′
i) for 1 ≤ i ≤ �.

Definition 5 (E-solution). Let C be a well-formed constraint system such that Ded(C)
= {φ1 � x1, . . . , φ� � x�} where each φi = νũi.σi for some ũi and some substitu-
tion σi. An E-solution of C is a substitution θ whose domain is cv(C) and such that

– vars(xiθ) ∩ cv(C) = ∅ and vars(xiθ) ∩ (dom(φ�) � dom(φi)) = ∅;
– names(xiθ) ∩ ũi = ∅ and vars(xiθ) ∩ ũi = ∅;
– for “M = N” ∈ C (resp. “M �= N” ∈ C) , we have M(θσ�)� =E N(θσ�)� (resp.

M(θσ�)� �=E N(θσ�)�);
– for “gd(M)” ∈ C, we have that the term M(θσ�)� is ground.

We denote by SolE(C) the set of E-solutions of C. An E-solution θ of C is closed if
vars(xiθ) ⊆ dom(φi) for any i ∈ {1, . . . , �}.

Example 2. Let C = {νk.νs.{enc(s,k)/y1,
k /y2} � x′ , gd(c) , x′ = s}. Let E be the

equational theory dec(enc(x, y), y) = x and θ = {dec(y1,y2)/x′}. We have that θ is a
closed E-solution of C. Note that θ′ = {dec(y1,k)/x′} is not an E-solution of C.

4 Symbolic Applied Pi Calculus

Intermediate extended processes (denoted A, B, C) are given by the grammar below.
They may be seen as an extended process in normal form.

P, Q, R := inter. plain process
0
P | Q
if M = N then P else Q
in(u, x).P
out(u, N).P

F, G, H := P inter. framed process
{M/x}
F | G

A, B, C := F inter. extended processes
νn.A

A symbolic process is an intermediate extended process together with a constraint
system. We require intermediate extended processes to be

Symbolic Bisimulation for the Applied Pi Calculus 139

– name and variable distinct (nv-distinct): bn(A)∩ fn(A) = bv (A)∩ fv (A) = ∅ and
any name and variable is bound at most once; and

– applied, meaning that each variable in dom(A) occurs only once in A.

Intuitively, in an applied process all active substitutions have been applied. For instance
the extended process out(c, x) | {M/x} is not applied, as x occurs twice. A symbolic
process is made up of two parts: a process and a constraint system. The nv-distinctness
condition allows us to link the names and the variables in the constraint systems to
those used in the process. We denote by ψ(A) the substitution obtained when taking
the active substitutions {M/x} in A. We now define the ↓ operator which transforms an
nv-distinct process into an intermediate process.

Definition 6 (A↓). Given an nv-distinct extended process A, the intermediate extended
process A↓ is defined inductively as follows.

0↓ = 0
{M/x}↓ = {M/x}

in(u, x).P↓ = νñ.in(u, x).P ′

out(u, N).P↓ = νñ.out(u, N).P ′
(νn.A)↓ = νn.(A↓)
(νx.A)↓ = Ã

if M = N then P else Q↓ = νñ.νm̃.if M = N then P ′ else Q′

(A | B)↓ = νñ.νm̃.(A′ | B′)(ψ(A′) ∪ ψ(B′))�

where P↓ = νñ.P ′, Q↓ = νm̃.Q′, A↓ = νñ.A′, B↓ = νm̃.B′, and Ã is A↓ but with
the unique occurrence of {M/x} replaced by 0.

For example, let A = νx.(in(c, y).νb.out(a, x) | {f(b)/x}). Then A↓ = νb.in(c, y).
out(a, f(b)). Note that the processes A and A↓ are bisimilar but not structurally equiv-
alent. As expected, an intermediate context is an intermediate extended process with a
hole instead of an intermediate extended process. An intermediate evaluation context is
an intermediate context whose hole is not under a conditional, an input or an output. We
also define what it means to apply an evaluation context on a constraint system. This is
needed because we define the semantics in a compositional way.

Definition 7 (constraint system C[C]). Let C = νñ.(| D) be an intermediate evalu-
ation context and e be a constraint. We have that

– C[e] = eψ(D) when e is a constraint of the form M = N , M �= N or gd(M);
– C[νṽ.σ � x] = νñ.νṽ.(σ ∪ ψ(D)) � x otherwise.

Given a constraint system C, we have that C[C] = {C[e] | e ∈ C}.

As we do not allow α-conversion we explicitly run intermediate extended processes in
a naming environment N : N ∪ X → {n, f, b, c}. Intuitively, N(u) = f if the name or
variable u occurs free in A, and N(u) = b if u has been bound and will not be used
again. N(u) = n means u is new and has not been used before, either as free or bound.
N(x) = c means that the variable x is a constraint variable (i.e. an input from the en-
vironment subject to constraints in C). This discipline helps us avoid name and variable
conflicts. If N(u) = t then the naming environment N′ = N[u �→ t′] is defined to be the
same as N except that N′(u) = t′; and N[U �→ t′] is defined as N[u1 �→ t′, . . . , un �→ t′]
if U ={u1, . . . , un}. If U is a set of names and variables then N(U)={N(u) | u∈U},

140 S. Delaune, S. Kremer, and M. Ryan

and we write N(U) = t if N(U) ⊆ {t}. A naming environment N is compatible with
an intermediate extended process A and a constraint system C if

– N(fn(A)) = f
– N(fv(A)) ⊆ {f, c}

– N(bn(A) ∪ bv(A)) = b
– N(x) = c iff x ∈ cv(C)

– N(names(C)) ⊆ {f, b}
– N(vars(C)) ⊆ {f, c, b}

Definition 8 (Symbolic process). A symbolic process is a triple (A ; C ; Ns) where A
is an intermediate extended process, C a constraint system and Ns a naming environ-
ment compatible with A and C. The symbolic process (A ; C ; N) is well-formed if C is
well-formed and if φ(A) � max{φ | φ � x ∈ C} when Ded(C) �= ∅.

Given a well-formed symbolic process (A ; C ; N) we define by SolE(C ; N) the set of
solutions of C which are compatible with N, i.e.

SolE(C, N) = {θ | θ ∈ SolE(C), N(names(img(θ)) ∪ vars(img(θ))) = f}.

Example 3. Let A = out(c, x), C = {νa.νb.{b/y} � x, x �= c} and N be a naming en-
vironment compatible with A and C such that N(d) = f. Let θ1 = {d/x}, θ2 = {y/x}.
We have that θ1, θ2 ∈ SolE(C, N). Hence out(c, d) (resp. out(c, b)) is the concrete pro-
cess obtained by the solution θ1 (resp. θ2). However, note that out(c, a) is not a con-
cretization of (A ; C ; N).

4.1 Symbolic Semantics

Symbolic structural equivalence (≡s) is the smallest equivalence relation on
well-formed symbolic processes such that:

PAR-0s (A ; C ; N) ≡s (A | 0 ; C ; N)
PAR-As (A | (B | D) ; C ; N) ≡s ((A | B) | D ; C ; N)
PAR-Cs (A | B ; C ; N) ≡s (B | A ; C ; N)
NEW-Cs (νn.νm.A ; C ; N) ≡s (νm.νn.A ; C ; N)

(A ; CA ; N) ≡s (B ; CB ; N)
(C[A] ; C[CA] ; N′) ≡s (C[B] ; C[CB] ; N′)

where N′ = N[S �→ b] for some set
of names S such that N(S) = f

Symbolic internal reduction →s is the smallest relation on well-formed symbolic pro-
cesses closed under ≡s, application of intermediate evaluation context and such that:

COMMs (out(u,M).P | in(v, x).Q ; C ; N)→s
(P | Q{M/x} ; C ∪ {u = v , gd(u) , gd(v)} ; N)

where u, v ∈ Nch ∪ (cv(C) ∩ Xch).

THENs (ifM = N then P else Q ; C ; N)→s (P ; C ∪ {M = N} ; N)

ELSEs (ifM = N then P else Q ; C ; N)→s (Q ; C ∪ {M �= N ; gd(M) ; gd(N)} ; N)

Symbolic labelled reduction is the smallest relation closed under symbolic structural
equivalence (≡s) and such that

Symbolic Bisimulation for the Applied Pi Calculus 141

INs (in(u, x).P ; C ; N)
in(u,y)−−−−→s (P{y/x} ; C∪{0 � y, gd(u)} ; N[y �→ c])

where u ∈ Nch∪(Xch ∩ cv(C)), N(y)=n.

OUT-CHs (out(u, v).P ; C ; N)
out(u,v)−−−−−→s (P ; C∪{gd(u), gd(v)} ; N)

where u, v ∈ Nch∪(Xch ∩ cv(C)).
OUT-Ts

(out(u, M).P ; C ; N)
νx.out(u,x)−−−−−−−→s (P | {M/x} ; νx.C∪{gd(u)} ; N[x �→ f])

where x ∈ Xb, N(x)=n.

OPEN-CHs (A ; C ; N)
out(u,c)−−−−−→s (A′ ; C′ ; N′) u �=c, d ∈ Nch, N(d)=n

(νc.A ; νc.C ; N[c �→ b])
νd.out(u,d)−−−−−−−→s (A′{d/c} ; νd.(C′{d/c}) ; N′[c �→ b, d �→ f])

SCOPEs
(A ; C ; N) α−→s (A′ ; C′ ; N′) n does not occur in α

(νn.A ; νn.C ; N[n �→ b]) α−→s (νn.A′ ; νn.C′ ; N[n �→ b])

PARs
(A ; C ; N) α−→s (A′ ; C′ ; N′)

(A | B ; C | ψ(B) ; N) α−→s (A′ | B ; C | ψ(B) ; N′)

We may note that the rules INs and OPEN-CHs require “on-the-fly renaming”. This
will be needed in the bisimulation because we require both the left- and right-hand
processes to use the same label without allowing α-conversion. When a transition is ex-
ecuted under a context (by the rules SCOPEs and PARs) the constraint system must
also be put in the context (according to Definition 7). In particular, these rules al-
low to add restrictions and active substitutions to the constraint 0 � y inserted by
the rule INs.

Example 4. To illustrate our symbolic semantics, consider the process (A ; ∅ ; N)
where A = νk.νs.(in(c, x).if x = s then out(c, ok) | {enc(s,k)/y1} | {k/y2}) and N is
a naming environment compatible with A. Let x′ be a variable such that N(x′) = n.

(A ; ∅ ; N)
in(c,x′)−−−−−→s (A′ ; {νk.νs.{enc(s,k)/y1 ,

k /y2} � x′ , gd(c)} ; N[x′ �→ c])

−−→s (νk.νs.(out(c, ok) | {enc(s,k)/y1} | {k/y2}) ; C ; N[x′ �→ c])

where A′ = νk.νs.(if x′ = s then out(c, ok) | {enc(s,k)/y1} | {k/y2}) and C is the
system {νk.νs.{enc(s,k)/y1 ,

k /y2} � x′ , gd(c) , x′ = s}. Let θ = {dec(y1,y2)/x′}. We
have θ ∈ SolE(C ; N[x′ �→ c]) (see Example 2).

4.2 Symbolic Equivalences

We define symbolic static equivalence using a similar encoding as [5]. The tests used
to distinguish two frames in the definition of static equivalence are encoded by means
of two additional deduction constraints on fresh variables x, y and by the
equation x = y.

Definition 9 (symbolic static equivalence (∼s)). Two closed well-formed symbolic
processes are statically equivalent, written (As ; CA ; N) ∼s (Bs ; CB ; N) if for

142 S. Delaune, S. Kremer, and M. Ryan

some variables x, y such that N({x, y}) = n, the constraint systems C′
A, C′

B have the
same basis and SolE(C′

A ; N[x, y �→ c]) = SolE(C′
B ; N[x, y �→ c]) where

– C′
A = CA∪{φ(As) � x , φ(As) � y , x = y}, and

– C′
B = CB ∪ {φ(Bs) � x , φ(Bs) � y , x = y}.

Proposition 1 (soundness of ∼s). Consider two closed and well-formed symbolic pro-
cesses such that (As ; CA ; N) ∼s (Bs ; CB ; N). We have that:

1. SolE(CA ; N) = SolE(CB ; N), and
2. for all closed θ ∈ SolE(CA ; N) we have φ(As(θσA)�) ∼ φ(Bs(θσB)�), where σA

(resp. σB) is the substitution corresponding to the maximal frame of CA (resp. CB).

Definition 10 (Symbolic labelled bisimilarity (≈s)). Symbolic labelled bisimilarity is
the largest symmetric relation R on closed well-formed symbolic processes with same
naming environment, such that (As ; CA ; N) R (Bs ; CB ; N) implies

1. (As ; CA ; N) ∼s (Bs ; CB ; N)
2. if (As ; CA ; N) →s (A′

s ; C′
A ; N) with SolE(C′

A ; N) �= ∅, then there exists
(B′

s ; C′
B ; N) such that (Bs ; CB ; N) →∗

s (B′
s ; C′

B ; N) and (A′
s ; C′

A ; N) R
(B′

s ; C′
B ; N);

3. if (As ; CA ; N) αs→s (A′
s ; C′

A ; N′) with SolE(C′
A ; N′) �= ∅, then there exists

(B′
s ; C′

B ; N′) such that (Bs ; CB ; N) →∗
s

αs−→s→∗
s (B′

s ; C′
B ; N′), and

(A′
s ; C′

A ; N′) R (B′
s ; C′

B ; N′).

Baudet [6] presents a (co-NP) decision procedure to check ∼s (condition 1) for con-
straint systems without disequality constraints and subterm convergent1 equational the-
ories. This includes among others the well-known Dolev-Yao theory used to model
symmetric (resp. asymmetric) encryption with composed keys, signatures and pairing.
Building on this existing work, we obtain a procedure to decide our symbolic bisim-
ulation for the fragment of the finite applied pi calculus without else branches in the
conditional.

Theorem 1 (Main result). Let A and B be two closed, nv-distinct extended processes
and N be a naming environment compatible with A↓, B↓. We have that

(A↓ ; ∅ ; N) ≈s (B↓ ; ∅ ; N) implies A ≈ B.

Note that limiting the theorem to nv-distinct processes is not a real restriction. If we
want to prove that A ≈ B, we can construct by α-conversion two nv-distinct pro-
cesses A′, B′ such that A′ ≡ A and B′ ≡ B. Showing A′ ≈ B′ implies that A ≈ B,
since ≈ is closed under structural equivalence.

Theorem 1 is proved by using our intermediate semantics. We define labelled bisim-
ilarity on intermediate extended processes, and show it to coincide with labelled bisim-
ilarity in applied pi. Soundness and completeness of the symbolic semantics is shown
with respect to the intermediate semantics. This allows to obtain soundness of the sym-
bolic bisimulation. All the details are given in [13].

1 An equational theory induced by a finite set of equations M = N where N is a subterm of M
and such that the associated rewriting system is convergent.

Symbolic Bisimulation for the Applied Pi Calculus 143

5 Discussion, Related and Future Work

5.1 Sources of Incompleteness

Our techniques suffer from the same sources of incompleteness as the ones described
for the spi calculus in [10]. In a symbolic bisimulation the instantiation of input vari-
ables is postponed until the point at which they are actually used, leading to a finer
relation. We illustrate this point on an example, similar to one given in [10].

Example 5. Consider the two following processes:

P1 = νc1.in(c2, x).(out(c1, b) | in(c1, y) | if x = a then in(c1, z).out(c2, a))
Q1 = νc1.in(c2, x).(out(c1, b) | in(c1, y) | in(c1, z).if x = a then out(c2, a))

We have that P1 ≈ Q1 whereas (P1 ; ∅ ; N) �≈s (Q1 ; ∅ ; N) for any compatible
naming environment N. Depending on the value of the input, i.e. if x is equal to a or
not, P1 and Q1 know if the test x = a will succeed or not. However, on the symbolic
side, the instantiation of x is postponed until the moment where x is really used, i.e.
until the moment of the test itself, when it is too late to choose the right branch.

5.2 Related Work

A pioneering work has been done by Henessy and Lin [14] for value-passing CCS.
However, the result which is most closely related to ours is by Borgström et al. [10]:
they define a symbolic bisimulation for the spi calculus with the same sources of in-
completeness as we have. However, our treatment of general equational theories is non
trivial as illustrated by the problems implied for structural equivalence.

For many important equational theories, static equivalence has been shown to be
decidable in [1]. More interestingly, some works have also been done to automate
observational equivalence. The ProVerif tool [7] automates observational equivalence
checking for the applied pi calculus (with process replication), but since the problem
is undecidable the technique it uses is necessarily incomplete. The tool aims at prov-
ing a finer equivalence relation and relies on easily matching up the execution paths
of the two processes [8]. In his thesis, Baudet [6] presents a decision procedure for
a similar equivalence, called diff-equivalence, in a simplified process calculus. Exam-
ples where this equivalence relation is too fine occur when proving the observational
equivalence required to show vote-privacy [15,12]. Although our symbolic bisimula-
tion is not complete, we are able to conclude on examples where ProVerif fails. For in-
stance, ProVerif is unable to prove that the processes out(c, a) | out(c, b) and out(c, b) |
out(c, a) are bisimilar whereas of course we are able to deal with such examples. A
more interesting example, for which our symbolic semantics plays an important role is
as follows.

Example 6. Consider the following two processes

P = νc1.(in(c2, x).out(c1, x).out(c2, a) | in(c1, y).out(c2, y))
Q = νc1.(in(c2, x).out(c1, x).out(c2, x) | in(c1, y).out(c2, a))

144 S. Delaune, S. Kremer, and M. Ryan

These two processes are labelled bisimilar and our symbolic labelled bisimilation
is complete enough to prove this. In particular, let P ′ = νc1.(out(c1, x

′).out(c2, a) |
in(c1, y).out(c2, y)) and Q′ = νc1.(out(c1, x

′).out(c2, x
′) | in(c1, y).out(c2, a)). The

relation R, that witnesses the symbolic bisimulation, includes

(P ; ∅ ; N) R (Q ; ∅ ; N)

(P ′ ; {νc1.0 � x′ , gd(c2)} ; N′) R (Q′ ; {νc1.0 � x′ , gd(c2)} ; N′)
(νc1.(out(c2, a) | out(c2, x

′)) ;
{νc1.0 � x′ , gd(c2) , gd(c1)} ; N′) R (νc1.(out(c2, x

′) | out(c2, a)) ;
{νc1.0 � x′ , gd(c2) , gd(c1)} ; N′)

The technique used in ProVerif will generally fail in the case where the two processes
take different branches at some point. This is the case in Example 6: after a synchro-
nisation (modelled by a communication on the private channel c1) between the two
parallel components of process P (resp. Q), the output action of the left component
of P matches the output action of the right component of Q. This example is actually
inspired by the problems we encountered when we tried to verify privacy in electronic
voting protocols using ProVerif. In order to establish privacy of an electronic voting
protocol (according to the definition given in [15]), we need a bisimulation relation, as
the one described in this paper, which is coarse enough to allow processes to differ on
their structure. We think that our symbolic bisimulation is complete enough to deal with
many other interesting cases since other privacy and anonymity properties are facing the
same difficulty.

5.3 Future Work

The obvious next step is to study the equivalence of solutions for constraint systems
under different equational theories. Promising results have already been shown in [5]
for a significant class of equational theories but for constraint systems that do not have
disequalities. These results readily apply for deciding our symbolic bisimulation on
the fragment without else branches in conditionals. We plan to implement an auto-
mated tool for checking observational equivalence. In particular we aim at automating
proofs arising in case studies of electronic voting protocols which currently rely on
hand proofs [12].

References

1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational theories.
Theoretical Computer Science 387(1-2), 2–32 (2006)

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: Proc. 28th
Symposium on Principles of Programming Languages, pp. 104–115 (2001)

3. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus. In: Proc.
4th Conference on Computer and Communications Security, pp. 36–47. ACM Press, New
York (1997)

4. Amadio, R., Lugiez, D., Vanackère, V.: On the symbolic reduction of processes with crypto-
graphic functions. Theoretical Computer Science 290, 695–740 (2002)

Symbolic Bisimulation for the Applied Pi Calculus 145

5. Baudet, M.: Deciding security of protocols against off-line guessing attacks. In: Proc. 12th
Conference on Computer and Communications Security, pp. 16–25. ACM Press, New York
(2005)

6. Baudet, M.: Sécurité des protocoles cryptographiques: aspects logiques et calculatoires.
Thèse de doctorat, LSV, ENS Cachan, France (January 2007)

7. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: Proc.
14th Computer Security Foundations Workshop, pp. 82–96. IEEE Comp. Soc. Press, Los
Alamitos (2001)

8. Blanchet, B., Abadi, M., Fournet, C.: Automated Verification of Selected Equivalences for
Security Protocols. In: Proc. 20th Symposium on Logic in Computer Science, pp. 331–340.
IEEE Comp. Soc. Press, Los Alamitos (2005)

9. Boreale, M., Nicola, R.D.: A symbolic semantics for the pi-calculus. Information and Com-
putation 126(1), 34–52 (1996)

10. Borgström, J., Briais, S., Nestmann, U.: Symbolic bisimulation in the spi calculus. In: Gard-
ner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, Springer, Heidelberg (2004)

11. Delaune, S., Jacquemard, F.: A decision procedure for the verification of security protocols
with explicit destructors. In: Proc. 11th ACM Conference on Computer and Communications
Security (CCS 2004), pp. 278–287. ACM Press, New York (2004)

12. Delaune, S., Kremer, S., Ryan, M.D.: Coercion-resistance and receipt-freeness in electronic
voting. In: Proc. 19th Computer Security Foundations Workshop, pp. 28–39. IEEE Comp.
Soc. Press, Los Alamitos (2006)

13. Delaune, S., Kremer, S., Ryan, M.D.: Symbolic bisimulation for the applied pi calculus.
Research Report LSV-07-14, LSV, ENS Cachan, France, pp. 47 (April 2007)

14. Hennessy, M., Lin, H.: Symbolic bisimulations. Theoretical Computer Science 138(2), 353–
389 (1995)

15. Kremer, S., Ryan, M.D.: Analysis of an electronic voting protocol in the applied pi-calculus.
In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200. Springer, Heidelberg (2005)

16. Millen, J.K., Shmatikov, V.: Constraint solving for bounded-process cryptographic protocol
analysis. In: Proc. 8th Conference on Computer and Communications Security, pp. 166–175
(2001)

	Symbolic Bisimulation for the Applied Pi Calculus
	Introduction
	The Applied Pi Calculus
	Constraint Systems
	Symbolic Applied Pi Calculus
	Symbolic Semantics
	Symbolic Equivalences

	Discussion, Related and Future Work
	Sources of Incompleteness
	Related Work
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

